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Two Undecidabiliw Results In 

ProbabilisticAutomata Theory 

Abstract 

The language accepted by a probabilistic finite state acceptor with an isolated cutpoint 

is known to be regular. We show that determining if a cutpoint is isolated is undecidable. 

Keywords: Probabilistic Automaton, Probabilistic Acceptor, Post Correspondence 

Problem, Undecidability. 
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1 The isolated cutpoint problem. 

1.1 Introduction. 

Given a probabilistic finite automaton M, we define the function v M( w) as the 

probability that M will accept w( complete definitions are given in section 1.2 below). 

Rabin [R] establishes the following sufficient condition for the set of strings accepted 

by a probabilistic finite acceptor to be regular( this is sometimes referred to as the 

isolated cutpoint theorem). 

Theorem (Rabin [R]): Given a probabilistic acceptor A = (M, >-.), the cutpoint A 

is said to be isolated if :31:: > 0\/w E ~•, lvM(w)- >--1 >€.If A is isolated, then the 

language accepted by A is regular. 

This result motivates the question of how one determines if a cutpoint is isolated. This 

question can be found in the literature[A, P], and was previously open. Our results 

"answer" this question by showing that no such answer exists. 

We prove the following: 

Theorem 1: Given a probabilistic finite automaton M, it is undecidable whether 

there exists a string w such that vM(w) = ½-

Theorem 2: Given a probabilistic finite automaton M, it is undecidable whether 

\/1:: > 0:3w such that lvM(w) - ½I < €. 

Nasu and Honda [NH] showed that given a probabilistic finite automaton M, it is 

undecidable whether :3w such that v M( w) > ½. Their result and ours are incomparable 

in that neither result implies the other in any way obvious to us. Also, the proof 

techniques involved have no apparent similarity. 

In the rest of this section we give a rigorous matrix formulation of probabilistic 

finite automata and probabilistic acceptors. We review modified Post correspondence 

systems, two known results concerning them, and discuss the connection between these 

results and the ones we wish to prove. 

In section 2 we describe a mapping from modified Post correspondence systems to 

probabilistic finite automata. We show a trivial mapping from pairs and pair sequences 
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in Post correspondence systems to input words in probabilistic finite automata. We 

prove a lemma relating these mappings. We prove a lemma describing a relationship 

between solutions or approximate solutions to modified Post correspondence systems 

and propert ies of the corresponding input words to the corresponding probabilistic 

acceptors. This lemma is shown to imply Theorems 1 and 2 almost immediately. 

In section 3 we discuss an open question arising from our work. 

1.2 Matrix formulation of probabilistic finite automata. 

For the rest of the paper we use the following matrix formulation. It is based on 

the definition used by Arbib[A], and the two can be easily shown to be equivalent. 

Standard notation from automata theory follows [L&P] 

Let Xn be the set of nonnegative n X n matrices whose rows sum to one. 

Let Vn be the set of nonnegative n component row vectors whose components sum to ,, 

one. 

Definition: An n state probabilistic finite automaton is a quadruple (F, S, 8, E) where 

E is the alphabet, F is a length n row vector of O's and l 's, SE Vn, and 8 is a mapping 

from E to Xn, 

Definition: An n state probabilistic acceptor, A, is an ordered pair (M, )..), where M 

is an n state probabilistic finite automaton, and A is a rational number between O and 

1. The number A is referred to as a cutpoint. 

Given an n state probabilistic acceptor A= (M, A), where M = (F, S, 8, E), define 

PM: E* -+ Xn by 

l)PM(e) =l(the identity matrix) 

2) PM(wx) = PM(w) X 8(x), where x EE. 

We can calculate vM(w) as S X PM(w) X FT. 

For w in E*, A accepts w iff VM(w) > A. 

In principle, A could range the reals. From a computational view, however, but then it 

is not clear how to represent arbitrary cutpoints. For this reason, we restrict ourselves 

to the rationals. 
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1.3 Undecidable problems about modified Post correspondence systems. 

We define modified Post correspondence systems as per Lewis and Papadimitriou [L&P]. 

Given some alphabet E, a modified Post correspondence system P is defined by an 

ordered pair of strings over E+, (xs,Ys), and a set of pairs {(x1,yi),(x2 ,Y2), ... (xn,Yn)}. 

In the rest of the paper, we also use the following terminology: 

Given a modified Post correspondence system P consisting of pairs {( XJ, Yl ), ( x2, Y2), ... ( Xn, Yn)} 

over E+ with a given starting pair, (xs, Ys), a P-sequence, S, is defined to be a sequence 

of pairs, [(xs, Ys), (xi 1 , Yii), (xi2 , Yi2 ), ••• (xik, YiJ]. 

S matches up to the first l letters if X8 Xi1 Xi2 ... Xik and YsYiiYi2 ... yik agree up to their 

first l letters. 

We use the following two undecidability results concerning modified Post correspondence 

systems: 

1) Given P, a modified Post correspondence system as defined above, determining if 

there exists a P-sequence S such that S is a match is r.e. complete. 

