
MIT /LCS/TM-276

REACi-llNG APPROXIMATE AGREEMENT
IN THE PRESENCE OF FAUL TS

Danny Dolev

Nancy A. Lynch

Shlornit S. Pinter

Eugene W. Stark

William E. Weihl

May 1985

Reaching Approximate Agreement
in the

Presence of Faults

Danny Dolev 1

Nancy A. Lynch2

Shi omit S. Pinter3

Eugene W. Stark4

William E. Weihl5

February, 1985

ABSTRACT

This paper considers a variant on the Byzantine Generals problem, in which processes start with arbitrary

real values rather than Boolean values or values from some bounded range, and in which approximate, rather

than exact, agreement is the desired goal. Algorithms are presented to reach approximate agreement in

asynchronous, as well as synchronous systems. The asynchronous agreement algorithm is an interesting

conti"ast to a result of Fischer, Lynch, and Paterson, who show that exact agreement in not attainable in an

asynchronous system with as few as one faulty process. The algorithms work by successive approximation,

with a provable convergence rate that depends on the ration between the number of faults and the number of

processes. Lower bounds on the convergence rate for algorithms of this form are proven, and the algorithms

presented are shown to be optimal.

Keywords: Agreement protocols, fault-tolerance, Byzantine Generals, approximate agreement,
distributed systems

©1985 Massachusetts Institute of Technology, Cambridge, MA. 02139

1Hebrew University, Jerusalem, Israel

2M.I.T., Cambridge, MA. This work was supported in part by the NSF under Grant No. DCR-8302391, U.S. Army Research Office
Contract # DAAG29-84-K-0058, and the Defense Advanced Research Projects Agency (DARPA) # N00014-83-K-0125.

3Technion, Haifa, Israel

4M.I.T., Cambridge, MA. This work was supported in part by the NSF under Grant No. DCR-8302391, U.S. Army Research Office
Contract # DAAG29-84-K-0058, and the Defense Advanced Research Projects i\gency (DARPA) # N00014-83-K-0125. Presently at

SUNY, Stony Brook.

5M.I.T., Cambridge, MA. This work was supported in part by a graduate fellowship from the Fannie and Jchn Hertz Foundation, ar.d
the Defense Advanced Research Projects Agency (DARPA) # N00014-83-K-0125.

2

1. Introduction
In designing fault-tolerant distributed systems, one often encounters questions of agreement among

processes. In the Byzantine Generals problem [PSL 80, LSP 82], the objective is for nonfaulty

processes to agree on a value, in spite of the presence of a ~mall number of "Byzantine" types of

faults - completely arbitrary, even possibly malicious, behavior. Several variations on the problem

can be considered - the model can be synchronous or asynchronous, and either exact or

approximate agreement can be demanded. In this paper, we consider a variant on the traditional

Byzantine Generals problem, in which processes start with arbitrary real values, and where

approximate, rather than exact, agreement is the desired goal. Approximate agreement can be used,

for example, for clock synchronization and for stabilization of input from sensors.

We assume a model in which processes can send messages containing arbitrary real values, and

can store arbitrary real values as well. We assume that each process starts with an arbitrary real

value. For any preassigned e ~ O (as small as desired), an approximate agreement algorithm must

satisfy the following two conditions:

• Agreement: All nonfaulty processes eventually halt with output values that are within e of
each other.

• Validity: The value output by each nonfaulty process must be in the range of initial values
of the nonfaulty processes.

Thus, in particular, if all nonfaulty processes should happen to start with the same initial value, the

final values are all required to be the same as the common initial value. This is consistent with the

usual requirements for Byzantine agreement algorithms. However, should the nonfaulty processes

start with different values, we do not require that the nonfaulty processes agree on a unique final

value.

We consider both synchronous and asynchronous versions of the problem. Systems in which there

is a finite bounded delay on the operations of the processes and on their intercommunication are said

to be synchronous. In such systems, unannounced process deaths, as well as long delays, are

considered to be faults. For synchronous systems, we give a simple and rather efficient algorithm for

achie)ling approximate agreement. This algorithm works by successive approximation, with a

provable convergence rate that depends on the ratio between the number of faults and the total

number of processes. The algorithm is guaranteed to converge in the case where the total number of

processes is more than three times the number of possible faults. Termination is achieved using a

technique that ensures that all non faulty processes halt, but allows different processes to terminate at

different times.

3

For asynchronous systems, in which a very slow process cannot be distinguished from a dead

process, no exact agreement can be achieved [FLP 83), even if no malicious failures occur [DDS 83].

An interesting contrast to the results in [FLP 83, DDS 83] is our second algorithm, which enables

processes in an asynchronous system to get as close to agre~ment as one chooses. Our algorithm

for the asynchronous case also works by successive approximation. In this case, however, the total

number of processes required by the algorithm is more than five times the number of possible faults.

As in the synchronous case, we achieve termination using a technique that ensures that all nonfaulty

processes halt, but permits different processes to terminate at different times. As we discuss later, it

is possible to achieve simultaneous termination in the synchronous case; the technique used for

simultaneous termination, however, does not extend to the asynchronous case.

Our algorithms to obtain approximate agreement are of a very simple form._ Namely, at each round

until termination is reached, each process sends its latest value to all processes (including itself). On

receipt of a vector V of values, the process computes a certain function f(V) as its next value. The

function f is a kind of averaging function. Here we use functions that are appropriate for handling t

faults. We will show that these functions have particularly nice approximation behavior. In particular,

we will show that, for algorithms of a particular form, no approximation function can provide uniformly

faster convergence than the functions used in this paper. An earlier paper [DLPSW 83] presented

similar algorithms, but used approximation functions that provided slower convergence than

achieved by the functions used in this paper.

