
MIT /LCS/TM-275

THE BYZANTINE FIRING SQUAD PROBLEM

James E. Burns

Nancy A. Lynch

April 1985

THE BYZANTINE Pm.ING SQUAD PROBLEM

JAMES E. BURNS
Indiana Unveristy
and
NANCY A. LYNCH
Massachusetts Institute of Technology

A new problem, the Byzantine Firing Squad problem, is defined and solved in
two versions, Permissive and Strid. Both problems provide for synchronisation
of initially unsynchronized processors in a aynchronout network, in the absence
of a common clock and in the presence of a limited number of faulty proceuora.
Solutions are given which take the same number of rounds as Byzantine Agreement
but might transmit r times as many bits, where r is the number of rounds used.
Additional solutions are provided which 111e at most one (Permissive) or two (Strict)
additional rounds and send at most n2 bib plus four times the number of bib aent
by a chosen Byzantine Agreement algorithm.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net
works]: Distributed Systems; D.1.3 [Programming Technique.]: Concurrent
Programming; D.4.1 [Opuating System■}: Process Management-,yncAro,ma
tion; D.4.5 [Opuating Sy1tem1J: Reliability- fault toltranu; D.4.7 [Operating
Systems]: Organization and Design- diatributtd 1yattm1; real-timt 1y1ttm1

General Tenm: Reliability

Additional Key Words and Phrases: Agreement, Byzantine General, problem, Fir
ing Squad problem

1. INTRODUCTION

We consider a problem of synchronizing a collection of processors, 10me of

which might be faulty. We assume that the processors are connected by a com

plete, synchronous network. Although communication is synchronous, we will not

This work was supported in part by the following grants: ARO DAAG29-84-
K-OOS8, DARPA N00014-83-K-012S, and NSF 8302391-A0l-DCR.

Author's addresses: J.E. Burns, Computer Science Department, 101 Lindley
Hall, Indiana University, Bloomington, Indiana 47401; N.A. Lynch, 545 Technology
Square NE-43-525, Cambridge, Massachusetts 02139.

1

a88Ume the globa.l availability of a •current time.• A eolution lo th.is l)'llchronisa

tion problem, which we call the •By1antine Firing Squad• problem, would be 111eful

iu the following types of aituationa.

(a) Real-time processing. It might be neceaa.ry for aeveral proceuon to Can')'

out some externa.l action simultaneously, perhaps after the occurrence of a

particular unpredictable event. For example, several processors on board an

aircraft might be responsible for causing several actuators to perf onn a specific

action in concert·, in response to a aigna.l from the pilot. The signal might

aITive at the different processors at different times. A Byzantine Firing Squad

a.lgorithm could be used to synchronize the proces80rs' actions.

(b) Distributed initiation. M0St synchronous parallel distributed algorithms aa

aume that all processors begin their protocols together. If we would like to U8e

such a.lgorithms in a network in which there is no common notion of time, we

need to cause the processon participating in the algorithm to synchronize their

start times. A preliminary Byzantine Firing Squad algorithm could be used to

accomplish this.

(c) Distributed termination. In certain algorithms (e.g., l)'llchronous probabilistic

agreement [1}, approximate agreement (3}), individual proceMon might com

plete their parts of the algorithm at different times. If it ii necessaiy to guar

antee simultaneous termination, a By1antine Firing Squad algorithm could be

run after the main a.lgorithm.

This synchronization problem can be considered to be a combination of two

well-known problems: the Firing Squad Synchronization problem and the By1antine

Generals problem. Accordingly, we call the new problem the Byzantine Firing

Squad problem.

2

The Firing Squad Synchronisation problem waa first proposed in about 1957 by

John Myhill and described by &iward Moore in 1962 (9}. In the original problem, a

finite number· of finite state machines connected in a line are to be programmed 10

that they all go to a particular state («fire•) 1imultaneoualy after a -.ta.rt• aignal

is given by one of the machines at the end of the line, the -General•. Over the

yea.rs, this problem haa been generalized and widely studied (see the bibliography

in Nishitani and Honda [10}). In our problem, the finite state macbines a.re replaced

by (not necessarily finite) automata connected by a complete network.

