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Abstract 

We study the problem of scheduling jobs on parallel machines in an on-line fashion, where 
the processing requirement of a job is not known until the job is completed. Despite this 
lack of knowledge of the future, we wish to schedule so as to minimize the completion time of 
the entire set of jobs. In general, the performance of an on-line algorithm is measured by its 
competitive ratio: the worst case ratio of its performance to that of an optimal algorithm with 
total prior knowledge. We study two fundamental models for this problem, that of identical 
machines, where all the machines run at the same speed, and uniformly related machines, 
where the machines run at different speeds. Our results include: 

• Matching upper and lower bounds on the competitive ratio for the case of identical 
machines. 

• Upper and lower bounds that differ by a constant factor for uniformly related machines. 

• A lower bound for randomized algorithms for identical machines that nearly matches 
the deterministic upper bound. 

• Several upper and lower bounds for variations on these models. 
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1 Introduction 

Recently there has been a great deal of interest in the field of on-line algorithms. An on-line 
algorithm produces a reasonable solution to a problem despite the fact that the entire specification 
of the problem is only revealed incrementally. On-line algorithms have been developed for a 
number of classes of problems, from classic problems in combinatorial optimization [1], [10], [14] , 
[21], to various problems in data and memory management [13] , [20], to the k-server problem 
[6], [17]. A very natural and largely untouched area in which to study on-line algorithms is that 
of scheduling. In many real-world scheduling situations the scheduler does not begin with full 
knowledge of the amount or type of processing required [12]. Despite this lack of knowledge of 
the future the scheduler must utilize a strategy that will do as well as possible. 

In this paper we study on-line algorithms for scheduling parallel machines. We define a 
realistic and theoretically interesting model of on-line scheduling, and bound the performance 
of on-line algorithms for several fundamental versions of this problem. This class of problems 
is fundamental in combinatorial scheduling theory [15], and has inspired a variety of techniques 
that are of general interest in combinatorial optimization [8], [9], [16] . Further, these problems 
have important applications to the design of parallel computing systems [4]. 

The basic model for scheduling parallel machines is as follows. We are given n jobs and m 
machines. Each job j has a processing requirement of Pi units. Job j can only be processed 
by one machine at a time, and a job must be processed in an uninterrupted fashion on one of 
the machines. We specify that the machines either are identical, so that processing p units takes 
time p on any machine, or the machines are uniformly related, so that each machine i runs at a 
certain speed Si, and processing p units takes time pf Si on machine i . A solution to an instance 
of the problem is a schedule that for each job j specifies a time interval on one machine during 
which all Pi units of job j are processed, while ensuring that no machine processes more than 
one job at the same time. If Ci is the point in time at which job j has finished processing, then 
the makespan or length of the schedule is Cmax = maxj Cj. 

It is important to define a model of on-line scheduling that realistically captures the scheduler's 
lack of knowledge of the data and yet is not so strong as to leave no room for an algorithm to 
perform adequately. Traditional off-line models are unrealistic in that all the Pi are known in 
advance. It would also be unrealistic, however, to force the scheduler to irrevocably assign a job 
to a machine before learning something about the size of the job. Therefore, we model on-line 
scheduling by assuming that none of the Pi are known in advance, but that the scheduler can 
restart a job, i.e. cancel it and start it from scratch on another machine. For simplicity's sake, 
we assume all the jobs are available at the start time. It is possible to extend our results to the 
more general setting where not all jobs are available at the start time; we discuss this extension 
to the model in section 7. 

On-line algorithms are traditionally evaluated in terms of their competitive ratio, the worst
case ratio of their performance to that of an optimal off-line algorithm. For these scheduling 
problems, the "performance" of an algorithm on a problem instance is the makespan of the 
schedule constructed by that algorithm. Thus the performance of an on-line scheduling algorithm 
is characterized by the worst-case ratio of the length of the schedule produced to the length of 
the shortest possible schedule. 

In this paper we give essentially exact characterizations of the power of on-line deterministic 
schedulers in two fundamental models. Specifically, we prove that a deterministic on-line sched
uler for identical machines can not achieve a competitive ratio less than 2 - ! ; by an algorithm of 
Graham this is a tight bound [7]. For uniformly related machines we give a scheduling algorithm 
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with competitive ratio O(log m) and show that no algorithm can have ratio better than !!(log m ). 

We then consider how randomness might help the on-li_ne scheduler. We argue that a ran
domized scheduler working against an adaptive adversary can do no better than a deterministic 
scheduler. Randomization would seem to be much more useful when the adversary is oblivious, 
but we show that for identical machines no randomized algorithm can achieve competitive ratio 
better than (2 - !!(1/rm)). This result is surprisingly strong: since the bound for deterministic 
algorithms is (2 - !), the result shows that randomness does not much improve any algorithm's 
competitive ratio. This result is in sharp contrast to other recent work in on-line algorithms, in 
which randomness has been shown to significantly increase the performance of the algorithms 
[14], [21]. 

