
Using Probabilistic I/O Automata to Analyze an Oblivious

Transfer Protocol

Ran Canetti
MIT and IBM TJ Watson Research Center
canetti@theory.csail.mit.edu, canetti@watson.ibm.com

Ling Cheung
The University of Nijmegen

lcheung@cs.kun.nl

Dilsun Kaynar
MIT

dilsun@theory.csail.mit.edu

Moses Liskov
College of William and Mary

mliskov@cs.wm.edu

Nancy Lynch
MIT

lynch@theory.csail.mit.edu

Olivier Pereira
UCL

olivier.pereira@uclouvain.be

Roberto Segala
The University of Verona

roberto.segala@univr.it

December 14, 2005

1

Abstract

We demonstrate how to carry out cryptographic security analysis of distributed protocols within
the Probabilistic I/O Automata framework of Lynch, Segala, and Vaandrager. This framework
provides tools for arguing rigorously about the concurrency and scheduling aspects of protocols,
and about protocols presented at different levels of abstraction. Consequently, it can help in making
cryptographic analysis more precise and less susceptible to errors.

We concentrate on a relatively simple two-party Oblivious Transfer protocol, in the presence
of a semi-honest adversary (essentially, an eavesdropper). For the underlying cryptographic notion
of security, we use a version of Canetti’s Universally Composable security. In spite of the relative
simplicity of the example, the exercise is quite nontrivial. It requires taking many fundamental issues
into account, including nondeterministic behavior, scheduling, resource-bounded computation, and
computational hardness assumptions for cryptographic primitives.

2

Contents

1 Introduction 6

2 Informal Description 10

3 Mathematical Foundations 11
3.1 Preliminaries . 11

3.1.1 Sets, functions etc. 11
3.1.2 Probability measures . 11

3.2 Probabilistic I/O Automata . 14
3.2.1 Basic definitions . 14
3.2.2 σ-fields of execution fragments and traces . 15
3.2.3 Probabilistic executions and trace distributions 17
3.2.4 Composition . 20
3.2.5 Hiding . 20

3.3 Task-PIOAs . 20
3.3.1 Task-PIOAs . 21
3.3.2 Task Schedulers . 21
3.3.3 Probabilistic executions and trace distributions 21
3.3.4 Composition . 27
3.3.5 Hiding . 28
3.3.6 Environments . 28
3.3.7 Implementation . 29
3.3.8 Simulation Relations . 29

3.4 Time-Bounded Task-PIOAs . 32
3.4.1 Time-Bounded Task-PIOAs . 32
3.4.2 Composition . 33
3.4.3 Hiding . 34
3.4.4 Time-Bounded Task Scheduler . 35
3.4.5 Implementation . 35
3.4.6 Simulation Relations . 37

3.5 Task-PIOA Families . 37
3.5.1 Basic Definitions . 37
3.5.2 Time-Bounded Task-PIOA Families . 37
3.5.3 Polynomial-Time Task-PIOA Families . 39

4 Ideal Systems for Oblivious Transfer 41
4.1 The Oblivious Transfer Functionality . 41
4.2 The Simulator . 41
4.3 The Complete System . 42

5 Random Source Automata 42

6 Real Systems 42
6.1 The Transmitter . 43
6.2 The Receiver . 43
6.3 The Adversary . 44
6.4 The complete system . 45

3

7 The Main Theorems 47
7.1 Families of Sets . 48
7.2 Families of Systems . 48
7.3 Theorem Statements . 48

8 Hard-Core Predicates 48
8.1 Standard Definition of a Hard-Core Predicate . 48
8.2 Redefinition of Hard-Core Predicates in Terms of PIOAs 49
8.3 Consequences of the New Definition . 54

8.3.1 Applying a Hard-Core Predicate Twice . 55
8.3.2 Combining two hard-core bits with two input values 56
8.3.3 Combining a single hard-core bit with an input value 58

9 Correctness Proof, Case 1: Neither Party Corrupted 59
9.1 Simulator structure . 61
9.2 Int1 . 62
9.3 Int2 . 63
9.4 RS implements Int1 . 64

9.4.1 State correspondence . 65
9.4.2 The mapping proof . 66

9.5 Int1 implements Int2 . 77
9.5.1 The SInt1 subsystem implements SHOT . 77
9.5.2 SHROT implements the Int2 subsystem . 81
9.5.3 Int1 implements Int2 . 85

9.6 Int2 implements SIS . 85
9.6.1 State correspondence . 86
9.6.2 The mapping proof . 86

9.7 Putting the pieces together . 92

10 Correctness Proof, Case 2: Receiver Corrupted 93
10.1 Simulator structure . 93
10.2 Int1 . 95
10.3 Int2 . 96
10.4 RS implements Int1 . 96

10.4.1 State correspondence . 96
10.4.2 The mapping proof . 98

10.5 Int1 implements Int2 . 107
10.5.1 The SInt1 subsystem implements SHOT ′ . 107
10.5.2 SHROT ′ implements the SInt2 subsystem . 109
10.5.3 Int1 implements Int2 . 111

10.6 Int2 implements SIS . 111
10.6.1 State correspondence . 111
10.6.2 The mapping proof . 112

10.7 Putting the pieces together . 116

11 Correctness Proof, Case 3: Transmitter Corrupted 116
11.1 Simulator structure . 117
11.2 State correspondence . 117
11.3 The mapping proof . 118
11.4 Putting the pieces together . 119

4

12 Correctness Proof, Case 4: Both Parties Corrupted 119
12.1 Simulator structure . 119
12.2 State correspondence . 120
12.3 The mapping proof . 120
12.4 Putting the pieces together . 121

13 Conclusions 121

A Component Interaction Diagrams 122

List of Figures

1 The Functionality, Funct(C) . 41
2 Constraints on Sim(C) . 42
3 Code for Src(D,µ) . 43
4 Code for Trans(D,Tdp) . 44
5 Code for Rec(D,Tdp,C) . 45
6 Code for Adv(D,Tdp,C) (Part I) . 46
7 Code for Adv(D,Tdp,C) (Part II) . 47
8 Hard-core predicate automaton, H(D,Tdp,B) . 50
9 Environment evaluating the G predicate, E(G)(D,Tdp,B) 53
10 Interface, Ifc(Tdp,D) . 57
11 Interface, Ifc′(Tdp,D) (Part I) . 59
12 Interface, Ifc′(Tdp,D) (Part II) . 60
13 TR(D,Tdp), for the case where C = ∅. 62
14 TR1 (D,Tdp), for the case where C = ∅. 63
15 TR2 (D,Tdp), for the case where C = ∅. 64
16 TR(D,Tdp), for the case where C = {Rec}. 94
17 TR1 (D,Tdp), for the case where C = {Rec}. 95
18 TR2 (D,Tdp), for the case where C = {Rec}. 97
19 Code for RecSim(D), where C = {Trans}. 117
20 SIS(∅) . 123
21 RS(∅) . 123
22 Int1 where neither party is corrupted . 124
23 SIS({Rec}) . 124
24 Int1 where only the Receiver is corrupted . 125
25 RS({Rec}) . 125
26 SIS({Trans}) . 126
27 RS({Trans}) . 126
28 SIS({Trans,Rec}) . 127
29 RS({Trans,Rec}) . 127

5

1 Introduction

Modeling cryptographic protocols and analyzing their security is a tricky business. On the one hand,
valid modeling and analysis has to address the concurrency aspects of asynchronous distributed systems,
with potentially adversarial scheduling of events. On the other hand, realistic analysis has to accom-
modate the fact that, in most interesting cases, it is impossible to completely prevent successful attacks
against the protocol. Instead, we can only bound the success probability of attacks that use a bounded
amount of computational resources. Even worse, given our current state of scientific knowledge, we can
typically only make such guarantees based on underlying computational hardness assumptions.

Indeed, cryptographic modeling and analysis is typically complex, involving many subtleties and
details, even when the analyzed protocols are simple. Furthermore, analysis is handwritten and often
tedious to verify. These factors make security analysis of cryptographic protocols susceptible to errors
and omissions. (See, for instance, the errors reported in [s02, hms03]). They are also obstacles to
analyzing more complex cryptographic protocols and systems that use them.

