
Charge-Based Proportional Scheduling

Umesh Maheshwari

Technical Memo MIT/LCS/TM-529
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139
January, 1995

Abstract

Most priority-based schedulers lack the ability to control the
relative execution rates of applications. A recent scheme,
called lottery scheduling [WW94], uses randomization to
control the execution rates of threads in proportion to the
tickets allocated to them. However, randomization does not
afford sufficient control over short periods of time; e.g., it
would fail to provide the intended execution rates for threads
that run for less than 10 timeslices. This paper presents a
new scheme that controls execution rates over much smaller
intervals and provides better service guarantees. Simula-
tion results prove its advantage over lottery scheduling. The
scheme is based on charging threads for CPU usage and occa-
sionally skipping some threads to keep the usage close to the
intended proportion. Unlike earlier charge-based schemes,
which adjust the priorities of running threads, this scheme
schedules threads in round-robin order. Despite its improved
quality of service, the scheduler processing overhead is low.
Keywords:
scheduling, resource allocation, proportional share

1 Introduction

Most thread schedulers are based on some variant of priority
scheduling. Such schedulers provide crude control over the
relative execution of application threads. As long as a higher
priority thread is runnable, the lower priority threads are ig-
nored. Most systems try to solve this problem by adding
usage-charging techniques, which reduce the priorities of
threads with processor usage. While this allows some degree
of fairness, it does not provide control over the relative ex-
ecution rates of applications. The effect of usage-charging
varies wildly with the values of parameters chosen, and de-
pends unpredictably on the particular runtime situation. For
instance, if the charge parameter is not set correctly, two
high priority threads can keep alternating and starve a lower
priority thread.

Proportional scheduling has been proposed for predictable
control over execution rates [WW94]. Here, threads are al-

located tickets in order that runnable threads will execute
at rates proportional to their tickets. Proportional execution
rates are useful in situations where services of varying im-
portance must proceed concurrently. This is the case, for
example, in a server handling multiple clients, a multi-media
application processing audio and video, or a multi-threaded
scientific computation where accuracy is governed by the
amount of processing.

The implementation of proportional scheduling in
[WW94] is called lottery scheduling. It uses randomiza-
tion to select threads in proportion to the tickets allocated
to them. However, randomization does not afford sufficient
control on the execution rates over short periods of time such
as 10 timeslices. As a result, threads that live for a short
time, as are common in graphical user interfaces, may fail to
receive the intended execution rates. Further, randomization
provides poor service guarantees: even if a newly runnable
thread has a large number of shares, it may not be scheduled
for an unbounded time, albeit the probability of this hap-
pening decreases with time. This makes lottery scheduling
unsuitable for handling high-priority tasks, which priority
scheduling handles quite well.

I present a new implementation of proportional scheduling
that is based on charging threads for processor usage. Threads
are considered for scheduling in round-robin order, and some
are skipped to keep their execution rates close to the intended
proportion. The scheme is different from usage-charging
schemes added on top of priority scheduling, which adjust the
priorities of running threads and schedule the thread with the
highest priority. The fair share scheduler proposed in [KL88]
also works through adjusting priorities, and therefore suffers
from unpredictable execution rates. Actually, this work is
focused on providing fairness on a per-user basis over longer
periods of time, not on controlling the execution rates of
individual threads.

Charge-based proportional scheduling is capable of pro-
viding proportional execution rates over periods as short
as 10 timeslices. The deterministic nature of the scheme
provides significantly strong service guarantees and handles
high-priority threads just as well priority scheduling. De-
spite these advantages, the scheme has very little processing

1



overhead — less than lottery scheduling in most cases.
This paper focuses on efficient and fine-grained control

over execution rates of individual threads. The simplicity of
the scheme lends itself to the addition of techniques proposed
for other aspects of a full-fledged scheduler. For example,
many of the supplementary techniques proposed for lottery
scheduling, such as modular decomposition, are also appli-
cable to the proposed scheme.

The paper is organized as follows. Section 2 introduces
the charge-based algorithm in a simple setting, and Section 3
discusses issues such as creation and deletion of threads in
a realistic situation. Section 4 gives simulation results to
prove the advantage of the charge-based scheme. Section 5
compares the scheme with earlier schemes, especially lottery
scheduling.

2 Charge-Based Scheduling

This section describes the basic algorithm behind the pro-
posed scheme. It deals with scheduling a given set of
runnable threads to achieve some desirable ratio of execu-
tion rates. Issues such as creation or blocking of threads are
discussed in Section 3.

Each thread is allocated some shares, with the intention
that runnable threads will execute at rates proportional to their
shares. (Shares are like tickets in lottery scheduling.) The
scheduler does not change the allocation of shares by itself;
it manipulates another value associated with each thread: the
thread’s account. The scheduler initializes the account of a
thread with the thread’s shares. It schedules timeslices, or
quanta, to runnable threads in round-robin order. Each time
a thread receives a quantum, the scheduler deducts a charge
from its account. During the round-robin scheduling, any
thread with a non-positive account is skipped. When there are
no threads left with positive account, the scheduler refunds
the accounts of all runnable threads with the number of shares
they have. The concept of a refund is similar to “aging” of
the usage charge in priority scheduling [LMKQ89], except
that a refund is targeted to achieve a more predictable effect.
The algorithm is depicted in Figure 1. Setting the appropriate
level of charge is crucial for the efficacy of the algorithm and
is discussed in Section 2.1.

