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1 Introduction 

Go.nsider the follo ing problem ·n financial analysis. An inv-estor wa.nts o take advantage of the 
discrepancies in prices of securities at different stock exchange and of the currency conversion rates. 
His objective is to ma..-<lm.i:ze his profit by trading a.t different exchanges and b:converting cu rencies. 
The gene1ralized circala.tion problem considered in this pa.per model he above situation as urning 
t1ia.t a. bounded amount of money is available to the investor and that bounded a.moUI1ts of se-euii ies 
can he traded without affecting the prices .. 

The generalized circulati,o-n problem is a. generalization of the maximum iiow problem. Each arc 
(v w) in the ne work has .a. gain factor ;(v w) and a. capacity u v w) .. If z units of flow enter the arc 
at v, then :.c. (v -w) units of flow a.rd eat w. The graph has a special node called the source. The 
objective is o :find a. flow tba maximizes he excess a h source. (A.l. erna.tive formulations of the 
problem are discussed in Section 2.4.) In the model of the above financial an.alysis probl m nodes 
correspond · o differ-en currendes a.nd securii ies, a.nd arc correspond ·to possible transactions. Gain. 
factors represent the prices oir the exchange .rates. For example,. an axe wi h gain factor of 113 fr-o 
a. ertex rep.resen mg IBM stocks to a. vertex represe.ntin 1 •• dollars mo els · he posslbili y of 
sellin,g the s ocks at - 113 per share. 

The generalized drcula ion prob]em is important bo h from practical and theoretical points of 
view. i s of all many problems in fi,elds .ranging from science and engineering to operations re­
search and :financial analysis ca.:n be modeled .a,s. generalized circulation problems (see e g. (ta;~ 76] . 
From a theore ical viewpoint , he ge.neralized circu.la.tion problem is probably, he simple t most 
combina.t,o · al line.ar programming p,roblem for whlch no s rongly pol nom:ial a.!.aorithm is known. 
The con uc ion of a s rong,ly polynomial algorithm for linear programm.i11.u is an outstanding open 
problem in the heory of algorithm • Th.e only types of linear programs curren ly know to be so v­
able in strongly polynomial time are hose tha. ei .her have two variables pe in.equality [Meg 3] or 
have (0 +1 - ) constraiin mat:ri: [Tur 6]. The strongly polynomial algorithm for the second type 
of linear pr,ogn,ms gr•ew out of ideas •developed for the first st ongly polynomial algorithm for the 
minimum cost flow problem [Tar85]. We believe that developing a strongly polynomial algoriihm 
for he generaliz d circula.tion problem may lead to a. strongly po1y.nomiaJ algo i hm for he linear 
programming problem. 

In this paper we give the firs polynomial..time combina'oriaJ: algorithms1 for the generalized 
circulation pr-oblem. The importance of designing uch algori hms for th.is problem is tw,ofold. 
Combinatorial methods ma.y lea<l o algorithms tha a.re more efficien both in heory a.nd ln 
practice tham a1goritllms based on general linear programmlng ec.hniques. (For example, this 
is the case for , he minim11m-oost citculajon. :problem.) Fu.r hermo.r we feel tha: a c:ombina.toria 
appi!oach is more likely o yield the jnsight needed to design a strongly pciiynomial a]godthm for he 
generalized circula ion problem and we view our results as a. significant firs s ep in tkis dir-ection .. 

Tile gene.ralize<l circula: ion problem i in ma.ny respects !imilar to he minimum-cost circufa­
ion problem where each are has a. cos per unit of flow in addJti,on. to ca.pacit • Both problems 

can. be vi wed as problems of ranspo:rting a. oom__lllOdity from .a. producer to a, con51ffller. Intu­
: tively ·the ,on] difference b tween he two problems lies in the met.hod of payment for shipping 

1
By combinatorial a:lgorit ms e meall algo:rith:rns that ex:pJoiL the conibinawrial St:t:'tlcturc o! ·· he underlying, 

net.work (ns opposed ·to being based on analytic ideas ljke ihe imterio:r poin method for linea.:r programming). 
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costs: in the case of the minimum-cos drc.ulations, these cos s are pa.id with money· in the case 
of the generalized circulations - with the commodi itself. The slmilari y is no only in u:itive· 
the linear progra.rnmin dual of these problems as well as optimality coaditions are very simi­
lar. Both problems are pecial linear p:rog,ra.m.s, and therefore can be solved in polynomial time 
using general-purpose linear programming aJgorithms such as he ellipsoid me hod [Kha.SO] or Kar­
marka.__r's algorithm [Kar ] . Although closely rela;ted o the minimum-cost circulatio.n problem the 
generalized. circulation problem is not ye as well anders ood. Polynomial-time comb' atorial algo­
ri hms for he minimum-cost circula ion problem were known for a long time [ · K72)· more recen l . 
strongly po1ynomiaJ combinatorial algorithm ~ere developed as well [ ar 5].. 

The running , ime ounds of he bes combina· orial aJ,gorlthms for the minimum-cos drcula ion 
problem are ar super·or to the running time bounds of he algorithms based on · he general linear 
programming techniques. Un.der the assumption t:bat the input numbers a.re no too.Luge (have size 
0(logn)) he fas est known algorithm for the problem (GT 7] runs in. O(nmiog(n2 /m)log nC)) 
time2 where C is the absolute valu- of he biggest a.re cost (see also [AGOT 71). The fastes 
strongly polynom.ia] al orithm for the probiem [OdS J :runs i:n O(m(m nlogn)iogn) ime. 

In. spite. oi the similarity between the minimum-cost circula: ion d he generalized ct.rcufation 
problems, the current tedmi u for design of effident conibina. orial algor:·tluns for the former are 
no sufficient to yield efficient aigorithms for the latter. he only previously known polynomial.-time 
algori runs for the generalized circulation problem a.re based on polynontlal-timelinea.r programming 
algori hms. 

Al tho gh the previous work on combinatorial algorithms for the ge1. etalized flow problem did ot 
ield polynomial- ime algorithms ·t did prod ce useful insights into h.e structure .of the problem. 

These .insights lea<l o combinatorial algorithms that rlil.ll in. finite time. pedal va.riau of the 
linear prog:ra.mming simplex method ha.ve been develop d for the general.iized flow problem (see 
e.g. [EGK79 ). These \'a:rian.ts give combinatorial • ethods for solving the generalized network ilow 
problem. Algo ithms that i e.a.tively a:ngmen the cunen flow ha: e al o been studi -d (see .g., 
[Jew5 Law76 PE84]). However no :polynomial-time boUJld a.re known fo:r these a]gori hms,3 

'\Ve p:resen two algorithms one based on the :repeated a.pplica ion of a minJmum~cost flow 
subroutine, and a.not.her based on he idea. of augmenting along a. biggest .impro emen.t pa.th [EK72] 
and the idea of ca.nceling negative cycles [G 8,IGe67]. ·we assume hat the capacities are intege 
:represented in binary each gai . is given as a ra io• of · wo "ntegers and denote he value of the 
bigges integer used to represen: he gains and ca.pa.c'tjes by B Under these .assumptions the 
fus algorithm runs in O(n2m(m+n.logn)lognlogB) · ime and the second in O(n.2m2 lognfog2 B) 
tim . 

· he fas es eneral-purpose llnea:r-program:mi g algorithm current]y Jmo n fVa:i 7] when ap­
plied o the generalized circ:u.la ion problem runs h1. O(m4 lognlogB) time. Usin,g techniques from 
[KV 6] tbis algorithm. ca,n be modified o take adv:antage of he special s ructure of the problem· 
the usu.I ing algori hm rt1.ns in O ( n ·5m 1.5 log log B) ime ( aidya. :personal. communka.tion ). The 
.running ·ime bounds of mu aJgorj hms are better than the bounds achieved by he general-purpose 

2 In Iris paper, we denote he number of nodes in the inpuL network by n ud lie m1.mber of a.r in he n.e-C 'l"O.rk 
by m. 

a Pul L a.nd Elma.gl1riby [PE84] daim to have developed: a. tro:ngly polynomial algori. run based on iterative a.u.g­
mentili&ion of ftoiw. Bowever, the proof in 1he pii,pC'l: has a. masjor gap, and the method used for the acugmenlu1g path 
selection does not em ·to be sophlstica:,ted enough to yield a po!ynotniaJ..fune algorithm.. 
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Unea.r pr-ogramming algorithms. AJthough our time bounds are slightly worse han he time bound 
of Vaidya s specialization of hi linear programming algorithm mentioned above our algorithms lose 
by onl!y a. logarithmic factor on parse gra.phs. nlike aidya?s a,lgo:rithm, our approach exploit 
the oombina:tor.ial structure of the problem. The:r fol"e we {eel that it will lea<l to bounds that are 
bet er than those arising from lm:plemen ations of general=purpose linea progranuni.ng me hods. 

In his paper we introduce new tools for the d,esign of combina.to:riaJ algorithms for the gene.ral­
iz;ed circulation problem. Analysis of our algorithms is based on new insi _ hts into he combinatorial 
st udure of the problem. We believe that these tools and insight · will le-ad o faster algori hms 
and to a better understanding of combinatorial structure of varfous netivork fiow problems. 

hls pape- is organized as follow . ec ion 2 defines he gener.a.lized circulation problem and 
closely related conce ts, and giv their importallt a.lgorith:mk and comhinatorial p operties. Sec~ 
ion 3 introduces he vertex labels which a.re used t-0 conver a given instance of the problem in o 

a equivalent instance with several useful combinatorial propertie . Sec ion 4 describes o sima 
p e combinatorial algorithms for the generalized circulation problem. ec ion 5 describe our firs 
polynomial ime algori hms, which i based on a. minimum-cost fl.ow suhro'lltine. In Section 6 we 
prese_nt ou econd a.lgor· hm based Oli · he idea of angme_n ing he flow along a big improveme " 
pa h. he last sectio contains concluding erna:r.ks. 

2 Defin ~tions and Background 

lu this sec ion we define the e eralized circulation problem present a. number of fund.a.mental 
facts abo t it and discuss se era] rela ed. concept • In addition we describe se eral variants of 
the generalized clrcula: · 011 prnblem and clis, uss he rela. ionshlp a.mo g them. e al: o, revie,;1,,· tb,e 
minimum-cost circuJat·on problem a.nd discuss the close relationship between this piohlem and the 
generalized circulation problem. 

2 l Minunum Cost Circulation Problem 

irst we discuss tbe minimnm-cost circulation problem. A circulation network is a d.iiected graph 
,G = V E) with a.re capacities given b a non-n gative ca.pa.city func ion 1:.1 : E - R.x,.4 \-\e assume 
that G has no multipl arcs, i.e. E CV x V. If here is an .arc from a node v o a node w his 
arc: is u.nique by he assumptioni and we will denote .1t b (ti w). h.is assumpt.ion is for notational 
convenience only. e also assume. ithou loss of generality, · hat be inpu graph G is symme :ric: 
(v w) E ~ (w v) EE. 

In the context ,of the minimum.-cost circulation problem we need the following definitions. ~ 
p eudofiow is a function f: E- R ha.t sa,tisfies the following cons Taints: 

f( , w) $ u(t1 w) V(v,.w), EE (capacity con traint) 

/(u w) =:: -f(w v) V(v w) EE , flow antis ·mmetry cons raint). 

'R.oo = RLJ{oo}. 
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Remark: To gain in uition, ·tis of en useful o think only about th.e non-negative components of a 
pseudo-fl.ow ( or a enera.lized pseudofiow defined in the next section). he antisymmetry c-0ns rains 
reflect he fa.ct bat a flow of v:alue :i: going from u to w can be · honght of as a :flow of value (-x) 
from w o . he negati e :fl.ow values are introduced only fo:r notational ,convenience. ote for 
example ha.t one does not have to distinguish be ween low r an.d upper capacity bo,mds: he 
capacity of tile arc (v w) represen s a lo er bou.nd on · he :flow value on he opposite a;rc. 

Give a. pseudof!ow / the residual capacity function 1lJ : ---+ R is defined by u1(~ w) = 
u(v w) - f(v, w , The residual groph with respect to a p eudoflow f is gjve:n by Gt = (V E1) 
where Et= {(ii, w) E ju,J(v w) > 0}. An exces Ex'J(ti) a.ta. node is equal o 

Ex-,(v) = - I: /(u, 11. 

u,v)•EE 

We will say that a ode v has e~c.ess jf Ex1( v) is po,sitive and has deficit if it is ega ive. 
circulation is a p eu.do:fiow with .zero e ·cess at every node: 

(3) 

Ex1(v) = 0 (:flow conservatlon constrain.t). (4) 

A co t Junction .i.s a real.valued func ion on a.res c: E , R. Without lo s of generali y, we assume 
tba.t costs are an isym tric: 

c(v w) = - c(w v) Y(ti,w) EE cost antis mme r constrain,). (5) 

A cost of a circulat· on / is gi en by 

c(J) = J(v w)c(v w). 
(v,w)eB:J(v ~)cO 

The minimum-co t circulation problem is to :find a minimu.m•co:st ( :optimal) ci:rcula ion in a.n input 
ne ·work., 

ext we s a e wo criteria for op imaJity ,of a circnla. ion.. Define the oo of a .. cycle o be the 
sum of costs of ares along , he cycle 

Theorem 2 .1 ([B 65]) A circulation i optimal if and only if its residual graph contai - no 
negative-co t cycle . 

o state the second criterion we need the notions of the price function and the reduced cost 
func ion. A price function is a labeling on node p : -- R. A reduced cos func ion wi b 
Mspect to a p ice function p js defined by cp(v w) = c(v w) p(v) - p(w). hese notions, which 
originate ill the heory of linear programming ar crucial for many mJ.nimtun~cost fiow .algori .h:ms; 
~ linear programnung dual va.riab es node prices have a natural economic in erpretation: they can 
be in erpreted as curren market pric of the conunodi . We ca.u int rpre reduced cost ep(v, w) 
as the co.st of buying urut of commodity a v,. transporting i tow and then elling it. 