One approach to simplifying cryptographic protocol analysis and improving its correctness is to
model cryptographic primitives as “symbolic operations”, or “ideal boxes”, which represent the security
properties of the primitives in an idealized way that involves no error probabilities or computational
issues. This approach, first proposed by Dolev and Yao [dy83] and widely used since, indeed simplifies
the analysis dramatically. Furthermore, several recent works (e.g., [ar00, bpw03, mw04, ch04]) have
demonstrated that this approach can potentially provide cryptographic soundness, in the sense that one
can transform secure idealized protocols into secure concrete protocols that use concrete cryptographic
primitives. This approach is quite promising; however, it does not completely remove the need for
cryptographic analysis of protocols. Rather, it only proves security of the overall protocol assuming
security of the cryptographic primitives in use. One still has to prove security of these primitives in
a full-fledged cryptographic model with all its subtleties. Furthermore, a new abstract model has to
be hand-crafted for each new set of cryptographic primitives to be used. While this approach was
used successfully for primitives such as encryption and signatures, where a deterministic specification
is natural, it is not clear how to extend it to pseudorandom generators or functions

This paper proposes an alternative (in fact, complementary) approach to making cryptographic
protocol analysis more mechanical and rigorous, and thus less susceptible to errors. The idea is to
directly assert the security of a protocol in a concrete model without abstract cryptography, and where
security typically holds only for computationally bounded adversaries, and only under computational
assumptions. Here the goal is to show that the protocol realizes a specification, where the specification
is in itself described as a distributed process, albeit a more abstract and idealized one. Specifically, we
propose to express cryptographic protocols, as well as the specification processes, using a variant of the
Probabilistic I/O Automata (PIOA) framework developed in the concurrency semantics research com-
munity [sl95, lsv03]. Within this framework, we formalize the notion of “implementing a specification”
along the lines of the notion of “realizing an ideal functionality ” within the universally composable
security framework [c01]. We also show how to assert that a cryptographic protocol implements a
specification. The rigor and modularity of the underlying PIOA framework allows for analysis that is
fully formal and precise, and at the same time understandable and manageable.

Several papers have recently proposed the direct mechanization and formalization of concrete crypto-
graphic analysis of protocols, in a number of different contexts. Examples include representing analysis
as a sequence of games [s04], as well as methods for mechanizing that process [h05, b05]. Our work
differs from those in two main respects. First, those papers do not address ideal-process-based notion of
security, namely they do not address asserting that a protocol realizes a specification process in a stan-
dard cryptographic sense, and hence do not provide any secure composability guarantees. In contrast,
our analytical framework provides strong composability guarantees in a natural way. Furthermore,
our analysis enjoys the extra rigor and detail that underly the PIOA framework. Backes, Pfitzman and
Waidner [pw00, bpw03], and Canetti [c01] also provide general frameworks for analyzing cryptographic
protocols, but they model concurrency quite differently than in the PIOA framework; furthermore, like
other cryptographic frameworks based on interactive Turing machines, they are inherently informal as

6

argued above.
Briefly, a PIOA is a kind of abstract automaton. It includes states, start states, and actions, which

are classified as input, output, or internal actions. Each action has an associated set of transitions, which
go from states to probability distributions on states. Thus, PIOAs are capable of expressing random
choice. PIOAs can be composed to yield larger PIOAs; in particular, PIOAs modeling individual
components of a system may be composed to yield a PIOA model for the entire system.

Many interesting properties of systems described using PIOAs can be expressed as invariant asser-
tions, that is, properties of the system state that are true in all reachable states. In the PIOA framework,
such properties are proved by induction on the length of an execution. The PIOA framework also sup-
ports the description of systems at multiple levels of abstraction. It includes notions of implementation,
which assert that a “low-level” system is indistinguishable from another, “higher-level” system, from the
point of view of some common “environment” component. The framework also includes various kinds
of simulation relations, which provide sufficient conditions for proving implementation relationships
between systems. Like invariants, simulation relations are generally proved by induction.

In all, the PIOA framework allows for a completely rigorous protocol specification and analysis.
This stands in contrast to standard cryptographic modeling, where protocols and adversaries are never
completely and rigorously specified in terms of the underlying formal model. (For instance, protocols
are practically never described in detail in terms of the actual transition function of an interactive
Turing machine.)

We provide some high-level motivation for our proposal to use PIOAs for cryptographic protocol
analysis. Recall that a typical proof of security of a protocol in a cryptographic model consists of two
main parts. The first part consists of describing one or more algorithms for an adversary to perform,
typically given access to another adversary. Such an adversary can be either a “simulator” that has to
operate in a restricted (“idealized”) model, or alternatively, a “reduction,” that is, an adversary that
performs some assumed-to-be-hard computation. This part of the proof is more “algorithmic” in nature
and typically requires some level of human creativity.

The second part of the proof consists of analyzing the adversaries constructed in the first part,
and proving some claims regarding their behavior. This part is typically more “mechanical”, and boils
down to proving that two different probabilistic distributed systems exhibit the same or very similar
behaviors. Although the algorithmic part seems relatively hard to mechanize, the analytic part is
amenable to mechanization (and eventual automation). However, in typical cryptographic proofs, this
analysis is only sketched, and it is here that many errors and oversights occur.

In contrast, precise modeling of asynchronous, probabilistic distributed systems, and proving sim-
ilarity in behavior of different systems, are among the main strengths of the PIOA framework. Thus,
expressing protocols, simulators, and reductions in the PIOA framework, and using the analytical tools
from that framework to prove the relevant similarity claims, may take us a long way towards more rig-
orous, more mechanized, and eventually automated protocol analysis, while maintaining cryptographic
soundness.

We exemplify this approach by analyzing a relatively simple protocol for a relatively simple task, in
a fairly restricted setting. Still, despite its simplicity, this exercise requires dealing with many general
issues regarding the modeling of cryptographic analysis within the PIOA framework, including repre-
senting resource-bounded computation and scheduling, modeling computational hardness assumptions,
representing error probabilities, and resolving several sources of nondeterminism. Overcoming these
issues seems to be a prerequisite for performing cryptographic analysis of any cryptographic protocol
in the PIOA framework. We hope that the modeling and basic formalisms developed here will provide
a sound basis for future work in this direction. The next few paragraphs contain a somewhat more
detailed sketch of the issues involved and of our modeling approach.

The example. The task we consider is Oblivious Transfer (OT) [r81, egl85], where a transmitter
inputs two bits (x0, x1), and a receiver inputs a selector bit i. The correctness requirement is that the
receiver should output xb. The secrecy requirements are that the receiver should learn nothing but xi

and that the transmitter should learn nothing at all. In spite of its apparent simplicity, OT is a very

7

powerful primitive. In fact, it has been shown to be complete for multi-party secure protocols, in the
sense that one can construct protocols for securely realizing any functionality, using OT as the only
cryptographic primitive (see, e.g., [gmw87, k89]).

OT is also interesting from an analytical viewpoint, because it imposes secrecy requirements when
either party is corrupted, in addition to correctness requirements. (This stands in contrast to the
often-analyzed example of key exchange, which imposes no secrecy requirements when either party is
corrupted.)

We concentrate on realizing OT in the presence of a passive (sometimes called “eavesdropping”)
adversary, where even corrupted parties continue to follow the protocol instructions. Furthermore, we
concentrate on non-adaptive corruptions, where the set of corrupted parties is fixed before protocol
execution starts. The particular OT protocol we analyze is the classic protocol of [egl85, gmw87],
which uses trap-door permutations (and hard-core predicates for them) as the underlying cryptographic
primitive.

The notion of security. We base our definition of cryptographically secure OT (secure against
passive, nonadaptive adversaries) on Canetti’s definition of OT in the Universally Composable (UC)
security framework [c01]. In a nutshell, this definition proceeds as follows: First, an ideal OT process
is defined—a kind of trusted party that receives inputs from both parties and outputs the correct bit to
the receiver. Then a protocol is defined to be a secure OT protocol if it securely realizes the OT ideal
system, in the sense that for any adversary A that interacts with the protocol, there exists an adversary
(“simulator”) S that interacts with the ideal system, such that no “external environment” E can tell
whether it is interacting with the protocol and A, or alternatively with the ideal process and S.

In our development, we define all the system components—the transmitter and receiver roles in the
protocol, the ideal process, the adversaries, and the environment—as PIOAs, and formulate indistin-
guishability using a definition of implementation for PIOAs.

Modular analysis. The analysis of the protocol is modular, using multiple levels of abstraction in
describing the systems of interest. Furthermore, the analysis at each level is broken down into many
relatively simple statements that can be proven separately. This enables a treatment that is completely
rigorous while being conceptually clear and understandable.

