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Abstract 

We show that any CRCW PRAM which recognizes k-cliques in n-node graphs 
in time T requires at least nO(k/T

2
) processors independent of its memory size. As a 

corollary we obtain essentially the same trade-off for unbounded fan-in circuits. We also 
demonstrate a similar but weaker trade-off for the memory size of CRCW PRAM's solving 
this problem independent of the number of processors. These bounds also answer an open 
question posed in (Lyl), i.e. they show that constant-depth circuits for recognizing k
cliques in n-node graphs require size ne(k). 

1. Introduction 

There has been much recent success in proving lower bounds for problems in mod
els of computation which permit operations on an unbounded number of items at unit 
cost. The first success in this area, namely producing super-polynomial lower bounds for 
constant-depth circuits with unbounded V and /\ to compute parity, by Furst, Saxe, and 
Sipser (FSS] , were quickly followed by stronger lower bounds for such circuit s, by Ajtai 
independently (Ajl] and by Babai (Ba]. Also, lower bounds which produce a constant 
depth hierarchy of polynomial-size unbounded fan-in circuits were shown by Sipser in [Si]. 
With the exponential lower bounds for such circuits given by Yao ([Ya]) and subsequently 
improved to essentially optimal bounds by Hastad in (Hal] and [Ha2], it has become clear 
that techniques for dealing with these circuits are quite powerful. 

The lower bounds for constant-depth unbounded fan-in circuits actually produce 
lower bound trade-offs between depth and circuit size. Beame and Hastad ((Bel), [Be2], 
and (BH]) have extended these lower bound trade-offs to the much more powerful priority 
concurrent-read concurrent-write parallel random access machine (CRCW PRAM). This 
CRCW PRAM model has been an important and popular model for the design of parallel 
algorithms. 

In another direction, Razborov (Ra] and Smolensky [Sm] extending and simplifying 
Razborov's work have shown strong lower bounds for majority and other symmetric func
tions on circuits which have unbounded fan-in modulo p gates in addition to unbounded 
/\ and V gates. Their techniques are quite different from those used for the other results 
in that they use approximation by small degree polynomials as opposed to restrictions. 

One property which is shared by all of the Boolean functions for which the above 
lower bounds apply is that any representation of them in conjunctive or disjunctive normal 
form (CNF or DNF) requires long clauses, i.e. clauses whose length is polynomially 
related to the input size. In fact, whereas threshold functions with nE thresholds are hard, 
any threshold function with a log0 <1

) n threshold can computed in constant depth and 
polynomial size ([AB]). Since proving bounds on the length of clauses in CNF and DNF 
is in some way fundamental part of most of the above proofs, at first glance one might 
be concerned it would be impossible to extend the lower bounds to functions that can be 
respresented with short clauses. 

Results by Ajtai [Aj2] and Lynch [Lyl] show that this is not so. In (Aj2), Ajtai 
proved a weak super-polynomial lower bound for deciding if two nodes in a graph are 
reachable by a path oflength log n . Lynch's bound is a much st ronger one. He showed that 
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if k :::; log n then any unbounded fan-in /\, V -, circuit which finds k-cliques in a directed 

n-node graph in depth d requires size nn(-,,/kfd.3) . This function can be represented in DNF 
with clauses of size k 2 ::::; log2 n. 

The main result of this paper improves Lynch's size lower bound and extends it 
to CRCW PRAM's. That is, we show that any CRCW PRAM which finds k-cliques in 
n-node graphs in time T requires at least nn(k/T

2
) processors independent of the memory 

size. A similar but weaker trade-off is shown for the memory size of CRCW PRAM's 
solving this problem independent of the number of processors. The first bound implies 
essentially the same trade-off for unbounded fan-in circuits and answers an open question 
posed in [Lyl). That is, it shows that constant-depth circuits for finding k-cliques in 
n-node graphs require size n°(k). 

While Lynch uses techniques that have a similar flavor to those in (Aj) and [Ba), our 
techniques extend those in [Hal), [Ha2), and [BH]. We prove our bounds for inputs which 
are undirected graphs but it immediately follows that they hold for inputs representing 
directed graphs. 

2. Definitions and Preliminaries 

We begin with the definitions of the priority form of idealized CRCW PRAM, of 
processor and memory cell partitions, and of degrees in the same manner as in [Bel ), 
[Be2), and [BH). The input to the problems we consider will be undirected graphs so we 
will follow the usual convention of defining our parameters in terms of the number of 
nodes, n, and let m = (;) denote the number of input variables. 

Definition: A CRCW PRAM is a shared memory machine with processors Pi, .. . , Pp( n) 

which communicate through memory cells C 1 , ... , Cc(n). The input is initially stored in 
the first m cells of memory, C1 , ... , C!. Initially all cells other than the input cells contain 
the value 0. The output of the machine is the value in the cell C1 at time T(n). 

Before each step t, processor Pi is in state qi. At time step t, depending on q;, 
processor Pi reads some cell Ci of shared memory, then, depending on the contents, (Ci), 
and qf, assumes a new state qf+1 and depending on this state, writes a value v = v( q;+1 ) 

into some cell. 
When several processors are attempting to write into a single cell at the same time 

step the one that succeeds will be the lowest numbered processor. 

Definition: Let M be a CRCW PRAM. For any processor Pi the processor partition, 
P(M, i, t), of the input set at time step t is defined so that two inputs are in the same 
equivalence class of P(M, i, t) if and only if they lead to the same state of processor Pi at 
the end of time step t. 

