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Active networks are a novel approach to network architecture in which the switches of the 
network perform customized computations on the messages flowing through them. This 
approach is motivated by both lead user applications, which perform user-driven 
computation at nodes within the network today, and the emergence of mobile code 
technologies that make dynamic network service innovation attainable. In this paper, we 
discuss two approaches to the realization of active networks and provide a snapshot of the 
current research issues and activities. 

Introduction - What Are Active Networks? 

In an active network, the routers or switches of the network perform customized 
computations on the messages flowing through them. For example, a user of an active 
network could send a "trace" program to each router and arrange for the program to be 
executed when their packets are processed. Figure l illustrates how the routers of an IP 
network could be augmented to perform such customized processing on the datagrams 
flowing through them. These active routers could also interoperate with legacy routers, 
which transparently forward datagrams in the traditional manner. 

These networks are active in the sense that nodes can perform computations on, and 
modify, the packet contents. In addition, this processing can be customized on a per user 
or per application basis. In contrast, the role of computation within traditional packet 
networks, such as the Internet, is extremely limited. Although routers may modify a 
packet's header, they pass the user data opaquely without examination or modification. 
Furthermore, the header computation and associated router actions are specified 
independently of the user process or application that generates the packet. 

The concept of active networking emerged from discussions within the broad DARPA 
research community in 1994 and 1995 on the future directions of networking systems. 
Several problems with today's networks were identified: the difficulty of integrating new 
technologies and standards into the shared network infrastructure, poor performance due 
to redundant operations at several protocol layers, and difficulty accommodating new 
services in the existing architectural model. Several strategies, collectively referred to as 
active networking, emerged to address these issues. The idea of messages carrying 
procedures and data is a natural step beyond traditional circuit and packet switching, and 
can be used to rapidly adapt the network to changing requirements. Coupled with a well 
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Figure 1. Application-specific processing within the nodes of an Active Network 

understood execution environment within network nodes, this program-based approach 
provides a foundation for expressing networking systems as the composition of many 
smaller components with specific properties: services can be distnbuted and configured to 
meet the needs of applications; and statements can be made about overall network 
behavior in terms of the properties of individual components. 

In this paper we discuss two approaches to the realization of active networks. The 
programmable switch approach maintains the existing packet/cell format, and provides a 
discrete mechanism that supports the downloading of programs. Separating the injection 
of programs from the processing of messages may be particularly attractive when the 
selection of programs is made by network administrators, rather than individual end users. 
In contrast, the capsule approach goes somewhat further - the passive packets of present 
day architectures are replaced by active miniature programs that are encapsulated in 
transmission frames and executed at each node along their path. User data can be 
embedded within these capsules, in much the way a page's contents are embedded within 
a fragment of PostScript code. 

Research in active networks is motivated by both technology ' 'push" and user "pull". The 
''pull" comes from the assortment of firewalls, web proxies, multicast routers, mobile 
proxies, video gateways, etc. that perform user-driven computation at nodes ''within" the 
network. Some of these lead users are described in Table 1. In many cases, these 
services are implemented at nodes, such as firewalls, that adopt the facade of routers, yet 
perform application-specific processing that transcends conventional architectural 
guidelines. Our goal is to replace the numerous ad hoc approaches to network-based 
computation with a generic capability that allows users to program their networks. 

The technology "push" is the emergence of active technologies that make our goals 
attainable. Until recently, the specter of administrators (let alone end users) programming 
their networks has raised insurmountable concerns with respect to infrastructure safety 
and efficiency. However, recent advances in programming languages, compilers and 
operating systems may provide the keys to the safe and efficient execution of mobile 
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CATEGORY DESCRIPTION 

Firewalls Firewalls implement filters that determine which packets should be passed 
transparently and which should be blocked. Although they have a peer 
relationship to other routers, they implement application- and user-specific 
functions in addition to packet routing [ 1]. The need to update the firewall 
to enable the use of new protocols is an impediment to their adoption. In an 
active network, this process could be automated by allowing applications 
from approved vendors to authenticate themselves to the firewall and inject 
the appropriate modules into it. 

Web Proxies Web proxies provide a user-transparent service that is tailored to the serving 
and caching of Web pages. Harvest [2] employs a hierarchical scheme in 
which cache nodes are located near the edges of the network, i.e. within end 
user organizations. This system could be extended by allowing nodes of the 
hierarchy to be located at strategic points within the network. 