Resolving nondeterminism. In our PIOA models, the various system components make nondeter-
ministic as well as probabilistic choices. For example, the order of message delivery by the adversary
is left unspecified. Also, we allow nondeterminism in the order in which the different components take
steps. We then say that the protocol is secure if the real system “implements” the ideal system, in
the sense that for any way of resolving the nondeterminism in the real system, there exists a way of
resolving the nondeterminism in the ideal system, such that the views of the environment E in the two
interactions are the same (or similar). Here we have to make sure that the nondeterministic choices
do not give the adversaries effective computational power that is not resource bounded. We do this
by essentially restricting the nondeterministic choices to be resolved independently of the values of the
inputs and the results of the random choices made during the execution. (Roughly speaking, we say
that the nondeterminism is resolved “before the execution starts”.)

Resource-bounded adversaries. Capturing resource-bounded adversarial behavior is an essential
aspect of cryptographic modeling. One concern, mentioned in the previous paragraph, is to make sure
that the method of resolving nondeterministic choices does not give adversaries “back-door access” to
“illegitimate computational power”. Another concern is to make sure that, after all the nondeterminism
is resolved, the operations taken by the adversarial entities in the system are computationally bounded.
We guarantee this property by explicitly requiring that all the transitions taken by the schedulers and
the adversarial entities in the system are computationally bounded. Specifically, we require that all
these transitions are (1) length preserving, in the sense that the description of the end state is no longer

8

than the description of the start state; and (2) computable in probabilistic polynomial time (PPT) in
the description of the start state.

Using computational hardness assumptions. To show that the real system “implements” the
ideal system one has to consider four cases, depending on which of the two parties are corrupted. When
only the transmitter is corrupted, and when both parties are corrupted, it is possible to show that the real
system implements the ideal system unconditionally. This allows for relatively straightforward analysis.
However, when neither party is corrupted, or when only the receiver is corrupted, implementation can
be demonstrated only in a “computational sense”, i.e. with respect to PPT adversaries and schedulers.
Furthermore, implementation can only be proven assuming the security of the underlying trap-door
permutation f . In order to prove such a statement we follow the cryptographic approach of “proof by
reduction”. That is, given an adversary (or, rather, an “adversarial environment” in our formulation)
that breaks the desired implementation relation, construct an adversary that inverts the underlying
trapdoor permutation.

We take a slightly different approach: we first formulate the security property of the trap-door
permutation f in terms of an implementation relation on PIOAs. That is, we formulate a “concrete
TDP” PIOA and an “abstract TDP” PIOA, and then show that if f is a trap-door one-way permutation
then the concrete TDP PIOA implements the abstract TDP PIOA. Then, the rest of the analysis is
performed assuming that the concrete TDP PIOA implements that abstract TDP PIOA. This allows us
to perform the entire analysis in the PIOA framework using the implementation relation and without
explicit proofs by reduction.

We remark that the actual analysis involves a few more steps than what is indicated in the above
sketch. First, instead of using the security of f directly, we use the security of a hard-core predicate B()
for f . (Recall that any one way function, trap-door permutations being a special case, has a hard-core
predicate [gl89].) That is, we use the fact that if f is chosen uniformly from a family of one-way trap-
door permutations, x is chosen uniformly from the domain of f , and b is a uniformly chosen bit, then
the triple (f, f(x), B(x)) is polynomial-time indistinguishable from the triple (f, f(x), b). Furthermore,
we use the fact that seeing two hard-core bits of two pre-images of randomly chosen values is still
indistinguishable from seeing two random bits.

Extending the PIOA framework. Following the usual proof methods for distributed algorithms,
we have decomposed our proofs into several stages, with general transitivity results used to combine
the results of the stages. A feature of our proofs is that complicated reasoning about particular cryp-
tographic primitives—in this case, a hard-core predicate—is isolated to a single stage of each proof.

Producing this proof required us to develop two new kinds of theory: First, we extended traditional
PIOA theory in two ways:

• We defined a new notion of tasks, which provide a mechanism to resolve nondeterministic choices.

• We defined a new kind of simulation relation, which allows one to establish a correspondence
between probability distributions on states at two levels of abstraction, and which allows splitting
of distributions in order to show that individual steps preserve the correspondence.

Second, we developed a new theory for time-bounded PIOAs, specifically:

• We defined time-bounded PIOAs, which impose time bounds on the individual steps of the PIOAs.

• We defined a new approximate, time-bounded, implementation relationship between time-bounded
PIOAs, which is sufficient to capture the typical relationships between cryptographic primitives
and the abstractions they are supposed to implement.

In the multi-stage proofs, most of the stages represent exact (not approximate) implementations;
we prove all these using standard PIOA theory, extended with our new simulation relation. The
techniques for showing this are fairly standard in the distributed algorithms research literature, based

9

on proving invariants and simulation relationships by induction on the number of steps in an execution.
The remaining stages involve replacement of a cryptographic primitive with a random counterpart;
we prove that these satisfy our approximate implementation relationship. The techniques for showing
this are based on recasting the definitions of the cryptographic primitives in terms of approximate
implementation relationships, and then combining these primitives with other components in various
ways that preserve the implementation relationships. Transitivity results allow us to combine all the
implementation relationships proved at all the stages to obtain an overall approximate implementation
relationship between the Oblivious Transfer algorithm and its property specification.

2 Informal Description

We consider an oblivious transfer protocol in which a transmitter T sends two bits (x0, x1) to a receiver
R who decides to receive only one of them, while preventing T from knowing which one was delivered.
The following is an informal description of the desired behavior:

Oblivious Transfer Functionality F
On inputs (x0, x1) from T , record (x0, x1)
On input i from R, send xi to R

We analyze the following protocol for realizing this functionality. The protocol was first proposed in
[gmw87].

Oblivious Transfer Protocol
On inputs (x0, x1) for T and i for R.
T selects a random trap-door permutation f : D → D

1. T → R: f
R selects two random elements y0, y1 ∈ D

2. R→ T : (f1−i(y0), f i(y1))
T receives these values as (z0, z1)

3. T → R: (B(f−1(z0))⊕ x0, B(f−1(z1))⊕ x1)
where B is a hard-core predicate for f .
R receives these values as (b0, b1).
Finally, R outputs B(yi)⊕ bi.

At a very high level, the analysis proceeds as follows. We define two systems, the “real system”,
which captures the protocol execution, and the “ideal system” which captures the ideal specification
for OT. Showing that the protocol is correct and secure amounts to showing that the real system
“implements” the ideal system, in a certain sense.

In the real system, we consider an adversary A interacting with the two parties T and R executing
the protocol. All communications between T and R are mediated by the adversary A. An environment
E supplies inputs and receives outputs to/from T and R, and also interacts with A. In the security
literature, all the parties are usually described as Interacting Turing Machines (ITMs), which interact
by sharing input and output tapes. The adversary is activated first, and can write on the input tape of
one other ITM. Then, when it stops, the ITM which had its input tape written on is activated, and so
on.

Besides deciding how the messages are transmitted, the adversary A can decide to corrupt a party,
in which case he gains access to the inputs of that party. In this paper, we restrict attention to the
case of a semi-honest adversary, which means that the parties continue to follow the protocol definition
even after being corrupted. Furthermore, we will assume that the adversary is static, in the sense that
it decides which parties to corrupt before the beginning of the protocol execution.

In the ideal system, we consider a simulator S interacting with an ideal functionality F , which is
an incorruptible trusted party that is assumed to perform the protocol task. The simulator S and the
functionality F also interact with the same environment E as in the real system. The simulator S has
access to the inputs and outputs of the corrupted parties.

10

We say that the protocol consisting of T , R securely realizes the functionality F if, for any adversary
A and any environment E , there exists a simulator S such that the real system consisting of T , R, A
and E “looks like” the ideal system consisting of F , S, and E , from the point of view of the environment
E .

In showing that such a real system looks like a corresponding ideal system, the simulator is generally
constructed in terms of variants of the adversary, transmitter, and receiver in the real system.

In the rest of this paper, we develop these ideas formally, in terms of Probabilistic I/O Automata.

3 Mathematical Foundations

This section contains mathematical foundations for the rest of the paper, starting in Section 3.1 with
preliminary definitions for sets, functions, and probability measures. Then, in Section 3.2, we review def-
initions and results for PIOAs. We introduce our new “task” mechanism for resolving nondeterminism
in PIOAs in Section 3.3, which leads to a definition of task-PIOAs. Section 3.4 introduces time-bounded
task-PIOAs, that is, task-PIOAs whose computation time is bounded by particular functions. Finally,
Section 3.5 introduces families of time-bounded task-PIOAs, with polynomial-time task-PIOAs as a
special case.

