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1 Introduction 

This paper introduces a new technique for searching in game trees, based on the idea of 
approximating the min and max operators with generalized mean-value operators. 

Game p laying by computer has a long history, and many brilliant ideas have led us 
to the point where high-quality play for many games can be obtained with pocket-sized 
computers. (See [BF81] for an exposition of previous work in this area.) 

However , further improvement is certainly possible, and this area of research is still an 
active one. The combinatorial explosion of possibilities in a game such as chess tax our most 
powerful computers, and even special-purpose hardware soon reaches its limits. Clearly, 
the most careful organization and allocation of computational resources is needed to obtain 
expert-level play. Techniques such as alpha-beta pruning and its successors [KM75, Be79] 
have been essential in reducing the computational burden of exploring a game t ree. St ill, 
new techniques are needed. Nau et. al. [NPT85], after much expermentation with exist ing 
methods, assert that "A method is needed which will always expand the node that is 
expected to have the largest effect on the value". This paper suggests such a method. 

The method proposed in this paper, "min/ max approximation", attempts to focus 
the computer's attention on the important lines of play. The key idea is to approximate 
the "min" and "max" operators with generalized mean-value operators. These are good 
approximations to the min/ max operators, but have continuous derivatives with respect to 
all arguments. This allows us to define the "expandable tip upon whose value the backed
up value at the root most heavily depends" in a non-trivial manner. This tip is the next 
one to be expanded, using our heuristic. 

We also describe some preliminary experimental validation of these ideas. 
In section 2 of this paper I present the essential results about generalized mean values 

that underly the new method. Then in section 3 these ideas are applied to the problem of 
searching game trees. In section 4 I give some thoughts regarding implementation details. 
Section 5 describes our preliminary experimental results. Some final thoughts are presented 
in section 6. 

2 Generalized Mean Values 

Let a = ( ai, ... , an) be a vector of n positive real numbers, and let p be a non-zero real 
number. Then we can define the generalized p-mean of a, Mp(a), by 

(1) 
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p -32 -16 -8 -4 -2 -1 0 
10.4 10.9 11.9 13.9 16.6 18.7 21.0 

Table 1: Mp(a) for a= (10, 21, 29, 32) 

Of course, M 1 (a) is the ordinary arithmetic mean. We can extend our notation to the case 
p =0 by 

(2) 

so that M 0 (a) is the geometric mean. 
We begin with the fact that 

(3) 

where equality only holds on the right if all the a./s are equal. (See [HLP34] for proofs and 
other facts about generalized mean values.) 

For our purposes, we are most interested in the following two facts: 

(4) 

(5) 

To illustrate the above facts, consider Table 1 where various values of Mp(a) are given for 
a = (10, 21, 29, 32) and various p. 

For large positive or negative values of p, Mp(a) is a good approximation to m~(a;) 
• 

or m_in(a.i), respectively. However, Mp(a), unlike max or min, has continuous derivatives 
• 

with respect to each variable ai . The partial derivative of Mp(a) with respect to ai is 

(6) 

The major reason that the generalized means are of interest to us here is that they are 
more suitable for a "sensitivity analysis" than the min or max functions. We propose that 
8Mp(a)/8a; (for large p) is a more useful quantity than 8max(a)/ 8a;, since the latter is 
zero unless ai is the maximum, in which case it is one. This discontinuous behavior is 
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awkward to work with, whereas the derivative (6) is continuous. We also note that the 
derivative (6) ranges in value from Oto n-l/p ~ 1 for p » ln n). 

By way of example, with a = (a1 , a 2 , a 3 , a 4 ) = (10, 21, 29, 32), and p = 32, we have 
'v Mp(a) ~ (2 x 10-16,2 x 10-6 ,0.04,0.90). The~ values near the maximum have much 
more effect on Mp(a) here than do smaller values. 

We observe as well that other forms of generalized mean values exist. If f is any con
tinuous monotone increasing function (such as the exponential function), we can consider 
mean values of the form 

(7) 

Using f = exp(·) yields a good approximation to max( ... ), and f = ln(·) yields a good 
approximation to min( ... ). We shall not use these approximations in this paper. 

