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1. Introduction 

Much research has centered on the · problc;n ·or finding shortest paths in graphs. It is well 

known that there is a · direct correspondence between the single-source shortest-paths problem 
and the following simple linear programming problem. · 

• j '• •·. • • \ ,, • • .. :---

Let S be a set of linear inequalities of the form x; - x; :=;-a;;, where the X; are unknowns 
and the a;; are given real . constants. Determine a se.t_ of values for the x; such that the 
inequalities in S are satisfied, or determine that no such values exist. 

This paper considers the mixed-integer linear programming varian t. of this problem in which some 

(but not necessarily all) of the Xi'•ar<'- r0qui rcd l.o be integers. The problem arises in the context 
of synchronous circuit optimi1.atio11 [!J], but it has applications to Pl~RT scheduling and VLSI 

layout compaction as well. 
Before formally defining the mixed-integer programming problem, we restate the linear pro-

gramming problem above in another l'orm. 

P,roblem,L. Let G = (V,,8,a) be an edge-weighted, directed graph, where V = {1,2, ... , 
IV I} . is the v~rtex set, t~e setj~ of edges is _a su_bset of V X V, and for each edge (i, j) E IC the 
edge weight a;; is a real number. Find a vect-or.x = (x 1, x2 , ••• , xw 1) satisfying the constraint 
that;: 

for all (.i, j) E E, or determine· that no feasible vector exists. 

The graph G is called a constraint graph for the linear programming problem. There are 
three advantages in adopting a graph representation of the problem. First, an adjacency-list 
rcpresental.ion [l, p. 200] of' the constraint graph G is more economical than, for example, a 
linear programming tableau or, when the graph has relatively few edges, a matrix of the aii· 
Sccond,_11roblcrn L frequently arises in situations that arc natu rally described by a graph. Finally, 
the graph-Lhcordic formulation helps in understanding the algorithms that solve this kind of 
problem. 

A method for solving Problem L was discovered in the late 1950's by Ford and Bellman [8, p. 
71]. Yen [13] gave some improvements to the Bellman-Ford algorithm as well as a cogent analysis 
showing that its running time is O(IVl3

). This bound is easily improved to O(IVIIEI) by using 
an adjacency-list representation for the constraint graph. 

The IJellman-Ford algorithm can also be used to solve the integer linear programming variant 
of Problem L, in which all the x, arc required to be integers. If the edge weights a,; all happen to 

be integers, the Bellman-Ford a lgori thm will produce integer values for the Xi- If the a,; arc not 
integers, however, but the x, arc required to be integers, each edge weight a;; may be replaced 
by lai;J without affcctinr; the sat.isflablity of the inequalities. 

The focus of this paper is the mixed-integer variant of Problem L. 

Problem MI. Let G = (V, Vi, E, a) be a edge-weighted, directed graph, where V = 
{ 1, 2, . .. , IV I} is the vertex set, the set Vi is a subset of V, the set E of edges is a subset 
of V XV, and for each edge (i,j) EE the edge weight a;; i3 a real number. Find a vector 
x = (x1, x2, ... , xw1) satisfying the constraints that 

for all ( i, j) E E and that x, E Z for all i E Vi, or determine that no feasible vector exists. 
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The vcdor x = (x 1, x2, ... , xw i) is called a solution to graph C, aud if' graph C has a solution, 

we say that C is satisfiable. When it is clear from context, we use the same tcrrniuology for 

Problem L. 
In addition, we shall refer to the vertices in V1 as the integer vertices of C aud the vertices in 

VR = V - V1 as the real vertices of C. We also partition ,the set of edges into two sets depending 
on whether the vertex at the head of the edge is integer or real: 

E1 = {(i, j) E [i; I j E VJ}, 
ER= {(i,j) EE I j E VR}. 