Relatively little work has been done for this model of on-line scheduling. In addition to the 
algorithms for identical machines given by Graham [7], the only other work known to the authors 
is that of Jaffe [11] and Davis and Jaffe [3] . Davis and Jaffe show that in a restricted model 
without restarts, an on-line algorithm for scheduling uniformly related machines cannot have 
competitive ratio better than !!( rm). Jaffe gives an algorithm for this case with competitive 
ratio 0( rm). 

Our paper is organized as follows. In section 2 we define our models precisely and establish 
some terminology. In section 3, we prove matching lower and upper bounds for identical machines. 
Section 4 contains the proof of our lower bound for uniformly related machines, while section 5 
demonstrates an on-line algorithm for this case with competitive ratio within a constant factor 
of the lower bound. The bounds for randomized algorithms are established in section 6. We 
conclude in section 7 by discussing several possible variants of the basic model and giving upper 
and lower bounds for some of these variants. 

2 Preliminaries 

In this section we give precise definitions of a competitive ratio and an adversary before going on 
to prove our bounds. 

For each instance I of each type of on-line scheduling problem given in the introduction there 
is some optimal schedule with a minimum possible makespan. We will denote the length of this 
optimal schedule by c;,.ax(J), or sometimes by C:'nax when there is no danger of confusion. There 
are exponential-time off-line algorithms for both problems (the decision version for both identical 
and uniformly related machines is NP-complete); therefore we will compare the makespan of a 
schedule constructed by an on-line algorithm for instance I to C:Oax(J). 

Let C~ax(J) be the makespan of a deterministic on-line algorithm A on instance I . Algorithm 
A is said to have competitive ratio c (or is said to be c-competitive) if C:!iax(J) :S c•C:'nax(J)+O(l) 
for all problem instances I. If A is a randomized algorithm, then A is said have competitive ratio 
c (or is said to be c-competitive) if E[C~ax(J)] :S c · C:Oax(J) +O(l) for all instances I , where the 
expectation is taken over all the random choices of the algorithm A. 

As with other on-line algorithms, on-line scheduling algorithms can be viewed as a game 
against an adversary who is allowed to determine the information that is revealed incrementally 
to the algorithm. The adversary attempts to reveal information in such a way as to force the 
competitive ratio to be as large as possible. In the case of on-line scheduling, the adversary is 
allowed to determine the size Pi of each job j. In this paper, we will consider two possible types 
of adversaries: an adaptive adversary, which is allowed to determine the size of jobs Pi as the 
scheduler is scheduling; and an oblivious adversary, which must fix the size Pi of each job before 
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the scheduler begins scheduling. 
In sections 3, 4, and 5, we will consider deterministic algorithms playing against adaptive 

adversaries. It is not hard to see that these bounds must hold for deterministic algorithms 
playing against oblivious adversaries. An oblivious adversary can first run by itself an adaptive 
adversary against the deterministic algorithm, and then present the algorithm with the job sizes 
chosen by the adaptive adversary. The competitive ratio of the deterministic algorithm playing 
against this oblivious adversary must be the same as that obtained by the algorithm against the 
adaptive adversary. There is, however, a distinction between the two adversaries for randomized 
algorithms. The bounds given in the next three sections do not depend on the determinism of 
the scheduling algorithm, and so will hold for randomized algorithms playing against adaptive 
adversaries. The final case of randomized algorithms playing against oblivious adversaries is 
discussed in section 6. 

3 Identical Machines 

We begin with a lower bound on the competitive ratio of any on-line algorithm for scheduling 
identical machines. 

Theorem 3.1 The competitive ratio of any deterministic on-line algorithm for scheduling identical 

machines is at least (2 - ;. ). 

Proof: For any m, let n = m(m - 1) + 1. Each of the first m(m - 1) jobs is of size 1, while 
the last job is of size m; that is, P1 = • • • = Pn-l = 1, Pn = m. This instance is due to Graham 
(7]. The optimal schedule is of length m, and consists of scheduling the last job on a machine by 
itself, and scheduling m of the single unit jobs on each of the remaining m - 1 machines. The 
length of a schedule for this instance is determined by the starting time of the job of size m; 
therefore the adversary wishes to make it start as late as possible. Each of the first n - 1 jobs 
that the scheduler allows to run for at least one unit of time will be fixed by the adversary to 
be jobs of size 1. Given this strategy of the adversary, it is not difficult to see that by time i, 
1 ::; i ::; m - 1, at most im jobs are either completely processed or currently being processed. 
Hence by time m - 1 there must be one job that has not been completely processed and is not 
currently being processed. The adversary sets this job to be of size m. If this job starts at time 
m - 1 the fastest the schedule can complete is by time 2m - 1, which is 2 - ;. times as long as 
the optimal schedule. ■ 

Now we turn to on-line algorithms for this problem. Graham (7] showed that list scheduling 
for identical machines always comes within a factor (2 - ;. ) of the optimal length schedule. 1n· 
list scheduling, the scheduler takes any list of jobs and, whenever a machine becomes available, 
places the next job on the list on that machine. Since list scheduling does not depend on the sizes 
of the jobs, list scheduling is an on-line algorithm. In fact , Graham shows that list scheduling on 
identical machines always constructs a schedule no longer than ;. Lj=l Pi+ (1 - ;. )Pmax, where 
Pmax = maxi Pi· Since both ! Lj=l Pi and Pmax are lower bounds on the length of any schedule, 
we have the following theorem. 

