
LABORATORY FOR ~Ir,
COMPUTER SCIENCE ~ 'itt_

MIT /LCS{fM-497

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

ANALYZING MULTIPROCESSOR
CACHE BEHAVIOR THROUGH

DATA REFERENCE MODELING

Jory Tsai
Anant Agarwal

November 1993

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This b/a11k page was i11serted to preserve paginatio11.

Analyzing Multiprocessor Cache Behavior Through Data Reference
Modeling

Jory Tsai and Anant Agarwal
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

This paper develops a data reference modeling technique to
estimate with high accuracy the cache miss ratio in cache­
coherent multiprocessors. The technique involves analyz­
ing the dynamic data referencing behavior of parallel al­
gorithms. Data reference modeling first identifies different
types of shared data blocks accessed during the execution
of a parallel algorithm, then captures in a few parameters
the cache behavior of each shared block as a function of
the problem size, number of processors, and cache line size,
and finally constructs an analytical expression for each algo­
rithm to estimate the cache miss ratio. Because the number
of processors, problem size, and cache line size are included
as parameters, the expression for the cache miss ratio can
be used to predict the performance of systems with differ­
ent configurations. Six parallel algorithms are studied, and
the analytical results compared against previously published
simulation results, to establish the confidence level of the
data reference modeling technique. It is found that the aver­
age prediction error for four out of six algorithms is within
five percent and within ten percent for the other two. The
paper also derives from the model several results on how
cache miss rates scale with system size.

1 Introduction

An early phase in the design of multiprocessor systems is the
definition of target applications to be run on the system along
with potential hardware configurations. Of the various pos­
sible hardware configurations, the configuration that yields

To appear in SIGMETRICS, 1993.

0

1

the best performance for a given cost is typically selected for
the final system design specification. Because the cache is
a critical determinant of multiprocessor performance, a sim­
ple analytical model of cache behavior that can rapidly yield
cache miss rates for various parallel algorithms as a function
of system and problem parameters, such as the number of
processors and problem size, is extremely desirable during
the early definition stage of the design process.

This paper develops a data reference modeling method­
ology to analyze parallel algorithms and obtain information
that can be used to estimate the cache miss ratio in multi­
processor systems. Because the model captures the problem
size, the system size, and the cache line size as parameters, it
can be used to predict cache miss ratios for different system
configurations. However, because the method is based on
an analysis of parallel algorithms, it is not suitable for the
analysis of complex or irregular applications, where the data
reference patterns are hard to discern.

The data reference modeling technique consists of the
following steps:

1. Identifying different types of shared data blocks ac­
cessed during the execution of a parallel algorithm
by each processor. This technique is most convenient
when the types of shared blocks accessed by each pro­
cessor is the same for all processors - a behavior com­
monly exhibited by data parallel applications (i.e., ap­
plications in which each processor executes the same
code but operates on different data sets).

2. Capturing in a few parameters the cache behavior of
each shared block as a function of the problem size,
number of processors, and cache line size. We assume
that the partitioning strategy is an algorithm-specific
property. The parameters essentially characterize a type
of processor locality inherent in each type of sharing.
Processor locality was described in [2] as the tendency
of a processor to repeatedly access a given block of data
before an access by a remote processor. A similar form
of locality was also measured by Eggers [6] using the
notion of write runs, and by Dubois and Wang [5) using

the notion of an access burst.

The three parameters used to capture the processor lo­
cality are the number of accesses, a, of a specific type
of shared block by a given processor, the number of
remote writes, w, to that block that result in cache
misses suffered by the given processor, and the num­
ber of first-time fetches, f, of that block of data that
are not preceded by a remote write. The parameter f
contributes to the startup miss cost, and only affects
the cache miss ratio in the first iteration of typical it­
erative algorithms. Therefore, f may be ignored when
the algorithm executes many iterations. Notice that the
ratio a/w yields a measure of the average number of
uninterrupted accesses (i.e., a series of local accesses
without any remote write) to a block of data follow­
ing an eviction from a given processor's cache due to a
remote write.

3. Constructing an analytical expression for each algo­
rithm to estimate the cache miss ratio. Because the
processor locality parameters w and a are expressed as
a function of the number of processors, problem size,
and cache line size, the expression for the cache miss
ratio can be used to predict the performance of systems
with different configurations.

