How to build scalableon-chip ILP networks for a
decentralizedarchitecture

Abstract

Theeraof billion transistors-on-a-chiis creatingacompletelydifferentsetof designconstraints,
forcing radically new microprocessoarchitecturedesigns. This paperexaminesa few of the pos-
sible microarchitectureshat are capableof obtainingscalablelLP performance.First, we obsene
that the network that interconnectghe processingelementss the critical designpoint in the mi-
croarchitecture.Next, we characterizédour fundamentapropertiesthat have to be satisfiedby the
interconnectiometwork. Next, we provide casestudiesof two differentnetworksthat satisfythese
properties.Finally, a detailedevaluationof thesenetworks is presentedo highlight the scalability
andperformancenf thesemicroarchitecturesWe shav thatby usingcompiletime information,we
canbuild simplernetworksandusethemefficiently.

1 Intr oduction

Microprocessodesignhasbecomeincreasinglymarked by the desireto leverageincreasedransistor
budgets reduceverificationanddesigncosts,andto addresghe crumblingof electricalabstractionsA
numberof contemporanarchitectureesearctprojects,includingIBM’ s Blue Gene,Raw [11], SCALE,
and SmartMemories[8], have addressedhesedesires.All of theseprojectsexchangethe monolithic
VLIW or superscalaprocessofor adistributed,decentralizecrrayof independentieplicatedcomput-
ing elements.Theseelementsareconnectedy a network with short,local wiresthatconnectonly near
neighbors We referto thesearchitecturess”decentralizedarchitectures.Figure 1 depictsa decentral-
izedarchitecture.

A key featureof thesearchitecturess thatthey have propertiesthat scalevery well asymptotically
with respecto the numberof transistors.The Blue Geneprojectproposesan architecturewith literally
amillion processingelements Architectureson sucha scalewill becomencreasinglycommonplacen
the nearfuture. Althoughasymptoticanalysishastraditionally beeninappropriatdor microprocessors,
whereconstantgendto dominate, it will becomean increasinglyvaluabletool aswe seelarger and
largerdesigns.

Decentralizedrchitecturehiave anumberof asympoticadwvantages:

First, the micro-architecturatlesignandverification costof thesedecentralizedrchitecturess es-
sentially constantwith respectto the numberof transistors. Whenthe designergyain accesg€o more
transistorsthey simply putdown morecomputingelements.

Secondthewire lengthof thesedesignss alsoconstanin sizewith respecto the numberof tran-
sistors.As aresult,thewire delayandrouting congestiorof the design,a majorproblemfor monolithic

A factorof two in processomeansa differencein billions of dollarsof revenuefor AMD!

— local interconnect

Q O routing elements

- 04 compte / memory elementy

Figure 1:A decentralized architecture

architectures, does not changes with the number of transistors.

Third, decentralized architectures also reduce clock complexity relative to transistor budget. In the
first method, we relax the assumption of a global synchronous, skewless clock, and have the computing
elements perform the appropriate handshaking when they exchange data. Alternatively, there is promis-
ing work [9] in online clock tuning algorithms that can correct for skews in distributed clocks. At the
very least, decentralized architectures offer very precise, geometric clock boundaries rather than a large
three-dimensional rat’s nest of wires and transistors.

Finally, these architectures may offer constant yields per unit silicon with respect to transistor count.
Processing elements with point defects could be left unused by the software. However, for particularly
nasty cases, this problem may require that a laser be used to isolate the computing element electrically
from its neighbors. The components can then be binned for number of inactive processing elements, just
as they are for clock speed today.

Now that we have motivated decentralized architectures, we will describe what it is we are going to
say about how they are designed.

Models of Parallelism Any of the proposed architectures need to take advantage of parallelism in
order to scale. The microarchitecture can target different parallelism models such as instruction level
parallelsim, pipeline parallelism, thread parallelism, or coarse-grained parallelism. The advantage of
instruction level parallelism(ILP) is that it still gives good performance for both pipeline and course-
grained parallelism, since these forms of parallelism can be converted into ILP.

In our previous work, we have develop a compiler system that is capable of obtaining scalable ILP
performance by performing both spatial instruciton partitioning as well as traditional temporal insturction
scheduling[7]. This compiler demonstrate that for a large class of applications, scalable ILP performence
is obtainable.

Manifest

Therearetwo key partsto designinga decentralizedarchitecture:the network andthe computing
element.This paperfocuseson the network.

The computingelementsarethe part of the architectureghat are responsibldor performingactual
computation. Theseelementscanlook like in-order processorssmall-scaleout-of-orderprocessors,
FPGAIlogic, clustersof ALUs, or evensinglefunctionalunits.

The “network” is the entire systemthat is responsiblgor routing valuesin a correctfashion(i.e.,
respectingorogramdependenced)etweerthe computingelementsin atraditional5-stagepipeline,the
“network” would consistof the bypassindogic andthe bypassaths.

Pleasenotethatwhenwe referto an ILP network, we are not strictly implying a monolithic piece
of hardware. As RISC principlesandprincipalshave taughtus, the dividing line betweerhardwareand
softwareis very flexible. Somepartsof the ILP network may in factbe implementedn software and
with compilerinformation(aswe will demonstratén the datasectionof this paper)

We furthershaw thatthe compileris oftenessentiain reducingthe costor improve the performance
of theselLP networks.