Theorem 3 .2 [Graham] There is an on-line algorithm for scheduling identical machines that achieves 
competitive ratio (2 - ;. ). 
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4 The Lower Bound for Uniformly Related Machines 

In the case of uniformly related machines the situation becomes a good deal more difficult for the 
scheduler. We will show that the adversary can force any deterministic scheduler to construct a 
schedule of length Q(log m) times the length of the optimal schedule. Intuitively, the adversary's 
best strategy would be to tie up the faster machines with small jobs, forcing the large jobs either 
to run on slower machines or to begin late in the schedule. We first prove that the adversary can 
follow a strategy very similar to this. Then we show that this strategy implies a Q(log m) lower 
bound. 

Before we state the theorem, we introduce some notation. Given a particular schedule, let 
t 8 (j) and t 1U) be the starting and finishing times, respectively, of job j in that schedule. We 
let m(j) be the machine that job j completes on, and assume that jobs are sorted so that 
P1 ~ P2 ~ . . . ~ Pn· We denote the speeds of the machines by Si,···, Sm with s1 ~ s2 ... ~ Sm. 

We assume that the speeds of the machines are known to the scheduler. 
The following theorem states that the adversary can always force an on-line scheduler to 

produce a schedule of a certain form, which loosely understood specifies that larger jobs finish 
later in the schedule and that a small job j 1 only runs on a slower machine than a large job i2 if 
thereby it finishes faster than by waiting to start on h's faster machine. 

Theorem 4.1 Let L be the length of the shortest schedule that satisfies the following three condi- · 

tions: 

1. t1(l) ~ t1(2) ~ . .. ~ t1(n) 

2. Fork> 0, if m(j + k) < m(j), then ts(j + k) + Pi/sm(j+k) > t1(j). 

3. Fork> 0, if m(j + k) > m(j), then t 8 (j + k) + Pj/Sm(j+k) ~ t1(j). 

Then the adversary can always force the scheduler to construct a schedule of length at least L. 

Proof: To prove this theorem, it is enough to show that the adversary always has a strategy that 
generates a schedule meeting these three conditions. Thus the best the scheduler can do is to 
find the optimal such schedule. 

We introduce the idea of the adversary committing to a set of jobs. Assume that the adversary 
is competing against a scheduler who somehow knows the job sizes in advance, but doesn't know 
which size belongs to which job. Certainly if the adversary can force this type of scheduler to do 
badly, the adversary can force a scheduler with no knowledge of job sizes to do badly. At time 
t, let J( t) be the set of jobs that have not yet completed. The scheduler has a corresponding set 
L(t) of the sizes of the jobs which have not yet completed. The adversary is not committed to 
any job in J(t) if, at time t, any bijective mapping from J(t) to L(t) is valid given the schedule 
thus far. In other words, given the amount of time that the jobs in J(t) have been running, the 
scheduler cannot infer any information about which job in J(t) is associated with which size in 
L(t). Let T( i, t) be the length of time machine i has been running a job at time t. If we forget 
for a moment the possibility that jobs in J(t) may have been run before and cancelled (yielding 
some information about their size), then the adversary is not committed to any job in J(t) at 
time t if 

T(i, t)si < min p3· , 1 < i < m. 
jEJ(t) - -
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The adversary's strategy is to avoid being committed to any job in J(t). The adversary can 
do this, if, at any point in time t' such that T( i, t')s; = miniEJ(t') Pi for some i, the adversary 
allows the smallest job in J( t') to complete on machine i. This resets T( i', t') to O. ff the equality 
holds true for more than one machine i or more than one job j , then the smallest indexed job j 
completes on the smallest indexed machine i and so forth. The adversary continues to complete 
jobs until the inequality T( i, t')s; < miniEJ(t') Pi holds again. 

This strategy immediately implies condition 1, since the smallest job will finish first, the next 
smallest second, etc. The strategy also takes care of our proviso above about past running times. 
ff the scheduler runs a job j on machine i and cancels it at time t after it has processed for 
k units of time, the scheduler has learned that Pi > k · Si. This is true for any job in J(t), 
however, since otherwise the adversary would have made the smallest job in J(t) finish at or 
before time t on machine i. Therefore, cancelling a job does not force the adversary to make any 
new commitments. 

