
LABORATORY FOR 
COMPUTER SCIENCE 

MIT/LCS/fM-351 

MASSACHUSETTS 
INSTITUTE OF 
TECHNOLOGY 

1/0 AUTOMATA: 
A MODEL FOR DISCRETE 

EVENT SYSTEMS 

Nancy Lynch 

March 1988 

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139 



1/0 Automata: A Model for Discrete Event Systems 1 

Nancy Lynch 

1. Introduction 

Massachusetts Institute of Technology 
Cambridge, Mass. 02139 

The input/output automaton model has recently been defined, in [LT1 ,LT2], as a tool for modelling 

concurrent and distributed discrete event systems of the sorts arising in computer science. Since its 

introduction, the model has been used for describing and reasoning about several different types of 

systems, including network resource allocation algorithms, communication algorithms, concurrent 

database systems, shared atomic objects, and dataflow architectures. The simplicity and generality of the 

model and its similarities with other new models [RW,CM1] suggest that it will prove useful in other 
application areas, such as control theory and manufacturing. 

This paper is intended to introduce researchers to the model. It is organized as follows. Section 2 

contains an overview of the model. Section 3 contains formal definitions and some basic results. Section 

4 contains an illustrative example, candy machines. Section 5 contains a second example, a system that 

elects a leader. Finally, Section 6 contains a survey of some of the uses that have so far been made of 
the model. 

2. Overview of the Model 
1/0 automata provide an appropriate model for discrete event systems consisting of concurrently­

operating components. The components, as well as the entire system, may be "reactive" in the sense 

that they interact with their environments in an ongoing manner (rather than, say, simply accepting an 

input, computing a function of that input and halting). Although VO automata can be used to model 

synchronous systems, they are best suited for modelling systems in which the components operate 
asynchronously. 

Each system component is modelled as an "1/0 automaton", which is a mathematical object somewhat 

like a traditional automaton. However, an VO automaton need not be finite-state, but can have an infinite 

state set. The actions of an 1/0 automaton are classified as either "input", "output", or "internal". The 

automaton generates output and internal actions autonomously, and transmits output actions 
instantaneously to its environment. In contrast, the automaton's input is generated by the environment 

and transmitted instantaneously to the automaton. Our distinction between input and other actions is 

fundamental, based on who determines when the action is performed: an automaton can establish 

restrictions on when it will perform an output or internal action, but it is unable to block the performance of 

1Thls research was supported In part by the National Science Foundation under Grant 
CCR-86-11442, by the Office of Naval Research under Contract N00014-85-K-0168 and by 
the Defense Advanced Research Projects Agency (DARPA) under Contract 
N00014-83-K-0125. 



1 

-an input action. 2 

The fact that our automata are unable to block inputs distinguishes our model from Hoare's CSP 

(Communicating Sequential Processes) [Ho]. There, input blocking is used for two purposes: as a way of 

eliminating undesirable inputs, and as a way of blocking the activity of the environment. Our model does 

not have any way of blocking the environment, but does have other ways of coping with bad inputs. For 

example, suppose that we wish to constrain the behavior of an automaton only in case the environment 
observes certain restrictions on the production of inputs. Instead of requiring the automaton to block the 

bad inputs, we permit these inputs to occur; however, we may permit the automaton to exhibit arbitrary 

behavior in case they do. Alternatively, we may require the automaton to detect bad inputs and respond 

to them with error messages. Thus, we have simple ways of describing input restrictions, without 

including input-blocking in the model. 

1/0 automata may be nondeterministic, and indeed the nondeterminism is an important part of the 

model's descriptive power. Describing algorithms as nondeterministically as possible tends to make 

results about the algorithms quite general, since many results about nondeterministic algorithms apply a 

fortiori to all algorithms obtained by restricting the nondeterministic choices. Moreover, the use of 

nondeterminism helps to avoid cluttering algorithm descriptions and proofs with inessential details. 

1/0 automata can be composed to yield other 1/0 automata. Our composition operator connects each 

output action of one automaton with input actions of any number (usually one) of other automata. In the 

resulting system, an output action is thus generated autonomously by one component and 

instantaneously transmitted to all the other components having the same action as an input. All such 

components are passive recipients of the input, and take steps simultaneously with the output step. As in 

CSP, we use simultaneous performance of actions to synchronize components, but we permit only one 

component to determine when the action occurs. 

Since VO automata are intended to model complex systems with any number of primitive components, 

each automaton comes equipped with an abstract notion of "component"; formally, these components are 

described by an equivalence relation on the automaton's output and internal actions, where all the actions 

in one equivalence class are to be thought of as under the control of the same primitive system 

component. 

When 1/0 automata are run, they generate "executions· (alternating sequences of states and actions). 

Among all the executions of an automaton, we are primarily interested in the "fair" executions - those 

that permit each of the automaton's primitive components to have infinitely many chances to perform 

output or internal actions. The fair executions of an automaton give rise to the "fair behaviors• of the 

automaton - the subsequences of the fair executions that consist of external (i.e., input and output) 

actions. It is this set of sequences that we believe embodies the interesting behavior of an 1/0 

automaton; thus, our semantics is a "trace·· semantics. The set of fair behaviors of an 1/0 automaton can 

consist of both finite and infinite sequences of actions, and is not necessarily dosed under the operation 

of taking prefixes. 

2The shared-memory model described in [LF] has had a strong influence on the present wOl'k. In particular, the inability to block 
inputs appears as the "read-anything" property in [LF]. 



2 

. A "problem• to be solved by an 1/0 automaton is formalized essentially as an arbitrary set of (finite and 

infinite) sequences of external actions. Our notion of what it means for an automaton to "solve" a problem 
is particular1y simple: essentially, an automaton is said to "solve" a problem P provided that its set of fair 

behaviors is a subset of P. It might not be obvious to the reader that this definition is nontrivial; for 

example, if an automaton had no fair behaviors, then our definition would say that it is a solution to every 

problem. However, this anomaly does not arise, since our automaton definitions imply that every 

automaton has a nonempty set of fair behaviors. 3 The fact that inputs are always allowed gives another 
reason why our definition of solving a problem is nontrivial: for every possible pattern of inputs that might 

arrive from the environment, the automaton is required to provide some response such that the resulting 
sequence of actions is in the problem set P. That is, the automaton is required to respond appropriately to 
every possible input pattern. 

The model permits description of algorithms and systems at different levels of abstraction. Abstraction 

mappings are defined, mapping automata that include implementation detail to more abstract automata 
that suppress some of the detail. Such mappings can be used as aids in correctness proofs for 

algorithms: if automaton A is an image of B under an appropriate abstraction mapping and A solves 
problem P, then B also solves P. 

The model allows very careful and readable descriptions of particular concurrent algorithms. We have 
developed a simple language for describing automata, based on "Precondition" and "Effect" specifications 
for actions. This notation, similar to Dijkstra's "guarded commands" has proved sufficient for describing 

all algorithms we have attempted so far. However, the model does not constrain the user to describe all 
automata in this manner; for example, the model is general enough to serve also as a formal basis for 
languages that include more elaborate constructs for sequential flow of control. 

