
LABORATORY FOR ~
COMPUTER SCIENCE ~ 1ft

MIT/LCS/TM-537

MASSACHUSETTS
INSTITUTE
OF TECHNOLOGY

GUARANTEED PARTIAL
KEY-ESCROW

Silvio Micali

August 1995

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Guaranteed Partial Key-Escrow

by

Silvio Micali
Laboratory for Computer Science

MIT

Rough Draft

1 Introduction

At Crypto 92, the author put forward a new-approach to key-escrow, whereby
(1) trustees have guaranteed pieces of a secret key, (2) too few trustees can­
not easily reconstruct the key, but (3) sufficiently many trustees can easily
reconstruct the entire key. An additional example of key-escrow scheme with
similar properties is provided by the Clipper Chip [2] .

This guaranteed-piece approach has generated much attention; in partic­
ular, see the works of Kilian and Leighton [3], Micali and Sidney [4], Lenstra,
Winkler and Yacobi [5], Frankel and Yung [6], which also suggest to enlarge
the notion of key escrow so as to incorporate additional properties.

Guaranteed-piece key escrow can be used for a variety of applications,
including enabling court-authorized line-tapping in a democratic country,
internal auditing of a private corporation, retrieval of a archived data, etc.
The new approach is preferable to older ones. In particular, requiring that
each secret decryption key to be short, makes retrieving encrypted data not
just doable, but doable by any one. Also, Beth's suggestion of escrowing
every secret key (in its entirety) with a single trustee does not provide much
guarantees about the secrecy of such keys.

Another development on key escrow was publicized at Crypto 95 by Adi
Shamir, who advocated a notion of key escrow in which trustees possess
pieces of a user's secret key so that together they can reconstruct a major
portion of the secret key, but not all of it. We refer to this type of key escrow
as partial key-escrow.

In this technical report, we wish to put forward and construct partial
key-escrow systems that guarantee an additional crucial property: ensuring

that the pieces of the secret key possessed by the trustees are indeed correct.
Indeed, since no one (except, possibly, for the right user) knows the secret
key, a trustee cannot judge whether the piece of secret key in his possession,
together with the pieces of other trustees, enables one to reconstruct easily
a main portion of the secret key of a user. It is clear that if a partial key­
escrow system is used in the context of law-enforcement, or in the context or
enabling a private organization to monitor, selectively, the communications
of its employees, or in the context of retrieving encrypted and archived data,
or for most other context, guaranteeing the correctness of each trustee-piece
is crucial. We call partial key-escrow systems enjoying this fundamental
guaranteed-piece property Guaranteed Partial Key-Escrow systems, GPKE
systems for short.

GPKE systems ensure that any ciphertext within the system can be de­
crypted, with the collaboration of the trustees, by means of a moderatly­
hard effort. Indeed, if one is guaranteed that the portion of a secret key not
in the hands of the trustees consists of a short string, then reconstructing
the entire secret key with the collaboration of the trustees requires only a
moderatly-hard effort . In fact, one might always rely on exhaustive search
for reconstructing the missing portion of the secret key.

On the other hand, without the collaboration of the trustees, reconstruct­
ing a secret key in a GPKE system is practically impossible. Indeed, secret
keys may in a GPKE system be arbitrarily long. For this reason, GPKE
systems are much preferable to systems where secret keys are required to be
suitably short. In fact, these latter systems are moderatly hard to crack not
only by some designated authority (such as Government, Board of Directors,
etc., when they can count on the collaboration of the trustees!) but also by
any one else!

Thus GPKE systems are ideally suitable to be used with current export
control laws that forbid the export of cryptosystems with too long keys.
Indeed, though the secret key of a GPKE system is very long for everyone
else, for -say- law enforcement it is relatively short, assuming that the
right circustances occur which permit the trustees to collaborate with law
enforcement.

GPKE may also lessen the worries that some user may have in escrowing
her key. Indeed, she would not surrender her entire secret key, and thus not
even an entire collection of malicious trustees can trivially get hold of her

key.

If the advantages that GPKE may bring about are clear, it is less clear
that GPKE systems can be practically implemented. Let us then show that
GPKE systems can be practically implemented in public-key and private-key
scenarios, in software and in hardware. For further discussion on the complex
social, legal, and technical issues surrounding key-escrow at large we refer to
the article of Dorothy Denning [22] .