The result of the above scheduling is that, over a suffi-
ciently long period of time, threads receive quanta in ratio
of their shares. For example, consider two threads, S with
3 shares and T with 2. The scheduling of these threads is
shown below. Here, the notation [Ta] means that T ’s account
was refunded up to a; Ta means that T received a quantum
and its account dropped down to a; (Ta) means that T was
skipped, so its account remained at a. Assuming a charge of
1 per quantum, T and S are scheduled as follows:

[S3 T2]S2 T1 S1 T0 S0 (T0) [S3 T2]S2 T1 S1 T0 S0(T0) : : :

While true do
found = false
For each runnable thread T do

If T.account > 0 then
Run T for a quantum
found = true
T.account = T.account - charge

end
end
If not found then

For each runnable thread T do
T.account = T.account + T.share

end
end

end

Figure 1: Charge-based proportional scheduling.

which results in the sequence, STSTS; STSTS; : : : . Here,
the threads are refunded after every 5 quanta, of which S
receives 3 and T receives 2.

Analysis

I define the execution rate of a thread over a period as
the ratio of the quanta allocated to the thread and the total
quanta scheduled in that period. Given the shares allocated
to various threads, si, the intended execution rate of a thread
with s shares is s=Σsi. Over any given period of time, the
actual execution rate may deviate from the intended rate.
In both lottery scheduling and charge-based scheduling, the
actual execution rates get closer to the intended rates over
longer periods of time. The smaller the period required to
limit the deviation in the rates, the better the scheme.

In this paper, I measure time periods in quanta because it
factors out the differences in the absolute time interval used
for a quantum on different systems. I refer to a pass made by
the scheduler over the set of runnable threads as a round. In
Figure 1, a round is one iteration of the while loop. In any
round, each thread is either given one quantum or skipped.
The period between two refunds is a term. In the example
where S has 3 shares and T has 2 and the charge is 1, a term
involves 3 rounds, with T skipped in the third. In general, if
the charge, c, is greater than 1, the accounts of some threads
may be negative at the end of a term (ranging from �(c� 1)
to 0). Therefore, the actual execution rates over a term may
differ from the intended rates. The duration of a term can
vary between Σd si

c
e and Σb si

c
c depending on the values of

the accounts at the beginning of the term.
Consider a period of time such that the accounts of all

threads at the end of the period are identical to their values at
the beginning. I refer to such a period as a cycle. (A special

2



case is when the accounts are all zero at the beginning as
well as at the end.) By definition, the refund granted to a
thread during a cycle must be equal to the charge applied to
it. Since the refund is proportional to the allocated shares and
the charge is proportional to the number of quanta received,
during each cycle, the threads receive quanta in exact propor-
tion to their shares. Thus, the actual execution rates over the
duration of a cycle are exactly equal to the intended rates.

In the example with 3 and 2 shares, each term constitutes
a cycle, but this need not be true in general. Given the shares
allocated to various threads, si, and the charge, c, the length
of the cycle in quanta can be computed analytically, although
the computation may be non-trivial. In the simple case when
the charge is 1, a period of Σsi quanta constitutes a cycle.

2.1 How much to Charge

Applying a charge of 1 works fine only as long as the shares
held by runnable threads are small integers. The problem is
obvious from the following example, where S has 30 shares
and T has 20:

[S30 T20]S29 T19 : : : S10 T0 S9 (T0) : : : S0 (T0)

which results in the sequence,
STSTSTSTSTSTSTSTSTSTSSSSSSSSSS; : : : .
Here, for the first 20 rounds, both S and T are scheduled
once per round. For the next 10 rounds, only S is scheduled.
Thus, the period of time over which S and T receive propor-
tional execution rates (the cycle) is as long as 30 quanta. If
S terminates in only 10 quanta, it would not live to see its
advantage over T .

I have considered two ways to compute the appropriate
level of charge in the general case. While the first is more
intuitive, the second results in more uniform scheduling as
well as a simpler scheduling algorithm. Analysis and sim-
ulation results show that even the first performs better than
lottery scheduling.

2.1.1 Fixed-Term Charging

This technique aims to provide approximately proportional
execution rates over short periods by constraining the term
size. It fixes a target term size and computes a charge such
that most terms are about that long. Given a target term size,
k, a suitable value for the charge is dΣsi

k
e. (All computation

proposed in this paper is integral.) Here, k can be chosen to
be a power of 2 for quick integer division.

