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ABSTRACT 

We describe a new fault-tolerant algorithm for solving a variant of Lamport's clock synchronization 

problem. The algorithm is designed for a system of distributed processes that communicate by 

sending messages. Each process has its own read-only physical clock whose drift rate from real time 

is very small. By adding a value to its physical clock time, the process obtains its local time. The 

algorithm solves the problem of .maintaining closely synchronized local times, assuming that 

processes' local times are closely synchronized .initially. The algorithm is able to tolerate the failure of 

just under a third of the participating processes. It maintains synchronization to within a small 

constant, whose magnitude depends upon the rate of clock drift, the message delivery time, and the 

initial closeness of synchronization. We also give a characterization of how far the clocks drift from 

real time. Reintegration of a repaired process can be accomplished using a slight modification of the 

basic algorithm. A similar style algorithm can also be used to achieve synchronization initially. 

*This work was supported in part by the NSF under Grant No. DCR-8302391, U.S. Army 
Research Office Contracts # DAAG29-79-C-0155 and # DAAG29·84·K·0058, and 
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1 . Introduction 
Keeping the local times of processes in a distributed system synchronized in the presence of 

arbitrary faults is important in many applications and is an interesting problem in its own right. Taking 

into account the clocks' drift from real time and varying message delivery times makes the problem 

more realistic and more challenging. In order to be truly useful , a solution to this problem must allow 

faulty processes that have recovered to be reintegrated into the system. The algorithm described in 

this paper meets these requirements, assuming that the clocks are initially close together and that 

fewer than one third of the processes are faulty. 

In our model, processes are assumed to have access to local read-only physical clocks, which are 

subject to a very small rate of drift. A process' local time is obtained by adding the value of the 

physical clock to the value of a local II correction II variable. We assume that processes are totally 

connected for communication. They communicate by messages, over a reliable transmission 

medium. There are upper and lower bounds on the length of time that any message takes to arrive at 

its destination. We do not require the existence of unforgeable signatures. 

Our algorithm runs in rounds, resynchronizing every so often to correct for the clocks drifting out of 

synchrony, and using a fault-tolerant averaging function based on those in [DLPSW] to calculate an 

adjustment. The size of the adjustment made to a clock at each round is independent of the number 

of faulty processes. At each round, n2 messages are required, where n is the total number of 

processes. The closeness of synchronization achieved depends only on the initial closeness of 

synchronization, the message delivery time and its uncertainty, and the drift rate. Since the closeness 

of synchronization depends on the initial closeness, this is, in the terminology of [LM], an interactive 

convergence algorithm. We give explicit bounds on how the difference between the clock values and 

real time grows. The algorithm can be easily adapted to become a reintegration procedure for 

repaired processes. 

Lamport and Melliar-Smith [LM], Halpern, Simons and Strong [HSS], and Marzullo [M] also have 

clock synchronization algorithms that run in rounds. The three algorithms in [LM], as do ours, require 

a reliable, completely connected communication network and handle arbitrary faults. However, the 

closeness of synchronization achieved by one depends on the number of processes and that 

achieved by the other two depends on the number of faulty processes. In two of them, the size of the 

adjustment also depends on the number of faulty processes and the number of messages is 

exponential. Although one algorithm only needs a majority of the processes to be nonfaulty, it 

assumes unforgeable digital signatures. The algorithm of [HSS] is resilient to any number of faults (as 

long as the network remains connected), has n2 message complexity per round, and achieves a 
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closeness of synchronization very similar to ours. But the size of the adjustment depends on the 

number of processes and unforgeable digital signatures are necessary. The framework and error 

model used in [M] make a direct comparison of results with ours difficult. Only [HSS] includes a 

reintegration procedure. 

The problem addressed in the earlier papers is only that of maintaining synchronization of local 

times once it has been established. There is, of course, the separate problem of establishing such 

synchronization in the first place. A variant of the algorithm in this paper can be used to establish the 

initial synchronization, as well as to maintain the synchronization. This variant, together with a 

description of the interface between the two algorithms, will be briefly sketched. 

The remainder of this paper is organized as follows: in Section 2 we describe the underlying model 

upon which our work is based in more detail, but still informally. In Section 3 the assumptions we 

make about clock behavior are given and the problem to be solved is stated precisely, in terms of the 

model described in Section 2. The algorithm to solve the problem is presented in Section 4. This 

simple algorithm is described in words first, and then in a high level "programming language". We 

explain how the high level language can be "compiled" into our model. Section 5 contains an 

inductive proof that some important properties hold at every round. We give an upper bound on the 

amount by which any nonfaulty process' clock is changed at any time. Section 6 includes 

background needed for the results of Section 7, which contains the answers to the problem posed 

earlier. In section 8 we explain how to reintegrate a repaired process. Finally, Section 9 consists of a 

brief description of an algorithm to establish synchronization initially. 

2. A Model for Systems of Processes with Clocks 
This section is an informal description of the model used to describe a system of processes which 

have physical clocks. A completely formal development will appear in [Lu] . 

2.1. Processes, Clocks, and Systems 

We model a distributed system consisting of a set of processes that communicate by sending 

messages to each other. Each process has a physical clock that is not under its control. 

A typical message consists of text and the sending process' name. There are also two special 

messages, START, which comes from an external source and indicates that the recipient should 

begin the algorithm, and TIMER, which a process receives when its physical clock has reached a 

designated time. 
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A process is an automaton with a set of states and a transition function. The transition function 

describes the new state the process enters, the messages it sends out, and the timers it sets for itself, 

all as a function of the process' current state, received message and physical clock time. An 

application of the transition function constitutes a process step, the only kind of event in our model. 

The system is interrupt-driven in that a process only takes a step when a message arrives. The 

message may come from another process, or it may be a TIMER message that was sent by the 

process itself. Thus, by using a TIMER message, a process can ensure that an interrupt will occur at 

a specified time in the future. We neglect local processing time by assuming that the processing of an 

arriving message is instantaneous. 

We define a clock to be a monotonically increasing, everywhere differentiable function from IR (real 

time) to IR (clock time). A system of processes consists of a set of processes, a subset of the 

processes called the self-starting processes, and a set of clocks (the physical clocks), one for each 

process. The physical clock for process p will be denoted PhP. 

2.2. The Message System 

Every process can communicate directly with every process, including itself. The message system 

is modelled by a global message buffer. When a process sends a message at real time t to another 

process, the message is placed in the message buffer together with a time t' greater than t. At real 

time t', the message is received by the proper recipient and is deleted from the buffer. The message 

delay is t' - t. Initially the message buffer contains no messages except for ST ART messages, exactly 

one for each self-starting process. 

When a process p sets a timer, say for time T, a TIMER message with recipient p and delivery time 

Ph ·1 (T), is placed in the message buffer, as long as Ph ·1 (T) is not less than the current real time. If it 
p p 

is, no message is placed in the buffer. 

2.3. Executions 

There is only one type of event in this model, receive(m,p) , the receipt of message m by process p. 

!n order to discuss how an event affects the system as a whole, we define a configuration to consist of 

a state for each process and a state for the message buffer. An event surrounded by the 

configurations of the system immediately before the event and immediately afterwards, e.g. (F,e,F'), is 

an action. 

