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A distributed algorithm is presented, for al locating a la,rge number of 1identica:I resources (such as airline 

tickets) to reQ uests which can arrive anywhere in n. distributed net,nork. Resources, once allocated, are never 

returned. The algorithm searches sequentially exhaustTr:ig certain nei hborhoods of the request origin 

before proceeding to search at greater distances. Choice of search direction is mad'e nondeterministical.ly. 

Analysis of exi::ected response time is simplified by assumlng that tl,e search direcfion is chosen 

probabi listically, that messages require constant time, that the network is a tree ~ith all leaves at the same 

distanoe from the root, and that requests and resou rces occur on ly at leaves. It is shown that the response 

ime is approximated by the number of messages of one hat are sent during the execution of the algorfthm, 

and that this number of messages is a nondescreasing funtion of the interarrival time for requests. Therefore, 

tile orst case occurs when re.quests. come ii, so far apart that they are processed sequentially. 

The expected tlme for the sequential case of the algorithm is analyzed by sta11dard techn·ques. This time is 

show11 to be bounded by a constant, independent of the siz.e •Of ·he network. It follows that the expected 

response time for the algorithm Is bounded in tt,e same way. 
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1 . II nt rodu ction 
We consider the problem of alloca.Hng a number of iden ical resources to requests arriving at the 

sites o · a distributed network. We assume that the network is configured as ai tree. The nodes of the 

tre.e are pro-cesso,rs and the edges are communication lines connecting the processors. Processes at 

a node may communicate only ov,er the tree edges, with processes at other nodes. 'Resource 

allocation is managed by a coUection of commun,icating resource alrocaUon processes,. one .at each 

node. We wi.I1 henceforth refer only to the node, ld,eoUfying it with both the processor and the 

resource al I ocatcon process at the node. 

From time to time, a reqllest arrives a a node (potentially any n,ode of he network) from the 

outside world. One of the resources should eventually be granted to the request, subject o the 

following conditions: 

1. No resource is granted more than once. (Once gran ed, a resource rs not returned. Thus, there 

Is no legitimate reason to grant it more than once.), 

2. At most one resource is granted to each request 

3. A node grants resources only to hose requests uhich arrive at ihat node, 

4. If the number of requests is no greater than the number of resources, then ,each request 

eventually receives a resource. 

5. If the number of resources is no greater than he number of requests, then each resource is 

eventually granted o a request. 

For convenience in describing alloca ion of speci fic resources to specific requests, we assume 

that each resour,ce and reqL1est has a uni ue identifier. 

The execution model for this distributed nehivork ls ,even -based. Two typ.es of events rnay occur 

at a node: (1) a request may arrive rrom the outside world, and (2) a message may arrive from a 

neighbor in t11e tree. Ea.ch vent riggers an indivisible step at the node. This step may include 

ct, anging s a e, sending messages to other nodes, and gran ing resources to requests .. (We ignore 

the time rnvolved in this locat processing ~hen we measure lhe response time, considering only the 

communication time.) We assume that the .ommunicatlon lines are reli le, that is,. each message is 

de1ivered e)(actly once. However, v".Je do not make any assumptions about he .order of message 

arrivals. 

There are many inte-res J11g approaches to solving Lh's resource alloca ion prob fern. In a 

cen raJized approach. all resources are con rolle by a single cen ral node. When a request arrives at 

a possibly d ifferen node a "buyer'' is commissioned, who travels via messages, to the central node 
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to obtain a resou -ce. Tl e buyer then carries. th,e resource· back to the node wher,e· the request: 

originated, so that the resource can be granted to the recwes at hat location. 

An al ernative approach fs to decentra ize contrnl of the resources, giving each node of the 

network control of some of them. In this approach,, he buye,rs ·- ust sea ch · or the resources. An 

important choice to be made in desi,gning an efficient search strategy is the choice between sending 

on ly one buyer to search for resources for each request and sending several' buyers in parallel to 

search different parts of the tree. he former search strateg,y., which we call the sequential search 

stmteg y, a.volds, a number of prob I ems arising from the parallel strategy, such as what to, do ab o,u t 

other buyers when one of them has found a resource. The next choice, if the sequential search 

strategy is used 1 is the choice of ditec io11 to searcli the tree. A good choice would invotve guessing 

which nodes are mos likely to have free resources when the buyer arrives at them. 

Other strategies involve combining a decentralized search strategy with a: dynamic resource 

redJstributfon strategy, letting resources search for requests (rather than vice versa) or giving nodes 

control of :fractions of resources rather than whole resource.s. 

On,e complexity measure which is useful for evaluating dilferent strategies is the expected 

response time. This is a measure upon which any of the design choices could have a major impact. 

For example, the response time when using a centralized stra egy must depend s rongly on the 

network size. However, lhe decentralized strategies have the potentia:I of depending on this size to a 

lesser extent. 

In the Jirst half of this paper, 1ue present an algol"ithm for solving t11is resource allocati,on problem. 

Our algorithm is a decentralized solution in which each node controls some whole number of 

resources. A sequential search s rategy is used, 1n which tt,e directlon to be searched ls chosen 

11011determinisfcally. Certain neighborhoods of the node at which a request originates are exhausted 

berore the search proceeds to more dis an neig,hborhoods. 

In order o gain some insight into the expected response time tor our algori hm, ,_..,e simulated ils 

behavior, in some special cases. The. nonde erministic choice of search direction was resolved by 

using a probabiHs ic choice, where the probabilities for the drfferent directions depended on the initial 

placement of resources in those direc ions. We assumed an exponenl ial disl(bution for time of 

arrival of requests, a uniform distribution for arriva locat.lon, and a normal probability drs ribution fo,r 

mess~ge delivery time. le also ass.um that al l leaves of the net\lvork tree were at the same distance 

from lhe root, and that requests and resources occurred on ly at leaves. We first noted that expected 

response lime was extremely good, 111ith an upper bound tJ at seemed to be independent of the size of 

the network. This was in marked contrast to a centralized algorithm. Next, we made a surprising 

observation: u,e expected response time appeared to be a nondecreasing functron of the expected 
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1nterarrival time for requests. H true, this observation wou!d imply that the worst case for the 

alg o rUh m was actually the case where requests c,o me ij 11 so far apart that they are processed one at a 

time. This ooservation contradicted our preliminary i•ntuiUons about the algorithm: we had thought 

that the worst cases would arr'8e when there was greatest competition among req,uests searching for 

resources. 

Using these obsen1ations as hints, we were able to carry out a substantial amount of analysis-o,f 

the algorithm's beha~ror, and this analysis compri,ses the second half of this paper. Namely, we prove 

an upper bound on the expected response time for a special case in which, among other reslrictions, 

all leaves of' the network tree are at the same distance ko m the root, and requests and resources 

occur only at teaves. First. we show that the response time can be bounded in terms of the number of 

messages of one ype that are sent during the execution of he algorithm. Then we show that this 

number of mess.ages ls a nondecreasing function of the interarrlval time for requests. Therefore1 the 

vorst case occurs when requests come in so far apart that they are processed sequentially. We 

analyze the expected time for the sequential case, showing it to be bmmded by a constant. 

independent of the size o:f the network. It follows that the expected response time for the algoritllm is 

also bou rid ed by a constant. 

Although the expected response time for our algorithm is very good1 we do not claim that it is, 

optimal. In fact1 there are some simple changes that one would expect o yield improvements. 

Unfortunately, vith 1hese changes1 the atgorithm can no long,e, be analyzed using the same 

techniQues; thus, 1e are not really certal:i that they are lmprovements at all. 

There are several contributions 111 this paper. First, we think that the algorithm itself is interestfng. 

Second, we have identified an interesting criterfon for !he performance of a distributed algorithm: 

that the performance be independent of the slze of lhe network. Sati-stying this criterfo11 seems to 

require an appropriate, decentralized styre ,of programming. Third, the analysis is decomposed h1 an 

interesting Wa'f. a sequenHaJ version is analyzed using traditional methods, and the performance of 

the concurrent algorithm is shown to b.e bounded in terms or the sequential algorm,m. It ls likely that 

this kind ,of decomposition will prove to oe useful for analysis of other d istributed algorithms. For 

lnslance, a similar decomposition was used in t11e proof of correctness of a systolic stack. [Guibas, 

and Liang (1982)]. 

The cc11tents of Uie rest of lhe paper are as follows, Section 2 contains the algorithm, and Section 

3 contains arguments for its correctness. Sections 4-6 contain tile analysis of U1e algorlthm. Section 

4 proves the monotonrdty result, which implies that the sequential case of lhe algorithm is worst. 

Section 5 analyzes the sequeritial case. Section 6 pulrs together the resutts of Sections 4 and 51 thus 

giving a generat upper bound. Firrn.Uy, Sec ion 7 describes some remaining questio11s. 
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2. The Algorithm 
In this section we present our algorithm. We begin with an informal decr1ption, followed by a 

more formal presentation. 

2.1. lnformal1 Desc ripUon 

We assume that the network is a rooted tree. 

Our algori h is a decentralized algorithm with a sequential searching strategy. Requests send 

buyers to search for resources. When a buyer finds a resource, it ''captures" it Each captured 

resource travels back o he origin of this buyer {or possibTy some other buyer, if 1here is interference 

between the processing of concurrent requests), so that the grant can occur where the req,ues.t 

originated. 

When a request or buyer arrives at any node, any free resource at he node is captured. If there 

are no free resources there1 a buyer rs sent to a neighboring node determined as follows. Each node 

keeps tra.ck of the lates estima e it knows, for the number of resources remalnin91 in each of its 

subtrees. Each node sends a message informing its parent of each new request which has o:rig•inated 

within the child's subtree. The estfma e which a node keeps for the num'ber of resources remaining in 

a subtree, is calculated from the initfal placement of fesources in 1at subtree, he number of requests 

which are known to have originated with1n that subtree, and the number of buyers which the node· has 

already sent into hat subtree. In order to decide on t11e direction in which ta send a buyer, a node 

uses the following Wies. Fi rst ; it never sends a buyer out of its subtree if i estimates that its subtree 

still contains a resource. Second, it only sends a buyer downward o a chitd if it estimates that the 

cl1ifd 's subtree contains a resource. Third, if there is a clloice of chll to 1,hich to, send the buyer, the 

node makes a nondeterministic choice. {Lat.er, we will constrain this decision to a probabilistic 

choice using1 a particular random choice function. This constraint will be important for the complexity 

analysis, bul is not needed fo r the oorrectness of the algorithm.) 

It ls easy to see that any subtree whicll a node considers to contain 110 resources 1 actually 

contains no resources. Thus, no buyer is ever sent out of a sub ree actually contai ing a resource. 

On the other hand, tlie perceived information ahaut the availabflity of a resource in a child 's subtree 

can be an overestimate. in case of lnterference among concurrent requests. 

EXAMP E 

Suppose that request A en ers at the node shown below, and its buyer travels upward unti l it 

reaches an ancestor tha perceives the availability of a resource in one of its subtrees. Then the 

buyer ravels downward toward that resource. Shortly before As buyer reaches lhe resource, 

another request B, arrives at tile node shown. Suppose B's buyer reaches the resourc and captures 
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tl before A's buyer does. When (or before} A's buyer final ly arrives at h·e resource's !ocatio11, it will 

encounter the information that the resource is no krnger there. Then A's buyer wiU be sent upward, 

backtrack ing in its search for a resource. 

11 

A • 
B 

Alth.ough such interference can cause backtracking, the buyer will eventualfy find a resource if 

one exists. This is because no buyer ever leaves a subtree actually containing a resource. 

