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Abstract 

Given a connected, directed graph G = (V, E) in which each edge ( u, v) has a cost c( u, v) and 
a transit time t( u, v ), the tramp steamer problem is defined as identifying a directed cycle within 
the graph for which the ratio of total cost to total transit time is as small as possible. We give 
an O(V E + t* E)-time1 algorithm for the problem, where t* is the transit time around the optimal 
cycle. Our algorithm assumes, as is common in the literature, that transit times are integer valued 
and that the total transit time around any cycle is positive. Our algorithm does not scale costs and 
thus avoids the common assumption that costs are integer valued. If the scaling of costs is accept­
able, however, our algorithm can be adapted to run in O(V112 E lg(V Cma~:lmax) + t* E)-time, where 
tmax = ma.JC{u,t1)EE lt(u, v)I and Cmax = ma.JC{u,v)EE Jc(u, v)I- Among algorithms that do not scale 
costs, our procedure is the asymptotically fastest to date for the problem when t* = o(V lg(V Cmaxtmax) ). 
When costs are scaled, the adapted version of the algorithm is the asymptotically fastest to date for 
the problem when t * = o(v1!2 1g2 (V Cmaxtmax)). 

Keywords: tramp steamer problem, minimum cost-to-time ratio, minimum cycle mean, combi­
natorial optimization, algorithms. 

1 The Problem 

The tramp steamer problem (also known as the minimum cost-to-time ratio cycle problem) was formu­
lated by Dantzig, Blattner, and Rao [2] as follows. Let G = (V, E) be a directed graph in which each 
edge ( u, v) has an integer cost c( u, v) and an integer transit time t( u, v), such that for any cycle C in 
G, we have L(u,t1 )Eat(u,v) > 0. For any cycle C in G, define the cost-to-time ratio of the cycle by 

The problem is to identify a cycle C* in G such that the cost-to-time ratio R(C* ) is minimum. 
The motivation for the tramp-steamer problem was provided by Dantzig et al. Each vertex is a port 

of call for a ship, and a voyage from port u to port v earns p( u, v) dollars of profit and takes t( u, v) days 
to complete. The captain of the ship wishes to determine a circular route among the ports that over 

1 For the sake of readability, inside asymptotic notation, such as O-notation, or inside algebraic expressions, we adopt 
the convention that the symbol V denotes WI and the symbol E denotes IE!. 
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time will guarantee him the maximum profit per day. In the graph formulation above, we simply let 
c( u, v) = -p( u, v ) , and the captain wishes to find a cycle C* in the graph for which R( C*) is minimized. 

Several algorithmic techniques have been developed for the solution of the tramp steamer prob­
lem [2, 8, 9]. The asymptotically best algorithms to date perform a binary search over the space of 
possible optimal ratios. The search requires the solution of O(lg(V Cmaxtmax)) shortest-paths problems, 
where Cmax = maxcu,,,)EE le( u, v )I and tmax = maxcu,,,)EE it ( u, v )I. Using the Bellman-Ford algorithm for 
shortest-paths, a solution can be obtained in O(VElg(Vcmaxtmax)) steps [9]. A solution can be obtained 
in O(V112 Elg2(Vcmaxtmax)) steps using the Gabow-Tarjan scaling algorithm for shortest-paths [3]. An­
other algorithm with running time O(V112Elg2(Vcmaxtmax)) can be obtained by using the Orlin-Ahuja 
scaling algorithm for shortest-paths [10]. Also, for the restricted case when t ransit times are either 
0 or 1, the problem can be solved in O(V E) time [4]. 

In this paper we describe an algorithm for the tramp steamer problem that performs a search for 
the transit time t* around the optimal cycle. The search requires the solution of O(lg(t* /V)) shortest­
paths problems. Using the Bellman-Ford algorithm for shortest-paths, the search can be performed in 
O(V E+t* E)-time. Unlike other algorithms in the literature, the running time of this algorithm does not 
depend on the sizes of c( u, v), and hence the typical assumption that costs are integer is unnecessary. 
Our procedure is based on Karp's O(V E)-time algorithm for finding the minimum cycle mean of a 
directed graph [6] and is asymptotically the fastest algorithm to date for the tramp steamer problem 
when t* = o(Vlg(Vcmaxtmax)) and costs are not scaled. This bound on t* arises in various applications, 
including a problem involving the optimization of level-clocked circuitry [5]. 

If scaling of costs is acceptable, our algorithm can be adapted to run in O(V1
/

2 Elg(V Cmaxtmax) + t* E) 
steps. The adapted algorithm requires the solution of O(lg(t* / V1 f 2 lg(Vcmaxtmax))) shortest-paths prob­
lems. Using either of the scaling algorithms for shortest-paths mentioned above, the claimed running 
time is obtained, thus resulting in the asymptotically fastest algorithm to date for the problem when 
t* = o(V1f 2 lg2(V Cmaxtmax) ). 