With this charge applied for each quantum, all threads will
have non-positive accounts in about k quanta. The exact term
size may differ from k depending on the rounding-off of the
charge, the divisibility of the individual share values by the
charge, and the number of threads. First, consider a simple
example where the term size is indeed k. If S has 30 shares

and T has 20, and the term size is 10, then the charge should
be (30+20)

10 , or 5. The scheduling happens as follows:

[S30 T20]S25 T15 S20 T10 S15 T5 S10 T0 S5 (T0)S0 (T0)

which results in the sequence, STSTSTSTSS; : : : . In the
above example the accounts of S and T at the end of the
term are zero, so the term constitutes a cycle. In general, the
accounts of threads whose share values are not divisible by
the charge will be negative at the end of the term. Although
such terms do not provide exactly proportional rates, they
come close in practice. Furthermore, the execution rates
over a larger period of time indeed converge to the allocated
shares. This happens because negative accounts at the end
of one term affect scheduling during the next terms in a self-
corrective manner. As an example, consider thread S with
7 shares and thread T with 4, and an intended term size of
6. The desired charge is (7+4)

6 or about 2. The first term is
scheduled as follows:

[S7 T4]S5 T2 S3 T0 S1 (T0)S�1 (T0)

In this term, S received 4 quantum and T received 2. The
next term is scheduled as follows:

[S6 T4]S4 T2 S2 (T0)S0 (T0)

Note that the refund added 7 to S’s account of -1. In this
term, S received 3 quantum and T received 2. Thus, the
quanta received in the two terms combined are in proportion
to the allocated shares. This is to be expected since the two
terms form a cycle. In addition, the execution rates within
each term is close to the intended rate.

There is a tradeoff involved in choosing the target term
size, k. A small k results in shorter terms, which is desirable
for fine-grained control over execution rates, but results in
larger deviations from the intended rates over the term. Sim-
ulation results in Section 4 show that setting k to 10 results in
deviation of less than 0.05 in execution rates over a 10 quanta
period.

2.1.2 Maximum-Share Charging

Here, the charge is set so that the threads are refunded after
every round. That is, each round acts as a term. To exhaust
all accounts within a round, the charge is set to the maximum
share of any thread. Since all threads are refunded after
each round, the account of the thread with the maximum
shares remains constant. Therefore, this thread is run in each
round. The accounts of other threads may remain negative
even after a refund; such a thread is not run until successive
refunds increase its account above zero. If S has 30 shares
and T has 20, the charge is 30 and the scheduling happens as
follows:

[S30 T20]S0 T�10 [S30 T10]S0 T�20 [S30 T0]S0 (T0) : : :

3



w
hich

results
in

the
sequence,S

T
S
T
S
;
:::.

T
his

autom
ati-

cally
gives

the
sm

allestpossible
cycle

size
of

5
and

is
better

than
the

fixed-term
technique.

E
ven

w
hen

the
cycle

size
in

the
tw

o
techniques

is
the

sam
e,this

one
results

in
a

m
ore

uni-
form

distribution
of

quanta,resulting
in

less
deviation

from
the

intended
rates

over
sub-cycle

periods.
A

s
an

exam
ple,

consider
the

scheduling
of

S
w

ith
5

shares
and

T
w

ith
2.

U
sing

m
axim

um
-share,the

charge
is

5:

[S
5
T

2 ]S
0
T
�

3
[S

5
T
�

1 ]S
0
(T
�

1 )
[S

5
T

1 ]S
0
T
�

4
[S

5
T
�

2 ]

S
0
(T
�

2 )
[S

5
T

0 ]S
0
(T

0 )
:::

resulting
in

the
sequence

S
T
S
S
T
S
S
;
S
T
S
S
T
S
S
;
:::.

O
n

the
otherhand,using

a
targetterm

-size
of7

(or10),the
charge

w
ould

be
1:[S

5
T

2 ]S
4
T

1
S

3
(T

0 )
S

2
(T

0 )
S

1
(T

0 )
:::

resulting
in

the
sequence:

S
T
S
T
S
S
S
;
S
T
S
T
S
S
S
;
:::.

H
ere,

T
’s

quanta
are

clum
ped

together
into

the
the

first
2

rounds.

A
nalysis

Perhaps
surprisingly,

the
m

axim
um

-share
algorithm

given
above

is
sim

ilar
to

B
resenham

’s
digitized

line-draw
ing

algo-
rithm

,
w

hich
is

used
heavily

in
com

puter
graphics

[B
re65].

T
he

line-draw
ing

algorithm
plots

pixels
in

a
2-D

grid
so

as
to

approxim
ate

a
line

betw
een

tw
o

points
in

the
grid.

Suppose
the

line
is

to
be

draw
n

from
the

point
(0
;0

)
to

(X
;Y

).
T

he
algorithm

w
orks

by
m

aintaining
variables

x
and

y
forthe

last
pointplotted.

If
X

>
Y

,the
algorithm

increm
ents

x
ateach

step,
and

decides
w

hether
or

not
to

increm
ent

y
depending

on
their

currentvalues.
Figure

2
show

s
the

resultof
draw

ing
a

line
from

(0
;0

)
to

(10
;4

).
T

he
algorithm

is
effective:

it
lim

its
the

deviation
of

pixels
from

the
intended

line
due

to
quantization

error.
It

is
also

very
efficient:

it
involves

only
integer

addition
and

subtraction.

0
1

2
3

4
5

0 1 2

6
7

8
9

10

3 4

x

y

Figure
2:

D
igitized

line
draw

ing.