The Byzantine Generals problem waa first proposed by Pease, Shostak and

Lamport [11], although it did not receive that name until a later work appeared [8}.

For a recent bibliography of work on the problem see Fischer [5]. The Byzantine

Generals problem can be pa.raphra8ed aa follows. The General, must broadcaat a

value to the remaining processors, even though some processors might be faulty.

If the General is a reliable processor, then all reliable· processors must correctly

determine the value. Even if the General is faulty, all reliable processors mun agree

on eome (arbitrary) value. (A reliable processor always behaves according to a

given protocol, while a faulty processor can behave in an arbitrary way.) We will

assume that all processors are acting aa Generals, broadcaating a local value to the

others, so that at the end of the algorithm all reliable processors agree on a vector of

values. Thus, Byn.ntine Agreement for broadcaating a local value of each proceuor

is reached if and only if at the end of the algorithm the following condition, hold:

(Al) Agreement: All reliable processors agree on the same vector of values.

(A2) Validity: If processor i is reliable, then ,-th component of the agreed upon vector

is the value that i broadcast.

A Byzantine Agreement algorithm is called /-resilieZJt if Byzantine Agreement

3

is reached for any number of faulty proceasora not exceeding/. We will use/ for

the number of faulty proces80ra and " for the total number of proceuora for the

remainder of the paper.

The By1antine Firing Squad problem combines the Firing Squad problem with

the Byzantine Generals problem. Initially, all the (reliable) processora a.re •quies

cent• (not communicating). At an unpredictable time, we can require the system

to begin the firing protocol. Thia is done by sending special START 1ignals to 10me

of the processors (possibly at different times). Within a finite number of rounds,

all of the reliable processor! must simultaneously send special FIRE signals, even

though a limited number of processor! might exhibit •Byzantine• failure.

Section 2 gives a more formal description of two version.a, Permissive and Strict,

of the Byzantine Firing Squad problem. The version.a differ in the number of START

signals which the external 10urce must send to force firing. Section 3 presents

a family of solutions to these Byzantine Firing Squad problems; each 10lution i,

based on a chosen Byzantine Agreement algorithm. These 10lutiona take no more

rounds than the chosen algorithm, but might require sending r times as many bits

as sent by the Byzantine Agreement algorithm. We show in section 4 how to reduce

this to only n2 bits plus four times as many bits as sent by Byzantine Agreement

with the addition of only one preliminary round for the Permissive case and two

preliminary rounds for the Strict case.

We hope that our solution.a will seem 1imple and clear to the reader, but this

should not imply that the algorithms are easily obtained. Indeed, a direct solution

to the problem is not immediately obvio118. Instead, we give an example of a reduc

tion between distributed problems (it would be nice to have more such examples).

We encourage the reader to consider the problem carefully before examining the

solutions in section.a 3 and 4.

2. THE DEFINITION OF THE PROBLEM

We model a synchronous system by a state transition system. We will not

burden the reader with a lot of notational detail, but trust that the following de

scription is sufficient to construct the formal state transition system that we have

in mind.

A synchronous system consists of a set of processors, an initial state for each

processor, and transition functions which determine the protocols of the proceuon.

In each transition (also referred to as a round), a processor receives a message

from every other processor and an external source, sends a message to every other

processor and an external destination, and goes to a new state.

The reliable processors always send the messages specified by their protocols,

but the faulty proceesors can send any meesa.ges. In particular, we do not assume

that processors can append unforgeable signatures to their messages. For results on

the Byzantine Firing Squad problem with signatures refer to Coan, Dolev, Dwork

and Stockmeyer [2).

In a synchronous system, information can be conveyed by the absence of a

signal as well a.a by an explicit signal. Thus, we distinguish a particular message,

called the null message; all other messages are simply called signals. A processor is

said to be quiescent at a certain state if, in any transition from that state in which

it receives only null messages, it sends only null messages and remains in the same

state. If a processor is not quiescent then it is awake.

We require that all processors be quiescent in their initial states. Initial qui

escence guarantees that no signals will be sent by any reliable processor until the

external source or a faulty processor sends a signal to some reliable procesaor.