The remainder of this paper is organized as follows: In Section 2, we prove some combinatorial

properties of the approximation functions upon which our algorithms depend. Then, in Section 3, we

introduce the synchronous model and present the synchronous approximate agreement algorithm,

and in Section 4, we present the asynchronous model and algorithm. Next, in Section 5, we present

lower bounds on the convergence rate for algorithms of the form presented in sections 3 and 4, and

show that the approximation functions used in our algorithms are optimal. In Section 6, we discuss

the resilience properties of our algorithms. Finally, in Section 7, we conclude with a short summary

and some open questions.

2. P.-rope rties of the Approximation Functions
~

In this section, we will state and prove the relevant properties of the approximation functions. First,

we require some preliminary definitions and properties of multisets.

4

2.1. Preliminary Definitions

Let N be the natural numbers, including 0, and let IR be the real numbers. We view a finite multiset U

of reals as a function U: IR -+ N that is nonzero on at most finitely many r E iR. Intuitively, the function .

U assigns a finite multiplicity to each valuer E IR. The cardinali~y of a multiset U is given by LrEIR U(r),

and is denoted by IUI. We say that a multiset is empty if its cardinality is zero; otherwise it is

nonempty. The difference U- V of multisets U and Vis the multiset W defined by

W(r) = U(r}-V(r) if U(r)-V(r) ~ 0

= 0 otherwise.

The intersection Un V of multisets U and Vis the multiset W defined by W(r) = min(U(r),V(r)).

In the sequel, the term "multiset" will always refer to finite multisets of real numbers as above. In

addition, gk will denote the k-fold iteration of g; thus g 1 = g, g2 = g•g, etc.

The minimum min(U) of a nonempty multiset U is defined by min(U) = min{r E IR : U(r) :;t O}. The

maximum max(U) is defined similarly. If U is nonempty, let p(U) (the range of U) be the interval

[min(U),max(U)], and let o(U) (the diameter of U) be max(U)- min(U). The mean mean(U) of a

nonempty multiset U is defined by

mean(U) = LrEIR r-U(r)/IUI.

If U is a nonempty multiset, we define the multiset s(U) (intuitively, the multiset obtained by removing

one occurrence of the smallest value in U) to be the multiset W defined by

W(r) = U(r)- 1 if r = min(U),

= U(r) otherwise.

The multiset l(U) (remove one occurrence of the largest value in U) is defined similarly. Assume t is a

fixed nonnegative integer. If IUI ~ 2t, then define reduce(U) = s\11(U)), the result of removing the t

highest and t lowest elements of U.

The first lemma shows that the number of common elements in two nonempty multisets is reduced

by at most 1 when the smallest (or the largest) element is removed from each.

Lemma 1: Suppose that V and W are nonempty multisets. Then

1. IV n WI - ls(V) n s(W)I ~ 1.

2.1v n Wl-ll(V) n l(W)I ~ 1.

Proof: We prove the first inequality; the argument for the second is symmetric. Let M =

V n W, and let N = s(V) n s(W). Let v = min(V) and w = min(W). Now, N(r) = M(r) if r :;t v

and r r w, so we can write IMI-INI = 2:rt{v.w} M(r) - IrE{v.w} N(r). There are two cases,

5

depending upon whether v = w or v -:t:- w.

Suppose v = w. Then IMI- INI = M(v)- N(v) = min(V(v) , W(v)) - min(V(v)- 1, W(v)- 1) ~ 1.

Suppose v -:t:- w. Then

IMI-INI = (M(v) + M(w)) - (N(v) + N(w))

= (min(V(v), W(v)) + min(V(w), W(w)))

- (min(V(v)-1 , W(v)) + min(V(w), W(w)- 1)).

Assume without loss of generality that v < w. Then W(v) = 0, and hence

IMI-INI = min(V(w), W(w)) - min(V(w), W(w)- 1)

~ 1. □

The next lemma extends the results of the previous lemma to removing the t largest and t smallest

elements.

Lemma 2: Suppose that V and Ware multisets such that !VI ~ 2t and IWI ~ 2t. Then

IV n WI - lreduce(V) n reduce(W)I ~ 2t.

Proof: Follows from repeated application of Lemm~ 1. □

The next lemma is fundamental to the correctness of the algorithms. It states that if at most kt

values in a multiset V are not in another multiset U, then every value in reducek(V) is in the range of

U. For example, if the multiset of values held by nonfaulty processes at some point in the algorithm is

U, and the multiset of values received by some process is V, then at most t of the values in V are not in

U. The lemma then states that reducing V produces a multiset whose range is contained in the range

of the values of the nonfaulty processes. This property is essential in showing that the validity

condition is satisfied.

Lemma 3: Suppose that k is a nonnegative integer and that U and V are nonempty

multisets such that IV - UI ~ kt and IVI > 2kt. Then p(reducek(V)) s p(U).

Proof: Suppose p(reducek(V)) ~ p(U). Then either min(reducek(V)) < min(U) or

max(reducek(V)) > max(U). Both cases lead to a contradiction. We argue the first; the

second is symmetric.

If min(reducek(V)) < min(U), then L < . (U} V(r) > kt+ 1. Hence, IV - UI 2: kt+ 1, which r min -

contradicts a hypothesis. □

6

2.2. The Approximation Functions

If U is a nonempty multiset with IUI = m, u
0

,:s; u
1

,:s; ... ,:s; um-
1

are the elements of U in

nondecreasing order, and i)O and i20 are integers such that ji + 1 ,:s; m ,:s; U + 1)i (i.e., j = floor((m-

1)/i)), we define se/ect.(U) to be the multiset consisting of the elements u
0

, u., u
2

., ... , and u ... Thus,
I , I I JI

select.(U) chooses the smallest element of U and every ith ele~ent thereafter.
I

In this paper we will use two related approximation functions, one for the synchronous protocol (f
5

)

and one for the asynchronous protocol (fA). Let V be a finite multiset of reals with IVl>2t. The

approximation functions are defined as follows:

f5(V) = mean(select
1
(reduce(V)))

f A (V) = mean(select
21

(reduce(V)))

For notational convenience, we define the function fi, for a positive integer i, by fi(V) =

mean(selecti(reduce(V))) . Thus, f5 = ft, and fA = f2t.

