
Action Transducers and Timed Automata

Nancy Lynch

MIT

Laboratory for Computer Science

Cambridge, MA 02139, USA

lynch@theory.lcs.mit.edu

Frits Vaandrager

CWI

P.O. Box 94079, NL-1090 GB Amsterdam

fritsv@cwi.nl

University of Amsterdam

Programming Research Group

Kruislaan 403, NL-1098 SJ Amsterdam

October 26, 1994

Abstract

The timed automaton model of [29, 30] is a general model for timing-based systems.
A notion of timed action transducer is here de�ned as an automata-theoretic way of
representing operations on timed automata. It is shown that two timed trace inclusion
relations are substitutive with respect to operations that can be described by timed
action transducers. Examples are given of operations that can be described in this
way, and a preliminary proposal is given for an appropriate language of operators for
describing timing-based systems.

1991 Mathematics Subject Classi�cation: 68Q55, 68Q60, 68Q75.
1991 CR Categories: D.3.3, F.1.1, F.3.2, F.3.3.
Keywords and Phrases: Real-time, process algebra, action transducers, timed au-
tomata, timed trace inclusion, congruence properties.
Notes: The �rst author was supported by ONR contracts N00014-85-K-0168 and
N00014-91-J-1988, by NSF grant CCR-8915206, and by ARPA contracts N00014-89-
J-1988 and N00014-92-J-4033. The second author was supported by ESPRIT BRA
7166 Concur2 and by the HCM network EXPRESS. Part of the work on this pa-
per was done while the author was employed by the Ecole des Mines, CMA, Sophia
Antipolis, France. A preliminary version of this paper appeared in W.R. Cleaveland,
editor, Proceedings CONCUR'92, Stony Brook, New York. LNCS 630, pages 436{455.
Springer-Verlag, 1992.

1

Contents

1 Introduction 3

2 The Untimed Setting 6

2.1 Automata : 6
2.2 Executions and Traces : 7
2.3 Action Transducers : 7

2.3.1 De�nition : 7
2.3.2 Executions and traces : 8
2.3.3 Relation with automata : 8
2.3.4 Combining transducers and automata : : : : : : : : : : : : : : : : : : 9
2.3.5 Remarks : 9

2.4 Substitutivity : 10

3 An Untimed Process Algebra 13

3.1 Preliminaries : 14
3.2 Operators : 14

3.2.1 Actions : 14
3.2.2 Sequential composition : 14
3.2.3 External choice : 15
3.2.4 Disjoint union : 15
3.2.5 Relabeling : 16
3.2.6 Parallel composition : 16
3.2.7 Hiding : 17
3.2.8 Interrupts : 17
3.2.9 Iteration : 17

3.3 Expressivity of Lu : 18
3.4 Counterexamples : 19

4 The Timed Setting 20

4.1 Timed Automata : 20
4.2 Timed Traces : 20
4.3 Timed Action Transducers : 22

4.3.1 De�nition : 22
4.3.2 Timed traces : 23
4.3.3 Zeno-respecting property : 24
4.3.4 Combining timed transducers and timed automata : : : : : : : : : : 24

4.4 Substitutivity : 26

5 A Timed Process Algebra 30

5.1 Operators : 31
5.1.1 The patient construction : 31
5.1.2 Clocks : 32
5.1.3 Bounds : 33

2

5.1.4 Timers : 34
5.1.5 Changing speed : 35

5.2 Expressivity of Lt : 35
5.2.1 Wait constructs : 36
5.2.2 Urgency : 36
5.2.3 Execution delay : 37
5.2.4 MMT-automata : 37

5.3 Counterexamples : 38
5.4 Remarks : 39

6 Discussion 40

1 Introduction

The timed automaton model of [29, 30] is a general model for timing-based systems. It is
intended as a basis for formal reasoning about such systems, in particular, for veri�cation of
their correctness and for analysis of their complexity. In [29, 30], we develop a full range of
simulation proof methods for timed automata; these methods are used in [25, 9, 18] to verify
the correctness of timed protocols for communication, audio control and real-time process
control, respectively. In this paper, we continue the development by studying process algebras
for the same model. Eventually, we envision using a combination of proof methods, perhaps
even using several in the veri�cation of single system.

A timed automaton is an automaton (or labelled transition system) with some additional
structure. There are three types of actions: time-passage actions, visible actions and the
special internal action � . All except the time-passage actions are thought of as occurring
instantaneously. To specify times, a dense time domain is used, speci�cally, the nonnegative
reals, and no lower bounds are imposed on the times between events. Two notions of external
behavior are considered. First, as the �nite behaviors, we take the �nite timed traces, each
of which consists of a �nite sequence of timed visible actions together with a �nal time.
Second, as the in�nite behaviors, we take the admissible timed traces, each of which consists
of a sequence of timed visible actions that can occur in an admissible execution, i.e., an
execution in which time grows unboundedly.

The timed automaton model permits description of algorithms and systems at di�erent
levels of abstraction. We say that one timed automaton A implements another timed automa-
ton B if the sets of �nite and admissible timed traces of A are included in the corresponding
trace sets of B. Justi�cation for the use of trace inclusions to de�ne \implementation"
appears, for example, in the work of Gawlick, Segala, S�gaard-Andersen and Lynch [14].
Basically, this justi�cation amounts to showing that the set of admissible timed traces of
A is not trivial. Doing this depends on a classi�cation of the visible actions of A as input
actions or output actions, as in the I/O automaton model of [28]. Then A is required to have
the property that each of its �nite executions can be extended to an admissible execution in
a way that includes any given \non-Zeno" input pattern. Showing that this property holds

3

for a given timed automaton A is an interesting problem, but we do not address this problem
in this paper.

In the untimed setting, bisimulation equivalences have been reasonably successful as
notions of implementation between transition systems [6, 34]. Consequently, bisimulation
equivalences have also been proposed as implementation relations for the timed setting [4,
23, 35, 38, 47]. However, we do not believe that bisimulations will turn out to be very useful
as implementation relations in the timed case. The problem is that they do not allow one to
abstract in speci�cations from the often very complex timing behavior of implementations
(see Chapter 10 of [23] for an example).

Since we believe that timed trace inclusion does form a good notion of implementation,
we are interested in identifying operations on timed automata for which the timed trace
inclusion relation is substitutive. This substitutivity is a prerequisite for the compositional
veri�cation of systems using timed automata. It should also enable veri�cation of systems
using a combination of compositional methods and methods based on levels of abstraction.

We represent operations by automaton-like objects that we call action transducers, rather
than, for example, using SOS speci�cations [41]. For an example of an action transducer,
consider the operation jjj of interleaving parallel composition. It can be described by an
automaton with a single state s and transitions (one for each action a):

s a�!
(1;a)

s and s a�!
(2;a)

s:

The left transition says that the composition can perform an a action when its �rst argument
performs an a-action, while the right transition says that the composition can perform an a
action when its second argument does so. Together, the transitions say that the automaton
A jjj B can do an a-step whenever one of its arguments can do so. In the SOS approach, the
same operator jjj can be described by inference rules (one for each action a):

x
a! x0

x jjj y a! x0 jjj y and
y

a! y0

x jjj y a! x jjj y0:

The two styles of describing operators, SOS and action transducers, are quite similar. In
fact, it is shown in [46] how SOS speci�cations in a variant of a format proposed by De
Simone [43] can be translated to equivalent action transducers, and vice versa.

However, action transducers are more convenient for our purposes. First, although it is
easy to see how SOS speci�cations determine automata, it is less clear how to regard them as
de�ning operations on automata. For action transducers, this correspondence is more direct.
Second, as noted by Larsen and Xinxin [26], action transducers are a convenient tool for
studying compositionality questions, and their use tends to simplify proofs. Third, action
transducers can easily be de�ned to allow multiple start states. Multiple start states have
turned out to be useful in untimed automaton formalisms for concurrency such as the I/O
automaton model, and we would like to include them. We do not know how to model start
states in the setting of SOS.

As mentioned above, the action transducers we consider have multiple start states. They
also include holes, which describe locations for holding argument automata. In fact, our

4

transducers also allow holes to be colored, which allows us to express the condition that
several holes (those of the same color) must hold copies of the same automaton. The concepts
of multiple start states and of colored holes are not present in [26].

The major result of our paper is that the timed trace inclusion relation is substitutive
with respect to all operations that can be described by our action transducers, provided they
satisfy a number of conditions that concern the handling of internal and time-passage steps.

After proving substitutivity for a general class of operations, we describe many examples
of speci�c operations that fall into this class. These include most of the usual untimed
operations from process algebra, in particular, sequential and parallel composition, external
choice, action hiding and renaming. Other untimed operations included are an interrupt
operation similar to those used in Extended LOTOS [10] and CSP [20], disjoint union, and
a binary version of Kleene's star. We also describe several timed operations as timed action
transducers: a CLOCK operation directly inspired by the clock variables of [2, 3], a BOUND
operation that can block the passage of time, and a RATE operation that can change the
speed of its argument. On the other hand, there are several operators that have been
proposed in the literature that do not �t our format of action transducers, in particular, the
CCS-style choice operation present in [4, 35, 38, 47]. This operation cannot be expressed as
a timed action transducer because the timed trace inclusion relation is not substitutive with
respect to it.

We briey consider the design of an appropriate language of operators for describing
timing-based systems. Such a language should consist of a small number of basic operations,
both timed and untimed, out of which more complex operations can be built. The basic
and derived operations together should be su�cient to describe most interesting timing-
based systems. As a starting point, we believe that such a language ought to include the
basic untimed operations that are already well understood and generally accepted. To this
end, we describe a simple and general construction, inspired by Nicollin and Sifakis [37], to
transform any untimed operation into a timed one that behaves essentially the same and
moreover does not use or constrain the time. By applying this construction to the well-
known untimed operations, we obtain a collection of corresponding timed operations that
we believe should be included in a real-time process language.

The untimed operations alone are not enough, however; a real-time process language also
must include operations that use and constrain time explicitly. Of the many possibilities, we
would like to identify a small number that can be used for constructing all the others. For
this purpose, we tentatively propose our CLOCK, BOUND and RATE operations mentioned
above. Using only these operations and untimed operations, we can construct many of the
other timed operations appearing in the literature, including a very general timer similar
to that used in the timed !-automata model of Alur and Dill [2], the timeout construct of
Timed CSP [42, 11], and the execution delay operation of the timed process algebra ATP
[38]. We can also de�ne a minor variant of Alur and Dill's timed automata [2], as well as
the �nite-state subcase of the timed automaton model of Merritt, Modugno and Tuttle [32].
All of this provides evidence of the power of our proposed language.

The decidability and closure properties of Alur-Dill automata suggest that they can be
regarded as a real-time analog of classical �nite automata. In the untimed setting, a crucial

5

characteristic of algebras like CCS is that they can easily describe �nite automata. Thus by
analogy, a natural requirement for a real-time process language is that it can easily describe
Alur-Dill automata. Nicollin, Sifakis and Yovine [39] give a translation from ATP into Alur-
Dill automata, but do not investigate the reverse translation. In fact it appears that, besides
our language, only the real-time ACP language of Baeten and Bergstra [4] is su�ciently
expressive to allow for a direct encoding of Alur-Dill automata.

We present our de�nitions and results for timed systems by �rst presenting related de�ni-
tions and results for untimed systems, and then building upon those to obtain the correspond-
ing timed concepts. Thus, byproducts of our results for timed systems include a de�nition
and a substitutivity theorem for untimed action transducers, as well as a demonstration that
the most commonly used untimed operations can be expressed as action transducers. These
byproducts may be of some interest in themselves.

In summary, we believe that the main contributions of the paper are: (1) the de�nitions
of action transducers and timed action transducers, (2) the substitutivity results for traces
and timed traces, (3) the presentation of a large number of interesting operators, timed and
untimed, as action transducers, and (4) a preliminary proposal for a process language for
timed systems. We see these all as pieces of a uni�ed proof methodology for timed systems.

2 The Untimed Setting

We begin by describing action transducers for the untimed setting. Later, the concepts
needed for the timed setting will be de�ned in terms of corresponding concepts for the
untimed setting.

2.1 Automata

An (untimed) automaton A consists of:

� a set states(A) of states,

� a nonempty set start(A) � states(A) of start states,

� a set acts(A) of actions that includes the internal action � , and

� a set steps(A) � states(A) � acts(A) � states(A) of steps.