Our model also allows precise statement of the problems that are to be solved by modules in 
concurrent systems. As described above, such problems are formulated as sets of finite and infinite 
sequences of external actions. We have not so far developed any particular language or notation for 

describing such sets, but have used a variety of notations (e.g. temporal logic or generating automata) as 

they have seemed convenient. Our model is general enough to serve as a semantic model for many 
different languages for describing sets of action sequences. 

The model can be used as a formal basis for algorithm correctness proofs - proofs that particular 

algorithms solve particular problems in the sense described above. In fact, a current major thrust of our 
research involves producing correctness proofs for substantial-sized and complex concurrent algorithms. 
We use a variety of techniques for such proofs, primarily based on notions of composition and 

abstraction. In every case, we try to utilize the modularity that is suggested by informal descriptions of the 
algorithm in our fonnal correctness proofs. So far, our proofs have been done by hand, but it appears 

thatmachine-dlecking of some of our proofs might be possible using current automatic proof technology. 

The model can also be used for carrying out complexity analysis, proving upper and lower bounds on 
the complexity of solving particular problems, and proving impossibility results. 

3
Even a trivial automaton having no actions at all has one fair behavior - the empty sequence of actions. 



3 

3. Definitions and Basic Results 
This section contains some of the basic definitions and results about the model. This material is 

adapted from (LT1]. 

3.1. Actions and Action Signatures 
We assume a universal set of actions. Sequences of actions are used in this work, for describing the 

behavior of modules in concurrent systems. Since the same action may occur several times in a 
sequence, it is convenient to distinguish the different occurrences. Thus, we refer to a particular 
occurrence of an action in a sequence as an event. 

The actions of each automaton are classified as either "input", "output", or "internal". The distinctions 
are that input actions are not under the automaton's control, output actions are under the automaton's 
control and externally observable, and internal actions are under the automaton's control but not 
externally observable. In order to describe this classification, each automaton comes equipped with an 
"action signature". 

An action signature S is an ordered triple consisting of three pairwise-disjoint sets of actions. We write 
in(SJ, out(S) and int(S) for the three components of S, and refer to the actions in the three sets as the 

input actions, output actions and internal actions of S, respectively. We let ext(SJ = in(S) u out(S} and 
refer to the actions in ext(S) as the external actions of S. Also, we let local(SJ = out(S) u int{S), and refer 
to the actions in local(S) as the locally-controlled actions of S. Finally, we let acts(S} = in(S) u out{S) u 
int(S), and refer to the actions in acts(S) as the actions of S. An external action signature is an action 
signature consisting entirely of external actions, that is, having no internal actions. If S is an action 
signature, then the external action signature of S is the action signature extsig(SJ = {in(S),out(S),0), i.e., 
the action signature that is obtained from S by removing the internal actions. 

3.2. Input/Output Automata 
Now we are ready to define the basic component of our model. An input/output automaton A (also 

called an //0 automaton or simply an automaton) consists of five components: 
• an action signature sig(A), 

• a set states(A) of states, 

• a nonempty set start(A) !;;;; states(A) of start states, 

• a transition relation steps(A) !;;;; states(A) x acts(sig{A)) x states{A), with the property that for 
every states' and input action 1t there is a transition (s' ,1t,s) in steps(A), and 

• an equivalence relation part(A) on local(sig(A)), having -at most countably many equivalence 
classes. 

We refer to an element (s',1t,s) of steps(A) as a step of A. The step (s',1t,s) is called an input step of A if 
1t is an input action. Output steps, internal steps, external steps and locally-controlled steps are defined 
analogously. H (s',1t,s) is a step of A, then 1t is said to be enabled in s'. Since every input action is 

enabled in every state, automata are said to be input-enabled. The input-enabling property means that 
the automaton is not able to block input actions. The partition part(A) is what was described in the 
introduction as an abstract description of the "components" of the automaton. It is used to define 
fairness. 



4 

An execution fragment of A is a finite sequence s0 ,1t1 ,s1 ,1½,···•1tn,sn or an infinite sequence 

s0,1t1,s1,7½, .. ,,1tn,sn•··· of alternating states and-actions of A such that (si,1ti+1,si+1) is a step of A for every 
i. An execution fragment beginning with a start state is called an execution. We denote the set of 

executions of A by execs(A), and the set of finite executions of A by finexecs(A). A state is said to be 
reachable in A if it is the final state of a finite execution of A. 

A fair execution of an automaton A is defined to be an execution ex of A such that the following 
conditions hold for each class C of part(A). 

1. If ex is finite, then no action of C is enabled in the final state of ex. 

2. If ex is infinite, then either ex contains infinitely many events from C, or else ex contains 
infinitely many occurrences of states in which no action of C is enabled. 

Thus, a fair execution gives "fair turns" to each class of part(A). We denote the set of fair executions of A 
by fairexecs(A). 

The schedule of an execution fragment ex of A is the subsequence of ex consisting of actions, and is 
denoted by sched(ex). We say that 13 is a schedule of A if 13 is the schedule of an execution of A. We 

denote the set of schedules of A by scheds(A) and the set of finite schedules of A by finscheds(A). We 

say that 13 is a fair schedule of A if 13 is the schedule of a fair execution of A and we denote the set of fair 

schedules of A by fairscheds(A). The behavior of an execution or schedule ex of A is the subsequence of 
ex consisting of external actions, and is denoted by beh(ex). We say that 13 is a behavior of A if 13 is the 
behavior of an execution of A. We denote the set of behaviors of A by behs(A) and the set of finite 

behaviors of A by finbehs(A). We say that 13 is a fair behavior of A if 13 is the behavior of a fair execution 
of A and we denote the set of fair behaviors of A by fairbehs(A). 

3.3. Schedule Modules 
In order to describe problems to be solved by automata, we need to describe sets of sequences. More 

precisely, a problem will be specified by a pair consisting of an action signature and a set of sequences 

over the actions in that signature. (In most interesting cases, the action signature will be an external 

action signature.) The mathematical object used to describe a problem is called a "schedule module". 

A schedule module H consists of two components: 

• an action signature sig(H}, and 

• a set scheds(H} of schedules. 

Each schedule in scheds(H) is a finite or infinite sequence of actions of H. Let finscheds(H} denote the set 
of finite members of scheds(H). 

The behavior of a schedule 13 of H is the subsequence of 13 consisting of external actions, and is 
denoted by beh(P). We say that 13 is a behavior of H if 13 is the behavior of an execution of H. We denote 

the set of behaviors of H by behs(H} and the set of finite behaviors of H by finbehs(H}. We extend the 
definitions of fair schedules and fair behaviors to schedule modules in a trivial way, letting fairscheds(H} = 
scheds(H) and fairbehs(H} = behs(H). 

We use the term module to designate either an automaton or schedule module. If M is a module, we 

sometimes write acts(M) as shorthand for acts(sig(M)), and likewise for in(M), out(M), etc. If 13 is any 
sequence of actions and M is a module, we write 131M for 131acts(M). 



