G=

Np» MASSACHUSETTS
COMPUTER SCIENCE {l TECHNOLOGY

—

MIT/LCS/TM-284

A MIXED-INTEGER LINEAR PROGRAMMING
PROBLEM WHICH IS EFFICIENTLY SOLVABLE

Charles E. Leiserson

James B. Saxe

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Mixed-Integer Linear Programming Problem
Which Is Efficiently Solvable

Charles I%. Leiserson
Laboratory for Computer Science
Massachusells Institute ol Technology
Cambridge, Massachusetls 02139

James 3. Saxe
Department of Compuler Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract- Lflicient algorithms are known for Lhe simple lincar programming problem where
cach inequality is of the form z; — z; < ay;. Furthermore, these techniques extend to the integer
lincar programming variant of the problem. This paper gives an ellicient solution to the mixed-
inleger linear programming variant where some, but not necessarily all, of the unknowns are
required o be integers. The algorithm we develop is based on a graph representation of the
constraint system and runs in O(|V||E| + [V |*1g|V]) time. It has several applications including
optimal retiming of synchronous circuitry, VLSI layout compaction in the presence of power and
ground buses, and PERT scheduling with periodic constraints.

Keywords: Algorithms, lincar programming, mathematical programming, graph theory,
shorlest paths, combinatorial optimization.

This rescarch was supported in part by the Defense Advanced Research Projects Agency under Contract N00O14-
80-C-0622 and by the Ollice of Naval Rescarch under Contract N00014-76-C-0370.

1. Introduction

Much research has centered on the problem of finding shortest paths in graphs. It is well
known that there is a direct correspondence between the single-source shoriest-paths problem
and the lollowing simple linear progr: inming prob](‘m

Let S be a set of linear inequalities of the form :c_.,. - :z: < a,J, where the x; are unknowns
and the a;; are given real constants. Determine a set of values for the z; such that the
inequalities in S are sat:sﬁed or determine that no such values exist.

This paper considers the mized-integer lincar programming variant of this problem in which some
(but not necessarily all) of the z; are required to be integers. The problem arises in the context
of synchronous circuit optimization [9], but il has applications to PERT scheduling and VLSI
layoutl compaetion as well.

Belore formally delining the mixed-integer programming problem, we restale the linear pro-
gramming problem above in another form.

Problem L. Let G = (V, [, a) be an edge-weighted, directed graph, where V = {1,2,.
|V} is the vertez set, the set IY of edges is a subset of V X'V, and for each edge (i,5) € I thc
edge weight a;; 15 a real number. Find a vector x = (z4; 29 - "EIVI) satisfying the constraint
that:

zj — ;. < 645

for all (3,7) € E, or determine that no feasible vector exists.

The graph G is called a constraint graph for the lincar programming problem. There are
three advantages in adopting a graph representation of the problem. First, an adjacency-list
representation (1, p. 200] of the constraint graph G is more cconomical than, for example, a
lincar programming tableau or, when the graph has relatively few cdges, a matrix of the ayj.
Sccond, Problem L frequently ariscs in siluations that are naturally deseribed by a graph. Finally,
the graph-theoretic formulation helps in understanding the algorithms that solve this kind of
problem.

A method for solving Problem L. was discovered in the late 1950’s by Ford and Bellman (8, p.
74]. Yen [13] gave some improvements Lo the Bellman-Ford algorithm as well as a cogent analysis
showing that its running time is O(|V|*). This bound is easily improved to O(|V||E|) by using
an adjacency-list representation for the constraint graph.

The Bellman-Ford algorithm can also be used to solve the integer lincar programming variant
of Problem L, in which all the z; are required to be integers. IT the edge weights a;; all happen to
be integers, the Bellman-Ford algorithm will produce integer values for the z;. If the a;; are not
integers, however, but the z; are required to be integers, each edge weight a,; may be replaced
by |ai;] without affecting the satisfiablity of the incqualities.

The focus of this paper is the mized-integer variant of Problem L.

