
MIT / LCS/ TM-261

OPTIMAL DISTRIBUTED ALGORITHMS
FOR SORTING AND RANKING

Shmuel Zaks

May 1984

OPTIIV1AL DISTRIBUTED ALGORITHMS
FOR SORTING AND RANKING

Shmuel Zaks 1

Laboratory for Computer Science
M.I.T.

Cambridge, MA 02139

April 1984

1on leave from the Department of Computer Science, Technion, Haifa, Israel; supported by NSF
grant MCS-8302391.

1

ABSTRACT

We study the problems of sorting and ranking n processors that have initial values

- not necessarily distinct - in a distributed system. Sorting means that the initial

values have to move around in the network and be assigned to the processors

according to their distinct identities, while ranking means that the numbers 1,2, ... ,n

have to be assigned to the processors according to their initial values; ties between

initial values can be broken in any chosen way. Assuming a tree network, and

assuming that a message can contain an initial value, an identity or a rank, we

present an algorithm for the ranking problem that uses, in the worst case, at most

1/2n2 + O(n) such messages. The algorithm is then extended to perform sorting,

using in the worst case at most 314n2 + O(n) messages. Both algorithms are using

a total of O(n) space. The algorithms are extended to general networks. The

expected behavior of these algorithms for three classes of trees are discussed.

Assuming that the initial values, identities and ranks can only be compared within

themselves, lower bounds of 112n2 and 314n2 messages are proved for a worst case

execution of any algorithm to solve the ranking and sorting problems,

correspondingly.

2

1 INTRODUCTION

A large effort is being recently put into the design and analysis of algorithms that

are fully distributed. These algorithms are applicable in a network of processors,

where no central controller is present and no common clock is available.

For these algorithms the model usually used contains a network of processors,

each with a unique identity known in the beginning only to himself. Every processor

has only a local knowledge of the network, and his only means of communication is

exchanging messages with his neighbors in the network. The messages arrive in

order and after a finite delay, but no a priori bound for that delay is known. We

assume that a message can contain an initial value, an identity or a rank, that are of

three distinct types, and can only be compared within themselves.

It is usually assumed that any non-empty subset of the processors start the

algorithm (each processor has the same algorithm), and that at the end each

processor has computed some function that is the result of that algorithm. There are

usually many possible executions from a given starting point before all processors

terminate. Assuming that the computation cost and the queueing cost in each

processor is negligible compared to the communication cost, it is customary to

measure the complexity of such algorithms by the total number of messages sent

during any possible execution.

We study the problems of sorting and ranking n processors that have distinct

identities and (not necessarily distinct) initial values. Sorting means that the initial

values have to move around in the network and be assigned to the processors

according to their distinct identities, while ranking means that the numbers 1,2, ... ,n

have to be assigned to the processors according to their initial values; ties between

initial values can be broken in any chosen way.

Assuming a tree network, we first present an algorithm to solve the ranking

problem, using, in the worst case, at most 112n2 + O(n) messages, and show that

3

any algorithm to solve the ranking problem must use, for its ranking part, in the worst

case, at least 1/2n2 messages. The algorithm is then extended to a sorting

algorithm, using in the worst case 3/ 4n2 + O (n) messages, and a lower bound of

314n2 messages is shown; in other words, for a tree network these algorithms are

best possible to within a o (n2) number of messages. · Both algorithms are using a

total- of O(n) space, by letting each node in the tree remember only an amount of

information that is proportional to the number of his sons. The expected number of

messages used by these algorithms is discussed for three classes of trees. For

example, we show that for the class of nn-2 trees on n labeled nodes the expected

numbers of messages used by the ranking and sorting algorithms are bounded by

2n312 {1T/2) 112 + O(n) and 3 n312 {1T/2) 112 + O(n), correspondingly.

The extensions of these algorithms to general networks are done in the usual way,

by first finding a spanning tree in the network and then applying the ranking and

sorting algorithms designed for a tree network.

Section 2 presents the model and the problem, and discusses some related works.

Section 3 describes the algorithms. Their proof of correctness and analysis are the

subject of Sections 4 and 5, correspondingly, and the lower bounds are proved in

Section 6.