Justas
the

line-draw
ing

algorithm
approxim

ates
a

line
by

plotting
pixels,proportionalscheduling

approxim
ates

the
in-

tended
execution

rates
by

allocating
quanta,except

that
the

latterm
ay

involve
m

ore
than

2
variables

(threads).
T

he
coun-

terparts
of

the
constants

X
and

Y
are

the
allocated

shares,
and

those
of

the
variables

x
and

y
are

the
accounts.

T
he

counterpartof
the

test
(X

>
Y
)

is
the

selection
of

the
m

ax-
im

um
share.

L
ike

the
line-draw

ing
algorithm

,
m

axim
um

-
share

charge-based
scheduling

is
both

effective
in

lim
iting

deviation
and

efficientin
lim

iting
processing

overhead.

P
erform

ance
T

he
follow

ing
analyzesthe

processing
overhead

ofthe
sched-

uler.
T

he
goalis

to
find

the
am

ountof
w

ork
done

per
quanta

scheduled.
Suppose

there
are

n
threads

and
thread

T
i

has
s
i

shares.
L

et
the

m
axim

um
shares

be
s
m

.
T

hen,
roughly

speaking,
in
s
m

consecutive
rounds,thread

T
i

is
scheduled

s
i

tim
es.

T
hus,totalquanta

scheduled
in
s
m

rounds
are

Σ
s
i .

T
he

w
ork

done
during

these
rounds

is
n
�
s
m

units,
w

here
each

unitofw
ork

involvesreading
an

account,adding
orsub-

tracting
to

it,and
w

riting
itback.

T
he

w
ork

done
perquantum

allocated
is
n
�
s
m
=Σ
s
i ,

or
s
m
=
s
a ,

w
here

s
a

is
the

average
shares

held
by

the
threads.

N
ote

that
this

value
w

ould
be

a
sm

allconstantfor
m

ostdistributions
of

shares;for
exam

ple,
itis

2
for

a
uniform

distribution
of

shares.
In

the
w

orstcase,
w

hen
the

shares
are

highly
skew

ed,itis
upper-bounded

by
n

.
T

he
overhead

in
realtim

e
is

expected
to

be
low

because
the

unitof
w

ork
considered

above
has

very
little

overhead.

3
D

ynam
ic

C
hanges

T
he

previous
section

focused
on

scheduling
a

fixed
set

of
runnable

threads
according

to
the

shares
allocated

to
them

.
T

his
section

considers
issues

regarding
addition

and
rem

oval
ofrunnable

threads.
Since

m
axim

um
-share

charging
is

m
ore

effective
and

sim
pler

than
fixed-term

charging,
this

section
concentrates

on
only

thattechnique.

3.1
C

reation/Term
ination

of
T

hreads

T
here

are
several

options
to

handle
new

runnable
threads.

Probably
the

sim
plest

is
to

incorporate
the

new
thread

right
aw

ay
so

that
it

gets
to

run
as

part
of

the
ongoing

round
(and

therefore,
in

the
ongoing

term
).

A
potential

problem
w

ith
this

approach
is

that
a

continual
supply

of
low

-share
threads

can
keep

a
round

going
for

ever.
For

instance,
one

low
-share

thread
could

create
another

low
-share

thread
and

then
term

inate,
w

hile
keeping

the
num

ber
of

threads
at

any
tim

e
roughly

the
sam

e.
T

his
can

starve
higher-share

threads.
Further,itis

unclearas
to

w
hen

the
charge

should
be

updated
to

reflectthe
new

thread:
im

m
ediately,orw

hen
the

nextterm
starts.

N
either

alternative
is

perfect,
although

the
choice

is
notexpected

to
have

substantialim
pacton

perform
ance.

A
nother

option
is

to
w

ait
until

the
ongoing

term
is

over
before

incorporating
the

new
thread

into
the

run
queue.

T
he

w
aitcan

be
im

plem
ented

by
sim

ply
initializing

the
accountof

the
new

thread
to

zero,so
thatthe

thread
is

skipped
untilthe

4

N r r -1--r-



next refund. This technique is more suitable for maximum-
share charging because there the terms are short (one round
each), so the wait is shorter. Even so, it is undesirable for a
new high-share thread to have to wait until the round is over.

It is possible to get the better of the above options with the
following approach:

1. If the new thread has more shares than any other runnable
thread, it is scheduled immediately in the ongoing round.
The charge is updated and the difference (if any) applied
to the threads that have already run during the current
round.

2. Otherwise, the new thread waits until the ongoing term
has finished. (Its account is initialized to zero.) The
charge is updated when the next term begins.

The above approach incorporates a desirable element of
priority-based scheduling: often, a high-priority thread must
be run immediately in response to an external event. The
desirable effect can be achieved by allocating a large number
of shares to such a thread, so that the above approach will
ensure that the thread is run immediately. It may seem at
first that this approach might cause a high-share thread to
wait for lower-share threads if another, higher-share, thread
is runnable. Actually, this is unlikely because the higher-
share thread must have resulted in a high charge, so that the
accounts of the low-share threads are expected to be negative
for most rounds (terms) and such threads will be skipped.