Theorem 2 .2 ((FF62]) The cost of a cireul'ation f is minimum if and only if there is a price 
function p uch that, for each arc ( u w ), 

5 



cp('t.! w) < O =} J(v,w - t.1(1> w) (complementary slackness constraint). (6 

Another · eful fact about circuJa. ions is tb.e decomposition theorem which tates tha.t a. circu­
lation can be vie ed as a. collection of flow along cycle . 

Theorem 2.3 ([ F 162] For every circulation f 'here ~is a collection of k ~ m simple cycle 
C1 .... C1,. in G 1 and k; positit:e number. 1 61 , •.. 810 such thal an arc v w) appears on one of the 
cycle 011ly if f(v w) > 0, an.d for every (v w) ,E E 

f(v w) ;; 
i:(v,w) ~ on C, 

2.2 The Generalized Circulation Problem 

In th.i sec ion we formally define generalized pseudofiows generalized circulations and the gen~ 
eralized circulation problem. We study combina:torial prop,erties •Of the generalized pseudofl.ows 
a:nd generalized circulations and desc ibe the correspondence bet 'leen these properties and he 
propertie of regular circulations a d pseudoflows discu sed in. the previous ection. 

In the generalized circulo.tion problem every a.re has a ga ·n facto associa ed with it with the 
gains gi en by a. gain. {unc ion. ; : E _.. R +. 5 We assume ( w] ou loss of generality tha the gain 
function is antisymme ric: 

r . w) = - 1(w ii) V(ti w) EE (ga.:in antisymme ry constraints). (7) 

Remark: Recall that the gain factors in our :financial an.aly is problem correspond to currency 
excli.a.nge rates .. Though the excl:tang:e rates a.re usually no antisymmetric it is easy to use multiple 
arc"5 to de c:ribe hem by a. network hat satisfies aain antisymmetry constraints. 

In the case of ordinary flows, if /( v~ w uni s of ftow a.re shipped from v to w . /( v, w) unit 
uriv-e a w. In the case of generalized flows if g(v w) units of :llow are shipped f:rom v to w 

1 (v w)g(u w) u.nI ardve a. w. • generalized p -eudoflow is a. function g .: E - R · hat satisfies 
the capa.eity con trains (1) and the generalize.d an isym.metry constraints= 

g v w):;;;; - (w. v)g w v) 'v'(v w) EE (genera.liz:ed antisymmetry constrain· s). ( ) 

If ;(v w) > 1 th.en (v w is a. gain arc· if "l( 1 w) < 1 he:n (v -w) is .a. lo s arc. A gain ,oi a 
path cyde) is a. product of gains of arcs 011 th path (cycle). Given a. generalized pseudoflow g, 
the definitio.ns oi res·dua.l capacities, residual gra.ph a.nd excesses are h.e sa..me as for · he ordinary 
psendofiow . 

A gene r-alized circulatio,n is a generalized p eudoflo ha sa.tisii.es conservation. cons ra.int ( 4) 
at aJl nodes except at he ource ode. 

he inpu o a g neralized circulation problem i a uple ( G = (V, E) u 1 ) where G is a. 
ell ,ected graph -u is a. capacity func ion is a gain fl!lJlction.~ and is the ouru. For simplicity 

~It+ denotes the s.M of positive rca.J nu.mbers. 
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we as u.me tha the capa;cities are :fini e a.nd non-negative. As before- for nota ional convenience 
we assume hat G is symmetric. has no multiple arcs and tha he residual graph of the zero low 
is strongly connec ed. A valu of a generalized pseudo-ft.ow g is the exces Ex9 (s). The o tp 
of a generalized circulation algorithm i a generalized circulation or the highest possible value (an 
optimal generalized circulation). 

nle a mentioned otherwise we assume tha he capacities are given as int geIS each gain is 
given .as a ratio of wo in eger: , and that all integers a.re :represented in bina:ry. V,e deno e the 
bigges in eger used to represen capacities and gains by B. In addition. we denote the maximum 
of a. product of gain numerators on a si pie path or cycle in the input graph b T, .and th least 
common multiple of numerator: and denominators of all gain · in the problem by L. lead T 5: B 
and L $; B2m. However T and L are oft n significant - smaller than implied by the a.hove bounds. 
In particular his is he , ase for some of the problems obtain d via :reduction • 

A flow-generating cycle is a. cycle whose gain is ,greater th.m 1 and a fiou.,'-abso,bing cycle is a. 
cycle hose gain is less than l. Obsezve that .if one unit of :flow le-aves a. node v and travels along a. 
:flmvmgenera.ting c ·cle, more than one unit of-fl.ow urives a v. · hus we ca. augment the flow along 
thi cycle! h.a, fa we can Increase the exce s a. any node of the cycle while p eserving ex,cesse a. 
o her nodes by jncreasing ffo,w along the arcs in the cycle and correspondingly decreasing flow on 
the oppo i e arcs to satisfy the ~neralized antisymme· ry con traints. 

Recall the ftuancia] analysis i terpreta,tjon of the genera]fa.ed circulation problem, discussed 
in he introduction. From the investors point of view a -sidual :flow-generating cycle is a.n 
opportunity to ake profi . Howe e.r it i possible o , ake advantage of his opportuni y only 
if the.re is a way o transfer the profit to he investors ban_k account ( he souroo ode). Thi 
motivates the following defini ion. 

A generolized augmenting path (GA.P) is a Y•esidual flow-generating cycle and a (possibly tri ial) 
residual path from a. node on he cycle to the onrce. Given a. generalized circulation and a. G P 
in the te idua.l graph. we ca.11 a.ugi:nen the flow along he G P inc.re-as·ng the value of he curren 
circulation. The role of G P in the generalized cl:rcula.tion problem i simila.r to the role oi 
nega.ti ·e~cost cycles i:n the minimum-cost circulation problem: both can be 11sed o a:ugmen the 
flow and thus impro e he value of ,he curren olution. 

In he cas.e of he maximum-flow problem the :flow is optimal if and only if he corre po:nd~ 
ing residual graph co.ntains no augmen ing paths FF62]. A similar :resul holds fo generalized 
circul a.ti ons .. 

Theorem 2 .4 [Ona.67) A generalized cfrculatio11 is optimal if and only if it residual graph contaim, 
no GAP. 

Using he linea pro,.rammin dual of the problem it is po sible to pecify an alternate criterion 
of optimality imila.r] to the way i i d-one or the minimum-cost circulation problem. We r, fer 
o the dual! variable as prices:. As 'n ·he conte..xt of the minimum-cos d.rcuJa ion. problem a. pric 

f'Utlction p is a. labelin ,of nodes by real numbers. In addition in the context oi the generalized 
circulation problem, we equi:re p( ) = I. ode price can also be interpreted as market prices of 
he com.modi y at nodes, whiclt motivates the definition of he reduced co · function. IT~ unit of 

flow is prucba.sed at v and hlpped tow, then "f(V w) uni arrive t w. Buyino the uni , at v cos s 
p(v),, and selling (v w) unit , a w re urns p(w}r(1, w). Th he reduced cot of (v w) is denned 
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as 
ci,(v w) = p(v)- p(w) (v w). 

Linear programming duality beory provides he following op i a.lity c:ri eiion which ·s · imilar o 
the one given by Theorem 2.2 for minimum-cost circulations. 

The·orem 2.5 .A generalized circulation is optimal if and only if there ,exists a price junction p 
uch that the. complementary slackness conditions (6) hold for each ore (v to) E E. 

2.3 Decomposition of Generalized Pseudoflows 

Themem 2.3 states th.a. a ,circulation call be decompo ed into cycles. ext we prove a. similar resul 
for gene.ral"zed pseudo-flow . e show how ode-compose a generalized pseudofl.ow into ele ents 
where each elemen is a · imple"' generaliz.ed pseudoflo • 

We star b defining five t,ypes of such elements. Given a generalized pseudoflow g, le £(g) 
denote the se of odes, wi h excess and let V(g , denote he se of nodes wit deficits. Each eleme:n 
of he de.composition t a. imple pseudoflow and b ongs to one of he five types 1 where he ype is 
defined according o the graph induced by the set of a,I"CS on w • ch g is positive. 

Type I A -pa h from £(9) to V (g). Crea1tes a deficit and an e.xoess a _he two ends of he· path. 
e II . flow-generating cycle and a. pafh conn.ecting this •C cle to a node in ie(g ). Creates exces 

at the end of the path .. (II the a h ends at he source hen his corresponds to a. GAP.) 
Typ Ill A fl.ow•a.bsorbing cyde and a pa h connecting th.is cycle to a node in 'D(g). Crea:tes de:fi.ci 

at he end of the path. 
pe IV A cycle wi h unit gain. Does not create any excesseg or deficits . 

Ty-pe V A pair of cycles connected. by a path where one of the cycles generates iow and de other 
one ah o,rbs i . Does not create any exc ses or deficits. 

Theorem 2.6 A generalized p eudoflow g can b decompo ed into components g1 , ••• ,gk with k ~ 
m uch that 

where each component 9i is a generalized pseudoflow that i po.silive only on a.ric ( u, w) with 
g(v 1 w) > 0 and that belongs to one of the aboue mentioned types. Thi decompo iti<m can be 
found in. O(nm) time. 

Proof: We pro the heorem by induction on the number o! ucs wit non-zero• flow value. Le 
G1 denote the nbgra.ph of G consisting of he arcs ¥i h po.si i e fl.mv value. G' is acyclic then a 
decomposition con istjng only of paths (generalized pseudofto,vs of type I) can be asily found by 
tracing the fl.ow from some node wi h deficit to ome nod with excess. 0 herurise, let C be a cycle 
in G'. If his cycle has gain l then we can subtrac -How around the cycle un il one arc on th cycle 
has zero flow value. The snbtrac ed fl.m is of type IV and he theottm follo\v by induction. 

ow consider the case hen the gain of C is mo e ha;n 1 ( ne case when the gain is] s han 
1 can be treated similarly). Decrease he flow along this cycle un il one of he arc along tbe cycle 



has ze.ro ilow value crea.tfag defici , a,t one ofthe nodes v on he cycle and denote the removed tlo 
by h. D compose 9· - h according o the induction hypo e ·s. This decomposition. w.i.ll include a. 
number of componen tha create the deficit a.t v. 1 hese oomponen s ca.n be either ,of T pe I or of 
Type ID and each i responsible fo.r some amount of de-fi.cit such that all he amol1ll s sum -np o 
the deficit a-t 1.1 in g - h. Observe hat e,a.ch one of these components to,gether with an approp.ria: e 
fraction of h cone ponds to an element of Type II or\ i the decompo ition of g. 

For establishing h rlllllling hne ohserve that the above proc.edu. e decreases the number of 
ares with po itive fl.ow value in O(n) time. I 

2.4 Alt,ernative Fot"mulations 

The generalized circulation problem can be stated in several ways. In this section. we presen 
different formulations of the p oblem and discuss the relationship among them. Unders an.ding hl 
rela i.onship is im_porta.nt !nee difl'eren practical prob!e:ms cau be mod~ed in differen terms and 
cer ain algorithms seem more natural when applied to certain formula ions. 

Generalized Flow Problem ( ee [Law7'6] under th.e name of 'ilows wi h losse and gains· .) 
The input to he problem is a. graph G =(VE) a gain fttnc ion,: E-. R a. sources,, and a. si.n.k 
t. A generalized flow if a. function an arcs hat sa.ti fies he antisymmetry constrai, s on all are 
and t.he con.se -.ration constraints on all odes except .s and t. The value of the 0ow is defin d to be 
the a.moun of iow into the sink. Among all the generalized. pseudofio s of maximum value, he 
goal is to find a gene.raliz d pseudoflow tha mirumjzes the fl.ow out of he source. he gen.eralized 
flow problem is reducible to the generalized flows with profi . 

Genet-alized Flows with Pron P oblem (GFP P..-obiem) The i put o his problem is he 
sa:me as he inpu to the generalized -flow prob em plus a number r e R+ that gives :he ratio of 
the price per uni of com.modi a. be ink to the price per unit of commodity a. he source. The 
goal is to find a generalized flo that ma.ximizes the pr-oft . , or a. generalized flow g t.he profit is 
rExo(t) + Exo(s). To :reduce a. generalized flow problem :o he GFP problem, chose 1" o be la.r e. 
enou,gh (but fini e)· for example r =BJ}+ 1. 

The following ll.near-tim redu tions show that the GFP problem ls equi valen · to the g neralized 
circulation. problem. Given an insta ce (G = (V,E) st r) of the GFP problem, ,ve deine 
an e.qttivalent i s, a.nCoe of the generaJjzed circulation problem by addi g an arc (t, ) with very 
large (2=. nB2

) ca.pad y and a gain of r; and defining .s to be the source. Gi ve.n. an instance 
(G = VE) 7 ) of the generalized circuJa fon problem, add a new node t o the graph, along wj h. 
he a;-cs (.s., t) and (t .s) .assign uni gain and very high ( ~ nB2 ) c.apa.ci o these arcs a.nd le 

r = l . 

2.5 The R.es ·rkted Problem 

Instead ,of solving the generalized drcula.tion problem directly ·e will solve a. restr·cted version of 
the pli'ohl m. The re tricted problem has the sam input as he generalized circula.tion.p,roblem bu, 
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with an a.ddi ional assump ·on hat all fiow-generactin.g cycle~ in he tesidual gra.ph of the zero fl.ow 
pass through the source. -This restricted prob em has a simpler combina.toriall struct11.te and leads 
to :simpler algorithms .. 1 th.is ubsection we shall give an O(nm)- ime reduction of the gene:ral 
problem to h.e restricted one. Unless st.a ed otherwise in the subsequen , sections we wil1 refer to 
the restricted version of the problem under the name of the generaliz d circulation problem. 

One o · th , nice facts about he re tricted prob em is t, at he ,optimality condition. given by 
1 heorem 2.4 simplifies ·n tbls case and becomes ve y similar to Theorem 2.1. To pro,ve this we 

need a lemma. tha will also be us:eful late.r. 

Lemma 2. 7 Let 9 be a generalized p eudofrow in a re.strict d problem. 

