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ABSTRACT 

We study the problems of sorting and ranking n processors that have initial values 

- not necessarily distinct - in a distributed system. Sorting means that the initial 

values have to move around in the network and be assigned to the processors 

according to their distinct identities, while ranking means that the numbers 1,2, ... ,n 

have to be assigned to the processors according to their initial values; ties between 

initial values can be broken in any chosen way. Assuming a tree network, and 

assuming that a message can contain an initial value, an identity or a rank, we 

present an algorithm for the ranking problem that uses, in the worst case, at most 

1/2n2 + O(n) such messages. The algorithm is then extended to perform sorting, 

using in the worst case at most 314n2 + O(n) messages. Both algorithms are using 

a total of O(n) space. The algorithms are extended to general networks. The 

expected behavior of these algorithms for three classes of trees are discussed. 

Assuming that the initial values, identities and ranks can only be compared within 

themselves, lower bounds of 112n2 and 314n2 messages are proved for a worst case 

execution of any algorithm to solve the ranking and sorting problems, 

correspondingly. 
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1 INTRODUCTION 

A large effort is being recently put into the design and analysis of algorithms that 

are fully distributed. These algorithms are applicable in a network of processors, 

where no central controller is present and no common clock is available. 

For these algorithms the model usually used contains a network of processors, 

each with a unique identity known in the beginning only to himself. Every processor 

has only a local knowledge of the network, and his only means of communication is 

exchanging messages with his neighbors in the network. The messages arrive in 

order and after a finite delay, but no a priori bound for that delay is known. We 

assume that a message can contain an initial value, an identity or a rank, that are of 

three distinct types, and can only be compared within themselves. 

It is usually assumed that any non-empty subset of the processors start the 

algorithm (each processor has the same algorithm), and that at the end each 

processor has computed some function that is the result of that algorithm. There are 

usually many possible executions from a given starting point before all processors 

terminate. Assuming that the computation cost and the queueing cost in each 

processor is negligible compared to the communication cost, it is customary to 

measure the complexity of such algorithms by the total number of messages sent 

during any possible execution. 

We study the problems of sorting and ranking n processors that have distinct 

identities and (not necessarily distinct) initial values. Sorting means that the initial 

values have to move around in the network and be assigned to the processors 

according to their distinct identities, while ranking means that the numbers 1,2, ... ,n 

have to be assigned to the processors according to their initial values; ties between 

initial values can be broken in any chosen way. 

Assuming a tree network, we first present an algorithm to solve the ranking 

problem, using, in the worst case, at most 112n2 + O(n) messages, and show that 
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any algorithm to solve the ranking problem must use, for its ranking part, in the worst 

case, at least 1/2n2 messages. The algorithm is then extended to a sorting 

algorithm, using in the worst case 3/ 4n2 + O (n) messages, and a lower bound of 

314n2 messages is shown; in other words, for a tree network these algorithms are 

best possible to within a o (n2) number of messages. · Both algorithms are using a 

total- of O(n) space, by letting each node in the tree remember only an amount of 

information that is proportional to the number of his sons. The expected number of 

messages used by these algorithms is discussed for three classes of trees. For 

example, we show that for the class of nn-2 trees on n labeled nodes the expected 

numbers of messages used by the ranking and sorting algorithms are bounded by 

2n312 {1T/2) 112 + O(n) and 3 n312 {1T/2) 112 + O(n), correspondingly. 

The extensions of these algorithms to general networks are done in the usual way, 

by first finding a spanning tree in the network and then applying the ranking and 

sorting algorithms designed for a tree network. 

Section 2 presents the model and the problem, and discusses some related works. 

Section 3 describes the algorithms. Their proof of correctness and analysis are the 

subject of Sections 4 and 5, correspondingly, and the lower bounds are proved in 

Section 6. 
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2 THE MODEL, THE PROBLEMS AND RELATED WORKS 

The model under investigation is a distributed network of n processors, with n 

distinct identities id(1),id(2), ... , id(n). The identities of the processors must be 

distinct, otherwise no deterministic distributed algorithm is possible, even when the 

distribution of initial values is not symmetric (see Gafni et al [1984]), and probability 

has to be introduced in order to break the symmetry (see ltai and Rodeh [1981]). 