5 

There are several natural schedule modules that we often wish to associate with an automaton. They 
correspond to the automaton's schedules, finite schedules, fair schedules, behaviors, finite behaviors and 
fair behaviors. For each automaton A, let Scheds(A), Finscheds(A)) and Fairscheds(A) be the schedule 

modules having action signature sig(A) and having schedules scheds(A), finscheds(A) and fairscheds(A), 
respectively. Also, for each f1'.'0dule M, let Behs(M), Finbehs(M) and Fairbehs(M) be the schedule 

modules having action signature extsig(M) and having schedules behs(M), finbehs(M) and fairbehs(M), 

respectively. (Here and elsewhere, we follow the convention of denoting sets of schedules with lower 
case names and corresponding schedule modules with corresponding upper case names.) 

3.4. Solving Problems 
Now we are ready to define our notion of "solving".4 This notion is intended for describing the way in 

which particular automata solve particular problems (formalized as schedule modules). However, it is 

convenient to state the definition more generally. Let M and M' be modules (i.e., either automata or 
schedule modules) with the same external action signature. Then M' is said to solve M if fairbehs(M') c;; 
fairbehs(M). 

In the most interesting case, M' is an automaton and M is a schedule module. However, the more 
general formulation allows us to carry out proofs in several stages: in order to show that an automaton 

solves a problem, we can show that the automaton "solves" another automaton, which in tum solves 
another automaton, and so on, until some final automaton solves the problem. A variety of techniques 

can be used to show that an automaton M' solves a schedule module M; we will mention some of these 
below. 

3.5. Implementation 
One way of showing that one module solves another is to use an intermediate result about inclusion for 

the sets of finite behaviors. Thus, we define an analog of the "solving" definition for finite behaviors only. 

Let M and M' be modules with the same external action signature. Then M' is said to implement M if 
finbehs(M') c;; finbehs(M). 

It is often possible to show that one automaton imp_lements another using a mapping between 

automaton states. Suppose A and B are automata with the same external action signature, and suppose 

f is a mapping from states(A) to the power set of states(B). The mapping f is said to be a possibilities 
mapping from A to B if the following conditions hold: 

1. For every, start states of A, there is a start state t of B such that t e f(s). 

2. For every reachable states' of A, every step (s',1t,s) of A, and every reachable state t' e f(s') 
of B: 

a If n e acts(B), then there is a step (t',1t,t) of B such that t e f(s). 

b. If 1t e: acts(B), then t' e f(s). 

Lemma 1 : Suppose that A and B are automata with the same external action signature and 
there is a possibilities mapping from A to B. Then A implements B. 

It is possible to show that one module M' solves another module M using this lemma together with 

"This concept is called satisfying in [L T1 ). 



6 

additional results showing correspondences between fairness properties of M and M'. Some such 

additional results are given in [L T1] and [WLL). 

3.6. Composition 
The most useful way of combining 1/0 automata is by means of a composition operator, as defined in 

this subsection. 

3.6.1. Composition of Action Signatures 

Let I be an index set that is at most countable. A collection {SJie I of action signatures is said to be 

strongly compatible5 if for all i, j e I, we have 

1. out(Si) ("'\ out(Si) = 0, 

2. int(Si) ("'\ acts(Si) = 0, and 

3. no action is in acts(Si) for infinitely many i. 
Thus, no action is an output of more than one signature in the collection, and internal actions of any 

signature do not appear in any other signature in the collection. 

The composition S = rrie 1Si of a collection of strongly compatible action signatures {Si}ie I is defined to 
be the action signature with 

• in(S) = uie 1in(Si) - uie 1out(Si)• 

• out(S) = uie 1out(SJ, and 

• int(S) = uie 1int(SJ. 
Thus, output actions are those that are outputs of any of the component signatures, and similarly for 

internal actions. Input actions are any actions that are inputs to any of the component signatures, but 

outputs of no component signature. 

3.6.2. Composition of Automata 
A collection {MJie I of modules is said to be strongly compatible if their action signatures are strongly 

compatible. The composition A =- ~e iAi of a strongly compatible collection of automata {AJie I has the 

following components: 

• sig(A) = ~el sig(AJ, 

• states(A) = ~ 1 states(Ai),6 . 

• start(A) =~I start(AJ, 

• steps(A) is the set of triples (~1.1t,~2) such that for all i e I, if 1t e acts(Ai) then (~1(i) ,1t.~iij) e 

steps(AJ, and if 1t E acts(AJ then ~1[i] = ~~].7 and 

• part(A) • uiE iJ)Srt(A~. 

5Such a collection is said to be compatb/e if it satisfies the first two of the three listed properties. Some of the results below follow 
simply from compatibility, while others require strong compatibility. Here, we simplify matters by considering the stronger definition 
only. The consequences of the two definitions are descrbed more carefully in [L T1) and [LMW). 

6Note that the second and third components listed are just ordinary Cartesian products, while the first component uses a previous 
definition. 

7We use the notation ;iq to denote the ith component of the state vector t 



7 

Since the automata Ai are input-enabled, so is their composition, and hence their composition is an 

automaton. Each step of the composition automaton consists of all the automata that have a particular 

action in their signatures performing that action concurrently, while the automata that do not have that 

action in their signatures do nothing. The partition for the composition is formed by taking the union of the 

partitions for the components. Thus, a fair execution of the composition gives fair turns to all of the 

classes within all of the component automata. In other words, all component automata in a composition 

continue to act autonomously. If ex= S'01t1s'1 .. . is an execution of A, let c:xlAi be the sequence obtained by 

deleting 1ti~ when 1ti is not an action of Ai, and replacing the remaining ~ by ~ [ij. 

The following basic results relate executions, schedules and behaviors of a composition to those of the 

automata being composed. The first result says that the projections of executions of a composition onto 

the components are executions of the components, and similarly for schedules, etc. The parts of this 

result dealing with fairness depend on the fact that at most one component automaton can impose 

preconditions on each action. 

Lemma 2: Let {AJiel be a strongly compatible collection of automata, and let A= I\:iAi. If ex 
e execs(A) then c:xlAi e execs(Ai) for all i e I. Moveover, the same result holds for finexecs, 
fairexecs, scheds, finscheds, fairscheds, behs, finbehs and fairbehs in place of execs. 

Certain converses of the preceding lemma are also true. The following lemma says that executions of 

component automata can be patched together to form an execution of the composition. 

Lemma 3: Let {AJie I be a strongly compatible collection of automata, and let A = ~e 1~. For 
all i e I, let '4 be an execution of ~- Suppose ~ is a sequence of actions in ext(A) such that ~IAi 
= beh(aj for every i. Then there is an execution ex of A such that ~ = beh(c:x) and '4 = c:xlAi for all 
i. Moreover, if '4 is a fair execution of Ai for all i, then ex may be taken to be a fair execution of 
A. 

Similarty, schedules or behaviors of component automata can be patched together to form schedules 

or behaviors of the composition. 

Lemma 4: Let {AJie I be a strongly compatible collection of automata, and let A = ~e 1~. Let 
~ be a sequence of actions in acts(A). If ~IAi e scheds(Ai) for all i e I, then ~ e scheds(A). 
Moreover, the same result holds for fairscheds, behs and fairbehs in place of scheds. 