This paper presents two algorithms to solve Problem ML The first, which ruus in O(IVIIVrllEI) 
time, is a straight.forward extension or the lkllrnan-Ford algori thm. The sccoucl is more sophis

ticalcd and has a running time of' O(IVll!~I + IVIIVrl lg !VI). We conji:ct,urc that lhc O(IVIIJ~I) 
ruuning time achieved by the Hellman-Ford algorithm fo r the pure linear prograrnrniug aud pure 
iuteger programming versions ol' the problem is not achievable in geucral for sparse instauccs of 
Problem Ml. 

The remainder of this paper is organized as follows. Section 2 reviews the Bellman-Ford 
algorithm. Section ;~ presents a simple relaxat ion algorithm for solving Problem Ml. Section ,1 

discusses three tcchniqucs-- Dijkstra's algorithm, rcwcighting, and Fibonacci heaps - which arc 
used in Section 5 to construct an asymptotically cfn cicnt algorithm for Problem MI. We discuss 
applications and present some concluding remarks in Section 6. 

2. Shortest paths and the Bellman- Ford algorithm 

This srction reviews how the Bellman-Ford algorithm solves Problem L. Although the results 

of this section arc well known and can be found in most textbooks on combinatorial optimization 
(sec, for example, [8, p. 7-11), we repeat the material here for the reader's convenience. 

There is a natural correspondence between Problem L and the graph-theoretic single-source 
shortest-paths problem. Let C = (E, V, a) be an ir1stancc of Problem L. Suppose that for each 
vertex i E V, there is a path to i from vertex 1, and let di be the weight of shortest (least-weight) 
path from ver tex 1 to vertex i. (At the end of' the section, we shall discuss the case in which some 
vertices arc not reachable from vertex 1.) Then for any edge ( i, j) E r~•, we have d1 - d;, ~ Gij 

since the edge (i,j) can be_ appended to a shortest path from vertex I to vertex i to produce a 

path from vertex 1 io vertex j of weight di+ Gij• Thus the shortest-path wcight.s d arc a solution 
to C. 

Whenever C is satisfiable, there arc infinite number of solutions. For example, if xis a solution 

to G, I.hen uniformly adding any constant k to each Xi yields another solution y, where y, = Xi+k 
for each i E V. The assignment Xi - d, gives each Xi its largest possible value subject to the 
constraint that x 1 = 0. To sec this, consider any path p of weight. d, from vertex 1 to vertex i. 
If the inequalities associated with the edges of p arc summed, the unknowns associated with the 

intermediate vertices cancel and the result is the inequality Xi - x 1 ~ d;,. 
Whenever the graph C contains some cycle c whose weight is negative, the shortest path 

weight from vertex 1 to any vertex i on cycle c is undefined because the weight of any path 
to vertex i can be diminished by appending a traversal of c. In this case the graph C is not 

satisfiable. If the inequalities associated with the edges of c arc summed, all the unknowns x;, 

cancel, and the resulting inequality asserts that O is less than or equal to the weight of c, which 
is false. 
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The Bellman-Ford algorithm, whi<'h is given below, solves P·roblcrn L by finding t he weight 
of' the shorL<•st path Lo each vertex · from vertex ·i: Should ihc graph contain a negative-weight 
cycle, the algori th III reports that the graph is u rrnatisliable by calling the proccd u re Fail, whose 
semantics we leave urispec:ificd. · 

Alg.orithm BF {Belirhan-Ford algorithm). 

BFI. X1 - O; 
BF2. for i - 2 to !VI do Xi - :co;· 
BF:t for ind - l to IV I - l do 
IW4 . for each (i,j} E: g do . 
IW5. ·x; - rnin(xj, Xi+ aij)i 

IW6. foreach ( i, j) E g do 
IW7. if Xj > Xi+ aii then Fail; 

For each vertex j E V, the Bellman-Ford ·al:gorithm iteratively updates· the weight xi of a 
tentative shortest path from vertex I to vertex j. After ini tialization, the algorithm makes IVl-1 
passes through-t he edges in, J.!J ·and·-relaxe3·cach. cdge -(i-;i) by co·rnputing Xj - rnin (xj, Xi+ aii)-