The processors are holding initial values init(1),init(2), ... ,init(n) , where init(i) is the 

initial value held by processor i; these initial values are not necessarily distinct. Let 

!NIT = {init(1),init(2), ... ,init(n}J be the multiset of initial values, 

ID = {id(1),id(2), ... ,id(n)} the set of identities, and N = {1,2, ... ,n} the set of ranks. 

Each processor is connected to some others by communication lines, and we 

assume that the underlying graph G = (V,E) - where V = {1,2, ... ,n} and {i,j) E E iff 

there is a communication line connecting processor i and processor j - is connected. 

A processor does not know the initial value of any of his neighbours in the network. 

The communication between the processors is done by sending messages along 

the communication lines. A message can be any element from the set 

ID U IN/TV NU ("}..) . It is assumed that the initial values, identities and ranks are of 

three distinct types, and can only be compared within themselves. We use the 

element A to denote an empty message. As will become clear from our algorithms, 

we can manage without this elememt, but we prefer to use it in order to simplify the 

presentation. 

We assume that the messages arrive with no error after a finite but otherwise 

unpredicted delay, and are stored in a queue until processed. 

An algorithm . consists of sending and receiving messages and doing local 

computations. It is assumed that any non-empty set of processors may start the 

algorithm. At the end of the ·algorithm every processor i has a value F(i) of the 
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function F computed by the algorithm. 

We deal with distributed algorithms that will perform sorting or ranking on the initial 

values. An algorithm is solving the sorting p roblem if it terminates, and the function 

F satisfies: 

- 1. The set { F(i) / 1 < = i < = n J is a permutation of the set !NIT, and 

2. id(i) < id(j) implies F(i) < F(j). 

and it is solving the ranking problem if the function F satisfies: 

1. The set {F(i) / 1 < = i < = n} is a permutation of the set N, and 

2. init(i) < init(j) implies F(i) < F(j). 

This ranking algorithm improves the one presented in Korach et al [1982], where 

an algorithm for a tree network that uses, in the worst case, 312 n2 + 0 (n) messages 

is suggested. 

The problem of distinguishing a node (finding a leader, finding a maximum) 

became central in the literature of distributed algorithms. It is closely related to the 

problem of finding a spanning tree, since given a distributed algorithm to find a 

leader, one can easily design an algorithm to find a spanning tree with no more than 

O(/E/) additional messages, and given an algorithm to find a spanning tree, one can 

easily design an · algorithm to find a leader with no more than O(n) additional 

messages. 

Gallager et al [1983] construct a minimum spanning tree using O(nlogn + /E/) 
messages, and this algorithm is usually used also to find any spanning tree -in a 

network. In Korach et al [1983a and 1983b] distributed algorithms for a complete 

network are studied, and finding a spanning tree is shown to have upper and lower 

bounds of O (nlogn) messages, while a lower bound of Q(n2) messages is shown for 

any algorithm for finding a minimum spanning tree. A leader in a network is found in 
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Gallager [1982] using an expected number of O(nlogn) messages. 

A leader in a ring is found in O(nlogn) messages for the asynchronous bidirectional 

case in Hirschberg and Sinclair [1980] and for the asynchronous unidirectional case 

in Dolev et al [1982] and in Peterson [1982]. Lower bounds of Q ·(nlogn) messages 

are proved in Burns [1980] for the worst case behaviour of any asynchronous 

algorithm for the bidirectional ring, in Pach! et al [1982] for the average behaviour of 

any asynchronous algorithm for the bidirectional ring, and in Frederickson and 

Lynch [1984] for the worst case behaviour of any synchronous algorithm for the 

bidirectional ring. 

Our technique for proving the lower bounds borrows from the lower bound proof 

for the distictness problem in Gafni et a/[1984] (in this problem it is required that 

every processor i will have the final result F(i) = 1 if all the initial values are distinct 

and F(i) = o otherwise), where lower bounds for various problems are studied. 

Sorting is studied for various networks in Loui [1984]; for example, for the 

bidirectional ring of size n and initial values in the range {1, ... ,LJ, upper and lower 

bounds of O(n2tog(Lln)llogn) messages are shown. 
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3 THE ALGORITHrvi 

3.1 The ranking algorithm - preprocessing phase 

Given any network, we first find a spanning tree with a distinguished node as its 

root (this requires O(nfogn + /E/) messages; see Gallager et al [1982]), and then find a 

cent~r of the tree (this requires O(n) messages; see Korach et al [1980]). Both 

algorithms can be applied by using messages of the required types. Actually, as will 

become clear from the analysis, we had better find a median in the tree, but this will 

not improve the worst-case complexity, and also seems to require other types of 

messages as well (as done in l<orach et al [1980]). 

