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1. Introduction 
In designing fault-tolerant distributed systems, one often encounters questions of agreement among 

processes. In the Byzantine Generals problem [PSL 80, LSP 82], the objective is for nonfaulty 

processes to agree on a value, in spite of the presence of a ~mall number of "Byzantine" types of 

faults - completely arbitrary, even possibly malicious, behavior. Several variations on the problem 

can be considered - the model can be synchronous or asynchronous, and either exact or 

approximate agreement can be demanded. In this paper, we consider a variant on the traditional 

Byzantine Generals problem, in which processes start with arbitrary real values, and where 

approximate, rather than exact, agreement is the desired goal. Approximate agreement can be used, 

for example, for clock synchronization and for stabilization of input from sensors. 

We assume a model in which processes can send messages containing arbitrary real values, and 

can store arbitrary real values as well. We assume that each process starts with an arbitrary real 

value. For any preassigned e ~ O (as small as desired), an approximate agreement algorithm must 

satisfy the following two conditions: 

• Agreement: All nonfaulty processes eventually halt with output values that are within e of 
each other. 

• Validity: The value output by each nonfaulty process must be in the range of initial values 
of the nonfaulty processes. 

Thus, in particular, if all nonfaulty processes should happen to start with the same initial value, the 

final values are all required to be the same as the common initial value. This is consistent with the 

usual requirements for Byzantine agreement algorithms. However, should the nonfaulty processes 

start with different values, we do not require that the nonfaulty processes agree on a unique final 

value. 

We consider both synchronous and asynchronous versions of the problem. Systems in which there 

is a finite bounded delay on the operations of the processes and on their intercommunication are said 

to be synchronous. In such systems, unannounced process deaths, as well as long delays, are 

considered to be faults. For synchronous systems, we give a simple and rather efficient algorithm for 

achie)ling approximate agreement. This algorithm works by successive approximation, with a 

provable convergence rate that depends on the ratio between the number of faults and the total 

number of processes. The algorithm is guaranteed to converge in the case where the total number of 

processes is more than three times the number of possible faults. Termination is achieved using a 

technique that ensures that all non faulty processes halt, but allows different processes to terminate at 

different times. 
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For asynchronous systems, in which a very slow process cannot be distinguished from a dead 

process, no exact agreement can be achieved [FLP 83), even if no malicious failures occur [DDS 83]. 

An interesting contrast to the results in [FLP 83, DDS 83] is our second algorithm, which enables 

processes in an asynchronous system to get as close to agre~ment as one chooses. Our algorithm 

for the asynchronous case also works by successive approximation. In this case, however, the total 

number of processes required by the algorithm is more than five times the number of possible faults. 

As in the synchronous case, we achieve termination using a technique that ensures that all nonfaulty 

processes halt, but permits different processes to terminate at different times. As we discuss later, it 

is possible to achieve simultaneous termination in the synchronous case; the technique used for 

simultaneous termination, however, does not extend to the asynchronous case. 

Our algorithms to obtain approximate agreement are of a very simple form._ Namely, at each round 

until termination is reached, each process sends its latest value to all processes (including itself). On 

receipt of a vector V of values, the process computes a certain function f(V) as its next value. The 

function f is a kind of averaging function. Here we use functions that are appropriate for handling t 

faults. We will show that these functions have particularly nice approximation behavior. In particular, 

we will show that, for algorithms of a particular form, no approximation function can provide uniformly 

faster convergence than the functions used in this paper. An earlier paper [DLPSW 83] presented 

similar algorithms, but used approximation functions that provided slower convergence than 

achieved by the functions used in this paper. 

The remainder of this paper is organized as follows: In Section 2, we prove some combinatorial 

properties of the approximation functions upon which our algorithms depend. Then, in Section 3, we 

introduce the synchronous model and present the synchronous approximate agreement algorithm, 

and in Section 4, we present the asynchronous model and algorithm. Next, in Section 5, we present 

lower bounds on the convergence rate for algorithms of the form presented in sections 3 and 4, and 

show that the approximation functions used in our algorithms are optimal. In Section 6, we discuss 

the resilience properties of our algorithms. Finally, in Section 7, we conclude with a short summary 

and some open questions. 

2. P.-rope rties of the Approximation Functions 
~ 

In this section, we will state and prove the relevant properties of the approximation functions. First, 

we require some preliminary definitions and properties of multisets. 
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2.1. Preliminary Definitions 

Let N be the natural numbers, including 0, and let IR be the real numbers. We view a finite multiset U 

of reals as a function U: IR -+ N that is nonzero on at most finitely many r E iR. Intuitively, the function . 

U assigns a finite multiplicity to each valuer E IR. The cardinali~y of a multiset U is given by LrEIR U(r), 

and is denoted by IUI. We say that a multiset is empty if its cardinality is zero; otherwise it is 

nonempty. The difference U- V of multisets U and Vis the multiset W defined by 

W(r) = U(r}-V(r) if U(r)-V(r) ~ 0 

= 0 otherwise. 

The intersection Un V of multisets U and Vis the multiset W defined by W(r) = min(U(r),V(r)). 

In the sequel, the term "multiset" will always refer to finite multisets of real numbers as above. In 

addition, gk will denote the k-fold iteration of g; thus g 1 = g, g2 = g•g, etc. 

