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ABSTRACT

A methodology is presented for generating decisionmaking organizational
architectures that satisfy some generic structural properties, as well as more specific .
designer's requirements. Petri Nets are used as the basic technique to represent
organizational architectures. The allowable set of interactions among the organization
members is first defined, and a mathematical framework is developed to represent the
interactions between organization members. The set of organizational architectures
satisfying both the structural and the designer's requirements is then analyzed. This set is
delimited by its minimal and maximal elements and a technique is given to generate the
entire set from its boundaries. Simple paths are used as the incremental unit leading from
one organizational form in the set to its neighboring ones. The internal structure of the set is
then investigated using results from Lattice theory. The methodology has been implemented
on a personal computer; a description of the different modules of the program is provided.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM DEFINITION

Most of the theoretical developments in decision and control theory have addressed
the problem of analyzing the performance of a given organizational form. In this case, the
organizational structure is fixed and well defined. Some changes in the topology of the
organization may occasionally be made in order to improve its performance, but they always
remain incremental. There is a need for a methodology to generate in some orderly manner
organizational architectures that are not just variants of the same structure. Two main
problems need to be addressed to implement successfully such a design methodology.

First, a framework needs to be defined that will specify the class of organizations
under consideration. This framework will allow for a mathematical formulation of the
design problem and will thus give the organization designer a means to translate into hard
numbers the practical problem he - or she - is trying to solve.

Second, compromises have to be made in order to keep the organizational form
problem computationally feasible. There is always a trade-off to be made between the
explanatory power of a model - its universality - and its usefulness as an analysis tool. Too
broad a model may be able to reflect faithfully reality, but might be unusable because of
computational limitations. On the other hand, a model that is too restrictive will be able to
account only for oversimplified examples and will be useless for complex real-life
applications.

1.2 THEORETICAL BACKGROUND

A quantitative methodology for the analysis and evaluation of information
processing and decisionmaking organizations has been developed by Levis and his
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co-workers [1]. In this model, organization members have a four stage internal structure
that allows for the differentiation of the different interactions between two organization
members.

This methodology has been used primarily, up to now, for analysis purposes [2][3].
It is, however, very appropriate for addressing the problem of organization design precisely
because of the possibility of differentiating between the interactions. The four stage model
of the single interacting decisionmaker will be, therefore, the starting point of the theoretical
development presented in this thesis.

The mathematical formulation of the problem will be based on Petri Net theory.
Petri Nets have been introduced [4] to represent organizational forms because they show
explicitly the interactive structure between decisionmakers and the sequence of operations
within an organization. Petri Nets appeared to be a very efficient tool not only for the
modeling but also for the analysis of decisionmaking organizations [5]. In this thesis, Petri
Nets will be primarily used as a design tool, but the dual role of Petri Nets both as a
modeling and as an analysis technique should be kept in mind.

1.3 GOALS AND CONTRIBUTIONS

In this thesis, a mathematical model of interactions between decisionmakers is
defined. This model allows the organization designer to characterize with an arbitrary level
of precision the class of organizations he - or she - is considering. The specificity of the
designer's requirements will determine the degrees of freedom left. If the designer's
requirement are loose, the dimensionality of the combinatorial problem can be very large. A
technique will thus be developed to reduce this dimensionality. The main idea is to
characterize the set of allowable organizations by its boundaries only. To give a meaning to
the notion of boundaries, a partial order will be defined allowing for a classification of
organizations. Lattice theoretic results are then used to gain deeper insight into the internal
structure of the set of all allowable organizations.

The different organizational architectures generated by the above procedure can be

translated into the conventional Petri Net representation of organizations. These
organizations can then be analyzed and their performance, with respect to different criteria,

14




can be compared. A link is then achieved between the design methodology presented in this
thesis and the existing analysis tools that have already been developed by other members of
the research team at the MIT Laboratory for Information and Decision Systems.

The overall procedure has been implemented on a personal computer and a program
with a user interface is available. It allows the organization designer to go step by step
through the entire design methodology.

1.4 THE THESIS IN OUTLINE

The thesis is organized as follows. Chapter II is a review of Petri Net theory: the
basic notions are introduced together with some more advanced topics that will be used
throughout the thesis. Chapter III is a review of Lattice Theory: it presents the formalism
used in subsequent chapters to formulate and analyze the results obtained. In Chapter IV,
the basic methodology for defining and representing organizational classes is introduced and
Chapter V goes through the translation of this methodology into the language of Petri Net
theory. In Chapter VI, additional constraints are introduced that will define the concept of
valid organizational form. Chapter VII gives a characterization of the set of all valid
organizational forms as well as some properties of the internal structure of this set. The
algorithmic implementation of the overall methodology is presented in Chapter VIII and two
application examples are given in Chapter IX. Finally, Chapter X concludes the thesis and
suggests some developments for further research.

15
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CHAPTER II

REVIEW OF PETRI NET THEORY

Petri Nets will be used throughout this thesis both as an analysis and as a modeling
tool. Because they show explicitly the structure of interactions between decisionmakers,
Petri Nets are very appropriate for modeling decisionmaking organizations. They leadto a
mathematical description of the organization structure that can then be investigated
analytically. This chapter presents an introduction to Petri Net theory. The basic notions are
introduced together with some more advanced topics that will be used in this thesis, such as
the concept of invariant which is discussed in some detail. References related to specific
topics are given throughout the chapter. Elements and definitions of general net theory are
given in [6] and [7]. Introductory material about Petri Nets may be found in [8],[9],[10] or
[11]. Most proofs of the results stated in this chapter can be found in [5] and will therefore
be omitted here.

2.1 FUNDAMENTALS
2.1.1 Basic Definitions

Petri net
A Petri net - denoted by PN - is a bipartite directed graph represented by a
quadruple PN=(P,T,1, 0).

P = (py.....Pp} is 2 finite set of places.

T = {t,....tyy) is a finite set of transitions.

Iis a mapping P x T — {0,1} corresponding to the set of directed arcs from places

to transitions.

O is a mapping T xP — {0,1} corresponding to the set of directed arcs from
transitions to places.

17



A node will refer to either a place or a transition of PN.

A function that takes values from the set of all positive integers may be associated
with the arcs of the net. This is equivalent to having the mappings I and O take values from
the set of all positive integers. The nets under consideration in this thesis, where I and O
take values from {0,1} are called ordinary Petri Nets.

An example of a Petri Net is shown in Fig.2.1; let it be denoted PNy. Places are

represented by circles and transitions by bars.

Figure 2.1: Petri Net PN;.

Postset and Preset
We denote by t* = {p € P/ O(t,p) = 1} the set of all output places of transition t.

Similarly, *t = {p € P/I(p,t) = 1} denotes the set of all input places of transition t.

The same notation applies for places as well.
*p={te T/O(t,p) = 1} denotes the set of all input transitions of place p.

p’ = {te T/I(p,t) = 1} denotes the set of all output transitions of place p.

18




If X is a subset of P U T, i.e. X is a set of nodes of PN, we define *°X and X° as
follows:

X'={ x"/xe X}

X ={*x /xe X}

X* (resp. *X) will be called the postset (resp. preset) of X. The definition applies
to an element x as well.

As an illustration, let us consider the Petri Net'PNl of Figure 2.1. We have the
following equalities:

°p1 = (1113
ty’ = {p2.p3}
If X={p3.t4) then X* = {t5,p5} and "X = {t3,p7).

Marking

A marking of PN - denoted by M - is a mapping: P — {0,1,2,...} which
assigns a non-negative integer number of tokens to each place of the net. A marking can be
represented by a n-dimensional integer vector, whose components correspond to the places
of the net.

In Figure 2.1, no tokens are shown. The marking of the net is therefore the
following vector:
M°=(0,0,0,0,0)

Firing
A transition t is enabled by a given marking M if and only if for each input place p
oft, M(p)=21(p,t).

When a transition is enabled it can fire. The new marking M' reached after the firing
of tis defined as follows :

(Vpe P) Mi(p)=M(p)+O(p) - I(p,H) 2.1
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t

- We will writte M — M’ to indicate that t is enabled by the marking M and that the
firing of t yields the new marking M'.

In Figure 2.1, t{ is the only transition that is enabled. It can actually fire an infinite

number of times.
2.1.2 Complementary Definitions

Fining sequence

The sequential firing of transitions  tj1,t;5,...tig will be denoted
O'S = tjs"js-l'---' j2° 1

(0]
We will writt M — M' to indicate that the firing of o yields the marking M.

The set of all firing sequences of PN will be denoted by T*. In Figure 2.1, the only
possible firing sequences are the power series of tq, denoted t1P, where p is a positive

integer.

Parikh mapping - Firing vector
With a firing sequence G can be associated a firing vector Nj, also called the

Parikh mapping [12] of the sequence 6: Ng is a m X 1 non-negative integer vector
whose j-th component corresponds to the number of occurrences of transition t in the

sequence Og.

Note that the relaﬁonship between firing vector and firing sequence is not a one by
one correspondence. If N=[n{,n,,...n,,] is a firing vector, there will be Y associated firing
sequences with

2 = [n+ny+..+n ]!/ [ng!nplngpl].

Reachability Set
Given an initial marking MO of the Petri Net PN, we will call reachability set or

forward marking class [11]- denoted R(MPO) - the set of all possible reachable
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markings. In other words, a marking M belongs to R(MP) if there exists a firing sequence
o leading from M° to M.

g
RMO) = {M /A ceT* M° - M) > (2.2)

The reachability set of PN, given the initial marking MO is obviously
9(1(M°) ={(n,0,0,0,0)/n positive integer }.

If we denote by  the cardinal of the set of positive integers, we can write the
reachability set of PN as follows:

R,(Mo) = ((®, 0, 0,0,0)}

Self-loop and pure Petri Nets

A place p and a transition t are on a self-loop if p is both an input and an output
place of t. A Petri Net will be pure if it does not contain self loops. Petri Nets under
consideration in this thesis will all be pure.

Dual of a Petri Net
We will call dual of a Petri Net PN, the Petri Net PN’ obtained from PN by
exchanging places and transitions, and by reversing the direction of the links. Formally, if

PN = (P,T,0,]) and PN' = (P, T',0",I'), we have:
P'=T ,i.e., transition t of T corresponds to place p'j of P'.
T =P ,ie., place p; of P corresponds to transition t; of T'.
I'(p'j,t'i) = I(pi,tj) for all tie T and all p;e P

O'(t'i,p'j) = O(tj,pi) for all tje T and all p;e P

The correspondence between the mappings I' and O' and the mappings I and O is
illustrated in below.
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pl t2 P3

O———0
'y P 3
k—C—
The following relations hold:
I(p1tp) =1 I'(p'a.t') =1
I(p3tp) =0 I(p'at'3) =0
O(tp.p1) =0 O'(t'y.p'p) =0
O(ta.p3) =1 O'(t'3,p) =1

Figure 2.2 represents the dual PN ' of the Petri Net PNj.

Figure 2.2: Petri Net PN1', dual of PNj.

Subnet of a Petri Net
" A subnet [5] of a Petri Net PN = (P, T, O, I) is a Petri Net PN; = (P, T, O, L)

such that:

PDPS;T:Ts

I and Og are the restrictions of I and O to Pg x Tg and Tg X Pg respectively.
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2.1.3 Graph Theoretic Definitions
Connectivity
A Petri Net is connected if and only if there exists a path -not necessarily directed-

from any node to any other node.

Strong Connectivity

A Petri Net is strongly connected if and only if there exists a directed path from

any node to any other node.
PN is connected but not strongly connected: there is no directed path from t; to py,

for instance.

Directed Circuit
A directed circuit is a directed path from one node back to itself.

Directed Elementary Circuit

A directed elementary circuit is a directed circuit in which no node appears
more than once.

PN has two directed elementary circuits:
e P1-0-P3-15-P4-13-P)
e 1-P3-15-P5-14-P2-12

Directed elementary circuits will play a key role in the theory developed in this

thesis. An algebraic characterization of those circuits will be given in subsection 2.5 for a
specific class of Petri Nets.

2.2 LINEAR ALGEBRA APPROACH

In section 2.1, Petri Nets were introduced using a graph theoretic approach. Petri
Nets can also be described in terms of integer arithmetic [13]. In that case Petri nets are
referred to as Vector Replacement Systems (VRS) [14] or Vector Addition Systems (VAS)
[15].
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Incidence Matrix

The topological structure of a pure Petri Net can be represented by an integer matrix
C - called incidence or flow matrix. C is a n X m matrix whose columns correspond
to the transitions and whose rows correspond to the places of the net. C is defined as
follows

Cij = O(tj,pi) - I(pi,tj) I1<isn 1<j<m

Note that the definition is restricted to pure Petri Nets. There is actually a problem
with non-pure Petri Nets in the sense that self-loops cannot be represented in the incidence
matrix: a 1 and a -1 cancel each other to yield a zero in the matrix, losing therefore track of
the existence of the self-loop. Since we are considering pure Petri Nets only, we will not
have to face this problem.

The mappings O and I can be reconstructed from the matrix C in the following trivial
way :

O(t;p;) =max { Cj;,0)
I(pi,tj) =min { Cij ,0}

The incidence matrix of the Petri Net PN is given below.

11100
010- 0
cC= ]0100-1
! 00-101
0101 0|

The marking of a Petri Net will be represented by a n-dimensional integer
vector. The same notation - M - will be kept for both the marking and its vector
representation. '

If o is a firing sequence associated with a firing vector N, the marking M' reached
from the initial marking M after the firing of o, is given by:

M'=M+C-Ng (2.3)
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The previous algebraic relation should be used carefully, bearing in mind that some
information has been lost in the process leading from a firing sequence to a firing vector. To

illustrate the point, let us consider the Petri Net PN of Figure 2.1.

Let us apply relation (2.3) to the following initial marking and firing sequence:
MP° = (0, 0,0, 0,0)T

Ne=(1,1,1,1, )T

0 (1110 0
0 010-1 0
M1‘=M0+C1.Ns= o + o1 0 0-1
0 00-10°1
| 0 | (0101 0
- -
0
= 0
0
0

Mlisa positive integer vector corresponding to a valid marking of the Petri Net
PNj. It is however impossible to find a firing sequence associated with the firing vector Ny

that will take the marking of PNy from M° to Ml Ny corresponds to the firing of
transitions ty, ty, t3, t4 and t5. Whatever the firing order, there will be a point where either

transition t5 or transition t4 is not enabled. This fact is however hidden in the algebraic

relation (2.3).
Duality

The incidence matrix of a Petri Net is the transpose of the incidence matrix of its
dual.
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The proof is straightforward. If C' is the incidence matrix of the dual PN’ of a Petri
Net PN, we have:

Cy = 0wy - IEL)
= O(t,pp - pjt)

= Cji , and therefore C' = cT.

2.3 SOME PROPERTIES OF PETRI NETS

In this section definitions and results relevant to the subsequent developments will
be given.

Boundedness
A marking M is bounded if there exists a positive integer k such that for every

reachable marking M - element of the reachability set R(MPO) - the number of tokens
in each place is bounded by k. If k equals one, the marking is said to be safe. A
Petri Net PN is structurally bounded if any initial marking of PN is bounded.

PN/ is not bounded under M - or any other marking - since P1 can have an

arbitrarily high number of tokens.

Liveness
A marking MO is live if for any transition t and for every reachable marking M there
exists a firing sequence from M that includes t. In other words every transition of the
net can fire an infinite number of times.
A Petri Net PN is structurally live if any initial marking of PN is live.

Consistency
A Petri Net is consistent if and only if there exists a marking M and a firing

sequence G such that:
c
* ¢ brings the marking M of the net back to itself, ie. M - M

« ¢ fires each transition at least once.

o is called a cyclic firing sequence.
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PN is obviously not consistent.

Persistency

A Petri Net is persistent [16] if for all transitions t; and ty with t;#t5 and for any

reachable marking M so that t; and t) are both enabled, the firing of one of the

transitions cannot disable the other.
Conflict-free Petri Net

A Petri Net is conflict-free if every place which is an input of more than one
transition is an a self-loop with each such transition

Conflict-free Petri Nets are persistent but the converse needs not be true. PN; is a

conflict-free Petri Net.
Event graph
An event graph is a connected Petri Net in which each place has exactly one input
and one output transition.
Pure event graphs will be the only class of Petri nets under consideration in this
thesis. Event graphs will be analyzed in more detail in section 2.5.
2.4 INVARIANTS

2.4.1 Definitions

S- and T-invariants

We will call S-invariant [13] an X 1 non-negative integer vector X element of
the kernel of CT, i.e. verifying the relation

cT-x=0 (2.4)
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Similarly, we will call T-invariant a m x 1 non-negative integer vector Y element
of the kernel of C, i.e. verifying the relation

C-Y=0 (2.5)

Support
The set of places (resp. transitions) whose corresponding components in X (resp.Y)
is strictly positive is called the support of the invariant and is denoted <X>
(resp.<Y>).

The support of an invariant is said to be minimal if and only if it does not contain
the support of another invariant but itself and the empty set.

S- and T-components ;
Let X be a S-invariant of a Petri Net PN and let <X> be its support. <X> is a set of
places of PN, i.e. a subset of P. We call S-component [17] associated with X -
denoted [X] - the subnet of PN whose set of places is <X> and whose transitions
are the input and output transitions of the places of <X> in PN.

with
Px = <X>

Tx={p"/pePy} U (°p/pePy)
Iy (resp. Oy) is the restriction of I (resp. O) to P, x Tx (resp. T yx Py).
T-components are defined in a similar way. If Y is a T-invariant, we will call

T-component associated with Y - denoted [Y] - the subnet of PN whose set of transitions
is <Y> and whose places are the input and output places of the transitions of <Y> jn PN.

S- and T-invariant nets
‘A T-invariant net is a Petri Net whose set of transitions is the support of a
T-invariant. In other words, there is a T-invariant whose components are all strictly
positive.
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Similarly, an S-invariant net is a Petri Net whose set of places is the support of
an S-invariant. In other words, there is an S-invariant whose components are all
strictly positive.

2.4.2 Example

Let us consider the Petri Net PN, of Figure 2.3.

t
Py 1:3
>O—f—
Py
—O-

Figure 2.3: Petri Net PN,.

The incidence matrix of the Petri Net PN, represented in Figure 2.3 is

1 -1 0]
1 0 -1
C, = 11 0
|10 1|
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S-invariants
X= [x1, %9, X3, X4]T will be a S-invariant if and only if:
XT.cy=0

which yields X1=x3 and x9=xy4. Therefore X = [x 1> X2, X1, X2l
The reader should be easily convinced that there are two minimal support
S-invariants:
X1 =1[1,0,1,0] with<X;>= {p1.p2)
and
X>=1[0,1,0,1] with <X,y>= {p3.p4}

T-invariants
Similarly, Y = [y1.¥2, y3] will be a T-invariant if _and only if
C-Y=0
which yields y;=y,=y3. Once again, it is easily seen that there is a single minimal
support T-invariant:
Y =I1, 1, 1] with <Yp>={t,tp.t3}.

Note that PN, is both an S-invariant and a T-invariant net. Xl + X, is indeed an

- S-invariant that includes all the places of PNj. Similarly Y is a‘T-invariant that includes all

the transitions of PN2.

2.4.3 Duality

Theorem 2.1
The S-invariants (resp. T-invariants) of a Petri Net PN are exactly the T-invariants
(resp. S-invariants) of its dual PN'.

The proof is straightforward. If C is the incidence matrix of PN, CT will be the

incidence matrix of PN’ (2.1.1). Let X be a S-invariant of PN. Then XI.C = 0, which can
also be written C1.X = 0. X is therefore a T-invariant of PN'. The proof is identical to
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show that a T-invariant of PN is an S-invariant of PN'.
2.4.4 Properties of S- and T-invariants

Theorem 2.2
X is a S-invariant of PN if and only if for any initial marking M© of PN and for any

reachable marking M (i.e. Me R(MP) ),
XT . M= XT - M° (2.6)

The proof is straightforward: (2.6) is obtained by premultiplying equation (2.3) by
XT and by using (2.4) to eliminate the term XT.C.Ns. Equation (2.6) establishes the
conservation of the tokens belonging to the support <X>.

Theorem 2.3

If a Petri Net has a T-invariant, it is possible to construct a marking M and a firing
c
sequence o such that M — M.

Proof:
Let X=[x1,X,....X ] be a T-invariant of PN.
For each place p of PN, we choose:

M(p) = X Xj.O(tj,p) = E Xj.I(p,tj).
1<j<m 1<j<m

o is given by G =ty X1stp*2e .0t *m.

The following result, due to Memmi and Roucairol [13], justifies a posteriori the
introduction of minimal support invariants.

Theorem 2.4
LetIy,I,....Ig be the minimal supports of the S-invariants of a Petri Ngt. Let X;

be an invariant whose support is I;, i.e. I; = <X;>. The set {X{,X»,....Xs} isa

base of the set of all S-invariants, i.e. a minimal set of generators.
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In other words, every S-invariant X can be written as a linear combination of the X

with pbsitive rational coefficients A;: X=X AX
I<i<s

Note that the set of minimal supports of a Petri Net is necessarily finite, since the
number of places is finite.

2.5 EVENT GRAPHS

Event graphs will play a key role in this thesis since all the Petri Nets under
consideration in the sequel will be event graphs. The definition, already given in section
2.1.1is recalled here and some important results are stated.

Definition
An event graph [9] is a connected Petri Net, in which each place has exactly one
input and one output.

The following two theorems, due to Commoner and Holt [18], are of primary
importance.

Theorem 2.5
In an event graph, the number of tokens in any elementary directed circuit - the token
content of the circuit - remains invariant by transition firings.

Theorem 2.6 } .
A marking of an event graph is live if and only if the token content of every directed
elementary circuit is strictly positive.

The following result, due to Hillion [5], relates directed circuits and S-components

of an event graph. It gives an algebraic characterization of a topological concept and will be
extensively used in the sequel.
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Theorem 2.7

The minimal S-components of an event graph are exactly its elementary directed
circuits.

2.6 SWITCHES

Unlike all the notions introduced in the previous sections of this chapter, switches
are not yet part of the current definition of a Petri Net as found in the general literature.
Some authors however have already defined the concept [4].

Switches need to be introduced to automate the resolution of conflicts. If we
consider the situation presented in Figure 2.4, the token which appears in place p; can go
either in place p after firing of transition ty, or in place p3 after firing of transition t). The

choice is arbitrary and there is no way in the standard Petri Net theory to automate this
choice. This can be a serious shortcoming. Switches are specifically introduced to resolve
this problem.

Figure 2.4: Example of conflict.
Different kind of switches can be thought of. The following definition has been
retained and will be used in the sequel.
Definition

A switch is a transition with multiple output places and some decision rule,
which directs the output flow of information toward one and only one of its output places.
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Since a switch is a kind of transition, the firing rules for a switch will be identical to
the firing rules for a transition: a switch will fire if all its input places contain at least one
token. Unlike regular transitions however, all the output places of a switch will not receive a
token. Only one of them will. This place will be chosen by the internal decision rule
associated with the switch. Figure 2.5 gives a example of a switch with two mput places
and three output places. The output places of the switch will also be called the branches of
the switch.

branch 1

branch 3

Figure 2.5: Example of a 3-branch switch.