Now to show that this strategy implies the second and third conditions. We will prove this 
by contradiction. Suppose that for some j, k > 0 m(j + k) < m(j), but ts(j + k) + Pif sm(j+k) s; 
t1(j). Then Pi s; [t1(j) - t 8 (j + k)]sm(j+k)· Notice that it must be the case that T(m(j + 
k), t1(j))sm(j+k) < Pi, or else, since m(j + k) < m(j), job j would have completed on machine 
m(j +k) instead. But T(m(j +k), t1(j)) = t1(j) - ts(j +k), so that [t1(j) - ts(j +k)]sm(j+k) < Pi, 
which contradicts the equation above. The third condition is proven similarly. ■ 

We use the theorem above to derive the Q(log m) lower bound. To do this, we use a family 
of instances for uniformly related machines given by Cho and Sahni [2) in a somewhat different 
context. Let k = (log2 (3m - 1) + 1 )/2. We restrict ourselves to values of m such that k is integral. 
The instance has k sets of machines Gi and k sets of jobs Ti, 1 :S: i :S: k. Each machine in Gi has 
a speed of 2i and each job in Ti has size 2i. Finally, I Gil = IT;! = 22k- Zi-I for 1 :S: i < k, and 
IGkl = ITkl = 1. It is easy to see that C~ax = 1. 

We would like to show that any schedule for this instance that obeys the conditions of Theorem 
4.1 will do poorly. One schedule that does obey the conditions of Theorem 4.1 is the following: 
schedule one job from Ti to start on each machine from Gi at time (i - 1)(½ + 8), for any 8 > 0. 
Then the entire schedule will complete at time (k-1)(½ + 8) + 1 = kil + (k - 1)8 (See Figure 1 
in the appendix). We will show in a series of lemmas that no other permissible schedule for this 
instance can finish faster than this schedule: essentially, scheduling every set of jobs Ti will take 
at least one unit. of time, and we will not be able to finish Ti any faster than one-half a unit of 
time later than the finishing time of Ti- I· 

We will let jfin and jfax stand for the highest and lowest indexed jobs in Ti respectively. 

Lemma 4.2 In any schedule obeying the conditions of Theorem 4.1, t1(jfax) - ts(jfin) ~ 1 for 
any i. 

Proof: We will in fact show that maxieTJt1Urax) - ts(j )] ~ 1. This implies the lemma, since 
the second and third conditions of Theorem 4.1 together imply that t 8 (jfin) s; t 8 (j) for all jobs 
j in Ti. Suppose that some job j E Ti runs on a machine from Gi or slower. Then for this job j, 
t1U) - ts(j) ~ 2i /2i = 1. Since by the conditions of Theorem 4.1, t1Urax) ~ t1U) , the lemma 
statement holds. Now suppose that no job j E Ti runs on a machine from Gi or slower. Note 
that at best, processing all the jobs from T; on all the machines in Gi+I and faster must take 
time at least the sum of the processing requirements of T; over the sum of the processing speeds 
of processors in Gi+I or faster. So the time taken is at least 
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I:jET; Pi 

I:IEU~+l G; S/ 

= 

I:7:i+i sdGd 
22k- i-1 

2k I:~:~-2 2r + 2k 

22k-i-1 

2k(2k- i -1 _ 1) + 2k 

22k- i - 1 

22k- i-l 

1. 

Hence the lemma statement must hold in this case as well. ■ 

Lemma 4.3 In any schedule obeying the conditions of Theorem 4.1, t1(jfax) - t1(jf:'t) 2: ½, for 

any i, 2 ~ i ~ k. 

Proof: Suppose all jobs from Ti run on machines from G;+1 or faster. As was shown in Lemma 
4.2, the jobs must take at least one time unit to complete. Then there must exist some machine 
r on which the difference between the finishing time of the last T; job run on r and the starting 
time of the first T; job run on r is at least 1. Call the last job from T; to run on machine r job 
-r last d h fi , b f ,..,, h' • b •r first S J;' an t e rst JO rom .Li to run on mac mer JO J;' . o 

t ( -r,last) _ t ( •7:,first) > l f ], s ], - • 

Since r is a machine from G;+1 or faster, Sr 2: 2i+l. Hence 

t ( •:.first) = t ( •:.first) + 2i < t ( ·:.first) + ! f J, s J, - s J, 2 . 
Sr 

Because t1(jf:'t) ~ t1(j[,first ), it follows that 

t ( ·:.first) _ t ( •!"ax) > _ ! 
s ] , f J,- 1 - 2. 

Adding this equation to equation ( 4) gives us 

t ( •7:,last) _ t ( •!7'aX) > ! 
f J, f J,-1 - 2 · 

Since t 1U[·1ast) ~ t 1Urax), it follows that 

t (J·!7'aX) - t (J·!"ax) > ! f i f i - 1 - 2. 

