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Abstract

Analysis of systems with many time scales is important in many engineering ap-
plications. This thesis addresses the approximation and decomposition-of Markov
processes which exhibit such multiple time scales. An algorithm is presented for
the decomposition of explicitly perturbed, finite state, continuous time Markov
processes. An approximation of the probability transition function which converges
uniformly to zero over ¢ > 0 is obtained. The algorithm extends previous work by
providing a straightforward algorithm which has a direct probabilistic interpreta-
tion, particularly with respect to the role played by transient states. This result is
then extended to consider semi-Markov and discrete time Markov processes as well.
Decomposition of perturbed positive systems is also addressed. Finally, the Markov
process decomposition algorithm is expressed in graphical terms and applied to a

problem of determining the multiple time scale structure of a fault-tolerant system
model.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering






Acknowledgements

I would like to thank my advisor, Alan Willsky, for his help and encouragement over
the past three years. The other members of my thesis committee, George Verghese,
John Tsitsiklis, and Bruce Walker, also deserve recognition for their assistance along
the way. I would also like to thank Sanjoy Mitter for his optimism and confidence
in my work. I am also grateful for the friendship of my fellow graduate students
who have made my stay at LIDS enjoyable.

I wish to acknowledge the Air Force Office of Scientific Research for funding this
project under grant AFOSR-82-0258 and also the Vinton Hayes fellowship which
provided a period of my support. This work was conducted at the Laboratory for
Information and Decision Systems at MiT.

Finally, special thanks to my wife Susan for her love and support (and for

catching almost all of the speling errors).






to Sue,
my parents,

and our baby to be.






Contents

Abstract

List of Figures

1 Introduction
1.1 Motivation . . . . . ¢ i v v i v v it et e e e e e e e e e
1.2 Background . . .. . . . . . .. e e e
1.3 Contributions of the Thesis . . . . ... ... ... .. .. ... ..
1.4 Outlineof Thesis . . . . . . . . i i v i i it i it ittt et cn
2 Decomposition of Markov Chains
2.1 Motivation and Background . . . ... ...... e e e e e e ‘
2.2 TheAlgorithm . .. .. .. ... ...
2.3 Derivation . . . . . . ¢ v i v i e e e e e e e e e e e s
2.3.1 No coupling through transient states . . . . . ... ... ...
2.3.2 Transient states which couple aggregates . . . . ... ... ..
24 Example . . . . . 0 v vt ittt e e e e e e e e e e e e e e e
2.5 DiSCUSSION . . « . ¢ v v v vt it e e e e e e e e e e e e e e e e
2A Appendix . . . . 0 . .t e e e e e e e e e e e e e e s
2.A.1 Proofof Lemma2.2 ... .............0.c.0...
2.A.2 Proofof Lemma 2.3 ... . ... ... .ot
2.A.3 Proofof Lemma2.5 .. .. ... ... .0t
2. A4 Proofof Lemma2.6 .. .. ........c0occuiion..
2.A5 Proofof Lemma2.9 ... .......¢c.c..inan
3 Decomposition of Semi-Markov Processes
3.1 Introduction and Motivation . .. ... ........ ... ...
32 TheAlgorithm . .. .. .. ... ... it oean
3.3 Development . . . . .. .. 0t oo it oottt
33.1 Stateexpansion . . . . . . . ..« .. ettt
3.3.2 Markov representation . . . ... ... ... 0oL
3.3.3 Decomposition of the Markov representation . ... ... ..

9



3.3.4 Semi-Markov representation . . . . .. ... .......... 108

34 Example . . . ... ... i e e e e e 110
3.5 DisCussion . . . v o v vt b i e e e e e e e e e e e e e e e e e e e 116
3.A AppendixX . . . .. i e e e e e e e e e e e e e e e e e e 121
3.A.1 Proofof Lemma3.1 ...........0o0uvveereueno.. 121
3.A.2 The effect of complex “probabilities” . . .. .......... 122
Discrete Time Markov Chains : 125
4.1 Imtroduction. . . . ... .. ... vt it e 125
4.2 The Algorithm . . . ... ... ... ... . .0 nnu... 127
4.3 Derivation . . . . . . . ... e e e e e e e e e 128
4.3.1 Separation of “fast” and “slow” components . . . . .. .. .. 129
4.3.2 Approximation of the fast behavior . . . ... ......... 130
4.3.3 Approximation of the slow behavior . ... .......... 131
44 Example . . . . .. . .. . i e e e e e e e 134
4.5 Discussion . . . . . . .. i e e e e e e e e e e 136
4.A Appendix . . . . ... e e e e e e e e e e e e e 137
4.A.1 Proofof Lemmad4.1 .. ...........000vuuv... 137
4.A.2 Analytic eigenprojections, R®)(¢) . . ... ... ........ 138
Decomposition of Positive Systems 139
5.1 Introduction and Background ... ... . .. e 139
5.1.1 Motivation . ........... e e e e e e e 139
5.1.2 Positive Systems . . . ... ... ... ... ... ..., 140
5.1.3 Chapter Outline . .............0...v...... 152
5.2 Decomposition Algorithm . ....................... 152
5.2.1 Scaling state variables . . . ... ................ 153
5.2.2 Existenceofa™(e) . ....................... 156
53 Example . .. .. .. ... . e e e 158
5.4 Discussionand Conclusion . . . . . .. .. ... v .. 160
Structural Decomposition 163
6.1 Introduction and Motivation . ..................... 163
6.2 Structural Decomposition Algorithm . . ... ............. 164
6.2.1 Graphical Structure . . ... .......... ... .... 165
6.2.2 The Algorithm . ........ e e e e e e e .. . 166
623 Examples .. ..............0 ... ..... 169
6.2.4 Relationship to Algorithm 2.1 .. ............... 173
6.2.5 Extensions of the Graphical Algorithm . . . ........ .. 176
6.3 Application to fault-tolerant systems . . . .. ... .......... 179
6.3.1 Introduction ............... e e e e e e e e e 179




6.3.2 Fault-tolerant systems . . ... ....... e e 180

6.3.3 Problem formulation . . ... . .. ... ... .. 0 0. 182

6.3.4 Results . . . . . @ i i i i i it it e e e e e e e e e e e e 190

6.4 Discussion...........,............T ........... 196
7 Conclusions 199
7.1 Contributionsof thesis'. . . . . . . ¢ . v v it v i b i e e e e e e . 199
7.2 Futurework . . . . . . . ¢ i i i ittt v it e e. .. 201
Bibliography 205

11






List

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
- 3.22

of Figures

Perturbed Markov process . . . . . . . . . it i it it 31
Order1/emodel . ............00uuiuiiunue.e... « ... 37
Multiple time scalemodels. . . . . ... ... ... .......... 39
Markov process in Example 2.2 . . . ... ... ............ 53
Perturbed Markov process . . . . . . . . . i ittt e e 58
Limiting probability process . . . . . .. ... ... .. ... ... .. 59
O(1/€) time scale process . . . . . .o v i it u e 59
O(1/€®) time scale Process . . . . . o v v v vt v v i i e . 60
Multiple Time Scale Chains . . . ... ... .............. 61
Block diagram of semi-Markov decomposition algorithm . . ... .. 76
Two state semi-Markov process in Example 3.1 . . .. ... .. ... 78
Typical semi-Markov behavior in Example3.1 ... ......... 79
Expanded semi-Markov process 7g(¢,t) in Example 3.1 . . ... .. 80
Markov representation . . . .. .. ... .. ..., 81
Time scale decomposition of nv(e,t) in Example 3.1 . ... ... .. 82
Method of stagesexpansion . .. ... ................. 94
Method of stages in Example 3.4 . ... ................ 95
Method of stages in Example 3.5 . . ... ............... 95
Combined method of stages . . . ... ................. 97
Markov representation in Example 3.6 . . ............... 98
Semi-Markov and Markov representation in Example 3.7 . ... .. 99
Semi-Markov and Markov Models in Example 3.8 . ... ... ... 101
Bypassing transient states . . . . . ... ... .. ... ... ... 107
Slow time scale Markov and semi-Markov models in Example 3.8 . . 109
Perturbed semi-Markov process . . . . . ... ... ... ... 111
Expanded semi-Markov representation . . ... ... ... e 112
Expanded semi-Markov representation, e=0 . ... ......... 114
O(1/e€) time scale semi-Markov process . . . . . . .. ... ...... 115
Multiple time scale semi-Markovmodels . . . ... .. ... .. L. 117
Markov representation . . . . . . . .. .. .. 0o e .. 118
O(1/¢) time scale Markov representation . . . . .. .......... 119

12




4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

Discrete time perturbed Markov process . . . . ... ......... 134

Associated continuous time process . . . . ... ... ... ...... 135
O(1/¢) time scale continuous time process . . . .......... .. 135
Reducible stochastic matrix in Example 5.1 . . ... ... .. ... 143
Graph G(A) where A isstochastic . . .. ................ 144
Graph G(4) in Example 5.2 .. ... ... ... ..., .. 147
Class chains for Example 5.2 ... .. ... e e e e e e e 148
G(A) and class chains in Example 5.3 . . ............... 149
Markov generator A(¢) and graphs G and Gy for Example 6.1 . . . 166
Perturbed Markov process and associated graphs . . . ... ... .. 170
O(1/e) timescalegraph . . ... .................... 171
O(1/€*) timescalegraphs . . . . .. ... oo v v v me ... 171
Multiple time scalegraphs . . . . . ... ... ... ... 0o .... 172
Pruning unnecessary links in G . . . ... ... ... .. .u... 178
Graphs GU) for Example 6.2 . . . . . . ...t ... .. 184
Graph G for Example 6.3 . . . o o o v v v et e e 185
Graphs G for Example 6.3 . . . ... ...........0.... 186
Graphs GY) for Example 6.3 . ..................... 186
Graphs G((,") for Example 6.3 using alternative constrains . . . .. . . 187
Initial graph G(® for Example 6.4 ... ........... ... . 188
Scaled graph for Example6.4 . . . ... ... ............. 189
Graph after one iteration of Algorithm 6.1 for Example 6.4 . . . . . 189
Graph after subtracting minimum weight for Example 6.4 . . . . . . 190
Graph G(O)_ for the fault tolerant system model . ... ... ... .. 192
Graphs GS’) for the fault tolerant system model . . . . ... ... .. 194

13




Chapter 1

Introduction

1.1 Motivation

Many systems exhibit behavior in multiple temporal or spatial “scales”. Often
these different scales cause difficulty in the analysis of a system. This is either
due to numerical ill-conditioning or due to excessive complexity resulting from the
explicit consideration of detailed interactions within the system. One approach to
the analysis of such systems is to try to isolate the various scales of behavior and

analyze them separately, thereby splitting a complex problem into a set of smaller
ones.

Systems which have these “multiple scale” properties arise quite frequently
in practice. In many engineering techniques, a system is approximated by some
simplified model which captures the behavior at the particular scale or scales of
interest. An example of this is the use of “lumped” masses in the model of a
mechanical system instead of explicitly considering very “stiff” coupling between
the components of these masses. There are, however, many situations in which there
is no general method for simplifying the problem. Much of the work presented in
this thesis is aimed at providing a direct method of deriving valid simplified models

for particular classes of systems.

The basic approach of decomposing the various scales of behavior of a complex
system has been successfully applied to the analysis of Markov processes with rare

transitions. In these systems, there is a strong relationship between coupling of sets

15



16 : CHAPTER 1. INTRODUCTION

of states through very rare transitions and multiple time scales of behavior. There is
often a straightforward interpretation of the simplified models which result. States
are effectively combined into “aggregate” states where the probability of occupying
the aggregate is simply the sum of the probabilities of occupying the member states.
A successful method of analysis of such processes has been to explicitly parameterize
the rarity of the transitions between the aggregate classes of states and to consider
the system as a perturbation of a system where there are no transitions between
these aggregate classes.

The work to date on the multiple time scale decomposition of finite-state Markov
processes has several shortcomings. As is discussed in the next section, some
of the results (such as those of Courtois, [12]) are applicable to only relatively
restricted classes of Markov processes. By considering restricted classes, however,
the algorithms for the construction of the aggregated processes associated with
various time scales are generally straightforward and involve computations with
clear probabilistic interpretations. At the other extreme, Coderch [9] [11] and
Delebecque [16] deal with very general classes of processes. The resulting algorithms
are significantly more complex, however. Coderch et al [10] use results on the
asymptotic approximation of singularly perturbed systems to construct a sequence
of aggregate generators and to prove uniform convergence of the approximation of
the probability transition function. The generality of the systems which can be
considered and the guaranteed uniform convergence of the approximation are offset
by the necessity of computing significantly more complex quantities which are not
easily interpreted in probabilistic terms.

Despite the constraints imposed by many of the simpler decomposition tech-
niques, explicit decomposition of Markov processes has been employed in several
application; Courtois [12] has exploited the large range of service times in computer
queuing networks to form decomposed system models. Many heuristic decomposi-
tion methods have also been employed in the analysis of Markov failure models with
two time scales of behavior [19] [24] [43]. The use of time scale decomposition of
fault-tolerant system models has also been considered [8]. Alsé, decomposition has
been applied to determining the control laws for Markov systems [17]. It is evident

that these decomposition techniques have a wide range of potential applications.
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The development of a new approach and useful algorithm that addresses the general
class of systems considered by Coderch should extend this set of applications still
further.

The focus of this thesis is therefore threefold. First, a direct decomposition
algorithm will be presented which both treats a general class of Markov processes
as in [11] and maintains the simplicity of implementation and interpretation as in
[12]. The goal is both to provide a useful engineering tool and to understand the
reasons behind the apparent complexity involved in dealing with the general class
of perturbed Markov processes. Using this procedure as a basis, the analysis is
~ extended to deal with semi-Markov and discrete time Markov chains. The second
focus of the thesis involves using the intuition gained from dealing with stochastic
systems and the identification of useful features of such systems to develop a decom-
position algorithm for a class of perturbed positive linear systems. Finally, use of
the Markov process decomposition result is demonstrated on a potential engineering
' épplica.tion in reliability analysis of complex systems. This application, furthermore,
demonstrates a particulariy useful feature of the decomposition result, namely, its
graphical/connectivity interpretation which permits efficient determination of the
structure of time scale decompositions by examination of a connectivity graph with

links weighted by the integer orders of the corresponding Markov transition rates.

1.2 Background

An overview of several areas of related previous research are described in this section
to provide a perspective on the thesis work. More specific discussion of these results
appears in subsequent chapters. The related research falls into several categories.
First, basic theoretical and algorithmic results related to the decomposition of sin-
gularly perturbed finite-state systems are reviewed. The engineering application of
decomposition methods, particularly those related to the use of singularly perturbed
finite state Markov processes, is then surveyed. For a review of the properties of
continuous time and discrete time Markov processes, the reader is referred to [25]

and [4] and to [21] for a treatment of semi-Markov processes.
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There are several sets of results which are particularly relevant to the theoretical
development in this thesis. The first set is directly related to the analysis of Markov
processes with rare transitions. Second, there is extensive literature on the use
of singular perturbation techniques in control theory. Some of these results have
also been applied to the Markov process problem. Finally, some recent work has
extended the applicability of these decomposition results to linear systems with

more than two time scales and relatively unconstrained structure.

Some of the earliest works to explicitly identify the significance of weak coupling
in linear dynamic systems and rare transitions in Markov processes on long-term
system behavior is by Simon, Ando and Fisher [1] [42]. These results have been
used and extended in more recent work by Courtois [12]. These authors addressed
the validity of using certain reduced-order models to approximate the behavior of
complex systems. Their motivation has included the study of economic systems
where an entire sector of an economy is often represented by a single indicator for
the purpose of determining long-term behavior. Their major result is a consequence
of the fact that a linear, discrete-time system composed of several almost decoupled
components has eigenvalues which form two groups. One group is associated with
the fast dynamics of the individual components and the other group is associated
with the slow inter-component interactions. This separation of the eigenvalues
allows the use of different approximations at different time scales. At a fast time
scale, the sectors can be treated as being totally isolated. At the slow time scales,
the detailed state of each sector can be collapsed into a single indicator in order to

analyze the combined behavior.

Although the work of Simon and Ando was not exclusively concerned with
Markov processes, their required structure, known as nearly complete decompos-
ability, has a particularly simple interpretation when the linear system defines
the evolution of the transition probabilities of a Markov process. The specific
formulation in the Markov process context can be expressed as follows. Note that
although we will initially consider continuous time Markov processes in Chapter 2,
the analogous ideas to this discrete time approach are relevant. Consider a finite ,

state, discrete time Markov process whose state probability vector at time n is z|n]
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which (after a suitable permutation of the states) is governed by!

zln + 1] = A(¢)z(n] (1.1)
where
Al = A+eB _ | (1.2)
A 0
A = 42 . (1.3)
K | Ax |

Here A = A(0) is referred to as the unperturbed generator. Each of the A; are
irreducible (indecomposable) and therefore A is called completely decomposable.
When the term eB is added, A(e) is nearly completely decomposable. The (j,17)
element of A(e), j # ¢, is the transition probability from state i to state 7. Each of
the A generates an ergodic chain. The basic decomposition result is that there is
an N-state chain which captures the slow behavior corresponding to the transitions
between the ergodic classes of A. The transition probabilities of this chain a.re'
determined by the ergodic probabilities u; of each component generated by the A;
and by the perturbation term eB.

Arg= D > bjiuy, (1.4)

JERyi€Ry

where Rk is the set of states in the K** ergodic chain of A.

Implicit in Simon and Ando’s formulation is that there are only two fundamental
time scales of behavior. Courtois [12] has discussed extension of this type of
decomposition in an iterative fashion to extract multiple time scale decompositions
of Markov processes?. In order to use these results, however, the nearly complete
decomposability condition must be satisfied at each intermediate time scale and this

cannot be easily guaranteed in advance.

1Courtois’ notation is changed here for consistency with the sequel. Column vectors of probabil-
ities are used in place of row vectors.

2In Chapter 5, it is shown that this type of multiple time scale extension of Simon and Ando’s
result is not valid for more general positive systems despite the nearly completely decomposable
structure.
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Korolyuk and coworkers considered the decomposition of continuous time, semi-
Markov processés with some very small transition probabilities, also expressed in a
perturbation form [20] [31]. Although their results are more general in that the semi-
Markov case is addressed, similar constraints to those of Simon and Ando are made
on the ergodic structure of the system. In particular, transient states are not allowed
in the unperturbed process. Furthermore, although the processes are semi-Markov,
the probability distributions of the holding times do not depend on the perturbation
parameter. The nature of the result is noteworthy, however, in that even though the
original system is expressed in a semi-Markov form, the “slow” behavior is captured
by a purely Markov process. Another interesting result is observed by Korolyuk
and Turbin [33]. Although they introduce a linear perturbation term of order e,
due to the structure of the chain constructed, they observe “implicit time scales”
for t = O(1/€?) or slower. It will be shown in Chapter 2 that such implicit time
scales are in fact directly related to the complexity of decomposing an arbitrary
perturbed Markov chain.

The use of singular perturbation techniqﬁes in control theory has a quite ex-
tensive literature. Although some of the basic results will be discussed here, the
reader is referred to the extensive reviews by Kokotovic et al [28] [29] and Saksena
et al [40]. The basic problem consider is the evolution of a singularly perturbed,

continuous time, linear system

A Ap

z(t) =
® €A1 €A

z(t) (1.5)

Under suitable stability conditions®, the “slow” system can be shown to evolve

approximately according to
,(r) = (Azz - A21A1_11A1z) z,(r), T=¢€t (1.6)

This result has been applied to Markov processes by first performing a suitable
similarity transformation to bring the generator into the proper form [17]. This
expression for the slow behavior is directly related to the continuous time counter-

part of Courtois’ slow system. Also, the aggregated chain used by Delebecque and

3Stability of A;; and Ago — A21A1'11A12 is a sufficient condition. In the Markov process context,
the semi-simple zero eigenvalue associated with the steady state can also be present.
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Qua.dra.t [17] which is essentially derived from (1.6), uses similar assumptions to
those of Courtois. »

Recent work has addressed the shortcomings of these available theoretical re-
sults. Coderch [9] [10] has considered the decomposition of arbitrary singularly
perturbed linear systems which may have behavior at multiple time scales. The
derivation draws on Kato’s perturbation theory for linear operators [22]. Coderch
has also considered the Markov process case and has shown that the slow time scales
are associated with aggregated processes. Delebecque [16] has obtained a similar
decomposition specifically in the Markov process context. Lou [36] has addressed
the “gap” between Coderch’s results with those previously obtained by Kokotovic
et al and others and has developed an algebraic approach to the multiple time scale
decomposition of linear systems. The specific problem formulations and results are
briefly summarized below. More detailed discussion of these results is available in
Section 2.1.

Coderch [10] begins with a linear system where the generator has a Taylor
expansion in € _ _

£(t) = A(e)z(t) (1.7)
where

A(€) = Ao+ €Ay + Az + - -+ | (1.8)

Under suitable conditions on A(e) (which he shows are implicitly satisfied when A(e)
is a stochastic matrix), a new generator A(e) can be constructed which captures all
the slow behavior. The construction involves identifying the eigenspace associated
with all the small eigenvalues of A(¢) (the 0-group) and constructing the Taylor
expansion of the associated eigenprojection P(e). Following Kato [22] the new

generator is then constructed as
A9 = -t-A(e)P(e) - %P(e)A(e)P(e) (1.9)

which also has a similar Taylor expansion as in (1.8). The process can therefore
be repeated for a finite number of steps to recover a complete set of reduced order

generators*. An approximation of the system behavior can then be constructed

4Although the matrices are of the original size, the dimension of the nullspace increases and
therefore the order of the systems is reduced at each stage.
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from the leading order terms of these generators, Ag, Ag,.... This approximation
can be shown to have an error which converges uniformly toOon¢ >0 as ¢ | 0.

‘Delebecque [16] provides a similar algorithm for the decomposition of a Markov
generator though his derivation is based on randomly sampling the the original
process at expohentially distributed intervals. It is not clear, however, whether the
approximation he constructs has the same uniform validity as the one constructed
by Coderch.

Lou [36] extends the type of analysis performed by Kokotovic to systems which
have multiple time scales. His result addresses a similar class of systems as Coderch’s
though he provides a more direct algorithm. The procedure is based on using
the Smith decomposition of the generator to construct an e-independent similarity

transformation such that the transformed system is in the form

&(t) = diag(I,el, €' 1,...,e™I) A(€)z(t) (1.10)

where A(0) has full rank. It is shown that if the system satisfies the “multiple semi-
stability” (MSST) condition (i.e. all the systems describing behavior of particular
time scales are semi-stable), then the e-dependence of A(e) does not affect the
asymptotic behavior and A(0) can therefore be used instead of A(e)°. This allows
a straightforward computation of a sequence of Schur complements to recover the
complete time scale decomposition.

Although the various approaches described appear quite different, there is an
underlying similarity. In particular, the aggregation result used by Courtois can be
shown to be very similar to those of Kokotovic and of Coderch. Although Courtois
deals with discrete time systems, the continuous time counterpart of his procedure
can be expressed in the original state space in a form similar to that used by
Coderch. Specifically, given a continuous time generator (A + €B), the slow system

would be generated by

~P(0)(4 + <B)P(0) = P(0)BP(0) (1.11)
where 4
P(0) = Jim e (1.12)

$Coderch [9] has shown that in the stochastic case, MSST is always satisfied.
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Note that the difference here is that the projection P(0) is used instead of P(e) as in
(1.9). The nearly complete decomposability condition in some sense guarantees that
the e-dependent terms in P(e) are not significant. A related interpretation of the
Markov decomposition algorithm developed in this thesis is provided in Section 2.1.

Similarly, a nearly completely decomposa.ble system can be transformed into a
form related to that used by Kokotovic by performing a similarity transformation.
The transformed system has the form (1.5) though the blocks A;; depend on e.
In this case, Courtois’ slow system is generated by Aj; rather than the complete
expression (1.6). In this nearly completely decomposable case, the term ignored can
be shown to be a regular perturbation and therefore does not affect the asymptotic
behavior®.

There are many applications which take advantage of reduced order models
based on explicit identification of a perturbation term. Kokotovic et al [28] provide
a brief survey of some of these applications. The literature on the use of reduced
order models based on singularly perturbed Markov processes is more limited.
There are, however, many areas where more ad hoc decomposition methods for
Markov processes are used and where the more explicit use of singular perturbation
descriptions of the systems might prove useful.

As pointed out by Courtois [12] and others, hierarchical aggregation can be of
great value in analyzing complex processes. Courtois considers decomposing the
Markov chain which governs the behavior of a queuing network description of a
computer operating system. In this application the small rate, €, is associated
with the existence of an order of magnitude range in the service rates of various
elements of the system. Another source of such a parameter in similar queuing
applications might be some very small routing probabilities when the service rates
are comparable [41].

S After the similarity transformation, the generator has the form

1 A11(e)  Aiz(e
TA(T™ = [ €A21((E)) eA”((e)) ]

where ||A12(€)|| = O(¢). Under the nearly complete decomposability assumption, Az2(0) is a Markov
generator with one ergodic class and therefore the term Az;(€) A7y (€) A12(€) which is O(e) is a regular
" perturbation of the system.
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Other analyses of queuing networks have dealt with calculation or approximation
of the “zero” eigenvector corresponding to the steady-state of the system (see [7]
for a review of several methbds)., Although these analyses are not concerned with
the dynamics of the system, they apply the decomposition principle to reduce the
overall complexity of the problem. ‘

Another application area in which singularly perturbed Markov process models
might prove useful is in the reliability analysis of complex systems. In this case,
the small parameter is associated with some very small underlying failure rate.
Although use of the perturbation methods described earlier is limited, there are
many such failure analysis applications which employ heuristic methods for decom-
position and order reduction. Keilson [23] [24] has shown that failure times are
“asymptotically exponential” and has made heuristic arguments for partitioning
the state space into “good” and “bad” sets from which the aggregate behavior is
derived. Other uses of reduced order models in failure analysis are surveyed by
Gertsbakh [19] though the majority of these techniques have little theoretical basis. .
~ One area of fajlure analysis which has employed these decomposition techniques
is in the analysis of fault tolerant systems [47] [8]. As a consequence of the fault
tolerant system operating in conjunction with the underlying failure process, these
models are inherently very complex and therefore are difficult to analyze using
simpler methods such as those of Keilson. This application area will be discussed
further in Chapter 6. Due to the complexity of the models and the presence of a
physically significant small parameter (the failure probability), the decomposition
algorithm developed in this thesis may provide a useful tool for the analysis of these

systems.

