Modeling the Appearance of Cloth
by
Carl Richard Feynman

B.S., Massachusetts Institute of Technology
(1983)
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE
OF

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
AT THE MASSACHV'SETTS INSTITUTE OF TECHNOLOGY
May 1986

(©OMassachusetts Institute of Technology 1986

Signature of Author

Artificial Intelligence Laboratory
May 9, 1986

David Zeltzer
Assistant. Professor of Computer Graphics
Thesis Supervisor

Accepted by }

Arthur CSjth
Chairman, Departmental Committee on Graduate Students

ARCHIVES
SETTS INSTITUTE
A S S HNOLOGY

APR 2 8 1987
LIBRARIES

Modeling the appearance of cloth

by
Carl Feynman

Submitted to the Department of Electrical Engineering and Computer
Science on May 9, 1986 in partial fulfillment of the requirements of the
degree of Master of Science.

Abstract

A computational model for the mechanical behavior of textiles suffi-
ciently accurate for computer synthesis of realistic scenes was implemented.
The model computes static configurations of cloth draped over rigid objects
by gravity. The mechanical properties of the cloth which are simulated in-
clude elasticity, bending strength. density and resistance to buckling. By
changing parameters of the program, various types of cioth can be simu-
lated. The output of the program is a shape description which can be used
as input to a variety of rendering programs. The algorithm employed to
simulate the cloth is a variation of the multigrid full approximation scheme.

Thesis Supervisor: David Zeltzer
Title: Assistant Professor of Computer Graphics

Contents

1 The problem 4
2 The approach 6
2.1 Cloth is simulated by minimizing its energy 6
2.2 Representationof the Cloth 7
2.3 Methods of Minimization 9
2.4 The Energy of theCloth 10
2.5 Properties of the Relaxation Method 12
2.6 HanginguptheCloth 13
2.7 Rendering e 14
3 Relations to Other Work 14
4 Energy Minimization 17
4.1 RelaxingOnePoint. 17
4.2 RelaxationOrder 26
5 The Energy Expression 28
5.1 The Total Energy 30
5.2 Gravity e e e e e e 31
53 Bending e 32
5.4 Strain L. e e e e e e e e 38
55 Buckling 45
5.6 Problems with the energy expression 47
6 The Multigrid Method 51
6.1 The Schedule of Relaxation 52
6.2 The Coarsening and Refinement Operators 55
6.3 Problems with the Multigrid Method 58
7 External constraints 61
7.1 Fixed Points 0 . 61
7.2 Solids e 62
8 Directions for the Future 67

9 Acknowledgments 69

A The Program 72

List of Figures

© 0 3 M Ul &= W N =

18
19
20
21
22

.................................. 20
.................................. 23
.................................. 24
.................................. 24
.................................. 25
Row-major and red-black relaxation orders 27
Parameters of the energy expression 29
Evaluating the curvature atapoint. 33
A flat pieceof paper oo 34
A bent pieceof paper oL 35
.................................. 36
A stretched pieceof cloth 39
Fandoinaction. 40
.................................. 42
Cloths with different elasticities 44
The energy of a plate as a function of compression. 46
Energy as a function of length for long and short buckling
SPIINGS. .« v o v e e e e e e e e e e e 48
A variety of relaxation schedules 53
A square of cloth supported at eight points along one edge. 60
Cloth draped over a sphere 64
A piece of cloth supported at three points. 65
A square piece of cloth compressed along its upper edge and
crumpled on the floor below. 66

1 The problem

In the last few years, advances in algorithms have combined with the ac-
celerating growth of number-crunching power to permit the simulation of
scenes with good realism and considerable complexity. The objects in these
scenes are, however, restricted to a small subset of the things we see around
us. Rocks, trees, water, mirror balls and marble vases may suffice for Vic-
torian gardens, but they are not what most of us want to make movies
about. Fortunately for the ambitious computer artist. the range of objects
we know how to simulate is steadily being extended. This thesis is part of
that extension.

The goal of this thesis is to model the shape of textiles with sufficient
accuracy that people are willing to suspend disbelief. More precisely. the
goal is to simulate the shape of thin, flexible membranes under the influ-
ence of force fields and rigid bodies. These includes tablecloths, flags, and
t-shirts. In this thesis, only stationary cloth will be considered, though
the techniques might eventually be extended to support animation. Our
requirements for realism are slack: anything that looks like cloth to the

untutored observer is a success.

Some parts of the behavior of cloth are ignored in this thesis. This is
either because they are unimportant or because I didn’t know how to model
them. Clothing, which is the type of textile which is needed most in anima-
tion and computer graphics, consists of a number of pieces of material, of a
wide variety of shapes, sewn together along seams. This thesis models only
square pieces of cloth, isolated from other cloth. The techniques described
herein could, however, be easily extended to model complex garments, as
discussed in 8. All cloth in this thesis is considered to be perfectly flat in its
relaxed state. Thus, I am unable to model clothing which contains creases
even in its relaxed state. Unfortunately, the simulation of skin is beyond
the techniques described in this thesis. The behavior of skin is largely de-
termined by the flesh behind it. Without a model for the flesh, a model of
skin is useless. For this same reason, I am unable to model fabric backed
by soft filling, as might be found in a couch or winesack.

Since the mathematical techniques described in this thesis are new to
the field of computer graphics, it was felt that an attempt to produce a
package actually usable by an animator would be premaiure. Hence, no

attempt has been made to produce a software package suitable for general

use. The software described in this thesis was written in Common Lisp on

a Symbolics 3600 computer.

2 The approach

This section is an overview of the entire program, intended to provide the
background neccesary to understand the more detailed description of the

later sections.

2.1 Cloth is simulated by minimizing its energy

Real physical cloth is stationary when its energy is minimized. It can be
analyzed by considering a function mapping configurations of the cloth into
energies. A local minimum of this function represents a stationary state
of cloth. This is because at a local minimum, any small movement of
the cloth results in an increase of energy, and hence will not occur. This
is strictly true only in the absence of friction, viscosity and other effects
that can convert motion into heat. Such effects will be ignored in this
thesis. Thus, from a mathematical point of view, the problem of producing

realistic shapes of cloth can be described as finding mappings of a segment

of 2-space (the cloth) into 3-space (object space) which are local minima of
a function from such mappings into the real numbers (the energy function)
subject to certain constraints (the effects of the world on the cloth). A
shape which is such a local minimum is a solution of our problem. Clearly,
it is not necessary to find an exact solution; all we need is something that
is close enough to reality that people are willing to accept it as cloth. This
is fortunate, since finding an exact solution is usually impossible.

Note that it is not necessary to find the global minimum of the energy,
but only a local minimum. This is because cloth usually spends its time
in a local minimum. Indeed, a global minimum often looks less “realistic”
than a local minimum. For example, the global minimum configuration for
a napkin lying on a table is to lie perfectly flat. A crumpled, balled-up
napkin is in a local minimum, but is much more likely to actually occur in

reality than the perfectly flat state.

2.2 Representation of the Cloth

The similarity of the model to real cloth is determined by the similarity

between the energy function of the model and the energy function of real

cloth. It is clearly impossible to model the energy expression of a real
piece of cloth in its full complexity, since this would involve simulating the
quantum-mechanical wave funciion of the cloth. Fortunately, we have to
model the energy expression only to the extent that it produces results that
look like real cloth. This permits large simplifications in the representation
of cloth and the form of the energy expression. The choice of the correct
energy expression is discussed in section 5.

The cloth is approximated by a grid of points spread across its surface.
In a flat, unstretched piece of cloth these points are arranged in a square
grid of uniform spacing. The configuration of the cloth is described by
the positions of these points. The finer the grid, the more accurately the
shape of the cloth can be described. Bumps in the cloth smaller than
about twice the grid spacing cannot be ’adequately described, because they
will too easily “fall between™ the sample points. Thus, we would like the
grid spacing to be very fine. On the other hand, the complexity of the
calculation increases as more points are added. The problem of balancing

these opposing pressures will occupy much of the remainder of this thesis.

2.3 Methods of Minimization

We want to find a local minimum of the energy with respect to small
changes in position. We can do this by changing the shape of the cloth
in the direction of decreased energy. As long as the energy keeps going
down, we will eventually come as close as we wish to a local minimum.
We can decrease the energy of the cloth by deforming a small piece of the
cloth to a position which decreases the energy of the whole cloth. Since we
are approximating the cloth as a grid of points, the way to move a small
piece of the cloth is to move one of the grid points. By moving each of
the grid points in turn toward a position which decreases the energy of the
whole cloth, we will move toward a configuration of minimum energy. This
process is known as relazation, since it changes the shape of the cloth in
the direction of a more relaxed configuration.

The energy expression of the model is a function which takes the ap-
proximate representation of the cloth’s shape and computes the energy that
a real piece of cloth would have if it were put into such a shape. There are
several desirable properties such an energy function should have. First, it

should be close enough to the real energy expression that a configuration of

10

discrete cloth which minimizes the approximate energy expression should
be close to a shape of the actual cloth which minimizes the real energy
expression. This will ensure that the output of the program will be close to
the shapes that a real cloth will adopt when relaxed. Second, it should be
relatively insensitive to the grid size adopted for modeling the cloth. The
reason for this will become clear in the discussion of the multigrid method
below. Third, it should be quick to compute the change in energy produced
by moving a single point on the cloth to a new position, since this step is
the “inner loop” of the simulation, and must be performed many times for

each point in the cloth.

2.4 The Energy of the Cloth

There is a considerable body of literature on energy expressions for cloth
and similar materials. The theoretical behavior of plates of elastic ma-
terial is well understood |7, |8]. In addition, the empirical behavior of
textiles under a variety of forces has been studied extensively {5, i1]. The
theoretical and empirical analyses agree that the energy of real textiles is

determined by two effects internal to the cloth, as well as the forces placed

11

upon the cloth by its environment. The internal effects are, first, the strain
energy, produced by compressing or stretching the cloth in its own plane,
and, second, the bending energy produced by bending the cloth out of its
plane. Other forces that impinge on the cloth fromm without must also be
considered in the potential energy calculation. For example, a cloth in a
gravitational field will decrease its potential energy as it moves downward.
In this thesis, gravity is assumed to be the only external force.

In real cloth, each tiny piece of cloth makes its own contribution towards
the total energy. Widely separated parts of the cloth have no effect on each
other’s energies. We can take advantage of this property to simplify the
computation of the approximate energy expression. If we approximate real
cloth as a grid of points, the energy of the entire cloth depends only on
the distances and angles between points nearby in the grid. Hence, the
evaluation of the change in the energy of the entire cloth produced by
moving a single point requires looking at only the point and a few of its
nearest neighbors, since the energy of more distant parts of the cloth will

not be affected by the change in position of the point.

12

2.5 Properties of the Relaxation Method

The simplest way to approach the relaxation problem is to relax every point
in the cloth in turn, until the cloth as a whole comes adequately close to a
state of minimum energy. Unfortunately, this approach takes far too long
on a cloth of any size.

A deviation from the correct solution whose elimination requires a con-
certed movement of many nearby points in the same direction can take a
very long time to occur. Features of the final solution whose size is n grid
points take order n? relaxation sweeps to appear. The relaxation of a single
point, with its neighbors held fixed, will remove only those errors apparent
in the local neighborhood. When the error is spread over a large area, the
deviation from perfection of any local area may be very small. In such a
case, the motion of a point upon being relaxed will be very small.

A grid is best at modeling features whose typical size is about twice the
grid spacing. Features smaller than this cannot be accurately represented
because the grid is too coarse for them. Features much larger than this
r.equire excessive computation to produce.

The solution to the problem of quickly computing features on a variety

13

of scales is to use a variety of grids, with different interpoint spacing. A
grid with the points far apart can be used to find the general shape of the
relaxed cloth, and a finer grid to create small-scale features. If we use a
hierarchy of grids, each twice as coarse as the next finest, elvery feature will
have a size close to the grid spacing for one of the grids, and hence will be
produced with little computational effort. Methods that use a variety of

grids in this way are known as multigrid methods.

2.6 Hanging up the Cloth

The shapes that real textiles adopt are a compromise between the tenden-
cies of the material and the constraints imposed by the environment. In this
system, there are two types of constraint: fixed points and solids. Fixed
points are points on the cloth which are forbidden to move. Solids are
volumes which the cloth is forbidden to enter. Fixed points can model the
hooks which suspend curtains or the frames from which hammocks hang.
Solids model walls, floors, tables, the human body, and other things com-
monly draped by cloth. Because there is no friction, fixed points are often

needed to keep the cloth from sliding off the solids it is draped over.

14

2.7 Rendering

After the algorithm has generated a shape for a piece of cloth under the
desired conditions, there remains the problem of rendering. Rendering is
not a major concern of this thesis, but without it we would be unable to see
the results of our algorithm. There are two systems which i use to display
the products of the algorithm. The first is a special-purpose wire-frame
displayer intended to ease debugging and display intermediate results. The
second is an interface to the Thinking Machines Corporation 3D Graphics
Tcolkit, which can display the cloth as Gouraud-shaded polygons, as well as
interactively manipulate viewing parameters. The drawings of cloth in this

thesis were generated by the Toolkit and printed on a QMS laser printer.

3 Relations to Other Work

The only other paper I am aware of which attempts to model the behavior of
draped cloth is {11]. The approach described therein involves three different
methods to produce details at three different scales. The largest scale

features are created by succesive construction of catenaries. This creates

15

initial positions for a grid of points. These points are then relaxed to
create plausible features on an intermediate scale. Finally, cubic spline
interpolation creates points to fill in the grid. The relaxation stage is similar
to the methods in this thesis, but because only one grid is used, creation of
large fatures takes too long to do directly. The method does not explicitly
involve the use of an energy expression in the relaxation. Rather, the one-
point relaxer tries to satisfy mechanical constraints directly.