The minimum min(U) of a nonempty multiset U is defined by min(U) = min{r E IR : U(r) :;t O}. The 

maximum max(U) is defined similarly. If U is nonempty, let p(U) (the range of U) be the interval 

[min(U),max(U)], and let o(U) (the diameter of U) be max(U)- min(U). The mean mean(U) of a 

nonempty multiset U is defined by 

mean(U) = LrEIR r-U(r)/IUI. 

If U is a nonempty multiset, we define the multiset s(U) (intuitively, the multiset obtained by removing 

one occurrence of the smallest value in U) to be the multiset W defined by 

W(r) = U(r)- 1 if r = min(U), 

= U(r) otherwise. 

The multiset l(U) (remove one occurrence of the largest value in U) is defined similarly. Assume t is a 

fixed nonnegative integer. If IUI ~ 2t, then define reduce(U) = s\11(U)), the result of removing the t 

highest and t lowest elements of U. 

The first lemma shows that the number of common elements in two nonempty multisets is reduced 

by at most 1 when the smallest (or the largest) element is removed from each. 

Lemma 1: Suppose that V and W are nonempty multisets. Then 

1. IV n WI - ls(V) n s(W)I ~ 1. 

2.1v n Wl-ll(V) n l(W)I ~ 1. 

Proof: We prove the first inequality; the argument for the second is symmetric. Let M = 

V n W, and let N = s(V) n s(W). Let v = min(V) and w = min(W). Now, N(r) = M(r) if r :;t v 

and r r w, so we can write IMI-INI = 2:rt{v.w} M(r) - IrE{v.w} N(r). There are two cases, 
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depending upon whether v = w or v -:t:- w. 

Suppose v = w. Then IMI- INI = M(v)- N(v) = min(V(v) , W(v)) - min(V(v)- 1, W(v)- 1) ~ 1. 

Suppose v -:t:- w. Then 

IMI-INI = (M(v) + M(w)) - (N(v) + N(w)) 

= (min(V(v), W(v)) + min(V(w), W(w))) 

- (min(V(v)-1 , W(v)) + min(V(w), W(w)- 1 )). 

Assume without loss of generality that v < w. Then W(v) = 0, and hence 

IMI-INI = min(V(w), W(w)) - min(V(w), W(w)- 1) 

~ 1. □ 

The next lemma extends the results of the previous lemma to removing the t largest and t smallest 

elements. 

Lemma 2: Suppose that V and Ware multisets such that !VI ~ 2t and IWI ~ 2t. Then 

IV n WI - lreduce(V) n reduce(W)I ~ 2t. 

Proof: Follows from repeated application of Lemm~ 1. □ 

The next lemma is fundamental to the correctness of the algorithms. It states that if at most kt 

values in a multiset V are not in another multiset U, then every value in reducek(V) is in the range of 

U. For example, if the multiset of values held by nonfaulty processes at some point in the algorithm is 

U, and the multiset of values received by some process is V, then at most t of the values in V are not in 

U. The lemma then states that reducing V produces a multiset whose range is contained in the range 

of the values of the nonfaulty processes. This property is essential in showing that the validity 

condition is satisfied. 

Lemma 3: Suppose that k is a nonnegative integer and that U and V are nonempty 

multisets such that IV - UI ~ kt and IVI > 2kt. Then p(reducek(V)) s p(U). 

Proof: Suppose p(reducek(V)) ~ p(U). Then either min(reducek(V)) < min(U) or 

max(reducek(V)) > max(U). Both cases lead to a contradiction. We argue the first; the 

second is symmetric. 

If min(reducek(V)) < min(U), then L < . (U} V(r) > kt+ 1. Hence, IV - UI 2: kt+ 1, which r min -

contradicts a hypothesis. □ 
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2.2. The Approximation Functions 

If U is a nonempty multiset with IUI = m, u
0 

,:s; u
1 

,:s; ... ,:s; um-
1 

are the elements of U in 

nondecreasing order, and i)O and i20 are integers such that ji + 1 ,:s; m ,:s; U + 1)i (i.e., j = floor((m-

1)/i)), we define se/ect.(U) to be the multiset consisting of the elements u
0

, u., u
2

., ... , and u ... Thus, 
I , I I JI 

select.(U) chooses the smallest element of U and every ith ele~ent thereafter. 
I 

In this paper we will use two related approximation functions, one for the synchronous protocol (f 
5

) 

and one for the asynchronous protocol (fA). Let V be a finite multiset of reals with IVl>2t. The 

approximation functions are defined as follows: 

f5(V) = mean(select
1
(reduce(V))) 

f A (V) = mean(select
21

(reduce(V))) 

For notational convenience, we define the function fi, for a positive integer i, by fi(V) = 

mean(selecti(reduce(V))) . Thus, f5 = ft, and fA = f2t. 

The next two lemmas describe properties of the approximation functions. Lemma 4 is used in 

verifying the validity condition. 

Lemma 4: Suppose that U and V are nonempty multisets such that IV-Ul ~ t and IVl>2t, 

and i is a positive integer. Then f.(V)Ep(U). 
I 

Proof: Follows easily from Lemma 3 (with k = 1). D 

Lemma 5 will be used in the following manner: U is the multiset of values held by nonfaulty 

processes in a given round, and M and N are the reduced multisets of values received by two 

nonfaulty processes in that round. Nonfaulty processes use the appropriate approximation function 

to choose their values for the next round; the lemma tells us how quickly those values converge. 

