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Abstract 

This paper presents a theoretical framework for automatically partitioning parallel loops 
to minimize cache coherency traffic on shared-memory multiprocessors. The framework in­
troduces the notion of uniformly intersecting references to capture temporal locality in array 
references, and the idea of data footprints to estimate the communication traffic between 
processors. The framework uses lattice theory to compute the size of data footprints. We 
demonstrate that algorithms based on our framework discover optimal partitions in many 
cases, such as non-communication-free parallelogram partitions of affine loop index functions, 
which were not handled by previous algorithms. We also show that our framework correctly 
reproduces results from previous loop partitioning algorithms proposed by Abraham and 
Hudak and by Sadayappan and Ramanujam. Because they deal only with index expressions, 
the algorithms are computationally efficient as well. We have implemented a subset of this 
framework for rectangular partitioning in a compiler for the cache-coherent Alewife machine. 

1 Introduction 

Cache-based multiprocessors are attractive because they seem to allow the programmer to ignore 
the issues of data partitioning and placement. Because caches dynamically copy data close to 
where it is needed, repeat references to the same piece of data do not require communication 
over the network, and hence reduce the need for careful data layout. However, the performance 
of cache-coherent systems is heavily predicated on the degree of temporal locality in the access 
patterns of the processor. Loop partitioning for cache-coherent multiprocessors is an effort to 
increase the percentage of references that hit in the cache. 

The degree of reuse of data, or conversely, the volume of communication of data, depends 
both on the algorithm and on the partitioning of work among the processors. (In fact, parti­
tioning of the computation is often considered to be a facet of an algorithm.) For example, it is 
well known that a matrix multiply computation distributed to the processors by square blocks 
has a much higher degree of reuse than the matrix multiply distributed by rows or columns. 

Loop partitioning can be done by the programmer, by the run time system, or by the 
compiler. Relegating the partitioning task to the programmer flies in the face of the central 
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rationale for building cache-coherent shared-memory systems. While partitioning can be done 
at run time (for example, see (1, 2]), it is hard for the run time system to optimize for cache 
locality because much of the information required to compute communication patterns is either 
unavailable at run time or expensive to obtain. Thus compile-time partitioning of parallel loops 
is important. 

This paper focuses on the following problem in the context of cache-coherent multiprocessors. 
Given a program consisting of parallel do loops (of the form shown in Figure 1 in Section 2.1), 
how do we derive the tile shapes of the iteration-space partitions to minimize the communication 
traffic between processors. 

1.1 Contributions of This Work 

This paper develops a theoretical framework for loop and data partitioning for cache-coherent 
distributed-memory multiprocessors. While the main focus of this paper is loop partitioning, the 
framework unifies the analysis required for either loop or data partitioning, or both. We indicate 
the modifications necessary for data partitioning. The loop partitioning specifies the shape of 
iteration space tiles that minimizes communication traffic in cache-coherent multiprocessors. 
The framework allows the partitioning of doall loops where the index expressions in array accesses 
can be any affine function of the indices. 

Our analysis uses the notion of uniformly intersecting references to categorize the references 
within a loop into classes that will yield cache locality. The notion of data footprints is intro­
duced to capture the combined set of data accesses made by references within each uniformly 
intersecting class. Then, an algorithm to compute the total size of the data footprint for a given 
loop partition is presented. While general optimization methods can be applied to minimize the 
size of the data footprint and derive the corresponding loop partitions, we demonstrate several 
important special cases where the optimization problem is very simple. 

The size of data footprints can also be used to guide program transformations to achieve 
better cache performance in uniprocessors a.s well. Ferrante et al. [5) also address this problem 
and we discuss their work in Section 5. 

We show that Abraham and Hudak's results on rectangular loop partitioning for caches [6) 
( where the index expressions are of the form index variable plus a constant) are reproduced by 
our theoretical framework. The framework, however, is able to handle much more general index 
expressions, and produce parallelogram partitions if desired. 

We also show that the framework correctly produces the communication-free loop partitions 
for the class of programs handled by Ramanujam and Sadayappan [7). In addition, the same 
framework is able to discover optimal partitions in cases where communication free partitions 
are not possible - a case not handled by [7]. 

A subset of the framework, including both loop and data partitioning has been implemented 
in the compiler system for the Alewife multiprocessor. The implementation currently handles 
rectangular partitions only. We are currently working on implementing the general framework. 

1.2 Overview of the Paper 

The rest of this paper is structured as follows. Section 2 states our system model and our 
program-level assumptions. Section 3 first presents a few examples to illustrate the ha.sic ideas 
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Doall (il, 11, ul) 
Doall (i2, 12, u2) 

Doall (im, lm, um) 
loop body 

EndDoall 

EndDoall 
EndDoall 

Figure 1: Structure of a single loop nest 

behind loop partitioning; it then develops the theoretical framework for partitioning and presents 
several additional examples. The implementation of our compiler system and a sampling of 
results is presented in Section 4, and Section 7 concludes the paper. 

2 The Problem Domain and Assumptions 

We address the problem of partitioning loops in cache-coherent shared-memory multiprocessors. 
Partitioning involves deciding which loop iterations will run collectively in a thread of computa­
tion. Computing loop partitions involves finding the set of iterations which when run in parallel 
minimizes the volume of communication generated in the system. This section describes the 
types of programs currently handled by our framework and the structure of the system assumed 
by our analysis. 

2.1 Program Assumptions 

Figure 1 shows the structure of the most general single loop nest that we consider in this paper. 
The statements in the loop body have array references of the form A(§(i1 , i2 , ••• , i1)), where the 
index function is [j: Z 1 --+ zd, l is the loop nesting and d is the dimension of the array A. 