3 Game Tree Searching 

3.1 Game Trees 

We consider a two-person zero-sum perfect information game between two players, Min 
and Max. The game specifies a finite tree C of configurations with a distinguished start 
configuration s E C. The game begins in configuration s with Max to move; after that they 
alternate turns. We partition the set C into the disjoint subsets Min and Max of those 
configuration for which it is Min's turn to move, and those configurations for which it is 
Max's turn to move. The game defines for each c E C the set S(c) of e's successors (or 
children). The player to move from configuration c selects some d E S(c) as his move; his 
opponent must then move from configuration don his turn. Those configurations which 
have no successors are called terminal configurations; we denote by T( C) the set of terminal 
configurations. The game stops when a terminal configuration is reached. We assume that 
the relation S is acyclic, so that the game is guaranteed to terminate. The game thus has 
the structure of a tree with vertex set C, roots, and leaf set T(C). The actual play traces 
out a path in the tree from the root s to leaf representing a terminal configuration t. 

Each leaf t E T( C) has an associated value or score v(t); this is the value of the terminal 
position from Max's point of view (i.e. the amount Min must pay Max if the game terminates 
in configuration t). By induction on the structure of the tree we may determine the value 
v ( c) of any configuration c E C by "backing up" or "minimaxing" the values at the leaves: 

{ 

v(c) 

v(c) = 2:W v(d) 

min v(d) 
dES(c) 
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Given v( c) for all c E C, optimal moves are easy to determine: if c E Max, then player 
Max should select any configuration d E S{c) with maximum value v(d). Similarly, if c E 
Min, then player Min should select any configuration d E S(c) with minimum value v(d). 
Figure 1 shows a small game tree. Configurations in Max are shown as squares, those in 
Min are shown as circles. The value of each configuration is shown inside the square or 
circle. The value of the game is 16; optimal play is indicated with the double arrows. 

Figure 1: A small game tree 

3.2 Searching a Game Tree 

When C is sufficiently small, the game tree can be explored completely, and optimal play 
is possible. In some cases a "pruning" heuristic such as alpha-beta [KM75] is sufficiently 
effective that optimal play is possible, even though only a small fraction of the game tree 
is explored - the portions of the tree that are "pruned" (not explored) are known not to 
be relevant, so that at least implicitly the entire tree is explored. 
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However, for most interesting games the game tree is so large that complete exploration 
(even implicitly) is impossible, and heuristic approximations need to be employed. 

A heuristic method is usually based on a "static evaluation function" v that provides an 
estimate v ( c) of the backed-up value v ( c) for non-terminal nodes c. Such a static evaluation 
is based on various "static" features of the board that can be evaluated without further 
look-ahead ( e.g. piece count and the advantage for the player to move). 

The technique proposed in this paper only requires a single static evaluator v(·) . By 
comparison, some other methods - most notably the B* algorithm [Be79] - require two 
evaluation functions which return respectively upper and lower bounds on v(·) . 

A popular approach to handling very large game trees is to select a suitable depth-cutoff 
d, estimate the values of nodes at depth d using the static evaluator, and to compute the 
backed-up value from the nodes at depth d using the alpha-beta heuristic. 

Given a limit on the computing time available, one can apply the above idea by succes
sively computing the backed-up values for depths d = 1, 2, ... , until one runs out of time. 
This technique is known as progressive deepening. 

As d increases one would hope that the accuracy of the value computed for the root 
would improve - searching deeper should yield increased accuracy. This seems to be t rue 
for common games such as chess, but there are other "pathological" games for which 
searching deeper seems to yield less accuracy [Na82, Na83]. We assume for this paper that 
our game is non-pathological. 

A different class of heuristics are known as iterative heuristics. These heuristics "grow" 
the search tree one step at a time. At each step one tip node ( or leaf) of the current 
search tree is chosen, and the tree is expanded by adding the successors of that tip node 
to the search tree. Examples of such iterative techniques are the Berliner's B* algorithm 
[Be79], Nilsson's "arrow" method [Ni68], Palay's probability-based method [Pa85], and 
McAllester's "conspiracy number" method [Mc86]. After each step, the values provided 
by the static evaluator at the newly added leaves are used to provide new backed-up values 
to the ancestors of these leaves in the tree. The tree grown by an iterative heuristic may 
not be of uniform depth: some branches may be searched to a much greater depth than 
other branches. 