There are many papers on the application of computer graphics to the
design of textiles, but they are all concerned with the rendering of flat pieces
of cloth, usually for purposes of computer-aided “prototyping” for textile
designers. Such programs would be perfectly complimentary to mine. as |
do not approach the problem of rendering at all.

Multigrid methods are commonly used to solve partial differential equa-
tions on two- or three-dimensional domains. They are also applicable to the
problem of finding eigenfunctions or, as in my case, minimizing the value
of a functional. The use of the muitigrid full approximation scheme in this
thesis is a straightforward application of the principles in the literature 2,

'10]. My contribution was restricted to the choice of interpolation and re-

16

finement operators and the choice of schedules, from the many offered in
the literature.

The energy expression in this thesis was created by a combination of
theory and experiment. Energy expressions for thin plates of ideal materials
are well known in the literature |7, but the behavior of real cloth is not
so well understood '5'. I initially tried to create an energy expression by
discretizing the continous energy expression for ideal materials. Integrals
were replaced by sums, derivatives with finite differences, and so on. This
approach was unsuccesful. The resulting behavior was not at all clothlike.
At this point, I changed strategies and simply invented a plausible energy
expression. After a certain amount of adjustment. I ended up with the
one described in this thesis. I was surprised to discover that mathematical
analysis showed my energy expression to yield behavior similar to that of
the ideal material in the simple cases analyzed in Section 5. In places
where the behavior differed, the difference was in the direction of making
the behavior more like the behavior of real cloth and less like that of an

ideal elastic material.

4 Energy Minimization

Despite its name, relaxation is not a simulation of the way cloth actually
moves when relaxing. It is a method used to approach a relaxed state
of the cloth, but the method whereby the cloth approaches this state is
distinctly unphysical. The relaxation algorithm may be divided into two
parts: the method of relaxing one point and the way in which these one-

point relaxations are combined to relax the entire cloth.

4.1 Relaxing One Point

Relaring a single point is the process of moving it so that the energy of
the cloth of which it is a part is decreased. Relaxing every point in the
cloth once is called a relazation sweep. As relaxation sweeps are performed
on the cloth, its shape approaches a local minimum. This is guaranteed
as long as each point relaxation decreases the energy of the cloth. When,
below, I refer to decreasing the energy of a point, I really mean the energy
of the cloth of which it is a part, but it is easier to simply talk about the
energy of a point. Since the change in the energy of a point when moved

depends only on the old and new positions of the point and the positions

18

of its neighbors, it is convenient to regard the process of relaxing a point
as being dedicated to reducing the energy of that point, rather than the
energy of the whole cloth.

The method used to relax a single point should be fast and should also
reduce the energy of the point as much as possible. These two requirements
are difficult to reconcile, since a simple one-point relaxer will run faster, but
a more complex one will be more likely to find the most relaxed position for
a point. The energy of the point as a function of position (with the neigh-
bors held fixed) has a global minimum. The one-point relaxation method
should come as close as possible to moving the point to this minimum. On
the other hand, the more complicated the one-point relaxer, the mere time
it takes to perform a sweep, and the slower the program. Even with a
perfect one-point relaxer, multiple sweeps are necessary. Experiments are
necessary to settle on an ideal one-point relaxer.

In order to preserve modularity within the program, it seemed wise to
design a one-point relaxer as independent of the force law as possible. The
simplest possible interface to the force law is to pass it the locations of a

point and its neighbors, and have it return the energy of the point. Thus

19

the one-point relaxer should, in general, evaluate the energy of its point at
a variety of positions, and then guess at the location of lowest energy using
only the information on positions and energies. The problem then becomes
one of finding the minimum of a function in three dimensions using the
smallest possible number of sample points.

The method used to relax a single point is, roughly, to first find the
direction in which the point would most like to move, and then move it in
that direction such a distance that its energy is minimized. The problem of
searching for a minimum in three-dimensional space is thus split into two
subproblems: finding an optimum direction (a two-dimensional search),
and then finding a distance which minimizes the energy (a one-dimensional
search.)

The direction in which the point is moved is the direction of the gradient
of the energy as a function of position. This is the direction in which the
energy of the point decreases fastest with position. It is also the direction
of the force the point would feel if it were allowed to move freely with its

nieghbors held fixed. Within an infinitesimal neighborhood of the position

? (x,y,z+d)

(x,y,Z) ® (x"'dsy’z)

(x,y+d,2) Figure 1:

of the point, the energy is a linear function of position of the form
E = f.dr+ fydy+ f.dz + ¢

. The gradient of this function is the vector (fz, fy, f:). To determine the
values of f,,f, and f, the program evaluates the energy of the point at its
original position and at positions displaced a very small distance along the
coordinate axes, as shown in Fig. 1. The force vector is approximately

E(.’E+ A»yaz) — E(I'yvz)

fzz A

E(z,y+ A,z) - E(z.y,2)
f: = A
[= E(z,y,z + A) — E(z.y,2)

A

If A were infinitesimal, this would be exactly the force vector. If A is

too small, however, floating-point underflow in the calculation of the energy

21

will produce errors. The program uses A ~ 107*, which seems sufficiently
small for all practical purposes.

Moving along the force vector is not quite the right thing to do. This
problem is resolved by moving the point during the relaxation process not
along the force vector but along a vector displaced from it by a random angle
and direction. The problem is that there must be some way of breaking
thz symmetry of a flat piece of cloth. A vertically suspended square of
fabric will, if compressed laterally, buckle to form a series of vertical folds.
In simulated cloth, however, a point in the middle of a compressed sheet
feels only the force of gravity pulling straight down. It could reduce its
energy by moving out of the plane in either direction, but the force vector
on the point is dirccted straight down. If points moved only along the
force vector, symmetric pieces of cloth would never lose their symmetry.
A random perturbation is added to the force vector every time a points is
relaxed, even though in most cases it is not needed.

The choice of the correct mean angle for the random displacement was
made experimentally. If the angle is too small, symmetric situations take

too long to break into realistic asymmetry. If the angle is too large, the

22

relaxation process takes longer to converge and produces irregular and un-
realistically bumpy results if it is not allowed to run long enough. The best
value seems to be a mean deviation of about 7°.

Once the program has selected the direction along which the point is
to be moved, the problem becomes one of deciding on the position along a
line which minimizes the energy. The line is described by the parametric

equations

I = Io-f-fz/t
y=yo+ fylt
y=1yo+ filt

where z¢, yo, 20 is the original location of the point and f./, ful. f:1is a
unit vector in nearly the direction of the force on the point. The graph of
energy with respect to t looks something like the heavy line in Fig. 2. We
can find the minimum of this curve by sampling it at several points, and
fitting a polynomial to these points. If the polynomial is a good approxima-
tion, the minimum of the polynomial will be close to the true minimum of

the curve. Experiment shows that a quadratic approximation is sufficiently

23

Energy

Approximate
minimum

'

*

Actual minimum

Figure 2:

accurate. A quadratic approximation requires evaluating the energy for
three values of t. The sample points are shown as os in Fig. 2 and the
parabola drawn through them as the thin line.

This method is vulnerable to errors. If the energy curve is not shaped
at all like a parabola, the result will not be near the minimum. If the
parabola is concave upward instead of downward, this method will find the
maximum rather than the minimum. The method becomes sensitive to
small deviations in the curve if the sample points are too close together

(Fig. 3) or too far from the minimum (Fig. 4).

We can take advantage of several properties of the curve to avoid these
difficult cases. First, it is known to have a negative first derivative at t = 0.

Second, for sufficiently large values of ¢, the first derivative is positive. Thus

24

Energy

Approximate
minimum

3 v -

Actual minimum

ot

Figure 3:

Energy

Approximate /ﬂ
minimum

Actval minimum %

Figure 4:

25

Energy

Actual minimum

Approximate,
minimum

Figure 5:

we know that the minimum is somewhere between 0 and the value of t for
which the energy is equal to the energy at t = 0. We choose the sample
points to be t = 0, t = k and t = 3k for some value of k, and further
require that the sample point at t = k have an energy lower than that of
the point at ¢ = 0, and that that the sample point at t = 3k have an energy
higher than that of the point at t = 0, as shown in Fig. 5. The first sample
point has already had its energy evaluated during the determination of the
force vector. The choice of the other two sample points guarantees that
the bowl of the parabola will be bracketed, and the program will not fall
into one of the two pathological cases illustrated in Figs. 3, 4. The choice
of the correct k can be made by a method of successive approximations.

The initial guess of the correct value for k is based on the value of t at the

26

minimum of the previous point. Nearby points are similar enough that this
guess is suitable about 90% of the time. If it is too large or too small, a

suitable value can be found by a method of successive approximations.

4.2 Relaxation Order

The order of relaxation of points within a single sweep of all the points
makes a difference to the behavior of the algorithm.

The most obvious method is to relax the points in each row in order,
and then move on to the next row. This is commonly known as row-major
order. This is shown for a five by five cloth on the left in in Fig. 6. This
will produce asymmetries in the approach to a solution, and often produce
an asymmetrical final solution. The problem is caused by asymmetrical
propagation of influence. The relaxation of a single point looks only at the
position of its eight neighbors. Thus it might seem that the position of
point 13 at the beginning of a sweep would affect only the positions of the
points in the dotted box. But if we relax in row-major order, the position of
point 13 influences point 14, which in turn influences point 15. Since each

point is moved before its neighbor is relaxed. the influence of point 13 can

27

~

i 2 3 4 5 1 25 2 24 3

oo
6.7 & 97 10 23 4 22 5 21
\ []
\ \
11 12 13 14' 15 6 20 7 19 8
[}
' \
\ \
[}
16 117 18 19, 20 18 9 17 10 16
21 22 23 24 25 i1 15 12 14 13

Figure 6: Row-major and red-black relaxation orders

spread to the entire area outlined in Fig. 6. Since this area is asymmetrical,

the behavior of the cloth as it relaxes will be asymmetrical.

The correct solution to this problem is to move every point at once, in
parallel. This requires maintaining two copies of the state of the cloth, one
of the state at the beginning of the relaxation sweep, and one of the new
positions generated in the current sweep. When relaxing a single point,
the old positions of its neighbors are used in the determination of its new
position, but the position is not updated until all the points have been
relaxed. Unfortunately, this approach did not occur to me in time to include
in the current implementation.

The method that was actually used, which is imperfect but better than

row-major order, is “red-black” order |2, p. 243]. In this method, points

28

are relaxed in an order like that shown on the right in Fig. 6. The points
are divided into two classes depending on the parity of the coordinates de-
termining their positions in the grid, analogous to dividing a checkerboard
into red and black squares. First, the “red” points are relaxed in row-major
order, and then the “black™ points are relaxed in reverse row-major order.
This still results in asymmetrical propagation of influence, but the effect is

much reduced.

5 The Energy Expression

The choice of energy expression is the prime determiner of the final shape
of the cloth. The choice of the energy expression is a compromise between
realism, speed. scale-independence and ease of debugging. Realism requires
that the energy expression model the energy of real cloth as closely as possi-
ble. The energy expression must be evaluated at least six times every time
a point is moved, ..nd the program spends at least half its time evaluating
energy, even with the simplest possible energy expression. The energy ex-
pression described in this section takes up about 96 qf the execution time.

The multigrid method requires that states of minimum energy represented

29

Symbol Effect on behavior

k. Stretching resistance

ky Berding resistance

k, Density

h Grid spacing

b Buckling strength

r Diagonal to axial sirength ratio

Figure 7: Parameters of the energy expression

by different grid scales have more or less the same shape. If the shape of
minimum energy is widely different for two diflerent sizes of grid, the trick
of approximating the solution to a fine grid by the solution to 2 coarse grid
will break down. Simpler energy expressions are preferred on grounds of
both speed and easy debugging, but excessively simple expressions will not
be realistic.

The energy expression contains six parameters whose values determine
the properties of the cloth. These are roughly described in Fig. 7 The
typical values of the parameters were derived not from measurements of
cloth but from tweaking until the results looked plausible. The grid spacing
h changes as the algorithm proceeds. All other parameters are fixed by the
user.

I will show that the discretization of the energy expression is a good

30

approximation to the true energy expression. First I will discuss the energy
expression as a whole, and then describe the form of each of its subparts

and show that they are good approximations to the continuous case.

5.1 The Total Energy

Continuous cloth is described parametrically by three functions mapping
a position in the cloth coordinate system into the world coordinate sys-
tem. z(u,v), y(u,v) and z(u,v) give the coordinates in world space of the
point at u,v in the cloth. The discrete model of this cloth uses the same
three functions, restricted to act only on pairs of u, v coordinates which are
multiples of k, the grid spacing. u and v range from 0 to umy; and vma:
respectively.

The total energy of the cloth is a linear combination of three energy

functions.

Eio1a(S) = k.s(S) + kob(S) — kyg(S) (1)

The functions s(), b(}, and g() map shapes of cloth into numbers describing
the extent to which the cloth is strained, bent and pulled down. The three

parameters k,,k, and k, control the relative strength of the three effects.

31

The definition of the three functions depends on a few additional, more
subtle parameters, but the gross behavior of the total energy function is
determined by the three parameters k,, k; and k.. If k, is large, the cloth
will be very difficult to stretch. If k, is large, the cloth will be stiff and
resistant to bending. If k, is large, the cloth will be heavy. Note that
only the relative values of the three parameters matter. If all three were
increased by a constant factor, the energy of the cloth would be increased

proportionately but its behavior would be unchanged.

5.2 Gravity

The term k,g(S) in equation 1 corresponds to gravitational potential en-

ergy. In real cloth, the gravitational potential energy is given by

_ Urmnazr YUmar d d
E, pg/0 /0 z(u, v)dudv

Where g is the acceleration of gravity and p the mass per unit area (“surface
density”) of the cloth. In the discrete case, the best approximation to this
is

Viias Ynins

k,q(S) = pgh® > > 2(u,v)

v=0 u=0

32

Each point in the discretized cloth “stands in” for a square of cloth h on a
side, and hence has a mass of ph®. Since k, should be independent of A.