This paperstartsby describingthe communicatiorpatternsusedby programswith generallLP. It
continuesby proposinga setof fundamentapropertieshat a network needsin orderto facilitate ILP,
independenbf whetherthe computingelementsare FPGA logic, a clusterof ALUs, smartmemories,
or processorslit narraws its focus on a computationmodelwherethe computationon eachcomputa-
tion elements totally orderedandit studiestwo ILP network implementationsn this domain,with an
emphasi®n how they fulfill ourfundamentahetwork properties.The papercontinuesby giving perfor
manceresultsfor thetwo networks on programscompiledby a parallelizingC/Fortrancompiler andfor
somehand-codedpplicationslt finalizesby characterizinghe usageof our ILP network designandit
suggestsomeimprovements.

This papemalkesthreecontritutions. First, it identifiesthe fundamentafunctionalrequirementsor
building ascalabldLP network for adecentralize@rchitecture Secondit presentswo implementations
of ILP networks. Finally, it offerssomeinsightsinto how anILP network canbeimplementecefficiently.

Therestof this paperis organizedasfollows. Section2 characterizethe ILP computationrandthe
communicatiorthatarisesfrom it. Section3 describeshefundamentatequirement®f anlLP network.
Section4 describeswo ILP networks. Section5 shavs the performancef the ILP networks. Section6
concludes.

2 ILP Computation

This sectioncharacterizethe the natureof computationsvith instructionlevel parallelism.

Thecomputationgretypically expressedsa dataflav graph.A dataflav graphis alogical network,
which consistf nodesandarcs. Thenodesrepresenthe operationsn the dataflov graph,andthearcs
representiatavaluesflowing from the outputof oneoperationto the input of the next. The existenceof
anarchetweeroperationsmplicatesa sequentiabrderingbetweerthe executionof the two operations.

Memory operationdall into a specialcase. In this case,if the compilercannotdeterminethatthe
memoryoperationsill notconflict,thenthereareprobabilisticread-aftefwrite andwrite-afterwrite de-
pendencesxisting betweertheoperationsShortof usinga speculatior{optimisticconcurreng control)
schemetheapplicationmustsequentializéheseoperations.

i = afj]

i
q = bfi] *
q+i = [Hp] -
S:q>>3 /q '\\

t=r*3 + >>3 \,
r S
bi] = t .4 y
; = 7 d (some PEs were removed for clarity)
stb

Figure 2:Dataflow Graphs and Operation Assignment

In Figure 2, the memory accesses to b[i] have a possible dependence, which creates a non-
deterministic dependence between the nodes. The computation is almost entirely sequential; only the
add and shift operations can be performed in parallel.

Typically, these dataflow graphs are enclosed in some sort of control structure: if-statements, loops,
etc. ILP compilers increase the amount of parallelism by playing tricks with looping structures to enlarge
the size of the dataflow graph and find more things that can execute in parallel. The two most common
techniques are loop unrolling [3, 4] and pipelining [6].

To execute a computation on a network of processing elements (PESs), one needs to find an assignment
from the nodes of the dataflow graph to the nodes of the network of processing elements, and route
the intermediate values between these PEs. This assignment of operations can be performed at run-
time or compile-time. Superscalar and early dynamic dataflow [1] are examples of run-time assignment
architectures, while TTA [5], VLIW, or Raw [11] are examples of compile-time assignment architectures.

If the architecture is a compile-time assignment architecture, the choice of the path that the values take
between the PEs can be done either at compile-time or run-time. TTA architectures and Raw choose the
routing path at compile-time, while VLIW architectures typically do it at runtime. In Section 4 we will
give two examples of systems where the assignment problem is handled at compile time.

The figure shows a sample assignment. Note that the load and store to the array b are located on the
same node. This is by necessity, because they both need to access the same piece of memory.

There is a classic tension in the assignment problem. On one hand, we want to spread the computation
as far out into space as possible to maximize the amount of PEs that can be used simultaneously (and thus
maximize the parallelism). On the other hand, we do not want to have operations performed too far away,
because the travel time over the networks will add up and impact the serial performance. For instance,
in the diagram, if it takes a cycle to traverse a network link, and the ops all only took one cycle, then
it would have been more effective to allocate all of the operations to one processing element (assuming
that processing element supported this.)

With an intuition of the structure of ILP programs, and how they are mapped to processing elements,
we can now discuss the structure of the ILP networks.

3 ILP Network

When the original ILP networks (i.e. the bypass networks) for VLIW and Superscalar processors were
created, the functionality was so implicitly encoded in the structure of the networks that it was difficult

or perhaps overly obvious to even mention what the fundamental requirements of the networks were. As
we stretch and scale and explore these networks, we find suddenly that design space is so murky that we
have to define what exactly these sorts of networks need to be. Certain properties that were once trivial
to attain suddenly become very difficult.

The initial ILP networks that we designed failed rather spectacularly because their scalable, decen-
tralized implementations were not capable of providing us with properties that we took for granted in
their less scalable cousins.

The properties which we discovered follow:

1. The ILP network must be implemented as a distributed process.

This means that there can be no global wires, global repositories for information, serial operations,
unified look-up tables, logic which incorporates state from all of the processing elements, etc, etc, ad
infinitum. The view that needs to be taken is that of a number of processing elements, running indepen-
dent state-machines that are isolated from their non-neighbors. A time cost needs to be assigned for any
transferrance of information between non-neighbors.

2. The ILP network must provide operation/operand matching.

This property highlights that fact that, in order to compute, we need the operands and the operation
to meet at some point in space to perform the computation.

Assignment
Ordering Run-time Compile-time
Run-time Superscalar Monsoon
Compile-time Raw, TTA, VLIW

Figure 3:Operation Ordering and Assignment

There is an interesting taxonomy in the way in which architectures perform operation/operand match-
ing. There are two distinction: whether operations are assigned to PEs at compile-time or run-time, and
whether the order in which operations on a given PE are executed is determined at compile-time or
run-time. Figure 3 depicts shows a matrix which classifies several architectures in this manner.