Nomadic Kleinrock describes a "nomadic router" [3] that is interposed between an end 
Routers system and the network. This module observes and adapts to the means by 

which the end system is connected to the network, e.g., through a phone line 
in a hotel room versus through the LAN in the home office. It might decide 
to perform more file caching or link compression when the end system is 
connected through a low bandwidth link and invoke additional security, such 
as encryption, when operating away from the home office. 

Transport "Transport gateways" are nodes located at strategic points that bridge 

Gateways 
networks with vastly different bandwidth and reliability characteristics, e.g., 
at the junctions between wired and wireless networks. To support mobile 
access to wired networks, TCP snooping [4] retains per-connection state 
information at wireless base stations. 

Application Application-specific gateways support services such as the transcoding of 

Services 
images [5] among video conference users with differing bandwidth 
constraints. Similarly, InfoPad [6] instantiates user-specific "pad servers", 
supporting applications such as voice and handwriting recognition, at 
intermediate nodes. 

Table 1. Lead Users 

program fragments. Today, these active technologies are applied within individual end 
systems and above the end-to-end network layer; for example, to allow web servers and 
clients to exchange Java applets. Active networks leverage and extend these technologies 
for use within the network - in ways that will fundamentally change our mindset 
concerning what is "in" the network. 

This article provides a current snapshot of active network research activities, including 
work on the underlying active technologies. In the next two sections, we descnbe the 
impact active networks may have on infrastructure innovation and the new applications 
that will be enabled. We then present a framework, or set of issues, that can be used to 
categorize and organize activity within the field. Finally, we present a survey of current 
research activities within our own laboratories and elsewhere in the community. 
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Accelerating Infrastructure Innovation 

As the lead users cited in Table 1 demonstrate, computation within the network is already 
happening - the demonstrated demand for these services suggests that network 
architectures must adapt to deal with this new reality. 

At a more fundamental level, the network innovation process is itself ripe for renewal. 
The pace of network innovation is far too slow and, as the Internet grows, it is 
increasingly difficult to maintain, let alone accelerate, this pace. To a large degree this is a 
function of the need to achieve consensus - a network' s utility increases with the number 
of interconnected nodes. Today, the path from prototype demonstration to large scale 
deployment takes about ten years. The process involves standardization, incorporation 
into vendor hardware platforms, user procurement and installation. The present backlog 
of Internet services includes multicast, authentication and mobility extensions, RSVP and 
1Pv6. 

The Internet Protocol (IP) enables interoperability by defining a standard packet format 
and addressing scheme; although router implementations may differ, they implement 
roughly "equivalent" programs. Thus, the mechanisms for IP innovation are: changing the 
IP service, which means changing everything (since it is the basis for interoperability); or 
establishing overlays, e.g. the MBone. 

In contrast, active nodes can execute many different programs, i.e., they can perform very 
different computations on each of the packets flowing through them. Instead of insisting 
that all of the routers perform "equivalent" computations on every packet, active networks 
specify that all nodes support equivalent computational models, i.e., virtual instruction 
sets. Active networks raise the level of abstraction at which interoperability is realized, 
allowing applications to customize message processing to suit their purposes. 

The ability to download new services into the infrastructure will lead to a user-driven 
innovation process in which the availability of new services will be dependent on their 
acceptance in the marketplace. Active networks present an opportunity to change the 
structure of the networking industry, from a "mainframe" mind-set, in which hardware and 
software are bundled together, to a "virtualized" approach in which hardware and 
software innovation are decoupled [7]. The network programming abstraction provides a 
powerful platform for user-driven customization of the infrastructure, allowing new 
services to be deployed at a faster pace than can be sustained by vendor driven consensus 
and standardization activities. 

Enabling New Applications 

Active Networks will enable new applications that rely on: the network-based merging of 
information; user-aware network protection; and active network management. 

The merging and distribution of information 

The era of multi-user, multi-site applications has just begun - the success of the MBone 
and the Web are but harbingers of what might lie ahead. There is an untapped reservoir of 
applications that require network-based services to support the merging and distnbution of 
information. However, existing systems are based on a service that provides an extremely 

page4 



sensors 

I 

actuators 

Figure 2. Exploiting the network-based merging and distribution of information. 
(Diagram courtesy of Prof Henry Fuchs, UNC) 

limited function, i.e., the copying of IP packets, without support for application-specific 
distribution, let alone network-based storage or information fusion. 