Problem MI. Let G = (V,V;,E,a) be a edge-weighted, directed graph, where V =
{1,2,...,|V|} is the vertex set, the set V; is a subset of V, the set I of edges is a subset
of V. X V, and for each edge (i,j) € I the edge weight a;; is a real number. Find a vector
z = (z1,Z2,...,T|v|) satisfying the constraints that

Z;— 2 < ay5
for all (i,7) € I and that z, € Z for alli €V, or determine that no feasible vector ezists.

1

The veetor £ = (2, Zg,...,%)y|) is called a solution to graph G, and i graph G has a solution,
we say thal G is satisfiable. When it is clear [rom context, we use the same terminology for
Problem L.

In addition, we shall refer o the vertices in Vi as the integer vertices of G and the vertices in
Vg = V — V1 as the real vertices of G. We also partition the sct ol edges into two sets depending
on whether the vertex at the head of the edge is inleger or real:

Er={(i,) € 1§ € Va} .

This paper presents two algorithms to solve Problem MI. The first, which runsin O(|V||V;]||E])
time, is a straightforward extension of the Bellman-Ford algorithm. The second is more sophis-
ticaled and has a running time of O(|V||E] + |V||Vi]lg|V]). We conjecture that the O(|V||£])
running time achicved by the Bellman-IFord algorithm for the pure lincar programming and pure
integer programming versions of the problem is notl achievable in general for sparse instances of
Problem ML

The remainder ol this paper is organized as follows. Section 2 reviews the Bellman-Ford
algorithm. Section 3 presents a simple relaxation algorithm for solving Problem MI. Scetion 4
discusses three techniques--Dijkstra’s algorithm, reweighting, and I"ibonacei heaps —which are
used in Section 5 to construct an asymptotically efficient algorithm for Problem MI. We discuss
applications and present some concluding remarks in Section 6.

2. Shortest paths and the Bellman-Ford algorithm

This section reviews how the Bellman-Ford algorithm solves Problem L. Although the results
of this section are well known and can be found in most textbooks on combinatorial optimization
(see, for example, [8, p. 74]), we repeat the material here for the reader’s convenience.

There is a natural correspondence between Problem L and the graph-theoretic single-source
shortest-paths problem. Lel G = (IZ,V,a) be an instance of Problem L. Suppose that for cach
vertex ¢ € V, there is a path to ¢ from vertex 1, and let d; be the weight of shortest (least-weight)
path from vertex 1 to vertex 7. (At the end of the section, we shall discuss the case in which some
verlices are not reachable from vertex 1.) Then for any edge (7,7) € F, we have d; — d; < ayj
since the cdge (7,7) can be appended to a shortest path from vertex 1 to vertex i to produce a
path from vertex 1 to vertex j of weight d; + a;;. Thus the shortest-path weights d are a solution
to G.

Whenever G is satisfiable, there are infinite number of solutions. For example, if z is a solution
to G, then uniformly adding any constant & to each z; yiclds another solution y, where y; = z;+k
for each 7 € V. The assignment z; «— d; gives cach z; its largest possible value subject to the
constraint that z; = 0. To sce this, consider any path p of weight d; from vertex 1 to vertex 2.
If the inequalities associated with the edges of p are summed, the unknowns associated with the
intermediate vertices cancel and the result is the incquality z; — z; < d;.

Whenever the graph G contains some cycle ¢ whose weight is negative, the shortest path
weight from vertex 1 to any vertex ¢ on cycle ¢ is undefined because the weight of any path
to vertex ¢ can be diminished by appending a traversal of ¢. In this case the graph G is not
salisfiable. If the inequalilics associated with the edges of ¢ are summed, all the unknowns z;
cancel, and the resulting inequality asserts that 0 is less than or equal to the weight of ¢, which
is false.

The Bellman-Ford algorithm, which is given below, solves Problem I by finding the weight
ol the shortest path to each vertex from vertex 1. Should the graph contain a negatlive-weight
eyele, the algorithm reports that the graph is unsatisfiable by calling the procedure Fazil, whose
semantics we leave unspeceified. ' —

Algorithm BF (Bellman-Ford algorithm).
BI'l. zy+0;
BI'2. for i« 2to |V|do z; « oo;
BI'3. for ind + 1 to |V|—1 do

BI'4. foreach (i,5) € £ do

BI'5. z,; — min(z;, z; + a;5);
BI'6. foreach (7,7) € I¢ do

BIF7. if z; > z; + a;; then Fail;

For cach vertex j € V, the Bellman-Ford algorithm iteratively updates the weight z; of a
tentative shortest path from vertex 1 to vertex 7. Aller initialization, the algorithm makes [V |—1
passes through the cdges in /0 and relazes each edge {7, 7) by computing z,; «— min(z;, z; + ai;).