2 GPKE Systems Based on the Diflie-Hellman
Scheme

The famous Diffie-Hellman cryptosystem [9] is particularly suitable for law
enforcement applications. Indeed, knowledge of the secret key of a user allows
one to monitor both the in-coming and the outgoing encrypted traffic of that
user.

Typically, in the Diffie-Hellman cryptosystem there are a prime, p, and
an element, g, of high order in z; (preferably g is a generator) t hat are
common to all users in the system. A secret key then consists of an integer
x (preferably randomly selected integer in the interval [1, p - 1]), and the
corresponding public key is gx mod p. Thus the secret key is the discrete
logarithm (in base g) of the public key. Traditionally, pis chosen to be 512-bit
long.

To obtain a GPKE system, we propose giving a single trustee almost all
the bits of x (e.g., all but 80) so as to guarantee him that the bits in his
possession are correct. At a high level, represent the secret key x as the
sum of two numbers: a 512-bit number z and a 80-bit number y. The idea
then is to give the trustee gY mod p, gz mod p, z (in a private manner), and
a zero-knowledge proof that the secret key relative to gY is suitably short
(roughly, a proof that the discrete log of gY is suitably short that does not
reveal y itself) .

The trustee can verify that gz times gY equals gx mod p. (This check
tells him that if he knew the discrete log of gz and gY, then the sum of
these discrete logs mod p - 1 would be the secret key relative to gx .) The
trustee can also check that g raised to the power z mod p indeed yields gz.
Thus, if he is proven that y is 80-bit long (without being revealed y itself,

as demonstrated below), he would be guaranteed that y could be found by
exhaustive search with only a moderatly-hard effort, and thus that the entire
secret key x could be found by means of a moderatly-hard effort.

While above we have envisaged a single trustee that receives the key z,
the method can be extended to work with a multiplicity of trustees. For
instance, there may be n trustees: T1 , ... , Tn , In this case, let z1 , ••. , Zn be
n random integers between 1 and p - 1 whose sum mod p - 1 equals z, and
let each trustee Ti be privately given zi, while the values g2

i mod pare made
known. Then, by having each Ti check that Zi is the correct discrete log of
g2

i mod p and that the product of all the gz; is congruent to 9 2 mod p, they
can verify that, if they reveal to some entity their values Zi, then that entity
can reconstruct z very easily, and thus the entire secret key x with only a
moderatly-hard additional effort. At the same time, however, no individual
trustee, nor any group with less than n trustees can easily reconstruct z (nor
x).

If so wanted, one can also ensure that sufficiently many trustees (rather
than all of them) can easily reconstruct z, while sufficiently few of them
(rather than n - 1) cannot reconstruct z without a very hard effort. For
instance, one can use one of the methods disclosed by Micali [l] . Thus, we
can also ensure that sufficiently many trustees can reconstruct the entire
secret key x with only a moderatly-hard effort, while sufficiently few of them
can reconstruct x only with a very hard effort.

We now must demonstrate that it is possible to prove that the discrete
log of gY is suitably small without revealing it. Proofs of this type are called
zero-knowledge proofs. Zero-knowledge proofs have been introduced by Gold­
wasser, Micali, and Racko-ff [12] and are by now well-known in the crypto­
graphic literature. Typically, a zero-knowledge proof of a statement S pro­
ceeds by having the Prover present a Verifier two problems, Pl and P2, which
are claimed to be both solvable. Pl and P2 are chosen in a special matched
way, so that given solutions to both of them one can easily find a proof of S;
while given a solution to just one of the two problems does not provide any
help in finding the proof of S. After the Prover presents him with Pl and
P2, the Verifier chooses at random one of the two problems, and the Prover
provides its solution (but not a solution to the other one) . This process is
repeated several times, choosing the matching Pl and P2 anew each time.
Since at each iteration the matching Pl and P2 are randomly chosen (and
since there are enormously many such problem pairs) the Verifier will not

get both solutions for a matching Pl-P2 pair, thus the procedure does not
reveal the verifier the proof of S. At the same time the procedure convinces
the verifier that the statement S must be true. In fact, if it were false , then
either Pl or P2 must be unsolvable (because the existence of a solution for
both Pl and P2 implies the existence of a proof of S). Thus, at each iteration
the Verifier has probability ?_1/2 of choosing a problem for which the Prover
cannot provide a solution. Thus, for instance, if S is false, the probability
that the Prover can, ten times in a row, provide a solution to the problem
chosen by the Verifier is less than one in a thousand.