The next two lemmas describe properties of the approximation functions. Lemma 4 is used in

verifying the validity condition.

Lemma 4: Suppose that U and V are nonempty multisets such that IV-Ul ~ t and IVl>2t,

and i is a positive integer. Then f.(V)Ep(U).
I

Proof: Follows easily from Lemma 3 (with k = 1). D

Lemma 5 will be used in the following manner: U is the multiset of values held by nonfaulty

processes in a given round, and M and N are the reduced multisets of values received by two

nonfaulty processes in that round. Nonfaulty processes use the appropriate approximation function

to choose their values for the next round; the lemma tells us how quickly those values converge.

Lemma 5 : Suppose U, M, and N are nonempty multisets, and m>O, i)O, and i2 0 are

integers such that:

ji + 1 ~ m ,:s; U + 1)i,

IMI = INI = m,

p(M) ~ p(U) and p(N) ~ p(U).

Then lmean(selec\(M)) - mean(selecti(N))I ~ o (U)/(j + 1).

7

Proof: From the definition of select., we know that select.(M) and select.(N) each contain
I I I

exactly j + 1 elements. Let m0 ~ m1 ~ ... ~ mi be the elements of selecti(M), and let n0 ~

n
1
< ... < n. be the elements of select.(N). Notice that there are at least ik + 1 elements in
- - J I

M that are less than or equal to mk' and at most ik elem~nts in M that are strictly less than

mk; similarly for N.

We begin by showing that max(mk,nk) ~ min(mk +
1
,nk +

1
) for O ~ k ~ j- 1. It suffices to

show that mk ~ nk + 1; a symmetric argument demonstrates that nk ~ mk + 1.

We proceed by contradiction: Suppose that mk > nk + 1. As noted above, there are at

least i(k + 1) + 1 elements in N less than or equal to nk +
1

. By our supposition, these

elements are strictly less than mk. However, there are at most ik elements in M strictly less

than mk. Therefore, there are at least i(k + 1) + 1- ik (= i + 1) elements in N that are not in M;

thus, IN- Ml~ i + 1. This contradicts the hypothesis that IMnNI ~ m-i. Thus, mk ~ nk+ 1.

Now we will use the inequality shown above to obtain the desired result. Using the

notation defined above,

lmean(select.(M)) - mean(select.(N))I
I I

= 1 /(j + 1) IC~t = Omk) - (},:l = Onk)I

= 1/ (j + 1) 1rt=o (mk - nk)I

~ 1 /(j + 1) r~ = 0 lmk - nkl (by the triangle inequality)

= 1 /(j + 1) r~ = 0 (max(mk,nk) - min(mk,nk)).

By the inequality demonstrated above, for O ~ k ~ j- 1, (max(mk,nk) - min(mk,nk)) ~

(min(mk+ 1,nk+ 1) - m~n(mk,nk)), so we get

lmean(select.(M)) - mean(select.(N))I
I I

< 1 / (j + 1) [max(m.,n.) - min(m.,n.)]
- J J J J

+ 1 /(j + 1) rt~ 0 (min(mk + 1,nk + 1) - min(mk,nk)).

Collecting terms then shows that

lmean(se!ect.(M)) - mean(select.(N))I
I I

~ 1 / (j + 1) (max(mi,ni) - min(m0,n
0

)).

Since p(M)~p(U) and p(N)~p(U), we know that max(mi,ni) ~ max(U) and min(m
0
,n

0
) ~

min(U). This gives the desired result:

lmean(select.(M)) - mean(select.(N))I
I I

~ 1 / (j + 1) (max(U) - min(U))

= o(U)/(j + 1). □

8

3. The Synchronous Problem

A synchronous approximation algorithm Pis a system of n processes, n ~ 1. Each process p has a

set of states, including a subset of states called initial states and a subset called halting states. There

is a value mapping which assigns a real number as the value of each state. For each real number r,

there is exactly one initial state with value r. Each process acts deterministically according to a

transition function and a message generation function. The transition function takes a non-halting

process state and a vector of messages received from all processes (one message per process) and

produces a new process state. The message generation function takes a non-halting state and

produces a vector of messages to be sent to all processes (one per process).

We assume that the system acts synchronously, using a reliable communication medium. Each

process is able to send messages to all processes (including itself), and the sender of each message

is identifiable by the receiver.

A configuration consists of a state for each process. An initial configuration consists of an initial

state for each process. Let T be any subset of the processes. A sequence of configurations (called

rounds), C0, C1, C2, ... is a T-computa.tion provided there exist messages sent by each process at

each round such that: (a) C0 is an initial configuration; (b) for every i, and every p E T, the messages

sent out by p after C. are exactly those specified by p's message generation function, applied to p's
I

state in Ci; and (c) for every i, and every p E T, p's state in Ci+
1

is exactly the one specified by p's

transition function applied to p's state in C. and the messages sent to p after C .. In a T-computation,
I I

processes in Tare non faulty, while processes not in T may be faulty.

For the rest of the paper, assume a fixed small value e, a fixed number of processes n, and a fixed

maximum number of faults t.

A synchronous approximation algorithm is said to be t-correct provided that for every subset T of

processes with ITI 2 n-t, and every T-computation, the following is true: Every p E T eventually

enters a halting state, and the following two conditions hold for the values of those halting states:

• Agreement: If two processes in T enter halting states with values r and s, respectively,
then lr-sl =:; e. -

• Validity: If a process in T enters a halting state with value r, then there exist processes in
T having x and y as initial values, such that x =:; r ~ y.

