
LABORATORY FOR ~~ ~tii~f~~~TTS
COMPUTER SCIENCE ~ ~ TECHNOLOGY

MIT/LCS/fM-335

THE SEMANTICS OF MIRANDA'S
ALGEBRAIC TYPES

\

Kim B. Bruce

Jon G. Riecke

August 1987

5/i 5 TECHNOLOGY SQUARE. Ci\l\1BRIDGE. i\1r\SSACHUSETTS 02 I 39

The Semantics of Miranda's Algebraic Types*

Kim B. Bruce and Jon G. Riecket
Department of Computer Science

Williams College
Williamstown , MA 01267

July 29, 1987

Abstract

Miranda has two interesting features in its typing system: implicit polymorphism
(also known as ML-style polymorphism) and algebraic types. Algebraic types create
new types from old and can operate on arbitrary types. This paper argues that func­
tions on types, or type constructors, best represent the meaning of algebraic types .
Building upon this idea, we develop a denotational semantics for algebraic types. V·/e
first define a typed lambda calculus that specifies type constructors . A semantic model
of type constructors is then built, using the ideal model as a basis . (The ideal model
gives the most natural semantics for Miranda's implicit polymorphism.) The model is
shown to be sound with respect to this lambda calculus. Finally, we demonstrate how
to use the model to interpret algebraic types, and prove that the translation produces
elements in the model.

Keywords: strong-typing, polymorphism, denotational semant ics , Scott domains.

1 Introduction

Recently, much of the theoretical and practical research in programming languages has
focused on extensions to strong-typing, where programs may be checked before run-time
for a consistent use of types. One of these extensions, polymorphism, has been studied

*Partially supported by NSF Grants MCS-8402700, DCR-8603890, and DCR-8511190. The second author
is supported by an NSF Graduate Fellowship. This paper will appear in the proceedings of the Third
Workshop on the Mathematical Foundations of Programming Language Semantics, to be published by
Springer-Verlag in the LNCS series.

t Current address: MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139

1

extensively. In a polymorphic language, parameters to procedures or functions may accept
arguments of more than one type. (This notion of polymorphism can be traced to [Str67].)
For example, one may write a '<sort" routine that sorts lists of integers, characters, or
strings. Compared with a strongly-typed but non-polymorphic language like Pascal, the
ability to write one "sort" routine can be quite powerful. In Pascal, one would have
to write three different sort rout ines for integers, characters, and strings - even though
the algorithms are the same - since parameters can match arguments of only one type.
Polymorphism adds convenience, expressibility, and security to a strongly-typed language,
and for those reasons, it has been incorporated into ML [Mil78], HOPE [BMS80], Russell
[DD85], and Ada [DoD83] (in the form of generics that accept types as parameters).

Because of its growing importance in the design of new languages, researchers in de­
notational semantics have examined various interpretations for polymorphism. The work
has mainly dealt with versions of the lambda calculus, in order to study polymorphism on
an elementary and "pure" level. Our goal was to study a "real" polymorphic language and
see what complexities arose. We chose Miranda1 [Tur85a,Tur85b] as our language. The
most interest ing aspect of the st udy was not, however, polymorphism, but algebraic types,
another extension to types found in Miranda. In t his paper, we describe how to interpret
algebraic types in a model that can also interpret Miranda's polymorphism .

Miranda is descended from SASL, another language invented by Turner (see [Tur85a]
and [Tur85b] for a history of Miranda) . While there are minor syntactic differences bet,veen
the two languages, the most important new features (at least in the view of the authors)
are polymorphism and algebraic types, which create new types from old. [KS85] provides
a denotational semantics for SASL, which can serve as a basis for much of the semantics
of Miranda [Rie86]. ([Jon87] has also given a denotational semantics for Miranda, albeit
an untyped semantics. Our work focuses on the meaning of types, and so differs from
[Jon87] in its goal.) The semantics of Miranda will be given with respect to the ideal
model of [MS82,MPS84,MPS86], which extends the untyped semantics of SASL to interpret
Miranda's polymorphism.

The ideal model cannot, however, adequately interpret Miranda's algebraic types, and
this paper shows how to extend the ideal model to interpret algebraic types. The approach
here makes use of kinds, a concept introduced in [McC79] for models of the second-order
lambda calculus. Kinds describe higher-order type constructors which, we argue, best
represent the meaning of algebraic types. A careful development of the semantics of higher­
order type constructors provides a way to interpret algebraic types, while using the ideal
model as a basis for the semantics of Miranda. A soundness theorem shows that this
extended semantics matches the type inference mechanism of the language.

This paper may be divided into three parts. V.,Te begin by introducing Miranda: Section
2 provides a brief description of Miranda's polymorphism and algebraic types, and Section

1 "Miranda" is a trademark of Research Software Ltd.

2

3 explores various possibilities for interpreting algebraic types and justifies the approach
taken in this paper. Then, in Sections 4 t hrough 6, we sketch the details of the semantics of
algebraic types. Finally, Section 7 shows how these semantics fit into the rest of Miranda's
semantics, while Section 8 discusses remaining problems.