Lemma 5 : Suppose U, M, and N are nonempty multisets, and m>O, i)O, and i2 0 are 

integers such that: 

ji + 1 ~ m ,:s; U + 1 )i, 

IMI = INI = m, 

p(M) ~ p(U) and p(N) ~ p(U). 

Then lmean(selec\(M)) - mean(selecti(N))I ~ o (U)/(j + 1 ). 
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Proof: From the definition of select., we know that select.(M) and select.(N) each contain 
I I I 

exactly j + 1 elements. Let m0 ~ m1 ~ ... ~ mi be the elements of selecti(M), and let n0 ~ 

n
1 
< ... < n. be the elements of select.(N). Notice that there are at least ik + 1 elements in 
- - J I 

M that are less than or equal to mk' and at most ik elem~nts in M that are strictly less than 

mk; similarly for N. 

We begin by showing that max(mk,nk) ~ min(mk + 
1
,nk + 

1
) for O ~ k ~ j- 1. It suffices to 

show that mk ~ nk + 1; a symmetric argument demonstrates that nk ~ mk + 1. 

We proceed by contradiction: Suppose that mk > nk + 1. As noted above, there are at 

least i(k + 1) + 1 elements in N less than or equal to nk + 
1

. By our supposition, these 

elements are strictly less than mk. However, there are at most ik elements in M strictly less 

than mk. Therefore, there are at least i(k + 1) + 1- ik ( = i + 1) elements in N that are not in M; 

thus, IN- Ml~ i + 1. This contradicts the hypothesis that IMnNI ~ m-i. Thus, mk ~ nk+ 1. 

Now we will use the inequality shown above to obtain the desired result. Using the 

notation defined above, 

lmean(select.(M)) - mean(select.(N))I 
I I 

= 1 /(j + 1) IC~t = Omk) - (},:l = Onk)I 

= 1/ (j + 1) 1rt=o (mk - nk)I 

~ 1 /(j + 1) r~ = 0 lmk - nkl (by the triangle inequality) 

= 1 /(j + 1) r~ = 0 (max(mk,nk) - min(mk,nk)). 

By the inequality demonstrated above, for O ~ k ~ j- 1, (max(mk,nk) - min(mk,nk)) ~ 

(min(mk+ 1,nk+ 1) - m~n(mk,nk)), so we get 

lmean(select.(M)) - mean(select.(N))I 
I I 

< 1 / (j + 1) [max(m.,n.) - min(m.,n.)] 
- J J J J 

+ 1 /(j + 1) rt~ 0 (min(mk + 1,nk + 1) - min(mk,nk)). 

Collecting terms then shows that 

lmean(se!ect.(M)) - mean(select.(N))I 
I I 

~ 1 / (j + 1) (max(mi,ni) - min(m0,n
0

)). 

Since p(M)~p(U) and p(N)~p(U), we know that max(mi,ni) ~ max(U) and min(m
0
,n

0
) ~ 

min(U). This gives the desired result: 

lmean(select.(M)) - mean(select.(N))I 
I I 

~ 1 / (j + 1) (max(U) - min(U)) 

= o(U)/(j + 1). □ 
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3. The Synchronous Problem 

A synchronous approximation algorithm Pis a system of n processes, n ~ 1. Each process p has a 

set of states, including a subset of states called initial states and a subset called halting states. There 

is a value mapping which assigns a real number as the value of each state. For each real number r, 

there is exactly one initial state with value r. Each process acts deterministically according to a 

transition function and a message generation function. The transition function takes a non-halting 

process state and a vector of messages received from all processes (one message per process) and 

produces a new process state. The message generation function takes a non-halting state and 

produces a vector of messages to be sent to all processes (one per process). 

We assume that the system acts synchronously, using a reliable communication medium. Each 

process is able to send messages to all processes (including itself), and the sender of each message 

is identifiable by the receiver. 

A configuration consists of a state for each process. An initial configuration consists of an initial 

state for each process. Let T be any subset of the processes. A sequence of configurations (called 

rounds), C0, C1, C2, ... is a T-computa.tion provided there exist messages sent by each process at 

each round such that: (a) C0 is an initial configuration; (b) for every i, and every p E T, the messages 

sent out by p after C. are exactly those specified by p's message generation function, applied to p's 
I 

state in Ci; and (c) for every i, and every p E T, p's state in Ci+ 
1 

is exactly the one specified by p's 

transition function applied to p's state in C. and the messages sent to p after C .. In a T-computation, 
I I 

processes in Tare non faulty, while processes not in T may be faulty. 

For the rest of the paper, assume a fixed small value e, a fixed number of processes n, and a fixed 

maximum number of faults t. 

A synchronous approximation algorithm is said to be t-correct provided that for every subset T of 

processes with ITI 2 n-t, and every T-computation, the following is true: Every p E T eventually 

enters a halting state, and the following two conditions hold for the values of those halting states: 

• Agreement: If two processes in T enter halting states with values r and s, respectively, 
then lr-sl =:; e. -

• Validity: If a process in T enters a halting state with value r, then there exist processes in 
T having x and y as initial values, such that x =:; r ~ y. 

We will prove the following theorem. 

Theorem 6: If n ~ 3t + 1, then there exists at-correct synchronous approximation 
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algorithm with n processes. 

