
545 TECHNOLOGY SQUARE CAMBRIDGE, MASSACHUSETTS 02139 (617) 253-5851

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT LCS TM-561

Matching and Pose Re�nement

with Camera Pose Estimates

Satyan Coorg Seth Teller

Computer Graphics Group

December, 1996

This technical memorandum (TM) has been made
available free of charge from the MIT Laboratory

for Computer Science, at www.lcs.mit.edu.

tt

Matching and Pose Re�nement with Camera Pose Estimates

Satyan Coorg Seth Teller

MIT Computer Graphics Group
545 Technology Square NE43-217

Cambridge MA 02139
satyan@graphics.lcs.mit.edu, http://graphics.lcs.mit.edu

Abstract

This paper describes novel algorithms that use absolute camera pose information to identify
correspondence among point features in hundreds or thousands of images. Our incidence counting

algorithm is a geometric approach to matching; it matches features by extruding them into an
absolute 3-D coordinate system, then searching 3-D space for regions into which many features
project.

The absolute pose estimates reported by our instrumentation are accurate, but not perfect. Thus,
we also consider the problem of re�ning these pose estimates, given feature matches from a set of
images. We describe a pose re�nement algorithm which decouples translation (position) estimates
from rotation (attitude) estimates, and can incorporate matches from many hundreds or thousands
of images.

1 Introduction

Many 3-D reconstruction algorithms rely on a matching or correspondence step to identify constraints
corresponding to the scene geometry; these constraints are used to guide the 3-D reconstruction process.
Typically, matching is performed using some image attribute (e.g., pixel luminance [?]) or some geometric
attribute (e.g., length and orientation of edges [?]). While these techniques work well for images taken
from nearby camera positions, they are less e�ective for disparate images taken from cameras that are
far from each other.

In this paper, we design a matching algorithm that uses camera pose estimates (provided by physical
instrumentation) to over-constrain the matching problem, identifying matches by applying geometric
constraints imposed by the camera positions. In some ways, our algorithm is similar to use of the
epipolar constraint in stereo vision [?], but generalizes that method in its incorporation of many cameras
and images.

As the absolute pose estimates reported by our instrumentation are not perfect, we also consider
the problem of camera pose re�nement, i.e., computing accurate camera poses for many images, given
matches between points and fairly accurate initial pose estimates.

Much of the existing research on pose re�nement has revolved around the assumption that no 3-D
information is available [?, ?]. The basis of these algorithms is the epipolar constraint between two
images:

~mTF~m0 = 0

where F is the 3� 3 fundamental matrix relating two (projective) points ~m and ~m0 in the two images.
Determining the fundamental matrix is equivalent to determining the (relative) poses of the two cameras

1

involved. Given eight or more point correspondences, it is possible to determine the fundamental matrix
up to a scale factor using the eight point algorithm [?]. However, typical algorithms [?, ?] use more
points than eight in order increase the robustness of the algorithm.

While this technique performs well for pairs of images, there are several disadvantages in using
the fundamental matrix technique for a large number of images. First, these algorithms involve only
pairwise matching; using them to compute pose for m cameras pairwise may result in large \drift" error.
Second, they determine camera pose and 3-D positions only up to a projective transformation, which
needs to be \corrected" as a post-processing step. Third, the use of projective matrices increases the
complexity of the solution because of greater number of variables and more complicated constraints
(such as singularity).

In contrast, we formulate the problem as a direct 3-D optimization algorithm that re�nes initial
camera pose estimates. One advantage of this approach is that the number of unknown variables is
less, increasing the robustness of the algorithm. Also, the algorithm can seamlessly incorporate matches
across many images. Finally, from a practical standpoint, it is much easier to visualize and debug (using
computer graphics) algorithms operating in 3-D; this would be much harder for algorithms that operate
in more complex spaces.

2 Incidence Counting

The incidence counting algorithm is based on the following property of projection: if any sparse set of
features in multiple images are extruded to 3-D, then it is likely that regions of high incidence (regions
where extrusions from multiple cameras intersect) correspond to real 3-D features. Figure ?? illustrates

A

B

C

E1

E2 E3

D?