For any cell Cj the cell partition, C(M,j, t), of the input set at time tis defined so 
that two inputs are in the same equivalence class of C(M,j, t) if and only if they lead to 
the same contents of cell Ci at the end of time step t. 

Definition: Let f be a Boolean function defined on a set I~ {O, l}m A Boolean formula 
F represents f on I if the inputs x E I satisfy F exactly when f( x) = 1. Let the maximum 
clause length of a DNF formula F be the maximum number of literals in any clause of 
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F. The (Boolean) degree of f on I, 6(!), is the smallest maximum clause length of all 
disjunctive normal form (DNF) formulas representing f on I. We extend this definition 
to sets of functions F by letting 6(F ) = maxfE:F 6(!). 

Definition: Let A be a partition of a set J ~ {O, l}m. Define the degree of A, 6(A ), to 
be 6(FA) on I where FA is the set of characteristic functions of the equivalence classes of 
A in J. 

In this paper we will need a measure related to the degree defined above. We can 
extend the notion of degree by changing clause 'length' to any other monotone property 
of clauses . For the class of inputs we will be interested in, namely undirected graphs, we 
will be interpreting the m inputs as the edges of a graph on n nodes in a canonical way. 
In this case, a useful monotone property of clauses will be the number of nodes which 
are endpoints of edges appearing in the clause. We will write this node degree as 6,,, . For 
technical reasons we also will need to define a modified node degree in which we ignore 
some specified set V ~ { 1, ... , n} of the nodes, i.e. the monotone property is the number 
of nodes other than those in V which are endpoints of edges appearing in the clause. We 
write the resulting degree measure as 6~. We will use [V]2 for the set of input variables 
which have both endpoints in V. 

Definition: A restriction 1r on I(~ {1, . .. , m} is a function 1r: J(-+ {O, 1, *} where: 

{ 

1 means x; is set to 1 
1r( i) = 0 means x ; is set to 0 

* means x; is unset 

We define the results of applying a restriction 1r to a partition, A I 1r, a function, f I 1r, and a 
Boolean formula, FI 1r, in the natural way. If u and r are restrictions t hen ur is a restriction 
which is the result of applying u first and then applying r. For any I( ~ {1, .. . , m} define 
Proj{K} to be the set of restrictions which assign O or 1 exactly to the inputs in K. 

In several places we will need the following simple observation which parallels that 
contained in Lemma 3.1 of [BH] and extends that lemma to the more complicated definition 
of 6~. 

Lemma 2.1: Let A be a partition of a set I~ {O, l}m. For every Y ~ {1, ... , n } there 
exists a restriction u E Proj{[V U Y]2 \ [V]2} such that 6~(A)::; IYI + g~uY(A f o-)· 

Proof: For each u E Proj{[V U Y]2 \ [V]2} let Fo- be a set of DNF formulas which 
represent the characteristic functions of the equivalence classes in Af o- and which have 
maximum number of nodes other than V U Y appearing in each clause being at most 
g~uY(A fo-) , To each clause in Ffo- append the clause Co- which is true on exactly those 
inputs in {O, l}m which agree with u to obtain a set of formulas f:o-. By construction, 
the number of nodes other than those in V which appear in any clause is at most !YI + 
g~uY (A f o-). Each class in A can now be represented by a DNF formula which is the 
disjunction of formulas in various f:o- . By definition of 6~ we have 

6v(A) < max gvuY(A r ) + IYI 
v - o-EProj{(VuY]2\[V]2} 11 1 o- · 
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The lemma follows immediately. D 

We now include the following definitions and lemmas which are shown in detail in 
[Be2] and (BH]. 

Definition: We say that an input x E {O, l}m satisfies a Boolean function F : {O, l}m--+ 
{O, 1} if F(x) = l. We say that x falsifies F if F(x) = O. 

Definition: A graded set of Boolean functions is a set (} of Boolean functions such that 
each FE (} has an associated positive integer grade, ,(F) ( or has grade= oo) and no two 
functions of a given grade are simultaneously satisfiable. 

Definition: For any graded set of Boolean functions , (}, the partition determined by (}, 
((}), on {O, l}m is the partition such that x, y E {O, l}m are in the same equivalence class 
if and only if: 

(a) x and y both satisfy some function FE(}, and x and y both falsify all F' E (} 
with ,(F') < ,(F). 

or (b) x and y both falsify all functions F E g. 

Lemma 2.2: Let g be a graded set of Boolean functions. If 1r is a restriction then (rJ) f 1r 
is the same partition as (9f1r) on {O, l}mf 1r• 

As in [Be2] and [BH], we note that the above definitions can be carried over easily 
for Boolean formulas which represent the Boolean functions in the obvious way. Observe 
that if F represents(} on {O, l}m f 1r then (F)f 1r= ((})f 1r• Also, the notion of degree applies 
to graded sets of Boolean functions simply using the natural definition of degree for sets of 
functions. It is easy to see that a graded set of Boolean functions(} can be represented on 
{O, l}m f 1r by a graded set of DNF formulas F , each with maximum clause length bounded 
by 6(Qf1r)• 

Definition: Let M be a CRCW PRAM. Define (}(M,j, t) to be the graded set of Boolean 
functions as follows: 

(i) For each positive integer i, the functions of grade i in (}(M, j, t) are the characteristic 
functions of those equivalence classes in P(M, i, t) on which Pi writes into cell Cj 
during time step t. 