Note that the following strategy would suffice to prove Theorem 1. The processes could run n 

executions of a general (unlimited value set) Byzantine Generals algorithm such as the one in [OS 82], 

in order to obtain common estimates for the initial values of all the processes. After this algorithm 

completes, all processes in Twill have the same multiset, v, of values for all the processes. Then each 

process halts with value f(v), where f is a predetermined averaging function that is the same for all 

processes. This algorithm actually achieves exact real-valued agreement, with the required validity 

condition. However, the solution presented below is much simpler and more elegant, and moreover 

extends directly to the asynchronous case, for which exact agreement is impossible. The algorithm 

has two additional adv-antages over using a Byzantine Generals algorithm: It is more resilient than 

typical Byzantine Generals algorithms, and it can, in some cases, terminate in _fewer than t + 1 rounds. 

We now present our synchronous approximation algorithm, S. First, we describe a nonterminating 

algorithm, S0, and then we discuss how termination is achieved. We assume that n 2::: 3t + 1. 

Synchronous Approximation Algorithm S
0

: 

At each round, each non faulty process p performs the following steps: 

1. Process p broadcasts its current value to all processes, including itself. 

2. Process p colle_cts all the values sent to it at that round into a multiset V. If p does not 
receive exactly one correct value from some particular other process (which means, in 
the synchronous model, that the other process is faulty), then p simply picks some 
arbitrary default value to represent that process in the multiset. The multiset V will 
therefore always contain exactly n values. 

3. Process p applies the function f8 to the multiset V to obtain its new value. 

The following result states how the diameter and range of the nonfaulty processes' values are 

affected by each round of algorithm S
0

. 

Lemma 7: Let i 2::: 1 and t, n 2::: 0 be such that U + 2)t + 1 ~ n ~ U + 3)t. Let T be a set of 

processes, with ITI 2::: n- t. Let h be a positive integer. Let U and U' be the multisets of 

values of processes in T, immediately before and after round h, respectively, in a particular 

T-computation of S
0

• Then 

1. 8(U') ~ 8(U}/U+ 1). 

2. p(U') ~ p(U). 

Proof: Let p and q be arbitrary processes in T. Let V and W be the multisets of values 
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(including default values) received by p and q, respectively, at round h. Since there are at 

most t fau lty processes, IV - UI ~ t and IW - UI ~ t. Moreover, since V and W contain 

identical entries for all the processes in T, we know that IV n WI~ n- t. 

D 

1. Let m = n- 2t and let i = t. Let M = reduce(V) and N = reduce(W). By Lemma 2, 
IM n NI ~ IV n WI - 2t ~ n-3t = m-i. By Lemma 3 (with k = 1 ), p(M) ~ p(U) and 
p(N) ~ p(U). Thus, U, M, N, m, and i satisfy the hypotheses of Lemma 5, implying 
that lfs(V)-fs(W)I ~ o(U)/U + 1 ). Since p and q were chosen arbitrarily, the result 
follows. 

2. Follows directly from Lemma 4. 

Lemma 7 shows that, at each round, the diameter of the multiset of values held by nonfaulty 

processes decreases by a factor of 1 /(j + 1 ), where (j + 2)t + 1 ~ n ~ (i + 3)t and j ~ 1. Thus, the 

diameter of the multiset of values held by nonfaulty processes eventually decreases to e or less. In 

addition, repeated application of part 2 of Lemma 7 shows that, at each round h ~ 1, the values held 

by nonfaulty processes immediately before round h are all in the range of the initial values of 

nonfaulty processes. 

Algorithm S0 is not a correct synchronous approximation algorithm, however, for as stated, it never 

terminates. We modify S0 to obtain a terminating algorithm, S, as follows. At the first round, each 

nonfaulty process uses the range of all the values it has received at that round to compute a round 

number at which it is sure that the values of any two non faulty processes will be at most e apart. Each 

process can do this because it knows the value of e, the guaranteed rate of convergence and 

furthermore, it knows that the range of values it receives on the first round includes the initial values 

of all nonfaulty processes . . 

In general, different processes might compute different round numbers. Any process that reaches 

its computed round simply halts, and sends its value out with a special "halting" tag. When any 

process, say p, receives a value with a "halting" tag, it knows to use the enclosed value not only for 

the designated round, but also for all future rounds (until p itself decides to halt, based on p's own 

computed round number). Although nonfaulty processes might compute different round numbers, it 

is clear that the smallest such estimate is correct. Thus, at the time the first nonfaulty process halts, 

the range is already sufficiently small. At subsequent rounds, the range of values of nonfaulty 

processes is never increased, although we can no longer guarantee that it decreases. The following 

lemma makes these ideas more precise. 

Lemma 8: Assume that n ~ 3t + 1. Let T be a set of processes, with ITI ~ n- t. Leth be 
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a positive integer. Let U and U' be the multisets of values of processes in T, immediately 

before and after round h, respectively, in a particular T-computation of S. Then p(U') ~ 

p(U). 

Proof: Let p be an arbitrary process in T. Let v ~nd v' be the values held by p 

immediately before and after round h, respectively. It suffices, since pis arbitrary, to show 

that v' E p(U). If p has terminated prior to the start of round h, then v' = v E p(U). If p has 

not halted prior to the start of round h, then let V be the multiset of values received by p in 

round h. Then V and U satisfy the hypotheses of Lemma 4, and since v' = f s(V), it follows 

that v' E p(U). D 

It is now easy to see that S is a correct synchronous approximation algorithm. It is clear that all 

processes terminate. Consider the agreement property. At the first round at which some process 

halts, it is already the case that all nonfaulty processes' values are within £ of each other. By Lemma 

8, this diameter never increases at subsequent rounds, so the final values of all the nonfaulty 

processes are also within £ of each other. The validity property also follows from repeated application 

of Lemma 8. This completes the proof of Theorem 6. 