We let s; s0; u; u0,.. range over states, and a,.. over actions. The set ext(A) of external actions
is de�ned by ext(A)

�
= acts(A) � f�g. We write s0 a!A s as a shorthand for (s0; a; s) 2

steps(A). We suppress the subscript A where no confusion is likely. Automaton A is called
�nite if all its components are �nite sets.

The term event will be used to refer to an occurrence of an action in a sequence.

6

2.2 Executions and Traces

An execution fragment of A is a �nite or in�nite alternating sequence s0a1s1a2s2 � � � of states
and actions of A, beginning with a state, and if it is �nite also ending with a state, such that
for all i, si

ai+1! si+1. An execution of A is an execution fragment that begins with a start
state. A state s of A is reachable if it is the last state of some �nite execution of A.

For � = s0a1s1a2s2 � � � an execution fragment, trace(�) is de�ned as the sequence obtained
from a1a2 � � � by removing all � 's. A sequence � of actions is a trace of A if A has an execution
� with � = trace(�). We write traces�(A), traces!(A) and traces(A) for the sets of �nite,
in�nite and all traces of A, respectively. These notions induce three preorders on automata:
we de�ne A �� B

�
= traces�(A) � traces�(B), A �! B

�
= traces!(A) � traces!(B), and

A � B
�
= traces(A) � traces(B). Recall that the kernel of a preorder v is the equivalence

� de�ned by x � y
�
= x v y ^ y v x. We denote by ��, �! and � , the respective kernels

of these preorders.

2.3 Action Transducers

We now de�ne a notion of action transducer, as an explicit representation of certain oper-
ations on automata. We consider operations with a possibly in�nite set of arguments. As
placeholders for these arguments, an action transducer contains a set of colors. Sometimes
we will �nd it useful to make several copies of an argument automaton. To this end a trans-
ducer is equipped with a set of holes and a mapping that associates a color to each hole. The
idea is that we plug into each hole the argument automaton for which the color of the hole
serves as placeholder. As a useful analogy one can consider the way in which a term with
free variables determines an operation on terms: here the variables play the role of colors,
and the occurrences of variables serve as holes. As the rest of its \static" description, a
transducer has an associated global set of actions, and, for each color, a local set of actions.

The \dynamic" part of a transducer is essentially an automaton: a set of states, a
nonempty set of start states, and a step relation. The elements of the step relation are
4-tuples of source state, action, trigger and target state. Here the trigger is a function that
tells, for each hole, whether the argument automaton in that hole idles or participates in the
step, and if it participates, by which action.

2.3.1 De�nition

Formally, an (action) transducer T consists of:

� a set states(T) of states,

� a nonempty set start(T) � states(T) of start states,

� a set holes(T) of holes,

� a set colors(T) of colors,

� for each hole i, a color color (T; i),

7

� a set acts(T) of actions that includes � ,

� for each color c, a set acts(T; c) of actions that includes � but excludes the noaction
symbol 0,

� a set steps(T) � states(T)� acts(T)� triggers(T)� states(T), where triggers(T) is
the set of maps � that assign to each hole i either 0 or an action in acts(T; color(T; i)).

We say that hole i participates in a step (s0; a; �; s) if �(i) 6= 0; hole i is active in s0 if it
participates in some step starting with s0. For each state s0, we de�ne active(T; s0) as the set
of holes that are active in s0.

We de�ne the sets of external actions of T by ext(T)
�
= acts(T) � f�g, and, for each

c, ext (T; c)
�
= acts(T; c) � f�g. We write s0 a�!

� T
s instead of (s0; a; �; s) 2 steps(T), and

suppress the argument T when no confusion is likely. We often represent a trigger � by the
set f(i; a) j �(i) = a 6= 0g.

2.3.2 Executions and traces

An execution fragment of T is a �nite or in�nite alternating sequence s0a1�1s1a2�2s2 � � � of
states, actions and triggers of T , beginning with a state, and if it is �nite also ending with a

state, such that for all i, si
ai+1�!
�i+1

si+1. An execution of T is an execution fragment that begins

with a start state.
For = s0a1�1s1a2�2s2 � � � an execution fragment and i a hole, we de�ne

trace()
�
= (a1a2 � � �)dext(T);

trace(; i)
�
= (�1(i)�2(i) � � �)dext (T; color(T; i)):

2.3.3 Relation with automata

We view action transducers as a generalization of automata. Speci�cally, if A is an automa-
ton, then the associated action transducer trans(A) has the same states, start states and
actions as A, empty sets of holes and colors, and its step relation given by:

s0 a�!
� trans(A)

s
�
= � = ; ^ s0 a!A s:

In this way, automata are embedded into the class of action transducers. We will frequently
identify an automaton with its corresponding action transducer.

Conversely, if T is an action transducer, then we can de�ne an associated automaton,
aut(T). Namely, aut(T) inherits the sets of states, start states and actions of T , and has
its step relation de�ned by

s0 a!aut(T) s
�
= 9� : s0 a�!

� T
s:

It is not hard to see that, for any automaton A, aut(trans(A)) = A, and for any transducer
T with an empty set of holes, trans(aut(T)) = T .

8

2.3.4 Combining transducers and automata

We de�ne the meaning of a transducer as an operation on automata. First, de�ne an
automaton assignment for T to be a function � that maps each color c of T to an automaton
in such a way that acts(�(c)) = acts(T; c). Suppose � is an automaton assignment for T ,
and let Z be the function that associates an automaton to each hole, by the rule Z(i) =
�(color(T; i)). Then T (�) is the automaton A given by:

� states(A) = f(s; z) j s 2 states(T) and z maps each hole i of T to a state of Z(i)g,
� start(A) = f(s; z) j s 2 start(T) and z maps each hole i of T to a start state of Z(i)g,
� acts(A) = acts(T), and

� (s0; z0) a!A (s; z) if and only if

9� : s0 a�!
� T

s ^ 8i : [if �(i) = 0 then z0(i) = z(i) else z0(i)
�(i)!Z(i) z(i)]:

Thus, the steps of the automaton T (�) are just those that are allowed by the transducer T ,
using triggers that describe steps allowed by the automata in the holes.

Lemma 2.1 Suppose T is an action transducer and � is an automaton assignment for T .
Then T (�) is an automaton.

It is useful to have explicit terminology for the sequence of triggers that are used to justify
the steps in an execution of T (�). Thus, suppose that � = (s0; z0)a1(s1; z1)a2(s2; z2) � � �
is an execution of T (�). Suppose that for each hole i and each j � 1, sj�1

aj�!
�j T

sj and

if �j(i) = 0 then zj�1(i) = zj(i) else zj�1(i)
�j(i)! Z(i) zj(i). Then we say that the sequence

�1�2 � � � is a trigger sequence for �. By de�nition of T (�) every execution has at least one
trigger sequence (there may be more than one).

Lemma 2.2 Suppose that T is a transducer, � is an automaton assignment for T , and
� = (s0; z0)a1(s1; z1)a2(s2; z2) � � � is an execution of T (�) with trigger sequence � = �1�2 � � �.
Then = s0a1�1s1a2�2s2 � � � is an execution of T , and for each hole i of T , trace(; i) 2
traces(�(color(T; i))).

2.3.5 Remarks

The importance of transducers for process algebra and concurrency theory was �rst noted
by Larsen and Xinxin [26], who introduced a certain type of transducer, which they call
context systems, to study compositionality questions in the setting of process algebra. Our
transducers generalize those of Larsen and Xinxin [26] in several respects: the distinction
between colors and holes, which allows us to copy arguments, is new here. Also, Larsen and
Xinxin [26] only consider operations with a �nite number of arguments, and a setting where
automata just have one start state and no explicit set of associated actions.

9

Note that, since we always start copies of an argument automaton from a start state,
our notion of copying is di�erent from that of Bloom, Istrail and Meyer [8], who also allow
copying from intermediate states. As a consequence, the trace preorder is substitutive for
our operations, whereas it is not substitutive in general for the operations of [8].

In this section we have de�ned the semantics of a transducer as an operation on automata.
In fact, it is often useful to interpret transducers in a more general (and somewhat more
complex) way, as operations on transducers. We leave this generalization to the reader.

2.4 Substitutivity

We say that a relation R on a class of automata A is substitutive for an action transducer T
if for all automaton assignments �; � 0 for T with range A,

8c 2 colors(T) : �(c) R � 0(c)) T (�) R T (� 0):

In this subsection we present two substitutivity results for untimed action transducers. These
results depend on certain additional assumptions involving the internal steps of the argu-
ments. We express these assumptions in the following de�nition of the subclass of � -respecting
action transducers. Then we show that �� and � are substitutive for all transducers in this
class.

An action transducer T is � -respecting if it satis�es the following constraints:

1. For each state s and for each hole i that is active in s, T contains a clearing step, i.e.,

a step s ��!f(i;�)g s.

2. The only steps with � in the range of the trigger are clearing steps, i.e., if s0 a�!
�

s and

�(i) = � , then s0 a�!
�

s is a clearing step for s0 and i.

3. Only �nitely many holes participate in each step, i.e., if s0 a�!
�

s then fi j �(i) 6= 0g is
�nite.

Condition 1 says that the transducer must permit the component automata to take internal
steps, by means of special clearing steps of the transducer, whereas Condition 2 says that
clearing steps are the only steps of the transducer that permit internal steps of the com-
ponents. Condition 3 does not explicitly mention internal steps; however, this condition is
needed in the substitutivity proof because of complications caused by internal steps. Condi-
tions 1 and 2 slightly strengthen similar constraints that are presented in [45] in the setting
of SOS. Condition 3 does not occur in [45] because there only operations with a �nite number
of arguments are considered. However, a similar constraint appears in the I/O automaton
model of [28].

Theorem 2.3 The relations �� and � on automata are substitutive for all � -respecting
action transducers.

10

Proof Let T be a � -respecting action transducer. We show that � is substitutive for T .
The proof that �� is substitutive for T is similar but slightly simpler.

Suppose �; � 0 are automaton assignments for T such that, for all c, �(c) � � 0(c), and
suppose that � 2 traces(T (�)). We have to prove that � 2 traces(T (� 0)). For this, de�ne
Z

�
= �i:�(color(T; i)) and Z 0 �

= �i:� 0(color(T; i)). Then Z(i) � Z 0(i) for each hole i.
Since � 2 traces(T (�)), T (�) has an execution

� = (s0; z0)a1(s1; z1)a2(s2; z2) � � �

with trace(�) = �. Let �1�2 � � � be a trigger sequence for �, and let

 = s0a1�1s1a2�2s2 � � �

By Lemma 2.2, is an execution of T , and �i
�
= trace(; i) 2 traces(Z(i)), for all i. Since

Z(i) � Z 0(i), we obtain �i 2 traces(Z 0(i)), for all i. Therefore, Z 0(i) has, for each i, an
execution �i with trace(�i) = �i. Let 0 be the sequence obtained from by removing all
clearing steps. Then 0 is a execution of T and trace(0) = �.

Informally speaking, our job is to \paste" together 0 and the �i to obtain an execution of
T (� 0). We construct an automaton A that describes several allowable ways to do this pasting
and that generates executions of T (� 0) with the required properties. The set of states of A
consists of all valuations of the following state variables in their domains:

� a variable frag ranging over the set of execution fragments of T . This variable denotes
the part of 0 that still has to be dealt with. The initial value of frag is 0.

� for each hole i, a variable fragi ranging over execution fragments of Z 0(i). This variable
denotes the part of �i that still has to be pasted together with (the remainder of) 0.
The initial value of fragi is �i.

� a variable exec ranging over �nite executions of T (� 0). The limit of the values of exec
will be the execution of T (� 0) in which we are interested. The initial value of exec is
the trivial execution consisting of the state composed from the �rst states of 0 and
the �rst states of the �i.

Automaton A has actions CLEARING and BASIC , which correspond to the two di�erent
types of actions of T (� 0): clearing steps, and \basic" steps. The transitions of A are de�ned
using precondition/e�ect style in Figure 11. The intuition is that, while building an execution
of T (� 0), automaton A peels o� initial steps of 0 and the �i. If the remainder of 0 starts
with an a step and, for each hole i that participate in this step, the remainder of �i starts

1Here and elsewhere we use Lamport's [24] list notation for conjunction. In this notation the formula
b1 ^ b2 � � � ^ bn is written as the aligned list

^ b1

^ b2
...
^ bn

11

BASIC

Precondition

^ frag begins with sa�

^ for all holes i that participate in the �rst step of frag :
frag

i
begins with an �(i) step

E�ect

remove the �rst step from frag ;
for each hole i that participates in the �rst step of frag do

remove the �rst step from frag
i
;

append to exec an a followed by the state of T (�0) composed
from the �rst states of frag and all the frag

i

CLEARING

Precondition

^ frag contains at least one step
^ hole i0 participates in the �rst step of frag
^ frag

i0
begins with a � step

E�ect

remove the �rst step from frag
i0
;

append to exec a � followed by the state of T (�0) composed
from the �rst states of frag and all the frag

i

Figure 1: Algorithm for pasting together 0 and the �i.

with the action required for hole i, then A can perform a BASIC step. If, for some hole i,
the remainder �i starts with a � step then A can perform a corresponding CLEARING step,
provided that i participates in the next step of 0.

