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ABSTRACT

An algebraic approach to high gain controls for linear
dynamic systems with varying orders of reachability is developed.
Based on this approach, the issues of high gain inputs for reaching
target states, high gain feedback for pole placement and high gain
inputs for steering trajectories arbitrarily close to almost
(A,B)-invariant subspaces and almost (A,B)-controllability
subspaces are addressed.

Systems that are parametrized by a small parameter e are
considered. Orders of reachability and feedback results are
developed fist for discrete time systems and then shown to hold for
continuous time. Also, for continuous time systems the notions of
almost (A,B)-invariance and almost (A,B)-controllability are
analyzed. It is illustrated that the approach of this thesis
provides a quantitative insight into these notions.
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I INTRODUCTION
I.1 PROBLEM STATEMENT

In this thesis, we develop a theory of asymptotic orders of
reachability in linear dynamic systems. We use this theory in
analyzing and controlling systems with couplings and control
effectiveness of different orders. To provide a motivation for
the key issues in our approach, let us consider the following

discrete time system as an example:

ExamEle 1.1.1
1 1

x[k+1] = [.01 2]x[k] + [.él]u[k] (1.1.1)

This system is reachable but the reachability matrix [b|Ab] =

[.él 1:8;] is not very far from a singular matrix, in that its
condition number is approximately 104. This leads to numerical
difficulties in determining reachability as shown in [14]. Also,
consider the minimum energy control problem for this system. For
example, the minimum energy control to reach xX[2] = [é] from

x[0] = O is ul[l] = -.5 and u1[2] = 1.5, while the minimum energy
control for x[2] = [}] is u2[1] = 49.7 and u2[2] = -49.3. This

order of magnitude difference between uy and u, is another

indication of near unreachability.



To model problems such as the above, this thesis focuses on
models in which a small parameter e implicitly indicates the
presence of different orders of couplings, scalings, reachability,

etc. Specifically, we consider continuous time and discrete time

systems of the form

x(t) = A(e)x(t) + B(e)u(t) (1.1.2)

x[k+1] = A(e)x[k] + B(e)ul[k] (1.1.3)

where ¢ is a small parameter.

In the rest of this chapter, we review the work related to
the problems of interest to us, illustrate our motivations via
some examples, and describe the above models in more detail. In
Chapter II, we develop a theory of orders of reachability for
discrete time systems. In Chapter III, we extend this theory to
pole placement with full state feedback. In Chapter IV, we show
that eqiuvalent results are obtained for continous time systems,
and also provide connections with Willems® work on almost
invariance [3]. In Chapter V, we summarize our results, and

suggest problems for further research.



I.2 REVIEW OF RELATED WORK

This work was particularly motivated by the pole placement
theory for linear time-invariant systems. Specifically, the
numerical problems encountered in various pole placement methods
and in evaluating system reachability were important elements in

our motivation.

Pole placement and related numerical issues are addressed
using various approaches in the‘current literature [4-7]. Patel
[6] discusses numerical algorithms for pole placement using state
feedback for single input systems. Miminis [5] discusses pole
assignment in multi-input systems using the inputs one by one. In
multi-input systems, unlike single-input systems, the feedback
matrix that produces a given set of poles is not unique, and the
additional degrees of freedom may be used to attain other control
objectives (see [7]). One may, for example, attempt to minimize
the maximum feedback gain; Patel addresses this problem via
numerical examples on redistribution of the feedback task among
the inputs and balancing the A and B matrices. These examples
contain some intuitive ideas, but have not led to systematic
procedures that work well for Well—defined‘ and substantial
classes of systems. Petkov et al. [4] use the freedom in the

feedback matrix to analyze the flexibility of assigning



eigenvectors in addition to assigning a given set of eigenvalues,

thereby implementing numerically the ideas in [7].

Another area of numerical work involves criteria to measure
controllability. Boley et al. [9,10] use the "distance to the
nearest uncontrollable system” as a criterion. They define this
by the minimum norm perturbation that would make a system
uncontrollable. They also relate this concept to state feedback
by measuring the amount that the eigenvalues move due to state

feedback of bounded magnitude.

Our treatment of problems of this type is qualitative rather
than numerical in nature: we assume that small values in the
system are modelled by functions of a small parameter e, and we
look at how unreachable this system is in terms of "orders of e".
Specifically, the starting point for our work is a regularly
perturbed system of the form (1.1.2) and (1.1.3). The issue of
controllability in perturbed systems of the form (1.1.1) has been
examined by Chow [8]. He defines a system to be strongly .
controllable if the system is controllable at e = 0. Otherwise,
he calls it weakly controllable and concludes that pole placement
of such systems will require controls with large gains. Chow
looks at systems with two time scales (slow and fast), and he
proves that a necessary and sufficient condition for such a

"singularly perturbed” system to be strongly controllable is the



controllability of its slow and fast subsystems.

Our analysis goes further than Chow’s in that we examine the
relative orders of reachability of different parts of the state
space. The methods we use have some similarity to those used by
Lou et al. [1,2] who analyze the multiple time scale structure of

the systems
x(t)
x(t)

They relate the time scales of (1.2.1) to the invariant factors of

A(e)x(t) (1.2.1)

A(e)x(t) + B(e)u(t) (1.2.2)

A(e) viewed as a matrix over the ring of functions analytic at

e = 0. Consequently, the Smith Decomposition (Appendix A.1) plays
a key role in their analysis as it does in ours (although our
decompositions do not involve time scales:; see Chapter II). While
the primary focus of the work in [1,2] is on time scale structure,
some attention is paid to control. In particular, results are
given on the use of feedback in (1.2.2) to change the time scale
structure of the system. This thesis may be seen as a
continuation of the work in [1,2] in that it analyzes the effect

of control and feedback on the system of (1.2.2).



1.3 MOTIVATING EXAMPLES

A problem that frequently arises in numerical computations is
the determination of these terms that may be neglected what to
neglect so that computations are simplified without significantly
altering results. This is essentially equivalent to determining
the accuracy to which numerical computations must be carried out.
To illustrate this problem, consider the following simple example
which is a sampled-data model for an undamped rotor of inertia
h

J=1, acted on by a piecewise constant torque u[k] in the Kt

sampling interval, where T is the length of the sampling interval:

Example 1.3.1:

x[k+1] = [O 1]x[k] + [ T ]u[k] (1.3.1)

Suppose that T<<1, and that we decided to neglect T2/2 and

therefore to work with the simplified model:

x[k+1] = [(1) Hx[k] + [g]u[k] (1.3.2)

A little calculation shows that a feedback [—I/T2 -2/T] shifts
both of the poles of (1.3.2) to O. On the other hand, using this

feedback in (1.3.1) produces the poles 1/2 and -1, which do not

stabilize the system. The reason for this is that T2 terms are
not negligible. One way to see this is to examine the



reachability matrices. Specifically if we consider the

reachability matrix, [b|Ab] = [T2§2 3Ti/2] of (1.3.1) or [g ?2] of
(1.3.2) we realize that these models are no longer reachable when
we neglect the T2 terms in their reachability matrices. In fact,
the coupling from the input to the first state is zero, to the
second state is T, and the coupling between the two states is T.
Thus, the coupling from the input to the first state, through the
second state is T2. As a result, T2 plays an important role in
reachability, and we should not neglect it. The theory developed

in Chapters II and III addresses this problem, and it is

illustarted for this example in Section 3.3.

In the same fashion, small values that could play a
significant role in reachability might be neglected during
computation, due to insufficient numerical accuracy of the

computation device used. Consider the following simple example of

a discrete time system:

Example 1.3.2:

x[k] = [_1_399 ;]x[k] + [l.éOI]U[k] (1.3.3)

If the numerical accuracy of the computation device used is 3
digits, then the entries -1.999 and 1.001 would be rounded to -2
and 1, respectively, making this reachable system appear

unreachable. On the other hand, consider the following



counterpart of (1.3.3)

x[k] = [_226 é]x[k] + [lie]u[k] (1.3.4)

which is equivalent to (1.3.3) for e = 0.001. By a similarity
transformation, we get the following system
11 1

yix] = |1 g]veen + [Here (1.3.5)
If this model is evaluated at e = 0.001, then, assuming that
floating point calculations are used, rounding errors will be
prevented and it would be possible to correctly detect
reachability. Chapter II provides an algorithm to compute the
transformation necessary to derive the system of (1.3.5) from
(1.3.4). Chapter III illustrates the above numerical problem and
compares the result attained by the approach of this thesis to
conventional methods for pole placement on a relatively

complicated example.



I.4 MODEL DESCRIPTION

In this section, we first provide some algebraic background

and then define the models that we use, in detail.

I.4.a ALGEBRAIC BACKGROUND

Let R[[e]] be the ring of real valued functions that have
Taylor expansions in e. The units in R[[e]] are precisely those
elements with nonzero constant terms. Let 7 be the set of
elements of R[[e]] with zero constant terms, then 2 is an ideal of

R[[e]]. Thus, R[[e]] is a local ring and 7 its maximal ideal.

R"[[e]] = R[[e]] ® ... ® R[[e]] (n summands) is a finitely
generated free R[[e]]-module. Let X, (1 i { n) form a basis of
n

R All x; are in Rn[[e]] and form a basis of Rn[[e]]/mmn[[e]]

which is isomorphic to R™ + mmn[[e]]. Thus, any basis of R™

generates Rn[[e]]. We can also represent Rn[[e]] as

R®[[e]] = R™ + eR™ + e2R® + e R™ +

Let R((e)) be the field of real valued functions which have
Laurent expansions in e. Rn((e)) = R((e)) & ... & R((e))

(n summands) is then a vector space.



I.4.b DESCRIPTION OF THE SYSTEM

We use continuous time and discrete time models of the form

x(t) = A(e)x(t) + B(e)u(t) (1.4.1)
x[k+1] = A(e)x[k] + B(e)u[k] (1.4.2)
where A(e) = [aij(e)]nxn , aij(e) € R((e)) (1.4.3)
Ble) = [b,;(e)] 0 » Pys(e) € R((€)) (1.4.4)
such that A(e) : R%((e)) - R™((e)) (1.4.5)
B(e) : R"((e)) > R"((e)) (1.4.6)
and the reachability matrix
€(e) = [B(e)[A(e)B(e)] ... [A"T(e)B(e)] : R™((e)) » R™((e))
We consider e € (0,a), where a € R'. The state and input
vectors are in fact functions of both t and e. For example,

u(t,e) (denoted above as just u(t)), for fixed t, is a family of
input values as a function of €. On the other hand, for fixed e,
u(t) is some input function. For fixed t, u(e) € Rm((e)) and

x(e) € Rn((e)). These systems are defined over R((e)) primarily
because the objective of this thesis is to examine the effect or
necessity of high gain feedback. For most of this thesis, A(e) is
restricted to have eigenvalues in R[[e]]. Also note that €(e) can

be made analytic at e = O (equivalently over R[[e]]) by a simple

10



input scaling. This fact is used at points which make it more
convenient to represent the results. In addition, we assume that
the reachability matrix is full row rank for all € € (0,a), i.e.
either the system is reachable for all e € (0,a) or the reachable
part of the system is being used. In the cases of most interest
to us, the reachability matrix will lose rank for e = 0, and a
will be the smallest positive value of e for which the
reachability matrix loses rank. Under these conditions, we

analyze the asymptotic behavior of the system as elO.

11



ITI REACHABILITY OF DISCRETE TIME SYSTEMS

In this chapter, we examine the orders of reachability of
discrete time linear dynamic systems of the form (1.4.2),
satisfying (1.4.3) - (1.4.6).

II.1 eY-REACHABILITY

We start by developing our theory of asymptotic orders of
reachability in an analogous way to existing linear control
theory. In order to provide a motivation for our approach, let us
start with the following counterpart of Example 1.1.1 in the

framework defined in I.4:

Example 2.1.1:
x[k+1] = [l ;]x[k] + [i]u[k]

so
1 1+e
€(e) = [e 3&]
This system is reachable for all e € (0,2). The minimum

energy control sequence needed to go from the origin to

12



x,[2] = [é] is w;[1] = -1/(2-¢) and u [2] = 3/(2-¢). which is
0(1).(1) The minimum energy control sequence for x2[2] = [i] is

u2[1] = (-e+l1)/e(2-¢) and u2[2] = (2e-1)/e(2-e), which is O(1/e).

Let us start by characterizing target states by the order of

control sufficient to reach them.

Definition 2.1.2: x(e) € Rn[[e]] is gj—reachable if there exists

. u[n-1]
an O(lleJ) input sequence %U(e) = . such that x(e) is
ul0]
reached from zero in n steps using U(e) (i.e. x(e) = €(e)U(e)).

Let %j be the set of all eJ—reachable states.

0 2

Proposition 2.1.3: 4~ C al C2°cCc ... and 2y is an

R[[e]]-submodule of R"[[e]].
Proof: The first statement follows from the fact that an O(llej)
).

To reach x[n] = c(e)x(e), where c(e) € R[[e]] we can use c(e)a(e)

input sequence is also 0(1/&J+1

which is O(l/ej). Thus, c(e)x(e) € gl

1f(e) is O(ek) if
lim Hf(e)ll
elo k
€
exists, where k is an integer, f(e) is a scalar, vector or matrix,

and lI*ll denotes the appropriate norm. Note that if f(e) is O(ek)

k-1

then it is also O(e ). 0(ek_2) etc.

13



Let x,(e). xy(e) € 27, and let 4 (e), ,(e) be 0(1/ed) input
sequences that cause these respective states to be reached. To
reach x[n] = xl(e) + x2(e), we can use %l(e) + %2(6) which is an
O(l/ej) input sequence. Thus, xl(e) + xz(e) e aJ. Therefore, aJ
is a submodule of Rn[[e]].

