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1 Introduction 

At Crypto 92, the author put forward a new-approach to key-escrow, whereby 
(1) trustees have guaranteed pieces of a secret key, (2) too few trustees can­
not easily reconstruct the key, but (3) sufficiently many trustees can easily 
reconstruct the entire key. An additional example of key-escrow scheme with 
similar properties is provided by the Clipper Chip [2] . 

This guaranteed-piece approach has generated much attention; in partic­
ular, see the works of Kilian and Leighton [3], Micali and Sidney [4], Lenstra, 
Winkler and Yacobi [5], Frankel and Yung [6], which also suggest to enlarge 
the notion of key escrow so as to incorporate additional properties. 

Guaranteed-piece key escrow can be used for a variety of applications, 
including enabling court-authorized line-tapping in a democratic country, 
internal auditing of a private corporation, retrieval of a archived data, etc. 
The new approach is preferable to older ones. In particular, requiring that 
each secret decryption key to be short, makes retrieving encrypted data not 
just doable, but doable by any one. Also, Beth's suggestion of escrowing 
every secret key (in its entirety) with a single trustee does not provide much 
guarantees about the secrecy of such keys. 

Another development on key escrow was publicized at Crypto 95 by Adi 
Shamir, who advocated a notion of key escrow in which trustees possess 
pieces of a user's secret key so that together they can reconstruct a major 
portion of the secret key, but not all of it. We refer to this type of key escrow 
as partial key-escrow. 

In this technical report, we wish to put forward and construct partial 
key-escrow systems that guarantee an additional crucial property: ensuring 



that the pieces of the secret key possessed by the trustees are indeed correct. 
Indeed, since no one (except, possibly, for the right user) knows the secret 
key, a trustee cannot judge whether the piece of secret key in his possession, 
together with the pieces of other trustees, enables one to reconstruct easily 
a main portion of the secret key of a user. It is clear that if a partial key­
escrow system is used in the context of law-enforcement, or in the context or 
enabling a private organization to monitor, selectively, the communications 
of its employees, or in the context of retrieving encrypted and archived data, 
or for most other context, guaranteeing the correctness of each trustee-piece 
is crucial. We call partial key-escrow systems enjoying this fundamental 
guaranteed-piece property Guaranteed Partial Key-Escrow systems, GPKE 
systems for short. 

GPKE systems ensure that any ciphertext within the system can be de­
crypted, with the collaboration of the trustees, by means of a moderatly­
hard effort. Indeed, if one is guaranteed that the portion of a secret key not 
in the hands of the trustees consists of a short string, then reconstructing 
the entire secret key with the collaboration of the trustees requires only a 
moderatly-hard effort . In fact, one might always rely on exhaustive search 
for reconstructing the missing portion of the secret key. 

On the other hand, without the collaboration of the trustees, reconstruct­
ing a secret key in a GPKE system is practically impossible. Indeed, secret 
keys may in a GPKE system be arbitrarily long. For this reason, GPKE 
systems are much preferable to systems where secret keys are required to be 
suitably short. In fact, these latter systems are moderatly hard to crack not 
only by some designated authority (such as Government, Board of Directors, 
etc., when they can count on the collaboration of the trustees!) but also by 
any one else! 

Thus GPKE systems are ideally suitable to be used with current export 
control laws that forbid the export of cryptosystems with too long keys. 
Indeed, though the secret key of a GPKE system is very long for everyone 
else, for -say- law enforcement it is relatively short, assuming that the 
right circustances occur which permit the trustees to collaborate with law 
enforcement. 

GPKE may also lessen the worries that some user may have in escrowing 
her key. Indeed, she would not surrender her entire secret key, and thus not 
even an entire collection of malicious trustees can trivially get hold of her 



key. 

If the advantages that GPKE may bring about are clear, it is less clear 
that GPKE systems can be practically implemented. Let us then show that 
GPKE systems can be practically implemented in public-key and private-key 
scenarios, in software and in hardware. For further discussion on the complex 
social, legal, and technical issues surrounding key-escrow at large we refer to 
the article of Dorothy Denning [22] . 