1.3 Contributions of the Thesis

The first major contribution of this thesis is the development of multiple time
scale decomposition algorithms for perturbed continuous time and discrete time
Markov processes and continuous time semi-Markov processes. Several aspects of

- the Markov decomposition algorithm presented in Chapter 2 should be noted.
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o The Markov algorithm bridges the gap between the the conceptually simple
results of Simon, Ando, and Fisher and Courtois and the much more complex

but general results of Coderch and Delebecque.

e Since the size of the problem is reduced at each time scale, the algorithm can
be considered as a method of transforming a single large problem into a set
of smaller problems which can be tackled separately. This characteristic of
the algorithm should make it possible to consider much larger problems than

were previously possible.

e The algorithm can be expressed in graph theoretic terms which, combined with
the symbolic rather than numerical nature of the algorithm, allows various

types of simplified analysis.

e In contrast to recent work aimed at approximating the steady state distribu-
tion of a perturbed Markov chain, this algorithm provides an approximation

of the dynamics as well as the steady state.

The extension to continuous time semi-Markov processes presented in Chapter 3

also makes several basic contributions and demonstrates several novel features.

e The holding time probability distributions as well as the transition probabil-
ities can be perturbed.

e Perturbation of the holding time distributions results in the slow time scale
system behavior being approximated by another semi-Markov process. This
is in contrast to the previously available results where only the transition
probabilities are perturbed and the slow system behavior is described using

an aggregated Markov process.

e The “fast” and “slow” components of a state may belong to different aggregate

states at slower time scales.

The extension to discrete time Markov chains in Chapter 4 also demonstrates a

novel feature.
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e The slow time scale system behavior of a discrete time Markov chain can be

approximated by a continuous time Markov process.

The decomposition algorithm for a class of perturbed positive systems presented

in Chapter 5 makes several contributions.

¢ The close ties between the structure of a Markov process and a positive system

are exploited to apply the Markov decomposition algorithm.

e Important differences are identified which illustrate that a direct iterative
application of the Markov algorithm is not valid, even in the nearly completely

decomposable case.

Finally, this thesis makes a contribution in demonstrating how some of the above

results can be applied to a particular engineering problem.

¢ The graphical/symbolic nature of the Markov decomposition algorithm is
exploited to develop a procedure for determining the critical dependence on

certain small parameters in a model of a fault tolerant system.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows. The algorithm for the multiple
time scale decomposition of perturbed Markov processes is presented and developed
in Chapter 2. This is followed by an extension to discrete time Markov chains in
Chapter 3 and continuous time semi-Markov processes in Chapter 4. The algorithm
is extended to consider a class of continuous time positive systems in Chapter 5.
Discussion of the application of the Markov algorithm for structural decomposition
with an application to a problem in fault tolerant system design in presented in

Chapter 6. Conclusions and an overall discussion are provided in Chapter 7.




Chapter 2

Decomposition of Continuous Time
Markov Chains

2.1 Motivation and Background

The results presented in this chapter address the decomposition of a general class
of perturbed Markov processes and provide a computationally feasible algorithm
for their analysis and uniform approximation. Some of the previous algorithms
(such as Courtois [12] and Delebecque and Quadrat [17]) are applicable to only
comparatively restricted classes of Markov processes. By considering such restricted
classes, however, the algorithms for the construction of the aggregated processes
associated with various time scales are generally straightforward and involve com-
putations with clear probabilistic interpretations. At the other extreme, Coderch
[9] and Delebecque [16] deal with a completely general class of perturbed Markov
processes and the former also proves the uniform convergence of a decomposition-
based approximation. The price, however, that is paid for this generality and the
guaranteed uniform convergence are algorithms of significantly greater complexity

involving the computation of complex quantities that are not easily interpreted in

probabilistic terms.

The algorithm presented in this chapter, which was originally outlined in Lou
et al [35], focuses on the gap between these two extreme sets of results. In partic-

ular an algorithm is presented for the construction of uniform multiple time scale

27
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approximations of singularly perturbed Markov processes that is as general as that
of Coderch [11] and Delebecque [16] but has much the same straightforward, easily
interpreted flavor as that of Courtois [12]. Indeed, when the class of systems is
suitably restricted, the construction is essentially identical to that of Courtois.
The focus of this chapter is on generators of continudus-time, finite-state Markov
processes which are analytic functions of a,. small parameter, €, representing the pres-
ence of rare transitions between sets of states. Consider such a Markov generator,
A (¢) of size n x n 1. The matrix probability transition function, X (¢), satisfies

the dynamic equation
X(t) = AO(e) X(2) , X0)=1I (2.1)
whose solution can be written as
x(t) = A () (2.2)

The goal is to obtain an approximation of this solution which (a) explicitly displays
the evolution of the process for various orders of ¢ (1,1/¢,1/¢2,...) using appro-
priately aggregated, e-independent, Markov generators and which (b) converges
uniformly over the interval ¢ € [0,00) to the true probability transition function
as € | 0. A solution to (a) and (b) is presented by Coderch et al [9] [11] based
on associating multiple time scales with different orders of eigenvalues of A(%)(e).
Building on Kato’s [22] perturbation results for linear operators, Coderch et al
identify the subspaces associated with these various orders of eigenvalues and devise
a sequential procedure for construction of the approximation. In particular, it is
shown that the solution (2.2) can be uniformly approximated using the unperturbed
(e-independent) “fast” evolution?.

At (2.3)

and a “slow” evolution _
AD()1 (2.4)

'The superscript (°) is used here to maintain a uniform notation throughout the chapter. It
signifies the first generator in a sequence which will be constructed in the next section.

ZHere A(®) = A(%)(0) for simplicity. To avoid confusion, we will consistently write A(®) (€) when
we are referring to the full e-dependent generator as in (2.2).
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where -
AW(e) = %P(°)(5)A(°)(5)P(°)(e) (29

Here P(%)(¢) is the eigenprojection associated with all the eigenvalues of order € or
higher. The procedure can then be iterated to produce the desired approximation,
consisting of exp(A©¢), exp(AMet), exp(A®et), etc. There are, however, several
drawbacks to this procedure. The first is the need to compute the entire e-dependent
eigenprojections, P(°)(¢), P(!(e), ..., and a second is the absence of a simple prob-
abilistic interpretation of the computations being performed. Finally, at the end of
the procedure Coderch provides a way in which to re-organize the approximation
so that it consists of increasingly aggregated (and hence simpler) Markov models
at successively slower time scales. All of the computations, however, are performed
on the full, unaggregated process.

The approach taken by Courtois [12] overcomes all of these drawbacks. In
essence Courtois replaces the slow evolution (2.4) with

F()et (2.6)

where
FO(e) = %P(°)A(°)(E)P(°) (2.7)

Here P(®) = P(%(0) has a simple probabilistic interpretation as the ergodic projec-
tion of the unperturbed process
0
PO = lim eA( )t (2.8)
t—oo0
This involves no e-dependent computations. Furthermore, if A(® generates N

ergodic classes, the projection can be decomposed as
pO) = y@y(© (2.9)

where U©) is size n x N and V() is size N xn. Here V(® is a “membership matrix”.
In the case in which there are no transient states generated by A, V(© consists
entirely of 0’s and 1’s whose rows identify which states of the process form individual

ergodic classes of A(® 3. Also the columns of U(®) denote the ergodic probability

3Note that if A(®) generates transient states, the “membership” of a transient state may be split
among several ergodic classes.
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vectors, one for each ergodic class of A}, and finally
voOyo =g (2.10)

From (2.9), (2.10), the slow evolution (2.6) can be computed in an even simpler

fashion
JFO(e)et _ UOAN()V Oet 2.11)
= @AM (e)ety ) (2.12)

where
AD(g) = %V(O) AO (U@ (2.13)

is an aggregated Markov generator with one state for each ergodic class of A,
Indeed (2.13) has an appealing probabilistic interpretation: the transition rate
between aggregated ergodic classes of A(® is computed as an “average rate”, in
which the rates of individual states in these classes are averaged using the ergodic
probabilities of A(®). This is the matrix form of the summation or “averaging”
expression (1.4) in Section 1.2. |

While the procedure just described has a number of appealing features, it cannot
be applied to arbitrary processes. In particular Courtois [12] focuses his develop-
ment on the class of “nearly completely decomposable” processes introduced by
Simon, Ando, and Fisher [1] [42] in which A(®) has no transient states and therefore
the the states can be permuted to bring A(® into a block diagonal form where
each block is irreducible (indecomposable). While this condition can be relaxed
somewhat, it is restrictive. Furthermore, while the ideas of Simon and Ando, and
Courtois do allow one to consider several levels of aggregation at different time
scales, iterative application of this method cannot in general be performed since
the constraint of near decomposability may fail at one or more intermediate time
scales.

The need for a more general algorithm can be traced to the role played by states
which are transient at various time scales. To illustrate this, consider the process
depicted in Figure 2.1. At ¢ = 0, states 1, 2, and 4 are individual ergodic classes,

while state 3 is transient, so that its steady-state probability is 0. Consequently,
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- 0 1 0

€ 1 0

A(E) = e —2—€¢ 0
0 O € 0

Figure 2.1: Perturbed Markov process

application of the averaging implied by (2.13) (which uses the steady-state proba-
bilities at ¢ = 0) completely misses the possibility of transition from state 1, 2, or 3
to state 4. Thus in this case the a.pprokimation implied by (2.12) does not capture
the fact that 4 is in fact a trapping state for any ¢ > 0. The problem in this example
is that the critical path determining long-term behavior involves a sequence of rare
events, namely a transition from state 1 or state 2 to state 3 followed immediately
by a transition to state 4.

~ Processes with such behavior arise in a variety of applications, and are of
particular interest in analyzing the long-term reliability or availability of complex
systems such as interconnected power networks (in which sequences of events lead,
on infrequent occasions, to blackouts), data communication networks, and fault-
prone systems possessing back-up capability. The process depicted in Figure 2.1 can
in fact be thought of as an (extremely simplified) example of a system consisting
of two machines, one of which acts as a backup. States 1 and 2 correspond to both
machines being in working order. If a failure of one machine occurs, the process
transitions to state 3 in which the machine is examined and then repaired (causing a
transition to state 1) or replaced (transition to state 2). However, on rare occasions -

the second machine fails before the first is repaired or replaced causing a stoppage
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in operation (and a transition to state 4).

. Although the importance of transient states has been recognized in previous
work, no general approach has been developed. Korolyuk and Turbin [33] have
considered a case where there is a particular ergodic structure. Recently, Bobbio
and Trivedi [6] have proposed a method, similar in result to that presented in
this chapter, for analyzing the effect of transient states in the two time-scale case.
Multiple time-scale analysis of perturbed Markov processes with arbitrary ergodic
structure is not available in these works, however, particularly with respect to the

construction of a uniform asymptotic approximation.

In this chapter an algorithm for the full multiple time scale analysis of a per-
turbed Markov process and a proof of the uniform convergence of the approximation
are presented. The key to this development is a method for handling transient states
at various time scales that couple ergodic classes at slower time scales (as state 3
does between states 1 and 4 and between 2 and 4 in the example above). In general
such transient states may not be transient in the full process and thus can be
thought of as “almost transient” states. The way in which we accommodate the
presence of such states is essentially a modification of (2.13). Specifically, recall
that V(® is a membership matrix indicating which states belong to which ergodic
classes. When there are almost transient states it is necessary to consider an e-
dependent membership matrix ‘7(0)(6) to capture the fact that states that couple
ergodic classes can be thought of as being “partly” in each. Therefore, in such a case,
we must identify and retain certain e-dependent terms, but we can stop far short of
the complete computations required by Coderch and can maintain the advantage
of Courtois’ approach of working directly on increasingly aggregated versions of the

process.

In the next section the general algorithm is presented and illustrated on the
example introduced in this section. In Section 2.3 the derivation of the procedure
is provided along with the proof of the uniform convergence of the approximation.
An example is presented in Section 2.4. Section 2.5 contains a discussion of several
issues including computational and numerical aspects of hierarchical aggregation.

Proofs of some of the supporting results are presented in the appendix, Section 2.A.
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2.2 The Algorithm

In this section the general algorithm for the construction of uniform multiple time
scale approximations of singularly-perturbed finite-state Markov processes is pre-
sented. For simplicity we assume that the Markov generator A(°)(e) has one ergodic
class for € > 0 %. The basic algorithm involves the computation of a sequence of
Markov generators, the k™ of which, A*)(¢), captures all behavior at time scales of
order 1/¢* or slower. The procedure is iterative, with A(*+1)(¢) determined directly
from A(¥)(¢). There are essentially four steps (1 through 4) which are repeated at

each time scale in the algorithm shown below.

Algorithm 2.1 Begin with the generator A)(e) of a finite-state Markov process
with one ergodic class for € > 0. Set k — 0

1. Partition the state set into the ergodic classes E,, E,,...,Exn and the transient
set T generated by A*¥) = A*)(0). If there is only a single class (N = 1), go
to 5.

2. For each class E;, compute the ergodic probabilities u,g;), Vi € Er of the

member states corresponding to the generator A, Also set uS'}) =0,Vj &€ Ey.

3. For each transient state j € T and each class Ey, compute terms v (e) such
that

”I;)(f) = ”rg)(f)(l'i'o(f)) (2.14)
Z”(k) =1 (2.15)

where
o9(e) = Pr(n® (e, t') € Br | 1¥(e,0) =4, ¢ =igf(t | ¥ (e,t) ¢ 7)) (216)

and n(¥) (¢, ) is a sample path of the Markov process generated by A*)(e).

4The generalization to more than one class is trivial, since the states of the process can be
reordered such that A(?)(e) is block diagonal and then each block can be considered individually.
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4. Form the n x N and N X n matrices

U = [ul] and V® () = [5{2(e)] (2.17)
Then ‘
A1) () = %f}(k)(e) AR (U™ (2.18)

Setk — k+ 1. Go toi.

5. The overall approzimation of the evolution of the transition probabilities can
be written as

A ()t _ A

(U(O)eA“’etV(o) _ U(O)V(o)> +

(U(O)U(l)eA"’e’thV(O) _ U(°)U(1)V(1)V(°)> n

: (2.19)
(U(O)., gD AB L (k-1) | y(0) _
UO...ypk-1y-1), V(O)) +0(e)
where.
v® = 7®(g) = v (o) (2.20)
The approzimation s uniformly valid for t > 0 3.
O

As indicated in the Section 2.1, this algorithm is very similar in structure to
that of Courtois. In particular, compare (2.13) and (2.18). The computation in
step 2 of the ergodic probabilities that form U(*) is identical to the corresponding
step of Courtois’ algorithm. The critical difference, however is the computation
of the “membership matrix” V(¥)(¢). In particular, “membership”, as needed here
is defined in (2.16). Specifically, for each state ;7 in the process corresponding to
Al¥)(¢), the probability that the process first enters each ergodic class E; of A() (0)

SSpecifically, O(e) is some (matrix) function F(e,t) such that lim sup || F(e,t)/e|| = u < 0o
. €l0¢20
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is computed. If j is already a member of some E;, then the corresponding vIJ)(e)
equals 1. In this case we have exactly the same membership as if we used V(¥)(0),
the quantity employed in Courtois’ alg01:ithm. Furthermore, if j is a transient state
of A¥)(0) that does not couple transients — i.e. if j has transitions in A(¥)(¢) into
only one of the E; — the same 0-1 membership as in V(¥)(0) is preserved. However,
if 7 is a coupling transient state, vIJ)(e) in general will be nonzero and e-dependent
for several values of I. While there is some e-dependence to be captured here, (2.14)
indicates that only the lowest-order term in each v{t )( ) needs to be matched and
then higher-order terms can be picked in order to ensure that the probabilities of
membership sum to 1 as in (2.15). This has important computational implications

discussed in Section 2.5.

As indicated above, the only elements of V(¥)(¢) that require calculation are
those which correspond to the transient state set 7. The calculation of (2.16),
then, is a standard problem: each ergodic class E; of A%¥)(0) is replaced with a
single trapping state I, and all transition rates are summed together from each
7€ T into each Ej, forming an aggregate rate into the new state I. The proba-
bilities in (2.16) are then simply the limiting transition probabilities as t — oo of
this simplified process. Furthermore, this is equivalent to considering the limiting
probabilities of the derived discrete-time Markov chain whose transition at discrete
time n corresponds to the n*® transition of the continuous time process. The state
transition matrix ®*)(¢) of this discrete-time process (with ergodic classes of A(¥)

collapsed into trapping states) can be obtained directly from the original generator
A (g),

a,(k) € € k
Sf’(e)=j,,§(—1), moy W@ mg_o ()

1€E; —Qss (5)

where s,t € T and I is a state representing the class E;. By suitably ordering the

states, <Ii(")(e) can be formed as

0
ak)(¢) = [ 211 8 0 ] (2.22)
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and the limit therefore becomes

lim ¢ ° 0] =
BT a0 o)™

The leading order terms of V(¥)(¢) in (2.23) required in step 4 of the algorithm

0]
v ] (2.23)

can be obtained in a variety of ways such as by repeated multiplication of (I>(")(e)
(retaining only the leading order terms in each entry after each multiplication) or

by series expansion of the inverse in (2.23) as

(1-of0)” = (1-20)” & e (z@u-o0)" (220
where
L(e) = 3 (2(9) - 3(0)) (2.25)

Example 2.1 In order to illustrate the algorithm, consider the generator

(¢ 0 1 0]
0 — 1 0
AO(e) = e ; e o (2.26)

.:0 0 € 0 |

associated with the state transition diagram in Figure 2.1 (pagg 81). The ergodic

classes and transient set are

{1}, E,={2}, Es={4}, T = {3} (2.27)

The ergodic probabvilities are all degenerate in this case

(1 0 0]

010
“—u‘°)—u£‘;’—1 or U0 = 00 0 (2.28)

|0 0 1]

The terms v(%)(e) can be determined by constructing the discrete time Markov chain
with generator ®()(€) (with the states ordered (3,1,2,4))

0 0
O~ | V2+e e o
2% (e) = (249 T —[@g,% I (2.29)
| €/(2+¢)
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Figure 2.2: Order 1/¢ time scale model for Example 2.1

Since (<I)(°)(e))2 = 80 (¢), limp,oo @O (€)" is trivial and the terms v(®(e) can be
read directly from ®©)(e)

vig(e) =vfd =1/(2+¢)

2.30
. vig () = ¢/(2+¢) (2:30)
Suitable terms 9(°)(€) which satisfy (2.14-2.15) above are
10 1/2—¢/4 0
=(0) ='(O) =1/2—¢€/4 ~
515 () ~(';§z ()6) /2/ ¢/ VO =|01 1/2—¢/4 0 (2.31)
U3z (€) =
% ‘ 00 ¢2 1

Using these terms, A()(e) computed using (2.18) generates the process illustrated in
Figure 2.2 and given by

-1/2—¢/2 1/2 0
AM(e) = 1/2 ~1/2—¢€/2 0 (2.32)
€/2 €/2 0

This procedure is now repeated since A()(0) generates two ergodic classes (with

no transient states) with the following ergodic probabilities and membership matrices

1/2 0

~ 110
U(l) = 1/2 0 s V(l) €) = 2.33
pof. a={ ] 239
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where the aggregate classes are now
E,={1,2}, E;={4}, T={} ' (2.34)

Using this, the generator A?)(e) is computed.

A (e) = [ —15: g ] ‘ (2.35)

Since A®)(0) generates only one ergodic class, namely {4}, the algorithm is terma-
nated. The set of e-independent Markov models from which the approzimation is

derived is shown in Figure 2.3. uf

Note that the process of Figure 2.1 does not have any probability transition
rates of order e or higher. However, as seen in Figure 2.3(c), this process has
time scale behavior of order 1/e?. The fact that there is slower behavior than is
explicitly visible in the original process is directly attributable to the presence of
coupling transient states or, equivalently, to critical sequences of rare transitions.
This is precisely the case in which the e-dependence of V~'(")(e) is critical.

It is useful to make several comments about step 5 of the procedure which
assembles an overall approxiination of the transition probability matrix. The first
term captures the fast, high-probability behavior at times of order 1. The next
describes behavior at times of order 1/¢ by capturing transitions between ergodic
classes of the fast process, and, since these transitions are sufficiently rare that the
fast process can reach equilibrium between two such transitions, the probability
mass within each ergodic class is distributed using the fast process ergodic proba-
bilities. Similar interpretations can be given to subsequent terms. Such intuition
is certainly present or implicit in most previous works. Indeed this idea has led
researchers to develop iterative methods for computing steady-state probabilities
7] and error bounds for these computations (13]. In contrast, in the next section
it is proved that the error in this approximation to the entire transition probability |
matrix (including the full transient behavior) goes to 0 uniformly for 0 < ¢ < co as
€ | 0. Coderch [9] has a similar uniform convergence proof, but our result is stronger

since we are able to work on successively aggregated versions of the process and we
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(a) O(1) time scale model — A©)

1/2

o

(b) O(1/¢) time scale model — A(Y)

1/2

(c) O(1/€?) time scale model — A®)

Figure 2.3: Multiple time scale models for Example 2.1
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can also discard all but the essential e-dependent terms (while Coderch keeps them
all). Finally, it is interesting to note that the final approximation in (2.16) uses
only V¥ (0) = V(*)(0), the same matrices that appear in Courtois’ developr:;ent.
The key point here is that while V(¥)(0) is adequate for describing the k*! time
scale, V(¥ (€) is in general needed to capture accurately all slower time scales. For

example, the e-dependent terms of f}(o)(e) in Example 2.1 directly influence A(3)(0).

2.3 Derivation

The algorithm for the construction of multiple time scale decompositions of a
singularly-perturbed, continuous time, finite-state Markov process is derived in this
section. At the same time, the uniform convergeﬁce of the resulting approximation
is established. The approach taken is as follows. First, an algorithm is derived
assuming that there may be tré.nsient states at any particular time scale provided
that these states cannot “couple” aggregates at slower time scales. The proof of
uniform convergence in this case involves keeping track of “weak” terms in the
generator which can ultimately be ignored since they do not affect the multiple
time scale decomposition. This result provides a proof of the uniform validity
of an approximation based on the continuous time counterpart of Courtois’ pro-
cedure. Such a proof is not available in previous work. Also, this result forms
the backbone for the general algorithm. Speciﬁcé.lly, an explicit procedure for
transforming a process with coupling through transient states to one without such
states is provided. Finally from this, the general algorithm that involves a minimum
of computation to generate the complete multiple time scale decomposition and

uniform approximation is derived.

2.3.1 No coupling through transient states

‘The first case which will be considered involves imposing a constraint on the struc-
- ture of the Markov chain for € > 0 (or equivalently on the structure of the generator
matrix A(e)) based on identifying states which are transient at ¢ = 0. Before

specifying the specific constraints, we should note that if there are no transient
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states at ¢ = 0, the condition is automatically satisfied. Therefore, the results in
this section apply to the nearly completely decomposable case considered by Simon
and Ando [42] and Courtois [12]. Furthermore, in the course of this development, a
proof of the validity of the two-time-scale approximation used by Delebecque and
Quadrat [17] is also obtained.

The specific condition which we will consider is that there is no coupling through
transient states in the process®.
Definition 2.1 Consider the perturbed Markov generator A(e) = A + B(e), with
||B(€)|| = O(€). There is no coupling through transient states in this process if the
following conditions hold. It is possible to partition the state set into sets Ry, each
of which can further be partitioned into a single ergodic class of A, Ex, together with
a possibly empty transient set Tk, so that these transient states have transitions only
into the particular class with which they are associated, even with ¢ > 0. That is if
m € Tk then for any state n € R;,J # K, anm(€) =0. O

To derive and prove the validity of the general result under this condition, we
need one basic result and a general recursive procedure that allows us to determine
behavior at each successive time scale. The basic result, Lemma 2.1, is an adaptation
of results from Lou [36], Coderch [9], and Kokotovic [30].

Definition 2.2 Two matrices F(€) and H(e), analytic functions of € at 0, are said
to be asymptotically equivalent if

lim sup eF(e)t _ eH(e)t" =0 (2.36)
€l0t>0 '
a
In this case we will write -
eF(€)t — eH(e)t | O(e) o (2.37)

SNote that this condition could be relaxed to one of “no weak coupling through transient states”
whereby any transient state at ¢ = 0 must have either an O(1) or identically 0 probability of first
reaching any ergodic class in O(1) time. Since this condition would be more complicated and the
above condition is adequate for the development, the latter is used.
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Definition 2.3 A matriz F(e) ts said to have well-defined time scale behavior if

there exists a constant similarity transformation S such that
SF(e)S™! | (2.38)
1s asymptotically equivale.nt to a matriz of the from
diag (" Fy,...,€" F,) (2.39)

where the F; do not depend on e. If such a similarity transformation ezists, (Fi,

oy Fej 1, ..., 1,5 8) determines a time scale decomposition of F(e). O

Note that if H(e) is asymptotically equivalent to F(e), then a time scale decompo-
sition for F(e) then also serves as one for H(e). We can now state a basic result

which will be employed in the development.

Lemma 2.1 Suppose that

Fu(é) F12(€)

F(E) - €F21(€) €F22(€)

'(2.40)

where F(e) has well-defined time scale behavior and Fy1(0) has eigenvalues which
have strictly negative real parts.