The previous lemmas are often useful in proving that certain automata solve certain problems. In 

particular, sometimes correctness conditions are formulated to say that every behavior of an automaton is 

also a behavior of a given composition A. One way of showing that a given sequence of actions is a 

behavior of A is by first showing that its projections are behaviors of the components of A and then 

appealing to the preceding lemmas. 

3.6.3. Composition of Schedule Modules 

Corresponding to our composition operator for automata, we also define a composition operator for 

schedule modules. The composition H = ~e 1Hi of strongly compatible schedule modules {HJi e I is 

defined to be the schedule module with 

• sig(H) = ~e I sig(HJ, 

• scheds(H) is the set of sequences ~ of actions of H such that ~IHi is a schedule of Hi for 
every i e I. 

The following lemma shows how composition of schedule modules corresponds to composition of 



8 

automata. 

Lemma 5: Let {AJie I be a strongly compatible collection of automata and let A = rrie 1Ai. 
Then Scheds(A) = ~e1Scheds(Aj), Fairscheds(A) = ~ 1Fairscheds(A;), Behs(A) = ~e 1Behs(Ai) 
and Fairbehs(A) = ~e 1Fairbehs(Ai). 

3.7. Preserving Properties 
Although automata in our model are _unable to block input actions, it is often convenient to restrict 

attention to behaviors in which the environment obeys certain "well-formedness" restrictions. A useful 

way of discussing such restrictions is in terms of the notion that a module "preserves" a property of 

behaviors: as long as the environment does not violate the property, neither does the module. Such a 

notion is primarily interesting for properties that are "prefix-closed". 

A set of sequences P is prefix-closed provided that whenever a. e P and ~ is a prefix of a., it is also the 

case that ~ e P. A module M is said to be prefix-closed provided that behs(M) is prefix-closed. Let M be 

any prefix-closed module and let P be a prefix-closed set of sequences of actions in ext(M). We say that 

M preserves P if~= W1t e finbehs(M), 1t e out(M) and We P together imply that~ e P. Thus, if a module 

preserves a property P, the module is not the first to violate P: as long as the environment only provides 

inputs such that the cumulative behavior satisfies P, the module will only perform outputs such that the 

cumulative behavior satisfies P. 

3.8. Hiding Actions 
Here we define an operator that "hides" some of the output actions of a module by converting them to 

internal actions. We begin with a hiding operator on action signatures: if Sis an action signature and :r is 

a subset of out(S), define hid9r.(S) = S', where in(S') = in(S), out(S') = out(S) - :rand int(S') = int(S) u :r. 
Now we use the hiding operator on signatures to define a hiding operator for automata and schedule 

modules: if M is a module with signature S, and :r ~ out(S), then let hid9r.(M) be the module M' that 

coincides with M except that sig(M') = hide1;(sig(M)). 

4. Candy Machines 
In this section, we illustrate many of the preceding definitions using examples of simple candy 

machines. (This class of examples is popular in the CSP literature, so this choice should facilitate 

comparison of the models.) These examples show how our model is used to define simple 

nondetenninistic processes. They also show how problems can be stated, and how it can be proved that 

certain automata solve certain problems. Finally, they show how processes can interact in the model, 

although the styte of interaction is· very simple (normally a sVict alternation of button pushes and candy 
dispensations). 

4.1. Candy Machines 
In this subsection, we describe three specific candy machines as VO automata. Candy machine model 

CM-1 has the following action signature. 

Input actions: PUSH1 , PUSH2 
Output actions: SKYBAR, HEATHBAR, ALMONDJOY 
Internal actions: none 



9 

We will sometimes abbreviate the two push actions as 1 and 2, respectively, and the three 

dispensation actions as S, Hand A. The state of CM-1 consists of one variable "buttonJ>ushed", which 

takes on values O, 1 and 2, initially 0. Next we describe the transition relation of CM-1. It should not be 

hard for the reader to translate the given description into a transition relation: (s',1t,s) is a step of the 

automaton exactly if the precondition of 1t (if any) is satisfied in s' and s is a possible result of running the 
code in 1t's "Effect• starting from s'. 

PUSH1 
Effect: buttonJ>ushed := 1 

PUSH2 
Effect: buttonJ>UShed := 2 

SKYBAR 
Precondition: buttonJ>ushed = 1 
Effect: buttonJ>ushed := 0 

HEATHBAR 
Precondition: buttonJ>ushed = 2 
Effect: buttonJ>ushed := O 

ALMONDJOY 
Precondition: buttonJ>ushed = 2 
Effect: buttonJ>UShed := 0 

Thus, when the customer pushes button 1, CM-1 can dispense a SKYBAR. When the customer 

pushes button 2, CM-1 can dispense either a HEATHBAR or an ALMONDJOY, but not both. The 

partition for this automaton, part(CM-1), is defined to group together ALMONDJOY and HEATHBAR and 
to keep SKYBAR in a singleton set. 

Candy machine model CM-2 is identical to CM-1 except that its HEATHBAR action has Precondition 

•false". This candy machine never dispenses HEATHBARs, but is able to dispense SKYBARs and 

ALMONDJOYs. Model CM-3 is identical to CM-1 except that all three candy dispensation actions have 

Precondition "false·. That is, it never dispenses candy. As one might expect, it is not a very useful candy 
machine from the point of view of the customer. 

4.2. Specifications for Candy Machine Behavior 
Now we describe some interesting notions of correct candy machine behavior. 

4.2.1 . Safe candy Machine Behavior 

Some basic requirements for a candy machine can be described by the schedule module SAFE-CM. 

SAFE-CM has the same action signature as CM-1, and has as its set of schedules the set of sequences 

over the symbols 1,2,S,H,A satisfying the following condition: every S is immediately preceded by a 1, 
and every A or H is immediately preceded by a 2. 

In order to show that CM-1 is a sate candy machine, i.e., that it solves the problem described by 

SAFE-CM, we must show that all fair behaviors of CM-1 satisfy the given requirement. Note that this 

requirement, (as usual for safety requirements) holds for an infinite sequence if and only if it holds for all 

finite prefixes of the infinite sequence. Therefore, it suffices to show that all finite behaviors of CM-1 



10 

satisfy the given requirement. 

We proceed by induction on the length of a behavior, using an inductive hypothesis that characterizes 

the state of CM-1 in terms of the preceding events, i.e., button_pushed = 1 if the last event in the 

sequence is PUSH1, 2 if the last event in the sequence is PUSH2, and O otherwise (i.e., if the sequence 

is empty, or if the last event is a dispensation event). The inductive step considers cases based on the 

five possible events. For instance, if SKYBAR occurs, its Precondition implies that button_pushed = 1 

just prior to the dispensation; thus, the immediately preceding symbol in the sequence is 1, as needed. 

The other cases are similar. It follows that CM-1 is a safe candy machine. 