For the Byzantine Firing Squad problem, the only signal which is ever sent by

5

the external source is a special START signal, which is med to initiate the firing

protocol. The only signal which is ever sent to the external destination ii a lpecial

FIRE signal, indicating that the processor has fired.

The Bysantine Firing Squad problem admits several variations depending on

how we wish to force firing. We might want firing k> occur if just a single START

signal (from the external source) is received by any reliable processor. Note that

this implies that a faulty processor can cause firing by pretending to be a reliable

processor which has received a START signal. On the other hand, if we prohibit fir

ing until some reliable processor has received a START signal, then a tingle START

signal is not sufficient to guarantee firing, aince a lone processor cannot (in general)

convince the others that it is reliable. We term these two variations Permissive and

Strict. (An algorithm which solves one of these does not solve the other.)

An /-resilient Permisaive By•antine Firing Squad algorithm mun satisfy the
. '

following conditions whenever the number of faulty processors does not exceed /:

(Cl) Agreement: If any reliable processor sends a FIRE message in some round, then

all reliable processors send a FIRE message in that round.

(C2) Permuait1e Validitr: If any reliable proceasor receives a START signal, then

some reliable proce11or eventually aenda a FIRE message.

An /-resilient Strict Bysantine Firing Squad algorithm will satisfy (Cl) and

the following additional condition whenever the number of faulty processors does

not exceed/:

(C2') Strict Validitr:

a) If at least / + 1 reliable processors receive a START signal, then some

reliable processor eventually senda a Fl RE message.

6

b) If any reliable procemor eenda a Fl RE message, \hen some reliable proceuor

previously received a START signal.

We wish to measure the efficiency of communication of our algorithms. It is no\

useful to measure the direct costs incurred by faulty procemora since \heee might

be unbounded. We also wish to avoid charging for -i,reliminary rounds• which are

caused by faulty processora and do not lead to termination. We therefore introduce

the concept of -measured portion of a computation.•

Let A be an algorithm. If A is a By1antine Agreement algorithm, then the

entire computation from initial state to termination is measured. If A is a Permiaaive

Byzantine Firing Squad algorithm, then the measured portion of the computation

is from the first reception of a START message by a reliable processor until a

reliable processor fires. If A is a Strid By1antine Firing Squad algorithm, then

the measured portion of the computation ia from the round in which the / + pt

reliable processor receives a START signal until a reliable processor fires. Now we

can define our time measure, Round-'(A) simply as the worst case number of rounds

in the measured portion of the computation. Many communication measures are

possible. We shall use Bita(A) as the worst case fotal number of bits sent by all the

reliable processors in the measured portion of the computation. We assume that

variable length messages a.re used so that the shortest, non-null message that can

be sent costs one bit.

3. TIME EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING SQUAD PROB

LEMS

Our solutioll! a.re based on an arbitrary Byzantine Agreement algorithm (which

satisfies the restriction specified below). Our algorithms inherit most of the char

aderistica of the chosen agreement algorithm, so that behavior can be tailored

7

as desired (e.g., minimising &.w or Bit,). Also, the resiliency of the derived

By1an.tine Firing Squad algorithm is identical to that of the By1anUne Agreement

algorithm. Since it is known that n > 3/ is sufficient for By1antine Agreement (8],

the Byzantine Firing Squad problem can also be solved whenever n > 3/. It has

al!o been shown [2], by reducing Lamporl's Weak Byzantine Agreement problem (7)

to the Byzantine Firing Squad problem, that the latter problem cannot be 10lved

unless n > 3/. .

All of the deterministic Byzantine Agreement algorithma that we know of aat

isfy the following condition:

(A3) R.ounda(A) is bounded.

In this case, we say A is a Bounded Byzantine Agreement algorithm. (Note that

(A3) need not imply that A is •immediate• aa defined by Dolev, d al. [4].) In the

remainder of the paper, we will let R.ound,(A) = r.