Figure 1: Incidence counting in two dimensions.

the idea of the algorithm in 2-D. In the �gure, E1, E2, and E3 are cameras imaging three features (points
A, B, C). The extrusions of the image features are rays originating from the camera and passing through
the feature. If a feature is present in k images, k rays would intersect at the location corresponding
to the feature (e.g., points A, B, C all have high incidence of k = 3). Thus, a simple way to identify
matches would be search for regions with high incidence; an e�cient method to perform the search is
described in Section ??.

Note that, in addition to the \true" features, there are also spurious regions with high incidence. For
example, even though point D was not one of the features imaged by the cameras, D has the property
that rays from all three cameras pass close to it; i.e., D is a possible candidate for a match. Section ??
provides a method to eliminate some spurious matches by associating an error value with each 3-D

2

position. Future work will incorporate methods using image attributes (color and texture) to eliminate
additional spurious matches.

2.1 Octree-Based Incidence Counting

Our algorithm for incidence counting requires two parameters in addition to the images and camera
poses:

� �, a \nearness" threshold. This is necessary to handle (small) errors in either the location of the
image feature or in camera pose. The choice of � depends on both the accuracy of the camera pose
estimate, and the desired accuracy of the reconstruction.

� k, the incidence threshold. It is related to the density of camera positions relative to the features
of interest { a reasonable value would be the average number of cameras imaging a feature.

Given these parameters, points of high incidence are those for which k or more rays pass by within a
distance �.

Possible methods of identifying high incidence are to check the above condition for (1) all k-cardinal
subsets of the set of rays, or (2) all 3-D points in a discrete set (e.g., regular grid). Both these methods
have disadvantages. Checking all possible subsets su�ers from a combinatorial increase in complexity
with k; checking only a discrete set of 3-D points su�ers from the usual problems of point sampling (i.e.,
missing some 3-D feature (undersampling), or ine�ciency (oversampling)).

Fortunately, rays constructed by extrusion exhibit the clustering property: while there are regions
of high density (e.g., near features), there are large regions containing very few rays. We exploit this
property by constructing an octree [?] to store the rays. The octree is constructed by associating the
region of interest (a bounding-box overestimate of the cameras and the scene to be modeled) with the
root node, and subdividing octree nodes until either each leaf node is associated with fewer than k rays1,
or its dimensions are less than �. Once the octree has been constructed, each leaf node is examined
to check whether the rays through it pass through within � of each other. This can be performed by
computing the (least-squares) best point lying on all these rays. The algorithm reports all the points
(and corresponding rays) whose error is less than �.

2.2 Eliminating Spurious Matches

As mentioned earlier, one drawback of the incidence counting algorithm is that it identi�es even spurious
matches. In this section, we design an algorithm to eliminate some spurious matches by enforcing the
constraint that a single ray can contribute to at most one 3-D point. The algorithm given below uses
the error metric associated with a 3-D point to choose at most one 3-D point for each ray. Informally,
it uses the criteria that 3-D points with low error are retained, and those with high error are rejected.

This algorithm also has the property that it computes the minimum error valid con�guration (in a
lexicographic sense).

3

Algorithm Check-Spurious:

1. Sort all (say, n) high incidence 3-D points according to their error (the lowest error being �rst).
Pi denotes the i

th 3-D point.

2. foreach 1 � i � n do

(a) if (Pi is invalid) continue;

(b) Output Pi as a valid point.

(c) foreach i < j � n such that Pi and Pj share a ray, mark Pj as invalid.

d1
d2

d3
E1

E2 E3

Figure 2: Reconstruction using least squares of distances.

3 A Direct 3-D algorithm for Camera Pose Re�nement

We now present an algorithm for re�ning camera pose estimates, given matches across points in di�erent
images. Figure ?? illustrates (in 2-D) the idea behind our algorithm. If the camera poses are accurate,
then the rays constructed by extrusion would pass through the reconstructed 3-D point. Typically, due
to error in the camera pose estimates, they will diverge from the reconstructed point. This can be used
to \correct" the camera poses so that the rays are as close as possible to the 3-D reconstruction.

Formally, the pose re�nement problem is as follows. Given:

� For 1 � i � m, E0
i and R0

i { the translation and rotation estimates of the ith camera;

� For 1 � i � m, 1 � j � n, rays vij { unit vectors that correspond to projections of point Pj from
camera i (in the camera's coordinate system);

compute Ei, Ri for 1 � i � m (the true pose of each camera), and Pj for 1 � j � n (the correct 3-D
positions each matched point).