The heuristic proposed in this paper is an iterative technique in the above sense. 

3.3 Iterative Search Heuristics Details 

We now formalize how a tree is explored using an iterative search heuristic, and how 
estimates are "backed up" to the root. 

We begin with some straightforward definitions. 
If d E S ( c), we say that c is the father of d. In general, we denote the father of d by 

f ( d), and define f ( s ) = s. We call c a sibling of d if / ( c) = f ( d). Also, we call c an ancestor 
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of d if c = d or if c is an ancestor of f(d). We let A(d) denote the set of d's ancestors. 
Note that c is both an ancestor and a sibling of itself, for any c. 

We say that a subset E ~ C is a partial game tree if, for any d E E, all of d's siblings 
and ancestors are in E. 

If E is a partial game tree, then for any c E Ethe subtree of E rooted at c, denoted Ee, 
is defined to be {x I x E E&c E A(x)}, the set of all x EE which have c for an ancestor. 

If E is a partial game tree, then c E E is a tip of E if c has no successors in E, i.e. 
S(c) n E = 0. The set of tips of E is denoted T(E). The tips of C are the terminal 
configurations. We say that a tip x of E is expandable if x has successors. 

If E is a partial game tree, and c is an expandable tip of E, then to expand E at c 
means to add the successors S(c) of c to E. If we expand E at a tip c, then E remains a 
partial game tree. 

We let v denote our static evaluation function. We assume that v(c) = v(c) if c E T(C), 
i.e. that our static evaluation function is exact on the set of terminal positions. For other 
positions c the static evaluation -O(c) is merely an estimate of the correct backed-up value 
v(c). We make no particular assumptions about the relationship between v(c) and v(c). 

For any partial game tree E and any c EE we can define the backed-up estimates vE(c) 
of v(c) in a manner identical to the way the correct values are backed-up using equation 
(8), except that we are backing up the static evaluations from the tips of E rather than 
backing them up from the terminal positions of C: 

{ 

v(c) if c E T(E) 
A ( ) _ max (vE(d)) if c E Max\ T(E) 
VE C - dES(c) 

min (vE(d)) if CE Min\ T(E) 
dES(c) 

(9) 

If E = { s} ( our partial game tree is the minimal possible game tree), then v E ( s) is just 
v(s), the static evaluation at s. On the other hand, if E = C (our partial game tree is 
the complete game tree), then our estimates are exact: vE(c) = v(c) for all c. We expect 
that vE(s) -+ v(s) as E -+ C for our "non-pathological" game. (The use of the limiting 
notation "-+" here is merely suggestive and not formal.) 

We observe that if we expand E at c, then we can update VE by recomputing equation 
(9) only at nodes in A(c) (first at c, then f(c), and on up the tree until sis reached). 

The general process of partially exploring a game tree by an iterative heuristic can be 
formalized as follows: 

1. Initialize E to {s}, and vE(s) to v(s). 

2. While E =I= C, and while time permits, do: 
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2a. Pick an expandable tip c of E. 

2b. Expand E at c. 

2c. Update VE(c) at c and the ancestors of cup to the roots, using equation (9). 

The major unspecified detail here is in step 2a - which expandable tip c of E should 
we pick? The purpose of this paper is to provide a new answer to this question. 

Another intriguing question is how one might gauge the accuracy of the current estimate 
of the value at the root, in case one wishes to use a termination condition based on accuracy 
instead of a termination condition based on time. We do not pursue this question is this 
paper. 

3.4 Penalty-Based Iterative Search Methods 

We now present a general framework for choosing which leaf to expand in an iterative 
method. 