From now on we deal with a tree rooted at its center, which we denote by v. We 

also assume that each node knows the smallest value in each of the subtrees rooted 

at its sons. This task can be easily incorporated into the center finding algorithm; 

this is done by letting each node i maintain a multiset S(i) containing - in the 

beginning - his own initial value init(i); starting at the leaves and climbing up the tree 

towards the root, each node i waits until he receives values from all of his sons (no 

waiting for the leaf nodes), adds them to S(i), deletes the smallest value from S(i) and 

passes it on to his father. The process terminates when the root v receives values 

from all his sons and adds them to S(v). It is assumed that each node i knows, for 

every element in S(i), from which of its sons it was sent. It is easy to prove by 

induction that each node transfers to his father the smallest value in the subtree 

rooted at him. 

By updating these multisets as little as possible, we manage to keep the total 

communication in the second phase as low as possible. An efficiet implementation 

of these multisets can be done using heaps; for more details see Aho et al [1974]. 
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3.2 T:·,c r.:,; nking c1!0oriihrn - ran!,1ng phase 

The distinguished node v starts now the second phase of the algorithm. He deletes 

the smallest element from his multiset S(v), sends a message containing the rank 

R = 1 to the son from which he received this smallest value, and increments R. this 

value (R = 1) is forwarded by each node to the son from whom he received this 

smaHest value. 

When eventually the node u hnving this smnllest value (this is the unique node that 

transfered his own value to his father!) receives this message, he assignes F(u) = 1 

and deletes from S(u) the smallest element, that is transfered towards the root. The 

element A is sent in case the multiset S(u) is empty. Every node a on the pnth from u 

to v adds the received value to S(a) (nothing is done in case A is received), deletes 

from it the smallest element and forwards it to his father (again, A is sent in case the 

multiset S(a) is empty, where no such deletion is possible). When the root v gets this 

value, he adds it to S(v) and continues this process until S(v) becomes empty. 

If the smallest element is S(v) was received from k>1 sons, then k ranks can be 

concurrently sent to all of these sons. This does not change the total number of 

messages, but improves the total time in a synchronous execution of the algorithm. 

3.3 Example 

We first demonstrate the algorithm. In this example n = 9 and L = 25, and we 

assume that the first phase has just been completed. The relevant information is 

depicted in Figure 1. Each node's identity i is written within the corresponding 

circle, its initial value init(i) is written to its left, and the multiset S(i) is written to its 

right. 

Now, the root node 5 starts the second phase: the smallest element 2 is deleted 

from S(5), the value R·= 1 is being sent to node 8 through node 2, and is·then being 

incremented to 2. When node 8 receives this message, he knows it was intended to 

him {since he previously transfered his own value 2 to his father; he knows it 
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· because init(8) f S(B)), so he sets F(8) = I, deletGs 4 from S(S) and sends it to node 2; 

node 2 adds it to S(2), deletes from it the smallest element 3 and sends it to the root, 

who then adds it to 5(5). The current configuration is depicted in Figure 2. 

Now there are two smallest elements in 5(5) (init(2) = init(9) = 3). The rank R = 2 is 

sent_towards node 2 and towards node 9, and is being incremented by 2. Node 2, 

upon receiving the message, updates his final value F(2) = 2, deletes 4 from 5(2) and 

sends it to the root, who adds it to 5(5), while node 9, upon receiving the message, 

updates his final value F(9) = 3 and sends A to node 6, who then deletes 4 from 5(6) 

and sends it to the root, who adds it to 5(5) . The current configuration is depicted in 

Figure 3. 