Then F(e) 1is asymptotically equivalent to

Fu(0) 0 (2.41)
0 eK(e)
where
K(E) = Fzz(f) - le(E)Fﬁl(E)Fu(E) (242)
and K (¢€) also has well-defined time scale behavior.
Proof  see [9/, [30] or [36]. - ‘ a

This result can be directly applied to perturbed Markov generators since (a)
Coderch et al [10] have shown that such matrices do have well-defined time scale
behavior and (b) it is straightforward to bring the generator into the form in (2.40)

using an e-independent similarity transformation.
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Under the condition of no coupling through transient states, each transient state
is uniquely associated with a single ergodic class. Thus if we assume that there is

no coupling through transient states in A(®)(¢), the states can be ordered to bring
A©)(¢) into the block form

AO () = A 4 BO(g) | (2.43)
- AD = diag(4y,...,An) | C (2.44)
|B99] = o() (2.45)

Moreover, while each A; may now generate transient states, it must also be true that
certain corresponding elements of B(O)(e) are identically zero to avoid coupling.”
In order to transform A(%(e) into the form (2.40), let U and V(® denote
the matrices of right and left zero eigenvectors of the unperturbed generator A
where the k*® column of U® and the k** row of V(9) have nonzero entries only
corresponding to states in the k" set of states Ry. Specifically, the ¢** column U

and the *" row of V() are of the form
U,.(°’=[o---o7r,-o---o]T, Am=0, 1Tr, =1 (2.46)

and

V'.(°]=[0---01T0---0], 1T4; =07 (2.47)

Note that the matrices U® and V(9 are the terms U(® and V(9)(¢) computed using
Algorithm 2.1 since the terms v(®)(¢) defined in (2.16) do not depend on ¢ in this
case. Also, let Y(9 (Z(%) be matrices whose columns (rows) span the right (left)
eigenspace of the nonzero eigenvalues of A(%). Furthermore, due to the structure of
A, we can clearly choose these matrices such that ADY(® and Z(9 A(®) are block
diagonal with partitions consistent with A and that a similarity transformation

T can then be constructed using

Z(0)
v ()

, T = [y y0)] (2.48)

"The precise structure of B(e) in this case is exploited in the proof of Lemma 2.2.
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Application of this similarity transformation to A(%(e) results in the form given
for F(e) in Lemma 2.1:

TAO (T = (2.49)

A11(€) 6A12(€) ]
GAgi(G) €A22(€) .

where

An(e) = 2940y © (2.50)
€Aiz(e) = ZOBO(UO (2.51)
eAsi(e) = VOBO(Y® (2.52)
€Az(e) = VOBO(U©O (2.53)

Since Z(®) and Y are associated with the non-zero eigenvalues of A(®) and since
the original system has no singularities in the right half-plane, A;;(0) has eigenvalues
with negative real parts satisfying the condition of Lemma 2.1. Applying Lemma 2.1

and expressing the result in the original basis yields

LA ()t _ Yko)eAll(O)tz(°)+U(°)e‘G(1)(€)tV(°)+O(e) (2.54)

QeAVt L y@GY(ty 0 1 o(q (2.55)

_ A + @G (e)ty 0 _ ro)y(0) +0(e) (2.56)

where

GW(e) = Anl(e) — eAn(€) ALl (€) Arz(e) (2.57)

Q = Y©z0 (2.58)

P = yOyo (2.59)

Q = I—P (2.60)

From (2.56) the problem of uniformly approximating exp(A(® (¢)t) has been reduced

to that of approximating exp(eG(*)(¢)t). In effect, one time scale has been “peeled
off” leaving a lower dimension problem. However, the process is not perfectly induc-
tive since G()(¢) need not be the generator of a Markov chain (on the aggregated
state space defined by U(®) and V(%)). On the other hand, G()(¢) is very close to
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being a Markov generator®. Specifically, a careful examination of (2.57) shows that
GM)(€) can be expressed as

GW(e) = AW(e) + WW(e) (2.61)

where A()(¢) is a Markov generator given by

AN = —t—V(°)A(°)(e)U(°) (2.62)
- -:-V(°)B(°)(E)U<°) (2.63)
= AW 4 Bl(¢) (2.64)
where
A = AW(g) (2.65)
|BM(a] = o (2.66)
and
' 1 ‘ ‘ -1
W(e) = —Ly© 5O ()7 © (2040 0y @)1 70 gO) () ©
wi(g = —-vOBO (Y (2949 ()Y @) " 2O BO ()T (2.67)

It is not difficult to see that since B(®(¢) is O(e) and the term Z(9A©(0)Y (@ is
nonsingular, W(1)(¢) is O(e). It will be shown that the term W(!)(¢) can be entirely
neglected. In the two time scale case, this follows from the fact that A(!)(e) is
regularly perturbed since in this case all its nonzero eigenvalues are O(1). Thus
exp(GW(e)t) can then be uniformly approximated using G()(0) = AW [10] [30]°.
This yields the two time scale result:

. A ()t _ e A0t n U(o)eeA(l)tV(o) —UOVO 4 0(e (2.68)

If there are more than the two time scales 1 and 1/e in the original process,

AM(e) is again singularly perturbed. W(!(e) cannot therefore be ignored based

8Though the columns of G(€) sum to zero, some of the off-diagonal elements may be small but
negative.

®In this case, the eigenvalues of G(1)(¢) are all strictly O(1) or identically zero. Since the column
-sums of W(l)(e) are zero, the zero eigenvalue can be shown to be unperturbed. The perturbation of
the O(1) eigenvalues can then be ignored.
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only on its being O(e), since O(¢) terms may have an effect on the O(1/€?) and
slower time scales. In order to show that A(l)(e) is asymptotically equivalent to
‘ G(l)(e) under the assumptions that there is no coupling through transient states,
the properties of W({)(¢) must be considered. To do this a precise definition of

“weak” terms associated with a Markov generator is given.

Definition 2.4 Let F(€) be the generator of a Markov process with one ergodic
class for € > 0. W(e) is weak with respect to F(e) if (a) 1TW (€) = 0 and (b) for
any element w;;(€) there exists a path S = (s;=j,s3,...,5:=1) through the process

state space such that

Wij (5) =€e0 (fazu (E)f-ﬁaSz (6) o0 f-’k-’k-l (G)) (2‘69)
O

Condition (a) is necessary to avoid perturbation of the zero eigenvalue of F'(¢) which
is associated with the sum of the probabilities being identically 1. In the derivations
presented, however, this condition is satisfied by construction, so we concentrate on
property (b). Roughly this property means that if we think of w;;(€) as a “transition
rate” from state j to state ¢ (although it may be negative), we can find a product
of rates in the generator F(¢) leading from 7 to ¢ that is of lower order in € and

therefore represents a significantly more likely sequence of events.

Lemma 2.2 Suppose that A (e) is in block form (2.43) and there is no coupling
through transient states, then W()(e) in (2.67) is weak with respect to AN (e) in
(2.62).

Proof  see Section 2.A.1. (

A recursive procedure can now be defined and analyzed. Specifically, sup-
pose that we have constructed G*)(e) = A()(e) + W) (¢), where (a) A®)(e) =
A®) 4+ B()(¢) is a Markov generator with no coupling through transient states,
"B(") " = O(e) and (b) G™*)(¢) has well-defined time scale behavior. Again applying
Lemma 2.1 and stating the result in the same form as in (2.56), we obtain the

following uniform approximation:

GN (It _ APt | e GE(tym _ ybiy® Lo (2.70)
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where
Ghtl(e) = AkH(e) 4 Wkt (g) (2.71)
A(k+l)(€) = lv(k)A(k)(e)U(") (2.72)
- |
- %V(")B(")(e)U(") (2.73)

and

Wk () = Wkt (e) + wit)(e) (2.74)
Wi - %V(k)w(k)(e)U(k) (2.75)
s _%V(k) (B®() + WH(e) Y® (2Mg®(Y®) ™. (2.76)

AU (B(") (¢) + W(")(e)) )

Note that for k = 2,3. .. the term W (¥ (¢) consists of two parts, namely the “pro-
jection” W{¥*1)(¢) of the preceding weak term W(¥(e), and a new term w1 (¢)
defined similarly to the weak term computed previously using (2.67). We know
from Lemma 2.1 that G(**1)(¢) has well-behaved time scales and by construction
that A(¥+1)(¢) is a Markov generator. By assumption in this section, there is
no coupling through transient states in A(**1)(¢). Thus in order to continue the

recursive procedure, we need to verify the following:
Lemma 2.3 Suppose that G¥)(e) = A¥)(¢) + W) (¢) satisfies the following

1. G®¥)(¢) has well-defined time scale behavior

2. AB)(e) = A® + B()(e) s a Markov generator with no coupling through
transient states, | B*)(¢)|| = O(¢), and

3. W) (¢) is weak with respect to A¥)(e)

Then W*+1)(¢) defined in (2.74) is weak with respect to A*+t1)(¢) in (2.72)
Proof  see Section 2.A.2 O

By applying (2.56) followed by repeated use of (2.70) and finally discarding the
weak terms at the last time scale (since at this point they clearly only represent a
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regular perturbation), the following sequence of approximations is constructed for
a system exhibiting k time scales and with no coupling through transient states at

- any intermediate time scale:

A (e)t
G (e)t

_ eA(°)t + U(o)eeG(l)(e)tV(O) —y@OyO 4 O(e)
= AV geeGD(tyw _ gy o 4 o(

: (2.77)
— eA(k—z)t + U(k—z)eEG(k—l)(e)tV(k—z) _ U(k—2)v(k—2) + O(E)

k-
= eA( 1)t-l-=0(e)

G (e)t
G (e)t

Note that determining when to stop the procedure is not a problem. Specifically,
since A()(¢) has one ergodic class for € > 0, we stop when A*-1) has exactly one
ergodic class. From Coderch [10], we know that since A(®)(¢) does have well-defined
time scale behavior, there is a k such that this is true, and this k& is associated with
the slowest time scale.

Collapsing the sum (2',77) we obtain the following result.

~ Theorem 2.4 Suppose Al0)(¢) ezhibits k time scales of behavior and that there is
no coupling through transient states in A(j)(e) for ) =0,1,...,k — 2. Then

A0 ()t _ A0t
(U(O)eA‘”etV(O) _ U(O)V(O)) n

(U(O)Uu)eA(z’ethme) _ ) U(I)V(I)V@)) "

: (2.78)
(U(°) gD AEE ) p0)
... yk-2yk-2) ., V(O)) +0(e)
where
v® =y (o) = v*)(0) (2.79)

Proof This result follows from Lemmas 2.1 through 2.8 and the derivation above.
The final approzimation (2.78) is obtained by collapsing the sums in (2.77). O




2.3. DERIVATION ' 49

Note that in order to construct this approximation, we never need to calculate
Y®), Z®) or any of the terms W(*)(¢). Rather, at each time scale we begin with
A®)(e) = A®) + B()(¢), compute the ergodic classes and probabilities associated
with A®) and from these form U*) and V{¥). A+1)(¢) is then calculated using
(2.72). At this point, of course, we have only dealt with the case in which there is
no coupling through transient states at any stage of the procedure. In the following
subsection, we modify the procedure in order to remove this restriction.

Before we continue, however, let us briefly interpret the approximation (2.78).
Specifically, the (7, ) element of the left-hand side of the equation is the probability
that the Markov process is in state ¢ at time ¢ conditioned on its being in state j at
time 0. If there is a sequence of order 1 rate transitions from state j to state ¢, then
initially the behavior of this probability is captured by the first term. As t grows
and this first term becomes constant (= UV (%), the probability is determined
by the probability of being in the aggregate class I to which ¢ belongs and by the
relative probability of being in state ¢ conditioned on being in the aggregate I.
This behavior is determined by the generator A()(¢). If there were no sequence of
order 1 rate transitions in A(®)(¢) linking state j to state 7, then the probability
is initially zero and the first term does not contribute. Therefore, for any element
(¢,7), only a subsequence of generators in (2.78) A, A"+1) A enter into the
sum. This index r can be thought of as the degree of the coupling from state
J to state . Furthermore, if a uniform approximation is required on an interval
t € [0,T/e],T < oo, then the bracketed terms involving A+, A(s+2) =A%) are
all O(e) and can be ignored.

Finally, we note that (2.78) can be interpreted as specifying an asymptotic time

scale decomposition of A(®)(¢) in the sense given in Definition 2.3. Specifically, let

, TO™ = [y® y®] (2.80)

The similarity transformation S can be constructed from the T0),

I o
0 T(-1

I o
0 T(*-2)

I 0
o TW

[T9] (2.81)
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Z(0)
zWy(0)
= | o | (2.82)
Z(k-1)y (k-2) ,,,y(0)

ye-1)y (k-2) ...y (0)

st = [y©@ poyw ... yo...gpk-2yk-1 U(O)...U(k—l)] (2.83)

2.3.2 'Transient states which couple aggregates

As indicated previously, the basic approach to this general case is to reduce it to
the one considered in the previous subsection. This is accomplished by constructing
a new Markov process on a larger state space such that (a) the behavior of the
original process can be recovered easily; and (b) the new process has the property
of no coupling through transient states (Definition 2.1). Consider again a Markov

generator of the form
A(e) = A+ B(e) , [|B(e)l = O(e) (2.84)

where A generates NV ergodic classes. The state space can be partitioned into N +1
parts Ey, E,,...,Eyn, T where the Ex are the ergodic classes and T is the set
of transient states. The basis of the construction is the observation that the set
T can be “split” into N copies Ty, Ts,...,Tx such that each copy is associated
with a unique ergodic class. The associated Markov generator A(e) = A + B(e)
is constructed on this expanded state space such that once in a state s € Tk, the
next state entered that belongs to E = E; U E; U ---U Ey must be in Ex with
probability one. By construction then, A(e) satisfies the condition in Definition 2.1.
The precise nature of this construction can be stated here as a lemma. The proof of
this lemma, which also gives the details of the construction, appears in the appendix.
An example of this construction is provided below. '

Lemma 2.5 Let A(¢) = A+ B(e) and let U and V be the ergodic probability and
class matrices derived from the unperturbed generator A. Then there ezist C, D(c),
A(e) = A+ B(e) and U and V derived from A such that
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cA(e)t — CeA(e)tD(e),

. A(e) does not ezhibit coupling through transient states,
cU=U,

VD(0) =V,

D(e)U = D(O)U =T,

CA(e)U = A()U, and

NS S h o N

Range(D(e)) is A(e)-invariant.
Proof  see Section 2.A.3. a

The construction of A(e) can be described as follows. Let i, k be elements of E
(i-e. recurrent states of A and A). The probability transition rate from state ¢ to
state k in A(e) is then the same as that in A(e). Next let j € T, and let ji, ..., jn
denote the corresponding copies of j in the expanded process. The basic idea behind
the construction is that a transition to the state j; corresponds to a transition in
the original process to state j together with the decision that the next ergodic class
that will be entered is E;. Consequently, the transition rates into the j; must reflect
the probability of this additional decision. Specifically, if k£ € E, then

ajk(€) = aji(€) vrj(e) (2.85)

where vr;(€), defined in (2.16), is precisely the probability of that decision. Similarly,
transitions out of j; must be adjusted to reflect conditioning on knowledge of which
ergodic class will be visited next. Specifically the transition rate from j; to any
state in an ergodic class other than E} is 0, as is the rate from 7 to any state in
Tk, K # I, i.e. to any copy of any transient state corresponding to a subsequent
transition into a different ergodic class. The remaining transition rates out of j;

can be computed using Bayes’ Rule and are specified as follows

i) = @l i i€ By (2.86)

vrk(€)

vr;i(€)

Qx, i, (E) = ak_,-(e) k€ Ty ' (2.87)
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The construction of C is quite simple: the various copies of each transient state
are collapsed by summing their probabilities. Specifically for each 7 € E, ¢;; = 1,
and ¢j;, = 1 for each j € T and all its copies j1,...,Jn. All other elements of C
are 0. In the case of D(e) the initial probability of each transient state j must be
split by again making a decision concerning which Ej is visited first. Thus, for each
it € E, di(e) =1, whilefor j€ T

dji(€) = vr;(e) (2.88)

with all other elements of D(e) equal to 0. The several properties in Lemma 2.5

then follow directly from the construction as shown in Section 2.A.3.

Example 2.2 We consider the state expansion of the simple process depicted in
Figure 2.4(a), for which

—€ 1 0 )
A =] ¢ —-1-€ 0 (2.89)
0 € 0

In this case the construction in Lemma 2.5 calls for a splitting of the transient
state 2. Following the procedure cited in Lemma 2.5, the key quantities are the
probabilities that the perturbed process first enters each of the unperturbed ergodic
classes (namely E, = {1} and E, = {3}) given that it starts in any particular
transient state. As discussed previously tn Section 2.2, these can be computed as
the limiting probabilities of the process sllustrated in Figure 2.4(b), obtained from
the chain in Figure 2.4(a) by making each unperturbed recurrent class a trapping

state. The ezpanded state process is depicted in Figure 2.4(c) and the associated
matrices are

(10
1000 ¢
C=|0101]|, D= T;;E . (2.90)
0010 1
. I +e¢ 0.
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(c) Expanded Markov process — A©)(e)

Figure 2.4: Markov process in Example 2.2

53
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and .

1
. A 1 00 1
0= g ,v=l ] (2.91)

0110

o = O O

0

Note that, as desired, states 2 and 4 in Figure 2.4(c) are transient but do not couple
the ergodic classes {1} and {3}. Consequently, the derivation in Section 2.3.1 can
be directly applied. d

Using properties in Lemma 2.5, the original system can be approximated as in (2.56)

by considering the associated generator on this expanded state space

Al — cedle)t p(g (2.92)
= C (e;“ + UecGle)ty _ 017) D(e) + O(e) (2.93)
= et L UGty () — UV (e) + O(e) (2.94)
= eAt 1 UGty —yv 4 0(e) (2.95)
where |
V(e) = VD(e) (2.96)

and G(e) is computed from A(e).

Based on (2.95), we see how to modify the development in the preceding sub-
section by expanding the state space at each stage of the procedure. In order to
verify that this results in a uniform approximation, we need to show the following

result.

Lemma 2.6 Suppose G(¢) = A(e) + W(e) where A(e) is a Markov generator and
W (€) is weak with respect to A(e). Let C, D(c) and A(e) be determined as in
Lemma 2.5. Then G(e) = A(e) + W (e) can be constructed such that

1. G(e)t = CeG(e)tD(e) + O(€), and
2. W(e) is weak with respect to A(e)

Proof  see Section 2.A.4 a
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In a similar ma.nnef to (2.77), the following sequence of approximations can
be constructed. G(*)(e) is computed from G™*)(¢) by expanding the state space
using Lemma 2.6. G(**1)(¢) is then computed from the expanded G(*)(¢) using the
coqstruction in Lemma 2.3. By Lemmas 2.3 and 2.6,

GE(e) = AW (&) + WH(¢) (2.97)
where W(¥)(¢) is weak with respect to A(¥)(¢). Therefore
At _ o0 A0 (e)t DO (¢)

LA ()t _ e}l(‘))t+(}-(o)eeG(1)(e)t‘}(o)_f;(o)"}(01+o(€)
: (2.98)
GED( = - GE (It -2
eé(k-z)(e)t
GEV(E _ k-1 GED(e)t D*-1(¢)
GOV A0 o

AF It | 5 (e-2) e GED ()t (e-2) _ prie-2)pre-2) 0(e)

This sequence of approximations can then be collapsed to form one overall
approximation using the properties in Lemma 2.5. To illustrate this, consider
combining the expression for exp(G*)(¢)t) and exp(G¥) (¢)t).

eG(k)(e)t _ C(k) (e;l(k)t + ﬁ.(k)eeé(k+l)(e)t“‘,(k)) D(")(e) + O(E) (2.99)

= cWAWtpm () +

CWFPGH (€t y® pi(e) 1 0(e) (2.100)
= cWeAMtp(g) 4

CR {7k LGETD (€)t (k) DW(e) + O(e) (2.101)
= AWt | pmeeGED ()t | 0(e) (2.102)

Combining (2.98) and (2.102) yields the following result.



56 CHAPTER 2. DECOMPOSITION OF MARKOV CHAINS

Theorem 2.7 Let A®)(¢) be a perturbed Markov generator with one ergodic class
for € > 0. Then the approzimation form (2.78) in Theorem 2.4 is valid where
AE+1)(¢) is constructed from A*)(e) by first forming the ezpanded generator A% ().
Proof  This resull follows directly from Lemmas 2.5 and 2.6 and the construction

outlined above. a

Let us make several comments on this result. The first is that at this point we can
conclude in general that weak terms cannot affect the asymptotic approximation.

More precisely, we now have the following result.

Corollary 2.8 Let A(¢) be a Markov generator and G(€) a matriz so that G(e) =
A(e) + W(e) where W(e) is weak with respect to A(e). Then G(e) is asymptotically
equivalent to A(e). a

Corollary 2.8 has the useful consequence that if one is trying to construct an
approximation of a Markov process with a generator A(e) which can be separated
into a simpler generator ;1(6) and a relatively weak part W(e), then the weak part
can safely be “pruned”. A direct application of this is that only the leading order
" terms in € of any transition rate need to be considered in the construction of the
approximation.

Also as a result of Theorem 2.7 and Corollary 2.8 the behavior of a Markov
process generated by A(®)(¢) can be approximated using A(9(0) and the reduced
order perturbed generator A(!)(e) regardless of the weak term W (! (e).

AO(e)t _ LAQ(0) + U0 AN ()t (0) _ o)y (0) + 0O(e) (2.103)

This result follows from the fact that all the weak terms can be discarded when the
overall approximation is constructed.

Let us now consider the computation required to construct the asymptotic
approximation in Theorem 2.7. Beginning with A(¥)(¢) = A*) + B(*¥)(¢) we directly
compute U¥) and V¥, To continue, we must apparently expand the state space to
construct A(*¥)(¢) and D*®)(¢). The matrix D®)(¢) is needed to construct V) D(¥)(¢),
while ;1(")(5) is needed so that we can perform the aggregation required to continue

to the next stage. That is,

A®D () = %“/(k) AW (2.104)
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Note that in this process we first expand the state space to allow use of the
previously derived procedure and then aggregate in order to move on to the next
time scale. We can collapse these two steps and avoid constructing the expanded

state space process completely.

Lemma 2.9 The two step procedure for computing A® (¢) from A®)(¢) by Lemma
2.5 and A®+V)(¢) from A®)(€) by (2.104) is equivalent to

A(Hl)(é) — %V(")(e)A(k)(e)U(k) (2.105)
_ %V(")(e)B(")(e)U(") (2.106)

where
V¥ (e) = VR DB (¢) (2.107)

Furthermore, V*¥)(¢) is precisely the ezpression computed in Algorithm 2.1 (2.16).
Proof  see Section 2.A.5 O

The final step to show the general validity of Algorithm 2.1 is to show that using
V®) () instead of the exact V(¥)(¢) introduces only a weak term and therefore by

Corollary 2.8 does not affect the asymptotic approximation.

2.4 Example

In this section, the decomposition algorithm specified above is applied to the multi-
ple time scale example considered by Coderch [9]. This Markov process is illustrated

in Figure 2.5. The generator of this process is

[0 ¢ o o o o o]
0 —2—¢ ¢ 0 0 0 0
: 0 0 —€ € l0 € 0
A =0 1 0 —-1—¢€ ¢ 0 0 (2.108)
0 o0 0 —e 0 0
0 1 0 0 0 —1—¢ ¢
0 o 0 0 0 1 —e |




58 CHAPTER 2. DECOMPOSITION OF MARKOV CHAINS

Figure 2.5: Perturbed Markov process

At € = 0, the ergodic classes are {1}, {3}, {56}, and {7}. All other states are

transient. The ergodic probabilities of the classes are therefore given as

U = (2.109)

.O o O O O O =
O O © ©O = O O
o O - O O O ©O
- O O O © O O

o

17(0)(5) can be computed from the limiting probabilities of the chain shown in
Figure 2.6. This yields

1 5 0O 0 0 0 O
~ 0 1 0 0
VO(e) = 1 63 ¢ € (2.110)
0 E—f- 0l1-¢1 0 O
1 3¢
0 E_T 1 0 0 1—c¢ :l.=

giving
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Figure 2.6: Limiting probability process

0 § 0 0]
1. 0 -1-
A0 = 2709 AOTO = o1 o "e ; (2.111)
3-%1 ~
’ 0 1_3E 0 —€
37 ]

The process generated by A(l)(e') is shown in Figure 2.7. The recurrent classes

are {1}, {5}, and {7} and state 3 is transient. Repeating the procedure to compute
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Figure 2.8: O(1/€?) time scale process

UM and ‘7(1)(6) gives

(100
000
U = (2.112)
010
|0 01
and
1 5 00
VW) =10 %‘i 10 , (2.113)
€
0 3-5 01
which yields
€ €
2 ° 12 ?
0 1 __1 __ €
2 22

which is illustrated in Figure 2.8. The unperturbed process at this time scale has

no transient states. Therefore we can calculate

‘ . |
AB)(¢) = %V(z)A(z)(e)U(z) = [ g ¢ ] (2.115)
3

The overall approximation of the process generated by A(°)(e) is therefore con-

structed from the four unperturbed chains shown in Figure 2.9.
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Figure 2.9: Multiple Time Scale Chains
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2.5 Discussion

Several aspects of the algorithm presented in this chapter are discussed in this
section. First, as was outlined in Section 2.1, there are close ties between the
eigenprojection interpretationé of this algorithm and those of Coderch [9] and Cour-
‘tois [12]|. Specifically, at each time scale, Coderch computes the ezact terms in a
Taylor expansion of the eigenprojection, P(‘)(e), of the 0-group of eigenvalues of
the generator A()(e). This is used to compute the next generator A(*V(e). By
restricting the nature of the ergodic structure of A®)(0) that is allowed, Cour-
tois effectively uses the unperturbed eigenprojection P(¥) (0) in a similar manner.
The algorithm presented in this chapter has the interpretation that a projection
P6)(e) = UDVE)(e) is constructed which ignores certain “unimportant” terms in
PY(c). One question which remains is whether a direct analysis of the terms in

these eigenprojection could reduce the amount of computation still further.