Seve~al optimizations are incorporated in o _the algorithm, as. follol,!1s. 

1. Buyers, unlike requests. need not be uniquely identifi.ed. Instead, each node keeps track of the 

number of buy.e:rs received and sent and the net lfow of buyers over ea.ch of its. incident edges. 

Caprured resouroes then trav,el in s.uch a way as o negate net flow of buyers and because a buyer 

wil eventuaHy leave a subtree· which does not contain a resource. 

2. Buyers can travel "disc,ontinuously". Assume node v sends a buyer to a chitd node w, thinking 

that there is an available resource in w's subtree. Assume that1 soon thei,eafter, v receives a message 

from w, informing v of an arrival of .a. ne,,.v request Tn w's subtree, and implying that v's previous 

supposition of an available resource as false. Then v knows th at w will eventuaUy send some buyer 

back up to v, at which time II should ~end the buyer Tn another dJrection. Since v knows this wrn 
eventually occur, v need not actually waH for the bu ~r to arrive from w: it can create a new buyer and 

send it in anticipation of the later return of the Ur.st buyer. Since the· first buyer wrn not find any free 

resourc,es in the subtree, this extra parallelism does no harm. In fact, with this optimization. it is no 

longer necessary for w 'to return the buyer at air, since v must Ignore it when it returns to i·t in any case. 

3. If each node kno,ws Mw many resources were initfa!ly placed in each of its chitd ren 'ssubtrees, 

then rt is not even necessary for explicit buyers to be sent upward at all! All that is necessary is ror 
nodes. to send "ARRIVAL" messages upward to their parents, informing them of the arrival of new 

requests in thek subtree. The parent Is able to deduce the number of resources which the chi!d 

woufd like to have sent down (i.e. the number of buyers emanating from lhe child's subtree), from the 

in itial number of resources in the subtree. Ule number of arrivals in the subtree and the ru.imber cf 

buyera. already sent down into the subtree. We wilJ say more in a moment about how thrs deduction ls 

made. 
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If Information about newJy-amved requests {in the form of 11 A.ARIVAL H messages) only flows upward 

in the tree, there is no way th a.t a ch Ud ca.11 deduce th at its parent would like it to send a resource 

upward. Thus, it is still necessary to send explicit buyers downward. let us designate these explicit 

downward buyer messages as 1'BUYEA'' messages. Thus, the algorithm only uses two kinds of 

messages to search for resources: ''ARRlVAL'' messages flow· upward to inform parents about new 

reque:sts1 and "BUYER" messages How downward to inform a child Urn:t its parent would like the C:hild 

to send up a resource. 

The precise deduction which a parent can make about the number of buyers emana1ing Iro m a 

child's subtree ls as follows. 

Let a be the number of "ARRIVAL" messages which have been received by the parent from the 

child. Let b be the number of "BU YER" messages which have bee11 sent by the parent to the child. 

Let p be the number of resources initially pf.aced in the chitd's subtree. Then the number of buyers 

perceived as emanatrng from a child's subtree is rnax(a + b • p, 0) . This number is called the estimate 

of ''virtual buyers" emanating from the subtree. 

That is, If lhe total number of ''ARRIVAL" and '''BUYER" messages indicated above is 110 greater 

than the initial placement, no buyers are perceived as emanati11 g from the su blree. 011 the other 

hand 1 if this total is greater, then the excess is perceived to be the number of buyers. 

Analogously, the chi1d node deduces an estimate of the number of "virtual buyers" it has sent out 

of lts subtree, as foBows. Let a be the riumiber of "ARRIVAL" messages which the child has sent to Us 

parent Let b be the number of ''BUYEA' messages which have been received by the chitd from Its 

parent. let p be the number of resources initially placed in he cl1ild's subtree. Then the number of 

buyers the child perceives that it nas sent out of its subtree (also called lhe estimate of ''virtual 

buyers" sent out of the subtree) ,,:: max{a ... b - p, O). Because of message de1ays, tile chird and the 

parent may drffer on their estimates of the number of virtual buyers. 

In order to make !he actual grants to specific requests, it seems necessary that each specific 

identffied resource "travel" to a pornt of request. origln, in orde; to get prop-eriy pal red with a request 

This travel requires a third !,<:ind of message to be sent around, namely, a specific '' captured 

resource". The algorithm which sends resources around is partlcu!arly simple - resources are just 

se11t in such a way as to negate the net flow of buyers. This part of the atgoritilrn executes 

concurrently with, but has no effect on, the searching part. 
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2.2. formal Description 

In this subsec ion, ·1e present a prngram implemen ing the algorithm described above. A sketch 

o,f a correctness proof is presented in he next section. Primarily, the proof consists of showing the 

correctness of the invariant assertions made at various points in the program. he reader may wish to 

examine the proof while reading the program. 

We assume hat the network is described by a rooted ree T. For uniformity, let Ile root of T have 

an ou tgol ng upward edge. (Messages sent a1 on g this edge win never be rec~l ved by anyone .. ) We can 

then write a single program for all the nodes ,of T, fncluding the root 

Let V denote the set of vertices of T. let RESOURCES(v), denote·· he resourc-es placed at vertex v, 

for each v E. V, and let PLACE(v) = IRESOURCES(v)I for all v. Let REQUESTSM denote the requ,ests 

arriving at v. We assume that al the sets RESOURCES(v) and AEQUESTS{v) are finite. Let 

PA'RENT(v), CHILDREN(v)1 DESCENDANTS(v) and NEIGHBORS(v) denote the designated vertices 

and sets of vertices, for vertex v. 

The kinds of messages used are "ARRIVAL", " BUYER" aod messages corresponding o specmc 

captured resources. 

Prag ram for node v . v ,E V: 

In the program for node v, •1e use RESOURCES as a shorthand for RESOURCES(v}, and similarly 

for the other notation above. 

It is convenient to think of the state of v as consisting of "independen variables" and "dependent 

variables''. The independent variables are just the usual kfnd of variables, \Jhich can be read and 

assigned to. The dependent varlables are virt1Jal variabl'es whose values are defined in terms of the 

independent variables. Thesa vn1ues can be read, but not modified. We can think of the reading of a 

dependent variable as shorthand for a read o,f several independent variables. together with a 

calculation of the function gii/ng lhe dependency. 

Independent Va riabfes 

REQUESTS, for these of requests-that t1riginated at v, 

ACT:IVE, for the set of requests that orig1na ed at v, whlch are still unsatisfied, 

FREE, for the set of resources in RESOURCES th· have not yet been "captured 11 by req,uests, 

GR ANT, for a_ sing le captured resource on its way back to a request, 

ARRIVJ-\ S(w), w E NEIGHBORS. for u,e number of "ARR,VAL" messages received from each of 

vs cl1i ldren, and sent o v's parent, respectively, 
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8UYERS(w), w E NEIGHBORS, for the number of "BUYER" messages sent to v's children and 

r,eceived rom vs parent, respectively, 

NETGRANTS(w), w € NEIGHBORS, for the net flow of captured resources out of v to each of its 

neighbors, 

NEXT a temporary variable which can hold a vertex. 

lniHalization of ndependent Var aMes. 

:REQUESTS = ACTIVE = 0 FREE = RESOURCES1 and all other variables are 0. 

Dependent Variables and their 0-epiendenci,es 

CAPTURED, for the set of resources in RESOURCES which have been captured, 

Dependency: CAPTURED = RESOURCES · FA'EE. 

SATISFIED f,or the set of requests in REQUESTS which have been sattsfied 

Dependency: SATISFIED - REQUESTS • ACTIVE. 

NE BUYERS{w), ·, 'E NEIGHBORS, for the net Uow of buyers and virtual buyers into v from each 

neighbor. {Recall the defin[tion of ;,v,rtual buyers" from tile last subsectla,n.) 

Dependency: If w "' PARENT, then NETBUYERS(w) = min(PlACE(DESCENDANTS) • 

ARRIVALS(w), BUYERS(w)),. If w E CHILDREN, then ETBUYERS(w) = 
•min(PLACE(DESCENDANTS(w) • ARRIVALS(w), BUYERS(w)). 

These two eciuatior,s can be understood as follows. Consfder, for example, the first equation, for 

w .::::. PARENT. If PlACE(OESCENDANTS) · ARRIVALS(w) < BUYERS(w). irt means that the placement 

originaUy given for v's subtree is not adequa e For handling' the requests (arrivals) • hich have 

originated in v's subtree, together with the "BUYER" messages sent dow from w. Therefore, all the· 

resources · 11 •/s subtres are allocated to, requests, either within or outside of v's su tree. Whether the 

net flow of buyers should be regarded as into or outward from v's subtree then depends solely on the 

stgn of PLACE('DESCENDANTS) - ARAIVALS(w). without regard to the number of "BUYER" 

messages received from w. TI1at is, i PlACE(OESCEND; NTS) ~ ARAl1VALS(w}, then the sig11 is 

negative an the net fJo •1 of buyers rs ou Jard from vs subtree while otherwise it is inward; in ,either 

case, its magni ude is ec;unl to IPLACE(DESCENDANTS) · ARRIVALS(w)I, On U1e olher hand, if 

PLACE(DESCE~ DA TS) · ARRIVALS(w) > BUYERS(w) then !:he p,acement originally given for v's 

sub'tiree is adequate for handling lbolh the requests whicl, have originated in v's subtree, together with 

the "BUYER" messages sent down from w. Therefore 1 the net now of buyers is inward and its 

amount is just equal to BUY RS(w), without regard to lhe other two values. The second equation is 

s·milar, with appropria e changes of sign. 
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Another way to understand the eQuaUons is .as fa.nows. Again 1 consider the first equation, for w = 

PARENT. Then ETBUYERS(w) = BUYERS(w) · VIATBUYERS(w), whel'e the latter quantity is the 

number of virtual buyers which v es1imates it has sent to its. parent. Usin,g the expression which was 

derived in the preceding subsection far the number of virtual buyers, we see that. ETBUYEAS(w) = 

BUYERS(w) • max(ARRIVALS(w) + BlJYIERS(w) • PLACE(DESCE DANTS),0).. This is equal to 

min(PLACE(DESCENDA TS)· ARRIVALS(w) BUYERS(w}), as needed. Again, the other calcutatiqn 

fssimilar. 