Now there are three smallest elements in S(5) , so corresponding rank messages 

are being concurrently sent towards the three corresponding nodes 1,3 and 6, and 

so on. The configuration at the end is shown in Figure 4. 
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Figure 1: Configuration at the end of the first phase 
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Figure 2: Configuration after R = 1 is treated 
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Figure 3: Configuration after R = 2,3 are treated 
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Figure~: Configuration at the end of the second phase 
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3.4 The sorting algorithm 

In this case each processor i maintains a multiset S(i) (as before) and a subset R(i) 

of ID. In the beginning of the process of finding a center, we let R(i) = { id(i) J; starting 

at the leaves and climbing up the tree towards the root, each node i waits until he 

receives identities from all of his sons (no waiting for the leaf nodes), adds them to 

R(i), deletes the smallest identity from R(i) and passes it on to his father. This 

process continues until the root receives values from all of his sons. 

Therefore, at the beginning of the second phase, the root node knows the smallest 

initial value x and the smallest identity y, so he deletes x from S(v) and y from R(v), 

and sends x towards node y. This message will propagate down the tree, until it 

reaches node y (like in the ranking algorithm, node y will know the message was 

intended to him since id(y) f R(y)). Node y will th_en set F(y) = x, delete the smallest 

elements from S(y) and R(y) and send them back to his father. The rest of the details 

for this modification of the ranking algorithm are left to the reader. 

3.5 A code for the ranking algorithm 

delete(a,A) deletes the element a from the multiset A. add(a,A) adds the element 

a to the multiset A. send(m,u) sends a message m to node u. receive{m,u) 

receives a message m from_ node u. min(A) is the smallest element in the set A. f(a) 

is the father of node a. g(u) denotes the last value received from the (son) node u. 

best(u) is the son of node u from which he received the smallest value that has not 

yet been ranked (this is the latest element that was forwarded by u to f(u)); the 

details of the updating of these values throughout the algorithms should be clear 

from the discussion, and are omitted in the code for the algorithm. 
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The algorithm for the root node v 

begin 
R·=1· w~~; S(v) +~do 

end. 

begin 
x:=min(S(v)); 
A:={ul u is a son of v and g(u)=x}; 
k:=IAI; 
for i : = 1 to k do 

begin 
delete(x,S(v)); 
let a be any element in A; 
delete(a,A); 
send(R,a); 
R:=R+1 

end; 
for i : = 1 to k do 

begin 

end 

receive(x,a); (a is a son of v) 
if xfA then add(x,S(v)) 

end 
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The algorithm for node i # v 

begin 
receive(R,f(i)); 
if init(i) f S(i) 
then 

end. 

begin 
F(i):=R; 
if s ( ; ) = <I> 
then send ("A,f(i)) 
else 

begin 
x:=min(S(i)); 
delete(x,S(i)); 
send (x,f(i)) 

end 
end 

else 
begin 

end 

send(R,best(i)); 
receiye(x,best(i)); 
if x f A then add(x,S(i)); 
if s (;) = <I> 
then send("A,f(i)) 
else 

begin· 

epd 

x:=min(S(i)); 
delete(x,S(i)); 
send(x,f(i)) 

3.6 Comparison with previous work 

Our algorithms differs from the one in Korach et al [1982] mainly in its second 

phase. The distinguished node found in their algorithm • not necessarily a center in 

the tree · starts the second phase by sending the rank R = 1 towards the node with 

the smallest initial value; this node receives the message, and then initiates a 

sequence of messages towards the node with the second smallest value, who then 

initiates a sequence of messages towards th_e node with the third smallest value, and 

so on. Each node has to maintain and update a certain information, and to achieve a 

proper behaviour of the algorithm they send in each message two initial values and 
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one rank. The total number of messages is, in the worst case, n2 l2 for the ranking 

phase, each carrying three entities, which amounts to a total of 3/2n2 messages. 

Moreover, their algorithm is sequential in nature, even in the case where repetitions 

are allowed in the set of initial values,whereas in our algorithm some messages are 

sent concurrently when repetitions are allowed. 

4 PROOF OF CORRECTNESS 

The correctness of the algorithms follows from the following discussion. The first 
,. 

lemma is straightforward, and its proof is omitted. 

Lemma 1: At the beginning of the second phase of the ranking 
algorithm, each initial value init(i) resides in exactly one multiset S(j), the 
number of elements in S(i) is Js(iJ/-1 (s(i) denotes the set of sons of i), and 
the smallest initial value is in S(v). At the beginning of the second phase of 
the sorting algorithm, each initial value init(i) resides in exactly one 
multiset S(j) and each identity id(i) resides· in exactly one set R(j), the_ 
number of elements in S(i) and in R(i) is Js(i}/-1, the smallest initial value is 
in S(v) and the smallest identity is in R(v). 