The decision rules associated with the switch can be deterministic or not. They can
take the input information explicitly into account or not. They can take the state of the entire
Petri Net (the marking of the net) into account or not. Decision rules may be represented by
algorithms but they can also involve more sophisticated techniques derived from artificial
intelligence. There is virtually no limitations on the kind of decision rules to be associated
with a switch, which makes the model rather powerful. The more sophisticated the decision
rules, however, the more involved the analysis of the resulting Petri Net. The trade-off has
to be made by the designer of the net. Examples of decision rules associated with switches
can be found in [2],[19].
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CHAPTER III

REVIEW OF LATTICE THEORY

This chapter reviews the basic notions of lattice theory. The emphasis is on
definitions and concepts. Few results are actually stated. The formalism of lattice theory will
be used in Chapters IV and VII. It will provide a mathematical framework that will help in
articulating the problem under consideration and in stating rigorously the results obtained.
The reader already familiar with the concept of a lattice may skip this chapter. Introductory
material about lattice theory may be found in [20].

3.1 PARTIALLY ORDERED SETS
3.1.1 Fundamental Definitions

Partially ordered set (Poset)
A set X will be partially ordered or partly ordered by the binary relation <, if
and only if the following properties are satisfied:

(P1) VxeX x<x

(P2) VxyeX? (x<yand(ysx) = (x=y)

(P3) V&xyzeX x<y)and(y<z) = x<2z)

We will note x <y wheneverx <yand x #y.

If Y is a subset of X we can define a binary relation on Y by restricting the binary
relation < defined on X to Y. We will keep the same notation <. If (P1) - (P3) are satisfied

by < on X, then they are satisfied a fortiori by < on Y, since Y is included in X. We have
therefore the following result.
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Theorem 3.1
Any subset of a partially ordered set (Poset) is itself partially ordered by the same
binary relation.

Isomorphism
An isomorphism between two partially ordered sets X and Y, is a one to one

correspondence ¢ between X and Y such that:

V (xy)e X? (x<y) & (@x) < oy))
3.1.2 Diagrams .

In a hierarchy, it is important to know when one man is another's immediate
superior. The notion of immediate superior or immediate superordinate can be defined
abstractly in any partially ordered set as follows.

Definition
By b covers a is meant that a <b and that a < x < b is not satisfied by any x.

The previous definition leads to a graphical representation of any partially ordered
set X. Circles will be drawn to represent the elements of X. A directed arc from b to a will
then be drawn whenever b covers a. Any figure so obtained is called a diagram of X. It is
easily shown that any partially ordered set is defined up to an isomorphism by its diagram.

Example
Let us consider the following set X = {0,1 }3. X is obviously a partially ordered

set under the following order: if x=(x,x5,x3) and y=(¥1,¥2,¥3) are two elements of X,
then x <y means x; <y; for all i between 1 and 3. The 8 elements of X 1 are listed below in

Figure 3.1, while the diagram of X is represented in Figure 3.2.
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0,0,0)

(1,0,0) (0,1,0) 0,0.1)
(1,1,0) (1,0,1) 0,1,1)
(1,1,1)

Figure 3.1: Elements of X.

Figure 3.2: Diagram of X.

3.1.3 Greatest and Least Elements

Any partjallyvordered set X can contain at most one element a such that a < x for all x
element of X. Indeed, if a and a' are two such elements then a < a' and a' < a by
hypothesis. Therefore, a = a', by (P2). Such an element, if it exists, is called the least

element of X and will be denoted by .
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Similarly, there is at most one element b verifying x < b for all x in X. Such an

element, if it exists, is called the greatest element of X and will be denoted .

More generally, if Y is a subset of X, we will define the least element of Y, a, and
the greatest element of Y, b, as follows.

VyeY a<y<b withae Yandbe Y.

It is important to note that a given subset of a partially ordered set needs not have a
least or a greatest element. Those notions are not to be confused with the concepts of
minimal and maximal elements as defined below.

Definitions
A minimal element of a subset Y of a partially ordered set X is an elementa of Y
such that a > y for no y in Y. Similarly, a maximal element of Y is an element b
of Ysuchthatb<yfornoyinY.

Clearly a least element is minimal and a greatest element is maximal but the converse
need not be true.

Theorem 3.2
Any finite subset Y of a partially ordered set X has minimal and maximal members.

Proof
Let the elements of Y be yy,...yp,. Define the sequences my and My, as follows:

m; =M =y
my =y if y <my_; and my =my_; otherwise
My =y if yi > M1 and My = M, otherwise
Then my, is a minimal element of Y and M, is a maximal element of Y.

Atom

An element which covers ® in a partially ordered set X is called an atom of X.
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If we denote X" the subset of X obtained by excluding 0, an atom of X is a minimal
element of X*.

3.1.4 Chains

Chain .
A partially ordered set X satisfying the condition

(P4) (V (xy)e X? (x<y) or (y<x) ),
is said to be simply ordered and called a chain.

Chains are convenient to deal with because of the following property.

Theorem 3.3

With chains, the notions minimal and least (resp. maximal and greatest) are
equivalent.

Proof

If a is minimal then for no x element of the chain X, x < a. By (P4) we have then
a < x for all x in X. a is therefore the least element of X. The reasoning is similar for
maximal elements.

Connected chain

A chain x( < X1 <..< xj <... will be connected if X; covers Xx;_1 for all i.

Dimension
The dimension d[x] of an element x of a partially ordered set X is the maximum
length d of chains x() < xj <...<xq=x in X having x for greatest element - in case d

is finite. Similarly, by the dimension d[X] of X is meant the maximum length of a
chain in X.

It is clear that in determining dimension, one only needs to consider connected

chains. The notion of dimension is of particular importance when the following condition is
satisfied.
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Jordan-Dedekind chain condition
All finite connected chains between fixed end points have the same length.

The following theorem [21] gives a characterization of the Jordan-Dedekind
condition.
Theorem 3.4

Let X be a partially ordered set which has a @ and a Q and in which all chains are
finite. Then X satisfies the Jordan-Dedekind chain condition if and only if there
exists an integer-valued function f[x] such that

(xcoversy) & (x>yandfl[x]=fly]+1)

3.2 LATTICES
3.2.1 Definitions

Least upper bound
Let Y be a subset of a partially ordered set X. An upper bound of Y is an element
a of X such that y < afor all y in Y. The least upper bound - l.u.b. - of Y is the
least element - if it exists - of the set of all upper bounds of Y.

The concepts of lower bound and greatest lower bound - g.l.b. - are
defined by analogy.

Lartice
A lattice is a partially ordered set X, any two of whose elements have a g.1.b or

meet - denoted x Ny - and a l.u.b. or join - denoted x U y -.

Partially ordered sets in which every subset has a g.1.b. and a lL.u.b. are called
complete lattices.
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3.2.2 Sublattices

Definition
A sublattice of a lattice L is a subset of L which contains with any two elements
their join and their meet.

It is important to remark that a subset of a lattice L may be a lattice with respect to the
binary relation defined on L, without being a sublattice. The crucial point in the definition of
a sublattice is that the joint and meet of two elements have to be in the sublattice. We finally
define the concept of lattice polynomial that will be used in the following chapters.

Latrice polynomial
If X1,X9,...,x, are elements of a lattice L, we will call lattice polynomial
L(x1,Xp,....Xp) the sublattice of L generated by the elements x1,X5,...,X,, i.c.in

performing join and meet operations on the x;.

3.3 EXAMPLE

The lattice formalism presented in this chapter will be used in Chapter IV and VII.
An application example will however be given at this point to illustrate the different notions
that have been introduced. A more sophisticated example can be found in the Petri Net
literature [22], where the properties of the set of all slices of a Petri Net are investigated
using the framework of lattice theory.

Let us consider the set X of all 1 x 4 vectors whose elements take value in {0,1}:

X ={x=(x1.x2.x3.x4)/Vie [1,4] x;€ {0,1} }

The cardinal of X is 24=16. An order can be defined on the set X as follows. If X
and x' are two elements of X,

(x<x') & (Vie [14] x{<x')
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- X with this order is a partially ordered set. The join and meet operators are defined
on the set {0,1} as follows.

Ouvuod=0 0Nn0=0
Oovul=1 0Nn1=0
1lu0=1 1n0=0
lul=1 INnl=1

The operators U and M are then extended to the set X on an element by element
basis: ’

xXux' = (xluxl',xzux2',x3ux3',X4UX4')

XN = (x17x]', X3 N X', X3 N X3', X4 N xg)

Each element of X has a meet and a join within the set X. X is therefore a lattice. X

has a least element @ and a greatest element Q: ® = (0,0,0,0) and Q =(1,1,1,1).
The dimension of an element x of X (as defined in 3.1.4) is the sum of all its

components: d[X] = x{+x5+x3+x4. The following equivalence hold:

(xcoversx') & (x'<x and d[x] =d[x]+1).

According to Theorem 3.4, X satisfies the Jordan-Dedekind chain condition. The
diagram of X is represented in Figure 3.3. Note that all chains between fixed end points
have the same length.

Let us now consider the subset Y of X defined as follows:

Y ={y=(y1.y2.¥3:y4) € X/yp=y3 }.

The cardinal of Y is 23=8. Let Yy and y' be two elements of Y: y,=y3 and y2'=y3'.
By definition of the join and meet operations, y,Uyy'= y3Uy3' and y2ny2' = y3nys.
Therefore y Uy' and y Ny'are elements of Y. Y is a sublattice of X. To show that Y

satisfies the Jordan-Dedekind chain condition let us define the following function on Y:

flyl = y1+y3+yq = dly] - yp.
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The following equivalence holds:

(ycoversy') & (Y <y and fly]=1f[y]+1).

Note that the previous equivalence is not true if the dimension d is used instead of
the function f. The function f has been chosen by taking into account the constraint
imposed on the elements of Y. Figure 3.4 represents the diagram of Y. Note that the
Jordan-Dedekind chain condition is satisfied.

(M)(0:0.0.0)

0,1,1,1)

(1,1,1,1)

Figure 3.3: Diagram of X.
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(0,0,0,1)

0,1,1,1)

\/
O a,1,11)

Figure 3.4: Diagram of Y.

Lastly, let us consider the complement Z of Y in X:

Z={z=( 21,22,23,24 ) [ 25 # z3).

The following equalities between sets hold: X =Y UZ and Y Z = . Note that
in this case, the operators U and M refer respectively to the union and the intersection of
two sets. In the sequel, these symbols will be exclusively used to designate the join and

meet operators and no confusion should arise.

The subset Z is not a lattice. Indeed, let us consider the two following elements of Z:
2=(0,1,0,0) and z2'=(0,0,1,0). zuz =(0,1,1,0) e Y and zNnz'=(0,00,0) € Y.
Therefore, neither the meet nor the join of z and z' is an element of Z. The diagram of Z is
represented is Figure 3.5. Note that this diagram is not connected.
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(1 1(0,0,1,0)

) Q)
[ (0,1,0,1) ()(0,0,1,1)

b [
() (1,1,0,1) () (1,0,1,1)

Figure 3.5: Diagram of Z.
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CHAPTER IV

ORGANIZATIONAL CLASSES

4.1 OVERVIEW OF THE METHODOLOGY

This chapter introduces a methodology for defining and representing organizational
classes. Before entering into the details of the methodology itself, the need for such a
methodology must be justified.

Up to now, information processing and decisionmaking organizations have been
modeled and analyzed using Petri Nets [2],[3],[4],[5]. Petri Nets are indeed a powerful and
convenient tool to represent and study a given organizational structure. When it comes to the
problem of designing organizational forms - i.e. when no structure is given a priori -, the
general Petri Net theory alone is of little use because of its generality. The scope of
organizational forms that can be modeled by Petri Nets is only limited by the imagination of
the designer. To make the problem tractable, the class of organizations of interest must be
specified with more precision. The proposed methodology consists of three stages. First,
the basic constituents of a decisionmaking organization are defined. Then, the allowable
interactions between those basic units are introduced, and lastly a mathematical model is
derived.

The first step of a methodology for designing decisionmaking organizations is the
modeling of a single decisionmaker. The degree of refinement of this basic model will
impact the entire design procedure and will be a primary determinant of the kind of results to
be expected from the complete methodology. In section 4.2, three basic models of a single
decisionmaker, with increasing levels of complexity, are presented. Only one of these
models will however be retained in the following devclopmcnts.

The definition of all allowable interactions between decisionmakers will be a crucial

step in the design of our model. This is where assumptions and choices are to be made, that
will eventually determine the usefulness, the flexibility, and the power of the model.
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Section 4.3 will investigate this matter in some detail.

Finally, a methodology that would just include the first two steps might be useful as
a descriptive tool, but would be of little use for analysis. It is necessary to synthesize those
ideas into a mathematical model. This model will allow for an analytical representation of
decisionmaking organizations. Section 4.4 presents such a model.

4.2 SINGLE INTERACTING DECISIONMAKER
4.2.1 The Black Box Model

The easiest way to represent a decisionmaking unit is to consider it as a black box,
with inputs and outputs but without any explicit internal structure (see Figure 4.1). This
model is the first that comes to mind and, before developing more sophisticated ones, one
should investigate why this simple model is not good enough. The major shortcoming of
such a representation is that there is no differentiation among inputs or among outputs, e.g.,
whether they represent information sharing or commands. A model of decisionmaking
organizations based on this black box representation of a single decisionmaker would
necessarily be very limited in its analytic capacity. To overcome this shortcoming, the
internal structure of the decisionmaker has to be more explicit. The following subsection
introduces such an improvement.

inputs —~ DM outputs

VvV WV

Figure 4.1: Black Box model of a decisionmaker.
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4.2.2 The Four Stage Model
This model has been proposed by Levis [1]. A somewhat simplified version of it is

reproduced in Figure 4.2. Note that the notation of Petri Net theory - as defined in Chapter
II - is used.

SA

Figure 4.2: Four stage model of a decisionmaker

The decisionmaker receives a signal x - from the external environment or from
another organization member. The situation assessment (SA) stage contains algorithms that
process the incoming signal to obtain the assessed situation z. The assessed situation z may
be shared with other members. Concurrently, the decisionmaker can receive a signal z"
from another part of the organization; z" and z are then merged together in the information
fusion (IF) stage to produce z'. The possibility of receiving commands from other
organization members is reflected in the variable v'. The command interpretation (CI) stage
will combine z' and v' to produce the variable v representing the appropriate strategy to use
in the response selection (RS) stage. Finally, the RS stage contains algorithms that will
produce the output y.

This model explicitly shows at which stage a decisionmaker can interact either with
the external environment or with other organization members. A decisionmaker can receive
inputs at three different stages: SA (x), IF (z"), and CI (v'). The inputs can be multiple and
originate from different organization members. Note, however, that a decisionmaker can
receive inputs‘ from the external environment, at the SA stage only. Conversely, a
decisionmaker can send outputs at two different stages: SA (z) and RS (y). In both cases
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several outputs can be sent. An output to the external environment can however only be sent
from the RS stage.

A decisionmaker need not have all four stages. If two given stages are present,
however, any intermediate stage must also be present. As an illustration, if a decisionmaker
has both SA and RS stages, he must also have the IF and CI stages. Moreover, a
decisionmaker must be able to receive inputs at his first stage and to send output from his
last stage. The first stage must therefore be the SA, IF or CI stage and the last stage must be
either the SA or the RS stage. This yields four different allowable configurations for the
internal structure of a decisionmaker:

* SA alone.

* SA, IF, CI and RS.
* IF, CI and RS.

* CI and RS.

Although the division into four stages proceeds from a certain logic - as explained in
the first paragraph of this subsection -, it should be noted that such a division keeps an
artificial flavor. One can hardly pretend that the actual cognitive process of a human being
can be divided into sequential stages as it is suggested in this model. The four stage model
however, has the advantage of differentiating explicitly among the inputs and outputs of a
decisionmaker. It allows, furthermore, the estimation of the internal activity of a
decisionmaker using information theoretic tools [1],[19],[23]. Lastly, its complexity is high
enough to account for realistic examples and small enough to generate tractable models (see
Chapters V and VI).

The following subsection will go one step further in the refinement of the single
decisionmaker model.

4.2.3 The Four Stage Model with Switches
In subsection 4.2.2, the four stages of the proposed model of a decisionmaker are
themselves black boxes. A further refinement would consist in explicitly defining the

internal structure of the stages. This has been done by Levis [1] for the SA and RS stages.
The model is shown in Figure 4.3.
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The SA and RS stages both consist of a set of, respectively, U and V algorithms.
Each of these algorithms is represented in Figure 4.3 by a single transition. The choice
among those algorithms is achieved in accordance with the situation assessment or the
response selection strategy. Switches - as defined in section 2.5 of Chapter II- are used to
indicate that a choice has to be made.

SA

Figure 4.3: Four stage model with switches.

Let us investigate the consequences of introducing switches, as far as organizational
structures are concerned. Since the SA and RS stages have similar internal structures, let us

concentrate on the SA stage only. The situation assessed by the algorithm f, - z, - may be

shared with other decisionmakers, as mentioned in 4.2.2. The sharing of situation
assessment information may however very well depend on the algorithm used, i.e. on the
branch of the switch under consideration. This leads to variable organizational
structures, i.e. organizations where the structure of interactions among decisionmakers
will depend on the kind of information the organization is processing. This is a major
change compared to the model described in 4.2.2 which yields fixed structures.
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The following example illustrates how the introduction of switches can generate
variable structures. Figure 4.4 represents a two person organization with two switches.

Figure 4.4: Example of a 2-DM organization with switches.

The switch swq, corresponding to the RS stage of DMl, has two branches, while
the switch sw, corresponding to the SA stage of DM?2, has three branches. We have

altogether six different settings of the two switches. Note that the branches 2 and 3 of swy

are equivalent, as far as interactions among the decisionmakers are concerned. The six
different settings therefore yield four different organizational structures. Those structures
are represented in Figure 4.5.
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Structure No.1

O—f —O< B pa®

Structure No.2

SO O—sf-O—f—O—f0

>O—p—O—>O0——0—p0

Structure No.3

Structure No.4

Figure 4.5: Example of variable structures.
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The correspondence between the four different structures and the setting of the

switches sz and sw» is given in Table 4.1 below.

TABLE 4.1 CORRESPONDENCE BETWEEN STRUCTURES AND SWITCHES.

Structure No. sW1 sWH
1 1 1
2 2 1
3 1 2
1 3
4 2 2
2 3

The setting of the two switches will depend on the incoming signal through the
decision strategies associated with the switches. The structure of interactions between the
two decisionmakers will then depend on the nature of information processed by the
organization.

Variable structures will not be considered any further in this thesis. The four stage
model of section 4.2.2., which leads to fixed organizational forms, will be retained in the

sequel. The intent of this section was to give the reader some hints for further development
oriented towards variable structures.

4.3 INTERACTIONS AMONG DECISIONMAKERS

The four stage model of a single decisionmaker described in subsection 4.2.2 will
be, from now on, the only one to be considered.

4.3.1 General Case

Since the four stage model of section 4.2.2 allows a decisionmaker to receive three
different kinds of inputs and to send two different kinds of outputs, there are six different
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ways a decisionmaker DM can send information to another decisionmaker DMJ. Figure 4.6
represents those six interactions from DM to DMJ. Symmetrical links from DM to DM are
of course also allowable. They have however not been represented in Figure 4.6 for the
sake of clarity.

OLM@\EI—@——DH—DO

CI RS

Figure 4.6: General set of interactions between two DMs.

If we consider a n-decisionmaker organization ( where n is a positive integer), the
maximum number of internal links in the organization will be 6n(n-1). Finally, if the
external environment is taken into account, the previous number increases by 2n to reach

lmax = 6n2 - 4n.

All those interactions will not however be considered, as explained in the following
section.

4.3.2 Allowable Interactions
To reduce the dimensionality of the design problem, two of the six possible links
between two decisionmakers - as presented in subsection 4.3.1 - will be ruled out. The set

of all allowable interactions is represented in Figure 4.7. As in Figure 4.6, links from DM!
to DMJ only have been represented. Symmetrical links from DMJ to DM! are of course valid
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interactions.

pm!  sA IF
€
O—EDI\% S}—0
Fij 4

DM)  sa IF CI RS

Figure 4.7: Allowable interactions

The prohibited links are the links from the SA stage of a decisionmaker to the SA
and CI stages of another decisionmaker (#5 and #6, in Fig. 4.6). There is some degree of
arbitrariness in ruling out those two links. From the six possible kinds of interactions
between two decisionmakers, they are however the two that have the smallest physical
relevance. Indeed, it does not make a lot of sense to send situation assessment information
-which is an intermediate result - as a command to another decisionmaker. As far as SA to
SA links are concerned, they may be replaced by SA to IF links without significantly
altering the meaning of the interaction. Moreover, it will be shown in Chapter VI, how very
specific cases not covered by the interaction model of Figure 4.3.2 can be nevertheless
accounted for. Those specific cases will include SA to SA links as well as SA to CI links.
The loss of generality in ruling out those two interactions, seems therefore relatively small
compared to the advantage presented by a reduction in the dimensionality of the problem.

There are now only four possible links from a decisionmaker to another one and the
maximum number of links in a n-decisionmaker organization is therefore

krnax =4n2 - 2n.
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The following section describes the physical significance of the interactions
represented in Figure 4.7.

4.3.3 Physical Significance of the Interactions

The four kinds of interactions between two decisionmakers as well as the two
different interactions between a decisionmaker and the external environment, are described
below. The notation of Figure 4.7 is used.

+ External environment to SA of i-th DM: €

This link represents the input a decisionmaker can receive from the external
environment. Since the focus of this thesis is on the topological structure of
interactions between decisionmakers, the physical content of the input will not be
discussed here. The relevant fact is whether or not a decisionmaker will receive
information from the external environment. For a discussion of the nature of such
information, see [24][25] or the application example of Chapter IX.

* RS of i-th DM to external environment: 8§

This link models the output a decisionmaker can send to the external environment.

* SA of i-th DM to IF of j-th DM: Fij-
This link models the transmission of situation assessment information from DM! to
DMLJ. Once again, the focus here is not on the nature of the information transmitted,
but on the fact that an interaction between the two decisionmakers occurs at this

stage.

* RS of i-th DM to SA of j-th DM: Gij'

This interaction represents the case where the output of DM! is the input of DM/,
¢.g., a serial or tandem arrangement. As an example, workers on an assembly line
present that kind of interactions.

* RS of i-th DM to CI of j-th DM: Hij-

This is the result sharing type of interaction: DM sends his final decision to DM for
informational purpose only. DMJ may or may not take it into account in formulating
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his own response. This interaction does not introduce a hierarchical relationship
between the two decisionmakers.

* RS of i-th DM to CI of j-th DM: ClJ

This interaction introduces explicitly a hierarchy between the decisionmakers,
since it models the issuing of a command from DM! to DMJ. DMJ must take into
account DM?s orders.