4

2 THE MODEL, THE PROBLEMS AND RELATED WORKS

The model under investigation is a distributed network of n processors, with n

distinct identities id(1),id(2), ... , id(n). The identities of the processors must be

distinct, otherwise no deterministic distributed algorithm is possible, even when the

distribution of initial values is not symmetric (see Gafni et al [1984]), and probability

has to be introduced in order to break the symmetry (see ltai and Rodeh [1981]).

The processors are holding initial values init(1),init(2), ... ,init(n) , where init(i) is the

initial value held by processor i; these initial values are not necessarily distinct. Let

!NIT = {init(1),init(2), ... ,init(n}J be the multiset of initial values,

ID = {id(1),id(2), ... ,id(n)} the set of identities, and N = {1,2, ... ,n} the set of ranks.

Each processor is connected to some others by communication lines, and we

assume that the underlying graph G = (V,E) - where V = {1,2, ... ,n} and {i,j) E E iff

there is a communication line connecting processor i and processor j - is connected.

A processor does not know the initial value of any of his neighbours in the network.

The communication between the processors is done by sending messages along

the communication lines. A message can be any element from the set

ID U IN/TV NU ("}..) . It is assumed that the initial values, identities and ranks are of

three distinct types, and can only be compared within themselves. We use the

element A to denote an empty message. As will become clear from our algorithms,

we can manage without this elememt, but we prefer to use it in order to simplify the

presentation.

We assume that the messages arrive with no error after a finite but otherwise

unpredicted delay, and are stored in a queue until processed.

An algorithm . consists of sending and receiving messages and doing local

computations. It is assumed that any non-empty set of processors may start the

algorithm. At the end of the ·algorithm every processor i has a value F(i) of the

5

function F computed by the algorithm.

We deal with distributed algorithms that will perform sorting or ranking on the initial

values. An algorithm is solving the sorting p roblem if it terminates, and the function

F satisfies:

- 1. The set { F(i) / 1 < = i < = n J is a permutation of the set !NIT, and

2. id(i) < id(j) implies F(i) < F(j).

and it is solving the ranking problem if the function F satisfies:

1. The set {F(i) / 1 < = i < = n} is a permutation of the set N, and

2. init(i) < init(j) implies F(i) < F(j).

This ranking algorithm improves the one presented in Korach et al [1982], where

an algorithm for a tree network that uses, in the worst case, 312 n2 + 0 (n) messages

is suggested.

The problem of distinguishing a node (finding a leader, finding a maximum)

became central in the literature of distributed algorithms. It is closely related to the

problem of finding a spanning tree, since given a distributed algorithm to find a

leader, one can easily design an algorithm to find a spanning tree with no more than

O(/E/) additional messages, and given an algorithm to find a spanning tree, one can

easily design an · algorithm to find a leader with no more than O(n) additional

messages.

Gallager et al [1983] construct a minimum spanning tree using O(nlogn + /E/)
messages, and this algorithm is usually used also to find any spanning tree -in a

network. In Korach et al [1983a and 1983b] distributed algorithms for a complete

network are studied, and finding a spanning tree is shown to have upper and lower

bounds of O (nlogn) messages, while a lower bound of Q(n2) messages is shown for

any algorithm for finding a minimum spanning tree. A leader in a network is found in

6

Gallager [1982] using an expected number of O(nlogn) messages.

A leader in a ring is found in O(nlogn) messages for the asynchronous bidirectional

case in Hirschberg and Sinclair [1980] and for the asynchronous unidirectional case

in Dolev et al [1982] and in Peterson [1982]. Lower bounds of Q ·(nlogn) messages

are proved in Burns [1980] for the worst case behaviour of any asynchronous

algorithm for the bidirectional ring, in Pach! et al [1982] for the average behaviour of

any asynchronous algorithm for the bidirectional ring, and in Frederickson and

Lynch [1984] for the worst case behaviour of any synchronous algorithm for the

bidirectional ring.

Our technique for proving the lower bounds borrows from the lower bound proof

for the distictness problem in Gafni et a/[1984] (in this problem it is required that

every processor i will have the final result F(i) = 1 if all the initial values are distinct

and F(i) = o otherwise), where lower bounds for various problems are studied.

Sorting is studied for various networks in Loui [1984]; for example, for the

bidirectional ring of size n and initial values in the range {1, ... ,LJ, upper and lower

bounds of O(n2tog(Lln)llogn) messages are shown.