2 GPKE Systems Based on the Diflie-Hellman 
Scheme 

The famous Diffie-Hellman cryptosystem [9] is particularly suitable for law 
enforcement applications. Indeed, knowledge of the secret key of a user allows 
one to monitor both the in-coming and the outgoing encrypted traffic of that 
user. 

Typically, in the Diffie-Hellman cryptosystem there are a prime, p, and 
an element, g, of high order in z; (preferably g is a generator) t hat are 
common to all users in the system. A secret key then consists of an integer 
x (preferably randomly selected integer in the interval [1, p - 1]), and the 
corresponding public key is gx mod p. Thus the secret key is the discrete 
logarithm (in base g) of the public key. Traditionally, pis chosen to be 512-bit 
long. 

To obtain a GPKE system, we propose giving a single trustee almost all 
the bits of x ( e.g., all but 80) so as to guarantee him that the bits in his 
possession are correct. At a high level, represent the secret key x as the 
sum of two numbers: a 512-bit number z and a 80-bit number y. The idea 
then is to give the trustee gY mod p, gz mod p, z (in a private manner), and 
a zero-knowledge proof that the secret key relative to gY is suitably short 
(roughly, a proof that the discrete log of gY is suitably short that does not 
reveal y itself) . 

The trustee can verify that gz times gY equals gx mod p. (This check 
tells him that if he knew the discrete log of gz and gY, then the sum of 
these discrete logs mod p - 1 would be the secret key relative to gx .) The 
trustee can also check that g raised to the power z mod p indeed yields gz. 
Thus, if he is proven that y is 80-bit long (without being revealed y itself, 



as demonstrated below), he would be guaranteed that y could be found by 
exhaustive search with only a moderatly-hard effort, and thus that the entire 
secret key x could be found by means of a moderatly-hard effort. 

While above we have envisaged a single trustee that receives the key z, 
the method can be extended to work with a multiplicity of trustees. For 
instance, there may be n trustees: T1 , ... , Tn , In this case, let z1 , ••. , Zn be 
n random integers between 1 and p - 1 whose sum mod p - 1 equals z, and 
let each trustee Ti be privately given zi, while the values g2

i mod pare made 
known. Then, by having each Ti check that Zi is the correct discrete log of 
g2

i mod p and that the product of all the gz; is congruent to 9 2 mod p, they 
can verify that, if they reveal to some entity their values Zi, then that entity 
can reconstruct z very easily, and thus the entire secret key x with only a 
moderatly-hard additional effort. At the same time, however, no individual 
trustee, nor any group with less than n trustees can easily reconstruct z (nor 
x). 

If so wanted, one can also ensure that sufficiently many trustees (rather 
than all of them) can easily reconstruct z, while sufficiently few of them 
(rather than n - 1) cannot reconstruct z without a very hard effort. For 
instance, one can use one of the methods disclosed by Micali [l] . Thus, we 
can also ensure that sufficiently many trustees can reconstruct the entire 
secret key x with only a moderatly-hard effort, while sufficiently few of them 
can reconstruct x only with a very hard effort. 

We now must demonstrate that it is possible to prove that the discrete 
log of gY is suitably small without revealing it. Proofs of this type are called 
zero-knowledge proofs. Zero-knowledge proofs have been introduced by Gold­
wasser, Micali, and Racko-ff [12] and are by now well-known in the crypto­
graphic literature. Typically, a zero-knowledge proof of a statement S pro­
ceeds by having the Prover present a Verifier two problems, Pl and P2, which 
are claimed to be both solvable. Pl and P2 are chosen in a special matched 
way, so that given solutions to both of them one can easily find a proof of S; 
while given a solution to just one of the two problems does not provide any 
help in finding the proof of S. After the Prover presents him with Pl and 
P2, the Verifier chooses at random one of the two problems, and the Prover 
provides its solution (but not a solution to the other one) . This process is 
repeated several times, choosing the matching Pl and P2 anew each time. 
Since at each iteration the matching Pl and P2 are randomly chosen (and 
since there are enormously many such problem pairs) the Verifier will not 