We address the problem of loop and data partitioning for index expressions which are affine 
functions of loop indices. In other words, the index function can be expressed as, 

[j(i) iG+ii (1) 

where G is al x d matrix with integer entries and ii is an integer constant vector of length d.1 

We often refer to an array reference by the pair (G, ii). (An example of this function is presented 
in Section 3.1). All our vectors and matrices have integer entries unless stated otherwise. We 
assume that the loop bounds are such that the iteration space is rectangular. However, we note 
that our methods can still be used to derive reasonable partitions when this condition is not 
met. Loop indices are assumed to take all integer values between their lower and upper bounds, 
i.e, the strides are one. 

1 Note that a, iJ(i), and i1 are row vectors. 
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Figure 2: A system with caches and uniform access main memory. 

Previous work [6, 7, 8] in this area restricted the arrays in the loop body to be of dimension 
exactly equal to the loop nesting. Abraham and Hudak [6] further restrict the loop body to 
contain only references to a single array; furthermore, all references are restricted to be of the 
form A(i1 + a1 , i2 + a2 , ••. , id+ ad) where aj is an integer constant. Matrix multiplication is a 
simple example that does not fit these restrictions. 

Given P processors, the problem of loop partitioning is to divide the iteration space into P 
tiles such that the total communication traffic on the network is minimized with the additional 
constraint that the tiles are of equal size, except at the boundaries of the iteration space. 
The constraint of equal size partitions is imposed to achieve load balancing. We restrict our 
discussions to parallelepiped tiles with emphasis on rectangular tiles. Rectangular tiles ( of 
various aspect ratios) are important because it is easy to produce efficient code when the tile 
boundaries are simple expressions. 

Like [6, 7, 8], we do not include the effects of synchronization in our framework. Synchro­
nization is handled separately to ensure correct behavior. For example, in the doall loop in 
Figure 1, one might introduce a barrier synchronization after the loop nest if so desired. We 
also note that in some cases fine-grain data-level synchronization can be represented within a 
parallel do loop and its cost approximately modeled as slightly more expensive communication 
than usual [9]. See Apendix A for some details. 

2.2 System Model 

Our analysis applies to systems whose structure is similar to that shown in Figure 2. The system 
comprises a set of processors, each with a coherent cache. Cache misses are satisfied by global 
memory accessed over an interconnection network or a bus. The memory can be implemented 
as a single monolithic module (as is commonly done in bus-based multiprocessors), or in a 
distributed fashion as shown in the figure. The memory modules might also be implemented on 
the processing nodes themselves (data partitioning for locality makes sense only for this case). 
In all cases, our analysis assumes that the cost of a main memory access is much higher than a 
cache access, and that the cost of the main memory access is the same no matter where in main 
memory the data is located. 

The goal of loop partitioning is to minimize the total number of main memory accesses. For 
simplicity, we assume that the caches are large enough to hold all the data required by a loop 
partition, and that there are no conflicts in the caches. When caches are small, the optimal loop 
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partition aspect ratios do not change, rather, the size of each loop tile executed at any given 
time on the processor must be adjusted so that the data fits in the cache. We assume that cache 
lines are of unit length. The effect of larger cache lines can be included as suggested in [6]. 

3 Loop Partitions and Footprints 

This section develops a framework for compile time analysis of loops for performing optimal loop 
partitioning for a cache-coherent multiprocessor. After presenting two illustrative examples, we 
introduce the notions of a loop partition and the footprint of a loop partition with respect to 
a data reference in the loop. The footprints specify the data elements referenced within a loop 
partition. We then present the concept of uniformly intersecting references and a method of 
computing the cumulative footprint for a set of uniformly intersecting references. We develop 
a formalism for computing the volume of communication on the interconnection network of a 
multiprocessor for a given loop partition, and show how loop tiles can be chosen to minimize 
this traffic. The cumulative footprint can also be used to derive optimal data partitions for 
multicomputers with local memory. 

3.1 Examples 

This section presents examples to illustrate some of our definitions and to motivate the benefits 
of optimizing the aspect ratios of loop tiles. As mentioned previously, we deal with index 
expressions that are affine functions of loop indices. In other words, the index function can be 
expressed as, 

where G is a l X d matrix with integer entries and ii is an integer constant vector of length 
d, termed the offset vector. Consider the following example to illustrate the above expression of 
index functions. 

Example 1 The reference A( i3 + 2, 5, i2 - 1, 4) in a triply nested loop can be expressed by 

In this example, the second and fourth column of G are zero indicating that the second and 
fourth subscript of the reference is independent of the loop indexes. In such cases, we show in 
Section 3.4.1 that we can ignore those columns and treat the referenced array as an array of 
lower dimension. In future, without loss of generality, we assume that the G matrix contains 
no zero columns. 

Now, let us introduce the concept of a loop partition by examining the following simple 
example. 

Example 2 
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Figure 3: Two simple rectangular loop partitions in the iteration space. 

Doall (i, 101, 200J 
Doall (j, 1, 100J 

A{i,j} = B{i+j,i-j-1}+B[i+j+4,i-j+3} 
EndDoall 

EndDoall 

200 

Let us assume that we have 100 processors and we want to distribute the work among them. 
There are 10,000 points in the iteration space and so one can allocate 100 of these to each of 
the processors to distribute the load uniformly. Figure 3 shows two simple ways of partitioning 
the iteration space into 100 equal tiles. 

Let us compare the two partitions in the context of a system with caches and uniform access 
memory by computing the number of cache misses. For each tile in partition a, the number 
of cache misses can be shown to be 104 whereas the number of cache misses in each tile of 
partition b can be shown to be 140. Although not obvious from the source code, partition a 
is a better choice if our goal is to minimize the cost of memory accesses. In fact, partition a 
has zero coherence traffic. Ramanujam and Sadayappan [7) presented algorithms to derive such 
coherence-traffic-free partitions when possible. In addition to producing the same partitions 
when coherence-traffic-free partitions exist, our analysis will discover partitions that minimize 
traffic when such partitions are non-existent as well ( see Example 10). 