We term %9 the gj—reachable submodule. (Note that if x(e) is e’

reachable, then (1/e)x(e) is not necessarily eJ reachable. Thus
if we had considered target states in Rn((e)) in Definition 2.1.2,

then the set of eY reachable states would not be

R((e))-subspaces).

In Example 2.1.1, %O = Im[é] + emz[[e]] , %1 = ﬂ2 = ... =
R?[[e]].

An interesting property of the set of ej—reachability
submodules is that all the structure is embedded in the
eo—reachable submodule. First of all, note that ﬂo is the image
of the reachability matrix under the set of all control sequences

in Rmn[[e]]. Also, the eJ-reachable submodule is simply obtained

by scaling the eJ_l—reachable submodule by 1/e. To state this

formally:

14



Proposition 2.1.4: 90 - {%(e)Rmn[[e]]}ﬂRn[[e]] and

qd = é{ﬁj—l n eRn[[e]]}, or in general,
i 1

i—j{aJ n el—JRn[[e]]}, for nonnegative integers i, j and

€
i>j.

Proof: By Definition 2.1.2, %o = {@(e)mmn[[e]]}ﬂmn[[e]], or in

general qd - {%(e)llejmmn[[e]]}ﬂmn[[e]]. Then,

— oI IR L1 1) = A —ge(e)R™ [ [e]])ne’ TR [e1D)
€ € €
= {—Fe(e)R™[[e]1}NR"[[e]] = &
€

Using Proposition 2.1.4, we can find ﬂo from the reachability

matrix, and recover %J, Vj > O, from %O.

Another property of the eJ—reachability submodules is the

invariance under A(e), if the coefficients of the characteristic

polynomial of A(e) are analytic at e = O:

Proposition 2.1.5: If the coefficients of the characteristic

polynomial of A(e) are analytic at e = O, then ejA(e)%j C %O.
Proof: A(e)%o = A(e)@(e)mmn[[e]] C ﬂo by the Cayley-Hamilton
theorem (note that we need the restriction on the coefficients of
the characteristic polynomial here). ejA(e)Pxj = eleA(e){ﬁo n

€

IR [e1]) © {A(e)2®neda(e)R[e1]) c a°

(Note that this result always holds if A(e) is over R[[e]].)

15



An immediate consequence of the above proposition is the

following:

0 0

Corollary 2.1.6: elA(e)ad c a° iffr a(e)a® c 2©.
The reason for scaling A(e)?IJ by ej is that Definition 2.1.2
is stated in terms of target states in Rn[[e]]. not Rn((e)). The

issue is made clear in the following example:

Example 2.1.7:Let A(e) = [2 166] and B(e) = [(1)] [(1)] 1s

e-reachable, but [ Oe] is not even valid as a target state. On

the other hand, [é] is reachable by O(1) control, so [lée] is
reachable by O(1/e) control. Proposition 2.1.5 aims to capture

this fact. By this proposition, any trajectory that starts in the

el-reachable submodule stays in this submodule if no input is

applied.
The following example illustrates the case where the
coefficients of the characteristic polynomial of A(e) are not

analytic at e=0:

0 1/¢2 1 0
Example 2.1.8: Let A(e) = [6 0 ] and B(e) = [o]’ then [e] is

l-reachable and [166] is not a valid target state, but again
intuitively, it is reachable by O(1/e) control but not by o(1)
0Oe 0 1

control. Also, consider [B(e)| ... IAB(e)B(e)] = [1 0 17 0],
then [?] is e-reachable but it is also reachable by 0(1) control

in 4 steps. This case is examined in more detail in Section II.4

16



where we introduce the notion of proper systems.

The structure of the eJ

-reachability submodules is not always
easily obtained by inspection from the pair (A(e),B(e)), as it was

the case in Example 2.1.1. To illustrate this, consider an e

perturbation of Example 2.1.1:

Example 2.1.9:

11 1
x[k+1] = [—e 2]x[k] + [e]u[k]
where €(e) = [1 1+e]
e €
This is a system reachable for all ¢ € (0,®]. In this case,

we find that x,[2] = [é] is e-reachable, and x5,[2] = [i] is

e -reachable. Therefore, even an e perturbation may cause drastic
changes in our submodules. We have discovered that the invariant

factors and the Smith decomposition of the reachability matrix

expose the structure of the eJ—reachability submodules, as

developed in the following section.

I1.2 SMITH DECOMPOSITION

In this section, we examine the role of the Smith
decomposition of the reachability matrix in exposing the
J

e*-reachability structure of our system. To ensure that the

minimum possible order of control is used, consider the minimum

energy control to reach a target state x[n] from the origin in n

17



steps in a reachable discrete time system. This is given by:

ue) = € (e)(e(e)e (e)) 'x[n] (2.2.1)
u[njl]
where YU(e) = .
ul0]

Consider the Smith decomposition [Appendix A.1] of €(e):

€(e) = P(e)D(e)Q(e) (2.2.2)
where P(e) is unimodular, Q(e) is full row rank at e=0 and
D(e) = diag{I.,el, ... ,ekI} with indices Po:Py: --- Py [as
defined in Appendix A.1]. Here it is assumed that D(e) has no 1/e
terms on its diagonal or equivalently that €(e) is over R[[e]].
We can achieve this by scaling the input vector (i.e. if the first
element on the diagonal of D(e) is 17e! then let u[k] = eiv[k]).
The reason for this assumption is to avoid 1/ej—reachab1e
submodules so that the representations for ej—reachable submodules
are "cleaner"” and easier to interpret. This assumption is
elaborated on in Section 2.3, specifically see Propositon 2.3.5.
Also, we assume that D(e) has no zeroes on its diagonal, meaning
that the system is reachable for all e € (0,a), where a € RY.  We
assume these in the remainder of this chapter unless stated
otherwise.

Now, the minimum energy control becomes
Q" (e)(are)Q (e)) 07 ()P (e)x[n]
s(e)p (e)y[n] (2.2.3)

where S(e) = Q' (e)(Q(e)Q ()L, and y[n] = P (e)x[n]

U(e)

18



Since S(e) is full column rank for € = 0 and P—l(e) is

1

unimodular, the order of control will be determined by D "(e). In

Example 2.1.1,

w) = [o 3] [o2] [ 5]

and Example 2.1.9,
10 10 1 1+e
€le) = [e 1] [o ez] [o -1]
and the structure of D(e) in each case is seen to correlate

precisely with the observations made on the examples.

i

Let n, = z P. . & = Im[I] ., where I is n_xn, and O is
i J n, 0 iTi
j=0
(n—ni)xni. If we transform (1.4.2) via y[k] = P_l(e)x[k], we get
y[k+1] = A(e)y[k] + B(e)u[k] (2.2.4)

where A(e) = P_l(e)A(e)P(e) and B(e) = P—l(e)B(e).

Equation (2.2.3) shows that the eJ-reachable submodules of

(2.2.4), %j, are as follows (2)

yd = & o+ es o+ ...+ KT1TIe 4 KRRy (2.2.5)
n. n, n
J j+1 k-1

Therefore, (2.2.4) is in such a form that the ej—reachable

submodules can be found immediately from the indices. This form

will be discussed in more detail in Section 2.3. Furthermore, we

J

can find the e”-reachable submodules of the original system

(1.4.2) via transformation by P(e), as shown in the following

proposition.

%k+1 _ %k+2

= R"[[e]].

’Note that & = R®, and %X
Dy

19



Proposition 2.2.1:

qd = P(e)Dj(e)Rn[[e]], (2.2.6)

where Dj(e) = diag{In , el , ek—J

, I _}. and P(e), n,, p.
i P Pk o
are given by the Smith decomposition of the reachability matrix.

Equivalently,

) ke 11 K 1
ad = P(e){&nj + egnj+1 + ..+ e Jgnk_l + e IR [e]11}
(2.2.7)
or,
; n, Pis1 Py
27 = P(e){R [[e]] ® eR I¥'[[e]] ® ... ® R X[[e]]} (2.2.8)

Proof: @O = D(e)Q(e)Rmn[[e]] = D(e)Rn[[e]], since Q(e) is

unimodular (note that D(e) = Do(e)). Thus,

90 - g+ ...+ ek_lgn + ekmn[[e]]
0 k-1
Assume %J_l = § + eé& + ... + ek_Jg + ek_J+1Rn[[e]]
n, n. n
j-1 J k-1
then
vl = LIl n erPrreain
= 8'.[1 + eé‘n + ... + E,k_l-‘jgn + 6k_']IRn[[e]]
J j+1 k-1
= D (e)R[[e]]
Also,
8n + egn + ... + ek_l_'jgn + E.k_len[[e]]
J j+1 k-1
n, P. I )
=R I[[e]] ® eR *[[e]T] @ ... @ IR K[[c]]

Finally, noting that ad = P(e)‘i’!J completes the proof.
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In Example 2.1.1,

96© - Im-é] + eR%[[e]1]. 2! = R°[[e]]
and in Example 2.1.9,

ﬂo = Im.i] + eIm[é] + 62R2[[e]]

gl - Im'é] + eR%[[e]1]. 22 = R%[[e]]

In a2 Smith decomposition, D(e) is unique, but P(e) and Q(e)
are not. Thus, the part of (2.2.7) in brackets is unique.
Different P(e) yield different bases for %9, but they will all

span the same submodule since the %Y are unique.

We can now characterize systems by the order of control

sufficient to reach all target states in Rn[[e]].

Definition 2.3.1: A system of the form (1.4.2) is an gk—reachable

system with indices n n

0’ 1° - o+ Dy if the reachability matrix

has a Smith decomposition such that

i
D(e) = d1ag{Ipo, eIpl, I ka} where n, = E p

Thus, Example 2.1.1 is an e-reachable system with indices
1 = 2. Example 2.1.9 is an ez—reachable system with

indices ny = 1, n, =1, n, = 2.
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As seen from (2.2.5), the el-reachable submodules of (2.2.4)

have a unique structure which can be constructed using the

eJ—reachability indices. We wish to examine this and other

properties of (2.2.4) in the next section.

II1.3 STANDARD FORM

In this section, we define and analyze a form that captures

the structure in (2.2.4), (2.2.5):

Definition 2.3.1: Let (A(e).B(e)) be an ek—reachable system with
indices ng, ... ,n . Let €{e) = P(e)D(e)Q(e) be the Smith
decomposition of its reachability matrix. Let A(e) =

P_l(e)A(E)P(e) and B(e) = P—l(e)B(e). Then, the pair (A(e),B(e))

is a standard form for (A(e).B(e)).

The system in Example 2.1.1 is already in standard form,

whereas transforming the system in Example 2.1.9 by P(e) = [i ?]

yields
vhent] = 105 L1 [y + [{]

-e2 2-¢

which uncovers the previously hidden e2 structure.
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Definition 2.3.2: A standard form of a system is a proper standard

form if it has the following structure:
k

i Ay ole) 1/er’1(e) .o lﬁfle,k(e)'}pO
Ale) = EAljo(e) Al,l(e) : - . 1/e Aljk(e) }?1 (2.3.1a)
Fa ole) A o) L A k() oy
Bo(e)]}p,
EBI(E) }Pl
B(e) = . : (2.3.1b)

B (e) |1y,

P. pi
where A, .(e) : R J((e)) » R *((e)) and B,

() : R"((e)) =

(-

Pj-

N

P,
R 1((e)), are analytic at e=0, and n, =
j=0

Example 2.1.1 and the above example are both in proper
standard form. In fact, finding one proper standard form is

enough to conclude that all standard forms of a pair are proper:

Proposition 2.3.3: If a pair (A(e).B(e)) has a proper standard

form, then all standard forms of (A(e),B(e)) are proper.

Proof: Let €(e) = Pl(e)D(e)Ql(e) = P2(e)D(e)Q2(e), then

A(e) = Pl(e)A(e)P, (o). B, (e) = P}!

(e)B(e) for i=1,2 are two
standard forms. Suppose that the pair (Al(e),Bl(e)) is a proper
standard form. Let Ki(e) = D_l(e)Ai(e)D(e), ﬁi(e) = D_l(e)Bi(e)

for i=1,2. Note Kl(e) and El(e) are both over R[[e]]. We wish to
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show that the same is true for K2(e) and §2(e). Let

R(e) = D_l(e)Pél(e)Pl(e)D(e) then R(e) is invertible, and

Qy(e) = R(e)Q (e). But, then R(e) = Q,(e)Q}(e) and

R™1(e) = Q;(e)Qy(e). where Qf(e) denotes the right inverse of
Q,(e). which exists over R[[e]]. Thus, R(e) is unimodular. Since
(A1(€).B;(e)) is over R[[e]] and Ay(e) = R(e)A, ()R !(e).

ﬁz(e) = R(e)ﬁl(e), the pair (KZ(e),E2(e)) is also over R[[e]].

Therefore, (A2(e).B2(e)) is a proper standard form.

A pair (A(e).,B(e)) is termed proper if it has a proper
standard form. Thus, both of the systems in Examples 2.1.1 and
2.1.9 are proper. On the other hand, consider the following

example:

Example 2.3.4: Let

1 0 1
Ale) = [1 1/6]' B(e) = [o] (2.3.2)
which is e -reachable and in standard form, since €(e) = [é i].

However, this system is not in proper standard form.

For notational convenience, let

€ (e) = [B(e) | A(e)B(e) | ... | AT (e)B(e)] (2.3.3)

11 1 ) .
0 1 1+1/e| 'S Mo

over R[[e]]. Also, the characteristic polynomial of A(e),

For the above example, observe that %3(6) = [

og(A) = A2—(1+1/6)A+1/e, has a coefficient which is not in R[[e]].
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In general, we have the following (3)1

Proposition 2.3.5: The following statements are equivalent for any

pair (A(e).,B(e)) such that @n(e) is over R[[e]]:

1. (A(e).B(e)) is proper.

2. €,(e) is over R[[e]].