It is also easy to see that CM-2 is a sate candy machine. However, saying that CM-1 and CM-2 are 

safe candy machines is not really saying enough, since the same is also true for CM-3. CM-3's fair 

behaviors are just the finite and infinite sequences of 1 's and 2's, which trivially satisfy the required 

condition. Although CM-3 is a safe candy machine, it is not a very interesting one. Therefore, we will 
give a stronger specification below. 

4.2.2. Well-Formedness 

In discussing correct candy machine behavior, it is helpful to consider certain "well-formedness" 

conditions on the interaction between the machine and its environment. For example, we may want to 

restrict attention to interactions in which push and dispensation events alternate strictly. Define a 

sequence of candy machine actions to be well-formed if it consists of alternating input and output (push 

and dispensation) actions, starting with an input action. Notice that CM-1 has behaviors, in tact fair 

behaviors, that are not well-formed, e.g. 11 S 11 S ... is a non-well-fom,ed fair behavior of CM-1. This is not 

surprising, since CM-1 does not (in our model) have the power to insure that its environment preserves 

well-formedness. However, it is easy to see that any safe candy machine, including CM-1 , preserves 

well-formedness, according to the definition of "preserves" given in Section 3. 

4.2.3. Live candy Machine Behavior 

A stronger set of requirements than SAFE-CM can be described by the schedule module LIVE-CM. 

LIVE-CM has the same action signature as CM-1. Its set of sequences are those that are safe candy 

machine sequences and that in addition satisfy the following condition: "If the sequence is well-formed, 
then every push event has a later dispensation event. -a 

CM-3 is not a live candy machine, because it has fair behaviors, such as the sequence with the single 

element 1, that do not satisfy this condition. (This sequence satisfies the well-fom,edness hypothesis, but 

does not satisfy the liveness conclusion.) On the other hand, CM-1 is a live candy machine, which we 

can prove as follows. Suppose not; then there is a fair behavior of CM-1 that is well-formed and that 

contains a push event that is not followed by any later dispensation event. By well-formedness, the only 

possibility is that· the sequence is finite and ends with the given push event. Say, for example, that the 

push event is PUSH1. Then by the state characterization given above, the state after the given schedule 

has button_pushed = 1. Then the SKYBAR dispensation action is enabled in this state. But the definition 

of a fair execution implies that no action of CM-1 can be enabled in the final state, which yields a 

8This can be expressed using temporal logic, in the form W-+ [1P -+ ◊O) , where W is the set of well-formed candy machine 

sequences, P is the set of sequences beginning with a push action, and D is the set of sequences beginning with a dispensation 
action. 



11 

contradiction. 

CM-2 is also a live candy machine, even though it has less nondeterminism than CM-1 . The proof is 

similar to that for CM-1. 

For the reasons discussed in Section 2, LIVE-CM does not admit trivial solutions. Anything that 
satisfies the specification must be able to respond to any pattern of pushes (since it is an 1/0 automaton, 

with the input-enabling condition). Moreover, responses have to be safe, and if the pushes arrive in a 

well-formed way, responses must in fact be made.9 

4.3. Customers 
We now describe particular customers that might interact with a candy machine. It is convenient also 

to describe such customers as 1/0 automata also. Customer CUST-1 continues to request candy bars ad 

infinitum, nondeterministically choosing which button to push. CUST-1 's action signature is the 
"complement" of that of the candy machines' : 

Input actions: SKYBAR, HEATHBAR, ALMONDJOY 
Output actions: PUSH1, PUSH2 
Internal actions: none 

The state of CUST-1 consists of one variable "waiting", which takes on values "yes" and "no", initially 
"no". CUST-1's actions are as follows. 

SKYBAR 
Effect: waiting == no 

HEATHBAR 
Effect: waiting == no 

ALMONDJOY 
Effect: waiting := no 

PUSH1 
Precondition: waiting= no 
Effect: waiting == yes 

PUSH2 
Precondition: waiting = no 
Effect: waiting : ... yes 

The partition part(CUST-1) puts PUSH1 and PUSH2 together in one equivalence class. It is easy to 

Gone might ask the technical question whether it might be reasonable to eliminate the well-formedness hypothesis in the live 
candy machine behavior specification. If we did ihis, 'then we would arrive at a stronger specification for a live candy machine, one 
that requires that the machine must always issue candy sometime after each push, regardless of whether the pushes happen in a 
well-formed manner. While this might be a reasonable requirement for a candy machine, CM-1 does not satisfy it. For consider the 
(non-well-formed) behavior 121212 ... ci CM-1. This contains push events that are not followed by dispensation events. However, 
we claim it is a fair behavior ci CM-1, since each class in the partition part(CM-1 ), {S} and {A,H}, has infinitely many points in the 
sequence at which no action in that class is enabled. (It might be helpful for the reader to imagine that there are two "processes" 
inside the candy machine, where process 1 is in charge ci dispensing SKYBARS and process 2 is in charge ci dispensing 
ALMOND.JOYS and HEATHBARS. Every time process 1 tries to pe!form its task, it happens that the value ci button_pushed is 2, 
so it cannot do anything. Similarly, every time process 2 tries to perform its task, the value of button_oushed is 1. So neither 
process can cause any output to occur.) Since we have exhibited a fair behavior ci CM-1 that contains a push but no later 
dispensation, CM-1 does not satisfy the proposed stronger specification. 



12 

see that CUST-1 preserves well-formedness; in fact, it never pushes unless all previous pushes have 

been followed by dispensations. Also, in any well-formed fair behavior, after any dispensation event, 
CUST-1 eventually pushes a button once again. 

Customer CUST-2 is somewhat more selective than CUST-1. It pushes button 2 repeatedly just until 

the machine dispenses a HEATHBAR. Then it pushes button 1 forever. Formally, CUST-2 has another 

variable "heathbar_received" in its state in addition to "waiting•. This variable takes on values "yes" and 
"no", initially "no". The actions of CUST-2 that differ from those of CUST-1 are as follows .. 

HEATHBAR 
Effect: waiting:= no; heathbar_received := yes 

PUSH1 
Precondition: waiting= no; heathbar_received = yes 
Effect: waiting := yes 

PUSH2 
Precondition: waiting= no; heathbar_received = no 
Effect: waiting := yes 

It is easy to show that CUST-2 implements CUST-1, using a possibilities mapping f that maps each 
state s of CUST-2 to the singleton set containing the state of CUST-1 that only contains the "waiting" 

variable of s. In fact, it can be shown that CUST-2 solves CUST-1 , according to our formal definition of 

"solves". A straightforward proof can be based directly on the definition of fair execution and the fact that 

for every states of CUST-2, some output action is enabled ins for CUST-2 exactly if some output action 
is enabled in f(s) for CUST-1. 

Customer CUST-3 is similar to CUST-1 except that it is required eventually to take a transition to a 

"satiated" state from which it no longer requests any candy bars. Formally, CUST-3's state has an 
additional "satiated" variable besides the "waiting" variable of CUST-1; it takes on values "yes" or "no", 
initially "no". CUST-3 has an additional internal action BECOME_SATIATED, defined as follows. 