J\ simple analysis due to Yen [13] indicates why the Bellrnan-fi'ord algorithm works. The 
weight xi converges to the weigh t di of' a shortest path from vertex I Lo vertex j if the edges on 
the path arc relaxed in order along the path. The sequence of edges relaxed by the Bellman-Ford 
algorithm consists of !VI - 1 copies of some ordering of E, and Lhcrcl'orc contains every vcrlex
disjoinl path as a subsequence. lf there arc no negative-weight cycles in C, then every shortest 
path is vertex disjoint, so each Xi converges Lo the shortest-path weight d;. On the other hand, 
if there is a negative-weight cycle iri the graph, the algorithm detects this condition by iterating 
once more thro ugh a ll edges Lo sec whether any of' the inequali ties remain unsatisfied. 

The Ucllman-Ford algorithm as given above <let.ermines the weight of the shortest path from 
vertex 1 to each vertex, and thcrefo.rc solves Problem L whenever all vertices of G arc reachable 
from vertex l. The code can be adapted to solv<' Problem L on arbitrary graphs by si mply 
changing the initialization step._(lincs BF I l1F2) . In particular, if each Xi is assigned a finite 
initial value ui, the relaxation in lines BF3 -IW5 sets each x; to its maximum value subject to the 
constraints that x i - x; ::;; aii fo r each edge (i,j) E /~ and that Xi ::;; Ui for each vertex i EV. 
Notice that whenever the constrain t graph G is satisfiable, it is satisfiable subject to the additional 
constraints Xi ::;; tLi . Should the inequali ties be inconsistent because lherc is a negative-weight 
cycles in the graph, the ~elaxation ·will not'.convcrgc to a solution, and the inconsistency will be 
detected by the test in lines 13F6 -13F7. 

3. Simple r~laxation algorithms for Problem MI 

As was mentioned in the introdu ction, Problem ~ can be solved directly by the 13ellman
Ford algorithm when all unknowns arc real (Problem L) and when all unknowns arc integer. 
The combination of integer and real unknowns, however, seems to make the problem harder. 
In this section, we gain some intuition about the structure of Problem Ml by introducing two 
algorithms that solve it in O(IVIIV1IIEI) time much the same way as the Bellman-Ford algorithm 
solves Problem L. The asymptotically efficient algorithm in Section 4 is derived _from the second 
of' these algorit hms. 

A natural approach to solving Problem MI is to sec whether the Bellman-Ford relaxation 
approach can be made to work. Since we have both integer and real vertices in the graph, 
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Figure 1. An im1ia11r.c of Problem MI. lutcge r vert ices (Vi= {! ,ti}) arc 
shown as squares and real vertices a.'! cirr.les. 

however, we must modif'y the rclaxaLion sicp IW5 in Lhc Bellman-Ford alµ;oril.hrn Lo produce an 

integer value whenever j is an inkgcr vertex (line IW). This approach docs in f'acL work, but 
ii requires more iterations than Lhe simple Bellman-Ford algorithm. The next algorithm solves 
Problem MI. T he number of iterations n in line R2 will be determined in the analysis following 

the algorithm. 

Algorithm R (Relaxation). 

Rl. foreach i EV do xi +- O; 
R2. for ind +- 1 to n do 
R3. foreach (i,j) EE do 
R4. begin 
R5. Xj +- min(xj, Xi+ aij); 

R6. if j E Vi then Xj +- lxiJ; 
R7. end; 
RS. foreach (i,j) EE do 
R9. if Xj > Xi + aij then Fail; 

In order to determine a value of n such that Algori thm R works, we introduce ihe notion of 
a reducing path. Let p be a paLh starting at some vertex k, and suppose that Xk is initially set to 
0 and that all the remaining Xi arc ini Lialized io oo . Suppose the edges in path p arc traversed 
in order starting from k, and each edge (i,j) along the path is relaxed as in statements R5- R6. 
If each relaxation of an edg~ (i,j) reduces the value Xj, ihe path pis called a reducing path. 