3. The coefficients of the characteristic equation of A(e),

oc(A(e)) are in R[[e]].

To prove this result, let us first consider the following two
lemmas:
Lemma 2.3.6: For a pair (A(e).B(e)) with %n(e)_over R{[e]l]. €_,(e)
is over R[[e]] iff the coefficients of o(A(e)) are in R[[e]].
Proof: (-) Follows using the Cayley-Hamilton theorem.
(¢) If €, (e) is over R[[e]] then all eigenvalues of A(e) are 0(1),

since otherwise lim AJ(e) does not exist and thanks to the
e+0

assumption that €(e) is of full row rank, neither does

lim Aj(e)B(e) (Note that the eigenvalues of A(e) are not
el

necessarily over R[[e]] since they may include rational but
noninteger powers of e). But, the coefficients of o(A(e)) are in

R((e)). Thus, these coefficients are also in R[[e]].

3For convenience we use the shorthand €_(e) to denote @r(e) for

all integers r > n, i.e. €,(e) = [B(e)|A(e)B(e)]| ... 1.
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Lemma 2.3.7: Let A(e) = D *(e)P L(e)A(e)P(e)D(e),

B(e) = D '(e)P !(e)B(e). then € (e) is over R[[e]] iff T _(e) is
over R[[e]].

Proof: () Follows from the transformation.

(<) Clearly @n(e)=Q(e) is over R[[e]], and the rest follows using

Lemma 2.3.6 and the Cayley-Hamilton theorem.

We can now prove Proposition 2.3.5:
Proof (of Proposition 2.3.5): (1-2) Follows from Definition 2.3.2.
(2»1) By Lemma 2.3.7, @m(e) is over R[[e]]. Consider
@n+1(e) = [B(e) | K(e)@n(e)], which is also over R[[e]]. Then,
B(e) is over R[[e]]. Also, A(e) is over R[[e]] since @n(e) is
full row rank at e=0 and therefore has a right inverse over
R[[e]]. Thus, (D(e)K(e)D_l(e),D(e)ﬁ(e)) is a proper standard
form.

(2¢>3) Lemma 2.3.6

As an immediate consequence of statement 2 of Proposition

2.3.5 we have the following important property of proper systems:

Corollary 2.3.8: Given a proper pair (A(e),B(e)). x € ¥J iff x is
reachable in p > n steps with 0(1/eJ) control for all such p.
Note that p is assumed to be independent of e since otherwise

the above corollary may prove to be wrong in some cases, like the

following example:
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Example 2.3.9: Let A(e) = [2 ?] and B(e) = [é] which is a proper

pair and [?] is e-reachable. But, it is also reachable in p steps
1

where p-1 < . { p using the O(1) input sequence u[k] = 1 for

0<k<{p-2, u[p-1] = % - p and u[p] = :é + p - 1. We do not consider
such cases in this thesis since p is unbounded as e€l0 and thus not

very useful in practice.
Note that the system in Example 2.1.8 is not proper.

Let us supplement Proposition 2.3.5 with the following:
Corollary 2.3.10: @m(e) is over R[[e]] iff §n+1(e) is over R[[e]].
Proof: (=) Since §n+1(e) = [B(e) | K(e)@n(e)], and @n(e) is full
row rank at e=0, A(e) are B(e) are over Rn[[e]]. Thus, @m(e) is
over R[[e]].

(¢) Trivial.

For computational efficiency in testing if €,(e) is over
R[[e]] or not, one would be interested in finding the minimum
index, say r, such that @r(e) is over R[[e]] iff € _(e) is. The
above proposition shows that for eo—reachable systems we only need
to look at one more term. Let us consider the following examples

to illustrate the general case:

1
Example 2.3.11: Let A(e) = [é 196], B(e) = [ep], p>0. Then,
1 1 11 1
€,(e) = P ep—1 e 1 1/e v . The minimum index here is

p+2.
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00 O 1
Example 2.3.12: Let A(e) = e? 0 1/¢]. B{(e) = |0], p>0. Then,
0O 1 O 0
10_0 O _1 0 00 O 0
€ (e) = |0 eP o P 0] 1 01/e O . The minimum
© p p-1
00 e O € 01 0 1/e

index here is 2p+4.

Thus, it is not an easy task to determine r for a given system,
and r may typically be too large to provide any significant
computational advantage over, for example, transforming the system

into an eo—reachable form.

The standard form will prove to be very useful to us,
especially for finding feedback to place eigenvalues (Chapter 3).
Unfortunately, at this point we first need to compute the Smith
decomposition of the reachability matrix to get to a standard
form. This clearly is a very expensive operation in terms of both
the number of computations and the numerical accuracy. In the
remainder of this section, we develop an algorithm to get to a
standard form without using the Smith decomposition of the
reachability matrix. Our algorithm can only deal with a pair
(A(e),B(e)) over R[[e]]. Thus, in the remainder of this section,
we only consider such pairs. Then, the structure of a pair

(A(e).B(e)) in standard form is as follows:
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AO,O(e) AO,l(e) o Ao'k(e)-}p0
A (e) A (e) . . . A (e)|}p
ACe) = | Lo 1.1 . bk ! (2.3.4a)
-ekAk:o(e) ek‘lAk_l(e) L Ak:k(e)-}ﬁk
Bo(e)]}pg
EBl(e) }Pl
B(e) = _ (2.3.4b)

<“B, () |}p,

Hence all pairs (A(e).B(e)) over R[[e]] are proper.

Proposition 2.3.13 : An ek—reachable pair (A(e),B(e)) over R[[e]]

is in proper standard form with indices Py Py iff A(e) and
B(e) satisfy the following condition: Let Fi(e) = D;l(e)A(e)Di(e),

-1 ] i
Gi(e) = Di (e)B(e) where Di(e) = d1ag{Ipo, R Ipi+ s pk}

then the reachable subspace of (Fi(o)’Gi(O)) is 81 = Im[Ini], for
Vi € [0..k].

Proof: (-) (Fk(e),Gk(e)) is over R[[e]] and eo—reachable. But,
A(e) = D(e)Fk(e)D_l(e) and B(e) = D(e)Gk(e). Thus, (A(e).B(e)) is
in standard form and has the structure of (2.3.1). But, since
(A(e).B(e)) is over R[[e]], it has the structure of (2.3.4).
Therefore, (A(e).B(e)) is in proper standard form.

(<) Follows from (2.3.5) and the form of the reachability matrix

of (F,(e).G(€)).
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Definition 2.3.14: Let

AO,O(e) Ao’l(e) .o Ao'i(e).}po
A (e) A (e) . . . A, . (e)|}p
E (e) = : Lo 1.1 _ b1 ! (2.3.5a)
LeiAi:o(e) ei_lAi’l(e) oL Ai:i(e)-}ﬁi
Bo(e)]}rg
_ eB,(e)|}py
B, (e) = . (2.3.5b)

<'B,(e) |Ip,

then (Ki(e),ﬁi(e)) is the gi—reachable subsystem of (A(e),B(e))

with indices n., ... , n..
0 i

Similar to the submodule structure, the el—reachable

J

subsystem contains all e“-reachable subsystems for j = O,

i-1. The subsystems are layered with weak couplings of orders of
e between each component, as shown in Figure 2.3.1. Also,
mn n-n

¢ ()R '[[el] ® 'R [[e1] 0 9 (2.3.6)

moy i+1 D70y 0
and the sequence {%i(e)R [[e]] ® € R [[e]]} converges to ¥

in k steps. In other words, eo—reachable submodules of the

e’ -reachable subsystems approximate the eo—reachable submodule of

. i+1 3 .
the system in standard form upto et accuracy. We use this in

Algorithm 2.3.15 below.
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ek—reachable system

I I eo—reachable | l
subsystem

|1 Byle) efA oe) ||
uted T | Ag.0(9) o
L 2.0 ]
| | eB.(¢e) ek_lA (e)
1Y°7 . ) k.1 | |
(3
| 1.1 |
eA (e)
I L?f_______J |
I I
| |
A
| 16 Kk, k-1¢¢) I
| ekBk(e) — I
| feale) | |
L I

FIGURE 2.3.1 Block diagram showing the structure of an
ek-reachable system in standard form (upper off-diagonal blocks of

As(e) have been omitted for clarity).
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Computation of the reachability matrix is very expensive.
One has to calculate Ai(e)B(e) for all the terms in the expansions
of A(e) and B(e). Thus, it is desirable to work directly with the
pair (A(e).B(e)). The following algorithm takes advantage of
Proposition 2.3.13 to recover the ej—reachability indices. -At
every step, the reachable subspace of a pair, evaluated at e=0, is
computed. Then, the pair is updated by an appropriate scaling of
the unreachable part by 1/e. The algorithm uses the coefficients
of the Taylor expansions of the higher order terms only when
necessary. Also, it is possible to recover the actual Smith
decomposition of the reachability matrix from the algorithm, if
the transformations used in the algorithm are restricted to be

permutation matrices and lower triangular matrices (Proposition

2.3.18), though this restriction compromises numerical stability.

Algorithm 2.3.15:
Initialize: Ao(e) = A(e), Bo(e) = B(e), i =0
Step i:

1. Find Ti such that
Al A2]}ni

_ B, [}n,
7 (0)T. = Lot
1 1 1
0 A,

T;lBi(O) -
0
with (Al’Bl) reachable. This determines n,.

2. If n, =n then go to End, else continue.

-1 -1 -1 -1
3. Let Ay, (e) = Dy (e)T; A;(e)T;D (e). B, = D] ()T, B, (&)

where Di(e) = diag{lni- eIn—ni}'
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(It is not necessary to carry out the computation for all the
coefficients of Ai(e) and Bi(e); see Note 1 below.)
4. Increment i, go to Step i.

End: k = i, the system is ek—reachable with indices n

o, "~ nk.

Note 1: Step i of the algorithm recovers the el—reachability

index, n,. The O(el+1) parts of A(e) and B(e) have no impact on
n,. Thus, we could perform the tranformations up to step i on
only the lower order terms. Since the system is ek—reachable, we

k+1

do not need to consider O(e ) terms at all.

Note 2: The reachability matrix of (A(e),B(e)) is:

€e(e) = TODO(e)TlDl(e) .. Tk_le_l(e)ﬂk(e) = S(e)%k(e) (2.3.7)
where %k(e) is the reachability matrix of (Ak(e),Bk(e)) and it is
full row rank at e=0. (Note that Tk may be chosen to be the
identity.) Thus, by Algorithm 4.1 and Theorem 4.2 of Van Dooren

et al. [12] the above algorithm recovers the indices of €(e), or

. k-1

J—reachability indices. Also, D(e) = TJ Dj(e) where €(e) =
j=0

P(e)D(e)Q(e) is the Smith decomposition of €(e), for some

the e

unimodular P(e) and Q(e).

As an illustration for Algorithm 2.3.15, let us run Example

2.1.9 through this algorithm:
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Example 2.3.16:

Step 0: 1. Let TO = I.

2. n 1.

o =
Dy(e) = [é 2] then A (0) = [_} g]. B, (0) = [}]

(Assuming that we only need to find the indices, this is the first

w

time we had to use the coefficients of e, and also we do not
actually need to calculate Al(e) and Bl(e). Al(O) and Bl(O) are

sufficient for the next step)

4. i =1
Step 1: 1. Let T = [i ?] then T] A (0)T, = [é g], 7B, (0) = [é]
2 n, = 1
3. D, (e) = [é 2] then A,(0) = [_1 g], B,(0) = [é]
4 i =2
Step 2: 1. Let T2 =1
2. n, = 2, go to end.
End: ez—reachable system with indices n, = n; = 1, n, = 2.

It is also possible to compute a proper standard form and a
Smith decomposition of €(e) if Ti are chosen to consist of
permutation matrices and elementary row operations, i.e. Ti = IIiLi
where Hi is a permutation matrix and Li is a lower triangular

matrix. Then, S(e) defined in equation (2.3.7) has the following

form:
k_

1
S(e) = OHijDj(e) = MyLoDy(e) ... O 4L, /D, . (e) (2.3.8)
J=
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In fact, it is not necessary to permute the first n, , rows of

Ai(e) and Bi(e) at step i. Thus, Hi may be chosen to have the

I 0]
. n, . _
special form Hi = [ O1—1 ], where Ri is an (n—ni_l)x(n ni—l)

R,
1
permutation matrix. Therefore,
Dj(e)ﬂi = HiDj(e) Vi<i and i,j € [i..k-1] (2.3.9)
Lemma 2.3.17: S(e) = V(e)D(e)., where V(e) is some unimodular

k-1
matrix and D(e) = T[D.(e).
j=0 ?

Proof: We prove this inductively, as follows:
i
Let S.{(e) = T[[O.L.D.(e), then we claim that S.(e) = V.(e)E. (€)
i 520 iTi7d i i i

i
for all i € [1..k-1], where Ei(e) = TTDi(e) and Vi(e) is some
j=0

unimodular matrix. Clearly, So(e) satisfies this. Assume that
Si(e) also satisfies this. Then,

Si+1(e) = Vi(e)Ei(e)Hi+1Li+1Di+1(e) (2.3.10)
By equation (2.3.9) above, Ei(e)Hi+1=Hi+1Ei(e). Moreover, since

Li+1 is lower triangular and Ei(e) is diagonal with increasing

. . T -1 .
powers of e on its diagonal, Li+1(e) = Ei(e)Li+1Ei (e) is
unimodular. Thus:
Si+1(e) = Vi(e)ﬂi+1Li+1(e)Ei(e)Di+1(e) = Vi+1(e)Ei+1(e) (2.3.11)
where Vi+1(e) is unimodular, and the proof is complete since

S(e) = Sk_l(e) and D(e) = Ek_l(e).
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Proposition 2.3.18: If permutations and elementary row operations

are used, a proper standard form and a Smith decompositon of the
reachability matrix for a pair (A(e),B(e)). over R[[e]]., can be
constructed via algorithm 2.3.15 as follows:

1. Let P(e) = S(e)D_l(e), and Q(e) = @k(e), where

D(e)

k-1
TTDj(e), then a Smith decomposition of €(e) is:
j=0

€(e) P(e)D(e)Q(e).