BECOME_SATIATED 
Precondition: satiated= no 
Effect: satiated := yes 

Also, each of PUSH1 and PUSH2 has the additional Precondition "satiated = no". The 
BECOME_SATIATED action is in a class by itself in part(CUST-3). 

Note that CUST-3 implements CUST-1, but does not solve CUST-1; there are fair behaviors of 
CUST-3, such as the empty sequence, that are not fair behaviors of CUST-1. 

4.4. Candy Machines and· Customers 
Now we consider the composition of candy machines and customers. First consider the composition of 

CM-1 and CUST-1. Since each component preserves well-formedness, the composition has only well­
formed behaviors. We claim that all fair behaviors of the composition are infinite. Suppose not: then 

consider any finite fair execution. By weH-formedness and a simple assertion characterizing the states 

after finite executions, the state of the composition after the execution either has waiting = "no" and 

button_pushed 2 0, or has waiting = "yes" and button_pushed = 1 or 2. In the former case, PUSH1 is 

enabled, while in the latter case, either SKYBAR or HEATHBAR is enabled. But the definition of a fair 



13 

execution implies that no action of the composition can be enabled in the final state. 

In fact, it is not hard to see that the fair behaviors of the composition of CM-1 and CUST-1 are exactly 

the infinite well-fonned sequences in which each dispensation action dispenses an appropriate candy 

(according to the most recent push). 

The composition of CM-1 and CUST-2 yields exactly the sequences of the fonn 2,A,2,A, ... ,2,A,2,A ... , or 

2,A,2,A, ... ,2,A,2,H, 1,S, 1,S, ... as its fair behaviors. The composition of CM-1 and CUST-3 produces 

exactly the even-length finite well-formed sequences in which each dispensation action dispenses an 

appropriate candy. Also, the composition of CM-2 and CUST-2 yields the single sequence 

2,A,2,A, ... ,2,A,2,A ... . as its only fair behavior. All of these, and similar characterizations for the behavior 

of the other compositions, can be proved by straightforward methods similar to those used above. 

The previous arguments about the behavior of compositions of automata are based directly on the 

internal structure of the component automata. Sometimes it is possible to break up such a proof, using 
properties of the behavior of the component automata to prove a property of the composition. Formally, 

in order to prove that the composition of the automata {Aihe I solves a problem, one might prove that each 

component automaton Ai solves a schedule module Hi, and then prove that the composition of the {Hihe 1 
solves the problem. 

For example, we reconsider proving that every fair behavior of the composition of CM-1 and CUST-1 is 

an infinite well-fonned sequence of actions in which each dispensation action dispenses an appropriate 

candy. Let LIVE-CUST be the schedule module whose signature is the same as CUST-1's, and whose 

schedules are exactly those in which 1. the customer is not the first to violate well-fonnedness, and 2. if 

the sequence is well-fonned, then it is either infinite or else finite and ending with a push event. Then it is 

easy to see that CUST-1 solves LIVE-CUST. We have already argued that CM-1 solves the schedule 

module LIVE-CM described earlier. So it suffices to prove that every behavior of the composition of 

LIVE-CUST and LIVE-CM is an infinite well-formed sequence of actions in which each dispensation 

action dispenses an appropriate candy. This is not difficult to show: well-formedness holds because 

neither component is the first to violate it, appropriate responses follow from the specification of LIVE-CM, 

and the sequence is infinite because neither component stops at its own tum. 

5. Choosing a Ring Leader 
Now we give a brief sketch of another example, the election of a leader in a ring of processors. This 

example exhibits much more interesting concurrent activity than the candy machine example. It shows 

how one can use the model to reason about interesting concurrent algorithms, and suggests how the 

model can be ~ to carry out complexity analysis and prove lower bound and impossibility results. 

We assume a ring of n processors, each starting with a unique identifier chosen from a universal totally 

ordered identifier set I. Each processor can communicate with each of its neighbors in the ring, using a 

pair of one-way channels. The processors do not know the size of the ring, nor the specific subset of I 

that is actually being used as identifiers. The object is for a unique processor to perfonn a "leader" output 

action. This problem has been widely studied in the distributed algorithms research area. 

Each processor and each communication channel is modelled as an 1/0 automaton. Each channel 



14 

automaton has input actions of the form SEND(M) and output actions of the form RECEIVE(M).10 Its 

state is a multiset, consisting of those messages that have been sent but not yet received; initially, the 

multiset is empty. The transition relation is as follows: 

SEND(M) 
Effect: messages := messages u {M} 

RECEIVE(M) 
Precondition: Me messages 
Effect: messages := messages - {M} 

The partition puts each different RECEIVE action in a separate equivalence class; this has the effect of 

hypothesizing that every message that is sent eventually gets received. 

Each processor is also modelled as an VO automaton, having SEND output actions and RECEIVE 

input actions. In addition, it has a LEADER output action by which it can announce that it has been 

chosen as the leader processor. It may also have internal actions. 

A collection of channel and processor automata is composed into a single system automaton, and then 

the hiding operator is used to produce a new system automaton in which the only external actions are 

LEADER actions. The problem to be solved by the system can be described by the schedule module 

whose external action signature has no input actions and only LEADER output actions, and whose set of 

schedules consists of the set of sequences of length exactly 1. That is, in a correct behavior, exactly one 
LEADER event occurs. 

We now describe a particular algorithm for solving this problem, based on that of Lelann [Le]. Each 

processor sends its identifier clockwise around the ring. When a processor receives an identifier, if the 

identifier is less than its own, the processor discards the received identifier. If it is greater than its own, 

the processor passes the received identifier clockwise. If it is equal to its own, the processor performs a 
LEADER output action. 

In more detail, the state of a processor with identifier i has a variable "pending" which holds a subset of 

I, initially {i}. It also has a variable "leader-status", which takes on values from runknown", "elected", 

"announced"} and has initial value "unknown". The steps are as follows. 

RECEIVEG), j e I 
Effect: if j > i then pending := pending u {j} 
if j = i then leader-status := "elected" 

SENDG), j e I 
Precondition: j e pending 
Effect: pending :a pending - {j} 

LEADER 
Precondition: leader-status = "elected" 
Effect: leader-status := "announced" 

Each action is in a separate class of the partition. It is not hard to carry out a correctness proof of this 

10
Since the model uses a global naming scheme, the actual action names would have to be subscripted with information 

identifying the particular channel. 



15 

algorithm using the model. The safety proof (i.e., that no more than one LEADER event ever occurs) 

involves proving an invariant assertion relating the identifiers that appear in different places in the ring, 

both as processor id's and in messages. More specifically, it must be shown that if i < j, then a processor 

with identifier i, a processor with identifier j, and a message containing identifier i cannot appear in that 
order, reading clockwise around the ring. 

In order to prove liveness (i.e., that some LEADER event eventually occurs), another invariant is used, 

expressing conservation of the message corresponding to the maximum identifier. Then a "variant 

function" is defined, describing the progress that has been made toward election of a _leader: for each 

state, the variant function yields the remaining distance the maximum identifier needs to travel before 

reaching its originating processor. The value of this function is shown never to increase during execution, 

and at any point where it is nonzero, the fairness properties of 1/0 automata imply that some event will 

eventually occur to decrease the value. Thus, eventually, the function value reaches zero, which implies 
that a LEADER event occurs. 