The choice of transit time, as opposed to cost, as the "search variable" is not mandatory. If the 
edge costs are integer and their sum around any cycle in G is positive, then we can obtain symmetric 
results by regarding - t( u, v) as the "cost" and c( u, v) as the "transit time." 

2 The Algorithm 

In this section we describe our algorithm for the tramp steamer problem. We assume that all edge transit 
times are nonnegative. If this is not t rue, we apply the following well-known reweighting transformation 
[1, Sec. 26.3]. We assign to each edge (u,v) EE anew transit time t'(u,v) = t(u ,v)+l(u)-l(v), where 
for all u E V, the value l( u) denotes the minimum transit time to vertex u from any vertex in V. The 
value l( u) is well defined for all u, since the transit time around any cycle is nonnegative. It follows from 
the definition of l that t' ( u, v) ~ 0 for all ( u, v) E E. Moreover, since the transit time around any cycle 
is the same with respect to either t or t', the optimal cost-to-time ratio in G remains unaltered by the 
transformation. The variables l( u) can be computed in either O(V E)-time or O(V1/ 2 Elg(Vtmax))-time, 
using either Bellman-Ford or a shortest-paths scaling algorithm, as appropriate. 

The basic algorithm, shown in Figure 1, makes the simplifying assumption that all edges have strictly 
positive transit times. The algorithm can be understood as a search over the space of possible values 
for t*. Assume that a source vertex s has been introduced into G. As will be discussed in the next 
section, if t + is an upper bound on the value oft*, the value of R(C*) can be obtained given, for each 
vertex v and integer k :S t+, the cost Fk ( v) of the least-cost path from s to v with total transit time 
exactly k. Since only unacceptably large upper bounds are known a priori, however, the algorithm 
begins with a suitable base estimate n = IVI of an upper bound, and proceeds to double the estimate 
n until a true upper bound is isolated. The algorithm determines whether a particular n is a true 
upper bound by computing an approximation Rn of the desired cost-to-time ratio, and comparing the 
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TRAMP(V, E, c, t) 

1 V'+-VU{s},E'+-EU{(s,v):vEV} 
2 for each vertex v E V 
3 do t(s,v) +-1 
4 c(s, v) +- 0 
5 Fo(s) +- 0 
6 for each vertex v E V 
7 do F0 (v) +- oo 

s n - IVI 
9 m+-1 

10 while TRUE 

11 do for k +- 1 to n 
12 do for each vertex v E V' 
13 do Fk(v) +- oo 
14 for each edge (u, v) EE' with k ~ t(u, v) 
15 do Fk(v) +- min{Fk(v), Fk-t(u,11)(u) + c(u, v)} 
16 if Fk(v) < oo 
17 then m +- k 
18 Rn+- 00 

19 for each vertex v E V' 
20 do Rn(v) +- -oo 
21 for k +- 1 to m - 1 
22 do R,.(v) +- max{R,.(v), (Fm(v) - Fk(v)) /(m - k)} 
23 Rn+- min{Rn, Rn(v)} 
24 if the graph with edge weights c( u, v) - Rn • t( u, v) has a negative-weight cycle 
25 then n +- 2n 
26 else return Rn 

Figure 1. 

approximation to R(C*). The approximation Rn is the best estimate of R(C*) that the algorithm is 
able to isolate when only paths of total transit time at most n are considered. Since it is not necessarily 
true that for every particular n there exists a path from s with transit time n, the algorithm examines 
paths of transit time up to the maximum m :=:; n that can be achieved by any path. The existence 
of a negative-weight cycle in the graph (V,E,w), where w(u,v) = c(u,v)- Rn· t(u,v), implies that 
Rn > R(C*) [9]. If no negative-weight cycle exists, then Rn= R(C*) and every optimal cycle has zero 
weight. From this point, an optimal cycle C* can be identified by an O(E)-time depth-first search. 
The variables Rn(v) are temporary variables used to compute Rn. Our choice of m guarantees that, 
for n > t* and some vertex v on the optimal cycle C*, the cost Fm( v) is finite and the variable Rn( v) 
attains the value R( C* ). 

The basic algorithm ignores the possibility of edges with zero transit time. Such edges can be readily 
handled by substituting the lines of code shown in Figure 2 for lines 11-17 of Algorithm TRAMP. In 
order to properly compute Fk( v) in the presence ofzero-transit-time edges, the contribution of the costs 
Fk ( u) for all u with zero-transit-time paths to v must be considered. The code in Figure 2 accomplishes 
this task by propagating the effect of these values along the acyclic subgraph (V, E0) of G that contains 
only the edges of G with zero transit time. 