2. Let A_(e) = D(e)A (e)D ' (e), B_(e) = D(e)B, (&) then
(As(e),BS(e)) is a proper standard form for (A(e),B(e)).

Proof:

1. By Lemma 2.3.17, P(e) is unimodular. Since (Ak(e),Bk(e)) is
eo—reachable, @k(e) is full row rank at e = 0. Also,

€(e) = S(e)?k(e) = P(e)D(e)fk(e). Thus, we have the desired Smith
decomposition.

2. By part 1 above, As(e) = P_l(e)A(e)P(e), Bs(e) = P_l(e)B(e) and
it is a standard form by definition. Since, (A(e).B(e)) is over
R[[e]]. (As(e),BS(e)) is also a proper standard form.

Let us illustrate this for Example 2.3.16:

10

Example 2.3.19: First of all S(e) = TODO(e)TlDl(e) = [e .

2] and

|
[_} g], and Bz(e) = [é]. Thus, @2(6) = [é _i]

and therefore a Smith decomposition for €(e) is

D(e) = Dy(e)D,(e) = [é 22]. Thus, P(e) = S(e)D l(e) = [i

— O

Recall that A2(e)

€(e) = [i ?][é 22][é _i]. Also, a proper standard form is given
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by A_(e) = D(e)A (e)D !(e) = [_22 g] and B_(e) = D(e)B,(e) = [é].

In this section, we developed and analyzed the standard form

of a pair (A(e).B(e)). When a system is in this form, its

. In

eJ—reachability subspaces can be expressed as 8n = Im i
i 0

(equation (2.2.5)). We have shown that, if a pair is proper, the
indices n, can be found from the structure of any of its standard
forms. For the case in which A(e) and B(e) are over R[[e]l]. we
have developed an algorithm which recovers these reachability
indices. If orthogonal transformations are used, this is a stable
algorithm. On the other hand, if these transformations are
restricted to permutations and elementary row operations, one can
in addition easily recover the Smith decomposition of the
reachability matrix, and a proper standard form using this
algorithm. It is also possible to recover a proper standard form
and a Smith decomposition of the reachability matrix even if
Algorithm 2.3.15 is run with orthogonal transformations.
Unfortunately, this additional operation is not necessarily stable
since it involves LU decompositions without allowing for
permutations. However, a byproduct of our research in this issue
was recovering a Smith decomposition for the product of two
matrices from Smith decompositions of each matrix under a weak
condition. This is shown in Appendix A.2 for the interested

reader, but it is not a part of the main body of this thesis.
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These concepts are heavily utilized in Chapter 3, where we
deal with feedback issues related to orders of reachability. We
conclude this chapter by introducing a concept, in the next
section, which gives us the flexibility of nearly reaching target
states, say within O(ep), for some positive p. This allows us to
decrease the orders of control that are used, as compared to those

required to reach target states exactly.
II.4 NEAR REACHABILITY

In some applications, one might be satisfied with reaching a
target state within some error margin instead of reaching it
exactly, in order to get away with using less control energy. In

Example 2.1.9, x = [é] is el—reachable. whereas x = [l] is

eo—reachable. In other words, we could come O(e) close to [é]
using O(1) control instead of using O(1/e) control to reach it

exactly. Let us define this formally as follows:

Definition 2.4.1: x € R is nearly el-reachable if 3 x(e) € aj

such that x(e) - x is O(e).

Let Wj be the set of all nearly eJ—reachable states.
As an immediate consequence of this definition we have that
yd = %Jle_o = {x: x(e) € %) and x = x(0)}, also 10 c ﬂl C ... and

1) is a subspace of R™.
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J

We term ¥J the nearly eY-reachable subspace.

The computation of a standard form (using Algorithm 2.3.15
and Proposition 2.3.16 of the previous section) is an expensive
operation since it involves polynomial matrix multiplications.
Specifically, computing the pair (Ak(e),Bk(e)) is an expensive
operation. On the other hand, P(0O) can be computed in a much
cheaper way, for example via Algorithm 2.3.15. Let us transform
the pair (A(e).B(e)) by P(0) instead of P(e) and term the new pair

a near standard form. In the remainder of this section, it is

J

shown that the nearly e“-reachable subspaces of this form are

equivalent to those of the standard form.

Proposition 2.4.2: yd = gd 4 6WJ+1 + ... where %) is the

ed-reachable submodule of the standard form, and Wj is the nearly

ed-reachable subspace of the standard form. Also, Wj = 8n
- . j
Proof: #J = %J| = &, and also
—_ e=0 nj
%j = & + eé + ... = Wj + eWJ+1 +
n, n,
Jj j+1

Proposition 2.4.3: v € R™ is nearly eJ-reachable iff

3 V(e): Rn[[e]] - Rn[[e]] such that V(0) = I and V(e)v € Kj.
Proof: If there exists such a V(e), then V(e)v - v is O(e) since
V(0) = I. Thus, v is nearly ej—reachable.

If v is nearly ej—reachable then 3Ix(e) € ﬂj such that x(e) - v is

O(e), or x(0) = v. If v =0, then V(e) = I and the proof is
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complete. Otherwise, one can always construct a V(e) such that
V(0) = I and x(e) = V(e)v (For example let V(e) = I + eVl +
and x(e) = v + ex; + ... , then find Vi such that X; = Viv for all

V.. i e1h).
1

Since a near standard form is a transformation of a standard
form by V(e) = P(O)P-l(e) and V(0) =I, it follows from Proposition
2.4.2 and Proposition 2.4.3 that the nearly eJ-reachable subspaces

of the near standard form are equivalent to those of the standard

form.

The nearly e’

-reachable subspaces could be further
distinguished according to the amount of error one could tolerate,

in powers of e. This section has treated the case of O(e) error.

We develop the refinement in Appendix A.3.
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IIT FEEDBACK
In this chapter we relate the notion of eJ—reachability to

the order of state feedback gains used to shift the eigenvalues by

0(1).
III1.1 SHIFTING EIGENVALUES BY O(1)

In this chapter, we restrict our attention to reachable
systems over R[[e]]. Recall that these systems are proper and all
eigenvalues of A(e) are O(1l). We address the problem of
arbitrarily shifting these eigenvalues by 0(1), using full state
feedback. In other words, we wish to find F(e) over R((e)) such

that AF(e) = A(e)+B(e)F(e) has the desired eigenvalues at e=0.

Example 3.1.1: Recall Example 2.1.1:

A(e) = [i ;], B(e) = [l] (3.1.1)
The eigenvalues of A(e) are at 1+0(e) and 2+0(e). State feedback
of [2 4] shifts these eigenvalues to 3+0(e) and 2+0(e). However,
there is no O(1) state feedback that would move the eigenvalue at
2+0(e) by O(1), but state feedback of [5 -1/e] shifts the
eigenvalues to 3+0(e) and 4+0(e). Here, both eigenvalues are

moved by O(1), and an O(1/e) feedback gain has to be used. Note
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that the closed loop system

Ap(e) = [62 111/6], B(e) = [i] (3.1.2)

is not over R[[e]] but it is e-reachable with the same indices,
n0=1 and n1=1, as the original system, and is in proper standard

form.

We now proceed with showing that, for systems over R[[e]],.
the magnitude of feedback gains necessary and sufficient to move
all eigenvalues by O(1) is directly given by the order of
reachability of the system. Let us start by looking at

eo—reachable systems:

Proposition 3.1.2: The pair (A(e).B(e))., over R[[e]]. is

eo—reachable iff

min {r| VA, 3F(e) where erF(e) is over Rm[[e]],
T€Z

s.t. A(A(e)+B(e)F(e))|e_o=A} =0 (3.1.3)
where A is any self conjugate set of n eigenvalues, A(A) denotes

the eigenvalues of A, and Z denotes the set of all integers.

Proof: (=) If the pair (A(e).B(e)) is eo—reachable, then, ?(e)le_o

is full row rank. Thus, the pair (A(0),B(0)) is reachable, and
VA, IF:R" > R™ s.t. A(A(e)+B(e)F)|__, = N(A(0)+B(O)F) = A. To
prove that the minimum such r is O, assume that equation (3.1.3)

holds for some negative r. Then, lim F(e) = 0, and
ei0

Iim (A(e)+B(e)F(e)) = A(O)., so no O(1) eigenvalues are moved, and
e+0

42



e

therefore (3.1.3) holds.

(¢) Conversely, assume that (3.1.3) holds, then VA, 3F=F(e)|e:0
s.t. AN(A(O)+B(O)F)=A. Thus, the pair (A(0),B(0)) is reachable,
and %(e)|e=0 is full row rank. Therefore, the pair (A(e),B(e)) is

eo—reachable.

Proposition 3.1.3: The pair (A(e).B(e)). over R[[e]]. is

ek—reachable iff

min {r| VA, 3F(e) where erF(e) is over Rm[[e]],
r€Z

s.t. A(A(e)+B(e)F(e))|e=0=A} =k (3.1.4)
where A is any self conjugate set of n eigenvalues and Z denotes
the set of integers.

Proof: If the pair (A(e),B(e)) is ek—reachable, then the pair
(A(e).B(e)) is eo—reachable and by Lemma 2.3.7 over R[[e]], where
A(e) = D 1 (e)P 1 (e)A(e)P(e)D(e) B(e) = D ()P I(e), and @(e) =
P(e)D(e)Q(e). Thus, by Proposition 3.1.2, VA, 3 an 0(1) F(e) s.t.
A(A(e)+B(e)F(e)) |,y = A. Let F(e) = F(e)D ()P} (e), then F(e)
is O(I/ek). By Lemma 2.3.7, the closed loop pair is proper and so

the coefficients of its characteristic equation are over R[[e]]-

Thus,
lim N(A(e)+B(e)F(e)) = lim A(A(e)+B(e)F(e)) (3.1.5)
elo elo

On the other hand (to show that the minimum index r is k),
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-Ao,o(e) ehg,1(€) ifle,k(e)
A A o A )

A(e) = 1j0(6) 1.1 ' ; 1jk(6 (3.1.6)
LAk:O(e) A 1(e) . : Ak:k(e)-

n-ny,_4 columns
Then, JA s.t. the last n-n, 4 columns of F(e) are 0(1) since

otherwise

e = \= [+ o
éig(A(e)+B(e)F(e)) = [* Ak,k(o)] (3.1.7)

where % denotes some constant entries, and the eigenvalues
corresponding to Ak,k(e) are not moved by O(1). Since P_l(e) is
unimodular, F(e) = f(e)D—l(e)P_l(e) is O(1/ek). Therefore, the
minimum index r equals k and equation (3.1.4) holds.

(¢)Clearly, the pair (A(e),B(e)) is reachable. Assume that

(A(e).B(e)) is el-reachable for some j#k. Then, by the first part

of this proof,

min {r| VYA, 3IF(e) where erF(e) is over Rm[[e]],
r€l

s.t. c(A(e)+B(e)F(e))|e=O=A} = j (3.1.8)
but this contradicts (3.1.4). Thus, j=k and therefore the pair

(A(e).B(e)) is ek—reachable.
Note that if (A(e),B(e)) is eo—reachable then the closed loop

pair (AF(e),B(e)), where AF(e) = A(e)+B(e)F(e), is eo—reachable

for all F(e) of O(1). Thus we have the following result:
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Corollary 3.1.4: Given a pair (A(e).B(e)) over R[[e]]., the
reachability indices are invariant under any feedback of the form
F(e) = f(e)D—l(e)P—l(e) where F(e) is O(1). Also, the closed loop

pair is proper.

On the other hand, the eJ—reachability submodules of the

standard form are uniquely determined by the indices, and the

J

e*-reachability submodules of the original system are uniquely

J

determined by the e“-reachability submodules of the standard form,

via P(e). Thus:

Corollary 3.1.5: Given a pair (A(e).B(e)) over R[[e]]. the

eJ—reachability submodules are invariant under any feedback of the

form F(e) = F(e)D_l(e)P—l(e), where F(e) is 0(1).

For the more general class of proper systems over R((e))., the
orders of feedback gains do not necessarily match the orders of
reachability. Let us consider the following example:

Example 3.1.6: Consider the following pair

[0 0 o 10
A(e) = |0 0 1/e]|, B{(e) = |01 (3.1.9)
|0 2e O 00
which is an e-reachable system in proper standard form. Let
£, f, O
F(e) = . where f_  are all scalar constants, then
f3 f4 0 i
3 2
det(AI—AF(e)) = A —(f1+f4)k +(f1f4—f2f3—2)k+2f1. Clearly, fiem
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can be chosen appropriately to match any third degree polynomial
with real coefficients. Therefore, all eigenvalues of A(e) can be
arbitrarily moved by O(1) using only O(1) feedback gains. What
happens in this example is that an O(1) magnitude for the third
state component produces an O(1/e) magnitude for the second
component. Therefore, even with O(1) gains, the input values
themselves will be 0(1/e) as would be expected given that this is

an e-reachable system.

The overall effect of O0(1) feedback on the eigenvalues, even
for systems over R[[e]], is a more subtle issue than the order of
feedback necessary to shift the eigenvalues by 0(1). Consider the

following example:

Example 3.1.7: Let

A(e) = [2 (1)] B(e) = [l] (3.1.10)
The reachability indices are n0=1 and n1=2. The eigenvalues of
A(e) are at +Ve. Feedback of [1 1] moves the eigenvalues to
1+0(e) and e+0(e2). Thus, the effect of feedback on one of the
eigenvalues is O(1), but on the other is larger than O(e) (in fact
0(Ve)). As it turns out, this system does not have well-behaved
time scale structure since the eigenvalues do not have Taylor
expansions in &, and the feedback also alters its time scale

structure [1,2].