The model can be used to carry out complexity analysis. For any execution of the algorithm, the 

number of SEND or RECEIVE events can be used as a measure of the amount of communication; it is 

not hard to see that n2 is a worst-case upper bound on this number, where n is the number of processors 

in the ring. Also, for any execution, time can be measured as follows. Assign a "real time" to each event, 

as large as possible, subject to the requirement that for each class of the partition, the time between 

successive "turns" for that class is at most 1. Then the real time assigned to the LEADER event can be 

taken as a time measure for the entire execution. It is not hard to see that 2n + 1 is a worst-case upper 
bound for the time measure. 

The given algorithm is not optimal in its communication requirements; for example, [P] contains an 

algorithm with an O(n log n) upper bound. The algorithm in [P] can also be formalized and analyzed 

using our model. Also, [Bu] proves an O(n log n) lower bound on the worst-case amount of 
communication; this result also is describable in our model. 

6. Other Applications 
The model has been used to describe and reason about many different kinds of algorithms, both in 

systems applications and in the algorithms research literature. In this section, we describe some of these 
uses. 

6.1 . Network Resource Allocation 
Our first use of the model was for describing network resource allocation algorithms. [L T1) presents a 

network arbiter design and proves its correctness, using 1/0 automata. The algorithm is based on a 

resource performing a treewalk of a spanning tree of the network graph. The conditions proved include 
safety properties (mutual exclusion) and liveness properties (no lockout). 

The correctness proof is done in three levels of abstraction. The problem definition is presented as a 

high-level schedule module, in which inputs are requests and returns, and outputs are grants, all for a 

particular resource. The intermediate level is a description of the algorithm in terms of graph theory, 

formalized as an automaton together with a restricted set of executions. Finally, the complete distributed 

algorithm is described as a composition of automata at the lowest level. It is shown that each level solves 



16 

the level above it, and thus that the distributed algorithm solves the arbiter problem. 

Most of the interesting reasoning about the algorithm is done at the intermediate level, in terms of 
graphs. This reasoning is close to the intuitive reasoning one would normally use to understand and 
explain the algorithm. The interesting work involves showing that the intermediate level solves the high­
level problem statement. In contrast, showing that the lowest level solves the intermediate level is a long 
but straightforward case analysis. 

[LT1] also contains an analysis of the time complexity of the algorithm, demonstrating an O(n) worst­
case upper bound, where n is the number of nodes in the network, and an O(d) worst-case upper bound 

when a request does not overlap with any others, where d is the diameter of the network. The time 
analysis proof follows the proof of "no lockout" very closely, suggesting that there may be a general 
correspondence between liveness proofs and proofs of upper bounds on time. 

We have also used the model to study other network resource allocation algorithms. For example, in 
[LW], we give an algorithm for the "Drinking Philosophers" problem: in this problem, users request sets of 
resources by name, with the same user possibly requesting different sets of resources each time he 
makes a request. [CM2] contains an algorithm for this problem, constructed by modifying a particular 
Dining Philosophers algorithm. Our algorithm, based on the one in [CM2], is described as a composition 
of automata that solve the Dining Philosophers problem and automata that carry out additional 
bookkeeping. Our use of composition allows us to use any Dining Philosphers algorithm as a 
"subroutine"; some choices can be shown to yield better time performance for the resulting Drinking 
Philosophers algorithm than is yielded by the algorithm of [CM2]. 

6.2. Synchronizers 
In [A], Awerbuch describes a synchronizer algorithm - a distributed algorithm designed to convert 

programs written for synchronous networks into versions that can be used in asynchronous networks. In 
this algorithm, the network nodes are partitioned into clusters, and different strategies are used to 
synchronize within clusters and among clusters. The algorithm is clever, but fairly complex, and is 
presented without formal proof. In [FLS], we provide a new presentation and a proof for Awerbuch's 
algorithm. The algorithm is decomposed into separate automata for intercluster and intracluster 
synchronization. The intercluster synchronizer is further decomposed into a piece executing at each 
node. In fact, Awerbuch's actual program for each node is described as the composition of two automata, 
one participating in intercluster and one in intracluster synchronization. 

6.3. Communication 
In [WLL], we present a correctness proof for the intricate distributed minimum spanning tree algorithm 

of [GHS). The techniques used are b~ed. on the hierarchical structure used in [LT1]. However, instead 
of a linear hierarchy of algorithms, we use a lattice of algorithms. The complete algorithm has several 
different projections onto higher level "subalgorithms", where each subalgorithm represents one task 

performed by the main algorithm. The proof involves showing that the subalgorithms all solve the 
minimum spanning tree problem and that the full algorithm "solves" all of the subalgorithms. In showing 
the latter, we make use of many properties of the separate subalgorithms. We develop the basic theory 
needed for lattice-structured proofs; some work on a similar theory appears in [LaS). 



17 

More recently, we have been using 1/0 automata to characterize correct behavior for physical channels 

and data links. We are attempting to prove that certain types of data link behavior can be implemented in 
terms of certain types of physical channels, while other types cannot. Preliminary results show that 

interesting data link behavior seems to require at least some stable storage (whereas previous work 

shows that a single stable bit at each end suffices). Also, it appears that the data link protocol must use 
unbounded size headers to achieve reasonable behavior, in case the underlying physical channels are 

not FIFO. 

6.4. Concurrency Control 
We have been using the model as the formal foundation for a new theory of atomic transactions. 

Transactions arose originally in database systems, but are now used as a basic construct for general 

data-oriented distributed programming. Use of transactions in general-purpose languages has required 

their extension to allow nesting; nested transactions permit more concurrency than single-level 
transactions, and permit localized handling of failures. 

In [LM], we use 1/0 automata to model nested transactions, state the correctness conditions that they 

must satisfy, describe an exclusive locking algorithm for nested transactions, and carry out a correctness 
proof. In later papers, we extend this treatment to more general locking algorithms and timestamp-based 

algorithms. We also prove correctness of algorithms for management of "orphan• transactions -

transactions that continue to execute even though some ancestor in the transaction nesting structure has 
been aborted. We are able to use 1/0 automata to decompose the orphan algorithms so that concurrency 

control and recovery are handled by one module, and orphan management is handled by another. 

Correctness properties for the two kinds of modules are proved separately, and then combined to yield 

correctness properties for the complete algorithm. 

We have had similar success in describing correctness of algorithms for replicated data management. 

We are able to decompose certain replicated data algorithms into modules that handle concurrency 
control and recovery at the level of individual data replicas and modules that implement the data 

replication algorithm. A book [LMW] is now in progress, describing this theory. 

Although the model has proved to be a very usable tool for describing these results, its full power has 
not yet been used in this work. In particular, only finite executions have so far been considered, and only 

safety properties have been proved. 