A simple analysis due to Yen [13] indicates why the Bellman-Ford algorithm works. The
weight z; converges to the weight d; of a shortest path from vertex 1 to vertex j if the edges on
the path are relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford
algorithm consists of |[V| — 1 copies of some ordering of £, and therelore contains every vertex-
disjoint path as a subsequence. If there are no negalive-weight eyeles in G, then every shortest
path is vertex disjoint, so cach z; converges to the shortest-path weight d;. On the other hand,
il there is a negative-weight cycle in the graph, the algorithm detects this condition by iterating
once more through all edges to sce whether any of the inequalities remain unsatisfied.

The Bellman-Ford algorithm as given above determines the weight of the shortest path from
vertex 1 to each vertex, and thercfore solves Problem L. whenever all vertices of G arc reachable
from vertex 1. The code can be adapted to solve Problem 1. on arbitrary graphs by simply
changing the inilialization sl,cpA”(Iirles BI'1-BFF2). In particular, il cach =z; is assigned a finite
initial value u, the relaxation in lines BF3-BI'5 sets cach z; to its maximum value subject to the
constraints that z; — z; < a;; for cach edge (7,7) € F and that z; < u; for cach vertex 1 € V.
Notice that whenever the constraint graph G is satisliable, it is satisfiable subjeet to the additional
constraints z; < wu;. Should the incqualities be inconsistent because there is a negative-weight
cycles in the graph, the relaxation will not converge to a solution, and the inconsistency will be
detected by the test in lines BF6-BF7.

3. Simple relaxation algorithms for Problem MI

As was mentioned in the introduction, Problem MI can be solved directly by the Bellman-
Ford algorithm when all unknowns are real (Problem L) and when all unknowns are integer.
The combination of integer and real unknowns, however, scems to make the problem harder.
In this scetion, we gain some intuition about the structure of Problem MI by introducing two
algorithms that solve it in O(|V'||V7||Z]) time much the same way as the Bellman-Ford algorithm
solves Problem L. The asymptotically efficient algorithm in Section 4 is derived from the second
of these algorithms.

A natural approach to solving Problem MI is to see whether the Bellman-Ford rclaxation
approach can be made to work. Since we have both integer and real vertices in the graph,

3

0.4 0.4 0./

0.2 -0.3 0.4

Figure 1. An instance of Problem ML Integer vertices (V; = {1,4}) are
shown as squares and real verlices as circles.

however, we must modifly the relaxation step BIFS in the Bellman-Tord algorithm to produce an
integer value whenever j is an inleger verlex (line R6). This approach does in fact work, but
it requires more iterations than the simple Bellman-Ford algorithm. The next algorithm solves
Problem MI. The number of iterations n in line R2 will be determined in the analysis following
the algorithm.

Algorithm R (Relazation).

R1. foreachi:€V do z; «+ 0;
R2. for ind — 1 ton do

R3. foreach (z,7) € £ do

R4. begin

R5. z; « min(z;, Z; + ai5);
RR6. if j € V; then z; « |z;);
BT end;

R8. foreach (z,7) € F do

R9. if z; > z; + a;; then Fail;

In order to determine a value of n such that Algorithm R works, we introduce the notion of
a reducing path. Let p be a path starting at some vertex &, and suppose that z is initially set to
0 and that all the remaining z; are initialized to co. Suppose the edges in path p are traversed
in order starting from k, and cach edge (z,7) along the path is relaxed as in statements R5-1R6.
If cach relaxation of an edge (i,7) reduces the value z;, the path p is called a reducing path.

Whenever a sequence of edges contains all reducing paths as subsequences, the relaxation of
cach edge in the sequence in order yiclds a solution. (The proof is analogous to Yen's analysis
[13] of the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves Problem L because in a
satisfiable graph with only real vertices, cach vertex occurs at most once on any single reducing
path. (And in fact, every shorlest path is a reducing path.)