Lemma 2: In the second phase of the ranking algorithm, a node other 
than the root sends the element A to his father only if all the nodes in his 
subtree have already been ranked. · 

(A similar result holds for the sorting algorithm) 

Proof: Suppose no"d_e a sends the element A to his father. We prove by 
induction on the largest distance t of this node from any node in the 
subtree rooted at a that all the nodes in that subtree have already been 
ranked. We denote this subtree by t(a). 

Fort= O: in this case the node a is a leaf. In the beginning of the ranking 
phase S(a) = <I> (by Lemma 1). a wants to send a value to his father 
because he received a rank from him (see the algorithm for node i = v). 
Then init(a) / S(a), so F(a) is been updated, and then A is sent back to f(a). 
In other words, a is sending A to his father after all the nodes in t(a) have 
been ranked. 

Assume it holds for nodes of distance < t, and let a be a node with a 
maximal distance of t from any node in t(a), that is sending a A message to 
his father. 
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In the beginning of the ranking phase, S(a) contains fs(a)/-1 elements. 
For each rank that was received from f (a) and was forwarded to one of his 
sons, a value was received from that son, and only if that value was A the 
size of S(a) was decreased by one, otherwise it was not changed. This 
means that each node in s(a) has already sent a A message to his father a. 

By the inductive hypothesis, this was done because all the nodes in t(b), 
for e~ch b r s(a), have already been ranked. Moreover, there was a first 
time when a rank was received from f(a) and init(a) / S(a) (since init(a) E 

S(a) in the beginning and init(a) / S(a) at the end), and in that first time a 
was ranked. Therefore, when a sent A to f(a) all the nodes in t(a) have 
already been ranked, which completes the proof. 

By a similar induction of the height of the tree, the following theorem can be proved 

(its analogue for the sorting algorithm is omitted): 

Theorem 3: The algorithm at each node a terminates with S(a) = <I>, with 
F(a) containing the correct rank. 
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5 ANALYSIS 

We turn now to the analysis of the algorithms. It is based on the following lemma, 

the proof of which is by a straightforward induction on the number of nodes in the 

tree: 

Lemma 4: In the second phase of the ranking algorithm, each element 
init(i) is sent exactly once along the path from; to v, and each rank; is sent 
exactly once along the path from v to i. In the second phase of the sorting 
algorithm, each of the elements init(i) and id(i) are sent exactly once along 
the path from i to v, and each element id(i) is sent exactly once along the 
path from v to its unique destination. In addition to this, in both algorithms 
each node except for the root sends exactly one "A message to his father. 

Let d(i,j) denote the distance (=number of edges) on the (unique) path from node i 

to node j. Denote 

a = L d(v,u). 
~ 

Then · by Lemma 4 - the total number of messages sent in the second phase of the 

ranking and sorting algorithms is bounded by 2u + n-1 and 3a + n-1, 

correspondingly. 

But we have: 

Lemma 5: Let T = (V,E) be a tree, with /V/ = n, and let v be a center in T. 
Then 

a = L d(v,u) < = n2/4 
\A. 

Proof: Denote by r the distance from the center node v to any node. 
There are two leaves a and b such that the path between them goes 
through v, 

d(v,a) = r < = n/2, and 

d(v,b) = r or r-1. 

Let a' be the father of a, and let V' be the set of nodes on the path 
connecting a and b. Any node x in V-V' satisfies 

d(v,x) < = r, 

so if we move it to be a son of a' its new distance d'(v,x) from the root 
does not decrease. in the case when d(v,b) = r this yields 
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L d(v,u) < = 2(1 + 2 + ... -1- r) + (n -2r-1)r 

= (r+ 1)r + (n-2r--1)r = (n-r)r <= n2/4. 

The same result can be derived for the case when d(v,b) = r-1. This 
completes the proof. 

From the above discussion we have: 

Theo rem 6: For a tree network, the ranking algorithm uses in its second 
phase at most 112n2 + n -1 messages, and the sorting algorithm uses in its 
second phase at most 3/4n2 + n-1 messages. 

Because every node maitains a data structure that is proportional to the number of 

his sons, the fallowing theorem holds: 

Theorem 7: The total space used by each of the ranking and the sorting 
algorithms is of O(n). 