Figure 2 illustrates how sophisticated multi-site applications will leverage computation and 
storage within the network. In this figure an application, such as simulation or remote 
manipulation, allows each user to "see" composite images constructed by fusing 
information obtained from a large number of sensors. Furthermore, each sensor can be 
"watched" by a number of users, who will have differing requirements concerning the 
encoding and presentation of the information they access. Merging data within the 
network reduces the bandwidth requirements at the users, who are located at the (low 
bandwidth) periphery of the network. Similarly, user-specific multicast services within the 
network reduce the load on the sensors and on the network backbone. 

Web proxies that cache pages of information, are another example of a multi-user service 
that could benefit from network-based computation and storage. Harvest [2] employs a 
hierarchical caching scheme that can reduce the latencies experienced by individual users 
and the aggregate bandwidth that is consumed. The cache nodes are presently located 
near the edges of the network, i.e., at nodes within the end user organizations. These 
systems could be extended by allowing nodes of the hierarchy to be located at strategic 
points within the networks of Internet access providers and inter-exchange carriers. An 
interesting problem is the development of algorithms and tools that automatically 
"balance" the hierarchy by re-positioning the caches themselves, not just the cached 
information. A further argument in favor of using active technologies for Web caching is 
that a significant fraction of Web pages are dynamically computed and not susceptible to 
passive caching. This suggests the development of schemes that support active caches 
that store and execute programs that generate these pages. 
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User-aware network protection 

Protection of information means that the right information gets to the right people at the 
right place and time. Although network security and authentication mechanisms are being 
proposed in many networking forums, active networking may admit the design of an 
integrated mechanism that governs all network resources and the information flowing 
through them. This eliminates the need for multiple security/authentication systems that 
operate independently at each communication protocol layer. It allows us to program in 
security policy for the network on a per-user or per-use basis. Finally, a formal approach 
using rigorous specifications and language enforced type-safety can be used to reason 
about the protection policies and the mechanisms of their implementation. 

Active network management 

Many network management tasks consist of collecting and collating data, such as event 
counts. To provide the most useful network management data, such as exception 
indications, intelligence must be used to filter out uninteresting (unexceptional) events. 
Active technologies could be used to implement sophisticated approaches to network 
monitoring and event filtering. Network components, such as routers, may even assume a 
degree of responsibility for monitoring themselves, e.g., by injecting customized 
monitoring and diagnostic programs into their nearest neighbors. Similarly, active 
networks can provide the flexibility necessary to improve fault detection and to update the 
survivability policies that govern component response to correlated failures, such as those 
caused by earthquakes or malicious intruders. 

A Framework for Active Network Research 
In this section, we distinguish two approaches to active networks, discrete and integrated, 
depending on whether programs and data are carried discretely, i.e., within separate 
messages, or in an integrated fashion. We then discuss common issues related to node 
programming and interoperability. 

Programmable switches - a discrete approach 

The processing of messages may be architecturally separated from the business of injecting 
programs into the node, with a separate mechanism for each function. This preserves the 
current distinction between in-band data transfer and out-of-band management channels. 
Users would first inject their custom processing routines into the required routers. Then 
they would send their packets through such "programmable" nodes much the way they do 
today. When a packet arrives at a node, its header is examined and the appropriate 
program is dispatched to operate on its contents. 

Separate mechanisms for loading and execution might be valuable when program loading 
must be carefully controlled. Allowing operators to dynamically load code into their 
routers would be useful for router extensibility purposes, even if the programs do not 
perform application- or user-specific computations. In the Internet, for example, program 
loading could be restricted to a router's operator who is furnished with a ''back door" 
through which they can dynamically load code. This back door would at minimum 
authenticate the operator and might also perform extensive checks on the code that is 
being loaded. 
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PROJECT M s E DESCRIPTION 

Safe-Tel [8] X X Saf~ T cl (based on T cl) is a scripting language that 

(source) 
provides safety through interpretation of a source program 
and closure of its namespace. It depends on the restricted 
closure and correctness of the interpreter to prevent 
programs from deliberately or accidentally straying beyond 
their permitted execution environment. 