When some unknowns are integer and some are real, however, it is possible for a reducing
path to visit the same vertex more than once, even if the graph is satisfiable. For example, in the
graph shown in Figure 1, the reducing path p = 3222152234232 visits vertices
9 and 3 three times each. If all the z; are initially set to 0, the edges of p must be relaxed in
their order along the path to achieve convergence. Morcover, relaxing the entire edge set in some
arbitrary order only 3 = |V|—1 times might not achieve convergence. Since the value of nin
line R2 must be at least the maximum number of edges in any reducing path, the value [V]| =1,
which was used in Algorithm BF, will not suffice.

4

Fortunately, reducing paths are never very long in satisfiable graphs because of the following
lemma. '

Lemma 1. Suppose G = (V, V}, I,a) 13 .sa;'tisﬁable. If p.is a reducing path in G, then

1. p visits no integer vertez more than once, and
2. p never visits the same real verlez twice without visiting some integer vertez in
between.

Proof. Il cither conditlion is violated, then the reducing path p can be extended indcfinitely by
repealing the cycle that causes violation. |

LLemma t allows us to determine a-value for » in line R2 of Algorithm R such that the =z
converges to a solution whenever G is 'satisfiable. ‘Any reducing path contains cach integer vertex
al most once and cach real vertex at most, |[Vz| + 1 times. Since the number of edges in a path is
one less than the nuiber of vertices, any reducing palh for a satisfiable graph can have no more
than [Vi| + (|Vif + 1)][Ve| = 1 = |Vi||VR| + [V| =1 edges. Thus the limit n of the outer loop in
Algorithm R should be set to |Vi|[Vg|+ |V |— 1. The overall running time of Algorithm R is thus
OV IVl). |

This analysis suggests the following algorithm which is slightly more efficient than Algorithm
R, and which forms the basis of the asymptotically cllicient algorithm presented in the next
section.

Algorithm M (Modified relazation).

M1. foreach 1 € V do z; +~ 0;
M2. for ind — 1 to |Vg| do

- Ma. foreach (z,7) € Er do

M4. z; «+ min(z;; z; + di5);
M5. for ind2« 1 to |V;| do

M6. begin

M7. foreach (7,7) € Er do

M8. z; + min(z;, | 2; + ai5]);
M9. for ind — 1 to |Vg| do
M10. foreach (7,j) € Fr do
Mi11. z; + min(z;, z; + ai;);
Mi12. end; @

M13. foreach (7,j) € E do

Mid4. if z; > z; + a;; then Fail;

The only difference between this algorithm and Algorithm R is that it treats the edges in E;
separalely from the edges in . In lines M7-M8 of Algorithim M, each edge in £} is relaxed once.
There are |V;| such passes over E; which are preceded, followed, and separated by ezhaustive
relazations of the edges in Eg (lines M2-M4 and M9 -M11). In each exhaustive relaxation of Eg,
edges are relaxed until no further changes in the values of z; are possible for 7 € Vg. (Actually,
the relaxations in lines M2-M4 and M9 M11 are only guaranteed to be exhaustive if there are
no negative-weight cycles in . If there are cycles of negative weight, however, this condition
is detected at the end by the convergence test in lines M13-M14.)

4. Dijkstra’s algorithm and reweighting

Section 5 gives a more ellicient algorithm Lo solve Problem MI than cither Algorithm R or
Algorithm M. Three important techniques are used in the algorithm. The first is Dijkstra’s
algorithm which finds shortest paths in a graph [rom a single source in the case when all the edge
weights are nonnegative. The sccond is reweightfing, which is a technique due to Edmonds and
Karp [3] and used by Johnson [7] in his ellicient algorithm for solving the all-pairs shortest-paths
problem. The third is the Fibonacei heap data structure due to Fredman and Tarjan [4], which
is an improved priority queue that makes Dijkstra’s algorithm run in time O(|E| + [V]1g|V]).