We leave it to the reader to check that the de�nition of A is type correct, in the sense
that each variable is only assigned values in its domain.

Pick an arbitrary maximal execution � = u0b1u1b2u2 � � � of A. Since the only way that
exec is modi�ed is by appending values, we can de�ne �0 as the limit of the values of exec
along �. By construction, �0 is an execution of T (� 0). We claim that trace(�0) = �.

In order to see this, we �rst establish that A satis�es the following invariant properties.
Here we write u:v for the value of state variable v of A in state u.

1. For all reachable states u of A, trace(u:exec) trace(u:frag) = �.

2. For all reachable states u of A and for all holes i, trace(u:fragi) = trace(u:frag; i).

Proof By simple inductive arguments.

Using Invariants 1 and 2, we next prove two claims.

Claim 1. Suppose u is a reachable state of A and u:frag is not a single state execution
fragment. Then u has an outgoing step.

Proof Let s0 a�!
�

s be the �rst step of u:frag. If, for some hole i that participates in this

�rst step, u:fragi begins with a � -step, then a CLEARING action is enabled in u. If, for

12

■

no hole i that participates in the �rst step, fragi starts with a � step, then it follows by
Invariant 2 that, for each of these holes i, frag i starts with an �(i) step. But this means that
a BASIC action is enabled in u.

Claim 2. Execution � has no in�nite su�x that consists of CLEARING steps only.
Proof Suppose that starting from some state un, � consists entirely of CLEARING steps.
That is, from un onwards all the steps of � simulate � steps of components that participate
in the �rst step of un:frag. Because T is � -respecting, there are only �nitely many such
participants. Consider any individual participant i. By Invariant 2, un:fragi contains an
�(i) step after �nitely many � steps. Therefore, only �nitely many CLEARING steps in �
correspond to � steps of i. Thus, � contains only a �nite number of consecutive CLEARING
starting from un, a contradiction.

Now we return to the proof that trace(�0) = �. Again we consider cases.

1. Suppose � contains only �nitely many BASIC actions. By Claim 2, execution � does
not have an in�nite su�x that consists of CLEARING steps only, so � is �nite. Suppose
un is the �nal state of �. Then, by Claim 1, un:frag consists of a single state execution
fragment. In combination with Invariant 1, this gives trace(un:exec) = �. But �0 is
de�ned as the limit of un:exec, so �0 = un:exec. Hence trace(�0) = �.

2. Suppose � contains in�nitely many BASIC actions. Since frag is initially 0, and each
BASIC step removes a step from 0, it follows that 0 is in�nite. By Invariant 1,
trace(uj :exec) is a pre�x of � for each j. Since each step of 0 is eventually simulated
in �0, trace(�0) = �.

Hence, � 2 t-traces(T (� 0)), as required. This completes the proof of the theorem.

In Section 3.4, we give an example to show that �! is not substitutive, even for � -
respecting action transducers. The converse of Theorem 2.3 does not hold: there are many
examples of non-� -respecting action transducers for which �� and � are substitutive. We
give one example in Section 3.4.

3 An Untimed Process Algebra

In this section, we give several examples of operations that can be expressed as action trans-
ducers; all these operations are directly inspired by operations from well-known \untimed"
process algebras such as CSP [20], CIRCAL [33], CCS [34], Extended LOTOS [10] and ACP
[6]. Our motivation for presenting these examples is twofold: �rst, they serve as an illus-
tration of how familiar process algebraic operations can be de�ned using action transducers,
and second, the resulting language Lu will form the basis of a timed process algebra that we
will de�ne in Section 5.

13

■

■

■

3.1 Preliminaries

We �rst describe a number of conventions so that, in most cases, we do not have to specify
the static part of transducers explicitly. To begin with, we adopt the convention that, unless
otherwise speci�ed, the sets of holes and colors are the same, and the coloring function is
the identity. Often, the set of colors will be an initial fragment f1; : : : ; ng of the natural
numbers. In this case we write T (A1; : : : ; An) for T (�c:Ac). We also use in�x notation in the
case of binary operations. All action transducers that we de�ne are parameterized by the
action sets of their arguments. Some of the action transducers also have other parameters.
Unless stated otherwise, the (global) action set of a transducer can be obtained by taking
the set of all actions that occur in steps of the transducer.

We �nd it convenient to structure external actions as nonempty �nite sets of labels, and to
identify � with the empty set of labels. This will permit a component automaton to perform
several activities (labels) together, which the transducer can handle separately. For instance,
the sequential composition transducer, described below, takes advantage of composite ac-
tions: a component can perform an arbitrary label simultaneously with a termination label,
and the transducer handles these two in di�erent ways. The idea to choose sets of labels
as the structure of actions was �rst introduced in CIRCAL, but is used in other algebras as
well, for instance in Extended LOTOS. Typically, the generalization to multiple label actions
increases the expressive power of a process algebra.

We regard non-composite external actions as a special case of composite actions, iden-
tifying the non-composite action a with the set fag. For each transducer T we de�ne
labels(T)

�
=
S
ext(T). Similarly we de�ne, for each color c, labels(T; c)

�
=
S
ext(T; c).

In our language we assume a special label
p

to indicate successful termination and to
transfer control to a subsequent process. Symbol

p
is in the label set of all transducers in

the language as well as in the label sets of all their colors. The language has been designed
such that any (closed) expression denotes an automaton in which no further transitions are
possible after a transition whose label contains

p
.

3.2 Operators

3.2.1 Actions

For any �nite set a of labels with
p 62 a, we introduce a transducer a. This transducer

performs the composite action consisting of a together with the termination label
p
, and

then halts. The transducer has two states s and t: it starts in s, performs action a [fpg,
and then terminates in t:

s a[fpg�!; t

By the correspondence described earlier, transducer a can equally well be regarded as an
automaton.

3.2.2 Sequential composition

Transducer \;" describes the binary sequential composition operation of Extended LOTOS.
The transducer has two states s1 and s2. In the start state s1, the transducer runs its �rst

14

argument up to successful termination, and then in state s2 the transducer runs its second
argument. The steps are (for all actions a; b of the �rst and second argument, respectively):

s1
a�!f(1;a)g s1 if

p 62 a

s1
a�fpg�!f(1;a)g s2 if

p 2 a

s2
b�!f(2;b)g s2

Note that, unlike in ACP, a ; � is di�erent from a (for a 6= �), because in the second au-
tomaton successful termination occurs simultaneously with a whereas in the �rst automaton
it occurs after the a.

3.2.3 External choice

The external choice operation 2 is taken from CSP. This operation, which is parameterized
by a �nite index set I, waits for the �rst external action of any of its arguments and then runs
that argument. The transducer has distinct states si, for each i 2 I, plus an additional state
s, which is the start state. The steps are (for all i and all actions a of the i-th argument):

s ��!f(i;�)g s

s a�!f(i;a)g si if a 6= �

si
a�!f(i;a)g si

We write STOP for external choice over an empty index set. STOP is the simplest action
transducer from our language. It has no holes, no colors, no steps, a single state, a single
action

p
, and no steps. STOP represents the inactive agent, capable of no action whatsoever.

3.2.4 Disjoint union

Parameterized by a �nite index set I, transducer t takes the disjoint union of automata
indexed by I. The t construct exploits the feature of multiple start states. For each i 2 I,
the transducer has a distinct state si, which is also a start state, and steps (for all actions a
of the i-th argument):

si
a�!f(i;a)g si

Operation t behaves in a similar way to the internal choice operation u of CSP: it runs one,
nondeterministically chosen argument. An interesting di�erence between the operational
semantics of t and u is that in a ; (b t c) the choice between b and c is made before
execution of the a, whereas in a ; (b u c) this choice is made after the a has been done.
This becomes apparent from the automata for these expressions, which are displayed in
Figure 2. Modulo trace equivalence, the di�erences between the two operations disappear:
for all automata A and B, A t B � A uB.

15

? ?
q q

? ?q q

? ?
q q

a a

fb;pg fc;pg

a ; (b t c)

?
q

?q
�
�	
@
@R

a

� �
q q

? ?
q q

fb;pg fc;pg

a ; (b u c)

Figure 2: The di�erence between t and u.

3.2.5 Relabeling

For each function f on labels such that f(l) =
p

i� l =
p
, we introduce a unary relabeling

operation f that renames actions of its argument according to f . The transducer has a single
state s, which is the start state, and steps (for all actions a of the argument, and with f
lifted to sets of labels):

s f(a)�!f(1;a)g s

3.2.6 Parallel composition

The binary transducer k describes the parallel composition or dot operation of CIRCAL. This
operation generalizes the usual de�nition of composition, taking into account the composite
nature of actions: in the case where all actions of the arguments are singletons or � , the
operator behaves just as the composition operator of CSP and the I/O automata model.
The transducer has a single state s, which is the start state, and steps (for all actions a; b of
the �rst and second argument, respectively):

s a�!f(1;a)g s if a \ labels(k; 2) = ;
s b�!f(2;b)g s if b \ labels(k; 1) = ;

s a[b�!f(1;a);(2;b)g s if a \ labels(k; 2) = b \ labels(k; 1) 6= ;

When specifying systems it is often convenient to use a derived operator kH that only requires
its arguments to synchronize on a set of labels H [fpg. Suppose A and B are automata
with label sets LA and LB, respectively, and suppose H is a set of non-

p
labels. We de�ne

AkHB �
= Untag (Tag1(A)kTag2(B));

where Untag and Tag i (i = 1; 2) are relabeling functions given by:

Tag i(l)
�
=

(
li if l 2 (LA \ LB)�H
l otherwise

Untag(l)
�
=

(
k if l := kj ; k 2 (LA \ LB)�H; j 2 f1; 2g
l otherwise

16

The idea behind this de�nition is that �rst the functions tag1 and tag2 rename those labels
of A and B on which we do not want to synchronize so that they are distinct. Then after the
resulting automata have been composed in parallel, the function Untag renames the tagged
labels back to what they were originally.

Note that the k and kH operators are commutative and associative.

3.2.7 Hiding

The unary hiding operation nL hides all elements from a set L of labels by removing them
from all actions of its argument. The transducer has a single state s, which is the start state,
and steps (for all a):

s a�L�!f(1;a)g s

3.2.8 Interrupts

The binary transducer ^ is very similar to the disruption composition of Extended LOTOS
and the interrupt operation of CSP. The transducer has three states s1, s2 and t. In start state
s1, the transducer runs its �rst argument until the second argument performs an external
action; if and when this occurs, the transducer moves to state s2 in which the �rst argument
is disabled and the second argument takes over. If in state s1 the �rst argument terminates
successfully, the transducer moves to the termination state t. The steps are (for all actions
a; b of the �rst and second argument, respectively):

s1
a�!f(1;a)g s1 if

p 62 a s1
��!f(2;�)g s1

s1
a�!f(1;a)g t if

p 2 a s1
b�!f(2;b)g s2 if b 6= �

s2
b�!f(2;b)g s2

3.2.9 Iteration

We introduce iteration in our language by means of a binary version of Kleene's star operator:
A � B is the automaton that chooses between A and B, and upon successful termination of
A has this choice again. A key identity satis�ed by the operator is

A � B � A ; (A � B) 2 B:

Kleene's star operation is best known in its unary form, but in fact the original operator
introduced by Kleene in [22] was binary. Recently, the binary star has been studied in the
context of ACP in [7, 13].