It is possible to modify algorithm S in several interesting ways. First, observe that a process need 

not always wait for its computed round to arrive before halting: it can halt after it receives "halting" 

tags from at least t + 1 other processes. 

Second, it is possible to have all nonfaulty processes halt simultaneously. This can be done using 

known solutions to the binary-valued Byzantine Generals problem as follows: After certain (a priori) 

selected rounds of the approximate agreement algorithm, all processes run a Byzantine Generals 

algorithm to decide whether the algorithm should continue. A process p will vote to halt only if the 

round number has reached p's computed round number. Voting to halt implies that p knows that the 

range of values of nonfaulty processes is at most £ . If the decision is to halt, then some nonfaulty 

process must have voted to halt, and the range of values of the nonfaulty processes must be at most 

,. (Note that, since exact agreement is impossible in an asynchronous model, this termination 

technique does not extend to the asynchronous case.) 

An alternative way of guaranteeing that all nonfaulty processes halt at the same round uses an 

arbitrary solution to the Byzantine Firing Squad problem [BL 85, CODS 85]. 
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4. The Asynchronous Problem 
In this section, we reformulate the problem in an asynchronous model adapted from the one in [FLP 

83]. In an asynchronous approximation algorithm, we assume that processes have states as before, 

but now the operation of the processes is described by a tran~ition function that in one step tries to 

receive a message, gets back either "null" or an actual message, and based on the message, 

changes state and sends out a finite number of other messages. Nonfaulty processes always follow 

the algorithm. Faulty processes, on the other hand, are constrained so that their steps at least follow 

the standard form - in each step, they try to receive a message as do nonfaulty processes. However, 

they can change state arbitrarily (not necessarily according to the given algorithm), and can send out 

any finite set of messages (not necessarily the ones specified by the algorithm). A T-computation of 

an asynchronous approximation algorithm is one in which the processes in T always follow the 

algorithm, all processes (faulty and nonfaulty) continue to take steps until they reach a halting state, 

and any process that fails to enter a halting state eventually receives all messages sent to it. 

An asynchronous approximation algorithm is said to be t-correct provided for every subset T of 

processes with ITI ~ n-t, and every T-computation, every process in T eventually halts, and the same 

agreement and validity conditions hold as for the synchronous case. 

It seems simplest here to insist on the standard form being followed by all processes. The 

requirement that faulty processes keep taking steps until they enter halting states is not a restriction, 

since they are free to enter halting states at any time they wish. Similarly, the requirement that faulty 

processes continue trying to receive messages is not a restriction, since they are free to do whatever 

they like with the messages received. Finally, the requirement that faulty processes only send finitely 

many messages at each step is needed so that faulty processes are unable to flood the message 

system, preventing messages from other processes from getting through. 

We assume that processes take steps at completely arbitrary rates, so that there is no way (in finite 

time) to distinguish a fau lty process from one that is simply slow in responding. Also, we assume that 

the message system takes arbitrary !engths of time to deliver messages, an~ delivers them in arbitrary 

order. 

We will prove the following theorem: 

Theo rem 9: If n ~ 5t + 1, then there exists a t-correct asynchronous approximation 

algorithm with n processes. 

We now describe the asynchronous approximation algorithm. As in the synchronous case, first we 
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describe a nonterminating algorithm, A
0

, in which processes compute better and better 

approximations, and we then modify A
0 

to produce a terminating algorithm A. Assume that n ~ 5t + 

1. 

Asynchronous Approximation Algorithm A0 

At round h, each nonfaulty process p performs the following steps: 

1. Process p labels its current value with the current round number h, and then broadcasts 
this labeled value to all processes, including itself. 

2. Process p waits to receive exactly n-t round h values, and collects these values into a 
multiset V. Since there can be at most t faulty processes, process p will eventually 
receive at least n- t round h values. Note that, in contrast to the synchronous case, 
process p does not choose any default values. 

3. Process p applies the function fA to the multiset V to obtain its new value. 

In analogy with Lemma 7, we have the following result, which states the convergence properties of 

the above algorithm. 

Lemma 10: Let j ~ 1, and t, n ~ 0, be such that (2j + 3)t + 1 ~ n ~ (2j + 5)t. Le! T be a 

set of processes, with ITI ~ n-t. Let h be a positive integer. Let U and U' be the multisets 

of values of processes in T, immediately before and after round h, respectively, in a 

particular T-computation of A
0

. Then 

1. o(U') ~ o(U)/0+ 1). 

2. p(U') ~ p(U). 

Proof: Let p and q be arbitrary processes in T. Let V and W be the multisets of values 

received by p and q, respectively, at round h. Since there are at most t faulty processes, IV 

- UI < t and IW - UI ~ t. Moreover, since V and W both contain identical entries for all the 

processes in T from which both p and q heard, we know that IV n WI ~ n - 3t. 

□ 

1. Let m = n-3t and let i = 2t. Let M = reduce(V) and N = reduce(W). By Lemma 2, 
IM n NI ~ IV n WI - 2t ~ n-5t = m-i. By Lemma 3 (with k = 1 ), p(M) ~ p(U) and 
p(N) ~ p(U). Thus, U, M, N, m, and i satisfy the hypotheses of Lemma 5, implying 
that lfA(V)-fA(W)I ~ o(U)/U + 1). Since p and q were chosen arbitrarily, the result 
follows. 