1. If the exces cf every node other than the source i non-negative,. then for every nod, ti there 
afats an (v 1 s)-path in th residual graph G9 • 

ft .lf the residnal groph of a generalized pseudo.flow g h<J$ no ftow-generaU-ng cycle$ and the e:tee 
of ever-y node other then s is non--positii1e then for er:ery node v there exists an (.s, v)-•path in 
the residual graph G9 • 

Proof: e proof is by 'nduction on he numb r of a.res wi h po i'tive flo value. et G' be he 
subgraph induced by these a.res. Bod s a- ements a.re easy to prove when G1 is a.cyclic. ow suppo ,e 

G' ,contains. a. cycle C. Thls cycle is in the residual graph of the ze o fl.ow a.n.d therefore if its gain 
is more than i has to pass through. the source. Consider the case when the gain of C is a mo 
1. DecTeasing he flow along C ca.u onl decrease the deficit a some node. The first clai follow 
by induction. Obs ve tha.t if here a.re no flow-generating cycles in the residual gra.p:h of g then 
the ga.in. oi C lias to be a. leas . which proves t e second claim. Th case of C ha.ving· a ga.in of 
more han 1 c.an be checked in a similar w;xy. I 

Theo:rem 2.8, [Ona66] Given a restricted problemi generalized circul:ation g is optimal if and only 
if the residual graph of g c-0ntains no flow generating cycles. 

Proof: learly, if he residual graph of he generalized pseudofiow ha.s no flow genecra.ti11g ,cycl 
then it ha.s no GAPs and therefoie it is optimal. ,. o ee the oonverse 1 consider a. fl ,ow-generating 
cycle in he residual graph. l e have to show that there is a path i.n he residual graph connecting 
this cycle to the source. The generalized circulation g has non&nega ive exces at every , ode and 
hence, by the the a.hove lemma. here i a pa.th fr-om e ery node to the source. I 

CoroHary '.2.9 Given a restricted problem a g neralbed circulation g i optimal if and on.ly if the 
residual graph -of g has no negative-cost cycle with c = - log .a the co t function. 

This corollary implies, tha the optimalit of a solu ion for an in. tance of he res rkted problem 
can be tes ed · n one s.hortest pa.th comptita ion. 

inally we ho,. how to reduce th genera!faed circulation proble to the restric ed versio1:1. of 
this pro bl ~m. 1 he reduction orb as follows. Fir t ·e sat ra.te all gain arcs. More formally define 
a.generalized pseu.doftow ,h b. h(v,w) = u(v. w) if ( w) i a gain arc h(ti w) = - (w ti)u(w,v) if 
( w) i a lo s a.re, and h(v w) ;;;;; 0 otherwise. For ever v E V: Exh(v) < 0 a.-dd an arc (i, .s) of 
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gain. 7(v ) = B"- 1 and ca.pa.city u(u, = - Ex.;.(v). (We also add reverse arcs with capacity 0 
to pre~er es. tmmetry.) For every v e V : EXJi.(v) > 0 add an arc ( ti) of gain (s 1') = B"' + 1 
a.nd capadty u( tl) == Ex1i.(v)/ (s . v) (and he rev,er-se arcs with. ca;pacity 0 ,o pres,erve · vmm ry). 
Finally, define h to be z.:ero on he new a.res. Let G be the ex e ded g:ra.ph. Then the transformed 
problem. is G u,. '1 s ). Intuitively the new arcs assure hat nodes tha have po "tive e.•,ce wi h 
respect t.o h are supplied with an a.dequate a.moun or almost free commodity,. and nodes tha 
have deficits with re.spec to h send adequate amount of commodity to s, whenever possible 

Theorem 2.10 Git, n cm optimal generalized circulation g in the network (G Uh s) one can 
con trud an optimal generalized circulation in (G, u, , s , in O nm) time. 

Proof; Define a ps.eudoflow 91 by g1(v w) = g(v, w) + h(v, w) for every (v w) E E. Observe that 
the res.id al graph of g' is the res riction of the residual graph. of g to a.res in E. A node ·v E 
has deficii.t in g' ii and only if the arc (v , ) with gain B 11 + l is in the residual graph of g. Similarly 
the node v E - : ha.s excess in. g1 if and only if he arc ( 11) with gain B"' 1 is in the residual 
graph of g. By Theorem 2.8 there a.re no flow genera.tin c des in the residual g-ra.ph of g which 
implies that there: are no pa. hs from node with excess o nodes wi h deficit in h.e resldual graph 
of g1

• Let be he subset of ode from which j reachable in he residual. graph of 91
• ote. tb. 

there a.re no nodes with exce.ss in 

Decompose g' as described in Theorem 2.6. ince here is no pa h in the residual graph from 
node . ith excess to nod-es with deficit the decompo ition does not i dude elements of type I 
(paths). Therefore, excesses are created b :flow-generatl g cycles and deficits are crea.ted. by 
flow-absorh1:ng cycles. The exis ence of a. flow-a.bso,rbing cycle ·n he decompos'tion implies h.at 
t.he:re a.re :flow-g~nerating cycles in the .residual graph of 91

• \\o·hich by h.e.orem 2. contra.die s h.e 
optimalit of g. 1 hi implies ha g' can:no have deficits. 

Subtract ftom he pseudofllow 91 the elements of t e decomposition at create the exces es at 
node o her than s. Let 9 be .he resul ing generaJfaed circula.tion. We claim tha. g is optimal. 
Observe hat on a.res (v w) inside or entering S the flow value g(v w) = !l(u w) = iJ(v w) + 
h( ti w a d themfore here a.re no flow~gener-a. 'ng cycles con aJn.ed in S. Furthermore h.e source 

is not reachable from nodes ou ide .. Therefore he l'\esidual graph of g ca.n ot contain a GAP. 
I 

I ote hat ·r B js the bi est jn_teger i.n the input problem then the biggest integer in he 
transformed problem can be as hlgh as Bn + L On the oth r han.d he tra.nsforma ion. can :no 
cau ea. significant increase i T and L: he oor.re-.sponding pa.rame :e.rs T' and L' of lie hansformed 
problem a.re boun.ded by B"'(Bn 1) ~ B 2n+l a: d B 2m(B" 1 ~ B 3m, respec i el . 

3 Vertex Labels and Equivalent Problems 

Recall the ftna.ndaJ analysis interpre a ion o the. generalized circulation roblem de~cribed in he 
in r-odu.c ion wber ver ices correspond o differen securities or cUl're.ncies and arcs correspond to 
possible ransac ions. Suppo e one country decides to cltange he uni of ,currency (for exampl . 
Great Britain oou1d decide to ·n zoduce the penny a.s he basic cur ency unit, instead of the£, o 
I aly could ,erase a. couple Os at be end of j s bills . This causes an approprja e upda.t of he 
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excha ge ra:tes.. ome of the ca:paci ies a.re changed as well (for example a millio £. limit on he 
exchange from C. to DM would now rea.d as a limit of 100 million pennie ). 

The opera. ion of ch.anging the uni s of measure is ,called relabeling a.nd he equivalent problem 
obta.ine-d by relabeling is called the relabeled problem. Let µ. : ~ R+ be a function denoting 
the numher o.f old units per each new unit a nodes of the etwork. Given a func ionµ. we shall 
ref et to µ. ti) as the label of v. 

Definition: GiveD. a functionµ" · - R+ an.cl. a network J =(VE u) the relabeled network 
is ,,. = (V E 111 u.~) ·where the relabeled oopacitie and , h.e rela.beled gains are defined by 

= u(v1 w)Jµ(t1) 

(v w)µ(u)/µ(w). 

Given a. eneralized pseudoflow g and a. la.beiing µ, he relab led riesidual capacity is defined bj: 

( ) 
U( V W) - g( V W) 

Ug,µ V W = µ(-u) • 

The following lemma, ela e pseudoflows in the original and the relabeled :networks. 

Lemma 3.1 1/ i a genei'(ilized network and g i a generalized p eudoftow in then 9a(v w) == 
g( v w) / µ( v) is a generalized pseudo/low in the relabeled network r w M oroover, the residual graphs 
af g and 91,1 are tke same. 

, he idea .of relabeling was used by Glover .and Klingman [GK73] (under the anl:e "sc.aling") 
o show hat :he generalized ne woik flo,.,, p:roblem in which the n flow conservation constraint 

a.re linearly dependent is equivalent to he ma.xim.u.m•ft0'1 problem. The name scaling' comes 
from the fact tha.t :relabeling corresponds to muJtiplying b.e columns of the correspon.ding .linear 
pr•ogra.m by scalars. 

3.1 Canonical .Relabeling 

Let g b a generalized p eudofio,w whose .r idua.l graph has h property ha all iiol •genera: ·ng 
cycles go t ough .s (for example he zero flow in the restricted problem). We shall use two 
symm.e :ric way to :relabel a residual network. One is the eanonical relabeling from the source and 
the other is he canon foal relabeling to the soure-e. We use · he first relabeling when we want to push 
additional! flow from 8 and. the second when we want o pu h additjonal fl.ow in o s .. 

The canonkal :relabeling from he ource .applies when e ery node ti EV is re.achabl,e irom the 
source 8 via a. pa h in. he .residual graph of the generalized p udoflow g. For ever, node ti E V 
he canouical labelµ( 11) .is defined to be qual to the gain of he highest-gain. simple .Mi path in he 

re idual graph. Tha:t is o e :new uni corresponds o :he amount of fiow that can :reach h.e node 
v if one o]d uni of :fiow j pushed a.lonP' the most effi.dent simple path in. he re cidual graph from 
o 1J, ig oring ca.pacity :restrictions a.long he pa.th.. 

Observe that he highest-gain pa.th is the shortes pa.th he.n a.re lengths are defined to be 
c(ti w) == -log( ( w)). B ca.use of he assumption that all flow.generating cycles pass through 
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th.e source e highest~gain pa.th can be ,easily found by a sin le shortest~path co putation since 
deleting the arcs entering fr.om .he residual graph yield a graph wi h n.o uega ive cycles. 

The canonical relabeling to the so -rce i defined imila:rly. I appUe.s ·t here ls a pa- h in he 
r,esidual graph from every node o the ou.rce . The canonical labelµ is defined as lie i se of 
th.e gain of he highest-gain. simple v-.s pa.th in the residual gra.ph. 

The following important properties of the canonically rnlabeled problem a.re easy to pmve. 

Th.eorem 3.2 After a canonical relabeling from the source: 

1. Every arc e with non-zero residual capacity, other than the ~re . entering the node , has 

;µ(e) ~ 1. 
2. For every node 11 there exists ,a path from to ti in the residual graph with u(e);;;;; 1 for all 

arcs e on the path. 
9. The mo- t eificientflow-genem.tingcyclescon ist o/an( , v)-pathfm· ome ti EV with µ(e):;;; 

1 along the path and tlie arc (v ) E E 9 uch that µ(v .s) = m.ax( 1,1(e) : e E E 9 ). 

Theorem 3.3 After a con<mical relabeling to the source: 

1. Ev r-y a~ e with non-zetl)• residual capacity other than the arcs leaving the node 8 ha 

"'(e) ~ 1. 
For every node v, there ,eri ts a -pat!: from v to in the residHal graph with µ,(e) = l for all 
arc e on the path. 

9. The mo t efficient ffow~genemting eydes consi t of aTI ( , s)-path for some E V with 1,.i(e) -
l along the path, and the arc ( v) E E9 ~uch that µ(s,v) = ma.x "(µ e): e € E9 ). 

- h.ere is a si ,ple correspon.denCie between tb.e units used for a relabelin and the prices from 
the linear programming dual of he problem. ui ivel · making the unit at a. vertex. v mailer 
while keeping he price per urut consta.n corresponds to increasmg the price at v. In o her words 
changing the uni a v to µ(v) and keeping the price per uni (p(v)) cons.tan has the same effect as 
keeping the ize of the unit and setting the p ice ·to p(v) = p(v)/ µ(v). If the p:rice a every node is 
l then ca.nowca.l relabeling from the source oor: -e.sponds to changing he prices to p( v = µ( v )-1. 

ote hat ignoring the arcs entering s hese prices a:re t1i.e marginal oo ts of the co odity,, that 
is the minimum prices (per uru , for which one could ge some addi 'onal amount of the commodity 
to he nodes. 

We can reformulate the optimali y condi ions of Theorem 2.5 o use Ja.be instead of prices. 

Lemma 3.4 A generoliztUi circulation g in ,a restricted problem i optimal if and only if there exists 
a labelingµ. uch tha every arc in the residtJal graph of th~ general'ized circulation has 1',r.i(e) ::;_ 1. 

W say :hat a labelingµ is optimal if here e.xist a generalized circulation g uch hat g and µ 
satisfy he conditions of Lemma 3.4. 

Lemma 3.5, k optimality of a labelingµ /.or a 1 tricted p.rcbl m oan be checked in one maximum­
flow computation. 
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P.roo{: Relabel the network with la.be] µ. Suppose g is a generalfaed circula ion hat a i f1es 
, he optimality conditions with µ and le 9JJ be the corresponding generalized circula ion ln t e 
rela.beled ne work. If 1 µ(v,w) > 1 hen by the optimality condi ions g(11 w):;;;;; u(v w) hat i 
9.ch-'i w) == uµ(u, w). Due to t:he symmetry, this uniquely defines , he fl.ow v:aJ.ue one ery arc • ith 
1'µ.(e) ¥, 1. The labeling µ. is optimal if and o.nl if gµ. can be extended o a. feasible generalized 
circa a.ti on in he relabeled network. Hence, it is sufficie • to sol ea. network :flow feasfoility p.roblem 
on he subgraph of h relabeled ne work induced by the arcs with uni rclabeled gain. I 

Duri g a computation one ha.s to keep he iz of the Rum.hers n.nde con :rol. Th followin 
lemma provides bound.s on so · e oi the numbers occurring in he algorithms. 

Lemma 3.6 Let g be a gene.ralized p eudoflow such that the canonical relabeling from. the .source {or 
to, the source) in the residual gro.ph applies. Letµ denote the canonical labels. Then T-1 ~ µ(1.>) :5 T 
and both numerator and denominator of µ.(tr) are divi or of L, for every v EV. 