In compile-time assignment architectures, the compiler assigns each operation to a processing ele-
ment. In a traditional bus-based VLIW, values are stored in a central repository (the register file), and the
instructions snoop the buses into this repository to make sure they have the latest versions to send to the
operators.

Whenwe move to ascaleableompile-timeassignmenarchitecturewe needto getrid of thecentral
repository The mosteffective methodof doingthisis to routetheresultof a givenoperationdirectly on
to thenext operatiorthatuseshatresult. This efficienttechniquecouldnot be performedf the operands
hadnotbeencompile-time.The Raw architecturausesexactly this technique.

In run-time assignmenarchitecturesboth the operationsandoperandsan move aroundin the ar
chitecture sotherehasto be somesort of directoryschemewhich allows themto find eachother In a
traditionalsuperscalarthis directory schemds implementedhroughglobal busesandresenration sta-
tions. Unfortunatelytheseapproachearenot scaleable.

The early, seminalwork on large-scaleun-time assignmenarchitecturess the staticand dynamic
dataflav machines. They discoreredvery quickly that the scaleabilityissuesraisedby this approach
werevery challenging. The solved theseproblemsmaostly with the useof pipelinedsorting networks.
One could alsoimagineusing a home-locationscheme not unlike directory-basedlistributed shared
memoryprotocols. Theseapproachesvere plaguedby state-&plosion (different partsof the program
would executefar aheadof the others,filling up all of the machine$ executionstorage)anddeadlock
issuesPerhapsnostimportantly thelateng of operationsveregreatlymultiplied, soserialperformance
suffered.

Run-timeassignmenis especiallyattractve becausdt effectively performsrun-timeloadbalancing
of processingelementswhichis very usefulfor adjustingto variablelatenciesn the computation.

Ultimately, somedataflav work switchedo ahybridassignmentnodel,whichhadrun-timeassigned
threadscomposedf compile-timeassigneperations.Thesethreadsare createdandcommunication
throughexplicit instructions ratherthanasan automaticfunction of the ILP network. In a sensethey
moved the run-timeassignmenpart up to the compilerandos level, out of the hardware. The lateny
costof this run-timethreadassignmentveremitigatedbecausehe communicatiorat the threadlevel is
morecourse.

In the Monsoondataflav project,a givenfunctioncould be dynamicallyassignedo a given PE, but
all of theoperationsnsidethefunctionwould becompile-timeassignedo the sameprocessinglement.
They creditedthis approactwith providing themwith improvedlocality.

In compile-timeoperationordering,the compilerdetermineghe orderin which operationswill exe-
cuteonagivenprocessinglementBoth Rav andVLIWs emplogy compile-timeoperationordering.

In run-time operationordering,the orderingof instructionson a given processinglementis deter
minedby the arrival of the operands.Superscalaremplgy run-time operationordering. Interestingly
Monsoonperformscompile-timeassignmenbut run-time ordering. Run-timeorderinghelpstolerate
memoryaccesdateny andothereventswith unpredictabldiming.

3. The ILP network must gauranteefinite arrival time.

This propertyhighlightsthe factthatthe ILP network hasto gaurantealelivery of operandgo pro-
cessingelementsso thatthe computationis robust. Currently our architecturestill have the luxury of
assumingphysicallyreliability (althoughthat changeswith the Blue Genemachine!). However, it has
becomea difficult questionto determindf a ILP network is logically reliable.

Theoriginal ILP architecturesisedbusesto communicatesaluesbetweenprocessinglementsand
hada centralizedvay in which operandsouldbeflowedcontrolledsothatthe busesvould notbeover
committed.Whenwe switchto adecentralizedrchitecturesuchglobalknowledgebecomesmpossible.
As aresult,controllingthe occupang of the network becomewery difficult. If theprocessinglements

independentlyproducemore valuesthanthe network hasstoragespace theneitherdata-lossor dead-
lock mustoccur Thisis afrighteningprospectsomethinghatthe non-scaleabld_P network designers
seldomhadto worry about.

In particular if dynamicnetworks are beingemplg/ed in the chip, very careful measurehave to
be exertedin orderto gauranteghat deadlockcannothappen,or thatif it doeshappenthatit canbe
recovery from. The early dataflav machinepapersdemonstratedhat they had tremondousproblems
with the overcommitmenbf storageanddeadlock.

4. The ILP network must be ableto tolerate timing variations.

This propertyrecognizeghe fact that computationsoften have timing characteristicshat can be
unpredictableat compile time. Their timing or cachebehaiour may vary with the input datasetor
synchronizatiorwith an externaldevice (like aninterrupt)may changethe timing behaiour of a given
processingelement. If the ILP network cannottoleratetiming variation, it will eitherfail or severely
reducethe sortsof computationshatcanbe performed.

In earlymachinesit waspossibleto run a globalstall signalacrosghechipin orderto keepprocess-
ing elementsynchronizedvhenatiming variationeventoccurred.Thisis clearlynotanalternatve in a
scaleablenachine.As aresult,a moredistributed mechanisnior handlingtiming variationneedso be
developed.

Notethatthis timing variation,like all of the conceptsn ILP networks,doesnot needto be handled
strictly in hardware. The PEs,for instance,could handletiming variationthroughthe useof periodic
handshaés in software. Given this note, a numberof researchprojectsstartedwith software timing
variationtolerangy and moved it in to hardware for performanceand system-compbdty reasons.In
particular both Rav and Warp startedwith cycle-countednon-flov-controlledinterconnectbetween
processingelementsandswitchedto distributedflow-controlledversions.