We leave these problems for further research. Chapter V
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suggests some potential extensions.

In the next section, we present an extension of Algorithm
2.3.15 to compute the feedback gains for a given set of

eigenvalues for systems over R[[e]].
IIT.2 ALGORITHM

In this section, we present an algorithm to compute the
feedback matrix necessary to shift eigenvalues by some desired
amount. Recall that at the end of Algorithm 2.3.15, we have a
pair (Ak(e),Bk(e)), where Ak(e) = R_l(e)A(e)R(e), Bk(e) =
R-l(e)B(e), with (Ak(O),Bk(O)) reachable, and R(e) is the product
of all the similarity transformations used to achieve the final
pair. From the pair (Ak(O),Bk(O)). we can compute a feedback
matrix F such that the eigenvalues of AkF(O) = Ak(O) + Bk(O)F are
as desired. We have that a(AkF(e))le=O=a(AkF(O)) since
(AkF(e),B(e)) is proper. Let F(e) = FR_I(e) and AF(e) = A(e) +
B(e)F(e). Since R(e) is invertible for e€(0,a) for some acR,
(AF(e),B(e)) is also proper. Therefore, as in the proof of
Proposition 3.1.3 the eigenvalues of AF(e) are as desired. Thus,

we have the following algorithm:
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Algorithm 3.2.1:
1. Run Algorithm 2.3.13.

2. Pick the desired self conjugate set of n eigenvalues A.

3. Find F s.t. a(Ak(0)+Bk(O)F) = A.

4. F(e) = FR—l(e) is the desired feedback matrix s.t.
U(A(e)+B(e)F(e))|e=O=A.

Note: For a stable algorithm, we can choose orthogonal

transformations for Algorithm 2.3.13. Even though (Ak(e),Bk(e))

is not a proper standard form, we still have a valid F(e) for the

original pair. Also, (Ak(O),Bk(O)) is sufficient to compute F(e),

i.e. we can still take advantage of Note 1 of Algorithm 2.3.13.

Finally, to illustrate the numerical impacts of our approach,

let us consider the examples in the next section.

IIT.3 NUMERICAL ISSUES

In this section, we first analyze the numerical problems in
Example 1.3.1 and then present a more complicated version of
Example 1.3.2 which is worked out using a computer package program

for pole placement. Recall the system of Example 1.3.1:

ExamEIe 3.3.1:

x[k+1] = [é I]x[k] + [T2§2]u[k] (3.3.1)

We have seen in Chapter 1 that simplifying this system by
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neglecting the T2/2 term leads to numerical problems. The reason
is that the system is T2—reachable, and only O(TB) terms could be

neglected. Let us formalize this with the following result:

Proposition 3.3.2: Given an ek—reachable pair (A(e).B(e)), let

k+1X(e) and B(e) = B(e) + ek+1E(e), where X(e) and

A(e) = A(e) + €
E(e) are O(1), then (A(e).B(e)) is ek—reachable with the same

indices.

k13 0y -

Proof: Let €(e) = P(e)D(e)Q(e)., then €(e) = €(e) + e
P(e)D(e)Q(e), where E(e) is some matrix over R[[e]], Q(e) = Q(e) +
a(e) and 6(6) = ek+1P_1(e)D_1(e)E(e). Thus, 6(0) = 0, and Q(0) is

full row rank since Q(0) is.

In the same fashion, small values, which couid play a
significant role in reachability, might be neglected during
computation due to the numerical accuracy of the computation
device used. In general, the above proposition states that this

k+1

numerical accuracy should at least be O(e ) for working out an

ek—reachable system. Consider the following example:

Example 3.3.3: Suppose that we wish to do pole placement for the

following pair:
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1 -2 -11 5 -4
5 -11 16 -13 13
A = 3.00004 6.00001 -12 15 -11] and B =
2.999956 -27 25.00001 -13 19
0.99986 -49.00006 71.00006 -52.99995 54

NMNNO =

This system turns out to be ill-conditioned for pole placement
purposes. To apply our methods to this problem, we first have to
parametrize this pair. The following parametrization seems to be

reasonable:

11 -2 - 11 5 -4 1

5 -11 16 -13 13 1

A(e) = 3+4e 6+e - 12 15 -11| and B(e) = |O
3-5e -27 25+¢e -13 19 2

1-14e -49-6e T1+6e -53+5e 54 2

5

where A = A(e=10_5) and B = B(e=10 °). Consider the following

proper standard form of (A(e),B(e)):

5 3-8 1 -4 1
1 2 -5 1 9 2
As(e) = |3e e 6 3 6 and Bs(e) = |0
0O 0 - e 9 -1 0
0O O 0 5e 7 0

1 0 0 0 O

_1 1 1 0 O O

where A_(e) = WA(e)W ', B (e¢) = WB(e) and W = [-1 1 1 0 O

s s
-1 -1 1 1 0
1 -1 1 -1 1
Thus, our system is eB—reachable. An eo—reachable form is:

50



5 3 -8 €2 -4¢° 1
1 2 -5e e 9e° 2
A (e) = |3 1 6 3e 6e?| and B, (e) = |0
0O O 1 9 -e 0
0O O 0O 5 7 0
where Ak(e) = D_l(e)As(e)D(e). Bk(e) =D 1(e)BS(e) and
1000 O
0100 O
D(e) = |00 e O O Thus, we could do pole placement for the
000¢€?0
0000 €°
5 3 0 0 O 1
1 2 0 0 O 2
pair Ak(O) = 31 6 0 0, Bk(O) = |0| and transform the
0O 0 1 9 O 0
0O 0 0 5 7 0]

achieved feedback matrix to apply to the original system (see

Method 2 below). This way we place the 0(1) eigenvalues of the

original system.(4)

We performed our experiment using the PC package Control
Sysytems Toolbox [15] with Matlab [16] on an IBM PC-AT. The pole
placement routine in [15] uses Ackermann’s formula [17], which is
really not numerically stable. To improve its numerical
performance, the pair is first put into staircase form, which can
be done by triangularizing the matrix [B|A], before the use of the

pole placement algorithm.

4Ak(O) and Bk(O) can be found via Algorithm 2.3.15, and we really
do not need to know the pairs (As(e),BS(e)) and (Ak(e),Bk(e)) for

pole placement, but we use them for illustration purposes here.
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The goal is now to find a feedback for (A(e)., B(e)). a family
of systems indexed by e, that places the closed loop eigenvalues
at Ay = [1 2 3 4 5] (picked arbitrarily). The reader should keep
in mind that at e=10_5. we have the original system (A,B). In
this set-up, we compare the following two methods:

Method 1: Given e=e for some "small" eo>0, find a feedback fi(eo)
for the pair (A(eo),B(eo)) such that the closed loop eigenvalues
are as desired using a standard pole placement algorithm.

Method 2 (our approach): Find a feedback fo for the pair
(Ak(O),Bk(O)) such that the closed loop eigenvalues are as
desired. Let f,(e) = foD_l(e)W, then for any given e, use fz(eo)
as a feedback for the pair (A(eo),B(eo)) to achieve the desired

closed loop eigenvalues.

Both of the above methods have been tested for six different
values of e. The results of this experiment are summarized in
Tables 3.3.1.a and 3.3.1.b. Here f, represents the feedback
computed by the first method, f, represents the feedback computed
using the second method, and A;, A; represent the computed
eigenvalues of the closed loop matrix, after feedback, for each
method. The feedback fo for the second method was computed as:

fo = [7.134252744159868 3.432873627920071 15.07177033492827
60.52631578947373 3.789473684210530]
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The following could be observed from Table 3.3.1:
1. For the first four values of e, the mantissa of the entries of
f, seem to converge, meanwhile the orders of magnitude increase in
multiples of 1000 as e is decreased in multiples of 10. On the

other hand, the signs flip for f1(10_4

5)-
1

2. The computed eigenvalues, A,, are reasonably good for e=10 ,

). and there is a drop in

magnitude for f,(10

reasonable for e=10_2, and useless thereafter.

3. For all values of e, the mantissa of the entries of f, seem to
converge, meanwhile the orders of magnitude increase in multiples
of 1000 as e is decreased in multiples of 10.

4. The computed eigenvalues, A,, have the correct orders of

magnitude for e=10_1, 10_2, and R2(10—2) seem to be better than

A»(107 !

). The rest deviate significantly from the desired values.
5. For the first four values of ¢, the mantissa of the entries of
f, and f, seem to converge, meanwhile the orders of magnitude are

the same for both. For the other two values of e they look

totally different.

Let us analyze these observations:
1. Recall that the pair (A(e),B(e)) is eB—reachable. Therefore,
we expect the orders of magnitude of feedback gains to increase in
multiples of 1000 as e is decreased in multiples of 10.
2. Obsevation 1 suggests that f, can not be trusted for e$10_5.

This could be explained by the insufficiency of machine accuracy.
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We estimated that the machine accuracy is about 14 digits after
the decimal point (note that floating point computations are
used). Since the system is es—reachable, we expect f, to be

erroneous for e ¢ 10_5. This can be seen in the lack of a

. -3
consistent trend in the values of f, as € is decreased from 10

to 10°%, 107° and 107°.

3. Observations 2 and 4 suggest that the computed closed loop
eigenvalues are erroneous for small values of e. We also expect
this since the closed loop matrix for small e has very large
entries due to feedback and thus the computation of eigenvalues is
ill-conditioned.

4. The second method gets around the problem of machine accuracy
by solving the pole placement problem for a well-behaved system.
The feedback computed for this system is then transformed to get
the desired feedback for the original system. Consequently the
consistent trend in the values of f, are maintained for all values
of e. Since the goal of the second method is to place 0(1)
eigenvalues, we expect some error in the actual eigenvalues, but
this error is strictly less than O(1l) since the basic computations

are on a well-conditioned system.

Therefore, this experiment illustrates that the second method
achieves asymptotically better results in pole placement compared
to the first method assuming that the system is appropriately

parametrized by e.
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e = 107! e = 1072 e = 1073
A,  1.000000649719127E00| 1.2187E00 +3j6.907E-1|-2.1776E01 +j2.4T0EO1
1.999998276328651E00| 1.2187E00 -j6.907E-1|-2.1776E01 -j2.4T0EO01
3.000001547698876E00 | 3.7549E00 +6.211E-1| 4.349131130951719E01
5.000000044611793E00 | 3.7549E00 -j6.211E-1| 5.998837078155298E00
3.999999481458782E00 | 5.052495954339675E00| 9.062308203344981E00
A, 1.6600E00 +j3.137E00| 5.628343007012566E~1|-1.962096308081683E02
1.6600E00 -j3.137E00| 2.1695E00 +j1.553E00| 1.75529614697724TE02
5.8303E00 +j1.583E00| 2.1695E00 -j1.553E00| 2.066625397015819E01
5.8303E00 -j1.583E00| 5.0489E00 +j8.608E-1| 6.002204129392923E00
1.911685999697308E-2| 5.0489E00 -j8.608E-1| 9.011557492922475E00
£, -3.943896043759587E03| 3.007362825791221E06| 3.711181392087139E09
~8.017128802560767TE03 |-4.216452071434855E06 |-3.832219666858551E09
8.309758387438543E03 | 4.219457621975910E06 | 3.832249801604952E09
3.809863645633179E03 |-3.008853317618679E06 |-3.711196447176790E09
2.177648777527002E03 | 3.613404940440496E06| 3.771715591562496E09
f, -2.403308471714049E03| 3.182713916408672E06| 3.728932307217847E0Q
~9.687954686180697E03 |-4.393226232198147E06 | -3 .849984924796795E09
9.992822966507180E03| 4.396244019138761E06| 3.850015071770338E09
2.263157894736846E03 |-3.184210526315793E06 |-3.728947368421055E09
3.789473684210529E03 | 3.789473684210530E06| 3.789473684210529E09

TABLE 3.3.1.a RESULTS FOR EXAMPLE 3.3.2 FOR e = 10" %, 1072, 1073
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e = 1072 e = 107° e = 10°°
A: -1.3322E00 +j9.638E04| 1.067169897228551E07 |-2.9156E01 —j7.691E06
~1.3322E00 -3j9.638E04|-1.067168281428935E07 |-2.9156E01 -j7.691E06
6.001775180382936E00| 6.305048283046647E00| 5.699866527638253E01
2.337672181170603E00| 5.846594618545338E00| 8.995957587547895E00
9.007949867449816E00| 9.199613481943446E00| 5.999828196486538E00
A, -1.3553E01 +j1.044E05|-4.217955904296881E07 |-1.0240E03 +36.242E10
~1.3553E01 -j1.044E05| 4.217960137109382E07 |-1.0240E03 - j6.242E10
2.710678276143728E01 |-4.191570582143022E01] 1.000212207642650E03
5.997725160398033E00| 9.898241493445850E00 |-6.732027920523609E02
9.004296958906786E00 | 5.028794946790915E00| 4.891644677416111E01
f, 3.784803587906603E12[-2.423067655721092E16| 5.181756878352025E15
~3.796907131758365E12| 2.422806509616012E16 |-5.321413489700020E15
3.796907433027197E12 |-2.422806507913671E16| 5.321413538658905E15
~3.784803738528736E12 | 2.423067654869921E16 |-5.181756902831453E15
3.790855510461616E12 |-2.422937081817381E16| 5.251585208505463E15
f, 3.783420901924446E12| 3.788868419545468E15| 3.789413157879669E18
~3.795526165068340E12 |-3.790078945861243E15 |-3.789534210511248E18
3.795526466507181E12 | 3.790078948875600E15| 3.789534210541392E18
~3.783421052631582E12 [-3.788868421052635E15 |-3.789413157804741E18
3.789473684210529E12 | 3.789473684210529E15| 3.789473684210530E18

TABLE 3.3.1.b RESULTS FOR EXAMPLE 3.3.2 FOR e = 10~ %, 1072, 1076



Example 3.3.4: Consider the system in the previous example.
Suppose that we wish to place the eigenvalues at Ad=[1 2 6 7 9].
It is clear from Ak(O) that three of the eigenvalues of Ak(e), and
thus A(e), for e=0 are at 6, 9, and 7. So, as far as the second
method is concerned, we do not need to move these eigenvalues. It
turns out that the other two eigenvalues correspond to the
eo—reachable subsystem. Thus, the feedback computed via the

second method will be 0O(1).