2 Miranda's Type System

2.1 Implicit Polymorphism

In most strongly-typed languages, a program must contain declarations of variables and
their types. Miranda does not follow this convention, for types may be omitted from a
Miranda program. Miranda uses an implicit typing system, similar to ML's [Mil78], in
which the type-checker for the language deduces the types of variables from the context.
As long as there are no conflicts in the types deduced for variables, a program is well-typed.

As an example of how the type-checker works, consider the Miranda function

add x y = x + y

The parameters to add are x and y, and the body is x + y. In order to assign a type to
these parameters, the type-checker examines the body of the function and finds that x and
y must both have type N um for the body to be well-typed. Since we can assign consistent
types to x and y , the function is well-typed. Functions are first-class objects in Miranda,
and so we must also assign a type to add; its type is Num-+ Num-+ Num, because it
takes two numbers and returns another number. (Note that "-+" associates to the right,
so Num-+ Num -+ Num is read as Num-+ (Num-+ Num).) Types for functions are
written in this curried notation, since applying one ·function of type N um -+ N um -+ N um
to a number, as in

add3 = add 3

returns a function of type N um -+ N um.

An implicit type-checker cannot always deduce a unique type for a variable. For ex­
ample, consider the Miranda function

id X = X

which is the identity function. Nothing in the body of this function constr ains the type of
x, so the type-checker would assign a type variable (such as a:) as the type of x. To deduce
a type for id, notice that it takes a value of type a: and returns a value of type a:. The
type-checker then infers the type Va:.a: -+ a: for id, where the "V" symbol means that any

3

type may replace a . id is an example of a polymorphic function, a function that accepts
arguments of more than one type.

Miranda is considered an implicit polymorphic language, because polymorphic types
are introduced by the type-checker, not by the programmer. The other major form of
polymorphism is explicit polymorphism, in which types can be passed to functions. This
form of polymorphism may be found in the second-order lambda calculus [Gir71,Rey74]
and in Russell [DD85] .

2.2 Algebraic Types

Another novel feature of Miranda's typing system is algebraic types. Algebraic types
allow a programmer to define the data domains of the program [Tur85a] . For example,
suppose we want to describe binary trees. One could represent binary trees in lists, as is
done typically in Lisp, with the first element being the value at a node, and the next two
elements being the left and right branches. This representation can be confused with other
lists, though. Algebraic types allow the programmer to distinguish lists and trees through
the creation of new data types, such as a type called "tree" which contains all binary trees.

Algebraic types can define completely new values. For instance, we can create a new
type called "fruit":

fruit : : = Apple I Cherry I Peach

Simple algebraic types like this one resemble Pascal's enumerated types: the type "fruit"
includes the values Apple, Cherry, and Peach. The name of the new type appears on the
left of the "::=", and the names on the right are the values in this type, separated by a
"I" which is read as "or". Any expressions in the program can use the values in fruit
once it has been defined.

Algebraic types can also build new types from types already present in Miranda. Con­
sider, for instance, the following algebraic type:

numchar : := Partnum num Partchar char

This algebraic type may be read as "numchar is comprised of the values Partnum followed
by a number, or Partchar followed by a character." A program containing this algebraic
type could use values like

Partnum 5
Partchar 'a'

4

both of which would be assigned the type numchar by the type-checker. Values like
Partnurn 'a' are not allowed, since the algebraic type specifies that a value of type N um
must follow any occurence of the identifier Par tnurn.

The expressive power of algebraic types comes from the ability to use recursion inside
definitions. Trees are one example of a recursive type, since trees are defined in terms of
themselves, storing two subtrees at each internal node. In Miranda, one could create the
algebraic type

treenurn : : = Leaf nurn Node nurn treenurn treenurn

to describe numeric binary trees. In this case, the algebraic type appears in its own
definition - the identifier Node must be followed by a value of type Num, and two values
of type treenum.

In Miranda, we can generalize this algebraic type. Suppose we wanted binary trees
with numbers or characters at the nodes. One could define two different algebraic types,
or alternatively, one could write

t ree * : := Leaf * Node * (tree *) (tr ee*)

The * stands for "any type", and so this algebraic type describes a whole class of types,
with instances being tree Num, tree Char, or even tree (tree Num) . Values in t hese new
types include:

Node 5 (Node 1 (Leaf 0) (Leaf 3)) (Leaf 11)
Node 'a' (Leaf ' b') (Leaf ' c ')

with types tree Num and tree Char. A value not described by this algebraic type is

Node 12 (Leaf ' a') (Leaf 6)

because Leaf 'a' has type tree Char, which is inconsistent with Node 12. Miranda's
type-checker would reject such a value.

Miranda allows more than one type variable (such as ** or ***) in algebraic types, as
in

tagtype * ** :: = Left* Right**

In addition, mutual recursion between algebraic types is also permitted, as in

tree1 *
tree2 *

Leaf1 *
Leaf2 *

Node1 * (t r ee2 *) (tree2 *)
Node2 * (tree1 *) (tree1 *)

5

Algebraic types are thus quite general, and this generality will complicate their semantics.

In the next section, we shall examine a few ways to interpret algebraic types. For
simplicity, we assume that all algebraic types appearing on the right side of a "::=" have
the appropriate number of types following them. For instance, an algebraic type like

tree* : : = Leaf* Node* (tree) (tree)

should be considered illegal, because tree is used incorrectly on the right side. ([Rie86]
describes a way to check algebraic types for these errors.) We also will not consider a
further extension to algebraic types, in which "laws" are associated with an algebraic type
[Tur85a]. In Section 8, we will briefly address how these unfree algebraic types may be
incorporated into the semantics.