We define an execution of the system to be a mapping from real times to sequences of actions with 
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the following properties: 

• the configurations match up correctly, that is, the second configuration of an action is the 
same as the first one of the foilowing action; 

• all TIMER messages received by a particular process p that arrive at real time t are 
ordered after any non-TIMER messages for p that arrive at real time t (so messages that 
arrive at the same time as a timer is due to go off get in "just under the wire"); 

• if an action (F, receive(m,p), F') occurs at real time t, then the only differences between F 
and F' are that p's state may change and that the message buffer in F' no longer contains 
m but may contain some messages and timers from p; furthermore, if p is nonfaulty, then 
its new state and the additions to the message buffer are determined by p's transition 
function acting on p's state in F, the message m, and the physical time PhP(t); 

o if any process p sets a timer for a future time t, then at time t, p receives a TIMER 
message; furthermore, if any nonfaulty process p receives a TIMER message at time t, 
then earlier p set a timer fort; and 

• a message m is received at real time t if and only if the message buffer contained m with t 
recorded as the time at which it was to be delivered. 

Since faulty processes need not obey the conditions in the third and fourth properties listed above, 

they can choose when they take steps and can do anything they want at a step. 

3 . The Clock Synchronization Problem 

3 .1. Clocks 

In this paper, clock names are capitalized. For each clock, the inverse function has the same name, 

but it is not capitalized. 

For a very small constant p > 0, we define a clock C to be p-bounded provided that for all t 

1 - p~1/(1 +p)<C'(t)~1 +p~1/(1 - p). 

Henceforth we assume that all clocks are p-bounded, i.e., the amount by which a clock's rate is faster 

or slower than real time is at most p . 

We give several straightforward lemmas about the behavior of (p· bounded) clocks. 

Lemma 1: Let C be any clock. 



6 

(1-p)(T2-T
1

) S (T2-T
1
)/(1 + p) S c(T2)-c(T

1
) S (1 + p)(T2-T1) S (T2-T1)/(1-p). 

Proof : Straightforward. I 

Lemma 2: Let C and D be clocks. 

(a) If C' = 1 and T 1 S T 2, then 

(b) If T1 S T2, then 

l(c(T 2) - d(T 2)) - (c(T 1)- d(T 1))1 = l(c(T 2) - c(T 1)) - (d(T 2)- d(T 1))1 S 2p(T 2 - T/ 

(c) If C' = 1 and t1 s t2, then 

l(C(t2) - D(t2)) - (C(t1) - D(t1))1 = l(C(t2) -C(t1)) - (O(t2) - D(t1))1 s 2p(t2-t/ 

Proof: Straightforward using Lemma 1. I 

Lemma 3 : Let C and D be clocks, T
1 

s T 2. Assume lc(T) -d(T)I s a for all T, T1 ST S 
T 2. Let t1 = min{c(T 1),d(T 

1
)} and t2 = max{c(T 2),d(T 2)}. Then IC(t) - D(t)j s (1 + p)a for 

all t, t1 S t S t2. 

Proof: There are four cases, which can easily be shown to be exhaustive. 

Let T 3 = C(t), so that T 1 s T 3 s T 2. By hypothesis, lc(T 3) - d(T 3)1 s a. Then IT 3 - D(t)I 
S (1 + p)a, by Lemma 1. 

Case 2: d(T 1) st s d(T J This case is analogous to the first. 

Case 3: c(T 2) < t < d(T/ 

Then c(T 1) < t < d(T )- So C(t) > D(t), and thus 

S (1 + p)(t-c(T1)) + (1 + p)(d(T1) -t), by Lemma 1, 

Case 4: d(T 2) < t < c(T / This case is analogous to the third. I 

Each process p has a local variable CORR, which provides a correction to its physical clock to yield 
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the local time. During an execution, p's local variable CORR takes on different values. Thus, for a 

particular execution, it makes sense to define a function CORRP(t), giving the value of p's variable 

CORR at time t. 

For a particular execution, we define the local time for p to be the function LP, which is given by PhP 

+ CORRP. 

A logical clock of p is Ph plus the value of CORR at some time. Let c0P denote the initial logical p p 

clock of p, given by Ph plus the value of CORR in p's initial state. In keeping with our notational 
p p 

convention, we let c0 denote the inverse function of c0 . Each time p adjusts its CORR variable, it p p 

can be thought of as changing to a new logical clock. The local time can be thought of as a 

piecewise continuous function, each of whose pieces are part of a logical clock. 

3.2 . Problem Statement 

We make the following assumptions: 

(1) All clocks are p-bounded, including those of faulty processes. (Since faulty processes are 

permitted to take arbitrary steps, faulty clocks would not increase their power to affect the behavior of 

nonfaulty processes.) 

(2) There are at most f faulty processes, for a fixed constant f, and the total number of processes in 

the system, n, is at least 3f + 1. (Dolev, Halpern and Strong (OHS] show that it is impossible without 

authentication to synchronize clocks unless more than 2/3 of the processes are nonfaulty.) 

(3) The message delay for every message is in the range [o - €, o + €], for some nonnegative 

constants o and € with o > €. 

(4) A ST ART message arrives at each process p at time r0 on its initial logical clock c0 , and t0 is 
p p 

the real time when this occurs. Furthermore, the initial logical clocks are closely synchronized, i.e., 

lc0 P(T0
) - c0 q(T0)1 :S; f3, for some fixed f3 and all non faulty p and q. 

We let tmax
0 

= maxP nontaulty {t0 P} and analogously for tmin°. 

The object is to design an algorithm for which every execution in which the assumptions above hold 

satisfies the following tw9 properties. 

1. y-Agreement: ILP(t) - Lq(t)I :S; y , for all t ~ tmin° and all nonfaulty p, q. 
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2. (a
1
,a

2
,a

3
)-Validity: a

1
(t- tmax0) + T0 - a

3 
s; LP(t) s; a

2
(t- tmin°) + T0 + a

3
, for all t ~ 

t0 and all nonfaulty p. p 

The Agreement property means that all the nonfaulty processes are synchronized to within y. The 

Validity property means that the local time of a nonfaulty process increases in some relation to real 

time. We would , of course, like to minimize a1, a2, a3, and y. 

4. The Algorithm 

4.1. General Description 

The algorithm executes in a series of rounds, the i-th round for a process triggered by its logical 

clock reaching some value Ti_ (It will be shown that the logical clocks reach this value within real time 

f3 of each other.) When any process p's logical clock reaches Ti, p broadcasts a Ti message. 

Meanwhile, p collects Ti messages from as many processes as it can, within a particular bounded 

amount of time, measured on its logical clock. The bounded amount of time is of length (1 + p)(/3 + 

o + €), and is chosen to be just large enough to ensure that Ti messages are received from all 

nonfaulty processes. After waiting this amount of time, p averages the arrival times of all the Ti 

messages received, using a particular fault-tolerant averaging function. The resulting average is used 

to calculate an adjustment to p's correction variable, thereby switching p to a new logical clock. 

The process p then waits until its new clock reaches time Ti+ 1 = Ti + P, and repeats the 

procedure. P, then, is the length of a round in local time. 

The fault-tolerant averaging function is derived from those used in [DLPSW] for reaching 

approximate agreement. The function is designed to be immune to some fixed maximum number, f, 

of faults. It first throws out the f highest and f lowest values, and then applies some ordinary 

averaging function to the remaining values. In this paper, we choose the midpoint of the range of the 

remaining values, to be specific. 

4.2. Code for an Arb itrary Process 

Global constants: p, /3, o, €, and P, as defined above. 

Local variables: 

o CORR, initially arbitrary; correction variable which corrects physical time to logical time. 

o ARR[q], initially arbitrary; array containing the arrival times of the most recent messages, 
one entry for each process q. 
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• T, initially undefined; local time at which the process next intends to send a message. 

Conventions: 

• NOW stands for the current logical clock time (i.e., the physical clock reading + CORR). 
NOW is assumed to be set at the beginning of a step, and cannot be assigned to. 