The iteration construct exploits the ability of transducers to copy their arguments: it
uses an in�nite number of copies of both the �rst and the second argument. Formally, the
transducer has colors f1; 2g, holes f1; 2; : : :g [f10; 20; : : :g, and a coloring function that, for
i 2 N+, maps hole i to color 1 and hole i0 to color 2. The transducer has states fsi; li; ri j
i 2 N+g. In state si, the transducer chooses between execution of the i-th copy of the �rst

17

argument or execution of the i-th copy of the second argument. In state li, the transducer
is running the i-th copy of the �rst argument, and in state ri the transducer runs the i-th
copy of the second argument. The initial state is s1, and the steps are (for all actions a and
b of the �rst and second argument, respectively):

si
a�!f(i;a)g li if

p 62 a 6= � li
a�!f(i;a)g li if

p 62 a

si
a�fpg�!f(i;a)g si+1 if

p 2 a li
a�fpg�!f(i;a)g si+1 if

p 2 a

si
b�!f(i0;b)g ri if b 6= � ri

b�!f(i0 ;b)g ri

si
��!f(i;�)g si si

��!f(i0 ;�)g si

Using the � operator, we can easily de�ne the unary looping operator !, which restarts its
argument upon each successful termination:

A! �
= A �

STOP:

Despite what the notation might suggest, operator ! does not run A a �nite number of times
and then stop! In a choice context the STOP process should be viewed as the absence of an
alternative: each time the �-transducer is faced with a choice between A and STOP, it must
choose the A.

As an example of the iteration and looping constructs, consider the following expression,
which describes an automatic switch-o� mechanism:

SWITCH
�
= (sw on ; (sw on � sw o�))!:

The system allows the environment to switch on a lamp at any time by pushing some button;
once the lamp has been switched on, it will remain on, even if the button is pushed again,
until it is switched o� by the system. In Section 5, we will come back to this example and
show how we can add real-time constraints to make it more interesting.

3.3 Expressivity of Lu

We de�neLu to be the language consisting of all (closed) expressions built with the operations
of Section 3.2. Since all the corresponding transducers are � -respecting, it follows from
Theorem 2.3 that the preorders �� and � are substitutive for all the operations in Lu.

The automata denoted by expressions in Lu are always acyclic but need not be �nite.
In particular, each nontrivial use of the iteration construct gives rise to an automaton with
an in�nite number of reachable states. However, under the condition that no t occurs
within the �rst argument of a �-operator, each expression in Lu has a tree unfolding which
is isomorphic to the tree unfolding of a �nite automaton. In the case of expressions where t
occurs within the �rst argument of a �-operator, the underlying automaton will still be trace
equivalent to a �nite automaton, but no longer \tree equivalent" (consider the automaton
denoted by (a t b)!: this automaton has in�nitely many start states, one for each in�nite
sequence over fa; bg). All automata denoted by Lu-expressions further have the property

18

that after a transition with a label containing
p
, no further steps are possible. The following

theorem states that Lu is universally expressive for the class of �nite automata with this
property. In the proof of this result all operators of the language play a role.

Theorem 3.1 Suppose that A is a �nite automaton in which no further steps are possible
after a transition whose label contains

p
. Then the tree unfolding of A is isomorphic to the

tree unfolding of the automaton associated to some expression in Lu.

Proof (Sketch) Without loss of generality, we may assume that A only has a single start
state: any �nite automaton with n > 1 start states is tree equivalent to the disjoint union
of n copies of this automaton in which the set of start states is restricted to a singleton.

Also without loss of generality, we may assume that A has no self-loops, i.e., steps of the
form s

a! s: for each �nite automaton with such self-loops one can construct an equivalent
�nite automaton without them, for instance by adding a boolean \history variable" that
records whether the number of transitions thus far is even.

Let states(A) = fs0; : : : ; sng, let start(A) = fs0g, and let S be short for steps(A). In the
Lu-expression that encodes A, we use elements of S as auxiliary labels. The expression is

(X0 kS � � � kS Xn)nS;
where, for i > 0,

X0
�
= ((non �nal step0 ; wait0)

� �nal step0) ^ �nal step other0;

Xi
�
= [wait i ; ((non �nal step i ; wait i)

� �nal step i)] ^ �nal step other i;

where, for i � 0,

wait i
�
= 2ft2Sjtarget(t)=si^

p62action(t)g ftg;
non �nal step i

�
= 2ft2Sjsource(t)=si^

p62action(t)g ftg [action(t);

�nal step i
�
= 2ft2Sjsource(t)=si^

p2action(t)g ftg [action(t);

�nal step other i
�
= 2ft2Sjsource(t)6=si^p2action(t)g ftg:

3.4 Counterexamples

An example of an operation for which �� is not substitutive is parallel composition over an
in�nite index set I. We have a �� � ; a but not

ki2I(a) �� ki2I(� ; a):
Another example is the version of (binary) parallel composition obtained by requiring the
argument automata to synchronize on � . Here one loses substitutivity since a �� � ; a but
not aka �� (� ; a)ka. Note that neither of these two examples is � -respecting.

It is not the case that preorder �! is substitutive for all � -respecting transducers. For
instance, we have � �! STOP but not � ; a! �! STOP ; a!.

19

■

As an example of a non-� -respecting transducer for which �� and � are substitutive,
consider the choice operation + from CCS. The transducer for this operation can be obtained
by removing all clearing steps from the initial state of the transducer for 2, and instead
allowing a to range over � in the second equation as well, so that � -steps can force the
choice. The resulting transducer is clearly not � -respecting. In Section 5.3, we will show
that the timed trace preorders are not substitutive for the timed version of the CCS choice
operation.

4 The Timed Setting

Now we extend the notions described in Section 2 to the case of timed systems. We follow the
same general outline, introducing time systematically into all of the de�nitions and results.

4.1 Timed Automata

We use a slight variant of the timed automaton model from [30].2 A timed automaton A is an
automaton whose set of actions includes R+, the set of positive reals. Actions from R+ are
referred to as time-passage actions. We let d; d0; : : : range over R+ and, more generally, t; t0; : : :
over the set R of real numbers. The set of visible actions is de�ned by vis(A)

�
= ext(A)�R+.

We assume that a timed automaton satis�es the following axioms.

S1 If s0 d! s00 and s00 d0! s, then s0 d+d
0! s.

For the second axiom, an auxiliary de�nition is needed. A trajectory for a step s0 d! s is a
function w : [0; d]! states(A) such that w(0) = s0, w(d) = s, and

w(t)
t0�t! w(t0) for all t; t0 2 [0; d] with t < t0:

Now we can state the second axiom.

S2 Each step s
d! s0 has a trajectory.

Axiom S1 gives a natural property of time, namely that if time can pass in two steps, then
it can also pass in a single step. The trajectory axiom S2 is a kind of converse to S1; it
says that any time-passage step can be \�lled in" with states for each intervening time, in a
\consistent" way. For a further discussion of this axiom we refer to [30, 21].

4.2 Timed Traces

Executions of timed automata correspond to what are called sampling computations in [31]:
they provide information about a run of a system at a countable number of points in time.
In [30], a notion of timed execution is also de�ned for timed automata: these are alternating
sequences of trajectories and actions, which correspond to the super-dense computations of

2The di�erence is just the explicit indication of the amount of elapsed time in the time-passage action
instead of using a .now function that associates the current time to a state.

20

[31]. It can be argued that timed executions provide a more precise representation of the
behavior of real-time systems than (sampling) executions. However, our trajectory axiom
S2 guarantees that for each (sampling) execution of a timed automaton there exists a cor-
responding timed execution. This means that the full externally visible behavior of timed
automata can already be inferred from the technically much simpler (sampling) executions,
as follows: suppose � = s0a1s1a2s2 � � � is an execution fragment of a timed automaton A.
For each index j, let tj be given by

t0 = 0;

tj+1 = if aj+1 2 R
+ then tj + aj+1 else tj:

The limit time of �, notation ltime(�), is the smallest element of R�0 [f1g larger than or
equal to all the tj, i.e., we de�ne ltime(�)

�
= supj(tj). We say � is admissible if ltime(�) =1,

and Zeno if it is an in�nite sequence but with a �nite limit time. The timed trace t-trace(�)
associated with � is de�ned by

t-trace(�)
�
= (((a1; t1)(a2; t2) � � �)d(vis(A)� R

�0); ltime(�)):

Thus, t-trace(�) records the visible actions of � paired with their times of occurrence, as
well as the limit time of the execution.

A pair � is a timed trace of A if it is the timed trace of some �nite or admissible execution
of A. Thus, we explicitly exclude the timed traces that originate from Zeno executions. We
write t-traces(A) for the set of all timed traces of A, t-traces�(A) for the set of �nite timed
traces, i.e., those that originate from �nite executions, and t-traces1(A) for the admissible
timed traces, i.e., those that originate from admissible executions. These notions induce
three preorders on timed automata: A �t B

�
= t-traces(A) � t-traces(B), A �t

� B
�
=

t-traces�(A) � t-traces�(B), and A �t
1 B

�
= t-traces1(A) � t-traces1(B). The kernels of

these preorders are denoted by �t, �t
� and �t

1, respectively.
A timed sequence over a given alphabet K is a (�nite or in�nite) sequence � over K�R�0

in which the time components are nondecreasing, i.e., t � t0 if (k; t) and (k0; t0) are consecutive
elements in �. A timed sequence pair over K is a pair � = (�; t), where � is a timed sequence
over K and t 2 R�0 [f1g, such that t is greater or equal than all time components in �.
We say that � is �nite if � is a �nite sequence and t <1.

Clearly, all timed traces of a timed automaton A are timed sequence pairs over ext(A).
In particular, all �nite timed traces are �nite timed sequence pairs.

Suppose � and �0 are timed sequence pairs such that � is �nite. Let

� = ((k1; t1)(k2; t2) � � � (kn; tn); t);
�0 = ((k01; t

0
1)(k

0
2; t

0
2) � � � ; t0):

Then we de�ne � ; �0 to be the timed sequence pair

((k1; t1)(k2; t2) � � � (kn; tn)(k01; t+ t01)(k
0
2; t+ t02) � � � ; t+ t0):

If � and �0 are timed sequence pairs then � is a pre�x of �0, notation � � �0, if either � = � 0,
or � is �nite and there exists a timed sequence pair �00 such that �0 = � ; �00.

21

4.3 Timed Action Transducers

In this section we introduce the notion of a timed action transducer, de�ne what are the
timed traces of a timed action transducer, and show how timed action transducers de�ne
operations on timed automata.

4.3.1 De�nition

A timed action transducer T is an action transducer with acts(T) � R
+ and, for all colors

c, acts(T; c) � R+. The sets of visible actions are de�ned by vis(T)
�
= ext(T)� R+ and, for

all c, vis(T; c)
�
= ext (T; c)� R+.

We assume that T satis�es �ve axioms.

T1 If s0 a�!
�

s and �(i) 2 R+, then a 2 R+.

T2 If s0 d�!
�

s and i 2 active(T; s0), then �(i) 2 R+.

T3 If s0 d�!
�

s then active(T; s0) = active(T; s).

T4 If s0 d�!
�

s00 and s00 d0�!
�0 s, then s0 d+d

0�!
�+�0 s.

(Here addition on triggers is de�ned by pointwise extension; we identify the noaction symbol
0 and the real-number 0.)

Axiom T1 says that non-time-passage steps do not change any of the local times. Axiom
T2 says that time-passage steps must cause an increase in the local times for all of the
active holes; note that we permit di�erent amounts of time to pass for the transducer and
the components. Axiom T3 states that time-passage steps do not change the set of active
holes. Axiom T4 allows repeated time-passage steps to be combined into one step.

In order to state the last axiom, we �rst need the de�nition of a \transducer trajectory".
The notion of a transducer trajectory is analogous to that of a trajectory, and describes
restrictions on the state changes that can occur during time-passage. A transducer trajectory

for a step s0 d�!
�

s of T consists of:

1. a function w : [0; d]! states(T) with w(0) = s0 and w(d) = s, and

2. for each hole i, a continuous, monotonic function tt i : [0; d]! [0; �(i)] with tt i(0) = 0
and tt i(d) = �(i), such that

w(t) t0�t�!
�i:tti(t

0)�tti(t)
w(t0) for all t; t0 2 [0; d] with t < t0:

A transducer trajectory assigns, to each time t in interval [0; d], a state w(t). As before,
this assignment allows time-passage steps to span between any pair of states in the range of
w. The functions tt i can be viewed as time tables that translate a global increase in time

22

to a local increase in time. Note that for each inactive hole i, the time table function tt i is
constant 0, and for each active hole i, tt i is strictly monotonic by axiom T2.

Now we can state the �nal axiom for a timed transducer.

T5 Each step s0 d�!
�

s has a transducer trajectory.

Axiom T5 says that any time-passage step can be \�lled in" with states for each intervening
time, in a \consistent" way.

Note that, for each timed automaton A, trans(A) is a timed action transducer, and
conversely, for each timed action transducer T , aut(T) is a timed automaton.