3 Interpretation of Algebraic Types

For any strongly-typed language like Miranda, a well-typed program always produces an­
swers of the appropriate type. The denotational semantics of a typed language must mirror
this operational behavior , or in other words , the meaning of any well-typed program must
be in the appropriate type in the model. This result is commonly called a "soundness
theorem", and in order to verify it, we must have an intepretation for types.

Given the extensive type system of Miranda, finding intepretations for every type is
difficult. Without algebraic types, the task is easier - one can use the ideal model of
[MS82,MPS84,MPS86], for it can interpret all the non-algebraic types, including polymor­
phic types. One would then like to find meanings for algebraic types in this model. At first
glance, it does not seem possible to add algebr aic types to any model, since they appear
to create new types during the execution of a program. We must either extend the ideal
model, or examine the model more closely, to make sure that types produced by algebraic
types have a meaning.

At least three methods can be used to interpret algebraic types within the ideal model.
One method involves describing a collection of models for each set of algebraic types. The
model for a set of algebraic types would contain all types described by the algebraic types .
Furthermore, each model would be an ideal model, so that the implicit polymorphism of
Miranda could be interpreted. F inding the meaning of a particular program under these
semantics would involve choosing a model that contained t he appropriate algebraic types.

This method, though, requires an infinite collection of models, one for each possible set
of algebraic types; it would be better if we could incorporate all of the algebraic types into
one model. An alternative method involves finding a model in which all types described
by algebraic types may be found. For example, consider the algebraic type

6

tree* : : = Leaf* Node * (tree*) (tree *)

One can think of this algebraic type as defining two new functions , Leaf and Node, where
Leaf takes a value of some type t and returns a value of type tree t, and Node takes
arguments of types t, tree t, and tree t, and returns a value of type tree t . One can model
Leaf as merely returning its value, and Node as returning a tuple of three items. To find
a meaning for tree, we simply combine the values ret urned by Leaf and Node:

tree t = t + t x (tree t) x (tree t)

(where "+" constructs a disjoint union, and "x" constructs a cross product of the types).
In [MPS84,MPS86], a method is given for interpreting such recursive type equations, so
for any type t , there is a meaning for tree t in the model. This method avoids the infinite
collection of models of the first method.

The second method has another flaw - no meaning is found for the algebraic type itself,
only for its instantiations. A third method, and the one we chose, treats algebraic types
as type constructors, that is, functions which take types as arguments and return types.
For example, one can think of t he algebraic type tree as a function which takes one type
and returns a new type, with the value of tree being

tree=)d.t + t x (tree t) x (tree t)

This method seems to capture the meaning of an algebraic type better than the first two
methods - an algebraic type has a meaning, not simply as a collection of related types.
While this method requires adding another layer of values to the semantic objects to
the model (the "kind" hierarchy of functions on types), the method is more semantically
natural. Given the structure of Miranda, a semantics of Miranda should assign a meaning
to every piece of the program, so algebraic types should have a denotational meaning. The
following sections outline one method for achieving this goal.

4 Overview of Semantics of Algebraic Types

The decision t o model algebraic types as type constructors requires that, in addition to ordi­
nary, first-order functions, we include the meaning of higher-order functions (the functions
on types) in our model. Incorporating higher-order functions is not a new idea: they were
used in the first model of the second-order lambda calculus [McC79], and have subsequently
been employed in other models of the second-order lambda calculus [BMM85,ABL86]. In­
terestingly, the ideal model originally given in [MS82] included higher-order functions to
solve certain recursive type equations (This approach was abandoned in a later paper

7

[MPS84]). Our semantics extends the use of higher-order functions to model a particular
language construct, algebraic types.

Higher-order functions, or type constructors, may be classified like first-order functions
- instead of "types," the classifiers are called kinds [McC79]. Kinds are syntactic objects
that classify type constructors according to the number of types they accept as arguments,
and are specified by the grammar

The T. in the grammar is shorthand for «type", while «⇒" denotes a function space.
Accordingly, any simple type expression will have kind T, and type constructors will have
more complicated kinds. The binary tree type constructor, for example, has kind T * T,
since it returns a new type when given a type. The standard type constructors x and +
also have a kind - kind T * T * T - since they construct a new type from two types.
(Note that kinds, like types, are specified in curried form.)

In addition to classifying type constructors, kinds will also classify the sets that contain
the meaning of type constructors. These sets in the model, denoted I(ind", will contain the
meaning of all type constructors with kind K . Our model will include an infinite number
of these sets, one for each possible kind.

Along with kinds, we will use another concept, constructor expressions, adapted from
[McC79] and [BMM85]. Constructor expressions are lambda terms specified by the gram­
mar

cexpr Int I Real I Num I Bool J Char I Trivial I id I + I x J List I
VidT .cexpr I (cexpr) I cexpr -t cexpr I >..id".cexpr I cexpr cexpr

where id represents any identifier. Constructor expressions will denote the meanings of type
constructors in the model, serving the same purpose as the lambda calculus in denotational
semantics. Notice that constructor expressions are typed lambda terms: any time a variable
is bound by a lambda, a kind must be given for the variable.