2. Follows directly from Lemma 4. 

Lemma 10 shows that, at each round, the diameter of the multiset of values of nonfaulty processes 
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decreases by a factor of 1 /(j + 1 ), where (2j + 3)t + 1 ~ n ~ (2j + 5)t and j ~ 1. Thus, the diameter of 

the multiset of values held by nonfaulty processes eventually decreases to £ or less. In addition, 

repeated application of part 2 of Lemma 1 0 shows that, at each round h ~ 1, the values held by 

nonfaulty processes immediately before round h are all in the _range of the initial values of nonfaulty 

processes. 

The only remaining problem is termination. We cannot use the same technique that we used in the 

synchronous algorithm, because a process cannot wait until it hears from all other processes, and 

thus cannot obtain an estimate of the range of the initial values of the nonfaulty processes. We solve 

this problem by adding an initialization round at the beginning of the algorithm. In this initialization 

round (round 0) , each nonfaulty process p performs the following steps: 

Initialization Round for Asynchronous Approximation Algorithm A: 

1. Process p labels its initial value with the round number 0, and then broadcasts this 
labeled value to all processes, including itself. 

2. Process p waits to receive exactly n- t round 0 values, and collects these values into a 
multiset V p· 

3. Process p chooses an arbitrary element of p(reduce2(V )) (for definiteness, say 
mean(reduce2(V P))) as its initial value for use in round 1. Let x;be this chosen value. 

Suppose that p and q are arbitrary non faulty processes. Then since IV Pl ~ 4t and IV P - V qi ~ 2t, it 

follows that V and V satisfy the hypotheses for the multisets V and U, respectively, in Lemma 3 (with p q 

k = 2). An application of this result therefore shows that, for any non faulty processes p and q, it is the 

case that x E p(V ). That is, the value x computed by process p as the result of the initialization p q p 

round is contained in the range of all values received by process q in the initialization round. Since 

each non faulty process q knows: (1) that its range p(V ql contains all the round 1 values xP for 

nonfaulty processes p; (2) the value of £; and (3) the guaranteed rate of convergence, it can compute, 

before the beginning of round 1, a round number at which it is sure that the values of any two 

nonfaulty processes will be at most e apart. 

As ~ the synchronous case, different processes will calculate different round numbers at which 

they would like to halt. The same modification, of sending a value out with a special "halting" tag, 

works here as well. We obtain a lemma analogous to Lemma 8: 

Lemma 11: Assume that n ~ St + 1. Let T be a set of processes, with ITI ~ n- t. Leth 

be a positive integer. Let U and U' be the multisets of values of processes in T, 

immediately before and after round h, respectively, in a particular T-computation of A. 
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Then p(U') ~ p(U). 

The remainder of the proof of Theorem 9 is analogous to that of Theorem 6. 

5. Lower Bound Results 
In this section, we assume that algorithms are of a standard form in which at each round, an old 

approximation is exchanged with other processes, and a new approximation is computed from the 

multiset of values received, by the application of an approximation function f. We assume that f is 

cautious, as defined below. (Our algorithms all fit this pattern.) The results show that, under these 

assumptions, the function t
5 

gives the best possible convergence factor for a synchronous algorithm 

for n ~ 3t + 1, and the function f A gives the best possible convergence factor for an asynchronous 

algorithm for n ~ 5t + 1. 

In [DLPSW 83]. an earlier version of this work, we used different averaging functions in our 

algorithms. The discovery of the lower bounds in this section suggested that those functions did not 

give optimal rates of convergence, and led us to search for the improved averaging functions which 

appear in this paper. 

In the remainder of this section, let n and t be fixed. 

We say that an approximation function f, which takes a multiset M of real numbers to a real number 

f(M) , is cautious if f(M) E p(U) for all multisets U such that IM - UI :::; t. The cautious requirement 

seems reasonable for any approximation function that will tolerate up to t faults: regardless of the 

values received from the faulty processes, a cautious function will produce a value in the range of the 

values held by the nonfaulty processes. It is easy to see that t
5 

and fA are cautious. 

5.1 . The Synchronous Problem 

We will show the following theorem: 

Theorem 12: Suppose j ~ 0, t ~ 1, and (j + 2)t + 1 :::;.n :::; U + 3)t. Suppose that f and g 

are cautious approximation functions. Then there exist multis9ts V, W, and U such that: 

!VI= IWI = n, 

IUI = n-t, 

IV-UI = IW-UI = n-t, and 



16 

lf(V) - g(W)I ~ o(U)/0 + 1 ). 

The implications of this result for the synchronous agreement algorithm are the following: Suppose 

we consider algorithms of a standard form, in which at each round, a process exchanges its current 

approximation with all other processes, and then applies a cautious approximation function to the 

multiset of values it receives to determine its new approximation. Theorem 12 then implies that there 

exist multisets V, W, and U, such that if correct processes p and q (using approximation functions f 

and g, respectively) receive multisets of values V and W, respectively, in some round of execution, 

and U is the multiset of values held by correct processes at the start of that round, then the new 

approximations held by p and q at the end of the round can be no closer than o(U)/0 + 1). Thus this 

result yields a fundamental limitation on the rate of convergence of algorithms of the standard form. 