(ii) The functions of grade oo in 9(M, j, t) are all the characteristic functions of the 
equivalence classes in C(M,j, t - 1). 

Lemma 2.3: Let M be a CRCW PRAM. (rJ(M,j , t)) is a refinement of C(M, j, t) on 
{O,l}m. 

We follow essentially the same program for showing lower bounds on CRCW PRAM 
computations as in (Be2] and (BH]. That is, we show that after certain restrictions (which 
set more inputs as time progresses) are applied to the inputs, the processor and cell 
partitions have only small degree relative to the degree required to solve the problems. 
In using restrictions to obtain our lower bounds we must maintain a balance between the 
amount of degree reduction that a restriction achieves and the related simplification of 
the function required to be computed. 
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3. Lower Bounds for Clique 

Definition: Let Cliquek be the function which takes as input an undirected n node 
graph and is equal to 1 if and only if the graph contains a clique on k nodes . 

Theorem 3.1: If M is a CRCW PRAM which computes the Cliquek function fork ~ 
log n in time T = T( n) then for sufficiently large k 

( a) the total hardware h( n) = p( n) + c( n) must be at least nk/(s9T
2

) 

(b) the number of processors p(n) must be at least nk/(s9T
2

) even if the number of 
memory cells is infinite, and 

(c) the number of memory cells c(n) must be at least nk/(43T
3

) even if the number of 
processors is infinite. 

In order to prove the existence of restrictions that satisfy these properties we need 
an appropriate probability space from which to choose restrictions. The distribution we 
use is essentially that introduced by Lynch [Ly] to prove his bounds for the clique problem 
on unbounded fan-in circuits. 

Definition: Let L ~ {l, . . . , n}. Define R{;,q to be a probability space of restrictions on 
[L]2 where for a random p chosen from R},q, a set S ~ L is chosen at random such that 
independently for each v E L, Pr [ v E S ] = p and Pr [ v r/:. S ] = 1 - p and further that 
1. For each [u, v] E [S]2, p([u, v]) = * 
2. Independently for each [u,v] r/:. [S]2, Pr[ p([u,v]) = 1] = q and Pr[ p([u,v]) = 0] = 
1 - q. 
We say that p(V) = * if and only if V ~ S. 

The outline above is now carried out by proving two lemmas. The first tells us that 
many nodes remain unset and the second tells us that the node degrees of the partitions 
do not increase. 

Lemma 3.1 Let q = n- 8lk, p' ~ 1/2, and Lo= {1 · • •n}. If 1r is chosen at random from 
R{;,~q and p'n ~ k fork sufficiently large then 

Proof: The distribution of the size of the set S in the definition of R{;,~q is a binomial 
distribution with expected value p'n. Observe that, as in [BH], this random variable 
achieves it mean with probability at least 1/3 for p'n sufficiently large. Therefore, with 
probability~ 1/3, 1r leaves a clique of unset input variables on p'n 2'. k nodes. 

Consider also the probability that, on the edge variables that 1r sets to 1, 1r produces 
a clique of size ~ k/2. This probability is easily bounded by 

for k sufficiently large. 
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Thus with probability at least 1/4 1r leaves all the variables on a set of at least k 
nodes unset and does not turn on the edges of any clique on k/2 nodes. Then, in order 
to force Cliquekf 1r to be 1, more than k/2 of the remaining nodes must have all edges 
between them set to 1 and it is easily possible to force a clique by setting all the remaining 
edges to 1 so in this case the node-degree must be more than k /2. Thus the node-degree 
of Cliquekf 1r is at most k/2 with probability at most 3/4. D 

Lemma 3 .2: Let M be a CRCW PRAM just prior to a read or write operation, all of 
whose processor and cell partitions have node-degree at most r ~ 1 with variables from 
{ X[u,v] }u,vEL· Let A be either an existing processor or cell partition of M or a new cell 
partition resulting from a concurrent write of M. Choose p at random from R{;,9 where 
p,q::; 1/2. Fors> 0 we have 

Using Lemmas 2.2 and 2.3 we can obtain Lemma 3.2 from the following lemma 
by letting F = 0 and V = ¢>. The statement of this lemma is more complicated than 
that of the two similar lemmas in [Be2] and [BH] because of the exact way that, for the 
restrictions chosen at random from R{;,

9
, the existence of an unset variable can increase 

the likelihood that other variables are unset. 

Lemma 3.3: Let 9 be a graded set of DNF formulas on inputs {x[u,v]}[u,v)E[L]2\[VJ2 
with maximum number of nodes referred to in any clause bounded by r ~ 1 where 
V ~ L ~ {1, ... ,n}. Let p be a random restriction chosen from R{;,9 • Let F be an 
arbitrary function on {O, 1 }m. Then, if (9 f p) is the partition determined by 9 f p, for any 
s ~ 0 such that s + IVI ::; w we have 

where f3 > 0 satisfies 

Proof: We first note that we only need to consider finite graded sets of formulas (i.e. 
191 is finite) . This follows since there are only a finite number of different input strings 
and so only a finite number of ways in which some formula in 9 can be satisfied and all 
smaller ones falsified. Also, it is trivial to see that the lemma holds for s = 0 or f3 ~ 1 so 
we can assume that s > 0 and /3 < 1. 

The rest of the proof proceeds by induction on the total number of clauses in the 
formulas in 9. The intuitive idea is that as we work along the clauses one by one: if p 
falsifies a clause, then we are left with essentially the same problem as before; if p does 
not then, given the fact that it does not, it is much more likely that p satisfies the clause 
and ensures that the remaining partition has only one class than that p leaves any input 
in the clause unset. 