In thenext sectionwe will describeourimplementatiorof apairof ILP networks,andshav it meets
the propertieghatwe describedn this section.

4 Two casestudies

This sectionpresentdwo casestudiesof ILP networks. The casestudiesare performedon the Raw

microprocessora distributed microprocessowith compile-timeoperationorderingandassignmenbn

eachof its computingelements. The Rav microprocessois an interestingplatform for our purpose
becauseat containsboth a generaldynamic network and a static network that provide register level

communication.We considerhow both networks cansupportlLP computation.For eachnetwork, we

discusshow it supportsvariationtolerancepperation/operanthatching,andreliabledelivery.

4.1 Compilation framework

Compilersupportfor exploiting ILP on the Rawv microprocessois provided by Ravcc. Rawcc extracts
ILP out of sequentiaprogramsandorchestrates acrosshe independenprocessingnodesof the Raw
microprocessorlt performsloop unrolling andcontrol flow localizationto expandthe scopein which
it looks for parallelism[7]. For corveniencewe refer to this scopeasa basic block, even thoughit
technicallycan spanmore than one basicblock. Orchestratiorof parallelismis donein two phases:

instruction partitioning and cross-tileinstruction scheduling. Instruction partitioning statically maps
eachinstructionto a processinghode. The compilerenablesa memoryinstructionto be mappedto a
single processinqiodeby ensuringthatthe portion of memoryit canpotentiallyaccesss mappedonto
asingleprocessingiode.[2]. Cross-tileinstructionschedulingorovidesatotal orderingof computations
on eachprocessingnodewhile takinginto accounthe effectsof internodecommunicatiodatencies.

4.2 Supporting ILP communication on the Raw dynamic network

The Raw dynamicnetwork is a generaldynamicnetwork supportingmulti-word messageseEachmes-
sageon the dynamicnetwork is precededby a headerthat containsthe length and destinationof the
messageRoutingdecisionsaremadeasfollows. Whena messagéeadeiarrivesat a switch, the switch
interpretst to determinehow thatmessagshouldberouted. Thelateng for routingaword usuallyone
cycle perswitch. Becausef the interpretationcost,the messagéeadeincursanextra cycle of lateny
whenit malesaturn.

The dynamicswitch emplo/s dimensionorderedrouting to avoid network level deadlocks.Worm-
holeroutingallows the headof a messagéo beroutedto the next nodebeforethe endof a messagéas
beenreceved. Routingresourcesreallocatedon afirst-come first-sere basis;if two messagearrive
simultaneouslyarbitrationis resolved arbitrarily. The network hasblocking semanticsa switch blocks
andwaitsif it triesto routefrom an emptyinput port or routeto a full outputport. Messagesanbe
recevedvia eitherinterruptor polling.

The dynamicnetwork provides natural supportfor variation tolerance,becausanessagesan be
arbitrarily delayedwithout effectingits routability This flexibility, however, leadsto uncertaintywhich
in turncomplicateglestinatiormessagerdering(theactof creatinganorderingof valuescorresponding
to the compile-timeoperationordering)andreliable delivery. We discusseachissuein detail. Unless
explicitly statedotherwisethediscussiorapplieswhethemrmessagearerecevedvia interruptor polling.

Destination messagerdering

A generalway to handlepotentially out of ordermessage atotally orderedcomputationrmodel
is asfollows. The network containsan associatie buffer into which messagesre receved, which
we term a demultiplexing buffer. Eachelementof the associatie buffer hasa full-empty bit. Every
messagén this systemis taggedwith anid. Thisid is known a priori to boththe sendeiandtherecever.
Whena noderecevesa messageit usestheid to index into the associatie buffer, storethe message
in the correspondinglement,andsetthe corredpondindull bit. It is anerrorto write to a full buffer
element.The maincomputatiorprocesghesemessagen its statictotal order resetttingthe full-empty
bit wheneer it no longerneedsa messageThis mechanisndecouplesnessageeceve from message
processingallowing message$o arrive in a different orderthanthe processomexpects. We call this
schemehe buffer demultiplexing scheme.

In the Rav dynamicprotocol,boththe associatie buffer andits full-empty bits areimplementedn
memory

We define several terms concerningthe buffer demultiplexing scheme. A messagas said to be
retired whenits buffer elementcanbe reuseda buffer elementis saidto befreeif all messagewritten
to it hasbeenretired. Messageetiremenineedsot, andusuallydoesnot, correspondo the pointwhen
amessagés originally receved.

Normally, therearemoremessagem the programghantherearenumberof elementsn thedemul-

tiplexing buffer. Thusthe buffers needto be sharedamongmary messagesThis requirementeadsto
two issues:the assignmenbf messageto buffer elementsandbuffer reusesynchronizationThe latter
is neededo ensurehattwo messagedestinedor the samebuffer elementdo not clobbereachother

Buffer assignment The primarygoalin assigningmessaget buffer elementss to minimizetheamount
of buffer reusesynchronizatiorrequired. This goal, in turn, suggestghat messageseusingthe same
buffer shouldbe asfar avay aspossible. Hereis one possibleassignmenmechanism.The compiler
assignsa distinct virtual buffer elementto eachmessagen a basicblock. A messagegetsits virtual
buffer elementfrom thoseon its destinationnode, and the pools of virtual buffers on eachnodeare
distinct. Basicblocksthat containmorevirtual buffer elementghantherearephysicalbuffer elements
needto bedividedinto smallerbasicblocksbeforeassignment.