We start by assuming that for each node c E E an estimate VE ( c) of v ( c) is available. We 
may have vE(c) = VE(c) (the backed-up value for the root of Ee), or VE(c) may be defined 
in some other manner. We assume that if c is not a tip of E, then VE(c) is determined 
from the estimates vE(d) where d is a child of c, and the knowledge of whether c E Min 
or c E Max. IT c is a tip of E, we assume that vE(c) = v(c). The reason for introducing 
the estimation function vE(), instead of just using the backed-up estimates VE(), is that 
our method requires this extra generality - we do not necessarily use the straightforward 
backed-up values as our estimates, although our estimates vE() will also be computable in 
a "bottom-up" manner. 

We assume that it is possible to assign a "weight" to each edge in the current game 
tree. We expect that edges representing bad moves will be weighted (i.e. penalized) more 
heavily than edges representing good moves. We denote the weight on the edge between 
c and its father /(c) by w(c); this may be an arbitrary real number. For convenience we 
also define the "weight" w ( s) ( of the nonexistent edge into the root) to be zero. 

We assume that the weight w(c) is computable from vE(f (c)), and the values {vE(d) I 
d is a sibling of c}. (Recall that c is a sibling of itself.) As a concrete example, we might 
define w(c) to be a+ (vE(d)-vE(c)) 2 , where a> 0 is the penalty for descending a level and 
where dis the sibling of c which optimizes vE(d). We shall use a different weight function 
in our actual proposal, but this should give you an idea of the sort of weight functions that 
might be suitable. 

We then define the "penalty" P(c) of a tip c of E to be the sum of the weights of all 
the edges on the path connecting c to the root s of the tree: P(c) = :EdeA(e) w(d). 

The idea is then to expand that tip node t which has the least penalty P(t). After t's 
children are added to the current search tree, we may need to update the estimates v E ( c) 
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of all the ancestors c oft, and we may need to update the weights associated with the 
edges between an ancestor of t and its children. 

The min/ max approximation technique presented here is such a penalty-based scheme. 
We now present the penalty-based scheme in more detail. 
Let E denote the current partial game tree. 
For any node c EE, and any node d E Ee, we define Pc(d) to be the sum of the weights 

of the edges on the path connecting d to c. Here Pc ( d) is the penalty of node d relative to 
the subtree rooted at c. (So the notation P(d) = P.(d) is just a special case.) 

For any node c E E, we define b( c) to be that "best" expandable tip node in the subtree 
Ee rooted at c, in the sense that x = b(c) minimizes Pc(x) over all expandable tip nodes in 
Ee. Ties are resolved arbitrarily (e.g. by selecting the "leftmost" such x). If Ee contains 
no expandable tip nodes, we define b(c) to be the special value w. 

For any node c E E, we define a(c) as follows. If b(c) = w then a(c) = w. If c is a an 
expandable tip of E then a(c) = c. Otherwise a(c) is defined as that child d E S(c) such 
that b(c) is an element of Ed. We can think of a(c) in general as an "arrow" from c to 
one of its children, such that by following successive arrows we are eventually led from c 

to b( c). ( See [Ni68] for the origin of this "arrow" terminology.) 
With each node c of E we store the following three values: 

1. vE(c), our estimate of v(c), 

2. a(c), the "arrow" from c to its child that contains b(c) (or c if it is an expandable tip 
or else w if Ee contains no expandable tips), 

3". h(c) = Pc(b(c)), the penalty of the best expandable tip b(c) of Ee relative to the 
subtree Ee, or else oo if b(c) = w. (Note that Pc(b(c)) = 0 if b(c) = c is an expandable 
tip node.) 

The weight w(c) need not be stored, since we assumed that it is computable from VE 
applied to the father of c and to the siblings of c. 

We note that one can compute the values VE ( c), a( c), and h( c) from the corresponding 
values for the children of c. Specifically, vE(c) is computable in this manner by assumption, 
a(c) is the child d of c which maximizes h(d) + w(d), and h(c) is h(a(c)) + w(a(c)). (If all 
the b(di)'s are w, then a(c) = w and h(c) = oo.) 