Whenever a sequence of edges contains all reducing paths as subsequences, the relaxation of 
each edge in the sequence in order yields a solution. (The proof is analogous io Yen's analysis 
[13] of' the Bellman-Ford algorithm.) The Bellman-Ford algorithm solves Problem L because in a 
saiisllable graph with only real vertices, each vertex occurs at most once on any single reducing 

path. (And in fact, every shortest path is a reducing path.) 
When some unknowns arc integer and some arc real, however, it is possible for a reducing 

paLh io visit the same vertex more than once, even if the graph is saiisllablc. For example, in the 
graph shown in Figure 1, the reducing path p = 3-+ 2-+ 1-+ 2-+ 3-+ 4-+ 3-+ 2 visits vertices 

2 and :{ three times each. If all the x,: arc initially sci io O, the edges of p must be relaxed in 
their order along the path to achieve convergence. Moreover, relaxing the entire edge set in some 

arbitrary order only 3 = IV I - 1 times might not achieve convergence. Since the value of n in 
line R2 must be at least. the maximu m number of edges in any reducing path, the value !VI - 1, 

which was used in Algorithm BF, will not suffice. 
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Fort11 natcly, red 11ci ng p:iths arc never very long _in satisfi able graphs bcca11se of the f'ollowing 
lemma. · 

Lemma 1. Suppose <; = (Y, ~. 8, a) is s~tisfiable. Ji p . is . a reducing path in C, then 
1. p viiits no integer vertex m_ore than once, and 
2. p never visits' the same real 'verlex twice without visiting some integer vertex m 

between. 

Proof. If either condilion is violated, then t he rcd11cing path p can be extended indefinitely by 
repeating the cycle that causes violation. I 

Lemma 1 allows us to determine a.·value for n in line R2 of Algoritlim ·n. such that the x 
converges to a solution whenever C is·satisti:i:ble'. 'Any red11 cing path contains each integer vertex 
at most once and each real vertex at most !Vil+ l Limes. Since the n11mber of edges in a path is 
one less t han t he nuinber ol' vcrtii:es, any redudng palh for a ·sa.tisfi;.1.ble grapl; can have no more 
than IV1I + (IVit + t)IVRI - 1 = IVi_llVRI t !VI - i edges. T_h11s the._limiL n of the 011ter.loop in 
Algo ri thm H. should be set to IV1IIVRl+ IV!'- i.;·The overall running ti me of Algorithm ll is thus 
O(IVIIV1llltl). . 

This analysis suggests t he following algorithm which is slightly more efTicicnt than Algorithm 
R, and which for:ms the basis of the asymptotically efficient algorithm presented in the next 
section. 

Algorithm M {Modified relaxation). 

Ml. foreach i E V do xi ~ O; 
M2. for ind+- l to IVRI do 
M3. foreach ( i, j) E Kil do 
M-1. x; +- min(x;, Xi+ aii); 
M5. for ind2 +- l to !Vil do 
M6. begin 
M7. foreach (i,j) E E1 do 
M8. x; +- min(x;, lxi + ai;J); 
M9. for ind+- 1 to IVRI do 
MIO. foreach (i,j) E ER do 
Mll. x; +- min(x;, Xi+ aii)i 
M12. end; 
Ml3. foreach (i,j) EE do 
M14. if x; > Xi + aii then Fail; 

The only di!Terencc bc!,wccn this algorithm and Algori thm R is that it treats the edges in E1 
separately from the edges in En. In li nes M7- M8 of Algo ri thm M, each edge in E1 is relaxed once. 
There arc !Vil such passes over E1 which a rc preceded, followed, and separated by exhaustive 
relaxations of the edges in ER (lines M2--M'1 and M9 -Ml I). In each exhaustive relaxation of ER, 
edges arc relaxed until no further changes in the values of x; arc possible for j E VR· (Actually, 
the relaxations in lines M2--M1 and M9 Ml 1 arc only guaranteed to be exhaustive if t here are 
no negative-weight cycles in En. If there arc cycles of negative weight, however, this condition 
is detected at the end by the convergence test in lines Ml3 -M14.) 
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4. Dijkstra's algorithm and reweighting 