Fromthesevirtual buffer assignmentghysicalbuffers canbedeterminedeitherstaticallyor dynam-
ically. In staticallocation,eachvirtual buffer is simply mappeddirectly to a physicalbuffer. Dynamic
allocationworksanalogouso theway stackallocationis performed.Oneachnode abuffer pointerkeeps
track of thefirst buffer elementthathasnot beenused.At the beginning of a basicblock, the pointeris
incrementedy the maximumnumberof messagethatcanbe sentto ary onenodein thatbasicblock?
If the buffer hasoverflowed,all the nodessynchronizeandthe buffer pointeris resetandreincremented.
Regardlessa physicalbuffer numberis determinedby subtractingthe virtual buffer numberfrom the
buffer pointer

The tradeof betweenstaticand dynamicallocationare asfollows. Dynamicallocationonly per
forms buffer reusesynchronizatiorwhenthe demultipleing buffer runsout of spaceput it payssome
overheadn buffer pointermanipulationand bookkeeping. Staticallocation,on the otherhand,avoids
theoverhead®f thebuffer pointer but it mustperformbuffer reusesynchronizatiorbetweerevery basic
block. In generaldynamicallocationfavors large demultipleing buffers, while staticallocationfavors
smallones.

Buffer reuse synchronization Beforea sendercansenda messaget needgo know thattherecever has
retiredall previous messagemappedo the samebuffer element.in ourervironment,this conditioncan
beenforcedasfollows. Let m;_1 andm; betwo consecutie messagethatusethe sameid ¢ duringthe
executionof a program.For correctnessthe protocolneedso guaranteghatthereexists a sequencef
messageBom therecever to the sendethatoccursbetweertheretirementof m;_; andthe sendingof
messagen;.

It would be prohibitly expensve to explicitly synchronizesachpair of consecutie messagedesig-
natedfor the samebuffer element.Insteada compilercanoptimizethe buffer reusesynchronizationn
se/eral ways. Synchronizatiorcanbe piggy-bacled onto existing communicationwith zerooverhead.
Whenexplicit synchronizations neededselectve placementf a singlemessagenay be ableto satisfy
the synchronizatiomequirement®f multiple messagéds.

We proposetwo mechanismshatcanbe run at the beginning of a basicblock to allow buffer reuse
for eitherour staticor dynamicallocationschemeA simplemechanisms a barrier This schemavould
besuficientfor systemswith efficientbarriersupportorif thereareenoughbuffersto tolerateinfrequent
synchronization.

If synchronizations frequenton a systemwithout efficient barrier support,however, the following
mechanismwhich we term explicit batch synchronization, canbe more efficient. In this schemea

2This pointerupdatemechanismosessomebuffer spacedueto non-uniformdistribution of messageacrosshedestination
nodeshutit keepsthe overheadbf thethe pointerbookleepingtolerable.

receve noderesenesabuffer elementwith eachpotentialsendeifor synchronizatiorpurposeskFor each
processingiodes, the compilerexaminesthe list of messaget be sentandrecevedin the orderthey
arescheduledlt keepdgrackof nodedrom which s hasrecevvedaswell asthenodego which s hassent.
Whenit encountersa messagen with sourcenodes anddestinationnoded, it checkswhetherthere
existsa precedingnessagbetweerthetwo nodesgitherform s to d or vice versa.lf thismessageloes
not exist, a synchronizatiormessages insertedfrom d to s beforem. The synchronizatiormessages
insertedby this algorithmensureghatour conditionfor buffer reuseis satisfied Note, however, thatthis
algorithmscalesquadraticallywith the numberof pairsof communicatinghode,sothatif mary nodes
communicatavith eachother a softwarebarriercouldstill be moreefficient.

Optimizing the fast path with polling Buffer demultiplexing throughmemoryhasa large overheadand
decreasethe benefitsof having a registermappedcommunicatiometwork. We can, howvever, design
a fastpath for messagdnandlingthat writes the messagevalue directly into a register The ideais to

take advantageof compile-timeinformationto insertpolling codeat placesvherethe compilerexpectsa

messageo bereceved. Includedin the polling codeis a fastpaththatis optimizedfor the messagé¢hat
the compiler predictsthe receve nodewill receve. Thefastpathis inlined alongsidethe computation
codesothatit getsgoodregisterallocationanddoesnotincur arny procedurabverhead.If the expected
messagés processedby its optimizedpolling code,its valueis written directly into a registerandthe
correspondingpuffer elementtanbeimmediatelyretired.

Reliably delivery The Raw dynamicnetwork doesnot drop messagesTherefore,reliable delivery
reducego the ability to handledeadlocks Deadlocksoccursif all thereceversareblocked on message
sendghatcannotcompletedueto blockagein the network.

Therearetwo generalapproache$o dealwith deadlocks.Deadlockavoidanceavoids deadlocksat
all times; deadlockrecovery allows transientdeadlockghat eventuallytrigger a recovery system.This
sectionwill only discussleadlockavoidancemechanisms.

The specificsof a deadlockavoidancemechanisnmdependson the way in which messageare re-
ceived. Therearethreewaysin which messagesanbe received on the dynamicnetwork: dedicated
receve hardware,interrupt,or polling.

A simpleway to avoid deadlockss to beableto guarante¢hatall receve nodesarealwayssinking
messagesOneway to provide this guaranteds to provide hardware supportfor a receve mechanism
thatrunsindependentlyof the processinghode. Similarly, if a processinghoderecevesa messageia
interrupt,deadlockscanbe avoided by alwayskeepingthe interrupton. In the generalcase,interrupts
needto be turnedoff during messagesends,becausen interrupthandleritself may needto senda
messagéehat would interferewith ary partially constructedmessageslf we assumehata network is
usedexclusiely for ILP communicationhowever, theinterruptfor thatnetwork needshot be turnedoff
becauseave know its interrupthandlersdo not needto sendmessagesThis approacltcanalsobe used
with a hybrid protocolthatusesinterruptfor the slow pathandpolling for fastpath.