The removal of a runnable thread is simple. The charge is
updated at the end of the ongoing term. In maximum-share
charging, after the thread with maximum shares is removed,
the accounts of the remaining threads may need to be re-
funded multiple times (say, m) before any of them becomes
positive. This procedure can be expedited by computing m
using integer division and then applying m times the normal
refund at once.

3.2 Blocking/Unblocking of Threads

A simple way to handle blocking and unblocking of threads
would be to treat them exactly as termination and creation
of threads. Under this approach, when a thread blocks, its
account is forgotten and is reinitialized when the thread un-
blocks. However, this can distort execution rates away from
the intended proportions if some threads block and unblock
often. For example, a low-share thread that blocks and un-
blocks after every round (term) will get to run in every round.

Therefore, a better approach is to retain the account of a
blocked thread. Unlike newly created threads, there is no dan-
ger of a continual sequence of unblocking threads; therefore,
an unblocked thread can be incorporated into the ongoing
round. As in the case of new threads, when a maximum-
share thread unblocks, it is scheduled immediately.

A pertinent issue is the amount of refund to grant a thread
when it unblocks. If a thread unblocks in the same term as

it blocked in, it is not granted any refund. Otherwise, the
thread is granted a single refund. (A more fancy scheme can
be imagined that grants refund in proportion to the terms for
which the thread blocked, while ensuring that the resultant
account of the thread is not more than its shares.) This
approach requires a mechanism to check for the condition
when a thread blocks and unblocks in the same term, which
can be implemented using a term counter.

The charge is updated as in the case of creation and dele-
tion of threads. When a thread blocks, the charge is updated
when the next term begins. When a thread unblocks, the
charge is updated immediately and the difference (if any) is
applied retroactively to threads that have already run in the
ongoing round.

3.3 Fractional Quanta

If a thread blocks or yields the CPU after using only a fraction
of a quantum, it may receive less than its proportional share
of the CPU time. Charge-based schemes can easily fix this
by prorating the charge applied according to the fraction of
the quantum actually used by the thread.

One implication of prorating the charge is that maximum-
share charging might not actually exhaust the accounts of
some threads in one round. If a thread with a positive account
at the end is still runnable (say, because it yielded instead of
blocking), it will be scheduled again before the next refund,
as desired.

Prorating of the charge can be implemented without re-
sorting to floating point numbers. A fixed number of lower
order bits, b, in the charge and the account variables can
be used to track the fractional usage. Each quanta is divided
into 2b subquanta. The charge to be applied is then computed
based on the per-quantum charge and the actual number of
subquanta used.

4 Simulation

This section contains simulation results for lottery, fixed-term
charge-based, and maximum-share charge-based schedulers.
The goal is to assess the proportionality of execution rates
over small periods.

4.1 Model and Implementation

The model simulates a simplistic scenario where a number of
threads with different shares are introduced at the beginning
and allowed to run without blocking. The model also ignores
the processing overhead due to the scheduler and the clock
interrupt handler in accounting for time. However, it is ap-
parent from the charge-based algorithm that it involves only a
few integer operations and loads and stores for each runnable
thread considered in round-robin order. Therefore, I believe

5



that ignoring the overhead of charge-based scheduling does
not distort the execution rates in real time.

Each scheduler is simulated as a function: the input is
the shares allocated to various threads, and the output is a
sequence identifying the threads that should be scheduled in
successive quanta.

I found that lottery scheduling was sensitive to the quality
of the random number generator used, especially when deal-
ing with small number of tickets, such as two threads with
1 and 2 tickets. Poor random number generators resulted
in perceptibly worse deviations in execution rates. I used
the Park-Miller pseudo-random number generator [PM88],
which is fast and yet of high quality and is the one used
in [WW94].

For fixed-term charging, the target term size was fixed at
10. The choice of the target term size favors certain com-
binations of shares. For example, a term size of 10 is well
suited for 20-30 shares, because then the charge is 5, which
exactly divides both 20 and 30. I have avoided such favored
combinations in the results presented.

4.2 Measurables

I have used the following variables to present the output from
the experiments. Note that time is measured in quanta.

The cumulative quanta, qt, received by a thread at any
time t is simply the number of quanta scheduled to the thread
by that time.

The execution rate, ep;t, of a thread over a period p and at
time t is the ratio of the quanta received by the thread over
a period p starting at time t to the total number of quanta in
that period.

ep;t = (qt+p�1 � qt�1)=p

The intended execution rate, e, of a thread is the ratio of
the shares held by the thread to the total number of shares
held by runnable threads.

e = s=Σsi

The mean absolute deviation of the execution rate, dp,
over a period p is the expected deviation of the execution rate
over a period p from the intended rate.

dp = E(jep;t � ej) =

NX

t=1

jep;t � ej=N

The value of N used in the experiments was 1000.

4.3 Results

The following results were obtained from scheduling two
threads with 50 and 20 shares. Figures 3-5 plot the cumu-
lative quanta received (qt) by the two threads against total
quanta scheduled (t). The dotted lines represent the intended

allocation. By and large, all of the three schemes seem to ad-
here to the intended allocation. The max-share charge-based
scheme follows the intended lines the best, which is not sur-
prising, given its similarity with the line-drawing algorithm.