3.1 Preliminaries

3.1.1 Sets, functions etc.

We write R≥0 and R+ for the sets of nonnegative real numbers and positive real numbers, respectively.
If X is any set, then we denote the set of finite sequences and infinite sequences of elements from

X by X∗ and Xω, respectively. If ρ is a sequence then we use |ρ| to denote the length of ρ. We use λ
to denote the empty sequence (over any set).

If R is an equivalence relation over a set X, then we write x ≡R x′ provided that x and x′ are in
the same equivalence class. We sometimes write S ∈ R if S is an equivalence class of R.

3.1.2 Probability measures

We present the basic definitions that we need for probability measures. We also define three operations
involving probability measures: flattening, lifting, and expansion. We use these in defining a new kinds
of simulation relation for task-PIOAs, in Section 3.3.8. All of these have been defined elsewhere, for
example, [lsv03, JL91].

Basic definitions: A σ-field over a set X is a set F ⊆ 2X that contains the empty set and is closed
under complement and countable union. A pair (X,F) where F is a σ-field over X, is called a measurable
space. A measure on a measurable space (X,F) is a function µ : F → [0,∞] that is countably additive:
for each countable family {Xi}i of pairwise disjoint elements of F , µ(∪iXi) =

∑
i µ(Xi). A probability

measure on (X,F) is a measure on (X,F) such that µ(X) = 1. A sub-probability measure on (X,F) is
a measure on (X,F) such that µ(X) ≤ 1.

A discrete probability measure on a set X is a probability measure µ on (X, 2X), such that, for
each C ⊆ X, µ(C) =

∑
c∈C µ({c}). A discrete sub-probability measure on a set X, is a sub-probability

measure µ on (X, 2X), such that for each C ⊆ X, µ(C) =
∑

c∈C µ({c}). We define Disc(X) and
SubDisc(X) to be, respectively, the set of discrete probability measures and discrete sub-probability
measures on X. In the sequel, we often omit the set notation when we denote the measure of a singleton
set.

A support of a probability measure µ is a measurable set C such that µ(C) = 1. If µ is a discrete
probability measure, then we denote by supp(µ) the set of elements that have non-zero measure; supp(µ)
is a support of µ. We let δ(x) denote the Dirac measure for x, the discrete probability measure that
assigns probability 1 to {x}.

11

If {ρi}i∈I be a countable family of measures on (X,FX), and {pi}i∈I is a family of non-negative
values, then the expression

∑
i∈I piρi denotes a measure ρ on (X,FX) such that, for each C ∈ FX ,

ρ(C) =
∑

i∈I piρi(C).
Given two discrete measures µ1, µ2 on (X, 2X) and (Y, 2Y), respectively, we denote by µ1 × µ2 the

product measure, that is, the measure on (X × Y, 2X×Y) such that µ1 × µ2(x, y) = µ1(x) × µ2(y) for
each x ∈ X, y ∈ Y .

A function f : X → Y is said to be measurable from (X,FX)→ (Y,FY) if the inverse image of each
element of FY is an element of FX , that is, for each C ∈ FY , f−1(C) ∈ FX . In such a case, given a
measure µ on (X,FX), the function f(µ) defined on FY by f(µ)(C) = µ(f−1(C)) for each C ∈ Y is a
measure on (Y,FY) and is called the image measure of µ under f .

y more.

Flattening: The first operation, which we call “flattening”, takes a discrete probability measure over
probability measures and “flattens” it into a single probability measure.

Let η be a discrete probability measure on Disc(X). Then the flattening of η, denoted by f latten(η),
is the discrete probability measure on X defined by f latten(η) =

∑
µ∈Disc(X) η(µ)µ.

Lemma 3.1 Let η be a discrete probability measure on Disc(X) and let f be a function from X to Y .
Then f(f latten(η)) = f latten(f(η)).

Proof. By the definition of flattening, f(f latten(η)) = f(
∑

µ∈Disc(X) η(µ)µ). By distributing f ,
we obtain that this is equal to

∑
µ∈Disc(X) η(µ)f(µ). By rearranging terms in this last expression,

we obtain that f(f latten(η)) =
∑

σ∈Disc(Y)

∑
µ∈f−1(σ) η(µ)σ. Now,

∑
µ∈f−1(σ) η(µ) = f(η)(σ), which

implies that f(f latten(η)) =
∑

σ∈Disc(Y) f(η)(σ)σ. But the right-hand expression is the definition of
f latten(f(η)), as needed. 2

Lemma 3.2 Let {ηi}i∈I be a countable family of measures on Disc(X), and let {pi}i∈I be a family of
probabilities such that

∑
i∈I pi = 1. Then f latten(

∑
i∈I piηi) =

∑
i∈I pif latten(ηi).

Lifting: The second operation, which we call “lifting”, takes a relation between two domains X and
Y and “lifts” it to a relation between discrete measures over X and Y . We allow the correspondence to
be rather general: we express it in terms of the existence of a weighting function on elements of X × Y
that can be used to relate the two measures.

Let R be a relation from X to Y . The lifting of R, denoted by L(R), is a relation from Disc(X) to
Disc(Y) such that µ1 L(R) µ2 iff there exists a function w : X×Y → R≥0, called a weighting function,
such that

1. for each x ∈ X and y ∈ Y , w(x, y) > 0 implies x R y,

2. for each x ∈ X,
∑

y w(x, y) = µ1(x), and

3. for each y ∈ Y ,
∑

x w(x, y) = µ2(y).

Expansion: Finally, we have the third operation, the “expansion” operation, which is the one we use
directly in our new definition of simulation relations. The expansion of a relation R relates a measure on
X to a measure on Y provided that the two measures can be “expanded” into corresponding measures
on measures. Here, the correspondence between the two measures on measures is rather general, in
fact, we express it in terms of the lifting operation.

Let R be a relation from Disc(X) to Disc(Y). The expansion of R, denoted by E(R), is the relation
from Disc(X) to Disc(Y) such that µ1 E(R) µ2 iff there exist two discrete measures η1 and η2 on
Disc(X) and Disc(Y), respectively, such that

1. µ1 = f latten(η1),

12

2. µ2 = f latten(η2), and

3. η1 L(R) η2.

The following lemma provides an equivalent characterization of the expansion relation:

Lemma 3.3 Let R be a relation on Disc(X) × Disc(Y). Then µ1 E(R) µ2 iff there exists a count-
able index set I, a discrete probability measure p on I, and two collections of probability measures
{µ1,i}I ,{µ2,i}I such that

1. µ1 =
∑

i∈I p(i)µ1,i,

2. µ2 =
∑

i∈I p(i)µ2,i, and

3. for each i ∈ I, µ1,i R µ2,i.

Proof. Let µ1 E(R) µ2, and let η1, η2 and w be the measures and weighting functions used in the
definition of E(R). Let {(µ1,i, µ2,i)}i∈I be an enumeration of the pairs for which w(µ1,i, µ2,i) > 0, and
let p(i) be w(µ1,i, µ2,i). Then p, {(µ1,i)}i∈I , and {(µ2,i)}i∈I satisfy Items 1, 2, and 3.

Conversely, given p, {(µ1,i)}i∈I , and {(µ2,i)}i∈I , define η1(µ) to be
∑

i|µ=µ1,i
p(i), η2(µ) to be∑

i|µ=µ2,i
p(i), and define w(µ′1, µ

′
2) to be

∑
i|µ′1=µ1,i,µ′2=µ2,i

p(i). Then, η1, η2 and w satisfy the proper-
ties required in the definition of E(R). 2

The next, rather technical lemma gives us a sufficient condition for showing that a pair of functions,
f and g, transforms E(R)-related probability measures µ1 and µ2 to other E(R)-related probability
measures. The required condition is that f and g convert each pair ρ1, ρ2 of R-related probability
measures witnessing that µ1 E(R) µ2 to E(R)-related probability measures. We will use this lemma in
the soundness proof for our new kind of simulation relation, in Lemma 3.52; there, the two functions f
and g apply corresponding sequences of tasks to corresponding measures on states.

Lemma 3.4 Let R be a relation from Disc(X) to Disc(Y), and let f, g be two endo-functions on
Disc(X) and Disc(Y), respectively, that distribute over convex combinations of measures, that is, for
each countable family {ρi}i of discrete measures on X and each countable family of probabilities {pi}i
such that

∑
i pi = 1, f(

∑
i piρi) =

∑
i pif(ρi), and similarly, for each countable family {ρi}i of discrete

measures on Y and each countable family of probabilities {pi}i such that
∑

i pi = 1, g(
∑

i piρi) =∑
i pig(ρi). Let µ1 and µ2 be two measures on X and Y respectively, such that µ1 E(R) µ2, and let

η1, η2, and w be a pair of measures and a weighting function witnessing that µ1 E(R) µ2. Suppose
further that, for any two distributions ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0,
f(ρ1) E(R) g(ρ2).
Then f(µ1) E(R) g(µ2).