The remaining dependent variabl1es are: 

NETBUYERS for the total of all the ETBUY:EAS(w), 

Dependency: NETBUYER.S .. :I :v € NEIGHBORSNET8UYERS(w)1
• 

ETFL:OW, for the net flow of buyers into v, 

Dependency: NETFLOW = !REQUESTS!+ NETBUYERS, 

NETGRA TS, for the net flow o'f 9irants ou of V; 

Dependency: NETGRANTS = l:w € EtGHBORSNETGRA TS(w)i. 

he foil owing code is execu ed ,n response to the r.eceipt of any message or reques.t, M. The Jirst 

part of the code does initial processing of messages, upda~ing estimates and sending any required' 

t'ARRIVAl '' messages. After the first par of he code, there •,ill be at most one excess request left at 

the node and if there is such a re.quest leU at the node, then the node is able to service that request, 

either locally or by sending a buye in o a sublree. In the second part of the code, the node decides 

where it can senJice such an excess, request, and it does so. (In case a buyer is sent down into, a 

subt1ree, tl1e subtree is chosen nondetermioisttcally, Later, we will refine the algorithm to use a 

probabilistic choice at this point.) Finally, in the third part of the code, the node processes an excess 

captured resource if it happens o have one,. (It cannot have more than one.) The node can have a 

captured resource ei her because M was a captlm:1d resource message, or because (in the second 

part of the code) the node itsel f captured a local resource. The resource is granted to a local ,request 

if possible; othen ise, i ~ sent 1n such a way as to negate the net flo of buyers into the node along 

some edge. lt f s always possible to process such a captured resource in one of these way.s. 
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/* The following invariants hold at the beginning of any node step. 
NETflOW,,: [CAPTURED!. 
ARRIVALS( PARENT) "" I REQUESTS + }:w E CHJLDRE ARRIVALS(w)]. 
GHANT-= 0. 
NiETGRA, Ts "' I CAPTURE □ I - I SATI sn ED I . .. / 

(Part 1) 

If Mi s a request then 
[REQUESTS : : REQUESTS U {M) 

ACTIVE : = ACTIVE U {M} 
send "ARRIVAL~ to PARENT 
ARRIVALS(PAHENT) : "' ARRIVALS(P.ARE ) + 1] 

If M; "ARRIVAL~ from w then 
[ARRlVALS(w) :: ARRJVALS{w) + 1 
send ~ARRIVAL" to PARENT 
ARRIVALS( PARE.NT) ; = ARJUVALS(PARENT) + 1] 

If M = ~BUY ER ~ then BUYERS(PARE ~) := BUYERS(PARENT) + 1 

1~ Now slightly revised invariants hold: 
ICAPTUREDI < NETFLOW ~ !CAPTURED !. + 1. 
ARRIVALS( PARENT) = I Fl ·QUESTSj !w E CftUORE I\R!HVALS{w)] . 
GRANT,. 0. 
NETGRANTS = jCAPTUREDI - ISATISFIEDI. •1 

(Part 2) 

/ Nex t if here is an excess request, service it. */ 

If NETFLOW = ICAPTURE □ I + then 

if FREE ~ 0 
then 

[choo,se s € FREE 
FREE := FREE - {s} 
GRMff : = Ss] 

else 
[/* Send nBUYER~ dowo into a subtree . ~, 

s :~ (s € CHILDRE~: PLACE(DESCENDANTS(s)) > ARRIVA S(s) + BUYERS(~)} 

choose rEXT ES 
send ~BUYE R~ to NEXT 
BUYERS( N XT) : = BUYERS( EXT)+ 1] 

/• NETFLOW ~ jCAPFUR(O[. / 
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(Part 3) 

I* Process M if Mis a captu red resource message. •; 

If M ·s a resource from w then 
[N GRANTS(w) NETGRAN · S(w) - 1 

GRANT := M] 

/* Send a captured resource. if you have one, toward a request origin. */ 

lf GRAN! ~ 0 then 

/* N TGRANTS = !CAPTUREOI - !SATISFIED] - 1. •1 

[if ACT VE ;: 0 then 
then 

[c hoose r E ACTIVE 
ACTIVE :- ACTIVE - {r) 
output (r,GRANT)] 

else 
[choose w E NEIGHBORS iith ETBUYERS( 

send GRANT to w 
~ETG RANTS( l : = METGRA ffS{w ), + 1 

GRANT := OJ 

3 .. Corre·ctness of the Algor'ithm 

ETGRANTS( . ) > O 

Theorem 1: The gi\len algorithm solves the resource al'location problem. 

Prnof: We claim tha1 the node program given above implements the s rategy 
described informally fn the previous section. We do not give a proof of his 
correspond'ence here. Rather, we argue correctness of he ey assertions of the program 
and give informal arguments for the rest of the proof or correctness of the algorithm. 

The Firs! portion of the algorithm, the in itial processing of lhe first. three kinds of 
messages, simply sencls the appropriate "ARRIVAL'' messages and records the proper 
changes to the varfous sets and counters. 

For any of he thr e kinds of messages, node vis finding out about a new request that 
needs to be processed In some cases v will need to do more to help process the request. 
IHhe message ls an "AfiRIVAL''; and node v thinks that lhe corr sponcling request can be 
serviced in the sender's subtree, u,en v has 110 further work to do. I the message is a 
reques or an "ARRIVAL", and If node v thinks Iha It is impossible to sel"Vice tha request 
in v's sub ree, then lhe "ARRIVAL1

' message sent upward by v will ,be counted by v's 
parent in Hs estimate of virtual buyers emanating from v·s subtree. Thus, af er sending1 this 

. "ARRIVAL" message upward, v wlll have no Uri.lier 1ork o do. Also, if the· message is a 
"BUYER" and ~J tfl inks ttrnt it is impossib1e to service the request in v's subtree, then v 
need not do anything more. However1 If lhinks that tl1e new request can be serviced in its 
St,Jbtree, then it has some rurtherwo~ to do,, in the second po Ton of ti1e algorithm. 
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The second portion of the algorithm manages the disposition of any excess flow of 
requests in o the node. We must first check that the number of excess requests after the 
initial processing of a .sing le message can only be O or 1. That is, we must verify that 
[CAPTURED,!< NETFLOW < !CAPTURED! + 1 between Parts 1 and 2 ot the code. 

A quick ch eek of the cases sh 0:ws that the only way this could fai1I to be true ts if M = 
"ARRIVAL" rom a. child s, and the result of processing M causes NETBUY,ERS(s) to 
remain unchanged, while NETBUYER8(PARENT) decreases. In this case. we can deduce 
some relationsh ips among the values of vs local variable.s, at the beginning oi: the node 
step. 

For every t E CHILDR.E: , it must be the case just before execution of Part 1 that 

-NETBUYERS(t) .. min{PLACE(DESCENDANTS(t)) - ARRIVALS{t), BUYERS'(t)), 

so that 

-NETBUYERS(t), < PLACE(DESCENDANTS(t)) • ARAIVALS(t). 

Tha: is, 

NETBUYERS(t) 2: ARRIVALS(t} · PLACE(DESCE DANTS(t)). 

Since NET8U-YERS(s) remains unchanged, then it must be lhe case that 

- ETBUYERS(s) :I: PLACE(DESCENOANTS(s)) - ARRIVALS(s). 

(If they were equal1 then PLACE(DESCENDA TS)(s)) - ARRI\/ALS(s), -
rnin(PLACE(DESCE DANTS(s)) - ARRIVALS(s) 1 BUYERS(s)) , and an increase to 
ARRIVALS(s) would cause a change o the minimum, thereby chang·ng NETBUYERS(s).), 

Therefor,e, NETBUYERS(s) ;II!: ARRIVALS(s) - PLACE(DESCENDANTS(s),) , and so 

NETBUYERS(s) > ARRIVALS(s) • PLACE(DESCENDANTS{s)). 

Since NETBUYERS(PARENT) decreases, it means lhat NETBUYERS(PAAENT) .. 
P ACE(DESCENDA TS) - ARRIV LS(PARENT). 

Now consider~ ETFLOW = IREQUESTSI + NETBUYERS. The right srde is equal to 

[REQUESTS! + NETBUYERS(PARENT) +- NETBUYERS(s) + l:tECHlLDREN, 
t~sNETBUYERS{w). 

By previous results, this is, in ·tum, strict~y greater than 

IREQUESTSI + PLACE(DESCENDANTS) - ARRIVALS(PARENT) 

+ ARRIVALS(s) - PLACE(DESCE DANTS(s}) 

+ IlECHILOREN, l;t=s ARRIVALS(t) · PLA.CE(DESCENDANTS(t)). 
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By the ARRIVAL invarian, this is equal to 

PLACE(DESCENDANTS) 
PLACE( D ESCEN D.ANTS(t)), 

"' PLACE(v). 

PLACE(DESCE DANTS(s}) 

Thus. NETFLOW > PLACE(v). Ho 11ever, the original invariant says tha NETFLOW = 
ICAPTUREDI, and ICAPTUREDI is never permitted to be greater than PLACE(v), a 
contradiction. 

We have thus shown that ICAPTUREDI < NETFLOW < ICAPTUREDI -+- 1 at the point 
wil,ere that claim is made. Thus, there is at: most one excess request that reci:uires 
disposition. In the case where there is an excess request, node v must service that request 
·iii its subtree. There are two poss1btlities: eHher v can service he request locally, or it 
cairmot If FREE ¢ 0, then a 'free resource is captured to service he excess request If 
not, then a "BUYER " message mus be sent down into some subtree. We must show that, 
in the event FREE = 0 ;, it is possible to send such a "BUYER" message. That is we must 
check that S '#- 0 at the pia.cewhere that claim is made. 

Assume not. We will rnake some deductions about the values of the variables at the 
point where ha:t claim is made. At hat point, we know that FREE = 0 so hat PLACE(v), 
.. ICAPTUREDI. We also know that 

NETBUYERS(PARENT) < PLACE(DESCEN0ANTS) · ARRJ1VALS(PARENT), by 
definition of NETBUYERS. 

Then 

NETFLOW - ,!REQUESTS! + ETBUYERS(PARENT) + sECHILDRE ETBUYERS(s), 

< !REQUEST$! + PLACE(DESCENDANTS) ARRIVALS{PARE T) + 
l: sECH I LOREN N ETBUYERS(s). 

Because S = .0, it follows that 

PlACE(DESCENDANTS(s)) · ARRIVALS(s) < BUYERS(s) or each s E CHILDREN. 

Therefore, 

NETB.UYERS(s) = -(PLACE(DESCE DANTS(s)) - ARAIVALS(s}). 

Thus, lhe right-hand side of t11e next• o-last ine uality is equal to 

!REQUESTS! + PlAC (DESCENDANTS) .AARIVALS(PARE T) 
!sECHILDRE (PLACE(DESCENO TS(s)) • ARRIVALS(s)), 
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This exp:ression is, in tum, equal to 

PLACE(DESCENDANTS) • I.s€CHILDRE PLACE(DESCENDANTS{s)), 

- PLACEM ~ JCAPTUAEOI, 

Thus, NETFLOW < !CAPTUR,EDI, a contradiction. 

Thus, we nave shown tha it. is atways. possible o servrce an excess re.quest. 

Next, we must show that NETFLOW = ICAPTUREDf between Parts.2 and 3 otthe code. 
This means that after servicing any excess request., here is no remaining request · o be 
serviced. Previous o Part 2, ICAPTUREDl :$;. NETFLOW ~ ICAPTUREDI + 1, If 
NET FLOW was equat to ICAPTUREDI + 1 then the body of the conditional was executed. 
If the first case of the conditional held (i.e. the case for FREE :t- .0) then ICAPTURED,I' is 
increased by 1, so the invariant is restored. Otherwise, a "BUYER" message was sent to a 
cllild, s, for which PLACE(DESCE DANTS(s)) • .ARRIVALS(s} > BUYERS(s). This caused 
NETBUYERS(s) to increase by ,, , thereby tnc.reasing the value of NETFLOW and estoring 
the invariant 

The third portron of the algor[thm manages the ravel o captured resources back to 
requests. First, no e that there can be only one captured resource assigned to GRANT at 
any node in a sin le step, since he two assignments to GRANT cannot both be executed 
during a single step. Jf the message rs a captured resource, !hen no progress is done until 
the clause con ains the second grant. Otherwise, this clause is skfpped. We must argue 
that such a neighbor exists rn this case. 

Assume not. Theo NETBUYERS(s) "S; NETGRA TS(s) for all s E NEIGHBORS. Now1 

ETFLO = !CAPTURED!, so that jCAPTUREOI =- jREQUESTSI + NETBUYE~St 

< IREQUESTSI + NETGRANTS, 

= JREQUESTSI ◄- jCAPTUREDI • jSATISFIEDj 1 

"" IA:CTIVE! ICAPTUREDI • 1. Therefore, 1 < IACTIVEI, a contradiction. 