YUriar Ymas

ky = pgg(S) = h* 3 3 z(u,v)

v=0 u=0

5.3 Bending

Before proceeding to the analysis of bending energy, there are some matkh.-
ematical preliminaries.

Every point on a curve in the plane has a curvature. The curvature at
a point P can be evaluated by rotating the curve until it is horizontal at
P. The second derivative of the rotated curve, considered as a graph of a
function, is the curvature. Consider a surface embedded in 3-space. Let
the vector 7 be the normal to the suface at the point P Every plane lying
on 7 intersects the surface, forming a curve. The curvature of this curve at
P depends on the choice of section plane. The curvature varies smoothly
as the plane is rotated. For some position of the plane, the curvature of the
section is maximized, and for another position, the curvature is minimized.
The maximum and minimum curvatures are referred to as the principal

curvatures at the point. At every point on the surface, there are two prin-

33

c A Secticn by plane A
Curvature = -0.9

)

Section by plane B
curvature = -0.2

i

Section by plane C
N___~] Curvature =0.4

Figure 8: Evaluating the curvature at a point

cipal curvatures, K, and k2. In the case illustrated in Fig. 8, the section
by plane A produces the minimum curvature and the section by plane C
produces the maximum curvature. Plane B is a section which produces an
intermediate curvature. The product of the principal curvatures is referred
to as the gaussian curvature [6]. A surface capable only of bending, but
not of stretching (which changes the length of curves embedded in the sur-
face) cannot change its gaussian curvature. An example of this is a sheet
of paper. In its flat state, a sheet of paper has gaussian curvature which

is everywhere 0, as illustrated in Fig. 9. Paper is not very stretchable,

34

B A Section by plane A
curvature =0

Section by plane B
curvature =0

Figure 9: A flat piece of paper
and hence cannot change its gaussian curvature. No matter how it is bent,
kk2 = 0, and hence k; = 0 or k; = 0, as shown in Fig. 10. A surface
without gaussian curvature is known as a developable surface.
The term k;b(S) in equation 1 corresponds to the energy of bending.

The energy of bending given by the classical theory of elastic plates is
E\(S) = / / e c1(ky — K9)? + c2(tc1fc2)2dudv
0 0

(7, p. 58] where ¢, and ¢, are constants describing the properties of the
cloth. A relaxed cloth has no significant changes in length within its sur-

face, hence there cannot be large areas with significantly nonzero gaussian

35

A Section by plane A
Curvature = 0

Section by plane B
curvature = -1

Figure 10: A bent piece of paper

curvature. Since kK is small almost everywhere, ¢, may be ignored. In
order for K1k, to be close to zero, either K, or k3 must be close to zero. If

we denote by k the nonzero principal curvature,

E(S)= [[T endudy
0 0

I will describe the discrete approximation to bending and show it to
be a discretization of the continuous case. The discrete approximation is
based on the angles formed between lines connecting collinear points. The
energy of bending of a single point depends on the four angles formed by

the lines shown in Fig. 11. The energy at this point is

36

Figure 11:

Ey(p) = 63—1((180°—/APE)2+%(180°—/BPF)2+(180°—/CPG)2+%(180°—/DPH)z)

This is the energy that would be found if we were to attach angular springs
to each angle formed by opposing lines coming into the point. Clearly the
energy is zero when the cloth is flat.

I will show the equivalence of the discrete and continuouss energy mea-
sures by showing them to be equal at a typical point on a typical developable
surface. This surface is typical in the sense that almost every point on a
developable surface can be transformed into it by a diffeomorphism of the
3-space in which it is embedded. It is safe to consider only developable
surfaces, since textiles usually have gaussian curvatures of nearly 0. The
surface z = lkz? has principal curvatures 0 and « at the origin. Suppose

2

we approximate this surface by a grid one of whose axes is inclined at an

37

angle @ to the y-axis. This surface is described parametrically by
z =ucosf + vsiné

y=vcosf — usinéb
1 PAY
2= Ex.(u cos @ + vsin)
The energy of the point at the origin is

Eoo = 2| (2arctan(2E cos?§))?
+ 2(arctan("—; cos?(8 + 45°)))?
+ (2arctan(%’5 cos?(8 + 90°)))?
+ 2(arctan("7‘ cos?(8 + 135°)))?]

When bending angles are small, arctan(y) ~ y, and the equation reduces

to

Ego = c1k2h?
0 1

This is the energy that would be found in a patch of continuous cloth of area
h?. Since each point of the discrete cloth madels a square patch of the real
cloth which is k on a side, the two models agree to a good approximation.

Certain effects have been neglected in this analysis, but these effects

are either small or only occur when the cloth is in a very deformed state,

38

in which case the details of the force law are unimportant as long as the
general behavior is in the right direction. Since bending energy always
decreases as the edges straighten out, this will generally push the cloth
towards a flatter, less crumpled shape.

Nonlinearities occur when the radius of curvature approaches the grid
spacing. Among other things, the approximation arctan(y) =~ y breaks
down. In such a case the discrete grid is unable to accurately represent the
continuous cloth. This analysis assumes that the grid lines meet at right
angles when projected into the z = 0 plane. This is a safe assumption as
long as the cloth is not severely sheared. It is unlikely that cloth could be
both sheared and bent, since the shear stress would tend to pull it flat, dom-
inating the bending strength. Moreover, the deviation from equality of the
discrete and continuous energies is fourth order in the shear deformation,

meaning that it is of no importance for small shear.

5.4 Strain

The analysis of the strain energy term is more complicated than the other

two. In addition to the parameter k., the strain energy is also affected by

39

<

LD g

Figure 12: A stretched piece of cloth
the parameters r and b.
Consider a unit square of material subjected to changes in length in
directions parallel to the £ and y axes. This changes the length of its sides

from 1 to I; and /,. The strains on this material are defined to be
U = 0, — 1
Uy =1, — 1

as shown in Fig. 12. An ideal elastic material confined to a plane and

stretched in such a fashion has an energy per unit area of

E 2 2 20F
1 - o2 UzzUyy

Unstressed

material 2::::::?
™ e
Low E, low @ Low ;:—;:;;\;\

Figure 13: F and o in action

|7, p. 53| where E and o are physical parameters of the cloth, respectively
the Young’s modulus and the Poisson ratio. The Young’s modulus deter-
mines how much the material stretches when subjected to a given force.
The Poisson ratio determines how much the material contracts in one di-
rection when extended in the perpendicular direction (Fig. 13). Any strain
on a planar material can be resolved into a strain along perpendicular axes
by rotating the coordinate frame correctly. We will consider in detail only
the results of rotating the coordinates from the u, v coordinate system em-
bedded in the cloth by 0° (placing the strain azlong warp and woof) and 45°
(placing the strain along the bias.)

The value of E and o for an anisotropic material such as woven or

knitted cloth varies with direction. The E of woven cloth is usually much

11

higher along the thread than along the bias {5, p. 352] A factor of four
variation is typical. This is why cloth is much easier to stretch when pulled
diagonally than when pulled along the weave. On the other hand, the
Poisson ratio is much higher along the bias than along the weave. 4, p.
251|. We will se below how these effects are approximated by the discrete
energy expression.

The strain force law is modeled in the discrete approximation by nearly
linear springs connecting points to their nearest eight neighbors. We will
ignore the nonlinearity of the springs for the moment; it will be explained
below. The springs connecting points to their nearest four neighbors are
stronger than the springs connecting diagonally adjacent points, by the fac-
tor r. The value of r controls the degree to which the cloth is anisotropic.
A small r produces a cloth which is weaker along the bias than along the
threads. The energy of a spring is proportional to the square of the devia-
tion of its length from the ideal length. Hence, the energy of the point P

in Fig. 14 is
ki(h — PA)? + (h — PC)*+ (h — PE)* + (h - PG)*]-

k.r|(vV2h — PB) + (V2h — PB) + (V2h — PB) + (V2h — PB)

42

Figure 14:

where P A denotes the distance from point P to point A, and so on. What
will the energy of a unit square of this discrete material be when subjected
to the axial strains described in the last section? The points surrounding
the point P will be moved from their positions to new positions, changing

the lengths of the springs. The energy of a single point then becomes
(h*k, + 3h%k,sr)(ul, + ul)) + 2h%k.ruzsuy,

ignoring terms second order and higher in the strains. Since there are A2
points in a unit square of the discrete cloth and the energy of a single spring
is divided between two points, the energy of a unit square is equal to that

of the continuous case with

E=k_.l—+6r+5r2
1+ 3r

43

Similarly, under strain along the bias, we find the discrete case to be equiv-

alent to the continuous case with

It is impossible to match the values of E and o for all angles of a real cloth
by altering only the parameters k. and r, since this would require solving
four equations in two unknowns. But we can obtain a good qualitative
match for the properties of strongly anisotropic cloth by choosing a small
value for r. Perfectly isotropic cloth cannot be modeled, but r = 0.375 gives
identical Poisson ratios in the two directions. and Young’'s moduli which
differ by only 10¢%.

The effect of variation in k, is shown in Fig. 15. Each piece of cloth has

twice the k, of the piece to its left.

14

5.6 Buckling

The above analysis is deficient because it assumes that the cloth is confined
to a plane, which real cloth certainly is not.

If the springs were perfectly linear, the energy expression would fail to
reproduce one of the real features of cloth: its weakness in compression.
An ideal spring is just as strong in compression as in tension. This is
emphatically not true of real cloth. Cloth is much weaker in compression
than in tension because of buckling. When compressed, cloth grows smaller
only slightly. Most of the energy of compression is taken up in buckling.
The importance of buckling depends on the scale at which one views the
cloth. In general, buckling is important only at scales close to or larger
than the typical size of the folds in the material.

A plate subject to compression along one axis can adopt two possible
configurations: it can remain in its original plane. and grow shorter, or it
can bend out of its plane. and compress slightly. It will adopt whichever of
these two configurations has lower energy. The potential energy of an ideal
plate as a function of compression in one direction is shown qualitatively in

Fig. 16 . The solid line shows the energy of the plate if it compresses and

46

Energy

' L Length

Buckling length Ideal length

Figure 16: The energy of a plate as a function of compression.

the dotted line the energy if it bends. The actual energy of the plate will
move along the lower parts of the two curves. As the plate is compressed, it
will at first shorten in its own plane. and then suddenly buckle, considerably
reducing the force required to hold it in position. If the plate is compressed
past the point of buckling, its energy increases more slowly than it did while
it was in compression.

The discrete cloth, as described above, does not reproduce the behavior
of real cloth under compression. The springs which connect points in the

discrete cloth should be weaker in compression than in tension. They should

47

duplicate the curve of energy versus length produced by a plate. The actual
curve of energy versus length for a buckled plate is very difficult to calculate,
involving elliptic integrals. A good approximation is to assume that energy
is a linear function of compression. The constant of proportionality between
energy and compression is determined by the parameter b.

Each spring in the discrete approximation is replaced by a “buckling

spring” whose energy as a function of length is given by
. , b
E(l) = k.min((l - L) [—(1 - 1))

where [is the length of the spring and /; is its ideal, uncompressed length.
For diagonal springs, [; = \ 2h. For warp and woof spings, I; = h. Note
that the relative importance of the huckling and elastic terms depends on
the value of h. as shown in Fig. 17. For large h. the material has virtually
no compressive strength. For small h, the material is incapable of buckling.

This reproduces the behavior of real cloth.

5.6 Problems with the energy expression

The energy expresion should not be “stiff”. A stiff energy expression is one

in which the output is very sensitive to some of the input data and much

48

Energy

Long spring

Length

Ideal length

Short spring

Length

Ideal length

Figure 17: Energy as a function of length for long and short buckling
springs.

less sensitive to other parts of the input data. (Note that stiffness of the
energy expression is a mathematical property and should not be confused
with stiffness of the cloth.) Applying a relaxation method to a stiff energy
expression results in a disproportionately large amount of computational
effort being put into optimizing the more important parts of the input
and virtually no effort into optimizing the less important parts. This can
defeat the whole purpose of the method if the appearance of the cloth is

determined largely by parts of the input that the energy expression pays

49

less attention to.

For example, when £, is large relative to k; and kg, the main determiner
of the energy of a point is the distance between it and neighboring points. If
k. is set very high, the algorithm takes a very long time to converge, since
it is spending most of its effort making sure that the distances between
adjacent points are as close to h as possible. Fcrtunately, the problem of
stiffness does not seem important in practice. The contribution of the var-
ious effects to the energy expression is well enough balanced that no effect
soaks up a disproportionate share of the computation. This is achieved at
the expense of perfect realism. The value of the Young’s modulus used for
the cloth in this thesis is unrealistically low, so the cloth is much stretchier
than most real cloth, except for very loose knits.

The eneré;‘ expression takes as input only the current shape of the
cloth. It has no memory of how the cloth arrived at this position. It is
thus incapable of modeling certain aspects of the behavior of real cloth
which are known to have a large influence on its behavior. both empirically
and theoretically 3. pp. 358,380;. Two such effects are hysteresis in shear

and bending. Cloth tends to bend and shear more easily toward a shape

it has just been moved out of. Both of these effects have at their root
the friction between the fibers composing the cloth. Friction holds the
fibers in a relatively high energy state and prevents their relaxation. The
representation of the cloth could be extended to include such hysteretic
effects by including certain aspects of the past history of the cloth.

Unfortunately the representation of friction itself is beyond the approach
described in this thesis. The energy minimization approach saves us from
having to think about forces. Force appears only as the rate of change in
energy with respect to position. It never explicitly enters into the calcula-
tions. This prevents us from taking into account forces not associated with
changes in energy. Friction is one such force.