Proof. Th@ label µ(v is equal to the gain of an sTv path in G, and hence satisfies he a.hove claim, 
by the definitions of T and L. I 

The following theorem will be used to prove · ermination for ho ·h of our po!ynomial-time algo­
rithms. For a node ii a generalized pseudofiow g . and labels µ let E.'!0 ,µ.( -i,) denote he relabeled 
exces of he node ·hat is, the total exre"is of he pseudo:fiow corresponding o gin the relabeled 
etwork v.ith labelsµ. (Ex9 ,i,l(v • = Ex11(v /µ(t;)) Consider the u..bgraph G1 of G induced by the 

arcs with uni relabeled gal • By Lemma. 3. 16 in a. canonically rela.beled e work the relabeled 
ca.paici y of every a• c with rel.a.beled gain dilferen from 1 is a. multiple of L-1 • The :next theorem 
sta.tes h,at , he same is almost true for the arcs .in G'. Fo any sU:bse S he relabeled capa.city of 
arcs of G1 entering S plns. the relabeled excesses of he nodes in S i a.n integer multiple of - 1 • 

Theorem 3. 7 Let g be a generalized p eudofiow whose. residual graph contain no fiow--genero.ting 
cycles. Letµ denote the canonwal labels whcen relabeling from the source (or to th source) in th 
residt.Aal graph of a generalized psetJdofiom g. For any subset S t;;; V 

= }:' Ex9r#(t1) + L u9 (w -v) 
1JES veS;w-;JS and 'YI' u·,tr},""l 

is an inieger mt.Jltipl of L-1 • 

Proof! B I Lemma. 3.6 he labels relabeled gain fac ors1 and elabeled capacities are multiples of 
L-1

• However his is ot neoessaril, true for the relabeled TesiduaJ capacities. First c.onsid r an 
arc wi h relabeled gain higher than 1. By as umption he :flow on his arc is equal to he capaci y 
so the· flo · i a, multiple of L-1 . Ey vmmetry th flow value ,on an arc ( ti w) ,vith relabeled gain 
of]e ha.n 1 i ,equal to (-7iw,u)u.s-(w ti)) so it i also a.multiple of L-. This might not be 
tne for a.res with uni refabeied gain 

The main. observatjon is tl a.t he valu.e of . is u.nc11.anged when the value of he :fl.ow is c.hanged 
on an arc (and its oppo i e to preserve the antisy met:ry) with a uni relabeled gai . Indeed jf he 
a.re i contained in · then changing the flow o e change h excess a he two ends of he arc 
by oppos·te a.moun . On the o her hand .if e i outside of , hen j does no affect the expression. 
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Consider an a.re en ering . A change in the flo'll on e r ults in the cha11ge in the excess at 
the he.ad of e a.nd in the corresponding change in the residual ca.pa.city of (in he oppo it wa.y) . 
Consequen ly one can place , he flow val.ue on all arc w· h un.i Teiabeled gain by zero withou 
changing the val e of the expression. In the resulting generaliz~d pseudoflm all flow values aM 
multiples of L-1 and herefore every term in. he expTes ion i a.n integer multiple of L-1. I 

4 Simple Algorithms 

In this secti,on we presen wo simple algori h.ms for b.e eneralized cir,cttla.tion probl m. Both 
algori hms are based on he na.tutal a;pproach of augmen ing along :fio,w-genera.ti.ng cycles. hou,g 
the aJ.gori h.m.s are no efficient we describe them in order to give some in u.itio11 for the polynomial.­
time algorithms p esented in the subsequent sections .. 

he first algorithm, due t-0 Ona-ga O a.66] ]s si:mila.r to the minimum-cost fl.ow method hat 
augµi.ents the 13:ow .along a. cl1ea.pes a.ugrne.nting: path [BG61 Jew5 ]. fu the inp , network all flow­
ge:nera;Ung cycles p.ass though he source, Onaga. observed that this property is retained if he 
augmentation i done along he high.est-gain flow-genera ing cycle. O:naga s algori hm itera.tivel_ 
augments the ge.neraliz,e.d cir,c.ulation aJong highes • gai flow.generating cycles in the residual graph. 
until there are no such cycles lef . By Theorem 3.2, .. if all flow-ge eta ing cycles pass through the 
source, then. the high.est-gain fl.ow-generating cycle ca.11 be found by a. shortest path computa.tfon. 

herefore, ea.ch iteration of this a.lgon run consists of a shortest.pa.th ,computaiion followed by an 
a.ugmen:ta ion along a. flow-generating cycle tlu-ough the &ource. 

By Theorem 2. we know ha when the algorithm termina.• es, he resulting generalized circu.­
ation is op ·mal. Howevet\ similarly o e minimum.c.os flow algorith.m tha a.u.gmen:ts the flow 

along th~ cheapest pa.th, this a.Igo, ithm. does . o run in :finite t"me [FF62]. In o der o make be 
runnin_,g time futlte, w use a. ma.ximum&fl.ow algorithm as a. subrou jne o augment fl.ow along all of 
he hlghe -gain ilowrgeno.rating cycle a once in ead of a.uQ'menting the flow on a c cle-1>y~cycle 

ha.sis. The resul ing algorithm i similar to Jew(dl s [Jew5 ] algorithm tha sol e he minimum-co 
fl.ow pmb ,em by repea edly applying a. ma.ximu:m-flo subroutine to the arcs with zero reduced c.os 
and then changing he price • 

More p:redsely consider _h residual graph after the canonical :relabeling from the ource. Let 
a= max{ ,.. v ) : (1.1 s) E Eg} and let . 0 be the generalized network wj h underlying graph G0 

hat is induced by the a.res with :unit elabeled gai11s and arc {(v,.s) : ('v s ) E Eg,1'µ(v s) = a} 
and heir oppo.si · hen by Theorem 3.2, all fl.ow-~enera ing cycles with he highest gain lie 
m G0t, Obsenre that amy non generalized au menta.tio.n of flow in G 0 i.e . . augmen a ion hat 
disrega_rds he gain factors and views Go. as a sta.ndud ne work cor:r ponds to a valid gme.rarzed 
augmen a ion in G. 

Lem:ma 4. A (ordinary) flow in Ga that mazimizu the um of the flow value.son the arcs entering 
with the gain factor ct'. correspond.s to an optimal generalized circulation in Gt:11.. 

Therefore b' a .single a.ximum•fl.01,1 computa ion we ca.n augment the :fl.ow o hat , here are no 
flow~· e era.tin . cycles that pass hrough , h.e sourc in G 0 and herefore ther,e a.re no iio v~."enerating 
c cles with gain a · n he residual graph. 
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Step 1 Findµ, canonical labeling from the smuce. 
If IJ(v , w) :s; l on every a.re oftb residuaJ graph, then h.al ( he cunen circula ion 
is: optimal). 
Othel'Wise ]et er= ma.x.ceE~ 1u(e). 

S ep 2 Let Go,= (V E0 ) be the network induced by resklua.1 arcs "'~ith e1 her uni reduced 
gain or reduced gain of o:, and heir opposites. 

ind a. circuJation J' ill GI!>. using tbe :residual relabel d capacities. tha: maximizes. 
the flo on the asfcs with reduced gain a: in to s 

Step 3 Update t.he current solution by setting g(v, w) = g(ti,w) + /1(v w)µ(v) V(v, w} E 
E; ::j. s, and set the ,..alue g( • w) Vw E V to keep the symmetry. 

Figure 1: A .siflgle ·teratfon of the maximum.flow ba$,ed algorithm. 

The max.imuro~:flow based algorithm proceeds in iterations, where a eaic.h iteration \lle compu e 
the canonical relabeling from he SoUJ'ce construct Ga, compute th appropriate maximum-flow 
a.nd interpret the result a.s a.n augmenta ion of the current generalized circula 10n. ee. Figure l 
for a more formal de.s-cription. All flow-generating cycles in the residual graphs of he generalized 
circulations fou d throu bout t e algorithm pass through , he source which gua.ra.ntees bat h 
canonical Telabeling is applicable. he op iruality of the solution produced when he alf"ori.thm 
terminates follow from Theorem 2. . 

Theorem 4.2: The highe6t gain of a flow-generoting cycl in the :residual graph is strictly decrea fog 
from on,e i eration to another and ,therefore th numb r of iterations is bounded by the number of 
different gain of imple jfow-generating cyde . in the original network. 

Corollary 4.3 If tlte gain factor$ in the input are all integer powers of 2 (or of any other con tant) 
then the above algorithm runs in polynomial tim . 

Observe, , hat he fu aJgo:rithm descI:ibed in this e<!tion :may not er:mina e, whereas the 
second algor1thms terminates in exponential ti ¢, In he next tw,o sections we describe more 
efficient aJ,gori hms for th · problem. 

5 Algorithm MCF 

In this section we prese t our first a.l"oti lun that so] e he restricted versfon of he generalized 
circulatio problem i polynomial ime nl.es ta ed o herwise, we will refer o the rest:dcted 
problem as h generaJfa d circula ·on problem. Thls algorithm is b~ed on a minim.um-cost :flow 
subroutine so we call it Algori. hm. M •. The maiD. idea of he algorithm j best described by 
contrasting A]gori ,hm . if CF with he maximum-flow based algorithm p1e ented in the prev·ou 
ectfon. - _ ea.eh iteration, both algorl hms solve a impler :flow problem and interpret · he resul 

as a augmentation in he generalized circuJation ae: work. The :max:imum--fiow based aigorl hm 
is s]o beca.u e at each i eration it co iders only ,arcs with uni r labeled gains and some of tile 
a.re a.djacen · o he source ,disrecrardfag he rest of he graph oompl tely. The algorithm presen ed 
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Step l ind µ canonical lab . ling from the sou:l:'ce. 
If j,j (v, w) ~Ione •ery arc of her idual gtapb and Vv E (V- s) : :Xg,µ( ) = 0, 
hen halt (the current cucu.lation .is optimal). 

Step 2 Introduce c05ts c(v w) == -lo '11,1(v w) on he arcs of the ne work. 
Find a minimum cost pseudofiow f1 in be residual relabeled network G t.ha.t has 
excess Exp(v) = - &;r,µ(v) for every node v EV - . 

Step 3 Let !I be the interp.reted version of J' , 
Update the current solution.by .etting g(v~w) =g(v,w)+l(v, w)µ(v) V(v , wJ EE. 

, igu:r 2: Inner loop of Algorithm M CF. 

in this ection. considers all a.res a.s :igns cost c( e) = - log # to each UC; and so ves the re-Sulting 
minimum~cost circula ion problem (disregarding flow gains and loss.es). 

The interpretation of a pseudoflm / is a, generalized p:seudoilow fb such tha. g(v, w) = f(v w) 
jf f(v, w . ~ 0 and g(ti ,10);;;;;; -;#(w t;)/ (w, u) otherwise as in the maximum-fim1,• based .a.1gorit1rm. 

ot-e that as opposed to the case of the maximum~flmv based .algori h.m where the interp etation 
of a fe ible circulation is a. feasible generalized circufatio he interpre ation of a mi.ninrnm-cos 
ci:rcula.tion leads to a generalized pseudoflow. Whenever the drculation us.es arcs wit relabeled 
gain of le thau 1 it interpreta ion has deficits. connection betwee a pseu.do:flow f and j 

· t,e:rpreta. ion is given by the following lemma.. 

Lemma 5.1 The re idual graphs of a p eudoflow f and its interpretation g as a generalized pseud­
o.flow r.ire the ame. 

The algori hm star with the zero generalized pseudoflov,· which has flo · genera.ting cycles 
in the residual grap\. By he definition of th es ric ed problem all these cycle pa ·h throu h 
the source. Using t.hi fact we will show ha.t the onJ iteration tha CI'eates a. positi e e.xcesc,es is 
h firs one and th.a. the oni.y posi ive excess c eated is the o e a;t the source, Each subsequen 

jtera.tion tries to use his excess to balance defici a't various nod-e of he graph c:rea; ed by 
interp:reta ion of flow tlnougli arcs with relabeled gain of le · hen 1. In each i era ion we find a 
minimum-co fl.ow tha. a isfies be deficits tha were left after the previon iteration .. 

Algorl hm MCF shown in · Igu.:re 2, main a.ins a generalized pseudo-flow gin he original (non­
relabeled) network · uch ha.t he excess at every node o er than the sou:rc is non-positive. The 
algorithm proceeds in i erations. ea.ch i e:ra.tion it canonically relabels he residual gra:ph o] . es 
the corresponding minimum-cost flow problem i the rnlabeled ne work and interprets the resu1 · 
as a generalized augmen atio . 

5.1 Analysis ,of the Inn.er Loop of the Algorithm 

In this ection we prove that each itera.tion of Algorithm MCF can be jmplemented t-0 run in hi. 
polynomial t· e and show that ·he algorithm produces an optimal generalized drcula jon upon 
termination. The proof that he number of iterations js polynomial is deferred until the ne>.i 
section.. 
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The most im.portan propert of a. minimum-cost flow, for tWs a.pplication. is that Its •r,esldual 
graph has o negatii e cycles. By L-emma. 5.1 thls yiel s he following corollary: 

Corollary 5.2 The residual graphs of the generalized pseudofiows introduced by the algorithm in 
Step 3 have no fio w,. generating cycle . 

Lemma 5 .3 The following statement$ are true f(Jr a generolized pseudofiow g thcit · cons ructed 

by Step ,I: 

l. The canonical rdabeling (Jppli~ to the re idual graph of g . 

. All ea:cesse , euep.t at the source, are non-positive. 

Proof: We will pr"Ove the l~mma. by mductlon on the number of itera.tions. Assume tha a,t the end 
of a;n itera. ion we have a. generalized pseudoflow g that satisfies the s a; ements of the · enuna. \ e 
sh.all prove ·hat he stateme t are s.a.tisfi.ed a.t the end of h nex i eratio . 