The syntax of constructor expressions expresses more functionals than just the type
constructors, since the syntax allows functions that accept other type constructors as
arguments. One example of such a constructor expression is >..tT⇒T_t, a function that
takes a function of kind T * T and returns it . The kind of this constructor expression
is (T * T) * (T * T). We will take advantage of higher-kinded bound variables in the
definition of the List type constructor.

Having these ideas in mind, we now give the semantics of algebraic types . First, in
Section 5, we will consider the semantics of constructor expressions. Using these semantics,
we will show how to convert algebraic types into constructor expressions in Section 6.

8

5 Constructor Expressions

Both constructor expressions and algebraic types represent type constructors. Construc­
tor expressions, however, have a more uniform syntax and provide insight into type con­
structors . Before considering the semantics of algebraic types, we carefully consider the
semantics of constructor expressions. We devise a system that type-checks, or rather kind­
checks, each constructor expression. (Algebraic types will be converted into well-kinded
constructor expressions in the next section.) We then define a model and give the seman­
tics of constructor expressions. In this section we also sketch a key result, namely that any
well-kinded constructor expression has a meaning in the appropriate kind set.

5.1 Kind-Checking

Due to the presence of constants in the syntax for constructor expressions, not all con­
structor expressions have a meaningful interpretation. The syntax can generate constructor
expressions like

that misuse these constants. (T his expression does not respect the meaning of+, in that
+ should be applied to two types, not two objects of kind T ::::} T .) In order to detect such
illegal expressions, we devise a deduction system that infers the kinds of expressions. Any
expression for which a type can be inferred will be called well-kinded. If the system cannot
infer a kind for an expression, the expression will be illegal.

T he kind-checking system resembles many deduction systems. We first need a notion
of syntactic kind assignments. During the inference of kinds, the system must be able
to remember the kinds of free variables in subexpressions; syntactic kind assignments
"remember" the kinds of these variables. Formally,

Definition 1 A syntactic kind assignment is a partial Junction that assigns kind expres­
sions to identifiers .

To change an arbitrary syntactic kind assignment A, we use the notation

which denotes the same syntactic kind assignment as A except at the variables v1 , ... , Vn

which are assigned kinds n:1 , . . . , K n .

Like other formal systems, the kind-checking system consists of axioms and rules. We
begin with the axioms of the system that determine the kinds of <<simple" constructor
expressions. We will use the standard logic notation

9

Af--µ : x:

to mean that "assuming the free variables of µ have kinds determined by A, µ has kind
x:."

l. A f-- T : T, where TE {I nt,Real,Num, B ool,Char,Trivial,NIL}

T his axiom states that the base types have kind T .

2. Af--v:(Av)

Any free variable has a kind determined by the syntactic kind assignment.

3. A f--- List : T ⇒ T

"List" is a special type constructor that builds lists of a given type. Its kind is
T ⇒ T.

4. A f-- +, x : T:::;, T :::;, T

The standard type constructors + (disjoint union) and x have kind T =} T =} T
as noted before. As is customary, + and x will be written infix.

In addition to these ru les, we will need four rules of inference. T ypically, a typed
lambda calculus only requires two rules of inference, one for lambda abstractions and one
for applications. Two additional rules are necessary for constructor expressions, in order
to guarantee that the set of well-kinded constructor expressions can be interpreted by the
semantics.

l. A t[1~,_~1 j ~ µ :_;2 ~ , (t not free in the left argument of a "--t" or in any .µ . K1 K2

subexpression (VsT .a) ofµ .)

This rule assigns a kind for lambda abstractions, and the restriction is necessary to
accommodate the ideal model. Our model only considers continuous functions on
types; unfortunately, "--t" is not a continuous function in the ideal model (for reasons
which are given below) so we must not treat "--t'' as a function that can be applied
like "+" and " x " . (In the final section, we will consider models in which "--t" is
continuous.) Also, notice that "V" is not considered a function on types. vVe do not
know if this constructor is continuous in the ideal model.

A f-- µl : K1 =} K2, A f-- µ2 : K1 2
· A F µ1µ2 : K2

An application of a constructor expression with kind x:1 =} x:2 to another wit h kind
x:1 is a constructor expression with kind x:2 .

10

3 A.[s : T] f-- µ : T
. A.f--Vs1' .µ:T

This rule says that if a constructor expression has kind T if a variable t is assumed to
have kind T, then using "V" produces a constructor expression that is a type. This
rule is necessary since the constant "V" is not treated as a function on types.

4 A. f-- 'V : T, A. f-- µ2 : T
. A µ1 --+ µ2 : T

As with "V", this rule is needed since "--+" is treated as a special constant.

By way of example of how these rules can be used, consider the derivation of the kind for
AtT.t X t :

Deduction
0[t : T] f-- t : T
0 [t : T] f-- x : T ⇒ T ⇒ T
0 [t : T] f-- t x t : T
0 f-- >.tT.t x t : T ⇒ T

Reason
Axiom 2
Axiom 4

Rule 2
Rule 1

These axioms and rules completely define the kind-checking of constructor expressions.

5.2 Semantic Sets and Semantics of Const ruct or Expressio ns

Now we present a semantic model to interpret constructor expressions. In order to build
the model, we will begin with the semantic model of Miranda without algebraic types.
T he ideal model makes it convenient to interpret other Miranda statements, as was stated
earlier.