7

3 THE ALGORITHrvi

3.1 The ranking algorithm - preprocessing phase

Given any network, we first find a spanning tree with a distinguished node as its

root (this requires O(nfogn + /E/) messages; see Gallager et al [1982]), and then find a

cent~r of the tree (this requires O(n) messages; see Korach et al [1980]). Both

algorithms can be applied by using messages of the required types. Actually, as will

become clear from the analysis, we had better find a median in the tree, but this will

not improve the worst-case complexity, and also seems to require other types of

messages as well (as done in l<orach et al [1980]).

From now on we deal with a tree rooted at its center, which we denote by v. We

also assume that each node knows the smallest value in each of the subtrees rooted

at its sons. This task can be easily incorporated into the center finding algorithm;

this is done by letting each node i maintain a multiset S(i) containing - in the

beginning - his own initial value init(i); starting at the leaves and climbing up the tree

towards the root, each node i waits until he receives values from all of his sons (no

waiting for the leaf nodes), adds them to S(i), deletes the smallest value from S(i) and

passes it on to his father. The process terminates when the root v receives values

from all his sons and adds them to S(v). It is assumed that each node i knows, for

every element in S(i), from which of its sons it was sent. It is easy to prove by

induction that each node transfers to his father the smallest value in the subtree

rooted at him.

By updating these multisets as little as possible, we manage to keep the total

communication in the second phase as low as possible. An efficiet implementation

of these multisets can be done using heaps; for more details see Aho et al [1974].

8

3.2 T:·,c r.:,; nking c1!0oriihrn - ran!,1ng phase

The distinguished node v starts now the second phase of the algorithm. He deletes

the smallest element from his multiset S(v), sends a message containing the rank

R = 1 to the son from which he received this smallest value, and increments R. this

value (R = 1) is forwarded by each node to the son from whom he received this

smaHest value.

When eventually the node u hnving this smnllest value (this is the unique node that

transfered his own value to his father!) receives this message, he assignes F(u) = 1

and deletes from S(u) the smallest element, that is transfered towards the root. The

element A is sent in case the multiset S(u) is empty. Every node a on the pnth from u

to v adds the received value to S(a) (nothing is done in case A is received), deletes

from it the smallest element and forwards it to his father (again, A is sent in case the

multiset S(a) is empty, where no such deletion is possible). When the root v gets this

value, he adds it to S(v) and continues this process until S(v) becomes empty.

If the smallest element is S(v) was received from k>1 sons, then k ranks can be

concurrently sent to all of these sons. This does not change the total number of

messages, but improves the total time in a synchronous execution of the algorithm.

3.3 Example

We first demonstrate the algorithm. In this example n = 9 and L = 25, and we

assume that the first phase has just been completed. The relevant information is

depicted in Figure 1. Each node's identity i is written within the corresponding

circle, its initial value init(i) is written to its left, and the multiset S(i) is written to its

right.

Now, the root node 5 starts the second phase: the smallest element 2 is deleted

from S(5), the value R·= 1 is being sent to node 8 through node 2, and is·then being

incremented to 2. When node 8 receives this message, he knows it was intended to

him {since he previously transfered his own value 2 to his father; he knows it

9

· because init(8) f S(B)), so he sets F(8) = I, deletGs 4 from S(S) and sends it to node 2;

node 2 adds it to S(2), deletes from it the smallest element 3 and sends it to the root,

who then adds it to 5(5). The current configuration is depicted in Figure 2.

Now there are two smallest elements in 5(5) (init(2) = init(9) = 3). The rank R = 2 is

sent_towards node 2 and towards node 9, and is being incremented by 2. Node 2,

upon receiving the message, updates his final value F(2) = 2, deletes 4 from 5(2) and

sends it to the root, who adds it to 5(5), while node 9, upon receiving the message,

updates his final value F(9) = 3 and sends A to node 6, who then deletes 4 from 5(6)

and sends it to the root, who adds it to 5(5) . The current configuration is depicted in

Figure 3.

Now there are three smallest elements in S(5) , so corresponding rank messages

are being concurrently sent towards the three corresponding nodes 1,3 and 6, and

so on. The configuration at the end is shown in Figure 4.