In this proof for readability we will write 8v (9) instead of 8';' ( (9) ) . 
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BASE CASE: There are no clauses in the formulas in 9. In this case the formulas are 
all identically 0 and so all inputs are equivalent with respect to 9 . Thus the partition 
determined by 9 IP consists of a single class so 5v (9 Ip) = 0 and the lemma holds for 9. 

INDUCTIO N STEP: Assume that the lemma holds for all graded sets of formulas 9' with 
fewer clauses than the formulas of 9. Let F1 be a formula in 9 which has lowest grade 
among those formulas in 9 which are not identically 0; let C1 be a clause of F1. We can 
analyse the probability by considering separately the cases in which p does or does not 
force clause C1 to be 0. The failure probability, the probability that 5v (9 Ip) ;:::: s, is an 
average of the failure probabilities in these two cases. Thus 

Pr [ ov (91 p) ;:::: s I Ff p= 0 t\ p(V) = *] :::; 

max( Pr [ ov (91 p);:::: s I Ff p= 0t\C1 1 p= 0 t\ p(V) = *] , 

Pr[8v(9fp) ;:::: s I Ffp= 0AC11p¥ 0t\p(V) = *] ). 

The first term in the maximum is Pr [ 5v (9 Ip) ;:::: s I ( F V C1 Hp= 0 t\ p(V) = * ] . 
Let Fi be Fi with clause C1 removed; thus Fi = C1 V F1 and Fi ¥ Fi. Let g be the 
same as 9 with formula Fi replaced by Fi. In this case C1 Ip= 0 so F1 Ip= Fi Ip and 
thus «Jr p) = (Ofp)- In other words, when Cdp= 0, the lemma requires a bound on 
Pr [ 5v (01 p) ;:::: s I (F V C1H p= 0 t\ p(V) = *] . Since 9 has one fewer clause than g does, 
the inductive hypothesis implies that this probability is at most {38

• 

The estimation of the second term in the maximum is more difficult. Let T ~ L 
be the set of nodes appearing in clause C1 and let E ~ [T]2 be the set of edge variables 
appearing in C1. By hypothesis ITI :::; r. Let PE be the restriction of p to the edge 
variables in E . The condition that C1 I Pi 0 is equivalent to the condition that C1 I PE¥ 0. 
Let Y be the subset of the nodes in T \ V which are endpoints of edge variables to which 
PE assigns *i we denote the event that Y is this subset by * v (PE) = Y. Then 

Pr [ 0 V (9 Ip) ;:::: s I Fr p = 0 ,-\ C 1 Ip E ¥ 0 ,-\ p(V) = * l 

L Pr[ 8v(9fp);:::: st\ *v(PE) = YI Ffp= 0 t\ C11PE¥ 0 t\ p(V) = *] . (1) 
Y~T\V 

Consider the case in which Y = <p. Then PE sets every variable in E \ [V]2 and since 9 
has no variables from [V]2, the value of C1 is forced by PE· But since we already know 
that C11 PE¥ 0 we must have C1 I PE = 1. In this case every input satisfies F1 IP and since 
F1 has lowest grade we know that all inputs are equivalent with respect to the (9 Ip) . It 
follows that 5v (9 Ip) = 0 so the term corresponding to Y = ¢> has probability 0. The sum 
in (1) then becomes 

Pr [ 8 v ( 9 Ip) ;:::: s I FI p = 0 t\ C 1 Ip E i 0 t\ p(V) = * ] 

L Pr [ 8 v ( 9 Ip) ;:::: s t\ * v (p E) = YI FI p = 0 t\ C 1 Ip E i 0 t\ p( V) = * ] 
Y~T\ V,Y:;=¢> 

L Pr [ 8: (91 p) ;:::: s I Ff p= 0 t\ C11 PE# 0 t\ p(V) = * t\ * v (PE) = Y] (
2
) 

Y~T\V,Y;=<t>x Pr [ * (PE)= YI Ff p= 0 t\ C1 I PE # 0 t\ p(V) = *] 
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by simple conditional probability. 

We tackle the latter term in each of these products first . If we let PE(Y) = * denote 
the event that every variable in En [Y]2 is unset by PE then elementary probability yields 

Pr[ *v(PE) = y I F f p= 0 I\ C1 f PE# 0 I\ p(V) = *] 

:s; Pr [ pE(Y) = *IFfp= OI\C1fpE#OAp(V) = *l· 

CLAIM: 

[p/(1 _ p)] IYI 

To see this consider any p which satisfies PE(Y) = */\Ff p= O/\C1 f PE# 01\p(V) = *· 
By definition, the unset edge variables in p must be from [YU V]2 \ [V]2. We define a new 
restriction p which is obtained from p by setting the variables in [YU V]2 \ [V]2 that are 
in E to O or 1 in the unique way that does not immediately force clause C1 to 0. p still 
forces F to O and still satisfies p(V) = *· Thus p satisfies the last three conditions in the 
probability in question but not the first. 