Thus. we have checked that the key assertions hold and the code can be executed at 
all points, We have claimed (and tried to argue} that he algorithm follows the s.rategy ,of 
the preceding section, in settfng up a tlo\' ,of buyers from requests to resources. 
Even ually1 the values of all the ETBUYERS(w) variables i ll stabilize, and the values 
taken on by corresponding NETBUYERS(w) variables at eilhe-r end of a single 1;;dge will be 
negations ,of each other. (We use the tact u,at there are only fin itery many requesls l1ere. 
Eventually, no ur her requests v ill arrive, so no add1 io11al "ARRIVAL" messages will be 
sent There is a bound on how many ''BUYER" messages will be sent downv ard along 

· any edge. Therero e, thete are only finitely many total "ARRIVAL" and "BUYEH" 
messages which ge sent, so that eventually 1 th.ey will all be d tivered.) Sfmilarly, all the 
REQUESTS. ariables will eventually siabiliz.e. 

Final y, we must consider the travel of captured resources tor quest origins. Define a 
new variable. MESSAGES{ 1) at node v, wher,e w E NEIGMBORS(v). Its value is defined to 
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be the number of captured resource me.ssages. which have be-en sent from w to v but ha\le 
not yet ar ived. (Of course, neither v nor w actually "knows" the vaJue of this variab e.) 
For .any ime, t after the NETBUYERS(w) and REQUEST values have stabili2ed, any node 
v, and any w € NEIGHBORS(v), le A(v,w, ) be the· v,alue of ETBUY,ERS(w) -
NETGRANTS(w) + MESSAGES{w) al vat time t. Note that A(v,w,tJ = -A'(w.v,t) in all cases. 
Let SUM{t) denote ! IA(v,\1,t)j . · e claim that any event which nvotves the receipt of a 

V 
captured resource message does not change SU A(t) whi le any event which involves Ul,e 
sending of a captured resource message decreases SUM{t). Therefore, captured r,esouroe 
messages wil 11ot be sent forever: they wnll eventually subsfde at which t ime they must 
have found a ma ching request. 

First, co,nsider an event involvin,g the receipt of a captured resource, by v from w. The 
only ie r in the sum which is affected is A(v,w,t). The receipt of the messages causes v's 
va ues of MESSAGES(w) and NETGAANTS{w) both to decrease by 1, so that A(v,w,t) Is 
unchanged. Therefore, SUM() is unchanged. Second, consider an event involving, til·e 
sending of a captured resource by v, tow .. The on.ly terms in lhe sum which are affected 
are• A(v,w,t) and A(w,v,t}. At. time t just prior to the sending event, it must be hat v 's value 
of NETBUY,ERS(w) - NETG'RANTS(w) > 0, which lmplfes that A(v,w 1t) ) 0. The result of 
sending the message is to increase NETGRANTS(w), which rneans that A(v,w,t) gets 
decreased by 1. Therefore, IA(v,w,t)I gets decreased by t. Thus, al'so, IA(w,v,.OI gets 
decreased by 1 so that SUM(t) gets decreased by 2.1 

4. Monotonjcity Analysis 
The rest of the paper is devoted to an analysis of the time requirements of the algorithm. 

Specifically, we measure the sum of U e times between requests and thelr correspo:1dlng grants. For 

th,e purpose of carrying out the analysis, certain restrlct1ons will be made. These res rictions wi ll be· 

introduced as needed. 

We begin with some basic definitions. Next, we introduce two res rictions which are needed 

throughout the analysis.. Then we define and categorize the complexity measures of interest. We 

then prov~ a basic combinatorial result, and use it to prove the monotontcily oi the number of 

"BUYER" messag_es as a runction of interarrival time. Finally, we show that the expected running 

time of the ru orithm is bOlmded by the expected time for the sequential case of 1he algorithm. 

4 . 1 .. Definitions 

Let N denote the set of natural numbers including 0, let. R + denote the set of nonnegative reafs. 

If f is a numerica11 kmctlo;i •,1ith domain V, then extend f to subsets of V by f(VV) = :r
11 
E f(v). 

Let T be a rooted tree. We write veuicesr imerna1,.. and leeves1 to denote the indicated sets of 

vertices of T. Let root r denote the root. If v ( vertlces11 we wr1i e desc/v) tor the set of vertices of T 

which are descendants of v (including v itself), paumtrfv) ror l's parent in T, children,,{v) for v's · 

children, an neighborsrf ) tor chi ldren (v) U {parentr(v)} . 
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If v fs a vertex o,f T, let heightrfv) denote the maximum distance from v to a leaf in its subtree. If e is, an 

edge in T, then deffne heightrfe) to be the same, as height1{v), where v is e's upper endpoint. let 

height T ,denote height1c(rootl 

A placement for Tis a function p: verl.icesT - N, representir,g the number of resources at each 

vertex . We wr~e tora!(p} for p(vertice'¾) , the total number at resources in the enti;r,e tre,e. We say that 

pis nonnull provided total(p) > 0. 

A weighted tree, T, ls an undirec ed, rooted tree with an associated probability density function, 

rpT, on the leaves of T, such that ~rM > 0 'for all leaves v. (This assumption is made for technical 

reasons, so that we can normalize probability functions without dang.er of dfviding by 0.) If T is a 

weighted tree, v E ioternaly, and S i.s a nonempty subset of chlldreny(v) , then let random7,s denote the 

probability function which returns s ES wlth probabi lity q,,r(descy(s))/q:,T(desc1 (S)). Thus, random1,s 
returns s with probability proportional to he sum ot the probabfl'ty function values fo,r th,e 

descendants of s. 

4.2. lnitia Restrictions 

For the remainder of Sectlon 4, we assume that u,e following two restrictions hotd. 

R,es,hietion 1: 

Tis a weighted ree, and the nondeterministic clioice step in Part (2) of th·e algorithm uses a call to 

Aeslriction 2: 

Deli.very time for messages is always exactly 1. 

Restriction 1 descr1bes a particular method of choosing among alternative search directions. This 

method does not use all he information available during execulion, but only the "stat'c " probability 

distribution information available at the beginning of executTon. One might expect a. more adaptive 

choice method to work better; however, we do not know how to analyze such strategies. 
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Restriction 2 has the effect of restricting, the executrons under consideration: fo r e1Carnple, all 

messages. between any two nod1es are pipelined • they ar ve in the order in which they are sent 

While we would like to understand the behavior of the aJ,gori hm in the presence of variable message 

deHvery times, such analysis appears to be more difficult. 

4 .3. Cost Measures and Prerimina ry Resulls 

A request pattern, r, is ai finite sequenc,e of elements of vertice1 x R + whose sec,ond components 

are monotone nondecreaslng-. A request pattern represents the sequence of requests that occur, 

their locations and times. If r ls a request sequence, then length fr) denotes is length. 

A choice sequence 1 c, for v E internalT is an infinite sequence of elements of children1M, with 

infinitely many occurrences of each child. If e "" {c) is a co11ection of ,choice sequences one for 

each v E internalT then C: can be used in plac,e• of probabilistic choices in an execution o,f the 

algorithm as 'fotlows. Each internal node, v makes choices among Its children by choosing the first 

unused element oI c~ satisfying the inequa1 ity PLACE(desCr(s}} > ARRIVALS(s) + BUYE,RS(s). That 

is, v chooses a chi!d, s, for which v thinks there are stil remaining resources in s's subtr,ee. 

Let p be a placement for T. Let r be a request patlern1 and C == {c) a collection of choice 

sequences, one for each v E internalT, Then costT,p(r,CJ is defined _to be he totru ·me rorn requests, 

to corresponding grants, if requests arrive according to r and e is used in place of probabilistic 

choices. (With suitable conventions for handling events which happen a the same time, the 

execution, and hence he cost is uniquely defined for fixed rand e.) 

The cost measure defined above can be broken up into two pieces, as follows. Let 

searchcost T.pfr,e) be the total of the times from re.quests to corresponding captures of resources, if r 

and C are used as above. Let ,eturnco:sr r.,/r C) be the total of the times from captures o 

corresponding grants of resources. 

Now we incorporate a probabilistic constructfon of e into the cost measure. If r is a request 

pattern, let cost1 (r:) denote u,e expected talue of costT (r,C), where C is constructed using fr· 
.p . ,µ 

(That ls, £or each v E ln ernal1 , the sequence c,.. is constructed by successive choices from among 

childrenT(v)1 choosing s with probability ,rpidescT(S))/cp1(desc1 (S}), where S = children1 (v). Among 

the sequences t11ereby generated a:re some for which it is not the case that each child occurs 

infinitely often. However, these sequences form a set of measure 0, so tlr t we can ignore them in 

calculating he expected cost measure.} We daim that costT,p(r) is exactly lhe expected total time 

from re.quests o grants, provided the algorithm is run in the normal way, using probabUistic choices. 

ha't is, the two strategies of constructing choice sequences independent ly of he algorithm and 

carrying out l e probabilistic choices on line give identrca; results. 
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Let f de note an arbl rary pro babitity dens1 y function whose cl omacn co nsis.ts of positive reals. Extend 

the domain of ttie function cosL to the set of such functions by defining cosr7 (!Ho be the expected 
~~ ~ 

value of coslr,P(r), where r is of lengU1 total(p), wUh its successive locatlons chosen independent y 

using the distrlbution q,1, and ils successive interarri val times chosen using f. That is, at the time the 

algorithm begins, and at the time of each ·request, the probability that the next arrival oc,eurs exactly t 

units later is f(t). We will be primarily ,interested in this cost, cost
1

,p<f}. 

We define searc. he ost r./r) 1 sea,chcosr r.if) , etc .1 analogous ly to our earlier definitions. 

The following claim is true for all domains for which the definitions are valid. 

Lemma 2: cost1 = searchcost1 " + retumcostT . 
~ ~ ~ 

Proof: Straightforward. I 

Next, we wi'II re late the given cost measures to the total numbers of varlous kinds of messages sent 

durlng the execution of the :algorithm. ote that during the execut1on of an algorithm, the estimates 

of "BUYER " and virtual buyer messages sent along an edge can be dtfferent at the two ends of the 

edge. Howe\ler, after the entire execution of the algorithm ls completed, the discrepancy disappears, 

so that the foll owi rig definltions are u n ambtg uou s. Let. brw m r.s/ r, e) denote the total number of 

"BUYER" messages sent on all edges during the execution of the algorithm on r using C:. let 

rtbnum 7 fr.CJ denote the to al number of virtual buyer messages sent on all edges during the ,p 

execution of the algorithm an r ustng e. Let gnumr./r,C} denote the total number of captured 

resource messages sent on aH edges during the execution ot the algorithm on r l sing e. As be lore, 

deh ne bnum T p· (r) 1 bnu mT (f) , etc. 
' .P 

Because of the iacl that message deHvery time is assumed to be exactly 1, there are some 

relationships betv. een the measures describing time costs and the measures descrfbing numbers of 

messages. The f0Uowi11g lemma. describes a set of r,elationshfps among the various measures, Note 

that all the statements are true over au possible domains of definition. 
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t ,emma 3: (a) searchcos - 5 bnumT + vbnumT . . p ,,p ,p 

(,b) re urncos ,P "' gnun1.r p' 

(c) gnumT ·s bnum..,. . + vbnum1 . . ,p -- , ,p ,P 

(d) cos .., s 2(bnumT + vbnumT ]. ,,., ,fl ,p 
Proo f: (a) This inequality is true because buyers continue to make progress up, and 

down the ed.ges oI the tree; all time used by the al1gori hm is occupi,ed by the ransmlsslon 
of appropria e buyer and virtual buyer messages. The reason that we have an inequality 
rather han an equalion here is that buyers are permitted to travel "discontinuous~" , as 
described in Section 3. 