Java [9] X X X Java uses an intermediate instruction set to achieve 

(intermediate) 
mobility. Traditionally, the safe execution of intermediate 
code has relied on its careful interpretation. One of Java's 
key contributions is to improve efficiency by off-loading 
responsibility from the interpreter: the instruction set and its 
approved usage are designed to reduce operand validation 
per executed instruction. Work at the University of 
Arizona and elsewhere seeks to further boost efficiency 
through the use of compilation techniques. 

Omniware [10] X X X Omniware portable object-code depends on softwar~based 

(object-code) 
fault isolation (SFI) to enforce safety efficiently. It 
prescribes a set of rules that instruction sequences must 
adhere to, e.g. restrictions on how address arithmetic is 
performed. In conjunction with run-time support, these 
rules define a "sandbox" within which the program can do 
what it likes, but that it may not escape. 

Proof-Carrying X X PCC uses a novel approach to achieve safety: it attaches a 
Code [11] formal proof of the properties of a binary program. The 

(object-code) 
recipient can check that the proof is valid, a process that is 
much simpler than constructing it from scratch. Currently, 
PCC is practical only for short programs. 

Table 2. Program Encoding Technologies (with labeled columns M, S, and E 
assessing mobility, safety, and efficiency, respectively) 

Capsules - an integrated approach 

A more extreme view of active networks is one in which every message is a program. 
Every message, or capsule, that passes between nodes contains a program fragment ( of at 
least one instruction) that may include embedded data. When a capsule arrives at an 
active node, its contents are evaluated, in much the same way that a PostScript printer 
interprets the contents of each file that is sent to it. 

Bits arriving on incoming links are processed by a mechanism that identifies capsule 
boundaries, possibly using the framing mechanisms provided by traditional link layer 
protocols. The capsule's contents are then dispatched to a transient execution 
environment where they can safely be evaluated. We hypothesize that programs are 
composed of instructions, that perform basic computations on the capsule contents, and 
can also invoke ''built-in" primitives, which may provide access to resources external to 
the transient environment. The execution of a capsule results in the scheduling of zero or 
more capsules for transmission on the outgoing links and may change the non-transient 
state of the node. 
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Towards a common programming model 

Network programs must be transmitted across the communication substrate and loaded 
into a range of platforms. This suggests the development of common models for: the 
encoding of network programs; the "built-in" primitives available at each node; and the 
description and allocation of node resources. 

Program encoding. Our objectives for program encodings are that they support: 

• Mobility - the ability to transfer programs and execute them on a range of 
platforms. 

• Safety - the ability to restrict the resources that programs can access. 
• Efficiency - enabling the above without compromising network performance, at 

least in the most common cases. 
Mobility may be achieved at several different levels of program representation: express the 
program in a high-level scripting language, e.g. Tel; adopt a platform independent 
intermediate representation, typically a byte-coded virtual instruction set, e.g. Java; or 
transfer programs in binary formats, e.g., Omniware. Table 2 descnbes recently developed 
enabling technologies that support the safe and efficient execution of each level of 
program encoding. We expect that all three approaches will prove useful: source 
encodings support rapid prototyping; intermediate representations provide a compact and 
relatively efficient way to express short programs; and commonly used modules might best 
be expressed at the object-code level. 

A possible approach to node interoperability would be to agree on an intermediate 
instruction encoding as the backstop for code mobility. Node implementors and users 
would be welcome to leverage alternative encodings, so long as they provide mechanisms 
through which an intermediate encoding of a program can be obtained or generated. 
Implementors may also leverage techniques such as dynamic ("on-the-fly'') compilation 
that optimize common processing routines, both by converting portable representations to 
native ones, and by specializing programs to individual contexts. Operating system 
support for more specific strategies, such as "path"-based scheduling, protocol code 
reorganization, and low-level extensibility should also prove useful. Table 3 describes 
some of these compilation and operating systems technologies. 

Common primitives. The services built-in to each node might include several categories 
of operations [12]: primitives that allow the packet itself to be manipulated, e.g., by 
changing its header, payload, length, etc.; primitives that provide access to the node's 
environment, e.g., the node address, time-of-day, link status, etc.; and primitives for 
controlling packet flow, such as forwarding, copying, discarding. Additional primitives 
might provide access to node storage and scheduling, e.g., to facilitate rendezvous 
operations that combine processing across multiple packets. 