Friction prevents the approach to minimum energy in a complicated and
highly nonlinear way. Consider a piece of cloth draped over a horizontal
cylinder. If this cloth were to move toward minimum energy. it would slide
off the cylinder, pulled down by its heavier side. Friction can prevent this,
as long as the force of static friction of the cloth against the cylinder is
greater than the force produced by the unbalanced weight of the cloth.

Unfortunately, this force of static friction is not related to a change in

energy in any useful way. The energy used to fight friction goes into heat

energy rather than potential energy, and cannot be taken into account.

6 The Multigrid Method

The version of the multigrid method described in this thesis is more prop-
erly called the multigrid full approzimation scheme. It is a member of a
more general family of muitigrid methods. The other members of this fam-
ily are suited only to linear problems. Since the problem of textile mechan-
ics is vigorously nonlinear. we are forced to choose the full approximation
scheme.

To see how such a method might work, we will examine a method that
only uses two grids. We start with the cloth represented by the fine grid,
in some arbitrary initial state. If we relaxed only this grid, it would take
a long time to create coarser features. Instead, we relax the fine grid for
only the number of steps sufficient to create plausible small-scale features.
Then we coarsen the grid by retaining only every second point in each
direction. This reduces the number of points fourfold. We then relax this

coarse grid to a state of minimum energy. This grid is then refined into

(&)]
(3%

grid of the same resolution as the original grid. The refinement combines
the large-scale features of the coarse grid with the small-scale features of
the original grid. This refined grid is then used as the initial state for a
further process of relaxation, which eventually produces the final solution
to the problem. This method works as long as the coarse-grid solution is
a good approximation to the fine-grid solution. Because the slow process
of producing large-scale features was done mostly on a grid half the size of
the original grid, the whole algorithm was speeded up about fourfold.

The algorithm could be sped up even further by relaxing the coarse grid
using the two-grid process rather than simple relaxation. By applying the
two-grid method recursively. we derive the multigrid method, whereby each
grid is given a good initial approximate solution by adopting larger features
from a coarser grid. The recursion is grounded in the coarsest grid to show

interesting features, which in most cases is only three points on a side.

6.1 The Schedule of Relaxation

The behavior of the multigrid full approximation scheme depends on a num-

ber of interacting design choices. The choice of refinement and coarsening

Jf\./‘\.\‘/./‘\./\

W-pattern
-] k..-]_ kJ-l kc_-l
3 levels

k,

V-pattern
k =2 kc=3 k=3
4 levels

V-pattern
ky=1 ke=8 ky=1
5 levels

- Relaxation sweep Time —————ip

/ Coarsening

\ Refinement

Figure 18: A variety of relaxation schedules

operators, the schedule of relaxation and the choice of grid scales all affect
the behavior of the method. The schedule of relaxation is the sequence of
operations of relaxation, coarsening and refinement. Several such schedules
are shown in Fig. 18. These schedules are divided into two classes: V- and

W-patterns. The V-patterns are generated recursively by the schedule

relax k, times
coarsen

if at coarsest scale
then relax k. times
else recurse

refine

relax ko times

The W-patterns are generated by the schedule

relax k; times

coarsen

if at coarsest scale
then relax k. times
else recurse

refine

relax k» times

coarsen

if at coarsest scale
then relax k. times
else recurse

refine

relax k3 times

The schedule is defined by specifying which of these patterns to use.
the size of the coarsest scale. and the values k.. k;, k2, and (if neccesary)
ks. Since one relaxation sweep of a cloth containing n points requires time
O(n), the V-pattern requires total time of order n(k, — k2) , and the -

pattern requires time of order n(k, ~ ko — k3). This is immensely superior

on
(4]]

to the simple relaxation method, which requires time of order n? to achieve

comparable relaxation.

6.2 The Coarsening and Refinement Operators

The coarsening operator I?* maps a cloth with grid spacing h into a cloth
with grid spacing 2h. The function chosen for coarsening is
P(u,v) = 1/8(p(u — h,v — h)+2p(u,v — h)+p(u + h,v — h)
2p(u — h,v) —4p(u,v) —2p(u+ h,v)
p(u — h,v + h)=-2p(u,v + h)+p(u + h,v ~ h))
where P(u,v) is the location of the point at (u,v) in the coarse grid and
p() is the location of a point in the finer cloth. These are all 3-dimensional
vectors. u and v are always multiples of 2h. This operator, known as “full
weighting” 10, p. 15} was chosen for a number of reasons. First. it is simple
to compute. Second, every point in the fine grid has the same amount of
influence on the coarse grid. Third, it does not alias high-frequency waves
in the fine grid into low-frequency waves in the coarse grid. In this, it is

much superior to the even simpler coarsening operators

P(u,v) = p(u,v)

36

and
P(u,v) = 1/4(p(u — h,v) = p{u — h,v — h) — p(u,v = h) - p(u,v))

which produce severe aliasing when applied to a fine grid whose features
are of a size close to twice the grid spacing.

The refinement operator is somewhat more complex. The object is to
use information from the relaxation of the coarse grid to move the shape of
the fine grid closer to a state of minimum energy. The refinement operator
finds the difference between the shapes of the coarse grid before and after
relaxation. and applies this correction to the fine grid. The refinement
operator thus takes two arguments: a fine grid and a coarse grid. It is

defined as

refine(f,¢) = Ly(c = M)

where f and ¢ denote the fine and coarse grids respectively, the additions
and subtractions are to be applied pointwise, and the operator I7, is an
interpolation operator which converts a coarse grid into a fine grid 2. p.
272!

The choice of interpolation operator has constraints similar to those of

37

the coarsening operator. The operator should be fast, evenhanded and not
introduce spurious high frequency terms in the fine grid. The interpolation
operator | have chosen is cubic-spline interpolation, which results in much
smoother interpolation than, e.g., bilinear interpolation. ‘2, p. 251

A simpler refinement operator would be to generate a new fine grid
simply by interpolating the coarse grid, and use this as a basis fbr further

relaxation. The operator would become
refine(f,c) = I(c)

This has two drawbacks. First, it ignores the fine-scale detail generated
by the fine grid relaxation before passing to a coarser scale, and forces the
process to regenerate this detail. This is acceptable if the form of the small-
scale detail is so dependent on the coarse features that the old details are as
good as useless, but this is often not the case. Also, the aliasing produced
by the interpolation operator is proportional to the signal interpolated.
Since ¢ — I?*(f) is almost always smaller than ¢, the error of interpolation

will be smaller as well.

58

6.3 Problems with the Multigrid Method

The multigrid relaxation method has a potential danger not shared by the
pure relaxation method: it may not move in the direction of reduced energy.
It is possible that the coarse grid may relax in a direction which reduces
its energy but which does not reduce the energy of the finer grids. In this
case, the fine grid will have to undo the work of the coarse grid. Since the
convergence of a fine grid is slower than the convergence of a coarse grid for
low-frequency errors, the fine grid usually does not have time to correct the
errors of the coarse grid, and the errors are frozen into the final solution. 1
have not implemented any general solution to this problem.

The multigrid method as applied in this program has a flaw which is
clear in Fig. 19. The hanging cloth does not, as one might expect. form
folds extending from the extension points at the top to the bottom hem.
Instead, any given fold extends only about a fourth of the distance from
the top to the bottom. These separate folds do not coalesce into longer
folds because they do not have time. They can be represented only when
the resolution of the grid is no more than half their width. At this grid

spacing, they are each at least four grid points long. The relaxation method

39

is very siow at eliminating errors of this size, especially when, as in this case,
they are almost correct everywhere. In order for relaxation to efficiently
eliminate an error, the size of the error must be comparable to the grici
spacing in both u and v directions {3, p. 7. The speedy elimination of the
error in Fig. 19 would require a grid which was not square, but rectangular,
with the long axes of the rectangles directed parallel to the axes of the folds.
The decision to use such a grid would have to made by the program when

it saw that long, thin features were developing.

In the current program. all points in the cloth are relaxed the same
number of times. This is an inefficient use of computation. since producing
complicated features requires more sweeps of relaxation than producing
simple ones. Portions of the cloth containing complicated folds or other
features should be relaxed more times than portions which are flat.

A fundamental problem with the multigrid method as used in this the-
sis is that the user must decide on the relaxation schedule. In general,
the more relaxation is performed. the better the result. Beyond a certain
point, however, the effects of further relaxation are infinitesmal. Deciding

how many relaxation sweeps to perform requires experience and extensive

60

3

3

TR

1

i M q
IR

1A
A
A

T

.
%
TI%r

>

.
X

X
A0 65t o &
&
» g
» a ¢

»
" yh W W8 W @

> = w
> -
> =
- o

o
X
W8
» 4y 0 2
- u
137
y o o

' g
-

X

T rrrrTy
o
-

Figure 19: A square of cloth supported at eight points along one edge.

61

experimentation. The program should be able to decide for itself whether

further relaxation is in order, on the basis of experience in past relaxations.
It should also be able to decide when it would be profitable to coarsen the

grid, in order to speed up the creation of large-scale features.

7 External constraints

The shape of real cloth is a compromise between the tendencies internal to
the cloth and the influences of the world. In this thesis, the effects of the
world are restricted to gravity, fixed points, and solids.

Gravity was discussed in the section on the energy expression. Other
force fields could be taken care of in much the same way, provided that

they are pure potential fields.

7.1 Fixed Points

Fixed points are points in the cloth that are constrained to have a fixed
position. The only subtle aspect of fixed points is the question of what to
do with them when the coarsening operator is applied. The approach used

is to declare that a point in the coarse grid is fixed if any of the nine points

62

in the fine grid used in the calculation of the coarsening operator are fixed.
However, the position of this new fixed point is the average of the positions
of the nine points, just as with any other point in the coarse grid. This
procedure guarantees that fixed points will not be moved by the process of

coarsening and refinement.

7.2 Solids

Solids are regions of space into which the cloth is forbidden to move. If,
during the relaxation process, a point is moved into a solid, it is instead
moved to the nearest point outside a solid. This process of relocation is
invisible to both the relaxation program, which sends sample points to
the energy expression, and to the energy expression, which simply never
sees sample points inside a solid. Unfortunately, this method requires that
every time the energy of a point is evaluated, the program must check
to see whether the position is inside a solid, and if so, find the nearest
point outside this solid. Even for simple objects, this is a time-consuming
operation, and it is in the inner loop of the program.

The only solids currently implemented are ellipsoids. Ellipscids are

63

algebraically tractable and sufficient to construct a wide variety of objects,
including as special cases disks, infinite planes, spheres and cylinders. The
determination of collisions between points and ellipsoids requires only a few
multiplications. The inclusion of a fast check to see if the point was within
the bounding box of the ellipsoid might speed things up, but because cloth
is often very close to the objects it drapes, a large fraction of points would
be inside the bounding boxes.

Unfortunately, the experimental performance of this method of includ-
ing solids in the program has been disappointing. When the grid is at its
coarsest, the points are so far apart that objects simply slip between them.
When the cloth is refined, it is distorted by the presence of the object in
its midst. This can be seen in Fig. 20. The cloth lying near the sphere is
unnaturally stretched. Some better approach is needed.

The cloth has no restrictions against self-intersection. This occaisonaly
produces odd effects, as can be seen in the left side of the cloth in Fig.
21, and in the crumpled cloth at the bottom of 22. I decided against the
inclusion of tests for self-intersection in the program since they would be

difficult to program and computationally expensive.

64

‘ '.
I o
~ LT S,
TRIAENG
SRR

66

T
iy g
e B 7
e 5
SR 1 '
— T H
e raRNiays
i ~J
--~,},.. 4 i
p—S 1
H -
=T
1
7141 -
s BBy
ey 1
g2 |
i -

Figure 22: A square piece of cloth compressed along its upper edge and

crumpled on the floor below.

8 Directions for the Future

In addtion to the improvements discussed above in sections 5.6 and 6.3,
there are a number of changes neccesary to turn this program into a gen-
erally useful tool.

Clothing made out of several pieces of cloth could be simulated by con-
structing the garment out of ovelapping patches of flat cloth. The patches
would be constrained to move identically in places where they overlapped.
Each step in the multigrid schedule would be applied to all the patches in
parallel. This is a standard technique for numerical solution of problems
on two-dimensional manifolds.

If models of cloth could be made realistic enough to fool not just uncrit-
ical observers but discerning textile experts. one could imagine the creation
of computer-assisted fashion design programs. Prototyping a garment could
be done on the computer screen, instead of on a live model. The market
for such a service would not be prototyping for mass production, since in
such cases the construction of an actual prototype is negligible compared
with the prouuction cost. Rather. the prime application would be to the

creation of unique custom garments. which could be previewed by the cus-

68

tomer before purchase.

One obvious extension of the program is to animation. This will not be
easy. The approach of searching for stationary states of minimum energy
does not apply, since stationary states are exactly what we don’t want. The
program will have to integrate the equations of motion, using the energy
expression to calculate forces, the forces to calculate velocities, and the
velocities to calculate positions. Something more efficient than simply run-
ning the algorithm on every frame will be needed. The coherence between
succesive frames of an animation should be exploited to save computation.
The application of multigrid algorithms to time-dependent problems is an
area of current research and not as straightforward as their application to
time-free problems 3..

The use of multigrid methods to simulate the mechanics of continuous
objects has promise for a wide variety of problems in computer graphics.
Phenomena such as billowing smoke. turbulent water. and rippling mus-
cles have not yet appeared in computer graphics in part because they were
considered too computationally expensive to simulate. The enormous in-

creases in computational efficiency given us by multigrid methods bring

69

these phenomena into the domain of feasibility.