(b) This equation is true because captured resources travel continuously via captured 
resou ce messag:es. 

(c) We mus show that each captured resource message always moves tn such a way 
.as to "negate" a buyer or virtual buyer message. This is a bit. tricky to argue, because of 
the dlscrepancf:es between estimates at opposite ends ot an edge. 

A captured resource only moves over an edge H the net How of buy,ers into he node on 
hat edge, as estimated at lie near ,endpoint, is positive. By moving over that edge1 the 

captured re-source negates an incoming buyer or vlrtual buyer along that edge, as 
estimated a:t the near endpoint Because of the assumption that all rnessages take exactly 
time 1, by !he ime the captured resource reaches the far endpoint, the negated buyer ,or 
virtual buyer is also counted In he estimate of outgoing buyers and vi rtua bl,1yers at the 
opposite endpoint. The a:rnval of the captured resource at the far endpoint can thus be 
regarded as negating an ou•going buyer or virtual buyer at the far endpoint as welt 

(d) Straightforward by l emma 2 and (a)•(c).I 

Now, we introduce an additional restriction, to remain in force for the remainder of Section 4, 

Rest ricUon 3. 

T has all leaves at the same distance from the root and rand pare nonzero only at leaves. 

As usual, ti 1e following lemma is intended to hold for all valid domains of defi 1ltion, 



22 

Lemma 4: bnumT,p = vbnumT,p' 

Proof: We sketch the .argument for tixed rand e. For a particular edge, e, let a
8 

denote 
the numb-er of request arrivals below e, be de·note 1he number of "BUYER" messages sent 
downward along e, and Pe denote the rn.1mber of resou ces pTaced below e, in the 
e.xecuUon for rand e. Since all resources get :matched to requ,ests, w. ,e must have ae + b' 
~ . P,

6
, so that the number of virtuail buyers sent over edg.e ,e is exactly max(ae + be· Pe• o, 

=a. +b ~p. e e e 

Now consider all the edges at any particular height h in he tree. Sinoe all resources 
and requests are at the leaves, and tile branches are all of equal length, it is clear that 

Lhe!ghty(e) .. h 8e = total(p) .~ tie[ghly(e) "' h Pe· 

Therefore 

2:lleighl (e) - h be = }:heighly(e} ., h (ae + be . p j, 

Tha is the numbers of buyers and virtual buyers sent ov,er edges of l1e!ght ham equal. 
Since this is tme for all h, tihe result follows.I 

Theorem 5: cosL :s; 4(bnumT ). , ,p ,p 

P roo,f: Immediate from Lemmas 3 and Restriction 3.1 

Thus, in order o obtain an upper bound on cost1 (t) i suffices to prnve a bound for bnumT (f). 
~ ~ 

4.4. A Combinatorial Resu It 

This subsection c,ontains a key combinatorial result which viii be used in the subse uent analysis. 

We model the behavior of l11e algorithm at a: single node v. The children of v are modelled as a set of 

bins for resources. (Here, we do not concern ourselves about tl1e tree structure beyond the children.) 

Let c be a choice sequence for v. Each b1n sis initialized to contain a number p(s) of resources. 

The a rival of messages at v is described ,by a script, S. A script is a finite sequence of symbols, 

each of which is either a bin number s or an "X". A bin number represents lhe arriva.r of an 

"ARRIVAL'' message from the specified child. The symbol X represents the arrival of a ''BUYER" 

message from is parent. 

The processing of s ript S on c a11d p Is. as follows. The elements of S are processed 

sequential !y. 

If S{ i) is.: 
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s E bins, then 

x. 

if bins is nonempty. 
then sub ract 1 from the number of resources ins 
else if some bin is ~onempty then . 

[SELECT the first unused element of c describing a ~onempty bin, t; 
subtract 1 from the ~umber of resources int] 

th.en 
if some bin is nonempty then 

[SELECT the first unused element of c describing a nonempty bin 
subtract 1 from t he number of resources in ] 

t ., ,, 

Define SELECT(S,c,pJ)' to be the number ,of times bin i is SELEGTed during the course of 

processing Son c and p. (Note that a bfn is only said to be SELECTed when he choic•e sequence is 

used to choose it, and not when it is explicitliy chosen by the script. Define cho;ce(S,c,p,j} to be equa · 

to k provided that when S(i) is processed on c and p1 the kth elemen of c is used to select a bin. (If no, 

el,ement of c is used, then choice(S,o,p,i) is undefined.) It follows that SELECT(S c,p,i) "" 10: 
c{choloe(S,c,pj)) - i}I, 

For any script. S, let bfrmaquence(S) denote the subsequence of S consisting of bin numbers. 

Script Sis said to dominate .scrip! S provjded that: (a) T "" T' , here T = binsequence(S) and T' =i 

binsequence(S') , (b) the total number of X's in Sis at least as great as the total number of X's in S' 

and (c) for each i, he number of X's in S preceding T(i) rs a least as great as. the number of X's in S 

preceding T'('i). The main result of tl1is section ls that, if S dominates S', then SELECT(S,c1p,t) ~ 

SELECT(S' ,c,p,i} for all c, p and L 

We say that an interchange of two consecutive elements of a script S js ,ega, provided that the 

first element of the pair is an X. We say · hat a script S' is reachable from a script S if S can be 

transformed to S' by a series of leg.al interchanges. Noe that S dominates all scripts S' reachable 

from S; rnreover, if S dominates S',, then S' can be augmented wfth some suffix ot X's1 to a script 

which is reachable from S. 

Lemma s~ For any scrips S and S' such that S' rs reachable from S, and for any 
choice sequence c, placement function p and bin i, 

SELECT(S,c,p,f) > SELECT(S'',c,p,i). 

Proof• We prove Lhis lemma by showrng that if S' is reachable from S by a single legal 
interchange, then the inequality holds. The lemma follows by induction on the number of 
l,egal interchanges. 

Frx S, c, and p. Assume that S' is obtained from S by interchanging sm = X with 
S(j + t). ff sa + 1) = X1 then s = S', so the result is obvious. So assume SU + 1) "" s E 
bins. There are lhree cases. 

Case 1: Bins rs empty alter proce sing S(1 ) ... S,U-1} on c and p. 
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hen choices using c are ma.de to bo h S and S' at b otil steps j and J, + 1. Thus, 
choice(S,c,p,i) = choice(S',c1p,r) and choice(S,c,p,j + 1) = choice(S',c,p,j 1). The 
number of resources remaining in each bin after step j + is the same for Sand for S1 and 
therefore processing continues identically for S aind S' after that point. Thus, 
SELECT(S,c,p, i) = SELECT(S',c,p,i}. 

Case 2: Bin s contains more than one resource after processing 8(1 ) ... S(j-1) 011 c and 
p, or else c(choice(S,c,p,j))i is not bins. (That is, the bin selected by the chorce made at 
step i is not bins.) 

Then the effect of the pair o steps j and j-+ 1 is the same for both Sand S,': a resource 
is removed from bin s and a resource is removed from bin c(choice(S,c,p,j)). (When 
processing S, the choice from c occurs first. while when processing S', the explrci:t 
removal from s occms first, but the ne eftect is the same.) Subsequent processTng of the 
two scripts will 'be fdent:rcal, and once aga·n, SELECT(S,c,p,i) = SELECT(S\ c1p,i). 

Case 3: Bin s contains e:xactly one re.sou ce after processing S(1) •.. SU-1) , and 
c(choice(S1c,p,j)) :.:: s. i(That is the bin selected by the choice made at step j rs s.), 

In this ca.se, the processing of S uses choices from cat bo h steps j and j + 1, because 
the choice of sat step j removes the 1ast resource from bln s, and so a choice must also be 
made a · step j + 1. The processin91 of S' does not need' a choice at s:tep j, al hough it is 
forced to choose by the X at step j + . Thus, in both cases, step j removes. the last 
resource from bin s, while step j + 1 makes a choice using c. Then choJce(S,c,p,j + 1) = 
choice(S' ,c ,p.j + 1 }; that is the same entry in c is used at step j • In both cases. The 
combrned erfe.ct of steps j and i + 1 on the bins is the same f,or the two scripts. Subsequent 
processing is again i entical, so SELECT{S,c.,p,i) = SELECT,(S' ,c.p,f) for bin i # s1 and 
SELECT(S,c,p,s) = SELECT{S' ,c,p,.s) + 1 > SELECT(S' ,c,p,s).I 

We can now sta e the main result or this section. 

Corollary 7: For any scripts S and' S' such tha.t S dominates S' and for any choice 
sequence c, placement func!Lon p and bin i, 

SELECT(S,c p,i) ~ SELECT(S',c,p,i). 

Proo,f: Let T be an augment:::ition of S' by a suffix of X's, such that T fs reachable from 
S. Then Lemma 6 fmplies that SELECT(S,c,p,l) ~ . SELECT(T,c,p,i). But the latter !em1 is 
obviously at least as great as SELECT(S' ,c,p,i).D 

4.5. ExpansimJs 

In tl1is subsectio!l, e show hat the number of "BUYER" messages sent is a monotone 

nondecreasing function of the fnterarrival ime of the arrival d istribution. We do this by comparing 

particular pairs of exec tions. 

For n E N, let [nl denote {1,, ... ,n}. If a E Rand r = (v
1
,t1)iE [llJ' is a request pattern, then a,, the 

e pansion of r by a, is %a reciuest pat ern (vi,at1}iE[kJ" hat is. ar represents the reqL1est pattern In 
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which the successive requests occur at th,e same locations as in ,r, but in which the times are 

expanded by he constant fact,or a. 

We will compare executions for request pattern rand request pattern ar, using the same choice 

sequence. We require a technical restric ion, just to avoid the complications of having to consider 

multiple events occurring at the same node at the same time. in either execution. A request pattern1 r, 

is said to be a-isolated provided that no two requests ,occur in rat the same ime, and prov,ided that 

the fol lowing holds. II t1 and t
2 

are wo times at wl'l ich requests arrive in r, where t
1 

¢ t2, and if k is an 

integ,er, then the following are true: (a) t1 • t2 
* 2k, and (b) t1 • t2 'i:- (2/a)I<. 

The next lemma is crucial to ,our analysis. Its ruth was first observed empirically, and· hen proved 

analyUcatly. It says that the number of "BUYER 11 messages sen during an execu ton cannot fncrease 

if tHe request pattern is expanded by a constant whic,h is greater than or equal to 1. 

Lemma .S: If a > 1 and r is a-i,solated, then bnum1 . (r,C) ::S b:numT. (a,r,C) . . p ,p 
Proof: Fix T, p and C. Let bsent(r,e,t} denote the nurnber of ''BUY:E:W' messages sent 

along edge e, in the executron for r (ustng T, p and C)i, up to and including1 time t. Let 
brec(r,v,t) denote the number of "BUYER" messages received by vertex v, in the execution 
for r, up o and induding ime t Let arec(r,e,t) denote the number of "ARRIVAL" 
messages received along1 edge e in he execution for r, up o and inc.luding time We will 
show the following:_ 

Claim: 

This is a stronger claim han required for the lemmai, since it shows an inequality not 
only for the total number of ''BUYE,R" messages, but for the number along each edge up 
o corresponding time.s. 