The de�nition of � -respecting in Section 2.4 applies to timed action transducers, since
they are a special case of action transducers. In this case, however, axiom T2 combines with
Condition 3 of the � -respecting de�nition to yield the following:

Lemma 4.1 If T is a � -respecting timed transducer, and s is a state of T in which an action
d 2 R+ is enabled, then there are only �nitely many holes active in state s.

4.3.2 Timed traces

Let = s0a1�1s1a2�2s2 � � � be an execution fragment of timed transducer T . For each index
j, let tj be given by

t0 = 0;

tj+1 = if aj+1 2 R
+ then tj + aj+1 else tj:

Then we de�ne ltime()
�
= supj(tj). The notions of Zeno and admissible execution fragments

are de�ned for timed transducers as for timed automata. The timed trace of , is de�ned to
be the pair

t-trace()
�
= (((a1; t1)(a2; t2) � � �)d(vis(T)� R

�0); ltime()):

Thus, t-trace() records the visible events of paired with their times of occurrence, as well
as the limit time of the sequence. Also, for each index j and each hole i, we de�ne the local
time of occurrence tj;i by:

t0;i = 0;

tj+1;i = if �j+1(i) 2 R
+ then tj;i + �j+1(i) else tj;i:

For each hole i, we let hltime(i;)
�
= supj(tj;i); this is the largest local time for hole i.

The timed trace for hole i of is de�ned to be the pair

t-trace(; i)
�
= (((�1(i); t1;i)(�2(i); t2;i) � � �)d(vis(T; color(T; i))� R

�0); hltime(i;)):

23

4.3.3 Zeno-respecting property

The following de�nition is needed for the substitutivity results. A timed action transducer
T is Zeno-respecting if for each admissible execution

 = s0a1�1s1a2�2s2 � � �

of T , the following condition holds: for each hole i, either hltime(i;) = 1, or there is an
index j such that i =2 active(T; sk) for all k � j.

Thus, if a Zeno-respecting timed transducer advances time to in�nity then, for each hole,
either the local time also advances to in�nity, or the hole becomes permanently inactive from
some point on.

4.3.4 Combining timed transducers and timed automata

An automaton assignment � for a timed action transducer T is called timed if it maps each
color to a timed automaton.

Lemma 4.2 Suppose T is a timed action transducer and � is a timed automaton assignment
for T . Then T (�) is a timed automaton.

Proof We prove that T (�) satis�es axioms S1 and S2. Let Z
�
= �i:�(color(T; i)).

For axiom S1, assume (s0; z0) d!T (�) (s00; z00) and (s00; z00) d0!T (�) (s; z). We must prove

(s0; z0) d+d0! T (�) (s; z). By the assumption and the de�nition of composition, there exist
triggers � and �0 such that

1. s0 d�!
� T

s00

2. 8i : [if �(i) = 0 then z0(i) = z00(i) else z0(i)
�(i)!Z(i) z

00(i)]

3. s00 d0�!
�0 T

s

4. 8i : [if �0(i) = 0 then z00(i) = z(i) else z00(i)
�0(i)! Z(i) z(i)]

Now it is routine to check that

1. s0 d+d
0�!

�+�0 T s

2. active(T; s0) = active(T; s00)

3. i 2 active(T; s0) implies z0(i)
�(i)+�0(i)! Z(i) z(i)

4. i 62 active(T; s0) implies z0(i) = z(i)

24

Together this implies the validity of axiom S1.

For axiom S2, assume (s0; z0) d!T (�) (s; z). We must prove that there exists a transducer

trajectory for (s0; z0) d! (s; z). By the assumption and the de�nition of composition, there
exists a trigger � such that

1. s0 d�!
� T

s

2. 8i : [if �(i) = 0 then z0(i) = z(i) else z0(i)
�(i)!Z(i) z(i)]

Choose a transducer trajectory w, tt i (i 2 holes(T)) for s0 d�!
�

s. Next, choose for each

i 2 active(T; s0) a trajectory wi for z0(i)
�(i)!Z(i) z(i). For i 62 active(T; s0), let wi be the

function with domain [0; 0] given by wi(0) = z0(i). Let w0 be the function with domain
[0; d] given by w0(t) �

= (w(t); zt), where zt = �i:wi(tt i(t)). We claim that w0 is a transducer

trajectory for (s0; z0) d! (s; z). For this, �rst observe that w0(0) = (s0; z0):

w0(0) = (w(0); z0) = (s0; �i:wi(tt i(0)) = (s0; �i:wi(0)) = (s; �i:z0(i)) = (s0; z0)

By similar reasoning w0(d) = (s; z). Now assume t; t0 2 [0; d] with t < t0. It is routine to
check

1. w(t) t0�t�!
�i:tti(t

0)�tti(t)
w(t0)

2. i 62 active(T; s0) implies zt(i) = zt0(i)

3. i 2 active(T; s0) implies zt(i)
tti(t

0)�tti(t)! zt0(i)

Together this implies w0(t) t0�t! T (�) w
0(t0). This completes the proof that w0 is a transducer

trajectory, and thereby the proof of the lemma.

The next lemma is analogous to Lemma 2.2 in the untimed case, and plays an important
role in the substitutivity result for timed action transducers in the next section.

Lemma 4.3 Suppose T is a Zeno-respecting timed transducer, � is a timed automaton as-
signment for T , and � = (s0; z0)a1(s1; z1)a2(s2; z2) � � � is a non-Zeno execution of T (�) with
trigger sequence �1�2 � � �. Let Z(i) = �(color(T; i)) for each hole i.

Then = s0a1�1s1a2�2s2 � � � is a non-Zeno execution of T , t-trace() = t-trace(�), and
for each hole i, t-trace(; i) 2 t-traces(Z (i)).

Proof By Lemma 2.2, we know that is an execution of T . Because � is non-Zeno is
non-Zeno as well, and t-trace() = t-trace(�). Fix a hole i. De�ne �0 to be the sequence
obtained by taking the sequence z0(i)�1(i)z1(i)�2(i)z2(i) � � � and removing all subsequences
�j(i)zj(i) with �j(i) = 0. Then, by de�nition of T (�), �0 is an execution of Z(i). Because T
is Zeno-respecting, �0 is non-Zeno. Let

t0;i = 0;

tj+1;i = if �j+1(i) 2 R
+ then tj;i + �j+1(i) else tj;i:

25

■

Then

t-trace(�0) = (((�1(i); t0;i)(�2(i); t1;i) � � �)d(vis(Z (i)) � R
�0); sup

j

tj;i)

= t-trace(; i);

which implies t-trace(; i) 2 t-traces(Z (i)).

4.4 Substitutivity

We are now ready to state and prove our substitutivity results for timed transducers. Our
results require the hypothesis that the transducers are Zeno-respecting. Without this hy-
pothesis, it might happen that an admissible execution of a composition includes a Zeno
execution of some argument. Since timed trace inclusion does not imply inclusion of the sets
of Zeno traces, this means that �t need not be substitutive for such transducers.

Theorem 4.4 The relations �t
� and �t on timed automata are substitutive for all Zeno-

and � -respecting timed action transducers.

Proof Similar to the proof of Theorem 2.3. Let T be a Zeno- and � -respecting timed action
transducer. We show that �t is substitutive for T . The proof that �t

� is substitutive for T
is similar.

Suppose �; � 0 are timed automaton assignments for T such that, for all c, �(c) �t � 0(c),
and suppose that � 2 t-traces(T (�)). We have to prove that � 2 t-traces(T (� 0)). For this,
de�ne Z

�
= �i:�(color(T; i)) and Z 0 �

= �i:� 0(color(T; i)). Then Z(i) �t Z 0(i) for each hole i.
Since � 2 t-traces(T (�)), T (�) has a non-Zeno execution

� = (s0; z0)a1(s1; z1)a2(s2; z2) � � �

with t-trace(�) = �. Let � = �1�2 � � � be a trigger sequence for �, and let

 = s0a1�1s1a2�2s2 � � �

By Lemma 4.3, is a non-Zeno execution of T , t-trace() = �, and for each hole i,

�i
�
= t-trace(; i) 2 t-traces(Z (i)):

Since Z(i) �t Z 0(i), we obtain �i 2 t-traces(Z 0(i)), for all i. Therefore, Z 0(i) has, for each i,
a non-Zeno execution �i with t-trace(�i) = �i. Let 0 be the sequence obtained from by
removing all clearing steps. Then 0 is a non-Zeno execution of T and t-trace(0) = �. As
in the untimed case, our job is to \paste" together 0 and the �i to obtain an execution of
T (� 0). We construct an automaton A that describes several allowable ways to do this pasting
and that generates executions of T (� 0) with the required properties. The set of states of A
consists of all valuations of the following state variables in their domains:

� a variable frag ranging over the set of execution fragments of T . This variable denotes
the part of 0 that still has to be dealt with. The initial value of frag is 0.

26

■

� for each hole i, a variable fragi ranging over execution fragments of Z 0(i). This variable
denotes the part of �i's that still has to be pasted together with (the remainder of) 0.
The initial value of fragi is �i.

� a variable exec ranging over �nite executions of T (� 0). The limit of the values of exec
will be the execution of T (� 0) in which we are interested. The initial value of exec is
the trivial execution consisting of the state composed from the �rst states of 0 and
the �rst states of the �i.

� a variable delay ranging over R�0.

� a vector w; tt i(i 2 holes(T)) of variables ranging over transducer trajectories of T .

� for each hole i, a variable wi ranging over trajectories of Z 0(i).

Automaton A has actions CLEARING, TIME and BASIC , which correspond to the three
di�erent types of actions of T (� 0): clearing steps, time-passage steps, and the remaining
\basic" steps. The transitions of A are de�ned using precondition/e�ect style in Figure 3.
The intuition is that, while building an execution of T (� 0), automaton A peels o� initial steps
of 0 and the �i. If the remainder of 0 starts with a non-time-passage step a, and, for each
hole i that participates in this step, the remainder of �i starts with the action required for
hole i, then a BASIC step is taken by A. If, for some hole i, the remainder of �i starts with
a � step then A can do a corresponding CLEARING action, provided that i participates in
the next step of 0. The most complicated part of the de�nition of A is the description of the
TIME step. Here the intuition is that if the remainder of 0 starts with a time passage step
and, for each hole i that participates in this step, the remainder of �i also starts with a time
passage step, automaton A nondeterministically chooses trajectories corresponding to all
these steps, and then determines the maximal progress it can make along these trajectories
without passing beyond the limit time of any of them. More speci�cally, suppose that the

remainder of 0 begins with a step s0 d�!
�

s with transducer trajectory w; tt i(i 2 holes(T)).

Suppose further that for all holes i that are active is s0, the remainder of �i begins with

s0i
di! si. Then the maximal global increase in time is d. For each active hole i the maximal

local increase of time is the minimum of di and �(i). In order to translate this to a global
increase in time, observe that the inverse mapping of tt i is de�ned, since this function is
both continuous and strictly monotonic. Therefore the requirement that the local increase
in time for hole i is at most min(di; �(i)) is equivalent to the requirement that the global
increase in time is at most min(tt�1i (di); d).

We leave it to the reader to check that the de�nition of A is type correct, in the sense
that each variable is only assigned values in its domain. Note that in the e�ect part of the
TIME action the argument of the min operator is always a nonempty, �nite set of positive
real numbers: by Lemma 4.1, the number of holes that participate in a time passage step of
T is �nite.

Pick an arbitrary maximal execution � = u0b1u1b2u2 � � � of A. Since the three actions of
A only append values to variable exec, we can de�ne �0 as the limit of the values of exec
along �. By construction, �0 is an execution of T (� 0). We claim that �0 is non-Zeno and
t-trace(�0) = �.

27

BASIC

Precondition

^ frag begins with s0 a
�!

�
s

^ a 62 R
+

^ for all holes i that participate in the �rst step of frag :
frag

i
begins with an �(i) step

E�ect

remove the �rst step from frag ;
for each hole i that participates in the �rst step of frag do

remove the �rst step from frag
i
;

append to exec an a followed by the state of T (�0) composed
from the �rst states of frag and all the frag

i

CLEARING

Precondition

^ frag contains at least one step
^ hole i0 participates in the �rst step of frag
^ frag

i0
begins with a � step

E�ect

remove the �rst step from frag
i0
;

append to exec a � followed by the state of T (�0) composed
from the �rst states of frag and all the frag

i

TIME

Precondition

^ frag begins with s0 d
�!

�
s

^ for all holes i that are active is s0: frag
i
begins with s0

i

di! si
E�ect

w; tt i(i 2 holes(T)) := any transducer trajectory for s0 d
�!