2) Given P, a modified Post correspondence system as defined above, determining if 

Vl3S, S is a match or matches up to the first l letters is co-r.e. complete. 

These theorems remain true for any finite non-unary alphabet. 

Result 1 is proven in [L&P], and the proof technique there can be used to prove 

result two. 

We shall reduce these problems to corresponding problems about cutpoints, thereby 

proving Theorems 1 and 2. 
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2 Post CorrespondenceProblemsReduce to Outpoint Problems. 

2.1 Coding words into vectors and matrices. 

Given a string w E { a, b} *, define v( w) as .1 times the "numerical value" of w in base 

ten notation, interpreting a's as l's, and b's as 2's, with the decimal point to the left 

of the digits. Thus, v(ab) = .012, v(bababb) = .0212122, etc. define v(e) = 0. Clearly, 

v is an injective mapping. 

One can easily verify the identity: 

v(xy) = v(x) + 10-lxlv(y). (1) 

The following useful inequality also follows from the definition of v: 

If x and y agree up to their lth letters(from the left), and differ on their ( l + 1 fh letters, 

or exactly one of the two strings is of length l, then 

10-l-l > lv(x) - v(y)I > 10-1- 3. (2) 

These bounds aren't tight, but are sufficient for our purposes. 

Given x, y E { a, b }'", define r( x, y) to be the length 8 row vector 

10-lxl-l 10-lxl-l 10-lyl-l 10-IYl-l 
[ 2 ' 2 ' 2 ' 2 ,v(x),v(y),q,q] 

where q is defined as the value necessary to make the components sum to 1. Note that 

the first 6 components of the vector are are nonnegative and bounded above by .05. 

This implies that q will be nonnegative and less than 1. 

Define the 8 X 8 matrix O(x, y) as follows: 
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10-l: I 10-l: I 
0 0 lOv(x) 0 q1 qi -2- -2-

10-lxl 10-lzl 
0 0 lOv(x) 0 q2 q2 -2- -2-

0 0 
I0-1111 10-1111 

0 lOv(y) q3 q3 ~ -r-
0 0 

10-1111 
- 2-

10-1111 
- 2 - 0 lOv(y) q4 q4 

0 0 0 0 1 0 q5 q5 

0 0 0 0 0 1 q5 qs 

0 0 0 0 0 0 q7 q7 

0 0 0 0 0 0 qg qg 

The q/s are defined so as to make each row sum to 1. It is easily verified that the q/s 

will be nonnegative. 

2.2 A relationship between O and r. 

We prove the following lemma: 

Lemma 0: r(s,t) X O(x,y) = r(sx,ty) 

Proof: By definition, r(s,t) X O(x,y) = (collecting all terms) 

10- ls!- lxl-l 10-ls!- !xl- l 10-!t!-!Yl-l 10-!t!-IYl-l 
[ 

2 
, 

2 
, 

2 
, 

2 
, v(s)+io-lsiv(x), v(t)+10-ltlv(y),q1,q11

]. 

Since by equation (1), v(mn) = v(m) + 10-lmlv(n), and JmnJ = Jm J + Jn J, the above 

simplifies to 

10-Jsxl- l 10-lsxJ-l 10-Jtyi-l 10-ltyi-l 
[ 

2 
, 

2 
, 

2 
, 

2 
,v(sx),v(ty),q1,q11

]. 

By inspection, the first six components of this vector are the same as r(sx, ty). In order 

to show that the last two components are correct, it must be shown that they are the 

same and that the sum of the components is 1. But q1 = q11
, since the last two columns 

of O(x, y) are identical. 
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Obviously, the sum of the components of r(s, t) X D(x, y) is equal to 

(r(s,t) X D(x,y)) X [1111111 ljT = 
r(s, t) X (D(x, y) X [1111111 l ]T) = (by associativity) 

r(s, t) X [1 1111111ir = (Since the rows of D(x, y) sum to 1) 

!.(Since the components of r(s, t) sum to 1) 

Q.E.D. 

2.3 Definition of reduction mapping. 

We exhibit a mapping from modified post correspondence systems to probabilistic 

finite automata 

Given a modified post correspondence system P consisting of pairs {(xi, Yi), ( x2, Y2), ... ( Xn, Yn)} 

over {a,b}* with a given starting pair, (xs,Ys), define the probabilistic acceptor Ap as 

(Mp,½), where 

A1p = (F, S, o, E) 

E={l, ... ,n} 

F = [1 0 101 0 1 0] 

> jksct3 > 

Given a modified Post correspondence system P consisting of pairs {(xi, Y1), (x2, Y2), ... (xn, Yn)} 

over {a,b}* with a given starting pair, (xs,Ys) , we define the mapping tp, from 

~-sequences to {1, ... ,n}*, by tp(S) = i1i2 ... ik, where S is the sequence of pairs 

This correspondence is clearly one to one between the set of modified sequences and 

the set of strings in {1, ... , n} *. 
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2.4 A property of ct>. 

There is a simple but crucial relationship between Sand <I>(S) as shown in the following 

lemma. 