In changing p to p, the set S of starred nodes in the definition of Rf,q has had 
the nodes in Y removed from it making p more likely than p by a probability factor 
of [(1 - p)/p] IYI_ However, in the other aspect of the change to p, some variables in 
[Y U V]2 \ [V]2 have had their values forced to O or 1. For each variable, the probability 
that it is set as required is as least min{q, 1- q}. There are at most !YI• !VI + (III) of 
them and their probabilities are independent so this requirement decreases the likelihood 
of p by a factor of min{q, 1- q}IYl·JVl+(l~ 1

). Thus 

Pr[p] [p/(1 - p)]IYI 
:'.S; (IYI) ' Pr[p] min{q,1 - q}IYl·JVI+ 2 

Finally, we see that the operation which takes p top is uniquely invertible given Y; namely, 
take all variables in E which have both endpoints in YU V and make them unset. The 
conditional probability we wish to estimate is by definition the quotient of the probability 
that a restriction satisfies all four conditions divided by the probability that it satisfies 
the last three. Thus probability in question is at most the above bound on the probability 
ratio of p and p and the claim follows. 

Now we look at the first term in each product in (2). The condition that C1 f PE# 
0 I\ * v (p E) = Y I\ p(V) = * exactly specifies p E = pf E since it means that every variable 
in E \ [VU Y]2 is set to O or 1 in the way which does not force the value of C1 to O and 
that every variable in V U Y is set to * · We let F' be F V G where G f p= 0 if and only if 
p sets the variables in E \[VU Y]2 in the unique way that does not force clause C1 to 0. 
Thus 

Pr[ 8v(9fp) 2: s I Ffp= 0 I\ C1f PE# 0 I\ *v(PE) =YI\ p(V) = *] 

Pr [ 8 v ( g f P) 2: s I F' f P = O I\ * v (p E) = Y I\ p(V) = * ] . 
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Now, the condition * v (PE)= Y means that the variables in [Y]2 are unset by p and that 
the variables in E \ [Y U V]2 are all set by p. The latter part of this condition is implied 
by the condition F' Ip= 0. Thus we do not change the events by rewriting the probability 
as 

If IYI ~ s then, by Lemma 2.1, 

Pr[ 8v(gfp) 2: s I F'fp= 0 J\p(VU Y) = *] 

~ Pr[ 3a E Proj{[Y U V]2 
\ [V]2}, 8vuY((9fu)lp) 2: s - IYI I F'fp= 0 J\ p(V UY)=*] 

< (3) 
uEProj{[YuV]2 \(V]2} 

Because of the fact that a sets all inputs in [Y UV]2 \ [V]2, E does not contain any variables 
in [V]2 , and F' Ip= 0 we know that ap sets all the inputs in E and thus forces the value 
of C1. If C1 I up= 1 then all inputs in ((9 I u )Ip) are equivalent and thus 8VuY ((9 I u Hp) = 
0 ~ s - lYI . Otherwise C1fup= 0 and then ((gfu)lp) = ((Ofu)lp) since F'ifup1 = Fifup'• 
Thus the sum in (3) is equivalent to 

L Pr[ sVuY ((OfuHp) 2: s - IYI I F'fp= 0 A p(V UY) =*]. 
uEProj{(VuY]2 \(V]2} 

Because 9 I u has strictly fewer clauses than g, has no inputs in [V U Y]2, and since 
s - IYI + IV U YI = s + !VI ~ w we can apply the inductive hypothesis to bound the 
probabilities in each term in this sum by ,es-JYI . For each Y the number of terms in the 

above sum is at most IProj{[V U Y]2 \ [VJ2}1 = 2IYl·JVl+(
1
~

1
) so we obtain a total bound 

of 21Yl·IV1+(1
~

1),3s- JYI. 

If IYI > s then we simply make the pessimistic assumption of failure, i.e. that the 
degree of the resulting partition is too large. Since ,B < 1 and s - IYI < 0 we certainly 
have 1 < ,es-lYI. Thus 

Pr[ 8v(gfp) 2: s I Ffp= 0 J\ C1lpsr' 0 A *v(PE) = Y] 

is at most 21Yl·IV1+(1
;

1
) ,es- lYI. 

Finally, substituting these bounds in (2) we obtain a total failure probability of at 
most 

L [p/(1 - p)]IYI 2IYl·JVl+(l~I) ,3s- lYI 

Y~T\V,Y#<l>min{q, 1 - q}IYl·JVI+('~') 

~ L [( . 2 )IVl+IYJ/2p/(1 _ p)) JYl,3s- JYI 
Y~T,Y#<I> mm{q, 1- q} 

~ L [( . 2 )w+r/2p/(1 _ p)) JYl,3s-lYI 
Y~T,Y#<I> mm{q, 1- q} 
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- s ITI (ITI) (2/ min{ q, 1 - q} )w+r/2p i 

- /3 ~ i [ /3(1 - p) ) 
i=l 

= 13s [(/3-1 (2/ min{q, 1- q} )w+r/2p/(1- p) + l)ITI - 1] 

~ /3 8 [(13-1 (2/ min{q, 1 - q} )w+r/2p/(l - p) + 1r - 1] 
= 13s 

using the definition of /3 . Thus the lemma holds for g and by induction we have proved 
the lemma. D 

The following composition lemma is essential in allowing us to use Lemmas 3.1 and 
3.2 in tandem. 

Lemma 3.4 Let L ~ {l, .. . ,n} and O ~ p1 ,p2,q ~ 1. Choose u at random from R{:1 ,q 

then choose T at random from R{;;,q where Lu is the set of nodes in L that are unset by 
u. The distribution of UT is exactly the same as the distribution of a 7i chosen at random 
from R{;1 P2 ,q. 