• REDUCE, applied to an array, returns the rnultiset consisting of the elements of the array, 
with the f highest and f lowest elements removed. 

e MID, applied to a multiset of reals numbers, returns the midpoint of the set of values in the 
rnultiset. 

beginstep{u) 
do forever 

/* in case T1 messages are received before this process r eac hes T1 •; 

while u = (m ,q) for some message m and proce ss q do 
ARR[q] := NOW 
endstep 
beg i nstep{u) 
endwhile 

/* fall out of the loop when u = START or TIMER; begin round */ 

T := NOW 
broad cas t{T) 
set-time r(T + {1 + p){fi + o + e)) 

while u = (m,q) for some message m and p r oce ss q do 
ARR[q ] := NOW 
endstep 
beginstep(u) 
endwh ile 

/* f all out of the loop whe n u = TIMER; end round*/ 

AV:= mid(reduce (ARR)) 
ADJ := T + o - AV 
CORR : =CORR + ADJ 
set - timer(T + P) 
endstep 
beginstep(u) 
enddo 

We have employed a clean, simple notation for describing interrupt-driven algorithms. To translate 

this notation into the basic model, we first assume that the state of a process consists of values for all 

the local variables, together with a location counter wh ich indicates the next beginstep statement to 

be executed. The initial state of a process consists of the indicated initial values for all the local 
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variables, and the location counter positioned at the first beginstep statement of the program. 

The transition function takes as inputs a state of the process, a message, and a physical time, and 

must return a new state and a collection of messages to send and timers to set. This is done as · 

follows. The beginstep statement is extracted from the given state. The local variables are initialized 

at the values given in the state. The parameter u is set equal to the message. The variable NOW is 

initialized at the given physical time + CORR. The program is then iUn from the given beginstep 

statement, just until it reaches an endstep statement. (If it never reaches an endstep statement, the 

transition function takes on a default value.) The next beg instep after that endstep, together with the 

new values for all the local variables resulting from running the program, comprise the new state. The 

messages sent are all those which are sent during the running of the program, and similarly for the 

timers. The set-timer statement takes an argument U which represents a logical time. The 

corresponding physical time, U - CORR, is the physical time which is described by the transition 

function. 

5. Inductive Analysis 

Although the algorithm is fairly simple, its analysis is surprisingly complicated and requires a long 

series of lemmas. 

5 .1. Bounds on the Parameters 

We assume that the parameters p, 8, and £ are fixed, but that we have some freedom in our choice 

of P and /J, subject to the reasonableness of our assumption that the clocks are initially synchronized 

to within /J. We would like /J to be as small as possible, to keep the clocks as closely synchronized as 

we can. However, the smaller fJ is, the smaller P must be (i.e., the more frequently we must 

synchronize). 

There is also a lower bound on P. In order for the algorithm to work correctly, we need to have P 

sufficiently large to ensure the following. 

(1) After a nonfaulty process p resets its clock, the local time at which p schedules its next 

broadcast is greater than the local time on the new clock, at the moment of reset. 

(2) A message sent by a nonfaulty process q for a round arrives at a nonfaulty process p after p has 

already set its clock for that round. 

Sufficient bounds on P turn out to be: 
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P > 2(1 + p)(/3 + c) + (1 + p}max{o, /3 + E} + po, and 

P~f3/4p-clp-p(/J + o + c)-2/3-o-2c. 

A required lower bound on pis f3 2:'.: 4c + 4p(3/J + o + 3c) + 8p2({3 + o + c). 

Any combination of P and f3 which satisfies these inequalities will work in our algorithm. If P is 

regarded as fixed, then f3, the closeness of synchronization along the real time axis, is roughly 4c + 

4pP. This value is obtained by solving the upper bound on P for /3 and neglecting terms of order p. 

5.2. Notation 

Let Ti = T0 + iP and ui = Ti + (1 + p)(/3 + o + c), for all i 2 O. 

For each i, every process p broadcasts Ti at its logical clock time Ti (real time tip) and sets a timer to 

go off when its logical clock reaches ui. When the logical clock reaches ui (at real time uiP), the 

process resets its CORR variable, thereby switching to a new logical clock, denoted ci + 1 p· Also at 

real time uip' the process sets a timer for the time on its physical clock when the new logical clock 

Ci+ 1 P reaches Ti+ 1 . It is at least theoretically possible that this new timer might be set for a time on 

the physical clock which has already passed. If the timer is never set in the past, the process moves 

through an infinite sequence of clocks c0 , C1 , etc, where c0 is in force in the interval of real time p p p 

(-oo,u0 ), and each d , i > 1, is in force in the interval of real time [ui-1 
, ui ). If, however, the timer is 

p p - p p 

set in the past at some uip' then no further timers arrive after that real time, and no further 

resynchronizations occur. That is, d + 1 stays in force forever, and ui and ti are undefined for j > i p p p . -

+ 1. 

Let tmini denote minP nontaulty {tip}, and analogously for tmaxi , umini and umaxi. 

For p and q nonfaulty, let ARRiP(q) denote the time of arrival of a Ti message from q top, sent at q's 

clock time Ti, where the arrival time is measured on p's local clock d . (We will prove that d has 
p p 

actually been set by the time this message arrives.) Let AViP denote the value of AV calculated by p 

using the ARRi values, and let ADJi denote the corresponding value of ADJ calculated by p. Thus, p p 

d+ 1 = ci ADJi 
p p + p' 

This section is devoted to proving the following three statements for all i 2:: 0: 

(1) The real time tip is defined for all nonfaulty p. (That is, timers are set in the future.) 
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(2) !tip - tiql ~ {3, for all nonfaulty p and q. (That is, the separation of clocks is bounded by /J.) 

(3) tip + o - e > ui·\, for all nonfaulty p and q, and i ~ 1. (That is, messages arrive after the 

appropriate clocks have been set.) 

The proof is by induction. For i = 0, (1) and (2) are true by assumption and (3) is vacuously true. 

Throughout the rest of this section, we assume (1 ), (2), and (3) hold for i. We show (1 ), (2), and (3) 

for i + 1 after bounding the size of the adjustment at each round. 

5.3. Bounding the Adjustment 

In this subsection, we prove several lemmas leading up to a bound on the amount of adjustment 

made by a nonfaulty process to its clock, at each time of resynchronization. 

Lemma 4: Let p and q be nonfaulty. 

(a) ARRip(q) ~ ri + (1 + p)(/J + o + e). 

(b) If o - e ~ {3, then ARRip(q) ~ Ti + (1 - p)(o - e - /3). 

(c) If o - e ~ /3, then ARRiP(q) ~ Ti- (1 + p)(/3- o + e). 

Proof: Straightforward using Lemma 1. I 

Lemma 5: Let p be nonfaulty. Then there exist non faulty q and r with 

ARRip(q) ~ Avip ~ ARRip(r). • 

Proof: By throwing out the f highest and f lowest values, the process ensures that the 
remaining values are in the range of the non faulty processes' values. I 

We are now able to bound the adjustment. 

Lemma 6: Let p be nonfaulty. Then IADiPI ~ (1 + p)(/J + e) + po. 

Proof: ADJi = Ti + o -AVi . 
p p 

Thus, for some nonfaulty q and r, Lemma 5 implies that 

Then Lemma 4 implies that: 

(a) ADJip ~ Ti + o - (Ti + (1 + p)(/3 + o + e)) = .- (1 + p)(/3 + e)- po. 

(b) If o - e ~ /3 , then ADJip ~ Ti + o - (Ti + (1 - p)(o - e - /3)) = (1 - p)(/J + e) + po. 