The lower bound given by this result also matches the upper bound provided by the function f 
8

• 

The proof of Theorem 12 requires the following lemma, which asserts the existence of a j + 1-link 

chain of multisets that span from a multiset M
1 

upon which every cautious approximation function 

must yield 0, to a multiset M. 2 upon which every cautious approximation function must yield 1. J+ . 

Lemma 13: Suppose j ~ 0, t ~ 1, and O + 2)t + 1 ~ n ~ O + 3)t. Then there exist 

multisets M1, M2, ... , Mi+ 2, and U
1

, U
2

, ... _, Ui + 
1

, such that: 

!Mil = n for 1 ~ i ~ j + 2, 

IM.-U.I = IM. 1-U.I = n-t for 1 < i < 1· + 1, and 
I I I+ I - -

f(M 1) = Oand f(Mi+ 2) = 1, 

whenever f is a cautious approximation function. 

Proof: Define M. to have the value O with multiplicity n-it and the value 1 with multiplicity 
I 

it. Define Ui to have the value O with multiplicity n-(i + 1 )t and the value 1 with multiplicity it. 

/The cardina!ity and diameter constraints on these sets are easily checked. Suppose f is 

cautious. Then since M1 has the value O with multiplicity n-t (> t) and the value 1 with 

multiplicity t (< t), it follows that f(M1) = 0. Also, since M. 
2 

has the value O with 
- J+ 

multiplicity n-O + 2)t ( < t) and the value 1 with multiplicity U + 2)t (> t), it follows that f(M. 
2
) 

- J+ 

= 1. □ 
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We can now present the proof of Theorem 12: 

Proof: For 1 ::; i ::; j + 2, let the approximation function hi be f if i is odd, and g if i is even. 

By Lemma 13, there exists a chain M1, M2, ... , Mi+ 2, and U1, U2, ... , Ui + 1, such that: 

!Mil == n for 1 ::; i ::; j + 2, 

IM.- U.I == IM. 1- U.I == n-t for 1 < i < 1· + 1, and 
I I I+ I - -

h1(M1) == 0 and hi+iMi+2) == 1. 

Suppose, to obtain a contradiction, that lhi + 1 (Mi+ 1)- hi(M)I < o(Ui)/G + 1) for 1 ::; i ::; j + 1. 

Then 

1 :: lhj+2(Mj+2)- h1(M1)1 

:: lh. 2(M. 2)- h. 1(M. 1) + h. ,(M. 1)- h.(M.) + ... + h2(M2)- h1(M1)l J+ J+ J+ J+ J+ J+ l J 

::; l\+2(Mj+2)- hj+1(Mj+1)1 + lhj_+1(Mj+1)- hj(Mj)I + ... + lh2(M2)- h1(M1)1 

<U+1)/G+1) 

:: 1. 

This is a contradiction, and we conclude that lh. 1(M. 1)- h.(M.)I > o(U.)/G + 1) for some i I+ I+ I I - I 

with1 <i<j+1. lfiisodd,thenh. == fandh. 1 == g,solettingV == M.,W == M. 1, andU - - I I+ I I+ 
== U. satisfies the requirements of the theorem. If i is even, then instead let V == M. 1, W == I I+ 

Mi, and U == Ui. □ 

5 .2 . The Asynchronous Problem 

We will show the following theorem: 

Theo rem 14: Suppose j ~ 0, t ~ 1, and (2j + 3)t + 1 ::; n ::; (2j + 5)t. Suppose that f and 

g are cautious approximation functions. Then there exist multisets V., W, and U such that: 

1V1 == IWI == n- t, 

IUI == n-t, 

IV- UI == IW- UI == n-t, and 
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lf(V) - g(W)I ~ cS(U)/0 + 1 ). 

The implications of this result for the asynchronous agreement algorithm are analogous to what 

Theorem 12 has to say about the synchronous algorithm: There exist multisets V, W, and U, such that 

if correct processes p and q (using approximation functions f and g, respectively) receive multisets of 

values V and W, respectively, in some round of execution, and U is the multiset of values held by 

correct processes at the start of that round, then the new approximations held by p and q at the end 

of the round can be no closer than cS(U)/U + 1 ). The lower bound given by this result also matches the 

upper bound provided by the function f A' 

As before, the theorem is proved with the aid of the following "chain lemma." 

Lemma 15: Suppose j ~ 0, t ~ 1, and (2j + 3)t + 1 ::;; n ::;; (2j + S)t. Then there exist 

multisets M1, M2, ... , Mi+ 2, and U1, U2, .. . , Ui + 1, such that: 

IMil = _n-t for 1 ::;; i ::;; j + 2, 

IM.-U.I = IM. 
1
-U.I = n-t for 1 < i < j + 1, and 

I I I+ I - -

f(M1) = 0 and f(Mi + 2) = 1, whenever f is a cautious approximation function. 

Proof: We split the proof into two cases: In case (2j + 4)t + 1 ::;; n ::;; (2j + 5)t, then define 

M. to have the value O with multiplicity n-2it and the value 1 with multiplicity (2i-1 )t, for 
I , 

each i with 1 ::;; i ::;; j + 2. Define Ui to have the value O with multiplicity n-(2i + 1)t and the 

value 1 with multiplicity 2it, for each i with 1 ::;; i ::;; j + 1. In case (2j + 3)t + 1 ::;; n ::;; (2j + 4)t, 

then we modify slightly the definition of M. 
2 

and U. 
1 

from the preceding case. That is, 
J+ J+ 

define M. 
2 

to have the value O with multiplicity n-(2j + 3)t and the value 1 with multiplicity 
J+ 

2(j + 1 )t. Also, define U. 
1 

to have the value O with multiplicity n-2(j + 1 )t and the value 1 
J+ 

with multiplicity (2j + 1 )t. 