We will prove the following theorem.

Theorem 6: If n ~ 3t + 1, then there exists at-correct synchronous approximation

9

algorithm with n processes.

Note that the following strategy would suffice to prove Theorem 1. The processes could run n

executions of a general (unlimited value set) Byzantine Generals algorithm such as the one in [OS 82],

in order to obtain common estimates for the initial values of all the processes. After this algorithm

completes, all processes in Twill have the same multiset, v, of values for all the processes. Then each

process halts with value f(v), where f is a predetermined averaging function that is the same for all

processes. This algorithm actually achieves exact real-valued agreement, with the required validity

condition. However, the solution presented below is much simpler and more elegant, and moreover

extends directly to the asynchronous case, for which exact agreement is impossible. The algorithm

has two additional adv-antages over using a Byzantine Generals algorithm: It is more resilient than

typical Byzantine Generals algorithms, and it can, in some cases, terminate in _fewer than t + 1 rounds.

We now present our synchronous approximation algorithm, S. First, we describe a nonterminating

algorithm, S0, and then we discuss how termination is achieved. We assume that n 2::: 3t + 1.

Synchronous Approximation Algorithm S
0

:

At each round, each non faulty process p performs the following steps:

1. Process p broadcasts its current value to all processes, including itself.

2. Process p colle_cts all the values sent to it at that round into a multiset V. If p does not
receive exactly one correct value from some particular other process (which means, in
the synchronous model, that the other process is faulty), then p simply picks some
arbitrary default value to represent that process in the multiset. The multiset V will
therefore always contain exactly n values.

3. Process p applies the function f8 to the multiset V to obtain its new value.

The following result states how the diameter and range of the nonfaulty processes' values are

affected by each round of algorithm S
0

.

Lemma 7: Let i 2::: 1 and t, n 2::: 0 be such that U + 2)t + 1 ~ n ~ U + 3)t. Let T be a set of

processes, with ITI 2::: n- t. Let h be a positive integer. Let U and U' be the multisets of

values of processes in T, immediately before and after round h, respectively, in a particular

T-computation of S
0

• Then

1. 8(U') ~ 8(U}/U+ 1).

2. p(U') ~ p(U).

Proof: Let p and q be arbitrary processes in T. Let V and W be the multisets of values

10

(including default values) received by p and q, respectively, at round h. Since there are at

most t fau lty processes, IV - UI ~ t and IW - UI ~ t. Moreover, since V and W contain

identical entries for all the processes in T, we know that IV n WI~ n- t.

D

1. Let m = n- 2t and let i = t. Let M = reduce(V) and N = reduce(W). By Lemma 2,
IM n NI ~ IV n WI - 2t ~ n-3t = m-i. By Lemma 3 (with k = 1), p(M) ~ p(U) and
p(N) ~ p(U). Thus, U, M, N, m, and i satisfy the hypotheses of Lemma 5, implying
that lfs(V)-fs(W)I ~ o(U)/U + 1). Since p and q were chosen arbitrarily, the result
follows.

2. Follows directly from Lemma 4.

Lemma 7 shows that, at each round, the diameter of the multiset of values held by nonfaulty

processes decreases by a factor of 1 /(j + 1), where (j + 2)t + 1 ~ n ~ (i + 3)t and j ~ 1. Thus, the

diameter of the multiset of values held by nonfaulty processes eventually decreases to e or less. In

addition, repeated application of part 2 of Lemma 7 shows that, at each round h ~ 1, the values held

by nonfaulty processes immediately before round h are all in the range of the initial values of

nonfaulty processes.

Algorithm S0 is not a correct synchronous approximation algorithm, however, for as stated, it never

terminates. We modify S0 to obtain a terminating algorithm, S, as follows. At the first round, each

nonfaulty process uses the range of all the values it has received at that round to compute a round

number at which it is sure that the values of any two non faulty processes will be at most e apart. Each

process can do this because it knows the value of e, the guaranteed rate of convergence and

furthermore, it knows that the range of values it receives on the first round includes the initial values

of all nonfaulty processes . .

In general, different processes might compute different round numbers. Any process that reaches

its computed round simply halts, and sends its value out with a special "halting" tag. When any

process, say p, receives a value with a "halting" tag, it knows to use the enclosed value not only for

the designated round, but also for all future rounds (until p itself decides to halt, based on p's own

computed round number). Although nonfaulty processes might compute different round numbers, it

is clear that the smallest such estimate is correct. Thus, at the time the first nonfaulty process halts,

the range is already sufficiently small. At subsequent rounds, the range of values of nonfaulty

processes is never increased, although we can no longer guarantee that it decreases. The following

lemma makes these ideas more precise.

Lemma 8: Assume that n ~ 3t + 1. Let T be a set of processes, with ITI ~ n- t. Leth be

11

a positive integer. Let U and U' be the multisets of values of processes in T, immediately

before and after round h, respectively, in a particular T-computation of S. Then p(U') ~

p(U).

Proof: Let p be an arbitrary process in T. Let v ~nd v' be the values held by p

immediately before and after round h, respectively. It suffices, since pis arbitrary, to show

that v' E p(U). If p has terminated prior to the start of round h, then v' = v E p(U). If p has

not halted prior to the start of round h, then let V be the multiset of values received by p in

round h. Then V and U satisfy the hypotheses of Lemma 4, and since v' = f s(V), it follows

that v' E p(U). D

It is now easy to see that S is a correct synchronous approximation algorithm. It is clear that all

processes terminate. Consider the agreement property. At the first round at which some process

halts, it is already the case that all nonfaulty processes' values are within £ of each other. By Lemma

8, this diameter never increases at subsequent rounds, so the final values of all the nonfaulty

processes are also within £ of each other. The validity property also follows from repeated application

of Lemma 8. This completes the proof of Theorem 6.