Section 5 gives a more dlicienl. algorit.hrn to solve Problem Ml t.han dther Algorithm H. or 
J\lgoriLhrn M. Three important techniques arc used in the algorithm. The first is Dijkstra's 
algorithm which finds short.es!. paths in a graph rrom a single so11rcc in I.he case when all the edge 
weights arc nonnegative. The second is reweighting, which is a technique d11e Lo Edmonds and 
Karp [3] and used by .Johnson [7] in his cllicient algorithm for i;olving the all-pairs shortest-paths 
problem. The third is the Fibonacci heap data sLructure due Lo Fredman and Tarjan [1], which 
is an improved priority queue that makes Dijkstra's algori th m run in Lime O(lgl + !VI lg IV I). 

Given a graph C = (V, E, a) such that all edge weights aij arc nonnegative, Dijkstra's 
algorithm cornp11tcs for each vertex i, the weighL di or the shortest path from vertex I. Because 
each edge is relaxed exactly once, this algorithm is fast.er than Lhe Bellman-Ford algorithm which 
solves I.he same problem for arbitrary cdp;e weights. DijksLra's algorithm derives iLs cmciency from 
the observaLion that along any short.est path from vertex I, the shorLest-paLh weights di form a 

nondecreasing sequence ii" all the edge wei ghts arc nonnegative. Thus, a sequence consisting of all 
edges (i,j) E /~ in nondcr.reasing order of Lhe dist:rnccs di contains as subsequences shortest paths 
rrorn verLex I to all vertices in V. FurLhcrrnore, such a sequence of' edges can be computed on 
Lhe fly using a priority queue. (The textbook [1] gives a proof of correctness for this algorithm.) 

Algorithm D {Dijkstra's algorithm). 

Dl. X1 - O; 
D2. for i - 2 to !VI do Xi - oo; 
D3. Q - V; 
D1. while Q =/= 0 do 
D5. begin 
D6. Choose i E Q such that Xi= minjEQ Xji 
D7. Q - Q - { i}; 
D8. foreach j E VR such that (i,j) E ER do 
D9. Xj - rnin(xj, Xi+ ai;); 
D10. end; 

If the set Q in the algoriLhrn is implemented as a standard priority queue, each extraction 
(lines D6 -D7) and updal.c (line D!J) cosLs O(lg IQI) = O(lg jVI) time. Thus the Lola! running 
time or Dijkstra's algorithm is O( j/Ej lg jVI). Fred man and Tarjan [4] describe a data structure 
called Fibonacci heaps that supporLs arbitra ry dclclion in O(lgn) amorLizcd Lime and all other 
standard priority queue operations (including updaLe) in ronsLani amortized time. Uy using a 

Fibonacci heap in Dijkstra's algorithm, Lhcy show that the performance can be improved to 
O(WI + IVI lg jVI). 

Since Dijkstra's algorithm is equivalent to Lhe Brllrnan-Ford algoriLhm on graphs with non
negative edge weights, it can be used to solve Problem L on such graphs. This is not very 
interesting in itself, since any graph C = (V, E, a) in which all edge weigh ts arc nonnegative 
can be trivially satisfied by seLting x, to O for each i E V. Our interest in Dijkstra's algorithm 
comes from a stronger property of the solutions ii finds. Suppose Lhe initialization step (lines 
Dl- D2) is changed so thaL each variable Xi is initialized to a finite value Ui. ThC;n the relaxation 
procedure in lines D3 .!)JO will sci each Xi to iLs largest possible value consisLcnt with the con
straints that, x; - x, :s; aij for each edge (i,j) ER and that x, :s; Ui for each vertex i EV. In 
other words, lines D3 -D10 of Dijkstra's algorithm arc functionally equivalent to lines BF3- BF5 
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of' ihc Bellman-Ford algorithm provi<kd that all Lite edge weights <Lii a rc nonnegative. Since a 
graph wi th only nonncgaLivc edge weights can nevN contain a negative-weight, cycle, 110 iesi for 
convergence is necessary in this case. 