The above description of the interactions between decisionmakers underlines the
advantage of breaking down the internal structure of a decisionmaker into four stages.
Interactions between two decisionmakers can have completely different meaning depending
on the stages to which they are related.

4.4 MATHEMATICAL MODEL
4.4.1 Representation of Interactions

The previous section leads to a mathematical representation of interactions between
decisionmakers. The labels e;,s;,Fy;,Gjj,Hjj,Cyj of Figure 4.7 will be integer variables

taking values in (0,1} where 1 will indicate that the corresponding directed link is actually
present in the organization, while O will reflect the absence of the link.

These variables will be aggregated into two vectors ¢ and s, and four matrices

F,G,H, and C. The interaction structure of a n-decisionmaker organization will therefore be
represented by the following six arrays.

*Two nx 1 vectors ¢ and s, representing the interactions between the external

environment and the organization.

e=g] i=1,.2,...,n

s=[s;] i=1.2,.,n
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¢; = 1: DM! receives an input from the external environment.

s; = 1: DM! sends an output to the external environment.

* Four n X n matrices F, G, H, C representing the interactions between
decisionmakers inside the organization.

F= [Fij] G= [Gij] i=1,2,.,n

H= [HIJ] Cs= [Cij] j=12,.,n

As an example Fij = 1 means that DM! sends an output from his SA stage to the IF

stage of DMJ- Similarly Cji = 1 means that DMJ sends an output from his RS stage to the CI

stage of DML, Since the diagonal elements of the matrices F,G,H and C have no meaning,
they will be arbitrarily set to 0:

Fij=Gjj=H;;=C3=0 for i=12,.,n.
4.4.2 Well Defined Net

In the framework of subsection 4.4.1, the structure of interactions of an organization
is defined by the set of vectors and matrices ¢, 5, F, G, H, and C, whose elements take
value in {0,1}. The six-tuple {e,s,F,G,H,C} will be called a Well Defined Net (WDN)
of dimension n, where n is the number of decisionmakers in the organization.

The set of all Well Defined Nets of dimension n will be denoted ¥™. It is clear that
Ph s isomorphic to the set {0,1 ]krnax, where k..., has been defined in subsection’4.3.2

and is equal to 4n2 - 2n. The dimension of ¥7 is therefore

kaax - 24n2 -2n
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4.4.3 Lattice Structure of ¥

~ The formalism of lattice theory, as reviewed in Chapter III, will be very useful for
formulating rigorously the results presented in Chapter VII. This formalism is applied in
this subsection to the set ¥ of all WDNs of dimension n. An order can be defined on this

* set as follows.
Definition
Let

Il = (¢.5,F,G,H,C) and IT' = (¢',5".F',G',H',C")
be two WDN:s.

We will say that IT' is a subnet of IT - denoted IT' < II - if and only if

IA N
v |0

Fl
HI

F G
H C

[[¢J

G
C

N IA
N IA

(7}

The inequality between arrays means that

(A'S A) & (Vie[In] Vje [l,n] A SAij)

ij

This means that IT' is a subnet of I, if every interaction in IT' is also an interaction
in IT. The relation "<", defined on WP, verifies the properties (P1)-(P3) of subsection
3.1.1. The set ¥™ with the relation "<" is therefore a partially ordered set. The following
properties are just translations of some definitions given in Chapter III and are therefore
given without further proofs.

The WDN whose arrays have all their elements equal to 0 is the least element of ¥,
It will be denoted w". Similarly, the greatest element of Y™ is the WDN whose arrays have
all their elements equal to 1. It wili be denoted Q™.

A WDN IT will cover a WDN IT' if and only if IT' is a subnet of I, i.e. IT' < TT,
and IT has exactly one more link than IT'.




The notion of dimension on a partially ordered set has been defined in Chapter III
(3.1.4). Because dimension has already a meaning for WDNs - this is the number n of
decisionmakers- the term size will be used to refer to the concept introduced in Chapter ITI.
The size of a WDN II is its number of links, i.e. the total number of 1s in the arrays
defining IT. It will be denoted d[I1]. We have the following property:

(ITcoversIT) & (IT'< II and d[IT] =d[ITT+1)

According to Theorem 3.4 of subsection 3.1.4, ¥ satisfies the Jordan-Dedekind

chain condition. The following proposition gives a characterization of the least upper bound
(L.u.b.) of two WDNs of dimension n.

Proposition 4.1

Let TT! = (1,51, F1,G! H1,Cl) and TI2 = 2,52 F2,G2,H2,C2) be two WDNs of
dimension n.

The Lu.b. (or join) of IT' and T12, TT=I1! U T2, will be the WDN represented
by the arrays e,s,F,G,H,and C with

P4 1~4

Q:glugz F=F1UF2 C=C1UC2

§=§1U§2 G=Glug? H = Hl UH2

The binary operator U is an internal composition law defined on the set {0,1} as
follows:

0Ouo

1l
o

1 0

]
—

Oul=1 1 vul=1l

The operator U is then extended to arrays taking values on the set {0,1}, on an
element to element basis. Note that for the sake of simplicity, the same notation "U" has
been used for three different operations: the composition law defined on the set {0,1}, the
extension of this law to arrays, and the join operation between two WDNs.
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Proposition 4.1 follows from a two step extension of the binary operator U : first,
from the set {0,1) to arrays taking values in {0,1}, and then to a set of six of these arrays.

Intuitively, the l.u.b. of two WDN5s T and 12 is a new net that contains all the
interactions that appear in either I or 112 or both. The greatest lower bound of two WDNs
1s defined in a very similar way by Proposition 4.2.

Proposition 42

Let T1! = (e!,sL,F1,GLH],Cl) and 12 = (e2,52,F2,G2,H2,C2) be two WDNs of

4 dimension n.

The g.1.b. (or meet) of I11 and I12, I1 = il A Hz,will be the WDN represented
by the arrays e,s,F,G,H,and C with

e =¢elng? F = FlAF2 Cc=clAnc2

s = slns? G=Glng2 H = Hl AH2

The binary operator M is an internal composition law defined on the set {0,1} as
follows:

The operator M is then extended to arrays taking values on the set {0,1}, on an
element to element basis. As it was the case for the join operator "U", the same notation "N"
has been used for three different operations: the composition law defined on the set {0,1},
the extension of this law to arrays, and the meet operation between two WDNs.

Intuitively, the g.1.b. of two WDNs I and I1%isa new net that contains all the
interactions that appear in both I and 12,
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From Propositions 4.1 and 4.2 it is clear that the g.1.b. and the Lu.b. of any two
WDNs can always be defined and are within the set of WDNs. We have therefore the
folowing proposition.

Proposition 4.3

The set ¥ of all WDNs of dimension n is a lattice.
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CHAPTER V

PETRI NET REPRESENTATION OF ORGANIZATIONAL CLASSES

As mentioned earlier, Petri Nets have been extensively used to study decisionmaking
organizations. This is one of the justifications for translating the mathematical model
described in the previous chapter into a Petri Net. Perhaps more fundamental, however, is
the use that will be made in the sequel of the Petri Net representation of an organization as
the starting point from which alternative organizational forms will be generated (see Chapter
VI).

This chapter describes how the translation is made between the matrix representation
of a WDN, i.e. the mathematical representation described in section 4.4, and the Petri Net
representation of the same net. It will be shown that there is a one to one correspondence
between both representations.

5.1 TRANSITIONS

As mentioned in subsection 4.2.2, each stage of the four stage model of the single
interacting decisionmaker will be represented by a single transition. A decisionmaker will
therefore have at most four transitions and a n-decisionmaker organization will contain a
maximum of 4n internal transitions. Two supplementary transitions are necessary to
represent the external environment acting at both ends of the organization, so that the
maximum number of transitions in the Petri Net representation of a WDN will be 4n+2.

Labeling _

The internal transitions will be labeled to reflect both the decisionmaker they belong
to and the stage they represent. This labeling technique is introduced primarily for
computational purposes. This point will be clarified in Chapter VIII, where the algorithmic
implementation of the methodology is presented. The labeling will also be used in section
5.4 . Table 5.1 gives the labels associated with all possible transitions of a WDN.
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TABLE 5.1 LABELING OF THE TRANSITIONS OF A WDN.

Description Label
Input transition to
Output transition ts
SA of decisionmaker DMi t1;
IF of decisionmaker DMI _ ty;
CI of decisionmaker DMI t3
RS of decisionmaker DM t4;

The generic label of an internal transition will then be ti with 1k <4 and 1<i<n.

The index k corresponds to the stage and i to the decisionmaker.

5.2 PLACES

A distinction has to be made among the places of the Petri Net representation of a
WDN. Interactional places will refer to those places that correspond to interactions
between two different decisionmakers or between a decisionmaker and the external
environment. Internal places will correspond to connections that remain within the
boundaries of a single decisionmaker. Finally two places, representing the external
environment, will be given a special status: the source and the sink of the organization.

Let us open a brief parenthesis at this point about input and output places. The
implicit choice made here to have a single input place (source) and a single output place
(sink) may seem a restrictive assumption. It is not. Multiple sources can indeed be
represented by a single place associated with a transition that will partition the input

information and distribute it to the appropriate organization members [1],[23]. Transition to

has been introduced to specifically model such a partitioning process. Similarly, transition

t5 reflects the aggregation process of individual responses from different organization
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members into a single response. The advantage of having a single input and a single output
places will be demonstrated in Chapter VII, where information paths will be introduced.

5.2.1 Interactional Places

There is a direct one to one correspondence between interactional places and the non
zero elements of the matrix representation of a WDN. Each 1 of the arrays representing a
WDN corresponds to a link between two stages of two different decisionmakers or to a link
between a decisionmaker and the external environment. In the Petri Net representation of the -
WDN, there will be a place connecting the two considered stages or connecting the external
environment and the appropriate stage. Table 5.2. lists all possible links and gives for each
of them the correspondence between the matrix and the Petri Net representations. The Petri
Net representation is given in terms of input and output transitions for the place under

consideration.

TABLE 5.2 CORRESPONDENCE BETWEEN MATRIX AND PETRI NET

Matrix representation

REPRESENTATIONS

Corresponding transitions

Input Output
e =1 0 4
s; =1 Y4 ts
F=1 i 02
Gjj=1 t4 t;
Hij =1 14 £
Gj=1 14 13
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5.2.2 Internal Places

Once interactional places have been defined, internal places are uniquely determined
according to the procedure presented in this subsection.

There are three types of internal places characterized by the stages they are related to:

SA = IF, IF = CI, and CI — RS. Intemnal places correspond to the transfer of information - -
within a decisionmaker. Since a given decisionmaker need not have all four stages (4.2.2),
he need not have all three internal places. As an example, a decisionmaker may very well
perform situation assessments only, in which case he will just have the SA stage with no
internal places at all. The internal places of a given decisionmaker will be determined
according to the following rules.

*SA—-IF
A place will exist between the SA and IF stages of a decisionmaker if and only if

SA has at least one interactional input place.
and
IF has at least one interactional input place.
or ’
ClI has at least one interactional input place.
or
RS has at least one interactional output place.

IF-> (I
A place will exist between the IF and CI stages of a decisionmaker if and only if IF
has at least one input place - interactional or internal.

*CI - RS
A place will exist between the CI and RS stages of a decisionmaker if and only if CI
has at least one input place - interactional or internal.
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The rules concerning IF — CI and CI — RS places are self-explanatory; they just
ensure that the flow of information within a decisionmaker is not discontinuous.

The SA — IF rule needs however more detailed explanation. For an internal place to
be present between the SA and IF stages of a decisionmaker, the first requirement is that
some information be fed into the SA stage. This justifies the first part of the rule. The
second part - composed of three propositions related with the predicate "or" - is motivated
by the following argument. There is no need to transfer information from the SA to the IF
stage of a decisionmaker, if the decisionmaker is not going to use this information in
subsequent stages. A characterization of the fact that the decisionmaker is going to use the
information in subsequent stages is given by the existence of interactional places related to
the subsequent stages. Unless at least one of those interactional places is present, no
information need be transferred from the SA to the IF stage and therefore no internal place is
necessary.

Note that the three rules presented above insure that a decisionmaker cannot be
partitioned into two separate pieces, which is one of the basic assumption made in Chapter
IV (subsection 4.1.1). The rules also guarantee the compliance with subsection 4.2.2,
where it is stated that only four internal configurations of a decisionmaker are allowable: SA
alone, SA-IF-CI-RS, IF-CI-RS, and CI-RS.

More fundamental is the fact that internal places are uniquely determined once
interactional places are given. Since a one to one correspondence exists between
interactional places and the non null elements of the matrix representation of a WDN, there
will be a one to one correspondence between the set of places of a WDN and its matrix
representation. Since the set of places of a WDN characterizes the net - given the fixed
structure of the set of transitions - there is a one to one correspondence between the Petri
Net and the matrix representations of a WDN. From now on, the same terminology will be
used for both representations and the term WDN will apply to either of them.

5.2.3 Labeling of the Places

The labeling of places, like the labeling of transitions, is introduced for
computational purposes. Its use will be illustrated in section 5.4. The rationale behind the
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labeling technique is the following. A place will be labeled with a minimum of two and a
maximum of four digits. The minimum number of digits necessary to completely
characterize a place will be used. Two digits are sufficient to characterize internal places: the
first one will refer to the input stage of the place, while the second one will correspond
to the decisionmaker. Similarly, interactional places related to the external environment at
either end of the organization, will be labeled with two digits. Interactional places
representing the sharing of situation assessment between two decisionmakers will require
three digits. The first digit will characterize the type of place under consideration - namely a
SA — IF interactional place -, while the other two will refer to the decisionmakers sharing
the assessed situation. Lastly, interactional places of the type RS — SA, IF, or CI will be
labeled with four digits. The first one will characterize the type of place, the second and
third ones will refer to the decisionmakers exchanging information and the last one will
allow to differentiate between the SA, IF, and CI stages of the decisionmaker receiving
information.

In summary, a place will be labeled p;; i3 i3 i4 Where il, i2, i3, and i4 are

determined as follows.
« il is the first digit of the input transition of the place augmented by 1.

* i2 is the second digit of the input transition. In the case of an interactional place

between the external environment and the SA stage, the input transition,t (), has no

second digit and the second digit of the output transition is used instead. This digit
will correspond to the decisionmaker to which the place belongs.

« i3 is the second digit of the output transition of the place

~*i4 is the first digit of the output transition of the place.

Last of all, the source of the net will be denoted p() and the sink will be denoted pg.

Note that the presence of the source place is the justification for the addition of 1 in the
definition of i1. Table 5.3 indicates how interactional places are labeled following the rules
defined above.
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TABLE 5.3 LABELING OF PLACES.

Transitions Corresponding place label
Input  Output

- 1 PO
h =2 P1i
i = B P2i
i 2 Yy P2ij
i 2 3 P3i
B3i = 14 P4j
i = 15 Psi
Yi — Psij1
4i — 1y P5ij2
b4 = 13 Psij3

5.2.4 Maximum Number of Nodes
The maximum number of transitions in a n-dimensional WDN will be

Max =4n +2

The maximum number of places can be determined as presented in Table 5.4. Places
are listed according to their input transition, which is equivalent to a listing according to the
first digit of the numerical part of their label.
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TABLE 5.4 MAXIMUM NUMBER OF PLACES OF A WDN.

Description Label Maximum number
Source place %) 1
Source — SA P1i N;i=n
SA — IF p2i,p2ij N2 = n2
IF - CI P3i N3=n
ClI - RS P4i ) N4 =n
RS — SA p51_]1 l;t_] n2 -Nn

- IF p5112 i#j n2 -n

- (I p5u3 i#j n2 -n

— Sink Psi n
Subtotal RS - N5 =3n2-2n
Sink place Pg 1

The maximum number of places of a WDN will therefore be:
Nmax =1+N;+Ny+ N3+ Ny +Ng+1,
i.e.

Nmax=4n2+n+2.

Note that N, differs from the number Kmax as defined in subsection 4.3.2; in
fact, N, can be decomposed as follows:

Nmax = Kmax * Nint +2

with ko =Nj -n+Ny+Ng=4n2-2n
Nim=n+N2+N3=3n
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The maximum number of interactional places is kmax’ while Nint is the maximum
number of internal places. The number 2 in the decomposition of Np,,, accounts for the

sink and the source of the net.

5.3 EXAMPLES

The development in the preceding sections will be illustrated with two examples. In .
both cases the matrix representation of a WDN is given first. The interactional places of the
Petri Net representing the WDN are then defined, and ,finally, the internal places are added
to complete the picture. The labeling of the places and transitions is given on the figures.

5.3.1 Example 1

Figure 5.1 gives the matrix representation of I1;, a 3-dimensional WDN. Figure 5.2
presents the interactional structure of II,, i.e. the interactional places in the Petri Net

representation of IT;. Lastly, Figure 5.3 represents the entire Petri Net, where internal

places as well as sink and source have been added.

0O 0 O 0 0 O
e= [0 1 1] F = 1 0 O G = 0 0 0
0O 1 O 0O 0 O
0 1 O 0O 0 O
s=[0 1 1] H = 0 0 C = 0 0 1
0 0 O 0 0 O

Figure 5.1: Matrix representation of IT;

73



Figure 5.2: Interactional places of I1;.

o1 t21 L) La]
P31 Pa)
P21 >
oz X )-| 5122

Figure 5.3: Petri Net representation of I1,.
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5.3.2 Example 2

Figure 5.4 gives the matrix representation of I1,, a 5-dimensional WDN. Figure 5.5

presents the interactional structure of I1,. Lastly, Figure 5.6 represents the entire Petri Net.

10100 00000
00000 00000
e=[(10011] F= 00000 G = 00000
00100 00000
Looooo_ _ooooo_
— — — -
00000 01000
00000 00000
s=[101001] H = 00001 c = 01010
00000O 00001
00000 00000

Figure 5.4: Matrix representation of I,
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I | 41
P !
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213 P
t lzéé t22 t 3, t 4 5123
}gi Psy
P5323
L33 t43
| ts ?I
P5352
Ps343
tag
t
34 é%
P 5453
p15 P55
tys ths t3s t4s

Figure 5.5: Interactional places of II,.
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7 P 5123
t32 t 42
pM2
Psp P52
3 P 5323
DM
to | Pyl ‘13 to3 133 Py t43 's
0 | P23 P33 ( Pg
o] 0
— Pas3 Ps343
Py4f P24 P34 :; P44

t
|ty tog t3g 44
P5453
pM >
P1s Pas P35 P4s P55
t t t
s 25 35 45}

Figure 5.6: Petri Net representation of II,.
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5.4 INCIDENCE MATRIX

As described in Chapter II, a Petri Net can be represented by an integer matrix
reflecting its topological structure. This matrix, called incidence matrix, is the basis of all
algebraic computations that can be made on a Petri Net to analyze its properties. This section
shows how the incidence matrix of a WDN is constructed.

5.4.1 Regrouping of Places and Transitions

To underline the block structure of the incidence matrix of a WDN, transitions and
places will be combined as follows.

Transitions
For each of the four stages SA, IF, CI, and RS (identified by an integer k
respectively equal to 1,2,3, and 4), a vector . will be defined. It is obtained in combining

together all the transitions corresponding\ to the stage k, i.e., all the transitions whose label
starts with k. The total number of such transitions will be denoted my.. Those transitions

correspond to the decisionmakers that actually have the stage k in their representation. As

pointed out in 5.2.2, a decisionmaker need not have all four stages. Note that my is

bounded by n, the total number of decisionmakers. The complete set of transitions of a
WDN will therefore be:

to.t1,5,13,4,1s.

Since to and t5 are single transitions, mg and mg will be equal to 1.We will denote

by M the total number of transitions of a WDN. Since every decisionmaker has at most four
internal transitions, we have

M=mp+m; +my+m3+my+mg SMp,, =4n+2

Places

Similarly, the places will be combined together according to the stages they are
related to. The proposed labeling of the places introduced in section 5.2 has been designed
to make this classification easy. Places will be regrouped according to the first digit of their
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label. Within the same group they will be classified according to the lexicographic order.
There are five different groups that will be denoted p;.py,p3,p4, and ps. The number of

places in each of these groups will be respectively nj,ny,n3,n4, and ng. Note that these

numbers are not fixed and that their actual value depend upon the WDN under

consideration. The following upper bounds have, however, been obtained in subsection
5.2.4:

HISN1=n n2£N2=n2 n3sN3=n
ng<Ny=n n55N5=3n2-2n

N will denote the total number of places of a WDN.
N=n0+ nj+ny+n3+ngq+ng5+ng < Nmax = 4n2+n+2

In the preceding equality, ng and ng account for the source (pg) and the sink (pg) of
the net: they both are equal to 1.

Examples

Let us illustrate the classification of places presented above with the two examples of
section 5.3.

Example 1 of subsection 5.3.1

Po ngp =
21 =(P12:P13) np =2
D2 = (P221:P222:P232:P233) ny =4
p3 = (P31,P32:P33) n3 =3
R4 = (P41:P42P43) ng=3
P5 = (P5122:P522:P5233:P533) ns=4
P6 ng =1
N =18
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Example 2 of subsection 5.3.2

PO ng =
P1 =(P11-P14-P15) ny; =3
P2 = (P211-P213:P243:P244-P255) ny =35
3 = (P31:P33-P34:P35) n3 =4
P4 = (P41:P42:P43-P44:P45) ng=35
D5 = (P5123:P522:P5323:P5343;

P5352:P5453:P555) - n5=7
Ps ng =

N =26

5.4.2 Construction of the Matrix

The incidence matrix A of a WDN I is defined as follows. Aisa N x M integer
matrix whose columns correspond to the transitions of IT and whose rows correspond to the
places of I. The matrix A is represented in a block format in Figure 5.7. The regrouping of
places and transitions into vectors induces the block structure of A. The block element Bl

will correspond to the place vector p; and to the transition vector g (ifiis equal to O or 6 or
if j is equal to O or 4, the corresponding vector has only one element). Biiis a nj X m;
integer matrix whose elements take value in {-1, 0, 1}. B00 and B6S are therefore scalars.

Note that the null elements of the matrix A, represented by the symbol 0 in Figure 5.7, have
not all the same dimension. For instance, O denotes a scalar for the couple (p(, t5), while 0

refers to the n3 X my null matrix for the couple @3. 1)
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PO B00 0 0 0 0 0
pi ¥ B10 Bll 0 0 0 0
py ¥ 0 B21 B22 0 0 0
p3T 0 0 B32 B33 0 0
p4l 0 0 0 B43 B44 0
psT 0 BS1 BS2 BS3 BS54 BSS
P6 0 0 0 0 0 BO3

Figure 5.7: Block representation of A.

The different block elements of A are interpreted below.

«B10 ang B!1 (resp B33 and B65) account for the places located between the input
(resp. output) transition of the organization and the SA (resp. RS) stages of the
decisionmakers.

« B32 and B33 (resp. B43 and B44) account for the internal places located between
the IF and CI (resp. CI and RS) stages.

« B2! and B22 accounts for all the places located between the SA and IF stages.