Given a graph G = (V, £, a) such that all edge weights a;; are nonnegative, Dijkstra’s
algorithm computes for each verlex 2, the weight d; ol the shortest path from verlex 1. Because
cach edge is relaxed exactly onee, this algorithi is faster than the Bellinan-Ford algorithin which

solves the same problem lor arbitrary edge weights. Dijkstra’s algorithm derives its elliciency from
the observation that along any shortest path from vertex 1, the shortest-path weights d; form a
nondecreasing sequence il all the edge weights are nonnegative. Thus, a sequence consisting of all
edges (4, 7) € I in nondecreasing order of the distances d; contains as subsequences shortest paths
rom vertex 1 to all vertices in V. Ifurthermore, such a scquence of edges can be computed on
the fly using a priority queuc. (The textbook [1] gives a proof of eorrectness for this algorithm.)

Algorithm D (Dijksira’s algorithm).
DL g0
D2. for i« 2to |V|do z; « oo
D3. Q«V;
D4. while @ #£ 0 do

D5. begin

D6. Choose 1 € @) such that z; = minjcqQ z;;
D7. Q—Q-{i}

D8. foreach j € Vg such that (1,7) € Er do
D9. z; + min(z;, z; + aij);

D10. end;

If the set @ in the algorithm is implemented as a standard priority queue, each extraction
(lines D6-D7) and update (line D9) costs O(Ig|Q|) = O(lg|V]) time. Thus the total running
time of Dijkstra’s algorithm is O(]E|lg|V|). Fredman and Tarjan [4] describe a data structure
called Fibonacei heaps that supports arbitrary deletion in O(lgn) amortized time and all other
standard priority queuc operations (including update) in constant amortized time. By using a
Fibonacci heap in Dijkstra’s algorithm, they show that the performance can be improved to
o] + |V]Ig|V])-

Since Dijkstra’s algorithm is cquivalent to the Bellman-Ford algorithm on graphs with non-
negative edge weights, it can be used to solve Problem L on such graphs. This is not very
interesting in itselfl, since any graph G = (V, £, a) in which all edge weights are nonncgative
can be trivially satisfied by settling z; to 0 for cach 7 € V. Our interest in Dijkstra’s algorithm
comes from a stronger property of the solutions it finds. Suppose the initialization step (lines
D1-D2) is changed so that cach variable z; is initialized to a finite value u;. Then the relaxation
procedure in lines D3 -D10 will set cach z; to its largest possible value consistent with the con-
straints that z; — z; < a,; for cach edge (7,75) € I and that z; < u; for cach vertex i € V. In
other words, lines D3 -D10 of Dijkstra’s algorithm are functionally equivalent to lines BI'3-BF5

6

of the Bellman-Ford algorithm provided that all the edge weights a;; are nonnegalive. Since a
graph with only nonnegalive edge weights can never contain a rumtwv-wmght cyele, no test for
convergence is necessary in this case.

The elficient algorithm we shall present to solve Problem MI is a modification of Algorithm
M. Notice that lines M9 MI11 of Algorithm M exhaustively relax the edges in Eg in a manner
similar to lines BF3- BI'S of the Bellinan-Ford algorithm. In Algorithm M, however, this code is
exceuted many times. The elfieient algorithm to solve Problem MI uses a trick to replace this
code with code based on the mere eflicient relaxation procedure in lines D3-D10 of Dijkstra’s
algorithm. This trick i is the teehnique of reweighting duc to IXdmonds and Karp [3].

Lemma 2. Let (‘ = {V,E,a) be an edge-weighted graph, for each i € V let r; be a real
number, and let Il = {(V, [,b) where b;; = a;; + r; — r; for each edge (1,5) € IZ. For each
vertez i € V let z; be a real number and let y; = z;—r;. Thenzj—x; < a;; for all(i,j) € I
if and only if Y — ¥i < bij for all (1,7) € I+ (that i3, = 43 a solution to G if and only if y s -
a solution to 11.)

Proof. Trivial. I

We call the vector 7 = (ry,7g,...,7|y|) a reweighting of the graph G.