The eflickni algorithm we shall pm,<'ni to solve Problem .Ml is a n\odification of Algorithm 
M. Notice that lines M9 M 11 of Algorithm M exhaustively relax tho 'ddp;es "in 8n' in a manner 
similar io li nes IW:~ IW5 of the Bellman-Ford algorithm. In Algorithm M, however, th is code is 
executed many times. Th1) clfident algorithm io solve Problem Ml uses a trick to replace this 
code with code bas<'d on tit<' more cflicieni relaxation procedure in lines D3-DI0 of Dijkstra's 
algorithm. T his trick is the t.cchnique of reweighting due to Edmonds and Karp [:~]. 

Lemma 2. Let C = (ii, ,~·, a) be an edge-weighted graph, for ea.ch .i E V let Ti be a r~al 
number, and let I I = { V, /~, b) where bii = <Lii + Ti - ri for each edge ( i , j) E E. For each 

. vertex i E V let Xi be a. real number and let Yi= Xi-Ti. Then xi -xi :::; <Lii for all (i,j) EE 
if and only if Yi - Yi :::; l>ii for all ( i,j) E 8 {that is, x is a solution to C if and only if y is · 
a solution to I I.) 

Proof. Trivial. I 

We call ihc vector r = (r1,r2, ••• ,rw
1
) a reweighting of the graph G. 

5. An asymptotically efficient algorithm for solving Problem MI 

This section shows how Dijkstra's algorithm and reweighting can be incorporated into Algo
rithm M to yield a faster algorithm fo r solvin[!; l'roblern Ml. Given a graph C = (V, Vr, E, a), the 
idea is io find a reweigh ting r such ihai Lhc reweigh Led graph I/ = (V, V1, /J;, b) has edge weights 
bii = aii + Ti - Tj 2: 0 for all edges (i, j) E Rn. Lemma 2 guarantees t hat C is satisfiable if and 
only if FI is satisfiable and also that a solution y to II can be converted into a solution x to C by 
sciiing Xi= Yi+ Ti for each i EV. The advantage gained by transforming the problem on C to 
a problem on // is that the relaxation -portion of Dijkstra's algo ri thm (l ines D:~- DIO) can replace 
ihc Bellman-Ford rclaxaLion (lines M9- Ml I), which is ihc most, expensive part of Algorithm M. 

The first stage of the algorithm is io dcLerminc the reweighting values Ti for all i E V and 
the new edge weights bii = ai + Ti - ri for all (i,j) E E. We must choose the values Ti such 
ihaL bii 2: 0 fo r all (i,j) E HR. Since th is is eciuivalent l.o requiring ihat Tj - ri :::; aii for all 
(i,j) E En, values for the Ti can be found by applying ihc Bellman-Fo rd algori th m to ihc graph 
(V, En, a) . T he fi rst few lines of ihc algorithm .arc: 

Algorithm T {Efficient algorithm}. 

Tl. for i EV do Ti+- O; 
T2. for ind+- 1 to IVRI do 
T3. for (i,J") E En do 
T4. Ti+- min(Ti,Ti + aij)i 
T5. for (i, j) E ER do 
T6. if Tj > Ti+ aii then Fail 
T7. for (i,j) EE do 
T8. bii +- aii + Ti - ri; 

If i he algorithm fails in line T6, then there is a cycle of negative weight among the edges in 
En, and hence graph C is unsatisfiable even in the absense of integer constrain is. Otherwise, the 
values bii computed in line T8 arc nonnegative for all (i, j) E ER. 
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The next stage of Algorithm T is to solve the mixcd-in Lcgcr problem on the graph II = 
(V, V1 , 1':, b). The algorithm alternately performs single relaxation passes on the edges in 1':1 and 

exhaustive relaxations of the edges in 8n, as in Algorithm M. We begin by initializing the values 
Yi, which will converge to a solution to 11 if' 11 is satisfiable. 

T9. for i EV do Yi -1-- O; 

This initialization has the added fortune of subsuming the first exhaustive relaxation of ER (lines 

M2 M4 in Algori thm M). After I.he execution of line T9 we have y1 - Yi = 0 - 0 ~ bi; for all 
(i,j) E ER, which means I.hat the edges in ER arc already ex haustively relaxed. 