get both solutions for a matching Pl-P2 pair, thus the procedure does not 
reveal the verifier the proof of S. At the same time the procedure convinces 
the verifier that the statement S must be true. In fact, if it were false , then 
either Pl or P2 must be unsolvable (because the existence of a solution for 
both Pl and P2 implies the existence of a proof of S). Thus, at each iteration 
the Verifier has probability ?_1/2 of choosing a problem for which the Prover 
cannot provide a solution. Thus, for instance, if S is false, the probability 
that the Prover can, ten times in a row, provide a solution to the problem 
chosen by the Verifier is less than one in a thousand. 

Since the statement that the discrete log of gY is small (i.e., 80-bit long) 
"is in NP," and since Goldreich, Micali, and Wigderson [18] have shown that 
there exists a general method for proving in zero-knowledge any NP-property, 
we could apply their proof-method to the property of interest to us. However, 
such an approach is hardly practical. Indeed, solving a specific problem by a 
general tool which disregards the problem's own characteristics rarely yields 
efficient solutions. We thus put forward below a method that exploits the 
specific properties of the discrete logarithm problem (without any reduction 
to other problems). The method is zero-knowledge and is described relative 
to a single trustee, since we have seen how it can be modified to work with 
more trustees. Methods that are not exactly zero-knowledge, but are still 
sufficient for our purposes, can also be derived along similar lines. 

A ZERO-KNOWLEDGE METHOD. For completeness, we also describe a process 
for choosing in z; an element g of high order. Recall that the order of an 
element e is k if k is the minimum i such that ei = 1 mod p, in which case 
for any two different integers i and j between 1 and k, i i= gi mod p. Since 
the number of elements in z; is p - 1, the order of an element may range 
between 1 and p - 1. In any case, however, the order of an element evenly 
divides p - 1. Since z; is cyclic, we know that there exist elements g ( called 
generators) whose order is p - 1. (The number of generators is <f>(p -1), and 
</>(k) > k/(6loglogk) for all k > 3 as proven by Rosser and Schoenfield [19].) 
Thus, if g is a generator, any number X between 1 and p-1 can be expressed 
as a power of g mod p. This power is unique in the interval [1, p - I]; that is, 
for any XE [1,p-1], there is a unique x E [1,p-1] such that X = gx mod 
p. This unique power x is called the discrete log of X (in base g and mod p). 

Computing the discrete log of X on inputs X, p, g, and the factorization 
of p - I, is widely believed to be computationally intractable provided that 



x is sufficiently large and sufficiently random. (The computational difficulty 
of the so called Discrete Logarithm Problem underlies the security of many 
a cryptographic scheme, including the Diffie-Hellman one.) The higher the 
order of the base, the harder is to find discrete logs. Indeed, if g is a generator, 
the discrete log in base g of an element must be found in the full set [l, p - 1] 
(which includes all 511-bit integers); but if an element e has order k < p - 1 
(e.g. , if k is a 80-bit integer) , then the discrete log of an element (in base e), 
which is a power of e, must be found in the smaller set [l, k] ( e.g., among the 
80-bit numbers). Thus, the security of the Diffie-Hellman scheme increases 
with the order of g and is considered maximum when g is a generator. For 
this reason, we believe that , in the Diffie-Hellman cryptosystem, g should 
be a generator. But, whether a generator or an element of high order, we 
also believe that g should be proven to have high order. Else, a user may 
suspect that g may be of low order, so that, de facto, the system is one in 
which every secret key is required to be short. According to the above two 
beliefs, let us describe our Diffie-Hellman based GPKE when g is proven to 
be a generator, though our method also works for other choices of the base. 