We formulate the problem as a minimization of the following objective function2:

O =

mX
i=1

nX
j=1

k(Pj �Ei)�Ri(vij)k
2

Geometrically, this function represents the sums of the squared distances from reconstructed points to
their corresponding rays (Figure ??).

1We associate a ray with an octree node if it intersects the �-extended box around the node.
2Note that Pj = 0 and Ei = 0 is a trivial solution to the minimization problem. This can be avoided by imposing a

constraint that the sum of their magnitudes must be some non-zero constant. In practice, due to the use of initial pose
estimates, we have found that the optimization converges to non-trivial solutions.

4

As the objective function does not have a linear least-squares form, we use an iterative method to solve
for camera pose. Our approach is to consider the problems of �nding each transformation independently
(assuming the other is known accurately) and combining the two methods when neither translations nor
rotations are known exactly. While this is equivalent to minimizing the objective function using partial
derivatives with respect to translations and rotations, it is helpful to separate the two cases for clearer
presentation; solutions to these two cases turn out to be quite di�erent.

3.1 Translations

In this section, we solve for translations of the cameras, assuming that their rotations are known accu-
rately. Thus, Ri(vij) can be replaced by a (known) unit vector v0ij . The resulting objective function
has the following form:

O =
mX
i=1

nX
j=1

k(Pj �Ei)� v0ijk
2

which can be written as:

O =

mX
i=1

nX
j=1

kL0
ij(Pj �Ei)k

2

where L0
ij is the 3�3 skew-symmetric matrix de�ning the cross product whose elements are determined

by the components of v0ij : 2
4

0 v0ij;3 �v0ij;2
�v0ij;3 0 v0ij;1
v0ij;2 �v0ij;1 0

3
5

Writing kxk2 = x:x as xTx, we obtain:

O =

mX
i=1

nX
j=1

(Pj �Ei)
TL0T

ijL
0
ij(Pj �Ei)

This is of the form xTAx for where A is a symmetric matrix. The derivative of this function with
respect to x is Ax.

Computing the derivatives of this function with respect to Pj , and setting it to 0 yields:

mX
i=1

L0T
ijL

0
ij(Pj �Ei) = 0

Thus, Pj = A�1b, where

A =
mX
i=1

L0T
ijL

0
ij

b =

mX
i=1

L0T
ijL

0
ijEi

Geometrically, this solution gives the point that minimizes the sum of squared distances of Pj from the
corresponding rays.

As the objective function is symmetrical in Pj and Ei, setting the derivative with respect to Ei yields
the equation Ei = A�1c, where

c =

nX
j=1

L0T
ijL

0
ijPj

5

Current translation

Rays

New translation

Inverse rays

Reconstructed
 point

Figure 3: Translation estimate using inverse rays.

This is equivalent to �nding the 3-D point that minimizes the sum-of-squared distances from the \inverse"
rays through P1 : : :Pn (Figure ??).

The translation re�nement algorithm alternately computes 3-D positions and camera translation
estimates using the equations given above3. Convergence in the algorithm is detected by little change
in the objective function.

3.2 Rotations

The �rst step in an optimization involving unknown rotations is to choose a representation for expressing
rotations. A variety of representations are in use: orthonormal matrices, quaternions, Euler angles, etc.
[?]. Each of these representations has its own advantages and disadvantages; the most appropriate
representation depends on the application (e.g., quaternions provide closed form solutions for absolute
orientation [?]). For this optimization, we chose to use Euler angles, i.e., rotation is represented by three
rotations about the coordinate axes. This has the advantage that no additional constraints are needed
to ensure rotational properties, in contrast to the orthonormality constraint for 3 � 3 matrices or the
unit length constraint for quaternions. This allows use of simple (unconstrained) non-linear optimization
methods such as the Newton-Raphson method [?] to solve for the rotation parameters.