Results similar to the previous example are illustrated in
Table 3.3.2 for e = 10~ %, 1072, 10°®. Note that f, and f, are
completely different for this case. The feedback f, consists of
very large gains trying to correct for small (less than 0(1))
discrepancies in the eigenvalues. On the other hand, these large
gains result in an ill-conditioned closed loop system and
therefore the resulting eigenvalues could actually be quite

different from the desired eigenvalues. On the other hand, f,

consists of O(1) gains and A, converges to the desired eigenvalues

as elo.

This special case illustrates the following phenomenon: The
feedback for pole placement of even SISO system is nonunique from
a numerical point of view. In the case that the desired
eigenvalues match the O(1l) parts of the existing eigenvalues, the

feedback gains calculated by the second method may turn out to be
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significantly smaller than the values obtained by a direct
calculation of feedback, for example via the first method. Since
the closed loopvmatrix is better conditioned in the first case,
better accuracy of the actual closed loop eigenvalues could be

achieved.
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e = 1073 e = 1072 e = 107°
A:  9.952854516667541E-1| 1.1202E00 +j3.066E00| 1.005001193743054E02
2.005044537392085E00| 1.1292E00 -j3.066E00 |-2.927266446538739E01
6.999615179341110E00 | 7.823895697283298E00| 3.406348114334948E01
6.000001280345070E00 | 5.999787275229292E00| 5.999971130950930E00
9.000002324854214E00 | 9.000014238104945E00| 9.000104984387471E00
A»  9.984044024457135E-1| 9.998400442055826E-1| 9.999840004421892E~1
2.003246838420415E00 | 2.000324968187798E00| 2.000032499681668E00
8.998499391574481E00| 8.999849993936724E00| 8.999984999939423E00
7.002496899398323E00 | 7.000249968774466E00 | 7.000024999687599E00
5.997352468152110E00 | 5.999735024895445E00| 5.999973500249168E00
£, -7.850156450365858E05 |-7.715835668188436E07 | 2.258752919097173E00
7.915688000773013E05 | 7.722284913526829E07 |-2.259142267627447E09
~7.915703294962894E05 |-7.722285070843991E07 | 2.259142217546636E09
7.850197920401807E05 | 7.715836083743484E07 |-2.258752924580083E09
~7.882943695349249E05 |-7.719060510521657E07 | 2.258947553199712E09
f, 2.764705882352945E00| 2.764705882352945E00| 2.764705882352945E00
1.235204117647063E00 | 1.235204117647063E00| 1.235294117647063E00
0 0 0
0 0 0
0 0 0
TABLE 3.3.2 RESULTS FOR EXAMPLE 3.3.3 FOR e = 10 3, 10~ %, 1072
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Similar concerns have been expressed by authors interested in
numerical issues of multivariable pole placement for linear time
invariant systems (as explained in I.2). Our approach would
address those issues by scaling the pair (A,B) appropriately.
Unfortunately, (A,B) has to be parametrized by e first. This
problem has been left for future research and some heuristic

suggestions for parametrizations are made in Chapter V.
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IV CONTINUOUS TIME

In this chapter, we show the counterparts to our discrete
time results for continuous time systems. Also, we examine the

notion of almost invariance [3].

IV.1 eJ-REACHABILITY

Consider the continuous time system of equation (1.4.1):
x(t) = A(e)x(t) + B(e)u(t) (1.4.1)

where the input function u(t) is an m-dimensional vector of real
valued functions defined on R((e)), and the state x(t) is an
n-dimensional vector of real valued functions in R((e)) generated
by u{(t), the system (1.4.1), and an initial state x(0). To
examine reachability, we assume that x(0) = 0. Let us state the

counterpart to Definition 2.1.2 for continuous time, as follows:

Definition 4.1.1: x € Rn[[e]] is el-reachable if 3 T€R' and

u(t) € l/eij[[e]] V t€[0.,7] such that x(1) = x, with x(0) = 0.

Let a9 be the set of all eJ—reachable states, then:
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Proposition 4.1.2: %o C ﬁl C ﬂz C ... and 4Y is a submodule of

R°[[e]].

Proof: Same as Proposition 2.1.1.

We term %7 the ej—reachable submodule.

To prove that these submodules are equivalent to those of
discrete time for proper systems, consider the following

proposition and corollary:

Proposition 4.1.3: Given a pair (A(e),B(e)), if the coefficients

of the characteristic polynomial of A(e) are over R[[e]] then
n

%O=<A(e)|%e>ﬂmn[[e]] where (A(e)l%e)EEAi_l(e)%e and %e is the
1

image of B(e) over R[[e]].

Proof: If x€%0 then there exists TE€R' and u{t) of O(1) such that
o T
x(1) = x = 15T Be)u(eyae = Ja T eIn(e) | v, (r-0du(orar -
0
1

n
)ATTH(e)B(e)¥, (e). ¥, ()R [c]] and also x€R"[[e]]. Thus,
1

1° ¢ <A(e) |8 _>NRP[[e]].
n

For the converse, let x€(A(e)|%e>ﬂmn[[e]]. Then x=2Ai(e)B(e)ai(e)
1

for ai(e) over R[[e]]. To find the control to reach x, let us use

the minimum energy control to reach a target state, as before, to
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insure that we do our best in finding the minimum order of control
required to reach that state. Recall that the minimum energy

control is:

(T-t)A (e

u(t) = BT(e)e )W;l(e)x, o<t (4.1.1)

where WT(e) = fgetA(e)B(e)BT(e)etAT(e)dt is positive definite for
T7>0 and also symmmetric.
To determine the order of control, consider

STl (e)u(e)ae (4.1.2)
which we can write as

T
x W (&) (Sge T )BT () (TTIA (i) lie)x (4.1.4)

The term in the parenthesis of the above equation can be seen to
equal WT(e) by a simple change of variable. Thus, (4.1.1) just
equals:

W (e)x (4.1.5)
Let A(e) = D '(e)P ! (e)A(e)P(e)D(e). B(e) = D (e)p L(e)B(e).

Then, W_(e) = P(e)D(e)W_(e)D (e)P (e) where

~ N ~ ~ NT ~

WT(e) = IgetA(e)B(e)BT(e)etA (6)dt. Since €(e) = Q(e) is
unimodular, WT(e) is also unimodular by use of the Cayley Hamilton
theorem and the assumption that the coefficients of the

characteristic polynomial of A(e) are over R[[e]]. Let

~ ~

n
x=D—1(e)P_1(e)x = Exi(e)ﬁ(e)ai(e). Therefore, x is over R[[e]]
1
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and thus ISuT(t)u(t)dtzg W_I; is O(1).
Corollary 4.1.4: 90 - P(e)D(e)Rn[[e]] where €(e) = P(e)D(e)Q(e) is

a Smith decomposition for the reachability matrix.

Using the iterative relation %j+1=%{%jnemn[[e]]}.
(Proposition 2.1.2), we can recover all the other reachability
submodules from the Smith decomposition of the reachability matrix
and Corollary 4.1.4. Therefore, all our results for discrete time

also hold for continuous time, including the feedback results.
IV.2 (A,B)-INVARIANCE AND ALMOST (A,B)-INVARIANCE .

In this section, we use our framework to provide some
quantitative insight into the notions of almost (A,B)-invariance

and almost (A,B)-controllability introduced by J. C. Willems [3].

Let us begin with a review of some basic geometric notions.
An initial condition in an (A,B)-invariant subspace [10] can, by
definition, be made to give rise to a trajectory in that subspace
by an appropriate choice of input. The stronger notion of an
(A.B)-controllability subspace [10] corresponds to a subspace
where any initial and final conditions x(0) and x(T) in it can be
connected by a trajectory in this subspace. Similarly, a

trajectory starting in an almost (A,B)-invariant subspace [3] can,
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by definition, be steered arbitrarily close to this subspace.
Finally, a trajectory starting in an almost (A,B)-controllability
subspace [3] can, by definition, be steered arbitrarily close to
this subspace and can be made to pass through any given point in

the subspace at some time T)>O.

Willems [3] also shows that given an almost (A,B)-invariant
subspace, there exists a sequence of (A,B)-invariant subspaces
that converges to the almost (A,B)-invariant subspace in the
Grassmanian sense (i.e. some sequence of bases for the sequence of
(A.,B)-invariant subspaces converges to a basis for the almost
(A,B)-invariant subspace-this is defined in [3] and also in
Definition 4.2.5 of this section). Willems also claims the
converse, i.e. that given a sequence of (A,B)-invariant subspaces
that converge to a subspace in the Grassmanian sense, that
subspace is almost (A,B)-invariant. A counter example for this

claim will be presented shortly (see Example 4.2.7).

To give a flavor for our approach, let us consider the

following example:

Example 4.2.1: Let
00 1
e -
It is easy to see from the results in [3] that Wa=Im[é] is an

almost (A,B)-invariant subspace. Consider the family of
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subspaces, {W&}, generated by [i] for all e € (0,»®). Since

0 0|11 0 1 1,

2 olle] = ] = [Hlaver « [ v,

these subspaces are (A,B)-invariant. As we let e - 0,

(16} - 7a=1m[é], which is an almost (A,B)-invariant subspace, so
we have found a sequence satisfying (the correct direction of)

Willems’ result. Also, using the relation (-1/e¢) = F(e)[l] with

F(e) = [-1/e 0], these subspaces are AF(e) invariant where
1/e O
AF(e) = A - BF(e) = [ 1 0].

Furthermore, the {WE} are coasting subspaces, [3], i.e. they
are (A,B)-invariant but they have no (A,B)-controllable part,
whereas Wa is a sliding subspace, [3], i.e. it is almost
(A.B)-invariant but it has no (A,B)-invariant part.

Note that an eigenvalue of AF(e) = +© as e-0. On the other
hand, consider the family of (A,B)-invariant subspaces, {W;},

generated by [_i]. As e-0, {Wé}%ﬂa also. By going through the

-1/¢ o]

above procedure, we get F’(e) = [1/e 0] and AF,(e) = [ 1 0

Now, the eigenvalue of AF,(e) that blows up =» -® as e-0.

We proceed with proving some results related to the above
observations, but we first state some algebraic properties that we

use extensively.

Rn((e)) is a vector space over the field R((e)). Let W& be a
subspace of Rn((e)) and let V(e) = [vl(e)| .. |VH(6)] such that

{vi(e)} is a linearly independent set that spans We. Since 7 is
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closed under multiplication by elements in R({(e)), it is possible

to pick vi(e) such that vi(e) € R[[e]] and V(0) is full column

rank. The subspaces of Wonham and Willems are naturally defined
over R. Note that the span of the columns of V(e:eo), for some
eo>0, is a subspace of R™. Thus it is also possible to think of
Ve as a sequence of subspaces of R™ for different values of e. We

use this to connect our results to their counterparts in [3] and
[10]. Also, in this section, we assume that the coefficients of

the characteristic polynomial of A(e) are over R[[e]].

Definition 4.2.2: We C Rn((e)) is (A(e),B(e))-invariant if 3 F(e):
R™((e)) » R™((e)) s.t. Ap(e)¥_ € ¥_, where

AF(e) = A(e) + B(e)F(e).

We denote the family of (A(e),B(e))-invariant R((e))-subspaces by
Ke. For some cases, we consider (A(e),B(e))-invariant
R((e))-subspaces for A(e)=A and B(e)=B. We use the same notation,
and assume that the reader will infer the relevant underlying
system from the context. We denote the family of (A,B)-invariant
subspaces by V and the family of almost (A,B)-invariant subspaces

by !a’ consistent with the notation of Willems.

A straightforward extension of this definition is the following

well known result [10]:

Proposition 4.2.3: ¥ € V_ iff A(e)Y C ¥ + B, where
e —e 3 e

% = B(e)R"((e)).
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Definition 4.2.4: We C Rn((e)) is eJ—(A(e).B(e))—invariant

(denoted by ¥_ € VJ) if 3 F(e): R™((e)) » R™((e)) s.ct.

: J
AF(e)'Ve C 16, and F(e) is 0(1/e").

Definition 4.2.5: Given Wa c R® and We C Rn((e)), We — 7a if

. e=0
whenever {vl(e), cee vu(e)}, where vi(e) € Rn[[e]], is a set of
generators for We, the set of vectors {vl, e, VH}’ where
v, = lim vi(e), forms a basis for Wa (this is a convergence in the

e-0

Grassmanian sense).

Note that we can construct a matrix W(e) over R[[e]] such that
W(0) = I and Qi(e) = W(e)vi. Thus an alternate representation of
We would be W(e)ﬂa. Similarly, given Wa C R" and some W(e) as
above, its counterpart over R((e)) with respect to W(e) could be

represented as W(e)Wa.