Proof. For each ρ1 ∈ supp(η1) and ρ2 ∈ supp(η2) such that w(ρ1, ρ2) > 0, let (η1)ρ1,ρ2 , (η2)ρ1,ρ2 , and
wρ1ρ2 be a pair of measures and a weighting function that prove that f(ρ1) E(R) g(ρ2). We know that
these are well-defined since, by assumption, f(ρ1) E(R) g(ρ2) whenever w(ρ1, ρ2) > 0. Let W denote
the set of pairs (ρ1, ρ2) such that w(ρ1, ρ2) > 0.

Let η′1 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2 and let η′2 =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η2)ρ1,ρ2 . Let w′ =∑
(ρ1,ρ2)∈W w(ρ1, ρ2)wρ1,ρ2 .
We show that η′1, η′2, and w′ prove that f(µ1) E(R) g(µ2).

1. f(µ1) = f latten(η′1).

By definition of η′1, f latten(η′1) = f latten(
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)(η1)ρ1,ρ2). By Lemma 3.2, this
is in turn equal to

∑
(ρ1,ρ2)∈W w(ρ1, ρ2)f latten((η1)(ρ1,ρ2)). By definition of (η1)(ρ1,ρ2), we know

that f latten((η1)(ρ1,ρ2)) = f(ρ1), so we obtain that f latten(η′1) =
∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1).

We claim that the right side is equal to f(µ1): Since µ1 = f latten(η1), by the definition of flatten-
ing, µ1 =

∑
ρ1∈Disc(X) η1(ρ1)ρ1. Then, by distributivity of f , f(µ1) =

∑
ρ1∈Disc(X) η1(ρ1)f(ρ1).

13

By definition of lifting, η1(ρ1) =
∑

ρ2∈Disc(Y) w(ρ1, ρ2).
Therefore, f(µ1) =

∑
ρ1∈Disc(X)

∑
ρ2∈Disc(Y) w(ρ1, ρ2)f(ρ1), and this last expression is equal to∑

(ρ1,ρ2)∈W w(ρ1, ρ2)f(ρ1), as needed.

2. g(µ2) = f latten(η′2).

Analogous to the previous case.

3. η′1 L(R) η′2 using w′ as a weighting function.

We verify that w′ satisfies the three conditions in the definition of a weighting function:

(a) Let ρ′1, ρ
′
2 be such that w′(ρ′1, ρ

′
2) > 0. Then, by definition of w′, there exists at least one

pair (ρ1, ρ2) ∈R such that wρ1,ρ2(ρ
′
1, ρ

′
2) > 0. Since wρ1,ρ2 is a weighting function, ρ′1 R ρ′2

as needed.

(b) By definition of w′,
∑

ρ′2∈Disc(Y) w′(ρ′1, ρ
′
2) =

∑
ρ′2∈Disc(Y)

∑
(ρ1,ρ2)

w(ρ1, ρ2)wρ1,ρ2(ρ
′
1, ρ

′
2).

By rearranging sums and using the fact that wρ1,ρ2 is a weighting function, we obtain that∑
ρ′2∈Disc(Y) w′(ρ′1, ρ

′
2) =

∑
(ρ1,ρ2)

w(ρ1, ρ2)(η1)ρ1,ρ2(ρ
′
1). (Specifically, this uses the fact that∑

ρ′2∈Disc(Y) wρ1,ρ2(ρ
′
1, ρ

′
2) = (η1)ρ1,ρ2(ρ

′
1).) This suffices since the right-hand side is the

definition of η′1(ρ
′
1).

(c) Symmetric to the previous case.

2

3.2 Probabilistic I/O Automata

This section contains standard definitions for PIOAs, extracted from the prior literature—see, e.g.,
[sl95, lsv03]. After presenting the basic definitions of PIOAs and their executions, in Section 3.2.1,
we give careful definitions for the σ-field of execution fragments and the σ-field of traces of a PIOA,
in Section 3.2.2 In terms of these σ-fields, we give careful definitions (and some basic results) for
probabilistic executions and trace distributions, in Section 3.2.3. The remaining two subsections define
the composition and hiding operations for PIOAs.

3.2.1 Basic definitions

The definition of a PIOA is standard. A PIOA has states, a unique start state, and a set of actions,
partitioned into input, output, and internal actions. It also has a set of “transitions”, which are triples
consisting of a state, an action, and a discrete distribution on next states. Note that a PIOA may
exhibit both nondeterministic and probabilistic choices. Nondeterminism appears in the choice of the
next transition to perform. Probabilistic choice occurs only in the choice of the next state, when a
particular transition is performed.

Definition 3.5 A probabilistic I/O automaton (PIOA) is a tuple P = (Q, q̄, I, O,H,D), where

• Q is a countable set of states,

• q̄ ∈ Q is a start state,

• I is a countable set of input actions,

• O is a countable set of output actions,

• H is a countable set of internal (hidden) actions, and

• D ⊆ (Q× (I ∪O ∪H)×Disc(Q)) is a transition relation.

14

We write A for I ∪O ∪H and refer to A as the actions of P. We write E for I ∪O and we refer to E
as the external actions of P. We assume that PIOA P satisfies the following conditions.

1. I,O and H are disjoint sets.

2. Input enabling: For every state q ∈ Q and every action a ∈ I, D contains some triple of the
form (q, a, µ).

3. Next-transition determinism: For every state q and action a, there is at most one transition
of the form (q, a, µ). We write trq,a to denote this transition, and µq,a to denote the target measure
of this transition, if the transition exists. (Otherwise, these notations are undefined.)

We say that an action a is enabled in a state q if D contains a transition (q, a, µ) for some µ.

Note that the next-transition determinism and the countability of Q, I,O, and H are restrictions that
are not present in earlier definitions of probabilistic automata [lsv03]. We introduce these in the
interests of simplicity. Input-enabling is standard.

We denote the elements of an automaton P by QP , q̄P , IP , OP ,HP , DP , AP and EP . Often we
use the generic name P for a generic automaton; in this case we omit the subscripts, writing simply
Q, q̄, I, O,H,D, A and E.

An execution fragment of a PIOA P is a finite or infinite sequence α = q0 a1 q1 a2 . . . of alternating
states and actions, starting with a state and, if the sequence is finite ending in a state, where for each
(qi, ai+1, qi+1) there exists a transition (qi, ai+1, µ) ∈ D with qi+1 ∈ supp(µ). If α is a finite sequence,
then the last state of α is denoted by lstate(α). If α is an execution fragment of P and a is an action
of P that is enabled in lstate(α), then we write trα,a as an abbreviation for trlstate(α),a.

An execution of P is an execution fragment whose first state is the start state q̄. We let frags(P)
and frags∗(P) denote, respectively, the set of all execution fragments and the set of finite execution
fragments of P. Similarly, we let execs(P) and execs∗(P) denote, respectively, the set of all executions
and the set of finite executions of P.

The trace of an execution fragment α of an automaton P, written trace(α), is the sequence obtained
by restricting α to the set of external actions of P. We say that β is a trace of automaton P if there is
an execution α of P with trace(α) = β.

3.2.2 σ-fields of execution fragments and traces

In order to talk about probabilities for executions and traces of a PIOA, we need appropriate σ-fields.
We define a σ-field over the set of execution fragments of a PIOA P:

Definition 3.6 The cone of a finite execution fragment α, denoted by Cα, is the set {α′ ∈ frags(P) |α ≤
α′}. Then FP is the σ-field generated by the set of cones of finite execution fragments of P.

Observe that, since Q, I, O, and H are countable, the set of finite execution fragments of P is countable,
and hence the set of cones of finite execution fragments of P is countable. Therefore, any union of cones
is measurable. Observe also that, for each finite execution fragment α, the set {α} is measurable since
it can be expressed as the intersection of Cα with the complement of ∪α′:α<α′Cα′ . Thus, any set of
finite execution fragments is measurable, or, in other words, the discrete σ-field of finite executions is
included in FP .

We often refer to a probability measure on the σ-field FP generated by cones of execution fragments
of a PIOA P as simply a probability measure on execution fragments of P.

In many places in this paper, we will want to talk about probability measures on finite execution
fragments, rather than arbitrary execution fragments. Thus, we define:

Definition 3.7 If ε is a probability measure on execution fragments of P, then we say that ε is finite
if the set of finite execution fragments is a support for ε.