A penalty-based algorithm begins with E = {s}, a(s) = s, and h(s) = 0. 
At each step of the iterative expansion procedure, the following steps are performed: 

1. If b( s) = w stop - the tree has no expandble tips (i.e. E = C). Otherwise continue 
on to the next step. 

2. Set x to s, the root of the tree. 
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3. While a(x) -=/= x, set x +-- a(x). (Now xis the tip node with minimum penalty P(x).) 

4. Add the sucessors of x to E. 

5. Compute vE(d) for all successors d of x. For each expandable successor d of x, 
initialize a(d) to bed and h(d) to be 0. For each terminal successor d of x, initialize 
a(d) to be w and h(d) to be oo. 

6. Recompute vE(x), a(x), and h(x) from the corresponding values at the successors of 
x. 

7. If x = s stop, otherwise set x = f(x) and return to the previous step. 

When the algorithm terminates in the last step, then it has traced a path from the 
root s down to the best expandable tip x = b(s) in E,, added all the successors of x to E, 
and updated the VE, a, and h values where necessary by a traversal back up the tree from 
x to the root s. 

3.5 Discussion of Penalty-Based Schemes 

Before getting into the details of our Min/Max approximation method, it is worthwhile 
discussing some of the general features of penalty-based schemes. 

First, we note that penalty-based schemes - like all iterative schemes - require that 
the the tree being explored be explicitly stored. Unlike depth-first search schemes ( e.g. 
alpha-beta), penalty-based schemes may not perform well unless they are given a large 
amount of memory to work with. 

Second, we note that the penalty-based schemes are oriented towards improving the 
value of the estimate iiE(s) at the root, rather than towards selecting the best move to 
make from the root. For example, if there is only one move to make from the root, then 
a penalty-based scheme may search the subtree below that move extensively, even though 
such exploration can't affect the decision to be made at the root. By contrast, the B* 
algorithm [Be79], another iterative search heuristic, is oriented towards making the best 
choice, and will not waste any time when there is only one move to be made. 

Third, the penalty-based schemes as presented require that a tip be expanded by gen
erating and evaluating all of the tip's successors. Many search schemes are able to skip 
the evaluation of some of the successors in many cases. 

Fourth, we note that penalty-based schemes may appear inefficient compared to depth
first schemes (e.g. alpha-beta), since the penalty-based schemes spend a lot of time travers
ing back and forth between the root and the leaves of the tree, whereas a depth-first ap
proach will spend most of its time near the· leaves. We imagine that the penalty-based 
schemes could be adapted to show similar efficiencies, at the cost of not always selecting 



the globally least-penalty tip to expand. The algorithm would be modified in step 7 to 
ascend to its successor some of the time and to redescend in the tree by returning to step 
3 in the other cases. (However, if b(x) = w the algorithm must ascend.) The decision to 
redescend may be made probabilistically, perhaps as a function of the depth of x, or the 
change noted so far in h(x). For example, one might continue to redescend from the node 
x found in step 3 until the number of leaves in E% exceeds the depth of x. We have not 
explored these alternatives. 

Finally, we observe that penalty-based schemes do spend some time evaluating non
optimal lines of play. However, the time spent examining such lines of play decreases as 
the number of non-optimal moves in the line increases, according to the weights assigned 
to those non-optimal moves. 

3.6 Searching by Min/Max Approximation 

The "Min/ Max Approximation" heuristic is special case of the penalty-based search method, 
where the penalties are defined in terms of the derivatives of the approximating functions. 

Consider the partial game tree of Figure 2. Here we have a tree E of size 5 that we 
have explored. The tips of E are all assumed to be expandable. The value vE(c) is given 
at each node c, based on the estimates v(t) = 2, v(w) = 10, v(x) = 12. 

10 

s 

t 

10 12 

w X 

Figure 2: A partial game tree 

If we expand at w (say, because that is the most promising line of play), we may obtain 
F igure 3. 

Note that vE(w) has changed from 10 to 11. 
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1 1 

s 

t 

1 1 12 

w X 

y z 

Figure 3: An expanded game tree 

Which node should be expanded next? In the conventional framework this question is 
difficult to answer. 