Now suppose that there is some job from Ti than runs on a machine from Gi or slower, 
call it machine q. We will call this job j;. If job j; runs on the same machine q as job jf:1x, 

then the lemma statement follows since t1Urax) 2: t1(j;) 2: t1Ul'.:'ix) + 2:-l 2: t1(il'.:'ix) + ½- If 
q 

jf:1x runs on some machine other than q, then by the second and third conditions of Theorem 

4.1, ts(ji) + 2
::

1 
2: t1Ul'.:'ix). Since t1Urax) 2: t1(j;) = ts(ji) +;;,it follows that t1Urax) ~ 

t J(j~1x) + ;~ - 2
::

1 
• We know that Sq ~ 2i, so the lemma statement follows. ■ 
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Lemma 4.4 In any schedule obeying the conditions of T heorem 4 .1, t1Cffax) ~ kil. 

Proof: Add together the k - 1 possible inequalities from Lemma 4.3. This yields the equation 

( ·max) ( •max) ( •max) ( •max) ( •max) > k - 1 t1 Jk - t1 lk- 1 +t1 lk- 1 - t1 lk- 2 + ... - ti J1 - - 2- -

By collapsing the sum, we obtain 

t1Urax) - t1Uiax) ~ k ; 1. 

From Lemma 4.2, we know that t1(iiax) - ts(jiin) ~ 1, so that t1(iiax) ~ 1. Hence we have 

t ( ·max) > k + 1 
I )k - 2 . 

■ 
The lower bound follows directly from these lemmas. 

Theorem 4.5 T he competitive ratio of any on-line algorithm for uniformly related m achines is at 
least (log2(3':- l)+l) + ½ . 

5 The Upper Bound for Uniformly Related Machines 

In this section we will present an O(logm)-competitive on-line algorithm for scheduling uniformly 

related machines. 

5.1 A Simple (Off-Line) 2-Relaxed D ecision Procedure 

First we give a simple (off-line) 2-rela.x:ed decision procedure for uniformly related machines that 
will be the basis of our on-line algorithm. The notion of a p-relaxed decision procedure was first 
introduced by Hochbaum and Shmoys [8]: given a deadline d, such a procedure either produces 
a schedule of length pd or verifies that there exists no schedule of length d. 

The 2-rela.x:ed decision procedure is as follows. Put each job into the queue of the slowest 
machine mk such that Pi ~ skd, If for some job there is no such machine it is clear that there does 
not exist a schedule of length d. Machines now process the jobs in their queues. If a machine's 
queue is empty it takes jobs to process from the queue of the first machine that is slower than 
it and that has a nonempty queue. If the schedule constructed has Cmax > 2d, output no. 
Otherwise we have produced a schedule of length at most 2d. 

We must prove that when the procedure outputs no there is no schedule oflength d. Consider 
a job j that was not finished by time 2d. Since jobs are only processed by machines on which 
they take less than d units of time this job must have started after time d; thus it was on the 
queue of some machine mk until timed. This implies that until timed machines m 1 , ... mk were 
all busy processing jobs that could not have completed on machines mk+l, ... mm. Therefore in 
a schedule of length d there is no possibility to process all of these jobs and job j . Thus there is 
no schedule of length d. 

7 



5.2 T he On-line Algorithm 

In this section we will first give an O(log m )-competitive on-line algorithm for a restricted set of 
instances of the problem. We will then show through a series of lemmas that any instance can be 
reduced to one of these restricted instances while increasing the competitive ratio by at most a 
constant factor . Hence we will have an on-line algorithm for all instances with competitive ratio 
O(logm). 

First we present the main algorithm. 

Theorem 5.1 Let I be an instance of the scheduling problem for uniformly related machines. Sup
pose that for instance I all machine speeds are powers of 2 and that the fastest machine is no more 
than m times faster than the slowest machine. Then there is an on-line scheduling algorithm which 
produces a schedule no longer than [8(logm) + l]C~ax(I). 

Proof: Since the Si are all powers of two, and all the Si are within a factor of m of s1, it 
immediately follows that there are at most logm different machine speeds. Let M1 = {milsi = 
si}, M2 = {milsi = si/2}, .. . ,Miogm = {mdsi = si/210gm}. We would like to apply the off-line 
decision procedure of section 5.1 to this instance. Note that instead of queueing jobs on machines 
m1, ... , mm, we can instead queue jobs on sets of machines M1, ... , M1ogm • 

The off-line decision procedure does not immediately lend itself to an on-line algorithm, since 
the criterion it uses to assign jobs to machine queues utilizes knowledge of the job sizes. To 
convert this to an on-line algorithm we will initially assign all the jobs to the M 1ogm queue; when 
we discover a job could not have completed on a machine in time d it is still possible that it 
might be able to complete in time don a faster machine. Thus we move it to the queue of the 
next fastest set of machines and then try again. After at most log m iterations of putting jobs in 
the queues of faster machines we will either have discovered that the job can't be processed in 
timed or we will have processed it. 

A formal description of an on-line relaxed decision procedure is as follows. This procedure 
will form the heart of our on-line algorithm. The procedure either outputs no if there is no 
schedule of length d or it produces a schedule of length 2d log m. Note that even if it answers no 
the procedure may have completely processed some of the jobs in that time. 