3 Analysis 

Our algorithm is based on Karp's algorithm [6] for the minimum cycle mean problem which is defined 
as follows. Given a directed graph G = (V, E) with weight c( u, v) on each arc ( u, v ), identify a cycle C* 
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lla do Eo +- {(u, v) EE: t(u, v) = O} 
llb for k +- 1 to n 
12 do for each vertex v EV' 
13 do Fk(v) +- oo 
14 for each edge (u, v) EE' - Eo with k 2: t(u, v) 
15a do Fk(v) +-min{Fk(v),Fk-t(u,,,)(u)+c(u,v)} 
15b for each vertex v EV in topological sort order in (V, Eo) 
15c do for each edge ( u, v) E Eo 
15d do A(v) +- min{Fk(v), Fk(u) + c(u, v)} 
16 if Fk(v) < oo 
17 then m +- k 

Figure 2. 

in G such that 
M(C*) = L(u,,, )EC• c( u, V) 

JC• J , 

is minimum, where JC* I denotes the number of edges in c•. In [6], it is shown that 

M(c*) . Fn(v) - Fk(v) = nnn max , 
,iEY 0:5i:$n-l n - k · 

where Fk(v) denotes the cost, with respect to c, of the least-cost path of k edges from some source 
vertex s to v.2 The parameter n equals the number of edges in C* plus the number k of edges required 
to reach the vertex v from the source s along the path corresponding to the optimal Fk ( v). 

The correctness of our algorithm relies on the observation that for any graph where all edges have 
unit transit time, the minimum cost-to-time ratio is equal to the minimum cycle mean. For any 
given graph G = (V, E), let G.q,, be the graph with edges of unit transit time constructed as fol­
lows. For each edge ( u, v) E E with transit time t( u, v) > 0, the graph G eq,, has a sequence of edges 
( u 0 , u1 ), ( u1, u2), . •• , ( Ut(u,,,)-2, Ut(u,,,)- i) with zero cost. For every vertex w that can be reached from 
v along zero-transit-time edges, G.q,, has an edge ( Ut(u,,,)-l, w) with cost equal to c( u, v) + lo( v, w ), 
where 10 ( v, w) denotes the length, with respect to c, of the shortest path in (V, E 0 ) from v to w. It is 
straightforward to verify that the minimum cost-to-time ratio of G equals the minimum cycle mean of 
G.q,, . 

Algorithm TRAMP solves the minimum cost-to-time ratio problem on G by simulating the operation 
of Karp's minimum cycle mean algorithm on G eq,i. Each time a single edge ( u, v) in G is processed, 
Algorithm TRAMP conceptually achieves in a single step the effect of running Karp's algorithm on the 
entire corresponding sequence of edges (u0,u1),(u1,u2 ), ... ,(ut(u,,,)- 2,ut(u,,,)-i) in G.q,,. The desired 
running-time bounds cannot be achieved by simply applying Karp's algorithm to G.q,,, since G.q,, 
can be larger than G by as much as a factor of tmax = maxcu,,,)EEt(u,v). Algorithm TRAMP thus 
avoids a potential t~ax multiplicative factor. It is straightforward to verify, however, that Algorithm 
TRAMP computes the minimum cycle mean of G.q,,, and thus, the correctness of the algorithm follows 
immediately. 

Line 24 of Algorithm TRAMP uses a shortest-paths subroutine that can either scale edge costs or not. 
The asymptotically fastest shortest-paths subroutine that does not scale edge costs is the O(V E)-time 
Bellman-Ford algorithm, which is used in the implementation shown in Figure l. In this version of 
the algorithm n = JVI initially, and line 10 is repeated 1 + llg(t* /V)J times. (The parameter n in our 
algorithm eventually need only be greater than t*, since the source vertex s introduced is connected 

2Karp and Orlin [7) have shown that an extension of this formulation can be used to solve a generalization of the 
standard shortest-paths problem in which edge weights have a parameter >. subtracted from them. See also [11]. 
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directly to all the vertices of G.) The ith iteration of lines 11-26 requires O(VE + 2iVE) steps. 
Therefore, the total running time is 

(

i+L!g(t* /V)J . ) 
0 I: (VE+ 2'VE) 

i=l 
( 

i+Llg(t* /V)J . ) 
< 0 2 I: 2'VE 

i=l 

O(VE + t• E). 

If we choose a shortest-paths subroutine in line 24 that scales costs, then the running time of 
the algorithm becomes dependent on the costs of edges. The asymptotically most efficient shortest­
paths algorithms to date are those due to Gabow and Tarjan [3] and to Orlin and Ahuja [10] which 
run in O(V112 Elg(Vcmaxtmax)) time. In such a scaling version of algorithm TRAMP, it is advanta­
geous to let the initial value of n be V112 lg(Vcmaxtmax)- The number of iterations of lines 11-26 is 
O(lg(t* /V1f 2 lg(V Cma~:tmax))), and the overall algorithm terminates in O(V1f 2 Elg(V Cm=Jmax) + t• E) 
steps. 
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