15

Since any set of finite execution fragments is measurable, any finite probability measure on execution
fragments of P can also be viewed as a discrete probability measure on the set of finite execution
fragments. Formally, given any finite probability measure ε on execution fragments of P, we may define
a discrete probability measure finite(ε) on the set of finite execution fragments of P by simply defining
finite(ε)(α) = ε(α) for every finite execution fragment α of P. The difference between finite(ε) and ε
is simply that the domain of ε is the set of all execution fragments of P, whereas the domain of finite(ε)
is the set of all finite executions of P. Henceforth, we will ignore the distinction between finite(ε) and
ε.

Definition 3.8 Let ε and ε′ be probability measures on execution fragments of PIOA P. Then we say
that ε is a prefix of ε′, denoted by ε ≤ ε′, if, for each finite execution fragment α of P, ε(Cα) ≤ ε′(Cα).

Definition 3.9 A chain of probability measures on execution fragments of PIOA P is an infinite se-
quence, ε1, ε2, · · · of probability measures on execution fragments of P such that, for each i ≥ 0,
εi ≤ εi+1. Given a chain ε1, ε2, . . . of probability measures on execution fragments of P, we define
a new function ε on the σ-field generated by cones of execution fragments of P as follows: For each
finite execution fragment α,

ε(Cα) = lim
i→∞

εi(Cα).

Standard measure theoretical arguments ensure that ε can be extended uniquely to a probability measure
on the σ-field generated by the cones of finite execution fragments. Furthermore, for each i ≥ 0, εi ≤ ε.
We call ε the limit of the chain, and we denote it by limi→∞ εi.

If α is a finite execution fragment of a PIOA P and a is an action of P, then Cαa denotes the set of
execution fragments of P that start with αa.

The cone construction can also be used to define a σ-field of traces:

Definition 3.10 The cone of a finite trace β, denoted by Cβ, is the set {β′ ∈ E∗∪Eω | β ≤ β′}, where
≤ denotes the prefix ordering on sequences. The σ-field of traces of P is simply the σ-field generated by
the set of cones of finite traces of P.

Again, the set of cones is countable and the discrete σ-field on finite traces is included in the σ-field
generated by cones of traces. We often refer to a probability measure on the σ-field generated by cones
of traces of a PIOA P as simply a probability measure on traces of P.

Definition 3.11 If τ is a probability measure on traces of P, then we say that τ is finite if the set of
finite traces is a support for τ . Any finite probability measure on traces of P can also be viewed as a
discrete measure on the set of finite traces.

Definition 3.12 Let τ and τ ′ be probability measures on traces of PIOA P. Then we say that τ is a
prefix of τ ′, denoted by τ ≤ τ ′, if, for each finite trace β of P, τ(Cβ) ≤ τ ′(Cβ).

Definition 3.13 A chain of probability measures on traces of PIOA P is an infinite sequence, τ1, τ2, · · ·
of probability measures on traces of P such that, for each i ≥ 0, τi ≤ τi+1. Given a chain τ1, τ2, . . .
of probability measures on traces of P, we define a new function τ on the σ-field generated by cones of
traces of P as follows: For each finite trace β,

τ(Cβ) = lim
i→∞

τi(Cβ).

Then τ can be extended uniquely to a probability measure on the σ-field of cones of finite traces. Fur-
thermore, for each i ≥ 0, τi ≤ τ . We call τ the limit of the chain, and we denote it by limi→∞ τi.

The trace function is a measurable function from the σ-field generated by cones of execution frag-
ments of P to the σ-field generated by cones of traces of P. If ε is a probability measure on execution
fragments of P then we define the trace distribution of ε, tdist(ε), to be the image measure of ε under
the function trace.

16

Lemma 3.14 Let ε1, ε2, · · · be a chain of measures on execution fragments, and let ε be limi→∞ εi.
Then limi→∞ tdist(εi) = tdist(ε).

Proof. It suffices to show that, for any finite trace β, limi→∞ tdist(εi)(Cβ) = tdist(ε)(Cβ). Fix a
finite trace β.

Let Θ be the set of minimal execution fragments whose trace is in Cβ . Then trace−1(Cβ) = ∪α∈ΘCα,
where all the cones are pairwise disjoint. Therefore, for i ≥ 0, tdist(εi)(Cβ) =

∑
α∈Θ εi(Cα), and

tdist(ε)(Cβ) =
∑

α∈Θ ε(Cα).
Since we have monote limits here (our limit are also supremums), limits commute with sums and our

goal can be restated as showing:
∑

α∈Θ limi→∞ εi(Cα) =
∑

α∈Θ ε(Cα). Since limi→∞ εi = ε, for each
finite execution fragment α, limi→∞ εi(Cα) = ε(Cα). Therefore,

∑
α∈Θ limi→∞ εi(Cα) =

∑
α∈Θ ε(Cα),

as needed. 2

The lstate function is a measurable function from the discrete σ-field of finite execution fragments
of P to the discrete σ-field of states of P. If ε is a probability measure on execution fragments of P,
then we define the lstate distribution of ε, lstate(ε), to be the image measure of ε under the function
lstate.

3.2.3 Probabilistic executions and trace distributions

Having established some groundwork in Section 3.2.2, we now define the specific probability measures
on executions and traces that are generated by PIOAs. To define such probability measure, we must
resolve the PIOA’s nondeterminism. For this purpose, we define a “scheduler”, which, after any finite
execution fragment, selects the next transition:

Definition 3.15 A scheduler for a PIOA P is a function σ : frags∗(P) → SubDisc(D) such that
(q, a, µ) ∈ supp(σ(α)) implies q = lstate(α).

A scheduler σ describes what transitions to schedule after each finite execution fragment of P. It
associates sub-probability measures with finite execution fragments, which means that after a finite
execution fragment α the probability σ(α)(D) may be strictly smaller than 1, or, in other words, that
the scheduler σ terminates the computation after α with probability 1 − σ(α)(D). As a notational
convention we introduce a new symbol ⊥ to denote termination, and we write σ(α)(⊥) to denote the
probability 1− σ(α)(D) of terminating after α.

Definition 3.16 A scheduler σ and a finite execution fragment α generate a measure εσ,α on the σ-field
generated by cones of execution fragments. The measure of a cone Cα′ is defined recursively as follows:

εσ,α(Cα′) =

 0 if α′ 6≤ α and α 6≤ α′

1 if α′ ≤ α
εσ,α(Cα′′)µσ(α′′)(a, q) if α′ = α′′aq and α ≤ α′′,

(1)

where µσ(α′′)(a, q) is the probability that σ(α′′) gives a transition labeled by a and that the reached state
is q. That is, µσ(α′′)(a, q) = σ(α′′)(trα′′,a)µα′′,a(q). Standard measure theoretical arguments ensure that
εσ,α is well-defined. We say that εσ,α is generated by σ and α. We call the state f state(α) the first
state of εσ,α and denote it by f state(εσ,α).

If µ is a discrete probability measure over finite execution fragments, then we denote by εσ,µ the
measure

∑
α µ(α)εσ,α and we say that εσ,µ is generated by σ and µ. We call the measure εσ,µ a

generalized probabilistic execution fragment of P.
If supp(µ) contains only execution fragments consisting of a single state then we call εσ,µ a proba-

bilistic execution fragment of P. Finally, for the start state q̄, we call εσ,q̄ a probabilistic execution of
P.

The following lemmas give some simple equations expressing basic relationships involving the prob-
abilities of various sets of execution fragments.

17

Lemma 3.17 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα) +
∑

α′<α

µ(α′)εσ,α′(Cα).

Proof. By definition of εσ,µ, εσ,µ(Cα) =
∑

α′ µ(α′)εσ,α′(Cα). Since, by definition, εσ,α′(Cα) = 1 when-
ever α ≤ α′, the equation above can be rewritten as εσ,µ(Cα) =

∑
α′:α≤α′ µ(α′)+

∑
α′<α µ(α′)εσ,α′(Cα).

Observe that
∑

α′:α≤α′ µ(α′) = µ(Cα). Thus, by substitution, we get the statement of the lemma. 2

Lemma 3.18 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα − {α}) +
∑

α′≤α

µ(α′)εσ,α′(Cα).

Proof. Follows directly from Lemma 3.17 after observing that εσ,α(Cα) = 1. 2

Lemma 3.19 Let σ be a scheduler for PIOA P, and µ be a discrete measure on finite execution frag-
ments of P. Let α = α̃aq be a finite execution fragment of P. Then

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(trα̃,a)µα̃,a(q).