9 Acknowledgments

I would like to thank a number of people and institutions for helping
me with this thesis. Resources were made available by David Zeltzer,
Charles Sommer, Jim Salem, Regan Perry, the M.I.T. Media Laboratory,
the M.I.T. Artificial Intelligence Laboratory and Thinking Machines Cor-
poration. This work was supported in part by an equipment loan from
Symbolics Inc., of Cambridge, Massachusetts. I profited by discussing my
work with David Chen, Steve Estephanian. Charles Lieserson, Margaret
Minsky, Steve Omohundro, Jim Salem, Karl Sims, Tom Trobaugh and
David Zeltzer. My roommates were rendered inaudible by Robert Fripp
and the members of Einstiirzende Neubauten. Pink Flovd. Shreikback and
Rhythmé& Noise. I would like to thank my father, Richard Feynman, who
convinced me to work on modeling cloth rather than bakad goods, on the
basis that “with cloth, you can tell when you failed™. as well as providing
me clearheaded advice throughout the research.

“3D Graphics Toolkit” is a trademark of Thinking Machines Corpora-

70

tion.

“Symbolics 3600 Computer” is a trademark of Symbolics, Inc.

References

(1] Booth, J. E. Principles of Teztile Testing (New York: Chemical Pub-

lishing Company, 1964)

[2] Brandt, Achi, “Guide to Multigrid Development” In Multigrid Meth-
ods, Lecture Notes in Mathematics, No. 960. (New York: Springer-

Verlag, 1982)

3" Brandt, Achi, “Levels and Scales” In Multigrid Methods for Integral
and Differential Equations Ed. by D. J. Paddon and H. Holstien. (Ox-

ford: Oxford University Press, 1983)

‘4 Gordon, J. Structures, or why things don't jall down (New York: Da

Capo Press, 1982)

'5 Hearle, J., P. Grosberg and S. Backer. Structural Mechanics of Fibers,

Yarns, and Fabrics (New York: Wiley-Interscience. 1969), Vol. I

71

‘6]

Tl

8]

9]

10;

11

Hilbert, D. and S. Cohn-Vossen. Geometry and the Imagination (New

York: Chelsea, 1952)

Landau, L. D. and E. M. Lifshitz it Theory of Elasticity, Course of

Theoretical Physics, Vol. 7 (Oxford: Pergamon, 1970)

Otto, F. Tension Structures (Cambridge, Massachusetts: MIT Press,

1967)

Steele, Guy L. Common LISP: The Language (Burlington, Mas-

sachusetts: Digital Press, 1984)

Steiiben, K. and Trottenberg, U., “Multigrid methods: fundamen-
tal algorithms, model problem analysis and applications” In Mult:-
grid Methods, Lecture Notes in Mathematics, No. 960. (New York:

Springer-Verlag, 1982)

Weil, Jerry, “The Synthesis of Cloth Objects”. to appear in Computer

Graphics, August 1986.

72

A The Program

This appendix contains selected portions of the code. Not included is the
code to organize file loading and compilation, the code to read and save
pieces of cloth to or from the file system, or the code to interface to ren-
dering systems. This program calls certain routines for the creation and
manipulation of vectors and transformation matrices. These functions were
originally part of the TMC 3D Graphics Toolkit. I took the file and trans-
lated it to Common LISP without changing the functionality. This code is
not included, but the purpose of the functions should be obvious from their
names.

The code consists of five files, meant to be compiled in the order they
are given here. The code is a mess. Caveat lector.

File BASICS:

it -%- Mode: Lisp; Package: COMMON-LISP-USER: Syntax: Common-
lisp -%-

;+: Various utility functions

(defun 2d-distance (x1 y1 x2 y2)
(sqrt (+ (expt (- x1 x2) 2)

73

(expt (- y1 y2) 2))))

(defun 3d-distance (x1 y1 z1 x2 y2 z2)
(sqrt (+ (expt (- x1 x2) 2)
(expt (- yi y2) 2)
(expt (- z1 z2) 2))))

(defun vector-max-component (vector)
(max (abs (vector-x vector))
(abs (vector-y vector))
(abs (vector-z vector))))

(defun multiply-vector-by-matrix (vector matrix)
(math:multiply-matrices matrix vector))

(defun map-2d-array (function &rest arrays)
(let* ((dimension-0 (apply #'min (map 'list #'(lambda (array)(array-

dimension array 0)) arrays)))
(dimension-1 (apply #'min (map ‘list #'(lambda (array)(array-
dimension array 1)) arrays)))
(result (make-array (list dimension-O dimension-1))))
(dotimes (x dimension-0)
(dotimes (y dimension-1)
(setf (aref result x y)
(apply function
(map 'list #'(lambda (array)(aref array = y))
arrays)))))
result))

(defun map-2d-array-for-side-effect (function &krest arrays)
(let* ((dimension-0 (apply #'min (map 'list #'(lambda (array)(array-

dimension array 0)) arrays)))
(dimension-1 (apply #'min (map 'list #'(lambda (array)(array-

dimension array 1)) arrays))))
(dotimes (x dimension-0)
(dotimes (y dimension-1)

74

(apply function
(map 'list #'(lambda (array)(aref array x y))

arrays))))))

(defmacro do-in-range ((variable start end steps) &body body)
(let ((var (gensym)))
‘(dotimes (,var ,steps)
(let ((,variable (rescale ,var O ,steps ,start ,end)))
,@body))))

:Cloth is a rectangular patch of an infinite square lattice. The
points
: (the geometrical object) of the lattice are points (the defstruct).
:The limits are inclusive. These limits may change if cloth ever
;becomes nonrectangular.
(defstruct (cloth :conc-name

(:copier copy-cloth-internal))

points

grid-spacing

;s The following slots are no longer used. They will be elim-
inated in the future.

max-u min-u

max-v min-v)

;Out-of -bounds requests return nil.
(defun point-at (cloth u v)
(point-at-integer cloth
(round (/ u (cloth-grid-spacing cloth)))
(round (/ v (cloth-grid-spacing cloth)))))

;Out-of-bounds requests return nil.
(defun point-at-integer (cloth u v)
(if (or (< u 0)
(< v 0)
(>= u (u-array-limit cloth))
(>= v (v-array-limit cloth)))

-1
ot

nil
(aref (cloth-points cloth) u v)))

(defun u-array-limit (cloth)
(array-dimension (cloth-points cloth) 0))

(defun v-array-limit (cloth)
(array-dimension (cloth-points cloth) 1))

(defun extract-array-from-cloth (function cloth)
(map-2d-array function (cloth-points cloth)))

::; Points are things that have a fixity, which can be :fixed,
:free, or
;:; :dummy. These mean the following things. :fixed can't be
moved.
., :free are movable. :dummy are actually not in the cloth at
all,
;:; they're just there to make the point array rectangular.
(defstruct (point :conc-name
(:copier copy-point-internal)
(:print-function (lambda (point stream depth)
(ignore depth)
(if (point-location point)
(format stream "#<Point ~,4f ~,4f ",4f "d "d To>"
(point-x point)
(point-y point)
(point-z point)
(point-u point)
(point-v point)
(si:%pointer (point-cloth point)))
(format stream "#<Point (no location) “d "d
(point-u point)
(point-v point)
(si:Y%pointer (point-cloth point)))))))
location

0>"

u v cloth ;specifies where the point is in the cloth.

(fixity :free)

:: The following slots are initialized to :empty but serve to
cache nieghboring points.

(cache-u+ :empty)

(cache-u- :empty)

(cache-v+ :empty)

(cache-v- :empty))

(defparameter xall-point-fixity-types* '(:free :fixed :dummy))

(defun point-grid-spacing (point)
(cloth-grid-spacing (point-cloth point)))

(defun create-point-xyz (x y z u v cloth fixity)
(make-point :location (make-vector Xy z) :uu :v v :cloth cloth
:fixity fixity))

(defun create-point (location u v cloth fixity)
(make-point :location location :u u :v v :cloth
cloth :fixity fixity))

:This only works to copy a point to the same u,v on another piece
of cloth.
(defun copy-point (point &optional cloth)

(let ((result (copy-point-internal point)))

(setf (point-location result)
(copy-vector (point-location point)))

(sett (point-cache-u+ result) :empty
(point-cache-u- result) :empty
(point-cache-v+ result) :empty
(point-cache-v- result) :empty)

(if cloth

(setf (point-cloth result) cloth))
result))

(defparameter *dummy-point* (make-point :fixity :dummy))
(defun dummy-point ()
dummy -point)

(defun point-x (point)
(vector-x (point-location point)))

(defun point-y (point)
(vector-y (point-location point)))

(defua point-z (point)
(vector-z (point-location point)))

;This is only function allowed to change point location after creation.
(defun set-point-location (point location)
(setf (point-location point) location))

(defun offset-point (point offset)
(set-point-location point
(add-vectors (point-location point)
offset)))

:These functions find the nieghboring points, given a point. If
there is no point in that direction, it returns nil.
(defun point-to-u+ (point)
(if (eq :empty (point-cache-u+ point))
(setf (point-cache-u+ point)
(point-at-integer (point-cloth point) (+ (point-u point) 1)

(point-v point)))

(point-cache-u+ point)))

(defun point-to-u- (point)
(if (eq :empty (point-cache-u- point))
(setf (point-cache-u- point)
(point-at-integer (point-cloth point) (- (point-u point) 1)

78

(point-v point)))
(point-cache-u- point)))

(defun point-to-v+ (point)
(if (eq :empty (point-cache-v+ point))
(setf (point-cache-v+ point)
(point-at-integer (point-cloth point) (point-u point) (+ (point-
v point) 1)))
(point-cache-v+ point)))

(defun point-to-v- (peint)
(if (eq :empty (point-cache-v- point))
(setf (point-cache-v- point)
(point-at-integer (point-cloth point) (point-u point) (- (point-
v point) 1)))
(point-cache-v- point)))

(defun point-to-u-- (point)
(let ((p (point-to-u- point)))
(and p
(point-to-u- p))))

(defun point-to-u++ (point)
(let ((p (point-to-u+ point)))
(and p
(point-to-u+ p))))

(defun point-to-v-- (point)
(let ((p (point-to-v- point)))
(and p
(point-to-v- Pp))))

(defun point-to-v++ (point)
(let ((p (point-to-v+ point)))
(and p
(point-to-v+ p))))

(defmacro do-points ((point cloth &optional (types-to-include *(:free)))
&body body)
‘(let (($u-limit (array-dimension (cloth-points ,cloth) 0))
($v-1limit (array-dimension (cloth-points ,cloth) 1)))
(dotimes ($u $u-limit)
(dotimes ($v $v-limit)
(let ((,point (point-at-integer .cloth $u $v)))
(if (memq (point-fixity ,point) ',types-to-include)
(progn ,@body)))))))

(defmacro do-point-coordinates ((u v cloth &optional (types-to-
include ''(:free))) &body body)
‘(let (($u-limit (array-dimension (cloth-points ,cloth) 0))
($v-limit (array-dimension (cloth-points ,cloth) 1)))
(dotimes (,u $u-limit)
(dotimes (,v $v-limit)
(if (memq (point-fixity (point-at-integer ,cloth .,u ,V)) ,types-
to-include)
(progn .@body))))))

:Like doing a checkerboard, first the red squares then the black
squares. (0,0) gets done first.
(defmacro do-points-in-red-black-order ((point cloth &optional
(types-to-include ' (:free))) &body body)
‘(let (($u-limit (array-dimension (cloth-points .cloth) 0))
($v-limit (array-dimension (cloth-points .cloth) 1))
(dotimes ($u $u-limit)
(dotimes ($v $v-limit)
(if (evenp (+ $u $v))
(1et ((,point (point-at-integer ,cloth $u $v)))
(if (memq (point-fixity ,point) ' ,types-to-include)
(progn ,Q@body))))))
(dotimes ($u-backwards $u-limit)
(dotimes ($v-backwards $v-limit)
(let (($u (- $u-limit 1 $u-backwards))

80

($v (- $v-limit 1 $v-backwards)))
(if (oddp (+ $u $v))
(let ((,point (point-at-integer ,cloth $u $v)))
(if (memq (point-fixity ,point) ',types-to-include)
(progn ,@body)))))))))

(defun copy-cloth (cloth)

(let ((result (copy-cloth-internal cloth)))
(setf (cloth-points result)

(make-array (array-dimensions (cloth-points cloth))))
(do-point-coordinates (u v cloth *all-point-fixity-typesx)

(setf (aref (cloth-points result) u v)

(copy-point (aref (cloth-points cloth) u v) result)))
result))

(defun point-to-u+v+ (point)
(let ((u+ (point-to-u+ point)))

(if u+
(point-to-v+ u+)
nil)))

(defun point-to-utv- (point)
(let ((u+ (point-to-u+ point)))

(if u+
(point-to-v- u+)
nil)))

(defun point-to-u-v+ (point)
(let ((u- (point-to-u- point)))
(if u-
(point-to-v+ u-)
nil)))

(defun point-to-u-v- (point)
(let ((u- (point-to-u- point)))
(if u-

81

(point-to-v- u-)

nil)))

File ENERGY:
;.: -%- Mode: Lisp; Package: COMMON-LISP-USER; Syntax: Common-
lisp -x*-
(defparameter *density* 1)
(defparameter *elasticity* 5)
(defparameter *rigidityx 0.002)
(defparameter *gravity* :call-set-force-parameters-you-dummy)
(defparameter x*buckling-energy-linear-term~ :call-set-force-parameters-
you-dummy)
(defparameter *diagonal-force-ratio* :call-set-force-parameters-
you-dummy)
(defparameter *current-grid-spacing* :call-set-force-parameters-
you-dummy)

;Buckling energy is
;divided by elastic force constant because we want to save mul-
tiplications by
;multiplying by elastic force con: iant as late as possible.
(defun set-force-parameters (length ;1 in notebook

doptional (elasticity *elasticity*)

(rigidity =*rigidity*) ;Bs in notebook

These next ones you probably don't ever want to change.

