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1. Introduction

Proving lower bounds in various computational models is onc of the most interesting branches
ol theoretical computer science. The number of good results is quite limited but at least in
the case of bounded depth cireuits there has been some progress. Much of the work has been
done proving lower bounds for parity circuils, although other Munctions has been considered as
well. The first results by Furst, Saxe and Sipser [I'SS] gave among other things Q(nl"g(a(k_zn")
lower bound for depth k parity circuits (logm n denotes the logarithm function iterated ¢ times).
This was improved by Ajtai to give lower bound n 198" [A]. Boppana considered the case of

the majorily {unction and was able to obtain exponential (25" ) lower bounds. Iowever he
restricted the circuits to be monotone. Sipser in [S] was able to give explicit functions computable
by depth & circuits of polynomial size but required superpolynomial size circuits if the depth was
restricted to k — 1.

Furst, Saxe and Sipser proved in [FSS] that exponential lower bounds for the parity function
would imply the existence of an oracle separating polynomial space from the polynomial hierarchy.
In [S] Sipser proved the corresponding theorem that exponential lower bounds would imply
existence of oracles separating the different levels in the polynomial hierarchy. These bounds
were finally obtained by Yao [Y] in his outstanding contribution. Yao obtained the size lower

bound 0(2“7‘%) for depth & circuits computing parity. By his methods it is possible to decrease
the number 4 to any constant larger than 2. It might be possible to even get the value 2. He
gives the corresponding result for the functions considered in [S].

In this paper we will improve his lower bound to prove that there is no parity cicuits of depth

k and size 2(06)*7 1751 Our results also implies that polynomial size parity circuits must be of
depth at least ]0%’%.

The methods used in our paper are almost identical to the methods used by Yao [Y]. By a
closer analysis we are able to prove that certain formula have only short minterms, while Yao
was only able to prove that the formula was well approximated by its small minterms. This
result gives significant simplifications to the rest of the proof. We are also able to get by with
less severe restrictions than the restrictions Yao uses. Qur improved bounds will also apply to
functions considered in [S].

We note that the lower bounds given in this paper are quite tight as there are known

constructions of parity circuits of size 2*" " which has bottom fanin n%-T,
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2. Main Lemma

The main tool in proving all the above mentioned result is the concept of a random restriction
first introduced in [FSS]. A random restriction assigns values to some of the variables and leaves
the other variables alone. The fact that some variables will be fixed will allow us to simplify
our circuits and we can get an induclion going. The values of a restrictions will be 0,1 and *.
0 and 1 means that we give this value to the variable and * means thal it stays a live variable.
We will denote a random restriction by p. A restriction of type 2, gives a variable the value
* with probability p and the values 0 and 1 with probability % — £. Given a restriction p and
an arbitrary function G on n variables we will denote by G|, the induced function obtained by
substituting 0 and 1 for the variables given these values by p. G|, will hence be a function on
the variables given the value * by p.

We will be working with Boolean formulas. We will be writing AND’s as produets and OR’s
as sums. A minterm for a function is a minimal assignment that forces the function to be 1.

There are two versions of the proof of the main lemma which are almost identical except for
notation. The original proof was in terms of a labeling algorithm. The present version of the
proof avoiding the use of such an algorithm was proposed by Ravi Boppana.

For notational convenience let F, denote the cvent that G|, has a minterm of size at least

Main Lemma: Let G = [];_, G;, where G; are OR’s of fanin < ¢. Let F be an arbitrary

i=1
function. Let p be a random restriction in Rp. Then we have

PrlE,|F|l,=1] < o*

where o is the unique positive root of the equation
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Remark 1 An elementary argument shows that o = fn% < bpt , where ¢ is the golden ratio.
Remark 2 If there is no assignment satisfying the condition F|, = 1 we will use the convention
that the conditional probability in question is 0.

Proof: We will prove the main lemma by induction on w. If w = 0 the lemma is obvious
(G = 1). Suppose now that the statement is true for all values less than w. We will show that
it is true for w. We have

Pr[E, | F|, = 1] < max(Pr[E. | F|, =1AG1|, = 1], PrlEs | F|, =1 A G, £ 1))

The first term is
PrE,|(F A G;)|p = 1)

However in this case [ is cquivalent to saying that []_, G:|, has a minterm of size at least s.
But this probability is < a® by the inductive hypothesis since we are talking about a product of
size w — 1.



Now consider the second term. By interchanging z; and Z; we can assume that G is an OR

G1ZZ:B,'

ieT

of only positive literals, i.e.

where |T'] < t. Let p = pype2, where py is the restriction of the variables in 7 and pq is the
restriction to the other variables. In the case corresponding to the sccond term we know that
G, is not made true by the restriction. In this case G has to be made true by some assignment
of every minterm of G|,. We will partition the minterms of G|, according to the subset of T is
contained in the minterm. We will call a typical such subset Y. Observe that all the variables in
Y must be given the value * by p;. Now the second term in the max can be estimated by

Y. Prln(r)=*

YCTY 0

Fl,=1AG|, Z21] X Prl[EYT | F

p=1AC1, Z1Apn(Y)="]

Here the notation EY'T means that G|, has a minterm of size at least s whose restriction to
the variables in T assigns values to precisely those variables in Y.