By Comllu 5.2 the ies1dual graph of ,g has no fl.ow-genera ing cycles and therefore, b 
lemma 2.7 every ode js reachable from he SOUice in the residual graph of 9. Hence, we c-an 
compute the canonical relabeling from the source at Step I whlch p. ,oves the :first sta emen of the 
lemma. :foreover, the absence of :flow~genera.ting cycles in the residual graph means that there ar 
:no arcs wi h relabeled gain of more than in thi.s graph. Therefore the interpretaf on of flow /1 
computed at • p 2 can create only deficits., which proves the second sta emen . 

To p,r-0ve · :he co rectness of e statements after the -st iteration recall he assumption ha the 
residual gra.ph of he zero generaJfaed p eudo'ftoi. "s strongly con:nec ed. Al o by definition of the 
:restricted problem, all iow-genera ing cycles in the residual gra.ph of the zero ge eralized pseudo:llow 
pass hrou,gh he source. Therefore we can apply canonical relabeling from he source. Moreover, 
after he :relabeling= all arcs with relabeled galn of more han l enter the source. Theiefore he 
onl n ode hat ca.n ha.ve a. positjve exces after the i.nte:rpreta ion of tlte Ho , f' is the source. I 

Lemma 5.4 For a generalized pseudoflow g and the labelingµ. after Step 1 there exits a pseud­
oflow /' in the relabeled resi"dual n~twork of g with Exp(v); -Exg(v) for every node tt E V - s. 

Proof: Let g be a generalized p eudoflow at the beginning of an iteration. Decompose i aocordi g 
to, h.eorem 2.6. The only elements of the decomposi. ion that ca contribute to deficits a:re _pa h 
from nodes wi h defici to the s.:ouroe a.nd pa hs from nodes w·th defidts o :flow-absorbing cycles. 
Existence of a. iow-absorhing cycle in he deoompoKition implies hat there are flow-genera- ing 
cycles ia he residual graph of g which co trad'icts Coro.lla:r 5.2 and tlterefore ther are no fiow­
ab 01bin cycles in h dewmposition. 

Consider a subset ,of the nod con a.ming he source. By he previous emma. the only node 
that can have a positiv excess i he source and ther,efore it j sufficient to prove tha: the elabeled 
.residual capacity of h.e cut defined by exceeds the sum of the relabeled deiici ·• 

Consider an ( v)-path in he decomposi fon wher, v (j. and let (w1 u;2) be an arc on h_i 

pa.tl that leaves . Recall that one of he propertj,es of he dec.omposition is hat ( w2 w1 ) is an arc 
of the resid al graph. By Corollary 5-.2 tne:re a.re no flow-generating cycles in he re idual graph of 
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9 and hence · he refa,beloo gain of every arc i the residual graph of g is at mos 1. Therefore he 
sum of deficits created by the paths in the deeomposi.tio tha use thls arc~ js a. most he rela.beled 
residual cap.a.city of he oppo i e arc (w w1), I 

The above lemmas shmv tha.t he algorithm can proceed until a geueraliz.ed circulation is found. 
By Corollary 5.2 and Theorem 2'. · he generalized circulation found is op imal. Hence we have 
proved the following h.eorem. 

Theore m 5 S Each iten1tfo11 of th algorithm ca.n be implemented in polynomial time, and the 
generalized c:irculation g, produced by the algorithm upon termination is optimal. 

5.2 Bound.ing he umber of Iterations 

Consider a. generalized piSeudo:llow g a: he beg]lllltll'°' of an i ration. The fact ha.t there are deficit 
and tha: there ar no flow-genera.ting cycles in the .res· dual graph means tha the current exces at 
.he source is a.n overestima:te on. e value of h.e maximum po ible exce.s • It is easy to see tha. the 

sum of the deficits (a.fte, the relabeling) at all the nod.es except a the source is a lower bound on 
he amoun of the overe ima ·on. hl sugges s to use this value De(,g,µ) = Ev,;c:3 (-Ex9 ,u( )) 

as a measure of the proxim.i y of a. generalb:ed. pseudo:flow to an op i al generalized circulation. 

irs we how that if Def(g µ) is very small then 'he aJgori hm t r:mina,tes after one more 
i eration. 

Theorem 5 .6 If Def(g µ < L- 1 before Step 2 of an iteration, then the algorithm produces an 
optimal generolized cfrcvJation at the end of Step 3 of this iteration. 

Proa!: We drum tha he pseudoiiow f' aompated a. ep 2 of hi j eration uses zero co t a.res 
,only. 1 o see this, consider a set of nodes S con aining he s011rce s. We have to argue tha.· he um 
of the relabeled defici s of the node not in is .a, most equal to he sum of · he relabeled roe iduail 
capacities of the zero cost arcs entering S. Clea:d , he difference is a most Def(g µ) < L-1 . 

pplying Theorem 3. to the oomplemen of hows · hat his difference is an integer multiple of 
L-1 . herefore i is non-po itive. 

The in erp, eta,tion g' of a. psendoflow /' that uses zero cost arcs only is equal o the pseudo:flow. 
Therefore, no deficits are lef .a.fteI Step 3. The lemma. folio\. s because the residual graph contain 
no iiow-t!ene:ratiJlg cycles tluoughou the algori hm (by Corollary 5.2). I 

A.n important ob ervation is that the ]abels µ are mono o "cally decreasing during he algorithm . 
.he nex: lem a rela the decrease m he la.bels to the prke funct"on from he minim.um-cos fiow 

compu a io . Le p' denot the optimal price function as ociated with the p eudofio-w r found in 
tep 2. Assume. without loss of generality ha p'(. . ; O. 

Lemma 5.7 et J' b th minimum-cost p eudoflow found in Step 2 of an it rotion1 and let .,I 
be the a sociated pr·ce junction. For ach node vJ ~he canonical relabeling in Step 1 of the next 
iteration decreas.e th lab l µ( v) by at le(l t a factor of 2r,'(u). 
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Proof: 1 he d rease in he label of a node vis computed by :finding a. shodes path in. the resi,dual 
graph from s to v .. The price function p1 is optimal and hence the reduced cost of he arcs in the 
residual graph are non.-nega.ti e. he:refore, the length of any {s ) path is a least ?'{ti) - v'( ). 
I 

Bor the am.aly i of th algorithm we de,eompose the minimum cost flow in o p.aths, and co.nsider 
the pa h o,ne by one. The decomposition is based on he following lemma. 

Lemma 5. ([FF62]) Let / be a minimum-cost flow tha.t sat" tfies giv n (non~nego.t.ive} demand.s 
at etre-ry ncde oth r than a and le( p be an optimal price function such tka p{ 8) - IL The flow f 
can be decomposed ,into cycles and paths from s to the other nodes. such that the cycles and the 
path.s are in the re.9iaual graph of the zero flow the cycle have. n.on-po . itfoe co t and the cost o.f 
the paths ending o.t a node v i at mo t p( v). 

Proof: For every node v E aidd the a.re -v s) and ( . v). Extend. the :ll.ow / o these arcs so 
that it become a circulation . Define the cos of an a.re. v ) o b equal to c( v, ) = -p( v ). The 
n~w Ma have zero reduced cos and hence he circula io is of minimum co t. 

he lemma j proved by applying Theore , 2.3 to decompose this circula,tion into cycles. · ote 
· hat the arcs opposit--e to th ones tha. belo:n,g to the ,cycl.es of he theorem are in. he residual graph 
of the circulation. Therefore he c des have non-posjtive cost. Any cycle tha: that uses a. new arc 
( v. s) correspond to ( .s v )-paths in the original graph. I, 

The key idea oi the analysi is to distinguish. two cases: Case 1 wh re he flow /1 can be 
discomposed into ,:cheap" paths (e.g. p'(u) is mall, sa.y p(v) < logl.5 for every u EV)· a.nd 
Case 2 wh re ther,e exists 1t1 E V such that p'(v) is large' (2: log1.5). vVe show ha:t in he. first 
ca.s,e Def(/-µ) de,ereases si.gnHi,caa ly1. while in he second case by Lemma. 5.7, some of the la.bels 
decrease significantly .. Using. Theorem 5J5, and Lemma 3.6 we prove tha.t neither c:a.se can occur 
too many imes. 

he followi g lemma is u.se<l to estimate the tota defici created when .in erpretin a :fi.ow as a 
generali~d psendo:fiow. 

Lemma 5.9 Le.t f' be a flow along a imple path P from s to ome othef' node v that a,tisfie 
one unit of deficit at v. L t g1 be the interpretation off' a a gen rolind pseudcftow. A . um 
that all relab led gains along the path P m-e at mo t 1, und denote then1 IJ.y 1 ••• 1'k • Then 
after augmentt,ig by 91 the unit of deficit at v i replaoed by deficits: that sum up to ,at mo t 
(IT1:::i~k i)- - 1. 

Proof.: The deikit crea.t d at th i h node of he path is ( 1 - ,) for i ;;;;; 1 . • • k. U ing he 
assumption that he gain factors aloo'1' the pa.th a e a mo t 1 the sum of the deficits can be 
bounded b 

I 
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·sjng thls lemma and Theorem 2.6, we bound. the va.hrn of Def(g µ) after an applica ·on of 
S ep 3. Le p1 be an optimal price function associa. d with th~ ilow f' such that p'(B) = O. Le 
/1 = ID¾,eV p'(v) denote the maximum price. 

Lemma 5.10 The value of Def(g µ) after an application of Step 9 can be bounded by 211 -1 time 
its 1:aln e be/ ore the tep. 

Pwof: Use Lem.ma. 5.8 to decompose f' i o path and cyde.s. Interpret the pseudofiow /' by 
interpre ing the cycles and the paths one by one. The costs a.ssocia.ted with the a.res of the residual 
graph of the generalized ps.eodofl.ow g are non~nega.tive a.n.d tlierefore the cycles in he decomp~ 
sit}on oonsis <1f zero-cost arcs only. , terpretatlon of he flow along these cycl do not change 
the How val11ej in pa.rticu.la.r i does not create deficits. By the a.hove lemma ,. hen interpreting a 
pa.th from · o i, the deficit a u is replaced by deficits that sum up to at mos 2lM -1 :::;: 2fl -1 
times the defici a:t atisfied by hls path. I 

Corollary ,S.11 Jf p'(v) < log .5 for every node -v then Def(g, µ) decreases by a factor of !J dm·ing 
the application of Step S. 

The r-e.maining difficulty is the fa.ct tha,11. the func ion Def g µ), can increase ei her when the 
ranonkal relabelmg is done ln S ep 1 or in Step 3 when Case 2 applies . . · owever if De{(g µ) has 
.in:creased by ome factor during relabeling (S ep 1), or after interp:reta.:tlon of / 1 (Step 3) th.en a: 
lea.st one of the nodes is relabeled by the same factor. More precisely 

Lemma 5.12 If either during Step S of one iteration or Step 1 of the next oneJ Def(g µ) increa e 
by a factor of a then the fobel of some node decre.ase.s by •OJ, least a fact.or of a during Step 1 of the 
next iteration. 

Proof: The increase in Def(g µ.) during Step 1 fa due o relabeling and hence tlie deficit a a node 
can increase dunng this Step by a. factor of o: if and only if ,he label at hi node decreases by 
the same factor. By Lemma. 5.10 he increase in Def(g µ.) during Step 3 is bo·unded by 2rJ where 
/1 = ma.."<p,'(v) . He11ce, if Def(g µ) incr ases by a dung his step here e.x1sts a. node ti such that 
P'(v) 2: log a. By Lemma. 5. 7 th.is ea.n that µ(u) decreases by at lea.st et during tep 1 of the 
nex i tera.tion. I 

Combiru.ng the above ults we can bound the overall growth of Def(g,µ.) du.ring an execu Jon. 
of the aJgori run. 

Lem.ma 5.13 The growth of the junction Def(g µ) throughom an exeeuti.on of th algorithm is 
bounded by a factor of TO{n),. 

Proof: The functioR Def(g,µ) can increase either as a result of tep 1 or tep 3. By the above 
le:mm.a. such. increase js followed by a decrease in the label of one of the nodes by at leas the 
same factor dunng t e subsequent relabeling. The claim follows from Lemma 3.6, tha limits the 
decrease of the label of any .node. I 

Due t.o Lemma 3.6 Case 2 call.Ilo occur too often. The above lemma. helps to bound tlie number 
of fo:nes Case 1 can occu,r. 

21 



Theol'em 5.14 The algor~ithm terminate in O(nlogT) = O(n2 logB) iterations. 

Proof: Lemma. 3.6 shows tha Case 2 canno oc,c more han O(nlog ) ·mes. When. Case 1 
applies, the value of Dd(g µ) decreases by a. fa.cto.r of 2. The a.hie of Def(o µ) i a most O nBT) 
after the first ite a. io . and b)' Theorem 5.6 the ale:ori hm terminates when this Yalue decreases 
belo L-1. Lemma 5.13 limits ·ts increase during the algor1 hm. Hence Case 1 canno occur mor 
than O(n logT) imes. I 

To get a. bound on the :rm:m.i.ng time we have o decide which minimum-cos flow aJgorithm to 
use as ,a, su.broutine. The best choice urns out to be Orlin [Ori' ] strongly pol :nomial algodthm. 

Theorem 5. 5 The above generolizedfiow algorithm can ,be implemented so that it will u eat mo t 
O(n2 m(m+nlogn) ognlogB) arithmetic operations on numbe-r whose fae i bounded by O(mlogB). 

Remark: The choioe of a strongly polynorrua.J. minimum-cost flow algorithm i · somewhat su.rprising 
·nee our algorithm is not strongly polynomial. The roe-a.son for this choke is that he current best 

sea.ling algori hms would give worse r1lilllin!! times even when , :he size of ,.he numbers in · he input 
is small. Ob, ve ha the number of bi s needed to r,ep esen. th capacities of the intermediate 
m:inimum-cost floi.• probI ms can. be as high as mlogB whkh would make a capaci y-scaJing 
al o ithm too slow. The classical cost-sea.Ung algori ltms cannot be used directly because "he co -t 

(irrational.) lo,garitlnns of :ra iona.l numbers. A cos -scaling algori run can be construe ed based 
,on the idea. of c-optimality u done in [Gol 7,GT 7]. ote that the gain of a 8.ow-genera. !ng cycle 
can be as small as 2-0(B._.) 1 and hence the ahsolu e value of the cost of a. nega i e cycle can be as 
small as B-O(n) his means · ha.t the requited precision seems to be Q(B-11.) and the_refore the 
cost- caling algorithm are too . low as well. 