Deadlockavoidancefor a protocol that relies exclusively on polling is more complicated. Here,
the uncertaintyof messagarrival is not very compatiblewith the certaintyof polling. Onecorrectbut
conserative schemeoperateasfollows. Beforea sendingnodesendsamessagef checkshatits output
buffer hasenoughroom for it to completethe messageendwithout blocking. If the querysucceeds,
the messages sent. Otherwise the sendingnodestartssinking any incoming messagesintil its send
buffer freesup enoughspace Compileranalysiscanreducethe amountof polling codethatneeddo be
inserted. For example,if the compilercanprove that no messageanarrive at a nodethatis trying to

10

senda messagethatnodeneedsot checkthe outputbuffer beforesendinga message.

Interrupt vspolling Thetradeof betweerinterruptandpolling is asfollows. Polling is adwvantageous
becausdts codecan be inlined and register allocated. Interruptis advantageousecausdt simplies
deadlockavoidance.A goodreceve mechanisms to usea combinationof both— polling for afastpath
thatusescompilerinformationto predictwhenandwhatmessagavill arrive; interruptfor theslow path
thatguaranteetheabsencef deadlock.

4.3 Supporting ILP communication on the Raw static network

TheRaw staticnetwork is a network whoseroutinginformationresideswith the switchratherthanwith
eachmessage Eachswitch hasits own instructionmemory; routing decisionsare madebasedon the
switchinstructions.The switchis pipelinedto allow wordsto beroutedin a singlecycle; nearneighbor
communicatioriateng is threecycles. Switchinstructionsaregeneratedy the compilerduringglobal
instructionscheduling Eachswitchallows ary numberof sourcego routeto ary numberof destinations,
aslong aseachdestinations specifiedby at mostonesource.This schemesupportsmulticasts(single
sourceto multiple destination)aswell asmulti-routes(multiple independenimessageto multiple des-
tination). The switch have blocking semanticsit blocksif its routinginstructionspecifiesaninput port
thatis emptyor an outputport thatis full. The processointerfacesto the network throughregisters;
accessew thoseregisterslik ewise have blockingsemantics.

In additionto routinginstructions the switch instructionsetalsocontainscontrol flow instructions.
For our purposehowever, the conditionsfor thosecontrolflow instructionswill alwaysbe generatedy
theits processaqrsothatits flow of controltracksthatof the processorin the globalview, all processor
andswitchcooperatao exploit the parallelismin abasicblock,

TheRaw staticnetwork maintainsaninterestingcontractwith the compilerin orderto supportvari-
ationtolerancedestinatiormessag®rdering,andreliabledelivery. For eachbasicblock, the compiler
orchestrates staticcommunicationschedulebasedon its compile-timeknowledge aboutthe depen-
dencesand latenciesof operations.It guaranteeshat the schedules correctand deadlockfree given
thoselatencies At run-time,however, dynamiceventssuchascachemissesandinterruptscancausehe
timingsof operationgo bedifferentfrom thatof the staticschedule Throughthe blocking sementicof
theswitcheshowever, thestaticnetwork guaranteethattheorder of eventsoneachprocessoandswitch
remainsasspecifiedby the staticschedule Thus,the orderof messagearrival on eachprocessingiode
to remainconsistentvith thatexpectedby the processorin addition,the orderof resourceallocationon
the switchesremainsconsistentvith thatspecifiedoy the compilerschedule Thus,the propertythatthe
scheduleas deadlockis invariantover timing variations. In summarythe Raw staticnetwork provides
thefollowing guaranteavithin a basicblock: it ensuresa statictotal orderingof communicatiorevents
on every processoandevery switch. This property in turn, providesdestinatiormessag®rderingand
reliabledelivery without ary protocoloverhead.

5 Results

This sectionpresentghe ILP performanceon both the static and the dynamic networks of the Raw
microprocessorWe presentdataon the communicatiorpatterngeneratedy the Rav compilerto help
understandhe usefulnes®f variousnetwork featuresn this communicatiorspace.

11

Benchmark Source Lines | Seq.RT | Description
of code | (cycles)
Cholesky Nasa7:Spec9Z 126 34.3M | Cholesly Decomposition/Substitutio
Fpppp-lernel Spec92 735 8.98K | Electronintenal Derivatives
Jacobi Ravbench 59 2.38M | JacobiRelaxation
Life Ravbench 118 2.44M | Conway's Gameof Life
Vpenta Nasa7:Spec92 157 21.0M | Inverts3 PentadiagonalSimultaneously
Moldyn CHAOS 805 63M | MolecularDynamics
Unstructured CHAOS 850 150M | ComputationaFluid Dynamics

Tablel: BenchmarkcharacteristicsColumnSeq. RT shows the run-timefor the uniprocessocodegeneratedby
theMachsuifMIPS compilet

5.1 ILP Performanceon Raw

Experimental setup Our experimentsareperformedon beetle a cycle accuratesimulatorfor the Raw
microprocessofl0]. Beetlecontainsbothastaticandadynamicnetwork thatprovide communicatiorat
theregisterlevel. Integeroperationatenciesareonecycle for simpleoperationstwo-cycle integermul-
tiplies, 36-g/cle integer divides,singlecycle storesthree-gcle loads.Floatingpoint operationatencies
arethree-gcle addsandsubtractsthree-gcle multiplies,ten-g/cle divides,andthree-gcle converts. A
branchhasa singledelayslot. In this study we assumehatall memoryaccessearecachehits.