It is possible to modify algorithm S in several interesting ways. First, observe that a process need

not always wait for its computed round to arrive before halting: it can halt after it receives "halting"

tags from at least t + 1 other processes.

Second, it is possible to have all nonfaulty processes halt simultaneously. This can be done using

known solutions to the binary-valued Byzantine Generals problem as follows: After certain (a priori)

selected rounds of the approximate agreement algorithm, all processes run a Byzantine Generals

algorithm to decide whether the algorithm should continue. A process p will vote to halt only if the

round number has reached p's computed round number. Voting to halt implies that p knows that the

range of values of nonfaulty processes is at most £ . If the decision is to halt, then some nonfaulty

process must have voted to halt, and the range of values of the nonfaulty processes must be at most

,. (Note that, since exact agreement is impossible in an asynchronous model, this termination

technique does not extend to the asynchronous case.)

An alternative way of guaranteeing that all nonfaulty processes halt at the same round uses an

arbitrary solution to the Byzantine Firing Squad problem [BL 85, CODS 85].

12

4. The Asynchronous Problem
In this section, we reformulate the problem in an asynchronous model adapted from the one in [FLP

83]. In an asynchronous approximation algorithm, we assume that processes have states as before,

but now the operation of the processes is described by a tran~ition function that in one step tries to

receive a message, gets back either "null" or an actual message, and based on the message,

changes state and sends out a finite number of other messages. Nonfaulty processes always follow

the algorithm. Faulty processes, on the other hand, are constrained so that their steps at least follow

the standard form - in each step, they try to receive a message as do nonfaulty processes. However,

they can change state arbitrarily (not necessarily according to the given algorithm), and can send out

any finite set of messages (not necessarily the ones specified by the algorithm). A T-computation of

an asynchronous approximation algorithm is one in which the processes in T always follow the

algorithm, all processes (faulty and nonfaulty) continue to take steps until they reach a halting state,

and any process that fails to enter a halting state eventually receives all messages sent to it.

An asynchronous approximation algorithm is said to be t-correct provided for every subset T of

processes with ITI ~ n-t, and every T-computation, every process in T eventually halts, and the same

agreement and validity conditions hold as for the synchronous case.

It seems simplest here to insist on the standard form being followed by all processes. The

requirement that faulty processes keep taking steps until they enter halting states is not a restriction,

since they are free to enter halting states at any time they wish. Similarly, the requirement that faulty

processes continue trying to receive messages is not a restriction, since they are free to do whatever

they like with the messages received. Finally, the requirement that faulty processes only send finitely

many messages at each step is needed so that faulty processes are unable to flood the message

system, preventing messages from other processes from getting through.

We assume that processes take steps at completely arbitrary rates, so that there is no way (in finite

time) to distinguish a fau lty process from one that is simply slow in responding. Also, we assume that

the message system takes arbitrary !engths of time to deliver messages, an~ delivers them in arbitrary

order.

We will prove the following theorem:

Theo rem 9: If n ~ 5t + 1, then there exists a t-correct asynchronous approximation

algorithm with n processes.

We now describe the asynchronous approximation algorithm. As in the synchronous case, first we

13

describe a nonterminating algorithm, A
0

, in which processes compute better and better

approximations, and we then modify A
0

to produce a terminating algorithm A. Assume that n ~ 5t +

1.

Asynchronous Approximation Algorithm A0

At round h, each nonfaulty process p performs the following steps:

1. Process p labels its current value with the current round number h, and then broadcasts
this labeled value to all processes, including itself.

2. Process p waits to receive exactly n-t round h values, and collects these values into a
multiset V. Since there can be at most t faulty processes, process p will eventually
receive at least n- t round h values. Note that, in contrast to the synchronous case,
process p does not choose any default values.

3. Process p applies the function fA to the multiset V to obtain its new value.

In analogy with Lemma 7, we have the following result, which states the convergence properties of

the above algorithm.

Lemma 10: Let j ~ 1, and t, n ~ 0, be such that (2j + 3)t + 1 ~ n ~ (2j + 5)t. Le! T be a

set of processes, with ITI ~ n-t. Let h be a positive integer. Let U and U' be the multisets

of values of processes in T, immediately before and after round h, respectively, in a

particular T-computation of A
0

. Then

1. o(U') ~ o(U)/0+ 1).

2. p(U') ~ p(U).

Proof: Let p and q be arbitrary processes in T. Let V and W be the multisets of values

received by p and q, respectively, at round h. Since there are at most t faulty processes, IV

- UI < t and IW - UI ~ t. Moreover, since V and W both contain identical entries for all the

processes in T from which both p and q heard, we know that IV n WI ~ n - 3t.

□

1. Let m = n-3t and let i = 2t. Let M = reduce(V) and N = reduce(W). By Lemma 2,
IM n NI ~ IV n WI - 2t ~ n-5t = m-i. By Lemma 3 (with k = 1), p(M) ~ p(U) and
p(N) ~ p(U). Thus, U, M, N, m, and i satisfy the hypotheses of Lemma 5, implying
that lfA(V)-fA(W)I ~ o(U)/U + 1). Since p and q were chosen arbitrarily, the result
follows.

2. Follows directly from Lemma 4.

Lemma 10 shows that, at each round, the diameter of the multiset of values of nonfaulty processes

14

decreases by a factor of 1 /(j + 1), where (2j + 3)t + 1 ~ n ~ (2j + 5)t and j ~ 1. Thus, the diameter of

the multiset of values held by nonfaulty processes eventually decreases to £ or less. In addition,

repeated application of part 2 of Lemma 1 0 shows that, at each round h ~ 1, the values held by

nonfaulty processes immediately before round h are all in the _range of the initial values of nonfaulty

processes.