Those places may be internal as well as interactional.

* Lastly, B51, B52, B33 and B34 account for all the output places of the RS stages

of the decisionmakers.
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The determination of the non-zero elements of A is done as follows. The rows of A

will be scanned one by one. Since every place of a WDN - but the source and the sink - has

exactly one input and one output transition, each row of A - but the first and the last ones -
will have exactly one "-1" and one "1". The location of these non-zero elements will be
known, if the input and output transitions of the place corresponding to the row are known.
The labeling of the places has been designed in such a way that one can identify the input
and output transitions of a given place by inspection of its label. The labeling of the places
will therefore be the only information used to determine explicitly the elements of A. In
other words, the complete information concerning the structure of a WDN is included in the
labeling of its places. This point will be developed in subsection 5.4.4.

In the following development, the transition corresponding to the 1-th column of A
will be denoted by i To characterize Ay (the element of A at the intersection of the k-th

row and the I-column), the Kronecker delta will be used. It provides a mechanism for
writing integer equations involving 0 and 1 only. This makes the translation into a computer
language straightforward. The Kronecker delta is defined as follows:

811 =1 if 1=_] and 81_] =0 if i¢j.

Let us consider the k-th row of A ; this row will correspond to a place p. Four cases
will be distinguished according to the number of digits of the label of p.

* p has a one digit label: p=py or p=pg.
This case is straightforward: p() is the source of the organization and has only an
output transition, ty, while pg is the sink of the organization and has only an input

transition, ts. Therefore B0 = -1 and B3 = 1. All other elements of the first and last rows

of A are equal to zero.

. pvhas a two digit label: p= Pij-
This case covers the block elements Blo, B 1 1, B32, B33, B43, B44, and include
some of the rows of the block elements B21, B22, B54, and B55. From Table 5.3, it can

be seen that the input transition of Pj is tj1 j if i is greater than 1, and t() if i is equal to 1.

82




Similarly, the output transition of Pjj 1s tij if i isless than 5, and ts if i isequal to 5.

Therefore Ay will be +1 if it corresponds to transition t;_j j (ortg), -1 if it corresponds to
transition tij (or t5), and O in all other cases. This can be formally written using the

Kronecker delta. As mentioned earlier ,the 1-th transition of A will be denoted ‘i'j"

Ak]. = (81 i+1° 811' ) if i'=0 or i'=5 (5.2)

* p has a three digit label: p = P2ij:
This case covers the rows of BZ1and B22 that were left out from the previous case.

According to Table 5.3, the input transition of P2jj is t1; and the output transition of P2ij is

t2j. Therefore,

Ay = By * &

it 82., * §.., (5.3)

1 1

* p has a four digit label: p = Pgijr-

Up to now, the only four digit label places encountered are the interactional places of
the type RS — SA, IF or CI. The first digit of their label is 5. A generic index q is used,
however, because another kind of interactional places with a four digit label will be
introduced in Chapter VI. The general case, applying to any kind of four digit label places,
is treated here, so that no further development will be needed in Chapter VI. The case q=5

covers the matrices B!, B52, BS3, B54, and B2, The input transition of Pqijr will be

tq-1i and the output transition will be t;;. Therefore,

Akl = 8q_1 iv * 81_]' - Sn' * 8111 (54)

Equations (5.1),(5.2), (5.3) and (5.4) completely characterize the matrix A.
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5.4.3 Example

Let us take the two examples of section 5.3 and construct the incidence matrix for

each of them.

Example

The incidence matrix A, of I, is represented in Figure 5.8 below.

ts

000 000 000

00

Po

oo
oo
oSO

oo
oo
oo

O
oo
oSO

O —
— O

P12
P13

SOOO

OSOoOOO
COOO
COOO

oCCOO
OO0
OO0

coo
oo
—~ocoo

SO ——
~— OO

(==Y e N o Nl

P221
P22
P232
P23

OO
OO
OO

oo~
o—o
—oO

OO —
o —0O
—O O

OO
OO

P31
P32
P33

oo~
SR
—~oo

OO —
oO—O
—Oo O

OO
(=YY )
OO

OO
(=N el

OO

P41
P42
P43

COO—
O——O
— OO0

co—o
cocoo
cocco

cococo
—ooo
cococo

COoOOO
OSOOO

OO0

Ps122
Ps2
Ps232
Ps3
Pg

000 000 000

00

Figure 5.8: Incidence matrix A1 of ITj.
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Example 2

Figure 5.9 gives the incidence matrix A of T1,.

L]

00000

0

00000

0000

00000

-1

Po

OO0

OO0
COOO
OO0
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OO0

SO0 O
OSCOoCOO
OO O
OCOoOOO
COoCCO

OO0
SOOO
OSCOOO
CcCOoOOOoO

coo—
co—~od
o—~oo
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—~ocoo

— vl v —
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0
0
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1

0000 00000 00000

00000

0

Figure 5.9: Incidence matrix A5 of IT,.
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5.4.4 Equivalence Between the Representations of a WDN.
A WDN can be represented in three different ways:

(1) The matrix representation, i.e. the arrays e,s,F,G,H,C, as presented in section
4.4 of Chapter I'V.

(2) The Petri Net representation, given by the graph or the incidence matrix of the
net, with the associated labeling of the transitions.

(3) The Petri Net representation, given by the labeling of the places.

The three different representations of a WDN listed above are equivalent, i.e. a one
to one correspondence exists between any two of them. The proof of the previous statement
is implied in the definitions of the different representations and in the way they are derived
from each other. The logic leading from one repreéentation to another is recalled below.

* (1) = (3) : section 5.2 shows how the labeling of the places of a WDN is
uniquely determined from the matrix representation of the net.

* (3) = (2) : subsection 5.4.2 explains how the incidence matrix of a WDN with the
associated labeling of the transitions can be obtained once the labeling of the places is
known. One can also go directly from the labeling of the places to the graph representation
of the net. The procedure to follow is outlined below and illustrated on an example.

1. Determine the number of decisionmakers in the organization, i.e., the dimension

of the WDN. This is the highest number appearing in second position in the labels of

the places. ' ,

2. Find all the transitions of the net with their labeling: they are all the input and

output transitions of the places of the net and are obtained in reversing the procedure

described in subsection 5.2.3 (Table 5.3).

3. Find all the internal places and draw the boundaries of each decisionmaker.

4. Connect all the interactional places with the appropriate transitions.
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The four step procedure leading from the labeling of the places of a WDN to the

graph representation of the same WDN is illustrated on the following example. Let the set of
all places of a WDN I1; be

P 3={p0.P11:P13:P212:P232:P23:P32-P33:P42:P43:P5233:P52:P¢ }-

The largest number appearing in second position in the labels is 3; the WDN I is

therefore 3-dimensional. The input and output transitions of the places of P3 are obtained

using Table 5.3 and are given below.

TABLE 5.5 INPUT AND OUTPUT TRANSITIONS OF THE PLACES OF P3.

Place Transition
Input  Output

PO 0
P11 0 t11
P13 o t13
P212 t11 22
P232 413 22
P23 13 3
P32 2 132
P33 23 133
P42 132 t42
P43 133 t43
P5233 142 133
P52 142 t5
P6 ts

The set of all transitions of H3 is, therefore:

T3 = {10, 111, 113, 122, 123, 132, 133, 142, 143, 15 ).

There are five internal places in P3: p23, P32, P33, P42, and py3. Figure 5.10
summarizes the information gathered up to now about the graph of 1'13. The three

decisionmakers are represented with their boundaries.
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P11

{ )

Figure 5.10: Decisionmakers with their boundaries.

The complete graph, obtained by incorporating the interactional places, is

represented in Figure 5.11. Note that the graph is connected, but that t43 has no output

place. This situation will be ruled out in Chapter VI when additional constraints are
introduced. '

Figure 5.11: Complete graph of I15.

88




* (2) = (1) : the arrays ¢,s,F,G,H, and C can be easily retrieved from the incidence
matrix or from the graph, provided that each transition is labeled to identify the
decisionmaker it belongs to, as well as the stage it represents. The labeling technique
described in section 5.1 has been chosen to achieve this result. The decisionmakers and
their internal transitions are identified thanks to the labeling of the transitions. Borders can
be drawn around the different decisionmakers and the internal places can then be
distinguished from the interactional places. Once the interactional places are identified, the
arrays e,s,F,G,H, and C can be constructed, since each interactional place correspond to a 1
in these arrays. As an illustration, Figure 5.12 gives the matrix representation of the WDN
1'13 of Figure 5.11. In Figure 5.11, there are six places located outside the boundaries of the

decisionmakers (the source and the sink are note included). 1'I3 has therefore six
interactional

places - p11, P13. P212: P232 P52, P5233 - yielding six non-zero elements in the arrays

representing the net.

o
[y
o
o
o

o
=
o
o
o
o

o
o
o
o
o
o

o
o
o
o
o
o

Figure 5.12: Matrix representation of I5.

The following implications have been proved: (1) = (3), (3) = (2), (2) = (1). The
three representation are therefore equivalent in the sense that any one of them completely
characterizes a WDN. It should however be noted that the three representations are not
equivalent in terms of storage space (memory) they require. This point is just mentioned
here and will be developed in Chapter VIII.
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5.5 GENERIC PROPERTIES OF WDN:s.

The following proposition gives a theoretical explanation to the fact that all the rows
of the incidence matrix of a WDN (with the exception of the first and the last ones) have
exactly one "-1" and one "1".

Proposition 5.1
Let the source and the sink places of the Petri Net representing a WDN be combined

into a unique place, i.e. pg=pg. If the resulting Petri Net is strongly connected, it is

an event graph.

The proof of Proposition 5.1 is straightforward. Each internal or interactional place
of a WDN has exactly one input and one output transition. The sink of a WDN has one
input but no output transitions, while the opposite stands for the source. If source and sink
are merged into one place, every place in the net will therefore have one input and one
output transition. Since the net is furthermore strongly connected, it is an event graph (see
definition in section 2.3 of Chapter II).

The three theorems stated in section 2.5 of Chapter Il will therefore apply to WDN5s
and will be used in the following chapters.

Note that considering the source and the sink of a WDN as the same place has no
bearing on the internal topology of the net, which is the focus of this thesis. The assumption
becomes however important when the dynamic behavior of a WDN is studied. The merging
of source and sink limits indeed the amount of information a given organization can process
simultaneously. The initial marking of the place representing the external environment will
define this bound (see [5] for a detailed discussion of these issues). However, those
considerations are not within the scope of this thesis.

90




CHAPTER VI

DECISIONMAKING ORGANIZATIONS

In Chapter IV, the notion of Well Defined Net (WDN) has been introduced to
characterize the class of organizations under consideration in this thesis. While WDNs
constitute the framework within which organizations will be designed, each WDN is not a
valid organizational structure. This chapter defines additional constraints that will restrict
and characterize the concepts of organizational form and organization.

6.1 DEFINITION OF THE CONSTRAINTS

The introduction of additional constraints to restrict the set of WDNs proceeds from
two different considerations.

First, there are some WDNs corresponding to combinations of interactions between
decisionmakers that do not make any sense. Those WDNs should be eliminated, if realistic
organizational forms are to be generated. The structural constraints define what kinds
of combinations of interactions need to be ruled out.

Second, any realistic design procedure should allow the designer to restrict the scope
of the set of organizations he is considering for a specific problem. All possible allowable
interactions between decisionmakers, as defined in the generic model, may not be of interest
to the designer for a given application. User-defined constraints are introduced to
address this issue.

As an important side effect of the introduction of constraints, the dimensionality of
the problem will be reduced, thus enhancing its computational tractability.
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6.1.1 Structural Constraints

Structural constraints refer to the set of conditions that any kind of organization must
fulfill. They are contrasted to user-defined constraints which are a set of specific conditions
defined by the organization designer for a particular application. Four different structural
constraints are formulated that apply to all organizational structures being considered.

o (Ry)

° (Rz)

° (R3)

e (Ry)

a) The structure should be connected, i.e., there should be at least one
undirected path between any two nodes in the structure.

b) A directed path should exist from the source to every node of the
structure and from every node to the sink.

The structure should have no loops, i.e., the organizational structures are

acyclical.

There can be at most one link from the RS stage of a DM to each one of

the other DM, i.e., for each i and j, only one element of the triplet
{Gj;-Hjj:Cjj) can be nonzero.

Information fusion can take place only at the IF and CI stages.

Consequently, the SA stage of each DM can have only one input.

The set of structural constraints is defined as

R = (Rqa Rip R, R3, Ry) (6.1)

The interpretation of the structural constraints is given below. The constraints R,

and Ry, define connectivity as it pertains to this problem. Constraint R, corresponds to

the notion of connectivity as presented in subsection 2.1.3. It eliminates structures that do

not represent a single organization. Constraint R}, insures that the flow of information is

continuous within an organization. It eliminates internal input or output places (internal
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sources or sinks). Since we are only considering organizations with a single source and a

single sink, constraint R 1, implies constraint Ry ,: if Ry, is satisfied any two nodes of the
organization will be connected through the source or the sink of the organization and Ry,
follows. Constraint R, has nevertheless been explicitly stated to accommodate the more
general case where several output or several input places are present. If multiple sources or
sinks are allowed, a connectivity constraint such as R, is necessary to ensure the unity of

the organization.

Constraint R5 allows acyclical organizations only. The acyclical hypothesis has

been first formulated by Levis [1]. This restriction is made to avoid deadlock and circulation
of messages within the organization. Deadlock occurs when one decisionmaker is waiting
for a message from another, while the second one is in turn waiting for an input from the
first. This point will be clarified in section 6.2 when the acyclical hypothesis will be
translated into the language of Petri Net theory.

Constraint Ry states that a decisionmaker can send the output of the RS stage to

another given decisionmaker only once. It does not make much sense to send the same
output to the same decisionmaker at several different stages. This restriction is therefore
rather natural and reasonable. There is, however, the case where decisionmaker pMi sends
a command to decisionmaker DM as well as informs him of what his own decision is. This
case is illustrated in Figure 6.1: decisionmaker DM sends his output to both the IF and CI
stages of DMJ.

SA IF CI RS

pMmJ

Figure 6.1: A violation of constraint R3.
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The problem is that the interactional structure represented in Figure 6.1 violates
constraint R3 and is therefore not allowed. The situation under consideration can, however,

“be modeled without violating Rj: a single link between the RS stage of DM! and the IF

stage of DM is sufficient. One can suppose that the link has two separate channels: one of
them will transfer the command of DM! to DMJ while the other will transfer the information
concerning DMi's decision. DMJ will then internally transfer the command from his own IF
stage to his own CI stage without altering it.

Constraint Ry prevents a decisionmaker from receiving more than one input at the

SA stage. In fact, a decisionmaker can theoretically receive a maximum of n inputs - one
from each other organization members and one from the external environment. The logic
behind this limitation is that information cannot be merged at the SA stage. The IF stage has
been specifically introduced to perform such a fusion. This condition may seem restrictive
and arbitrary; it is meant to avoid the problem of multiple competing tasks arriving
simultaneously. This case is outside the scope of this thesis. For the modeling of such a
situation, see [26]. Subsection 6.1.5 will present a way of circumventing this restriction. In
subsection 6.2.3, the effect of relaxing the constraint will be quantified.

Lastly, an implicit constraint has been omitted: the fact that a n-decisionmaker
organization has exactly n members. This requirement has not been stated per se, because it
is considered embedded in the very definition of a n-person organization. Attention should
however be paid to it when it comes to computer implementation.

6.1.2 User-defined Constraints

The organization designer may want to introduce constraints that will reflect the
specific application he is considering. For example, there may be a hierarchical relationship
between the decisionmakers that must be maintained in the organizational structure.

Therefore some links will be imposed and others will be ruled out.

These restrictions and specifications will be denoted user-defined constraints.
They can be introduced in two different ways.
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The organization designer can place the appropriate 0's and 1's in the arrays
{e.s,F,G,H,C} defining a WDN. The other elements will remain unspecified and will
constitute the degrees of freedom of the design. This type of constraints will be referred to
as Ry¢.

To accommodate some very specific kind of interactions, the organization designer
may want to create links between decisionmakers that are not modeled by the arrays
mentioned above. In other words, those links are not among the allowable interactions
presented in Figure 4.5. The links are, however, fixed and therefore do not increase the
dimensionality of the design problem. They will be referred to as special constraints and

denoted Rp.

The rationale behind the introduction of special constraints is the following. The
generic model of a WDN presented in Chapter IV results from a trade-off between
explanatory power and computational tractability. Some interactional links between
decisionmakers have been ruled out from the generic case because they present little
physical relevance, while substantially increasing the dimensionality of the problem. The
designer may however absolutely need one of those links to handle a specific application.
Special constraints have been introduced to address this need. Because they are not part of
the generic model of a WDN, they do not increase the dimensionality of the design problem.
They just introduce more flexibility.

The set of user-defined constraints will be denoted R, while the complete set of

constraints will be denoted R.

R, =RfUR,

R = Ru | RS (6.2)
6.1.3 Well Defined Structure

By Well Defined Structure (WDS) is meant the association of a Well Defined
Net (WDN) with a set of special constraints RP:

WDS = (WDN, Rp)
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In the sequel, the set of special constraints will always be given and will therefore be
fixed throughout the design procedure. When the set of special constraints is fixed, there is
an isomorphism between the set of WDSs and the set of WDNs. It is trivially defined by

WDS = (WDN, R.p) — WDN

The set of WDSs associated with given structural constraints w111 thus be identified
with the set of WDNs. The same notation ¥ will be used.

6.1.4 Terminology

Admissible Organizational Form
A WDS that fulfills the set of user-defined constraints R, will be called an
Admissible Organizational Form (AOF). The set of all AOFs will be denoted D(R).

Feasible organization
An AOF that fulfills the set of constraints Rg will be called a Feasible
Organization (FO). Note that a Feasible Organization is a WDS that fulfills the complete

set of constraints R. The set of all Feasible Organizations will be denoted OR).

To avoid cumbersome notation, the dimension n - the number of decisionmakers -
has been omitted. If the set of special constraints is given, the following inclusions hold.

¥" 5 OR,) > OR) (6.3)
6.1.5 Conflict Among the Constraints.
In the general case, no conflict is allowed between the structural and the user-defined

constraints. In other words, the designer cannot overrule the structural constraints with
user-defined constraints. If he does so, the set of Feasible Organizations will be empty. As

an example, the user cannot specify that both Cij and Cji (with i#j) be equal to 1. This
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would indeed create a loop in the organization thus violating constraint R5.

There is a single exception to the generic rule stated above. This exception has been
introduced to alleviate the somewhat arbitrary restriction imposed by constraint R4, which

limits the number of inputs a decisionmaker can receive at the SA stage. The exception is the
following: R4 will not apply to the special constraints. In other words, a decisionmaker can

have more than one input at his SA stage, provided that all those inputs but at most one be
special constraints. An illustrative example where this exception applies is given in
subsection 6.3.1.

6.2 MATHEMATICAL REPRESENTATION OF THE CONSTRAINTS

In this section, the constraints previously introduced are reviewed and analytically
characterized.

6.2.1 Structural Constraints

Constraint R ;

The connectivity requirement can be reformulated as follows. If we merge the source
and the sink of an organization together, i.e., if we represent the external environment with

a single place connected to both ends of the organization, then constraints Ry, and Ry, can

be aggregated into Ry ":

R1) The Petri Net representing a structure should be strongly connected.

Proposition 5.1 of Chapter V then induces the following proposition.

Proposition 6.1
A WDN whose sink and source are merged into a single place and which fulfills

constraint Ry is an event graph.
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Constraint R 2

Let us suppose that R is fulfilled and that source and sink are merged into a single

place. This place will be referred to as the external place. The acyclical assumption states
that no internal loop - or internal directed circuit - is allowed within the organization. By
internal loop is meant a directed circuit that does not include the external place. The next
paragraph makes this point explicit.

We will only consider directed elementary circuits, i.e., directed circuits in which no
node appears more than once (see 2.1.3). A directed elementary circuit which contains the
external place among its nodes will be called a simple path. A simple path is therefore a
loop going from the external place back to itself. If the external place is partitioned into
source and sink, a simple path becomes a directed path between the source and the sink of
the organization. Conversely, a directed elementary circuit which does not contain the

external place will be called an internal loop. Constraint R rules out internal loops. In

other words, constraint R2 can be stated as follows:

(Ry) All directed elementary circuits of the Petri Net representing the structure
should be simple paths.

Constraint R 3

The mathematical translation of this constraint is straightforward and is given below
without further comments.

VGj)e [1,n2 Gyj+Hy+ <1 (6.4)

ConstraintR4

Like R3, the translation of Ry is straightforward.

Vje [1,n] & +ZGij <1 (6.5)
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6.2.2 User-defined Constraints

Constraints Rf

As mentioned in section 6.1.2, the constraints R¢ are defined by assigning the value

0 or 1 to some elements of the arrays ¢, s, F, G, H, and C. This is alfeady an analytic
characterization and no further development is needed.

Constraints Rp

A special constraint is an interactional link between two different decisionmakers,
that cannot be represented in a WDN. Such a link will be characterized by its input and

output transitions. It will thus be designated by the pair (ty;» tmj)' ty is the input transition -
k refers to the stage and i to the decisionmaker- while tmj is the output transition - m is for

the stage, j for the decisionmaker. The following restrictions apply:
« i #j : the two decisionmakers should be different.
« If k=1 then m#2 : a link between SA and IF can be represented in a WDN.

« If k=4 then m=4 : links between RS and SA,IF, or CI can be represented in a
WDN.

In the Petri Net representation, each special constraint will be represented by an
interactional place. The labeling of this place will be determined from its input and output
transitions as follows.

(tki, tli) will correspond to pk+1.ijl'

All properties of WDNs will apply to WDSs. For example, the construction of the
incidence matrix of a WDS will follow the rules stated in subsection 5.4.2 for WDNS.

6.2.3 Reduction in the Dimensionality

The introduction of constraints significantly reduces the dimension of the design
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problem. The exact determination of the reduction coefficient will however not be
undertaken for the following reasons. First, the reduction effects of the structural

constraints Ry and R; are difficult to evaluate in the general case. Internal loops within an

organization may be very intricate and the implication of connectivity is not easy to evaluate
quantitatively. Going into sophisticated combinatorial analysis would be rather cumbersome
and would bring little supplementary insight. Second, the most drastic reduction in
dimensionality originates from the user-defined constraints and is therefore entirely problem
dependent.

The reduction in dimensionality induced by the constraints R3 and R4, when taken

separately, is nevertheless given below. The reduction coefficients are easy to compute in
these cases and the effect of relaxing the constraints will be quantified.

Constraint R 3

Since Gij + Hij + Cij < 1 for all i and j, the number of degrees of freedom in the
matrices G,H, and C shrinks from 3n2-3n to 2n2-2n. The dimension has therefore been
divided by the reduction coefficient

p3=% 1 = 220 - 106 forn=35.

Constraint Ry

Without constraint Ry4, the dimension of the set of all allowable arrays e,G is 20*0,

With the constraint, this dimension is reduced to (n+1)D. The reduction coefficient is
therefore

pgy=QY(nr1)N.