Let A be a Bounded Byzantine Agreement algorithm. We use A to construct

new algorithms Sp(A) and Bs(A) which solve the Permissive and Strict By1antine

Firing Squad problem, respectively. When A is undeI'!tood from context, we simply

refer to BP and Bs. Also, since Sp and Bs are very similar, it is convenient io

use B to refer to them jointly. In algorithm 8 p, the reliable processors will all fire

within at most r rounds after the first reliable processor receives a START signal.

In algorithm 8 s all reliable processors fire in at most r rounds after / + 1 reliable

processors have received a START signal.

We begin by describing algorithms Si,(A) an.d 85(A) which satisfy all the

required conditions for a slightly more general model in which the processors are

not required to be quiescent initially. The basic idea of algorithm B'(A) is to

simulate a copy of algorithm A starting in each round. Each simulation runs for

8

exadly r rounds, 10 that at any time only r are in progress. The messages from the

r active simulations of algorithm A are coded into a single message for algorithm B'

in a straightforward way. At each time t, each processor begins participating in a

simulation of algorithm A in which it tends a value which ii coded \o mea.n 0: -Not

&adv,' or 1: • &adv.• A processor becomes Rudy upon the receipt of a START

signal and remains Rudy thereafter. At time t + r this aimub.tion terminates, and

a vector of values ii computed. For Sp, all reliable proceuors fire if the vedor ia

not all 1ero. For B~, they fire if there are at least / + 1 non-sero elements.

Theorem 1. Let A be an /-tt$ilie11t Bounded Bysantme Agreement algorithm.

Then algorithms Sp(A) and B~(A) are /-resilient and satisfy conditions (Cl) and

(C2), and (Cl) and (C2'), respectively. Also, Rounda(Sp(A)) = Rounda(A) and

Bita(Sp(A)) < Rounda(A)xBita(A) bold for Sp, while Rounda(S~(A)) = Rouw(A)

and Bita(S~(A)) < Rounda(A) x Bita(A) bold for S~.

Proof: The /-resilency of Sp and B~ follow directly from the /•resiliency

of A. By assumption, A satisfies (Al), (A2), and (A3). By (Al), all reliable

processors use the ea.me vector to make their firing decisions in each round, 10

(Cl) is satisfied (for both Sp and B~). By {A2), this vector will be non-1ero for the

simulation beginning with the round in which the first reliable processor receives

a START signal, 10 (C2) is satisfied for Sp; furlhermore, by (A3), firing occurs

within r rounds after the first reception of a START signal by a reliable proceaor,

10 Rounds(Bp(A)) = Rounda(A).

Algorithm B~ satisfies (C2'b) since if no reliable processor ever receives a

START signal, then no vector can be computed with more than/ ones (by {A2)), 10

no reliable processor will fire. Condition (C2'a) is also satisfied since if/+ 1 reliable

processors have received START signals by round t, then a vector will be computed

9

by round t + r which has at least/+ 1 ones, cauaing 10me reliable proceuor to fire.

Also, firing muat occur within r rounds after / + 1 reliable proceuors have received

a START aignal, Rounda(B~(A)) = Rot"w(A).

The composite message transmitted by a reliable proceuor in one round in

cludes exactly one message from each round of a simulation of A, 10 the number

of bits eent by all reliable processors in any round (using a 1Uita.ble encoding) bl

bounded by Biu(A). Since at moet r round• occur in the measured portion. of the

computation, Biu(B'(A)) < RouMa(A) x Bit,(A), for both Sp and Bs. D

We now show how to modify the B' algorithms to obtain B algorithms which

meet the condition of initial quiescence required by our model. The difficulty ii that

when a reliable processor receives ib first 1ignal, some simulations might already

be in progress. However, a great deal can be inferred about these computation.a.

Consider the specific computation of algorithm A in which all proceuors are

reliable and each sends value 0. We call thia computation. the •ero computation and

refer to the messages that are sent as sero message& These computation, and their

messages are completely defined and precomputable.