Assume that we wish to construct a GPKE based on the Diffie-Hellman 
where the portion of a secret key not escrowed with the trustee consists of 
SO-bits. Then, we choose p, g and a such that g is a generator mod p and the 
order of the element A = ga mod p is 80-bit long. (For simplicity, we also 
consider the value of a to be common to all users in the system. It should 
be noted, however, that we may also let a be different for each user.) 

To this end, we suggest choosing p so that p - 1 = 2qQ, where q is a 80-
bit prime ( and, preferably, Q has a large prime factor, which makes finding 
discrete logs mod p harder). Primes with similar structure are constructed 
within the Digital Signature Standard [11]. In practice, one may even first 
select a 80-bit prime q and then randomly select large (e.g., 431-bit) primes 
Q until p = 2qQ + 1 is prime. Then, one may select g at random between 1 
and p - 1 until a generator is found, and finally set a = 2Q - thus A = g2

Q 

modp. 
Given the abundance of generators in z;, one needs to try relatively few 

elements. Moreover, it is easy to realize that the selected element g is a 
generator. Indeed, we must show that i ¢. 1 mod p for any i dividing p- 1. 
While at first glance it appears that too many values of i must be tried, it is 
not hard to see that, in our case (i .e., when p-1 = 2qQ, where both q and Q 
are primes), it suffices to compute gqQ, g2Q, and g2q mod p, and verify that 



none of these values equals 1. If g is a generator, then A = g 2Q has order 
q. Indeed, if A i equaled 1 mod p for some i < q, then g1 = l mod p, where 
I = 2Qi < p - 1, contradicting the assumption that g is a generator. 

Given our p, g, and a (and thus A), we suggest to choose a secret key 
for the Diffie-Hellman system to be x = ar + R mod p, where r is randomly 
chosen between 1 and q (and thus is a 80-bit integer) and R is randomly 
chosen between 1 and p-1 (and thus is a 512-bit integer). Thus, as usual, x 

is randomly chosen between 1 and p - l. The public key corresponding to x 

is, as usual, gx mod p. The trustee is then given B = gar mod p and C = gR 
mod p, as well as (privatly!) the value R. Thus, he can verify that R is the 
discrete log of C mod p and that the product of Band C is concruent to gx 
mod p. Thus, he knows that, if he could compute the discrete log of B mod 
p, he could easily compute the discrete log of gx (i.e., the entire secret key) 
by adding mod p - 1 the value R and the discrete log of B. 

However, we still need to have a guarantee that the discrete log of B is 
computable by a modestly-hard effort . To this effect , it is enough to have a 
zero-knowledge proof that B belongs to the subgroup generated by A = ga 
mod p. In fact, the order of A is guaranteed to be 80-bit long, and thus if 
B is proved to be a power of A mod p, then this secret power, r, cannot 
be more than 80-bit long, and thus recoverable only by a moderately hard 
computation (particularly if a "data-base" approach is used to find r) . Once 
r is found, reconstructing the secret key x by computing ar+ R mod p - 1 is 
very easy. 

Now, the fact that an element B belongs to the subgroup generated by 
some elemnet A is already known to be provable in zero-knowledge due to 
the work of Tompa and Woll [20]. In essence, the Prover presents the Verifier 
with two random elements in the subgroup, I and J, whose product equals 
B, the Verifier chooses one of them at random, and the Prover releases the 
discrete log of that element in base A. 

A NON-INTERACTIVE METHOD. Notice that the above zero-knowledge proof 
requires interaction between Prover and Verifier. In our application, however, 
interaction may not be practical. Indeed, it is unlikely that, in a large coun­
try, a single trustee can interact about every partially-escrowed secret key so 
as to verify that he has a genuine main piece. 