(density *densityx*)

(diagonal-force-ratio .25))
(setq *buckling-energy-linear-term* (/ rigidity length elasticity))
(setq *diagonal-force-ratio+ diagonal-force-ratio)

82

(setq *gravity* (* density length length 9.8))
(setq *density* density)

(setq *elasticity* elasticity)

(setq *rigidity* rigidity)

(setq *current-grid-spacing* length))

(defmacro with-grid-spacing (spacing &body body)
‘(let ({old-grid-spacing *current-grid-spacingx))
(set-force-parameters ,spacing)
(progl (progn ,@body)
(set-force-parameters old-grid-spacing))))

(defun stretching-energy (length ideal-length)
(x (- length ideal-length)
(- length ideal-length)))

(defun buckling-energy (length ideal-length)
(* *buckling-energy-linear-term* (- 1 (/ length ideal-length))))

(defun strain-energy-per-line (pointl point2 ideal-length)
(if (null point2)
0
(let* ((length (distance-between (point-location pointl)
(point-location point2))))
(if (< length ideal-length)
(min (stretching-energy length ideal-length)
(buckling-energy length ideal-length))
(stretching-energy length ideal-length)))))

;for testing
(defun tabulate-strain-energy (grid-size &optional (step-size (*
.1 grid-size)) (start 0) (finish (* 1.5 grid-size)))
(with-grid-spacing grid-size
(do ((length start (+ length step-size))
(result ())
(last O energy)

83

(energy))
((> length finish)
(nreverse result))
(setq energy
(if (< length grid-size)
(min (stretching-energy length grid-size)
(buckling-energy length grid-size))
(stretching-energy length grid-size)))

(format zl:terminal-io ""% f720t"f 40t~ f" length energy (-

energy last))
(push (list length energy (- energy last))
result))))

(defun strain-energy (point)
(let* ((ideal-length (point-grid-spacing point))
(diagonal-length (* 1.414 ideal-length)))
(+ (strain-energy-per-line point (point-to-u+ point)
length)
(strain-energy-per-line point (point-to-v+ point)
length)
(x *diagonal-force-ratiox
(+ (strain-energy-per-line point (point-to-u+v+ point)
length)
(strain-energy-per-line point (point-to-u+v- point)
length))))))

(defun strain-energy-around (point)
(let* ((ideal-length (point-grid-spacing point))
(diagonal-length (* 1.414 ideal-length)))
(+ (strain-energy-per-line point (point-to-u+ point)
length)
(strain-energy-per-line point (point-to-v+ point)
length)
(strain-energy-per-line point (point-to-u- point)
length)
(strain-energy-per-line point (point-to-v- point)

84

ideal-

ideal-

diagonal-

diagonal-

ideal-
ideal-
ideal-

ideal-

length)
(x *diagonal-force-ratiox
(+ (strain-energy-per-line point (point-to-u+v+ point) diagonal-
length)
(strain-energy-per-line point (point-to-u+v- point) diagonal-
length)
(strain-energy-per-line point (point-to-u-v+ point) diagonal-
length)
(strain-energy-per-line point (point-to-u-v- point) diagonal-
length))))))

(defun gravitational-energy (point)
(point-z point))

(defun energy-of-point (point)
(realpart (+ (* *elasticityx (strain-energy point))
(» xgravity* (gravitational-energy point)))))

(defun energy-of-cloth-around-point (point)
(realpart (+ (* *elasticity* (strain-energy-around point))
(+ «gravity* (gravitational-energy point)))))

(z1:comment ;this is the fast old way.

(defun strain-energy-per-line {pointl point2 ideal-length”2)
(if (null point2)
0 :
(let ((length~2 (square-of-distance-between (point-location
point1)
(point-location point2))))
(if (< length~2 ideal-length~2)
(x *compressibility-ratiox*
(square (- length"2 ideal-length”2)))

85

(square (- length~2 ideal-length”2))))))

(defun bending-energy (point)
(+ (bending-energy-per-line (point-to-u- point) point (point-
to-u+ point))
(bending-energy-per-line (point-to-v- point) point (point-
to-v+ point))))

(defparameter *stiffnessx 0)

::: Set to .5, makes rubber sheet
(defparameter *elasticity* .5)

5 Usually 0.25

(defparameter *compressibility-ratio* 0.25)
(defparameter *diagonal-strength* .5)

(defun bending-energy-per-line (pointl point2 point3)
(if (or (not pointl)(not point3))
0
(square (angle-between-vectors (subtract-vectors (point-
location pointi)
(point-location point2))
(subtract-vectors (point-location point2)
(point-location point3))))))

) :end comment

File RELAXATION:

86

;++ -*- Syntax: Common-lisp; Package: USER -x-

(defun apex-of-parabola (x1 yl1 x2 y2 x3 y3)
(if (or (= x1 x2)
(= x1 x3)
(= x2 x3))
x2 ;kluge
(let ((a (/ (+ (*x (- y3 y1)
(- x2 x1))
(* (- y1 y2)
(- x3 x1)))
(x (- x3 x2)
(- %3 x1)
(- x2 x1)))))
(if (zerop a)
x2 ikluge
- (/¢ ¢ - y2y1)
(- x2 x1))
(» a (+ x2 x1)))
(x2a)))N)N

(defun test-apex-of-parabola (a b)
(print (- (/ b 2 a)))
(let ((x1 (random 10))
(x2 (random 10))
(x3 (random 10))
(¢ (random 10)))
(apex-of-parabota x1 (+ ¢ (¥ b x1) (» a x1 x1))
x2 (+ ¢ (* b x2) (* a x2 x2))
x3 (+ ¢ (x b x3) (» 2 x3 x3)))))

;simple one-point-relaxer
(defun slide-along-vector (point)
(let ((vector (nearly-force-vector point))
(distance 5e-4)
(last-distance 0))

87

(block got-it
(loop (if (< (energy-of-point-moved-along-vector-by-distance
point vector last-distance)
(energy-of-point-moved-along-vector-by-distance point vector
distance))
(return-from got-it
(offset-point point (scale-vector vector last-distance))))
(setq last-distance distance)
(setq distance (* 2 distance))))))

:8lightly more complicated one-point relaxer, but should still
work.

;Uses last three measurements for three-point parabolic approximation.
;Unfortunately, experiment shows that it only speeds things up
by a few

;percent per relaxation cycle. (¥hile using forcible relaxation)
But

;since SLIDE-ALONG-VECTOR is inefficient in that it evaluates point
;energy twice where it dosen't really have to. So let's use this
one.

;Eventually we should be smart about guessing where to start the
search

;instead of starting it at 2.5e-4.

(defun search-along-vector (point)

(let* ((vector (nearly-force-vector point))

(distance 5e-4)

(last-distance 2.5e-4)

(last-last-distance O)

(energy (energy-of-point-moved-along-vector-by-distance point
vector distance)) .

(last-energy (energy-of-point-moved-along-vector-by-distance point
vector last-distance))
(last-last-energy (energy-of-point-moved-along-vector-by-distance
point vector last-last-distance)))
(offset-point point
(scale-vector vector

88

(block got-it
(loop (if (< last-energy energy) ;energy started going up as
we move out
(return-from got-it
(apex-of -parabola distance energy
last-distance last-energy
last-last-distance last-last-energy)))
(shiftf last-last-distance
last-distance
distance
(» 2 distance))
(shiftf last-last-energy
last-energy

energy
(energy-of ~-point-moved-along-vector-by-distance point vector distance))))))))

(defvar *best-relaxation-distancex* 5e-4)

(defun search-along-vector-starting-smart (point)
(let* ((vector (nearly-force-vectnr point))
(hi (* 6 *best-relaxation-distancex))
(lo (¥ .76 =best-relaxation-distance*))
(hi-energy (energy-of-point-moved-along-vector-by-distance point
vector hi))
(lo-energy (energy-of-point-moved-along-vector-by-distance point
vector lo))
(zero-energy (energy-of-point-moved-along-vector-by-distance point
vector 0))
(best-distance
(block got-it
(loop (cond ((and (< lo-energy zero-energy)
(>= hi-energy zero-energy))
;+ We're in parabolic domain
(return-from got-it
(apex-of-parabola hi hi-energy
lo lo-energy

89

O zero-energy)))
((< lo 1e-4) ;prevents flonum underflow in pathological cases
(return-from got-it hi))
((>= lo-energy zero-energy)
i+ Too far out
(shiftf hi lo (/ lo 2))
(shiftf hi-energy lo-energy (energy-of-point-moved-along-vector-
by-distance point vector 1lo)))
{(< hi-energy zero-energy)
i+ Too far in- still in bowl
(shiftf lo hi (* hi 2))
(shiftf lo-energy hi-energy (energy-of-point-moved-along-vector-
by-distance point vector hi)))
(t
(ferror "This should never happen-- return O to continue if it
does.")))))))
(setq *best-relaxation-distancex (/ (+ *best-relaxation-distancex
“best-relaxation-distancex
“best-relaxation-distancex
best-distance)
4))
(set-point-location point
(push-point-out-of-all-ellipsoids (add-vectors (point-location
point)
(scale-vector vector best-distance))))))

(defparameter sforce-vector-perturbation-strengths .2)

;a unit vector pointing in nearly the direction of fastest en-
ergy decrease
(defun nearly-force-vector (point)
(make-unit-vector (v+ (make-random-vector -force-vector-perturbation-
strengthx)
(scale-vector (make-unit-vector (force-vector point))

-1))))

90

(defun force-vector (point)
(let* ((current-energy (energy-of-cloth-around-point point)))

(make-vector (- (emnergy-of-point-if-offset point (make-vector

le-3 0 0))
current-energy)

(- (energy-of-point-if-offset point (make-vector O 1e-3 0))
current-energy)

(- (energy-of-point-if-offset point (make-vector O O le-3))
current-energy))))

(defun energy-of-point-moved-along-vector-by-distance (point vec-
tor distance)
(energy-of-point-if-point-is-moved-to-location point
(push-point-out-of-all-ellipsoids (add-vectors (point-location
point)
(scale-vector vector distance)))))

(defun move-point-tabulating (point vector step-size start finish)
(do ((distance start (+ distance step-size))
(result ())
(last O energy)
(energzy))
((> distance finish)
(nreverse result))
(setq energy (energy-of-point-moved-along-vector-by-distance
point vector distance))
(format zl:terminal-io "7% f 20t f 40t f" distance energy (-
energy last))
(push (list distance energy (- energy last))
result)))

;sucky one-point relaxer
(defun perturb-in-a-random-direction (point distance)
(let* ((offset (make-random-vector (* 2 distance)))
(new-location (add-vectors (point-location point) -
offset)))

91

(if (<= (energy-of-point-if-point-is-moved-to-location point
new-location)
(energy-of-point point))
(progn (set-point-location point new-location)
(vector-max-component offset))
i If you didn't reduce the energy, you're probably going too far.
(x .99 distance))))

(defun energy-of-point-if-point-is-moved-to-location (point location)
(let ((old-location (point-location point)))
(setf (point-location point) location)
(progl ({energy-of-cloth-around-point point)
(setf (point-location point) old-location))))

(defun energy-of-point-if-offset (point offset)
(energy-of-point-if-point-is-moved-to-lecation point
(add-vectors (point-location point)
offset)))

(defun relax-cloth-once (cloth one-point-relazer)
(with-grid-spacing (cloth-grid-spacing cloth)
(do-points-in-red-black-order (point cloth)
(funcall one-point-relaxer point))
;.for testing
(draw-cloth cloth)))

(defun uniformly-distributed-random-vector (&optional (length 1))
(do ((try (make-random-vector 1)
(make-random-vector 1)))
((< (vector-magnitude try)
1)
(scale-vector try (/ length (vector-magnitude try))))))

(defun relax-cloth-keeping-records (cloth one-point-relaxer &op-
tional (number-of-cycles 100))

(let ((result ()))

92

(dotimes (n number-of-cycles)

(push (print (list n (energy-of-whole-cloth cloth)))
result)

(draw-cloth cloth)

(relax-cloth-once cloth one-point-relaxer))
result))

(defvar foo)

(defun drop-banner (&optional (cloth (transform-whole-cloth (make-
canvas 5 .8 .9 t t)
(make-rotate-matrix 0 90 0))))
(setq foo cloth)
(relax-cloth-keeping-records cloth #'slide-along-vector 5))

;two copies?