Figures 6-8 plot the execution rates over a period of 10
quanta (e10;t) of the two threads against time (t). It is apparent
that lottery scheduling can result in quite erratic execution
rates when they are measured over 10 quanta. For example,
at times the execution rate of the second thread dropped to
zero (it was not scheduled for more than 10 quanta). On
the other hand, there are times when the execution rate of
the second thread was more than that of the first. Since the
outcome of lottery scheduling is not deterministic, it must
be noted here that the result shown is only typical: results
in other runs were sometimes worse and sometimes better.
Both of the charge-based schemes seem to be distinctly better
than lottery scheduling. Further, the maximum-share scheme
outperforms the fixed-term scheme.

Figure 9 provides the definitive comparison between the
various schemes. It plots the deviation in the execution rates
(dp) against the period (p) over which the execution rates
are measured. When only two threads are scheduled, the
absolute deviations in the execution rates for the two are equal
by definition. Hence, only one curve is shown per scheme.
Note that the mean deviation for lottery scheduling is largely
free of a chance factor (unlike execution rates) because it is
computed by averaging deviations over 1000 periods.

As expected, the deviations decrease as the period over
which the execution rates are measured is increased, modulo
some fluctuations in the case of the charge-based schemes
due to the periodicity of their quantization errors. The mean
deviation in the execution rates for lottery scheduling over 10
quanta is about 0.11, while that for maximum-share charging
is 0.025. Again, maximum-share charging has lower devia-
tions than fixed-term charging. The deviation for maximum-
share charging drops to zero at every multiple of 7 because
the scheme effectively achieves the smallest possible cycle
size, which is 7.

As an example of scheduling of more than two threads,
Figures 10 and 11 show the cumulative quanta received by
four threads with shares 47, 31, 23, and 11.

5 Related Work

The fair-share scheduler proposed in [KL88] is based on
usage charging but it works through adjusting priorities and
running the process of highest priority. Processes with higher
priority get charged more for same execution time. This
work is focused on providing fairness on a per-user basis
over longer periods of time, not on controlling the execution
rates of individual threads.

At the time this paper was originally written (January
1995), the only existing work aimed at proportional schedul-

6



0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 3: Lottery scheduling (50:20)

0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 4: Fixed-term charging (50:20)

0 20 40 60 80 100

quanta scheduled

0

20

40

60

cu
m

ul
at

iv
e 

qu
an

ta
 r

ec
ei

ve
d 

(q
)

Thread1

Thread2

Figure 5: Maximum-share charging (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

1.0

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 6: Lottery scheduling (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 7: Fixed-term charging (50:20)

0 20 40 60 80 100

time (in quanta)

0.0

0.2

0.4

0.6

0.8

ex
ec

ut
io

n 
ra

te
 o

ve
r 

10
 q

ua
nt

a 
(e

10
)

Thread1

Thread2

Figure 8: Maximum-share charging (50:20)

7



0
2
0

4
0

6
0

8
0

1
0

0

ti
m

e 
p

er
io

d

0
.0

0

0
.0

5

0
.1

0

0
.1

5
mean deviation from intended rate (d)

lo
tt

er
y

fi
x

ed
-c

el
l

m
ax

-s
h

ar
e

Fi
gu

re
9:

D
ev

ia
tio

n
fr

om
in

te
nd

ed
ra

te
s

(5
0:

20
)

0
20

40
60

80
10

0

q
u

an
ta

 s
ch

ed
u

le
d

010203040

cumulative quanta received (q)

T
hr

ea
d1

T
hr

ea
d2

T
hr

ea
d3

T
hr

ea
d4

Fi
gu

re
10

:
L

ot
te

ry
sc

he
du

lin
g

(4
7:

31
:2

3:
11

)

0
20

40
60

80
10

0

q
u

an
ta

 s
ch

ed
u

le
d

010203040

cumulative quanta received (q)

T
hr

ea
d1

T
hr

ea
d2

T
hr

ea
d3

T
hr

ea
d4

Fi
gu

re
11

:
M

ax
im

um
-s

ha
re

ch
ar

gi
ng

(4
7:

31
:2

3:
11

)

in
g

ov
er

sm
al

l
in

te
rv

al
s

w
as

lo
tte

ry
sc

he
du

lin
g.

Si
nc

e
th

en
th

re
e

ot
he

rd
et

er
m

in
is

tic
sc

he
m

es
ha

ve
ap

pe
ar

ed
[F

S9
5,

SA
W

95
,W

W
95

].
A

co
m

pa
ri

so
n

be
tw

ee
n

th
em

an
d

ch
ar

ge
-

ba
se

d
sc

he
du

lin
g

is
fo

un
d

in
[W

W
95

].