To answer this question we propose picking a relatively large p (e.g., p = 10), and 
computing an approximation vE(c) to vE(c) for each c E Eby the analog to equation (9) 
wherein "max" has been approximated by "Mp" , and "min" has been approximated by 
"M " · -p . 

v(c) 
Mp(vE(d1), ... , vE(dk)) 
M_p(vE(di), .. . , vE(dk)) 

if c E T(E) 
if c E Max-T(E) 
if c E Min - T(E) 

(10) 

where S(c) = {d1, ..• ,dl:}. The values vE(c) should be good approximations to vE(c) if p 
is sufficiently large. 

However, we are less interested in computing the approximate values themselves than 
we are in computing the derivatives of these values with respect to each argument. In this 
manner we will be able to derive the "penalties" we need to implement our penalty-based 

*We must assume from here on that ii(c) > 0 for all c. This does not affect the structure of the game, 
since we can add a constant 5 to all static values ii(c) 's if necessary. However, it does preclude our using the 
"negamax" formulation of games [KM75]. 
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scheme. (The penalties will be the negatives of the logarithms of the derivatives - more 
about this later.) 

Let 

(11) 

where y is any node in Ez, the subtree of E rooted at x. Thus D(s, c) measures the 
sensitivity of the root value iiE(s) to changes in the tip value iiE(c). 

We wish to expand next that expandable tip c with largest value D(s, c). In this manner 
we may reduce the uncertainty in our estimate ii E ( s) in the most efficient manner. 

To choose the tip with maximum D(s, c), we can cast our idea as a penalty-based 
iterative heuristic. We define the weight 

w(x) = - log(D(f(x),x)) 

to be the weight of the edge between f(x) to x. 
By the chain rule for differentiation, we have 

D(s, x) = IT D(f (c), c). 
c E A(z) 

(12) 

(13) 

Since we want to expand the expandable tip x with the largest D(s, x), we should choose 
the expandable tip with the least penalty, since the penalties are defined by 

P.,(x) = L w(c), (14) 
c E A(z) 

so that the tip x with largest value D(s, x) is the one with least total penalty P.,(x) . 
We now redraw Figure 2 as Figure 4, using our approximations with p = 10. Each 

node is labelled inside with iiE(c). Each edge from a configuration c to one of its children d 
is labelled with w(d). Below each tip c of the tree is written the penalty P.,(c) in brackets. 
Each such P.,(c) is the sum of the weights w(d) on the edges between c and the root. 

According to our rule, w is the best node to expand, since the value at the root depends 
most strongly on the value at w. 

We note that our iiE's and w's satisfy the computability requirements needed for the 
penalty-based implementation described above. 

We now redraw Figure 4 as our new Figure 5, where vE(c) is drawn inside node c as 
before, and the pair [a(c), h(c) ] is placed to the right of node c. Similarly, Figure 6 is 
our revised version of Figure 5, after w has been expanded. In both figures the edges are 
labelled with the w(c) values as in Figure 4 for the reader's convenience, although these 
do not need to be explicitly stored. 

13 



t 
[15.02] 

9.85 

10 

w 
[0.15] 

Figure 4: 

12 

X 

[2.18] 

We see from Figure 6 that tip y is next to be expanded. Here we are still following 
the most promising line of play for both players. Soon, however, the search will return 
to expand node x, since P.(x) = 1.34 in Figure 6 is not much larger than P.(y) = 1.07. 
As the nodes under w are expanded and the tree under w gets larger, the dependence of 
v E ( u) on any leaf in w 's tree will diminish, and eventually x will be selected as the next 
tip to be expanded. 

4 Implementation 

If one wishes to experiment with the min/ max approximation idea, a major question to 
be answered is how to cope with the computational difficulty of actually computing the 
generalized p-means. 

One can make the argument that one should just "bite the bullet" and compute the 
generalized means as specified above, in spite of the large computational cost involved in 
taking powers and roots. This would give the most "accurate" result. 