This paper validates the model using six parallel algo­
rithms. We find that the average prediction error for four
out of six algorithms is within five percent and within ten
percent for the other two. The paper also derives from the
model several results on how cache miss rates scale with
block size, number of processors and problem size.

This paper first discusses related work in Section 2. Sec­
tion 3 develops the data reference modeling methodology to
estimate a multiprocessor's cache miss ratio, and validates
it using previously published simulation data for six parallel
applications in Section 4. Results for two out of the six ap­
plications are discussed in detail. Section 5 uses the model
to study the effects of problem size, cache line size, and
number of processors on the cache miss ratio. The problem
size is the size of the shared data structures indicated in the
parallel algorithm. Section 6 concludes the paper.

2 Previous Work

Several previous studies directly relate to our current re­
search: the independent reference model of Dubois and
Briggs [4], the processor locality based model of Agar­
wal [1], the access burst model of Dubois and Wang [5],
the write-run model of Eggers [6], and the directory model
of Simoni and Horowitz [9].

To our knowledge, the model by Dubois and Briggs [4]
was the earliest effort on analytically obtaining cache miss

2

rates due to invalidation. They estimated miss ratios from a
markov model assuming that every shared block was equally
likely to be accessed by any processor in the system. Because
references to shared memory typically display temporal lo­
cality in much the same manner as private references do, the
predicted miss rates tum out to be very pessimistic [1].

More recently, researchers have begun using some mea­
sure of processor locality in their models. The locality based
model of Agarwal used a measure of the processor locality
derived from an address trace. Processor locality is derived
from a measurement of the interval between references to a
given block of shared data by a given processor and the in­
terval between write references to that block of data by other
processors. Cache miss rates for systems with other con­
figurations are derived using a simple Markov model. The
drawback with this approach is that while the cache miss
rate predictions are accurate for the system size from which
measurements were made, attempts to extrapolate cache be­
havior for other system sizes are unsuccessful. The reason
for this difficulty lies in our inability to predict data reference
patterns arising from algorithmic behavior from a single ad­
dress trace. An examination of algorithmic behavior, on the
other hand, directly reveals this information.

The access burst model is based upon the observation that
global shared writable blocks are accessed largely in critical
sections. Within a critical section, a block can be assumed
to be accessed by a single processor without interruption
from other processors. A burst is defined to be a duration
of accesses by a processor to a global shared block in an
uninterrupted manner. The access burst size is a measure of
the processor locality of the shared block. The model also
measures the probability that a block is modified during an
access burst. The measurements are made for each block
size and the problem size is fixed. The model assumes that
after a burst, all processors sharing the block are equally
likely to access it again, and that the access bursts are in­
dependent from one another. Using these assumptions and
measurements, a Markov model representing the global state
of a shared block is constructed to estimate the likelihood of
occurrence of each type of cache event such as an invalida­
tion. The states represent the number of processors sharing
the block.

Simoni and Horowitz focused on modeling the perfor­
mance of limited pointer directory schemes. Their analysis
models processor locality by assuming that a primary pro­
cessor is more likely to access a block of data than one of
several secondary processors. The analysis assumes that the
number of processors actively accessing a block of data is
fixed. They chose 64 for this number.

Our approach is different from that of Simoni and
Horowitz, and Dubois and Wang, in that we analyze the
algorithms and derive expressions for a few parameters, as
a function of problem size, number of processors and block

node 1/ 0 0 0

0
0
0

node 11 0 0 0

0
0
0

node Pl bP2 I O O 0
p

Figure 1: Typical distribution of shared blocks in the caches
in a multiprocessor system.

3.2 Notation

On a P-node shared-memory multiprocessor system, shared
data blocks are distributed among the caches in the nodes.
Figure 1 shows a distribution of various types of shared
blocks in the system. Let there be n; different types of
shared blocks in the cache in node i. Blocks with identical
access patterns are said to have the same type. Miss rates
of blocks with the same type can be captured using a single
DRM, that is, using a single function of system and problem
parameters. Let b;; denote the j-th type of shared block on
node i. The types of shared blocks on node i are named b;1,

b;2, • • · , b;n,• A DRM is used to present the state of each
b;;.

We first introduce the notation for parameters derived from
an algorithm. The number of remote-writes on b;; that in­
duce cache misses is denoted w;;, and the number of first
references of b;; by processor i that are not preceded by a
remote write (i.e., wo) event is denoted f;i. Let the number
of accesses of b;i be captured by a;i. Finally, we will use
the variable s;i to denote the probability of accessing b;i on
node i; note that s;i is simply % / I:i a;i.