Since the statement that the discrete log of gY is small (i.e., 80-bit long)
"is in NP," and since Goldreich, Micali, and Wigderson [18] have shown that
there exists a general method for proving in zero-knowledge any NP-property,
we could apply their proof-method to the property of interest to us. However,
such an approach is hardly practical. Indeed, solving a specific problem by a
general tool which disregards the problem's own characteristics rarely yields
efficient solutions. We thus put forward below a method that exploits the
specific properties of the discrete logarithm problem (without any reduction
to other problems). The method is zero-knowledge and is described relative
to a single trustee, since we have seen how it can be modified to work with
more trustees. Methods that are not exactly zero-knowledge, but are still
sufficient for our purposes, can also be derived along similar lines.

A ZERO-KNOWLEDGE METHOD. For completeness, we also describe a process
for choosing in z; an element g of high order. Recall that the order of an
element e is k if k is the minimum i such that ei = 1 mod p, in which case
for any two different integers i and j between 1 and k, i i= gi mod p. Since
the number of elements in z; is p - 1, the order of an element may range
between 1 and p - 1. In any case, however, the order of an element evenly
divides p - 1. Since z; is cyclic, we know that there exist elements g (called
generators) whose order is p - 1. (The number of generators is <f>(p -1), and
</>(k) > k/(6loglogk) for all k > 3 as proven by Rosser and Schoenfield [19].)
Thus, if g is a generator, any number X between 1 and p-1 can be expressed
as a power of g mod p. This power is unique in the interval [1, p - I]; that is,
for any XE [1,p-1], there is a unique x E [1,p-1] such that X = gx mod
p. This unique power x is called the discrete log of X (in base g and mod p).

Computing the discrete log of X on inputs X, p, g, and the factorization
of p - I, is widely believed to be computationally intractable provided that

x is sufficiently large and sufficiently random. (The computational difficulty
of the so called Discrete Logarithm Problem underlies the security of many
a cryptographic scheme, including the Diffie-Hellman one.) The higher the
order of the base, the harder is to find discrete logs. Indeed, if g is a generator,
the discrete log in base g of an element must be found in the full set [l, p - 1]
(which includes all 511-bit integers); but if an element e has order k < p - 1
(e.g. , if k is a 80-bit integer) , then the discrete log of an element (in base e),
which is a power of e, must be found in the smaller set [l, k] (e.g., among the
80-bit numbers). Thus, the security of the Diffie-Hellman scheme increases
with the order of g and is considered maximum when g is a generator. For
this reason, we believe that , in the Diffie-Hellman cryptosystem, g should
be a generator. But, whether a generator or an element of high order, we
also believe that g should be proven to have high order. Else, a user may
suspect that g may be of low order, so that, de facto, the system is one in
which every secret key is required to be short. According to the above two
beliefs, let us describe our Diffie-Hellman based GPKE when g is proven to
be a generator, though our method also works for other choices of the base.

Assume that we wish to construct a GPKE based on the Diffie-Hellman
where the portion of a secret key not escrowed with the trustee consists of
SO-bits. Then, we choose p, g and a such that g is a generator mod p and the
order of the element A = ga mod p is 80-bit long. (For simplicity, we also
consider the value of a to be common to all users in the system. It should
be noted, however, that we may also let a be different for each user.)

To this end, we suggest choosing p so that p - 1 = 2qQ, where q is a 80-
bit prime (and, preferably, Q has a large prime factor, which makes finding
discrete logs mod p harder). Primes with similar structure are constructed
within the Digital Signature Standard [11]. In practice, one may even first
select a 80-bit prime q and then randomly select large (e.g., 431-bit) primes
Q until p = 2qQ + 1 is prime. Then, one may select g at random between 1
and p - 1 until a generator is found, and finally set a = 2Q - thus A = g2

Q

modp.
Given the abundance of generators in z;, one needs to try relatively few

elements. Moreover, it is easy to realize that the selected element g is a
generator. Indeed, we must show that i ¢. 1 mod p for any i dividing p- 1.
While at first glance it appears that too many values of i must be tried, it is
not hard to see that, in our case (i .e., when p-1 = 2qQ, where both q and Q
are primes), it suffices to compute gqQ, g2Q, and g2q mod p, and verify that

none of these values equals 1. If g is a generator, then A = g 2Q has order
q. Indeed, if A i equaled 1 mod p for some i < q, then g1 = l mod p, where
I = 2Qi < p - 1, contradicting the assumption that g is a generator.