10

11

Figure 1: Configuration at the end of the first phase

11

Figure 2: Configuration after R = 1 is treated

12

,,

cfo

Figure 3: Configuration after R = 2,3 are treated

13

Figure~: Configuration at the end of the second phase

14

3.4 The sorting algorithm

In this case each processor i maintains a multiset S(i) (as before) and a subset R(i)

of ID. In the beginning of the process of finding a center, we let R(i) = { id(i) J; starting

at the leaves and climbing up the tree towards the root, each node i waits until he

receives identities from all of his sons (no waiting for the leaf nodes), adds them to

R(i), deletes the smallest identity from R(i) and passes it on to his father. This

process continues until the root receives values from all of his sons.

Therefore, at the beginning of the second phase, the root node knows the smallest

initial value x and the smallest identity y, so he deletes x from S(v) and y from R(v),

and sends x towards node y. This message will propagate down the tree, until it

reaches node y (like in the ranking algorithm, node y will know the message was

intended to him since id(y) f R(y)). Node y will th_en set F(y) = x, delete the smallest

elements from S(y) and R(y) and send them back to his father. The rest of the details

for this modification of the ranking algorithm are left to the reader.

3.5 A code for the ranking algorithm

delete(a,A) deletes the element a from the multiset A. add(a,A) adds the element

a to the multiset A. send(m,u) sends a message m to node u. receive{m,u)

receives a message m from_ node u. min(A) is the smallest element in the set A. f(a)

is the father of node a. g(u) denotes the last value received from the (son) node u.

best(u) is the son of node u from which he received the smallest value that has not

yet been ranked (this is the latest element that was forwarded by u to f(u)); the

details of the updating of these values throughout the algorithms should be clear

from the discussion, and are omitted in the code for the algorithm.

15

The algorithm for the root node v

begin
R·=1· w~~; S(v) +~do

end.

begin
x:=min(S(v));
A:={ul u is a son of v and g(u)=x};
k:=IAI;
for i : = 1 to k do

begin
delete(x,S(v));
let a be any element in A;
delete(a,A);
send(R,a);
R:=R+1

end;
for i : = 1 to k do

begin

end

receive(x,a); (a is a son of v)
if xfA then add(x,S(v))

end

16

The algorithm for node i # v

begin
receive(R,f(i));
if init(i) f S(i)
then

end.

begin
F(i):=R;
if s (;) = <I>
then send ("A,f(i))
else

begin
x:=min(S(i));
delete(x,S(i));
send (x,f(i))

end
end

else
begin

end

send(R,best(i));
receiye(x,best(i));
if x f A then add(x,S(i));
if s (;) = <I>
then send("A,f(i))
else

begin·

epd

x:=min(S(i));
delete(x,S(i));
send(x,f(i))

3.6 Comparison with previous work

Our algorithms differs from the one in Korach et al [1982] mainly in its second

phase. The distinguished node found in their algorithm • not necessarily a center in

the tree · starts the second phase by sending the rank R = 1 towards the node with

the smallest initial value; this node receives the message, and then initiates a

sequence of messages towards the node with the second smallest value, who then

initiates a sequence of messages towards th_e node with the third smallest value, and

so on. Each node has to maintain and update a certain information, and to achieve a

proper behaviour of the algorithm they send in each message two initial values and

17

one rank. The total number of messages is, in the worst case, n2 l2 for the ranking

phase, each carrying three entities, which amounts to a total of 3/2n2 messages.

Moreover, their algorithm is sequential in nature, even in the case where repetitions

are allowed in the set of initial values,whereas in our algorithm some messages are

sent concurrently when repetitions are allowed.

4 PROOF OF CORRECTNESS

The correctness of the algorithms follows from the following discussion. The first
,.

lemma is straightforward, and its proof is omitted.

Lemma 1: At the beginning of the second phase of the ranking
algorithm, each initial value init(i) resides in exactly one multiset S(j), the
number of elements in S(i) is Js(iJ/-1 (s(i) denotes the set of sons of i), and
the smallest initial value is in S(v). At the beginning of the second phase of
the sorting algorithm, each initial value init(i) resides in exactly one
multiset S(j) and each identity id(i) resides· in exactly one set R(j), the_
number of elements in S(i) and in R(i) is Js(i}/-1, the smallest initial value is
in S(v) and the smallest identity is in R(v).