Relaxing constraint R4 would therefore significantly increase the dimension of the

problem. As an example, n=5 yields

P4 = (16/5)° ~ 336.

100



6.3 ON THE SELECTION OF USER-DEFINED CONSTRAINTS

The next chapter will present an automatic procedure to generate all possible Feasible
Organizations fulfilling a given set of constraints R. It will be assumed that the user-defined

constraints R, are given. The goal of this section is to address the problem of selecting the

user-defined constraints. The challenge is to find a set of constraints R, that will reflect, as

best as possible, the reality of the situation, without leaving an unmanageable number of
degrees of freedom.

The best way to present the actual reasoning method that will reduce a real
application into the specification format used in this thesis, is to go through an example.
Although an application example will be thoroughly studied in Chapter IX, the reader may
find it useful to see at this point how the model so far developed can be applied.

Example: The Ship Control System of a Submarine.

This example has been developed and analyzed by Weingaertner [19]. The situation
under consideration pertains to the ship control system of a submarine. A crew of five
members is in charge of this task and their roles and functional relationships are described
below.

At the top of the hierarchy is the Officer of the Deck (DMl) with responsibility for
all ship control matters pertaining to the conduct of the submarine mission. He receives
information both from the external environment and from the Diving Officer of the Watch
(DM2). He issues command to DM2.

The Diving Officer of the Watch is responsible for the bulk of the control decision
process. He receives information from and sends information to the remaining members of
the organization: the Chief of the Watch (DM3), the Lee Helm (DM?), the Helm (DM5).
DM3, DM4, and DM? can be considered the sensors and the actuators of the organization.
They receive information from the external environment (ship control panels,...) and can act
on the external environment (stern planes, fairwater planes,...).
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From the above description of the situation, it appears that two different kinds of real
life constraints are imposed on the organization: physical and hierarchical constraints,

Physical constraints are due to those physical devices that organization members
use to interact with the external environment. The Helm (DM4) and the Lee Helm (DM5)
actually sit in front of the ship control panels. They directly receive information from the
external environment of the submarine. Note that the other decisionmakers may also receive
information from the external environment. Nothing, for instance, prevents the Officer of
the Deck to look at the control screens above the Helm's shoulders. This is however not a
constraint and should be left as a degree of freedom in the design. A different set of
hardware constraints applies to the other end of the organization, where actions are taken
upon the external environment. Decisionmakers DM3, DM# and DM5 have actual physical
control over the ship. They directly interact with the external environment. On the contrary,
DM! and DM2 have no such direct control. These hardware constraints are reflected in the
specification of the arrays e and s.

e=[xxx11] s=[00111]
A "x" denotes that this link has not been specified, i.é. a degree of freedom.

Hierarchical constraints refer to the underlying hierarchy existing between the
different organization members. Subordinate members (DM4 and DM5) will communicate
their situation assessments to superordinate members (DM! and DM2) who in turn will
issue commands to the former. DM3 has an intermediate status. This hierarchical structure
is reflected, as follows, in the matrices F and C representing respectively the sharing of
situation assessments and the issuance of commands.

# 00 0 0 [ # 1 x x x|
0O # 000 0O # 1 1 1
F=100# 00 C=100# 00
X x x # x 0 00 #0
_xxxx#_J _0’000#_
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The symbol "#" indicates that the designer has no control over the diagonal elements
of the matrices (see 4.4.1).

The matrix G will be identically zero since no decisionmaker is sending his output as
an input to another organization member.

A result sharing type of interaction may nevertheless exist between DM# and DM?.
This will be reflected in the matrix H. ‘

"4 0 0 0 0| # 000 0
0 # 00 0 0 # 00 0
G=l00# 00 H={00 # 0 0
000 # 0 000 # x
| 0000 # |00 0 x #

Last of all, the situation as described by Weingaertner [19], requires the use of
special constraints. First, the Diving Officer of the Watch (DM2) will use the situation
assessment of the Chief of the Watch (DM3) to formulate his own situation assessment. To
model this case, a link is necessary between the SA stages of both decisionmakers. Second,
the Officer of the Deck (DMl) will merge the result coming from the IF stage of DM2 with
the information he receives from other members. This interaction will be translated by a link
between the IF stages of DM?2 and DM, We will therefore have two special constraints:

(ty2 ty1) : from IF of DM2 to IF of DM1.
(ty3, t12) : from SA of DM3 to SA of DMZ.

Note that there are 16 degrees of freedom left.

The Petri Net I, representing the WDS defined above is given in Figure 6.2.

Boldface connectors and places correspond to the 1's of the arrays e.s,F,G,H,C and to the
special constraints. Regular connectors and places correspond to the unspecified elements of
the same arrays (the x's).

103



DM SA IF CI  Rs

@, {>O >C ()
DM3
‘ ~
() ./ (> = @@= I'@E > ¥.'@
‘ 4
DM, PO F <
OO
>O— =0, >O—>O—ppC

Figure 6.2: Petri Net I1,.

A few comments can be made on the Petri Net IT,. Note first that the SA stage of

DM, has two inputs. This however does not violate constraint R4 because one of the input

is a special constraint (see 6.1.5). A violation of the structural constraints would occur if
both result sharing type of links between DM# and DM? were implemented simultaneously:
a loop would indeed be created. Lastly, it should be emphasized that the introduction of a
special constraint between the SA stages of DM2 and DM3 could have been avoided.
Replacing the special constraint by a link between the SA stage of DM3 and the IF stage of
DM?2 would have induced little change in the topological structure of the net. The same
remark does not apply however to the other special constraint between the IF stages of DM?2
and DM, Replacing this interaction by a link from the SA stage of DM2 to the IF stage of
DM! would have eliminated numerous information paths, while replacing it with a link

originating from the RS stage of DMy would have created a loop.
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CHAPTER VI

CHARACTERIZATION OF FEASIBLE ORGANIZATIONS

In the previous chapter, the concept of Feasible Organization (FO) has been defined:
a FO is a Well Defined Structure (WDS) that satisfies both the structural and the
user-defined constraints. The design problem is to determine the set of all Feasible
Organizations corresponding to a specific set of constraints. It is assumed throughout this
chapter that the user-defined constraints R, are given.

7.1 MAXIMALLY AND MINIMALLY CONNECTED ORGANIZATIONS

Since the set of special constraints is given, the notions of WDN and WDS are
interchangeable (6.1.3). From now on, the term WDS only will be used. In Chapter IV, an
order is defined on the set ¥ of all WDSs. It is shown that ¥P, associated with this order,

is a lattice (Proposition 4.3). The set of all Feasible Organizations ®(R) is a subset of ¥

and is therefore also partially ordered (Theorem 3.1). From Theorem 3.2, we conclude that
®(R) has at least one minimal and one maximal elements.

Definition

A maximal element of the set ®(R) of all Feasible Organizations will be called a
Maximally Connected Organization (MAXO).

Similarly, a minimal element of ®(R) will be called a Minimally Connected
Organization (MINO).

The set of all MAXOs (resp. MINOs) will be denoted D ax(R) (resp. D in(R).

Maximally and minimally connected organizations can be interpreted as follows. It
was shown in Chapter IV (4.4.3) that the size of a WDS is its number of links. By
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definition, a maximal element has no immediate superordinate: its size is thus maximal in the
sense that no elements with a higher size covers it. We have, therefore, the following
interpretation of a MAXO.

A MAXO is a WDS such that it is not possible to add a single link (i.e. to increase
the size) without violating the set of constraints R (i.e. without crossing the boundaries of
the subset ®(R)). Similarly, a MINO is a WDS such that it is not possible to remove a

single link (i.e. to decrease the size) without violating the set of constraints R.

By the definition of minimality and maximality, every element of a subset Y of a
partially ordered set X is bounded by at least one minimal element and at least one maximal
element of Y. We have, therefore, the followin g result.

Proposition 7.1

For any given Feasible Organization IT, there is at least one MINO IT i, and at least

one MAXO nmax such that

Alternatively,

(e Y7/ 3 T p0 € B RO (R) I <TI< Moy} @ OR)

Note that the previous inclusion is not an equality in the general case. There is
indeed no guarantee that a WDS located between a MAXO and a MINO will fulfill the
constraints R. To address this problem, we need to study the behavior of the order "<" with
respect to the constraints R. The notion of convexity is introduced for that purpose in the
next section.
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7.2 CONVEXITY
7.2.1 Definitions

Interval

Let us consider a partially ordered set X. If x; and x are two elements of X

satisfying x| < x5, the interval [x(,x5] is defined to be {xe X 1x] <x<x5} [27].

Convex subset
Let Y be a subset of the partially ordered set X. The subset Y will be convex [27] if
and only if the following implication holds:

(Vv e Y2) 315y = (¥Y2lypyol)
7.2.2 Convexity of a Property

Let X be a partially ordered set. By property defined on X, is meant a set of
conditions P that an element of X may or may not fulfill. The key point is the binary nature
of P: for every element x of X, the property P is either true or false. If x fulfills P we will
write P[x]=1. If x violates P, we will write P[x]=0. One may think of a property as a binary
mapping from X to the set {0,1} (O for false and 1 for true). Let K(P) be the set of all
elements of X fulfilling the property P:

K@) = {x e XIP[x]=1 }.

Let Kmax(P) (resp. Kmin(P)) denote the set of all maximal (resp. minimal) elements

of K(P).

The notion of convexity introduced in 7.2.1 for a subset of X, can be extended to a
property P defined on X as follows.
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Definition
A property P defined on X will be convex if and only if every element x of X
located between two elements x and x, that satisfy P, will also satisfy P:

(V (x1.x9) € X2) (P[x1] = Plx5] = 1 and x| <x9) = (V x € [x1,X3] P[x] =1))

The notion of convexity of a property is closely related to the notion of convexity of
a subset. The previous definition can, indeed, be rephrased as follows: a property P is
convex if and only if the subset K(P) of all elements of X satisfying P is convex. The

notion of convexity is introduced to help us characterize the set K(P) of all elements
satisfying the property P. The following proposition achieves this goal; it is a direct
consequence of the definition of the convexity.

Proposition 72

If P is convex on X, K(P) is characterized by its minimal and maximal elements as
follows:

K@P)={xe XI13@b)e K ; (PxK_ . (P) a<x<b)

7.2.3 Convexity of the Constraints

The constraints R are properties defined on the set ™ since a constraint is either
satisfied or violated by a given WDS. We can therefore apply the concept of convexity
defined in the previous subsection to the different constraints R.

The advantage of having convex constraints is becoming clear now. Suppose that all
constraints R are convex. Then an element IT of ¥™ located between a MINO and a MAXO
would necessarily fulfill the constraints R. The set ®(R) would therefore be characterized
by the sets of MAXOs and MINOs (Proposition 7.2). Unfortunately, we are not in the
simple case where all constraints are convex. As mentioned in section 7.1, there is no
guarantee that a WDS located between a MAXO and a MINO will satisfy the structural

constraints. The reason why Proposition 7.2 does not apply is that the constraint R is not

convex. However, R is the only structural constraint that poses a problem as the following

proposition attests.
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Proposition 7.3

The constraints Ry, R3, R4 defined on the set ¥ are convex.

The proof of the proposition is direct. Let us consider the constraint R,. If a WDS is

acyclical, i.e. fulfills R5, then any WDS obtained by removing links from the initial WDS

will also be acyclical. Loops cannot be created in a loop-free structure by removing links.

The same argument applies to the constraints R3 and Ry.

The difficulty with the constraint Ry is that one can break the connectivity of a

structure by removing a link (this should be obvious), but also by adding a link. Indeed,
adding a link that originates from a transition of the current net but does not terminate at
another transition of the net will create a transition without output place, and will thus

violate R;. Before this point is illustrated on an example, the notion of link need be defined

without ambiguity.

According to the language of Chapter IV, a link in a WDS refers to a 1 in the arrays
representing the structure, i.e., to an interaction between two stages of two different
decisionmakers or between a decisionmaker and the external environment. There is,
therefore, a one to one correspondence between links and interactional places. Up to now
the word link has been exclusively used with this meaning and it will keep this meaning
throughout the thesis. A link will, therefore, always cross the boundary of at least one
decisionmaker: an internal connection between two stages of the same decisionmaker is
not a link. Lastly, an another possible confusion need be avoided. In the Petri Net
representation of a WDS, an interactional place is related to its input and output transitions
by two connectors. Those connectors should not be mistaken for links: it is the association
of the interactional place and the two connectors that will constitute a link, not the
connectors themselves.

Let us now illustrate on an example the non-convexity of the constraint R;.
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The matrix representation of a 2-dimensional WDS IT 1 that satisfies the constraint

R1, is given below.

) _foo c_ [0 |
el 01] B= 1o o oo
toq L [00 c_[oo
spl01] 1= lo o 1~ |o o

The Petri Net representation of I, is reproduced in Figure 7.1. Let us add to the
WDS IIl, a link between the external environment and the SA stage of DML the vector €1
is replaced by the vector ey =[ 1 1]. The resulting structure I1, has an internal transition

without output place and therefore violates the connectivity constraint. Lastly, another link
is added from the SA stage of DM! to the IF stage of DM?2 yielding the WDS I'I3. The

WDS II3 now fulfills the connectivity constraint R;. The situation is, therefore, the
following:

I, <11, < I,

the nets I1; and I5 satisfy R; but I1, does not: the constraint Ry is not convex.
Note that to go directly from I1; o I1; one needs to add two links. In doing so, a new
simple path is created in the WDS: one can go from I, to Il; by adding a simple path to
I1,. This consideration will lead us to use the notion of simple path instead of link, as the

incremental unit leading from a WDS to its immediate superordinate. In replacing links by
simple paths, the difficulty posed by R; vanishes. This idea is developed and defined

precisely in section 7.4.
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Figure 7.1: Example of the non-convexity of the constraint R;.

We have concentrated so far only on structural constraints. As far as the
user-defined constraints R;; are concerned, the situation is fairly simple. The user-defined
constraints are convex and the set ®(R ;) can, therefore, be characterized by its minimal and

maximal elements, using Proposition 7.2.
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The above discussion provides us the line of reasoning that we will follow in this
chapter. In section 7.3, the scope of the problem will be reduced by considering the set
®(R,,) of all Admissible Organizational Forms only. This set will be characterized using

Proposition 7.2. In section 7.4, we will then use the concept of simple path to eliminate the
problem posed by the constraint R and obtain a characterization of ®(R), the ultimate goal

of this chapter.

7.3 CHARACTERIZATION OF ®(R,). -
7.3.1 Universal Net

In this section, we concentrate on the user-defined constraints Ru and, more

precisely, on the constraint Rs. As mentioned in 6.1.2, R is defined by the organization

designer who specifies some elements of the arrays ¢,5,F,G,H, and C, leaving the

remaining elements undetermined. A given element of ®(R,)) will be characterized by the

specification of all the undetermined elements. If there are m undetermined elements, i.e., if

there are m degrees of freedom left in the design, ®(R},) will be isomorphic to {0,1}™ and

will therefore have 2™ elements.

Definition
The Universal Net associated with the constraints R, - Q(R,) - is the WDS§

obtained by replacing all undetermined elements of ¢, s, F, G, H, and C by 1.

Similarly the Kernel Net - w(R,)) - is the WDS obtained by replacing the same

undetermined elements by 0.

It is easy to see that ®(R)) is the least element of ®(R,), while Q(Ru) is the

greatest element of ®(R ;). Using the notation of section 7.1, we have:

@ . «R)={QRy) and Phin(Ry) = { @Ry) }

112



Proposition 7.4 summarizes the analysis of this subsection and provides a

characterization of the set D(R,) of all Admissible Organizational Form:s.

Proposition 74

The set ®(R,,) is the subset of Y1 that satisfies the two following conditions:
* any element of ®(R,,) is a subnet of the Universal Net QR,) .

« the Kernel Net w(R,) is a subnet of any element of DR.
Alternatively, '

DR, = (ITe ¥1/0Ry) << QR } = [ 0Ry), QAR ]

Proof

Proposition 7.4 is a direct consequence of Proposition 7.2. Since the user-defined
constraint R, is convex, Proposition 7.1 applies. The proof is completed, if we note that
®(R,,) has a single maximal element (the Universal Net) and a single minimal element (the
Kemel Net).

Corollary
®(R,) is a sublattice of ¥".

Proof
Let IT and IT' be two elements of ®(R,))- According to Proposition 7.4, Q(Ru) is an

upper bound to IT and IT'. The lowest upper bound (L.u.b.) of IT and IT' - which exists
since W™ is a lattice - is therefore necessarily smaller than or equal to Q(R,,). Applying
Proposition 7.4 again, we conclude that the L.u.b. of IT and IT' is an element of DR,). The

reasoning is completely symmetrical to prove that the g.1.b. of IT and IT is also an element
of ®(R,). QED.

It is important to understand the fundamental difference between Proposition 7.4 and

Proposition 7.1. Proposition 7.4 gives a characterization of the set D(R,)) of all FOFs: to be
located between the Kernel and the Universal Nets is a necessary and sufficient condition
for a WDS to be an element of ®(R,)). The set ®(R,) is therefore completely defined once
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o(R,)) and Q(R,,) are known. Conversely, Proposition 7.1 does not characterize the set

®(R) of all FOs. It just gives a necessary condition that a WDS must satisfy to be a FO. To
be located between a MINO and a MAXO is not sufficient for a WDS to be a FO. As
pointed out earlier, the difference in nature between the sets ®D(R,) and P(R) arises from
the fact that R, is stable by interval while R is not. The goal of the

remaining part of this chapter is to find a necessary and sufficient condition characterizing a
Feasible Organization. -

7.3.2 Simple Paths of the Universal Net

The notion of simple path has been introduced in 6.2.1. Given the importance of the
concept, the definition is recalled below.

Simple path
Let II be a WDS whose source and sink have been merged together into a single

external place. A simple path of I1 is a directed elementary circuit which includes
the external place.

According to Proposition 5.1 of Chapter V, the Petri Net representing IT is an
event-graph. We can therefore use Theorem 2.5 of Chapter II to find all the simple paths of

IT: a simple path is a minimal support S-invariant of IT whose component corresponding to
the external place is equal to 1. Note that if the latter property is not satisfied, the S-invariant
is an internal loop of the net. Subsection 2.4.1 of Chapter II defines the concept of
S-component associated with an S-invariant: it is the subnet of the initial Petri Net whose
places are exactly the places of the support of the S-invariant. An S-component of a WDS is
therefore itself a WDS. Consequently, the simple paths of a given WDS are themselves

WDSs. We will denote by Sp(R,,) the set of all simple paths of the Universal Net QR).

We will write

Sp(Ru) = {spq, ..., sp;}-

The sp; (1 <i <r) are WDSs satisfying sp; < Q(R,).
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Before proceeding to the next section where the main result of this chapter is
presented, we will illustrate the concept of simple path and its link with minimal support

S-invariants with an example.

7.3.3 Example

We will consider the Petri Net I1; presented in Figure 5.3 of Chapter V. The

incidence matrix A 1 of Hl is recalled below.

L

r

o000 —HO
CO00O0OO0O0O~OOO~O
COO0O0OOOOO—OO~—OO
CO00O00O0O=OO—OO00
COO0O00O0O—OO~OO~OO
CO00O00O~OO—~O00000
COCO0O0O~OO-OOO000D
CO000OOOmOOOO000O
CO0Om=OO~O0OO—OO0O
OO0 ~O0O—OOO0OO0O0O
CODO—OOO0000000R
OrO~—O000000000000
CoOCOO0O0O0OO0000R
OO0 0000000O0000

1

If sink and source are merged together, the first and the last rows of A, are replaced

by the sum of the two rows. This yields the matrix Ay presented below. The first row

accounts for the external place.

r

0000000000000
OO0 0OOOD
CO00000000OHOO~—O
COCOOO0000O—OO~0O00
COCO000OOO—OO~OO—O
CO0OOOOO~OO~OO00O
COCO0OO=OO~OO00SO
CO00OO~OO—OOOO000
COCO=—OO~000O 000
COO~O0O~NOOOOO000O
COHOO~—OO00O0000O
OrO~—HO00000000000
CoO0COCOOOOOO0000C
0000000000000

1b
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“Let us find the S-invariants of A{p: An S-invariant will be a 17-dimensional integer

vector X=(x;), with 1 £i <17, which satisfies:

T x=
Alb .X—O.

The previous equation yields the following system.

-x1+x2+x3 =0
-X2 +x4+x5 =0
-X3 +x6+x7 =0

X4 +Xxg =0

-X5-Xg6 +x9 -X14 =0

-X7 +x10 =0

-Xg +x11 =0

X9 +X12 =0

"X10 +X13 X16 =0

-X11 , +X14 =0

X172 +X15+X16 =0

X13 +X17 =0

X1 X15  X17 =0

Note that the labeling of the places and transitions of II; is such that the above

system is quasi-diagonal, which makes its solution fairly simple. The rank of the system is

5. We will choose x1, X5, X4, Xg, and x; 3 as independent variables. The system becomes:

x3=x1 -x2
XS=12-X4
x7=x1-x2-x6
Xg=X4
X9=x2+x6
X]10=X1-X2-X¢6
X11=X4
x12=x2+x6.
X14=X4

X15 =X1-X13
X16 = -X1 +x2+x6+x13
X17=X13
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We can therefore write any element X of the kernel of A1p as follows:

X =x1.X1 +x9.X5 +x4.X4 + x6.Xg + X13.X13, wWhere the vectors
X1.X2,X4.X¢: and X3 are given in Table 7.1 below.

TABLE 7.1 BASE OF THE KERNEL OF Ay
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. The family (X1, X5, X4, Xg, X3} is a base of the kernel of the matrix A1p- The

dimension of the kernel is therefore 5. However, those vectors are not S-invariants since
their components are not all positive. There are seven minimal support S-invariants,

obtained as follows from the vectors X;.
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Xs1=X1 +X3

X =X1+Xy+Xy
X3=X1+Xp +X4+X43
X4=X1+Xy+X13
Xq5=X1 +Xg

Xs6=X1 +Xg+X13
Xg7=X1+X13

The family {Xs1,X52,Xs3,Xs4,XS5,X86,XS7} is a base of the set of all
S-invariants of Alb (2.1.1). Any S-invariant of Alb will be obtained as a linear

combination with positive coefficient of the vectors X¢; (Theorem 2.4). Table 7.2 shows

the six minimal support S-invariants by giving the places of their support.