Given our p, g, and a (and thus A), we suggest to choose a secret key
for the Diffie-Hellman system to be x = ar + R mod p, where r is randomly
chosen between 1 and q (and thus is a 80-bit integer) and R is randomly
chosen between 1 and p-1 (and thus is a 512-bit integer). Thus, as usual, x

is randomly chosen between 1 and p - l. The public key corresponding to x

is, as usual, gx mod p. The trustee is then given B = gar mod p and C = gR
mod p, as well as (privatly!) the value R. Thus, he can verify that R is the
discrete log of C mod p and that the product of Band C is concruent to gx
mod p. Thus, he knows that, if he could compute the discrete log of B mod
p, he could easily compute the discrete log of gx (i.e., the entire secret key)
by adding mod p - 1 the value R and the discrete log of B.

However, we still need to have a guarantee that the discrete log of B is
computable by a modestly-hard effort . To this effect , it is enough to have a
zero-knowledge proof that B belongs to the subgroup generated by A = ga
mod p. In fact, the order of A is guaranteed to be 80-bit long, and thus if
B is proved to be a power of A mod p, then this secret power, r, cannot
be more than 80-bit long, and thus recoverable only by a moderately hard
computation (particularly if a "data-base" approach is used to find r) . Once
r is found, reconstructing the secret key x by computing ar+ R mod p - 1 is
very easy.

Now, the fact that an element B belongs to the subgroup generated by
some elemnet A is already known to be provable in zero-knowledge due to
the work of Tompa and Woll [20]. In essence, the Prover presents the Verifier
with two random elements in the subgroup, I and J, whose product equals
B, the Verifier chooses one of them at random, and the Prover releases the
discrete log of that element in base A.

A NON-INTERACTIVE METHOD. Notice that the above zero-knowledge proof
requires interaction between Prover and Verifier. In our application, however,
interaction may not be practical. Indeed, it is unlikely that, in a large coun­
try, a single trustee can interact about every partially-escrowed secret key so
as to verify that he has a genuine main piece.

To dispose of interaction, we may thus adopt a technique put forward by
Fiat and Shamir [10] in the context of digital signature schemes. For instance,

the Prover may choose a sequence S of 100 pairs of randomly selected I-J
pairs: S = 11 J1 ... I100J100- Then, he applies a given pseudo-random function
H to this sequence so as to obtain a 100-bit result: b1 ... b100 . (Think of H
as a one-way function mapping any string to a sufficiently random 100-bit
string.) Then, for each i between 1 and 100, he releases one value R as
follows. If bi = 0 Ri is the discrete log (base A) of h else, R the discrete
log (base A) of Ji , The sequence S together with the Sequence R1 . . . R100 is
a string, I;, vouching that B is in the subgroup generated by A.

The string I; can be verified as follows. First, the pseudo-random function
H is evaluated on S so as to obtain the 100 bits b1 ... b100. Then, for each
i between 1 and 100, AR; mod pis computed and it is checked whether the
resulting value is Ji (if bi= 0) or Ji (if bi= 1).

Though the bits bi are not chosen randomly by the Verifier (indeed they
are determined by the sequence S via the function H), they are chosen in a
way that is random enough for our purposes. Indeed, if B were not in the
subgroup generated by A, then, for each i, either Ii or J; is not in that group,
and thus its discrete log in base A does not exist. Thus, in order to construct
a string proving that Bis in the subgroup, a cheating Prover should be able
to construct a special sequence S' = I{J{ ... 1{00J{00 that, under H , yields
100 bits b~ such that each b~ selects exactly the only value between Ii and Ji
which has a discrete log base A.

Notice that if the bits b~ were randomly chosen, then the probability that
they would "select" exactly the only 100 elements of S' having a discrete log
base A is a remotely small; namely, one in 2100

. Thus, even if the bits b~
obtained via H are not truly random, lots and lots of sequences S' should
be tried before one is found such that the bits H(S') select the "right" 100
elements.

So far we have argued that the sequence S together with the sequence of
the R provide convincing evidence that B is in the subgroup generated by
A. It should also be noted that this piece of evidence does not betray the
discrete log (base A) of B. It is by now widely believed that if the original
interactive proof was zero-knowledge, then the so obtained non-interactive
proofs (i .e., strings) do not reveal in practice any significant additional infor­
mation either. (Indeeed, this way of replacing interaction forms the base of
many a cryptographic schemes and has been formally advocated by Bellare
and Rogaway [13].) Indeed, extracting the discrete log of B from Sand the
R appears to be a formidable task.