5. An asymptotically efficient algorithm for solving Problem MI

This scction shows how Dijkstra’s algorithm and rewecighting can be incorporated into Algo-
rithm M to yicld a faster algorithm for solving Problem MI. Given a graph G = (V, Vy, £, a), the
idea is to find a rewcighting r such that the reweighted graph /I = (V, Vy, I, b) has cdge weights
bij = a;; +r; —r; > 0 for all edges (¢, j) € . Lemma 2 guarantees that G is satisfiable if and
only if [T is satisfiable and also that a solution y o [I can be converted inlo a solution z to G by
selling z; = y; + r; for cach 7 € V. The advantage gained by transforming the problem on G to
a problem on [{ is that the relaxation portion of Dijkstra’s algorithm (lines D3- D10) can replace
the Bellman-Ford relaxation (lines M9-M11), which is the most expensive part of Algorithm M.

The first stage of the algorithm is to delermine the reweighting values r; for all 1 € V' and
the new edge weights b;; = a; + r; —r; for all (7,5) € E. We must choose the values r; such
that b;; > 0 for all (7,7) € Eg. Since this is equivalenl to requiring that r; — r; < ay; for all
(¢,7) € ER, valucs for the r; can be found by applying the Bellman-Ford algorithm to the graph
(V,Eg,a). The first few lines of the algorithm are:

Algorithm T (Efficient algorithm).

Tl. fori€V dor; « 0;
T2. for ind — 1 to |Vg| do

T3 for (i,7) € Er do

T4. r; « min(r;,7; + a;5);
T5. for (z,7) € Er do

T6. if 7; > 7; + a;; then Fail
T7. for (,7) € E do

TS. b;j = a5 + Ty — 755

If the algorithm fails in line T6, then there is a cycle of negative weight among the edges in
g, and hence graph G is unsatisfiable even in the absense of integer constraints. Otherwise, the
values b;; computed in line T8 are nonnegative for all (2,7) € Eg.

7

The next stage of Algorithm T is to solve the mixed-integer problem on the graph H =
(V,Vy, E,b). The algorithm alternately performs single relaxation passes on the edges in £y and
exhaustive relaxations of the edges in Ik, as in Algorithin M. We begin by inilializing the values
¥;, which will converge to a solution to I il H is satisfiable.

T9. fori€V do y; « 0

This initialization has the added fortune of subsuming the first exhaustive relaxation of Eg (lines
M2-M4 in Algorithm M). Aller the exceution of line T9 we have y; —y; = 0—0 < b;; for all
(2,7) € g, which means that the edges in /g are already exhaustively relaxed.

The next portion of Algorithm T parallels lines M5-M12 of Algorithm M and is where most
of the computing gets done.

T10. for ind «— | to |V;| do

g 14 b1 18 begin

T2, for (i,7) € E; do

T13. y; + min(yj, % + bis));

T14. Q«<V;

T15. while Q # 0 do

T16. begin

T17. Choose © € @ such that y; = min;cq ¥5;
T18. Q+Q-{i}

T19. for j € Vg such that (1,7) € Eg do
T20. y; « min(y;, ¥i + biz);

i) A end;

T22. end;

This code solves the problem on graph I in almost exactly the same way that Algorithm M
would. The only dilference is the method by which the edges of Eg are exhaustively relaxed.
Whereas lines M3-MI11 of Algorithm M perform the exhaustive relaxation using the Bellman-
Ford algorithm, lines T14-T21 of Algorithm T take advantage of the nonnegativity of the b;; for
(¢,7) € Eg and use Dijkstra’s algorithm.

The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to
produce a satislying assignment z for the original graph G.

T23. for (2,7) € E; do

T24. if y; > yi + b;; then Fail;
T25. for (7,7) € E do
T26. T =W+

Lines T23-T24 check the convergence of y by testing the inequalitics associated with the edges
in ;. The incqualities resulting from edges in £ need not be checked because the relaxation
in lines T14-T22 is guaranteed to be exhaustive. (If there were negative-weight cycles in Eg, we
would have detected this in lines T5-T86.)

Lines T25-T26 convert the solution y to graph /I into a solution z to graph G. Lemma 2
ensures that the inequalities z; — z; < a;; are satisfied, but we must also show that the z; are
integers for all ¢ € V;. For cach 7 € V; the value y; is an integer, however, and furthermore, the
values of the 7; produced in lines T1-T4 are zero for all 7 € V;. Thus for all the integer vertices,
the z; are integers.