Lemma 2: In the second phase of the ranking algorithm, a node other
than the root sends the element A to his father only if all the nodes in his
subtree have already been ranked. ·

(A similar result holds for the sorting algorithm)

Proof: Suppose no"d_e a sends the element A to his father. We prove by
induction on the largest distance t of this node from any node in the
subtree rooted at a that all the nodes in that subtree have already been
ranked. We denote this subtree by t(a).

Fort= O: in this case the node a is a leaf. In the beginning of the ranking
phase S(a) = <I> (by Lemma 1). a wants to send a value to his father
because he received a rank from him (see the algorithm for node i = v).
Then init(a) / S(a), so F(a) is been updated, and then A is sent back to f(a).
In other words, a is sending A to his father after all the nodes in t(a) have
been ranked.

Assume it holds for nodes of distance < t, and let a be a node with a
maximal distance of t from any node in t(a), that is sending a A message to
his father.

18

In the beginning of the ranking phase, S(a) contains fs(a)/-1 elements.
For each rank that was received from f (a) and was forwarded to one of his
sons, a value was received from that son, and only if that value was A the
size of S(a) was decreased by one, otherwise it was not changed. This
means that each node in s(a) has already sent a A message to his father a.

By the inductive hypothesis, this was done because all the nodes in t(b),
for e~ch b r s(a), have already been ranked. Moreover, there was a first
time when a rank was received from f(a) and init(a) / S(a) (since init(a) E

S(a) in the beginning and init(a) / S(a) at the end), and in that first time a
was ranked. Therefore, when a sent A to f(a) all the nodes in t(a) have
already been ranked, which completes the proof.

By a similar induction of the height of the tree, the following theorem can be proved

(its analogue for the sorting algorithm is omitted):

Theorem 3: The algorithm at each node a terminates with S(a) = <I>, with
F(a) containing the correct rank.

19

5 ANALYSIS

We turn now to the analysis of the algorithms. It is based on the following lemma,

the proof of which is by a straightforward induction on the number of nodes in the

tree:

Lemma 4: In the second phase of the ranking algorithm, each element
init(i) is sent exactly once along the path from; to v, and each rank; is sent
exactly once along the path from v to i. In the second phase of the sorting
algorithm, each of the elements init(i) and id(i) are sent exactly once along
the path from i to v, and each element id(i) is sent exactly once along the
path from v to its unique destination. In addition to this, in both algorithms
each node except for the root sends exactly one "A message to his father.

Let d(i,j) denote the distance (=number of edges) on the (unique) path from node i

to node j. Denote

a = L d(v,u).
~

Then · by Lemma 4 - the total number of messages sent in the second phase of the

ranking and sorting algorithms is bounded by 2u + n-1 and 3a + n-1,

correspondingly.

But we have:

Lemma 5: Let T = (V,E) be a tree, with /V/ = n, and let v be a center in T.
Then

a = L d(v,u) < = n2/4
\A.

Proof: Denote by r the distance from the center node v to any node.
There are two leaves a and b such that the path between them goes
through v,

d(v,a) = r < = n/2, and

d(v,b) = r or r-1.

Let a' be the father of a, and let V' be the set of nodes on the path
connecting a and b. Any node x in V-V' satisfies

d(v,x) < = r,

so if we move it to be a son of a' its new distance d'(v,x) from the root
does not decrease. in the case when d(v,b) = r this yields

20

L d(v,u) < = 2(1 + 2 + ... -1- r) + (n -2r-1)r

= (r+ 1)r + (n-2r--1)r = (n-r)r <= n2/4.

The same result can be derived for the case when d(v,b) = r-1. This
completes the proof.

From the above discussion we have:

Theo rem 6: For a tree network, the ranking algorithm uses in its second
phase at most 112n2 + n -1 messages, and the sorting algorithm uses in its
second phase at most 3/4n2 + n-1 messages.

Because every node maitains a data structure that is proportional to the number of

his sons, the fallowing theorem holds:

Theorem 7: The total space used by each of the ranking and the sorting
algorithms is of O(n).

We conclude this section by studying the expected behavior of these algorithms

for three classes of trees (we assume the trees in each class to be equally probable).