Example 3 

Doall (i, 1, NJ 
Doall (j, 1, NJ 

A{i,j} = B{i,j}+B[i+1,j+3} 
EndDoall 
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EndDoall 

For Example 3, parallelogram tiles result in a lower cost of memory access compared to any 
rectangular partition since most of the inter iteration communication is internalized to within 
a processor. Although it is harder to perform load balancing and produce code in the case of 
parallelogram partitions, we would like to include them in the formulation of the loop partitioning 
problem. In higher dimensions a parallelogram tile generalizes to a hyperparallelepiped; the next 
subsection defines it precisely. 

3.2 Loop Tiles in the Iteration Space 

Loop partitioning results in a tiling of the iteration space. Loop partitioning is sometimes 
termed iteration space partitioning. A specific hyperparallelepiped loop tile is defined by a set 
of bounding hyperplanes. 

Definition 1 Given a 1 dimensional loop nest i, each tile of a hyperparallelepiped loop partition 
is defined by the hyperplanes given by the rows of the 1 x 1 matrix H and the column vectors "y 
and X as follows. The parallel hyperplanes are hi= ;; and hjl = 'Yi+>..;, for 1 $ j $ 1. An 
iteration belongs to this tile if it is on or inside the hyperparallelepiped. 

We consider only hyperparallelepiped partitions in this paper; rectangular partitions are spe­
cial cases of these. Furthermore, we focus on loop partitioning where the tiles are homogeneous 
except at the boundaries of the iteration space. Under these conditions of homogeneous tiling, 
the partitioning is completely defined by specifying the tile at the origin, namely (H, 0, X), as 
indicated in Figure 4; the rest of this paper will deal with producing the aspect ratio for this 
tile. For notational convenience, we denote the tile at the origin as L. More precisely, we use 
the following representation for the tile at the origin. 

Definition 2 Given the tile (H, 0, X) at the origin of hyperparallelepiped partition, let L = 
L(H) = A(H-1l, where A is a diagonal matrix with A;; = >..;. We refer to the tile by the L 
matrix, as L completely defines the tile at the origin. L specifies the vertices of the tile at the 
origin. Often we also refer to the partition by the L matrix since each of the other tiles is a 
translation of the tile at the origin. 

Example 4 For a rectangular partition, H is the identity matrix I and L = A. 

3.3 Footprints in the Data Space 

For a system with caches and uniform access memory, the problem of loop partitioning is to 
find an optimal matrix L that minimizes the number of cache misses. The first step is to derive 
an expression for the number of cache misses for a given tile L. Because the number of cache 
misses is related to the number of unique data elements accessed, we introduce the notion of 
a footprint that defines the data elements accessed by a tile. The footprints are regions of the 
data space accessed by a loop tile. 
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Figure 4: Iteration space partitioning is completely specified by the tile at the origin. 

Definition 3 The footprint of a tile (H, 1, X) of a loop partition with respect to a reference 
A[ff(i)] is the set of all data elements A[ff(z)] of A, for z an element of the tile. 

The footprint gives us all the data elements accessed through a particular reference from 
within a tile of a loop partition. Because we consider homogeneous loop tiles, the number of 
data elements accessed is the same for each loop tile. 

We will compute the number of cache misses for the system with caches and uniform access 
memory to illustrate the use of footprints. The body of the loop may contain references to 
several variables and we assume that aliasing has been resolved; two references with distinct 
names do not refer to the same location. Let A1, A2, ... , AK be references to array A within 
the loop body, and let F( A;) be the footprint of the loop tile at the origin with respect to the 
reference A; and let F( A) = Ui=l, ... ,K F( A;) be the cumulative footprint of the tile at the origin. 
The number of cache misses with respect to the array A is IF(A)I, Thus, computing the size of 
the individual footprints and the size of their union is an important part of the loop partitioning 
problem. 

To facilitate computing the size of the union of the footprints we divide the references into 
multiple disjoint sets. If two footprints are disjoint or mostly disjoint then the corresponding 
references are placed in different sets, and size of the union of their footprints is simply the sum 
of the sizes of the two footprints. 

However, references whose footprints overlap substantially are placed in the same set. The 
notion of uniformly intersecting references is introduced to specify precisely the idea of "sub­
stantial overlap". Overlap produces temporal locality in cache accesses, and computing the size 
of the union of their footprints is more complicated. 

The notion of uniformly intersecting references is derived from definitions of intersecting 
references and uniformly generated references. 

Definition 4 Two references A[ff1 (i)] and A[ff2(i)] are said to be intersecting if there are two 
integer vectors z1 .T2 such that ff1 ( z1) = ff2 ( z2). For example, A( i +cl, j + c2) and A(j + c3, i + c4) 
are intersecting, whereas A[2i] and A[2i + 1] are non-intersecting. 

Definition 5 Two references A[ff1(i)] and A[g2(i)] are said to be uniformly generated if 

91(z) = TG + ii1 and 92(i) = TG + ii2 
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where G is a linear transformation and ai and ai are integer constants. 

The concept of uniformly generated references has been used in earlier work in the context 
of reuse and iteration space tiling [4, 3]. The intersection of footprints of two references which 
are not uniformly generated is often very small. So the total communication generated by two 
non-uniformly intersecting references is essentially the sum of the individual footprints. 

However, the condition that two references are uniformly generated is not sufficient for two 
references to be intersecting. As a simple example, A[2i] and A[2i + 1] are uniformly generated, 
but the footprints of the two references do not intersect. For the purpose oflocality optimization 
through loop partitioning, our definition of reuse of array references will combine the concept 
of uniformly generated arrays and the notion of intersecting array references. This notion is 
similar to the equivalence classes within uniformly generated references defined in [4]. 

Definition 6 Two array references are uniformly intersecting if they are both intersecting and 
uniformly generated. 

Example 5 References A[i,j], A[i + 1,j - 3], A[i,j + 4] are uniformly intersecting, while the 
references A[i,j], A[2i,j] are not. For more examples, see Appendix B. 