Another way to prove non-interactively that B belongs to the subgroup
generated by A without revealing its discrete log is using the non-interactive
zero=knowledge proofs a la Blum, Micali and Feldman [14) [15].

In sum, it is also possible to prove that a given partial key-escrow system
is a GPKE systems without any interaction, that is, by just providing a
special string for each secret key. Of course, if so want, one may use special
strings just to reduce the amount of interaction.

3 GPKE Systems Based on on the RSA

• NOTE: A GPKE System based on the RSA has been independently
found by Shafi Goldwasser [21] .

Let us now quickly describe a software GPKE system based on the RSA
cryptosystem In it, a public key consists of a composite number n, the cor­
responding secret key of the prime factorization of n, and the encryption of
a message m E Z~ (i.e., between 1 and n and relatively prime with n) of the
value me mod n, where e is an exponent relatively prime with </>(n) (where
</> represents Euler's totient function). Traditionally, n is chosen to be the
product of two large primes.

We instead propose to chose n to be the product of 4 primes, P1, P2, p3
and p4, where p1 and P2 are large (say 512-bit each) and p3 and p4 are small
(e.g., 150-bit each). Then p1 and p2 could be revealed to a trustee, while p3
and p4 will remain secret. It has been shown by Chor, Goldwasser, Micali,
and A werbuch [8] that, as long as two primes of an RSA public key remain
secret, then the security of the system is essentially at least equal to that
of an RSA system in which the public key consists of only those two secret
primes. Thus, the trustee still faces an RSA cryptosystem whose public key is
the product of p3 and p4 . This number is however much more easily factored
than the original n! On the other hand, everyone else faces at least an RSA
cryptosystem with the original n, and thus a system whose security is at least
that of a traditional RSA system with a 1024-bit public key.

Notice that the above described key-escrow system is a GPKE one because
the trustee can easily verify to have almost all (but not all) the secret key
corresponding ton. Indeed, it can verify that n is 1324-bit long, that p1 and
P2 are different primes, that each of them is 512-bit long, and that each of

them divides n. In sum we have a system that is moderately hard to crack
(but not already cracked!) for the trustee, while it is very hard to crack for
everyone else.

Above, we have envisaged using four primes and having a single trustee.
Indeed, because in a GPKE system the trustees do not collectively possess
the entire secret key, having a single trustee may be quite acceptable. In any
case, it should be realized that the above system can be generalized so as
to work with an arbitrary number of primes and with many trustees, each
possessing (if so wanted) a different guaranteed piece of the secret key (while
all together they still do not possess the entire secret key). For instance, there
may be six distinct primes dividing n, Pi, ... ,p6 , where P1, ... ,P4 are 512-bit
long and p5 and P6 150-bit long, and there may be four trustees, Ti , ... , T4,
where each Ti knows Pi· In this case at least 3 trustees must collaborate in
order to make the reconstruction of n's entire factorization only moderatly
hard. To ensure that each trustee possesses a different prime, proper digits of
these primes may be made known (which will not compromise the secrecy of
n's factorization, because in general it would be enogh to reveal the content
of two bit-locations in our primes). Needless to say, each Ti can easily check
that the value of those particular digits in his own prime are correct.

Of course, if so wanted, it can also be arranged for redundancy, so that the
pieces of secret keys held by the trustees are not totally disjoint. For instance,
one may insist that the same piece is given to more than one trustee.

It may also be arranged that the number of trustees exceed that of the
primes in n's factorization. For instance, if n is the product of four primes,
where p1 and p2 are long and p3 and p4 short as in our first example, the
one could make known the products n' = (Pi · p2) , and n" = (p3 · p4) and
then share the factorization of n' with arbitrarily many trustees as shown by
Micali [l].

Needless to say, above, the values 512 and 150 are mere suggestions, and
the right balance between the effort of factoring n without the help of the
trustees and that of factoring n with the trustees' help may be obtained by
choosing the values that seem most appropriate. (In particular, each prime
may be chosen of a different length.)

4 Hardware-Based GPKE Sytems

Let us now describe some hardware methods to construct guaranteed partial
key-escrow systems. In the simplest embodiment, assume that secure chips
are manufactured that (like the Clipper chip) have a special decryption key
inside. Assume that 100-bit is deemed to be a secure length for these keys.
Then, a special agent can provide the chip with a 50-bit key, and the chip
can choose the other 50 bits in a random number (e.g.by a noise diod); or the
user chooses the other 50. Then an enemy faces a chip with a secret 100-bit
key while the special agent (and thus law enforcement) a chip with just a
50-bit key.