In summary, we have proved the following theorem.

8

Theorem 3. Algorithm T solves Problem ML

The running time of Algorithm T is O(|V||£] + |V ||Vi]1g|V]), il the priority queue is imple-
mented using a FFibonacci heap.

6. Applications, extensions, and conclusions

The solulion to Problem Ml was demanded by a problem coneerning oplimization of sychronous
c‘ifc11it.ry by retiming [9]. This section brielly describes two other ‘problems -~ compaction of
VLSI circuits in the presence of power and ground buses and PERT scheduling with periodic
constraints - which can be reduced to Problem MI. We also consider an extension of Problem MI
where multiple classes of periodic constraints must be satisfied. (For example, some of the z; are
required to bé'in!,cgef:s, and others to be exact multiples of an integer constant c.)

Circuit compaction

Optimal (one-dimensional) compaction of VLSI cireuit layouts [5] is another application of the
Bellman-Ford algorithm. 1ach layout leature is given a variable representing an z-coordinate,
and the design rules are enforced using constraints of the form z; —z; < a;;. It may be desirable,
however, to allow feature 7 to be to the left of feature j or vice versa, but not to allow them
to occupy the same position. Unfortunately, if one wishes to allow this kind of transposition of
layout features, cither optimality or performance must be sacrificed because the problem becomes
NP-complete [10]. But for certain compaction problems arising in practice, transposition of layout
features can be allowed.

Some design methodologies enforce the placement of power, ground, and clock to be at regular
intervals. For example, one signal processing system [11] requires that these wires be repeated
cvery 200X, and that the width of all cells in the system be inleger multiples of this distance.
The designer is then constrained to build a new cell so that the layout features are tightly packed
among the global wires. In this context, where some layoul features may go on one side or the
other of some global wire but may not overlap, the compaction problem can be formulated as
Problem MI.

PERT scheduling

Suppose we have a constraint graph with vertices representing milestones in a project, and
edge-weights indicating the timing constraints between milestones. Generally, the Bellman-Ford
algorithm can be used to provide an optimal scheduling of the milestones. Il a work day is from
9:00 a.m. to 5:00 p.m., however, we may not wish to schedule a onc-hour job to start at 4:30
p-m. Advancing the job to the next day may cause an carlier job to be advanced as well if the
two jobs are constrained to fall near each other. The problem of PERT scheduling with periodie
constraints can be cast as Problem ML

Intuitively, the mixed-integer formulation allows one to include for cach job (1) a real variable
representing the starting time of the job, and (2) an integer variable representing, say, noon on
the day the job occurs. Thus onc can include constraints which say, for example, “This job must
start before 4:00 p.in. on the day it occurs.”

Multiple periodic constraints ,

Suppose that in the PERT scheduling application mentioned above, we also wish to take into
consideration constraints involving weekends. To do this, we would associale with cach job a
third variable representing, say, Sunday noon of the week during which the job occurs. We

9

arc then required to solve a variant of Problem MI in which there are two classes of periodie
constrainls - some variables are required to be exacet integers and others Lo be exact multiples of
7 while the remainder.may have arbitrary real values.
The solution to this problem is based on the following algorithm for solving ’roblem MI. (We
assume without loss of generality that G = (V, Vi, I£, a) is strongly connected).
Algorithm U
Ul. if (V, E,a) contlains a negative-weight cycle then Fail
else foreach (z,7) € V7 X V; do
bij + |the least path weight from 7 to 7 in (V, F,a);
U2. if (V5, Vr X Vi, b) contains a negative-weight cycle then Fazl
else find an integer assignment z on V; such that z; —z; < b;; for all 4,7 € Vi3
U3. Apply the Bellman-Ford algorithm to (V, Ifg,a) using the z; found in Step U2 as
initial values for the integer verlices and infinite initial values for the real vertices;

Step Ul produces a graph Il = (Vi, V1 X Vi, b) which is feasible if and only if G is feasible,
Step U2 solves H if I is leasible, and Step U3 extends the solution from the sel Vi of integer
vertices to the entire vertex set V. Step Ul can be performed in ()(|V|3) time by the Floyd-
Warshall algorithm [8] or in O(|V||E| + V||V |Ig|V]) time by Fredman and Tarjan’s improved
version [4] of Johnson’s algorithm [7]. Step U2 can be performed by the Bellman-Ford algorithm
and takes time O(]V_rl3) beeause IT is a complete graph. The cost of Step Ul dominates the cost
of Step U3, which takes only O(|V||Eg|) time.