Footprints in the data space for a set of uniformly intersecting references are translations of 
one another, as shown below. The translation offset vector is related to the offset vector ilr of 
the reference r = ( G, ilr ). 

Proposition 1 Given a loop tile at the origin L and references r = ( G, iir) and s = ( G, ii.,) 
belonging to a uniformly generated set defined by G, let F(r) denote the footprint of L with 
respect to r, and let F( s) denote the footprint of L with respect to s. Then F( s) is simply a 
translation of F(r), where each point of F(s) is a translation of a corresponding point of F(r) 
by an amount given by the vector (ii., - ilr ). In other words, 

F(s) = F(r)+(ii., - iir)• 

This follows directly from the definition of uniformly intersecting references. Recall that 
an element i of the loop tile is mapped by the reference ( G, iir) to data element lr = iG + iir, 
and by the reference (G,ii.,) to data element d: = iG + ii.,. The translation vector, (d:- a:.), is 
clearly independent of i. 

Although, the number of iteration points in two different tiles may not be identical for 
parallelogram partitions, they are equal from a practical viewpoint. Further, for rectangular 
partitions the tiles are identical except for translation. Also, from a practical viewpoint the size 
of the footprint is the same for all the loop tiles except for the ones at the boundaries. So we 
can focus on the loop tile at the origin. 

Proposition 2 The number of iterations in the tile (or the volume of the tile) (H, 1, X), is 
approximately the sum of the volume of the tile and one half the number of iteration points on 
the boundaries of the tile. The volume of the tile is I det L(H)I, which is the same as the volume 
I det LI of the tile L at the origin. 

Proposition 3 The number of iterations in a rectangular tile (I, 1, X) is rt=l ( Ai + 1). 
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The volume of cache traffic imposed on the network is related to the size of the cumulative 
footprint. We describe how to compute the size of the cumulative footprint in the following two 
sections as outlined below. 

• First, we discuss how the size of the footprint for a single reference within a loop tile can 
be computed. In general, the size of the footprint with respect to a given reference is not 
the same as the number of points in the iteration space tile. 

• Second, we describe how the size of the cumulative footprint for a set of uniformly in­
tersecting references can be computed. The sizes of the cumulative footprints for each of 
these sets are then summed to produce the size of the cumulative footprint for the loop 
tile. 

3.4 Size of a Footprint for a Single Reference 

This section shows how to compute the size of the footprint ( with respect to a given reference 
and a given loop tile L) efficiently under certain conditions on G. Although we believe that 
these conditions cover a majority of practical cases, we summarize in Section 3.8 how to extend 
the techniques presented in this section with weaker conditions on G. We begin with a simple 
example to illustrate our approach. 

Example 6 

Doall (i, 0, 99) 
Doall (j, 0, 99) 

A{i,j] = B[i+j,j}+B[i+j+1,j+2] 
EndDoall 

EndDoall 

Let us suppose that the loop tile at the origin L is given by 

Figure 5 shows this tile at the origin of the iteration space. The reference matrix G is 

The footprint of the tile at the origin with respect to the reference B[i + j,j] is shown in 
Figure 6. The matrix 

F(B[. + . "]) - LG - [ 2L1 L1 l 
i J,J - - L2 0 

describes the footprint. The integer points on or inside the parallelogram specified by LG is 
the footprint of the tile. So the size of the footprint is I det(LG)I plus the number of integer 
points on the boundary of the parallelogram. This computation reduces to L 1L 2 + L 1 + L2 • In 
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• • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • • • (L 1, Li) • • 

• • 
• • 
• • 
• • 
• • (L.,, 0) 

1'wlber ot po.int■ .1n the TU.e • (L t 1) (L j- 1) 

Figure 5: Tile L at the origin of the iteration space . 

• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 

• (2L 1, L 1l • • • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • • 

• • • • • • • • • • 
• • • • • • • • • • • • (L 2 , 0) 

Nwlber ot Lattice Po.int■ a (L 1+ 1) (L 2+ 1) 

Figure 6: Footprint of L wrt B[i + j, j] in the data space. 

the rest of our discussion, for brevity, we will drop explicit mention of the integer points on the 
boundary of the parallelograms and use 

Size of the footprint defined by LG= I det(LG)I (2) 

The above example leads to the following questions. In general, is the footprint exactly the 
integer points on or inside LG? If not, how do we compute the footprint? The first question 
can be expanded into the following two questions. 

• Is there a point in the footprint that lies outside the hyperparallelepiped LG? It follows 
easily from linear algebra that it is not the case. 

• Is every integer point inside of LG an element of the footprint? It is easy to show this is 
not true and a simple example corresponds to the reference A[2i]. 

We first study the simple case when the hyperparallelepiped LG completely defines the 
footprint. Precise definition of the set S(LG) of points defined by the matrix LG is as follows. 
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Definition 7 Given a matrix Q whose rows are the vectors iii, S(Q) is defined as the set 

{x = a1tft + a2qi + ... + am~IO ~ ai ~ 1}. 

S(Q) defines all the points on or inside the hyperparallelepiped defined by Q. 

So for the case where LG completely defines the footprint, the footprint is exactly the integer 
points in S(LG). One of the cases where LG completely defines the footprint, is when G is 
unimodular as shown below. 

Lemma 1 The mapping of the iteration space to the data space as defined by G is one to one 
if and only if the rows of G are independent. 

Proof: i 1 G = i2G implies i 1 = i2 if and only if the rows of G are linearly independent. 

Lemma 2 The mapping of the iteration space to the data space as defined by G is onto if and 
only if the columns of G are independent and the g.c.d. of the subdeterminants of order equal 
to the number of columns is 1. 

Proof: Follows from the Hermite normal form theorem {10}. 

Theorem 1 The footprint of the tile defined by L with respect to the reference G is identical to 
the integer points on or inside the hyperparallelepiped LG if G is unimodular. 

Proof: Immediate from the above two lemmas. 