(c) If o - e ~ /J , then ADJiP ~ Ti + o - (Ti - (1 + p)(/3- o + e)) = (1 + p)({J + e)- po. 
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The conclusion is immediate. I 

5.4. Timers Are Set in the Future 

Earlier, we gave a lower bound on P and described two conditions which that bound was supposed 

to guarantee (that timers are set in the future and that messages arrive after the appropriate clocks 

have been set). In this subsection, we show that the given bound on P is sufficient to guarantee that 

the first of these two conditions holds. 

Lemma 7: Let p be nonfaulty. Then ui + Aoj < Ti + 1. p 

Proof: Ui + ADip ~ Ui + (1 + p)(/3 + e) + po , by Lemma 6 

= ui + (2(1 + p)(/3 + e) + (1 + p)o + po)- (1 + p)(/3 + o + €) 

< Ui + P- (1 + p)(/3 + o + e), by the assumed lower bound on P 

This lemma implies that timers are set in the future and that ti+ 1 is defined, the first of the three p 

inductive properties which we must verify. 

5 .5. Bounding the Separation of Clocks 

Next, we prove several lemmas which lead to bounds on the distance between the new clocks of 

nonfaulty processes. The first lemma gives an upper bound on the error in a process' estimate of the 

difference in real time between its own clock and another nonfaulty process' clock reaching Ti. 

Lemma 8 : Let p, q and r be nonfaulty. Then 

l(ARRi/q) - (Ti + o)) - (ciq(Ti) - cip(Ti))I ~ e + p(/3 + o + e). 

Proof: Let a be the real time of arrival of q's message at process p. Then a is at most 
ci (Ti) + o + e. Define a new auxiliary clock, D, with rate exactly equal to 1, and such that q . . 
D(a) = C1 (a). Thus, ARR' (q) = D(a). So the expression we want to bound is at most p p 
equal to: 

First we demonstrate that the first of these two terms is at most e. 

ID(a) - (Ti + o) - Ci (Ti) + d(Ti)I 
q 

= la - d(Ti + o) - ciq(Ti) + d(Ti)I, since D has rate 1 

= la - Ci (Ti) + Ti - (Ti + o)I 
q 

~ lciq(Ti) + o + e - ciq(Ti) - ol 
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= € . 

Next we show that the second term, lei (Ti) - d(Ti)I, is at most p(/3 + o + e). p 

Case 1: ciP(Ti) s a. Sop reaches Ti before q's message arrives. 

Let y = a- ciP(Ti). Then y s /3 + o + e. 

Subcase 1a: d(Ti) ~ ciP(Ti). So CP has rate slower than real time. 

Then d(Ti) -ci (Ti) is largest when C goes at the slowest possible rate, 1/(1 + p). In this . . p . . p . . . . 
case, d(T1

) - c1P(T1
) = y - (a - d(T1

)), where a - d(T1
) = y/(1 + p). Thus, d(T1

) - c'P(T
1
) = 

y(1 -1/(1 + p)) = yp/(1 + p) S yp S p(/3 + o + €), 

Subcase 1b: d(Ti) s ciP(Ti). So CP has rate faster than real time. 

Then ci (Ti) - d(Ti) is largest when C goes at the fastest possible rate, 1 + p. Then 

cip(ri) - d(Ti) = y(1 + p) -y = yp S p(/3 + o + e). 

Case 2: ciP(Ti) ~ a. Sop reaches Ti after q's message arrives. 

Let y = ciP(Ti) - a. Then y s /3 - o + e. 

Subcase 2a: d(Ti) ~ ciP(Ti) . So CP has rate faster than real time. 

An argument similar to that for case 1b shows that d(Ti) - ciP(Ti) s yp s p(/3 - o + e), 
which suffices. 

Subcase 2b: d(Ti) :s; ciP(T\ So CP has rate slower than real time. 

An argument similar to that for case 1a shows that ciP(Ti) - d(ri) s yp s p(/3 - o + e), 
which suffices. I 

In order to prove the next lemma, we use some results about multisets, which are presented in the 

Appendix. This is a key lemma because the distance between the clocks is reduced from /J to /312, in 

a rough sense. The halving is due to the properties of the fault-tolerant averaging function used in 

the algorithm. Consequently, the averaging function can be considered the heart of the algorithm. 

Lemma 9 : Let p and q be nonfaulty. Then 

l(ci (Ti) - ci (Ti)) - (ADJi - ADJi )I < /312 + 2e + 2p(/3 + o + e). 
p q p q -

Proof: We define multisets U, V, and W, and show they satisfy the hypotheses of Lemma 
23. Let 

U = cip(Ti) - (Ti + o) + ARRip' 

V = Ci (Ti) - (Ti + o) + ARR; I and 
q q 
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W = {ci (Ti): r is nonfaulty}. . r 

U and V have size n and W has size n - f. 

Let x = e + p(/3 + o + e). 

Define an injection from W to U as follows. Map each element ci (Ti) in W to ci (Ti) - (Ti 
. . . r . . p . . 

+ o) + ARR1 (r) in U. Since Lemma 8 implies that l(ARR1 (r) - (T1 + o)) - (c'/T') - c1 (T'))I 
~ e + p(/3 + Po + e) for all the elements of W, dx(W,U) = 8. Similarly, dx(W,V) = 0. P 

Since any two nonfaulty processes reach Ti within /3 real time of each other, diam(W) = 

/3 . 

By Lemma 23, lmid(reduce(U))- mid(reduce(V))I s /312 + 2e + 2p(/3 + o + e). 

Since mid(reduce(U)) :.:: mid(~educe(ciP(Ti) - (Ti + o) + ARRiP)) = ciP(Ti) - ADJip' and 
similarly mid(reduce(V)) = c' (T1

) - ADJ' , the result follows. I q q 

The next lemma is analogous to the previous one, except that it involves Ui instead of Ti. 

Lemma 10: Let p and q be nonfaulty. Then 

l(ci (Ui) - ci (Ui)) - (ADJi - ADJi )I< /312 + 2e + 2p(2 + p)(/3 + o + e). p q p q -
Proof: The given expression is 

s /312 + 2e + 2p(f3 + o + e) + 2p(1 + p)(/3 + o + e), by Lemmas 9 and 2. 

This reduces to the claimed expression. I 

Next we bound the distance in real time between two nonfaulty processes switching to their new 

clocks. It is crucial that the distance between the new clocks reaching Ui be less than f3 in order to 

accommodate their relative drift during the interval between Ui and Ti+ 1. 

Lemma 11 : Let p, q be nonfaulty. Then 

lei+ \(Ui) - ci + \(Ui)I s /312 + 2e + 2p(3/3 + 28 + 3e) + 4p2(/3 + o + e). 

Proof: We define idealized clocks, D and D , as follows. Both have rate exactly 1. Also, 
D (ui ) = ci + 1 (ui ) = ui + ADJi , and similar1y for q. Then 

p p p p p 

We bound each of these three terms separately. 
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S plADJ\), by Lemma 2 

S p((1 + p)(/3 + e) + po), by Lemma 6. 

The same bound holds for the third term. 

Finally, consider the middle term, Id (Ui) - d (Ui)I. We know that d (Ui) = d (Ui + ADJi ) . . . p q p p . p 
- ADJ' = u' - ADJ' , and similarly for q. p p p 

Id (Ui) - d (Ui)I = l(ui - ui ) - (ADJi - ADJi )I 
p q p q p q 

s /312 + 2e + 2p(2 + p)(/3 + o + e), by Lemma 10. 

Combining these three bounds, we get the required bound. I 

Finally, we can show the second of our inductive properties, bounding the distance between times 

when clocks reach Ti+ 1. 