Fact 1: arec(r,e,t helght,-(e)) = arec(ar,e,at + 11eigh~(e)). 

lhFs is so because he nu 1ber of requests arriving in re-quest sequencer by trme tis 
the same as the number arriving in request sequence ar by ·rrne at, and messages just now 
up lhe tree at a steady rate. 

The rest of the proof proceeds by induction on height1(e), starting with heigh~(e} "' 
height1, and orking downward towards the teaves. 

In this case, e's upper endpoint is rooly- Tile actions of rootr are completely 
determined by the "ARRIVAL" messages it receives. which are the same a . corresponding 
times in the two executions, by Fact 1. The Claim follows. 

Inductive step: helgh½,(e) < heigh 1 
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Let v be the upper endpoint of edge• e, and the lower endpo·nt of edge e'. 

Fact 2: brec(r,v.t + heightTM) < brec{ar,v,,at heigh 1(v),). 

This is so because brec r,v,t + heigh 1M) .. ooent(r,e', heightrM 1) because all 
messages take exactly Ume 11, "" ,bsent(r,e' t • 2 + ileight,.(e')) < bsenl(ar,e' a( -2) + 
heigh~(e' )), by inductive hypothesis, = bsent{ar,e' ,a.(t-2) + "1 + heightr{v}), -
brec(ar,v,a(t•2) + 2 + helght.rM) $ brec(ar,v a:t heigh~v)), since a(t•.2) + 2 $ at. 

Now ,let us consider the situation from v's viewpoint Node v is comparing two 
execullons, the first for rand the second for ar. All v sees is its incoming "ARRIVAL" and 
"BUYER'' messages and v uses the same choice sequence in botil cases. At 
corresponding rmes in the two execu1ions i.e. t + heightT{v) in the first execution vs. at + 
heigh _ (v) in the second execution), tihe same number of" ARR VAL" messages have been 
received along each edge (by Fact 1 ), and an fnequality ho1ds for the number of "BUYER 11 

messages which have been received (by Fact 2) . We will show the needed Inequali ty for 
the number of " BUYER" messages sent by v along each edge, l.lP to co rr,esponding times. 

Fix any time t We compare the first. execution up to time t + heighlTM with the 
second execution up to time a: + heightrM· We claim that this situation is modelled by 
he combinatorial problem presented in the precedlng subsection. First, we represent v's 

inputs in each of the two executions by a scrip,t, i.e. a sequence ,of X's and "bins" lhe latter 
of which are identified with ch .ldren of v. An X mod'ers he arrival of a " BUYER", whi!e s E 
bins models !he receipt of a "ARRIVAL" message rrom s. (The fact tha r is a-isolated 
means tha no o of v's inputs occur at the same time in the same execution, so a unique 
sequence can be obtained in each case.} Let S and S be lhe scripts for the first and 
seco 1d executions, espectivery (up to the ind icated times). The c laims in the preceding 
paragraph imply lhatS1 dominatesS. 

We claim that lhe processing described 'or he combinatorial prob fem models the 
procesuing carried out at v during execution of the algorithm. In particular, a SELECT of a 
bin s, if i · occurs, models the sending of a "BUYER'' message to s and associated 
reduction of v's estimate oI the number of resources remaining in s's subtree. With the 
given correspondence between the combinatorial problem and the executions, the 
conclusion of Corollary 7 transla tes immediately into tile Claim.I 

Lem.ma 9: IF a~ 1, and r is a-isolated, then bnumT,p(r) ~ bnurnr,p<ar). 

Proof; By Lemma 8, taking expectations.I 

Define bnum1.ia,I) to be the e}Cpected value of bnumria.r), where r is chos!m accord ing to (1)1 

and f. he nex theorem states that he expected number ,of "BUYER" messages ls a mono,tone 

· nondecreasing funcrlo11 of the interarriva lime of the request dis r ibution. 

Theorem 1 O: (.i) H a >: 1, ·then bnumT.p(f) s bnumT,p(a,f), (b) U O < a s b, then 
bnum1 (a,[) < bnumr (b t), ,p ,p 
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Proof: (a) n a request sequence is chosen according to T and f, then wi h probabiUty 
1, it wm be a-isolated. The result then follows from lemn1a 9, by taking expectations over 
r. 

(b) Let g be the probability density function defined by g(at) = f(t). Since b/a > ·1, we 
can apply Part (a) to b/a and g, obtain-ing bnumT,p(g .. l <. bnumT,p(b/a,g). Bu · bnumT,p(g) 
= bnumT (a,ij and onumT (bla;g) = bnumT (bJh y1eld1ng the result. I ,p ,:P ,P 

4.6. Summa:ry of MonolonicUy Ana1Wysis 

ln this section. we have made the following estr'ictions, repeated here for convenience. 

Rest rlc non 1 : 

T ts a weighted 1ree1 and the nondeterminisf c choice .step in Pa.rt (2) of the algorithm uses a call to 

randolllr,s· 

Restriction 2:: 

Delivery time for messages is al.ways exactly 1, 

RestricUon 3: 

T has all !eaves at the same distance from he r,oot. and r and pare nonzero only at leaves. 

The major results we have proved in this section are that the expeded response time is closely 

approxima ed by the expected number of "BUYEH'' messages {Theorem 5) and that he expected 

number of "BUYER" messages is a monotoncc funcU.on of the interarrival lime (Theorem 0). We can 

combine these two results, obtalnrng Lhe following: 

Theo em 1: cost~ (f) < lim
8
_...,.,bnumT (a,f). ·~ ~ ~ 

Proof: Consider what happens to the value of bnumr (a,f) as a increases. This value 
is mono 011 ically nondecreasing by Theorem o. Also, 1tis bounded above, because 110 

execution causes more "BUYER'" messages to be sent on any edge than the number of 
resources initially placed below hat edge. Tllerefore, ,he limit exists. The result fo llows 
imrnediatefy from Theorems 5 and 10.1 

Tha is, the ,expected cost of the argorithm for ar,1y probabfl1ty functiont f, is bounded in terms o'f the 

limillng ,case of the algori 11111 1 as the fnterarrival time approaches inf1n[ty. But note that as the 

interarrival time approaches inlinity, the algorithm gravitates to r.iards a purely sequen ial algorithm -

one in which each reql1est gets salisried before he next one arrives. This kind of sequent!al algorithm 

is amenable to analysis of a mor traditional kind, the subject of the' next section of tl1is paper. 



28 

It seems Quite surprising that the sequential case is the worst case. Our in itial expectation vas that 

cases where considerable fnterference between r·eQuests occur would be the vorst cas,e. The 

monotonicity theorem indicates that th at is not so. Of course, we have made a few assumptions in 

this sectfon most significanUy the equal lengths ,of branches. It is quite likeliy that the sequential case 

will not be the ,orst case for an algorithm using more genera.I tree topologies.. he analys,is in this 

more general case so far seerns quite intractable, however. 

5. Sequential Anailysis 
In this section, we analyze the sequential case of the alg·orithm. In the next section, we combin,e· 

the results into an upper bound for the entire· algorithm, Once again , we allow arbitrary weighted 

trees T, and allow rand p to be nonz.em anywhere. 

5.1 . A Simplified Probl~m and N gorithrn 

The sequential case ,of the a'l'goritim1 offers considerable simplification over the concurrent ,cases. 

There is no interference at au, since each request arriv,es after previous requests have been satisfied. 

Thfs means, that all the estimates of remaining resources are completely accurate. In fact , the result is 

equivalent o Lhat of an algorithm in which all information is known globaHy. 

The behavi,or of he algorithm in the sequential case can be modelted by repeated calls to the 

following sequentia program, FIND. The program takes a weighted tree, a nonnull placement, and a 

vertex (the vertex at whicll a request occurs) as input, and returns a vertex (the 11er ex a which the 

resource to be gran ed is localed). 

FIND(T IP, v> 

Case 
p( v) > Q 

p(desc1 { v)) = 0 
: ret Jrn v 

return FI O(T,p,pa~eot (v)) 
p(v} ~ O and p(desc,(v))) 0: 

[S := {w E chi ldrenr(v): p{desc1 (w )} 
re urn FINO ( T, p. randomr s) J 

endcasa · · 

> 0) 

Thus, a request is satisfied, as before, in the sma lest containing subtree which contains a 

resource; where here is a choice, lhe probability function is used. 

Lemma 12: If p is nonnull and v E vertice5i-, t1 en Fl ID(T,p,v) eventually baits and 
returns a vertex, v, with p(v) > 0. 

Proof: Straightforward.~ 
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We next ,ant to prove a lemma which will be useful in the later analysis. The conten of the lemma rs 
as follows. Let random1 denote he probability function which returns s € leave5r with probability 

fr(s) . Assume T is. a weighted tree and pis a placement which Ts nornero only at leaves. Consider 

the following two experiments. 

(1) Call FIND(T,p,rootr), and 

(2) Call Fl D(T,p,randomy). 

We claim lhat the " results" of these two experiments are the same. That is, or each w E 

vertice&r, the probability that experiment (i) returns w is exactJy the same as he probability that 

experiment (2) returns w. lt will follow from the next lemma that this is so. 

Some notati;on is helpfu here. The result of FIND on a particular set of argumenls can be 

expressed as a probability distribu ion of ve ices. Let aT denote the probability distrfbution o'F ,p,v 

results for Fl O(T,p,v). Tha is, FIND(T,p,v} return s w with probability (w). 
,p,v 

lemma 13: Let T be a weigh e<l tree, p a nonnuH placement for T. Assume that p is 
nonzero only at leaves. Then the following are true. 

(a) If v E intern a T' then «r,,p.•i .,,, }: vEctill~renT(v) [[ f 1(descr(w))/q,T(descT(v))] «T,p,wl• 

(b) If V € verticesT then aT,p,v = !wEdescTM n Pr(w)/ cpT(descrM>l aT.p,1.J 
Proof: In the proof, we ass me T and pare fixed and rite a fn place of etr , etc. 

(a) We consider cases, 

Case 1: p(descT(v)) ,:::: 0 

V ,p,V 

Then since he algorithm immecfately calls FIND on parentr(v), we see that av -

o:parentr(v)' Similarly, for all children, w, of v, we have 11w = ap.arent-r<1,')' Sinc,e 

I wEcnildren M [ Pr(descr(w))/ T(descTM)] = 1, he result follows. 
T 

Case 2: p(desc (v)} > 0 

Since we are assuming that v E ln ernal , we know that p(v) "" 0. Let S = 

{w E children (v): :P(descT(w)) > 0}. Then S -;; 0. The third case in lhe algoflhm 
holds, and we have that 

av = I Es [cp(descT(w))/w~(destr(S))] aw]. ow 

I w chiklren,-( l [['t-'r(descl,•1))/ipT(descT(v))J n ] 

- •· 
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+ ! EchifdrcnyM-S [[cpT(descT(w))/q>T(descT(v))] awl• 

By the rem ark above, th is sum is eq u at to, 

av [911 (descT(S))/~1(desc,.(v))] 

+ :IwEchildren
1

lv)•S [I[ q.>T(descl(w))/IJ)T(descTM)] aj. 

If w E childrenT(v) - S, we know tha p(desc1 (w)) = 0, so that o:w = a:psrenyw) = o:v. 
So the sum above is equal to, 

av I q,1(d esc1 (S))/ q,1( desc1M)} a:11 ~wEchl!drenT(v}-S [ g:i1(d esC-r (w)) / fllr(desc1MH, 

= a.., [q>y(descT(S))/!pT(descyM)] + a.., [((f'T(desc7M) • <f'r(descT(S)))/ rpT{dessMH, 

=a. 