Another aspect of this algorithm is that it explicitly results in a reduction in
the size of the system at each time scale. Although Courtois deals with successively
smaller systems at each time scale at the expense of restficting the class of systems
which can be analyzed, the general algorithms presented by Coderch [9] and Dele-
becque [16] both manipulate systems of the original dimension. The interpretation
of aggregation is introduced after all the time scales have been identified. Therefore,
although at each successive time scale the rank of the generator is reduced, no
advantage is taken of this fact. The algorithm presented in this chapter allows
us to work with successively smaller systems as slower and slower time scales
are uncovered. Hopefully, this will allow application to larger problems than was
possible using previous results.

A third feature of this algorithm, which will be dealt with in Chapter 6, is
that there is a very simple graphical/connectivity interpretation which is available.
For example, if only the locations of the nonzero entries in the slow time scale
generators are required, which effectively provides the “structure” of those systems,
several simplifications are available. The identification of the ergodic classes amount
to finding communicating classes in the state transition graph where only the O(1)

links are retained. Determining the orders of the entries of the f’(e) amounts to a
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shortest path problem where the length of the path is the product of the rates on
each link. This can also be performed as an additive shortest path problem where
the links are weighted by integer orders of the transition rates.

A fourth aspect of this algorithm which should be stressed is that is provides
a simple method of approximating the dynamies of a Markov process. There has
been much work in the area of approximating the steady state probabilities of nearly
completely decomposable Markov systems (see [7] for example). Although some of
these algorithms provide better approximations of the steady state through iterative
refinement methods which provide an O(e?) error, they do not address the dynamic
behavior of their systems. Therefore, an area in which the algorithm developed in
this chapter might be applicable is in approximating the behavior of a system when
it is not near its steady state. Effectively, this algorithm provides a method for
approximating transient behavior of complex Markov processes.

Finally, it must be pointed out that this algorithm and its development rely on
the state space of the Markov process being finite. Although this is satisfactory in
many engineering applications, it would be useful to extend the results to denumer-
able state space systems. Although the proofs presented here do not extend éa.sily to
such systems, the results seem to be applicable nevertheless. One area where such
an extension would be useful is in the application of these results to the analysis
of semi-Markov processes as is presented in Chapter 3. Since these results apply
only to finite state Markov systems, the semi-Markov results which can be based on
them can only deal with systems which have holding time distributions with rational
polynomial transforms, and therefore have a finite state Markov representation. If
denumerable state processes could be dealt with, the class of semi-Markov processes
which could be approximated could be extended.
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2.A Appendix

2.A.1 Proof of Lemma 2.2

«(0)»

To simplify notation in this section, we drop the superscript for the various

quantities defined in the text. To begin, note that the term
(ZA(e)Y)™! (2.116)

in the expression (2.67) for W(!)(¢) in Lemma 2.2 can be expanded as a Taylor series
in €. Define
D=ZAY (2.117)

This matrix is block-diagonal and invertible.!® Then

(ZA()Y)™' = (Z(A+B(e) Y)! (2.118)
= (1+D*zB(gY)” D (2.119)
- i(—D‘IZB(é)Y)mD"I . (2120)

where (2.120) is valid for ¢ sufficiently small since |B(¢)|| = O(e). Substituting
(2.120) into (2.67) gives

eW(l)(e) = eC1(€) + €Cz(€) + - - (2.121)
where ‘
€Ci(e) = —-VB(e)SB(e)U
eCae) = +V B(e)SB(e)SB(e)U (2.122)
€Cm(e) = (—1)™VB(e) (SB(e))™U
and S is block diagonal
S = YD'Z . (2.123)
= diag(S1,...,5n) .(2..124)

10Note that if the nonzero eigenvalues of A are distinct, then D is indeed diagonal and not simply
block diagonal.




2.A. APPENDIX 65

For the purpose of comparison, recall that by (2.63)
eAN(e) = VB(e)U (2.125)

The remainder of the proof involves examination of the orders Qf the elements
of the C;(e) and A(M(€). To begin, partition B(e) consistently with A

Bli(e) o BlN(E)
B(e) = : : (2.126)
BN1(€) s BNN(G)

Using the structure of U and V' given in (2.46)-(2.47), we can write the general form
of the entries of A()(e) and Cp(e):

EGS»]:,) = ].}BIJWJ (2.127)
and
€ [C,,.(e)]” = Z <o z: 1}‘BIK,,.(5)SK,,.' .. SKIBKIJ‘(G)"TJ (2.128)
K, K3,..Km

Since the Sy defined in (2.124) are all O(1), we have that for some sequence of

aggregate states (Ky,...,Kn) associated with one term in the sum (2.128)

[€Com(€)]15 = O Brxn (&) -+ - | Brrs (€)]]) (2.129)

In fact the left hand side of (2.129) could be of higher order due to cancellation in
the sum (2.128) though this possibility is not exploited.

Let us first assume that A has no transient states. Thus, because of the
recurrent structure of A, all entries in the n; are strictly positive. Since A(e) is
a Markov generator, the off-diagonal blocks, Brs(€), I # J, have non-negative

entries. Therefore

IBrs()l = O(1fBrs(e)ms) VI#J (2.130)
= €0(a{}(e) | (2.131)

Consider an off-diagonal entry of C,,(€). A new sequence of aggregate states
(Ki,...,K}), n < m, can be formed by removing repetitions so that K} # K|_,.
Since the Bys(€) are all O(e)

[€Con(€)] 15 = €*O(| Brxcs ()| -+ | Bz (6)]) (2.132)
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where
2 < n < min(m, dim(A)) (2.133)

By applying (2.131) this gives
€ [Cn(€)]ss = €O (afly () -0l () T4 (2.134)

Since the state space is finite, n (the number of terms in the product) is bounded
as € | 0 and the (I,J) element (I # J) of the series wW(e) = Ci(e) + Ca(e) + - --
converges to a term which is weak with respect to A1) (e),
The weakness of the diagonal terms of W (€) can be established as follows,
First note that since 1TW (1) (¢) = T by construction
wi(e) = = 3 wP(e) (2.135)
J#e
Secondly, for any ¢, and J #1, w(})(e) is weak and therefore there is some sequence

1t

(ko =1,k1(5), k2(5),. .. » ke (7)=7) so that

wJ(:)(e) =€ O(alu(j)t'(e) akg(j)kl(j)(f) oo ijf_d(j) (G)) ' (2,136)
This in turn implies |
"’}3)(6) = EO(akl(j)i(E)) (2.137)
Combining (2.135) and (2.137) we have
w{(€) = €0 (E akx(i)i(f)) (2.138)
i#)

Now since all the terms in the sum in (2.138) are positive, although the k;(7) need
not be distinct for different values of j, we still have that

2 k()i = O (Z aj;(e)) = O(aii(e)) (2=139)

i#s J#e
Combining (2.138) and (2.139) we have
w(€) = € O(au(e)) (2.140)

which proves that W(!)(e) is indeed weak with respect to A(M(e).
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Let us now consider the case where A generates transient states and satisfies the
no coupling condition on transient states specified in Definition 2.1. Since there may
be transient states in the unperturbed process, the probabilities m; are not strictly |
positive. However, since the transient states do not couple aggregates, (2.131) still
applies. Specifically, by permuting the states within each aggregate class, the blocks
Bis(€), I # J and the probabilities 7; can be brought into the forms

Brs(e) = [ Bj;(¢) O] (2.141)

and

7rl
Ty = [ 0" ‘ , ) strictly positive (2.142)

Therefore, since no terms in the product are annihilated by the zero terms, (2.131)

follows as before
1Brs(€)ll = O (17 Bys(e)7y) = €0(a{d(e)) I#J (2.143)

The remainder of the proof follows as before.

2.A.2 Proof of Lemma 2.3

The first observation is that the term W*+1) () is composed of two parts, W™ ()

and Wik (¢). Wi (¢) is simply the propagation of the previous weak term
W) (€). This term is weak with respect to A**1)(¢) since for any term wj(f ) there
was a path from ¢ to j using A(¥)(¢) which is of lower order. From this follow that
for any term w_(,'}"'l) there is an aggregate path from I to J using A**V)(e) which is
of lower order.

The fact that W) (€) is weak follows from the observation that if W(¥)(e) is
weak with respect to A(¥)(e) = A(¥) + B(¥)(¢), then using the non-negativity of the
off-diagonal blocks of B*)(e)

[wi? (@] = co(| B3 (@] --- |84

(2.144)
for some aggregate path(Z, Sy,...,Sk,J)
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Using (2.144) any expression of the form Bg‘,)(e) + W,(";)(e) can be bounded in norm
as
1B () + Wi (o) = 0(BH (&) + 0(| B, (a)] - - | BE: (0)]))

(2.145)
for the same aggregate path(/, Si,...,Sk,J)

The proof of Lemma 2.3 follows identically to the derivation (2.116)-(2.129) with
B®)(¢) + Wk (¢) used in place of B(e). Finally, the right hand side of the new
(2.129) can be expressed in terms of B(¢) alone using (2.145)

€ [Cm(€)]1s = O(|Brsg ()] -+ [1Bs, ()] (2.146)

for some finite sequence of aggregate states (Si,S2,...,Sk). From (2.146), expres-
sions analogous to (2.132)-(2.134) follow as before.
Since both components of W(¥+!)(¢) are weak, their sum must also be weak

which proves the lemma.

2.A.3 Proof of Lemma 2.5

The construction of ;1(5), b(e), and C was specified in the text. The properties
(1)-(7) in Lemma 2.5 will be shown to follow directly from this construction.

Property (2) results from each new transient state being uniquely associated
with a single ergodic class and having transitions only into that class. Since the
recurrent portions of the chains generated by A(e) and ﬁ(e) are identical, properties
(3) and (5) follow. Again from the construction, since V is composed of 0-1 entries,
property (4) is true.

The constructed columns of ;1(6) span the same space as do the columns of
D(e) therefore the Range(D(e)) forms an invariant subspace of A(¢). Further, since
CD(e) = I by construction the columns of D(e) and the rows of C are independent,

matrices C* and D*(e) can be formed such that
-1

c ,
o | = [ D(e) D'(¢) ] (2.147)
which allows the following change of basis:

C
| e

e‘;l(e)t [ D(e) D*(e) ] = exp (

C%(G)D(C) C?{(E)D*(‘f) ]t) (2.148)
C*A()D(e) CA(e)D*(e)
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Since Range(A(e)) = Range(D(e)) by property (7) and C*D(e) = 0 by (2.147)
C*A(e)D(e) =0 (2.149)
Therefore the lower left block of (2.148) is zero. By construction
CA(e)D(e) = A(¢) (2.150)
therefore considering the upper left block of (2.148) gives property (1)

CeAl)t p(e) = eAle)t (2.151)

2.A.4 Proof of Lemmma 2.6

Lemma 2.6 is essentially a minor extension of Lemma 2.5. The major difficulty is
that G(e¢) = A(e) + W (e) is not necessarily a Markov generator since there may be
small negative terms off the main diagonal. The terms v;;(e) based on G(e) do not
therefore have a direct probabilistic interpretation. Let v(4)(¢) be the probabilistic
terms computed using A(e) alone and v()(¢) be the new term computed using
G(e). From the respective constructions, it follows that the terms are relatively

close. Specifically,

05 () — v (6)| = 0 (v()) (2.152)

G(€) can then be computed from G(e) in the same manner as in the proof of
Lemma 2.5. The terms D(¢)(¢) and C(©) are also computed. Let D) (¢) and C(4)
be terms computed from A(¢) alone. C(6) = C(4) follows from the construction and
using (2.152)

|D“ () — D(e)| = O(e) (2.153)
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Therefore from (2.151) and (2.153), and the uniform bound on C4) exp(G(e)t)
eGle)t = ¢ G()t p)(¢) 1 0(e) (2.154)
Finally, using (2.152), G(¢) can be decomposed as
G(e) = A(e) + W'(e) + W"(e) (2.155)

where W'(¢) is obtained by construction from W (e) in the same way that A(e)
is obtained from A(e). W"(e) results from the small difference between the term
V4 (¢) and V(©)(e).

An examination of the construction of A(e) shows that if an entry of W(e)
satisfies

wji(€) = €0(ajs,(€) -+ - as,i(€)) (2.156)

then the corresponding entry in W' (€) satisfies
Wji(€) = € O(aj, (€) - - - Bs,i(€)) (2.157)

since both w;;(€) and the product in parentheses are scaled by an e-dependent term
which is determined by ¢ and 7 and not the intermediate states s; in the sequence.
Therefore W'(e) is weak with respect to A(e).

The term W"(e) results from using V(4 (¢) instead of V()(¢). From (2.152), the
elements of W"(e) satisfy

iyi(e) = € O(a,-,-(e) + wfj(e)) Vi, (2.158)
and therefore W"(¢) is weak with respect to A(e) +W'(¢). The sum W () = W'(e) +

W"(e) is therefore also weak with respect to Ale)

2.A.5 Proof of Lemma 2.9

The combination of the two-step procedure of computing A**1)(e) from A¥)(e)
instead of first constructing Alk) (€) can be shown to be valid using several properties
in Lemma 2.5. In particular,

D()CA()D(e) = A(e)D(e) | (2.159)
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D(€)U = U and by definition V' (¢) = V D(e). Therefore

| e AF+1) (€)

completing the proof.

2CHICIAY;(C

= v®AF) () D) (eU®

v (6 p(*) (e)C(").:l(e)D(")(e)U(")
v®(e)c® Ak (eU®
14RIGYAL (e)U®
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Chapter 3

Decomposition of Continuous Time,

Finite State, Semi-Markov Processes

3.1 Introduction and Motivation

Analysis of the behavior of singularly perturbed Markov processes has been dealt
with extensively in the literature. In Chapter 2, a completely general, stra.ightfor--
ward algorithm for the hierarchical decomposition and uniform approximation of
such processes was presented. Much less work, however, has dealt with the analysis
of perturbed semi-Markov processes although such models are extremely important
in numerous applications. In this chapter, using much of the machinery and many
of the concepts developed in Chapter 2, we develop aggregation and decomposition
methods for a very large class of perturbed semi-Markov processes. While there
are strong similarities to the ideas presented in Chapter 2, there are a number of

important differences and novel characteristics that arise in the semi-Markov case.

The perturbed semi-Markov processes which are considered here can be specified
by a set of transition probabilities p;;(¢) for each transition from state 7 to state 7,!
and holding time probability densities kj;(¢,t) conditioned on transition from state

t to state 5. A basic discussion of semi-Markov processes is available in [21]. These

1Recall that since column vectors of probabilities are used, p,; is the transition probability from
1 to J.

73
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terms can be used to recover the evolution of the state probabilities. For example,

Pr(next state = j, transition time < 7 | current state = ¢) = /; ' pii(€) hjs(e,t) dt

(3.1)
Such a semi-Markov process can be represented as a directed graph where the link
from node ¢ to node j is labeled with the terms p;:(¢) and h;;(e,t). The state (in the
sense of memory) of the semi-Markov process is composed of the observed state, a
discrete variable with one of a finite number of possible values, and the time already
spent in that observed state, a continuous variable. In this sense, a general semi-
Markov process, even with a finite number of observed states, is an infinite state

random process.

Consider the case in which the terms are analytic functions of a perturbation
parameter € and each hj;(¢,t) has a Laplace transform which is the ratio of finite
degree polynomials in the transform variable. This last restriction guarantees that
the probabilities of occupying each of the observed states can be represented using
a finite set of ordinary differential equations. An example of a semi-Markov process
which cannot be represented in this way is one in which some of the holdiﬁg times
are deterministic delays. Such a holding time distribution does not have a rational
polynomial transform and there is no finite set of ordinary differential equations
which describe the evolution of the state probabilities. In the remainder of this

chapter, we will use the word state to mean the observed state.

Much of the previous research dealing with perturbed semi-Markov processes
has been conducted by Korolyuk and coworkers [20] [31] [32] [33]. The class of
systems considered in that work allows perturbations of the transition probabilities
pij(€) but effectively avoids considering the effect of e-dependence of the holding
time distributions h;;(t). Furthermore, at € = 0 the chain is either required to have
no transient states [31] [32] or to have a particular transient structure [33]. The
general result derived by Korolyuk is that the slow time scale behavior can be well
approximated by a purely Markov process. The work presented in this chapter
considers a far wider class of systems by allowing perturbation of the holding time
densities as well as the transition probabilities, and by allowing a general ergodic

structure of the unperturbed (e = 0) semi-Markov process. As we will see, this class
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of processes can exhibit a variety of interesting types of behavior. In particular, the
slow time scale behavior must in general be described by another semi-Markov

process.

It will be demonstrated that there are essentially two characteristics of the
semi-Markov model which determine the slow time scale behavior. The first is the
existence of very rare state transitions which are nevertheless associated with short
holding times. The second characteristic is associated with likely state transitions
which have very long holding times. The former characteristic is considered in
Korolyuk’s work where the ergodic structure of the unperturbed chain is constrained
to a very specific form. As shown in that work, this results in exponential holding
time distributions at the slow time scale. The latter characteristic has not been
explicitly considered in the literature. We will see that a holding time probability
density, hi;(e,t), which is very small in the sense that sup,s |hi;(e,t)| = O(e), but
which nevertheless has a very long tail, can result in slow behavior of this second
type. The holding time distributions which result are not necessarily exponential
and this accounts for the use of a semi-Markov representation of the slow time scale

system.

The work presented in this chapter provides a unified framework for the de-
. composition and time scale approximation of semi-Markov processes which possess
both types of slow behavior and arbitrary ergodic structure at ¢ = 0. The de-
composition technique which is developed is conceptually treated as a sequence of
transformations of the representation of the original semi-Markov model. A block
diagram of the procedure is shown in Figure 3.1. The major result which will be
presented in this chapter is the specification of the “direct algorithm” indicated in
the figure which avoids the necessity of explicitly constructing the entire sequence of
representations. It is instructive, however, to examine this sequence of constructions
as it provides considerable insight into the possible types of behavior of perturbed
semi-Markov processes. In addition, the derivation of this sequence provides us

with the proof of the validity of the direct algorithm.

The purpose of this decomposition procedure is to approximate the behavior

of the probability transition function ®(e,t) of the original semi-Markov process,
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1. state 2. method of
semi-Markov expansion “exPaMndel:i”v stages  “Markov”
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Figure 3.1: Block diagram of semi-Markov decomposition algorithm

where the (7,7) element is defined as

®,;(e,t) = Pr(state at time ¢ is ¢ | enter state j at time 0) (3.2)

This approximation is constructed using a fast time scale, e-independent function
of time ®(0,t) and a slow time scale component ®(e,¢) which is the probability
transition function of a perturbed, typically reduced-order, semi-Markov process.
The direct algorithm provides a method of deriving this slow time scale model
from the original semi-Markov model. The procedure can be iterated to recover
unperturbed semi-Markov representations of multiple time scales from which the
approximation is constructed.

The steps involved in the complete sequence of representations are summarized
here. Each step is treated individually in Section 3.3.

1. State Ezpansion. The probability transition function ®(¢,t) of the original n-
state semi-Markov process n(e,t) is determined by the state transition prob-

abilities p;;(¢) and the holding time probability density functions hi;(e,t).
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The function ®(e,?) is realized using a 2n-state semi-Markov process ng(e, t)
with a probability transition function ®g(e€,t). This “expanded” semi-Markov
process is constructed by splitting each state into a “fast” and a “slow” copy
and choosing new parameters appropriately. Specifically, the mean holding
time in a “fast” state is O(1) while in a “slow” state the probability that the
~ holding time is less than any fixed finite time is O(¢). Using this construction,

the function ®(¢,t) can be recovered exactly from ®g(e,t).

2. Method of Stages. The expanded semi-Markov representation can be trans-
formed into a “Markov” form by expanding each holding time into a sequence
of exponential stages [14] [27]. The state transition function ®m(e,t) asso-
ciated with this representation can be thought of as the probability transi-
tion function of a Markov process in which some of the transition rates and
probabilities are complex and negative. The function ®g(e,t), and therefore
®(e,t), can be recovered exactly from the Markov transition function &y (e, ¢t).
The number of states can be much greater than in the original system and
therefore the actual construction of this proéess may not be a feasible approach
in practice. However, the added states are aggregated in the steps 3 and 4

and the direct algorithm therefore avoids their explicit construction.

3. Markov Decomposition Algorithm. The previous step results in the specifica-
tion of a system of ordinary differential equations (with complex state vari-
ables) which generates ®y(e,t). Its structure is very close to that of a system
which describes the evolution of the state probabilities of a finite state Markov
process, although as mentioned above, some of the “transition rates” may be
complex quantities. As will be discussed in Section 3.3.3, the algorithm for the
decomposition of perturbed Markov generators is still applicable. Therefore
®m (e, t) can be approximated using ®(0,t), and iM(e, t), the state transition
function of a reduced-order system obtained using the method developed in
Chapter 2. This reduced-order system is again almost of the form which
would describe the evolution of the state probabilities of a Markov process.
Also as a result of the aggregation performed in constructing (i’M(e, t), the

states added in the previous step largely do not appear. In addition, a novel
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P12(€), haz(e, t)

Figure 3.2: Two state semi-Markov process in Example 3.1

feature that can arise in the semi-Markov case (but not in the Markov case) is
that the aggregation performed can result in the “fast” and “slow” copies of

a particular original state belonging to different aggregate classes at the slow
time scale.

4. Semi-Markov Representation. The final step involves identifying the particu-
lar terms of &y (e,t) which are required to approximate &(e, ¢). In particular,
it will be shown that there is a valid semi-Markov process, on what is typi-
cally a reduced-order, aggregated state set, and with a probability transition

function é(e, t), which captures all the necessary terms.

Example 3.1 Consider the simple 2-state process illustrated in Figure 3.2 This
process has parameters:

pale) = pu(e) =1 (3.3)
haa(e,t) = (1— e 21t 4 ¢(e¥ag)e (€ Aa)t (3.4)
hip(e,t) = e it | (3.5)

Note that the holding time distribution in state 1, hai(e,t), is made up of two
components. The first is a “fast” ezponential Ay exp(—Ait) which is weighted by
(1 — €) and the second is a “slow” ezponential (€N );) exp(eN Ast) which is weighted
by €. An interpretation of this is that upon entering state 1, the holding time will
either, with probability (1 — €), be ezponentially distributed with a rate Ay, or, with
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n(e,1)
- %%
—=0(1)—
H——o(#)
94 44 .
/77 7 o

Figure 3.3: Typical semi-Markov behavior in Example 3.1

probability € be ezponentially distributed with a rate €N X;. In the former case, the
mean holding time will be O(1) while in the latter case the mean holding time will
be 0(1/ e )

Based on this interpretation of the holding time in state 1, we can see that
qualitatively, the behavior of this process tnvolves rapid transitions between states 1
and 2 for a period of time of length O(1/¢) followed by a period of O(l/eN) tn state
1, followed again by rapid transitions for O(1/e€) time as sllustrated in Figure 3.3.
The slowest behavior is largely determined by the long O(e) “tail” of the distribution
hai(e,t). This simple ezample demonstrates how perturbation of the holding time
distribution can dramatically influence the slow time-scale behavior.

Let us ezamine the behavior of this process in detail and at the same time
illustrate some of the steps outlined above. Specifically, consider splitting state 1
to account ezplicitly for the decision concerning the holding time distribution to
be used in determining when the process ezits from state 1. We call state f, the
combination of the old state 1 and the decision to use the “fast” component of the
holding time distribution for the next transition to the old state 2. State sy is the

combination of the old state 2 and the decision to use the “slow” component of the
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Pgafy (6) ’ h.fzfl (69 t)

Prs(€)shnslet)

DPfzsy (6) 3 hfzh (6, t)

Figure 3.4: Expanded semi-Markov process ng(e,t) in Example 3.1

holding time. We call the old state 2, fa, since the holding time in state 2 s always
“fast”. More precisely the result of this ezpansion of the state space ts shown in

Figure 3.4 and has the following parameters.

Prale) = pPnnle =1 (3.6)
Prn(e) = 1-e (3.7)
Psysi(€) = € (3.8)
hery(6,8) = hpp(et) = A (3.9)
hyalet) = (e¥Ag)e (€ A2t (3.10)
hian(et) = Me At (3.11)

The behavior of the original process can be recovered from that of the ezpanded
process. The probability of being in state 1 of the original process 1s simply the
sum of the probabilities of being in states f, and s, while the probability of being
in state 2 is the probability of being in state fi. The initial probability of being in
state 1 must also be distributed among f, and s;. Specifically, it will be shown that
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Figure 3.5: Markov representation

the behavior of the original process can be recovered ezactly using
l1-€¢ 0
] de(e,t)| 0 1 ’  (3.12)
€ 0

101
Q(E’t)=[o 10

where the states of the ezpanded process ng(e,t) are ordered fi, fa, 1.

In general the holding times would at this point be expanded using the method
of stages (step 3). In this very simple ezample, the unconditional holding times are
already ezponentially distributed; therefore ®y(e,t) = Pr(e,t). Note that it is not
sufficient for all the holding times leaving a state to be exponentially distributed for
®m(e,t) = Pg(e,t). Each state must have a single exponential constant associated
with it to insure that the unconditional holding time in each state 1s an ezponential
random variable. This issue is dealt with in Section $.3.2. The Markov representa-
tion with probability transition rates tndicated ts shown in Figure 3.5.