Proof. By Lemma 3.17, by definition of εσ,α′(Cα), and by definition of µσ(α̃)(a, q), εσ,µ(Cα) = µ(Cα)+∑
α′<α µ(α′)εσ,α′(Cα̃)σ(α̃)(trα̃,a)µα̃,a(q). Observe that the factor σ(α̃)(trα̃,a)µα̃,a(q) is a constant with

respect to α′, and thus can be moved out of the sum, so
εσ,µ(Cα) = µ(Cα) + (

∑
α′<α µ(α′)εσ,α′(Cα̃))(σ(α̃)(trα̃,a)µα̃,a(q)). Since α′ ≤ α̃ if and only if α′ < α,

this yields εσ,µ(Cα) = µ(Cα) + (
∑

α′≤α̃ µ(α′)εσ,α′(Cα̃))(σ(α̃)(trα̃,a)µα̃,a(q)).
It suffices to show that

∑
α′≤α̃ µ(α′)εσ,α′(Cα̃) = εσ,µ(Cα̃)−µ(Cα̃−{α̃}). But this follows immediately

from Lemma 3.18 (with α instantiated as α̃). 2

Lemma 3.20 Let σ be a scheduler for PIOA P, µ be a discrete probability measure on finite execution
fragments of P, and α be a finite execution fragment of P. Then

εσ,µ(α) = (εσ,µ(Cα)− µ(Cα − {α}))(σ(α)(⊥)).

Proof. By definition of εσ,µ, εσ,µ(α) =
∑

α′ µ(α′)εσ,α′(α). The sum can be restricted to α′ ≤ α since
for all other α′, εσ,α′(α) = 0. Then, since for each α′ ≤ α, εσ,α′(α) = εσ,α′(Cα)σ(α)(⊥), we derive
εσ,µ(α) =

∑
α′≤α µ(α′)εσ,α′(Cα)σ(α)(⊥). Observe that σ(α)(⊥) is a constant with respect to α′, and

thus can be moved out of the sum, yielding εσ,µ(α) = (
∑

α′≤α µ(α′)εσ,α′(Cα))(σ(α)(⊥)).
It suffices to show that

∑
α′≤α µ(α′)εσ,α′(Cα) = εσ,µ(Cα)−µ(Cα−{α}). But this follows immediately

from Lemma 3.18. 2

Lemma 3.21 Let σ be a scheduler for PIOA P, and µ be a discrete probability measure on finite
execution fragments of P. Let α be a finite execution fragment of P and a be an action of P that is
enabled in lstate(α). Then

εσ,µ(Cαa) = µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a).

Proof. Observe that Cαa = ∪qCαaq. Thus, εσ,µ(Cαa) =
∑

q εσ,µ(Cαaq). By Lemma 3.19, the right-
hand side is equal to

∑
q (µ(Cαaq) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a)µα,a(q)). Since

∑
q µ(Cαaq) =

µ(Cαa) and
∑

q µα,a(q) = 1, this is in turn equal to µ(Cαa) + (εσ,µ(Cα)− µ(Cα − {α}))σ(α)(trα,a).
Combining the equations yields the result. 2

Next, we consider limits of generalized probabilistic execution fragments.

18

Proposition 3.22 Let ε1, ε2, . . . be a chain of generalized probabilistic execution fragments of a PIOA
P, all generated from the same discrete probability measure µ on finite execution fragments. Then
limi→∞ εi is a generalized probabilistic execution fragment of P generated from µ.

Proof. Let ε denote limi→∞ εi. For each i ≥ 1, let σi be a scheduler such that εi = εσi,µ, and for
each finite execution fragment α, let pi

α = εσi,µ(Cα) − µ(Cα − {α}). For each finite execution α and
each action a, let pi

αa = εσi,µ(Cαa)− µ(Cαa).
By Lemma 3.21, if a is enabled in lstate(α) then pi

ασi(α)(trα,a) = pi
αa, and so, if pi

αa 6= 0, then
σi(α)(trα,a) = pi

αa/pi
α.

For each finite execution fragment α, let pα = ε(Cα) − µ(Cα − {α}). For each finite execution
fragment α and each action a, let pαa = ε(Cαa) − µ(Cαa). Define σ(α)(trα,a) to be pαa/pα if pα > 0;
otherwise define σ(α)(trα,a) = 0. By definition of ε and simple manipulations, limi→∞ pi

α = pα and
limi→∞ pi

αa = pαa. It follows that, if pα > 0, then σ(α)(trα,a) = limi→∞ σi(α)(trα,a).
It remains to show that σ is a scheduler and that εσ,µ = ε. To show that σ is a scheduler, we must

show that, for each finite execution fragment α, σ(α) is a sub-probability measure. Observe that, for
each i ≥ 1,

∑
tr σi(α)(tr) =

∑
a σi(α)(trαa). Similarly,

∑
tr σ(α)(tr) =

∑
a σ(α)(trαa). Since each σi is

a scheduler, it follows that, for each i ≥ 0,
∑

a σi(α)(trαa) ≤ 1. Thus, also limi→∞
∑

a σi(α)(trαa) ≤ 1.
By interchanging the limit and the sum, we obtain

∑
a limi→∞ σi(α)(trαa) ≤ 1.

We claim that σ(α)(trα,a) ≤ limi→∞ σi(α)(trα,a), which immediately implies that σ(α)(trαa) ≤ 1,
as needed. To see this claim, we consider two cases: If pα > 0, then as shown earlier, σ(α)(trα,a) =
limi→∞ σi(α)(trα,a), which implies the claim. On the other hand, if pα = 0, then σ(α)(trα,a) is defined
to be zero, so that σ(α)(trα,a) = 0, which is less than or equal to limi→∞ σi(α)(trα,a), which again
implies the claim.

To show that εσ,µ = ε, we show by induction on the length of a finite execution fragment α that
εσ,µ(Cα) = ε(Cα). For the base case, let α consist of a single state q. By Lemma 3.17, εσ,µ(Cq) = µ(Cq),
and for each i ≥ 1, εσi,µ(Cq) = µ(Cq). Thus, ε(Cq) = limi→∞ εσi,µ(Cq) = µ(Cq), as needed.

For the inductive step, let α = α̃aq. By Lemma 3.19,

lim
i→∞

εσi,µ(Cα) = lim
i→∞

(µ(Cα) + (εσi,µ(Cα̃)− µ(Cα̃ − {α̃}))σi(α̃)(trα̃,a)µα̃,a(q)) .

Observe that the left side is ε(Cα). By algebraic manipulation, the equation above becomes

ε(Cα) = µ(Cα) +
((

lim
i→∞

εσi,µ(Cα̃)
)
− µ(Cα̃ − {α̃})

) (
lim

i→∞
σi(α̃)(trα̃,a)

)
µα̃,a(q).

By definition of ε, limi→∞ εσi,µ(Cα̃) = ε(Cα̃), and by inductive hypothesis, ε(Cα̃) = εσ,µ(Cα̃). Therefore,

ε(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))
(

lim
i→∞

σi(α̃)(trα̃,a)
)

µα̃,a(q).

Also by Lemma 3.19, we obtain that

εσ,µ(Cα) = µ(Cα) + (εσ,µ(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(trα̃,a)µα,a(q).

We claim that the right-hand sides of the last two equations are equal. To see this, consider two
cases. First, if pα̃ > 0, then we have already shown that limi→∞ σi(α̃)(trα̃,a) = σ(α̃(trα̃,a)). Since these
two terms are the only difference between the two expressions, the expressions are equal.

On the other hand, if pα̃ = 0, then by definition of pα̃, we get that ε(Cα̃) = µ(Cα̃ − {α̃}). Then the
second terms of the two right-hand sides are both equal to zero, which implies that both expressions
are equal to the first term µ(Cα). Again, the two right-hand sides are equal.

Since the right-hand sides are equal, so are the left-hand sides, that is, εσ,µ(Cα) = ε(Cα), as needed
to complete the inductive hypothesis. 2

We denote the set of trace distributions of probabilistic executions of a PIOA P by tdists(P).

19

3.2.4 Composition

We define composition for PIOAs:

Definition 3.23 Two PIOAs P1 and P2 are compatible if H1 ∩ A2 = A1 ∩H2 = O1 ∩ O2 = ∅. The
composition of two compatible PIOAs P1 and P2, denoted by P1‖P2, is the PIOA P = (Q, q̄, I, O,H,D)
where

• Q = Q1 ×Q2,

• q̄ = (q̄1, q̄2),

• I = (I1 ∪ I2)− (O1 ∪O2),

• O = (O1 ∪O2),

• H = (H1 ∪H2),

• D is the set of triples ((q1, q2), a, µ1 × µ2) such that for i ∈ {1, 2}, if a is an action of Pi, then
(qi, a, µi) ∈ Di, and if a is not an action of Pi then µi = δ(qi).