(b) We p oceed by induction on the height of v. 

Base: v € !eave'¾ 

Then the onlyw ln desc Mis v i;tself, so the sum on the right is just ['PTM/q,T{v)J 0
11

, 

= "v• as needed. 

I rid u ctive step: v E intern alT 

Then av = ,,.,.EchndrenTM [(ipT(desc1(w))lg,1(descrM) n), by part (a), 

"' L._.,,Ectii!dreri Cv).f[q,T(descT(w))/q,T(descT{v))] IsEdese (v.) [[qiT(s)/!f'l(desG.r(w))] as]], 
by inductive hypothesis, T 

= }: wEchikjrenTM 1 sEdesc
1

(w) [[cpT(s)/cp (descT(v))] aJ, 
= }:sEdesc v) ([cpl{s)/cr1(descT{v))] as]' 

as needed. 

Part (b) of this lemma, with v = roolT, proves equivalence of the two experlrne11ts ~escribed prior to 

theiemma. 
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We can restrtct attention to "request sequences!' in place of request ,patterns1 in the sequential case 

of the algorithm. Assume that Tis a weighled tree, and pis a placement. for T. A request sequence, r, 

is a sequence of elements of ve ·ce1 , representing a sequence of request arrival locations. 

Simflarly, a resource sequence, r, Ts a sequence of elements o:f vertice57, representing a seQuence of 

re.source locations. In ,either case, let length(r) denote the number of elements in a sequence. A 

resource sequence s, is compa.tibre wrth a placement, p, provided that ls'1(v),I < PM for ,each v € 

vertice5r. (That isJ the resource sequence grants at most the number of resources placed at each 

vertex.) Ur is a request sequence and pis a placement with total(p) > length(r) , then a matching of r 

and pis a pair m ~ (r,s}, wheres ls a resource sequence compatible with p and Jength(r) = length(s). 

A matching describes the successive locations of resources which are used o satisfy a sequence of 

requests. 

Next, we define a prnbabilisttc program which takes as inputs a request seQuence1 r , and a 

placement1 p, 1.,vith totalr(p) > length(r), and returns a matching of rand p. The procedure simply uses 

Fl ND repeatedly. 

MATCH(T,p,r) 

For i ~ l to length(r) do 
[s(i) := rr~D[T,p:r(f)) 
p{s(i)) :c p(s{i)) - l] 

Theorem 14: let r be a request seque11ce 1 p a placement with totat(p) > length(r}. 
Then MATCH(T,p,r) wiH eventually halt and return a ma ch ing of rand p. 

Proof: Straightforward.I 

This algorithm is d1?5igried to behave exactly as the sequential case of our general algorithm. 

5. 2. Cost easu res 

Let dist iu, v) denote the tree distance between u and v. If m "" (r,s) is a matching, then 

seqcost r./mJ = J:.1distT(r(i),s(i)). Th1.1S1 1he "sequential cost'' is Just the sum of the tree distances 

between successive requests and their corresponding' esources. 

If r ls a request sequence wilh length(r) 5 total{p), then de line seqcosr T,p(r) to be the expected 

value of seqcostT,p(m), where m is constructed usjng MATCH(T,p,r). Let seqcost T.p denote lhe 

expected value of seqcostr.p(r) where r is of lenglh total(p) , with its successive locations chosen 

independently according to wr 

In the rem alnder of tl1is section, we analyze seqcostT,p' 
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5.3. A Useful Recu nence 

!n this subsection, we present a solution to a system of recurrence equations. Thr,s solution wi ll be 

useful in later subsections. 

Let c E R + . Define Ge.: N x R - R by the equations: 

Gc(O;t) = 0, and Gc:(k,t) - max{Gc(k-t,t1), + Gc(k•1 ,t2): t
1 

t2 < t} + ck ✓ t, for > 1. 

Lemma 15; For all k > 0, the foU owing are true; 

(a) The function mapping t to G (k,t) ls concave downward and monotone 
C 

nondecreasing. 

Proof~ We proceed by induction on k. The base, k - 0, is trivial. For the iriductive 
step, let k 2: 1. If t1 + t2 :s; t, then Gc.(k-1 ,t1) + Gc(k-1,t2) 5 2Gc(k-1,(t1 + t2)/2), since the 
inductive hypo hesis states that the hmctron mapping t to Gc(k·1,t) is concave. This is in 
tum < 2Gik-1,t/2) , by monotonicity. Therefore, G

0
(k,t) = 2Gc(k~ 1,t/2) + ck,/ t showing 

(b). Since eacl1 term is concave and monotone, the sum is also 1 showing (ai).I 

Theo rem 16: G (k,t) < (3-J 2 + 4)c-/ t 2.k, 
C -

Proof: By Lemma 15, Gc(k,t) = 0 if k = 01 and - 2Gc(k•1 ,V2) ck/ t if k > 1. 
Expanding th is recurrence, we see that G {k , t), 

C 

= c[ ! i .. o, .... k• 1i(k-i) ../ 1/2
1
] For all k ~ o, 

:::, c/ t[!i=O, .. ,,k·1(k,i),/ 2~ . 

Let. x = 11,/ 2, n = 2'f-. Then 

Gc(k1tl = ('c ,/ t,/ n/-./ 2)[l:1 ::.O, ... ,k-1 (k•i)xk·J<.1], 

"' {c ,/ t-,/ n/ ✓ 2)[(1 · kx + 1 
- (k + 1 ):l)/(1-x)2], 

""(c/t-/n)/(/.2(1 -1/-/2}2[1 + kx11 "" 1 , (k+1)x:k], 

= (c.; t.J n)(3-./ 2 + 4)[1 + kx 1 
- (k + 1 ):l], 

= (c✓ t.J n)(3./ 2 + 4}[1 + (kx - k • 1 ):l], 

< (c,/ t,/ n}(3-J 2 + 4)1 since kx: k • 1 < 0, 

"' (c ,/ :2 )(3.J 2 + 4) I 



5.4. Recursive Analysis 

Now, we require R·es rfction 3 and a new assumption, Restrrcetion 4. These are to remain i1n force 

f,or the remainder of Section 5. 

Restrictio 3: 

T has al leaves at the saime distance from he root, and rand pare nonz.ern on y at leaves. 

Restrioron 4: 

T is a ,complete bi nary tr,ee. 

rt Tis a weighted tree, then a weighted subtree, T', of T consists of a subtree of T together with a 

probability function cp1 .. given by <pr(V') = q;i1(v}/cpT{vertices,.,). That rs, the weights of the subtrees 

are just normalized restrictions o:f the weights of T. If T f1s a weighted binary tree, let Jeft7 and right7 

denote the desrgnated weighted subtrees of T. 

If T has helght at least 1, then 'let T 1 and T 2 denote left1 and rightT, respectively. Let p1 and p2, 

denote PIT 1 and pjT 2, respectively. If r is a request sequence, let overffow1,P(r} denote 

ilr"1(vertice8r )I - p(verticesT )I, the difference between the number of requests hat arri e in the left 
1 1 

subtree and the number of resources placed there. Let ovedlow1_p denote tt,e expected value of 

overflowT,p(r), where r is a sequence of Ieng h toial(p) chosen using fr 

The following is a key lemma which pro "des a recursive• breakdown for he sequenti al cost. It 

says that the expected cost o-f matching breaks down into costs of matching within tile t,.•;o subtrees, 

plus a cha ge for the requests that overflow into the opposite subtree. 

Lemma 17.: Assume height1 ~ • Then seqcos < seqcos T P + seqcostT 
2 height overflow . ,.p 11• 1 :2·P2 

T T,p . 

Proof: For any particular request sequence, r, there is some particular number, 
overflow1 (r), of requests lhat do not get satisfied 11ifhin their mvn subtree, but rather 
overflow i~to !ho opposite subtree to find a resource- To be speciric, assume that it is the 
left subtree from which any excess requests overflow. Let r1 be the subs~quence of r 
consisting, or requests arriving in T 

1 
truncated to Ieng h p(T 

1
). Let r,

2 
b the subsequence 

of r consisting of requests arriving in T 2. Recal l that seqcosL is the expectation of the 
. - ~p 

search cost ro r eri oug h requests .to e>rhau st all resources present. 

Before tile ime a whicll the le subtree o ertlows, the algorlthm · IATCH(T,p,r) runs 
exactly like t,.. ATCH(T1'p1'r 1) 1ithi11 the left subtree. Requests, origrnati~g .v[thin T 1 
become matched to exactty the same resources in botl1 executions. 

We now consider the rigl1t subtree. Requests which orfginate within the ri ht subtree 
are handled in the algorithm MATCH(T,p,r) exactly as they are in the algorilhm for T

2 
and 

p2. Howe~er, I.here are also ov rflow requests from the left subtree, which en!er T 2 at. its 
root rathe r than al its teiaves. By Lemma 1G, whenever such a request arrives, its 
probabllity of b-eing matched o any particu tar resource is exactly the same as if the 
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reQuest had entered at a random leaf of T 
2

• All the requests remain independent, and 
these additional requests are just enough to exhaus the resources in T 

2
• 

Now assume that the request sequences, r, are chos,en at random according to ip1. 

They result rn subse,quences r and r 
2 

which are chosen at random according to fr and 
q,

1 1 respectively. 1 
2 

We claim that seqcostr,,p, the expected' cost taken over all r, is bounded by 

seqcostT , the expected cost taken over random sequences in the left subtree, 
1' p 

· seqcost1 , the expected cost taken over random sequences .in the righ subtree, 
:rP2 

+ 2 heightT ov.erflow1 . 
,P· 

The third term allows for the expected overflow of requests and assigns them th,e 
maximum cost, 2 heighlr. 

Consider the first term. (The second term is analogous.) The fi rst erm allows for he 
expec ed cost incurred by an executioi'l of MATCH on a random sequence of requests 
within T1• 

n case T 
1 

has its resources exhausted by r€quests originating within that subtree, thls 
term measures exactly the expec ed cost for the matching ot the first requests in T1 to all 
the resources in T 1 . This erm ignores the cost incurred by any excess requests 
originating ithin T 1 which do no get matched within T 1• However, tha is not a problem, 
since those cos s are counted by the third erm. 

In case · 
1 

does not have its resources exhausted by reques s originating w'thin Tt, this 
term is actually grea er than needed o measure the expected cos of matching aJI requests 
or:igina ing in T ; in fact, it is enough to measure tt is cost of ma ching these reques s, 
interspersed with enough ,other random requests (arriving at he leaves of T 1) rouse up all 
the resources in T1. We lmve already argued lhal these requests behave as if lhey were 
interspersed with other random reques s. because requests arrfving at the root match in 
the same way as if they arrived at. random leaves. Tn this case, the lirst term does not 
accoun for th cost of matching those requests Nhich enter T 1 at its root. However, hat is 
not a problem since that cost is covered by the third term.I 

5 .5 . d&Fairness 

We need to make another restric ion on the algorithm, for Lhe purpose of analysis. In particular1 it 

is reasonable that the behavior of the algorithm shoul be best when the resources are distributed in 

the tree in some relalionship with the probability distribu · ion governing arrival of requests. (The paper 

[Fischet, Griffeth, Guibas nd Lynch (1981)] considers optimal placements of resources in a tree 

network.} 
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For d E R + , we say that a placement, p is d-fair pr,ovld~ that the following is true. Let u,v E 

verticesT, where u E desc1(v). Le ,q,1 = ip1(descT(v)) and cp2 = 'Pr(descT(u)). Then lp(descr(u)) •· 

(<pl 1 )1p(dess(v))I :5 d -I (qi-/q:, 1)p(desc,-M). That is. for each subtree, the number of resouroes. 

placed in each ot its subtrees rs approximately proportional to the probability of arrivals in that 

subtree, and the di1ffe ence is proportional to th,e "standard deviation°. For any T, if t and d are 

sufficiently large then techniques in [~ischer, Griffeth, Gujbas and Lynch (1981)] can be used o 

produce d-rarr placements of t resources in T. 