The following result enables us to establish a connection
between our framework and the notion of almost (A,B)-invariance.
It provides a method to compute approximations for the
distributional inputs required to steer the trajectories of an
almost (A,B)-invariant subspace exactly through that subspace.
Using these high gain feedback approximations one can steer
trajectories arbitrarily close to an almost (A,B)-invariant

subspace.
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Proposition 4.2.6: For a given pair (A,B), if Wa € !a then 3

Vo€ Xe such that We —_ Wa.
€ e-0

Proof: From the proof of Willems [3], Theorem 6, Va =7 + %a’

. . . _ n-1
where 7 is (A,B)-invariant, and %a = %1 + AF%2 oo+ A %n—l’
for some F, and a chain {%i} in %, 3 D %1 2 ...0D %n. Thus, it is
sufficient to consider b + AFb + ... + A;_lb, b C %. Futhermore,

using the feedback invariance of !e’ we consider the following

pair with just a bank of integrators

[0 O 0 0 1
1 0 0O O 0]
A= |9 - 00y |0 (4.2.1)
0 o 1 0 | o |
Then, %_ . =&, + ... + &_., for j=1,...,n, where §. is the span
a,j 1 J i
of the ith unit vector, are the almost (A,B)-controllable
subspaces. Let
[ 1 0 0 0
- 1 0 0
P(e)= e ~2e 1 0
(-1)""1en-1 (_l)n—2[n11]en—2 (_1)n—3[n51]6n—3 o 1

(4.2.2)

where the coefficients in each row form the Pascal'’s triangle with
alternating signs. Next, we proceed to show that P(e)?Ra i is
el—(A(e),B(e))—invariant.
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0 1 1]
1 -
A(e)P(e)®, = e |= e2 |(-1/e)+|0|(17e) (4.2.3)
_(_l)n—2en—2- [(_1)n—1en—1- {O_
[ 1
-e
Thus, e is e~(A(e),B(e))-invariant.
.(_l)n—len—l-

Assume that P(e)ERa is el—(A(e),B(e))—invariant. Denote the ith

r O b

1
column of P(e) by
aje
: n-i
a 13
|“n-1i
0
Then, using O(l/ei) coefficients we can generate ale
a en—i—l
| n-i-1

Consider P(e)%a

n-i-1
_bn—i—le

,i+1°

From Pascal’s triangle and alternating

coefficients: b1=a1—1, b2=a2—b1, b3=a3—b2, etc.
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Denote the (i+1)th column of P(e) by




0 0 0
1 i 1
b e = a. e (1/e)+ ble (-1/e) (4.2.4)
1
n-i-2 n-i-1 n-i-1
_bn—i—2e | #n-i-1° _bn—i—le
Therefore, P(e)%a i1 is el+1—(A(e),(B(e))—invariant, and clearly
P(e)® — % ..
a,i a,i
e-0
ﬁa i correspond to sliding subspaces and P(e)%a correspond to

coasting R((e))-subspaces. P(e) is chosen such that the (fixed)

eigenvalues corresponding to these coasting R((e))-subspaces

approach -® as €-0. Let us illustrate this by first considering

the feedback Fi(e) that makes P(e)?Ra ; an AF(e)—invariant

R((e))-subspace, where AF(e) = A—BFi(e). This feedback satisfies
1 1
[E e ;T O ... 0] = Fi(e)P(e) (4.2.5)
On the other hand,
1 0 0 0
€ 1 0 0
-1 2
P “(e)=|e 2e 1 0] (4.2.6)
;n—l n-1 en—2 n-1 en—3 1
i 1 2 ]
(see appendix A.4). Thus, we can pick
.1 il1 1
Fi(e) = [1; . [C]e_c E—l 0 (4.2.7)

and then
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~il —[1]1— L o 0 0
€ C ec 61
Ag(e) = | 1 © 0 (4.2.8)
e 1 0

It follows from the characteristic equation of AF(e), which is in
a companion form, that it has n-i eigenvalues at O and i
eigenvalues at -1/e. The eigenvalues at -1/e approach -® as e-0.
Since we used similarity tranformations and constant feedback to
reduce the original pair to the form that we used in the proof,

the eigenvalues of the original pair that blow up also approach

—.w.

The reverse of the above proposition does not hold. To

illustrate this, consider the following example:

03 03 13
Example 4.2.7: Let A = I. 0 and B = 03 . Consider

3 73
1 0] 0
0 0] 1
0 0 0
Y = ol*|1!l* ol where (.) denotes range over R((e)). 7 € Ke and
(3 0 0
0 0 1
1 0 0
0 0 1
0 0 (0]
Y —— & where ¢ = 0 + 1 + ol - where (.)o denotes range over R.
€0 0 0 0
OJo (0Ojo (1)o

But ¢ is not an almost (A,B)-invariant subspace.

Theorem 6 of J.C. Willems [3] is stated as follows:
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Theorem 6: {V_€V_} e {3V _€V such that V_—V_ in the Grassmanian
_ a —a e — €0 @

sense}.

The above example is also a counterexample to the reverse
direction (¢) of the above result, since 7 can also be thought of
a sequence of (A,B)-invariant subspaces of R" (See Appendix A.5).
It is also worth noting that only the forward direction (-) of the
above theorem has been proved by H. L. Trentelman [18] and no
comment on the reverse direction has been made to the best of our

knowledge.

In practice, one could calculate the input necessary to steer
the trajectories of an almost (A,B)-invariant subspace,
arbitrarily close to this subspace, by constructing an
(A(e),B(e))-invariant R((e))-subspace that approaches the almost
(A,B)-invariant subspace subspace in the Grassmanian sense, and
calculating the feedback that makes the (A(e),B(e))-invariant
R((e))-subspace AF(e)—invariant. Naturally, this feedback blows
up as one desires to steer these trajectories closer and closer
(e=0) to the almost (A,B) invariant subspace since the feedback is
meant to approximate distributional inputs. This approximation
gets better and better as e=0.

The above procedure specifically addresses an open problem in
Willems [3].

Given an almost (A,B)-controllability subspace %a’ it can be

represented as %a = %oeﬁs where %o is the supremal
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(A,B)-controllability subspace in %a and %S is a sliding subspace.
By construction of the proof of Proposition 4.2.6, we can find

7, € V_ where WC=Q(e)%S, Q(e) over R[[e]] and Q(O0) =I. 7, is a
coasting R((e))-subspace and it can be picked so that eigenvalues
corresponding to WC approach -» as €-30. Thus, via this procedure,
the feedback F(e) that makes VC an AF(e)—invariant R((e))-subspace
can be calculated. Let F(eo) be the feedback corresponding to

e=e and AF(eo) the closed loop matrix corresponding to F(eo).
Then, the eigenvalues of AF(eo) corresponding to %s approach -« as
smaller and smaller values of e, are picked. Note that this
increases the magnitude of the feedback gains, and they approach
impulses in the limit. The eigenvalues corresponding to %0 can be

assigned by the usual pole placement methods.
Now, we proceed with the notion of
(A(e).B(e))-controllability R((e))-subspaces adopting Wonham’s

definition [10] of (A,B)-controllability subspaces:

Definition 4.2.8: % € R"((e)) is an

(A(e),B(e))-controllability subspace if there exists maps

F(e):R"((e)) = R"((e)) and G(e):R™((e)) » R™((e)) such that
% = <A(e)+B(e)F(e)|Im(B(e)G(e)>.

We denote the family of (A(e),B(e))-controllability
R((e))-subspaces by R_. For some cases, we consider

(A(e).B(e))-controllability R((e))-subspaces for A(e)=A and
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B(e)=B. Same notation is also used for thase cases. We denote
the family of (A,B)-controllability subspaces by R and the family
of almost (A,B)-controllability subspaces by Ba' consistent with

the notation of Willems.

To put the above definition into a more usable form, consider
the following propositions which are the same results as those of

Wonham [10] but in the framework that we have developed:

Proposition 4.2.9: % € R_ iff there exists a map

F(e):R%((e))-R™((e)) such that % = <A(e)+B(e)F(e) |#N%> where %
represents the range of B(e) over R((e)).

Proof: (=) Just find a G(e) such that Im(B(e)G(e)) = IN%.

(<) Let Ap(e) = A(e)+B(e)F(e) and Im(B(e)G(e))=%, then
%:(AF(e)|%1>. Clearly, %, C #%N%, thus % C <AF(e)|%ﬂ%>. On the
other hand, Ap(e)% C &% thus <AF(e)|%ﬂ%> = 3NA+A(e)% C 4.
Therefore, %:(AF(e)l%ﬂ%>.

Proposition 4.2.10: & = <AF(e)|%ﬂ%> for every map F(e) € F(%).

where F(%) represents the family of feedback matrices F(e) such

that % is AF(e)—invariant.

Proof: The proof of Proposition 5.3 of Wonham [10] applies

exactly.

Let us examine the properties of the subspaces that
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(A(e).B(e))-invariant (controllability) R((e))-subspaces converge

to:

Proposition 4.2.11: Given a pair (A,B) let 16 € Ke and We — 7
e-0

then Vx € 4 and 6 ,6.>0, 3 an input function u(t) s.t. x (t),

o n o’ 1 u
the trajectory defined by u(t) and an initial condition x(0) where
Hx(O)—XOH < 60, satisfies d(x(t),ﬁn) < 61Hx(t)H Vt>0, where

d(x(t),Wn) = infx’eﬂ Ix(t)-x"1.

n

Proof: Since ﬂe € !e on(e) € We 3 an input function u(t) s.t
xe(t), the trajectory defined by u(t) and the initial condition

xo(e), satisfies Xe(t) € We Vt>0. Since Wezzgﬂn, 3Q(e) over

R[[e]] s.t. Q(0)=I and xe(t)=Q(e)xa(t) Yt20 where xa(t)eﬂn. Thus,
er(t)-xa(t)HgHI—Q_l(e)Her(t)ngIer(t)H YV t20, where P, =
HI—Q_I(e)H. Consider xo(e) that are also over R[[e]]. Thus, pick

e s.t. p1<51 and po=plllxo(e)ll(6o and the proof is complete.

Proposition 4.2.12: Given a pair (A,B) let %e € Be and %e — %
e-0

then on.xT € %n dt>0 s.t. V50,61,52>O, 3 an input function u(t)

n

s.t. xu(t), the trajectory defined by u(t) and an initial
condition x(0) where Hx(O)—xoﬂ < 60, satisfies

d(x(t),%n) < 61Hx(t)H Vt>0 and Hx(T)—xTH < 62.

Proof: Same as the previous proof except that for the target state
pick x(T1) € %e s.t. X(T)|e=0=xT' Also, pick e s.t.

p2=p1"x(T)"<52.
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In other words, the angle between the trajectories and vn or

%n can be made arbitrarily small. It turns out that %n is in fact
almost (A,B)-invariant. The following lemma and proposition show
this:

Lemma 4.2.13: Given a pair (A,B) let # € R and % —% , then Vx
_— e —€ €cso D o

s.t. d(xo,%n) is O(e) and Y7>0, 3 an input function u(t) s.t.
d(xu(t,e),%n) is O(e) for 0<t<T where xu(t,e) is the trajectory
defined by u(t) and the initial condition X,

Proof: Here we first need to find a trajectory which is 0(1) for
0<t<T. Find F(e) s.t. %& is AF(e)—invariant and the eigenvalues
of AF(e) corresponding to %e are all 0(1) and asymptotically
stable. Then V x; € %e, xl(t,e) € ﬁe Vt>0 where xl(t,e) is the
trajectory defined by the initial condition Xq and no input.
Since the eigenvalues of AF(e) corresponding to %6 are all 0(1)
and stable, xl(t,e) is also 0(1). Therefore, d(xl(t,e),%n) is
O(e). Consider x2(t,e), the trajectory defined by the initial
condition X=X "X Note that Xy 1is O(e). Since all the
eigenvalues of AF(e) are 0(1), V1>0 x2(t,e) is O(e) for O<t$T1.

Therefore, d(xu(t,e),%n) is O(e) for 0O<t<T.

Proposition 4.2.14: Given a pair (A,B) let %e € R_ and %e——aﬁ
e-0

then on € %n and 6>0, 3 an input function u(t) s.t.

d(xu(t),%n) < 6 for all t where xu(t) is the trajectory defined by

u(t) and the initial condition X
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Proof: Pick some 7>0 and apply Lemma 4.2.13. Thus, Ju(t,e) s.t.
d(x(t,e),%n) is O(e) for 0<t{r. Then 13 eb> 0 s.t.

d(x(t,e),%n) < 6 for 0<t<{T and Vegeo. Use x(7.,e) as the initial
condition to reapply Lemma 4.2.13 for the interval T < t < 2T.
Find €70 s.t. elgeo and d(x(t,el),ﬁn) 6 for T < t £ 2T.

Repeated use of Lemma 4.2.13 achieves the desired result.

In this section, we examined the notions of almost
(A.B)-invariant and almost (A,B)-controllability subspaces in the
framework that we have developed in this thesis. We outlined a
method for calculating inputs that steer trajectories arbitrarily
close to almost (A,B)-invariant subspaces or equivalently force
the eigenvalues corresponding to sliding parts of almost
(A,B)-controllability subspaces to approach -®. We also analyzed
the properties of limits of elements in !e and Be as €l0 from a

trajectory point of view.
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V CONCLUSIONS AND FURTHER RESEARCH

V.1 CONCLUSIONS

In this thesis, we have developed an algebraic approach to
high gain controls for linear dynamic systems with varying orders
of reachability. Based on this approach, we addressed the issues
of high gain inputs for reaching target states, high gain feedback
for pole placement and high gain inputs for steering trajectories
arbitrarily close to almost (A,B)-invariant subspaces and almost

(A,B)-controllablity subspaces.

The systems of interest are defined over R((e)). Since the
eigenvalues of A(e) are not necessarily over R((e)) it is
important to note that eigenvalue dependent results for systems
over R are not applicable in the domain of this thesis. Also, for
most of the results, A(e) is restricted to have 0(1) eigenvalues.
This restriction is reasonable for continuous time systems since
it can be achieved by a simple time scale change forcing the

fastest time scale to be 0(1).