T he model for the base language is constructed via a sequence of mutually-recursive
domain equations. Domains are complete partial orders (cpo's), i.e . partial orders in which
every directed set has a least upper bound , or sup, and that are additionally:

1. consistently-complete (every bounded set has a sup)

2. w -algebraic (every element is a sup of basic elements)

(see [ABL86,Sco82]) . The domain of values for the base language is constructed using the
standard domain constructors +, x, and --+ (as opposed to type constructors), using the
series of equations:

11

Value ~ Boal+ Num +Char+ NIL+ Trivial+ N ewtype + Function
Boal C::t. flat cpo of truth values
Int ~ flat cpo of integers
Real ~ flat cpo of representable reals
Num ~ Int+ Real
Char ~ flat cpo of characters
NIL ~ flat cpo of the set { nil}
Trivial ~ flat cpo of the set{()}
Newtype ~ Value + (Value+ Value) + (Value x Value)
Function ~ Value -----t Value

(A fiat cpo is a cpo in which x :s; y if and only if x = .l or x = y.) These equations may
be solved using the general methods given in [ABL86) and [Sco82]. The domain Value is
essentially the same domain used in the ideal model of [MS82,MPS84], which allows us to
use their results.

Using this domain as a basis, we build a series of domains, the kind sets, that will
contain the meaning of all constructor expressions. Vile first recall that in the ideal model,
types are ideals which are nonempty, consistently-closed, downward closed subsets of a cpo
[MS82) . We then let

K indT = { A. ~ Value I A. is an ideal}

This set includes the meanings of all type expressions. Furthermore, under the partial
order of inclusion, Kin~ is a domain [MS82]. Using this fact we build the other kind sets
using the equation

which is the domain of all continuous functions (under the Scott topology) from the domain
K ind"1 to the domain K ind"2 • For example, the kind set J(in~⇒T is specified by the
domain equation

These domains , it will be shown, contain the meamngs of all well-kinded constructor
expressions.

Using these kind sets, we may now specify the semantics of constructor expressions.
V\Te define two semantic sets upon which the semantics will be defined:

Cvalue

Cenv
U . Kin d"

KEI<indExpr

Ide -----t Cvalue

12

Cvalue contains the meaning of all constructor expressions, and C env is the set of all con­

structor environments. A constructor environment allows the semantics to remember the
values of free variables when interpreting constructor expressions. We will use the symbol
17 to represent an arbitrary constructor environment. In order to update a constructor
environment, we use the notation

which means that the new environment has the same values as the old environment 17

except at the variables v1 , . . . , Vn which are assigned values µ 1, . .. , µn.

Now we may define Cval, the semantic function that interprets constructor expressions.
The interpretation of a constructor expression is determined from the following semantic
clauses that specify Cval:

Cval : ConsExpr-+ Cenv-+ Cvalue

l. Cval[I nt]17 = Int, where Int denotes the ideal corresponding to the integers in the
domain Value .

Thus the base type Int has a meaning as an ideal. There are similar clauses for the
other base types (Real, Bool, Char, NIL, Trivial) as well.

2. Cval[Num]ry = Cval[Int + Real]17

The type N um is the disjoint union of Int and Real in the model.

3. Cval[v]17 = 17 v, where v is an identifier.

The meaning of a free variable is determined by looking up the variable in the con­
structor environment.

4. Cval[+]17 = EB , where EB represents the disjoint union of ideals and is written in infix
notation.

5. Cval [x] 17 = ®, where ® represents the direct product of ideals and is written in
infix notation.

6. Cval[µ1 -+ µ2]17 = {f E Function I f (Cval[µ 1]17) ~ Cval[µ 2]17}

This definition of "-+" comes from [MS82], and is a fundamental definition in the
ideal model. It states that any function in the domain Valu e that takes objects in
type µ 1 to objects in the type µ 2 is in the type µ 1 -+ µ 2 . This definition is quite
intuitive, but there are problems with it that we discuss below.

13

7. Cval[\ftT.µ]77 = n aEKindTCval[µ]('ry [a/t])

T his definition is another fundamental definition in the ideal model. To see how it
works, consider the polymorphic identity function. It lies in

Char -+ Char

I nt -+ I nt

and so on, according to the definition of "-+,, given above. T he identity function
lies in all of these ideals, and so it lies in the intersection of the ideals. Polymorphic
types are therefore modelled as intersections of ideals .

8. Cval[List]'I] =List= fix(.\lT⇒T_.\tT.NIL EB (t ® l t)), where fix is the least fixpoint
operator in J(ind((T⇒T)⇒(T⇒T))⇒(T⇒T)_ The operator fix is defined by the equation

fix(!) = LJ /(1-)
i<w

where Ji = f of ... f with f appearing i t imes.

T his clause defines the List type constructor that builds homogeneous lists (i.e . those
with elements drawn from a single type) . This definition was given in [MS82] .

9 . Cval[.\v".µ]17 = .\u E Kind" .Cval[µ](17[u/v])

The meaning of a constructor expression representing a function is a function ac­
cepting arguments from the appropriate kind set .