To dispose of interaction, we may thus adopt a technique put forward by 
Fiat and Shamir [10] in the context of digital signature schemes. For instance, 



the Prover may choose a sequence S of 100 pairs of randomly selected I-J 
pairs: S = 11 J1 ... I100J100- Then, he applies a given pseudo-random function 
H to this sequence so as to obtain a 100-bit result: b1 ... b100 . (Think of H 
as a one-way function mapping any string to a sufficiently random 100-bit 
string.) Then, for each i between 1 and 100, he releases one value R as 
follows. If bi = 0 Ri is the discrete log (base A) of h else, R the discrete 
log (base A) of Ji , The sequence S together with the Sequence R1 . . . R100 is 
a string, I;, vouching that B is in the subgroup generated by A. 

The string I; can be verified as follows. First, the pseudo-random function 
H is evaluated on S so as to obtain the 100 bits b1 ... b100. Then, for each 
i between 1 and 100, AR; mod pis computed and it is checked whether the 
resulting value is Ji (if bi= 0) or Ji (if bi= 1). 

Though the bits bi are not chosen randomly by the Verifier (indeed they 
are determined by the sequence S via the function H), they are chosen in a 
way that is random enough for our purposes. Indeed, if B were not in the 
subgroup generated by A, then, for each i, either Ii or J; is not in that group, 
and thus its discrete log in base A does not exist. Thus, in order to construct 
a string proving that Bis in the subgroup, a cheating Prover should be able 
to construct a special sequence S' = I{J{ ... 1{00J{00 that, under H , yields 
100 bits b~ such that each b~ selects exactly the only value between Ii and Ji 
which has a discrete log base A. 

Notice that if the bits b~ were randomly chosen, then the probability that 
they would "select" exactly the only 100 elements of S' having a discrete log 
base A is a remotely small; namely, one in 2100

. Thus, even if the bits b~ 
obtained via H are not truly random, lots and lots of sequences S' should 
be tried before one is found such that the bits H(S') select the "right" 100 
elements. 

So far we have argued that the sequence S together with the sequence of 
the R provide convincing evidence that B is in the subgroup generated by 
A. It should also be noted that this piece of evidence does not betray the 
discrete log (base A) of B. It is by now widely believed that if the original 
interactive proof was zero-knowledge, then the so obtained non-interactive 
proofs (i .e., strings) do not reveal in practice any significant additional infor­
mation either. (Indeeed, this way of replacing interaction forms the base of 
many a cryptographic schemes and has been formally advocated by Bellare 
and Rogaway [13].) Indeed, extracting the discrete log of B from Sand the 
R appears to be a formidable task. 



Another way to prove non-interactively that B belongs to the subgroup 
generated by A without revealing its discrete log is using the non-interactive 
zero=knowledge proofs a la Blum, Micali and Feldman [14) [15]. 

In sum, it is also possible to prove that a given partial key-escrow system 
is a GPKE systems without any interaction, that is, by just providing a 
special string for each secret key. Of course, if so want, one may use special 
strings just to reduce the amount of interaction. 

3 GPKE Systems Based on on the RSA 

• NOTE: A GPKE System based on the RSA has been independently 
found by Shafi Goldwasser [21] . 

Let us now quickly describe a software GPKE system based on the RSA 
cryptosystem In it, a public key consists of a composite number n, the cor­
responding secret key of the prime factorization of n, and the encryption of 
a message m E Z~ (i.e., between 1 and n and relatively prime with n) of the 
value me mod n, where e is an exponent relatively prime with </>(n) (where 
</> represents Euler's totient function). Traditionally, n is chosen to be the 
product of two large primes. 

We instead propose to chose n to be the product of 4 primes, P1, P2, p3 
and p4, where p1 and P2 are large (say 512-bit each) and p3 and p4 are small 
(e.g., 150-bit each). Then p1 and p2 could be revealed to a trustee, while p3 
and p4 will remain secret. It has been shown by Chor, Goldwasser, Micali, 
and A werbuch [8] that, as long as two primes of an RSA public key remain 
secret, then the security of the system is essentially at least equal to that 
of an RSA system in which the public key consists of only those two secret 
primes. Thus, the trustee still faces an RSA cryptosystem whose public key is 
the product of p3 and p4 . This number is however much more easily factored 
than the original n! On the other hand, everyone else faces at least an RSA 
cryptosystem with the original n, and thus a system whose security is at least 
that of a traditional RSA system with a 1024-bit public key. 