We conclude this section by studying the expected behavior of these algorithms 

for three classes of trees (we assume the trees in each class to be equally probable). 

1. The nn-2 trees on n labeled nodes (see Moon [1970]}. As was pointed 
out by Moon [1984], it follows from Riordan and Sloane [1969] (see also 
Meir and Moon (1970]) that the expected value of 2.d(v,u) is bounded by 
n3

/
2 

fo/2) u 2 (we do not use here the fact that vis a center in the tree); 
the ref ore, the expected number of messages sent by the ranking and 
sorting algorithms · are bounded by 2n3/ 2 {w/2) 1/ 2 + O(n) and 
3n

3
/

2 
{w/2) 

1
/

2 + O(n), correspondingly. The expected number of 
messages used by the ranking algorithm suggested in Korach et al 
[1982] is bounded by 3n3/ 2 (w12) 7/ 2 + O(n). 

2. The 1/(n+1) (\:')ordered trees with n edges (see Knuth [1968]). The 
expected height of a node in these trees is approximately 1/ 2{wn) u 2 

(see Dershowitz and Zaks [1981]). It follows that the expected number 
of messages used by the ranking and sorting algorithms are bounded by 
n

3
/

2 
r, u

2 
+ O(n) and 312n3/ 2 'ii 1/ 2 + O(n), correspondingly. 

3. The 1 /(n + 1) (2;)binary trees with n internal nodes. The expected height 
of a node in these trees is approximately ('7Tn) 1/ 2 (see Knuth [1968]). It 
follows that the expected number of messages used by the ranking and 
sorting algorithms are bounded by 2n3/ 2 1r 112 + O(n) and 
3n3

/
2

1r 
1
/
2 + O(n), correspondingly. 
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The expected behavior of these algorithms for other classes of trees, and for the 

case when repetitions in the set of initial values are allowed, are yet to be studied. 
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6 LOV✓ER COUNDS 

We present here proofs for the lower bounds. 

Theorem 8: Any algorithm for the ranking problem uses, in the worst 
case, at least 112n2 messages. 

Proof: Let T = (V,E) be a tree, where V = ID= {v
1
, vr··, vn} and 

E = { (v, v. 1)/ 1 < = i < n}. We assume that n is even, and let the initial 
I I + 

-values be as follows: 

init(v) = 2i-1 

init(v) = 2i-n 

for 1 < = i < = n/2 

for n/2 + 1 < = i< = n. 

In order for processors v . and v. / 2 to know their correct ranks at the 
I I+ n 

end of the algorithm, their values must be compared at some node, which 
takes at least n/2 messages. Otherwise, suppose that the initial values of 
v. and v. + n/2, for some 1 < = j < = n/2, are not compared; then, by running 
the alg6rithm with exchanging these two initial values (without changing 
any other initial value), it will terminate with the same final values for all 
nodes as before this exchange took place, a contradiction. Moreover, the 
result of that comparison has to reach both nodes in order for them to 
correctly determine their ranks, which amounts to additional n/2 
messages. Here we are using the assumption that no operation other than 
comparisons is allowed on the set of ranks; this prevents one from coding 
few rank messages in one. We conjecture that the same lower bound 
holds even without this restriction. 

This amounts to using,-in the worst case, at least n2 l2 messages. 

Theorem 9: Any algorithm for the sorting problem uses, in the worst 
case, at least 314n2 messages. 

Proof: We take the same tree as before, and assume v.<v. for i<j. Let the 
initial values be as follows: ' 1 

init(v) = 2i for 1 < = i < = n/2 

init(v) = 2i-n-1 for n/2 + 1 < = i < = n. 

For each pair of nodes v. and v. / 2 , both their identities and initial 
I I+ n 

values must be compared (otherwise an excange in either their identities 
or initial values couldn 't be detected, like in the previous proof). After 
these comparisons are made, these initial values have to be switched 
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between . these two nodes, vJhich amounts to usir!g an udditional n/2 

messages. 

This amounts to .using, in the worst case, at least 3/4n2 messages. 

Acknowledgements: I would like to thank Nancy Lynch for help in clarifying the 

lower bounds arguments, Nissim Frn.ncez for first making me aware of the distributed 

sorting problem, and John Moon for references used in the average-case analysis. 
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