(defun tension-energy (point)
(apply #'+ (remove-if #°'null (list (if (point-to-u+ point)
(square (pt-to-pt-distance point (point-to-u+ point))))
(if (point-to-u- point)
(square (pt-to-pt-distance point (point-to-u- point))))
(if (point-to-v+ point)
(square (pt-to-pt-distance point (point-to-v+ point))))
(if (point-to-v- point)
(square (pt-to-pt-distance point (point-to-v- point))))))))

(defun pt-to-pt-distance (pointl point2)
(if (or (eq (point-fixity pointl) :dummy)
(eq (point-fixity point2) :dummy))
0
(distance-between (point-location pointl)
(point-location point2))))

93

(defun energy-of-whole-cloth (cloth)
(let ((energy 0))
(dotimes (u (array-dimension (cloth-points cloth) 0))
(dotimes (v (array-dimension (cloth-points cloth) 1))
(incf energy (energy-of-point (aref (cloth-points cloth) u v)))))
energy))

(deff energy-of-cloth #'energy-of-whole-clcth)

(defun interpolate-cloth (clothO clothl parameter)
(let ((result (copy-cloth cloth0)))
(do-point-coordinates (u v clothO xall-point-fixity-types*)
(set-point-location (point-at-integer result u v)
(linearly-interpolate-vectors parameter
(point-location (point-at-integer clothO u v))
(point-location (point-at-integer clothl u v)))))
result))

(defun relax-cloth-forcibly (cloth)
(let* ((old (copy-cloth cloth))
(new (relax-cloth-once cloth #'search-along-vector))
(even-newer (interpolate-cloth old new 3))
(new-energy (energy-of-cloth new))
(even-newer-energy (energy-of-cloth even-never))
(place-to-interpolate-to (apex-of-parahola O (energy-of-cloth
0ld)
1 new-energy
3 even-newer-energy)))
(interpolate-cloth old new
(if (< place-to-interpolate-to 7)
place-to-interpolate-to
(apex-of-parabola 1 new-energy
3 even-never-energy
place-to-interpolate-to (energy-of-whole-cloth
(interpolate-cloth old new

94

place-to-interpolate-to0)))))))

File SOLIDS:

iis =*- Mode: Lisp: Package: COMMON-LISP-USER; Syntax: Common-
lisp -x*-

(defstruct (ellipsoid :ronc-name
(:constructor make-ellipsoid-internal))

transform

inverse

transform-with-translation

x-axis

y-axis

z-axis)

(defun make-ellipsoid (x-length y-length z-length &optional (x-
rot 0) (y-rot 0) (z-rot 0) (center-x 0) (center-y O) (center-z
0))
(let ((transform (math:multiply-matrices (make-scale-matrix (/
2 x-length) (/ 2 y-length) (/ 2 z-length))
(make-rotate-matrix x-rot y-rot z-rot))))
(make-ellipsoid-internal :transform transform
:inverse (math:invert-matrix transform)
:transform-with-translation (math:multiply-matrices transform
(make-translate-matrix (- center-x)
(- center-y)
(- center-z)))
:x-axis (multiply-vector-by-matrix (make-vector 1 O 0) transform)

:y-axis (multiply-vector-by-matrix (make-vector O 1 0) transform)
:z-axis (multiply-vector-by-matrix (make-vector O O 1) transform))))

95

iActually makes a ball 10 km in diameter.
(defun make-floor (location-to-pass-through normal-vector)
(let ((the-center (v+ location-to-pass-through (scale-vector
(make-unit-vector normal-vector) -5000))))
(make-ellipsoid 10000 10000 10000 0 O O (vector-x the-center)(vector-
y the-center)(vector-z the-center))))

113 Given a vector and a point a which to base the vector, computes
ii: whether the vector intersects a unit sphere centered at the
origin.
;i If it does, returns the min and max values of the parameter.
(defun sphere-intersection (base-point vector)
(let* ((p*v (dot-product base-point vector))
(v¥v (dot-product vector vector))
(discriminant (- (% pxv p*v)
(% vyv
(- (dot-product base-point base-point) 1)))))
(if (plusp discriminant)
(let ((sqrt-discriminant (sqrt discriminant)))
(list (/ (- (- p*v) sqrt-discriminant)
vEY)
(/ (+ (- p*v) sqrt-discriminant)
vv)))
nil)))

(defun ellipsoid-intersection-distance (ellipsoid base-point vector)
(sphere-intersection (multiply-vector-by-matri: base-point (ellipsoid-
transform-with-translation ellipsoid))
(multiply-vector-by-matrix vector (ellipsoid-transform ellipsoid))))

;returns nil if no intersection.

(defun ellipsoid-intersection-point (ellipsoid base-point vector)
(let ((distance (remove-if-not #'plusp (ellipsoid-intersection-

distance ellipsoid base-point vector))))

96

(if distance
(v+ base-point (scale-vector vector (apply #'min distance)))

nil)))

: What? You say you don't understand this code? Well, it only
took me an
; hour to figure it out. That counts as intuitive in my book.
(defun normal-to-ellipsoid (ellipsoid point)
(let ((transformed-base-point (multiply-vector-by-matrix point
(ellipsoid-transform-with-translation ellipsoid))))
(make-vector (dot-product transformed-base-point
(ellipsoid-x-axis ellipsoid))
(dot-product transformed-base-point
(ellipsoid-y-axis ellipsoid))
(dot-product transformed-base-point
(ellipsoid-z-axis ellipsoid)))))

;returns point on surface of ellipsoid close to POINT. If point

is not inside ellipsoid, returns NIL.

(defun push-point-out-of-ellipsoid (ellipsoid point)
(ellipsoid-intersection-point ellipsoid point (make-unit-vector

(normal-to-ellipsoid ellipsoid point))))

(defun draw-normals-on-ellipsoid (ellipsoid &optional (radius 1)(times-
to-do-it 989999))
(dotimes (n times-to-do-it)
(lets ((point (make-random-vector radius))
(vector (make-random-vector radius))
(int (ellipsoid-intersection-distance ellipsoid point vector)))
(when int
(draw-vector-based-at-location (scale-vector (make-unit-vector
(normal-to-ellipsoid ellipsoid
(v+ point
(scale-vector vector (car int)))))

.2) '
(v+ point (scale-vector vector (car int))))

97

(draw-3d-point-at-vector (v+ point (scale-vector vector (car int))))))))

(defun draw-normals-on-all-ellipsoids (&optional (times-to-do-
it 989999))
(dolist (obj *all-objectsx)
(draw-normals-on-ellipsoid obj 1 times-to-do-it)))

(defparameter *all-objects* nil)

(defun clear-all-.-bjects ()
(setq *all-objects* nil)
)

(defun add-objects (&rest objects)
(setq *all-objects* (append objects rall-objects*))
)

(defun push-point-out-of-all-ellipsoids (point)

(dolist (obj *all-objects>)

(let ((new-point (push-point-out-of-ellipsoid obj point)))
(if new-point

;debug

(progn ;(draw-3d-line-between-vectors point new-point rhighlight-
color+)

; (draw-2d-dot-at-vector point .7)

(setq point new-point)))))

point)

(defun test-push-point (radius)

(set-display-parameters radius (- radius) radius (- radius) ra-
dius (- radius))

(clear-all-objects)

(add-objects (make-floor (make-vector O 0 -.5)

(make-vector 0 0 1))

(make-ellipsoid .7 .51 0 0 0 0 0 0))
(let ((base (make-random-vector radius))

98

(end (make-random-vector radius)))
(do-in-range (d 0 1 20)
(let* ((s (linearly-interpolate-vectors d base end))
(e (push-point-out-of-all-ellipsoids s)))
(if (not (< (vector-magnitude (v- s e)) 1e-6))
(progn (draw-3d-dot-at-vector s .7)
(draw-3d-dot-at-vector e .7 *highlight-colorx)
(draw-3d-line-between-vectors s e)))))))

File MULTIGRID:

i+: -*%- Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10

- -

(defun coarsen (cloth)
(let ((result (make-cloth-with-point-array (ceiling (/ (u-array-
limit cloth) 2))
(ceiling (' (v-array-limit cloth) 2))
(# 2 (cloth-grid-spacing cloth)))))
(flet ((average-sideways (point)
(if (and (point-to-u- point)
(point-to-u+ point))
(vreighted-mean 1/4 (point-to-u- point)
1/2 point
1/4 (peint-to-u+ point))
(point-location point))))
(dotimes (u (u-array-limit result))
(dotimes (v (v-array-limit result))
(let ((point (point-at-integer cloth (* u 2) (- v 2))))
(set-point-location (point-at-integer result u v)
(if (and (point-to-v- point)
(point-to-v+ point))
(weighted-mean 1/4 (average-sideways (point-to-v- point))

99

1/2 (average-sideways point)
1/4 (average-sideways (point-to-v+ point)))
(point-location point)))
(setf (point-fixity (point-at-integer result u v))
(if (or (eql (point-fixity point) :fixed)
(and (point-to-u+ point)
(eql (point-fixity (point-to-u+ point)) :fixed))
(and (point-to-v+ point)
(eql (point-fixity (point-to-v+ point)) :fixed))
(and (point-to-u- point)
(eql (point-fixity (point-to-u- point)) :fixed))
(and (point-to-v- point)
(eql (point-fixity (point-to-v- point)) :fixed))
(and (point-to-u+v+ point)
(eql (point-fixity (point-to-u+v+ point)) :fixed))
(and (point-to-u+v- point)
(eql (point-fixity (point-to-u+v- point)) :fixed))
(and (point-to-u-v+ point)
(eql (point-fixity (point-to-u-v+ point)) :fixed))
(and (point-to-u-v- point)
(eql (point-fixity (point-to-u-v- point)) :fixed)))
:fixed
:free)))))
result)))

;Takes a list of alternating weights and (point or vector or llIL)s.
Averages together locations and vectors but not IILs.
(defun weighted-mean (&rest alternating-weights-and-points)
(do ((list alternating-weights-and-points
(cddr 1list))
(total-vector (make-vector O O 0)
(if (second list)
(v+ (scale-vector (if (typep (second list) ’'point)
(point-location (second list))
(second list))
(first list))

100

total-vector)
total-vector))
(total-weight O
(if (second list)
(+ (first list) total-weight)
total-weight)))
((null list)
(scale-vector total-vector (/ 1 total-weight)))))

;uses bilinear interpolation. This is not the right thing. It
should use cubics.
(defun refine (cloth &optional (u-size (- (* 2 (u-array-limit cloth))
1))
(v-size (- (# 2 (v-array-limit cloth)) 1)))
(flet ((set-point-location-safely (point-or-nil loc)
(if point-or-nil (set-point-location point-or-nil loc))))
(let ((result (make-cloth-with-point-array u-size v-size
(# 1/2 (cloth-grid-spacing cloth)))))
(dotimes (u (u-array-limit cloth))
(dotimes (v (v-array-limit cloth))
(set-point-location-safely (point-at-integer result (* 2 u)(~
v 2))
(copy-vector (point-location (point-at-integer cloth u v))))
(set-point-location-safely (point-at-integer result (+ 1 (- 2
w) (v 2))
(wveighted-mean 1/2 (point-at-integer cloth u v)
1/2 (point-at-integer cloth (+ 1 u) v}))
(set-point-location-safely (point-at-integer result (* 2 u) (+
1 (v 2)) -
(weighted-mean 1/2 (point-at-integer cloth u v)
1/2 (point-at-integer cloth u (+ 1 v))))
(set-point-location-safely (point-at-integer result (+ 1 (> u
2)) (+ 1 (x v 2)))
(wveighted-mean 1/4 (point-at-integer cloth u v)
1/4 (point-at-integer cloth u (+ 1 v))

101

1/4 (point-at-integer cloth (+ 1 u) v)
1/4 (point-at-integer cloth (+ 1 u) (+ 1 v))))))
result)))

(defun refine-with-cubic-spline (cloth &optional (u-size (- (x
2 (u-array-limit cloth)) 1))
(v-size (- (x 2 (v-array-limit cloth)) 1)))
(flet ((set-point-location-safely (point-or-nil loc)
(if point-or-nil (set-point-location point-or-nil loc))))
(let ((result (make-cloth-with-point-array u-size v-size
(* 1/2 (cloth-grid-spacing cloth)))))
(dotimes (u (u-array-limit cloth))
(dotimes (v (v-array-limit cloth))
(set-point-location-saf2ly (point-at-integer result (* 2 u)(*
v 2))
(copy-vector (point-location (point-at-integer cloth u v))))
(set-point-location-safely (point-at-integer result (+ 1 (* 2
u))(x v 2))
(cubic-spline-points (point-at-integer cloth (- u 1) v)
(point-at-integer cloth u v)
(point-at-integer cloth (+ u 1) v)
(point-at-integer cloth (+ u 2) v)))
(set-point-location-safely (point-it-integer result (+ 2 u)(+
1 (x v 2))
(cubic-spline-points (point-at-integer cloth u (- v 1))
(point-at-integer cloth u v)
(point-at-integer cloth u (+ v 1))
(point-at-integer cloth u (+ v 2))))))
(dotimes (u (floor (/ u-size 2)))
(dotimes (v (floor (/ v-size 2)))
(set-point-location-safely (point-at-integer result (+ 1 (* 2
u) (+ 1 (x v 2)))
(cubic-spline-points (point-at-integer result (- (+ 2 u) 2)
(+ 1 (xv 2)))
(point-at-integer result (= 2 u) (+ 1 (+ v 2)))
(point-at-integer result (+ (+ 2 u) 2) (+ 1 (+ v 2)))

102

(point-at-integer result (+ (x 2 u) 4) (+ 1 (x v 2)))))))
result)))

;Actually a highly specialized spline. Takes 4 points with spline
.parameters of -1.5, -.5, .5, and 1.5 and returns the value for
the
;point with parameter O. If some of the points are NILs, it uses
a
:lower-order fit.
(defun cubic-spline-points (pointl point2 point3 point4)
(cond ((and pointl point2 point3 point4)
(v+ (scale-vector (point-location pointl) -1/16)
(scale-vector (point-location point2) 9/16)
(scale-vector (point-location point3) 9/16)
(scale-vector (point-location pointd) -1/16)))
((and (not pointl) point2 point3 pointd)
(v+ (scale-vector (pcint-location point2) 3/8)
(scale-vector (point-location point3) 3/4)
(scale-vector (point-location pointd) -1/8)))
((and pointl point2 point3 (not pointd))
(v+ (scale-vector (point-location pointl) -1/8)
(scale-vector (point-location point2) 3/4)
(scale-vector (point-location point3) 3/8)))
((and pointl point2 (not point3) (not pointi))
(v+ (scale-vector (point-location pointl) -1/2)
(scale-vector (point-location point2) 3/2)))
((and (not pointl) (not point2) point3 pointd)
(v+ (scale-vector (point-location point3) 3/2)
(scale-vector (point-location pointd) -1/2)))
((and (not pointl) point2 point3 (not point4))
(v+ (scale-vector (point-location point2) 1/2)
(scale-vector (point-location point3) 1/2)))
(t
(ferror "CUBIC-SPLIIIE recieved a configuration of missing points
it didn’'t know how to handle."))))