We make the following two observations about Theorem 1. 

• G is unimodular is a sufficient condition; but not necessary. An example corresponds to 
the reference A[i + j]. Further discussions on this theorem is beyond the scope of this 
paper and will be dealt with in a separate paper. 

• One may wonder why G being onto is not sufficient for LG to coincide with the footprint. 
Even when every integer point in LG has an inverse, it is possible that the inverse is 
outside of L. The one to one property of G guarantees that no point from outside of L 
can be mapped to inside of LG. The reason for this is the one to one property is true 
even when G is treated as a function on reals. 

It is also possible to apply Theorem 1 to compute the size of a footprint when the columns 
of G are not independent, as shown below. 

3.4.1 Footprint Size when Columns of Gare Dependent 

We derive a G' from G by choosing a maximal set of independent columns from G, such that G' 
is unimodular. If a unimodular G' exists, then it completely specifies the footprint, because all 
the points within the hyperparallelepiped defined by LG' will be accessed. We can now apply 
Theorem 1 to LG' to compute the size of the footprint. 
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Example 7 Consider the reference A[i, 2i, i + j) in a doubly nested loop. The columns of the G 
matrix 

are not independent. We choose G' to be 

Now LG' completely specifies the footprint. 

It is possible that none of the maximal independent columns satisfy the conditions in Theo­
rem l. Such cases are dealt with in Section 3.8. 

3.5 Size of the Cumulative Footprint for a Loop Tile 

The size of the cumulative footprint for a loop tile is computed by summing the sizes of the 
cumulative footprints for each of the sets of uniformly intersecting references. First, let us present 
a method for computing the size of the cumulative footprint for a set of uniformly intersecting 
references. 

The complexity of the computation of the size of the cumulative footprint for a set of uni­
formly intersecting references depends on the reference matrix G that defines the set and the 
loop partition L. We first focus on the types of references for which the conditions stated in 
Theorem 1 are true. In other words, we assume that G is unimodular. 

Let us start by illustrating the computation of the cumulative footprint for Example 6. 

The references to array B form a uniformly intersecting set and are defined by the following 
G matrix. 

G=[~ ~] 
Let us suppose that the loop partition Lis given by 

Then LG is given by 

ABCD and EFGH shown in Figure 7 are the footprints of the tile L with respect to 
the two references (B[i + j,j) and B[i + j + 1,j + 2) respectively) to array B. In the figure, 
AB= (Ln + L12, L12), AD= (L21 + L22, L22), and AE = (1, 2). 

The size of the cumulative footprint is the size of footprint ABC D plus the number of data 
elements in EPDS plus the number of data elements in SRGH. We can approximate the 
number of data elements by the area ABCD + SRGH + EPDS. Ignoring, the areas of the two 
triangles APE and HS D, we can approximate the total area by 
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Figure 7: Data footprint wrt B[i + j,j] and B[i + j + 1,j + 2] 
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Figure 8: Difference between the cumulative footprint and the footprint. 

l
det [ Lu + L12 L12 ] I + ldet [ Lu + L12 L12 ] I + ldet [ 

1 2 
] I 

L21 + L22 L22 1 2 L21 + L22 L22 

This approximation is reasonable if we assume that the constant terms in a uniformly intersecting 
set of references are small compared to the tile size. The first term in the above equation 
represents the area of the footprint of a single reference, i.e., I det(LG)!. The second and third 
terms are the determinants of the LG matrix in which one row is replaced by the offset vector 
a= (l, 2). Figure 8 is a pictorial representation of the approximation. 

We can generalize this idea of computing the cumulative footprint from multiple overlap­
ping footprints when there are many references in a set of uniformly intersecting references as 
follows. Let the spread of the offset vectors iii ( or the constant terms) among a set of uniformly 
intersecting references be captured by a vector a as defined here. The vector a is derived from 
the set of offset vectors for the given set of uniformly intersecting references. Recall, that the 
offset vector ii, is a term in the index function as given in Equation 1. 
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Let the index vector of reference r from a set of uniformly intersecting references be 
g(f) = iG + il,., where i corresponds to the iteration space ( as defined in Equation 1 ). The 
index vector has length d, where as before d is the dimension of the array. 

Definition 8 Define a such that the kth component of a is the difference between the maximum 
and the minimum of the kth component of all the references in the given uniformly intersecting 
set. In other words, a is a vector of length d where 

ak = max(ar k) - min(ar k), Vk E 1, ... , d. 
r ' r ' 

a is referred to as the spread of the uniformly intersecting set of references. 

For caches, we use the max - min formulation ( or the spread) to calculate the amount of 
communication traffic because the data space points corresponding to the footprints of refer­
ences whose offset vectors have values somewhere between the max and the min lie within the 
cumulative footprint calculated using the spread.2 

Theorem 2 Given a hyperparallelepiped tile L and a reference matrix G which is unimodular, 
the size of the cumulative footprint with respect to a set of uniformly intersecting references 
specified by the reference matrix G and a spread vector a is approximately 

d 

I det LGI +LI det LGi-al 
i=l 

where LGi-a is the matrix obtained by replacing the ith row of LG by a. 

As before, we can deal with the case when the columns of G are not independent by choosing a 
maximal set of independent columns. We also have sharper estimates on communication volume 
when the tile is rectangular. Furthermore, we can also weaken the conditions on G when the 
tile is rectangular as shown in Section 3. 7. 

Finally, a.s stated earlier, the total communication generated by non-uniformly intersect­
ing sets of references is essentially the sum of the communicating generated by the individual 
cumulative footprints. Example 9 in Section 3.6 discusses an instance of such a computation. 