This goal can also be accomplished by secure hardware when it is up to
the user of the chip to choose the entire 100-bit key of the chip. The chip may
in fact reveal the first 50 bits of this key to a special agent. For instance, it
sends them along together with each ciphertext, encrypted with an internal
key that only the special agent knows. Alternatively, before the chip starts
functioning it is necessary that it receives a special signal from the special
agent, and the special agent will give this activation signal only after the
chip sends him an encrypted version of the first 50 bits of its chosen secret
key. Of course 100 and 50 are variables, it is not necessary that the bits in
possession of the special agent are the first 50, and other precautions can be
taken to make sure that the chip works as desired.

References

[1) S. Micali. Fair Cryptosystems. Proc. Crypto 92.

[2) National Institute of Standards and Technology. Escrowed Encryption
Standard. Federal Information Processing Standards, PUB 185, 9 Febru­
ary 1994.

[3) J. Kilian and T . Leighton. Fair Cryptosystems, revisited. Advances in
Cryptology, Proc. CRYPTO 95, Lectures Notes in Computer Science,
Springer, 1995, pp. 208-221.

[4] S. Micali and R. Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to Clipper-like key escrow

systems. Advances in Cryptology, Proc. CRYPTO 95, Lectures Notes in
Computer Science, Springer, 1995, pp. 185-196.

[5] A. Lenstra, P. Winkler, Y. Yacobi. A key escrow systems with warrant
bounds. Advances in Cryptology, Proc. CRYPTO 95, Lectures Notes in
Computer Science, Springer, 1995, pp. 197-207.

[6] Y. Frankel and M. Yung. Escrow encryption systems visited. Advances
in Cryptology, Proc. CRYPTO 95, Lectures Notes in Computer Science,
Springer, 1995, pp. 208-235.

[7] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Comm. ACM, Vol. 21, 1978,
pp. 120-126.

[8] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret
Sharing and Achieving Simultaneity in the Presence of Faults. Proc. 26
ann. IEEE Symp. on Foundations of Computer Science, IEE, New York,
1986, pp. 383-395.

[9] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Inform. Theory, IT-22, Vol. 6 (1976), IEEE, New York, pp. 644-654.

[10] A. F iat and A. Shamir. How to Prove Yourselves: Practical Solutions of
Identification and Signature Problems. Proc. Crypto 86, Springer Verlag,
263, 1987, pp.186-194.

[11] National Institute of Standard and Technology. Digital Signature Stan­
dard (DSS). Federal Information Processing Standards PUB 186, May
19, 1994.

[12] S. Goldwasser and S. Micali and C. Rackoff. The Knowledge Complexity
of Interactive Proof Systems. SIAM J. Comput., 18, 1989, pp. 186-208.
An earlier version of this result informally introducing the notion of
a proof of knowledge appeared in Proc. 17th Annual Symposium on
Theory of Computing, 1985, pp. 291-304. (Earlier yet versions include
"Knowledge Complexity," submitted to the 25th Annual Symposium on
the Foundations of Computer Science, 1984.)

[13] M. Bellare and P. Rogaway. Random Oracles are practical: a paradigm
for designing efficient protocols. Proc. 1st ACM Con£. on Computer and
Communication Security, ACM, ovember 1993.

[14) M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge
Proof Systems and Applications. STOC 1988.

[15] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive
Zero-Knowledge. SIAM J. on Comp. 1991.

[16] M. Blum and S. Micali. How to Generate Cryptographically-Strong Se­
quences of Pseudo-Random Bits. SIAM J. on Comp. vol 13, 1984

[17] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Comm. ACM, Vol. 21, 1978,
pp. 120-126.

[18] 0. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing
But Their Validity or All Languages in N'P have Zero-Knowledge Proof
Systems. J . of the ACM, Vol 38, No. 1, July 1991, pp. 691-729.

[19] J. Rosser and L. Schoenfield. Approximate formulas for some functions
of prime numbers. Illinois J. Math., Vol. 6 (1962), pp. 64-94.

[20] M. Tompa and H. Woll. Random Self-Reducibility and Zero-knowledge
Interactive Proofs of Possession of Information. Proc. 28th Conference
on Foundations of Computer Science, 1987, pp. 472-482.

[21] S. Goldwasser. Private Communication. Sep 7, 1995.

[22] D. Denning. To tap or not to tap. Comm. of the ACM, March 1993, Vol.
3, pp. 25-44.