�
s;

for each hole i that is active in s0 do

wi := any trajectory for s0
i

di! si;
delay := min(fdg [ftt�1i (di) j i is active in s0 and di � �(i)g);
if delay = d then remove �rst step from frag

else replace �rst step s0 d
�!

�
s of frag by s00 d

0

�!
�0

s,

where s00 = w(delay), d0 = d� delay and �0 = � � �i:tti(delay);
for each hole i that is active in s0 do

if tt i(delay) = di then remove �rst step from frag i

else replace �rst step s0
i

di! si of frag i by s00
i

d
0

i! si,
where s00

i
= wi(tt i(delay)) and d0

i
= di � tt i(delay);

append to exec the real-value of delay followed by the state of T (�0) composed
from the �rst states of frag and all the frag

i

Figure 3: Algorithm for pasting together 0 and the �i.

28

In order to see this, we �rst establish that A satis�es the following invariant properties.
Here we write u:v for the value of state variable v of A in state u.

1. For all reachable states u of A, t-trace(u:exec) ; t-trace(u:frag) = �.

2. For all reachable states u of A and for all holes i, t-trace(u:fragi) = t-trace(u:frag; i).

Proof By simple inductive arguments.

Using Invariants 1 and 2, we next prove three claims.

Claim 1. Suppose that u is a reachable state of A and u:frag is not a single state execution
fragment. Then u has an outgoing step.

Proof Let s0 a�!
�

s be the �rst step of u:frag. If, for some hole i that participates in this

�rst step, u:fragi begins with a � -step, then a CLEARING action is enabled in u. So suppose
that for all holes i that participate in the �rst step u:fragi does not begin with a � -step. We
consider two cases.

1. Suppose a 62 R+. It follows by Invariant 2 that, for each hole i that participates in the
�rst step of u:frag, frag i starts with an �(i) step. But this means that a BASIC action
is enabled,

2. Suppose a 2 R+. If hole i participates in the �rst step, then it follows by axiomT2 that
�(i) 2 R

+. Since u:fragi does not begin with a � -step, Invariant 2 implies that it begins
with a time passage step. Because this is the case for each hole i that participates in
the �rst step, a time passage action is enabled in state u.

Claim 2. Execution � has no in�nite su�x that consists of CLEARING steps only.
Proof Analogous to the corresponding proof in the untimed case.

Claim 3. If � contains an in�nite su�x that consists of CLEARING and TIME steps only,
then ltime(�0) =1.
Proof The proof is by contradiction. Suppose � has an in�nite su�x with CLEARING and
TIME steps only, but ltime(�0) is �nite.

Suppose u0 TIME! u is a step of A, d is the label of the �rst step of u0:frag and, for each i
that participates in the �rst step of u0:frag, di is the label of the �rst step of u0:frag i. Then
we say that u0 TIME! u is full if u:delay = d, and i-full for hole i if u:tt i(u:delay) = di. By
de�nition, each TIME step is either full or i-full for at least one hole i.

If � contains in�nitely many full TIME steps then ltime(�0) = 1, because 0 is non-
Zeno. So we may assume that � contains only �nitely many full TIME steps. This means
that � has an in�nite su�x �0 that consists of CLEARING and non-full TIME steps only.
By Claim 2, �0 contains in�nitely many non-full TIME steps. If in A there is a non-full
TIME step from u0 to u, s0 is the �rst state of u0:frag and s is the �rst state of u:frag, then
active(T; s0) = active(T; s) by axiom T3. Also, if in A there is a CLEARING step from u0

29

•

•
•

to u, then the �rst state of u0:frag equals the �rst state of u:frag. Therefore, there is a �xed
collection of holes that participate in the non-full TIME steps of �0. By Lemma 4.1 we know,
moreover, that this collection is �nite. So, the execution fragment �0 contains in�nitely many
i-full TIME steps for some hole i. This means that �i is in�nite; then since it is non-Zeno
�i is admissible.

For u0 TIME! u a step of A, u:tt i(u:delay) gives the amount of time that has passed for
hole i during that step. Because �i is admissible, the sum of the time-passage actions for
hole i along � increases without bound:

lim
k!1

X
fjj1�j�k; bj=TIMEg

uj:tt i(uj:delay) =1:

But this contradicts the fact that �0 contains no full TIME steps: if ul is the �rst state of �0

and ul:frag begins with a step s0 d�!
�

s, then for all k > l:

X
fjjl<j�k; bj=TIMEg

uj:tt i(uj:delay) < �(i):

We return to the proof that �0 is non-Zeno and t-trace(�0) = �. Again we consider cases.

1. Suppose � is �nite, with �nal state un. Then, by Claim 1, un:frag consists of a single
state execution fragment. In combination with Invariant 1, this gives t-trace(un :exec) =
�. But �0 is de�ned as the limit of un:exec, so �0 = un:exec. Hence �0 is �nite (and
hence non-Zeno) and t-trace(�0) = �.

2. Suppose � is in�nite and contains in�nitely many BASIC actions. Since frag is initially
0, and each BASIC step removes a step from 0, it follows that 0 is in�nite. But since
0 is non-Zeno, it is in fact admissible. Because there are in�nitely many BASIC steps
in �, it follows by construction of A that the limit as j ! 1 of ltime(uj:exec) is 1,
and that hence �0 is admissible (and hence non-Zeno). By Invariant 1, t-trace(uj :exec)
is a pre�x of � for each j. Since the limit �0 of the executions uj is admissible,
t-trace(�0) = �.

3. Suppose � is in�nite and contains only �nitely many BASIC actions. Then � has an
in�nite su�x with CLEARING and TIME actions only. Combination of this fact
with Claim 3 gives that �0 is admissible (and hence non-Zeno). Now we use the same
argument as in the previous case. By Invariant 1, t-trace(uj :exec) is a pre�x of � for
each j. Since the limit �0 of the executions uj is admissible, t-trace(�0) = �.

The fact that �0 is non-Zeno and t-trace(�0) = � implies � 2 t-traces(T (� 0)), as required.

5 A Timed Process Algebra

In this section, we give examples of operations that can be expressed as timed action trans-
ducers. Together, these operations form a language that we will call Lt. Paraphrasing Alur
and Henzinger [3], we can summarize the main idea behind Lt as:

30

■

■

real-time process algebra = untimed process algebra + timers.

After the de�nition of the operators of Lt in Section 5.1, we will discuss the expressivity of
the language in Section 5.2.

5.1 Operators

5.1.1 The patient construction

An important collection of timed transducers can be obtained from untimed transducers.
In this subsection we present a simple but important construction, inspired by Nicollin
and Sifakis [37], that transforms an untimed action transducer into a timed one, by simply
inserting arbitrary time-passage steps. Suppose T is an (untimed) action transducer with
R+ \ acts(T) = ; and R+ \ acts(T; c) = ;, for all c. Then patient(T) is the timed action
transducer T 0 that has exactly the same components as T , except:

� acts(T 0) = acts(T) [R+,

� for all c, acts(T 0; c) = acts(T; c) [R+,

� steps(T 0) = steps(T) [

fs d�!
�

s j s 2 states(T); d 2 R
+; � = �i:if i 2 active(T; s) then d else 0g:

It is straightforward to check that patient(T) is indeed a timed action transducer. However,
patient(T) need not be Zeno-respecting. For example, consider a transducer T that activates
and deactivates the same hole i in�nitely many times in one execution. The transducer
patient(T) can intersperse the activations of i time-passage steps, in such a way that all the
time-passage occurs when i is inactive. This problematic behavior is not possible with the
transducers of Section 3, since these activate and deactivate each hole at most once during
an execution. In general, patient(T) need also not be � -respecting even if T is � -respecting.
For instance, the variant of the external choice operation 2 with an in�nite index set is � -
respecting, but its patient timed version is not. The problem with in�nitary external choice is
that in the initial state in�nitely many holes are active. Since in a timed transducer all active
holes participate in time-passage steps, this means that the patient version of the transducer
does not satisfy the third condition in the de�nition of � -respecting, which requires that in
each step only �nitely many holes participate. The following simple lemma characterizes the
situations in which the patient operation preserves the property of being � -respecting, and
returns a timed action transducer that is Zeno-respecting.

Lemma 5.1 Suppose T is an action transducer. Then

1. patient(T) is Zeno-respecting i� T can activate and deactivate each hole at most �nitely
many times in each execution.

2. patient(T) is � -respecting i� T is � -respecting and in each state of T only �nitely many
holes are active.

31

The characterization in the �rst part of Lemma 5.1 looks a little less than satisfying
because it is expressed in terms of executions rather than the basic transducer de�nition.
However, this seems unavoidable.

All the patient timed versions of the operators in the language Lu are Zeno- and � -
respecting, by Lemma 5.1. Thus, by Theorem 4.4, the timed trace preorders �t

� and �t are
substitutive for the patient variants of all these operations. The timed transducers obtained
by the patient construction turn out to be quite useful, so in the subsequent sections we will
adopt the convention that T means patient(T) for any of the transducers of Lu.

5.1.2 Clocks

Timed transducers that are obtained via the patient construction do not impose time con-
straints on their arguments. One way to impose such constraints is by using explicit clock
variables, as advocated in [2, 3]. In this subsection, we show how clock variables can be ex-
pressed using timed action transducers. The unary timed action transducer CLOCKx models
the e�ect of adding a clock variable x to a system.

We consider a set X of clock variables, ranged over by x; y; : : :. The set of clock constraints
� is de�ned inductively by (here t ranges over R�0):

� ::= x<t j x=t j � ^ �0 j :�:

Note that constraints such as true, 5<4, x�0, and x2[2; 5) can be de�ned as abbreviations.
A time assignment � assigns a nonnegative real value �(x) to each clock variable x. A time
assignment � satis�es a clock constraint �, denoted by � j= �, i� � evaluates to true using
the values given by �. We say that � is a tautology i� for all time assignments �, � j= �. We
say that � is satis�able i� there exists a time assignment � such that � j= �. We denote by
�[t=x] the formula obtained from � by replacing all occurrences of x by t.

The state set of transducer CLOCKx is R�0, with 0 as the initial state. There is a single
hole called 1. Time proceeds at the same rate for the transducer and its argument. The
argument automaton can reset the value of the clock variable x at any moment by performing
an action containing the label reset(x). In addition, the argument automaton can use clock
constraints as labels to test the value of the clock variable. In order to de�ne the step relation
formally it is convenient to de�ne some auxiliary functions. Let x be a clock variable, t 2 R�0

and a a set of labels. Then a[t=x] is the label set obtained from a by replacing each clock
constraint � in a by �[t=x]. We say a[t=x] is satis�able if all time constraints contained in it
are satis�able. We also de�ne

V(x; t; a) �
= if reset(x) 2 a then 0 else t:

Now the steps of CLOCKx can be de�ned by:

t d�!f(1;d)g t+ d if d > 0;

t b�!f(1;a)g V(x; t; a) if a 62 R+ and b = a[t=x] satis�able:

32

As an example, let a, b, c be given by a
�
= fsw o� ; x2(9; 10]g, b �

= fsw o� ; 9:52(9; 10]g and
c

�
= fsw o� ; 12(9; 10]g Then CLOCKx has a step

9:5 b�!f(1;a)g 9:5;

but not a step

1 c�!f(1;a)g 1;

because in the second case the clock constraint x2(9; 10] is violated. CLOCKx is trivially
Zeno- and � -respecting. Thus relations �t

� and �t are substitutive for this transducer.
Our de�nition of clocks directly follows the one proposed in [2, 3]. In fact, it is possible

to encode each (�nite state) clock-constrained system in the sense of [3] within our language:
by Theorem 3.1 we can encode the underlying �nite automaton (with the clock constraints
viewed as part of the transition labels), and if we then apply a CLOCK operator for each of
the clock variables that is used, the resulting expression will generate the same timed traces
as the clock constrained system that it encodes. We suppose that, for some applications, it
will be useful to have a more general notion of clock. One can, for instance, extend the set of
clock constraints with formulas like x+ y<1, or allow for assignments of the form x:=y+ 4,
or introduce labels that ask the clock to emit its current time. The important point here is
that explicit clocks constitute an important and useful construct in real-time process algebra.
Our speci�c choice of clock operations is just an example, subject to modi�cation.

5.1.3 Bounds

None of the timed transducers introduced so far constrain the passage of time; in particular,
all transducers we have de�ned are willing to advance time by any amount d. However,
in order to express that a certain event is guaranteed to occur before or at a given time,
for instance in the speci�cation of a timeout, we need an operator which (under certain
conditions) can block time. In this subsection we give an example of such an operator.