Any one-to-one encoding of meanings to messages can be used without affecting

the behavior of an algorithm. We choose to code a special meaning into the null

message. A null message ii interpreted to consist of 1ero meuages for each of the r

simulations in progress. Now consider the parlicular computation of algorithm B'

using this coding in which all processes are reliable and no START aignal i1 received

from the external source. After r rounds, all processors begin sending null messages

and continue to do so throughout the remainder of the computation. At this point,

all processors are quiescent, according to our definition. We therefore define the B

algorithms to be identical to the B' algorithms except that the initial states of the

processors are chosen to be the states reached using algorithm B' after r rounds of

10

the particular computation described above.

Theorem J. Let A be an /-resilient BoW1ded By.antine Agreement algorithm.

Tbe.n algoritlum B p(A) and B s(A) are /-resilient 110lution, to the Permiaive

and Strict Bysantine Firing Squad problems, respectively. Furlhermo.re, we have

Ro"ncu(Bp(A)) = Rou"da(Bs(A)) = Ro•Ma(A), and both Bit,(Sp(A)) and

Bit,(Bs(A)) are less than or equal to Rou"da(A) x Bit,(A).

Proof: By construction, all processors are quiescent in their initial states, IO

the initial condition required by the model is satisfied both for B p and BS• The

remaining condition1 follow directly from Theorem 1. 0

4. COMMUNICATION EFFICIENT SOLUTIONS TO THE BYZANTINE FIRING

SQUAD PROBLEMS

The 10lution1 presented in the preceding section send up to r times aa many

bits aa the chosen Byzantine Agreement algorithm. Since it is known that r > /

[6), this is a significant increase in communication cost. Various coding tricks (such

aa using short codes for expected messages and taking advantage of knowledge

of which processors are faulty when p098ible) could be used to reduce this cost.

However, we will show how to reduce the increase in cost to a con1tant factor (and

an additional n2 bits) without any aophisticated coding. Our method requires at

most one additional round for the Permiuive problem and two additional rounda

for the Strict problem.

We wish to define new algorithms, Cp(A) and Cs(A), which are similar to

Sp(A) and Bs(A}, respectively, but send many fewer bits than A. We begin by

defining auxiliary algorithms C~(A) and C~(A) which are identical to B p(A) and

B s(A} except in the way that Ready is defined and the condition under which firing

11

occur1. The C' algorithm.a also use some preliminary messages lo establish the

Ru.dr condition. We will then show how lo modify the C' algorithms lo gel the C

algorithms.

In Cp, a proce!IOr becomes Ru.dy upon receiving any signal, rather than only

upon receiving a START signal as in B p. The firing condition is changed lo Cfire if

there are at least / + 1 non-zero elements in the computed vector.• The fir1l lime a

reliable processor receives a 11ignal and becomes Ru.dy, it eenda a special GO signal

lo every other processor. Al most n2 GO signals will be eenl.

In C~, a processor sends the GO 11ignal lo every processor after receiving either

a START 11ignal or GO signals from/+ 1 other processor1 (which impliee that some

reliable processor has received a START signal). A reliable proceuor aenda GO

signals only the first time such a condition occurs and eend.i only null messages

otherwise until it becomes Ready. A reliable processor becomes &tidy only after

receiving GO signals from at least 2/ + 1 processol"I (perhaps including ibelf). The

firing condition for C~ is the 11ame as for C'p: •fire if there are at least / + 1 non-1ero

element! in the computed vector.•

Theorem a. Let A be an /-resilient Bounded By•antine Agreement algoritbm.

Then C~(A) and C~(A) are /-resilient and ,atisfy condition, (Cl) and (C2), and

(Cl) and (C2'), respectively. Furthermore, Round.,(Cp(A)) < Rou,w(A) + 1 and

Rounda(C~(A)) < Round8(A) + 2.

Proof: Since Cp and C~ simulate A and all processors use the 11ame firing

condition, both are /-resilient and (Cl) is satisfied for both.

Let t be the round in which the first reliable processor receives a START mes

sage in C~. Then at least / + 1 reliable processors will be Ready by round t + 1,

and all reliable processors will fire no later than round t + r + 1. Thus, Cp satisfies

12

(C2) and Ro•nda(Cp(A)) < Rovft&{A) + 1.