This Markov process can be decomposed into “fast” and “slow” models using the
Markov decomposition algorithm presented in Chapter 2. The resulting models are
shown in Figure 3.6. An interesting feature of the slow model is that the states f;
and s, belong to different aggregate classes. This characteristic of the slow time
scale model will be discussed more fully in Section 3.5.
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A1/2 EN_IAz

Figure 3.6: (a) “Fast” time scale ny(0,t) and (b) “slow” time scale 7 (e, ) Markov
processes in Example 3.1 : :
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The final step would be to represent the slow system in a semi-Markov form.
Again, in this simple example, this step is not necessary; therefore é(e, t) = &)M(e, t).

As will be developed later, the approzimation which results for this example is

1/2 1]é(e,et)[1 1]-[1/2 1‘/2]+0(e) (3.13)

®(e,t) = Bo(e,t) + 1/2 0 00 1/2 1/2

where the states of 7i(e,t) are ordered {fi, f2}, {s1}- - O

The remainder of this chapter is organized as follows. In the next section, the
detailed algorithm is specified. Then, in Section 3.3, the details of the derivation are
provided. This development is based on first describing each of the transformations
of the system outlined above and then showing how the direct algorithm provides the
same result. In Section 3.4, an example is considered in detail using Algorithm 3.1.
A discussion is provided in Section 3.5. Some supporting proofs and other results

are provided in Section 3.A.

3.2 The Algorithm

In this section, the details of the direct algorithm are specified. We begin with
the specification of a perturbed semi-Markov process, n(e,t). The state transition
function ®(e,t), on the finite state set {1,2,...,n} is determined by the state

transition probabilities
pji(€) = Pr(next state = j|current state = 1) (3.14)
and the holding time probability density functions such that
/ t_o hji(e,7) dr = Pr(holding time in state ¢ < t|next state = j) (3.15)
Furthermore, each holding time distribution k(€,t) must have a Laplace transform

H,-,-(e, 8) = /e—Sthﬁ(G,t) ds (3.16)

which has a rational polynomial form

Hji(e,s) = 0 (:’:)(:5;))(@ 5 (3.17)
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where a, b(*), and b{/) are finite degree polynomials in s and the roots are analytic
functions of €. Furthermore, all the roots of b(*) converge to 0 as € | 0 and the roots

of b/) converge to nonzero values.

Algorithm 3.1

‘1. Construct the parameters of an “ezpanded” semi-Markov process, ng(e,t), on
a state set ¥ U S where ¥ = {fi, f2,...,fa} and S = {s1,83,...,8,} are the
“fast” and “slow” state sets respectively.

Decompose each h;;(e,t) into the “fast” and “slow” components as
K

h(e,t) = p (e)h) (e, 2) + ) (e)A1) (e, 1) (3.18)
such that ) o
HO(e,s) = ﬁ”‘; H (e, s) = % (3.19)

The “probabilities” pl*)(e) and pf)(e) = 1 — p(*)(e) and the coefficients of
a(e, s) and al*)(e, s) can be obtained in a variety of ways including matching

the coefficients in the polynomial equation
a(e, s) = p(e)al) (e, )b (¢, s) + p'9) (€)al?) (¢, 5)b1) (e, 5) (3.20)
If
sup h;;(e,t) = O(e) (3.21)
20

then the “fast” component of the holding time distribution is not significant

and we set

PP =0, s =1 (3-22)

2. For each state i of n(e,t), compute

pe) = P (e)psile) (3.23)
J#

) = 1-p(e) (3.24)
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The semi-Markov parameters of the ezpanded process ng(e,t) are then com-

putcd as
(e
ald = 06 pald S (3.25)
" 91 ,
Pl = #pu(0 5 8 (3.26)
' (
Pl = AMOpl) 8 (3.27)
(
prl) = PPl ;,8 (3.25)
and
hfjfn'(e’t)=h-’jfi(€’t) = hg-{)(ﬂt) (3.29)
hppsi(€5t) = hagsi(€5t) = R (e,2) (3.30)

8. Identify the ergodic classes E, ..., Eyn and the transient set T of the ezpanded
process ne(0,t). Note that T C 7 and that either Ef C F or Er = {4},s € §.

4. Using the transition probabilities of the process ng(e,t), compute terms vgy;(€)

as in the Markov algorithm.

ver;(€) = Pr(nE(e,t")eEI | ne(e,0) =7, t* =21215(t | ne(e, t) & T)) (3.31)

5. For each ergodic class E; C ¥, and each i € E;, compute T;, the mean holding
time in state 1, and [i;, the tnverse of the mean recurrence time in state ¢, for

the process ng(0,t). For each E; C ¥ also compute

Ar(e) = X_ X mirpjile) (3.32)
€E; jEE;

6. Construct a slow time scale perturbed semi-Markov process 7j(e,t) with N
states (one for each ergodic class of ng(0,t)) with the following parameters.
IfE;CF

Ar(e)e=A1(e)t/e (3.33)
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and
pai(e = (Z Z B pji(€) + Z Z”’tpts €) vE 1:(€) (3.34)

(5 i€E; jEE; i€E; teT

IfE={i}€Ss

1
pai(e) = € (Z pii(€) + D pri€)vE 2 )) (3.35)
JEE, keT
and

i;]](f, t)

(E pii( e)h() (e,t/€) +

pn(e) € \;ez,

| (3.36)
> pri(€)RY (e, t/G)UEJk(G))

k€T

This slow time scale process has a probability transition function ti(e,t).,

7. The original transition function @(e,t) can be approzimated

B(e,t) = B(0,t) + Ud(e,et)V — UV + O(e) (3.37)
where
BysTr fi € Ey
U=[uwi], vig=1 1 {s;} = E; (3.38)
' 0 otherwise
and
V = lug], v = p{(0)vesy, + 2L (0)ves,, (3.39)

8. The above step can be isterated to provide a complete decomposition of <I>(°)(e, t).
Specifically, begin with ®(e,t) = ®%(¢,t). The computed B(e,t) is then
Q(bl)(e, t) which serves as ®(e,t) for the next iteration. This is continued until

n(")(O,t) has only one ergodic class. The process n(%) (e, t) therefore ezhibits
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k +1 time scales and the overall approzimation can then be constructed as

3¢, t) = 39(0,t) +
(U(O)Q(l) (0,et)V( — U(°)v(°)) +
(vOTWelo, )y Wy — gOyLy@y©) 4

: (3.40)
(U(O). - Uk-Dgk)(0, k) v 1.y () _
UvO@...ypk-)yk-1), V(O)) + O(e)

a

Several comments can be made about the computations required in the various

steps of this algorithm.

e In step 1, the probabilities p(/)(¢) and p{*)(€) and the coefficients of al/)(e, s)
‘and s )(e, s8) can be determined easily by solving a set of linear equations.

The derivation of these equations is shown in Section 3.A.1.

o Step 3 requires identifying the ergodic classes and transient states of the
process ng(0,¢). This step can in fact be performed using the original process
n(0,t). The ergodic classes of ng(0,t) are of two basic types. First, each
slow state ¢ € S must necessarily be a ergodic class with exactly one state.
This follows from the fact that as ¢ | 0, the probability that the holding
time is less than any time T = O(1) converges to zero. Therefore, at € = 0,
the state is a trapping state and consequently is a degenerate ergodic class.
Second, if a set of states {1, 7,...} of the process 7(0,t) forms an ergodic class,
then necessarily, the set {f;, f;,...} forms an ergodic class of ng(0,t). This
isomorphism of the ergodic classes of 7(0,t) and ng(0,t) also simplifies the
computation of the terms f;; in step 5.

o In step 4, the terms vg;;(€) depend only on the transition probabilities p;; (€)
and not explicitly on the holding time distributions (other than to identify
the transient and recurrent states). Therefore, computation of these trapping

probabilities can be performed in much the same manner as in the Markov
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case. Note that'in the continuous time Markov algorithm, a discrete time chain
was constructed from the state transition rates. In this semi-Markov case, the
transition probabilities taken alone already defines a discrete time Markov
chain. After making the recurrent states trapping, the limiting probabilities
can be computed directly from these transition probabilities.

\

¢ The computation of g for any nondegenerate ergodic class of ne(0,t) can
be carried out using the statistics of the original process 7(0,¢). Suppose
that a set {1,5,...} forms an ergodic class of n(0,t). If p; is the steady state
probability of entering state 5 on the next transition and 7; is the mean holding

time in state ¢, then
— Pi

Hi = =
X
Therefore, since the associated ergodic class of ng(0,t) shares the same statijs-

(3.41)

tics,
ﬁ'!_f.- = f; (3°42)
where I = {f;, f;,...}.

The steps described in this algorithm, as well as the steps involved in the explicit
transformation are described in the next section. Simple examples are provided in
the text to demonstrate specific aspects of the derivation. A complete example is
dealt with in Section 3.4.

3.3 Development

In this section, each of the transformations described in Section 3.1 is dealt with
in detail. Then, the direct algorithm is shown to follow from this sequence of
transformations. Simple examples are given in this development. Section 3.4 follows
with a complete example of the transformations and the direct algorithm.

3.3.1 State expansion

The first transformation involves explicit representation of each holding time prob-

ability distribution as a sum of “fast” and “slow” components. This type of rep-
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resentation is then introduced into the entire model to construct the “expanded”
system. _

Consider a hoiding time probability density function h(e, t) such that its Laplace
transform H (e, s) has the form

— G(E’ 3) — . a,(G,S)
H(e,s) = b(e,s)  b(e,5) b0 (e, s)

(3.43)

where all the terms are analytic functions of e. We assume that there is zero
probability of an instantaneous transition, therefore the numerator degree of H (e, s)
must be lower than the denominator degree. The denominator polynomial b(e, s)
is factored into a product such that all the roots of b(’)(e,s) approach O as ¢ | O
and all the roots of b()(¢, s) remain bounded away from zero. As shown in the
following lemma, the transform H (e, s) can then be written as a sum of two terms.
Furthermore, if we require that sup,,, 2(¢,t) = O(1), then this representation also

has a direct probabilistic interpretation (i.e. “probabilities”€ [0,1]).

Lemma 3.1 Suppose that h(e,t) is a probability density function, (h(e,t) > 0,
Jo h(e,t)dt = 1) with H(e,s) of the form shown in (3.43). Then h(e,t) can be

written as
he,t) = pD (RN (e, ) + () (e, 1) (3.44)
where
PY p(f)(e) +p(")(5) = 1,

p*)(e) >0,

h(®) (e,t) #s a valid probability density function,

HY) (e, s) has poles si such that R(s;) = O(1), and

sup;»o k{9 (e, ) = O(e).
Furthermore, if sup,5, |h(e,t)| = O(1),

o p)(€) =0(1) >0, and

o hU)(¢,t) is a valid probability density function.

B
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Proof  See Section 3.A.1 for a proof and a construction of a set of linear equa-
tions for p/)(€) and p*)(€), and the coefficients of a/)(e,s) and al*)(e, s). a0

An important fact to note is that regardless of the condition on sup,>q |k(e, )|,
this decomposition can be performed. However, if sup,> |h(€,t)| = O(e), then the
“fast” probability p{/)(e) is O(e) and we cannot guarantee that it is positive, and
therefore the probabilistic interpretation of the decomposition is not necessarily
valid. Furthermore, as will be seen below, if pl)(¢) = O(e), then even though there
is a fast component of the holding time distribution, it is not associated with fast
time scale behavior due to its small probability. It will be seen that such a low
probability fast component can in fact be entirely discarded without affecting the
validity of the overall approximation.

Using the decomposition in Lemma 3.1, each state ¢ is “split” into two copies f;
and s; such that the mean holding time in f; is O(1) and in s; is O(1/¢?) for some
g > 1. As will be demonstrated below, this expansion simplifies the analysis in the
further steps.

Example 3.2 Consider the following holding time transform

(1—€)A; eVt
+ N
s + Al S+ € Az
s((l — G)Al + €N+1A2) + GNA1A2
(s+ A1)(s + €V )s)
Note that a rational polynomial transform of a holding time distribution must satisfy
two properties. First, since [5° h(e,t)dt = 1, H(e,0) = 1. Also, since there is

zero probability of an instantaneous transition, we know that the numerator degree

H(e,s)

(3.45)

(3.46)

of H(e,s) must be less than the denominator degree. This must also be true for
HG)(e,s) and H)(e,s). Consequently, af)(e,s) and al*)(¢,s) have degree zero in
the ezample. Using H)(¢,0) = 1 and H\)(¢,0) = 1, the coefficients of s° of
af)(e,s) and al*)(¢, s) are found to be

a(e,s) = Ay, a(e,s) =), (3.47)
and therefore

8((1 - G)Al + €N+1A2) + EleAz = p(‘f) (e)Al(s + ENAg) + p(’) (G)ENAZ(S + Al) (348)
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Matching the coefficients in this polynomial equation gives
P =1-¢, pe)=¢ (3.49)

The decomposition ts therefore

H(e,s) = (1—¢) AL (3.50)
It s+ s+eV), )
which has the time domain form
N
h(e,t) = (1 — Are At 4 ¢(eNdy)e™€ Azt (3.51)

which was used in Ezample 3.1.

This decomposition could have been performed easily in this case by consider-
ing the time domain form (as was done in Ezample 3.1). However, this general
transform approach will work in cases where there is no obvious answer available by

tnspection. O

Example 3.3 In order to illustrate a case where pi)(€) = O(e) < 0, consider the
holding time transform

a(e, s) s ((e 4+ €¥)A) + s(2(e + €)X —€) + eX
H(e,s) = = 3.52
(&) b (e, 5) b (e, 5) (s + 1)%(s + €)) (3:52)
Solving for the decomposed form gives
1 €A
H(e,s) ——Em+(1+ )( +€A) (3.53)
which has a time domain form
h(e,t) = —e(e P xe™t) + (1 + e)(e/\)e—e’\t (3.54)

Note that the “fast probability” pi/)(e) = —e is negative even though h(e,t) > 0.
It will be shown in Section 3.3.4, that in this case, since p\Y)(e) = O(e), that
h(e,t) can be approzimated by h()(¢,t) = (e)) exp(—eAt) without affecting the overall

approzimation. _ O
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Applying this type of expansion of each of the holding time distributions as in
Algorithm 3.1, step 2, to the entire process n(e,t) results in the expanded process
ne(e,t). The basic interpretation of equations (3.25)-(3.28) which determine the
transition probabilities of ng(e,t) is as follows. Consider a state transition from
state ¢ to state j in 7(e,t). Essentially, four state transitions are introduced in
the process ng(¢,t), namely the transition probabilities from state f; to state f; in
nEe(e, t) is made up of two basic terms. First, the conditional probability of making
an ¢ to j transition, conditioned on that transition being “fast”, must be computed.
This is then multiplied by the unconditional probability of the holding time in state
J being “fast”. The unconditional probability of a fast holding time in state ¢ is
simply

p)e) = Pr(“ast” in) (3.55)
= ) Pr(“fast” in i | ¢ — k transition) Pr(¢ — k transition) (3.56)
k#i
=¥ P (€) pri (e (3.57)
k#i .

which is (3.23). The probability of making an ¢ — j transition conditioned on

having a fast holding time in ¢ can be expressed using Bayes’ Rule as

. . .. Pr(fastinz | ¢ — J)Pr(zs —
Pr(i — j | fast inz) = ( Pr(lfa.st in)i) ( ) (3.58)
PE{) (¢) pji(e)

2" (e)

Finally, since the holding time in state 7 is independent of the previous state,

(3.59)

ps;ir.(e) = Pr(i — 7, fast in j | fast in 1) (3.60)
= Pr(i — j | fast in ¢) Pr(fast in j) (3.61)

(1) ) (¢)
= pgs (6) p.‘ii(e) (3"62)

(f)( )

which is (3.25). The remaining equations for Ps;1:(€)s Ps;s;(€) and pys,(€) follow
similarly. Finally, the holding time in f; conditioned on moving to either f; or s; is
distributed as hg-;-f) (e,t) and in s; as h;‘? (e, ).




3.3. DEVELOPMENT _ ) 93

The behavior of the original process can be recovered easily. The process 7 (e, ¢)
is in state ¢ if ng(e, t) is either in the fast copy, state f.—, or in the slow copy, state s;.
If n(e,t) initially enters state ¢, then with probability p,(f )(e) it will make a “fast”
transition and with probability p,“')(e) it will make a “slow” transition. These two

observations can be combined to form the following identity

Q(E,t) = Lg ®g(e, t) Rg (3.63)
where
1 - 01 0
Lg=|: "=, i & o (3.64)
0 10 1
and ) .
() 0
0 " 5{) €
Re=| o . P (e) - (3.65)
pi(e) -- 0
| o oo pl)(e) ]

and the states of ng(e,t) are ordered fi,..., fa,51,..., Sn.

3.3.2 Markov representation

In this section we consider the Markov representation of a semi-Markov process with
rational polynomial holding time transforms. An arbitrary semi-Markov process
on a state set {1,2,...,n} is considered.? The essential step in representing the
semi-Markov process as a Markov process on an expanded state space involves
constructing a sequence of stages with exponential holding times for each of the
holding time distributions, A(t), using the “method of stages” [14] [27]. The basis

2For notational simplicity, we assume in this section that we are dealing with a process with a state
set that has been relabeled as 1,...,n. In the full sequential procedure we would first generate the
semi-Markov process with states fy,..., f, and s;,...,3, and then apply the procedure described
in this section to that process.
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(1-q)M

Figure 3.7: Method of stages expansion

of this approach is the observation that a rational polynomial transform with a

denominator of degree n can be written as

H(s) = ‘;((:)) = pﬂ";ﬂ " (3.66)
= (1- ‘h)'(?il—}‘l)' +a(l- 92)'(8 -’I\fh) T _?_2,\2) + .-+ (3.67)

+ 4192 Gn-1 E (m)

which has the “Markov” stage form shown in Figure 3.7. The states added between
the old states : and j are labeled mi’j ,m;'j ,o.. Also define the sets M(7,5) =
{my, k=1,2,.. .} and M(?) = {5} +U; M(¢,7). It is well known, however, that the
Ai are not necessarily real. Cox [14| has shown how such complex probabilities can
be manipulated by formally applying results for purely feal rates. It will be shown
in Section 3.A.2 that such complex probabilities in fact do not cause difficulties in

applying the Markov decomposition algorithm to this expanded system.

Example 3.4 Consider a holding time transform

252 4+ 11s+ 24

His) = 3.68
(¢) 4(s+1)(s +2)(s +3) (3-68)
- The method of stages form is
1 1 11 1 2 13 1 2 3
_1_ 11 b 3.69)
B =3571721 F3is+is+25+3 (3.69)

s+ls+2
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Figure 3.8: Method of stages in Example 3.4

Figure 3.9: Method of stages in Example 3.5

which 1s tllustrated in Figure 3.8. O

Example 3.5 To sllustrate that the probabilities in this type ezpansion are not

necessarily positive (even when the poles of H(s) are real), consider

ht) = zet+ %(2;2* ¥ 3¢~ 3t) ‘ (3.70)
2
H(s) = s‘+11s+ 12 (3.71)

2(s+1)(s+2)(s+3)
The method of stages ezpansion of H(s) ts

11 1
=~ _4+>3
Hs)=257713

1 2 +1( 2) 1 2 3
s+1s+2 2 s+1s+2s+3

(3.72)

which is shown in Figure 3.9. Note that g = —2 < 0 ts not a valid probability. O
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Once each of the holding time distributions is represented as a sequence of
exponential stages, these representations must be incorporated into a single, overall
model. In order to do this, the first stage of each transition leaving a particular
state must have a common exponential rate. Then, the rates leav‘ing the initial state

are weighted by the original state transition probabilities. For example, consider

the situation illustrated in Figure 3.10(a) where
ha(et) = e~ ME | hy(e,t) = Age™ A2t (3.73)

Each of the two holding time distributions leaving state + are exponentially dis-
tributed, but they have different rate constants. Therefore the unconditional hold-
ing time in state 7 is not exponentially distributed. Consequently, we do not have
a Markovian representation. In order to obtain such a representation, we introduce
a common root A* into the transforms of each of the two holding time transforms
Hy(s) = (s+XA) X\ (s+2%) XA

(s+A*) (s + A1) (s+A%) (s+ A2)
This allows expansion of each of the holding times as in (3.67) as shown in Fig-
ure 3.10(b). | |

, Ha(s) = (3.74)

A A A1 A1

Hiy(s) = (1- ¢111)m + qu GG+’ m=1-+ (3.75)
_ Al“ Alﬁ Az _ Az
Hz(S) - (1 - Q21)m + 9 (s T /\,.,) (s n Az) y q21 = 1 G (3..76)

These two expansions can now be combined into the Markov representation by
adding the effect of the transition probabilities p;; and pg; shown in Figure 3.10(c).

Though the term A* is arbitrarily chosen, it will be seen that its choice does
not affect the final approximation result when expressed in semi-Markov form. As
we will see, the basic reason that A\* does not enter into the overall approximation
is that the statistic needed in computing the parameters in the aggregate model
at the next time scale is the mean time between entries into state : and not the
steady state probability of occupying state :. The rate A* which was introduced
only directly affects the holding time in the state and not the recurrence statistics.

Another feature of this expansion which will be used deals with the case in which

sup,sq |(€,t)| = O(€) but where there are O(1) poles of H (¢, s). An argument which
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(c)

Figure 3.10: Combined method of stages
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€1 —q1)\

Figure 3.11: Markov representation in Example 3.6

will be employed below is that if sup,5, |k(¢,t| = O(¢) and if some of the denominator
poles are O(1), then if the roots of b(¢, s) are ordered such that Ay,..., A are O(e)
and Agy1,...5 A, are O(1), then the states mi'j , m',';_’;l, ...,m"  introduced between

states + and j are all transient at € = 0.
Example 3.6 Consider the Markov representation of

€A Az«
Hji(e,s) = (1+6)3+el«\1 ST

(3.77)

which is illustrated tn Figure 8.11. Note that the state mi’j 1s necessarily transient
at € = 0 since all the rates entering it are O(e) and there 1s a Ay = O(1) rate leaving
it. | O

Finally, let us explicitly state how to recover the behavior of the process ng (e, t)
from the Markov representation nuy(e,t). First, ng(e,t) is in state ¢ only if nu (e, t)
is in any of the states in the set M(z). Second, if ng(e,t) has just entered state 1,

this exactly corresponds to the process nu(¢,t) entering state ¢ as well. Using these

two observations, we can write

QE(G,t) = Ly Pum (e,t) Ry (3.78)
where |

Ry =

I ] (3.79)

0

and
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1,ha1 (t)
o 0

1,h12(t)

Figure 3.12: Semi-Markov and Markov representation in Example 3.7

1 ..+ 0 1T ... ot
Lm= PR PR (3'80)
o --- 1 of --- 1T

and the states of nu(e,t) are ordered 1,2,..-," my?,. .o m},’fz, vy m',:;‘":_ll

Example 3.7 In order to illustrate this reconstruction of a semi-Markov process
from the Markov representation, consider the ¢-independent semi-Markov process
and its Markov represcntation shown in Figure 3.12. (Although the specific Markov
rates are not indicated, it 15 assumed that Haiz(s) and Hz]‘_(S) have three poles each

" and therefore have three stages each in the Markov reprcsentation). For this process,
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the behavior of n(t) can be recovered from that of nu(t) using

(3.81)

© © o o o~
O O © O = O

3.3.3 Decomposition of the Markov representation

In this section, the slow time scale approximation of the Markov representation is
addressed. First, the general properties of the Markov process ny(e, t) are discussed.
Then, the construction of the slow time scale Markov process, (e, t), is addressed
under the assumption that the process my(e,t) is a valid Markov process, i.e. all
the rates and probabilities are real and positive. In Section 3.A.2, the validity of
the procedure is demonstrated in the general case in which the probabilities and

transition rates resulting from the Markov expansion are complex.

Example 3.8 In order to demonstrate some of the features of the Markov repre-
sentation, consider the processes shown in Figure 8.18. The ezpanded semi-Markov
process, ne(e,t) is shown in Figure 8.18(a). The states are partitioned into the
fast set ¥ = {1,2} and the slow set § = {3}. The Markov realization is shown in
Figure 8.18(b) and the slow time scale Markov model derived using the algorithm
presented in Chapter 2 is shown in Figure 8.13(c).

The holding time transforms for the semi-Markov process are

Ha(e,s) = (—I(E%i;—l (3.82)
Hules) = Hanles) = oy (3.83)
Hsa(e, s) ¢ (3.84)

(s+e€)(s+1)
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Figure 3.13: (a) Semi-Markov, ng(e,t), (b) Markov, nu(e,t)), and (c) slow time
scale Markov, fm(¢,t) processes in Example 3.8
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The ergodic classes of ng(0,t) are {1,2} C F and {3} C S. Consider the class
{1,2}. The set of states M(1) U M(2) = {1,m;?,2,m3*, m}*} contains one ergodic
class {1,2,m}"} and transient states m}”* and m}®. The ergodic class {3} of ng(0,t)

results in two ergodic classes of mu(0,t), namely {3} and {m?¥?*}, and one transient

state ma®. The slow time scale, aggregated model associated with nm(e,t) ts shown

in Figure 3.13(c). - 0O

In order to discuss the slow time scale approximation of the Markov represen-
tation, it is useful to explicitly identify the various types of states which can occur.
This characterization of the states of 7\ (0,t) will simplify the discussion below. We
assume that the semi-Markov process resulted from the expansion step described
in Section 3.3.1 and that the states are partitioned into the fast set ¥ and the
slow set §. In the discussion below, an ergodic class of my(0,t) is denoted by E
and is associated with the class E' of ng(0,t). Specifically, if E' = {i,7,...} then
E C M(¢) U M(j) U ---. This association is discussed further below.

o If a set of states {4,7,...} = E' C ¥ is an ergodic class of ng(0,t), then the
set M(7) U M(y) U :-- contains exactly one ergodic class E of ny(0,t) and
perhaps some transient states. In Example 3.8, the set E' = {1,2} results
in the ergodic class E = {1,2,m}'} C M(1) U M(2) and the transient states
{my?,m?®} € M(1) U M(2). An important feature of the associated ergodic
classes E and E' is that the statistics of the class E’ of ng(0,t) can be derived
from ny(0,t). Specifically, the probability of occupying a state 7 € E' is the
sum of the probabilities of occupying the states in M (7). Also, the inter-arrival

time distribution of a state ¢ € E' is the same as that for 7 € E in ny(0,t).

o If state ¢ € Ey C ¥ is recurrent and for some 57 & Ej, p;i(¢) # 0, then
all the states in the set M(¢,s) are transient. In the example above, state
m}* € M(2,3) is such a transient state. Note, however, that the terms in
V (e€) associated with these transient states are particularly simple since the
transient states are all uniquely associated with the ergodic class, as is state

m2® with class {3} in the example.
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¢ If state ¢+ € S, then necessarily, {¢} is an ergodic class of my(0,¢). The
remaining states in the set M(z) are either also degenerate ergodic classes
or are transient. In the example, {m}’} forms such an ergodic class and the
state my”? is such a transient state. Recall that these transient states result
from a holding time distribution which has a fast time scale component with

very small probability associated with it.

o If a state 7+ € ¥ is transient in ng(0, t), then necessarily all the states in the set
M(?) are also transient in the process ny(0,t). Although this is not illustrated
in the example, it follows from the argument that any state in M(z) can be
visited no more frequently than state : and that state ¢ has the same arrival

statistics in nm(0,t) as in 7g(0, t).