Algorithm U extends naturally to the case in which there are multiple classes of periodic
constraints, provided that each period (e.g., 1 week) is an exaet multiple of the next smaller
period (e.g., 1 day). First, Step Ul is applied (with an appropriate scaling of the edge weights)
to produce an cquivalent problem in which the most loosely constrained class of vertices in the
original problem is eliminated from consideration. This new problem is then solved recursively
(or by dircet application of Algorithm T if only two classcs of vertices remain). Finally, the
solution is extended to the entire set of vertices, as in Step U3.

Acknowledgments

We would like to acknowledge the contributions by Flavio Rose of MIT when we first studied
this problem. The three of us originally produced Algorithin U, which is more thoroughly
described in Rose’s master’s thesis [12]. Thanks to Alex Ishii and Ron Rivest of MIT for reading:
drafls of the paper. Thanks also to Don Johnson of Penn State, Dick Karp of Berkeley, Gene
Lawler of Berkeley, and Nimrod Megiddo of CMU for helpful discussions.

References

[1] Alfred V. Aho, John E. Hoperoft, and Jeffrey D. Ullman, Data Structures and Algorithms,
Addison-Wesley, Reading, Massahusetts, 1983.

[2] E. W. Dijkstra, “A notc on two problems in connexion with graphs,” Numerische Mathe-
matik, Vol. 1, 1959, pp. 269-271.

[3] Jack Edmonds and Richard M. Karp, “Theoretical improvements in algorithmic cfliciency
for network flow problems,” Journal of the Association for Computing Machinery, Vol. 19,
No. 2, April 1972, pp. 248-264.

10

[7]
(8]
9]

Michael L. I'redman and Robert Endre Tarjan, “Fibonacci heaps and their uses in improved
network optimizalion algorithins,” Proceedings of the 25th Annual Symposium on Founda-
tions of Computer Science, LIS Compuler Socicly, October, 1984, pp: 338 -346.

Min-Yu llsuch, “Symbolic layout and compaction of integrated circuits,” Memorandum No.
UCB/ERL M79/80, University of California, Berkeley, December 11979,

Donald B. Johnson, “Priority quecues with update and finding minimum spanning trces,”
Information Processing Letters, Vol. 4, No. 3, December 1975, pp. 53-57.

Donald B. Johnson, “Ellicient algorithms for shortest paths in sparse networks,” Journal of
the Association for Computing Machinery, Vol. 24, No. 1, pp. 1-13, January 1977.

Eugene L. Lawler, Combinatorial Optimization: Networks and Matroids, 1lolt, Rinchart and
Winston, New York, 1976. -

Charles [. Leiserson, Flavio M. Rose, and James B. Saxe, “Optimiiing synchronous circuitry
by retiming,” Third Caltech Conference on Very Large Scale Integration, Randal Bryant, ed.,

" Compuler Science Press, Rockville, Maryland, March 1983, pp. 87-116.

[10]

[11]

[12]

[13]

Thomas Lengauer, “On the solution of incquality systems relevant to IC-layout,” Proceedings
of the 8th Conference on Graphtheoretic Concepts tn Computer Science, Carl Ilanser Verlag,
Munich, West Germany, 1982,

Richard F. Lyon, “A bit-serial VLSI architectural methodology for signal processing,” VLSI
‘81, John P. Gray, ed., Academic Press, New York, 1981, pp. 131-140.

Flavio M. Rose, Models for VLSI Circuits, Masters Thesis, Department of Electrical En-
gineering and Computer Scicnce, Massachusetts Institute of Technology, March 1982. Also
available as MIT VLSI Memo No. 82-114. _

Jin Y. Yen, “An algorithm for finding shoriest routes from all source nodes to a given
destination in general networks,” Quarterly of Applied Mathematics, Vol. 27, No. 4, 1970,
pp- 526-530.

11