C
om

pa
ri

so
n

w
it

h
L

ot
te

ry
Sc

he
du

lin
g

T
he

ch
ar

ge
-b

as
ed

sc
he

m
e

pr
ov

id
es

pr
op

or
tio

na
l

ex
ec

ut
io

n
ra

te
s

ov
er

sm
al

le
r

tim
e

pe
ri

od
s

th
an

pr
ov

id
ed

by
lo

tte
ry

sc
he

du
lin

g.
T

hi
s

is
ev

id
en

t
fr

om
si

m
ul

at
io

n
re

su
lts

,
w

hi
ch

sh
ow

th
at

th
e

ch
ar

ge
-b

as
ed

sc
he

m
e

ac
hi

ev
es

lo
w

er
de

vi
at

io
ns

ov
er

10
qu

an
ta

th
an

w
ha

tl
ot

te
ry

sc
he

du
lin

g
ac

hi
ev

es
ov

er
10

0
qu

an
ta

.
T

he
ad

va
nt

ag
e

of
th

e
ch

ar
ge

-b
as

ed
sc

he
m

e
is

in
tu

-
iti

ve
be

ca
us

e
it

co
rr

ec
ts

fo
r

sk
ew

s
in

th
e

pa
st

al
lo

ca
tio

n
of

qu
an

ta
to

m
ov

e
cl

os
er

to
th

e
de

si
re

d
al

lo
ca

tio
n,

w
hi

le
lo

tte
ry

sc
he

du
lin

g
re

lie
s

on
B

er
no

ul
li

tr
ia

ls
,w

hi
ch

ar
e

in
de

pe
nd

en
t

of
pa

st
de

ci
si

on
s.

T
he

de
te

rm
in

is
ti

c
na

tu
re

of
ch

ar
ge

-b
as

ed
sc

he
du

lin
g

pr
o-

vi
de

s
si

gn
ifi

ca
nt

ly
st

ro
ng

er
se

rv
ic

e
gu

ar
an

te
es

.
In

lo
tte

ry
sc

he
du

lin
g,

th
er

e
is

a
fin

ite
ch

an
ce

th
at

ev
en

a
th

re
ad

w
ith

a
la

rg
e

nu
m

be
ro

fs
ha

re
s

m
ay

no
tr

un
fo

ra
w

hi
le

.
C

on
si

de
rt

he
si

tu
at

io
n

w
he

n
th

er
e

ar
e

8
th

re
ad

s
w

it
h

10
sh

ar
es

ea
ch

,a
nd

a
th

re
ad

w
ith

20
sh

ar
es

is
cr

ea
te

d.
T

he
ex

pe
ct

ed
nu

m
be

r
of

qu
an

ta
fo

rw
hi

ch
th

e
20

-s
ha

re
th

re
ad

w
ill

ha
ve

to
w

ai
tb

ef
or

e
it

ge
ts

its
fir

st
qu

an
tu

m
is

(Σ
s i
=
s)

�
1,

or
4.

T
he

re
is

a
10

.7
%

pr
ob

ab
ili

ty
th

at
th

e
20

-s
ha

re
th

re
ad

w
ill

ha
ve

to
w

ai
tf

or
10

or
m

or
e

qu
an

ta
.

In
m

ax
im

um
-s

ha
re

ch
ar

ge
-b

as
ed

sc
he

du
lin

g,
th

e
m

ax
im

um
-s

ha
re

th
re

ad
ru

ns
in

ev
er

y
ro

un
d.

E
ve

n
ot

he
r

th
re

ad
s

ar
e

gu
ar

an
te

ed
to

ru
n

ev
er

y
so

of
te

n
de

pe
nd

in
g

on
th

ei
rs

ha
re

s.
W

he
n

a
ne

w
m

ax
im

um
-s

ha
re

th
re

ad
st

ar
ts

up
,i

t
is

gu
ar

an
te

ed
to

ru
n

im
m

ed
ia

te
ly

.
L

ot
te

ry
sc

he
du

lin
g

re
qu

ir
es

ge
ne

ra
tin

g
a

ra
nd

om
nu

m
be

r
(m

od
ul

o
Σs

i
)

an
d

th
en

ch
ec

ki
ng

fo
r

th
e

w
in

ne
r

by
ru

nn
in

g
do

w
n

th
e

lis
to

fr
un

na
bl

e
th

re
ad

s.
A

bi
na

ry
se

ar
ch

tr
ee

ca
n

be
us

ed
to

de
cr

ea
se

th
e

se
ar

ch
tim

e
fr

om
lin

ea
r

to
lo

ga
ri

th
m

ic
in

th
e

nu
m

be
r

of
th

re
ad

s,
bu

t
I

be
lie

ve
th

at
it

w
ou

ld
ha

ve
a

hi
gh

er
co

ns
ta

nt
ov

er
he

ad
.

In
ch

ar
ge

-b
as

ed
sc

he
du

lin
g,

fo
r

ea
ch

qu
an

tu
m

sc
he

du
le

d,
th

re
ad

s
ar

e
co

ns
id

er
ed

in
ro

un
d-

ro
bi

n
or

de
r

un
ti

l
a

th
re

ad
w

it
h

a
po

si
tiv

e
ac

co
un

t
is

fo
un

d.
A

s
di

sc
us

se
d

in
Se

ct
io

n
2.