The following are the computed quantities. Let the miss
ratio of b;i be called m;i. The miss ratio of a type of shared
block is simply the fraction of references of that type of
block that results in a miss. Misses are caused both by
remote writes followed by local accesses and due to first­
time fetches.

Table 1 summarizes the notation used in this paper.

3.3 Processor Cache Miss Ratio

A processor's cache miss ratio is derived from all DRMs on
that processor. After all the types of DRMs are identified
on the processor, we can determine the n;, b;i, and w;; from
the data partition of an algorithm and the accesses sequence
of shared data during the execution. Then, the miss ratios
for each b;i is the ratio of the sum of the number of first
time misses and the write-invalidate induced misses and the
number of accesses of the block.

4

P number of processors
N problem size
B cache block size
i index of the node count, i = 1, 2,. .. , P
j index of the types of shared blocks on node i
n; number of types of shared blocks on node i
b;; jth type of shared block on node i
s;; probability of accessing b;i on node i
f;; number of first-time fetches of b,;
a;; number of accesses of b;;
w;; number of remote writes that cause

cache misses on b;;
m;; miss ratio of b;i
M; cache miss ratio of node i
M cache miss ratio of system

Table 1: Notation

The parameters a;i, w;;, and f;;, are algorithm dependent
functions of P, N, and the block size B. A processor's miss
ratio (M;) can be derived from the sum of each b;; 's cache
miss ratio times the probability of accessing b;;. That is,

n;

M; = Ee Sjj X m;;)
j=l

To calculate the average cache miss ratio M of all proces­
sors in the system, we use M; and the processor utilization
(U;) of each node i. The average processor cache miss ratio
is then:

If all processors have the same utilization U, we can write,

'°'p p

M _ L...,;-1 (M; x U) _ _!.. '°'M·
- p - XL., '

I:i=l U p i=l

In our experimental analysis, we will assume that all pro­
cessors have the same utilization, so that we can make the
above simplification.

4 Applications and Validation

In this paper, we demonstrate the accuracy and relative ease
of using the data reference modeling approach by compar­
ing results from simulations and modeling. We will use

the applications studied by Dubois and Wang [5, 7) both
because of the availability of simulation results on these ap­
plications and due to the simplicity of the implementations
of the parallel algorithms. While Dubois and Wang used
nine algorithms, we studied six due to the lack of detailed
published information on the others. The six algorithms we
study are: Jacobi iteration, successive over relaxation, dy­
namic parallel quicksort, non-shuffling FFI', shuffling FFI',
shortest path, and image component labeling.

The above six algorithms can be further divided into two
categories:

• Data independent algorithms: Jacobi, S.O.R., Shuf­
fling FFI', and Non-shuffling FFI'. Data independent
algorithms are those in which the input data set does
not affect the shared-data access patterns.

• Data dependent algorithms: Dynamic quicksort and
Image component labeling. Data dependent algorithms
are those in which the input data sets may affect the
access patterns to shared blocks.

This paper presents a detailed analysis of one algorithm
from each category: dynamic parallel quicksort and shuffling
FFI'. For details on the others see [8]. We hope to use
these two types of algorithms to demonstrate different DRM
analysis approaches.

The examples show that the number of types of shared
blocks for many algorithms, especially for those that are
iterative, are very few, so the analysis process of construct­
ing the DRMs for each type of shared block is not onerous.
Parallel iterative algorithms in which the iterations are dis­
tributed among the processors not only allow extracting the
DRMs for shared data types on one processor, but also allow
us to focus on one iteration of the algorithm.

By analyzing the application code, we identify all data
blocks, both shared and private, accessed within each itera­
tion. The number of references can also be determined from
the application code for each iteration. Once the DRMs
for an algorithm are identified, the cache miss ratio can be
formulated as a function of the cache line size, the problem
size, and the system size.

After demonstrating that the model has acceptable ac­
curacy for two algorithms, we will focus on analyzing the
effects of cache line size, problem size and system size on
multiprocessor cache miss rates. Our validation experiments
compare the miss ratios obtained through analysis with the
simulation results reported by Dubois and Wang [5, 7).