Lemma 12: Let p, q be non faulty. Then !ti+\- ti+ \1 s /J . 
Proof: lti+ 1 -ti+ 1 I 

p q 

= lci+1 (Ti+1) - ci+1 (Ti+1)l 
p q 

< l(ci+1 (Ti+1)-ci+1 (Ti+1))-(ci+1 (Ui) -ci +1 (Ui))I + lci+1 (Ui) -ci +1 (Ui)I 
- p q p q p q 

S 2p(P - (1 + p)(/3 + 8 + e)) + /312 + 2e + 2p(3/3 + 28 + 3e) + 4p2 (/3 + o + e), by 
Lemmas 2 and 11. 

The assumed upper bound on P implies that this expression is at most /3. I 

5.6. Bound on Message Arrival Time 

In this subsection, we show that the third and final inductive assumption holds. That is, we show 

that messages arrive after the appropriate clocks have been set. 

Lemma 13: Let p and q be non faulty. Then ti + 1 + o - e > ui . 
q p 

Proof: Since ti+ 1 + o - e > ti+ 1 -/3 + o - e, it suffices to show that q - p 

ti+1 -ui >/3 - o + € . 
p p 

Now, ti + 
1 

- ui ~ (P - (1 + p)(/3 + o + e) - ADJi )/(1 + p) since the numerator 
represents the s~allest possible difference in the value~ of the clock ci + 1 at the two 
given real times. P 

But the lower bound on P implies that P > 3(1 + p)(/3 + e) + po. Also, the bound on the 
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adjustment shows that AOJiP ::s; (1 + p)(/3 + e) + po. Therefore, 

ti+ 1 -ui )(3(1 + p)(/J + e) + po-(1 + p)(/3 + o + e) - (1 + p)(/3 + e)-po)/(1 + p) 
p p 

= f3 - o + e, as needed. I 

Thus, we have shown that the three inductive hypotheses hold. Therefore, the claims made in this 

section for a particular i, in fact hold for all i. 

6. Some General Properties 
In this section, we state several consequences of the results proved in the preceding section. 

First, we state a bound on the closeness with which the various clocks reach corresponding values. 

Lemma 14: Let p, q be nonfaulty, i 2 0. Assume that Tis chosen so that ui·1 ::s; T ::s; Ui, 
if i 2 1, or so that T0 ::s; T ::s; u0 , if i = 0. 

Then lciP(T) - ciq(T)I ::s; /3 + 2p(1 + p)(/3 + o + e). 

Proof: Basis: i = 0. Then T0
:::; T :::; u 0

. 

lc0 (T) - c0 (T)I < l(c0 (T) - c0 (T)) - (c0 (T0) - c0 (T0))1 + lc0 (r°) - c0 (T0)1 p q - p q p q p q 

:::; 2p(T - T0) + /3, by Lemma 2 and assumption 4 

::s; /3 + 2p(1 + p}(/3 + o + e). 

Induction: i 2 0. Choose T with ui•1 :::; T:::; ui. 

lciP(T) - ciq(T)I:::; l(ciP(T)- ciq(T))- (ciP(ui-1) - ciq(ui-1))I + lciP(ui-1) - ciq(ui-1)I 

::s; 2pP + /312 + 2e + 2p(3/3 + 28 + 3e) + 4p2(f3 + o + e), by Lemmas 2 and 11. 

The upper bound on P implies the result. I 

Next, we prove a bound for a non faulty process' (i + 1 )-st clock, in terms of non faulty processes' i-th 

clocks. 

Lemma 15: Let p be nonfaulty, i 2 0. Then there exist nonfaulty processes, q and r, 
such that for ui < t < umaxi, 

p - -

ciq(t) - a ::s; d + \(t) ::s; d/t) + a 

where a = e + p(4/3 + o + 5e) + 4p2(/3 + o + e) + 2p3(f3 + o + e). 

Proof: ci + 1 (t) = d (t) + Ti + o - A Vi . Therefore, by Lemma 5 there are nonfaulty 
processes, q lnd r for 0'hich P 
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cip(t) + Ti + o -ARRip(q) sci+ \(t) s cip(t) + Ti + o -ARRip(r). 

We show the right-hand inequality first. Let a = ci (ARRi (r)), the real time at which the . . p p . . 
message arrives at p from r. Thus, C1P(a) = ARR1P(r). Note that C1/a) ~ T1 + (1 - p)(o - e). 

d + 1 (t) < ci + Ti + o - ARRi (r), from above p - p p 

< d (t) + Ci (a) - ci (a) + Ti + o - ARRi (r) + (ci (t) - d (t)) - (ciP(a) - d (a)) - r p r p pr r 

< ci (t) + ci (a) - ci (a) + Ti + o - ARRi (r) + 2p(t - a), by Lemma 2 since t > a - r p r p 

S Ci/t) + ARRip(r) - Ti - (1 - p)(o - e) + Ti + o - ARRip(r) + 2p(t- a) 

= d (t> + e + po - pe + 2p(t - a). r 

It remains to bound t- a. The worst case occurs when t = umaxi. The longest possible 
elapsed real time between a particular nonfaulty process reaching Ti and Ui on the same 
clock is (1 + p)2({J + o + e). Thus, umaxi - tmini s /J + (1 + p)2({J + o + e). But a~ 
tmini + o - e. Therefore, t- as /J + (1 + p)2({J + o + e) - o + e 

Thus,ci+\(t)~C\(t) + e + po-pe + 2p({J + (1 + p)2({J + o + e)-o + e) 

= ci (t) + e + p(4/J + o + 3e) + 4p2(/J + o + e) + 2p3(/J + o + e) r 

< d (t) + a. r 

For the left-hand inequality, we see that ci (t) - e - po - pe - 2p(t - a) s Ci+ 1 (t), where a . . q p 
= d (ARR1 (q)). The factor t - a is bounded exactly as before, so that we obtain: p p 

7 . Agreement and Validity Conditions 
We are now ready to show that the agreement and validity properties hold. The main effort is in 

restating bounds proved earlier concerning the closeness in real times when clocks reach the same 

value, in terms of the closeness of clock values at the same real time. 

7.1 . Agreement 

The first lemma implies that the local times of two nonfaulty processes are close in those intervals 

where both use a clock with the same index. 

Lemma 16: Let p, q be nonfaulty. Then 

ICiP(t) - ciq(t)I s (1 + p)({J + 2p(1 + p)({J + o + e)) 

for max{ui•1 ,ui·1 
} < t < max{ui ,ui }, if i > 1, p q-- pq -
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and for min{t0 .t° } < t < max{u0 ,u0 } , if i = 0. p q - - p q 

Proof: Basis: i = 0. Lemma 14 implies that lei (T)- ci (T)I < f3 + 2p(1 + p)(/3 + o + e) 
for all T, ui-1 :::; T :::; Ui if i ;:::: 1 and for all T,PTo :::; f :::; LP if i = 0. Then Lemma 3 
immediately implies the needed result for i = 0. 

Induction: i ;:::: 1. Lemma 3 implies the result for all t with 

It remains to show the bound fort with 

max{ui·\,ui·\} :::; t < min{ciP(ui·\ ciq(ui-1)}. 

Without loss of generality, assume that ci (Ui-1):::; ci (Ui-1), so that the minimum is equal to 
Ci (Ui-1)_ P q 

p 

ICi (t)-ci (t)I < l(ci (t) - ci (t)) - (Ci (Ci (Ui-1))-ci (Ci (Ui-1)))1 p q - p q pp qp 

+ 1ci (ci (ui-1))-ci (ci (ui-1))1 
p p q p 

T~e first term, by Lemma 2, is at most 2p(ciP(ui-1) - t). Since t;:::: max{ui·\, ui·\} ;:::: ui·\ 
> c1

•
1 (U'-1) we have 

- p ' 

2p(ciP(ui-1)- t) :::; 2p(ciP(ui-1)- ci•\(ui-1)). 