10. Cval[µ1µ2]11 = Cval[µ1]1J (Cval[µ2]11)

A constructor expression representing an application is intepreted by applying the
meaning of the function to the meaning of the argument.

Note that "-+" is not a function in these semantics; this is because it is not a continuous
function, and so does not lie in any kind set . To see that "-+" is not continuous, consider
the two ideals

Value-+ Int

Int-+ Int

Any function in the first ideal is also in the second, so

Value -+ Int s:;;; I nt-+ I nt

However, I nt s:;;; Value, so "-+" is antimonotonic in its first argument. Since any anti­
monotonic function is not continuous, "-+,, is not continuous.

14

5.3 Soundness of Const ructor Semantics

Having defined the semantics of constructor expressions and kind-checking rules for them,
we must now show that they match via a soundness theorem. The theorem basically states
that the meaning of any well-kinded constructor expression is in the appropriate kind.

T he theorem relies on a connection between syntactic kind assignments and constructor
environments. Intuitively, the value of a free variable, as defined by an environment, should
be in the kind set determined by the syntactic kind assignment. ..Vve call this concept
compatibility:

Definit ion 2 Let A be a syntactic kind assignment, and r; be a constructor environment.
Then r; is compatible with A, written r; F A 1 if whenever v E I de and v is in the domain
of A, 17v E I<ind(Av) _

If r; F A, we know that the semantics of constructor expressions of the form v, where
v E J de, are sound since their meaning is given by r; v which lies in the appropriate kind
set (Av) .

We now state the theorem:

T heorem 1 If A f- µ : "' and r; F A 1 then C val[µ]r; E I< ind" .

Proof: (Sketch) We use induction on the length of the deduction of A f- µ : "'· Beginning
wit h the base case, when the length is 1, we notice that only axioms can give a valid proof
of length 1. We can check all of the axioms to ensure that they satisfy the conclusion.

For the induction case, where n 2:'.: 2, we assume that all proofs of length less than n
satisfy the conclusion. We can then show, by case analysis, t hat if any rule is used as the
last step of a deduction, then the conclusion holds. This proves the theorem.

6 Semantics of Algebraic Types

Having built up a theory of type constructors, we apply this theory to study algebraic
types, the goal of this paper. Using the function Cval, we convert constructor expressions
representing algebr aic types to elements in t he model. We show that the semantic functions
p roduce elements in t he model, ensuring that the semantics is well-defined.

6.1 Conversion t o Constructor Expressions

Vve need a general technique to convert algebraic types to constructor expressions. The
main difficulty lies in interpreting mutually-recursive algebraic types. Our method is based

15

on a method used in [KS85] (which uses the method to solve sets of mutually-recursive,
first-order functions in SASL). The idea is to construct a chain of environments, with the
meaning of each algebraic type determined from its definition and the last environment.
Taking the sup of the chain results in finding the sup of the approximations to each
algebraic type.

To do this construction, we need two semantic functions U sertype and Settype. Settype
builds an environment in the chain that contains an approximation to the meaning of a
set of algebraic types . U sertype actually builds the chain of environments and takes the
sup of the chain, using Settype to build each approximation in the chain. The definitions
for these functions are:

U sertype : TypeDef s -+ Cenv-+ Cenv

U sertype[AlgTypes]77 = Jix(>.17t.Settype[AlgTypes]17117)

Settype : TypeDef s-+ C env-+ Cenv-+ C env

1. Settype[A.lgType; AlgTypes]17117 = Settype[AlgTypes]171 (Settype[AlgType]17t 17)

2. Settype[r ii ... tn : := id1 arg1,1 ... arg1,j1 J ... I idk argk,1 .. . argk,jk]17t 17 = 77[e/r]

where e

for su btypei

Cval [>.tf. . . . >.t; .subtype1 + · · · + subtypek]171

Trivial if Ji = 0

arg· 1 x · · · x arg- ·. otherwise i, i,Ji

Suppose, for example, that we wanted to interpret the following two mutually-recursive
algebraic types using this method:

f *
g *

Nil Push* (g *)
Cons* (f *)

To build a chain of environments, we start with

770 = 17[BotT⇒T/ f, Boir⇒T/ g]

and define, for all i ~ 0,

77i+i = S ettype[AlgTypes]17i 17

where Bot"' is the bottom element in the domain Kind"'. (Note that BotT⇒T applied to
anything of kind T returns BotT,) Constructing the chain of environments yields

16

T/1 ry[(>if,Trivial + (t1 X BotT))/ f , (>if.ti X BotT)/ g]
T/2 17[(>.tf.Trivial + t 1 x t 1 x BotT)/ f, (>.t[.t1 x (T rivial+ t1 x BotT))/ g]

and so on. Taking the sup of these environments is equivalent to calculating

fix(>.ryt .S ettype[AlgTypes]ryt rt)

which is the definition of U sertype.

6 .2 Well-Definedness of Semantics

We now show that our semantic functions for interpreting algebraic types produce valid
constructor environments:

Theorem 2 Let AlgTypes be a set of algebraic types defined

If rt is a constructor environment, then

(U sertype[AlgTypes]ry) Ti E Kind"i

for Ki = T ⇒ · · · ⇒ T with Ji + l T's .