1. The nn-2 trees on n labeled nodes (see Moon [1970]}. As was pointed
out by Moon [1984], it follows from Riordan and Sloane [1969] (see also
Meir and Moon (1970]) that the expected value of 2.d(v,u) is bounded by
n3

/
2

fo/2) u 2 (we do not use here the fact that vis a center in the tree);
the ref ore, the expected number of messages sent by the ranking and
sorting algorithms · are bounded by 2n3/ 2 {w/2) 1/ 2 + O(n) and
3n

3
/

2
{w/2)

1
/

2 + O(n), correspondingly. The expected number of
messages used by the ranking algorithm suggested in Korach et al
[1982] is bounded by 3n3/ 2 (w12) 7/ 2 + O(n).

2. The 1/(n+1) (\:')ordered trees with n edges (see Knuth [1968]). The
expected height of a node in these trees is approximately 1/ 2{wn) u 2

(see Dershowitz and Zaks [1981]). It follows that the expected number
of messages used by the ranking and sorting algorithms are bounded by
n

3
/

2
r, u

2
+ O(n) and 312n3/ 2 'ii 1/ 2 + O(n), correspondingly.

3. The 1 /(n + 1) (2;)binary trees with n internal nodes. The expected height
of a node in these trees is approximately ('7Tn) 1/ 2 (see Knuth [1968]). It
follows that the expected number of messages used by the ranking and
sorting algorithms are bounded by 2n3/ 2 1r 112 + O(n) and
3n3

/
2

1r
1
/
2 + O(n), correspondingly.

21

The expected behavior of these algorithms for other classes of trees, and for the

case when repetitions in the set of initial values are allowed, are yet to be studied.

22

6 LOV✓ER COUNDS

We present here proofs for the lower bounds.

Theorem 8: Any algorithm for the ranking problem uses, in the worst
case, at least 112n2 messages.

Proof: Let T = (V,E) be a tree, where V = ID= {v
1
, vr··, vn} and

E = { (v, v. 1)/ 1 < = i < n}. We assume that n is even, and let the initial
I I +

-values be as follows:

init(v) = 2i-1

init(v) = 2i-n

for 1 < = i < = n/2

for n/2 + 1 < = i< = n.

In order for processors v . and v. / 2 to know their correct ranks at the
I I+ n

end of the algorithm, their values must be compared at some node, which
takes at least n/2 messages. Otherwise, suppose that the initial values of
v. and v. + n/2, for some 1 < = j < = n/2, are not compared; then, by running
the alg6rithm with exchanging these two initial values (without changing
any other initial value), it will terminate with the same final values for all
nodes as before this exchange took place, a contradiction. Moreover, the
result of that comparison has to reach both nodes in order for them to
correctly determine their ranks, which amounts to additional n/2
messages. Here we are using the assumption that no operation other than
comparisons is allowed on the set of ranks; this prevents one from coding
few rank messages in one. We conjecture that the same lower bound
holds even without this restriction.

This amounts to using,-in the worst case, at least n2 l2 messages.

Theorem 9: Any algorithm for the sorting problem uses, in the worst
case, at least 314n2 messages.

Proof: We take the same tree as before, and assume v.<v. for i<j. Let the
initial values be as follows: ' 1

init(v) = 2i for 1 < = i < = n/2

init(v) = 2i-n-1 for n/2 + 1 < = i < = n.

For each pair of nodes v. and v. / 2 , both their identities and initial
I I+ n

values must be compared (otherwise an excange in either their identities
or initial values couldn 't be detected, like in the previous proof). After
these comparisons are made, these initial values have to be switched

23

between . these two nodes, vJhich amounts to usir!g an udditional n/2

messages.

This amounts to .using, in the worst case, at least 3/4n2 messages.

Acknowledgements: I would like to thank Nancy Lynch for help in clarifying the

lower bounds arguments, Nissim Frn.ncez for first making me aware of the distributed

sorting problem, and John Moon for references used in the average-case analysis.

24

REFERENCES

1. A. V. Aho, J.E. Hopcroft and J. D. Ullman [1974], The Design and
Analysis of Computer Algorithms, Addison-Wesley.

2. J.E. Burns [1980], A FORMAL MODEL FOR MESSAGE PASSING SYSTEMS,

TR-91, Indiana University.

3. N. Oershowitz and s. Zaks [1981], APPLIED TREE ENUMERATIONS,

Proceedings of the 6th CAAP conference, Genoa, Italy, pp. 180-193.