4.1 Shuffling FFT Algorithm

The shuffling FFI' algorithm evaluates the discrete fourier
transform. Let s(k), k = 0, 1, 2, ... , N - I be N samples of
a time function. The discrete fourier transform of s(I{) is

5

defined to be the discrete function x(j), j = 0, 1, 2, N -1,
where

N-1

x(j) = L s(k)e 2,,;p
k=O

wherei= ./=T.
The problem size of the shuffling FFI' algorithm is the

N -item array s(k); this array is usually divided into P equal
sized chunks where P is the number of processors in the
system. The implementation uses a single copy of an N -
item array, called the valid array; the implementation also
uses two copies of the data array for temporaries. A one­
dimensional shuffling FFf algorithm for N data items is
represented by a butterfly graph with log2 N stages. These
N data items are stored sequentially in the global memory.
Each processor is responsible for computing the FFf on
its chunk, which contains !j, data items. In this algorithm,
computations of partial FFfs alternate with shuffling phases
where data are passed among processors. At most two pro­
cessors can share a block at any time. Coherence activity is
significantly reduced since data locality exists.

Figure 2 presents the shuffling FFf algorithm for N = 16
and P = 4. During the computation phase, each local
processor owns 1/s data elements and computes in a butterfly
fashion. Write operations always occur within the butterfly
computation phase and never occur in the shuffling phase,
and each shared block can be written by one processor only.
Each block is shared by at most two processors when the
cache line size B < < N / P precondition is held. If the cache
line size is too large then data elements stored in a block may
be accessed by more than two processors, this may cause
additional write invalidations than when the precondition is
held.

The algorithm requires a total of 2 X f 1log2 z l iterations;
01!:z -,s

each iteration consists of a computation stage and a shuffling
stage. Figure 2 shows data partitioning, synchronization,
butterfly computation data flow, and shuffling directions.
Each shared block is generally shared by only two proces­
sors, except the first f'J> data elements on the first processor
and the last [;, data elements on the last processor. The first
and last processors processors are different because they
have one neighboring processor, unlike others, which have
two neighboring processors.

At the beginning of execution, all processors load their
N / P data items into their respective local caches. During
the computation phase of the algorithm, each data element
has to be read and updated locally. Updated data elements
are stored into the valid array, and synchronization takes
place.

During the shuffling phase, the data elements in the valid
array are copied into a local temporary array, then restored
into relative locations of the valid array. The relative lo­
cations to which a data element must shuffle is dependent

PO (~

Pl (~

n(~

• • • • •

n(~ lo

\o-c-:___.J~:..__~:>-;r,--~J""':'.~~:.._~~-~I o

r~~u~-,--~r-------1--~ ph••• ahufflin,z Computation ufflin,z
pha•• pha•• ph••·

Figure 2: Shuffling FFI' algorithm for P=4 and N=16.

on its processor's location. All data elements are virtually
divided into two halves: the first half of data elements are
shuffled towards the other half, and visa versa. Synchro­
nization is denoted by the dotted line in the figure, and is
required before each computation and shuffling phase.

All reads and writes happen locally and no cache misses
occur during the computation phase. In the shuffling phase,
the order of shuffling operations is remote read, local write,
local read, and remote write. Cache misses only occur during
the remote read of the shuffling phase. This indicates there
is at most one cache miss per cache block, and wii = I.
The only exception is the N /2P data elements mentioned in
the first and the last processor, whose wii = 0.

4.1.1 Cache Miss Ratio Validation for Shuffling FFf

In order to calculate the cache miss ratio for the shuffling
FFI' algorithm one has only to focus on each iteration of
both the computation and the shuffling stages. The behavior
of each iteration is independent throughout the whole course
of execution, which comprises r log2 ~ l stages.

log2

We will first compute the miss ratio of the non-boundary
processors, and then adjust the miss rate to account for the
first and last processor's access patterns. Within the compu­
tation phase, log2 (N / P) butterfly stages are needed to com­
pute l/s data elements. Each processor performs only two
reads and one write on each data element in the computation
phase, and two reads and two writes in the shuffling phase.

6

Therefore, the total number of accesses on bii, namely aii,
during each stage is (3 • log2 lfs + 4) • B.