For any clock variable x, the unary timed action transducer BOUNDb
x ensures that the

value of x does not advance beyond a given upper bound in R�0[f1g, initially b. The state
set of this transducer is R�0 � (R�0 [f1g), with (0; b) as the initial state. The �rst state
component gives the current value of x, and the second component gives a bound on the
value of x.3 There is a single hole called 1. The value of x can be reset at any moment by
an action with label reset(x); similarly the bound can be modi�ed via an action with label
x:�u, for u 2 R�0 [f1g. For x a clock variable, u 2 R�0 [f1g and a a �nite set of labels,

B(x; u; a) �
= if fu0 j x:�u0 2 ag = ; then u else minfu0 j x:�u0 2 ag:

3For simplicity, we do not consider strict bounds. Such bounds can be imposed by parameterizing the
transducer with an additional boolean that tells whether the time bound is strict or not. Alternatively, one
can follow a suggestion of Abadi and Lamport [1], and introduce, as additional elements of the time domain,
the set of all `in�nitesimally shifted' real numbers r�, where t � r� i� t < r, for any reals t and r.

33

Now the steps of BOUNDb
x can be de�ned by:

(t; u) d�!f(1;d)g (t+ d; u) if 0 < d � u� t;

(t; u) a�!f(1;a)g (V(x; t; a);B(x; u; a)) if a 62 R+:

Thus there is, for instance, a step

(1; 10)
8:5! (9:5; 10);

but not a step

(1; 10)
9:5! (10:5; 10);

because that would violate the time bound. Clearly, BOUNDb
x is Zeno- and � -respecting.

Thus relations �t
� and �t are substitutive for this transducer.

In the literature several other proposals can be found on how to constrain the passage of
time: [2] uses a B�uchi style acceptance criterion for this purpose, [19] advocates the use of
program invariants, [3] proposes the related notion of delay predicates, and [31] uses so-called
important events. It is not clear to us how these approaches can be transferred to a process
algebraic setting, where automata are built up step by step and not given a priori. Our
approach to use BOUND operators can be viewed as a special case of the invariant approach
of [19], with a �xed invariant stating that the values of the clock variables never exceed the
values of the corresponding bound variables.

5.1.4 Timers

In applications, we will mostly want to use the clock and bound transducers in combination.
Furthermore, we typically want to hide the assignment labels outside the scope of these
transducers, where they are no longer needed. Finally, it is convenient to do a \garbage
collection" and remove vacuous constraints like 4<7 that are generated by clock transducers.
For these reasons, we de�ne the following derived operation TIMER

u
x, for any clock variable

x and initial bound u 2 R�0 [f1g:

TIMER
u
x(A)

�
= (CLOCKx(BOUND

u
x(A)))n(T [Lx);

where T is the set of all tautologies and Lx is the set of all assignments to x.

Example. We de�ne a timed version of the automatic switch-o� mechanism we described
in Section 3. The system allows a lamp to be switched on at any time; then between 9 and
10 time units after the last time the lamp has been switched on, it will be switched o�.

SWITCH 0 �
=

TIMER
1
x (fsw on; reset(x); x:�10g ; (fsw on; reset(x)g � fsw o� ; x2[9; 10]; x:�1g))!):

Example. To illustrate the use of multiple, nested clocks we specify the process of having
breakfast. Breakfast should be both started and �nished after 6 am and before 9 am. The

34

whole breakfast should take at least 15 minutes, and, since fresh bread is only available at
7.50 am, the end of the breakfast should be situated after 8 am.

BREAKFAST
�
=

TIMER
8 34
x (TIMER1y (fstart; x�6; x:�9; reset(y)g ; f�nish; x�8 ^ y�1

4
; x:�1g ; STOP)):

5.1.5 Changing speed

Thus far, in all timed action transducers that we have considered, time advances with the
same rate for the transducer and all the (active) holes. However, the framework of timed
action transducers allows us to de�ne, quite easily, operators that change the speed of pro-
cesses.

For all l; u 2 R+ with l � r, we de�ne a unary timed transducer RATE[l;u]. The transducer
has a single state s, which is also the initial state. Both the transducer and its argument
have the same set of actions, and in fact the transducer allows the argument to perform any
non time-passage action a at any time. However, the rate at which the local time changes
relative to the global time lies in the interval [l; u].

s a�!f(1;a)g s if a 62 R
+;

s d�!f(1;d0)g s if
d0

d
2 [l; u]:

It is routine to verify that RATE[l;u] is a timed transducer. RATE transducers can be used
both to speed up clocks and to make them drift. For r > 1, RATE[r;r] speeds its argument
up by a factor r. For �� 1, RATE[1��;1+�] introduces a tolerance of � on all timing of its
argument. We think that RATE transducers can be useful in the process algebraic description
of protocols that involve drifting clocks, such as the audio control protocol analyzed in [9].

An interesting property of the RATE transducers is that in general they do not preserve
Wang's [47] axiom of time determinism. This axiom, which is valid for all timed process
algebras that we have encountered in the literature, states that the resulting state after a
time step is uniquely determined by the amount of time that has passed:

s
d! s0 ^ s

d! s00) s0 = s00:

5.2 Expressivity of Lt

We de�ne Lt as the language consisting of (1) the timed transducers obtained by applying
the patient operation to the untimed operations of the language Lu, (2) the CLOCK, BOUND,
TIMER and RATE operators.

The operations from Lt are su�ciently expressive to de�ne | as derived operators | all
the constructs that we have encountered in the literature on timed process algebras, except
those that involve binding mechanisms (like the integration construct of [4]) and those that
are not compatible with timed trace inclusion (like the + from CCS). In this section, we
give some of these derived operators. Also, we show how one can encode within Lt the �nite
state fragment of the timed-bounded automata model of [32].

35

5.2.1 Wait constructs

Using a single timer, we can program the process WAITd of Timed CSP [42, 11], which waits
time d and then terminates successfully.

WAIT d
�
= TIMER

d
x(x=d):

More generally, we can specify a process that terminates successfully after waiting some
nondeterministically chosen time from the closed interval [l; u].

WAIT [l; u]
�
= TIMER

u
x(x�l):

5.2.2 Urgency

Using a timer, we can force any action a to be performed immediately: we de�ne the urgent
action a by

a
�
= TIMER

0
x(a);

where x is a clock variable to which a does not refer. With urgent actions it becomes trivial
to de�ne the urgent pre�xing operators of TCCS [35] and ATP [38]: a:A

�
= a ; A. Urgent

actions are also useful for de�ning the timeout construct of Timed CSP. For a given delay d
this operator is de�ned, as in [11], by

A
d
� B

�
= (A 2 (WAIT d ; abort ; B))nfabortg;

where abort is a fresh label, not in the label set of A and B. If, at time d, A has not
performed any visible action, an interrupt occurs and automaton B is started. Note the use
of the auxiliary label abort to force the choice between A and B at time d.

Example. We consider a simple resource-granting system described in [27]. The system
consists of two components, a watch and a manager. The watch ticks at an approximately-
predictable rate, and the manager counts ticks in order to decide when to grant a resource.
The watch is modeled as an automaton WATCH that does tick actions, such that the times
between successive tick actions, and the time of the �rst tick action are in the interval [c1; c2]:

WATCH
�
= (WAIT [c1; c2] ; tick)

!:

Automaton MANAGER models the manager: it waits a particular number k > 0 of tick
actions before it does a grant action, counting from the beginning or from the last preceding
grant . We assume that a grant action occurs within l time units after it has been enabled,
for some l < c1.

MANAGER
�
= (MANAGERk)

!

MANAGERi
�
= tick ;MANAGERi�1 for 0 < i � k

MANAGER0
�
= WAIT [0; l] ; grant

36

The full system can now be described as the parallel composition of automata WATCH and
MANAGER, with the tick action hidden:

SYSTEM
�
= (WATCH kMANAGER)nftickg:

Essentially, the result about the resource-granting system proved in [27] is that

SYSTEM �t (WAIT [k � c1 � l; k � c2 + l] ; grant)!:

Example. Another example, taken from [4], is a watch that is perfect, except for some
uctuations of the ticks:

WATCH 0 �
= WAIT 0:5 ; ((WAIT [0:5� �; 0:5 + �] ; tick ; STOP) ^WAIT 1)!:

5.2.3 Execution delay

The execution delay operator of ATP [39, 38] is given by:

dAed(B) �
= (TIMERd

x((A ^ (abort ; B)) k C))nfabort; cancelg;
where

C
�
= (cancel 2 fabort; x=dg) ; x:�1 ; STOP:

dAed(B) behaves as A until time d; at time d, A is interrupted and B is started. However,
if A performs an action with the label cancel , then the interrupt is cancelled and A can
continue to run forever. The process C takes care that once A has done a cancel , it can no
longer be interrupted by B. Also C removes deadline d after a cancel or abort action. We
assume that A and B do not have abort in their label set, nor any label referring to timer
x. The labels cancel and abort are hidden so that they cannot synchronize with any action
of the environment. A minor di�erence between our execution delay operator and the one
from ATP is that ours allows machine A to perform visible actions at time d.

5.2.4 MMT-automata

It is possible to encode within Lt each �nite state timed-bounded automaton in the sense of
[32]. We will refer to time-bounded automata as MMT-automata, derived from the names
of the authors of [32]. The MMT-automata model is an extension with real-time of the I/O
automata model of [28]. It has been used extensively in [27, 44] for veri�cation purposes.

An MMT-automaton B consists of4:

� an (untimed) automaton A,

� a partitioning of acts(A) into three sets of input, output and internal actions, respec-
tively; it is required that input actions are enabled in each state, i.e., for each state s0

and for each input action a there exists a state s such that s0 a!A s,

4Here we follow the de�nition from [27], which is slightly more restrictive than the original de�nition of
[32] because it does not allow for strict bounds. This restriction is not crucial, but only convenient.

37

� a partition fC1; : : : ; Cng of the locally controlled (output and internal) actions into
equivalence classes,

� for each class Ci, a lower time bound bl(Ci) 2 R�0 and an upper time bound bu(Ci) 2
R+ [f1g, such that bl(Ci) � bu(Ci).

Intuitively, in a real-time execution of B we just take steps from A, but the times at which
these steps may occur are constrained by the bound maps bl and bu. Suppose that during
execution a class Ci becomes enabled at time t. Then bl and bu specify that if Ci stays
enabled, an action from Ci must be executed in the time interval [t+ bl(Ci); t + bu(Ci)]. If
Ci becomes disabled, then the timing constraints on Ci are removed.

Without loss of generality, we may assume that A has only a single start state: if there
are n > 1 start states then the encoding of A can be de�ned as the disjoint union of the
encodings of n copies of A in which the set of start states is restricted to a singleton. In our
encoding of A, we assume for each class Ci a corresponding clock variable xi.

As an intermediate step, we de�ne an auxiliary automaton A+, which is identical to A
except that the labels of the transitions have been enriched with extra information: the set
of labels of A+ consists of the input and output actions of A, together with the set of clock
constraints and assignments that refer to x1; : : : ; xn. For each step s0 a! s of A, automaton
A+ contains a corresponding step

s0
b[f�g[S! s;

where b is empty if a is an internal action and equal to fag otherwise, � is a clock constraint
that is equal to true if a is an input action and equal to xj � bl(Cj) if a is a locally controlled
action that belongs to class Cj, and S is a label set consisting of:

� a label reset(xj) if a is a locally controlled action in Cj,

� labels reset(xj) and xj:�bu(Cj) for those classes Cj that are not enabled in s0 but are
enabled in s,

� a label xj:�1 for those classes Cj that are enabled in s0 but not in s.

Under the assumption that A (and hence A+) is �nite there exists, by Theorem 3.1, an Lu-
expression expr (A+) denoting A+ up to tree equivalence. Using this auxiliary expression,
we de�ne the Lu-expression expr(B) by

expr (B)
�
= TIMER

u1
x1
(� � �TIMERun

xn
((expr(A+))) � � �);

where ui equals bu(Ci) if Ci is enabled in the start state, and 1 otherwise. Without proof,
we claim that expr(B) generates exactly the same timed behaviors as the MMT-automaton
B according to the de�nition of [32].

5.3 Counterexamples

Although the converse of Theorem 4.4 does not hold, our result appears to be quite sharp:
for many examples of timed transducers that are not Zeno- and � -respecting, the timed trace
preorders are indeed not substitutive.