TABLE 7.2 MINIMAL SUPPORT S-INVARIANTS OF Hl'
xsl XsZ Xs3 Xs4 XsS Xs6 Xs7

X1 PQ O Pg 1 1 1 1 1 1 1
X9 P12 1 1 1 1 0 0 0
X3 P13 0 0 0 0 1 1 1
X4 P221 0 1 1 0 0 0 0
X5 P222 1 0 0 1 0 0 0
x6 p232 0 0 0 0 1 1 0
X7 P233 0 0 0 0 0 0 1
Xg P31 0 1 1 0 0 0 0
X9 P32 1 1 1 1 1 1 0
X10 P33 0 0 0 0 0 0 1
X11 P41 0 1 1 0 0 0 0
X12 P42 1 1 1 1 1 1 0
X13 P43 0 0 1 1 0 1 1
X14 P5122 0 1 1 0 0 0 0
X15 p522 1 1 0 0 1 0 » 0
X16 p5233 0 0 1 1 0 1 0
X17 P533 0 0 1 1 0 1 1
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The labeling of the places corresponds to Figure 5.3.3 of chapter V.Note that the

component of the external place pg is positive for all invariants : IT; is therefore acyclical.

The S-invariants X; are all simple paths of I1;. Figure 7.2 shows those simple paths.

XslC IICI Oll O I O I IOII O

Figure 7.2: Simple paths of I1;.
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In Chapter VIII an algorithmic procedure will be presented to find all minimal
supports S-invariants of a given Petri Net. The example of this subsection illustrates the
kind of computations which are needed in the search for S-invariants.

7.4 CHARACTERIZATION OF ®(R)

7.4.1 Union of Simple Paths: the Set USp(R,;)

We defined in subsection 7.3.2 Sp(R,)) as the set of all simple paths of Q). Its

cardinal is r and we can write Sp(R;) = {spj, 1 <i<r}. Since simple paths are WDSs, the
set Sp(Ry,) is included in the set of all WDSs ¥™:
yh 5 Sp(Ru).
Definition
We will denote USp(R,) the set of all possible unions (or meet) of elements of
Sp(R,y), augmented with the null element w of ™.

USp(Ry) = {TIe ¥" / 3(sp;..5p1 )€ SPRu)d I=sp;1 U...Uspiq} L {©)

USp(R,) is the set of all combinations of simple paths of the Universal Net QRy).

The joint (or union) of two elements of USp(R,,) will be the WDS composed of all the

simple paths included in either one of the two considered elements. Similarly, the meet (or

intersection) of two elements of USp(R,)) will be the WDS composed of all simple paths
included in both considered elements. The meet of two simple paths sp; and Spj will be the

null element  of ¥7, i.e., the WDS of dimension n without any link. This justifies the

inclusion of  into the set Y. The meet and the joint of two elements of USp(R,) are

therefore elements of USp(R,), which induces the following proposition.
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Proposition 7.5
The set USp(Ru) is a Iattice,

It is easy to see that USp(Ru) has at most 2T elements and that any element of

USp(R,) is included in Q(R ). In the general case, the number of elements of USpR,)

will be much less than 2T » because the same WDS can be obtained from different
combinations of different simple paths. To illustrate the point, let us consider the example of
subsection 7.3.3. The following combinations of simple paths all yield the same WDS, as
the reader can check by looking at Figure 7.2.

Xs1 U X3 UXgs5 = Xs1 U X3 UX6 =

Xs1UXg UXgg

X2 UXyg U Xs5 =

XU Xs4 U X

Xs3UXgqu Xss
Proposition 7.6 justifies the introduction of the set USp(Ru).

Proposition 7.6
Every WDS, element of the set USp(Ru), satisfies the connectivity constraint R;.
In formal language:

{(Ile ¥"/R;[M) = 1) > USpR,)

We will capitalize on the building rules of the elements of USp(Ru) and prove
Proposition 7.6 by induction.

Any simple path Spj obviously satisfies R1: this is the very definition of the
constraint R,

Let us now consider a simple path Sp; and an element usp; of USp(R,) that we wil]

assume satisfies the constraint R;. There are two possible cases.
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* Sp; Susp;

In this case, usp;sp; = sp; and uspjUsp; = usp. Consequently, both joint and
meet of uspy and sp; fulfill R;.

* sp; is not included in usp;
We have usp;Msp; = ® and uspjUsp; = usp,. For reason of consistency, we will

consider that the null element w fulfills the constraint R;. Let us now consider a place p of
uspy. If p belongs to uspy, there is a simple path of the Universal Net including p, since

usp; fulfills Ry by hypothesis. If p belongs to Spj» sp; itself is a path going from th¢ source

to the sink of Q(R,,). Consequently, usp satisfies Ry.

Since any element of USp(R,) is obtained by the joint or meet operation with a

simple path, Proposition 7.6 follows.

Corollary
Let II be a WDS and let the simple paths of IT be SP1:5P2:---5Pg: If IT is not

connected, i.e., violates the constraint R, the following inclusion is strict.
IIoIl'= spluspzu...uqu.
The above corollary is a direct consequence of Proposition 7.6. First, the WDS IT,

obtained as the join of all the simple paths of I1, is necessarily included in IT by the very
definition of the join operator U. The WDS IT' is furthermore an element of USp(R,,) and is

connected (Proposition 7.6). The WDS IT' cannot, therefore, be equal to IT which is not
connected: it is then strictly included in IT.

Proposition 7.7 is a kind of reciprocal to Proposition 7.6.
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Proposition 7.7

A Feasible Organizational Form that fulfills the constraint Rj is an element of
USp(R,, i.e.,

USp(Ry) > {ITe ®Ry) /R[] =1}

R[IT] = 1 means that I1 satisfies the constraint Ry (see 7.2.1)

Proof
Let us consider a FOF IT which satisfies the constraint R. Let the simple paths of IT

be {spl,spz,...qu} and let IT' be the joint of those simple paths: H'=sp1u...uqu. We

have IT' < IT (corollary of Proposition 7.6). Let us suppose that IT' # IT. This implies that
there is at least one place p which belongs to IT but not to IT'. Since IT fulfills Rj, there is a

simple path of IT which includes p. p is therefore included in the joint of all simple paths of
I1, i.e. IT. We reach a contradiction and therefore IT=IT'. Since a simple path of I is a
simple path of the universal net, IT' is an element of USp(R,).QED.

From Propositions 7.6 and 7.7 taken together, we have the following double
inclusion:

(ITe ¥"/R;[IT] =1} > USpR,) D {1 e ®R) /Ry [N =1}
7.4.2 Characterization of ®(R)

We are now ready to put all the pieces together and state the following proposition
characterizing the set ®(R) of all feasible organizations.

Proposition 7.8
Let ITbe a WDS of dimension n. IT will be a Feasible Organization if and only if
«II is a union of simple paths of the Universal Net Q(Ru), i.e., IT € USp(Ry).

« IT is bounded by at least one MINO and one MAXO.
In formal language:

®(R) =(TTe USp(Ryy) / 3 (i T110,) € Py RXPp R) Tl STIS I )
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Proof ,
Let the set defined in the right-hand side of the above equation be called Z. From
Proposition 7.6 we have:

USpRy > {ITe ®R,)/R[M] =1} > @(R).
From Proposition 7.1 we have:

{Ile ¥" /3 (Hm.in’nmax) € (Dmin(R)x(Dmax(R) 1-lmin <Ii< l-[max] > OR)

Consequently, Z > ®(R). Let IT be an element of Z. I1 belongs to USp(R,,). IT
satisfies the constraints R, by definition of USP(R,,) and the constraint R; by Proposition
7.4. Furthermore, I is smaller than at least one MAXO I1; .« and greater than at least one
MINO II ;. The WDS IT . and IT_ . fulfill the constraints Ry,R3, and R4 by

definition. Since those three constraints are convex (Proposition 7.3), they are satisfied by
I1. Consequently, IT satisfies the entire set of constraints R and is a Feasible Organization.
It follows that ®(R) > Z and consequently ®(R) = Z. QED.

Proposition 7.8 gives a characterization of the set ®(R) just like Proposition 7.4
gives a characterization of the set ®(R,)). While P! is used in the equality characterizing

®(R,)), USp(R,)) is used to characterize ®(R). In the former case, the link is the incremental

unit leading from a WDS to its immediate superordinate, while in the latter the simple path
plays the role of the building unit.

7.4.3 Structure of the Set ®(R)

Proposition 7.8 defines the "boundaries” of the set ®(R). The next step of the
analysis is to understand the internal structure of ®(R). This subsection addresses this issue
and gives a few results about the structure of ®(R).

According to Proposition 7.8, ®(R) is included in USp(R). USp(R,) is a lattice,

but, in the general case, ®(R) will not be a lattice as the following proposition shows.
Proposition 7.9

The set @(R) of all Feasible Organizations is a lattice, if and only if ®(R) has exactly
one MAXO and one MINO.
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Proof

If the number of MINOs or MAXOs is greater than one, it is easy to see that ®(R) is
not a lattice. Indeed, if IT and IT' are two MAXOs, their joint ITUIT' cannot be within the set
®(R), since this would violate the fact that IT and IT' are maximal elements of ®(R). The
same reasoning applies for MINOs.

Let us now suppose that ®(R) has exactly one MINO and one MAXO. The proof
that ®(R) is a lattice in this case is completely similar to the proof that ®(R,) is a lattice (see

the corollary of Proposition 7.4).

Proposition 7.9 is actually a rather negative result since, in most cases, there will be
several MAXOs and MINOs. More work is needed to gain a better understanding of the

structure of the set ®(R). The following development constitutes only a step in that
direction.

Any element of ®(R) belongs to a chain whose extremities are a MINO and a
MAXO. A characterization technique of all the chains leading from a given MINO to a given
MAXO would therefore bring deeper insight into the structure of the set @(R). The first
step is to determine the length of those chains. Chapter IX will provide examples where the
set d(R) violates the Jordan-Dedekind chain condition. The chains leading from a given
MINO to a given MAXO have, therefore, not necessarily the same length: the goal of the
remaining part of this section is to define a lower bound to this length. To do so, the notion
of minimal decomposition of an element of ®(R) is introduced.

Minimal Decomposition of a Feasible Organization

Let IT be an element of ®(R) and let Sp(H)=[Sp1,Sp2,...,Spq} be the set of all the

simple paths of IL. Since the Feasible Organization IT is equal to the join of all its simple
paths, i.e., TI=spjUspaV...Uspg, Sp(I1) will be called a generating family of II (the
word family is taken from the language of Vector Space Theory). The family Sp(IT) may
however not be the smallest family able to generate I1. Let USp(IT) denote the set of all
unions of elements of Sp(IT), augmented with the null element ®. Note that Sp(IT) and
USp(I) are defined in the way that Sp(R,)) and USp(R,)) have been defined in subsections

7.3.2 and 7.4.1: II plays now the role of the net Q(Ry,). Therefore, Proposition 7.5 applies

to USp(IT) and this set is a lattice: its least element is o and its greatest element is I1. The
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minimal decompositions of IT will be characterized by the minimal length chains in the
lattice USp(IT). The following definition summarizes this analysis,

Definition

In other words, a minima] decomposition of IT is a family A= { SPj1»---»SPjg} of
simple paths of I, satisfying the following conditions:

* IT = sp; 1Y Uspyg

* O© < spj1 < spj;uUspy < SPi1 USpjp Uspjz <...< SPi1 Y ... Uspig =TI

* The length of any chain leading from @ to IT is at least equal to s.

complexity of IT.

Definition
Let IT be an element of ®(R). The complexity of [T, denoted c(IT), will be the
minimum number of simple paths whose Join (or union) is equal to IT.

The complexity is a monotone function of its argument. In other words, if ITand IT
are two FOs, the following implication holds:

(IT=211) = (c(ID) 2 (7Y ).

The two following propositions are key properties of minimal decomposition and
complexity. '
Proposition 7.10

LetI1 be a FO and let { sp l,spz,...qu} be a minimal decomposition of [T, Let IT; be

defined as follows: IT; = SP1Usppu...Usp;.

The family { SP15---»Sp;} is a minimal decomposition of 1'[1 and c(Hi) =i,
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Proof ,
The family {spi.....spj} 1s @ generating family of IT;. Let us suppose that the

complexity of I is smaller than i. There is, therefore, a minimal decomposition of I, with
less than i elements: IT; = spl'uspz'u...usps' with s <1.

Since I =11, v SPi+1SPi+2Y--IUsPgs the complexity of II is at most equal to
s+q-i, which is smaller than q. This is a contradiction and therefore the complexity of I, is

exactly equal to i. It follows that {sp1..--Spj} is a minimal decomposition of IL.

Proposition 7.11
Let IT and IT be two FOs, elements of ®R). The following inequality holds:

c(TIUIT) £ c(I) +c(T) - c(IINIT) 7.1

Proof

An inductive method of proof will be used.
Let [spl,spz,...qu} be a minimal generating family of II. Let I1; be defined as

follows: I; = spyUspp\J...Isp;. Note that [T = l'Iq Let us prove by induction on i that the
following property, denoted (Pi), holds for all i between 1 and g.

(Pi) : c(IT'UITy < D) + el - c(IT'NIT)

« i=1. There are two cases. Either sp < IT' or not. If spy SIT, then Muspy =1T
and [1'nspy = sp;. Therefore,
c(IT'uspy) = c(IT) = c(T) +c(spy) - c(spy)
= c(IT") + c(spy) - cdT'Nspy)-

(P1) holds in this case. Let us consider the other case where spj is not included in

IT'. The union of a minimal generating family of IT' with sp; will be a generating family of

[T'uspy. Consequently, we have c(IT'uspy) Sc(I)+1 = c(IT) + c(spp)-

127



Lastly [I'~sp; = @ and c(l'['mspl) = ¢(w) = 0. We have therefore,
c(IT'uspy) < c(T’) + c(spy) - c(IT'nspy).
We have proved that (P1) holds in both cases.

* Let us assume that (Pi-1) is true and let us prove that (Pi) is also true (i > 1).
c(IT'VITy =T v (I1;.;Uspy))
= c((IT'VITj.1) w spy)

< C(H‘Uni_l) +1
Let us apply (Pi-1) to the right hand of the previous inequality:

c(IVIT) < () + (1) - c@I'NIT;q) + 1

Since {spl,spz,...qu} is a minimal generating family of [T, Proposition 7.10
applies and c(l'[i) =i= c(l'li_l) + 1. Therefore,

c(T'VITy < edI) +cdly) - cdTAIT;q)

Lastly, II'NIT; < IT'"ITj_; and since ¢ is a monotone function,

c(IT'VITp < e(T) + Ty - cdT'NIT;)
We have proved that (Pi) is true, given that (Pi-1) is true.

Since (P1) is true and since (Pi) is a recursive property,i.e., (Pi-1) = (Pi), then ®Pq)
will be true and therefore,

c(ITVID) < edT) + () - c(T'AII). QED.

Let us show on an example that (7.1) can actually be a strict inequality. Figure 7.3

represents a 2-dimensional WDS IT; whose complexity is equal to 3: IT 1 =SP1V Sp2UV sp3.
The family {sp;,sp;,sp3) is a minimal decomposition of I1;. When the simple path Spy is

added to Hl’ the resulting WDS I'I2 has still a complexity of 3: Hz = 5p] U spy U sps.
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Therefore,

3 =c(Ilp) = c(I; U spy) <c(l,) + c(sp4) - c(IlyNspy) = 4

Simple path sp 1 Simple path sp )
Simple path sp , Simple path sp},
Simple path S]:’l5

Figure 7.3: Example of a strict inequality in (7.1).
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The following proposition justifies the introduction of the notion of complexity.

Proposition 7.12
Let IT and IT be two Feasible Organizations such that IT < IT'. Any chain between

ITand IT has at least a length equal to c(IT') - ¢(TT) +1.

Proof

Let c(IT) = q and let {spl,sp?_,...qu} be a minimal generating family of []. Let us
consider a chain of length r between IT and IT": |

In< Huspgip €. € HUSpq+1U...USpq+r_1 =TI

The family {spl,spz,...qu+r_1] is a generating family of IT' and therefore,

c(Il') £ gq+r-1=c(I) +r - 1. In other words, c(IT) - cd)+1<r. QED.

It should be noted that Proposition 7.12 does not guarantee that a chain whose

length is exactly equal to c(IT)-c(IT)+1 exists.

In this subsection, some directions for the analysis of the internal structure of the set
@(R) have been explored. The fact that d(R) violates the Jordan-Dedekind chain condition
makes things fairly complicated. More work is required to gain deeper insight into ®(R).

The ultimate goal would be to define some "categories” of organizations within the set ®(R)
and to give those categories physical interpretation.
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CHAPTER VII

ALGORITHMIC IMPLEMENTATION

8.1 OVERALL STRUCTURE OF THE ALGORITHM

The design methodology presented in the previous chapters has been implemented
on a personal computer. The specifications of the system are given in Table 8.1. The
complete algorithm is composed of four programs, written in Turbo Pascal ©: ARCGEN,
MAIN, PORGA, and DORGA. These programs have been compiled independently but they
all have the same memory map to ensure proper chaining between them. The Pascal
command "execute" is used to transfer control from one program to another.

TABLE 8.1 DESIGN WORKSTATION SPECIFICATIONS

Hardware: IBM AT with -512k RAM.
-20 M Hard Disk.
IBM Professional Graphics Display Monitor.
EPSON FX-100 Dot Matrix Printer.

Software: DOS 3.0. © IBM.
Turbo Pascal 3.01A. © Borland International.
Screen Sculptor. © Software Bottling Company.

Since ARCGEN initiates the procedure, the complete package will be denoted
'ARCGEN. To begin a design session, the user invokes ARCGEN. The title screen
(screen#1) with the description of the program appears. Whenever a key is struck, control is
transferred to the program MAIN: screen#2, shown in Figure 8.1, replaces screen#1. This
screen presents to the user a menu with three options: "Input or modify CONSTRAINT
DATA" invokes the program PORGA, "Run DESIGN program" invokes the program
DORGA, and "Exit to DOS" transfers control back to the operating system thus terminating
the session. If PORGA or DORGA is invoked, control is given back to MAIN after
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execution. These two programs can therefore be run as many times as desired in the same
session. The default for all three options is "N"; the user has to type "Y" and escape for one
of the three options to continue.

The above description of the overall architecture of the package is summarized in
Figure 8.2. A Petri Net has been used instead of the classical flow chart representation. The
Petri Net representation is indeed more accurate and more powerful than the flow chart
representation. As it will be seen, it allows for different levels of refinement in the
description of the algorithm structure. Figure 8.2 represents the highest level, where each
algorithm is aggregated into a single transition. By refining those transitions, one can obtain
more and more detailed descriptions, while preserving the same basic structure. The places
of Figure 8.2 represent the actual state of the computer screen. The place corresponding to
screen#2 (program MAIN) has three output transitions representing the three options
available to the user.

GENERATION OF ORGANIZATIONAL ARCHITECTURES
written by PASCAL A. REMY

M.IT. Laboratory for Information and Decision Systems

MAIN MENU
(Y/N)
Input or modify CONSTRAINT DATA N
Run DESIGN program ~ Y
Exit to DOS N

Figure 8.1: Screen#2 (program MAIN).
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Operating System Return to DOS

0 &

Screen#2
MAIN DORGA

0

Invoke Screen#l Strike
ARCGEN ARCGEN any key

PORGA

Figure 8.2: Petri Net representation of the overall structure.

Before the description of the program DORGA (the core of the algorithm) is given,
the program PORGA is examined. This program allows the user to enter or modify
user-defined constraints. A database of user-defined constraints has been created and is
stored in the file CONSTRAINT.DAT. The user can retrieve, use, and modify existing
records from the database. He can also create new ones that will be added to the database.
In brief, PORGA allows the user to update the database CONSTRAINT.DAT. A pointer
indicates how many records are currently stored in the database. The internal structure of the
program PORGA is represented in Figure 8.3. The Petri Net of Figure 8.3 is the refinement
of the transition labeled PORGA in Figure 8.2.

As in Figure 8.2, each place of Figure 8.3 represents a screen. The transitions
represent the actual processing done when going from one screen to another. The place
corresponding to the Menu Screen (screen#3 in Figure 8.4) has six output transitions
corrresponding to the six options available to the user at this stage. The user can retrieve
constraint data from the database CONSTRAINT.DAT and can also enter new data. In the
later case, he can choose the number of decisionmakers (between 2 and 5, the maximum 5
being the default value). Once the data are entered or modified, the user can store them in
the database either in adding a new record or in overwriting an existing record.
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—* Choose number of decisionmakers

Save constraint data

MAIN
Return to MAIN MENU  MENU

—0

I\L/EIEAIEINU Retrieve data  Screen#4 Screen#5 ﬁ'>lj

Return

to
Input/Modify general constraints Screen 3

«DIJ Input/Modify special constraints

Figure 8.3: Petri Net representation of the program PORGA.

When data are retrieved or entered screen#4 shown in Figure 8.5, appears: it

provides a graphic representation of the arrays defining the constraint Ry. The dimension of

the arrays will correspond to the number of decisionmakers requested by the user. When
data are retrieved from the database, screen#5 - corresponding to the special constraints and
shown in Figure 8.6 -, appears automatically after screen#4. When new data are entered,
however, screen#5 will appear only if requested by the user. Eventually, the menu screen
will reappear. The user will exit the program by answering "Y" to the prompt "Return to
MAIN MENU".
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GENERATION OF ORGANIZATIONAL ARCHITECTURES

(Y/N)
Retrieve Y
Save —]— organizationdata N Constraint set # 1 Total 6

Return to MAIN MENU N

(Y/N)
Input / Modify general constraints N
Input / Modify special constraints N
Number of decisionmakers (2 -5) 5

Figure 8.4: Screen#3 (program PORGA)

GENERATION OF ORGANIZATIONAL ARCHITECTURES

1 2 3 4 5 1 2 3 4
e:input 0| 0 0 O O O s:oupput 0| 0 0 O O O
1
F 2
SA—®IF 3
4
5
1 1f
H ) C 2
RS —»IF 3 RS —»CI 3
4 4
5 5

Figure 8.5: Screen#4 (program PORGA)
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GENERATION OF ORGANIZATIONAL ARCHITECTURES - Special Constraints
FROM ‘ TO
DM # Stage DM # Stage
0 0 0 0
0 0 0 0
0 0 0 0
0 0 Stage # 0 0
0 0 g 0 0
0 0 SA 1 0 0
0 0 IF 2 0 0
0 0 CI 3 0 0
0 0 RS 4 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Figure 8.6: Screen#5 (program PORGA)

The screens used in ARCGEN, MAIN, and PORGA have been designed using the
commercial software SCREEN SCULPTOR © by the Software Bottling Company.

8.2 PROGRAM DORGA: THE SEARCH FOR MINOS AND MAXOS.
8.2.1 Overview

Figure 8.7 represents the structure of the program DORGA.
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[F1] I
Screen#7

[F1] Special Constraints

MAIN  Run J>q} 1.>| (F2)
MENU DESIGN ]
ﬁ->| j.>| -

Choice of Screen#6 un
the Constraints Arrays Program

[F2]

PLIT_CONS CST_DMO HARD_WIRE INVARIANT PATH HARD_NUM

Nets Incidence matrix  Fixed places S-invariants Simple paths ~Index pcount
Q[Ru) (Ru) A of A of A P

Print constraints

Loops DISP_MENU Print incidence matrix

Print simple paths

MINO MAXO MINOs
candidates candidates MAXOs

Menu
Print MINOs

Print MAXOs

Back to MAIN

Figure 8.7: Structure of the program DORGA.