Compilersupporteds provided by Rawvcc, asdescribedn Sectiond. In orderto stresgshe commu-
nicationnetwork for this study we useanon-zerdout smallcommunicatiorcostwhendeterminingwhat
granularityof parallelismto partitionup. Therealcostof communications thenusedduringinstruction
scheduling.

For the purposeof contrastinglLP performanceon the staticanddynamicnetwork, we selectser-
eral micro-benchmarkshat have enoughparallelismto profitably exploit 32 tiles. For communication
characterizationywe addtwo lessparallelapplications.Table1 describeshesebenchmarks.

Our protocolfor performinglLP communicatioron the Rav dynamicnetwork is asfollows. The
mechanisnperformsstatic buffer assignmenin every basicblock. For buffer reusesynchronizatiorat
thebeginning of a basicblock, the processinghodeseitherperformaglobaltreebarrieron the dynamic
network or anexplicit batchsynchronizationwhichever is cheaper Messagesrereceved via polling,
with a fastpaththatoptimizesfor correctcompile-timepredictionof the identificationof the next mes-
sage.Deadlocksareavoided by checkingthe conditionof the outputbuffer beforesendinga message,
andsinkingoutstandingnessages the outputbuffer hasinsuficient spacefor the send.

Thestaticprotocolfor ILP communicatioris exactly asdescribedn Section4.

Performanceresults

Table2 and Table3 shav the end-to-endoerformancdor the dynamicandstaticprotocol, respec-
tively. Thedynamicprotocolis only ableto achieve modestspeedugdor seseralapplicationson 32 tiles.
The staticprotocol,however, is ableto attainspeedugdor all the applications.For 32 tiles, the perfor
mancedifferencerangesrom afactorof four for fpppp-kernelto afactorof tenfor jacobi. Theseresults
shaw thata network requiresmorethanregisterlevel communicationn orderto efficiently exploit ILP.

Table 4 considerghe end-to-endoverheadof variouscomponent®f our dynamicprotocol. Satic
is the staticperformancewith single-gcle sendsandreceves,three-gcle latenciesbetweemeighbors,

12

| Benchmark | N=1 [N=2 | N=4 [N=8 | N=16 | N=32 |

jacobi 1.0| 052 | 0.60| 0.79| 1.03| 1.65
life 1.0| 041 | 0.60| 0.84| 1.84| 247
cholesky 1.0| 0.52| 0.62 | 0.55
vpenta 10| 1.38| 141 | 1.17
fpppp-kernel| 1.0 | 1.12| 054 | 0.94| 1.46| 1.48

Table 2:ILP performance on dynamic network. Each entry is speedup with respect to one tile.

| Benchmark | N=1 [N=2 | N=4 [N=8 | N=16 | N=32 |

jacobi 1.0| 1.39| 295 | 5.37 | 10.33| 16.85
life 1.0| 161| 290 | 4.93| 9.67| 19.22
cholesky 1.0| 153| 281 | 462| 6.37| 7.22
vpenta 1.0| 1.98| 2.80 | 3.32

fpppp-kernel| 1.0 | 1.64| 2.66 | 446 | 6.90| 5.96

Table 3:ILP performance on static network. Each entry is speedup with respect to one tile.

and zero overhead for destination message ordering and reliable delivery. The remaining rows are various
dynamic implementations, in increasing order of functionalityn-ordered is the dynamic performance

when we include only the protocol cost of message sends, receives, and destination message ordering.
+Expl-batch-sync adds the overhead of explicit batch synchronization between buffer retSegrt-
reuse-sync uses a more intelligent synchronization scheme that determines the cost of explicit batch
synchronization versus tree barrier at compile-time, and selects the one that is the cheRgeatle
takes+smart-reuse-sync and adds the overhead of deadlock avoidance.

Results suggest that the base cost of our dynamic network implementation contributes most to the
overhead and will benefit most from additional hardware support. No component, however, is cheap
enough to be overlooked.

5.2 Communication characterization

This section characterizes the communication pattern extracted by the compiler, in order to help us
evaluate the costs and benefits of the various network features.

Table 5 shows some benchmark communication statistics when Rawcc targets an 8x4 Raw machine.
The statistics are collected from the version of Rawcc targeting the static network, but the timing inde-
pendent statistics apply to the dynamic version also. These data suggest the following. The relatively
small number route per cycle across the machine suggests that in the absence of spatial or temporal
hotspots, the network has sufficient communication bandwidth. The nomReaiend suggests that the
communication has modest fano&oute/Send reflects routing distance, and it indicates a large amount
of non-near-neighbor communication. The maximum number of receives per basic block is a useful
guideline when determining hardware support for buffer demultiplexing in the dynamic protocol.

Table 6 shows the usefulness of multicast on the Raw static network. Five of the applications use
multicasts over 10% of the time, with a maximum of over 40% for cholesky.