1.
2,

th
e

av
er

ag
e

am
ou

nt
of

w
or

k
do

ne
is
n
�
s m

=
Σs

i
,

w
he

re
ea

ch
un

it
in

vo
lv

es
re

ad
in

g
an

ac
co

un
t,

ad
di

ng
or

su
bt

ra
ct

in
g

to
it

,
an

d
w

ri
tin

g
it

ba
ck

.
W

ith
ou

t
ex

pe
ri

m
en

ta
l

re
su

lts
it

is
di

ffi
cu

lt
to

pr
ed

ic
t

w
ith

ce
rt

ai
nt

y
w

hi
ch

sc
he

m
e

w
ou

ld
re

su
lt

in
lo

w
er

ov
er

he
ad

,a
nd

w
he

th
er

th
e

di
ff

er
en

ce
is

si
gn

ifi
ca

nt
.

I
ex

pe
ct

th
e

ch
ar

ge
-

ba
se

d
sc

he
m

e
to

be
be

tt
er

be
ca

us
e

it
av

oi
ds

ra
nd

om
nu

m
be

r
ge

ne
ra

tio
n.

Fo
rt

un
at

el
y,

m
an

y
of

th
e

su
pp

le
m

en
ta

ry
te

ch
ni

qu
es

pr
o-

po
se

d
fo

r
lo

tte
ry

sc
he

du
lin

g
in

[W
W

94
]

ar
e

al
so

ap
pl

ic
ab

le
to

th
e

ch
ar

ge
-b

as
ed

sc
he

m
e

pr
es

en
te

d
in

th
is

pa
pe

r.
N

ot
e

th
at

th
e

ch
ar

ge
-b

as
ed

sc
he

m
e

on
ly

re
pl

ac
es

th
e

ra
nd

om
iz

ed
-

se
le

ct
io

n
as

pe
ct

of
lo

tte
ry

sc
he

du
lin

g
w

ith
a

de
te

rm
in

is
tic

ac
co

un
tin

g
m

et
ho

d.
Fo

r
ex

am
pl

e,
th

e
ch

ar
ge

-b
as

ed
sc

he
m

e
ad

m
it

s
th

e
sa

m
e

ki
nd

of
m

od
ul

ar
de

co
m

po
si

ti
on

as
lo

tte
ry

8

I I ,\ l 

t: 

I ''I'' iii ''''I iii 11111 'I' 11111 ''' I'''' I 



scheduling. As is true of tickets in lottery scheduling, the
shares used in this scheme can be associated with a currency,
and each currency backed by shares in some more primi-
tive currency. Similarly, priority inversion problems can be
avoided by a transfer of shares.

One advantage of lottery scheduling over the charge-based
scheme is that it does not require any special treatment for
changes to the set of runnable threads,and is therefore simpler
in this aspect.

6 Conclusions

I have presented a scheduling algorithm that controls the
relative execution rates of threads in proportion to the shares
allocated to them. The algorithm is based on charging threads
for CPU usage, but unlike previous usage-charging schemes
that schedule the highest priority thread, it schedules threads
in round-robin order with selective skipping. Further, I pro-
posed two competitive methods for setting the charge that
should be applied for each quantum of processor usage. In
particular, setting the charge to the maximum number of
shares held by any runnable thread results in very low devia-
tion in the execution rates.

Simulation results have shown that the proposed algorithm
is effective: it keeps the execution rates close to the intended
proportions over periods as short as 10 quanta. At the same
time, the algorithm is efficient: the threads are considered in
round-robin order and the scheduling decision requires only
a few integer operations.

While proportional scheduling has distinct advantages
over priority scheduling, previous implementations such as
lottery scheduling had some drawbacks that made it unlikely
for them to replace priority scheduling. I believe that this
work pushes proportional scheduling a step forward as a bet-
ter alternative than priority scheduling for general-purpose
computing.

References

[Bre65] J. E. Bresenham. Algorithm for computer control of
a digital plotter. IBM Systems Journal, 4(1):25–30,
1965.

[FS95] L. L. Fong and M. S. Squillante. Time-functions:
A general approach to controllable resource manage-
ment. Working draft, IBM Research Division, T. J.
Watson Research Center, March 1995.

[KL88] J. Kay and P. Lauder. A fair share scheduler. CACM,
31(1):44–55, January 1988.

[LMKQ89] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S.
Quarterman. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley
Publishing Company, 1989.

[PM88] S. K. Park and K. W. Miller. Random Number Gen-
erators: Good ones are hard to find. CACM, October
1988.

[SAW95] I. Stoica and H. Abdel-Wahab. A new approach to pro-
portional share resource allocation. Technical Report
95-05, Department of Computer Science, Old Domin-
ion University, Norfolk, VA, April 1995.

[WW94] C. A. Waldspurger and W. E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource manage-
ment. In Proceedings of the First OSDI, November
1994.

[WW95] Carl A. Waldspurger and William E. Weihl. Stride
scheduling: Deterministic proportional-share resource
management. Technical Memo MIT/LCS/TM-528,
MIT Laboratory for Computer Science, Cambridge,
MA, June 1995.

9