Cache misses happen only in the shuffling phase, where
w,i = I. Therefore, for the non-boundary processors,

and

Therefore,

ni = 1, Vi= 2,3, ... ,P-1

Wjj = 1

Sjj = 1

W" I
ffijj = _:l... = -------.,,----

lljj B • (3 . log2 lfs + 4)

And, the cache miss ratio for each processor is

1 1
Mi=-· N

B (3 · log2 P + 4)
(1)

The effect of the first and the last processor can be included
as follows. Recall that processor 1 and processor P have two
distinct types of blocks: those that have w;i = I and those
that have Wii = 0. Each processor has N /2P blocks of each
type. Therefore, the miss ratio of the first processor and the
last processor is:

1 1 1
M1 P = - - · ----=---

, 2 B (3 · log2 lfs + 4)

The average miss ratio for the whole system is given by,

P-2 2
M=--M·+-M1p p • p '

Simplifying, we get,

P- I 1
M = -- . ----=---

p B (3 · log2 lfs + 4)

Table 2 compares the cache miss ratios derived from this
function and those obtained from simulation results pub­
lished in [5, 7]. The cache miss ratios are collected based
on cache line sizes of one, two, four, eight, and 16 words,
number of processors varying from two through eight, and a
problem size N = 65536. The comparisons are also shown
in Figure 3. A constant percentage difference is found be­
tween simulated results and modeled results for each number
of processors. The observed mean difference is 4.3 percent.

4.2 Parallel Dynamic Quicksort

Dynamic quicksort is a divide-and-conquer algorithm,
which sorts an array A[l], A[2], ... , A[N] by rearrang­
ing it to make the condition that A[l], ... ,A[j-1] ::; A[j] ::;

p B. DRM Simulation Percent
Results Results Difference

2 l 0.010204 0.010639 -4.08
2 2 0.005102 0.005319 -4.08
2 4 0.002551 0.002659 -4.06
2 8 0.001275 0.001330 -4.09
2 16 0. 00063 8 0.000665 -4.09
4 1 0.016304 0.017045 -4.34
4 2 0.008152 0.008523 -4.35
4 4 0.004076 0.004262 -4.36
4 8 0.002038 0.002131 -4.36
4 16 0.001019 0.001065 -4.32
8 1 0.020349 0.021341 -4.65
8 2 0.010174 0.010671 -4.65
8 4 0.005087 0.005336 -4.66
8 8 0.002544 0.002668 -4.66
8 16 0.001272 0.001334 -4.66

Table 2: DRM versus simulation for shuffling FFr

0 0.024
~
a: 0.021
1/)
1/)

;:E 0.018
(I)
.c
~ 0.015

(.)

0.012

0.009

0.006

0.003

0.000
0 2

o --o Simulation, P-2
o ······O DRM,Pm2
a -- a Simulation, p.4
a •••••• a ORM, P=4

• -- • Simulation, P=B

• · · · · ··• ORM, P=B

4 6 8 10 12 14 16

Cache Line Size

N=65536

Figure 3: DRM versus simulation for shuffling FFr.

7

A[j+l], ... ,A[N] holds for some j, and a splitting process
to place the two subarrays into a global job queue. By
recursively applying the same procedure to the subarrays
A[l], ... ,A[j-1] and A[j+ 1], ... ,A[N], the entire array is sorted.

In its parallel implementation, at the end of each splitting
phase, the larger subarray is processed by the same processor
and a descriptor of the smaller subarray is stored into a global
job queue for potential distribution to other processors. The
larger subarray is retained to maximize data locality. When
a processor is idle it checks the global job queue and picks up
a subarray's descriptor if the global job queue is not empty.
If the size of the subarray is one then the processor writes
the subarray back to shared array and change its state to idle.
The algorithm is completed when all processors are idle and
the job queue is empty.

The problem size of the dynamic quicksort algorithm
is the N item array A. In this algorithm, every data item
in this array may be accessed by all processors during the
course of execution. The implementation of this algorithm
uses a single copy of the array. There is no system wide
synchronization required for this algorithm during run time.
The only restriction on data sharing is that shared data are
accessed mutually exclusively while a processor splits the
array or the subarray.

Figure 4 shows how shared data elements are accessed
during the execution of the algorithm, for N = 32 and
P = 4. Each square represents a data element in the array.
Squares grouped by a rectangle in the graph shows those data
elements are allocated and sorted by a processor within that
stage. The dotted line shows data locality after the initial
loading. For simplicity, we assume that the subarrays are of
equal size.