Proof: (Sketch) To show that

(Usertype[AlgTypes]ry) Ti E I<ind"i

we verify that for each T/j in the chain, that

Taking the sup of this chain of environments is the same as taking the sup of each of the
elements in the environments, so

(Usertype[A lgTypes]rt) Ti = LJ (Tfj Ti)

j<w

17

Since J(ind"; is a domain,

LJ (TJj Ti) E Kind"•
j<w

hence

(Usertype[AlgTypes]TJ) Ti E Kind"•

which proves the theorem.

7 Connection to Miranda's Semantics

Algebraic types represent a significant part of the full semantics of Miranda, and the rest
of the semantics must be defined so that the algebraic types fit into the model. In this
section, we give an overview of the Miranda's semant ics , tying it in to our work on algebraic
types.

Specifying the semantics of Miranda, a typed language, consists of defining a set of
type-checking rules, giving the semantics, and showing that the semantics is sound with
respect to the type-checking system. Our type-checking system for Miranda was patterned
after the systems found in [Mil78] and [MS82], since these type-checkers work with implicit
polymorphic languages. The semantics for Miranda is based on the semantics given for
SASL in [KS85].

Like the kind-checking system given before, the type-checking system for Miranda is
composed of axioms and inference rules. An example of such an inference rule is

B f-- g : T2 -+ T3 , Bf-- f : T1 -+ T2

Bf-- g.f : T1 -+ T 3

where B is a syntactic type assignment that assigns types to variables, and " ." is the
operator in Miranda that composes two functions. This inference rule infers a type for a
composition of two functions . With implicit polymorphic functions, the rules can get quite
complicated; this rule, however, gives a flavor of the style.

To specify the semantics of Miranda, we use the semantics of SASL as a basis. A typical
semantic clause looks like

Eval[g .f]p = >.x.Eval[g]p ((E val[f] p)x)

This clause interprets function composition, and the "p" is an environment that assigns
values to identifiers.

18

The most important semantic clause, for the purposes of this paper, is the one that
interprets algebraic types . Algebraic types define a new type and functions on that new
type. T hese new functions must be added to the environment of a program, which the
following semantic function Tdecl does:

Tdecl : TypeD ef s - E nv - Env

1. Tdecl[r t1 ... tn ::= id1 arg1,1 ... arg1,j1 I -. -I idk argk,I .. . argk,jk]p =

p[fi/id1, . · · fk/idk]

2. Tdecl[A.lgType ; A.lgTypes]p = Tdecl[A.lgTypes] (Tdecl[A.lgType]p)

The functions thus defined by algebraic types return tuples when given the appropriate
number of arguments. T his is the way we thought of these functions in Section 3.

T he model for this semantics uses the underlying ideal model "Value'' . Given the
semantics and the type-checking rules, one can prove the key theorem

Theorem 3 If Mis a Miranda expression with type r; then

Eval[M]p E Cval[r]77

(For a more precise rendering of this theorem and its proof, see [Rie86] .) Note that in order
to prove this theorem, we need an intepretation for type expressions and, consequently, the
algebraic types that appear in type expressions. It was the necessity to prove this theorem
that generated the interest in modelling algebraic types.

8 Remaining Problems and Relevance to Previous
Work

Our semantics has raised a number of issues in attempting to find a meaning for algebraic
types . In this section, we clarify some of these issues, and propose solutions to them.

One issue that has been raised by Albert Meyer is the issue of structural equivalence
versus name equivalence of types. Suppose, for example, we have the following two alge­
braic types in a program:

f

g
Nil1
Nil2

Cons 1 int f
Cons2 int g

19

The type-checker will not allow us to write a value like

Cons2 1 Nil1

since Nil1 is not of type g, so the expression would be rejected. Our semantics, however,
does not distinguish between the two types - they are structurally equivalent. Opera­
tionally, Miranda distinguishes the values in the two types by tags - that is, Miranda
uses name equivalence of types. One could, perhaps, tag every type in the model with an
appropriate tag, but there may be complications in solving domain equations with tags.

An alternative approach is to consider the difference between structural and name
equivalence to be simply a syntactic issue. That is, the type inference mechanism screens
out all terms which are illegal under a name equivalence approach to typing. After that
it does not matter if the semantics of the two types are different, since type-checking has
eliminated the terms which would have been problematic. "\Ve leave open the inclusion of
name equivalence and the issues it raises in semantics.

Another open problem is the incorporation of unfree algebraic types [Tur85a] into the
semantics. Unfree algebraic types are algebraic types ,vith laws for reducing elements to a
normal form. For example, one could build a type consisting only of ordered lists:

olist · · = □nil □cons num olist
□cons a (□cons bx) => □cons b (□cons ax), a>b

This example is taken from [Tur85b]. The second line is the law for reducing an object
of type olist to a normal form, and states that if a> b, reverse the order of b and a in
the expression. [Tho87] gives one possible interpretation for an unfree algebraic type, by
defining a set of functions that correspond to the reduction rules. For this example, we
need only one function for the one rewrite rule:

Ocons 1 a □nil= □cons a Onil
Ocons 1 a (□cons bx) = □cons b (Ocons 1 ax), a>b

= □cons a (Ocons 1 bx)

One can then transform any program written with □cons into one written with □cons 1

by replacing any outer □cons with an □cons I and defining □cons I in the program. One
would then want to show that the values produced by □cons I is a type in the model. For
this example, the values produced by □cons I are indeed a type in the model. (Proof hint:
"\i\Tithout the law, the meaning of olist is a flat cpo, and so any subset of it including the
bottom element is an ideal.) What is not known, however, is if this function construction
can be generalized to all normalizing rewrite rules, and if the functions always produce
values that form a type.