2 For data partitioning, however, the formulation must be modified slightly. Data partitioning is the problem 
of partitioning the data arrays into data tiles and assigning the tiles to memory modules associated with the 
processing nodes so that a maximum number of the data references made by corresponding loop tiles are satisfied 
by the local memory module. Because data pa.rtitioning assumes that data from other memory modules is not 
dynamically copied locally (as in systems with caches), we replace the max - min formulation by the cumulative 
spread a+ of a set of uniformly intersecting references, whose kth element is given by, 

r 

where medr(ar,k) is the median of the offsets in the k th dimension. The rest of our framework applies to data 
partitioning if a is replaced by a+. A more detailed description of data partitioning, however, is beyond the scope 
of this paper. 
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3.6 Minimizing the Size of the Cumulative Footprint 

We now focus on the problem of finding the loop partition that mmmuzes the size of the 
cumulative footprint. Let us illustrate this problem through the following two examples. 

Example 8 

Doall (i, 1, NJ 
Doall (j, 1, NJ 

Doall (k, 1, NJ 
A(i,j,kJ = B(i-1,j,k+1J + B(i,j+1,kJ + B(i+1,j-2,k-3J 

EndDoall 
EndDoall 

EndDoall 

Here we have two uniformly intersecting sets of references: one for A and one for B. Let 
us look at the class corresponding to B since it is more instructive. Because A has only one 
reference, its footprint size is independent of the loop partition, given a fixed total size of the 
loop tile, and therefore need not figure in the optimization process. The G matrix corresponding 
to the references to B is, 

[ ~ ! n 
The a vector is (2, 3, 4). Consider a rectangular partition L = A given by 

In this example, the LG matrix is the same as the L matrix. The size of the cumulative footprint 
for B according to Theorem 2 is 

This expression must be minimized keeping I det LI (or the product LiLjLk) a constant. The 
product represents the area of the loop tile and must be kept constant to ensure a balanced 
load. The constant is simply the total area of the iteration space divided by P, the number 
of processors. For example, if the loop bounds are I, J, and K, then, we must minimize 
LiLjLk + 2L;L1c + 3L,Lk + 4LiLj, subject to the constraint LiL1L1c = I J K/ P. 

This optimization problem can be solved using standard methods, for example, using the 
method of Lagrange multipliers [11]. The size of the cumulative footprint is minimized when 
Li, L1, and Lk are chosen in the proportions 2, 3, and 4, or 

Li : L1 : Lk :: 2 : 3 : 4 

Abraham and Hudak's algorithm [6] gives an identical partition. 

Thus far, our analysis has been concerned with minimizing the cumulative footprint size, 
which at first glance, appears to minimize the number of first-time cache misses. However, the 
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Doseq ( t, 1, T) 
Doall (i, 1, N) 

Doall (j, 1, N) 
Doall (k, 1, N) 

A(i,j,k) = B(i-1,j,k+l) + B(i,j+l,k) + B(i+l,j-2,k-3) 
EndDoall 

EndDoall 
EndDoall 

EndDoseq 

Figure 9: A doall loop nest within a sequential loop. 

same optimization process minimizes the number of coherence-related invalidations and misses 
as well. For example, consider the loop nest in Figure 9. In a load-balanced partitioning, I det LI 
is a constant, so the LiLjLk term drops out, and the optimization process minimizes the volume 
of coherence traffic (given by 2LjLk + 3LiLk + 4LiLj) for a given tile. 

We now use an example to show how to minimize the total number of cache misses when 
there are multiple uniformly intersecting sets of references. The basic idea here is that the 
references from each set contributes additively to traffic. 

Example 9 

Doall (i, 1, NJ 
Doall (j, 1, NJ 

A(i,jJ = B(i-2,jJ + B(i,j-1J + C(i+j,jJ + C(i+j+1,j+3J 
EndDoall 

EndDoall 

Let the tile L be 

There are three uniformly intersecting classes of references, one for B, one for C, and one for A. 
As before, we can ignore A in the optimization process. The LG corresponding to references to 
array B is same as L and the size of the corresponding cumulative footprint is 

l
det [ Ln L12 ] I + ldet [ 

2 1 
] I + ldet [ Ln L

12 
] I · 

L21 L22 L21 L22 2 1 

Similarly, LG for array C is 
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and the size of the cumulative footprint with respect to C is 

The problem of minimizing the size of the footprint reduces to finding the elements of L 
that minimizes the sum of the two expressions above subject to the constraint the I det LI is a 
constant. This is a nonlinear optimization problem in general, and can be solved using numerical 
methods. 

For the purpose of illustration, let us restrict the loop tiles to be rectangular. In other words 
we assume L12 and L21 to be zero. The total size of the cumulative footprint simplifies to 
2L11 L22 + 4L11 + 6L22, The optimal values for Lu and L22 can be shown to satisfy the equation 
4L11 = 6L22 , using the method of Lagrange multipliers. 

3. 7 Rectangular Tiles 

This section considers the special case when loop tiles are restricted to be rectangular. The 
special case of rectangular loop tiles is useful to consider for many reasons: (1) rectangular tiles 
lead to much more accurate estimates of communication volume, (2) they allow us to handle 
much more general forms of G, and (3) they allow easy code generation. 

We first prove a simple theorem on lattices and then state our result on the size of cumulative 
footprints for rectangular tiles. 

Definition 9 Given n linearly independent vectors ii1, ... , iin E zn the lattice £( ii1 , .•. , iin) is 

n 

{x= Lliailli E Z,i = 1, ... ,n}. 
i=l 

We define £(iii, ... , iin, A1, ... , An) to be 

n 

{x= z:1iailli E z,o $Ii$ Ai}. 
i=l 

We refer to £( 111, ... , iin, A1, ... , An) as a bounded lattice. 

We will reduce the problem of computing the size of the cumulative footprint to the problem 
of computing the size of the union of a bounded lattice and a translation of the lattice. 

Theorem 3 Let L1 = £( ii1, ... , ii1, A1, ... , Al) and let L2 be the translation of L1 by vector f. 
L1 n L2 is non-empty if and only if { = u1a1 + u2a2 + ... + u1ii1 for some vector ii E Z 1 where 
0 $ Ui $ Ai, 

Lemma 3 Let L1 = £(a1, ... ,a,,A1, ... ,A1) and let L2 be the translation of L1 by vector{, 
{ = u1ii1 + u2ii2 + ... + u1a1 for some vector i1 E Z 1 where O $ Ui $ Ai. 