The next portion ol' Algorithm T parallels lines M5 -M12 of Algorithm Mand is where most 
of the computing gets done. 

TJO. for ind -1-- I to· !Vil do 
Tll. begin 
Tl2. for (i,j) E E1 do 
T13. Yi._ min(y1, lYi + bi;J); 
Tl4. Q -1-- V; 
Tl5. while Q '=f 0 do 
T16. begin 
T17. Choose i E Q such that Yi= min;EQ Y;i 
T18. Q .- Q - {i}; 
T19. for j E VR such that (i,j) E ER do 
T20. Y; -1-- min(y1, y, + bi;); 
T21. end; 
T22. end; 

This code solves the problem on graph 11 in almost exactly the same way that Algorithm M 
would. The only <lilfcrcnce is the method by which the edges of ER arc exhaustively relaxed. 
Whereas lines M9- Ml 1 of Algorithm M perform the exhaustive relaxation using the 13cllman

Ford algorithm, lines Tl'1- T21 of Algorithm T take advantage of the nonncgativiiy of the b,1 for 
(i,j) E ER and use Dijkstra's algorithm. 

The final part of Algorithm T is to check the convergence of the y and to apply Lemma 2 to 
produce a satisfying assignment x for the original graph C. 

T23. for (i, j) E E1 do 
T24. if Yi > Yi+ b,1 then Fail; 
T25. for (i, j) EE do 
T26. x, .- y, + r,; 

Lines T23- T24 check the convergence of y by testing the inequalities associated with the edges 
in E1. The inequali ties resulting from edges in En need not be checked because the relaxation 
in lines Tl4-T22 is guaranteed to be exhaustive. (lf there were negative-weight, cycles in ER, we 

would have detected this in lines T5- T6.) 
Lines T25 -T26 convert the solution y to graph JI into a solution x to graph C. Lemma 2 

ensures that the inequalities x1 - x, ~ aij arc satisfied, but we must also show that the x, are 
integers for all i E V1. For each i E V1 the value Yi is an integer, however, and furthermore, the 

values of the Ti produced in lines Tl- T'1 arc zero for all i E VJ. Thus for all the integer vertices, 

the Xi arc integers. 
In summary, we have proved the following theorem. 
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Theorem 3. Algorithm T solves Problem MI. 

The run11inp; time ol' Algorithm Tis O(IV ll!~I + IVIIV1I lg !VI), if' ihe pr!ority queue is imple
mented usi11p; a Fibonacci heap. 

6 . Appli~ations, exte-nsions, and conclusions 

The solution to Problem Ml was derna11ded by a problem conccrni11g optimizalion of sych ronous 
c·iicuit,ry by rctirning [9]. This sect.ion briefly describes' iw; other · problems - -compaction of 

VLSI circuits in the presence of' power and p;round buses and PEllT scheduling with periodic 
constraints -- which caq be reduced to !>robl<';n Ml. We also -consider an extension of Problem MI 
where multip!c classes ol' periodic consi rainii; 11111st be satisfied. (For example, some of ihc Xi are 
required to b~ -iniegcr~, and others Lo be exad rn11liiples of an integer constant. c.) 

Circuit compaction 
Optimal (one-d imensional) compadion of VLSI circuit layouts [5] is another application of the 

Bellman-Ford algori-lhm. l•:ach layout l'eaiure is given a variable representing an x-coordinaic, 

and ihc design rules a rc enl'o rc<'d using constraints of Lhc form xi-xi:=::; aii· Ii may be desirable, 
however, to allow f'catu re i to be to the left of' f'eature j or vice versa, but not to allow ihern 
to occu.py the same position . Unfortunately, if' one wishes io allow this kind of transposition of 
layout features, cit.her optimality o r performance must be sacrificed bemuse ihc problem becomes 

NP-complete [LO]. But for cer tain compact.ion problems arising in practice, transposition of layout 
features can be allowed. 