The program DORGA is the core of the complete package ARCGEN: it implements
the methodology described in Chapter VII. The program first retrieves a set R, of

user-defined constraints from the database CONSTRAINT.DAT and then generates the
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corresponding MINOs and MAXOs . As intermediate results, the incidence matrix of the net

Q(Ru) as well as the simple paths of this net are generated. The diagram m Figure 8.7 is
divided into three levels corresponding to three different phases of the program. The upper
level is the data acquisition stage, the intermediate level generates the simple paths of the set

Q2(Ru), and the lower level corresponds to the computation of the MINOs and MAXOs and
to the printing of the results. The three levels are analyzed below.

8.2.2 Data Acquisition Stage.

This stage corresponds to the upper level of the Petri Net of Figure 8.7. When the
"Run DESIGN" option is invoked from the MAIN MENU (Screen#2), the user is
prompted for the record number of the set of user-defined constraints he wishes to retrieve
from the database. The arrays corresponding to the chosen set of constraints are displayed
on the screen (Screen#6). This enables the user to check whether the retrieved set of
constraints actually corresponds to the one he wants to use. Would this not be the case, the
user, by hitting the function key [F2], can return to the MAIN MENU and either start again
with a different set of constraints or run the program PORGA to scan the database. The
special constraints (Screen#7) can also be checked by hitting the function key [F1] from
Screen#6. Once the user is satisfied that he has the correct set of user-defined constraints,
he hits [F3] (or [F2] from Screent#7) to go to the next stage of the algorithm.

8.2.3 Generation of the Set Sp(Ru).

The intermediate level in Figure 8.7 represents the different steps necessary to

generate all the simple paths of Q(R,)). Each transition of this level corresponds to a

specific subroutine and has been named accordingly. SPLIT_CONS differentiates between
the fixed and the unspecified elements of the arrays defining the constraints R,;: the matrix

representations of Q(Ru) and o(R;) are generated at this stage. CST_DMO transforms

those matrix representations into the representations (2) and (3) of subsection 5.4.2: the
incidence matrices with the labeling of the places and transitions of both nets are produced.

The incidence matrix of Q(Ru) will be denoted A. HARD_WIRE matches the places of
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Q(R,,) with the places of w(R,)) to identify the fixed places. INVARIANT computes the

S-invariants of the incidence matrix A. This procedure has been taken from a program
written by Hillion [5] and is based on an algorithm first proposed by Martinez and Silva
[28) and improved by Alaiwan and Toudic [29]. Since the procedure generates all the
S-invariants of the net €(R;), simple paths need be sorted out and distinguished from
internal loops. This operation is achieved by the subroutine PATH. A different version of
the algorithm ARCGEN uses the procedure SIMPATH, developed by Jin [2], instead of the
procedures INVARIANT and PATH. The procedure SIMPATH directly generates the
simple paths of the net Q(R;). HARD_NUM assigns to each place of the net Q(R,)) an
index, pcount, representing the number of simple paths containing this place. The
usefulness of this index will be clarified when the algorithm MINO is described. At this
stage, the set Sp(R,,) of all the simple paths of the net Q(R,,) is found. Before describing
the last stage of the algorithm, it is necessary to explain the technique used to store WDS.

8.2.4 Internal Representation of WDSs.

In subsection 5.4.4, three representations of a WDS are described: representation (1)
is the matrix representation, representation (2) consists of the incidence matrix with the
associated labeling of the transitions , while representation (3) refers to the labeling
technique of the places. The three representations are used to describe the net Q(R ;). The

matrix representation is directly derived from the user-defined constraints and is used to
compute the incidence matrix of the net. The incidence matrix is necessary to do the actual
computation but is very inefficient as far as memory space is concerned. The representation
(3), i.e. the labeling technique of the places, has been introduced to remedy this situation: it
is compact and requires much less memory space than the incidence matrix representation.

A N-dimensional vector L, where the labels of the places of Q(R,)) are stored, will thus

characterize the net Q(R,)). Any subnet of Q(Ry,), and a fortiori any Feasible Organization ,

will be represented by a N-dimensional vector whose elements correspond to the places of

Q(R,)) and take value in {0,1}. A 1 indicates that the corresponding place is present, while -
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a 0 denotes its absence. In the sequel, this representation of a subnet of Q(Ru) will be

referred to as the vector representation. A simple path of Q(R,) will thus be represented by

a N-dimensional integer vector. The vector representation is extremely efficient to perform
meet and join operations: the meet and join are done element by element following the rules

described in 4.4.3. Lastly, the incidence matrix of any subnet of Q(R,) can be obtained

from the vector representation of the subnet by extracting from the matrix A the rows

corresponding to the 1's of the vector. The procedure EXTRACT accomplishes this
function.

8.2.5 The Search for MINOs

MINOs and MAXOs are obtained as combinations of simple paths of Sp(Ry,): they
are elements of the set USp(R). The vector representation is used to characterize any
element of USp(R,;). The search for MINOs is done by scanning the set USp(R,), dépth

first, as illustrated in Figure 8.8. The depth (or vertical) index will be denoted i and, for a
given depth, the lateral (or horizontal) index will be denoted j[i].

Lateral (or horizontal ) index

—
. s s s
1: Pl P2 Spj 1] Pr
depth
. s s s
(or vertical) 2: p2 p3 SI?1[2] pr
index
i S SP. .. S
v 1: Spi pi+1 _][l] pl'

Figure 8.8: Scanning technique of USp(R ). -
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A given point in the scanning process of USp(R,;) will be characterized by its depth

index i and by the lateral indices j[i], j{i-1],...,j[1]. Such a point will correspond to the

element I'1= sPj[1] Y SPj[2] VY - - - Y SPj[i] .To eliminate redundancy, the lateral index j[i] is
a strictly monotone function of i: j[i] > j[i-1] > ... > j[1]. In Figure 8.8, the first element

corresponding to depth i is thus sp;. This scanning process is exhaustive and ensures that
no element of USp(R,,) will be omitted. The scanning can, however, be improved. Since
only minimally connected organizations are searched, every single element of USp(Ry)

need not be considered. More specifically, as soon as an element of USp(R ;) is found that

includes all the fixed places, the search can stop: the element is a MINO candidate and there
is no need to keep adding simple paths. Consequently, simple paths will be chosen in such
a way that the number of fixed places that are left out is strictly decreasing as new simple
paths are added. This technique is implemented as follows. Let suppose that the depth index

is i and that the corresponding element of USp(R,,) is:
Hi= SPj[l] v Spj[z] (A SPj[i] .

Let us, furthermore, assume that this element satisfies the structural constraints, but
violates the user-defined constraints because it does not include all fixed places. The fixed

places that are not included in IT are scanned and the one with the smallest index, pcount, is

chosen: let p;, denote this place. Let jy,4[i] denote the number of simple paths that

include the place pyi,- The selected simple paths are added one by one to]I. The process is

repeated until no fixed place is left out. At each step, the structural constraints are checked,
using the procedure CHECK. Figure 8.9 summarizes this procedure. In the scanning

process, when a net I is found that both satisfies the structural constraints and includes all

fixed places, such a net is a MINO candidate. It is then compared to the previously found
MINO:s to eliminate possible redundancy. A given MINO can, indeed, be obtained as a
combination of two different sets of simple paths. When the place labeled "end" in Figure
8.9 is reached the search stops. A set of MINO candidates has been generated. One last
check need be done. It comes from the fact that the subroutine CHECK does not eliminate
multi-level loops, when checking the structural constraints. Multi-level loops refer to
those loops involving more than two decisionmakers. Because those loops may be very
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intricate, they are not accounted for in the procedure CHECK. The procedure INVARIANT
is indeed used to locate such loops and eliminate the corresponding MINO candidates.
Because the same problem arises for MAXOs, this last check is done simultaneously on
MINO and MAXO candidates: it is represented in Figure 8.7 by the transition labeled
"loops” in the lower level of the figure.

Initiali
i=0

Begin n0= @
O—f—

Find associated Construct
simple paths II=Inmuv sp
Incrementi:i:=i+1 jli] < jmax]i] 1 i-1 ili]

F——O—

Check the

I structural constraints

jli] < jmax(i]

Next j[i]

Store

fulfilled

Look for
fixed places

left out

None 1,>I

DI [>q>some fixed places Dl

Compare with
‘previously found

Next j[i]

are left out

1 |

Figure 8.9: The search for MINO:s.



8.2.6 The Search for MAXOs

The MAXOs and the MINOs are found in a similar way. In the case of MAXOs,
however, the scanning process of USp(R,;) is done starting from the net consisting of the

union of all the simple paths of Sp(R,), i.e., the greatest element of USp(R,,). Simple paths

are then removed one by one until structural constraints are satisfied. At each step, it is
necessary to ensure that no fixed place is removed, since this would induce a violation of
the user-defined constraints. The order in which simple paths are removed proceeds from
the following rationale. When a violation of the structural constraints is encountered, the
subroutine CHECK identifies two of the places responsible for the violation. The simple
paths that include those two places are then singled out and removed one by one from the
initial structure. This step is the counterpart of the step using the index pcount in the search
for MINOs. The procedure is repeated until the structural constraints are satisfied - in which
case a MAXO candidate is found - or until the user-defined constraints are violated - in
which case the organization is discarded. Once the set of all MAXO candidates is found, the
procedure INVARIANT is used to eliminate multi-level loops. '

8.2.7 Presentation of the Results

Once MAXOs and MINOs have been found, a print menu is displayed on the screen:
it corresponds to the transition labeled DISP_MENU in Figure 8.7. This menu allows the
user to get a hard copy of the user-defined constraints (key [F1]), the incidence matrix of

Q(Ru) (key ([F2]), the simple paths of Q(Ru) (key [F3]), and the MAXOs and MINOs
(keys [F4] and [F5]). Finally, by hitting the key [F6], the user comes back to the MAIN
MENU and can start another session or leave the program. Simple paths, MINOs and
MAXOs are printed using their vector representations. The algorithmic labeling of the places
is given to helpv the user interpret the results. Examples of computer printouts are given in
Chapter IX.
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8.3 USER MANUAL
The different steps necessary to run a design session are summarized below.

* Start the session by invoking ARCGEN. Hit any key to continue.

* The MAIN MENU is displayed. Select the first option: “Input or modify
CONSTRAINT DATA"

* The menu screen of PORGA is displayed. Enter user-defined constraints, either
from scratch or by first retrieving cxi'sting data. Do not forget to save the data you
just entered! Return to MAIN MENU once you are satisfied with the user-defined
constraints.

* Select the second option from the MAIN MENU: "Run DESIGN program".

* Enter the record number corresponding to the set of user-defined constraints you
just entered and run the design procedure.

* Print the results you are interested in and go back to the MAIN MENU.

« Start another session or return to the operating system in selecting the third option
of the menu: "Exit to DOS".
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CHAPTER IX

APPLICATIONS

Two examples are analyzed in this chapter. The first one is an example given to
illustrate the mathematical concepts that have been used throughout the foregoing
developments. The second one is an application illustrating how the methodology can be
used to tackle concrete problems.

9.1 THE GENERAL CASE OF TWO MEMBER ORGANIZATIONS.

The most general case of 2-member organization will be considered in this section.
This example has been chosen because its complexity is high enough to generate insightful
results while remaining within tractable limits.

9.1.1 User-defined Constraints

The first step of the design methodology consists in specifying the user-defined
constraints. All interactions are allowable. The symmetry between the two decisionmakers
will however be broken to eliminate some unnecessary redundancy but also to analyze the
implications of having asymmetrical constraints. The symmetry is broken in specifying that
DM! must receive an input from the external environment and that DM?2 must send an
output to the external environment. All other interactions are permissible but not
compulsory. The arrays represented in Figure 9.1 reflect those specifications.

i

A "x" indicates that the corresponding link may or may not be present. The

dimension of the set ®(R;1) of all WDSs satisfying the constraint R,1is 210 = 1,024.
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e=[1x]

s=[x 1]

#
x #
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—#x C= # x
_x# _x#

Figure 9.1: User-defined constraints R;;.

9.1.2 Nets Q(R1) and ©R ;).

The Net Q(R,,1), obtained by replacing by 1 all unspecified elements of the arrays in

Figure 9.1, is shown in Figure 9.2. Note that this net contains all allowable interactions
between two decisionmakers. Places have been labeled sequentially, thus avoiding
clustering the picture with four digit labels, but transitions have been labeled according to
the labeling scheme described in Chapter V. A WDN is indeed completely characterized by
its graph with the associated labeling of the transitions: this is representation (2) of
subsection 5.4.4. Fixed links and places are in boldface characters.
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Figure 9.2: Universal Net Q(R,;1)-
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Table 9.1 gives the correspondence between the sequential labeling of the places of

Q(R;1) and the internal labeling technique used by the computer algorithm and described in
Chapter V. In the sequel, the latter will be referred to as the algorithmic labeling.

TABLE9.1 SEQUENTIAL VS ALGORITHMIC LABELING OF THE PLACES.

sequential label — algorithmic label

P1—Po P2 P11 P3=P12 P4 = P21 P52 P212
P6 = P221 P7 P22 Pg = P31 P9 = P32 P10 P41
P11 P42 P12 P51 P137P5121 P14P5122 P15 P5123
P16 P52 P17 P5211 P18—P5212 P19—P5213 P20 P¢

The incidence matrix of 2(R,;1), computed from the constraints R, 1 by the program
ARCGEN, is reproduced in Table 9.2 below.

TABLE 9.2 INCIDENCE MATRIX A; OF QR 1)

to t11 t12 121 122 131 132 t4] tg0 t5
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Net o(Ry)

This net is obtained in setting to 0 all unspecified elements of the arrays of Figure
9.1. The net is represented in Figure 9.3. Note that it is not connected, as it will generally
be the case. By definition, the places of this net are the fixed places.

Figure 9.3: Net @(R;7).

Simple paths of QR,1)

The net Q(R,;1) has 14 simple paths. They have been generated by the algorithm

ARCGEN and are represented below. Table 9.3 gives the vector representations of these
simple paths and Figure 9.4 gives the corresponding Petri Net representations. Fixed places
are identified with an asterisk in Table 9.3 and with boldface characters in Figure 9.4. Note

that the fixed places are exactly the places of the net oRy1).
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The fixed places pj and ppg correspond respectively to the source and the sink of

the net Q(R;1): every simple path must include those two places by definition. Places pp
and p1 g refer respectively to the link between the external environment and DM! and to the

link between DM2 and the external environment. Those two places have to be included in
every feasible organization.

TABLE 9.3 SIMPLE PATHS OF Q(R1).
1234567 891011121314

P *
p2 *
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19

1
0

1

1

0

0

1

1

1

1

1

1

0

0

0

0

1

0

0

P20 1

1111
1010
0101
0000
1010
0000
0101
0011
1111
1111
1111
1111
0000
0000
0000
0000
0000
0011
1100
1111

mOOOHOO»—-Oa—lr—lu—-v—u—oo'—-Or—.—t

111
010
101
010
000
101
000
111
011
111
111
000
000
011
100
111
000
000
000
111

HOOOOOOO»—-OHO'—-OOOHOHH
HOOOOOOOHOHOHO'—OOHOH
HOOO'—-OOOO»-‘OHOOO'—-OOH»—-
HOCOHOOOOHOHOHOOO»—-OH
»--oooh-»—-ooo—-x—-o—-ooohto»-—-

149




Sp

Sp2
Sp3

Sp4

Sp

5
P g
P,

o0 0ol 0

, ).
f Q(Ru
ths o;
le pa
imp
the s
taton of
sen
epre
i Netr
: Petri
94:
Figure

150



S ﬂwﬂ_%
—(O<—

simple paths of QR 1)

Figure 9.4 (continue): Petri Net representation of the
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9.1.3 MINOs and MAXOs.
The algorithm ARCGEN generates 5 MINOs and 5 MAXOs. Table 9.4 gives the

vector representation of both MINOs and MAXOs. Figure 9.5 (resp. 9.6) reproduces the
Petri Net representations of the MINOs (resp. MAXOs).

TABLE 9.4 VECTOR REPRESENTATION OF THE MINOS AND MAXOS.

MINO MAXO

12345 12345
ppx 11111 11111
ppx 11111 11111
pg 10000 11110
pg 10111 11111
ps 01000 11111
pg 00000 11110
p7 10001 11111
pg 10111 11111
pp 11011 11111
pjp 10111 11111
p;;p 11111 11111
pjp 10000 11111
p;3 00001 00001
pi4 00010 00010
Ppis 00100 00100
pigx 11111 11111
p;7 00000 00000
pjg 00000 01000
plg 00000 10000
ppo* 11111 11111
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Figure 9.5: Petri Net representation of the MINOs.
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Figure 9.6: Petri Net representation of the MAXOs.
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9.1.4 Considerations About Symmetry

The effect of imposing asymmetrical constraints is reflected both in the sets of
MINOs and MAXOs, at different degrees however. Let 61 denote the permutation

operator between pM! and DM2,

MINOs

Without the asymmetry in the constraints, the four MINOs my,m3,my, and mg

would have had counterparts obtained by reversing the roles of pMm! and pMm2 (i.e., by
application of the operator C12)- Because of the asymmetry in the constraints, the set of

MINOs is highly asymmetrical: mj is the only MINO invariant under the operator 617
(mq=017 (myp)). ’

MAXOs

M, and M3, as well as M, and My, correspond to each other with respect to the
permutation 65 : M3=013 (M) and My =013 (M5). M5 has no counterpart in the set
@ xR of all MAXO:s.

The way in which symmetries in the set of user-defined constraints are reflected in
the sets of all MINOs and MAXOs is an interesting subject that would require further
investigation. The above example suggests that the set of MINOs may be more sensitive to
the effect of having asymmetrical constraints than the set of MAXOs.

9.1.5 Structure of the Set OR).

The diagram of Figure 9.7 outlines the inclusion relation existing between the
MINOs and the MAXO:s. This diagram is the skeleton of the set ®(R). Even in this very
simple case the diagram of the entire set ®(R) is very large. In Figure 9.8, all the Feasible
Organizations containing the MINO m are listed. Figure 9.8 represents the subset of the

set ®(R) composed of all the superordinates of mp .
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MAXOs
Figure 9.7: Inclusion relations between the MINOs and the MAXOs.

The entire set ®(R) would be obtained in connecting together the five partial-
diagrams corresponding to the subsets of superordinates of the five MINOs. In Figure 9.8,
every Feasible Organization is designated by one of its minimal generating families. Note
that all the paths leading from m; to a given MAXO have not the same length: the set ®(R)

violates the Jordan-Dedekind chain condition (7.5.2). The bold face links in Figure 9.8
represent the minimal length paths between any two nodes (whenever paths from different
length are present).

At the outset, the total number of WDSs satisfying the user-defined constraints was

1,024. Althougth the net Q(R,;1) has 14 simple paths, the number of elements of USp(R,1)
is much less than 214, Indeed, the MAXOs have all a complexity less than 4.

Consequently, any element of USp(Ry1) can be obtained as the join of at most 4 simple

paths. The cardinal of USp(R,;1) is therefore bounded by:

4 141
C,, = =——— =13%11*7 =100
14 10! * 4!

The exact number of elements of USp(R, 1) is very likely to be much less than

1,001, since redundancy is still present among the combinations of at most four simple
paths. A rough estimate of the number of elements of the set ®(R) can be infered from the
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diagram of Figure 9.8. Since this diagram has 20 elements and since the set ®(R) is
obtained by juxtapositi

on of five such diagrams, one can expect ®(R) to have around 100
elements. Once again, the exact number of elements of ®(R) is most probably well below

100, because the same organization can be obtained from two different MINOs, thus
creating redundancy.

m]
1.4)
(1,4.13) {1,411} {124) {1,3,4) (1,4,5) (1,4.7)
N
{1,2,4,13) M (1,2,4,11)7 {1.4.12)] Y(1.4,10) 123.4) {1,4,8) {1,4,6) (1345 (134.7)
N
(1,2,4,10) (1,2,4,12) {1,3.4,8) (13.4.6)
My M, M3 M,

Figure 9.8: Diagram of all the superordinates of the MINO m;.
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9.2 THE WARFARE COMMANDER PROBLEM
9.2.1 Description of the Problem

Let us consider a surface ship designed to handle three different kinds of threats: air,
surface and underwater attacks. The ship disposes of three different types of weapons:
missiles, torpedoes and depth charges. To identify the threats, two detection devices are
available: a radar and a sonar. Each of these devices will be monitored by a single operator.
The Sonar Operator (SO) will be able to detect both underwater and surface threats, while
the Radar Operator (RO) will be able to detect surface as well as air threats. Each operator
has therefore his reserved area of competence: an air attack can be detected by the radar
operator only , while a submarine attack can be identified by the sonar operator only. The
two operators share, however, a common area of competence: a surface attack can be
detected be either of them. The weapon system of the ship is controlled in a similar way by
two operators : the Anti-Air Warfare Commander (AAW) is in charge of the missiles, while
the Anti-Submarine Warfare Commander (ASW) controls the torpedoes and the depth
charges. As it was the case for the SO and the RO, AAW and ASW have their own reserved
intervention area: an air attack can be handled by AAW only, while a submarine attack can
be handled by ASW only. A surface attack, however, is a common area of intervention for
the two weapon operators: either a missile or a torpedoe can be used to engage a surface
ship.

Once a threat is detected, the relevant information and commands need to be sent to
the weapon operators. The Executive Coordinator (EXCO) could play this role. He could
receive information from RO and SO and send his commands to AAW and ASW. The
executive coordinator has to receive information from either RO or SO and has to send
orders to either AAW or ASW. However, he need not receive information from both RO
and SO, nor need he send commands to both AAW and ASW. If the ship is facing an attack
from an individual airplane for instance, information coming from the sonar operator is of
little interest to the coordinator. Similarly, the coordinator will just send orders to AAW ,
since torpedoes and depth charges are of little use against an airplane.

The organization under consideration in this section has therefore five members: RO,
SO, EXCO, AAW, and ASW.
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Decisionmakers RO and SO act as the sensors of the organization. They will be
denoted by pM! and DM2. They both receive information from the external environment.
They may or may not share this information with each other and with the other members of
the organization. One of them however, has to send this information to the coordinator. At
the other end of the organization, AAW and ASW act as actuators. They will be denoted by
DM and DM They are both directly related to the external environment. They will receive
orders from the coordinator and they may receive information from RO and SO. They may
also share their results, i.e., the concrete action they are taking, with each other and with the
coordinator. The coordinator will be denoted DM3.

The problem is to design interactional structures between the five members of the
organization, that will faithfully reflect the situation described above. The first step consists
in translating the above description into user-defined constraints. This is done in detail in the
following subsection.

9.2.2 User-defined Constraints.

One needs to specify the links that must be present in all cases, i.e., the fixed links,
as well as the links that are permissible, but not compulsory. The latter will constitute the
degrees of freedom of the design.