Proof: In the case of either distribution, once it is decided to set an edge variable, its 
probability of being set to O is 1 - q and to 1 is q, independent of all other edge variables. 
Thus, we merely have to show that the distributions of the sets of nodes which are chosen 
to be unset by UT and by 7i are identical. It is easy to see that for each node in L, for 
either distribution, the probability that it is chosen to be unset is p1p2 independent of all 
the other nodes. The lemma follows . D 

Proof of Theorem 3.1: Let Lo be the set of all nodes, {1, . .. , n}. The basic method 
of the proof will be to choose random restrictions from R~,~q for appropriate choices of q 
and p' so that after t steps the node-degrees of the processor and cell partitions will be 
too small to have computed Clique'{ In order to do this we will in fact keep q fixed and 
let p' decrease as pt for appropriately chosen p. This will amount to revealing a random 
graph with edge probability q step by step with the portion of the graph still unknown 
being all edges on a set of ptn nodes after time t. 

Part (a): CLAIM: Let a = lognh(n) = logh(n)/logn, lets = J2ak/11, let p = 

n-4✓ua/2k and let q = n-S/k For t > 0 and a random 1ft chosen from RL0 with 
' • - P',q 

probability at least 1 - t/n 

m?JCOv(P(M,i,t)f1r,) ~ s, 
i 

and max8v(C(M,j, t)f 1r,) ~ s. 
J 

First we see how this claim implies the desired result . Observe that if a 2: k/2 or T 2: log n 
then we are done. Otherwise, assume that k ~ npT . Consider a random 7iT chosen from 
R~~ ,q · By Lemma 3.1, with probability at least 1/4, Cliquekr 7rT has node-degree at least 

k/2. However, by the claim, with probability at least 1 - Jo~n 



Because the two failure probabilities sum to strictly less than 1 we can choose 1iT to be 
a restriction satisfying both these properties, contradicting the fact that M computes 

Cliquek in T steps. Therefore the assumption is false and pT ~ (k/n) ~ n - ~ for n 

sufficiently large. Thus T ,ja7k 2: 1/y/89 or a 2: k/(89T2 ) which is as required for part 
(a). 

We now show the claim by induction on t : 

BASE CASE: At time O the processor partitions all consist of a single class with resulting 
degree of O and for each cell Cj, C(M,j, 0) is a partition which depends on at most one 
input bit so 8,,(C(M,j,0)) ~ 1 < s . Thus 1r0 is good with probability 1 as required by the 
claim. 

INDUCTION STEP: Let t 2: 0. Assume the claim holds for t. By Lemma 3.4, a random 
1it+I chosen from RL,0+1 has the same probability distribution as 1itP where 'Tit is chosen p ,q 

at random from RL,o and then p is chosen at random from RPLtq where Lt is the subset 
p ,q ' 

of nodes which are starred by 'Tit. Now by the induction hypothesis, with probability at 
least 1 - t / n, 1i t satisfies 

8,,(P(M,j, t)r 1r.) ~ s 

8,,(C(M,j, t) r 1r,) ~ s. 

We now assume that 1it satisfies this condition and we will show that 1itP will keep the 
degrees of the processor and cell partitions small with probability at least 1 - 1/n. This 
will imply that 1it+1 is good with probability at least 1- (t+ 1)/n as required by the claim 
fort+ 1. 

During the ( t + 1 )-st step of the machine, each processor first reads some cell based 
on its current state and based on the value read it changes to a new state. Thus, for each 
i, the cell Cj which processor Pi reads depends only on the equivalence class in P(M, i , t) 
containing the input. Also, this equivalence class and the equivalence class in C(M, j, t) 
containing the input determines the new state of the processor. Therefore each equivalence 
class in P(M, i, t + 1) is an intersection of an equivalence class in P(M, i, t) and one in 
C(M,j, t) for some j. Then 

8,,(P(M, i, t + 1 )r 1r.) ~ 8,,(P(M, i, t)r 1r,) + max 8,,( C(M, j, t )I 1r.) 
J 

~ s + s = 2s. (a.l) 

Now, after 1it is applied, all partitions have variables only from Lt. Therefore by 
Lemma 3.2, if we choose a pat random from R~,'q we have 

Pr[ 8,,((C(M, j,t + l)r1r,)rp) 2: s] ~ (6ps(2/q)25)8 

< (pn8s/k23s)8 

= ps n8s2 
/ k+3s2 

/ log n 

~ n-4s✓lla/2kn11s2 /k = n-4a+2a = n-2a ~ 1/nh(n) 

since k ~ log n and h( n) 2: n . Therefore we see that for a p chosen at random from R~,•q, 

Pr [ m?-xo,,(C(M,j, t + l)r1r,p) 2: s] < c(n)/nh(n). (a.2) 
J 
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For each processor Pi we already know that 811 ( P ( M, i, t + 1 )f.,.., ) < 2s. Since 
P(M, i, t + l)f .,,., depends only on the inputs in Lt, by Lemma 3.2 we have 

as was the case for the cell partitions. Taking the maximum over all processors, 

Pr [ m~811 (P (M, i, t + l)f .,..,p) 2:: s] < p(n)/nh(n). (a.3) 
i 

Therefore, putting (a.2) and (a.3) together, we see that with probability at least 
1-1/n, ma.xi 811 (P(M, i, t+ 1)1.,.., 0 ) ::; sand max; 811(C(M,j, t+ l)f .,..,p)::; s. By induction 
the claim for part (a) is proved. D 

Part (b): CLAIM: Let a = lognp(n) = logp(n)/logn, let s = J2ak/11, let p = 
n-4✓ua/2k, and let q = n - B/k. For t 2:: 1 and a random Ttt chosen from R~,0,9 with 

probability at least 1 - t/n 

The statement of part (b) follows from the claim exactly as in part (a). 