From now on in Section 5, we assume the following. 

Rest(cron 5: 

pis d-fair (for some arbitral')I but fo::ed d). 

The next lemma says tha:t restrictions of d-fair placements are also d- fair. 

Lemm a 1 8: Let p be a d · air placement for T. Let T' be any subtree of T, and p1 = 
plverticesy, , the restrlction of p to vertices . The11 p' Js d-fair for r. 

Proof: let u, V € vertices with U € dess,M- Let ?'1 "" 'P'r(desc.M) 'P2 == 
ipT(desCr(u)), q,'1 -- fPr(desc r M), and ep'2 = q}T'(descr(u)). Then cp '1 "' 

1P/fy(venT005r) and 1p' 2 = 'P:/ir1(verticesT')' by defin ition _ Therefore, cp '(2)hp'( ) = 
1Pl<"Pr 

ote that p (descr-(u)) - p(descT(u}), and p'(desc,.,.(v)) : p(desc M), Thus, 
IP'(descr(u}) - (q,,'/g,' 1) p'(descr(v))I 

= IP(desc1(u)) · (q,lq,1) p(desc1(v))I, 

< d ✓ (gi/p1)p(descT{v)) since p isd-fai.r, 

= d ✓ (tp 'icp'
1
)p'(desc- M}, as needed.I 

The final lemma of this subsection bounds the expected overflow ford-fair placements. 

Lemma 9 : overflowT,p < (6 + d) ,/ 9lr (vertice¾) totaJ(p). 

Proof: 1[(1(vertices,. )I • p(ve;tice8r )I < llf1(ver ices,. )I • <p1(verticeSy) tota:l(p)il + 
lq,T(vertice; ) otal(p)I • p(verticesr )I, 1 1 1 

1 • 1, 

The expected value of the first of theae qunotities, taken o er r, is bounded by 
6,/ "PlverticeSr) total(p), usfng Lemma 3.1.5 of [Fischer, Grifle h, Guibas and Lynch 
(1 9$1)]. I 

The second quan ity js bounded by d ✓ pT(vertice8r ) otal(p), srnce p is d-fai r_ 
1 
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5.6. Sequential Analysis 

Let size denote the number of vertice.s in T. We now give the main r-esult of Section 5, that 

seqcostT,p is O(sl sizeT total(p)). This says for example. that if total{p) is proportional a sizE!'-r, then 

the total cos is proportional to total(p). This implies that the average cost per request is Just a 

constant, Jnd'ependent of the size of the network. 

1111 order to prove this theorem, we r,equire he following rest ·cttons, repeated here for 

conv,enience. 

Rest rkUon 3: 

T has all leaves a the same distance from the root, and rand pare nonzero only at leaves. 

R,est rictio11 4: 

T is a comp teie bi nary tree. 

Theorem .20: seqcostT,JJ is 0( ✓ slz~ total(p)). 

(More spedficaUy,, seqcostT,p < (3✓ 2 + 4)((6 + d),,/ 2) ✓ 2he:lgh'7 totaJ(p,).) 

Proof: By Theorem 16, i surnces o show tha1t seqcostT,p• < Gc(heightTttotal(p)) 
where c = {6+d).,/2. 

We proceed by inducti-on on heigh~. 

Base: height1 = 0 

Then T has a single vertex, and seqcostT,p = O. The inequality is immediate. 

Inductive Step: heightr > 1 

Then seqcostr < seq costT + seq costT + 2 lleighL overt1 owT , by Lemma 
7 ,p 1' Pl 2•P2 "T .p 

I 

~ seqcostT P + seqcoslT . + 2 heigl1tT (6 + d) ,/ rp1(vertices.- )total(p) 1 by lemma 
19 1' '1 2.·P2 I - I 1 

A similar i nequ a Ii ly ho Ids for T 2 in pl ace of T 
1 

within the square root. Si nee at least one 
of ip (11erlioes

11
), Pr(vertice3.r

2
) isno more than 12, it followstha seqcostT,p S. 

seqcostT ,., + seqcosty. . + 2 heigh'lr (6 + d)-,/ (112) lotal(p), 
1" '"1 2·!l2 

= seqcostr seqcost1 , + (6 + d), ✓ 2 heigh ,/ total(p,). 
1' Pi 2:·P2 
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By lemma 8, we can apply he nductive hypo .hesis, • hlch implies hat the right hand 
side of th is ineq 1.1 ality is a:t most eq uall to 

The definition of Ge impltes that this latter expression is at most equal to 

6. The F1nal Anarys,is 
In this secti,on, we combine the monotonicity analysis and the seQuential analysis, o, obtain an 

upper bound for he e:xpec ed cost for the algorithm .. 

6.1 . ,Relationsll' p Between the Costs 

Now we require the following restrictions. 

Restriction : 

T is a weighted tree, and the nondeterministic choice step in Part (2) or the algori hm uses a. call to 

random, 8. 
I 

Reshiction 2: 

Delivery · ime for messages is always exactly 1. 

Witl, these reshictlons here is a close refationship between the costs of our general algorithm 

and th,e cost of he sequential algorithm MATCH. 

Lemma 21 : seqcos~.p = lim8 _ 00 (bnum1,P{a,Q + vbnumTia,f)). 

Proof: There is an absolu e upper bound on the time for our algorithm to satisfy a 
single request, in the absence of concurrent re .uests. Thus, as a increases, the 
probability lhat there am any concurrent requests approaches O. 

Therefore, the nmmng case of the general algori hm behaves Ii e MATCH. There is no 
backtracking, so the total search ime Just reduces ta lie sum of the dis ances rom 
requests to the resources which satisfy them. This sum is just the total number al buyer 
and vi rtual buyer messages.I 

Now let us add one more restrict ion: 

Rest tic ion 3,: 

T has all leaves at he same dislance ,from the root, and rand pare nonzero only at leaves. 

With this added restriction, we can prove a varian• of the preceding lemma. 
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Lemma 22: seqcosL = 2 llm 00 (bnumT {a f)). -r,p a -t ,p 

Proof; By Lemmas 21 and 4.1 

This lmmediatefy impl ies Lhe fol lowing bound on the cost oI the general algorithm. 

Lemma 23: costT,p(f) s; 2 seqcost,-,p• 

Proof: :By Theorem 11 and Lemma .22.1 

6.2. The Main Theor,ern 

Now we are ready to present the main result, he upper bound for the expected cost for the 

general algorithm In order to apply the results of both the monotonicity analysis and the sequentlal 

analysis, we most assume the restrictions made for both cases. More speci fically, we assume all of 

Restrictions 1-5: 

Rest rictlon 1: 

T is a weighted tree, and the nonde erministic choice step in Part (2) of the algorithm uses a call to 

randomr,s· 

Rest ricUon 2: 

De1ivery time for messages is always exactly 1. 

Restriction 3: 

T has all leaves at the same distance from the root, and rand pare nonzero only a !eaves. 

R,est rkron 4; 

T is a. ,complete binary tree. 

Restriction 5: 

p, is d-farr (for some arbitrary but !ixe d). 

Theorem 24: Let f be a probability function. Then costr,P(f) is O( ./ sizer tolal(p)). 

{More specifically cost1.p(f) < 2(3 ,/ 2 + 4)((6 d) / 2) ../ 2heiohlT tctal(p).) 

P!l'oo : By Lemma 23 and Th · orem 20.· 

In particular, provided h. t total(p} is prop or ional lo sfz.ey, the expec.ed average time taken by . 

tt1i1s algori hm lo satisfy a single request is constant, independent of the size of the net ,erk. 
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Remark: !t is possibl'e to prove a variant of Theorem 24, for the case in which the placjement: p is 

chosen at random using yi (jus as the equest locations are chosen), ather than being d-f'air. We 

sketch the ideas briefly. 

First, ~e, must extend the cost definitions to include expec ations taken over placements of a 

particular length. Thus, we defin,e co,s T,t(f) o be the expec ed value ,of cost,-,/f) fOr p wi1h total(p) "' 

t. Anafogous detinitions are made for seqcostT,t and overflowT.r Lemma 23 then jmplies that 

cost,-;
1
(f) < 2 seqcos ;I' It is also easy to see that ov,erflowT.t s; d ../ cpT(vertioe1 ) ·t, for some 

constantd. 

Next, we prove a consequence of Lemma 17 which says that seqc,os~.1 <:: Exp
01

,t
2
l with r

1 
t
2 

,,, t 

(seqcost ,, + seqcosL t ) + 2 heigh 1 overflow • ( ere, the expectatjon is taken over pairs 1 1' •1 1 2·2 · 
which are obtained by using cp

1 
to assign re.$0urces to T ,or T 2.) This obviously implies that 

seqcostT,t < max, 1'12' wft!l 11 . t
2 

,,, 1 (seqcostr , t
1 

+ seqcost12,,.} + 2 height,- overflowT.t' 

Now we prove a variant of Theorem 20 which says that seqcos~., is 0( ✓ sizeT t). More 

specifjcally, we sl,ow that seqcost1,t < Gc(heighlr,t), where c = d ✓ 2. This is easily done by 

induction as before, using the new lemmas just described. 

Combining these results, we see that cos 
1 
}fl [s 0( ✓ sizer ). 

7. Remaining Qu,es.tions 
There are several directions for remaining research. 

First, we would hke to extend the analysis of the general algori!hm. We would like to loosen our 

restricttons on tree shape1 message delivery time, and loca ions for resources and requests. If we do 

this, is it posslble to carry out an analysis simi!ar to the one in this paper? In particular, can the 

co current cases of the algorithm still be bounded in some way in terms of the sequential case? 

We would also Hke o extend the analysis of the sequen ial aJgorithm, MATCH. Here1 we would 

lrke to loosen restrictions on tree shape and on locations for resources and reques s. 

There are some apparent imp overnents in the algorithm for example adjusting the probabiJitfes 

for the choice among children in response to, knowledge of the number of resources rern ining In 

each subtree. While lhis seems Uke an improvement, ~he resulting algorithm se,ems harder o analyze 

(Since Lhe recursi•1e 'ecomposition doesn't appear to work). Cao any siniple modiiications be shown 

to be improvements? 

We would like to compare he performance of U1is algorithm o hat of alternalive al1gorithms, which 

sol e the sa111e problem. We have already observed that this algorithm performs much beiter Ulan the 

centr lized algorithm, which loc1tes all resources ul the root. How does it compare to algorithms 
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which allow reQuests to search for resources. in parallel rather than sequentially? What about 

algorithms which rebalance resources? Are there o her interesting fdeas, for algorithms for this 

problem? 

FfnaHy tile general anal){sis strategy is quite attractive. Provtng a mo,notonlci.ty result which 

bounds the concurrent cases of an algorithm in terms of he sequential case, and the11 analyzing the 

sequential case by traditional techn·ques, appears quite tract.abl,e. The use of this strategy fot our 

algo,rithm appears to depend on many special properties of the alg,ortthm and on restrictions on the 

execution. fs the strategy more generally useful? For what type of algorithms can Ube used? 
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