Fixed links

Since pMm! and DM2 acts as the sensors of the organization, they must receive
information from the external environment. This constraint is reflected in the vector g:
e =ep=1
Similarly, DM% and DM> act as the actuators of the organization and must send
information to the external environment. The vector § will reflect this constraint:

S4=55=1.

Lastly, it was stated in 9.2.1 that the coordinator DM?3 must receive information
from DM! or DM?Z and must send information to either DM% or DM3. It will be assumed
that DM always sends information to DM3 and that DM3 always sends commands to
DM4. In doing so, the symmetry between pM! and DM2 and between DM# and DM? is
somewhat broken. As pointed out in section 9.1 where the first example is studied, to brake
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the symmetry between the decisionmakers in the user-defined constraints has two beneficial
effects: it eliminates some redundancy in the sets of MINOs and MAXOs, and it allows for
a study of the way asymmetry diffuses through the methodology. As subsection 9.2.3 will
show, organizations symmetrical with respect to DM! and DM2 as well as DM# and DM5
will still be generated. Moreover DM! has not been specifically defined: DM! can be either
the sonar or the radar operator, so that a given organization can be interpreted either way.
Similarly, DM# can be either AAW or ASW. This point will be made more explicit in
subsection 9.2.5, when results are interpreted.

The fixed link between DM3 and DM# will be represented by C34 = 1. As far as the
fixed link between DM! and DM3 is concerned, two cases are possible: either a link from
the SA stage of DM! to the IF stage of DM, or a link from the RS stage of DM! to the IF
stage of DM3. Both links express the sharing of information between DM and DM3. The
latter will be used because it increases the flexibility of the design in allowing for the
following configuration: DM? shares his situation assessment with DM! and DM! sends
the fused information to DM3. Figure 9.9 illustrates this configuration.

SA IF CI RS

DM

Figure 9.9: DM! sends information to DM3 from his RS stage.
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This configuration is not possible if DM sends information to DM3 directly from
his SA stage: DM! is denied the opportunity to take into account the situation assessed by
DM2 and to send an aggregate signal to DM3. As illustrated in Figure 9.9, DM! will have
four stages. It will be seen that DM2 may also have four stages. Since DM! and DM?2 act as
sensors only, the CI and RS stages of these two decisionmakers will be dummy stages in
the sense that they perform no action whatsoever on the incoming signal, but provide a mere
transmission of this signal. In other words, the signal issued by the RS stage of DM! or
DM? is the same that the signal issued by the IF stage of the decisionmaker. The fixed link
between DM! and DM3 will therefore be represented by Hyj3 = 1.

Unspecified elements

« DM! and DM? are allowed to exchange their situation assessments: F15 and Fy
will be unspecified.

« DM! and DM?2 are allowed to send information to all other members of the
organization. The same reasoning used to justify the choice of the fixed link between DM1
and DM3 applies here. More flexibility is obtained if DM! and DMZ issue information to the
other members from their RS stages rather than their SA stages. Once again, this allows
DM! and DM? to first share their situation assessments, and then send an aggregate signal
to the other members. Therefore Hy4, Hys, Hy3, Hp4, and Hy 5 will be unspecified.

« DM4 and DM? can share their results with each other and with DM3. Therefore,
Hy3, Hys, Hg3, and Hgy will be unspecified.

« DM? can send commands to DM>: C35 will be unspecified.

All the elements that are neither fixed nor unspecified are set to 0. The arrays
defining the user-defined constraints R ;- are represented in Figure 9.10.
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4 x 0 0 0| # 00 0 0|
x # 0 0 0 0 # 00 0
e=[11000] F={00# 00 G=|00# 00
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0 # x x x 0O # 0 0 O
s=[00011] H=| 0 0 # 0 0 c={0o0 # 1 x
00 x # x 000 # 0
(00 x x #] | 000 0 #|

Figure 9.10: User-defined constraints R ;5.

The number of undetermined elements is equal to 12. Note that if all undetermined
elements are set to 1, the above arrays are symmetrical with respect to DM! and DM2, as
well as DM# and DM?. In the sequel, the transposition operator between DM! and DMJ will
be denoted oj;. The next section analyzes the nets Q(R,;»p) and ®(R7).

9.2.3 Nets Q(R,1p) and ©R;)-

The net Q(R ;) is obtained in setting to 1 all the unspecified elements of the arrays
defining the user-defined constraints R,;5. Note that (R ;) is invariant under the operators
012 and 045. The net Q(R,7) is represented in Figure 9.11. Places are labeled sequentially
but transitions are labeled according to the algorithmic technique. Figure 9.11 corresponds
to.representation (2) of a WDN as presented in 5.4.4: a WDN is characterized by the graph
of its Petri Net representation with the associated labeling of the transitions. Table 9.5 gives
the correspondence between the sequential and the algorithmic labelings of the places.
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Figure 9.11: Net Q(R ;).
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TABLE 9.5 SEQUENTIAL VS ALGORITHMIC LABELING OF THE PLACES

sequential label — algorithmic label

P1 - PO P2 — P11 P3 — P12
P4 — P21 P5 — P212 P6 — P221
P7 - P22 P8 — P31 P9 — P32
P10 —» P33 P11 —» P34 P12 » P35
P13 - P41 P14 -5 P42 | P15 - P43
P16 —» P44 P17 — P45 P18 —» P5132
P19 - P5142 P20 —» P5152 P21 —» P5232
P22 —» P5242 P23 —» P5252 P24 — P5343
P25 —» P5353 P26 —» P54 P27 —» P5432
P28 — P5452 P29 — P55 P30 —» P5532
P31 —» P5542 P32 - P6

The incidence matrix, as computed by the program ARCGEN, is reproduced in
Figure 9.12. As it was the case for the graph representation of Q(R,;5), places are labeled

sequentially and transitions are labeled according to the internal technique of the algorithm.
Net o(R,;5)

This net is obtained in replacing by 0 all unspecified elements of the arrays of Figure
9.10. It is represented in Figure 9.13. By definition, its places are all fixed places. Note
that there are six interactional fixed places corresponding to the six fixed links of subsection

9.2.2, i.e. the six 1's in the arrays of Figure 9.8. Those places are py, p3, P18, P24» P26
and ppg. The remaining fixed places are internal places induced by the presence of the

interactional fixed places. As an example, p4, pg and pj are all internal places of pml.
The presence of these places is made compulsory because DM! receives information from

the external environment (p) and sends information from his RS stage (p1g). Since py and
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p1g are fixed places, p4, pg and py() are also fixed places (see the rules presented in 5.2.2

to construct internal places from interactional places).

10 t11 Y1221 2 10314 513] 132133 134135 141 142 143144 Y5 t5
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Figure 9.12: Incidence matrix of Q(R ;7).
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Figure 9.13: Net o(R,;»)-

Simple paths of Q(R;7).
The algorithm ARCGEN generates 40 simple paths for the net Q(R,;5). They are
reproduced in their vector representation in Table 9.6. Fixed places, corresponding to the

places of ®(R;p), are sin gled out with an asterisk. Note that simple path number 5 includes

only fixed places. This simple path need therefore be included in every Admissible
Organizational Form and a fortiori in every Feasible Organizations.
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TABLE 9.6 VECTOR REPRESENTATION OF THE SIMPLE PATHS OF Q(R;»).
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MAXOs

MINOs

2 3 45 6 7 8 9 10

1

The algorithm ARCGEN generates 10 MINOs and 3 MAXOs. Their vector
representation is given in Table 9.7. Figure 9.14 (resp. 9.15) reproduces the graph

representations of the MINOs (resp. MAXOs).

TABLE 9.7 VECTOR REPRESENTATION OF THE MINOS AND MAXOS.

9.2.4 MINOs and MAXOs
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Figure 9.14: Graph representation of the MINOs.
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Figure 9.14 (continue): Graph representation of the MINOs.
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MINO m

Figure 9.14 (continue): Graph representation of the MINOs.
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MINO m10

Figure 9.14 (continue): Graph representation of the MINOs.
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Figure 9.15: Graph representation of the MAXOs.
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9.2.5 Structure of the Set ®(R).

The inclusion relation between MINOs and MAXOs is represented in Figure 9.16.
This graph is the skeleton of the diagram of ®(R). Note that the set ®(R) seems to be
divided into three groups of organizations. One group is related to the MAXO M3 only and
originates from the MINOs m3, mg and mg. Another group is related to the MAXOs M,
and M and originates from the MINOs my, ms, and mg. Lastly, a third group is related to
the three MAXOs and originates from the MINOs mj, my, my, and mj(. Therefore,
MAXO M3 can be reached from every MINO, while MAXOs M; and M, can only be

reached from specific MINOs. This division of the set ®(R) into categories would require

further theoretical development before any meaningful result could be derived. It will not be
investigated further here.

Figure 9.16: Skeleton of the diagram of the set ®(R).
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The complete diagram of ®(R) would be obtained in making explicit the links
connecting every pair (MINO,MAXO) of Figure 9.16. In other words, one would need to
determine all the organization chains existing between every pair (MINO,MAXO). Those

chains may have different lengths since ®(R) violates the Jordan-Dedekind chain condition.
The minimal length of a chain between a given MINO and a given MAXO is obtained by
looking at the complexity (as defined in 7.4.3) of the two organizations. The complexity of
all the MINO:s is equal to 2: any of the ten MINOs can be obtained as the meet of two simple

paths. The MAXOs M1, M,, and M3 have respectively a complexity of 7,6,and 6. The
minimum lenth of a chain between any MINO and M is therefore 6 (7-2+1), while the

minimum length of a chain between any MINO and M5 or M3 is 5. At the opposite end of

the spectrum, the longest chain leading from a MINO to a MAXO will be obtained in
adding to the MINO simple paths such that the minimum number of new interactional links

is created at each step. Let us for instance consider the MINO mjy and the MAXO M,. M,
has 8 more interactional places than my). In this case, it is possible to add simple paths in
such a way that a single new interactional link is created at each step. Consequently, the
maximum length of a chain between mjg and M5 is 10 (one intermediate organization for
each additional link). All the chains between mjq and M, will, therefore, have a length
between 5 and 10. In the absence of further theoretical developments about the structure of

the set ®(R), one cannot go much further in the analysis of ®(R) without explicitly
constructing its diagram.

9.2.6 Interpretation of the MINOs and MAXOs.

Besides the fact that the MINOs and MAXOs bound the set ®(R) of all Feasible
Organizations, one may want to gain a physical understanding of what they represent. This
subsection presents an attempt to give MINOs and MAXOs an interpretative meaning. The
interpretation presented is by no way definitive. For a given MINO or MAXO other
interpretations that fit the structure of the organization and the context within which it
operates may be possible.
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'MINOs

The MINO:s represent organizations with a minimal number of interactions between
decisionmakers. The MINOs will most likely not represent very robust organizational
structures since no redundancy is present to double-check and confirm information or to
back-up a deffective link. They will, however, certainly represent efficient configurations
as far as response time is concerned. The MINOs could therefore be interpreted as
organizational structures designed to respond to emergency situations, where time is critical
and where redundancy is a luxury.

Surface artack

In a surface attack, information from both the radar and the sonar operators is
relevant. There will be two cases: either the sonar and radar operators share their assessed
situations and one of them sends an aggregate signal to the coordinator, or they both send
their own situation assessments to the coordinator who will do the fusion himself.

The MINOs my, ms, and mg correspond to the first case. To reduce the coordinator

workload, pml will fuse DM2's situation assessment with his own situation assessment
and send the combined information to the coordinator DM3. pm3 can then issue a

command to one of the two weapon operators (case represented by the MINOs m, and mg)

- or to both of them (MINO mg). If only one of the two weapon operators receive a command

from the coordinator, the other one will be informed of what is going on, either by the
weapon operator who received directives from the coordinator (MINO mg), or by pml

(MINO my).

The second case is reflected in the MINOs m, mg, and mg. They correspond

respectively to my, ms, and mg. In this case, the workload of the coordinator is increased,

since he has to fuse the situation assessments of the radar and the sonar operators.
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Air or submarine attack

Since both cases are completely symmetrical, an air attack only will be considered. A
submarine attack would be analyzed in reversing the roles of RO and SO, and the roles of
AAW and ASW. In the case of an air attack, DM will be the radar operator (RO) and DM?
will be the missile system operator (AAW). The MINOs mj, my, and m3 represent
configurations where the sonar operator (SO) sends information to the AAW. The nature of
this information may be to instruct AAW to get ready to fire a missile, while the coordinator

is evaluating the situation. In all cases, AAW will not act until he receives a command from
the coordinator. As far as ASW is concerned, he has little role to play and will just be

informed of what the situation is either by RO (MINO my), EXCO (MINO m,) or AAW
(MINO mj). Lastly, the MINO m( represents a case where SO and ASW play no role at

all: the air attack is handled exclusively by RO, EXCO and AAW who do not interfere in
any way with SO and ASW.

MAXOs

Unlike the MINOs, the MAXOs represent configurations with a lot of redundancy
and double-checking capability. In all MAXOs, for example, RO and SO share their
situation assessments together and both send their fused information to the coordinator. The
latter therefore receives redundant information and can review the assessments of his
subordinates. The three MAXOs only differ in the interactions between DM3, DM4 and
DMDO. The set of all allowable interactions creates a potential for loops. Loops are indeed

present in the net Q(R,)). The three MAXOs are derived from the net Q(R,;) by removing

the minimum number of paths that will yield loop-free structures. As an example, the link
between the RS stage of DM# and the IF stage of DM3 (p27) is removed from all MAXOs

since it is in conflict with the fixed link going from the RS stage of DM3 to the CI stage of
DM# (py4). In the MAXO M, DM shares his result with DM# and DM3. In the MAXO

My, DM3 sends command to both DM# and DMS and DM share his result with DM#. The
roles of DM# and DM? are inverted in the MAXO M3,
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The MAXO M; is best fit for an air or a submarine attack, since the coordinator

sends a command to DM%4 only. In MAXOs M, and M3, the coordinator issues orders to

both DM# and DM?: this case could correspond to a surface attack, where missiles and
torpedoes are used simultaneously to counter the attack. Note that MAXOs M, and M3 are

symmetrical to each other with respect to the operator O45-

9.2.7 Concluding remarks

This example shows how a concrete problem can be formulated within the
framework developed in this thesis. The user-defined constraints are first chosen in
analyzing carefully the actual situation. It is important to eliminate unnecessary redundancy
that would increase the dimensionality of the design problem without bringing further
insight. Once the user-defined constraints are specified, the algorithm ARCGEN generates
the MINOs and the MAXOs. The set of all organizational structures that will satisfy the
designer's requirements is, therefore, defined. Instead of looking at the entire set, the
designer will concentrate on the MINOs and the MAXOs. Note that, althought the original
problem is fairly sophisticated, there are only 10 MINOs and 3 MAXOs. The organization
designer can, therefore, concentrate his analysis on those 13 organizational structures. His
task is thus very much alleviated, if compared to the original one. The first step of the
analysis consists in putting the MINOs and the MAXOs in their actual context, to give them
a physical interpretation. If the organization designer is more specifically interested in a
given pair of MINO and MAXO, he can further investigate the chains connecting those two

organizations within the set ®(R).

In summary, the methodology presented provides the organization designer with a
rational way to handle a problem whose combinatorial complexity is very large.
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CHAPTER X

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

10.1 CONCLUSIONS

In this thesis, a methodology is presented for generating organizational architectures
that satisfy some generic structural properties, as well as more specific designer's
requirements. An analytical framework is developed to formulate first and then analyze the
problem.

The first step of the methodology is the characterization of the class of organizations
under consideration. This step is carried out in Chapter IV. The starting point is the basic
model of the interacting decisionmaker. From this model, the allowable set of interactions
between the different organization members is derived, and a mathematical framework is
developed to represent the interactional structure of an organization. More specifically, two
binary vectors and four binary matrices will completely characterize the topological structure
of an organization. In Chapter V, the above matrix description of an organization is
converted into a Petri Net representation, thus making available the powerful analytical tools
of Petri Net theory.

In Chapter VI, the class of organizations under consideration is further restricted by
imposing a set of structural constraints on the organizational structures to be generated.
Connectivity and acyclicity are among the structural properties that an organization must
satisfy. Moreover, the organization designer will impose his own requirements, thus
restricting even further the class of organizational structures under consideration. These
requirements will be specified in using the mathematical framework presented in Chapter
IV.

Given the designer's requirements and the set of pre-established structural

constraints, the design problem consists in finding the set ®(R) of all Feasible
Organizations, i.e., the set of organizational structures that satisfy both the designer's
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requirements and the stuctural constraints. In Chapter VII, the set @(R) is characterized by
its boundaries, i.e., by its minimal and maximal elements. Those elements, the MINOs and
the MAXOs, will correspond to the organizational structures with the minimum and the
maximum number of interactional links among organization members. The complete set of
Feasible Organizations is then generated by considering all the organizational structures that
lie between the MINOs and the MAXOs. The notion of simple path is introduced as the
incremental unit leading from an organization to another. By adding simple paths to every
MINO until a MAXO is found, one will scan the complete set of Feasible Organizations.

The internal structure of the set ®(R) of all Fcas1blc Orgamzatlons is then
1nvest1gated using lattice theoretic techniques. The notion of subnet allows, indeed, to

define an order on the set ®(R). With this order, ®(R) is a partially ordered set. Although

d>(R) is not, in the general case, a lattice, it is shown that ®(R) is embeded in a lattice (the
lattice USp(R,), generated by all the simple paths of the universal net). Lattice theoretic

concepts and results can, therefore, be used: the notion of chain leading from a given MINO
to a given MAXO is investigated.

The main contribution of this thesis is to set up a framework within which the
organization design problem can be articulated. Asumptions about the model are clearly and
precisely defined, thus making the scope and the limitations of the methodology easily
identifiable. In relaxing some of those asumptions, the generality of the model can be
extended. The organization designer is provided with a rational way to translate his
requirements into specifications. This is a major feature of the methodology, since in most
design procedures, the step leading from a physical to an analytic description of a concrete
application, is the hardest to make. Lastly, the methodology introduces a technique to
reduce considerably the number of organizational classes that the designer will eventually

have to investigate. Starting from a high level of complexity, the design problem is therefore
| brought down to a tractable level.
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10.2 DIRECTIONS FOR FURTHER RESEARCH

Research could be pursued in three different directions to improve and extend the
methodology described in this thesis. Those three directions are presented in the following
subsections according to an increasing degree of generalization with respect to the present
model.

10.2.1 Improvement of the Present Model

In this direction, the basic assumptions made about the class of organizations under
consideration are not challenged. The proposed improvements are, therefore, strictly within
the scope of this thesis.

From an analytical viewpoint, the internal structure of the set ®(R) of all Feasible
Organizations needs to be investigated in much more detail than what has been done in
Chapter VII. Lattice theory seems to be the right analytical tool to gain deeper insight into

the structure of ®(R). The goal is to define within the set ®(R), categories of organizations
and to select among each category a representative element, that would then be analyzed by
the organization designer.

From an interpretative viewpoint, a better understanding of the analytical results
obtained, is needed. An attempt to give physical significance to the MINOs and the MAXOs
has been made in Chapter IX: this line of reasoning should be explored further. Classical
concepts, such as hierarchical and parallel organizational structures, need to be defined
within the framework of this thesis. How could, for instance, hierarchical structures be
identified, by looking at paterns in the arrays defining an organization ? The concept of
slice [22] seems to be appropriate to investigate questions related to hierarchy and
parallelism. Slices, indeed, account for concurrency in the Petri Net representation of an
organization, and concurrency and parallelism are related notions. An index reflecting the
degree of parallelism of an organization could be defined from the number of maximal
slices [5] of the Petri Net representing the organization. The definition of such an index
would help classify Feasible Organizations, by assigning a number to each element of

O(R).
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10.2.2 Extension of the Model
In this subsection, the relaxation of the structural constraints is investigated.

Relaxing the structural constraints R3 and R4 would change neither the methodology

nor the results presented in this thesis: it would just substantially increase the dimensionality
of the design problem. More interesting is the relaxation of the acyclicity constraint. As
mentioned in Chapter VI, this constraint has been introduced to avoid deadlocks and
situations where messages are circulating indefinitely within the organization. The Petri Net
theory, however, presents a way to avoid such a situation. According to Theorem 2.6, an
event-graph will be safe under a given initial marking if and only if the token content of all
its directed elementary circuits is strictly positive. In other words, loops will not create
deadlock in an organization, if tokens are appropriately allocated among the different loops.
Since the token content of a circuit is invariant (Theorem 2.5), those tokens can be thought
of as part of the organization structure. Loops need to be introduced to model the kind of
situation described below. Let us consider a two-person organization. Decisionmaker DM
is the commander and can instruct DM? to fire a weapon. Because of the stakes involved,
DM?2 would need a confirmation of DM!'s order to actually fire. Decisionmaker DM2 will,
therefore, issue a querry to DM!, requesting the latter to confirm his order. A close-loop
double-check capacity is then created. Note, however, that if the protocol for the sequence
of events is defined clearly, then no deadlock will occur . There is no way to model that
kind of situation without information feed-back, i.e., with acyclical organizational
structures. This situation is, however, very realistic, especially in a strategic environment
where the stakes are high.

10.2.3 Variable Structures

A completely new class of organizations is obtained, if the basic model of the
interacting decisionmaker is rcplaéed with the four stage model with switches. As pointed
out in subsection 4.3.1, this leads to variable organizational structures. The classical Petri
Net theory is not the right analytical tool to handle variable structures. Since the topological
structure of an organization will depend on the kind of information the organization
processes, one needs to take explicitly into account the nature of information flowing from
one place to another. Colored Petri Nets [30] provide the approprite analytical framework to
study variable structures. In a Colored Petri Net, each token is identified by a certain color,

182



so that it is possible to differentiate the tokens. Colored Petri Nets account, therefore, for
the diffferent types of inputs an organization receives and processes. In [30], it is shown
how invariants can be defined and computed in a Colored Petri Net. Since invariants are at
the root of the methodology presented in this thesis, there is some hope that the
methodology may be extendable to Colored Petri Nets without fundamental changes.

Lastly, Colored Petri Nets are just a specific case of a more general class of Petri
Nets: Predicate-Transition Nets [6]. In a Predicate-Transition Net, condition schemes (or
predicates) are associated with the nodes and the arcs of the Petri Net. Those schemes
account for the nature of information that a place can hold or that a connector can transmit,
as well as for the way information is tranfered through a transition. The step leading from
ordinary Petri Nets to Predicate-Transition Nets is comparable - quantitatively and
qualitatively - to that of going from propositional logic to first order predicate logic [6]. In
Predicate-Transitions Nets, formal integer polynomials will play the same role that integers
play in ordinary Petri Nets. As an example, the elements of the incidence matrix of a
Predicate-Transition Net will be formal integer polynomials. Since formal integer
polynomials have properties very similar to integers, most linear algebra results obtained for
ordinary Petri Nets are transferable to Predicate-Transition Nets.

In summary, Predicate-Transition Net Theory seems to offer a promising framework
to analyze both the topological structure of an organization, and the information theoretic
concepts accounting for the nature of information processed by the organization. Those two
paths have been, up to now, explored rather independently.
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