Node resources and their allocation. Beyond encodings and primitives, there must be a 
common model of node resources and the means by which policies governing their 
allocations are communicated. The resources to be modeled include: physical resources, 
such as transmission bandwidth, processing capacity, and storage; as well as logical 
resources, such as routing tables and the node's management information base. Safe 
resource allocation is an area that will require considerable attention. Active nodes will be 
embedded within the shared network infrastructure, and so their designs must address a 
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PROJECT DESCRIPTION 

Scout[13] Scout is designed to support communication-oriented tasks. It allocates 
and schedules resources on a "path" basis and applies a number of optim-
izations intended to increase throughput and decrease latency. Many of the 
techniques may be applicable to programs loaded into network nodes. 

Exokernel [14] The exokernel enables programs to safely share low-level access to systen: 
resources. It implements a thin veneer that securely multiplexes the rav. 
hardware. This in turn allows programs to tailor their own abstractions o1 
operating system services, e.g., access to the active node environment. 

SPIN [15] SPIN relies on the properties of the Modula 3 language and a trustworthy 
compiler to generate programs that will not stray beyond a restricted 
environment. Programs signed by the compiler may be dynamically loaded 
into the operating system. 

'C [16] 'C and VCODE enable "on-the-fly" code generation. This allows source 
programs to be automatically tailored, or even wholly generated, at 
runtime. These technologies could allow active nodes to translate 
commonly-used programs to binary encodings. 

Table 3. Operating System Technologies 

range of "sharing" issues that are often brushed over in the design of programmable 
systems destined for less public environments. 

Current Research 

Work on active networks is underway at a number of sites that are independently 
studying: capsule and programmable switch architectures; enabling technologies; 
specification techniques; end system issues; and applications, including network 
management, mobility and congestion management. 

Massachusetts Institute of Technology 

The MIT team is prototyping an architecture based on the capsule approach [17] and 
studying issues related to component specification, "active storage", multicast NACK 
fusion, and network-based traffic filtering. A reference platform that demonstrates the 
capsule architecture is being implemented on Linux using a Java-based capsule encoding. 
Additional enabling technologies, including advanced operating system techniques [14] 
and "on-the-fly" compilation [16] are also under investigation. 

Capsules use the built-in constructs of a programming language to perform packet 
processing. This language will be extended through the specification of a suite of 
"foundation components" that invoke built-in primitives, interact with the local node 
environment, and can be extended and specialized to suit application-specific 
requirements. Demand loading and the caching of components are being developed as 
strategies to support compact programs and reduce the overhead associated with their 
transfer and evaluation. Demand loading allows capsules to reference components rather 
than carry them; and caching implies that recently used components need not be reloaded 
and verified for safety. 
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Programming will also be facilitated by allowing capsules to leave "soft state" behind in a 
node. Thus, a flow or connection may be opened by having a capsule leave a small 
amount of associated state at each node along the path it traverses. Subsequent packets 
can include code whose execution leverages this "soft state" but can regenerate it if 
necessary. Connections and flows in active networks can be more powerful than those of 
present day systems because the state left behind may be in the form of programs. A more 
persistent form of active storage, workflow state, is being developed to support loosely 
synchronized activities and to track dependencies. 

University of Pennsylvania 

The SwitchWare project [18] is developing a programmable switch approach that allows 
digitally signed type-checked modules to be loaded into the nodes of a network. The basic 
idea is to raise the level of abstraction of the switch functionality to be closer to that of a 
Turing machine. Aspects of security dictate limitations in the tradeoffs which can be made 
in support of other goals: resource allocation must be robust enough that denial of service 
attacks are fiustrated; extensibility must be restricted so as to preclude security breaches, 
yet still adequate for advanced applications. 

Penn' s approach uses formal methodologies to prove security properties of Switch Ware 
programs. The focus of Switch Ware is the identification of properties of the underlying 
infrastructure for which theorems can be developed. Proofs are supported by a language 
(SMIJNJ) with a precise definition and .run-time support that includes concurrent garbage 
collection and resource allocation. An advantage of supporting security at the 
programming language level is that the high overhead of protection domain-crossing in 
kemelized operating systems is avoided, since the need for carefully gated entry points is 
removed at compilation time. 