I I I I I 

IL1 U L2I = 2 II(Aj + 1)- II(Aj + 1- Uj) ~ II(Aj + 1) + LUi II ( A j + 1) - II Ui 
j=l j=l j=l i=l j=l, ... ,l,j,ei i=l 
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Theorem 4 Let L be a rectangular partition and let the reference matrix G be nonsingular 
with rows g1 ,g'l, ... ,91· The size of the cumulative footprint with respect to a set of uniformly 
intersecting references specified by the reference matrix G and a spread vector a is approximately 

I d 

IJ(L;;+l)+Eui IJ (L;;+l) 
i=l i=l j=l, ... ,l,j#;i 

h . b • ._., -w ere UiS are given y a = L...i=l uigi, 

It is to be noted that the condition on G is that it is just nonsingular and not necessar­
ily unimodular. As before, this theorem can be applied by replacing G by a maximal set of 
independent columns of G when the columns of G are not independent. 

The total communication is computed by adding the communication for each of the equiva­
lence classes. 

Example 10 

Doall (i, 1, N) 
Doall (j, 1, N) 

A{i,j) = B{i+j,i-j) + B{i+j+4,i-j+2) + C{i,2i,i+2j-1) + C{i+1,2i+2,i+2j+1)+C{i,2i,i+2j+1) 
EndDoall 

EndDoall 

Let the rectangular tile L be, 

[ ~i t l · 
We need to consider all the uniformly intersecting classes. 

1. B(i + j, i - j) and B( i + j + 4, i - j + 2) are uniformly intersecting. · The G matrix 
corresponding to this class is, 

Note that G is nonsingular, but not unimodular. The a vector is ( 4, 2) = 3( 1, 1) + 1( 1, -1). 
The size of the cumulative footprint according to Theorem 4 is 

(Li+ l)(L; + 1) + 3(L; + 1) +(Li+ 1) 

2. C(i, 2i, i +2j-1) and C(i, 2i, i+2j + 1) are uniformly intersecting. Although C(i+ 1, 2i + 
2, i + 2j + 1) belongs to the same uniformly generated set of references as C( i, 2i, i + 2j - 1) 
and C( i, 2i, i + 2j + 1 ), C( i + 1, 2i + 2, i + 2j + 1) does not intersect with either one of 
the other two references to the array C. This is easily seen from Theorem 3. Here G is 
singular. However we can pick the first and third column of G and apply Theorem 4. The 
size of the cumulative footprint of the current class can be shown to be 
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3. The two separate classes C(i + 1, 2i + 2, i + 2j + 1) and A(i,j) do not play any role in the 
optimal choice of Li and L; since the footprint for these classes equal the size of the tile 
which is constrained to be a constant for load balancing reasons. 

The problem of minimizing the size of the footprint reduces to finding Li and L; that mini­
mizes 

2(Li + 1) + 3(L; + 1) 

subject to the constraint that (Li+ l)(L; + 1) is a constant. The optimal values for Li and L1 
can be shown to satisfy the equation 2Li = 3L; + 1, using the method of Lagrange multipliers. 

3.8 General case of G 

In this section we summarize our results relating to footprints and cumulative footprints when 
conditions on the reference matrix G are relaxed. 

Theorem 5 The size of the footprint of a tile L with respect to the reference G is equal to the 
number of lattice points in the tile L if the rows of G are linearly independent. 

The size of the footprint can be computed precisely for a general G in the following cases 
when the tile L is rectangular. 

1. The loop nesting l = 1. 

2. The loop nesting 1 = 2. 

3. The loop nesting l = 3, the dimension of the array d >= 2 and the column rank of G is 
>= 2. 

The above cases cover most of the practical situations. For the case when 1 = 3 and d = 1, 
it seems difficult to express the size of the footprint by a closed form expression. However, one 
can compute the exact size of the footprint efficiently using a table lookup when the elements 
of G are small, which is mostly the case in practice. We believe the same techniques can be 
extended for higher dimensions as well. We have similar results for computing the cumulative 
footprint as well. 

4 Implementation 

We have implemented some of the ideas from our framework in a compiler for the Alewife 
machine [12]. The Alewife machine implements a shared global address space with distributed 
physical memory and coherent caches. The nodes are configured in a 2-dimensional mesh commu­
nication network. Distributed-memory architectures may require three types of related analyses 
to distribute code and data on to the machine: 

Loop Partitioning Each processor must be assigned a set of loop iterations that maximizes 
reuse of data in caches and achieves good load balance. 
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Data Partitioning and Alignment Arrays must be distributed among the processors such 
that memory references that miss in the cache go to the local memory rather than accross 
the network to another node. This is accomplished by partitioning arrays with the same as­
pect ratios as the iterations of loops that reference them, and then assigning corresponding 
loop and data partitions to the same processor. 

Placement In an architecture like Alewife the memory access time depends on the distance 
between the node making the memory request and the node where the requested data 
resides. The data partitioning and alignment phases make assignments to virtual proces­
sors which must be mapped onto the real machine in order to minimize memory reference 
latency. This is a smaller effect that may become important in very large machines. 

We have implemented loop and data partitioning as well as alignment for the case of rect­
angular partitioning. The structure of our compiler is shown in Figure 10. The input to the 
compiler is a program where paralellism is specified either by the programmer, or in a previous 
compilation phase. As in [6], we separate the notion of parallelization from that of implemen­
tation. The languages accepted at present are Mul-T, a parallel Lisp language, and Semi-C, a 
parallel version of C. An initial series of transformations are performed including constant-folding 
and procedure integration producing a graphical intermediate form called WAIF. 