We now show the claim by induction on t: 

BASE CASE: This is identical to the base case in part (a). 

INDUCTION STEP: Let t 2:: 0. Assume the claim holds for t . By Lemma 3.4, a random 
Ttt+i chosen from RL,o+i has the same probability distribution as 1itP where Tit is chosen p ,q 

at random from R;,0,q and then pis chosen at random from R;;,'
9 

where Lt is the subset of 
nodes which are starred by Tit. Now by the induction hypothesis with probability at least 
1 - t/n, 1it satisfies 

8v(P(M,j, t)f .,...) ::; s 

8v(C(M,j,t)f.,...)::; s. 

We now assume that Tit satisfies this condition and we will show that 1itP will keep the 
degrees of the processor and cell partitions small with probability at least 1 - 1/n. This 
will imply that 1it+l is good with probability at least 1-(t+ 1)/n as required by the claim 
fort+ 1. 

Since the actual number of cells has no effect on the degrees of the partitions 
resulting from reads and state transitions, as in part (a): 

::; s + s = 2s. (b.l) 

As in part ( a), we will show that the probability that a p chosen at random from R{;,'
9 

fails to have the correct properties is strictly less than 1 - 1/n. The added complication 
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is that we do not have an a priori bound on the number of memory cells for which p 
has to keep 8v(C(M,j, t + l)f 1r,p) ~ s. The reason why this does not hurt us is that, by 
the inductive hypothesis, any memory cell Cj which is not written into on any input in 
{0,l}nf1r, already satisfies 8v(C(M,j,t+ l)f1r.) ~ s. 

For each memory cell Ci which is written into by some processor on an input in 
{0, 1}nf 1r., using the same reasoning as in part (a), we have 

(b.2) 

Also as in part (a), for each processor Pi, 

(b.3) 

Equation (b.1) implies that, for inputs in {0,1}nf1r,, the classes in the new state 
partition of each processor have characteristic functions represented by DNF formulas with 
maximum clause length bounded by 2s. Since a DNF clause oflength ~ 2s is satisfied by a 
fraction of at least 1/228 of the possible inputs, each class in the partition P( M, i, t + l )f 1r, 
consists of a fraction of at least 1/22

s of the possible inputs. This means that, for inputs 
in {0, 1 }n f 1r,, each processor can only be in one of 22s states and therefore can write into 
at most 22

s different cells. Therefore the total number of cells for which p must work is 
at most 22sp(n). 

The argument above means that (b.2) must be applied in at most 22sp(n) places 
and (b.3) must be applied in p( n) places. Thus the total probability that either 
maxi 8v(P(M, i, t + l )f 1r,p) 2': s or maxj 8v( C(M, j, t + l)f 1r,p) 2': s is bounded by 

(228 + l)p(n)(6ps(2/q)28)8 ~ 5 8 p(n)(6ps(2/q)28)8 

= p(n)(30ps(2/q)2s)8 = p(n)(pn8s/k23s)8 

< p(n)psn8s2 /k+3s2
/logn ~ p(n)n-4s✓lla/2knlls2 /k 

= p(n)n- 4a+2a = p(n)n-2a ~ 1/n 

since p(n) 2': n. Thus the total failure probability is strictly less than 1/n and the claim 
follows for t + 1. By induction the claim for part (b) is proved. D 

Part (c): CLAIM: Let a = logn c(n) = logc(n)/logn, let s = (a2 k)113 , let p = 
n - !(a/k)

113
, and let q = n-B/k_ For 0 ~ t ~ 

1
3
0
(k/a) 113 - 2 and a random Tit chosen 

from R;,0,q with probability at least 1 - t/n 

m?,X8v(P(M,i,t)f1r, ) ~ st, 
• 

and m?,X8v(C(M,j,t)f1r,) ~ s. 
J 

First we see how this claim implies the desired result. Observe that if a 2': k/6 or 
T 2". /0 (k/a)113 

- 2 then we are done. Otherwise, assume that k ~ npT. Consider a 
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random 7rT chosen from RL!j. . By Lemma 3.1, with probability at least 1/4, Cliquek f r.T p ,q 

has node-degree at least k/2. However, by the claim, with probability at least 1 - lo~n 

Because the two failure probabilities sum to strictly less than 1 we can choose 7rT to be 
a restriction satisfying both these properties, contradicting the fact that M computes 
Cliquek in T steps. Therefore the assumption is false and pT::; (k/n)::; n - (343/344)113 for 
n sufficiently large. Thus fT(a/k )113 2". (343/344)113 and so 343T3a/8k 2': 343/344 from 
which we obtain a 2". k/(43T) which is equivalent to the statement for part (c) . 

We now show the claim by induction on t: 

BASE CASE: The base case follows for similar reasons to parts (a) and (b) except that we 
must note that in fact the initial processor partitions have degree O which is now strictly 
necessary. 

INDUCTION STEP: Let O::; t::; 1
3
0 (a/k)113 - 3. Assume the claim holds fort. By Lemma 

3.4, a random 1rt+1 chosen from RL,o+i has the same probability distribution as 1rtP where p ,q 

7rt is chosen at random from RL,o and then p is chosen at random from RPL,q where Lt 
p ,q ' 

is the subset of nodes which are starred by 7rt. Now by the induction hypothesis with 
probability at least 1 - t/n, 1ft satisfies 

8v(P(M,j,t)fr.,)::; st 

8v(C(M,j,t)fr.,)::; s. 