Chapter II analyzes discrete time systems. Target states are

classifed by the orders of magnitude of inputs necessary to reach
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them. The eJ—reachability submodules formed by these target
states are shown to be uniquely determined by the invariant
factors of the reachability matrix. A standard form which exposes
these submodules is defined via the Smith decomposition of the

reachability matrix. A numerically stable algorithm is given to

recover the eJ

-reachability indices of systems over R[[e]]. This
algorithm also recovers a standard form and a Smith decomposition
of the reachablity matrix but these operations are not necessarily

stable. A concept of near reachability which allows target states

to be reached up to O(e) is also introduced in this chapter.

Chapter III showed that the orders of feedback gains for
placement of O(1) eigenvalues are directly related to orders of
reachability for systems over R[[e]]. A stable algorithm to find
this feedback is presented. This algorithm was applied to a fifth
order system over R with one input. The system was first
parametrized by e. The feedback gain to place 0(1) eigenvalues
calculated for the parametrized system was evaluated at the
specific value of e corresponding to the original system. This
approach produced far better numerical results than calculating

the feedback directly for the given system.
Chapter IV showed that the counterparts of discrete time
results also hold for continuous time in the case of proper

systems (i.e. systems where all eigenvalues of A(e) are 0(1)).
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Finally., (A(e),B(e))-invariant R((e))-subspaces and
(A(e).B(e))-controllability R((e))-subspaces were analyzed to
provide insight into almost (A,B)-invariant subspaces and almost
(A,B)-controllability subspaces. It was then easier to explicitly
construct sequences of (A,B)-invariant subspaces that converge to
almost (A,B)-invariant subspaces or almost (A.B)-controllability
subspaces. Using this, a counterexample to a result of Willems
was generated. Also, a procedure was Presented to construct
desired inputs for almost (A,B)-invariant subspaces and almost

(A,B)-controllability subspaces using the above sequences.

V.2 SUGGESTIONS FOR FURTHER RESEARCH

1. Algorithm 2.3.15 is only valid for systems over R[[e]]. A
state coupled to the input by O(e) may be coupled to another state
by O0(1/e). Thus, the first state would be a part of the
e-reachable subsystem, whereas the second is a part of the

eo—reachable subsystem as in the following example:

e O O (0]

system in standard form. Here calculation of the eo—reachability

0 0] O 1
Example 5.2.1: Let A(e) = [O 0 l/e], B(e) = [Q]. This is a proper

index requires the knowledge of e-reachable part of the system.
Further research is needed to extend this algorithm to the

more general case of proper systems.
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2. With regard to pole placement results, further research
could be in three different directions:
i. Analyzing orders of feedback gains for shifting eigenvalues by
O(1) for the more general case of proper systems. Intuitively, if
a mode is e-reachable but "1/e-observable”, in that it has a 1/e
coupling to other states, then it would be possible to shift its
eigenvalue by O(1) using O(1) feedback gain. This suggests
considering the Smith decomposition of the Hankel matrix

O(e)€(e) where 0O(e) is the observability matrix with observation

matrix C(e) = I. Recall that Example 3.1.6 was an example of the
above situation. Examination of the Smith decomposition of its
13 0
Hankel matrix would yield D(e) = . The above argument
0 O

suggests that it should be possible to shift eigenvalues by 0(1)
using O(1) feedback gains. This conclusion is also consistent
with the feedback calculations on this example in Chapter III.
ii. Changing the dynamics of a given continuous time system with
multiple time scales without changing its time scale structure.
This would involve arbitrarily shifting O(ej) eigenvalues by
o(ed).

iii. Parametrizing systems over R. Two heuristic methods could
be suggested for this; one is to recognize small entries in the
matrix, either isolated or added to another entry, and replace
these with powers of e. This could also be done by assuming

¢5=10nk for some appropriate positive integer k (This was the
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method used in Example 3.3.3). Another method for parametrization
could come about by considering the singular value decomposition
of the reachablity matrix. For weakly reachable systems, the
reachability matrix would have small singular values. The choice
of € would involve recognizing groupings in singular values and
representing them by powers of e.

iv. Computer programs for implementing the algorithms given in
this thesis: This would involve writing subroutines for
implementing various linear algebra operations on matrices with

polynomial entries, using for example Matlab as a basis.

3. The results of Section 4.2 could be extended to the
results of Willems on distributionally (A,B)-invariant and
(A,B)-controllability subspaces. This seems to be possible by
first constructing a sampled version of a given continuous time

system with sampling interval e, generating the discrete time

model:
x[k+1] = Ad(e)x[k] + Bd(&)u[k]
where Ad(e) = eEA and Bd(e) = IS e(e-s)ABds. This could also

relate Willems’ results to Schumacher’'s [19] on discrete time.
This discrete time model along with Schumacher’'s results could be
used to approximate distributional inputs in continuous time with
piecewise constant inputs. It would then be possible to extend
our results to the work on singular optimal control by Willems et.

al. [20]. A first order approximation of the above model,
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Ad(e) = I+eA and Bd(e) = eB, should also be considered as this may

be sufficient for our purposes.

4. Observations

y[k] = C(e)x[k] or y(t) = C(e)x(t)
could be included in our model to analyze the input-output
behavior of MIMO systems. Orders of reachability ideas could be
adapted to observability analysis, and this would then lead to
research on connections to optimal control, realization theory and
in particular to the work on balanced realizations.

The following example illustrates that optimal control ideas
could also be used to find inputs for almost (A,B)-invariant
subspaces:

Example 5.2.1: Let A=[? 8] and B=[é]. Recall that Im[é] is an
almost (A,B)-invariant subspace. We therefore need a (possibly
high gain) feedback matrix that would keep the trajectory
arbitrarily close to this subspace. Thus, we could formulate this
as an optimal control problem to minimize:

Sov (£)y(e)+u’ ()R(e)u(e)de
where C(e)=[0 1/e] and R(e)=e2. Using the solution to the
algebraic Ricatti equation we would arrive at the optimal feedback
f*(e) = [-V2/e -1/e2]. 1t turns out that f*(e) is a choice of
feedback that would make the (A(e).B(e))-invariant
R((e))-subspace, [(—Vf—bg)e/2]' an Af*(e)—invariant

R((e))-subspace. Note that this R((e))-subspace converges to the
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almost (A,B)-invariant subspace and both of the eigenvalues
approach -®» as el0. In general, this procedure would pick C(e) as
a basis, for the left nullspace of a given almost (A,B)-invariant
subspace, and scale it by e. R(e) would be picked as eZkI for
some integer k, possibly equal to the dimension of the supremal
sliding subspace in that almost (A,B)-invariant subspace (or
dimension of the almost (A,B)-invariant subspace minus the

dimension of the supremal (A,B)-invariant subspace in that almost

(A,B)-invariant subspace).

All of this suggests that the theory developed in this thesis

is a good basis for dealing with high gain feedback and/or cheap

control problems.
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APPENDIX

A.1 SMITH DECOMPOSITION

An mxn (assume m<n) matrix A(e) with a Laurent expansion in e
which starts at a finite negative power of e, has a Smith

decomposition [11,12]

A(e) = P(e)D(e)Q(e)

where P(e) and Q(e) are over R[[e]] and P(e) is mxm and invertible

at € =0, Q(e) is mxn and full row rank at e = 0. Also,

D(e) = diag{(1/e3)I ... I, eI, ... €I, 0)
is mxm. The dimensions of the identity matrices, above, are Py
where i is the corresponding power of e€e. We term P, the indices

of A(e). If the rank of A(e) is r for 0O<e<a for some a€R’, then
D(e) has m-r zeroes on the diagonal. Furthermore, if A(e) is

analytic at e€=0, then only nonnegative powers of e appear in D(e).

86



A.2 COMPUTATION OF A SMITH DECOMPOSITION OF X(e)Y(e)

FROM SMITH DECOMPOSITIONS OF X(e) AND Y(e)

Let X(e) = Px(e)Dx(e)QX(e) and Y(e) = Py(e)Dy(e)Qy(e) be
Smith decompositions of X(e) and Y(e). Assume for simplicity that
both are unimodular. Let Qx(e)Py(e) = ML(e)U(e) be a OLU
decomposition [22] for Qx(e)Py(e). If HDx(e) = Dx(e)H then
X(e)Y(e) = Px(e)ﬂf(e)Dx(e)Dy(e)ﬁ(e)Qy(e) wvhere
L(e) = Dx(e)L(e)D;l(e) and U(e) = D;l(e)U(e)Dy(e) are both
unimodular since L(e) is lower triangular and U(e) is upper
triangular. Thus,‘we get a Smith decomposition
X(e)Y(e) = ny(e)ny(e)Qxy(e) where ny(e) = Px(e)Hf(e),

Qxy(e) = U(e)Qy(e) and ny(e) = Dx(e)Dy(e).

Note that the above NMLU decomposition is computationally
expensive since it involves polynomial matrix manipulations. On
the other hand if only the indices of ny(e) are desired then it
is sufficient to only consider @ILU decomposition of
QX(O)Py(O) = IILU and test if HDx(e) = Dx(e)ﬂ. If so, then
ny(e) = Dx(e)Dy(e).

If X(e) and Y(e) are not both square and/or full row/column

rank at e=0, then it is possible to derive simple generalizations

of the above.
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A.3 e -NEARLY eJ-REACHABILITY

If it is desired to reach a target state by O(el) accuracy,

then the following definition could be used to accomadate for

his:

Definition A.3.1: x € R™ is el—nearly (exactly) ed-reachable if

dx(e) € %j such that x(e) - x is O(ei) (x(e) - x = 0).

Let Wi’j (Ww’j) be the set of all el—nearly (exactly) ed-reachable

s .+1 T

©,J . J +
states. Then, 77 C ... C17v7] CY¥ j =7 for some r‘j €I

and 713 is a subspace of R". We term ¥ 'Y (Wm’J) the

J

el—nearly (exactly) e“-reachable subspace.

o i .
As an immediate consequence of this definition, 7 'Y c %9 and

J @, 3 J J k
v = iff 7 € X*. Furthermore, for an e -reachable system,

k-j+1,j _ wm,j

using Equation 2.2.5 we get Vk_J'J =

An extension of Proposition 2.4.3 is the following:

Proposition A.3.2: x € R is el—nearly (exactly) ed-reachable iff

3 V(e) such that V(0) = I, V(e) -1 is O(el) (V(e) - I = 0) and
V(e)x € ﬁj.
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In addition, we have the following lattice structure relating

these subspaces:

,1/°°,O C c ,”1,0 _ 1,0 - gxol

n n e=0

vw,l C C 11,1 - 71 - alle_o

] n -

n n

1/00,1{ C C "l/l'k _ ,1/k - akl
e=0
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A.4 INVERSE OF PASCAL’S TRIANGLE

Recall that

1 0 0 0

-€ 1 0 0

P(e)= e2 ~2¢ 1 0
(_l)n—len—l (_l)n—Z[nII]en—2 (_l)n—B[nél]en—B o 1

from Equation 4.2.2 and

1 0 0 0
e 1 0 0

P'l(e)= e 2e 1 0
én-l n-1]_n-2 [n-1]_n-3 i
| 1 2 e

from Equation 4.2.6. Let us illustrate that P_l(e) is indeed the
inverse of P(e): Clearly, P(e)P_l(e) is lower diagonal with ones
on its diagonal. Note that the lower diagonal entry at row r and

column ¢, where r > ¢, is:

T T

e § et (e - ofel) | oo
i=c i=c

Let j=i-c, then

p(r.c) = er—c[£:}]r§°(_1)j[rgc] _ er—c[EZi](l—l)r_c -0
j=0

by a summation formula in [21].
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An interesting by-product of this is the following summation

formula. Using Equations 4.2.5 and 4.2.7 we get:

r—c
2 (—1)r'°[;][zzi] =1, for all ¢ < r and i > r.
j=0

This summation neither existed among nor could be calculated from

the summation formulas in [21], to the author’s best knowledge.

91



A.5 COUNTER EXAMPLE TO WILLEMS’® CLOSURE THEOREM

FOR ALMOST (A,B) INVARIANT SUBSPACES

Theorem 6 of J.C. Willems [3] is stated as follows:

Theorem 6: {V_€V_} «> {3V _€V such that V. —V_ in the Grassmanian
—_— a —a e - €esp @

sense}.

We believe that the following example is a counter example to

the reverse direction («) of the above result:

O3 O3 I3
Example: Let A = 13 03 and B = 03 . Consider the family of
(1) 0 0
0 0 1
. . 0] 0 0
(A.B) invariant subspaces {Ve} generated by ol 1 and 0
e 0 0
(0] 0 1
1 0 (0]
0 0 1
. 0 0 0 .
Ve——e L where L is spanned by ol 1| and ol but L is not an
=0 ol o 0
0 0 L1
almost (A,B) invariant subspace. This can be easily checked via

the algorithms ISA and ACSA [1].

In his proof, Willems shows that B N L(modR: L) = {0}, but in

order to utilize Lemma 2, he should also show that Lee!z(A B )

(where LECVe and Le——ﬁL). Since he does not illustrate this Lemma
e-0

2 cannot be used as claimed.

On the other hand, it is straightforward to illustrate via
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%
x E(modRa L)
the above example that L(modRa L)ix ’ (where as Willems

S (modR>

)
erroneously deduces that L(modR: L)GK a.L from the above

claim to finally arrive at the result) as follows:

For initial conditons in Im , there will be trajectories in

loNoNoNoR Neo

the form of where * denotes don’t care and a is some nonzero

X & X X X X

constant. The component of the trajectory corresponding to a is
%
not factored out by Ra L- Also, this component is neither in

N N E(modR: )
L(modRa L) nor in %. Therefore, L(modRa L)€! ’

It is also worth noting that only the forward direction (-=)
of the above theorem has been proved by H. L. Trentelman [18] and
no comment on the reverse direction has been made to the best of

our knowledge.
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