During run time, the first processor (say, Pl) allocates all
data elements initially, and releases less than half of those
elements at the end of stage 1. The second processor (say,
P2) then picks a subarray from the job queue and sorts the
subarray, and other processors follow the same task. After
stage 1, there are (N - 1) /2 unsorted elements on each
processor on average, and the N element array has been
divided into 2 subarrays. After stage x, there are (N -
2x-l + l)/(2x-1) unsorted elements on each processor, and
the array has been divided into 2x-l subarrays. When the
number of unsorted elements on each processor reaches one,
the execution is completed. The average run time of the
algorithm is log2 N stages (flog2(N - 1)1 iterations).

4.2.1 Cache Miss Ratio and Model Validation

Cache misses in the quicksort algorithm have a high degree
of data dependency. That is, it is impossible to figure out
exactly the numberof cache misses without complete knowl­
edge of the data being sorted. However, we can proceed to
formulate a DRM for this type of algorithm by making suit-

Stage 5

Figure 4: Shared data handling in dynamic quicksort, P = 4 and N = 32

able assumptions about the data distribution. For simplicity,
we make the assumption that the array at each stage is evenly
divided into subarrays, since we do not know the exact size
of the two sorted subarrays. The assumption of even divi­
sion represents the worst-case scenario; a 65-35 split is more
likely if the numbers in the array are generated randomly.
Under this assumption, we can derive ORM parameters and
then estimate the cache miss ratio for the algorithm.

At stage x, the N element array has 2x-1 - 1 sorted
data elements, an average queue size of 2x-1 - P, and
2x- 1 subarrays. The average size of a unsorted subarray

is therefore N -f:~11
±1 elements. To derive the cache miss

ratio for a processor in this algorithm, since only one type
of shared block exists, it is convenient to consider the whole
course of the execution and derive expressions for/, a, and
w for this type of shared block. Clearly, the value of n; is
one for all i, and the value of s is also one, since only one
type of shared block exists.

Here, we can ignore the work queue's data blocks, since
it has the same access pattern as the shared data blocks,
and hence will not change the cache miss ratio. However,
we need to taking the work queue into account if we are
estimating the cache miss count,

There are three types of cache misses that occur during
the execution of this algorithm:

• initial loading misses

• loading misses from the job queue, which correspond
to cache misses that occur when a subarray is stored in
the unsorted job queue and requested by a processor

• invalidation and false-sharing misses within a cache
block on account of accesses by different processors.

The sum of the first two comprise the / component of
misses, and the third type constitutes the w component.

Given a cache line size B, the number of initial loading
misses is simply f N /Bl.

The loading misses from the job queue as computed as
follows. After log2 P stages, all processors on the system

8

become active and the job queue size remains empty, because
an idle processor grabs a sorted subarray from the job queue
as soon as a sorted subarray is inserted by an active processor.
At stage x, there are a total of 2x-1 - P subarrays in the
queue, with an average size of (N - 2x-l + 1)/(B. 2x-l)
blocks. The probability that a subarray is inserted and taken
again from the queue is 1 / P. Consequently, the probability
that reloading a subarray misses in the cache is (P - 1) / P.
Overall, from stage log2 P + 2 to stage log2 N, the number
of such reloading misses is:

(p - I) . (N - 2x-l + 1) . (2x-l - P).
p B .2x-l

The sum of the above two components is f.
As the algorithm completes, if the size of a subarray is

smaller than the cache line size, then write operations to a
subarray may cause write invalidations on other subarrays
within the same cache block. These misses caused by false
sharing within a cache block usually occur when the size of
subarrays is very small. A total of

misses occur from stage log2 N - (logzB + 1) to stage
log2 N. These comprise the w component of misses.

An approximate total cache access count in stage x is 11 •
(N +2x-l - l)/(2x), which involves 7 shared data accesses
and 4 local variable accesses for each data element in the
subarray. The constant access of 11 may be vary depends on
the implementation of algorithm. The sum of these values
over all the stages, namely, ~:!2t [11 • N+2;.,-

1

-
1), is the

value of a.