Since ci·\(ui-1) = ciP(T) for some T with IT - ui•11:::; IADJiPI, this quantity is 

~ 2plciP(ui-1) -ciP(T)I 

:::; 2p(1 + p)IUi-l - Tl, by Lemma 1 

~ 2p(1 + p)IADJipl 

~ 2p(1 + p)((1 + p)(/3 + e) + po), by Lemma 6. 

To bound the second term we note that Lemma 11 implies that 

lciP(ui-1)- ciq(ui- 1)1:::; fJ/2 + 2e + 2p(3/3 + 28 + 3e) + 4p2(/3 + o + e) = a, 

and so Lemma 3, with T 1 = T 
2 

= ui• 1, implies that 

lei (ci (Ui-1)) - ci (ci (Ui-1))1 < (1 + p)a. 
p p q p -

. The assumed lower bound on f3 gives the result that 

2p(1 + p)((1 + p)(/3 + e) + po) + (1 + p)a :::; (1 + p)(/3 + 2p(1 + p)(/3 + o + e)) I 

Here is the main result, bounding the error in the synchronization at any time. 
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Theorem 17: The ai~orithm guarantees y-agreement, 

where y = f3 + e + (i.(lr/3 + 38 + le) + 8p2(/J + 8 + e) + 4p3({3 + 8 + e). 

Proof: The result far intervals in which the processes use clocks with the same indices 
has been covered in tire preceding lemma. The expression in the statement of that lemma 
simplifies to 

/3 + p(3/3 + 28 + 2e) + 4p2({3 + o + e) + 2p3({3 + o + e), 

which is less than y. 

Next, we must consirler the case where one of the processes has changed to a new 
clock, while the other still retains the old clock. Consider lei+ 1 (t) - Ci (t)I for some t with ' ' p q 
u' < t < u' . Lemma 15 implies that there exist nonfaulty processes rand s such that 

p - - q 

ci (t) - a < d + 1 (t) < ci (t) + a, 
r - p - s 

where a = e + p(4{3 + o + 5e) + 4p2(/3 + o + e) + 2p3({3 + o + e). 

!Ci + 1 (t) - d (t)I < a + max{ICi (t) - ci (t)I, ICi (t) - ci (t)I} 
p q - r q sq 

:Sa + (1 + p) (/3 + 2p(1 + p)(/3 + o + e)), by the preceding lemma 

= f3 + e + p(7/3 + 3o + 7e) + 8p2(/3 + 8 + e) + 4p3(/3 + o + e), as needed. I 

Now we can sketch why it is reasonable for /3 to be approximately 4e + 4pP, as mentioned at the 

end of Section 5.1. Assume P is fixed. The i-th clocks reach Ti within f3 of each other. After the 

processes reset their clocks, the new clocks reach ui within {312 + 2e (ignoring p terms). By the end 

of the round, the clocks reach Ti+ 1 within about {312 + 2e + 2pP of each other, be~ause of drift. 

This quantity must be at most /3. The inequality {312 + 2e + 2pP :S /3 yields /3 2 4e + 4pP. 

Suppose we alter the algorithm so that during each round, the processes exchange clock values k 

times instead of just once. Then we get f3/2k + (4- 22-k)e + 2pP :S /3, which simplifies to /3 2 4e + 

2pP(2k /(2k -1 )). It appears that /3 2 4e + 2pP is approachable. 

If n increases while f remains fixed, a greater closeness of synchronization can be achieved by 

using the mean instead of the midpoint in the algorithm. Similarly to (DLPSW], we can show that the 

convergence rate if the mean is used is roughly f/(n- 2f), and thai an error of approximately 2e is 

approachable. 
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7 .2. Validity 

Next, we show the validity condition. The first lemma bounds the values of the zero-index clocks. 

Lemma18:T
0 

+ (1-p)(t-t0P)~C0P(t)~T0 + (1 + p)(t-t0P)fort~t0P. 

Proof: By Lemma 1. I 

The next lemma is the main one. 

Lemma 19: Let p be nonfaulty, i ~ 0. Then 

(1 - p )(t - tmax0) + T0 - ie ~ ciP(t) ~ (1 + p )(t - tmin°) + T0 + ie 

for all t > ui·1 if i > 1, and for all t > t0 if i = 0. - p - - p 
Proof: We proceed by induction on i. When proving the result for i + 1, we will assume 

the result for i, for all executions of the algorithm (rather than just the execution in 
question). 

Basis: i = 0. This case follows immediately by Lemma 18. 

Induction: Assume the result has been shown for i and show it for i + 1. 

We argue the right-hand inequality first. The left-hand inequality is entirely analogous. 

Assume in contradiction that we have a particular execution in which d + 1 (t) > (1 + p )(t 
- tmin°) + r° + (i + 1 )e for some t ~ ui . Then by the limitations on rates ~f clocks, it is 
clearthatci+ 1 (ui ))(1 + p)(ui -tmin°f + T0 + (i+1)e. 

p p p 

Recall that p resets its clock at real time ui , by adding Ti + o - AVi . In this case, the 
inductive hypothesis implies that the adjustmlnt must be an increment. P 

By Lemma 5, this increment is< Ti + o - ARRi (q) for some nonfaulty q. Therefore, 
- p 

ci (ui ) + Ti + o -ARRi (q) > (1 + p)(ui - tmin°) + T0 + (i + 1)e. 
p p p p 

Next, we claim that if p had done the adjustment just when the message arrived from q 
rather than waiting till real time ui , the bound would still have been exceeded. That is, 
ARRi (q) + Ti + o - ARRi (q) P> (1 + p)(t' - tmin°) + T0 + (i + 1)e, where t' = 
ciP(ARRiP(q)). (This again follciws by the limits on the rates of clocks.) Thus, 

Ti + o > (1 + p)(t' - tmin°) + r 0 + (i + 1)e. 

Now consider an alternative execution of the algorithm in which everything is exactly like 
the one we have been describing, except that immediately after q sends out clock reading 
Ti, q's clock ci begins to move at rate 1. This -change cannot affect p's (i + 1 )-st clock 

q . 1 
because q doesn't send any more messages until t' + , and these messages aren't 
received until after the time when p sets its (i + 1 )-st clock. q 

By the lower bound on message delays, q's message top took at least o - e time. Then 

at real time t' (defined above), we have Ci/t') ~ Ti + o - e. But then ciq(t') > (1 + p)(t' -
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But then the inductive hypothesis is violated, since t' , the time when p receives q's Ti 
message, is greater than or equal to ui• 1 q' the time when q sets its round i clock. I 

Now, we can state the validity condition. Let <p = (P - (1 + p)(/3 + e) - po) I (1 + p). This is the 

size of the shortest round in real time since the amount of clock time elapsed during a round is at least 

P minus the maximum adjustment. 

Theorem 20: The algorithm preserves (a
1
,a

2
,a

3
)-validity, 

whereo: 1 = 1-p - elcp,a2 = 1 + p + elcp,anda3 = e. 

Proof: We must show for all t 2 t0 P and all nonfaulty p that 

a1(t- tmax0
) + T0 

- a 3 s LP(t) s a2(t - tmin°) + T0 + a
3

. 

We know from the preceding lemma that for i 2 0, t 2 ui•\ (or t\), and nonfaulty p 

(1 - p)(t-tmax0) + T0 - ie s dP(t) s (1 + p)(t - tmin°) + T0 + ie. 