Lett be the round in whlch the/+ 191 processor receives a START message in

C~. Then by round t+ 1 every reliable processor will have received GO lignala from

at least / + 1 proceuors, and by round t + 2 every reliable procellOr will be R.ea.dy

(since at least 2/ + 1 proce880rs will have sent GO aignala). Thua, firing will occur

by round t + r + 2, and C~ satisfies (C2'a) and Ro•nda(B~(A)) < Ro•11da(A) + 2.

Finally, if no reliable processor receives a START signal, then no reliable proceuor

will send a GO signal and no reliable proceaaor will become RMdr, hence firing will

not occur and (C2'b) ia satisfied. D

We now show how to derive C from C' by reducing the number of simulation• of

A. We take advantage of the fad that all reliable processors become luady within

a time period of at m08t two rounds, which is shown by the following lemma,

Lemma ,. In either Cr or Cs, if a reliable processor becomes lwuly in roUJ!d t

then all reliable processors become &acly in either round, t and t - 1 or in roW!ds

t and t + 1.

Proof: Lett be the first round in which a reliable processor becomes Juadr. In

Cr, all reliable processors which are not luady in round twill receive a GO signal

and become lutul1 in round t + 1. In Cs, 1ince aome reliable proceuor received

2/ + 1 GO signals by round t, every reliable proceaaor must have received/+ 1 GO

1ignala by round t. Thus, every reliable processor will send a GO signal in round t

if not before, and every reliable processor will be luady no later than round t + 1.

□

Let us denote the simulation which will terminate in round t + r (and hence

conceptually began in round t) by S,. If simulation S, would cause firing if earned

to completion (i.e., the computed vector will have more than / non-zero values),

13

then we say that Sc will fire. In our revision of C', a proceuor will not send the

messages of all r simulations that are ued in C'. If proceuor p does eend the

messages of simulation Sc, then we say that p parliclpates in simulation S,.

Suppose processor p becomes Ru.dy in round t. Then, by v:rnrn:t. 4, p can

deduce that S.+1 will fire since all reliable procesaors will be Ru.d.J no later than

round t + 1. Also, by Lemma 4, s,_2 will not fire 1ince no reliable proceuor can

have been &ady in that round, implying that at roost / ones will be in the vector

computed. Computationa Sc- 2, Sc-1, S,, and Sc+1 are the only onea which p need.a

to consider.

Algorithm C is identical to algorithm C' except that If proceuor p becomes

Rady in round t then p will participate only in 1imulations S.-2, S.-1, Sc, and

S.+i• Also, p will ignore the result of Sc- 2 and only ad (fire or not) on the

result. of Sc-1t Sc, and Sc+1• There ia no difficulty in coding the four (at moet)

messages of algorithm A 10 that each receiving processor can match them up with

the appropriate simulations.

Theorem 6. Let A be an /•resilient Bounded By•an.tme Agreement algorithm.

Then algorithm Cp(A) and Cs(A) are /•resilient aolutio.na to the Permwive and

Strict By•an.tine Firing Squad problema. For Cp, Roundl(Cp(A)) < Round,(A) + 1

and for Cs, Rouncla(Cs(A)) < Rounda(A) + 2. Both Bit,(Cp(A)) and Bita(Cs(A))

are at most n2 + 4 x Bita(A).

Proot: Suppose that round t ia the first round in which a reliable proceuor

becomes &a.d.1. (If no reliable processor becomes &adr, then the theorem ia vac•

uouely true.) For Cs, round t is also the first round of the measured portion of the

computation. For Cp, the first round of the measured portion of the computation

ia round t-1. By Lemma 4, all reliable processors awaken in either round tort+ 1.

14

Call the former early and the latter late.

Early processors will participate in 1imulations 8'-2, s,_., S,, and 8'+1- How

ever, 11ince they· will not ad on the result of 8'-2, the messages which are input

to theee simulations are irrelevant. Late procesaora will participate in aimulationa

S,_1, S,, 8'+1, and 8'+2. Since all reliable proce.ssors participate in simulations

s,_1, S,, and 8'+1, the resulting vectors that they compute must satisfy conditions

(Al) and (A2). This implies that (Cl) ii 1atisfied by both Cp and Cs and that

both C algorithms are /-resilient.