Computing the generalized means exactly might also allow improved play in another 
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t 
[15.02] 

9.85 [u,0.15] 

s 

10 [w ,0] 

w 
[O. 1 5] 

Figure 5: 

12 [x,O] 

X 
[2. 18] 

manner. After the search of the game tree is completed, a move from the root needs 
to be selected and played. It is most natural to do this by first computing the backed
up estimate vE(s) at the root. However, it may actually be better to use the min/ max 
approximation v E ( s), i.e. selecting the child of the root with maximum ii E ( c) instead of the 
child with maximum vE(c). This has the potential for improved play since the min/max 
approximation will favor a move whose min/max value can be achieved in several ways 
over a move whose min/max value can be achieved in only one way. (For example, note 
that M 10 (35,40) > M10(30,40) although max (35,40) = max (30,40).) The min/ max 
approximation pays attention to good backup or secondary moves. 

Another approach is to skip the computation of the generalized mean values altogether, 
and use the appropriate min or max values instead. (I.e. use VE instead of VE everywhere.) 
Since the generalized mean values are intended to approximate the min and max functions 
anyway, this may not introduce very much error. The main point of using the generalized 
mean values was for their derivatives, not for the values themselves. We call this variation 
the "reverse approximation" idea. 

We note that with the "reverse approximation" idea, the weight w(c) is computable 
from equation (6) as 

w(c) = log(n) + (p - 1) · (log(vE(d)) - log(vE(c))) (15) 

where c has n siblings, and where dis that sibling of c with the most favorable value v(d) 
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Figure 6: 

for the player to move from f(c). Here we might view the log(n) term as that portion of 
t he penalty associated with descending another level in the tree, and the remaining terms 
as the penalty associated with making less than optimal moves. If the static evaluation 
function always returns integers in some range, then each VE(c) is an integer in the same 
range, and each w(c) can be computed using table-lookups for the logarithm computations. 

It is not clear how to "optimally" choose the parameter p. As p gets large, the heuristic 
should grow very deep but narrow trees. For small p, the heuristic should grow rather broad 
t rees. (For p = 1, it would grow the tree in more-or-less of a breadth-first manner, since all 
derivatives at the same level would be close.) One could conceivably use different p values 
at different levels of the tree. 
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5 Empirical Results 

We implemented the min/ max approximation scheme for the game of "Connect-Four" - a 
commercially available game, and played it several times against an implementation of the 
alpha-beta heuristic. Both schemes were given the same static evaluation function to use; 
this static evaluator returns integer scores in the range 1 to 1023. The alpha-beta heuristic 
was given a depth-cutoff to limit its search. The min/ max heuristic was bounded to use 
on the average the same number of moves (edge traversals) as alpha-beta had been using 
up to that point in the game. The min-max heuristic used the "reverse approximation" 
idea to save time. 

We found that min/ max heuristic played a solid game, even though it explored many 
fewer positions on the average than did the alpha-beta heuristic. The games typically ran 
on until the board was nearly filled up and one of the heuristics was forced to make a losing 
move (i.e. a move which the other player could play on top of and win immediately). Since 
the static evaluation did not take into account the number of non-losing moves available to 
each player, both heuristics suffered from a horizon effect. The games seemed reasonably 
even overall, with each heuristic winning its fair share. 

The min/ max approximation heuristic often searched the game tree to twice the depth 
bound given to the alpha-beta heuristic, and pruned some lines of play quite early (e.g. at 
depth two) . 

The completes our description of the initial experiments that have been performed 
using our new ideas. Of course, the empirical validation of these ideas will require much 
more extensive testing and optimization than has been performed to date. (We also need 
to keep in mind, as Nau [Na83] points out, that there are many subtle methodological 
questions that arise when trying to compare heuristics by playing them off against each 
other, since the "evenness" of play or variation in quality of play during different portions 
of the game can have a dramatic influence on the results.) 

6 Discussion 

We see how our "min/ max approximat ion" heuristic will allocates resources in a sensible 
manner , searching shallowly in unpromising parts of the tree, and deeper in promising 
sections. We might also call this approach the "decreasing derivative heuristic", since the 
nodes are expanded in order of decreasing derivative D(s, x). 