Since L (t) is equal to d (t) for some i, we just need to convert i into an expression in 
terms oft; etc. An upper bciund on i is 1 + (t - tmax0

)/ cp. Then 

(1 + p)(t-tmin°) + T0 + ie s (1 + p)(t-tmin°) + T0 + (1 + (t-tmax0)/<p)e 

s (1 + p + elcp)(t -tmin°) + T° + e, since tmin° s tmax0
, 

and that 

(1 - p )(t - tmax0) + T0 - ie 2 (1 - p )(t - tmax0) + T0 - (1 + (t - tmax0)/ <p )e 

2 (1 - p - e/cp)(t-tmax0
) + T0

- e. 

The result follows. I 

8. Reintegrating a Failed Process 
Our algorithm can be modified to allow a faulty process which has been repaired to synchronize its 

clock with the other nonfaulty processes. Let p be the process to be reintegrated into the system. 

During some round i, p will gather messages from the other processes and perform the same 

averaging procedure described previously to obtain a value for its correction variable such that its 

clock becomes synchronized. Since p's clock is now synchronized, it will reach Ti+ 1 within /3 of every 

other nonfaulty process. At that point, p is no longer faulty and rejoins the main algorithm, sending 

out Ti+ 1 messages. 
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We assume that p can awaken at an arbitrary time during an execution, perhaps during the middle 

of a round. As soon as it awakens, it begins collecting Ti messages for all plausible values of Ti. It is 

necessary that p identify an appropriate round i at which p is able to obtain all the Ti messages from 

nonfaulty processes. Since p might awaken during the middle of a round, p will first orient itself by 

observing the arriving messages, allowing part of a round to pass before it begins to collect 

messages. More specifically, p first seeks an i such that f Ti-1 messages arrive within an interval of 

length at most (1 + p)(/3 + 2£) as measured on its clock. There will always be such an i because all 

messages from nonfaulty processes for each round arrive within /3 + 2e real time of each other, and 

thus within (1 + p )(/3 + 2e) clock time. 

Assuming that p itself is still counted as one of the faulty processes, at least one of the f arriving 

messages must be from a nonfaulty process. Thus, p knows that round i - 1 is in progress or has just 

ended, and that it should use Ti messages to update its clock. 

Now p continues to collect Ti messages. It must wait (1 + p)(/3 + 2e + (1 + p)(P + (1 + p)(/3 + e) 

+ po), as measured on its clock, after receiving the f-th ri-1 message in order to guarantee that it has 

received Ti messages from all nonfaulty processes. The maximum amount of real time p must wait, (/3 

+ 2e + (1 + p){P + (1 + p)(/3 + 2e) + po), elapses if the f-th Ti-1 message is from a nonfaulty 

process q and it took o - e t ime to arrive, if q's round i - 1 lasts a long as possible, (1 + p){P + (1 + 

p)(/3 + e) + po) (because its clock is slow and it adds the maximum amount to its clock), and if there 

is a nonfaulty process r that is /3 behind q in reaching Ti and its Ti message to p takes o + e. The 

process waits this maximum amount of t ime multiplied by (1 + p) to account for a fast clock. 

(Some slight extra bookkeeping is necessary because Ti messages from nonfaulty processes can 

arrive at p before p has received the f-th ri -1 message. We omit a description of a scenario in which 

this occurs.) 

Immediately after p determines it has waited long enough, it carries out the averaging procedure 

and determines a value for its correction variable. 

We claim that p reaches Ti+ 1 on its new clock within /3 of every other nonfaulty process. First, 

observe that it does not matter that p's clock begins initially unsynchronized with all the other clocks; 

the arbitrary clock will be compensated for in the subtraction of the average arrival t ime. Second, 

observe that it does not matter that p is not sending out a Ti message; p is being counted as one of the 

faulty processes, which could always fail to send a message. (Processes do not treat themselves 

specialty in our algorithm, so it does not matter that p fails to receive a message from itself.) Finally, 
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observe that it does not matter that p adjusts its correction variable whenever it is ready (rather than 

at the time specified for correct processes in the ordinary algorithm). The adjustment is only the 

addition of a constant, so the (additive) effect of the change is the same in either case. 

(It is also necessary to argue that when p resets its clock, the new clock has not already reached 

Ti+ 1. We assume that P is big enough to ensure this. We haven't shown that the lower bound on P 

given earlier is sufficient.) 

9. Establishing Synchronization 
In this section we present an algorithm to synchronize clocks in a distributed system of processes, 

assuming the clocks initially have arbitrary values. The algorithm handles Byzantine failures of the 

processes, uncertainty in the message delivery time, and clock drift. We envision the processes 

running this algorithm until the desired degree of synchronization is obtained, and then switching to 

the maintenance algorithm. 

9.1. Algorithm 

The structure of the algorithm is similar to that of the algorithm wl1ich maintains synchronization. It 

runs in rounds. During each round, the processes exchange clock values and use the same fault

tolerant averaging function as before to calculate the corrections to their clocks. However, each 

round contains an additional phase, in which the processes exchange messages to decide that they 

are ready to begin the next round. A more detailed description follows. 

Nonfaulty processes will begin each round within real time 8 + 3e of each other. At the beginning 

of each round, each nonfaulty process p broadcasts its local time. Then p waits a certain length of 

time guaranteed to be long enough for it to receive a similar message from each nonfaulty process. 

At the end of this waiting interval, p calculates the adjustment it wil l make to its clock at the current 

round, but does not make the adjustment yet. 

Then p waits a second interval of time before sending out additional messages, to make sure that 

these new messages are not received before the other nonfaulty processes have reached the end of 

their first waiting intervals. At the end of its second waiting interval, p broadcasts a READY message 

indicating that it is ready to begin the next round. However, if p receives f + 1 READY messages 

during its second waiting interval, it terminates its second interval early, and goes ahead and 

broadcasts READY. As soon asp receives n - f READY messages, it updates the clock according to 

the adjustment calculated earlier, and begins its next round by broadcasting its new clock value. 

(This algorithm uses some ideas from [DLS].) 
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It is apparent that a process need only keep clock differences for one round at a time. The waiting 

intervals are designed so that during round i a nonfaulty process p will not receive a READY message 

from another nonfaulty process until p has finished collecting round i clock values. Round i + 1 

clock values are not broadcast until after READY is broadcast, so p will certainly not receive round i 

+ 1 clock values until after it has finished collecting round i clock values. 

Let Bi be the maximum difference between nonfaulty clock values at the latest real time when a 

non faulty process begins round i. Ignoring terms of order p2, we can bound Bi+ 1 in terms of Bi as 

follows: 

The idea of the proof is similar to the proof of Theorem 17. Again, the fault-tolerant averaging 

function used in the algorithm causes the difference to be approximately halved at each round. 

By considering the limit of Bi as the round number increases without bound, we can show that the 

algorithm achieves a closeness of synchronization of about 4e + 4p(138 + 43e). 
,: . . ' [: .:·n 

As for the maintenance algorithm, if we use the mean instead of the midpoint in this algorithm, we 

can approach an error of about 2e as n increases and f remains fixed. 

9 .2. Determining the Number of Rounds 

The nonfaulty processes must determine how many rounds of this algorithm must be run to 

establish the desired degree of synchronization before switching to the maintenance algorithm: The 

basic idea is for each nonfaulty process p to estimate B0
, and then calculate a sufficient numb~r of 

rounds, NROUNDS , using the known rate of convergence. B0 is estimated by having p calculate an 
p 

overestimate and an underestimate for c0 (tmax0
) for each q, and letting the estimated B0 be the 

q -~ 
difference between the maximum overestimate and the minimum underestimate. 