4. 0. Oolev, M. Klawe and M. Rodeh [1982], AN O(NLOGN) UNIDIRECTIONAL

DISTRIBUTED ALGORITHM FO!i EXTREMA FINDING IN A CIRCLE, Journal of
Algorithms, 3, pp. 245-260.

5. G. N. t=rederickson and N. A. Lynch [1984], THE IMPACT OF SYNCHRONOUS

COMMUNICATION ON THE PROBLEM OF ELECTING A LEADER IN A RING,

proceedings of the 16th Annual ACM Symp. on Theory of Computing,
Washington D.C., to appear.

6. E. Gafni. M. C. Loui, P. Tiwari , 0. 8. West and S. Zaks [1984] , LOWER

BOUNDS ON COMMON KNOWLEDGE IN DISTRIBUTED ALGORITHMS, WITH

APPLICATIONS, in preparation.

7. R. G. Gallager [1982], CHOOSING A LEADER IN A NETWORK, unpublished
memorandum, M.I.T.

8. R. G. Gallager, P. A, _Humblet and P. M. Spira [1983], A DISTRIBUTED

ALGORITHM FOR MINIMUM SPANNING TREE, Transactions of Programming
Languages and Systems, 5, 1, pp. 66-77.

9. D.S. Hirschberg and J. B. Sinclair [1980] , DECENTRALIZED EXTREMA

FINDING IN CIRCULAR CONFIGURATIONS OF PROCESSES, Communications of
the ACM 23, pp. 627-628.

10. A. ltai and M. Rodeh [1981], SYMMETRY BREAKING IN DISTRIBUTED

NETWORKS, IEEE 22nd Symposium on Foundations of Computer
Science, pp. 150-158.

11. 0. E. Knuth [1968], The Art of Computer Programming, Vol 1:
Fundamental Algorithms, Addison-Wesley, Reading, MA.

12. E. Korach, S. Moran and S. Zaks [1983], TIGHT LOWER AND UPPER BOUNDS

25

FOR SOME D!STRl8UTED)\LGORITHMS r oR A COMPLETE NETWORK OF

PROCESSORS, TR no. 124, IBM Scientific Center, Haifa, Israel.

13. E. Korach, S. Moran and s. Zaks [1983], FINDING A MINIMUM SPANNING

TREE CAN BE HARDER THAN FINDING A SPANNING TREE 1N A DISTRIBUTED

NETWORK, TR no. 126, IBM Scientific Center, Haifa, Israel.

14. E. Korach, D. Rotem and N. Santoro [1980], DISTRIBUTED ALGORITHMS

FOR FINDING CENTERS AND MEDIANS IN NETWORKS, RR CS-80-44,
Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada.

15. E. Korach, D. Rotem and N. Santoro [1982], DISTRIBUTED ALGORITHMS

FOR RANKING THE NODES OF A NETWORK, Proceedings of the 13th
Southeastern Conference on Combinatorics, Graph Theory and
Computing, pp. 235-246.

16. M. C. Loui [1983], THE COMPLEXITY OF SORTING ON DISTRIBUTED SYSTEMS,

TR R-995 (ACT-39), Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, Illinois, Urbana 61801 .

17. A. Meir and J. w. Moon [1970], THE DISTANCE BETWEEN POINTS IN RANDOM

TREES, Journal of Combinatorial Theory 8, pp. 99-103.

18. J. W. Moon [1970], Counting Labelled Trees, Canadian Mathematical
Monographs, No. 1.

19. J. W. Moon [1984], priv_ate communication.

20. J. Pachl, E. Korach and D. Rotem [1982], A TECHNIQUE FOR PROVING

LOWER BOUNDS FOR DISTRIBUTED MAXIMUM-FINDING ALGORITHMS,

proceedings of the 14th Annual ACM Symp. on Theory of Computing,
San Francisco, CA, pp. 378-382.

21 . G. L. Peterson [1982], AN O(NLOGN) UNIDIRECTIONAL ALGORITHM FOR THE

CIRCULAR EXTREMA PROBLEM, Transactions of Programming Languages
and Systems, 4, pp. 758-762.

22. J. Riordan and N. J. A. Sloane [1969], THE ENUMERATION OF ROOTED

TREES BY TOTAL HEIGHT, Journal of the Australian Mathematical Society
10, pp. 278-282.