The only remaining problem is termination. We cannot use the same technique that we used in the

synchronous algorithm, because a process cannot wait until it hears from all other processes, and

thus cannot obtain an estimate of the range of the initial values of the nonfaulty processes. We solve

this problem by adding an initialization round at the beginning of the algorithm. In this initialization

round (round 0) , each nonfaulty process p performs the following steps:

Initialization Round for Asynchronous Approximation Algorithm A:

1. Process p labels its initial value with the round number 0, and then broadcasts this
labeled value to all processes, including itself.

2. Process p waits to receive exactly n- t round 0 values, and collects these values into a
multiset V p·

3. Process p chooses an arbitrary element of p(reduce2(V)) (for definiteness, say
mean(reduce2(V P))) as its initial value for use in round 1. Let x;be this chosen value.

Suppose that p and q are arbitrary non faulty processes. Then since IV Pl ~ 4t and IV P - V qi ~ 2t, it

follows that V and V satisfy the hypotheses for the multisets V and U, respectively, in Lemma 3 (with p q

k = 2). An application of this result therefore shows that, for any non faulty processes p and q, it is the

case that x E p(V). That is, the value x computed by process p as the result of the initialization p q p

round is contained in the range of all values received by process q in the initialization round. Since

each non faulty process q knows: (1) that its range p(V ql contains all the round 1 values xP for

nonfaulty processes p; (2) the value of £; and (3) the guaranteed rate of convergence, it can compute,

before the beginning of round 1, a round number at which it is sure that the values of any two

nonfaulty processes will be at most e apart.

As ~ the synchronous case, different processes will calculate different round numbers at which

they would like to halt. The same modification, of sending a value out with a special "halting" tag,

works here as well. We obtain a lemma analogous to Lemma 8:

Lemma 11: Assume that n ~ St + 1. Let T be a set of processes, with ITI ~ n- t. Leth

be a positive integer. Let U and U' be the multisets of values of processes in T,

immediately before and after round h, respectively, in a particular T-computation of A.

15

Then p(U') ~ p(U).

The remainder of the proof of Theorem 9 is analogous to that of Theorem 6.

5. Lower Bound Results
In this section, we assume that algorithms are of a standard form in which at each round, an old

approximation is exchanged with other processes, and a new approximation is computed from the

multiset of values received, by the application of an approximation function f. We assume that f is

cautious, as defined below. (Our algorithms all fit this pattern.) The results show that, under these

assumptions, the function t
5

gives the best possible convergence factor for a synchronous algorithm

for n ~ 3t + 1, and the function f A gives the best possible convergence factor for an asynchronous

algorithm for n ~ 5t + 1.

In [DLPSW 83]. an earlier version of this work, we used different averaging functions in our

algorithms. The discovery of the lower bounds in this section suggested that those functions did not

give optimal rates of convergence, and led us to search for the improved averaging functions which

appear in this paper.

In the remainder of this section, let n and t be fixed.

We say that an approximation function f, which takes a multiset M of real numbers to a real number

f(M) , is cautious if f(M) E p(U) for all multisets U such that IM - UI :::; t. The cautious requirement

seems reasonable for any approximation function that will tolerate up to t faults: regardless of the

values received from the faulty processes, a cautious function will produce a value in the range of the

values held by the nonfaulty processes. It is easy to see that t
5

and fA are cautious.

5.1 . The Synchronous Problem

We will show the following theorem:

Theorem 12: Suppose j ~ 0, t ~ 1, and (j + 2)t + 1 :::;.n :::; U + 3)t. Suppose that f and g

are cautious approximation functions. Then there exist multis9ts V, W, and U such that:

!VI= IWI = n,

IUI = n-t,

IV-UI = IW-UI = n-t, and

16

lf(V) - g(W)I ~ o(U)/0 + 1).

The implications of this result for the synchronous agreement algorithm are the following: Suppose

we consider algorithms of a standard form, in which at each round, a process exchanges its current

approximation with all other processes, and then applies a cautious approximation function to the

multiset of values it receives to determine its new approximation. Theorem 12 then implies that there

exist multisets V, W, and U, such that if correct processes p and q (using approximation functions f

and g, respectively) receive multisets of values V and W, respectively, in some round of execution,

and U is the multiset of values held by correct processes at the start of that round, then the new

approximations held by p and q at the end of the round can be no closer than o(U)/0 + 1). Thus this

result yields a fundamental limitation on the rate of convergence of algorithms of the standard form.

The lower bound given by this result also matches the upper bound provided by the function f
8

•

The proof of Theorem 12 requires the following lemma, which asserts the existence of a j + 1-link

chain of multisets that span from a multiset M
1

upon which every cautious approximation function

must yield 0, to a multiset M. 2 upon which every cautious approximation function must yield 1. J+ .

Lemma 13: Suppose j ~ 0, t ~ 1, and O + 2)t + 1 ~ n ~ O + 3)t. Then there exist

multisets M1, M2, ... , Mi+ 2, and U
1

, U
2

, ... _, Ui +
1

, such that:

!Mil = n for 1 ~ i ~ j + 2,

IM.-U.I = IM. 1-U.I = n-t for 1 < i < 1· + 1, and
I I I+ I - -

f(M 1) = Oand f(Mi+ 2) = 1,

whenever f is a cautious approximation function.

Proof: Define M. to have the value O with multiplicity n-it and the value 1 with multiplicity
I

it. Define Ui to have the value O with multiplicity n-(i + 1)t and the value 1 with multiplicity it.

/The cardina!ity and diameter constraints on these sets are easily checked. Suppose f is

cautious. Then since M1 has the value O with multiplicity n-t (> t) and the value 1 with

multiplicity t (< t), it follows that f(M1) = 0. Also, since M.
2

has the value O with
- J+

multiplicity n-O + 2)t (< t) and the value 1 with multiplicity U + 2)t (> t), it follows that f(M.
2
)

- J+

= 1. □

17

We can now present the proof of Theorem 12:

Proof: For 1 ::; i ::; j + 2, let the approximation function hi be f if i is odd, and g if i is even.