Consider now the terms required to compute the aggregated transition rates of
the process 7jm(¢, t). Specifically, if the sets E; and E; are ergodic classes of ny(0,t),
and T is the transient set of n\(0,t), then directly applying the Markov algorithm

gives

AJ]( Z Z ‘U.,IA,,(G + - z Zu,;)\t. v,n ) (3.85)

i€E; jEE,; € i€E, teT

This expression is trivial to evaluate in the case when the class E; consists of
only a single state. We will therefore concentrate on the the case in which it is
a larger subset of the fast states 7. In this case E; C Uice: M(). If E; # E;p
then from the construction, the nonzero terms Aj;(€) originate from the original
states 7,7,... and not from any of the states in a set of the form M(7,5). In the
example, this means that any transition leaving the class {1,2,m?'} must leave
through either state 1 or state 2 and not the intervening state mf'l introduced in
the Markov representation.

In order to evaluate the sum (3.85), the ergodic probabilities u;; are required.
We first compute one such term in the example and then express the computation
required in general. Consider state 2 in the example which is a member of the
~ergodic class B, = {1,2,m}'} of r)M(b,t). By considering this process at € = 0, it is
evident that uz; = 1/3. One method of computing this quantity is as the quotient

of the mean holding time in state 2 and the mean time between arrivals in that
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state. The mean holding time in state 2 is 1 and the mean time between arrivals
is the sum of the mean holding times in states 2, mf’l, and 1, which is 3. The fact
to note is that the recurrence time for state 2 could have been computed using the
statistics of 7g(0,¢) as the sum of the mean holding time in state 1 and in state 2,
which is also 3. ‘ '
The general form of this computation can be expressed as follows. Consider an
ergodic class E' of ng(0,t). If p; is the steady state probability of entering a state
t € E' on the nezt transition, and 7; is the mean holding time in that state not
conditioned on the next state to be visited, then the mean recurrence frequency can

be computed as [21]

= 4
i = _ 3.86
2 PiTi (3.86)
where 7; can be computed in a variety of ways including
_ o d
T = fo thy(t) dt = (= Hy(s))omo (3.87)

Now consider the state ¢ € E' in the Markov process nv(0,t). If we define the
total exponential rate leaving state ¢ in ny(0,¢) as A}, then the ergodic probability

of the Markov state : can be expressed as

Hi
Uip = — (3.88)
] A‘

Therefore, the terms u;; required in the sum (3.85) can be evaluated using only
simple terms from the semi-Markov process, the f;, and the exponential rates, A},
leaving that state in the Markov representation.

The sum (3.85) can therefore be written as

Aa(e) = % > wr X\ (Z ,\J;\Ee) 2 o A“(e vai( ) (3-89)

i€E; EE 5 teT 5

Recall that u;; A} = fi;; which was computed above. Note that the terms Aj;(€)/A}

can be interpreted as probabilities. In fact by construction,

) | ) (290

'\: tEM(5,5) ’\:
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where pj;(¢€) is the transition probability of the semi-Markov process ng(¢,t). There-
fore the aggregated exponential rate can be completely computed in terms of quan-

- tities related to the semi-Markov process,

:\JI(E) = z Bir (Z pii(e) + Z Pt-‘(e)”-lt(f)) (3-91)

€ ieE! EE!, teT!

Note that as mentioned previously, A} no longer appears in the expression. Note

that the term Af(e) defined in (3.32) is the total rate leaving the aggregate class I
Ar(e) = Asr(e) | (3.92)
7

and the probabilities psr(€) in (3.34) can be written as

prre) = 'XI'((:)) (3.93)

Therefore the aggregated set E; has an exponential holding time with a total rate
As(e) and transition probabilities ;s (€).

In terms of Example 3.8, consider the aggregated transition rate from class
E; = {1,2,m?'} to class E; = {3}. The term Az (¢) can be computed using the
Markov representation as

Aoy = = Z ui1 (Z Aji(€) + D Asi(€)va;(e) ) (3.94)

tGEl JEE; teT

which has only one nonzero term, t =2, t = ml' .

11 1
Azl(é) = Z 5 €= 3 (395)

This could have been expressed in terms of the set E} = {1,2}, E; = {3}, and
= {} of the process ng(e,t) as

Aai(€) = % XE:' B (2}; pii(e) + tZ;'pti(e)vz,-(e)) (3.96)

This again has only one nonzero term, : = 2, j = 3, which glves the same value for

X21 (¢) as above.
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Another feature of the calculation of the slow time scale, aggregated transi-
tion rates involves the “slow transient” states such as state m3* in Example 3.8.
- Specifically, we are concerned with transient states mi’j for which ¢ € §. By the
construction outlined in the preceding section, we can assume that state m;‘i’_ 1» (or
state 1 if k = 1), is not transient and that all the states m}7, k' > k are also transient.
It will be shown here that these transient states can effectively be “bypassed”. The
effect of considering this modified Markov process is identical to simply retaining
the “slow” component of the holding time distribution. For example, the holding

time distribution in Example 3.6

_ 6/\1 Ag
Hji(e,s) = (1+¢) T en s " (3.97)
could be replaced by
GAI
Hji(e,8) = ST e (3.98)

_ In Example 3.8, the argument is that the Markov representation for the transi-
tion between state 3 and 2 can either be represented exactly as in Figure 3.14(a)
or by bypassing the transient state m>? as in (b). The holding time distribution
of the stages in (a) is hss(e,t) while in (b), it is the slow component of hs,(e,t),
hg’z)(e,t). By considering the Markov decomposition algorithm, we see that the
behavior of the system using the bypassed form (b) is identical to that which has
the original staged form (a). This justifies ignoring a fast component of a holding
time distribution if p(/)(¢) = O(e) as discussed in Section 3.3.1. The slow time
scale Markov representation, f(€,t) can now be constructed from the Markov
representation. For the example above, this is shown in Figure 3.13(c).

The uniform asymptotic approximation of ®p(¢,t) obtained using the Markov

decomposition algorithm is
@M(E, t) = QM(O,t) + UMéM(E, Et)VM — UV + 0(6) (3.,99)

In the next section, we will see that (3.99) can be expreséed using a slow time scale
semi-Markov process 7 (€, t) instead of explicitly using 7jm(e,t) and that & (0,¢) and
that Uy and Viy do not have to be computed explicitly as well.
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Figure 3.14: Bypassing transient states
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3.3.4 Semi-Markov representation

To this point in the development, we have performed three transformations and

approximations of the original semi-Markov process:

1. State expansion of the original semi-Markov process to form 7g(e,t). Associ-
ated with this expansion is the identity (3.63).

2. Markov representation using a method of stages expansion to form nu(e,t).

Associated with this representation is the identity (3.78).

3. Slow time scale approximation using the Markov algorithm presented in Chap-

ter 2. This results in the asymptotic approximation (3.99).

These identities and approximations can be combined to approximate ® (e, t)

Q(E,t) = LELMQM(O,t)RMRE
+ LELMUMéM (E, et)VMRMRE (3,100)
- LELMUMVMRMRE + O(e)

Consider the first term. By following the construction, it follows simply that
LELMQM(O,t)RMRE = Q(O,t) (3.,101)‘

By considering lim;—,o, ®Mm(0,t) = UmVm where Uy and Vi are the ergodic proba-
bility and membership matrices computed from the original semi-Markov process,

the third term becomes
— LeLyfUmVMBEMRE = — tl_l’lg Q(O,t) =—-P (3.102)

where P is the ergodic projection of n(0,t).
The second term
Lg (LmUMéM(G, et)VMRM ) Rg (3.103)

can also be expressed in terms of the behavior of a semi-Markov process. We will
first consider the parenthesized term in (3.103). Recall from the discussion above,

that the states of fm(e,t) are either made up of a single “slow” state j € M(i) of
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1/3 1,e_t xe~t 1, 1/3e“‘t/3

Figure 3.15: Slow time scale Markov and semi-Markov models in Example 3.8

nm(e,t) where i € S, or the aggregation of an ergodic class of 7y(0,t) made up of
“fast” states. Due to the structure of Ry, the onljr terms in éM(e, et) which enter
into the product in parentheses in (3.103) correspond to initially being in either such
an aggregated class, or in a slow state ¢ which is also a state of the semi-Markov
process ng(€,t). Similarly, due to the structure of Ly, we are only interested in the
probability of being in some set M(z) and not in any particular state of fm(¢, €t).

Consider the slow time scale Markov model for Example 3.8. First, we know
that we are not interested in the transition probabilities from state m2? since
interaggregate transitions must leave through either state 1 or state 2. Second, the
probabilities of being in states 3 and mf'z are always combined. In this example,
it is easy to demonstrate that the terms of interest could be recovered from the
semi-Markov process shown in Figure 3.15.

This observation that the terms in ®(e,t) which affect the product (3.103) can
be computed using i’(e,t), the probability transition function of a reduced order
semi-Markov process, is in fact quite general. Although a complete proof would be
tedious, the generality of this step can be understood as follows. A slow holding

time distribution for the transition from state 7 to state j in the process ng(e,t) is
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expanded using the method of stages to produce a portion of the Markov model of
mm(€,t). States i, my? ,my ... are all trapping states of the process 7 (0,¢) and
therefore each becomes a separate aggregate class in the slow time scale process
(€, t). In the procedure to compute the transition rates of 7 (€,t), all the Markov
transition rates are scaled by 1/e. This results in the Markov representation stil]
having the same form but scaled rates. This set of stages is again the staged form of
a semi-Markov holding time distribution in which time is scaled by 1 /eora holding
time transform where s is scaled by e, Consequently, the collapsing of these stages
back to a semi-Markov form is immediate.
Finally, the term which is needed can be expressed as

LeUg®(e, et) Vg Ry (3.104)

uniformly valid. ‘

Therefore, by identifying the slow time scale semi-Markov process, the sefies
of transformations can be avoided. The algorithm provides a direct method of
obtaining the barameters of this process. A complete example is considered in
the next section in order to clarify the steps in Algorithm 3.1 which avoid explicit

construction of the representations discussed above.

3.4 Example

the steps involved. The initial process, illustrated in Figure 3.16, has three states
and the following Parameters:

Pau(€) =1, Ay, t) =e tige~2t (3.105)
Piz{e) =1—¢, haz(€,t) = (1~ e)e ™t 1 e2o~et (3.106)
Pal€) =€,  hayye,t) = et 4 (1 — €)e €t (3.107)

P3(€) =1,  hyg(e,t) = 26t 4 o—¢t (3.108)
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1,6t «2e—2¢ e,eet + (1 —¢)ee” €
1—¢(1—eet +e2e € 1,e2e "€ x e €t

Figure 3.16: Perturbed semi-Markov process

Step 1 of Algorithm 3.1 is to decompose each holding time distribution into its

fast and slow components as in (3.18). The result of this procedure is:

) =1, h(et)=etr2e 2 (3.109)
pi(e) =0 (3.110)
e =(1-¢, nfEet)=e? _ (3.111)
P =€, hP(et)=c C (3.112)

pgi)( )=0 (3.113)

P =1, h§(e,t)=ee (3.114)

i (e) =0 (3.115)

P =1, h(et)=ce Fxe® (3.116)

Note that the holding time from state 2 to 3 has on O(¢) fast component therefore
p (€) can be set to zero. The unconditional probability of making fast and slow
transitions out of each state are then computed using (3.23)-(3.24).

=1, p'e)=0 (3.117)
) =01-¢%, pe)=2e~¢ (3.118)
=0, =1 (3.119)

This allow us to compute the transition probabilities and holding time distribu-
tions of the expanded process ng(e,t). The model of this process is illustrated in
Figure 3.17. The nonzero transition probabilities computed using (3.25)-(3.28) are:
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€t

2 — e, ele "l xe™

Figure 3.17: Expanded semi-Markov representation
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pan(d = (1-¢* (3.120)
Pousi(€) = 2e—¢ (3.121)
Prnle) = 1 | (3.122)
Pra(e) = (1—€)/(2—¢) (3.123)
Passa(€) = 1/(2—¢) (3.124)
Pres(e) = (1—¢)? (3.125)
Psass(€) = 2€—¢€ (3.126)

and the holding time distributions are determined using (3.29)-(3.30).

hiari(€t) = hop(e,t) = e tx2e™ (3.127)
hip(et) = et (3.128)
hps(e,t) = e ¢ (3.129)
hogsy(6,8) = €€t 4 (1—€ee™ € (3.130)
Biros(€,8) = haug(€,t) = el € xe € (3.131)

The ergodic classes and transient states of the expanded process ng(0,t) can

now be identified using the transition probabilities computed above. The ergodic

classes are
E, = {fif2} (3.132)
E; = {s3} (3.133)
Es = {s3} (3.134)
E, = {s1} (3.135)
Es = {fs} (3.136)

and there are no transient states. Note that the classes E4 and Es form completely
decoupled chains, even for € > 0, and therefore they can be completely ignored as
they have no influence on the aggregation of the remainder of the process (although
they could be carried through the entire a.lgorithfn). Since there are no transient

states, the computation of the trapping probabilities vg in step 4 is straightforward

‘UE]" =1 < ] € EI (3.137)
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) ®

Figure 3.18: Expanded semi-Markov representation, ¢ =0

Only the class F; is composed of a set of “fast” states, therefore in step 5, only
A; needs to be computed. By considering the process ng(0,t), shown in Figure 3.18,

the mean holding times in these states are
Tr, = 3 (3.138)
Te, = 1 (3.139)
and the inverse of the mean time between arrivals in these states are
By, = 1/4 (3.140)
By, = 1/4 (3.141)

It should be noted that these parameters of a “fast” ergodic class could just as easily
have been computed using the original process n(0,t) since the class {1,2} of that
process must have the same statistics as the class {fi, fo} of the expanded process

ne(0,t). The exponential rate leaving E; can then be computed using (3.32) as
A'l(e) = Bf1Ps2fu (6) = 6/2 - €2/4 (3"142)

The slow time scale semi-Markov process can now be constructed as in step 6 of

the algorithm. This process is illustrated in Figure 3.19. The holding time leaving
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Figure 3.19: O(1/¢) time scale semi-Markov process

the aggregate class E) is exponentially distributed with the form (3.33)

aa(e ) = TAs(e A€ < (172 — /) (1/2 — /4t

115

(3.143)

while the distributions leaving the other classes are directly derived from the dis-

tributions in n(e,t)

haa(e, 1)
haz(e, )
hys(e, 1)
has(e, 1)

The transition probabilities of this process are

pule) =
f’n(é) =
f’az(f) =
pis(e) =
pas(e) =

= €

= e

(1-9/@2—¢

1
1/(2—¢)
(1-¢)°
2¢ — €’

(3.144)
(3.145)
(3.146)
(3.147)

(3.148)
(3.149)
(3.150)
(3.151)
(3.152)
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" The matrices U and V can be constructed as in step 7

3/4 0 0 110
U=|1/4 10|,V=]000 (3.153)
0 0 1 001

The procedure is terminated after one iteration since #(0,t) has only one ergodic

class. The overall approximation therefore has the form

(3/4 0 0 110
®(e,t) = ®(0,t)+|1/4 1 0|B(0,et)| 0 0 0 |-
0 01 001
- (3.154)
3/4 3/4 0
1/4 1/4 0 | +O(e)
0 0 1

The processes n(0,t) and 7(0,t) are illustrated in Figure 3.20.

In order to demonstrate that the same result could be obtained by exﬁlicitly
constructing the Markov representation and applying Algorithm 2.1, consider the
process my(e, t) illustrated in Figure 3.21. Applying Algorithm 2.1 results in the
process 7y (€, t) illustrated in Figure 3.22. Note that the same process would result

if the Markov representation of 7jg(¢€,t) were constructed as shown in Figure 3.19.

3.5 Discussion

The decomposition algorithm presented in this chapter makes several contribu-
tions. First, although the details are relatively complicated compared to the purely
Markov case, the algorithm provides a computationally feasible and easily inter-
preted method of decomposing semi-Markov processes. In the case where the
holding time distributions do not depend on ¢, the result is very similar to that
provided by Korolyuk [31]. The more general case with perturbed holding time
distributiéns shows that in general, a semi-Markov process is needed to recover the
slow time scale behavior of the original system.

A novel feature of this algorithm not found in the Markov case is that in the

slow time scale model, the fast and slow copies of a state may be combined into
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—t -2t

1,e” " x2e

n(0,1)
(0

1,e_t/2/2 le txe?

7(0,t)

Figure 3.20: Multiple time scale semi-Markov models
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Figure 3.21: Markov representation
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Figure 3.22: O(1/¢) time scale Markov representation
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different aggregate classes. Although this may seem paradoxical, one interpretation
of this results is as follows. Recall that the state (in the sense of memory) of a
semi-Markov process is the observed state currently occupied and the time already
spent in that state. Aggregation in some sense partitions this infinite state space.
However, the process is again represented in terms of the finite number of observable
states which c;a,n be visited. In this light, it is not as surprising that the parts of an
observed state can be aggregated into different classes.

A restriction imposed by the method of proof — deriving the finite state Markov
equivalent and applying the previously derived algorithm — is that the class of semi-
Markov processes which can be considered must be restricted to those with rational
polynomial holding time transforms. This restriction seems to be a limitation of
the proof technique and not of the basic algorithm. An arbitrary holding time
distribution can be decomposed into components which are fast and slow. The
definitions of the “slow component” would have to be changed. For instance, a slow
distribution is one which uniformly approaches 0 over any finite interval. Essentially,
the limit has all the probability at infinity. An extension of the algorithm to this
more general case would be useful in practice where a rational polynomial form
is not sufficient. For instance, holding times with uniform distributions cannot be

represented in this way.



3.A. APPENDIX 121

3.A Appendix

3.A.1 Proof of Lemma 3.1

The decomposition of h(e,t) into “fast” and “slow” terms follows from a partial
fraction expansion of the Laplace transform.
a(e, s) a(e, s) cNe,s) ce,s)

H(e,s) = 5(e, o) = 5N(e, 5) 5 (e, 5) = 5 7(e, 5) + b} (e, s)

(3.155)

Let b(e, s) have degree n + 1. For h(e,t) to be a valid probability density function,
a(e, s) has a maximum degree n. Let b(/)(¢, s) have degree n—m-1 and b(*) (¢, s) have
degree m. The coefficients (expressed as vectors) of the polynomials ¢()(¢, s) and
c(*)(e, s) are of degree at most n—m and m—1 respectively and satisfy the polynomial
equation a(e, s) = b(*) (e, s)cl) (€, s) +b) (¢, 5)c(*) (¢, s). Matching coefficients in these

polynomials, this can be expressed as a set of linear equations where a polynomial

Tn8"™ + -+ + 218 + o is represented as a vector Z = (zo,...,z,)T
- &) |
a(e) = B(e 3.156
©=50 | s (3.150
where
(b)) 0 - 0 e o
b 8 - 0 69 s
B(e)=| : S : (3.157)
0 0 bs,:)_z(é) 0 0 bs‘f_)m_l
0 0 - e o o - b,

Since the roots of b()(¢,s) and b(*)(¢, s) remain separated as € | 0, this set
of equations has a solution (which may not be unique) for all € € [0,¢0). The
coefficients of c¢{f)(¢,s) and ¢(*)(e, s) are therefore bounded and real. -

Having solved for ¢/ (¢, s) and ¢(!)(e, s), p")(¢) and p(*) () can be determined as

pN(e) = c¥)(e,0) () () = c*)(e, 0)

= = 3.158
5 (e,0) * P 5 (e, 0) (3.158)
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and ' '
1 cW(e,s) (5)/ 1 cl)(e, )

@) = g s 1O = e

Several properties of this decomposition follow directly:

g

(3.159)

e By construction, plY)(€) + p{*)(¢) = 1.

¢ The positivity of p(*)(¢) can be argued by considering h(e,t) for t > 1/e. |
For such time, pf)(¢)h{(f)(¢,t) is O(exp(—1/€)) and can be ignored. Since
h(e,t) must remain positive, both p(*)(€) and A(*)(¢,t) must also be positive for
t > 1/e. Since h(*)(e,t) is slowly varying (i.e. 2h()(e,t) = O(e)) hl*)(e,t) > 0
for all t > 0.

¢ Since the derivative of h{*)(¢, ) is O(e), this also implies that sup,o b (€,t) =
O(e).

e In the case that sup,q |h(e,t)| = O(1), in order to guarantee the positivity of
h(e,t) for t = O(1), pl)(¢) must be nonnegative since h(*)(e,t) is only O(e).

3.A.2 The effect of complex “probabilities”

In Section 3.3.3, Algorithm 2.1 was applied to the Markov representation nu (e, t)
of the semi-Markov process ng(e,t). The derivation in that section assumed that
all the transition probabilities and rates in the Markov representation were real and
positive. However, as discussed in Section 3.3.2, these quantities can be negative
or complex in general. In this section, it will be argued that although many terms
in the Markov representation may be complex, application of Algorithm 2.1 is still
valid. The essential aspect of that algorithm which must be demonstrated is that
there can be no cancellation of the lowest order term in the sum (3.85). This can
be shown by carefully considering the construction of the Markov representation.

- A useful aspect of the method of stages representation of an arbitrary holding
time distribution k(t) is that since h(0) is necessarily nonnegative and real, the term
(1 —g1)A1 in the staged form shown in Figure 3.7 (page 94) is also nonnegative and
real. This can be shown by considering the Initial Value Theorem applied to the

Laplace transform H(s) of h(t). Furthermore, without loss of generality, we can
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assume that the first exponential rate A; is real. This can always be guaranteed by
introducing another stage with rate A* as discussed in Section 3.3.2.

There are three cases which must be dealt with separately to show that there is
no cancellation in the sum (3.85).

1. The initial class E; is an aggregation of “fast” states of num(e, t),

2. E; is composed of a single state m’;* where ¢ € §, the set of slow states of
ne(e,t), and

3. E; is composed of a single state 7 € §.

The first case is straightforward. In Section 3.3.3 the sum (3.85) is expressed
in terms of positive, real quantities related to the semi-Markov process ng(e,t) as
(3.91). There cannot be any cancellation due to the positivity of the terms.

The non-cancellation of the sum in the second case can be argued from the fact
that there can only be either be one or two terms in the sum. If state m:;f_l is not a
transient state of 7)(0,t), then there is only one term in the sum. The only possible
¢lasses E; to which transitions can occur are {m;_'f_l} or the class to which state k
belongs. If state m:,'f_l is transient, then by the construction v, mik = lifke€ E;
and 0 otherwise. The two terms in the sum can be expressed as a single term and
therefore there can be no cancellation in this case as well.

The third case relies on the observation outlined previously that the term
(1 — @), is always nonnegative and real. If the next class is of the form {m}*}
then there is only one term in the sum as in the previous case. If the next class is
not of this form then we know that the transition rates must all be real since all
the transition rates A;;(e) in the sum are of the form (1 — ¢1)A; which are real and

nonnegative.
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Chapter 4

Decomposition of Discrete Time Markov
Chains

4.1 Introduction

In this chapter, the decomposition of discrete time, finite state Markov chains is
addressed. Recall that in Chapter 2, the behavior of a continuous time Markov chain
was approximated using a fast time scale, e-independent, continuous time process
and a reduced order perturbed process. In the discrete time case presented in this
chapter, the basic approximation which is derived has a “hybrid* form. In this form,
the fast time scale behavior is approximated using an e-independent, discrete time
Markov chain, and the slow behavior is captured by a perturbed, continuous time
process. This extension to discrete time chains bridges the gap between previous
multiple time scale decomposition results, which have dealt exclusively with either
continuous time or discrete time processes, and provides a uniform framework for
the analysis of both types of systems.

Consider the state probabilities, z[t], of a discrete time Markov chain which

satisfy the difference equation
zft + 1) = 8O(e)zt], t € No (4.1)

where ¢§-?)(e) is the one-step transition probability from state : to state j. Note that
all the entries of ®((¢) are nonnegative and that 1T®()(¢) = 1T. The solution of

125
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this difference equation has the form
zt] = 8 (¢)  z[0] (4.2)

which is analogous to the matrix exponential form which results in the continuous
time case in which the system is governed by a differential equation. As in the
previous chapters, it is assumed that ®((e) is an analytic function of a small
parameter ¢. |

The basic result which will be demonstrated is that the exact system behavior
can be approximated using an e-independent discrete time chain, and a smaller,
perturbed continuous time chain. Specifically, the form of the approximation which

will be derived is
30 (e = 30 (0) 4+ UecAN Ity 0 _ yy©@ 4 o(q (4.3)

where A(Y)(¢) is the generator of a continuous time Markov chain and O(e) is a
function of € and ¢ which converges uniformly to zero over the interval ¢t > 0 as
¢ | 0. The matrices U® and V(® are computed from & (0) and have similar-
interpretations to the corresponding quantities in the continuous time case preseﬁted
in Chapter 2. The term ®©(0)° captures the behavior of the fast time scale and
exp (€A (e)t) captures the slow time scale, aggregate behavior.