Input A set of jobs and a deadline d. 

Step O Put all jobs into the M1ogm queue. 

Step 1 Run the off-line 2-relaxed decision procedure, with the modification that no jobs are 
started after time d ( that is, when a machine is idle it takes a job to process off of its queue, 
or, when its queue is empty, off of the first slower machine that has a non-empty queue; 
etc.) 

Step 2 1. If all jobs finish processing by time 2d we are done. 

2. If any machine in M1 is still processing a job at time 2d then there is no schedule 
of length d. Output no; return 

3. If any set of machines Mk has a job j in its queue at time d then there is no schedule 
of length d. Output no; return 

4. If there are jobs that are being processed at time 2d, on machines Mi, i > 1, stop 
these jobs and put them on the queue of Mi-l· Go to Step 1. 
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Analysis of procedure 

• The length of the schedule or partial schedule produced is no longer than 2dlogm. 

• If the procedure outputs no then there is no schedule of length d. If condition 2 is true then 
an M1 machine ran a job for more than d time; therefore this job clearly could not have 
been processed in time d on any of the machines, since no other machine runs at a faster 
speed. If condition 3 is true, then up until timed all machines in the sets M1, ... Mk must 
have been busy processing jobs that could not have been processed in time d on machines 
in Mk-l, . . . , M1ogm· Therefore, machines in M1, ... , Mk could not have processed all of 
these jobs and job j as well by time d. 

Notice that this procedure relies heavily on our ability to restart jobs. 
Our on-line algorithm initially establishes a lower bound ~ on c:iax by running an arbitrarily 

chosen job on the fastest processor. Let ~ be the time taken to complete this job; certainly 
~ ::; c:iax· Next, the on-line algorithm calls the procedure on the set of all jobs with d = ~- If 
the procedure returns no, then we will call it again with d = 2~ and the set of jobs which were 
not completely processed in the first iteration. In general, if the ith iteration fails to produce a 
schedule, then we will call the procedure again for the ( i + 1 )st time with d = 2i ~ and all jobs 
that have not yet been completely processed. Observe that if the ith iteration fails to produce a 
schedule when called with d = 2i-l ~, then it proves that 2i-l ~ < c:iax· Suppose that we finally 
finish processing all jobs in iteration f. Then the total length of the schedule produced is 

~ + (1 + 2 + • • • + 2f-1 )(2~logm)::; 2f+1~logm. 

Since the procedure failed to produce a schedule on iteration f - 1, we know that 2I-2
~ < 

c:iax· Therefore the total length of the schedule produced is no greater than (8(log m) + 1 )C:iax· 

■ 
We now present a series of lemmas that show how to reduce any instance of the schedul-

ing problem to an instance of the form required by the algorithm above, while increasing the 
competitive ratio by at most a constant factor. 

Lemma 5.2 Any instance of the problem can be reduced on-line to one in which all machine speeds 
are powers of two, increasing the competitive ratio by a factor of at most 2. 

Proof: We effectively round the speeds down to the nearest power of two. When a machine 
finishes processing a job it holds on to it long enough so that it seems to have been processed at 
the lesser speed. ■ 

Lemma 5.3 Any instance of the problem can be reduced on-line to one in which the speed of the 
fastest machine is no more than m times the speed of the slowest. This reduction increases the 

competitive ratio by 2. 

Proof: Let k be such that E7=1 Si ~ ½ E~1 Si, and E7~l s; < ½ E~1 Si• By this definition of 
k, s1 ::; msk. In time 2c:iax we can process on-line all but k of the jobs by processing jobs 
arbitrarily on machines m1 , ... , mk until the first moment in time at which at most k jobs have 
not yet been completely processed. The amount of time it takes until this point is bounded 
above by (Lj=l Pi)/ ( ½ E~1 s;) ::; 2c:iax, since none of the k machines is idle. We will only need 
machines m 1 , ... , mk to process these last k jobs. Thus if we then produce a schedule of length 
l for the last k jobs on these machines, the entire schedule will be of length 2c:iax + 1, and the 
machine speeds will be as required. ■ 
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6 Randomized Algorithms 

We now consider the degree to which randomness can help an on-line scheduler. As is the case 
with many problems in on-line algorithms, there is a distinction between the two adversary 
models for a randomized scheduling algorithm. It is easy to see that none of our lower bounds 
in the previous sections depended on the scheduler being deterministic; they just required the 
adversary to be able to make decisions while the scheduler was scheduling. Therefore, all of our 
lower bounds remain valid for a randomized scheduler playing against an adaptive adversary. 
In the more realistic model of an oblivious adversary, however, the scheduler becomes slightly 
more competitive with the use of randomization. Nevertheless, the improvement is surprisingly 
small: we will prove a strong lower bound on the performance of any randomized algorithm for 
scheduling identical machines. 