In both cases it is straightforward to check that the required properties hold. D 

The proof of Theorem 14 is entirely analogous to the proof of Theorem 12. 
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6. Resilience 
The algorithms presented in this paper have some interesting resilience properties, stronger than 

those usually claimed for Byzantine agreement algorithms. So far, we have only claimed that the­

algorithms are resilient to t different processes exhibiting Byzar:itine faults during the entire course of 

the algorithm. However, we can claim more for situations where processes fail and recover 

repeatedly. Our algorithms actually support resilience to any t Byzantine faulty processes at a time 

(under suitable definitions of faultiness at a particular time); the total number of faulty processes can 

be much greater than t, since we can allow different processes to be faulty at different times. 

We do not give a formal presentation of our resilience properties. Rather, we just give a brief sketch 

of the main ideas. 

First, consider the synchronous case. A faulty process is able to recover easily and reintegrate itself 

into the algorithm. It can reenter the algorithm at any round, just by sending an arbitrary value, 

collecting values and averaging them as usual to get a new value. The process also needs to obtain 

an estimate of the number of rounds required before termination. It can obtain such an estimate in 

the reentry round, just as it could in the fi rst round. 

The asynchronous case is a little more complicated. A faulty process p needs to rejoin the 

algorithm at some particular (asynchronous) round; however, it must be careful to rejoin at some 

round that is not "out of date." That is, in the absence of additional failures of p, it must be 

guaranteed to receive all of its messages for that and subsequent rounds. Process p could not simply 

wait until it received n- t messages for some particular round k, since those messages might have 

been delivered very late, and messages for round k + 1 might have already been lost. However, it 

suffices for p to send out a "recovery" message, and await acknowledgements from n- t processes 

carrying the number of their current round. Process p knows that the t + 1st smallest of these round 

numbers, plus 1, is an allowable round number for it to use for reentry. 

The recovering process is not able to use the same method of estimating a termination round as it 

did initially. Therefore, it seems necessary to modify the asynchronous algorithm to enable 

recov§ring processes to obtain termination estimates when needed. An easy modification that works 

is to have every process piggyback its estimate of the number of rounds to termination on every 

message it sends. Then a recovering process can obtain a new estimate just by taking the t + 1st 

smallest of the estimates it receives at the reentry round. 
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7. Summary and Open Questions 
We have defined a problem of approximate agreement on real numbers by processes in a 

distributed system. We integrated simple approximation functions into two simple-to-implement 

algorithms for achieving approximate agreement - one for a synchronous distributed system, and 

the other for an asynchronous system. In addition, we showed that both algorithms achieve the 

fastest possible convergence rate for algorithms of a particular form. The algorithm for an 

asynchronous system provides an interesting contrast to the results in [FLP 83, DDS 83], which show 

that exact agreement is impossible in an asynchronous system. 

The ideas of this paper have been used in the design of algorithms for synchronizing clocks in 

distributed systems [LL 84]. 

For the synchronous case, it is not difficult to show that 3t + 1 processes are necessary to solve the 

approximate agreement problem. The proof is an adaptation of the lower bound proof in [LSP 82], 

and appears in [FLM 85). For the asynchronous case, our number of processes is not optimal. In 

fact, it appears possible to reduce the number of processes to as few as 3t + 1. This reduction is 

obtained using a more complex algorithm, based on some of the interesting ideas of [B 84). This 

algorithm has a slower rate of convergence than ours. 

To obtain the lower bound results, we had to restrict our attention to algorithms of a standard form 

(ones that operate by broadcasting values and using received values to compute a new 

approximation), and to functions with a natural, but apparently restrictive property (the "cautious" 

property). It would be interesting to obtain answers to the following questions: 

• Can the cautious property be weakened or removed entirely? 

• Can algorithms not of the standard form considered here produce agreement faster? 

We would also like to have a better understanding of the relationship between the number of 

processes and the rate of convergence for approximate agreement algorithms. For instance, the 

more complex asynchronous algorithm mentioned above uses fewer processes, but has a slower rate 

of convergence than ours. Is there a tradeoff? 

-
We can state a variant of the approximate agreement problem which uses a fixed number, k, of 

rounds, and in which r is not predetermined. Each process starts with a real value, as before. After k 

rounds, the processes must output their final values. The validity condition is the same as before. 

The object of the algorithm is to insure the best possible agreement, expressed as a ratio of the new 
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diameter of the nonfaulty processes' values to the original diameter. For given n, t and k, we would 

like to know the best ratio. 

As before, if the algorithm is constrained to operate round-by-round, applying cautious functions at 

each round, we obtain lower bounds which are exactly the same as are achieved by our averaging 

functions. However, if the algorithm is unconstrained, the best bounds we have are not at all tight. 

Consider the synchronous case, for example. The best upper bound we have still arises from 

repeated application of our averaging function f S' and is approximately (tlnf We can obtain a lower 

bound by extending our chain argument of this paper to a k-dimensional hypercube (along the lines in 

[FL 82]. This extension gives a lower bound of approximately (t/nkf This is still a considerable gap, 

which we would like to see closed. 
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