103

(defun copy-fixities (into-cloth cloth-to-copy-fixities-from)
{(dotimes (u (u-array-limit into-cloth))
(dotimes (v (v-array-limit into-cloth))
(setf (point-fixity (point-at-integer into-cloth u v))
(point-fixity (point-at-integer cloth-to-copy-fixities-from
u v)))
(if (eql :fixed (point-fixity (point-at-integer cloth-to-
copy-fixities-from u v)))
(setf (point-location (point-at-integer into-cloth u v))
(point-location (point-at-integer cloth-to-copy-fixities-from u

v)))NI)

(defun cloth-difference (clothO clothl)
(let ((result (copy-cloth cloth0)))
(do-point-coordinates (u v clothO *all-point-fixity-typesx)
(set-point-location (point-at-integer result u v)
(v- (point-location (point-at-integer clothl u v))
(point-location (point-at-integer clothO u v)))))
result))

(defun cloth-sum (clothO clothl)
(let ((result (copy-cloth clothO)))
(do-point-coordinates (u v clothO *all-point-fixity-types»)
(set-point-location (point-at-integer result u v)
(v+ (point-location (point-at-integer clothl u v))
(point-location (point-at-integer clothO u v)))))
result))

;side-effects the cloth.
(defun push-cloth-out-of-all-objects (cloth)
(do-points (pt cloth)
(set-point-location pt
(push-point-out-of-all-ellipsoids (point-location point)))))

(defun relax-at-coarsest-level (cloth times-for-coarsest)
(dotimes (n times-for-coarsest) :;do this a lot cause it's so

104

fast.
(setq cloth (relax-cloth-once cloth #'search-along-vector-

starting-smart)))
cloth)

(defun coarsest-level-p (cloth coarsest)
(<= (min (u-array-limit cloth)
(v-array-limit cloth))

coarsest))

(defun interpolate-correction (cloth-to-modify coarse-begin coarse-
relaxed)

(cloth-sum cloth-to-modify (refine-with-cubic-spline (cloth-
difference coarse-begin coarse-relaxed))))

(defparameter *relaxation-stepsx 2)

:amazingly enough, we should do equal amounts of relaxation be-
fore & after multigrid.
;energy difference between 2-and-2 and O-and-4 is -0.601 and -
0.606.
;Timing info: 293 sec for 9x9 grid. (using V-pattern) relax-
at-coarsest-level takes about 20 sec for 10 passes.
(defun multigrid-relax (cloth pattern &optional (coarsest 3){times-
for-coarsest 10))
(if (coarsest-level-p cloth coarsest)
(setq cloth (relax-at-coarsest-level cloth times-for-coarsest))
(progn (dotimes (n (car pattern))
(setq cloth (relax-cloth-once cloth #'search-along-vector-
starting-smart)))
(dolist (item (cdr pattern))
(let ((coarse (coarsen cloth)))
(setq cloth (interpolate-correction cloth (copy-cloth coarse) (multigrid-
relax coarse pattern))))
(dotimes (n item)

(setq cloth (relax-cloth-once cloth #'search-along-vector-starting-

smart))))))
cloth)

(defvar *permanent-record* ())

(defun clock-multigrid (pattern)
(let ((now (get-universal-time))
(cloth (multigrid-relax (make-hammock 9 .7) pattern)))
(push (list (- (get-universal-time) now)
(energy-of-cloth cloth)
pattern
cloth)
*permanent-recordx)))

::: Here's the permanent record:

:;: This uses #'search-along-vector for the one point relaxer (11
march 86)

., ((319 -0.58848315 (0 1 2))

i+ (286 -0.6052529 (1 3))

i:: (443 -0.5859825 (1 1 2))

;.. (303 -0.6007395 (2 2))

;5. (380 -0.57208633 (1 1 1))

::: (145 -0.6013322 (0 2))

is (170 -0.58449453 (1 1)))

; Switching from #'search-along-vector to
;:. #'search-along-vector-starting-smart speeds up (clock-multigrid

'(2 2))
::: from 303 to 208 seconds, or 145%. ‘“hee!

;:: Using REFINE with cubic instead of bilinear interpolation slows

down
:;: from 183 to 193 sec, 5% slowdovn but energy gets slightly bet-

ter and
i;: result is smoother.

106

Changed the point-to-u+ etc functions to use caches, speeded
i1 clock-multigrid to 168 seconds.

i+ Changed grid-spacing from a rational to a flonum, sped up to
;.. seconds. Infuckingcredible!

:+: Changed to new strain energy expression, sped up to 56 seconds.

i+: Changed to new energy-of-cloth-around-point, sped up to 41
seconds.

+: Took out draw-cloth for debugging in relax-cloth-once, now
runs in 21 seconds.

File TEST-SAMPLES:

vii —*- Mode: Lisp: Package: COMMON-LISP-USER; Syntax: Common-
lisp -+~
ii: A few test examples

. Sets up points with fixity :free and no location
(defun make-point-array (cloth u-size v-size)
(let ((result (make-array (list u-size v-size))))
(dotimes (u u-size)
(dotimes (v v-size)
(setf (aref result u v)
(make-point :u u
AR
:cloth cloth))))
result))

107

(defun make-cloth-with-point-array (u-size v-size grid-spacing)
(let ((result (make-cloth :grid-spacing (float grid-spacing))))
(setf (cloth-points result)
(make-point-array result u-size v-size))
result))

(defun make-saddle (points-per-edge)
(let ((point-array (make-array (list points-per-edge points-
per-edge)))
(cloth (make-cloth :grid-spacing (/ 1 (- points-per-edge 1))))
(p00 (make-vector -1 0 -1))
(p01 (make-vector O -1 1))
(p10 (make-vector 0 1 1))
(p11 (make-vector 1 0 -1)))
(dotimes (u points-per-edge)
(dotimes (v points-per-edge)
(let ((u-fraction (/ u (- points-per-edge 1)))
(v-fraction (/ v (- points-per-edge 1))))
(setf (aref point-array u v)
(cond ((= u-fraction 0)
(create-point (linearly-interpolate-vectors v-fraction poo
pO1)
u v cloth
:fived))
((= u-fraction 1)
(create-point (linearly-interpolate-vectors v-fraction p10
pil)
u v cloth
:fixed))
((= v-fraction 0)
(create-point (linearly-interpolate-vectors u-fraction pO0O
pio)
u v cloth
:fixed))
((= v-fraction 1)

108

(create-point (linearly-interpolate-vectors u-fraction pO1
pi1)
u v cloth
:fixed))
(t
(create-point-xyz 0 O O u v cloth :free)))))))
(setf (cloth-points cloth) point-array)
cloth))

(defun make-prestretched-saddle (points-per-edge)

(let ((point-array (make-array (list points-per-edge points-
per-edge)))

(cloth (make-cloth :grid-spacing (/ 1 (- points-per-edge 1))))

(p00 (make-vector -1 0 -1))

(pO1 (make-vector O -1 1))

(p10 (make-vector O 1 1))

(pi1 (make-vector 1 0 -1)))

(dotimes (u points-per-edge)
(dotimes (v points-per-edge)
(let ((u-fraction (/ u (- points-per-edge 1)))
(v-fraction (/ v (- points-per-edge 1))))
(setf (aref point-array u v)

(create-point (linearly-interpolate-vectors u-fraction
(linearly-interpolate-vectors v-fraction pOO pO1)
(linearly-interpolate-vectors v-fraction p10 pi1))
u v cloth

(if (or (= u 0)
(= v 0)
(= u (- points-per-edge 1))
(= v (- points-per-edge 1)))
:fixed
:free))))))
(setf (cloth-points cloth) point-array)
cloth))

(defun make-canvas (points-per-edge u-stretch v-stretch &optional

109

(prestretched? t)(corners-only? nil))

(let ((point-array (make-array (list points-per-edge points-
per-edge)))

(cloth (make-cloth :grid-spacing (/ 1 (- points-per-edge 1))))

(p00 (make-vector 0 O 0))

(pO1 (make-vector O v-stretch 0))

(p10 (make-vector u-stretch 0 0))

(p11 (make-vector u-stretch v-stretch 0)))

(dotimes (u points-per-edge)
(dotimes (v points-per-edge)

(let ((u-fraction (/ u (- points-per-edge 1))’
(v-fraction (/ v (- points-per-edge 1)))
(at-edge-p (if corners-only?

(and (= u 0)
(or (= v 0)
(= v (- points-per-edge 1))))
(or (= u 0)
(= v 0)
(= u (- points-per-edge 1))
(= v (- points-per-edge 1))))))
(setf (aref point-array u v)
(create-point (if (or at-edge-p prestretched?)
(linearly-interpolate-vectors u-fraction
(linearly-interpolate-vectors v-fraction p0oO pOl)
(l1inearly-interpolate-vectors v-fraction p10 pi1))
(make-vector 0 0 0))
u v cloth
" (if at-edge-p
:fixed
:free))))))
(setf (cloth-points cloth) point-array)
cloth))

(defun make-warped-cloth (points-per-edge)
(let ((point-array (make-array (list points-per-edge points-

per-edge)))

110

(cloth (make-cloth :grid-spacing (/ 2 (- points-per-edge 1)))))
(dotimes (u points-per-edge)
(dotimes (v points-per-edge)
(let ((u-fraction (rescale u 0 (- points-per-edge 1) -1 1))
(v-fraction (rescale v O (- points-per-edge 1) -1 1)))
(setf (aref point-array u v)
(create-point-xyz u-fraction v-fraction (+ (expt u-fraction 3)
(expt v-fraction 2))
u v cloth :free)))))
(setf (cloth-points cloth) point-array)
cloth))

;Stretches along vector ALONG-VECTOR by proportion LENGTHWAYS,
perp to vector by SIDEWAYS.
(defun stretch-cloth (cloth along-vector lengthways sideways)
(let ({rotation (untranslate-matrix (make-view-matrix (make-
vector 0 0 0)
along-vector))))
(transform-whole-cloth cloth
(multiply-many-matrices rotation
(make-scale-matrix sideways sideways lengthways)
(math:invert-matrix rotation)))))

(defun transform-whole-cloth (cloth matrix)
(do-points (pt cloth (:free :fixed))
(setf (point-location pt)
(math:multiply-matrices matrix (point-location pt))))
cloth)

(defun make-banner (length width)
(transform-whole-cloth (make-canvas 5 length width t t)
(make-rotate-matrix O 9¢ 0)))

(defun energy-of-banner (length)
(let ((cloth (transform-whole-cloth (make-canvas 5 length .9
tt)

111

(make-rotate-marrix 0 90 0))))
(draw-cloth cloth)
(energy-of-whole-cloth cloth)))

(defun make-hammock (points-per-side compression)
(let ((result (make-flat-cloth points-per-side points-per-side
compression compression (/ 1 (- points-per-side 1)))))
(setf (point-fixity (point-at result 0 0))

:fixed)

(setf (point-fixity (point-at result 1 0))
:fixed)

(setf (point-fixity (point-at result O .5))
:fixed)

(transform-whole-cloth result (make-rotate-matrix O O 36))))

(defun make-flat-cloth (u-size v-size u-compression v-compression
grid-spacing)
(let ((result (make-cloth-with-point-array u-size
v-size
grid-spacing))
(u-spacing (* u-compression grid-spacing))
(v-spacing (* v-compression grid-spacing)))
(do-point-coordinates (u v result)
(set-point-location (point-at-integer result u v)
(make-vector (* u u-spacing)
(- v v-spacing)
0)))
result))

(defun make-shower-curtain (points-per-side compression &optinmnal
(hooks points-per-side))
(let ((result (make-flat-cloth points-per-side points-per-side
1 compression (/ 1 (- points-per-side 1)))))
(dotizes (h hooks)
(cetf (point-firity (point-at-integer result O (round (rescale

h O (- hooks 1) 0 (- points-per-side 1)))))

112

:fixed))
(transform-whole-cloth result (make-rotate-matrix O 90 0))))

(defun drop-over-ball (points-per-edge ball-diameter)
(clear-all-objects)
(add-objects (make-ellipsoid ball-diameter ball-diameter ball-
diameter 0 0 0 .5 .5 (* -.5 ball-diameter)))
(let ((cloth (make-flat-cloth points-per-edge points-per-edge
11 (/1 (- points-per-edge 1)))))
(setf (point-fixity (point-at cloth .5 .5))
:fixed)
cloth))

(defun two-bumps (points-per-edge)
(clear-all-objects)
(add-objects (make-floor (make-vector O O O)(make-vector O O
1))
(make-ellipsoid .5 .6 .5 000 .2 .2 0)
(make-ellipsoid .4 .4 .4 000 .6 .5 0))
(let ((cloth (transform-whole-cloth (make-flat-cloth points-
per-edge points-per-edge .9 .9 (/ 1 (- points-per-edge 1)))
(make-translate-matrix O 0 .25))}))
(setf (point-fixity (point-at cloth (/ .2 .9)(/ .2 .9)))
:fixed)
(setf (point-location (point-at cloth (/ .2 .9)(/ .2 .9)))
(make-vector .2 .2 .25))
(setf (point-fixity (point-at cloth (/ .6 .9)(/ .5 .9)))
:fixed)
(setf (point-location (point-at cloth (/ .6 .9)(/ .5 .9)))
(make-vector .6 .5 .2))
cloth))

(defun make-and-draw-parabola (angle points-per-edge)
(set-display-parameters 1.7 -1.7 1.7 -1.7 3 -3)
(draw-cloth (let ((point-array (make-array (list points-per-
edge points-per-edge)))

113

(cloth (make-cloth :grid-spacing (/ 1 (- points-per-edge 1)))))
(dotimes (u points-per-edge)
(detimes (v points-per-edge)
(let ((u-fraction (rescale u O (- points-per-edge 1) -1 1))
(v-fraction (rescale v O (- points-per-edge 1) -1 1)))
(setf (aref point-array u v)
(create-point-xyz (+ (* u-fraction (cos angle))
(¥ v-fraction (sin angle)))
(- (x v-fraction (cos angle))
(* u-fraction (sin angle)))
(» .8 (expt (- (* v-fraction (cos angle))
(* u-fraction (sin angle)))
2))
u v cloth :free)))))
(setf (cloth-points cloth) point-array)
cloth))
(draw-3d-1line -1.9 0 0 1.9 0 0)
(draw-3d-1line 0 -1.9 0 0 1.9 0)
(draw-3d-1line 0 0 0 0 0 2.2))

114