Since there is only one type of shared blocks in the system,
m;i = M; = M. Thus Mis simply(/+ w) divided by
the total cache access count a. Therefore,

M; = f +w
a

Table 3: Expression for the miss rate in quicksort.

p B Simulation DRM Percent
Results Results Difference

2 1 0.076779 0.090916 18.41
2 2 0.043321 0.048300 11.49
2 4 0.025626 0.028412 10.87
2 8 0.018372 0.019179 4.39
2 16 0.018343 0.014917 -18.67
4 1 0.115593 0.122175 5.69
4 2 0.063170 0.065350 3.45
4 4 0.036758 0.039069 6.28
4 8 0.025725 0.026993 4.93
4 16 0.024854 0.021489 -13.53
8 1 0.138924 0.130718 -5.90
8 2 0.074812 0.070332 -5.98
8 4 0.043398 0.042625 -1.77
8 8 0.030225 0.030015 -0.69
8 16 0.028873 0.024332 -15.72

Table 4: Simulation versus DRM result listing for quicksort

and, substituting for f, w, and a, we obtain the miss rate as
depicted in Table 3.

Table 4 compares the cache miss ratios derived from this
function and the miss rates from simulations. Simulations
use cache line sizes of one, two, four, eight, and 16 words,
processor numbers of two, four, and eight, and a problem
size of 32678. The comparisons are also shown in Figure 5.
An average difference of 8.5 percent was found between
simulated results and modeled results. We believe the dif­
ference is primarily due to the unpredictability of the input
data set, as discussed in Section 4.2.1. Nevertheless, we find
that the analysis is still reasonable for this type of algorithm
with suitable assumptions about data distributions.

4.3 Summary of Results for Six Algorithms

Table 5 lists the differences between the analytically obtained
miss ratios and the miss ratios obtained through simulations
for the six algorithms studied. We observe that the data
reference modeling approach is fairly accurate in estimating
the cache miss ratios for all studied cases, and is generally
significantly more accurate than the Access Burst Model [5]
for the same set of benchmarks. For example, the data
reference modeling approach yields average and maximum

9

o 0.14
-~
a:
.!3 0.12

:::::!1
a, 0.10

..c
~
() 0.08

0.06

0.04

0.02

o --o Simulation, P=2
o · · · • •·O DAM, P=2
o -- o Simulation, P=4
D • • • • • • D DAM, P=4
llE--llE Simulation, P=8
llE · · llE DAM, P=B

·······

0.00 ---,------1---+------,---o 2 4 6 8 10 12 14 16

Cache Line Size

N=32678

Figure 5: DRM versus simulation for quicksort.

errors of0.63 and 1.30 percent respectively for Jacobi, while
the Access Burst Model yields average and maximum errors
of 10.03 and 17 .82 percent respectively.

The average is the absolute difference divided by the sim­
ulation data, abs(model-sim)/sim. Maximum is the absolute
maximum difference.

Since our approach essentially does a mental simulation
of algorithms, why are the differences not zero? There
are several reasons for the mismatch between simulations
and analysis. In algorithms where the cache miss ratios is
data dependent (quicksort and image labeling), the errors are
relatively larger than the others because of the lack of fealty
in the assumptions about data distributions. In the other
algorithms, the differences are much smaller; we believe
these can be attributed to our incomplete knowledge of the
specific implementations of the algorithms.

5 Predicting The Cache Miss Ratio

Armed with the knowledge that the data reference modeling
method is acceptably accurate in predicting cache miss ra­
tios for several system configurations, we can now apply the

0 0.140
·-;
a:
Ul 0.120
U)

~
a, 0.100

.r.
~
U 0.080

0.060

0.040

0.020

0.000----------------

0 0.138
·1u
CI: 0.132
U)
U)

~ 0.126
Q)

"fi 0.120
I'll

U 0.114

0.108

0.102

0.096

0.090

o N,.1024
D N:8192
llE N:32768
fl N:131072

0.084-1---1---1---1--.... ----.-....j""""-,I
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Number of Processors

0 0.046
"tl
a: 0.044

-~ 0.042
~

10.040

~ u 0.038

0.036

0.034

0.032

0.030

Number of Processors

(a) N = 131072

o N=1024
D N=8192

llE N=32768
fl N=131072

0.028

0.026----------------

o 0.033
la
a:
rn 0.030
U)

~
a, 0.027

.r.
~
U 0.024

0.021

0.018

0.015

(b) B = 1

o N:1024
D N:8192

llE N:32768
fl N:131072

0.012----------------
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Number of Processors Number of Processors

(c) B-4 (d) B ... 16

Figure 8: Cache miss ratios for quicksort.