Let us estimate the first factor (i.e. Prlp;(Y) = *|...]). First we investigate which assign-
ments satisfy the conditions F|, = 1 A G1|, 32 1 and how this might effect the probability of a
set of variables taking the value * under p. The important lemma is:

Lemma 1: Let ¢ € Y. Then if an assignment p satisfies the condition F|, = 1 A G|, 32 1 and
has p(z;) = * then the corresponding assignment p where the only difference is that p(z;) = 0
also satisfies the condition.

Proof: The condition G1|, # 1 obviously presents no problem. The other condition F|, =1 is
also casily verfied since the fact that F|, = 1 and p(z;) = * implies that changing the value of

z; cannot change the value of F|,.

Next we prove

Lemma 2 Prjp(Y)=*|F|,=1AG1|, Z 1] £ (Ti-%)lyl

Proof: If we did not have the condition /|, = 1 the proof is quite straightforward. The condition
that Gy, 3 1implies that p does not assign the value 1 to any of the variables in 7. Conditioning
upon this, the probability that each individual variable is 0 is %‘f—; and the probability of being

¥is Tg_—f;. The presence of the condition #'|p = 1 is dealt with by Lemma 1. Loosely speaking

Lemma 1 tells us that this condition can only make the event we are interested in less probable.
Let us make this formal. By definition of conditional probability we want to prove

E;(Eyi)_—l_)* Pr(p) <( 2p )IYI
r(p) l+p

Here the 7 indicate that we are only summing over p satislying the condition Fl, = 1AGy|, £
1. Remember that il this quotient is of the form 8 we have the convention that it takes the value



0. Now observe that il we have p giving a nonzero contribution to the numerator we have by

Lemma 1| contributions in the denominator {rom all the possible p obtained by changing arbitrary
1+

stars of ¥ 1o zeros. Calculation now shows that this contribution is a factor (3 F’)W| larger. This

proves the lemma.

Next we try to estimate the other factor. Namely

PriE{T | Fl,

il

LAGi, Z1Ap(Y) =7

We partition this probability according to what values o a potentially large minterm takes on
the set Y. To get the probability into the right form to apply the induction hypothesis we need
some further work because the second condition G|, = 1 is of the wrong form. To get rid of
this condition we maximize over all possible py salislying the third condition. Thus we get:

g PT{EYJT | Plpaups) == 1
g &{0,1}Y] e=£01Y] p1E€{0,*}T-Y 8

The two last conditions have disappeared because o and p; take care of them. The only thing
to comment on is how Lo substituie the stars. In /7 we substitute the stars of p; by taking and of
the two formulas resulting by substituting 0 and 1. In G we can just erase the stars because they
will never help make G|, true. Now the probability is taken care by the induction hyptohesis.
The set of variables is now restricted to be outlside 7' and the substituted formula must have a
minterm of size at least s — |Y'| on these variables. The probability for this is bounded by a*~1¥1,
Thus we get the bound (21¥! — 1)as—1Y1,

Finally we must evaluate the sum
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The last equality follows by the definition of a. This finishes the induction step and the
proof of the main Lemma.

3. Lower bounds for parity circuits

Using the main lemma we will prove:

i
Theorem 1 Parity cannot be computed by a depth k circuit containing 27"~ subcircuits of
depth at least 2 and bottom fanin %nk{_ﬁ.

Remark: Observe that the theorem is optimal except for the constant 11—0



Proof: We will prove the theorem by induction over k. The base case & = 2 is well known. For
the induction step we will use the normal way of applying a restriction and use our main Lemma.

Apply a random restriction from R, with p = n"FT. Assume without loss of generality
that the depth two circuits in our circuit are AND’s of OR’s. Then by our lemma that if we
look at any such depth two subcircuit the corresponding function will now have no minterm of
size > s with probability 1 — 27°. But this means that it can be written as an OR of AND’s of
size < s. Thus if we choose 5 = liun?}l we have a good probability that we can interchange
the order of AND and OR in all depth 2 subecicuits and still have bottom lanin bounded by s.
Observe that this gives us two adjacent levels of OR’s which can be collapsed to kd_ezcrease the
depth of the circuit to k— 1. The number of remaining variables is expected to be n¥=T and with
probability greater than % we will get at lTeast this number. If we denote this number by m we
sec that we get precisely a circuit which is certified not to exist by the induction hypothesis.

Theorem: There are no depth & parity circuits of size 2(?%)]&{7"?17.
Treat the formula as a depth £ + 1 formula with bottom fanin 1. Hit it with a restriction
from I, using p= -135 and we get a circuit which does not exist by the previos theorem.

Since there are no constants depending on k£ hidden in the theorem we get the following
corollary

Corollary: Polynomial size parity circuits must have depth at least m;l%’;—{_c for some constant

C.

It is not clear if this can be obtained from [Y].

Observe that we have used very little about parity. Only the lower bound for & = 2 and
the fact that it behaves well with respect to restrictions. Thus we will be able to improve lower
bounds for sizes of small depth circuits for other functions using our main lemma. Also observe
that by using betler bounds for & we can reduce the constant 10.
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