The approach will be evaluated with a prototype based on a shared-memory 
multiprocessor. Early prototype applications include: software scalable bandwidth based 
on a general mechanism for inverse multiplexing, i.e., network striping; and support for an 
active packet model ("Switchlets"). 

Bell Communications Research 

Several aspects of the Penn design will be studied jointly with Bellcore, using a different 
infrastructure (OPCV2) to extend the design space that is explored. The Output Port 
Controller Version 2 (OPCV2) attaches to the Sunshine Asynchronous Transfer Mode 
(ATM) switch, developed for the AURORA Gigabit Testbed, and can also be used as a 
standalone cell processor that enables line speed manipulation of ATM streams. This 
allows studies of Switch Ware multiplexing algorithms and run-time system functionality to 
be embedded in the port controllers of a scalable switch. 

A second component of the Bellcore effort is the specification of the semantics of an 
Active Router, and the investigation of those semantics in a collaboration prototyping 
effort involving Penn. The prototype will use a small-scale multiprocessor as an active 
network element that interconnects ATM networks with 10 and 100 Mbps Ethernets. 
This Active Router will serve as an experimental platform for the investigation of 
applications under development within the Switch Ware project. 
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Bellcore is also studying uses of the new network infrastructure, such as Self-Paying 
Information Transport, in which electronic payment information is embedded in the active 
packets. Bellcore's interest in active networks is related to its previous work on: protocol 
boosters [ 19], which dynamically optimize protocol components on an end-to-end basis; 
and the Advanced Intelligent Network (AIN), which separated the implementation of 
value added services from switching, by moving the service control functions to adjunct 
processors. 

Columbia University 

The NetScript project, led by Yemini and da Silva [20], consists of a programming 
language and execution environment. The language provides a means to script the 
processing of packet streams. It is particularly suited to the implementation of routing, 
packet analysis, signaling and management functions. NetScript agents can be sent to 
remote systems including intermediate network nodes, such as routers and switches. The 
goal is to enable programming of these nodes as easily and quickly as end-systems. 

Carnegie Mellon University 

The CMU team, led by Steenkiste and Zhang, is developing resource management 
mechanisms in support of "application-aware" networks. They are considering three 
dimensions of resource allocation: physical infrastructure, including processing and 
storage; decision making on different time scales, ranging from application startup to 
packet and cell scheduling; and the sharing of infrastructure among organizational entities. 
The mechanisms will support network customization across all three dimensions. 

CMU is also exploring support for sophisticated multi-party applications, such as video 
conferencing and data mining, that use a multiplicity of traffic streams with divergent 
characteristics. These applications will be "network-aware" so they can perform well on a 
variety of networks and adapt quickly to changing network conditions. 

Work Elsewhere 

Additional research on active networks is being conducted at several sites: 

• At BBN, Partridge and Jackson are exploring issues of programmability, data 
dictionaries, and authentication mechanisms, in the context of IP and to improve 
management and diagnostic capabilities. 

• At the Georgia Institute of Technology, active network concepts are being 
applied to network congestion by allowing applications to request that specific 
node algorithms ( e.g. lossless compression, selective discard, transcoding) be 
invoked during periods of congestion [21] . 

• At the University of Kansas, Frost and Minden are considering the application of 
active technologies to rapidly deployable radio networks. 

• At the University of Arizona, Peterson is developing "liquid" software, a suite of 
mobile code technologies that includes rapid compilation of intermediate code, 
i.e., at network link rates [22]. 

• At the University of Cincinatt~ Alexander is investigating techniques for the 
formal specification of network elements and behavior. 
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Summary 

We realize that suggestions for software-intensive approaches to networking surface every 
ten years or so. For example, Zander [23] descnbes an experimental system in which 
packets of FORTH code were interpreted by network elements. Nonetheless, we are 
convinced that recent improvements in the safety and efficiency of active technologies, and 
the demand created by lead applications, present new research opportunities. 

Active networks involve the synthesis and extension of programming language, operating 
systems and networking expertise. We also anticipate changes to the organization of end­
system software - in place of protocol "stacks", applications may use protocol 
"components" that can be specialized and composed to perform application-specific 
functions [24]. This will lead to a massive increase in the degree and sophistication of 
network-based computation and address the mismatch between the rate at which user 
requirements change and the pace at which network infrastructure can be deployed. 
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