6 ·The Fat-Paths. Algorithm 

Recall bait a G.A.P i defined to be a. iiow•generating cycle, with a.n augmenting pa.th connecting 
his cycle o the sou.tee. natural way o make progress towuds ;i.n optimal solu ion is to in.crease 

the flow along a GAP. li: e call hi a genemlized augmentation. Clearly Uthe au mentation are 
don along arbitrary G Ps, we o no ge a polynomial-time algorithm. On way to imp.rove he 
running tlme is o execut.e on]y · hose gene ali.zed augmentation tha resul in a signllkan progress 
towards an optima.I. solu ion. 

\• e divide a generalized augmen a. ion j o '-'D pa;r : augmentin the 'fiow along a flow­
genera ·ng cycle and bringing the er a.t@d exce. o he sourc.e. 0 t algorithm fast saturates 
,all flow-gen~ra.ting cycles ere.a.ting excesses a various nodes of the · rap and only then look for 
a.u,gmenting pa.th from .node i h excess to the source. _ o e that this method do s .not create 
deficits. A natural way o measure · he progress of this algori hm is by the difference between 
the excess at the source in the current genera.l!iz.ed p:Seudoftow a.nd he exce at the source in the 
optimal solu ion. his difference is called the ezcess discrepancy. We shall show Mt if b.e ex­
cess di repancy j ery small a ing]e maximum-How computation produces an optimal so ution 
similarly o Theorem 5.6). 
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Sta e l Cancel a J 8ow-generatin cycl by calling the Ca.n ce.1-Cgcle:s procedure. 
Sta,ge 2 Computeµ, the canonical label;ing Lo lbe source, Let E1 be the e of all ates with 

uni :relabeled gain. Coo ider nodes ith exooss as sources wi. h ca.pa,c.i bounded by 
the value of their relabeled exc I and compute maximum flow /' from these nod 
o the ou:rce in the graph indnc:ed by he ates in .E' wi b be relabeled r, idua[ 

capaci ies. Update th_e ge.neralhed pseudoflow [} b. setting g(i, w) = g( v, w) + 
Jl(v, w);u(ti) V(u 1 w) E E1

, 

erminate if Ex9 (v) = 0 Vu E - s. 
age 3 R.epetitive]y call Fat-Augmentaiion procedure to augment he flow a.Jong _ -fa:t pa.tbs 

from nod with excess to the ul'ce, as long as such paths exi&t. 

=~f2·. 

Figure 3: .A single phase of the Fat-Path aligotithm. 

Con ider a.n augmenting pa.th wi h an excess in the begin ·ug of the pa.th. ven if this excess 
is very large, the inCN-ase in th.e excess a. the souroe caused by a.n a.ugm at ion along this pa:t:h i , 
limited and depends on both he ca:paci ies a.nd he gains of arcs on the pa b. \ e call his limit 
he fatne of the pa.th. A simple v- pa his !::..-fat if, O'iven 1.1.nlimi ed supply a '11 a leas 6. units 

of fl.ow can be sen.t to along this pa.th. An arc is -fa ii it belongs to a. ~-fat pa h. SaturaHng 
all the flov.·-gen.erating cycles before bringing th cesse to the source faciLltat s the search for 

-fat paths. 

The section consi ts of th:ree par . In the fust part we describe the Fat-Path, algorithm as· 
sum:ing existence of the Fat-Augmentation and the Cancel-Cycles procedures and discuss the cor­
rectness a.nd the rurn1.ing time· oi he algoritlnn. The second pa:rt pre en • the Fat-A~gmentation 
procedure. This proced,ue find a. 6.-:rat pa h in "he rai;idual ITTaph .md a.ugmen s the flow along 
it. The third par, of thi sedi,on is de o'ted to he descrip ion of the Cancel-Cycles procedurn 
whiich transforms a, generali.z-ed pseudoflow with :flow-ge_nera ing cycle · in jts residual graph into a. 
generalized pseudofl.ow wi h no sucli. cydes without ere.a. ing any deficits .. 

6,.1 Fat-Path Algorithm~ Overviiew 

The Fa -Pa.th algorithm d cribed in igtu:e a., solves th restricted problem in pha.ses . The goal 
of ea.ch phase is ;o dec-rease he bound on the exc s discrepancy by a least a. constant factor . he 
input and on pu · of a phase i a generalized . seudoflow \Vith non~negatn>e exc es . 

Ea.ch phase con i ts of three ages. .he inpu ·to he fir t stage is a generalized pseudo,flow 
with non-negative excesses and possib y with 'iow~genera, i g· c des. Thi tage. uses procedure 
Cane l~Cycle.s1 descdbed ·n Section 6.3 to cancel all sn:ch cycles crea ing new excess.es at va.tfou 
nodes of the graph. 

In he second tage we est w:he ,her i is possible o bring a.U th excesses to the source over 
h.e most efficient residual pa h • This is done b canonJcall., relabeling to he sou.re and then 

computing a maximum Ilow jn tt e graph indllced by the unit relab,eled gain a.res . Observe that by 
L a 2.- he canonical relabeling o the source a.ppli • The:re a:re no t:low-genera.t i_ngcydes in the 
residual graph after the :first sta e. and a.n augmentation of • he flow along arcs with a uni relaheled 

23 



gain do-es no crea.t new ones. herefore, if we succeed in bringing all excess to the source usin 
these axes he resulting generwed ciTculatioil is optimal and th algori run ermina.tes. This 
stage may be viewed. as a va.ria.tion of a in.gle itera· · on of the maximum-:fto based algori h:m 
desaibed in Section 4. 

The input to the third stage i a generalized pseudoftow v ith nonne ative e, cesses and no 
fim -genera ing cycles and a fa ness parameter .6. (initiall set o B2). This s age it.era lvely 
augments the :flow on 6.-fat pat,hs from nodes with excess o he omce reducing the ,exces . a; the 
start ing node of · he pa.th and increasing th excess at the source. The stage continues until ther 
a.re no more -fa pa.tbs fro odes with excess to · he source. Before the next phase, the va.lue of 
ll. is decreased by a factor of 2. ,e shall show tha hi s age doe no• introduce ftow-genera ing 
cycles in , he gra.p.h i.nd ced by the 6Aa i:tI'CS. 

The folio "ring lemma. indicates that the e:•cess discrepancy Is a good measUie of progress. 

Lemma 6 .1 If the e-&cess di crepancy is below L-1 and there are no negatiu e.xces e or flow­
generating cycle then all the exces es will be brought to he ource by tag 2 of the Fat-Path 
algorithm. 

Proof: ,-,.,,,e claim that after tag 2 · he exo discrepancy j .a.n inte er mu1 iple of L-1 . his 
means that he excess di c:repancy decreases by at least L-1 in between any two iteration which 
directly implies the lemma. 

Consider the generalized _pseudo:flow g before Stage 2. Le (S 8) be the cu sa urated by the 
maximum flow computa.tio.n ·n · ta.ge 2 such tha • he.re are no excesses left in Sand ES. Letµ 
denote t e canonical labels compu ed du.ring this stage. The excess at the sonrce after this tage 
is equal. to he· of Ex9 .~( for -u E plus the sum of the rclabaled capaciti of he arcs \1 i h 
telabeled gain 1 entering S .. App ying Theorem 3.7 to 1 = he pseudodow 9 .and he label µ , 
we conclude tha-t thls sum is an in ,eger multiple of L-1 . I 

he following lemma bounds the excess discrepancy in erms of b.. 

Lemma 6.2 The exces discrepancy at the end of a phase is at most O(m ). 

Proof: Let g be a. generalized pseudofiow a.t the end of a phase and let g"' be an op i.ma.1 geneyaJ.ized 
circulation. Let E+ = {elg (e) > g{e)} b the arc with positjve residual :flow and ]et G+ = 
(VE ). he t idual pseudoflow g• - g can b decomposed according to heor,em 2.6. he arcs 
opposite to · he ones used by he cycles in the decomposition a:re in he residual graph of the 
generalized c· cula.tion g· and ther,efore the deoomposition consists oni.y of paths fro nodes with 
, xcess to he source and GAPs. ote that each one of hese paths a.nd GAPs j in G+. There are 
a.t most O(m) paths and GAPs used a.nd therefore i , is suffident to how tha each one of them 
contributes at most il to the exces a th ource. 

First con ider path from exce ses o he source. By construction no path in Gg from excess 
to he source is A-fa:t. Al o we have E+ ~ Eg . ence, there ar no 8.-fa pa hs 'n G+ ei he • 
Therefore, a, path cannot co :ribnte more than 6. o he excess a the source. 

By Lemma 6. the subgraph of G9 induced by he -fa. arcs has o flow-genera ing c •cles. 
We know ha:t E+ ~ E9 and 11.erefore e,rery ftow-generatin c cle in G+ has a leas one arc 
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lnitia.l___ize: art with an empt ree. 
For all" E V - s se Gain(v) - 0. 

et Ga:in(s) == l and Fa: her()= . 
Step l while there a.:re uod out.side the t·ree with non-:zero ,Gain do 

a) Le - t1 be a no-die not in the ree with th maximum Gain. 
b) Add the a.re (v Father(v)) to the tree. 
c) or eve.ry n ighbor w of tJ (i.e., (w1 v) EE) if 

ug(w, vh,11 (w, u)Gain(v) 2: and Gain(w) < Gain(v)"-r11 (w, v), 
hen update Gain('W) = Gain(vh,,.(w, ) and. Fatlier(w) = v. 

S·tep 2 ReJabe] be nodes in he ing µ(v)Gain(v) as tlie new label of node v (so bat 
the relabeled gain of the tree a:rcs becomes 1). 

Step 3 If there exists a. node with excess io he tree, augrrum the cur.en. generalli-ed 
pseudoflow from hls node to along he uniqu pa.th in the t,r-ee. 

igure 4: The Fat-Augme,n,tation algorithm. 

that i not -fa. Con "der a G Pin •he decomposi ion and et (v w) be a non -fat arc along 
, he flow-g~nerating cycle in he GAP. he contribu ion of this GAP to the exc o[ he source is 
bounded by he fa-ness of the ( 11 s )-path in the GAP. The arc ( v w) is not -fa , which implies 
th.a the .fat nes of his path i le s h an . I 

In Sections 6.2 and 6.3 we prov•e that the Fat-Augmentation and he Cancel-Cycles procedure· 
can be implemented to run in O m + nlog n) and O(mn2 lognlogB) ime esp,e i ely. This leads 
o the follow'-ng theorem: 

Theorem 8.3 The Fa Pat.h algorithm run in O(m2n2 log ·nlog2 B) time.. 

Proof: By Lemma 6.1. the algori hm terminate after O(mlogB) phases. An augmentation either 
decreases the number of node vi h excess or increases he exces a, he source by at least . By 
Lemma 6.2 this glves an O(m) 'bou don the number of a.ugmenta.tio per phase. I 

6,.2 Fat-Augmentation 

The procedure Fat~Augmentation shown in Figure I is a crucial part of he Fat-Pathalgori hm. 
I finds a. nod~ with excess such 'hat t e source is reachable from thi . node though a ~-fat pa h 
then_ :finds the highest-gain A-fa.t augmenting pa-h from thls node o he source and a.ugmen s. 

Fjrst we desc "be a. simple (but not the mos eflki nt) version of the algo ithm. Consider 
a. highest-gain augmenting pa.th f.tom a nod · ii o · he so1uce. Either this pa.th i 6.-fat. or he 
e-a.paclty of he a.re v w) that would be a;tUiated wh n · he flow i augmen ed along thl pa h 
times the gain. of he pa.rt of the pa h from v to , h source, is below Di.. In this case we call ( v ~ w) 
critical. The observation that a cri kal arc can.no be .6.-fat leads to a. simple afa:i-orithm. Firs 
find a highest-gain path from a node wi h ,excess and check i s fa.t.nes. • IT it is __ -fa , we are done. 
If not, look for a crihc.a.l arc, delete 1 · arc from the et of a. considered when sea..r hing for a 
highes -gain pa.th a.nd r eat. 
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It is impmtant to note that ff an augmentation is done along the highest~ga.i:n. ~ -fat pa.th then 
disr,egarded a.res do not become 8 -iat. 

The above a.lgo:dthm nns in polynomial time b11 its riuming time ran be improved. A faster 
method~ proposed to us by Rober Tarjan (person.a] comm1.mication) i he one described in Fig­
ure 4. The ma.in. idea is to ~ognfae and disregard arcs that a.re not 6.-fa while cons ruct.ing a 
hlghest~ga.m pa. h. Let G: deno e he graph induced by the 8-fa:t a.re in the residual graph of g. 
We search for a. tree i:n Gt tha is rooted at .s such. that l:1.e pa.th in his~ from any node o th.e 
source has the highest gain among all .6.~fat paths from · hls node to the ource. \Ve call a. tree 
with thi property the "Max-Gain., t:ree. In order to improve ·· he efficiency of fin.cling th.is ree we 
maintain. a. set of labelsµ~ such that all a-fat arcs have :relabeled gains ,of at most l. In particular. 
these la.b0ls guarant:ee tha here are :no flo,w.generatlng cycles in Gf. 

The input o Fat-Augmentation is a pa:ramete.r fi generalized pseudofiow g . and a set ,of labels 
µ snch tha.t the 11elabeled gain'"(µ. of axes in Gt is at mo l. The output is a. gene.raliz,ed ps:eudoflow 
g' together wi h updated labelsµ/ such tha.t th r,elabeled gain of the arcs in G:, with respect to 
µ' is a most l. 

The procedure ca b vie1Ned as a. search for a. sho: tes: -pa h tree in Gff', where the length. of an 
a.re with relabeled g.a.in 1µ. is - fog · ~· There a.re no .6.-fat arcs with 1elabeled gain of above 1 and 
therefore the . -fat t~ can be '0:grow:n like in the Dijkst:r s sl:iortest-pa.th algorithm. 