Theorem 6.1 Any randomized algorithm for scheduling identical machines has worst case expected 

value of at least (2 - !l(l/J'in))C!iax· 

Our strategy to prove this theorem is as follows. We will first define the notion of a reasonable 
randomized algorithm for scheduling identical machines. We will then show that for any c
competitive unreasonable algorithm, there exists a reasonable algorithm that has a competitive 
ratio no greater than c and that always chooses the next job to schedule uniformly. Finally, we 
will provide an instance for which the competitive ratio of such a strategy has worst case expected 
value (2 - !l(l/ J'in))C!iax• 

Definition 6.2 A reasonable randomized algorithm for scheduling identical machines is an algorithm 
that does not restart any job and does not leave any machine idle as long as there is some job that 

has not yet been started. 

Lemma 6.3 For any unreasonable algorithm A there is a reasonable algorithm A' whose worst-case 

expected performance is at least as good as that of A. 

Proof: First we argue that the introduction of idle time into a schedule cannot help the scheduler. 
Assume that job j is to be started at time t 2 on machine i which is idle from time ti to t2. Now 
if job j is available at time ti, it is clearly to the advantage of the scheduler to start job j on 
machine i at time ti. If job j is not available at time ti then it is running on another machine 
i'. In this case there is no point in restarting job j on machine i; since the two machines are of 
identical speed we can switch the future schedules of the two machines without increasing the 
total length of the schedule. 

Now restarting a job j after it has run for t < Pj units of time is equivalent, in terms of the 
effect on the length of the schedule, to introducing t units of idle time, and thus does not help 
the scheduler either. ■ 

Lemma 6.4 A reasonable randomized algorithm A is equivalent to an algorithm that, whenever a 
machine becomes idle, picks one of the unstarted jobs with a certain probability distribution which 
may depend on the schedule constructed up to that point. 

Proof: Since a reasonable randomized algorithm constructs a schedule with no restarts and no 
idle time, it must be the case that it schedules some unstarted job whenever a machine becomes 
idle. The probability distribution for its next choice cannot depend on information that the 



algorithm does not have at that point; thus, it can depend only on the schedule constructed until 
that particular choice of a job. ■ 

We will now argue that the adversary can always force the scheduler to do as poorly as it 
would have done had it always made its choices according to the uniform distribution. 

Lemma 6.5 The competitive ratio of a reasonable randomized algorithm A can be no less than that 
of the reasonable algorithm U that always picks the next job to process uniformly from among the 

remaining jobs. 

Proof: We note that the adversary's strategy can be described as choosing the sizes of the jobs 
and then choosing some permutation of the jobs. Suppose the adversary chooses the permutation 
randomly and uniformly. Consider then the expected performance£ of the randomized algorithm, 
taken over the random choices of both the adversary and the algorithm. At any particular point 
at which the algorithm chooses a job to schedule from among the remaining jobs, no matter what 
probability distribution the algorithm uses, the uniformly random choice of the adversary ensures 
that the probability of the algorithm selecting any particular job is uniform over all the remaining 
jobs. Thus the expected performance £ for algorithm A is the same as that of the reasonable 
algorithm U. In reality, the adversary will pick some fixed permutation but if the expected value 
over all of the choices of both the adversary and the algorithm is £, the adversary can always 
pick some permutation of the jobs such that the expected performance of the algorithm A, taken 
over just the choices of the algorithm, is no better than £. Note that by the argument above, 
the performance of algorithm U on any permutation will be £. Therefore, the algorithm A can 
do no better than the algorithm U that makes choices uniformly. ■ 

We complete the proof of theorem 6.1 by showing that scheduling by choosing the next job 
uniformly can do quite poorly. 

Lemma 6.6 There is a problem instance for scheduling identical machines on which a uniform choice 
of the next job to process produces a schedule with expected length (2 - !1(1/.Jm))C:i_ax. 

Proof: We will consider the problem instance with k jobs of size m ("big" jobs) and m(m - k) 
jobs of size 1 ("small" jobs). The optimum length schedule for these jobs is of length m. The 
expected length of the schedule is then m + Es, where Es is the expected start time of the last 
big job in the schedule. Es will be at least k!l ( m - k ); maximizing this expression over k yields 
k = 0( .Jm) and thus Es = (2 - 2/.Jm + o(l/.Jm))C:i_ax, which implies the stated result. ■ 

7 Other Models and Open · Problems 

We have defined a natural way to model the problem of scheduling in an on-line fashion, and 
have given matching or near-matching bounds on the competitive ratios that can be achieved in 
two fundamental cases of scheduling parallel machines. This work raises a number of interesting 
open questions. One direction of interest is to incorporate further elements and constraints into 
the basic models of scheduling parallel machines. We discuss here several additions to the model 
and their implications for on-line algorithms. 
Release Dates: Traditional scheduling models often contain the added constraint that not all 
the jobs are available for processing at time 0, but that job j arrives at time Tj. In these models 
the Tj are known in advance; the natural on-line model is that the scheduler does not know that 
job j exists until time Tj. It is known that list scheduling can be adapted to work with release 
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times (15], and since our lower bounds still apply, list scheduling is an optimally competitive 
on-line algorithm for identical machines with release dates. 