13

| Benchmark | N=1 [N=2 [N=4 [N=8 [N=16 | N=32 |
static 1.0| 1.38| 2.95| 5.37 | 10.32| 16.85
dyn+ordered 10| 080| 1.06| 1.56| 3.02| 3.64
+expl-batch-sync | 1.0 | 0.73| 0.86| 1.08| 1.05| 0.84
+smart-reuse-syn¢ 1.0 | 0.73 | 0.86| 1.08| 1.46| 2.63
+reliable 1.0| 052| 061| 0.81| 1.05| 1.69

Table 4:Jacobi performance breakdown. Each entry is speedup with respect to one tile.

| Benchmark | Cycle | Send/Cycle| Rec/Cycle| Route/Cycle] Rec/Send| Route/Send Max Rec/BB |
jacobi 483660 0.84 1.38 3.26 1.64 3.89 34
life 256361 0.96 1.47 3.30 1.53 3.45 33
fpppp-kernel 321 0.57 1.14 3.52 2.00 6.17 36
cholesky 646464 0.07 0.52 0.83 7.37 11.86 68
vpenta 975848 0.14 0.37 1.04 2.56 7.25 25
moldyn 26535036 0.32 0.46 1.78 1.43 5.49 256
unstructured| 9602683 0.51 0.65 2.82 1.26 5.51 258

Table 5:Benchmark communication statistics when Rawcc targets an 8x4 Raw machine. The statistics are execu-
tion counts from the static network. BB stands for basic block.

Rawecc currently does not take advantage of multi-routes. However, there are two reasons why we
believe multi-routes are not performance critical. First, the low utilization of the network suggests that
route crossings are infrequent. Second, unlike multicasts, the lack of multi-route does not increase the
processor occupancy cost of communication.

6 Conclusion

This paper examines the general problem of providing a scalable interconnect for exploiting ILP on a
decentralized architecture. We introduce a classification of execution model that is based on whether
instruction assignment and instruction ordering are performed at compile-time or run-time. We present
the fundamental requirements that a network has to satisfy in order to exploit ILP in this broad domain.
We narrow our focus on compile-time assignment and ordering of instructions, and we present two
ILP network implementations in this domain in the context of the Raw architecture, a decentralized
architecture.

We draw several insights from this exercise. First, we are able to leverage compile-time knowledge
about instruction assignment and operand ordering to improve either the performance or the hardware
requirement of our protocols. Examples of this principle include the simplification of instruction issue
logic through a total ordering of instructions on each processing node, optimizing buffer reuse synchro-
nization on the dynamic network, and providing a fast path for message receives on a general dynamic
ILP network that relies on the compiler’s ability to predict the next incoming message. Second, we show
that the Raw static network is able to satisfy the fundamentals of an ILP network by guaranteeing a static
ordering of communication events on every processor and switch, with little protocol overhead at the
cost of some run-time routing flexibility.

14

Benchmark | 1] 2| 3] 4]

life 0.876 | 0.093 | 0.031 | 0.000
jacobi 0.880 | 0.086 | 0.025| 0.010
moldyn 0.934 | 0.057 | 0.007 | 0.002
vpenta 0.841 | 0.116 | 0.030 | 0.013
cholesly 0.569 | 0.327 | 0.101 | 0.003
fpppp-kernel | 0.855| 0.128 | 0.017 | 0.000
unstructured| 0.963 | 0.029 | 0.007 | 0.001

Table6: Distribution of the numberof outputportsaccessetdy a routeinstructionfor an8x4 Rav machine.

References

[1] Arvind andS. Brobst. The evolution of dataflav archiectruedrom staticdataflav to p-risc. In Proceedings

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

of Workshop on Massive Parallelism: Hardware, Programming, and Applications, 1990.

R.Barua,W. Lee,S. AmarasingheandA. Agarwal. Maps: A CompilerManagedviemory Systemfor Raw
Machines.In Proceedings of the 26th International Symposium on Computer Architecture, Atlanta,GA, May
1999.

J. A. Fisher Tracescheduling:A techniquefor global microcodecompaction. IEEE Trans. Comput., C-
30(7):478-490July 1981.

J.A. Fisher J.R. Ellis, J. C. Ruttenbeg, andA. Nicolau. ParallelprocessingA smartcompileranda dumb
machine. In Proceedings fo the ACM SIGPLAN 84 on Compiler Construction, SGPLAN Notices, pages
37-47.ACM, Junel984.Vol. 19, No. 6.

J. Jansserand H. Corporaal. Partitionedregisterfile for ttas. In Proceedings of the 28th International
Symposium on Microarchitecture, pages303—312,1996.

M. Lam. Softwarepipelining: An effective schedulingechniqudor VLIW machinesin Proceedings of the
S GPLAN ' 88 Conference on Programming Language Design and Implementation, pages318-328 Atlanta,
Geogia,June22—24,1988.

W. Lee,R. Barua,M. Frank,D. Srikrishna,J.Babb,V. SarkarandS. Amarasinghe Space-ime Scheduling
of Instruction-Level Parallelismon a Rav Machine. In Architectural Support for Programming Languages
and Operating Systems, pagesA6-57,SanJose CA, Oct. 1998.

K. Mai, T. Paasle, N. JayasenaR. Ho, W. Dally, andM. Horowitz. Smartmemories:A modularreconfig-
urablearchitectureIn Proceedings of the 27th International Symposium on Computer Architecture, 2000.

G. PrattandJ. Nguyen.”DistributedSynchronou£locking. |EEE Transactions on Parallel and Distributed
Systems, pages314—-328 Mar. 1995.

M. Taylor. DesignDecisionsin the Implementationof a Rav ArchitectureWorkstation. Masters thesis,
MIT, Departmentf ElectricalEngineeringandComputerScience Septembet 999.

E. Waingold, M. Taylor, D. Srikrishna,V. Sarkar W. Lee, V. Lee, J. Kim, M. Frank,P. Finch, R. Barua,
J. Babb, S. Amarasingheand A. Agarwal. Baring It All to Software: Rav Machines. IEEE Computer,
30(9):86-935ept.1997. Also availableasMIT-LCS-TR-709.

15