It is important to note that the pruning efficiencies exhibited by alpha-beta can also 
appear with our scheme. Once a move has been refuted (shown to be non-optimal), its 
weight will increase dramatically, and further exploration down its subtree will be deferred. 
However, this depends on the static evaluator returning meaningful estimates. If the static 
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evaluator were to return only constant values except at terminal positions, our scheme 
would perform a breadth-first search. (We observe that the scheme of McAllester [Mc86] 
performs like alpha-beta search in this case.) 

Other penalty-based schemes are of course possible. We note two in particular: 

1. If we can compute an estimate p( c, d) that the actual play would progress from 
configuration c to successor configuration d, given that play reaches c, then we can 
define the weight w(d) to be - log(p(c,d)). With this definition, the tip node to be 
expanded next is the tip node estimated to be most likely to be reached in play. This 
idea was originally proposed by Floyd (see [KM75]), although it does not seem to 
have been seriously tried. 

2. If we estimate for each node c of the probability that c is a forced win for Max (see 
[Na83] for discussions of this idea) then we can select the tip node to expand upon 
which our estimate at the root depends most heavily. This can be done, in a manner 
similar to our min/ max approximation technique, beginning with the formulas in 
[Na83]. This idea was suggested by David McAllester. 

7 Open Problems 

1. Does our scheme have any advantages in practice, in terms of quality of play? 

2. How should one best choose which generalized mean value functions to use? 

3: Can our ideas be combined effectively with more traditional approaches? In par
ticular, what is the best way to blend the efficiency of depth-first search with our 
ideas? 

4. How well can these ideas be parallelized? 

5. How does the min/max approximation scheme work on pathological games? 

8 Conclusion 

We have presented a novel approach to game tree searching, based on approximating the 
min and max functions by suitable generalized mean value functions. 

18 



9 Acknowledgements 

I would like to thank David McAllester and Charles Leiserson for some stimulating discus
sions and comments. 

10 References 

[Be79] 

[BF79] 

[CM83] 

[HLP34] 

[KM75] 

[Mc86] 

. [Na82] 

[Na83] 

[NPT85] 

[Ni68] 

[Pa85] 

[RP83] 

[St79] 

Berliner, Hans, "The B* Tree Search Algorithm: A Best-First Proof 
Procedure," Artificial Intelligence, 12(1979), 23-40. 

Barr, Avron, and E.A. Feigenbaum (eds.) The Handbook of Artificial 
Intelligence (Kaufmann, 1981) (vol. I), Section II.C. 

Campbell, Murray S., and T.A. Marsland, "A Comparison of Minimax 
Tree Search Algorithms," Artificial Intelligence 20(1983), 347-367. 

Hardy, G. H., J. E. Littelwood, and G. Polya, Inequalities (Cambridge 
University Press, 1934). 

Knuth, Donald E., and Ronald M . Moore, "An Analysis of Alpha-Beta 
Pruning," Artificial Intelligence, 6(1975), 293- 325. 

McAllester, David A., "A New Procedure for Growing Min-Max Trees," 
(to appear in Artificial Intelligence) . 

Nau, Dana S., "An Investigation of the Causes of Pathology in Games," 
Artificial Intelligence 19(1982), 257- 278. 

Nau, Dana S., "Pathology on Game Trees Revisited, and an Alternative 
to Minimaxing," Artificial Intelligence 21 (1983), 221-244. 

Nau, Dana S., Paul Purdom, and Chun-Hung Tzeng, "An evaluation of 
two alternatives to minimax," Proc. on Uncertainty and Probability in 
Artificial Intelligence (AAAI, UCLA, August 14-16, 1985), 232-235. 

Nilsson, N. J., "Searching Problem-Solving and Game-Playing Trees for 
Minimal-Cost Solutions," Proc. IFIP (1968, vol. 2), 1556-1562. 

Palay, A. J., Searching with Probabilities, (Pitman, Boston, 1985). 

Roizen, I., and J. Pearl, "A Minimax Algorithm Better than Alpha-Beta? 
Yes and No," Artificial Intelligence 21 (1983), 199-220. 

Stockman, G., "A Minimax Algorithm Better than Alpha-Beta?," Arti
ficial Intelligence 12 (1979), 179-196. 

19 