Now each process does Byzantine Agreement on the vector of NROUNDS values, one for each 

process. The processes are guaranteed to have the same vector at the end of the Byzantine 

Agreement protocol. Each process chooses the (f + 1 )-st smallest element of the resulting vector as 

the required number of rounds. The justification is as follows: the smallest number of rounds 

computed by a nonfaulty process will suffice to achieve the desired closeness of synchronization. 

Variations in the number of rounds computed by different nonfaulty processes are due to spurious 

values introduced by faulty processes and to different message delays. However, the range 

computed by any nonfaulty process is guaranteed to include the actual values of all nonfaulty 
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processes at tmax0, so the range determined by the process that computes the smallest number of 

rounds also includes all the actual values. In order to guarantee that each process chooses a number 

of rounds that is at least as large as the smallest one computed by a nonfaulty process, it chooses the 

(f + 1 )-st smallest element of the vector of values. 

Any Byzantine Agreement protocol requires at least f + 1 rounds. The processes can execute this 

algorithm in parallel with the clock synchronization algorithm, beginning at round 0. The clock 

synchronization algorithm imposes a round structure on the processes' communications. The 

Byzantine Agreement algorithm can be executed using this round structure. Each, BA message can 

also include information needed for the clock synchronization algorithm (namely, the current clock 
·, i 

value). However, the processes will always need to do at least f + 2 rounds, one to obtain the 

estimated number of rounds and f + 1 for the Byzantine Agreement algorithm. 

9.3. Switching to the Maintenance Algorithm 
;:I 

After the processes have done the required number of rounds, say r, of this algo_ri~hrri}O establish 

synchronization, they must begin the maintenance algorithm. Remember that that algorithm works by 

having each process broadcast its clock value when its clock rep.Ches Ti, for i = 0, 1, ... , where Ti+ 1 

= Ti + P. Let r° be a multiple of P. The pr;cesses shoul~ b~di~ the maintenance algorithm as soon 

as possible in order to minimize the inaccuracy introducted by the clock drift. 

It can be shown that the first multiple of P reached by nonfaulty p's clock after finishing the required 

r rounds differs by at most one from the first multiple reached by nonfaulty q's clock aft_er the r 

rounds. When the first multiple of P is reached, each process broadcasts its clock value as in the 

maintenance algorithm, but doesn't update its clock. At the second multiple of P, each process 

begins the full maintenance algorithm by broadcasting its clock value and updating its clock. (It will 

receive clock values from all nonfaulty processes.) There will be a lag of at most one round between 

any two non faulty processes' beginning the maintenance algorithm. Then /J, the difference in real 

time between two nonfaulty processes reaching Ti, can be calculated from Br, the fact that all 

processes begin the algorithm at most 2P in clock time after tmaxr, and the result of Lemma 15 that 

clocks that are reset one round early don't change by too much. This /J will be slightly larger than the 

smallest one maintainable. To shrink it back down, P can be made slightly smaller than required by 

the maintenance algorithm. 

Mike Fischer has suggested using only the algorithm to establish synchronization and not using the 

maintenance algorithm at all. Further work is needed to investigate this idea; however, it may be 

reasonable since both algorithms synchronize to approximately 4e. 
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Appendix 

This Appendix consists of definitions and lemmas concerning multisets needed for the proof of 

Lemma 9. These lemmas are analogous to some in [DLPSW]. 

A multiset U is a finite collection of real numbers in which the same number may appear more than 
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once. The largest value in U is denoted max(U), and the smallest value in U is denoted min(U). The 

diameter of U, diam(U), is max(U) - min(U). Let s(U) be the multiset obtained by deleting one 

occurrence of min(U), and /(U) be the multiset obtained by deleting one occurrence of max(U). If IUI 

~ 2f + 1, we define reduce(U) to be 1
1s\U), the result of removing the f largest and f smallest elements 

of U. 

Given two multisets U and V with IUI s IVI, consider an injection c mapping U to V. For any 

nonnegative real number x, define S (c) to be {uEU: lu - c(u)I > x}. We define the x-distance between· 
X 

U and V to be d (U,V) = min {IS (c)I}. We say c witnesses d (U,V) if IS (c)I = d (U,V). The x-
x C X X X X 

distance between U and V is the number of elements of U that cannot be matched up with an element 

of V which is the same to within x. If lu - c(u)I s x, then we say u and c(u) are x-paired by c. 

The midpoint of U, mid(U), is ½[max(U) + min(U)]. 

For any multiset U and real number r, define U + r to be the multiset obtained by adding r to every 

element of U; that is, U + r = {u + r: u E U}. It is obvious that mid and reduce are invariant under 

this operation. 

The next lemma bounds the diameter of a reduced multiset. 

Lemma 21: Let U and W be multisets such that IUI = IWI = n and dx(U,W) s f, where n 
~ 2f + 1. Then max(reduce(U)) s max(W) + x and min(reduce(U)) ~ min(W) - x. 

Proof: We show the result for max; a similar argument holds for min. Let c witness 
dx(U,W). Suppose none of the f elements deleted from the high end of U are x-paired with 
elements of W by c. Since d (W,U) < f, the remaining n - f elements of U are x-paired with 

X -
elements of W by c, and thus every element of reduce(U) is x-paired with an element of 
W. Suppose max(reduce(U)) is x-paired with win W by c. Then max(reduce(U)) sw + x S 

· max(W) + x. 

Now suppose one of the elements deleted from the high end of U is x-paired with an 
element of W by c. Let u be the largest such, and suppose it was paired with win W. Then 
max(reduce(U)) s u s w + x s max(W) + x. I 

The next lemma shows that the results of reducing two multisets, each of whose x-distance from a 

third multiset is 0, can't contain values that are too far apart. 

Lemma 22: Let U, V, and W be multisets such that IUI = IVI = n and IWI = n - f, where 
n > 3f. If dx(W,U) = 0 and dx(W,V) = 0, then min(reduce(U))- max(reduce(V)) s 2x. 

Proof: First we show that there is aw in W such that w is x-paired both with some u in 
reduce(U) and with some v in reduce(V) by the mappings witnessing d (W,U) and d (W,V) 

X X 

respectively. We know lreduce(U)I = lreduce(V)I = n - 2f and IWI = n - f. In order to 
choose two disjoint subsets of size n - 2f from a set of size n - f, it must be the case that n -
f ~ 2(n - 2f) . But this implies that n s 3f, contradicting the hypothesis. 
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By choice of u, v, and w, we know that lu - wl ~ x and Iv - wl ~ x. Thus, min(reduce(U)) 
- max(reduce(V)) ~ u - v ~ w + x - (w - x) = 2x. I 

Lemma 23 is the main multiset result. It bounds the difference between the midpoints of two 

reduced multisets in terms of a particular third multiset. 

Lemma 23: Let U, V, and W be multisets such that IUI = IVI = n and IWI = n - f, where 
n > 3f. If dx(W,U) = 0 and dx(W,V) = 0, then lmid(reduce(U)) - mid(reduce(V))I ~ 
½diam(W) + 2x. 

Proof: lmid(reduce(U))- mid(reduce(V))I 

= ½lmax(reduce(U)) + min(reduce(U)) - max(reduce(V)) - min(reduce(V))I 

= ½lmax(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))I 

If the quantrty inside the absolute value signs is nonnegative, 

= ½[max(reduce(U)) - min(reduce(V)) + min(reduce(U)) - max(reduce(V))I 

~ ½[max(W) + x - (min(W) - x) + min(reduce(U)) - max(reduce(V))], by applying 
Lemma 21 twice 

= ½[diam(W) + 2x + min(reduce(U)) - max(reduce(V))] 

< ½[diam(W) + 2x + 2x], by Lemma 22 

= ½diam(W) + 2x. 

If the quantity inside the absolute value is nonpositive, then symmetric reasoning gives 
the result. I 