Rotations are represented as:
Rx(ri)R

y(si)R
z(ti)

where ri; si; ti are the Euler angles, and Rfx;y;zg are 3 � 3 matrices representing rotations about the
coordinate axis. For example, Rz(�) is the matrix:

2
4

cos � � sin � 0
sin � cos � 0
0 0 1

3
5

We use the iterative Newton-Raphson method using the gradient (a vector formed by the �rst partial
derivatives) and Hessian (a matrix formed by the second partial derivatives) of the objective function
to solve for the camera rotations [?]. Given initial estimates of r; s; t for some camera i (subscripts are
omitted for clarity), increments �r;�s;�t are de�ned by the gradient and the Hessian:

3The solution is valid only up to a rigid (rotation, translation, uniform scaling) transformation. The \correct" trans-
formation can be obtained by �xing the values of some three points in absolute coordinates.

6

2
664

@2O
@r2

@2O
@r@s

@2O
@r@t

@2O
@r@s

@2O
@s2

@2O
@s@t

@2O
@r@t

@2O
@s@t

@2O
@t2

3
775

2
4

�r
�s
�t

3
5 =

2
64
�@O

@r

�@O
@s

�@O
@t

3
75

The partial derivatives are obtained by symbolically di�erentiating the objective function with respect
to r; s; t and evaluating the expressions using the current values of r; s; t. Some of the partial derivative
expressions are listed in the appendix.

Given the current rotation in terms of r; s; t, the rotation re�nement algorithm evaluates the partial
derivative expressions and computes �r;�s;�t. The new rotations are used to update the 3-D positions
of the reconstructed points, and this process is repeated until convergence.

4 Results

Figure ?? shows snapshots of our incidence counting algorithm in action. We used a textured 3-D model
of Technology Square (the building complex housing the MIT Laboratory for Computer Science) to
generate input for this experiment. Point features necessary for the algorithm are extracted using the
Canny edge detector [?]. The results show that the algorithm recovers fairly accurate 3-D structure from
as little as three images.

Figure ?? shows the pose re�nement algorithm in action. Data for this problem was generated by
choosing n = 20 random points in a box containing m = 10 cameras, and perturbing the translations or
rotations by a few percent. The results show that the algorithm is able to robustly recover the original
camera positions from the perturbed estimates.

5 Conclusion

We presented the incidence counting algorithm that identi�es matches using only the geometric con-
straints implied by camera pose. The algorithm performs fairly well for synthetic images and camera
pose, but more experiments on real data are needed to fully evaluate its e�cacy.

We also presented a direct 3-D algorithm to re�ne camera pose estimates given correspondences. Our
algorithm operates directly in 3-D and can easily incorporate matches across hundreds or thousands of
images. Results of this algorithm on synthetic data (random 3-D points, perturbed camera poses) were
presented in this paper; we plan to experiment with real data when our pose-instrumented platform is
operational. Also, we plan to investigate the convergence rates of the pose-re�nement algorithms.

References

[1] Bentley, J. Multidimensional binary search trees used for associative searching. Communications

of the ACM 18 (1975), 509{517.

[2] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. Computer Graphics, Principles

and Practice, Second Edition. Addison-Wesley, Reading, Massachusetts, 1990.

[3] Samet, H. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and

GIS. Addison-Wesley, 1990.

7

(a) An input image (b) Long edges (> 10 pixels) and vertices

(c) Extruded rays (b) Octree

(e) Reconstructed geometry

Figure 4: Incidence counting on three synthetic images.

8

(a) Initial translations (b) Final translations

(a) Initial rotations (b) Final rotations

Figure 5: Pose re�nement on synthetic data. Note that rays do not pass through the initial reconstruc-
tion, but they do so after re�nement. Also, the arrows connecting computed 3-D positions to original
3-D positions have become very short, indicating convergence to the original 3-D values.

9

A Rotational Partial Derivatives

We only list the partial derivatives with respect to t; the expressions for r and s are similar. Let,

Sz(�) =

2
4

cos � � sin � 0
sin � cos � 0
0 0 0

3
5

Dj = Pj �E

Vj = Dj � (Rx(r)Ry(s)Rz(t)vij)

Vt
j = Dj � (Rx(r)Ry(s)Sz(t+

�

2
)vij)

Vrt
j = Dj � (Sx(r +

�

2
)Ry(s)Sz(t+

�

2
)vij)

Vtt
j = Dj � (Rx(r)Ry(s)Sz(t+ �)vij)

Then,

@O

@t
=

nX
j=1

Vj :V
t
j

@2O

@t2
= 2

nX
j=1

Vt
j :V

t
j + 2

nX
j=1

Vj :V
tt
j

10