Note that the form of the approximation (4.3) is identical to the continuous time
case (2.103) except that the “fast” term, exp(A(®(0)t), is replaced with () (O)t.
Although use of this type of hybrid form of approximation has been suggested in
the past in the more limited context of a two time scale approximation (5|, the
uniform validity of (4.3) has not been addressed. The importance of this uniform
validity is that it allows us to apply the continuous time algorithm of Chapter 2 to
approximate all the slow time scale behavior generated by A()(e). Therefore, the
key to defining a decomposition algorithm and overall approximation for discrete
time Markov chains lies in proving the uniform validity of (4.3). This reSﬁlt extends
currently available techniques in two major ways. First, as is true in the continuous
time algorithm, there is essentially no restriction on the ergodic structure of the
initial Markov process. Therefore, a complete time scale decomposition of any

singularly perturbed Markov chain can be obtained. Second, although discrete time
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chains have been studied by many other authors, (see [12] [42] for example), there
has been little connection with other approaches to decomposition of continuous
time processes. In particular, the notion of considering a scaled time variable has not
been stressed. Furthermore, although the use of a differential equation to describe
the slow behavior of a difference equation is not a new idea (see [5] for example),
" there are few results related to the explicit construction of such a continuous time
system in the Markov process context.

One restriction on the structure of ®©(¢) not present in the continuous time
case is that ®(%(0) must be aperiodic and therefore the only eigenvalues of ®(%)(0)
on the unit circle are at the point A = 1. A consequence of periodicity at the fast
time scale is that lim, o, ®(© (O)t does not exist. This limit must exist for there to
exist a multiple time scale decomposition of the process. It will be shown that the
slow time scales are aperiodic since they can be approximated by a continuous time
Markov process.

The remainder of this chapter is organized as follows. The detailed algorithm
is presented in the next section. A proof of the validity of this algorithm is then
provided in Section 4.3, followed b)'r a simple example in Section 4.4. A discussion is

presented in Section 4.5. Proofs of supporting results are presented in Section 4.A.

4.2 The Algorithm

The decomposition algorithm is based on the approximation (4.3) and Algorithm 2.1.

Algorithm 4.1 Begin with the generator, ®©)(¢), of a discrete time Markov process

with one ergodic class for € > 0 and which s aperiodic at ¢ = 0.
1. Define
AO>e) =8O (e) -1 (4.4)
A©)(¢) is the generator of a continuous time Markov process.

2. Construct the terms U®), V¥ k =0,1,2,...,K, and A®, £k =1,2,...,K
using steps 1-4 of Algorithm 2.1. 4
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3. The overall approzimation of the evolution of the transition probabilities can

be written as

30 (! = 8@F 4
7@ eAWety (o) _ U(°)V(°)) "

(U(o)U(l)eA"’e’tvu)V(O) _ U(O)U(l)vu)vm) "

: (4.5)
po). .. -0 ARt k-1 o _

U©...gk-Dyk-1), . V(O)) +0(e)

where O(e€) is a function of € and t which converges uniformly to zero over
t>0.

a

Several features of the algorithm should be noted. First, note that ®©(0) must
be aperiodic. As stated in the previous section, this is necessary for there to exist a
multiple time scale decomposition of the process. This fact will be demonstrated in
the next section where the derivation of the algorithm relies on this characteristic.
The necessity of aperiodicity will also be discussed more fully in Section 4.5.

Note also that in step 1, A(O)(e) is in fact a generator of a continuous time Markov
process. Though the fast behavior of the continuous time process generated by
Al9)(e) is very different from that of the discrete time process generated by ®(°)(e),
it will be shown that their slow time scale behaviors are approximately equal. This
fact forms the basis of the argument for using A()(e) to approximate the slow

behavior of the original discrete time process.

4.3 Derivation

The derivation of the above approximation is composed of three distinct parts.
First, the “fast” and “slow” components of ®©(e)’ are identified. The next two
parts consist of approximating these components separately. The superscript “(°”

is omitted in the derivation to simplify the notation.
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4.3.1 Separation of “fast” and “slow” components

"The behavior of ®(¢)* can be separated into “fast” and “slow” components. The
“slow” component is associated with eigenvalues which converge to 1 as ¢ | 0 while
the “fast” component is associated with those eigenvalue which converge to points
within the unit circle. The approach taken here is based of Kato’s perturbation |
results for linear operators [22| and parallels Coderch’s approach to separation of
time scales in the continuous time, general linear system case [9].

The generator ®(¢) can be expressed as the spectral sum
®(€) = > Xi(€)Pi(e) + Di(e) (4.6)

where P;(e) is the eigenprojection and D;(e) is the eigennilpotent associated with
the eigenvalue A;(€). Note that in general, these projections and nilpotents are not

analytic functions of € even if ®(e) is.

Example 4.1 In order demonstrate that the projections and nilpotents are not
necessarily analytic, consider the matriz (which is not a Markov generator)
1—c¢ 1- :
Ale) = (4.7
(¢ [ L ] (47)
At € = 0, the decomposition sum has one term:
10 01
Ale) =1 + 4.8
(¢) [0 1] [0 0] (4.8)

For € > 0, the etgenvalues are distinct and therefore there are two terms in the sum
and no eigennilpotents:
-1 1

1 —= 0 ———
Ale)=(1—-¢ €E—€ | +(1-¢) €—¢€ (4.9)
0 0 | 0 1
|
These eigenprojections and nilpotents have the properties that
Pi(e)Pi(e) = File) if L=J (4.10)
0 ift#
D. i
P@D;( = | D19 Hi=d (4.11)
0 ift#3
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The total projection of the 1-group can be formed as

P(e)= Y. PFile) (4.12)

i (€)1
Although as stated above, the individual projections and nilpotents are not nec-
essarily analytic functions of ¢, Kato [22] shows that any total projection of an
eigengroup of a perturbed matrix is analytic. An eigengroup is a set of eigenvalues
which converge to a common point. Therefore since ®(¢) is an analytic function of
€, P(€) is analytic at e = 0.

The generator ®(e) can therefore be decomposed into the sum of two parts
d(e) = P(e)®(e) + Q(e)®(e) (4.13)
where
Q(e) =1- P(e) (4.14)

Recall that by assumption, ®(0) is aperiodic. Therefore, all the eigenvalues on the
unit circle are in fact concentrated at A = 1. The eigenvalues of Q(¢)®(e) therefore
converge to points strictly within the unit circle. | | ,

Using this decomposition of ®(e) and the properties of the eigenprojections

stated above, the following decomposition is possible

30! = (P(2(e) +Q)2(e) (4.15)
= PE(PO2()" +eE(92(9)’ (4.16)

In order to prove that the approximation (4.3) is valid, the two terms in the sum

(4.16) will be treated separately.

4.3.2 Approximation of the fast behavior

Using the decomposition (4.16), the fast behavior, which is determined by Q(¢)®(e)
can be easily approximated since the e-dependence is a regular perturbation of
Q(0)®(0). The goal is to show that

(@92(0)" - (2()2()" = 0(¢ (4.17)
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from which follows that

Q9(QW2(0)" = Q()(2)2()" +0( (4.19)
= Q(0)2(0)’ + O(e) (4.19)
= &(0)% — P(0) + O(¢) (4.20)
= () -UV +0(¢) (4.21)

The validity of (4.17) can be argued from the fact that the eigenvalues of
Q(0)®(0) are all strictly inside the unit circle. From Kato [22], the Z-transform,
given by

T(e,2) = (I - 27'Q()8(¢)) (4.22)

converges uniformly away from the singularities of T'(0, z).! The difference in (4.17)
can be written as

Alt) = (QE2) - (QO2)° (4.23)
- ﬁ ﬁ 2 (T(e,2) - T(0,2))d= . (4.24)

where T is a positively oriented contour of length |T'| contained inside the unit circle.
Since on the contour |z!| <1fort >0

(68l < g=itlsup | (T(e2) - 7(0,2)) | = 0(9 (4.25)

and therefore (4.17)-(4.21) are true.

4.3.3 Approximation of the slow behavior

The approximation of the slow behavior determined by P(€)®(e¢) is based on its
further separation into components that evolve at various time scales. Within each

time scale, we employ the matrix equivalent of the scalar approximation

(1+ e)\)t = €At | O(e) (4.26)

1Kato states these results in terms of the resolvent R(s, A(¢)) = (A(e) — ¢I)~*. The Z-transform
is more commonly used in the context of Markov chains.
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whenever R()) < 0,¢ € [0,¢), a fact that can easily be verified by series expansion
of the terms. Note also that (4.26) is obviously true for A = 0. The ultimate goal

in this section is to show that
P(e) (P(e)cp(e))t _ P(e)eP()(2( = D)t — o(¢) (4.27)

Before continuing with the general development, we should note that the proof
of the validity of the approximation (4.27) is particularly simple in the special situ-
ation when the eigenvalues of P(¢)®(¢) are semi-simple over an interval € € [0, €).
Specifically, since the eigenvalues are semi-simple, there are no eigennilpotents and

therefore
P2 = L A(GR( (4.28)
(P(O2(e)" = 3 X(e'Pie) (4.20)
PO -Dt _ 3 () - ipg (4.50)

By matching the terms in these sums and applying the scalar result (4.26), the
approximation (4.27) follows directly. | |

When the eigenvalues of P(¢)®(e) are not semi-simple on € € [0, ), the approx-
imation (4.27) can still be shown to be valid but the proof is not as straightforward.
The basic result which will be employed is the matrix form of the scalar approxi-

mation (4.26) above.

Lemma 4.1 Consider a matriz A with semi-simple null structure and such that all

the nonzero eigenvalues have negative real parts. Then
(I + eA)t — ¢4t = O(e) (4.31)

Proof  The case where the eigenvalues are semi-simple has been discussed in the

text above. A general proof is provided in Section 4.A.1. O

The key to application of this lemma lies in isolating the various time scales
and applying the result to each separately. As in Algorithm 4.1, we define the

continuous time Markov generator

AP (e) = 8O (e) — 1 (4.32)
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P(€) A9 (e) can be decomposed into terms

-~ P(e)AU(¢) = i ¢ B (¢) (4.33)
where
¢B(e) = RD()AP(e) - (4.34)
and

RY(¢) = > Pie (4.35)
i: A.—(e)—l:O(e‘)

All the eigenprojections R()(¢) exist and are analytic at e = 0. This fact follows since
A)(¢) is the generator of a continuous time Markov process and therefore satisfies
the “Multiple Semi-Simple Null Structure” condition which in turn guarantees that
all these eigenprojections exist at ¢ = 0 [9]. A more detailed discussion of this
is provided in Section 4.A.2. Essentially, ¢ B) () captures all the eigenvalues of
&9 (¢) — I which are strictly O(e‘).

Since the eigenvalues of B®) (¢) are all identically zero or have strictly negative

O(1) real parts, the e-dependence is a regular perturbation

BY - eB(i)(O)tﬂ-O(e) (4.36)

(I+€B9(E) = (I+€B9(0))" +0(e) (4.37)
Therefore applying Lemma 4.1 to the right hand sides of the above equations gives
(I + B ()t = & BY () 4 0(e) (4.38)

By decomposing the terms in (4.27)

P(e) (p(e)¢(°>(e))t = iR(")(e) (1+e"B(*>(e))t (4.39)

1=1 :

PYARACICLICES LS SPUIANCERICL | (4.40)

and matching the finite number of terms in these sums proves that the approxima-
tion (4.27) is indeed valid.
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Figure 4.1: Discrete time perturbed Markov process

Finally, the term
P(E)eP(E)(@(O)(e) - I)t — P(E)eP(G)A(O)(e)t (4.41)

is identically the term for the slow behavior of the continuous time process generated
by A©)(¢) = ®()(e) — I. Using the results of Chapter 2, this can be written as

P(E)eP(E)A(O)(e)t — U(o)eeA(l)(e)tV(O) + O(ej (4.42)

where A()(€) is a reduced order Markov generator and U(®) and V() are the ergodic

probability and membership matrices determined from A(®) (0).

The approximation (4.3) needed to prove the validity of Algorithm 4.1 therefore
follows from the approximation of the fast component (4.21) and (4.42). The re-
mainder of the approximation (4.5) follows from the approximation of exp(A® (€)r),

T =t /e, which is available using Algorithm 2.1.

4.4 Example

In this section, a simple two time scale discrete timme Markov chain is decomposed.
Consider the process with the transition probability graph illustrated in Figure 4.1
and with generator
1/2  1/2 0
() =|1/2 1/2—¢ € (4.43)
0- € 1—¢
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1/2 €
1/2 €

Figure 4.3: O(1/¢) time scale continuous time process

The transition rates of the continuous time process generated by A (¢) = ®©)(¢) -1
are shown in Figure 4.2. The slow time scale process obtained using the Markov

algorithm is shown in Figure 4.3 and has a generator

| -1/2 1
AW(e) = + Ofe 4.44
(@ [ R0 (1.44)
The combined approximation is therefore
80 (gt = 8©(0)t + U@eEAD (0)y0) _ gy © 4 o(e) (4.45)

1/2 1/2 0| + [ 1/2 0 |exp
00 0 1 0 1
1/2 1/2 0
—|1/2 1/2 o | +0(¢
0 0 1

t
1/2 1/2 0 1/z 0 A DAY R
1/2 -1 001 .




136 ’ 'CHAPTER 4. DISCRETE TIME MARKOV CHAINS

4.5 Discussion

The decomposition result presented in this chapter, together with the continuous
time algorithm in Chapter 2, provide us with an efficient algorithm for aggregation
of discrete time, finite state, Markov processes. One novel feature encountered
in the discrete time case is that the fast time scale is required to be aperiodic.
In continuous time systems, there is no comparable issue since such processes
cannot be periodic. The restriction to systems with aperiodic fast time scales seems
fundamental and not simply a consequence of the derivation employed. If the fast
time scale is periodic, then the limit

lim &©(0)? (4.47)

t—o0

does not exist. The existence of such a limit is prerequisite for there to exist
a complete multiple time scale decomposition. It may, however, be possible to
construct a uniform approximation on an interval of the form [6/€?,00), though
this extension was not investigated.

Another feature of the discrete time result is related to the results for semi-
Markov processes presented in Chapter 3. A discrete time Markov process can be
considered as a semi-Markov process where all the holding times are deterministic
and equal. Such a semi-Markov process does not satisfy the restriction to rational
polynomial holding time transforms. However, a minor modification of the semi-
Markov algorithm would give the same result as is derived in this chapter. This
suggests that the semi-Markov algorithm presented in Chapter 3 may be in fact

more general than can be justified using the derivation presented.
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4.A Appendix

4.A.1 Proof of Lémma 4.1

By performing a similarity transformation we can assume, without loss of generality,
that the matrix A is in the form

A= 4.48

o o (4.48)

A+D o}

where A is a diagonal matrix with strictly negative entries, and D is a nilpotent
matrix (D™ = 0) which commutes with A. We will consider the case where A =
A + D since the result for the more general form for A follows directly.

Since A and D commute,

€At _  eAt eDt (4.49)
e€At (I +eDt+ -+ (m;_l)!(eDt)m'l) (4.50)
The term-(I + €A)* can be similarly expanded
(I+eA) = ((I+er)+eD) (4.51)
= (I+eA) +t(I+eA) " (eD)+---+ (4.52)

t!
t—m+1)(m—1)!

(I + EA)t—m+1 (eD)m—l

The terms in these sums can be matched term by term. The first is essentially
the scalar result

eAt _ (I +eA)| = O(e) (4.53)

since the diagonal elements of A have negative real parts by assumption.

The difference in the (5 + 1)* terms in the sums, 1< j <m — 1, is

(%eeAt(eD)j) —-( tt 1(I +eA)*"'(eD)*"') (4.54)

(-5t

which can be written as

. v \ Di
(eEAt(et)" __t eI+ eA)t_’) 1_)_

E=) 7 (4.55)
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Note that the first term in the parenthesis in (4.55) is diagonal and that the term
D?/5!is O(1). Using

ﬁ =t(t—1)-(t—j+1) = +O(t) (4.56)

a diagonal element of the first term can be written as
M (et)’ — (et)i (1 + eA)'™ + O(ejtj'l(l + ez\)‘_j) (4.57)

The maximum of this expression occurs with ¢ = O(1/¢) at which point the entire
expression is O(e). Therefore, since each of the finite number of terms in the

expansions are O(e), the lemma follows directly.

4.A.2 Analytic eigenprojections, R(i)(e)

The analytic nature of the eigenprojections R()(¢) follows from the fact that each
of these projections is the total projection of the zero-group of eigenvalues of a slow
time scale operator. Essentially, this is the implicit fact used by Coderch [9]. In
that work, we begin with A(% (€), a continuous time Markov generator and construct
P (¢), the total projection of the zero-group. Then AM(e) = P(%)(¢) A% (€) /e which
again has a zero-group projection P()(e).

Coderch has shown that all these projections P(")(e) are analytic functions of e.

The terms R)(e) used in the derivation in Section 4.3 can be defined in terms of
the PG (e) in [9] as

R® = (I - P(i)(e)) PE-1(¢) ... PO(e) | (4.58)



Chapter 5

Decomposition of Autonomous Positive

Systems

5.1 Introduction and Background

5.1.1 Motivation

The results presented in Chapter 2 provide a stra.ightforwa.rd algorithm for the
decomposition of Markov processes with rare transitions. The development of this
algorithm uses the probabilistic nature of the systems both in the proof of its
validity and in its interpretation. It is not immediately clear which characteristics
of stochastic matrices! are exploited in the Markov context which are not available
or not used in the more general linear system algorithms presented in [9] and [36].

In this chapter, we will see that a wider class of linear systems than those
associated with perturbed stochastic matrices can in fact be analyzed using a
decomposition algorithm which is substantially based on the algorithm developed
in the Markov context. However, it is also true that direct application of the
Markov process algorithm is not in general valid. Certain linear systems, called
positive systems, in which a nonnegative initial state results in a nonnegative state
.a.t any future time share many of the important properties with linear systems

describing the evolution of state occupancy probabilities of continuous time Markov

1We will use the term “stochastic matrix” to refer to the generator of a continuous time Markov
process, i.e. A is stochastic if a;; > 0Vi # j and 1T A = 0T.
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chains. Although there are strong ties with the results in the stochastic case,
the positive system algorithm is more complex. As will be discussed below, the
major additional computation which must be carried out is the identification of the
e-dependent dominant eigenvector associated with the generator matrix.

It should be noted that some of the earliest work on decomposition of Markov
chains by Simon, Ando, and Fisher [1] [42] was in fact an application of their results
on nearly completely decomposable positive systems. This work was motivated by
problems in econometrics. The application of their initial results has since then been
almost exclusively in a probabilistic context. The work presented in this chapter
goes beyond their results in that they only considered a class of systems where the
previously discussed Markov algorithm would be directly applicable. The algorithm
presented in this chapter addresses a larger class of positive systems.

In this chapter, perturbed, positive, linear systems of the form

z(t) = A(e)z(t) (5.1)
are considered. It is required that for any ¢ € [0,¢), if z(to) has nonnegative
components, z(t) also has nonnegative components for all ¢ > to. Also all the
- nonzero eigenvalues of A(¢) must have negative real parts and the zero eigenvalue
must be semi-simple. The major result which will be demonstrated is that under
certain restrictions, the algorithm presented in Chapter 2 can be applied, although
it does not share the probabilistic interpretation.

Analysis of perturbed positive systems may be useful in several areas. One
application involves compartmental models [38| in which there may be some very
small flow rates. Small flow rates are analogous to small probability transition rates
which are associated with very slow time scales of behavior in the probabilistic case.
Also, the analysis of slow behavior of positive systems may be useful in the area of
chemical kinetics where the use of various types of aggregate mgdeling has already

proved useful [15].

5.1.2 Positive Systems

The class of positive linear systems is quite well understood. Several properties

which will be useful in the development are summarized in this section in order
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to demonstrate the similarities and to provide some insight into the meaning of
these results. The basic material in this section follows cloéely the presentations
in (3] and (37, Chapter 6]. The material relating to the eigenvectors of reducible
positive matrices is also treated in [39]. The following notation will be employed

with respect to inequalities involving vectors and matrices.

>0 < z;>0V: (5.2)
£>0 <= z>0andz; >0 for some: (5.3)
>0 < z;>0Vi . (5.4)

These relationships will be termed nonnegative, positive, and strictly positive, re-

spectively.? Using this notation, a positive system is defined as
z(t) = Az(t) (5.5)
such that
I(to) >0 = J:(t) >0Vt>tg (56)
In order for this condition to be satisfied, the matrix A must be a Metzler matriz,
i.e. a;; > 0for all 1 # j. This guarantees that z;(¢) > 0 when z;(t) = 0 and z(¢) > 0.

The state vector cannot therefore leave the positive orthant and the vector z(t) must

remain nonnegative (37, Chapter 6).

Irreducibility

In the stochastic context, the ergodicity of an underlying Markov chain is relied upon
to guarantee the strict positivity of the limiting probabilities. In the positive system
case, we cannot rely on the probabilistic interpretation of the state vector. The
analogous concept in the positive system context is irreducibility of the generator
matrix.

Definition 5.1 A square matriz A is irreducible if there ezists no permutation

matriz P such that .
B C

0 D

PAPT = (5.7)

2Note that for a matrix A > 0 has the meaning analogous to (5.3) and does not mean that A is
positive definite.
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where B and D are square matrices. O

Note that if A is a stochastic matrix for a Markov chain with one ergodic class
but which also has transient states, the matrix B would be a stochastic matrix
which generates one ergodic subchain, and the states corresponding to D would be:
transient. If the chain has two ergodic classes and no transient states, then B and

D would each generate a single ergodic class and C = 0.

Example 5.1 Consider the stochastic matriz A

-1 0 2
0 -1 2
A= (5.8)
1 0 -3 O
0 1 1 -2
which can be permuted as follows
(0100][-1 o 1o o1 0]
0001 0 -1 0 000
PAPT ! (5.9)
1000 1 0-3 0/]loo0oo01 :
l0o010f] 0 1 1 -2]{010 0]
(-1 2 0 0]
1 -2 0 1 B C
= (5.10)
0 0 -1 2 0 D
| 0 0 1 -3

Since A is stochastic, the state transition diagrams for A and B can be drawn as in

Figure 5.1. Note that this chain has one ergodic class, described by B. O

From the definition of irreducibility, the following lemma dealing with nonneg-

ative matrices is available.

Lemma 5.1 /8, Theorem 2.2.1] A nonnegative matriz A is irreducible if and only

if for every pair (i,5) there exists a natural number g such that

o >0 (5.11)

where ag) denotes the (i,7) element of AJ. : m]
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-1 0 2 0
0 -1 0 2
4=1 1 0 -3 o0 v
0 1 1 -2
1
O——©
2

1
=171 3 ()
B_[ 1—2] e

Figure 5.1: Reducible stochastic matrix in Example 5.1
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-1 0 2 O
0 -1 0 2
A= 1 0 -3 0

Figure 5.2: Graph G(A) where A is stochastic

Graphical analysis

From the above characterization of irreducibility follows a simple graphical inter-

pretation.

Definition 5.2 The associated graph G(A) = (V,€) of an n X n matriz A consists
of vertices V = {1,...,n} and directed edges & = {(i,5) | aji # 0}.> We say that 1
has access to j if there ezists a directed path from i to j. The graph G{A) ts strongly

connected if for any pair (1,5), ¢ has access to j and j has access to 1. a

The graph of the matrix A in Example 5.1 is illustrated in Figure 5.2. Note that
this graph is directly related to the state transition diagram in Figure 5.1 with
the exception that the arcs are not labeled with the entries in the matrix A. The
irreducibility of the matrix A can be determined from the graph G(A) in the same
manner as the ergodicity of a Markov chain can be identified from its state transition

diagram.

3Note that the direction of the edge is reversed from the convention used in (3]. This is done
to provide a more intuitive connection with the Markov process case where column vectors of
probabilities are used and the (¢, ) element of a generator matrix is associated with a j— transition.
The theorem statements are therefore slightly different from those cited.
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Theorem 5.2 A Metzler matriz A is irreducible sf and only if the graph G(A) is
strongly connected.
Proof  This follows directly from the “i,3,q” characterization in Lemma 5.1 and

the fact that if a positive matriz B is trreducible, then so s any A= B —sI, s > 0.
O

Applying this theorem to the matrix A in Figure 5.2, we see that it is not irreducible
since there exists a path from 3 to 4 but not from 4 to 3.

Finally, the graph G(A) can be partitioned into strongly connected sets aj,
a3, .... These sets are called classes if they do not belong to any larger strongly con-
nected sets, i.e. they are maximal strongly connected sets. For example o; = {1,3}
and a; = {2,4} are classes of the graph in Figure 5.2. Note that a class « is an
equivalence class in that if ¢+ € a has access to k, then so do all other 5 € a. Note in
the case of stochastic matrices, these classes would correspond to individual ergodic
sub-chains and to a disjoint partition of the transient states into subsets so that
any transient state in one of these classes can be reached from any other state in

that class.