Jnitfall the 6.-fa bee consists on1y of s. 'With ea.ch node v '\\.."e associate Gain(v) wl:uch i.s 
the maximum gain .of a 6 -fat pa.th found o far from v to .5. "'e initialize Gain(11) == 0, :for all 
v E - { s }. Like in the Dijkstra7s shortest path aJgori:thm~ at each itera mn we find a node u 
tha: has the largest Gain among the node no in the tree, amd a.dd 1t o the tree. The difference 
is in the wa}' v.-e upda e the Gajn of i s neigh.hors. An a.re ( v~ w) is disregarded by he algorithm 
if u.g(v w)Gain(w)"tJvi w) < .6. . , , e sh.ow belo,v that. an arc is disregarded if and only if it is not 
.6.-fat. 

After the tree rs constructed the Jabals ,µ. are updated o that the :relabeled. gai of the a.res 
in the tree .a.re equal to 1. Th.en we find a node in the tree wi h positive excess and augment the 
fio,w on be pa h irom thls node to the somrc.e. 

To pmve the correctness oi the .a.Jgori thm we need to show that ea.eh au,gment ation is done 
only along a ~ -fat path, that he procedure :finds a. fi-fat path if such a path exists~ and tha.t the 
ubgr.aph of he 6.-fa.t arcs does not contain a flow-gen.era 'ng cycle. 

Lemma 6.4 

1. The arcs used for updaiu in Step 1 c are 6.-fat. 
2. ugmentation i done on a ~-Jot path.. 

Proof: onsider a. path from some node to s in he tree ron true ed by he algorithm, a.nd. le 
u w) be a crhi.caI arc with. respec o this pa.th. This means hat th fatness of hls path is equal 

to ug(u, w)Gai.n(v) = uii(1J w)Gain(to)1'µ v, w). y conshuction, his is at lea.st and hence the 
path is -fa . simila: argument shows that all are used for updates a.re ll~fat. I 
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Lemma. 6.5 If all !::..-fat are have relabeled gains of less than or equal to 1 at the beginning of the 
procedure Fa •Augment,a.tion then Step 2 constructs ,a valid Max-G,ain tr-ee. 

P:roof: By lemma 6.4 the a.re u ed for upda.ting m tep le. are all -fat. herefo the length 
(- log "') of he arcs considered for upda. s is non-negative. S ep 1 is .a.n .implementat1on of 
Dijkstra s shortes path algorithm on he graph induced in G6 by the COJl; idered arcs.. 'herefore 
he cons rncted tree l h shor ~pa.th tree in thi graph. 

To prove the lemma we ha.v to show tha disregarded a.re are not -fa.t. Le (v w) be he 
first -fa , arc di rega.rded by the algorithm. By defini ion th - exists a path P1 from w t-o .s such 
that ( v. w) a.nd. P 1 form a -fa. pa; h. De»ote by P. he path from w to i the ree. The arc 
( v w) is the fir t A-fa arc disregarded by the algori hm, and herefore by construction P2 i he 
highest gain -fa path. Moreover we have 

,Ga.in(w) = IT 1 µ(e) ~ II · µ( • 
eEP2 eEPJ 

The pa h. (-v w) and Pi is .6Aat, and therefore u9 (-v w) ;,.{'II w) TT.eeA 7"'(e) ~ 6.. Hence 
ug( v., w Gain( v );14( v, w) ;?:: __ • Th.is contradiction shows hat no 6.Aa.t a.re will be di regarded b. 
the aJgori thm. I 

AB. an immediate corolla..ry we et the following lemmas. 

Lemma 6.6 If the procedure ,did not augment the ource is not re..achabl in Gt from any node 
with e:cces • 

Lemma 6. 7 If all . -fat arcs have relabeled gain le than or equal to 1 at the beginniflg of an 
itera-tion of the procedure Fat-Au_gmentation, then the. same is true qfter ,the relabeling tn Step 2. 

Lemma 6.8 In the graph G~ where g1 i.s the generalized p etJdoflow g' returned by the procedure 
the1'-e are no flow-generating cycles tmd all arcs have relabeled gain of at most 1. 

Proof: he new labelsµ are computed so tha he a:ugmen a.tion is done along a pa h wi h relabeled 
gain l. Therefore: he a.res who @ residual capacity increases due o his augmen a.tion all nave 
relabeled gain 1. ince a.ug , elltation is done a:lo.ng the hl he t gain .Q.~fa path a.res hat do not 
lie along · ltis path do not b@come -fat. I 

he algo:rithm Fq.t- ugmento.tion can be impierne ted 11.sin , Ibo a.cci heaps similar I o b 
Fredman-Tarjan [FT ] impiementa ion of the Dijkstra . s.horte t path algorithm. 

Theorem 6.9 The Fa - ugmenta.tion algorithm runs in O m + nlogn) t,ime. 

6.3 Canceling Flow-Genera ing Cycles 

he aim of the algorithm d crjbed in hi sect-ion is to convert a generalized pseudo:flo,v g into a 
,.enerallzed pseudofi.ow g' whose resjdua:l graph has no fl.ow-generating c. des wi hou decreasing 
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h.e excess at the nodes. The idea is to ca.nee flo -oe erating c des in the. res" dual graph while 
incr a.sing he excesses at some nodes of he gra. hand without c.rea jng any deficits. The algori , hm 
i an a.dapta ion of Goldberg and Tarjan s: G ] minimum cos flow algori hm ha. it a ively 
cancels ne a.tiv,e-cost cycles in the residual graph. 

Th:rou bout this ,ection we refer to a eneralized pseudo-flow with no :flow-generating cycles in 
, he residual graph as pa i . The C;d ~Canc.eling alaorithm of Goidberg and Ta:rja.n is based on 
the idea of €~optimality. A d.rcuJa.tion is said to be ,-optimal if th mean ,of the arc costs a.long 
.any c:yde in its residual g,raph i.e. the sum of the cos s divided by the umb r of arc in · h 
eye.le) l at least -E. To adap his algorithm for generali~d pseu.doffow , we ·.ntroduce he cos 
c{ w) = - log (ti w) on the arcs. V , say that a generalized p eudoflo i -pci it; if he mean 
cost of a c cle in its residual graph is at lea.st -€. In. other words .a. genera.ti.zed pseudoflow is 
e-passi e if the geome ric mean of the gain-factors along every residual cycle i at mo t 2~. Given 
a generalized pseudoflo,w g let £:9 de-n.ote the minimum t such that g is €-passive. The followin 
lemma oorre-sponds to Theorem 3.3 in [GT ]. 

Lemma 6.10 A. generalized p eudojlow g can be relabeled o that the relabeled y·ain of any arc in 
th re idual graph ,of g is at· m.o l 2e:1,1, 

Proof: Deft e the leng h of an ate (i- w in the residual graph to be l(v w);;;;;; -log (v w) + fg• 

By definition of -E9 there am no negative-cost cycles with re pec.t to hi length. For v E let 
p( t1) de:no e the Ieng h of the shortest pa· h from v o In he · e idual graph. (By Lemma. 2. 7 su 
path exist.) I can be :seen h -t relabeling the graph using la.bels µ(i,} = 2- p(v) leads · o a graph 
with the relabeled gain of e ••er· arc being below 2cg. I 

The followinu lemma ,corresponds to heo.rem 3.2 in [GT ]. 

Lemma 16.11 If ,:9 :S 1/(nT then any e-passiv generalized pseudofio-w is pas it; . 

Proof: Consider a c cle in he residual graph of a p&eudoftow. By definition of T, if th.is cycle has 
ga.i abo,v,e 1 1 then i gain .i · at least 1 + T-1 • Thj means that the mean c.ost oft ·s cycle is a.t 
most -( /n)log{l + T-1 ) < 1/ nT). I 

In the case of the minimum-cost :How problem he Goldberg~ Ta.rjan yde a.neeling algori lun 
cancels. cycles con isting of arcs j h negative reduced cos . In the case of generalized. p eudoflows 
we shall cancel c cles consjsting of arr-cs wi b r@la.be1ed gain of above 1. 

The algorithm is described in Figure ,5. I tarts wi n £ = log B aad proceeds in phases, where 
a. phase rnn i t of relabeling the gi:a.ph o that the relabeled gain of ever arc in the residual graph 
is a most 2t (see Lemma. 6.10) and cancelling all cycle in he graph induced by · he arc wRh 
relabeled gain abm·e L Observe, hat in the end of a. phase any flow-generating cycle contains a 
least one arc wi h relabeled gain belo l and · he es of the arc have relabeled gain. below 2'. 
Hence, we can set E: = (1 - 1/n)e and start the n,ex phase. 

Lemma 6. 2 The algorithm terminat in O(logT) ::::; O(nlogB') phases producing a generotiz:ed 
p· eudoflow with no flow-gen.era-ting cycle , 
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S ep 1 Relabel the residua.I ne work so tllat r(v, w) :5 2'- for every (v 1 w) in the residual 
gr a.ph of the generalized pseudoOow !J. 

,e 2, Cance] all cycles in tb resi.dual g;raph of g , ·here the relabeled gain of every a.re is 
above 1. 
et t: =: (1 - ¼ )t. 

Fjgure 5: A single pha·se ,of the Cancel-Cycle algorithm . 

.Proof: Im.media e from Lemma 6.11 a.nd the above disc ssion. I 

Each time we cancel a cycle \Ve sa ra.te a.t lea.st one resudnal ate wj h reJa.beled gain above 
l and do not creai e any new such ares. Therefore we cancel a.t mos m cycles dlll"ing a. single 
phase. Ca;nceliing a single How-genera.ting ,cycle whl e c eating excess at one of the nodes of the 
cyde can be done in O(n) time. By marking nod.es that do o belong to cycles, we ca.n easil 
obtain a running thne of O(nm) per phase whi.ch leads to a to al running time of O(n3mlogB). 

his running ti e ca.n be improved , sing a. va.ri ant nf t · e Dynamic Tree d a a structu.re. Dy• ami c 
trees wexe introduced in ST 3,Ta.r 3 T 5] and implement the operati:o s described in Figure 6, 
wexe each operat"on takes amorti?.:.ed O(logn) time. This data structure was used fo speeding up 
several maximum flow a.nd minimum cost :flow algorithms [ T 3 Gol8 , GTar G 7 GT ], includ­
inP- he Cycle-Canceling a.lgori hm for minimum-cost flows. 1 he main idea. ·s that a.u,gmenting he 
fl.ow along a. path does not saturate all the arcs along this path. Instead the path is ubdivided 
into shorter paths. tor:ing these path in a. dynamic tree data. tructure allows: to u e the add-value 
operatio . to augment the ft.ow in time w'ch. is logarithmic i he length of he path. 

Unfortuna: ely thi echnique can no be applied directly for general.fae:d circulations. The 
problem. axises when we want to cancel a eye e. In order o do this, we have to 'llpdate the residual 
capacities of · e arcs along the cycle. The amount of flow pu hed along he arc of the cyd is 
different in ea.ch arc and depends on the gains of be ai"C . Therefore thi update can not be done 
by u.bha.c ing the rune vahte from all of them , as it is done in he case of flow . 

W use a variant oft.he Dynamic Tree data strnc ure which e call he ,Generalized Dynamic 
Tree GDT). The operation supported by his da. ·a. tructur are shown in Fig:ure · . The data 
· trudure i use to stor,e and update he r idual ca.pad ie of th arcs along · e paths curren ly 
considered for augm.enta ion. Thes~ arcs form a set of disjoin root~d t:rees. 'e shall how below 
that he Generalized Dynamic I ee ope.rations can be imp]eme ted in O(logn) amortized ime 
( heoE1em 6. ). 

jug Generalized Dynamic 'lrees, we can speed up ep 2 of he Cancel-Cycle algorithm to 
run in O(mlogn) ime. This i.mplernen a.tion is hown in Figure . he algorithm picks a. nod 11 

tha is no yet marked a.s useless! and finds the r-0-0 r of the ee tha hls node belongs to. H her,e 
a.re no a:rcs with relabeled gain above 1 from 1· to some node which was no , ff; marked as useless, 
\' e mark r as us:eles r mo e i , from the tree,, a.nd decompose the , ree into a number of smaller 
t~s. On the othe.r hand if there rodst an arc (r w) ·j h :relabel .d gain a.hoe 1 and w was not 
ye m.a.rked hen w belongs to some tre . Let r' b he mo of hi tree. ff r' and r are different 
node then a. hi poin ,ve know tha. there is a.n augmen in pat from t; to r' tha uses ( r w }. 
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ma:h-tree(v): Make node into a one-node dynamic tree. od v mu be in no othe:r ree. 

find- root( v): Find and return he root of the tree con · aining node " .. 

find-v.alue(v): Find and return the value of tbe ree. arc connectin.g v to its pare t. If v ls as tree root , 
re: urn infinity. 

fin4-min(u): Find and return the a:ncesto,r w of v such tha: the tree at~ c01u1.ec ing tu to i paren 
bas minimum value. along the path from to find-root( • In case of a tie, choose the 
nod w closest to Lhe tr root. H t1 is a tree root rd.urn v .. 

c:h ange-vo.lue( v, ll::): Add real number z: to the value of every arc along the path from v to fiud-rool( v). 

linJ.{v, w, z): Combine be tre containing v and w b. ma.king w Ule parent or u a.nd giving he 
new tree arc joining tJ and w the value :t. This operation does nothing if tJ an.d w are 
in he tiame tree or if v is not a tree root.. 

cu_'f( ti): Break the tree containing i, into two trees by deleting 'the arc from v to its parent . 
This opera,tion does nothing if v is a tree :root. 

Figure 16: Dynamic tree operatic s. 

make.-·trte(v): ·fak node v iuto a one-node dynamic ree. ode t> mu t be io no other tr 

find-rootf. t.1) : Find and return he root of the ;ree eon .sining node r,. 

find•cap(v) : Find and 1:aetum he residual capacity of he tree arc connecting ti to its parent. If 
i.s a tree roo , return infinity. 

find-gain( v): Find and return the gai:n of the path in the ree connecfo1g node v to to find-root(. v ). 