By Lemma 13, there exists a chain M1, M2, ... , Mi+ 2, and U1, U2, ... , Ui + 1, such that:

!Mil == n for 1 ::; i ::; j + 2,

IM.- U.I == IM. 1- U.I == n-t for 1 < i < 1· + 1, and
I I I+ I - -

h1(M1) == 0 and hi+iMi+2) == 1.

Suppose, to obtain a contradiction, that lhi + 1 (Mi+ 1)- hi(M)I < o(Ui)/G + 1) for 1 ::; i ::; j + 1.

Then

1 :: lhj+2(Mj+2)- h1(M1)1

:: lh. 2(M. 2)- h. 1(M. 1) + h. ,(M. 1)- h.(M.) + ... + h2(M2)- h1(M1)l J+ J+ J+ J+ J+ J+ l J

::; l\+2(Mj+2)- hj+1(Mj+1)1 + lhj_+1(Mj+1)- hj(Mj)I + ... + lh2(M2)- h1(M1)1

<U+1)/G+1)

:: 1.

This is a contradiction, and we conclude that lh. 1(M. 1)- h.(M.)I > o(U.)/G + 1) for some i I+ I+ I I - I

with1 <i<j+1. lfiisodd,thenh. == fandh. 1 == g,solettingV == M.,W == M. 1, andU - - I I+ I I+
== U. satisfies the requirements of the theorem. If i is even, then instead let V == M. 1, W == I I+

Mi, and U == Ui. □

5 .2 . The Asynchronous Problem

We will show the following theorem:

Theo rem 14: Suppose j ~ 0, t ~ 1, and (2j + 3)t + 1 ::; n ::; (2j + 5)t. Suppose that f and

g are cautious approximation functions. Then there exist multisets V., W, and U such that:

1V1 == IWI == n- t,

IUI == n-t,

IV- UI == IW- UI == n-t, and

18

lf(V) - g(W)I ~ cS(U)/0 + 1).

The implications of this result for the asynchronous agreement algorithm are analogous to what

Theorem 12 has to say about the synchronous algorithm: There exist multisets V, W, and U, such that

if correct processes p and q (using approximation functions f and g, respectively) receive multisets of

values V and W, respectively, in some round of execution, and U is the multiset of values held by

correct processes at the start of that round, then the new approximations held by p and q at the end

of the round can be no closer than cS(U)/U + 1). The lower bound given by this result also matches the

upper bound provided by the function f A'

As before, the theorem is proved with the aid of the following "chain lemma."

Lemma 15: Suppose j ~ 0, t ~ 1, and (2j + 3)t + 1 ::;; n ::;; (2j + S)t. Then there exist

multisets M1, M2, ... , Mi+ 2, and U1, U2, .. . , Ui + 1, such that:

IMil = _n-t for 1 ::;; i ::;; j + 2,

IM.-U.I = IM.
1
-U.I = n-t for 1 < i < j + 1, and

I I I+ I - -

f(M1) = 0 and f(Mi + 2) = 1, whenever f is a cautious approximation function.

Proof: We split the proof into two cases: In case (2j + 4)t + 1 ::;; n ::;; (2j + 5)t, then define

M. to have the value O with multiplicity n-2it and the value 1 with multiplicity (2i-1)t, for
I ,

each i with 1 ::;; i ::;; j + 2. Define Ui to have the value O with multiplicity n-(2i + 1)t and the

value 1 with multiplicity 2it, for each i with 1 ::;; i ::;; j + 1. In case (2j + 3)t + 1 ::;; n ::;; (2j + 4)t,

then we modify slightly the definition of M.
2

and U.
1

from the preceding case. That is,
J+ J+

define M.
2

to have the value O with multiplicity n-(2j + 3)t and the value 1 with multiplicity
J+

2(j + 1)t. Also, define U.
1

to have the value O with multiplicity n-2(j + 1)t and the value 1
J+

with multiplicity (2j + 1)t.

In both cases it is straightforward to check that the required properties hold. D

The proof of Theorem 14 is entirely analogous to the proof of Theorem 12.

19

6. Resilience
The algorithms presented in this paper have some interesting resilience properties, stronger than

those usually claimed for Byzantine agreement algorithms. So far, we have only claimed that the­

algorithms are resilient to t different processes exhibiting Byzar:itine faults during the entire course of

the algorithm. However, we can claim more for situations where processes fail and recover

repeatedly. Our algorithms actually support resilience to any t Byzantine faulty processes at a time

(under suitable definitions of faultiness at a particular time); the total number of faulty processes can

be much greater than t, since we can allow different processes to be faulty at different times.

We do not give a formal presentation of our resilience properties. Rather, we just give a brief sketch

of the main ideas.

First, consider the synchronous case. A faulty process is able to recover easily and reintegrate itself

into the algorithm. It can reenter the algorithm at any round, just by sending an arbitrary value,

collecting values and averaging them as usual to get a new value. The process also needs to obtain

an estimate of the number of rounds required before termination. It can obtain such an estimate in

the reentry round, just as it could in the fi rst round.

The asynchronous case is a little more complicated. A faulty process p needs to rejoin the

algorithm at some particular (asynchronous) round; however, it must be careful to rejoin at some

round that is not "out of date." That is, in the absence of additional failures of p, it must be

guaranteed to receive all of its messages for that and subsequent rounds. Process p could not simply

wait until it received n- t messages for some particular round k, since those messages might have

been delivered very late, and messages for round k + 1 might have already been lost. However, it

suffices for p to send out a "recovery" message, and await acknowledgements from n- t processes

carrying the number of their current round. Process p knows that the t + 1st smallest of these round

numbers, plus 1, is an allowable round number for it to use for reentry.