We now assume that 7rt satisfies this condition and we will show that 7rtP will keep the 
degrees of the processor and cell partitions small with probability at least 1 - 1/n. This 
will imply that 7rt+i is good with probability at least 1 - (t+ 1)/n as required by the claim 
fort+ 1. 

By the same reasoning as that leading to equation (a.l) it is clear that the new 
processor partitions resulting from reads and state transitions satisfy: 

::; st+ s = s(t + 1). ( c.l) 

Thus, even before p is applied, the processor partitions satisfy the conditions required. 

For each memory cell Cj, since the new processor partitions have degree at most 
s(t + 1) by (c.1) and since the old cell partitions have degree at mosts, using the same 
reasoning as in the previous two cases, we have 

Pr [ Ov(C(M,j, t + l)f r.,p) 2: S] < [3ps(t + 1)(2/qy+s(t+l)/2] 5 = [3ps(t + 1)(2/q)8(t+3)12] 5 

< [p2s(t+3)q- s(t+3)/2]s::; [p2s(t+3)n4s(t+3)/k]5 

::; [pn4s(t+3)/k+s(t+3)/ log n]s 

::; [pn5s(t+3)/k]s since k ::; log n 

= n - &.s(a./k)113 n5s2 (t+3)/k ( c.2) 
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Because t + 3 ~ / 0 (k/a)113 , 5s2 (t + 3)/k ~ ia and since s(a/k)113 = a the probability 
in (c.2) is at most n- 2a = c(~)2 ~ nc(n) since c(n)?:: n. There are c(n) cells, so the total 
probability that maxjo,,,(C(M,j,t+ l)f.,,.,p)?:: sis at most 1/n. Thus the total failure 
probability is strictly less than 1/n and the claim follows fort+ l. By induction the claim 
for part ( c) is proved. D 

Corollary 3.1: Any CRCW PRAM M which computes the Cliquek function for k ~ 
log n in time T=T(n) then 

( a) if the the number of processors p( n) = n°<1 ) then T( n) ?:: n ( v'k) even if the 
number of memory cells is infinite, 

and (b) if the number of memory cells c(n) = n°<1) then T(n)?:: S1(k113 ) even if the 
number of processors is infinite. 

Proof: From Theorem 3.1 part (b ), for n sufficiently large we have p( n) ?:: nk/(s9T
2
). 

Since p(n) = n°<1) there is a constant c1 such that c1 ?:: k/(89T2
) and so T?:: Jci/89 ·'\lk 

as required for part (a). 

From Theorem 3.1 part (c), for n sufficiently large we have c(n) ?:: nk/(43T
3

)_ Since 
c(n) = n°<1) there is a constant c2 such that c2 ?:: k/(43T3 ) and so T > (c2 /43)113 · k113 

as required for part (b ). 0 

There is an obvious constant time algorithm to compute Cliquek using nO(k) pro
cessors and memory cells to check for each of the nO(k) cliques on k nodes. The following 
corollary shows that this algorithm achieves an asymptotically optimal exponent . 

Corollary 3.2: Any CRCW PRAM which computes the Cliquek fork ~ log n in constant 
time 0(1) requires both the number of processors and the number of memory cells to be 
nO(k) . 

Proof: Substitute T = 0(1) into Theorem 3.1 parts (b) and (c). 0 

Using a standard simulation of unbounded fan-in circuits by CRCW PRAM's we 
obtain lower bounds for unbounded fan-in circuits as well. 

Corollary 3 .3: Any unbounded fan-in circuit of depth d computing the Cliquek function 
of n inputs where k ~ log n and n is sufficiently large requires size 

In particular, unbounded fan-in circuits of constant depth require size nO(k) to compute 
Cliquek. 

D 
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4. Lower Bounds for other Graph Problems 

Amongst graph problems of the form 'is graph G a subgraph of the input graph?' 
which includes the Cliquek function described in section 3, it appears that, under certain 
conditions, similar lower bounds will follow for many of them using Lemma 3.2. The 
conditions seem to be based on the concept of the probability threshold of a graph property 
as described in [ES] and [Bo]. If we consider a random n node graph with fixed edge 
probability, the probability threshold of a graph property is the value of the probability 
q' around which the property changes from being almost certainly not true of the random 
graph to being almost certainly true of the graph. 

The lemma that one would need corresponding to Lemma 3.1 would seem to require 
that q' be an upper bound on the value of the probability q to be used in the restrictions 
from R~,q• In order to be useful, Lemmas 3.2 and 3.3 depend on q not being too close 
to 0. Many interesting graph properties have thresholds which are too small for these 
lemmas to say anything interesting, but Erdos and Renyi have shown a number of other 
problems which have probability thresholds in the range for which the methods of the 
previous section should work (see [ES] and [Bo] for more details) . 

By reductions from the parity problem, lower bounds can be proved for many 
of the subgraph properties that have probability thresholds which are too small for the 
techniques above. However, a problem for which neither technique works is the problem of 
the existence of a path of length log n in a graph. Ajtai (Aj2] has shown a non-polynomial 
lower bound for constant-depth circuits computing this problem but the bound is a very 
weak one - for polynomial-size circuits it can produce no better than an !t(log* n) depth 
lower bound. It would be interesting to obtain a significantly better lower bound for this 
problem. Recently Lynch [Ly2] has claimed· such a bound. 
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