Some design methodologies enforce ihc placement. of power, ground, and clock to be at regular 
intervals. For example, one signal processing system [I 1] requires ihai these wi res be repeated 
every 200>-, and that. the width of' all cel ls in ihc system be inLcp;cr multipl es of this distance. 
The design er is then constrained io build a new cell so that ihe layout. features arc Lighily packed 
among the global wires. In this coniexi, where some layou t. features may go on one side or the 
other or some global wire but. may not overlap, ihe compaction problem can be formulated as 
Problem Ml. 

PERT scheduling 
Suppose we have a constraint graph with vertices representing milestones in a project, and 

cdr;e-wcights indicaiin-g the Urnin g constraints between milestones. Generally, the Uellman-Ford 
a lgorithm can be used to provide an optimal schedulini; of ihe milestones. If a work day is from 
9:00 a.m. to 5:00 p.m., however, we may not. wish io schedule a one-hour job io star t at 1:30 
p.m. Advancing the job to the next day r:nay cause an earlier job io be advanced as well if the 

two jobs arc constrained io fall near each other. The problem or P8Irr scheduling with periodic 
constraints can be cast as Problem Ml. 

lniuitively, Lhe mixed-integer formulation allows one to include for each job (1) a real variable 
representing the siariing Lime of the job, and (2) an integer variable representing, say, noon on 

ihc day the job occurs. Thus one can include constraints which say, for example, "This job must 
start. before 1:00 p.m. on the day it occu rs." 

Multiple periodic constraints 
Suppose ihaL in the PERT schc<lulinp; application mentioned above, we also wish io take into 

consideration consirainis involving weekends. To do this, we would associate with each job a 

third variable representing, say, Sunday noon of the week during which ihc job occurs. We 
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arc then requi red Lo solve a variant of Problem Ml in which there arc two classes of periodic 
constraints some variables arc required Lo be exact, intege rs and others Lo be exact, multiples of 

7 while the remainder .may have arbitra ry real values. 
The solution Lo this problem is based on Lhe following algorithm f'or solving Problem MI. (We 

assume without loss of' generality that C = ( V, V1, 1~, a) is strongly connected). 

Algorithm U 

Ul. if (V, E,a) contains a negative-weight cycle then Fail 
else foreach (i,j) E V1 X V1 do 

b,;1 +- lthe least path weight from i Lo j in (V, T~,a)J; 
U2. if (V1, V1 X Vi, b) contains a negative-weight cycle then Fail 

else find an integer assignment x on V1 such that x1 - x,; ~ b;1 for all i,j E V1; 
lJ3. Apply the Bell man- Ford algori Lh m to ( V, I~ n, a) using the x,; 1'011 nd i II Step U2 a s 

ini t ial values for the integer vertices and infini te initial values fo r the real vertices; 

Step UL produces a g raph // = (V1, V1 X V1, b) which is feasible if' and o nly if C is feasible, 

Step U2 solves 11 if 11 is f'casibl e, and Step U3 extends the solution f'rorn Lhc set V1 of integer 
vertices Lo the entire vcricx set V. Step UJ can be pcrl'ormed in O(IVl:1) Lime by the Floyd

Warshall algori t hm [8] or in O(jV IJ/EI + IV1IIV I lg IV I) Lime by Ji'redrnan a nd Tarjan 's improved 
version [1] of Johnson's algorithm [7]. Step U2 can be performed by the Bellman-Ford a lgorithm 

and Lakes time O(IVil3
) because II is a co mplete graph. The cost of Step Ul dominates the cost 

of Step U3, which Lakes only O(IVIIERI) time. 
Algorithm U extends naturally Lo t he case in which there arc multiple classes of periodic 

constraints, provided that each period (e.g. , l week) is an exact multiple of the next smaller 
period (e. g. , 1 day). First, SL<>p Ul is applied (with an appropriate scaling of the edge weights) 
to produce an equivalen t problem in which Lhe most loosely constrained class of vertices in the 
original problem is elimi nated from consideratio n. This new problem is then solved recursively 
(or by direct application of Algorithm T if only two classes of vert ices remain) . Finally, the 
solution is extended to the entire set of ver tices, as in Step U3. 
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