20

There is another alternative for adding unfree algebraic types. Since all terms of unfree
types are required to have a normal form, the semantics could take advantage of this fact.
We would find the interpretation of the corresponding free type and interpret the terms
as the interpretations of their normal forms in that type. Like name equivalence, however,
we leave the incorporation of unfree types as an open problem.

Our main problerns, though, arise from problems in the ideal model, especially by the
fact that "---t" is not a continuous function on types . If we allow algebraic types like

f un* : : = * - > num

in the language, we cannot interpret them. Using this example, the corresponding con­
structor expression would be

which is not continuous since it is antimonotonic in its first argument. There are poly­
morphic models, though, that can interpret constructor expressions like these: the closure
model [McC79] and the finitary projection model [ABL86] . An interesting exercise would
involve writ ing the semantics of Miranda using one of these two models as a basis.

"\Ve have, however, shown how to interpret many of Miranda's type constructors within
the ideal model. T he most important result in this paper is the practical use made of
higher-order functions; these functions describe algebraic types very naturally, and are
included in the semantic model. We hope that the use of higher-order functions on types
in semantics will now be justified .

9 Acknow ledgements

We would like to thank Albert Meyer for his suggestions on structural equivalence and
name equivalence, and Matt Kaufmann for helpful comments on a preliminary version of
this work.

References

(ABL86] Roberto Amadio, Kim B. Bruce, and Giuseppe Longo. The finitary projection
model for second order lambda calculus and solutions to higher order domain
equations. In First Annual Symposium on Logic in Computer Science, Cam­
bridge, MA, 1986.

21

[BMM85] Kim B. Bruce, Albert R. Meyer, and John C. Mitchell. The semantics of second­
order lambda calculus. 1985. To appear, Information and Computation.

[BMS80] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: an experimental
applicative language. In Proceedings of the First International LISP Conference,
Stanford, CA, 1980.

[DD85] Alan Demers and James Donahue. Data types are values. A CM Transactions
on Programming Languages and S ystems, 7:426-445, July 1985.

[DoD83] U.S. Department of Defense. Reference Manual for the Ada Programming Lan ­
guage, Springer-Verlag, New York, 1983.

[Gir71] J .-Y. Girard. Une extension de !'interpretation de Godel a !'analyse, et son
application a !'elimination des coupures clans !'analyse et al theorie des types .
In J .E. Fenstad, editor, Second Scandanavian Logic Symposium, pages 63-92,
North Holland, Amsterdam, 1971.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Programming Lan­
guages , Prentice-Hall , Englewood Cliffs, NJ, 1987.

[KS85] Matthew Kaufmann and Douglas Surber. Syntax! S emantics! and a Formal
Logic for SASL. Technical Report ARC 85-03, Burroughs Austin Research
Center, January 1985.

[McC79] Nancy McCracken. An Investigation of a Programming Language with a Poly­
morphic Type Structure. PhD thesis, Syracuse University, 1979.

[Mil78] Robin Milner. A theory of type polymorphism. Journal of Computer and Sys­
tem Sciences, 17:348-375, 1978.

[MPS84] D. B. MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive
polymorphic types. In Proceedings of the Eleventh A CM Symposium on the
Principles of Programming Languages, Salt Lake City, UT, pages 165- 174, 1984.

[MPS86] D. B. MacQueen, Gordon P lotkin, and Ravi Sethi. An ideal model for recursive
polymorphic types. Information and Control, 71, 1986.

[MS82] D. B. MacQueen and Ravi Sethi. A semantic model of types for applicative
languages. In 1982 A CM S ymposium on Lisp and Functional Programming,
Pittsburgh, PA, pages 243-252, 1982.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Proceedings Colloque
sur la Programmation! Lecture Notes in Computer S cience 19, pages 408-425,
Springer-Verlag, New York, 1974.

22

[Rie86]

[Sco82]

Jon G. Riecke. A denotational approach to the semantics of polymorphic lan­
guages. B.A. Honors Thesis, Department of Computer Science, Williams Col­
lege. 1986.

Dana S. Scott. Domains for denotational semantics. In M. Nielsen and E. M.
Schmidt, editors, Automata, Languages, and Programming, Lecture Notes zn
Computer Science 140, pages 577-613, Springer-Verlag, New York, 1982.

[Str67] Christopher Strachey. Fundamental concepts in programming languages. Lec­
ture notes for International Summer School in Computer Programming, Copen­
hagen. August 1967.

[Tho87] Simon Thompson. Lawful types in Miranda. Unpublished manuscript . 1987.

[Tur85a] David A. Turner. Functional programs as executable specifications. In Hoare
and Shepherdson, editors, Mathematical Logic and Programming Languages,
pages 29- 54, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[Tur85b] David A. Turner. Miranda: a non-strict functional language with polymorphic
types. In Proceedings IFIP International Conference on Functional Program­
ming Languages and Computer Architecture, Nancy, Lecture Notes in Computer
Science 201, Springer-Verlag, New York, 1985.

23