6.5. Shared Atomic Objects 
A topic of recent research interest has been the study of wait-free implementability of concurrently­

accessible atomic objects in terms of other atomic objects. An object is said to be atomic, roughly 

speaking, if it responds to concurrent invocations of operations as if the operations were executed 

indivisibly at some time between the invocation and response times. So far, most of the work has 

focussed on read-write registers for use by various numbers of readers and writers. Many of the 

algorithms are very complex and difficult to understand precisely. 

The paper [L], which initiated this research area, contains an interesting formal model based on partial 
orderings of operations. However, most of the subsequent papers do not use Lamport's model, but 

instead include their own models and definitions. The multiplicity of models has contributed to making the 



18 

papers very difficult to read. 

In (Bl], Bloom uses the 1/0 automaton model as the basis for stating correctness conditions for atomic 

read-write registers, for describing a new algorithm (which implements 2-writer n-reader registers from 

1-writer n+ 1-reader registers) and for proving the algorithm correct. He describes the solution as a 

composition of automata for each of the reader and writer protocols and automata for the 1-writer 

registers used in the implementation. The combination is shown to implement the desired 2-writer 

register. The work is rigorous and clear; we hope that a similar presentation will help clarify some of the 

other algorithms. 

New work by Herlihy on impossibility results for atomic object implementations [He] also uses the 1/0 

automaton model. 

6.6. Dataflow 
In [LS], we formulate the semantics of dataflow networks in terms of VO automata. We define the 

notion of "determinacy" (i.e., that the sequence of output actions is uniquely defined by the sequence of 

input actions), a notion that is considered important in dataflow computation. We state a theorem that 

expresses Kahn's main result about dataflow networks (K] - that the semantics of networks of 

determinate components can be uniquely defined using the least fixed point operator applied to certain 

equations involving behavior of the individual components. We then prove a theorem showing the 

equivalence of our operational semantics and Kahn's fixed-point semantics. 

Bibliography 

[A] Awerbuch, B. Complexity of Network Synchronization. JACM 32(4), October, 1985, pp. 804-823. 

[BQ Bloom, B. Constructing Two-Writer Atomic Registers. 6th ACM SIGACT-SIGOPS Symposium on 

Principles of Distributed Computing, Vancouver, British Columbia, Canada, August, 1987, pp. 249-259. 

[Bu] Bums, J. A Formal Model for Message Passing Systems. Technical Report TR91, Indiana 
University, May, 1980. 

[CM1] Chandy, K.M., and Misra, J. A Foundation of Parallel Program Design. Addison-Wesley, 1988. 

[CM2] Chandy, K.M., and Misra,J. The Drinking Philosophers Problem. ACM-TOPLAS 6(4), October, 

1981, pp. 632-646. 

[FLS] Fekete, A., Lynch, N., and Shrira, L. A Modular Proof·of Correctness for a Network Synchronizer. 

_2nd lntemational Workshop on Distributed Algorithms, Amsterdam, The Netherlands, July, 1987. 

[GHS] Gallager, R., Humblet, P. and Spira, P. A Distributed Algorithm for Minimum-Weight Spanning 

Trees TOPLAS, Vol. 5, No. 1 (January, 1983), pp. 66-n. 

[GL] Goldman, K.J., and Lynch, N.A. Quorum Comsensus in Nested Transaction Systems. 6th ACM 

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver, British Columbia, 
Canada, August, 1987. 



19 

[He] Herlihy, M. Impossibility and Universality Results for Wait-Free Synchronization. Submitted for 

publication. 

(Ho) Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985. 

[K] Kahn, G. The Semantics of a Simple Language For Parallel Programming. Information Processing 

74. North-Holland Publishing Co., 1974. 

[L] Lamport, L. On Interprocess Communication, Parts I and II. Distributed Computing 1 (2), 1986, pp. 

n-101. 

[LaS] Lam, S. and Shankar, U. Protocol Verification via Projections. IEEE Trans. on Software 

Engineering SE10(4). July, 1984. 

(Le) Lelann, G. Distibuted Systems, Towards a Formal Approach. IFIP Congress, Toronto, 1977, pp. 

155-160. 

(LF] Lynch, N.A., and Fisher, M.J. On Describing the Behavior and Implementation of Distributed 

. Systems. Theoretical Computer Science 13, 1981 , pp. 17-43. 

(LM] Lynch, N.A., and Merritt, M. Introduction to the Theory of Nested Transactions. ICDr86 
International Conference on Database Theory. Rome, Italy, September, 1986. pp. 278-305. Also, 

MIT/LCS/TR-367 July 1986, to appear in Theoretical Computer Science. 

(LMW] Lynch, N., Merritt, M., and Weihl, W. Atomic Transactions. In progress. 

[LS] Lynch, N.A., and Stark, E.W A Proof of the Kahn Principle for lnout/Output Automata. Submitted 

for publication. 

[LT1] Lynch, N.A., and Tuttle, M.R. Hierarchical Correctness Proofs for Distributed Algorithms. In 

Proceedings of 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. 
Vancouver, British Columbia, Canada, August, 1987, pp. 137-151. 

[LT2) Lynch, N.A., and Tuttle, M.R. Hierarchical Correctness Proofs for Distributed Algorithms. 

Master's Thesis, Massachusetts Institute of Technology, April, 1987. MIT/LCS/TR-387, April, 1987. 

[LW] Lynch, N.A., and Welch, J.L. Synthesis of Efficient Drinking Philosophers Algorithms. In 

progress. 

[P] Peterson, G.L An O(nlogn) Unidirectional Algorithm for the Circular Extrema Problem. ACM 

TOPLAS (4), October,1982. pp. 758-762. 

[RW] Ramadge, P.J., and Wonham, W.M. Supervisory Control of a Class of Discrete Event Processes. 

University of Toronto. November, 1985. Systems Control Group Report #8515. 

[WLL] Welch, J., Lamport, L., and .Lynch, N. A Lattice-Structured Proof of a Minimum Spanning Tree 

Algorithm. Submitted for publication. 



20 

References 



Table of Contents 
1 . Introduction 
2. Overview of the Model 
3. Definitions and Basic Results 

3.1. Actions and Action Signatures 
3.2. Input/Output Automata 
3.3. Schedule Modules 
3.4. Solving Problems 
3.5. Implementation 
3.6. Composition 

3.6.1. Composition of Action Signatures 
3.6.2. Composition of Automata 
3.6.3. Composition of Schedule Modules 

3.7. Preserving Properties 
3.8. Hiding Actions 

4. Candy Machines 
4.1. Candy Machines 
4.2. Specifications for Candy Machine Behavior 

4.2.1. Safe Candy Machine Behavior 
4.2.2. Well-Formedness 
4.2.3. Live Candy Machine Behavior 

4.3. Customers 
4.4. Candy Machines and Customers 

5. Choosing a Ring Leader 
6. Other Applications 

6.1. Network Resource Allocation 
6.2. Synchronizers 
6.3. Communication 
6.4. Concurrency Control 
6.5. Shared Atomic Objects 
6.6. Dataflow 

0 
0 
3 
3 
3 
4 
5 
5 
6 
6 
6 
7 
8 
8 
8 
8 
9 
9 

10 
10 
11 
12 
13 
15 
15 
16 
16 
17 
17 
18 