Since all reliable processora are &Mr by round t + 1, 8'+1 ii guaranteed k>

fire. By the definition of &My for Cp, condition (C2) is satisfied by Cp, and firing

will occur within r+ 1 rounds after a reliable processor receive1 a START aignal (or

any other signal), 10 Rou"d,(Cp) ~ Rou"da(A) + 1.

In Cs, if / + 1 reliable processors receive a START 1ignal in round t', then

some reliable will become &tldr by round t' + 1. By the foregoing diacuaion,

some reliable processor will fire by round t' + r + 2, 10 condition {C2'a) holds and

RouMl{Cs) ~ Rounda(A)+2. On the other hand, if no reliable processor receives a

START signal, then no reliable processor will send a GO signal and hence no reliable

processor will become &adg, so (C2'b) holds.

Ea.ch processor participates in at most four simulation, of algorithm A. There

is no difficulty in coding the messages of these simulation, to use at most four times

the number of bib used by algorithm A. The GO messagea can usually ~iggyback'

at no cost in Cs and sometimes do 10 in C p since any non-null message will do k>

communicate a GO signal. Otherwise a single bit will 111ffice to send a GO signal,

10, Bit,(Cp(A)) < n2 + 4 x Bit,(A), and Bit,(Cs(A)) < n2 + 4 x Bita(A). D

15

Acknowledgment: We wish to thank Mike Fischer for 111ggestions on the presen

tation of these ideas, and Brian Coan and John Franco for their criticism of early

draft. of this paper.

REFERENCES

1. BEN-OR, M. Another advantage of free choice: Completely asynchronous

agreement protocols (extended abstract). In Proceedings of the Second Amiual

ACM Symposium on Principles of Distributed Computing (Montreal, Quebec,

Canada, August 17-19, 1983). ACM, New York, 1983, pp. 27-«.

2. COAN, B., D0LEV, D., Dworuc, c. AND STOCKMEYER, L. The clia

tributed firing squad problem. To appear in ACM Symposium on the Theory

of Computing, 1985.

3. DOLEV, D., LYNCH, N. , PINTER, S., STAR.IC, E., AND WEIHL, W.

Reaching approximate agreement in the presence of fauUa. In Proceedinp

of 3rd Annual IEEE Symposium on Reliability in Diatributed Software ud

Database System& IEEE, New York, 1983.

4. D0LEV, D., REISCHUK, R., AND STR.oNC, H.R. 'Eventual' ia earlier than

'immediate.' In Proceedings 23rd Annual Symposium on Foundatiou of Com

puter Science (Chicago, IL, November 3-5, 1982). IEEE, New York, 1982,.

pp. 196-202.

5. FISCHER, M.J. The consensu, problem in unreliable distributed l)'Btem.1 (A

brief survey). YALEU /DCS/RR-273, Yale University, New Haven, CT, June

1983.

6. FISCHER, M.J. AND LYNCH, N.A. A lower bound for the time to assure

interactive consistency. hiformation Processing Letters 14, 4, (June 1982), pp.

183-186.

7. LAMPORT, L. The weak Byzantine generals problem. Journal oftbe ACM 30,

3 (July 1983), 66H76.

8. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The By1antine generala

problem. ACM 1rauactions on Programmfog LaZJguages and System. 4, 3

16

(July 1982), 382-.fOl. (Aleo see: The By1antine generals problem, Tech. Report

5-4, Computer Science Lab., SRI International, 1980.)

9. MooRB, E.F. The firing equad synchronisation problem. In Sequential Ma

chines, Selected Papen. MOORE, E.F ., Ed., Addiaon-Wesley, Reading, MA,

196-f, pp. 213-214.

10. NISH!TANI, Y., AND HONDA, N. The firing squad synchronisation problem

for graphs. Theoretical Computer Sciel1ce 14, (1981), 39-61.

11. PEASE, M., SHOSTAK, R., AND LAMPORT, L. JL.acbing agreement in the

presence of faults. Journal of the ACM 27, 2 (Apr. 1980), 228-23-t.

17