Lemma 1: Given a modified Post correspondence system P, and a P-sequence 

S = [(xs,Ys),(xipYiJ,(xi2 ,Yi2), ... (xik,YiJ], then 

Proof: It follows from definition of PMP that PMP(cI>(S)) = r(xs ,Ys) X O(xipYii) X 

O(xi2 , Yi2) X ... O(xik, YiJ· By repeated application of Lemma 0, this simplifies to 

r( XsXi1 Xi2 .. ,Xik, YsYi1 Yi2 ... yik). 

By the definition of r, and simple algebra, 

r(x,y) X [l lllllll]T =1 =2(r(x,y) X [10101010f)+v(y) - v(x) 

Therefore, ( r( x, y) X [1 0 1 O 1 0 1 of) = ½ + (v(x);v(y)). 

Since VMp(cI>(S)) = PMp(cI>(S)) X [1010 i O 1 Of it follows that 

2.5 Two Undecidability Results 

Using the identity proven in Lemma 1, and equation (2), we now prove two undecidability 

results. 

Theorem 1: Given a probabilistic finite automaton M, it is r.e. complete whether 3w 

such that vM(w) = ½-

Proof: Note that this question is trivially r.e., since one can easily verify for a given 

M whether a given string w has this property. 

Given a modified Post correspondence system P consisting of pairs {( xi, Y1), ( x2, Y2), ... (xn, Yn)} 

over { a, b }* with a given starting pair, (xs, Ys), consider its associated probabilistic 

finite automaton Mp as defined above. 



We show there exists a P-sequence S = [(xs,Ys),(xipYi 1),(xi2 ,Yi2 ), • •• (xik,Yik)] such 

that XsXi 1Xi2 ---Xik = YsYi 1Yi2 ---Yik (i.e. Sis a match) iff there exists a word w such that 

VMp(w) = ½-

Thus, the r.e. complete problem 1.3.(1) reduces to the problem of whether for some w, 

v MP ( w) = ½, which will complete the proof. 

G. p S (Ai.(S)) 1 (v(x , x; I Xio ... x;k)-v(y, y; I Yio ... y;k)) b L 1ven some -sequence , v Mp 'i' = 2 + - 2 - y emma 

1. 

This will equal½ iff v(xsXi1 Xi2 ••• Xik) = v(YsYiiYi2 ·-·YiJ- Since vis injective, this will 

be true iff XsXi 1 Xi2 •• • Xik = YsYi1 Yi2 •· ·Yik 

Thus, if S is a match, VMP(<I>(S)) = ½, and if VMP(w) = ½, <I>- 1(w) will be a match. 

Our result follows. 

Q.E.D. 

Theorem 2: Given a probabilistic finite automaton M, it is undecidable whether 

VE > O:lw such that lvM(w) - ½I < e. 

The proof is nearly the same as with Theorem 1, and uses the same conventions. 

We show that for a modified Post correspondence system P, Vl:3S, a P-sequence, such 

that S matches up to the first l letters iff Ve > O:lw such that lvMp(w) - ½I < E. 

Thus the co-r.e. complete problem 1.3.(2) reduces to whether Ve > O:lw such that 

lvMP(w) - ½I < e, which will complete the proof. 

Given S = [(xs, Ys), (xi1' YiJ, (xi2 , Yi2 ), ... (xik, YiJ] 

(Ai.(S)) - 1 (v(x,x;l x,2 ... x;k)- v(y.y;J Yi2• ·•Yik)) 
V Mp 'i' - 2 + - -""'---=-----"-..,.----'---"---"'-, SO 

In the proof of Theorem 1 we noted that this quantity was O iff XsXi
1 
Xi2 ••• Xi1: 

Otherwise, by equation (2) this quantity is bounded below by .5 X 10-t-3 and above 

by .5 X 10-t- l, where l is such that X8 Xi1 Xi2 ... Xik and YsYi
1
Yi2 ... yik agree up to the 

first l characters and don't agree on the (l + 1yh character. 

11 



These bounds are tight enough to prove our result. If Vl3S such that S is a match 

or S matches up to the first l letters, then by the above upper bound it is clear that 

VE > 03S such that lvMp(<I>(S)) - ½I < E. 

Furthermore, if VE > 03w such that lvMP(w)- ½I < E, then by the above lower bound, 

Vl:lw such that <I>-1( w) is a match, or matches in the first l letters. The proof is now 

complete. 

Q.E.D. 

3 Conclusion and an Open Problem 

Theorem 2 settles an open problem that arose in the early sixties. The question "How 

does one determine if a cutpoint is isolated?" was not answered because it could not 

be answered. 

However, this paper does not completely resolve the issue. Unlike Theorem 1, which 

determines the exact position the problem has on the arithmetic hierarchy (E? 

complete), Theorem 2 merely determines a lower bound on the complexity of the 

problem. 

The problem of determining if a cutpoint is isolated has been shown to be E? hard. 

It is easily seen that this problem is in E~, since it is a statement of the form, "there 

exists an E such that for all w ... < an obviously recursive predicate>". Exactly where 

this problem lies on the recursive hierarchy is an open question. 
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