M-matrices

Requiring that A is irreducible and that all the non-zero eigenvalues have negative
real parts furthermore implies that —A is an M-matriz (3, Theorems 6.4.6 and
6.4.16]. Among the many properties of M-matrices is that the matrix —A can be

written as

—A=sI-B (5.12)

where B > 0 is irreducible, p(B) is the spectral radius (magnitude of the largest
eigenvalue) of B and s > p(B) [2]. In the special case when s = p(B), —A is a
singular M-matriz. The negatives of the stochastic matrices considered in Chapter 2
belong to this class of singular M-matrices. For example, a typical stochastic matrix

A can be written as

—A=
-1 2

! _2]=2[1 0]—[1 2]=p(B)I—B (5.13)
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The following results are extensions of the Perron-Frobenius theorem to irre-

ducible nonnegative matrices.*

Theorem 5.3 [37, Theorem 6.2] An irreducible matriz B > 0 has a simple eigen-
value p(B). Associated with this eigenvalue are strictly positive right and left eigen-

vectors. 0

Corollary 5.4 An irreducible singular M-matriz A has a simple zero eigenvalue
with strictly positive right and left eigenvectors.

Proof  The matriz A can be written as A = p(B)I — B, where B > 0 and B 15
irreducible. Therefore by Theorem 5.8, B has strictly positive eigenvectors which it
shares with A. Since p(B) is a simple esgenvalue of B, 0 must be a simple eigenvalue
of A. O

Reducible positive matrices

Although the case when A is not irreducible is more complicated, the properties of
reducible positive matrices are directly related to the applicability of the Markov

process algorithm to positive systems. We again consider matrices A of the form
A=B-slI, B>0, s> p(B) (5.14)

Since A is a Metzler matrix, it can always be written as B —sI for some B > 0,
s > 0. The condition that s > p(B) is required so that there are no eigenvalues of
A with positive real parts. The case where A is singular is of most interest in the
multiple time scale analysis to be performed. We therefore consider here only the
singular case where s = p(B).

Since A is reducible, there exists some permutation matrix P such that

Ay A oo Ajs
0 A A '
papT=| = "% T (5.15)
0 0 - Agg

4Note that the Perron-Frobenius theorem itself is applicable only to strictly positive matrices.
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(1/4 1/4 1/2 0 0
1/2 1/2 0 0 1 A Az Asn
A= 0 0 1/2 1/2 0 = 0 Azz A23
0 o0 1/2 1/2 1 0 0 A
0 0 0 o0 1/2]

Figure 5.3: Graph G(4) in Example 5.2

‘where each of the Aj; are irreducible. By considering these blocks separately, it
follows from Theorem 5.2 that the nodes of the graph G{4) can be partitioned into
classes ay, as,...,as where the class a; is associated with the block A;;. Based on
connectivity of the graph G(A), several properties of the dominant eigenvalue and

its generalized eigenvectors can be established. The following definitions are useful

in this exposition.

Definition 5.3 A class « of A > 0 s basic if p(A[a]) = p(A) where Ala] is the
submatriz of A based on the indices of a. A class a is singular if A[a| ts singular.
A class ts final if it has access to no other class and st is initial if no other class
has access to it.

A class chain of G(A) is a sequence of classes ay,, ;. .., ax, such that ay, has

access to oy, , for 1 = 1,2,...,m—1. The length of such a chain is the number of

bastc classes in the sequence. a

Example 5.2 In order to illustrate the concepts of basic and singular classes con-

sider the matriz A and ils assoctated graph shown in Figure 5.3. The classes of A
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Figure 5.4: Class chains for Example 5.2

a; = {1,2}, oy ={3,4}, as= {5} (5.16)

By considering the submatrices Ala|, the basic classes are determined

plAla]) = p(Au) = 3/4 (5.17)
p(Alas]) = p(As)=1 (5.18)
p(Alas)) = p(Ass) = 1/2 (5.19)

Since p(Alas]) = p(A) = 1, the class ay is basic. The class chains for the graph
in Figure 5.3 are shown in Figure 5.4. The chain (i, oz, 03) is length 1 while the
chain (a1,as) ts length 0. Class a; is final and o3 is initial. Class ay 1s neither

tnitial nor final. O

Definition 5.3 refers to positive matrices. As described previously, we are inter-

ested in singular matrices of the form
A=B-p(B)I, B>0 (5.20)

Note that the graphs G{A) and G(B) are identical and therefore the classes of A
and B are identical. Note also that A[c] is singular if and only if p(B[a]) = p(B)
therefore the basic classes of B are identically the singular classes of A. To provide
some intuition about these concepts, let us examine what they mean for generators

of Markov processes. For such a process, the singular classes are exactly the ergodic
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Figure 5.5: G(A) and class chains in Example 5.3

classes of the process and they are all final since by definition there are no transitions
leaving an ergodic class [39].

Theorem 5.5 [3, Theorem 2.3.30] Let B > 0 have spectral radius p(B) and m basic
classes ay,03,...,am. A positive basts (x(l)T,z(z)T, e ,a:("‘)T) for the left algebraic

ergenspace associated with the eigenvalue p(B) can be formed such that

2 > 0 <= i has access to aj (5.21)

ad

This theorem can be applied to A = B — p(B)I since the zero eigenvalue of 4
shares the eigenvectors z¥) above. In the case where A = B — p(B)I is a stochastic
matrix, this theorem can be interpreted as saying that a basis of the left eigenspace
associated with the zero eigenvalue can be constructed such that there is one
basis vector for each ergodic class and that the nonzero components of that vector

correspond to those states which can reach that class with nonzero probability.

Example 5.3 Consider the the stochastic matriz A and its associated graph and
class chains shown in Figure 5.5. The classes of G(A) are a; = {4,5}, oz = {6},
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as = {2} and oy = {1,3}. The classes ay and a3 correspond to ergodic classes of
the Markov process and are both singular and final. The non-singular classes as
and a4 correspond to the transient states 1,2 and 3.

By applying Theorem 5.5, we can determine the nonzero entries in the right and
left eigenvectors of the zero eigenvalue of A. Consider the class o3 = {4,5}. The
states 1,2,3,4 and 5 have access to a; and therefore one of the left eigenvectors
will be of the form (%, %,%,%,%,0) where * represents some strictly positive number.
Similarly the left eigenvector associated with oz has the form (x,0,%,0,0,+). Also,
by applying Theorem 5.5 to AT, the right eigenvectors have the form (0,0,0, *, *,0)T
and (0,0,0,0,0,*)T.

By considering the stochastic nature of the matriz, this structure is also avail-
able by considering the transient/recurrent structure of the process. The canoni-
cal set of eigenvectors obtained in this way are (1,1,1,1,1,0), (1,0,1,0,0,1), and
(0,0,0,m4,75,0)T, (0,0,0,0,0,1)T, where 74 and w5 are the ergodic probabilities of
the class of states {4,5}. a

The zero eigenvalue of a singular matrix A = B — p(B)I associated with any
time scale must be semi-simple in order that the system has a well-defined multiple
time scale decomposition. Note that the zero eigenvalue is semi-simple if and only
if N(A?) = N(A) where N(C) denotes the nullspace of C. This condition can be

expressed in terms of the associated graph.

Definition 5.4 The index (or degree), v(B), of a matriz B is the smallest natural

number ¢ such that
N((B = p(B)I)) = N((B - p(B)I)*™) (5.22)
O

Note that the semi-simplicity of the zero eigenvalue of B — p(B)I corresponds to
v(B) < 1.

Example 5.4 Consider the matriz B

110
B=|00 1 (5.23)
00 1
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where p(B) = 1. N((B — p(B)I)*) # N(B — p(B)I) but N((B — p(B)I)™*') =
N((B — p(B)I)?) for g > 2. Therefore v(B) = 2. a

Theorem 5.6 [39, Theorem 3.1] v(B) < 1 if and only if the class chains in G(B)
have lehgth at most one. O

Note that the matrix B in Example 5.4 has degree two and the class chain ({3},
{2}, {1}) has length two since both classes {1} and {3} are basic.

Example 5.3 (continued) There are two singular classes in the chain shown in
Figure 5.5, namely a; and az. The zero eigenvalue therefore has multiplicity two.
Since there 18 no class chain containing both a; and «g, the zero eigenvalue is
semisimple. There are therefore two independent eigenvectors associated with the

zero eigenvalue. O

Singular positive systems

The multiple time scale analysis of continuous time poéitive systems involves analy-
sis of the unperturbed system at any particular time scale. Since the slow behavior
of the system is governed by the small eigenvalues of the generator matrix, the
unperturbed matrix must be singular for there to be any nontrivial slow time scale
behavior. Therefore, the development of the algorithm considers the properties of
the system

zt=Az, A=B—-p(B)I, B>0 (5.24)
In order for the slow time scale behavior to be well-defined, the limit

lim eAt
t—o0

(5.25)

must exist. For this to be true, the zero eigenvalue must be semi-simple. This is
equivalent to the degree v(B) < 1. This has the graphical interpretation that any
class chain of A must contain at most one singular class. Note that the dominant
eigenvalue (in this case zero) of a positive system must be real. If zero is not

semi-simple in this case, the state z(t) must grow without bound as t — oo.
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Example 5.5 In order to demonstrate the difficulty encountered when this cond:-

1 —e 0
Q0] e

The graph G(A) has two singular classes, ay = {1} and a; = {2}. The chain (o, a3)
has two singular classes and therefore the zero eigenvalue of A is not semi-simple.
The limit

tion ts not satisfied, consider

Ale) = A+eA=

0t
lim e4t = lim [ ] (5.27)
t—00 t—o0 00

does not exist. O

5.1.3 Chapter Outline

Having established basic properties of positive matrices and systems which will be
useful in the development, the remainder of this chapter is organized as follows. In
Section 5.2 the decomposition of a class of perturbed positive systems is addressed.
Two simple examples are presented in Section 5.3. Then, the issues involved in
extending these results to a large number of positive systems and a discussion of

the results that are available are presented in Section 5.4.

5.2 Decomposition Algorithm

In this section, the decomposition algorithm for Markov systems is applied to a
class of positive systems. The main result is that positive systems which can be
analyzed in this way must essentially have a multiple time scale “structure” which
has the same characteristics as that associated with Markov systems. The precise
characterization of these systems is presented below.

The main step in applying the previously developed algorithm is the identifica-
tion of a “scaling” of the state variables which results in either a stochastic matrix,
or more generally a substochastic matrix where the column sums are negative.

In the substochastic case, an additional state variable is added to make the new
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generator matrix stochastic. The Markov algorithm is then applied and the result
is expressed using the original, unscaled state variables.
In order to demonstrate the difficulty in applying essentially the algorithm of

Simon and Ando to positive systems, consider the simple generator

-1 1—6] . (5.28)

Ale) =
() l1+e¢ 1

which has eigenvalues which are approximately —2 and —e?/2. The matrix A(0)
forms a single irreducible block and therefore we can attempt to apply the decom-
position algorithm used in Chapter 2 to this system. Computing the slow time scale

generator as

A9 =vaEu=—2[1 1]

-1 1—e”1/2]=[0] (5.29)

1+e¢ 1 1/2

does not, however, capture the correct slow time scale behavior associated with the
eigenvalue O(e?). Even when the matrix A(0) is composed of irreducible blocks, the
slow time scale behavior (at time scales t = O(1/¢?) and slower) is not approximated

correctly using this straightforward approach.

5.2.1 Scaling state variables

Consider the behavior of the system
z(t) = A(e)z(t) (5.30)

where A(e) is a Metzler matrix and where there also exists some vector aT(€) such
that

aT(e)A(e) < 0T, e€0,¢) (5.31)

and
a(0) >0 (5.32)

If such a vector exists, then we can perform the similarity transformation

B(e) = T(A(IT (¢ (5.33)
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where
T (e) = diag (a1(€), ..., an(€)) (5.34)

The result of this transformation is that B(e) is in general a substochastic matrix

for € € [0, €), since
1

> by(0 = =3 L (el <O - (539)

i=1 ail€) j=1
and
b9 = 20 a9 20, Vi (5.36)

If B(0) is substochastic then there exists only one time scale since all the eigenvalues
are O(1). We therefore consider the case in which B(0) is stochastic.

The state variables can be augmented resulting in the purely stochastic matrix

cg=| PBO © (5.37)
cn+1(€) 0 J
where
cnr1(€) = —a® (€)A(e) T (e) (5.38)

Since T~!(0) exists, we know that the entries of C(¢) are analytic functions of e.
Furthermore, since C(€) is a stochastic matrix, we know that it generates a system
with well defined multiple time scale behavior.

The key element of this procedure is therefore identifying a suitable vector o™ (¢).
If A(e) is already a stochastic matrix, this is particularly simple. Since the sum of
the state probabilities is a constant, aT(¢) = 17T is suitable. The general problem
of finding aT(€) and identifying systems for which such a vector does not exist is
discussed in Section 5.2.2.

Having constructed C(e), Algorithm 2.1 can be applied. Specifically,
eCle)t = C0) | 1 (0)efC )ty (0) — Us(0)Vo(0) + O()  (5.39)

where
&(e) = %Vc(e)C(e)Uc (5.40)
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as in Algorithm 2.1.
This approximation can be expressed in terms of the matrix B(e) = T'(¢) A(e)T~(e).

Specifically, since B(0) is stochastic, we can form matrices Ug and Vg(e) such that

_ UB 0 _ ' VB (6) 0
Uec = , Vc(e) = 0T 1 ] (5.41)
oT 1]
Therefore, the matrix é’(e) can be written as
~ Vi A(e)T(e)Us ©
C(E) = 1 B(E)T(G) (E) (e) B (5.42)
€l —aT(e)A(e)TYe)Us O
If the terms U(e) and V (¢) are defined as
U(e) =T Y (e)Us, V(e) = Va(e)T(e) (5.43)
then the approximation of the original system can be written as
AlD)t = (AO)t | y(0)ecAle)ty (0) — U (0)V (0) + O(e) (5.44)
where
A(e) = %V(e)A(e)U(e) (5.45)

The computation of the slow time scale generator ;1(6) can be expressed in the

original, unaggregated, basis as

AN (e) =

%P(E)A(e)f-"(e) (5.46)

where

P(e) =U(e)V(e) = T ()UsVp ()T (e) (5.47)
is an “approximation” of the true eigenprojection P(e) of the zero group of eigen-
values. In some sense, P(e) retains only the “important” terms of P(e). This is

similar to the interpretation of Algorithm 2.1 where P(e) = UV (¢) captures the
important terms of P(e).
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5.2.2 Existence of aT(e)

The key to the construction presented in the previous section is the identification
of the vector aT(¢). Several aspects of the structure of the matrix A(e) are related
to the existence of a suitable vector. _
First, using Theorem 5.5, if A(€) is irreducible for € € (0,€), then there is a
strictly positive eigenvector of (¢) associated with the dominant eigenvector Ao(e).

Since by assumption the dominant eigenvalue is nonpositive,
oZ () A(€) = Mo(e)al () < 0T (5.48)

However, strict positivity for € > 0 is not sufficient since it is still possible for
a(0) ®» 0. If any of the components of a(¢) are not O(1) then T-1(0) does not
exist and T~1(¢) is not an analytic function of e. '

Consider for example

-1 1-—c¢ €
Al={1+e -1 0 o (549)
0 € —€—¢

The dominant eigenvalue is identically zero and the associated eigenvector is
at(e) = (1 +¢1,¢) (5.50)

which is strictly positive for € > 0 but not for ¢ = 0.

The condition that limoc(e) > O is related to the graph structure of the
sequence of aggregated generator matrices. Specifically, if a multiple time scale
decomposition of a generator A(%(e) is performed to obtain A©®(0), ... A*)(0),
then each graph G(A()(0)), i = 0,...,k—1 must have “singular/final” structure.
That is, the singular classes of G{4()(0)) must all be final as well. Note that by
Theorem 5.6, this implies that there can not be a class chain with two singular
classes and therefore the zero eigenvalue is semi-simple. Since each of the A(")
satisfy this condition, the original system must have well defined multiple time
scale behavior (see Definition 2.3, page 42). If the condition is not satisfied for

some A()(0), then the dominant left eigenvector of A()(0) has components which
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are identically zero. Although a complete proof is not provided here, it can be
shown that such zero components are associated with components of the dominant
eigenvector of A(®(¢), aT(e) which converge to zero as € | 0. To illustrate this,
consider A(e) in (5.49). At the second time scale, states 1 and 2 are aggregated and
state 3 forms another aggregate. At that time scale, the aggregate made up of the
original states 1 and 2 forms a singular class that is not final. The net result is that
the dominant eigenvector has a component which converges to zero.

Computation of the dominant eigenvector, a¥(¢) is not in general trivial. Con-
sider the singular case in which there is only a single zero eigenvalue of A(e) for
€ > 0. The vector o (¢) must be found such that

aT(e)A(e) =0 (5.51)
This can be expanded as a Taylor series as
(ao+ear+---)(Ao+ €A1 ++-)=0 (5.52)

By matching powers of ¢, a sequence of linear equations can be formed.

avo =0
6(&0A1+&1A0) =

5.53
€ (azdo + oAy + agd;) = (5.53)

The matrix Ag is not invertible and therefore these equations do not have unique
solutions. However, if Ag has the zero eigenvalue with multiplicity m, then there are
m degrees of freedom in each of the equations. This could be exploited to compute
the overall a7 (¢).

An alternative to the direct solution of these equations is to use an iterative
approach which is an extension of that proposed by Vantilborgh [45] for the compu-
tation of the steady state eigenvector of a nearly completely decomposable Markov
chain. In that approach, the eigenvectors of each block are first computed in isola-
tion. Then, the aggregated model is constructed and its eigenvector is computed.
The eigenvector associated with each block is then updated to take into account the

weak interactions with the other aggregates resulting in an O(€?) approximation.
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In the nearly completely decomposable, two time scale case, this procedure can be
iterated to provide an O(e") approximation. Extension of this type of iterative

approach may be feasible for the computation of a7 (e).

5.3 Example

In order to demonstrate the decomposition algorithm for perturbed positive sys-
tems, two examples are considered. The first has a singular generator matrix which
results in the transformed generator being stochastic. The second example has a
nonsingular generator.

Consider the system generated by

-1 1-—¢ 2¢
Al=|1+e -1 0 (5.54)
0 €/2 —e—é

The dominant left eigenvector associated with the zero eigenvalue is
a¥(e) = (1+¢1,2) (5.55)

The similarity transformation is therefore

1+€¢ 0 0
Te=| o 10 (5.56)
0 0 2

resulting in the stochastic matrix

-1 1—-€ e+¢é
B(e) = T(e)A(e) T (&) = | 1+¢ -1 0 (5.57)

0 e —e—¢t

The behavior of the system generated by B(e) can be approximated using
Algorithm 2.1.

Bt = BO)t | 7,eeB(Ity, (0) — UpVi(0) + O(e) (5.58)
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where _
~ 1__ —€ 1l+e€
B(e) = =Vg(e)B(e)Up =
€ _ —-1—¢€
and )
| 1/2 0
ve@=|- 1%, va=|1/2 0
? 001’ "
0 1]

Expressed using the original variables, this approximation is
eAle)t = (AWO)t | 7 (0)ecAle)ty (0) — U(0)V (0) + O(e)

where in this case A(¢) = B(¢) and

1/(2+2¢ 0
U(e) =T Y (e)Up = 1/2 0
0 1/2
and ‘
V@ =Va@r@=|" 0 ]

Next, consider the matrix A(e) which is nonsingular for € > 0.

-1 1—-2¢ ¢
Al)=|1+2 -1 0
0 e —e

A suitable vector a¥(e) is
aT(e) = (1 + 2¢,1,2)
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(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

Note that when A(e) is singular, there is a unique vector aT(e) (within a scale

factor). When A(e). is non-singular, the suitable vector a¥(¢) is not unique and

therefore is somewhat easier to obtain since small multiples of the other eigenvectors

can be added. After similarity transformation, we obtain the substochastic matrix

-1 1—-4¢ €/2+¢€

(5.66)
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which can be augmented to form the stochastic matrix C(¢)

[ —1 1-4€? €/2+¢€ 0|
1 -1 0 0
Cle) = 5.67
(€ 0 2 - 0 (5.67)
| 0 2¢  é/2-€ 0
Proceeding directly from B(€) we can compute
1/2 0
Us=|1/2 0 v,;(e)=[1 1 0] (5.68)
? T 001 '
0 1
from which are obtained
1/(2+4¢) O
. 1+2 1 0
U@Q=TQUs=| 12 0 |, V@O=Va@T@=| "%
0 1/2
(5.69)

Finally, the slow time scale generator A(€) can be calculated directly using U(e),

V (€), and the original generator A(e)

—2¢ €+ 2¢?

5.70
. o (5.70)

A = %V(e)A(e)U(e) - [

5.4 Discussion and Conclusion

The decomposition approach presented in the chapter extends previous multiple
time scale results by providing a direct algorithm for constructing a multiple time
scale approximation for a class of positive systems. This class is characterized
by having a structure that is very similar to that of systems which describe the
evolution of state probabilities of a Markov process. The only additional necessary
computation beyond the Markov decomposition algorithm is the computation of
the dominant eigenvector of the generator of the system.

Consideration of positive systems points out several aspects of the Markov

decomposition algorithm which are significant. The first is that Markov processes
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and the positive system which can be analyzed have a very specific structure. At
each time scale the singular classes are final. It is clear that any more general
algorithm dealing with positive systems will have to deal with the more general
structure which can occur in arbitrary positive systems. The second aspect is that
in a conservative systein, such as in the Markov case, the left eigenvector is trivial
to obtain. It is now clear that part of the ease with which Markov systems can be
analyzed is due to knowing the form of the dominant left eigenvector.

It would be desirable to compute the slow time scale generator matrix A(e)
directly from A(e) without explicitly computing the stochastic form of the generator.
This type of result might be available through extension of the concept of “weak”
terms in a generator. In the Markov context, it was required that the off-diagonal
weak terms be of higher order than the product of several remaining terms. Also, a
weak matrix W (e) had to satisfy 1TW (e) = 0T. If this definition is extended to the
class of systems which can be decomposed through the stochastic representation
presented in this chapter, a weak matrix must satisfy o ()W (¢) = 0T.

It is now clear that direct application of the Markov algorithm to positive
systems is not in general valid. It should be pointed‘ out that this is true even
in the nearly completely decomposable case originally considered by Simon and
Ando. Their algorithm only gives valid approximations for systems with two time
scales of behavior. It is therefore evident that more e-dependent computation is
in general necessary. This can take the form of computation of the dominant left
eigenvector. Another feasible approach may be to identify which e-dependent terms
in the eigenprojection of the zero-group, P(e), are “needed” in order to obtain a
valid decomposition. Once the dominant eigenvector is found, for example, we have
already seen that P(e) = U(¢)V (¢) in (5.47) is a sufficient approximation.

Finally, in terms of applications, it may seem that finding T (¢) is too difficult.
However, there are many systems for which this is straightforward. One major class
includes models of compartmental systems [38]. For these systems, aT(e) = 17T is

again sufficient and the Markov algorithm can be applied almost directly.
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Chapter 6

Structural Decomposition and

Fault-Tolerant Systems

6.1 Introduction and Motivation

In this chapter, analysis of the multiple time scale structure of a perturbed Markov
process is addressed. Structure of a perturbed Markov process refers to the complete

multiple time scale decomposition of the type performed in Chapter 2. In this
| case, only the position of the nonzero transition rates of each of the unperturbed,
aggregated time scale models, and the sets of states which constitute the aggregate
classes, are determined. Although the detailed behavior of the system cannot be
recovered from these descriptions, much useful information is retained. It will be
shown that this subset of information about the decomposition can be obtained

using very simple graph-theoretic algorithms which are implicit in Algorithm 2.1.

Use of these structural aspects of a Markov chain can have many applications.
For instance, an algorithm similar to that presented in this chapter has been applied
to the analysis of the behavior of “simulated annealing” optimization methods [44].
Other applications include computing order of magnitudes for the time of events in
systems with rare transitions. Specific applications include analysis of the failure

time of a fault-tolerant system or the error rate of a communication protocol.
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The nature of the decomposition algorithms presented in this chapter are very
different from those presented in Chapter 2. In the latter algorithms, numerical
calculations of dominant eigenvectors of unperturbed systems, and of e-dependent
“trapping” probabilities were required. The algorithms in this chapter basically
consist of computing various types of connectivity in labeled graphs. Since the
computations involve only integer quantities, issues of numerical stability are not
relevant. Also, by introducing the graph-theoretic formalism, it is possible to
employ standard graphical algorithms for computing quantities such as shortest

paths between vertices of a graph.

This chapter is organized as follows. In the next section, the basic structural
decomposition algorithm is presented along with the necessary graph theoretic
formalism. An example is analyzed in detail to demonstrate various aspects of the
algorithm. Some possible extensions of the graphical algorithm are also discussed.
In Section 6.3, an algorithm which can be used to analyze a system with several
unknown orders of magnitude of rare transitions is presented. This algorithm is
applied to the analysis of a simple fault-tolerant system. The final section contains

a discussion of the structural decomposition results.

6.2 Structural Decomposition Algorithm

In Chapter 2, an algorithm for approximating the transition probability function
3()(e,t) of a perturbed Markov process n(®(e,t) was presented. The resulting
uniform approximation (2.19) is expressed as a combination of the behavior of a set
of e-independent, aggregated Markov processes with generators A(%(0),...,A(*)(0)
and some associated matrices (the U(*) and V() which characterize the recurrent
and transient states of these processes. The algorithm can be greatly simplified if
only the constituent states of the aggregate classes and the allowable (i.e. nonzero
rate) state transitions are desired. In this section, the structure of the graphical
representation is presented. Then, the graphical algorithm for the derivation of this

entire structural decomposition is described.
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6.2.1 Graphical Structure

‘Given a perturbed Markov generator A(")v(e) of the type considered in Chapter 2,
an associated graph G(¥) = (N(¥), £(*)) can be constructed as follows. If A (¢)
generates an n state process, then the set of vertices is N(¥) = {1,2,...,n}. Each
edge is a triple, e = (i,7,w) € £® of the initial vertex, i, the final vertex, j, and
a nonnegative integer weight, w. For each nonzero entry ayf)(e), J # 1, a directed, |
weighted link from vertex i to vertex j is introduced. If ag-’:)(e) is strictly O(ev),
the weight of the edge is w. It is also useful t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>