The recovering process is not able to use the same method of estimating a termination round as it

did initially. Therefore, it seems necessary to modify the asynchronous algorithm to enable

recov§ring processes to obtain termination estimates when needed. An easy modification that works

is to have every process piggyback its estimate of the number of rounds to termination on every

message it sends. Then a recovering process can obtain a new estimate just by taking the t + 1st

smallest of the estimates it receives at the reentry round.

20

7. Summary and Open Questions
We have defined a problem of approximate agreement on real numbers by processes in a

distributed system. We integrated simple approximation functions into two simple-to-implement

algorithms for achieving approximate agreement - one for a synchronous distributed system, and

the other for an asynchronous system. In addition, we showed that both algorithms achieve the

fastest possible convergence rate for algorithms of a particular form. The algorithm for an

asynchronous system provides an interesting contrast to the results in [FLP 83, DDS 83], which show

that exact agreement is impossible in an asynchronous system.

The ideas of this paper have been used in the design of algorithms for synchronizing clocks in

distributed systems [LL 84].

For the synchronous case, it is not difficult to show that 3t + 1 processes are necessary to solve the

approximate agreement problem. The proof is an adaptation of the lower bound proof in [LSP 82],

and appears in [FLM 85). For the asynchronous case, our number of processes is not optimal. In

fact, it appears possible to reduce the number of processes to as few as 3t + 1. This reduction is

obtained using a more complex algorithm, based on some of the interesting ideas of [B 84). This

algorithm has a slower rate of convergence than ours.

To obtain the lower bound results, we had to restrict our attention to algorithms of a standard form

(ones that operate by broadcasting values and using received values to compute a new

approximation), and to functions with a natural, but apparently restrictive property (the "cautious"

property). It would be interesting to obtain answers to the following questions:

• Can the cautious property be weakened or removed entirely?

• Can algorithms not of the standard form considered here produce agreement faster?

We would also like to have a better understanding of the relationship between the number of

processes and the rate of convergence for approximate agreement algorithms. For instance, the

more complex asynchronous algorithm mentioned above uses fewer processes, but has a slower rate

of convergence than ours. Is there a tradeoff?

-
We can state a variant of the approximate agreement problem which uses a fixed number, k, of

rounds, and in which r is not predetermined. Each process starts with a real value, as before. After k

rounds, the processes must output their final values. The validity condition is the same as before.

The object of the algorithm is to insure the best possible agreement, expressed as a ratio of the new

21

diameter of the nonfaulty processes' values to the original diameter. For given n, t and k, we would

like to know the best ratio.

As before, if the algorithm is constrained to operate round-by-round, applying cautious functions at

each round, we obtain lower bounds which are exactly the same as are achieved by our averaging

functions. However, if the algorithm is unconstrained, the best bounds we have are not at all tight.

Consider the synchronous case, for example. The best upper bound we have still arises from

repeated application of our averaging function f S' and is approximately (tlnf We can obtain a lower

bound by extending our chain argument of this paper to a k-dimensional hypercube (along the lines in

[FL 82]. This extension gives a lower bound of approximately (t/nkf This is still a considerable gap,

which we would like to see closed.

References

[B 84]

[BL 85]

[CODS 85]

[DDS 83]

22

G. Bracha, "An Asynchronous L(n - 1)/3J -Resilient Consensus Protocol,"

Proceedings of 3rd ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pp. 154-162, August 19.84.

J. Burns and N. A. Lynch, "The Byzantine Firing Squad Problem,"

Submitted for publication.

8. Coan, D. Dolev, C. Dwork and L. Stockmeyer,

"The Distributed Firing Squad Problem," to appear in STOC 85.

D. Dolev, C. Dwork and L. Stockmeyer,

"On the Minimal Synchronism Needed for Distributed Consensus,"

Proceedings of 24th Annual Symposium on Foundations of Computer Science,

pp. 393-402, Nov. 1983.

[DLPSW 8-3] D. Dolev, N. A. Lynch, S. Pinter, E.W. Stark, and W. E. Weihl,

"Reaching Approximate Agreement in the Presence of Faults,"

[DS 82]

[FL 82]

[FLM 85]
~

[FLP 83]

Proceedings of 3rd Annual IEEE Symposium on Reliability in Distributed Software

and Database Systems, pp. 145-154, October 1983.

D. Dolev and H. R. Strong,

"Polynomial Algorithms for Multiple Processor Agreement,"

Proceedings of the 14th ACM SIGACT Symposium on Theory of Computing,

pp. 401-407, May 1982.

N. A. Lynch and M. Fischer, "A Lower Bound for the Time to Assure Interactive

Consistency," Information Processing Letters 14, 4, pp. 183-186, June 1982.

M. Fischer, N. A. Lynch, and M. Merritt, "Shifting Scenarios: Easy Impossibility

Proofs for Distributed Consensus Problems," submitted for publication.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, "Impossibility of Distributed

Consensus with one faulty process," Proceedings of 2nd ACM Symposium on

Principles of Database Systems, March 1983.

[LL 84]

[LSP 82]

[PSL 80]

23

N. A. Lynch and J. Lundelius, "A New Fault-Tolerant Algorithm for Clock

Synchronization," Proceedings of 3rd ACM SIGACT-SIGOPS Symposium on

Principles of Distributed Computing, pp. 75-88, August 1984.

L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem,"

ACM Trans. on Programming Languages and Systems, Vol. 4, No. 2,

pp. 382-401 (1982).

M. Pease, R. Shostak, and L. Lamport,

"Reaching Agreement in the Presence of Faults,"

JACM, Vol. 27, No. 2, pp. 228-234 (1980).