Our on-line algorithm for uniformly related machines can also be extended to handle release 
dates. Our algorithm consisted of a series of phases, each phase having an associated deadline d. 
If a job is released in the phase with deadline d the algorithm begins processing it at the start 
of the next phase (i.e. it is put on the queue of the slowest machine along with all the other 
jobs that were released in earlier phases and remain unprocessed). If the algorithm would have 
completed all the jobs in the kth phase, with deadline d, then upon completion of the kth phase 
it starts a new phase with deadline d and begins processing those jobs that arrived during the 
kth phase. It is not hard to see that this modification gives an O(log m) upper bound for this 
more general problem. 
Preemption: In some scheduling scenarios it is a reasonable assumption that the processing of a 
job can be interrupted and restarted on another machine without losing any work; this is referred 
to as the preemptive model. In contrast to the nonpreemptive model which we have considered 
in this paper, an optimal schedule can be found off-line in polynomial time when preemption is 
allowed (18]. Interestingly enough, the on-line worst case characterization of both models is the 
same. 

Theorem 7 .1 An on-line algorithm for scheduling identical machines with preemption allowed has 
competitive ratio at least (2 - ! ) and there is an algorithm that achieves this ratio. 

Proof: Graham has showed that list scheduling achieves a competitive ratio of 2- ! for schedul
ing identical machines with preemption allowed as well. To prove the corresponding lower bound, 
consider an instance with n = m+ 1 jobs. The adversary allows the scheduler to begin scheduling, 
and waits until either the scheduler preempts a job for the first time, or 1 time unit has passed, 
whichever comes first. Call this time t. By time t, at most m jobs can have been started (since 
scheduler didn't preempt anything until time t ). Let job n be a job that was not started. At time t, 
the adversary sets P1 = · · · = Pn-1 = t, and sets Pn = tm/(m-1). The scheduler can clearly com
plete the entire schedule no sooner than time t + tm/(m - 1). The length of the optimal preemp
tive schedule is known to be max(Pmax, "E,p;/m). In this case max(Pmax, "E,p;/m) = tm/(m - 1). 
Therefore the adversary has competitive ratio [t + tm/(m - 1)]/[tm/(m - 1)] = 2 - 1/m. ■ 
Gang Scheduling: In the models of scheduling we have discussed, each job is viewed as requiring 
only one processor. A possible extension to the identical machines model would be to view a job 
as requiring a specific number of processors, i.e. a job j must run on q; processors simultaneously 
for Pi units of time. The value q; is called the width of job j. In the literature on multiprocessing 
this model has been referred to as gang scheduling, whereby interacting threads of a computation 
are required to execute simultaneously (5]. 

Feitelson and Rudolph (4],[5] argue that it is a realistic assumption that the job sizes are not 
known beforehand but that the job widths are. They present several results assuming specific 
input distributions. It is clear that our lower bounds for identical machines apply here since they 
just use gangs of width 1. We have shown that a simple strategy comes within a factor of 3 - ~ 
of optimal; the proof will appear in the full version of the paper. 

Theorem 7.2 There exists an on-line algorithm with competitive ratio (3 - ~) for gang scheduling 
of identical machines. 

Precedence Constraints: A standard addition to the models we have discussed is precedence 
constraints, which specify that certain jobs must be processed before others, via a partial order on 
the jobs. We note in passing that for identical machines list scheduling can be shown to achieve 
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the same bounds for a problem with precedence constraints [7], so list scheduling remains an 
optimally competitive on-line algorithm. When precedence constraints are added to the uniform 
non-preemptive model, the best known approximation algorithm, due to Jaffe [11], produces 
schedules within an 0( Jm) factor of optimal. This algorithm happens to be an on-line algorithm. 
Unrelated Machines: We have assumed that the machines are either identical or uniformly 
related. A third model that has been studied in the literature is that of unrelated machines, 
where a job j runs at speed Sij on machine i, and the Sij need not be related in any coherent 
fashion. Davis and Jaffe give an 0( Jm) approximation algorithm for the non-preemptive model 
that is on-line but does not take advantage ofrestarts [3]. In related work with Shmoys, we have 
developed an on-line algorithm for the non-preemptive model with competitive factor 0(log n) 
[19]; the best known lower bound is our lower bound for the uniformly related case. 

It would also be interesting to study on-line scheduling algorithms for different realms of 
scheduling, such as shop scheduling or single-machine scheduling [15], and/or algorithms that 
optimize criteria other than the makespan. There is a tremendous amount of literature on these 
different realms, and relatively little of it translates into useful techniques for on-line algorithms. 
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8 Appendix 
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Figure 1: Near optimal schedule for example in section 4 
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