Notice that the above described key-escrow system is a GPKE one because 
the trustee can easily verify to have almost all (but not all) the secret key 
corresponding ton. Indeed, it can verify that n is 1324-bit long, that p1 and 
P2 are different primes, that each of them is 512-bit long, and that each of 



them divides n. In sum we have a system that is moderately hard to crack 
(but not already cracked!) for the trustee, while it is very hard to crack for 
everyone else. 

Above, we have envisaged using four primes and having a single trustee. 
Indeed, because in a GPKE system the trustees do not collectively possess 
the entire secret key, having a single trustee may be quite acceptable. In any 
case, it should be realized that the above system can be generalized so as 
to work with an arbitrary number of primes and with many trustees, each 
possessing (if so wanted) a different guaranteed piece of the secret key (while 
all together they still do not possess the entire secret key). For instance, there 
may be six distinct primes dividing n, Pi, ... ,p6 , where P1, ... ,P4 are 512-bit 
long and p5 and P6 150-bit long, and there may be four trustees, Ti , ... , T4, 
where each Ti knows Pi· In this case at least 3 trustees must collaborate in 
order to make the reconstruction of n's entire factorization only moderatly 
hard. To ensure that each trustee possesses a different prime, proper digits of 
these primes may be made known ( which will not compromise the secrecy of 
n's factorization, because in general it would be enogh to reveal the content 
of two bit-locations in our primes). Needless to say, each Ti can easily check 
that the value of those particular digits in his own prime are correct. 

Of course, if so wanted, it can also be arranged for redundancy, so that the 
pieces of secret keys held by the trustees are not totally disjoint. For instance, 
one may insist that the same piece is given to more than one trustee. 

It may also be arranged that the number of trustees exceed that of the 
primes in n's factorization. For instance, if n is the product of four primes, 
where p1 and p2 are long and p3 and p4 short as in our first example, the 
one could make known the products n' = (Pi · p2) , and n" = (p3 · p4) and 
then share the factorization of n' with arbitrarily many trustees as shown by 
Micali [l]. 

Needless to say, above, the values 512 and 150 are mere suggestions, and 
the right balance between the effort of factoring n without the help of the 
trustees and that of factoring n with the trustees' help may be obtained by 
choosing the values that seem most appropriate. (In particular, each prime 
may be chosen of a different length.) 



4 Hardware-Based GPKE Sytems 

Let us now describe some hardware methods to construct guaranteed partial 
key-escrow systems. In the simplest embodiment, assume that secure chips 
are manufactured that (like the Clipper chip) have a special decryption key 
inside. Assume that 100-bit is deemed to be a secure length for these keys. 
Then, a special agent can provide the chip with a 50-bit key, and the chip 
can choose the other 50 bits in a random number (e.g.by a noise diod); or the 
user chooses the other 50. Then an enemy faces a chip with a secret 100-bit 
key while the special agent (and thus law enforcement) a chip with just a 
50-bit key. 

This goal can also be accomplished by secure hardware when it is up to 
the user of the chip to choose the entire 100-bit key of the chip. The chip may 
in fact reveal the first 50 bits of this key to a special agent. For instance, it 
sends them along together with each ciphertext, encrypted with an internal 
key that only the special agent knows. Alternatively, before the chip starts 
functioning it is necessary that it receives a special signal from the special 
agent, and the special agent will give this activation signal only after the 
chip sends him an encrypted version of the first 50 bits of its chosen secret 
key. Of course 100 and 50 are variables, it is not necessary that the bits in 
possession of the special agent are the first 50, and other precautions can be 
taken to make sure that the chip works as desired. 
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