WAIF is a hierarchical graphical representation of a source program. Functionally as well 
as structurally, WAIF has two abstraction levels: The program graph with dependence edges 
(WAIF-PG) and the abstracted task and data communications graph (WAIF-CG). WAIF-PG 
is a customized version of an abstract syntax tree. WAIF-CG summarizes the communication 
patterns between tasks and data structures that can be derived from a static analysis. Data 
and loop partitioning are performed as transformations on the WAIF-CG and then code for 
sequential threads with explicit synchronization is generated. The sequential code-generation 
process performs standard optimizations such as strength reduction and loop-invariant code 
motion, producing machine code for Alewife's processors. the Alewife machine. 

Given the presented framework, one can take various examples and calculate the reduction 
in expected cache misses when better loop partitions are used. The question is what the impact 
is on overall performance. In our case, the effects of distributed memory ( data partitioning and 
alignment) are important and we were unable to isolate the effect of cache miss reduction in 
time for this version of the paper. Making this measurement is complicated because changing 
the loop partition alters the number of non-local memory references as well as affecting cache 
behavior. We plan to have some results for the final version of the paper. 

5 Related Work 

We show that Abraham and Hudak's results on rectangular loop partitioning for caches [6] 
(where the index expressions are of the form index variable plus a constant) are reproduced by 
our theoretical framework (see Example 8). The framework, however, is able to handle much 
more general index expressions, and produce parallelogram partitions if desired. 

We also show that the framework correctly produces the communication-free loop partitions 
for the class of programs handled by Ramanujam and Sadayappan [7]. In addition, the same 
framework is able to discover optimal partitions in cases where communication free partitions 
are not possible - a case not handled by [7]. (See Examples 2 and 10.) 
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Figure 10: The Alewife Code Generation Process. 

Ferrante, Sarkar, and Thrash [5] address the problem of estimating the number of cache 
misses for a nest of loops. This problem is similar to our problem of finding the size of the 
cumulative footprint, but differs in these ways: (1) We consider a. tile in the iteration space and 
not the entire iteration space; our tiles can be hyperpara.llelepipeds in general. (2) We partition 
the references into uniformly intersecting sets, which makes the problem computationa.lly more 
tractable, since it a.llows us to deal with only the tile at the origin. (3) Our treatment of 
coupled subscripts is much simpler, since we look a.t maximal independent columns, as shown 
in Section 3.4.1. (4) Fina.Uy, our techniques yield better estimates for references of the form 
A[i + j + k, 2i + 3j + 4k]. 

Our work complements the work of Wolfe and Lam [4]. They use the notion of equivalence 
classes within the set of uniformly generated references to identify valid loop transformations to 
maximize the degree of temporal and spatial locality within a given loop nest, but they do not 
attempt to derive optimal iteration space partitions, as we do. 
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7 Conclusions 

The perfor:m&D.ce of cache-coherent systems is heavily predicated on the degree of temporal 
locality in the access patterns of the processor. If each block of data is accessed a number 
of times by a given processor, then caches will be effective in reducing network traffic. Loop 
partitioning for cache-coherent multiprocessors strives to achieve precisely this goal. 

This paper presented a theoretical framework to derive the aspect ratios of the iteration­
space partitions of the do loops to minimize the communication traffic in multiprocessors. The 
framework allows the partitioning of doall loops into hyperparallelepiped tiles where the index 
expressions in array accesses can be any affine function of the indices. 

Our analysis introduces the notion of uniformly intersecting references to categorize the 
references within a loop into classes that will yield cache locality. The notion of data footprints 
is introduced to capture the combined set of data references made by the reference within each 
uniformly intersecting class. Then, an algorithm to compute the total size of the data footprint 
for a given loop partition is presented. Once an expression for the total size of the data footprint 
is obtained, standard optimization techniques can be applied to minimize the size of the data 
footprint and derive the optimal loop partitions. 

The framework correctly reproduces results from loop partitioning algorithms previously 
proposed by other researchers. In addition, it discovers optimal partitions in many more general 
cases that are not handled by previous algorithms. 

A subset of the framework, including both loop and data partitioning has been implemented 
in the compiler system for the Alewife multiprocessor. The implementation currently handles 
rectangular partitions only. Integrating the rest of the framework into our compiler system is 
part of an ongoing effort. 
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Doall (i, 1, N) 
Doall (j, 1, N) 

Doall (k, 1, N) 
IIC[ij] = IIC[ij] + A[i,k] + B[kj] 

EndDoall 
EndDoall 

EndDoall 

Figure 11: Structure of a single loop nest 
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A Handling Synchronization References 

Fine-grain data-level synchronization can sometimes be represented within a parallel do loop and 
its cost approximately modeled as slightly more expensive communication than usual [9]. For 
example, in the Alewife system the inner loop of matrix multiply can be written using fine-grain 
synchronization in the form of the loop in Figure 11. 

In the code segment in Figure 11, the "1$" preceding the C matrix references denote atomic 
accumulates. Accumulates into the C array can happen in any order, just that each accumulate 
action must be atomic. Such synchronizing reads or writes are both treated as writes by the 
coherence system. Similar linguistic constructs are also present in Id [13] and in a variant of 
FORTRAN used on the HEP [14]. 

B Examples of Uniformly Intersecting References 

Example 11 The following sets of references are uniformly intersecting. 

24 



1~4WM.\111'1 !.J\#U4-111,1.;;z;;; •.. - .11 !llf 111 IJ!:LU S4#11ii4k. ······~· . . . •-~ •. II .. ,,JI 
! . 

,. A&itAAI'+ 1.J- IJ.A(i.; + 4J. 
t. ______ ,., ... .-+ltjl.4-

1. Afi,1"J.Afti,1l• 

,. A(i.JJ. A{li.1,1). 

,. AU.t.4.AU.'14. 
,. A(tll, .. + 1). 

s. Afi+2,2'+4.Afi+l.2i+IJ. 
,. Aft,JJ. .l(i,J'J. 