/ind- at(v): Find and re urn node w such t.hat the arc betw.een w and its parent is he first one 
to g,e satura ed if we iocre the flow along he path from v to find-rooi( t,•). In case 
or a ie, choose the nDde w dose.st to · be tree root. If v i a ·tree 11oot1 return v. 

change-cap(v :i:): pdate the re.s-idual capad ies of the arcs on be path from t1 to Jind-root(v). The 
residual capacity of ea.eh arc (t1.1, w') on this path is deer a.sed by x ~ he gain of 
the path from tJ to ui in tcb tree. 

link'( v w, z , ;): Combine the trees containing v and w b} making w t.he parent of v and assigning ~ 
and ·1 o be the residual ca.padty and gai of his are respectively. This operation 
does nothing :ii u and w are in the same ree or if v is not a. tree root. 

cut(v); Br.ea! th tree COil ining into wo trees by deleting the arc f.rom 11 to it.s par,ent. 
Tlii operation does nothing l:f ti is a tree root . 

Figur•e 1: Ge eraliized Dynamic Tree o,perations. 
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[IJ'I • tiaJ ize] 
for each node v, uamack v and perform make-tree (v); 
while there exists ao 'Wllllat:ked node v do begj.n 

end.· 
end. 

l•et,. =:: find~root(v); 
if the;r~ · ts an 3J'IC ( r w) in · be r -l.dual graph wi h 1' /J ( r I w) > 1 
then begin 

if find~ root ( w) 'I: r then do [ ex:t:e.nd the pa th] 
li11k(r, w, u8,11(r, w) 1, 7,.(r1 w)) · 

else be.gin [c:an<:e l the cycle] 
6 = min{usr,P(r, w),find-gain(w).find~cap(/ind- at(w))} · 
g(r w) = g(r, w) + p(r)6; 
ch1u:i.9e-cap(w, 67µ (r, w))· 
while /ind-co.p(jind-sat(w)) = 0 do begin 

z = find-sat( w) · 

end· 
eud; 

g(r, panmt(z)) == u( , p4~nt(z))i 
cut{z); 

else begin [remove r from the path] 
mark r· 
for each node r such Lhat r- = pannt(:z) do b gin 

g(.: r) = u(z , r) - µ( ;)find-cap,(z)· 
cut(z); 

end• 
end• 

Figure lmplernentaition of Step 2 of the Cancel~Cycle algorithm. 
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In this case we insert r w) into our data structure, by linking · h. :\VO trees. If both v and w belong 
to the same ree ,,.,,re ha.ve found a flo -genera:ting cycle tha consists of the arc ( r w) and h path 
frot -w tor in he tree. In fh.is case we a.u,gment the flow a.Ion this cycle removing from the tree 
all arcs whose residual capa.clt becomes zero .. 

straightforward. analysis of the above procedure show · ha i reqlliFes O(m) tree operations. 
By Theorem 6.14 the use of Generalized Dynamic Trees leads to O(mlogn) running time per 
phase. s it was already mentioned, after at most O(n2 l,ogB) phase the pseudofiow is passive, 
a.nd herefore we have; 

Theorem 6.13 Th C cle-Ca:n.celing .algorithm runs in O(mn2 lo 1:i.logB) time. 

16.4 Implementing the Generalized Dyna1m,c Tree Da:ta Struc ure 

he implementation of Gena:raliz.ed Dynamic Trees is based on two data struc • The -first one 
·s simila.r o he s anda.rd Dynamic Tree and is used to store t e gain on the arcs of the path. 
Using it we ,can comput,e the gai , of any path. from a node o he root of the tr-ee t · node belongs 
· o · amortiz..ed O(logn) ime. 

To impl ment he other operations hat are supported by a Genera.lfaed , amirl:: Tr-ee data 
tructure we u e a. variant of Dynamic Trees that ·n a.d.dition of supporting all the dynamic tree 

operations supports the multiply-t1alv.e operation · hat mul iplies all the values tored in a. tree by 
a. cons ant. Th.is data tructure is used · o store .residual capadties that a.re :relabeled to the root of 
ihe tree. In o her words instead o:f the capadty of the arc ( v w) we store this capacity multiplied 
by the gain of ·the path from v to the roo .. he advantage of storing t i e capacities in tms way 
is hat cha.ngi. g the fl.ow along a pa: h change he residual capa.citfos of the arcs along t.he path 
by d.ifferen amounts dependent on he gains whereas the relabeled capadties are changed by the 
same a.mount. he mt,/tiply~value opera: ion. is n~ed to Tela.be! th c.apaci ie of ·he new trees 
to the new mot wh.e:n we cut er join he rees .. We will how ( heorem 6.15) that a sequence 
of dynamic trees opera ioru; po sibly including multiply-value operntio s can. be implemented in 
O(iog ) a.mo ized tim,e whe-re i is the number of' make-tree opera ions used. A a corollary we 
get the followin theorem. .. 

Theoi-em 6.14 A seq-uence of M Generalized Dynamic Tree ,operations take . O(Mlo" r) time 
where - is the number of make-tree operations: in ihe equence. 

In order t,o be able to add the multiply-t1alr1e operation to the standard dyna.mk tree ope:ratfons, 
we change th way huorma ion i sored ht "de ,eaclt elemen ,of the dynamic tree. Recall that in 
a. dynamic ree each tre is regarded as a collection of a.rc-djsjoint paths. Dynamic tree ope.rations 
ar-e implemented in terms of ope a. ions on these paths. In order to implemen a. n w operation, 
one has to add hi operation to the set o.f oper.a,tions supported by the underl; in data structure 
tha bn.p]ements paths,. 

Each pa h in a Dynamic Tree is represen ,ed as a sea. ch tree whe_re the key is the distanc from 
@end of the pa h. In the implementation suggested in [ T a] the earch tTee u ed is a splice tree. 

In order o disti:ngui h between , he , rees in the graph (defined b the link and cut operations) and 
the sea.rch trees tha represent pa.t:hs we caU th latter trees solid. 



Let Minvalue(v denote the minimum a.mong the values o:f the descendants of v in a solid t ee. 
Each node of a solid tree hods the foUow·ng in:fonnat.ion: 

.A.value = va.lue(v)- Min1'alue u) 

6 .min(ti) { 
Minvalu.e(v) 

- Mi,u,ahie(v)- Minvah.t (parent(v)) 
if vis a solid tree too, 

otherwise. 

Each operation on a. pa h sa. find-minimum( v ), consj of scanning t:he solid ree rep -esentiug 
he path from he node a.ssociat-ed with v to the root of he ree. Minvalue(11) can be computed by 

stunming he values of .Amin in the node encountered durin , thls scan. Usin° his reprosenta.tion 
adding a value to all •h.e ca.paci ·es on a pa h requir,es add.Ing this value to .Amin of he roo of the 
solid tree which take eonsta.n time. 

In orde:r o be able to multiply he stored values by a. cons an withou scanning all the nodes 
on he p.ath each node contains he following information ·nstea,d of the above data, 

..,value( v) = { 8.value(-v) jf 
~ value( ti)/~ value( parent( v)) 

Wmin(v ) = { ~min(v) if t> i 
J.\;mfn( v)J .Amin(pa-rent( ii)) 

is a. solid ree root, 
otherwise. 

a. solid tree :root 
othew.i.se.. 

It is eas o see that by ca.nmng he nodes o:n. a. pa: b from a. given node to he :roo of the solid 
tree we can compute Amin and -_ 11alue of all the scanned nod.es and bence we can also eompu·te 
Mintialue(v) and :t1ahui(11 • Morepredsely i order to be able to compute min and .A.value even 
if some of them ~ zero we keep the a.hove n.tios as tuple . 

Obse: ve hat a. change in the information s:tor,ed in the root of a solid tree is sufficient in orde? 
to mult1p y uaiue(v) for every node in he solid tr-ee by a coustan • Adding a, constan to value(v ) 
for all nodes l he solid t -ee can be do by chanro,ng the information. s ored in the roo of the 
solid tree and in its sons only. The res of the operations on paths reqnired ior he dynamic tree 
opera ions . a.re implemented e:x:ac ly as for the s and.a.rd dynamic . rees .. 

Using he ana.]y is of the Dynamic Tree data. structure by Slea:tor all!d Tarjan ei , h.er in [S · 3J or 
in [ST -5] i is stra.igh ,-forward to see th.at storing lJl'valu and "iJl:min instead of .6.vahle and .6.min 
in the nodes of the solid trees does no increase the nmni:ng ime. This means that it is possible to 
add , he multiply- alu operation to the se of he operations supported by dynamic rees withou 
increase in h runnin . time, which implies the follmving theorem. 

Theorem 16.1.5 A llqmmce of M Dynamic Tree opera ions pos ibly including mul iply-value op­
erotfons takes O(Mlog ) time, where r i the numbef' of m~e-tree operations in the sequ nee. 

7 Conclusions 

We bave presented wo po ynomi atime combinatorial algo:ci h s for the gen ralized circulation 
problem. 1 he first algorithm i based on he repeated application of a. mirumum-co t fl.ow sub­
routine· he second afgori hm i.s based on the idea of augmen.ting along t · e bjggest ilnprovemen 

33 



pa.th [EI{72] and the i,dea. o.f canceling negative cycles [GT 8 IG.e67). Prevfous polynomial-time 
i;a;Jgorithms for the problem were based on ge11eral.~purpose linear programming echniques and he 
,combinatorial ru.ctu:re of the problem was used solely for improving the efficiency of compu ing 
the reg "Nd ma r.ix inversions. Our esult show that the problem can be handled by , ethod tha 
are closer o the combi a.toria.l methods raditionaU used for n · work flow problems. 

Our algorl runs use a comhina.toriaJ technique hi.ch we call Ca.nonica.l Relabeling .. Although 
the 1 bels produced by Canonical. Rela.beUng a.re dose rela ed to, marginal prices from linear 
programming duality theory we use hem in a different ·a: . In particular we use the notion of 

reduced gain instead of using he na.tu.ra.l notion of · reduced cos " .• n interesti g que t·on i 
to e whether a.n a.Igo i hm imilar to he MCF gorithm can. be developed using he price.sand 
he reduced costs instead of th.e la.bele and the relabeled gains. 

A by-product of our research is an incr,eas-ed appreciation of str-ongly polynomial algod hms. 
Our algori hm repeatedly use procedures to 'find hortest pa: hs m.aximum-fiow , and minimum­
cost flow . he inpu to hese prc()cedu:res ma.y contain umbers which are much bigger than hose 
in the input o the or:"gi al problem. ( ee the remark at the end of the ection 5.) Because of thl 
fa.ct we obtain better bounds by using stron:gly po ynomia! algorithms to soin these ;ubprob1ems. 

his p enomena suggests that trongly polynomial algorithms may be import an in practice as well 
as in :heory: ,e en hough the numbers hat occur in a sta..temen of a p oblem ma.y be :rela ively 
small the numbers that occur in the intermedi.ate problem can be large. _.hls observation gives 
additional motivation to stud trongly polynomi:al algorithm . 

- he . • thods used i (Tar 5] for de igning a. strongly polynomial algorithm for the minimum cost 
circulation problem were extended in [Tar86] for linear programs with inte-ger constr.aint ma rice . 
This .ields an algorithm for the generalized cil"culation.problem whose r11nning ime is md,ependent 
of the size of the capacities and poly omial in n m and the number of bits needed to represent 
the gad . Ou::r algorithms exploit, a si:milarity between the gains and certain corresponding costs. 
U n.for-tunately1 we were una.ble to , se this similari to extend the methods of [Tar 6] to construct 
a strongly polynomfal a.lgoritllm for the generalized drculation pi:ob1em. 

An interestmg observa ion is tha;t despj e e apparea similarity between gains in the ge er­
alized circu!a.tion problem and costs in the minim.um-cost circnlatioa problem the roles of hese 
numbers ate qui e di:fferen . The difference stem from the fac hat he gains appear in _h.e con­
s ·raint matrix of the corresponding linear progr whereas the costs appear ,o in the obJecti e 
functi,on. 

In some a.pplica: ·ems the · enetal.ized circula;tion problem is naturally a. ed by givingloga.r-jthms 
of gains in th@ input. For example in he co tex of electrical ne wor ~ i i customary to use 
dedbels to measur power lo - in ransmi ion lines. M call his representa.tio of he problem 
he compact representation. This representation is also na ural from the thooretical poin of view 

because of the j uitive correspondence betweeR a gene:ra.liz,ed circula ion problem with a gain 
fu ction ; and the minimllIIl-cos flow problem with · he cost functio,n -log7. O:n the compact 
represen a ion our algorithms do no run in poly:aomial time and neither do he algorit ms based 
o , the linea programming tech_niques. In fad all algori hms described in hi paper tha run 
in polynomial time on . he original r-ep:resenta.ti,on of the problem run in pseudo-polynomial ti e 
( i.e. in polynomial ime if -he input numbers a.re gi e.n in unary on he compact r presen a. · on. 
Solving the prob em in po ynomia!. time assuming he compact representation is closely related to 
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fi.ndlng a. strongly polynomial. alao i bm for -the generalized circula. ion _problem .. I is in eres in 
to note that if the jnpu.t numbers of the compact repre en: a ion a.re given in un.a.ry h imp e 
Maxi u:m Flow Based algorithm has the best time a.mo g he allgorithms discu:s.sed in thls paper 
(see Corollar 4.3). 

A.n important extension of the generalized ci.rcula.tfon problem is the generalized circulation with 
co t problem. Thls problem has costs in addition to gain and capacities and a fixed price p( ) per 
unit of com.modi y of the source. The goal is t-0 maximize profit where the profi of a. generalized 
c.i1,cula.tion g is defined in a na.t:ar-a! ·wa • Va.idya s algorithm handles his extended problem wj h 
no modifica · ions. Our algorithm .however •can:n•ot handl•e this probl,em .. It would be int· ing to 
see if our algori, hms can be modified to handle the generalized ci:rcula.tion wi h cost-s problem. A 
promising approach is to use the 1i ear p:rogumming pric.es and reduced costs as distU$Sed above. 
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