38

The timed trace preorders �t
� and �t are for instance not substitutive for the operation of

in�nitary external choice. It is easy to see that WAIT 2 �t
� WAIT 1 ;WAIT 1: both processes

wait time 2 and then terminate successfully. However, for in�nite I,

2i2I (WAIT 2) 6�t
� 2i2I (WAIT 1 ; WAIT 1)

because, unlike the �rst process, the second process will never manage to do a successful
termination action at time 2 since it has to do an in�nite number of � actions at time 1.

Another example is the choice operator + that plays a dominant role in many real-time
process calculi (TCCS [35], the timed extension of CCS proposed in [47], ATP [38], and
ACP� [4]). This operator is just the patient version of the choice operator from CCS, which
has three states s; s1; s2, with s start state, and steps (for i 2 f1; 2g, and all actions a and b
of the �rst and second argument, respectively):

s a�!f(i;a)g si si
a�!f(i;a)g si

Relation �t
� is not substitutive for the patient version of + because, for instance,

WAIT 2 +WAIT 1:5 6�t
� (WAIT 1 ; WAIT 1) +WAIT 1:5:

The �rst process terminates at time 1:5, whereas the second process terminates at time 2.
The loss of substitutivity may be viewed as a problem for a process algebra with CCS

choice based on trace equivalence (it is not a problem if certain other equivalence are used,
such as observational congruence [36]). Via Lemma 5.1 we have identi�ed a general class of
operations for which trace equivalence is a congruence and with patient versions for which
timed trace equivalence is a congruence. Even though we advocate in this paper the use of
timed trace equivalence, we think it will be quite interesting to extend Van Glabbeek's [15]
lattice of process equivalences with a real-time dimension, and to study the impact of the
patient construction on congruence properties for other equivalences as well.

5.4 Remarks

Some untimed operators display undesired behavior when transformed into timed operators
via the patient construction. We give an example. In a timed process algebra, one typically
wants to have the identity

WAIT 1 ;WAIT 1 = WAIT 2:

In order for this equation to be valid it is essential that in the action transducer for the
untimed sequential composition operator \;", the second argument is not active in the initial
state. In [17], a sequential composition operator is described for which this is not the case:

s1
a�!f(1;a)g s1 if

p 6= a

s1
b�!f(1;p);(2;b)g s2

s2
b�!f(2;b)g s2

39

For the patient version of this operator we obtain the undesired identity

WAIT 1 ;WAIT 1 = WAIT 1:

A very interesting issue that we can only touch upon in this paper, is the impact of
patient construction on the validity of algebraic laws. All the laws that we have checked
and that are valid for Lu up to trace equivalence, remain valid for Lt up to timed trace
equivalence. However, in general it is not the case that the patient construction preserves
validity of algebraic laws. For instance, the law

A � B = A ; (A � B) 2 B

holds (in a semantics based on ��) for the variant of the iteration operator in which only a
single copy is made of the second argument, but does not hold after patient has been applied
(in a semantics based on �t

�).

6 Discussion

The main result of this paper is the characterization in terms of action transducers of a very
general class of operations that preserve inclusion of timed traces. For the untimed case,
several substitutivity results for classes of operations have been reported in the literature
(see, for instance, [43, 8, 17]). We believe our result to be the �rst one of this kind for the
timed case. The combined complexity of multiple start states, in�nitely many arguments,
copying, activation and deactivation of arguments, internal actions, and di�erent rates makes
the proof of our result rather involved. It looks like that we have now reached a point at which
any obvious generalization of the class of operations violates the substitutivity property.

An obvious question left open in this paper is to �nd a sound and complete axiomatization
of timed trace inclusion for the language Lt or a fragment of it. Results of [2] can be adapted
to show that, even if we exclude the RATE operator and only allow for rational numbers in
clock constraints and bounds, deciding timed trace inclusion for Lt is �1 hard. Hence
there does not exist a �nite equational axiomatization of timed trace inclusion for the full
language Lt. However, it may be possible to �nd interesting partial results: axioms that
allow the elimination of certain operators in favor of others, or complete axiomatizations of
subcalculi. For this it might be necessary to add to the language auxiliary operators such as
the integration construct of timed ACP [4].

Before it can become practically useful, the language Lt will have to be extended with
a more powerful mechanism for recursion, and with the possibility to parametrize processes
and actions with data. Such extensions are standard, however, and one could simply follow
the approaches taken in process algebras such as Extended LOTOS [10] or �CRL [16].

We do not believe that one single approach, assertional or process algebraic, can solve
all problems regarding the speci�cation and veri�cation of timed systems. A solution has to
be sought rather in a smooth combination of various formalisms. Use of process algebraic
notation often allows one to give compact, intuitive speci�cations of timed systems. Thus
far, however, process algebraic techniques cannot claim much success when it comes to
veri�cation of timed systems. Here assertional methods appear to perform much better (see,

40

for instance, [44, 18, 9]). Because the notion of explicit timers �ts rather well with assertional
proof techniques for real-time (see [1, 9]), we hope that it will be not too di�cult to use
these techniques, and in particular the simulation proof methods of [29, 30], in the setting
of our language Lt. Together with a limited repertoire of algebraic laws, this may then form
the basis of a methodology in which the bene�ts of algebraic and assertional methods can
be combined.

Acknowledgements

Roberto Segala pointed out to us the importance of making an in�nite number of copies of
the second argument in the transducer for Kleene's star operator.

References

[1] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In de Bakker et al.
[12], pages 1{27.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183{235, 1994.

[3] R. Alur and T.A. Henzinger. Real-time system = discrete system + clock variables.
In T. Rus and C. Rattray, editors, Theories and Experiences for Real-Time System
Development | Papers presented at First AMAST Workshop on Real-Time System
Development, Iowa City, Iowa, November 1993. World Scienti�c, 1994. To appear.

[4] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects
of Computing Science, 3(2):142{188, 1991.

[5] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume
458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[6] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[7] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. The
Computer Journal, 37(4):243{258, 1994.

[8] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: Preliminary re-
port. In Conference Record of the 15th ACM Symposium on Principles of Programming
Languages, San Diego, California, pages 229{239, 1988. Full version available as Techni-
cal Report 90-1150, Department of Computer Science, Cornell University, Ithaca, New
York, August 1990. Accepted to appear in Journal of the ACM.

[9] D.J.B. Bosscher, I. Polak, and F.W. Vaandrager. Veri�cation of an audio control pro-
tocol. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Proceedings of
the Third International School and Symposium on Formal Techniques in Real Time

41

and Fault Tolerant Systems, L�ubeck, Germany, September 1994, volume 863 of Lecture
Notes in Computer Science, pages 170{192. Springer-Verlag, 1994. Full version available
as Report CS-R9445, CWI, Amsterdam, July 1994.

[10] E. Brinksma. On the design of Extended LOTOS { a speci�cation language for open
distributed systems. PhD thesis, Department of Computer Science, University of Twente,
1988.

[11] J. Davies and S. Schneider. An introduction to Timed CSP. Technical Monograph PRG-
75, Oxford University Computing Laboratory, Programming Research Group, August
1989.

[12] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Proceedings
REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991,
volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[13] W.J. Fokkink and H. Zantema. Basic process algebra with iteration: Completeness of
its equational axioms. The Computer Journal, 37(4):259{267, 1994.

[14] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N. Lynch. Liveness in timed and
untimed systems. In S. Abiteboul and E. Shamir, editors, Proceedings 21th ICALP,
Jerusalem, volume 820 of Lecture Notes in Computer Science. Springer-Verlag, 1994. A
full version appears as MIT Technical Report number MIT/LCS/TR-587.

[15] R.J. van Glabbeek. The linear time { branching time spectrum II (the semantics of
sequential systems with silent moves). In E. Best, editor, Proceedings CONCUR 93,
Hildesheim, Germany, volume 715 of Lecture Notes in Computer Science, pages 66{81.
Springer-Verlag, 1993.

[16] J.F. Groote and A. Ponse. Proof theory for �CRL: A language for processes with
data. In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of
the International Workshop on Semantics of Speci�cation Languages, Workshops in
Computer Science, pages 231{250. Springer-Verlag, 1993.

[17] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100(2):202{260, October 1992.

[18] C. Heitmeyer and N.A. Lynch. The generalized railroad crossing | a case study in
formal veri�cation of real-time systems. In Proceedings 15th IEEE Real-Time Systems
Symposium, San Juan, Puerto Rico, December 1994. To appear.

[19] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. In Proceedings 7th Annual Symposium on Logic in Computer Science,
Santa Cruz, California, pages 394{406. IEEE Computer Society Press, 1992.

[20] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cli�s, 1985.

42

[21] A.S.A. Je�rey, S.A. Schneider, and F.W. Vaandrager. A comparison of additivity axioms
in timed transition systems. Report CS-R9366, CWI, Amsterdam, November 1993.

[22] S.C. Kleene. Representation of events in nerve nets and �nite automata. In Automata
Studies, pages 3{41. Princeton University Press, 1956.

[23] A.S. Klusener. Models and axioms for a fragment of real time process algebra. PhD
thesis, Department of Mathematics and Computing Science, Technical University of
Eindhoven, December 1993.

[24] L. Lamport. How to write a long formula. Research Report 119, Digital Equipment
Corporation, Systems Research Center, December 1993.

[25] B.W. Lampson, N.A. Lynch, and J.F. S�gaard-Andersen. Correctness of at-most-once
message delivery protocols. In FORTE'93 - Sixth International Conference on Formal
Description Techniques, Boston, MA, October 1993, pages 387{402, 1993.

[26] K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. In Paterson [40], pages 526{539. An extended version appeared as: Report
R89-13, The University of Aalborg, Dept. of Mathematics and Computer Science, Aal-
borg, Denmark, May 1989.

[27] N.A. Lynch and H. Attiya. Using mappings to prove timing properties. Distributed
Computing, 6(2):121{139, 1992.

[28] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 137{151, August 1987. A full version is available as MIT Technical Report
MIT/LCS/TR-387.

[29] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based
systems. In de Bakker et al. [12], pages 397{446.

[30] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II: Timing-
based systems. Report CS-R9314, CWI, Amsterdam,March 1993. Also, MIT/LCS/TM-
487.b, Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA.

[31] Z. Manna and A. Pnueli. Verifying hybrid systems. In R.L. Grossman, A. Nerode,
A.P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, pages 4{35. Springer-Verlag, 1993.

[32] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In J.C.M. Baeten
and J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume 527 of Lecture
Notes in Computer Science, pages 408{423. Springer-Verlag, 1991.

[33] G.J. Milne. CIRCAL and the representation of communication, concurrency, and time.
ACM Transactions on Programming Languages and Systems, 7(2):270{298, 1985.

43

[34] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cli�s, 1989.

[35] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten and
Klop [5], pages 401{415.

[36] F. Moller and C. Tofts. Behavioural abstraction in TCCS. In W. Kuich, editor, Proceed-
ings 19th ICALP, Vienna, volume 623 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

[37] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In K.G.
Larsen and A. Skou, editors, Proceedings of the 3rd International Workshop on Com-
puter Aided Veri�cation, Aalborg, Denmark, volume 575 of Lecture Notes in Computer
Science, pages 376{398. Springer-Verlag, 1992.

[38] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.
Information and Computation, 114(1):131{178, 1994.

[39] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.
Acta Informatica, 30(2):181{202, 1993.

[40] M. Paterson, editor. Proceedings 17th ICALP, Warwick, volume 443 of Lecture Notes
in Computer Science. Springer-Verlag, July 1990.

[41] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

[42] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249{261, 1988.

[43] R. de Simone. Higher-level synchronising devices in meije{SCCS. Theoretical Computer
Science, 37:245{267, 1985.

[44] J.F. S�gaard-Andersen, B.W. Lampson, and N.A. Lynch. Correctness of communication
protocols { a case study. Technical Report MIT/LCS/TR-589, Laboratory for Computer
Science, MIT, Cambridge, MA, November 1993.

[45] F.W. Vaandrager. On the relationship between process algebra and input/output au-
tomata (extended abstract). In Proceedings 6th Annual Symposium on Logic in Com-
puter Science, Amsterdam, pages 387{398. IEEE Computer Society Press, 1991.

[46] F.W. Vaandrager. Expressiveness results for process algebras. In J.W. de Bakker,
W.P. de Roever, and G. Rozenberg, editors, Proceedings REX Workshop on Semantics:
Foundations and Applications, Beekbergen, The Netherlands, June 1992, volume 666 of
Lecture Notes in Computer Science, pages 609{638. Springer-Verlag, 1993.

[47] Wang Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [5], pages
502{520.

44