11

0 0.0075

~
CI: 0.0072
en en :E 0.0069
(I)

13 0.0066
m

O 0.0063

0.0060

0.0057

0.0054

0.0051

0.0048------------------0 30 60 90 120 150 180 210 240 270

Problem Size x 1000

Figure 7: Cache miss ratio for shuffling FFf, B=4 and P=16.

One of the most interesting features of these graphs is
the relationship between cache miss ratio and the problem
size for a given cache line sizes. Figure 8(b), corresponding
to B = 1, shows that when the problem size increases the
cache miss ratio also increases. Figure 8(c), corresponding
to B = 4, shows that the cache miss ratio is largely insensitive
to the problem size. Figure 8(d), corresponding to B = 16,
shows that when the problem size increases the cache miss
ratio decreases.

The reason for this behavior is that a larger cache line size
(greater than four) reduces the cache miss ratio significantly
during the early stages of algorithm execution, when the
first-time miss cost is most significant. On the other hand,
a larger cache line size pays a higher cache miss penalty
toward the end of the execution, when coherence related
invalidations abound. Notice that for the B=16 case, the flat
miss ratio curves indicate that the cache miss ratio is less
sensitive to the number of processors than when the cache
line size is large. These results suggests that a cache line
size greater than or equal to four is preferable to smaller line
sizes.

6 Conclusions

This paper presented a data reference modeling approach to
computing the cache miss ratios of multiprocessors for dif­
ferent algorithms. The method involves a mental simulation
of the algorithm. The approach is validated by comparing
analytically obtained results with those from simulations.

The modeling approach analyzes algorithms to derive a
few parameters that capture the processor locality in appli­
cations. These parameters are expressed as a function of the

12

problem size, the number of processors, and the cache line
size. By analyzing the algorithm, we can accurately capture
the impact of the system configuration and problem size on
the cache miss ratio. This approach is different from meth­
ods developed by others in that it does not analyze an address
trace. We found that using parameters measured from ad­
dress traces alone allows us to study applications behavior
under a similar system environment where the trace are de­
rived. Furthermore, even when the application behavior is
similar, we have found it to be virtually impossible to pre­
dict the miss rate as various system parameters are changed
without considering algorithm characteristics.

After showing that the data reference modeling approach
is accurate and is not too onerous to use, we used the model
to predict the cache miss ratios for different system config­
urations.

7 Acknowledgments

The research reported in this paper is funded by NSF grant
MIP-9012773andDARPAcontract# N00014-87-K-0825.
Jory Tsai was supported by Digital Equipment Corporation.

References

[1] Anant Agarwal A Locality-Based Multiprocessor Cache In­
terference Model. MIF VLSI memo 89-565, October 1989.

[2] Anant Agarwal and Anoop Gupta. Memory-Reference Char­
acteristics of Multiprocessor Applications under MACH, In
Proceedings of ACM SIGMETRICS, May 1988.

[3] Anant Agarwal, Mark Horowitz, and John Hennessy. An
Analytical Cache Model. ACM Transactions on Computer
Systems, Vol. 7, No. 2, Pages 184-215, May 1989.

[4] Michel Dubois and Faye A. Briggs. Effects of Cache Coher­
ence in Multiprocessors. In Proceedings of the 9th Interna­
tional Symposium on Computer Architecture, pages 299-308,
IEEE, New York, May 1982.

[5] Michel Dubois and Jin-Chin Wang. Shared Block Contention
in a Cache Coherence Protocol. IEEE Transactions on Com­
puters, Vol. 40, No. 5, May 1991.

[6] Susan J. Eggers. Simplicity Versus Accuracy in a Model of
Cache Coherency Overhead. IEEE Transactions on Comput­
ers, Vol. 40, No. 8, August 1991.

[7] Jin-Chin Wang. Analytical modeling of shared block con­
tention in cache coherence protocol. Ph.D. Dissertation, Uni­
versity of Southern California, Dec. 1990.

[8] Jory Tsai. Cache Modeling for Very Large Multiprocessor
System. Master thesis, 1992, LCS, Massachusetts Institute of
Technology.

[9] Richard Simoni and Mark Horowitz. Modeling the Per­
formance of Limited Pointers Directories for Cache Coher­
ence. In Proceedings 18th Annual International Symposium
on Computer Architecture, IEEE, 1991.