If q = (q1, q2) is a state of P then for i ∈ {1, 2}, we write qdPi to denote qi. We extend the definition
of composition and the d notation to any finite number of arguments, not just two.

3.2.5 Hiding

We define a hiding operation for PIOAs, which hides output actions.

Definition 3.24 Let P = (Q, q̄, I, O,H, D) be a PIOA and S ⊆ O. Then hide(P, S) is the PIOA P ′
that is is the same as P except that OP′ = OP − S and HP = HP ∪ S.

3.3 Task-PIOAs

In this section, we introduce a new “task” mechanism for describing the resolution of nondetermin-
ism. For general PIOAs, we already have a notion of “scheduler”, which can use arbitrary knowledge
about the past execution in choosing a specific next transition. Such a scheduler is very powerful—too
powerful for the security protocol setting. In particular, a scheduler’s choice of transition may depend
on information that is supposed to be kept secret from the adversarial components. Moreover, the
scheduler has very fine-grained control over the precise choice of transition.

To reduce the power of the scheduler, we here define “task-PIOAs”, which provide equivalence
relations on the actions and on the states of the PIOAs. The action equivalence relation classifies the
actions into “tasks”, which are units of scheduling. The state equivalence relation helps us to express
certain technical restrictions on the transitions. This aggregation will be used to weaken the power of
the scheduler, by forcing it to ignore differences such as results of secret random choices.

We begin by defining task-PIOAs, in Section 3.3.1. Then we define task schedulers, in Section 3.3.2,
which are a variant of our schedulers with coarser granularity (they schedule tasks rather than specific
transitions). Section 3.3.3 defines directly how a task scheduler generates a probability measure on
execution fragments, for a closed task-PIOA. Then, in a rather lengthy diversion, it relates this definition
to the more traditional definitions for PIOAs, by showing that the resulting probability measure is in
fact generated by some traditional scheduler. The next two sections define composition and hiding, for
task-PIOAs.

Then, we develop our notions of implementation between task-PIOAs. In Section 3.3.6, we define
the notion of an “environment” for a task-PIOA. We use this, in Section 3.3.7, to define what it means
for one task-PIOA to implement another. Finally, in Section 3.3.8, we define our new kind of simulation
relation between closed task-PIOAs, and prove that it is sound with respect to our implementation
notion.

20

3.3.1 Task-PIOAs

Definition 3.25 We define a task-PIOA, to be a triple T = (P, RA, RS), where

• P = (Q, q̄, I, O,H,D) is a PIOA (satisfying next-transition determinism).

• RA is an equivalence relation on the action set A.
We refer to the equivalence classes of RA as tasks. We require that RA respect action types: each
T ∈ RA is a subset of I, O, or H. We refer to the tasks as input tasks, output tasks, or internal
tasks, respectively.

• RS is an equivalence relation on the state set Q.

A task T is enabled in a state q if there is some action that is enabled in q. A task T is enabled in
a set of states S provided that T is enabled in every q ∈ S.

We require a task-PIOA to satisfy the following (rather strong) conditions:

1. Next-action determinism: For every state q ∈ Q and every output or internal task T ∈ RA,
there is at most one action a ∈ T that is enabled in q

2. Random-choice consistency: If (q, a, µ) ∈ D, then supp(µ) ⊆ S for some S ∈ RS.

3. Transition consistency: Suppose that q1 ≡RS q2, a1 ≡RA a2, {(q1, a1, µ1), (q2, a2, µ2)} ⊆ D,
then supp(µ1) ∪ supp(µ2) ⊆ S for some S ∈ RS.

4. Enabling consistency: If q1 ≡RS q2, a1 ∈ O ∪ H, and (q1, a1, µ1) ∈ D, then there exists a
transition (q2, a2, µ2) ∈ D such that a1 ≡RA a2.

We denote the relations RA and RS of a task-PIOA T by RAT and RST . If S is a set of states of P
such that all states in S are RS-equivalent, then we write [S]T to denote the unique equivalence class
S′ ∈ RS such that S ⊆ S′. Similarly, if µ is a discrete distribution on states of P such that all states
in supp(µ) are RS-equivalent, then we write [µ]T to denote the unique equivalence class S′ ∈ RS such
that supp(µ) ⊆ S′. We drop the subscript T when we think it should be clear from the context.

The non-probabilistic executions and traces of a task-PIOA T = (P, RA, RS) are defined to be the
executions and traces of the underlying PIOA P.

3.3.2 Task Schedulers

Here we define our notion of a “task scheduler”, which chooses the next task to perform. For a closed
task-PIOA (that is, one with no input actions), a task scheduler resolves all nondeterminism, because
of the next-action determinism property of task-PIOAs and the next-transition determinism property
of general PIOAs.

In this paper, our notion of task scheduler is oblivious—that is, it is just a sequence of tasks. In
the security protocol setting, we would like also to consider task schedulers that can depend on partial
information about the past execution, in particular, on the portion of the execution that is visible
to the adversarial components. However, this extension will require significant generalizations to the
machinery we have developed so far, and we leave it for future work.

Definition 3.26 Let T = (P, RA, RS) be a closed task-PIOA where P = (Q, q̄, I, O,H,D). A task
scheduler for T is defined to be a finite or infinite sequence ρ = T1 T2 . . . of tasks in RA.

3.3.3 Probabilistic executions and trace distributions

We next describe how a given task scheduler generates a generalized probabilistic execution fragment
given a starting measure µ on finite execution fragments. We do this by defining a function apply(,)
that takes a discrete measure µ on finite execution fragments and a task scheduler ρ and returns the
result of applying ρ from µ, which is a measure on execution fragments. We define apply(,) first for

21

the empty sequence of tasks, then for a single task, then for a finite sequence of tasks, and finally for
an infinite sequence of tasks.

Definition 3.27 Let T = (P, RA, RS) be a closed task-PIOA where P = (Q, q̄, I, O,H,D). Then
apply(,) is a function that takes a discrete probability measure on finite execution fragments and a task
scheduler and returns a probability measure on execution fragments. It is defined recursively as follows:

1. apply(µ, λ) = µ (recall that λ is the empty sequence).

2. If T is a single task, then for each finite execution fragment α, apply(µ, T)(α) = p1(α) + p2(α),
where:

p1(α) =

 µ(α′)ρ(q) if α can be written as α′ a q, where α′ ∈ supp(µ), a ∈ T,
and (lstate(α′), a, ρ) ∈ DP .

0 otherwise.

Next-transition determinism implies that there can be only one such transition, so p1 is well-
defined.

p2(α) =
{

µ(α) if T is not enabled in lstate(α),
0 otherwise.

3. If ρ is a finite sequence of tasks ρ′T , then apply(µ, ρ) = apply(apply(µ, ρ′), T).

4. If ρ is an infinite sequence, then let ρi be the prefix of ρ consisting of the first i tasks of ρ, and let
εi be apply(µ, ρi). Then apply(µ, ρ) = limi→∞(εi). The limit is well-defined due to Lemma 3.35.

Lemma 3.28 Let T = (P, RA, RS) be a closed task-PIOA, and let ρ be a finite task scheduler. Let
q1 and q2 be two states of P such that q1 ≡RS q2. Let µ1 and µ2 be apply(q1, ρ) and apply(q2, ρ),
respectively.
Then supp(lstate(µ1)) ∪ supp(lstate(µ2)) ⊆ S, for some S ∈ RS.

Proof. By induction on the length of ρ, using the enabling-consistency and transition-consistency
properties for task-PIOAs. 2

The next proposition states that apply(·, ρ) distributes over convex combinations of probability
measures. We start with a few preliminary lemmas.

Lemma 3.29 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete probability measure over
finite execution fragments of P and let T be a task. Let p1 and p2 be the functions used in the definition
of apply(µ, T). Then:

1. For each state q, p1(q) = 0.

2. For each finite execution fragment α, µ(α) = p2(α) +
∑

(a,q):αaq∈frags∗(P) p1(αaq).

Proof. For Part 1, the fact that p1(q) = 0 for each state q follows trivially by definition of p1(q).
For Part 2, consider a finite execution fragment α. We observe the following facts:

1. If T is not enabled from lstate(α), then, by definition of p2, µ(α) = p2(α). Furthermore, for each
action a and each state q such that αaq is an execution fragment, we claim that p1(αaq) = 0:
Indeed, if a /∈ T , then the first case of the definition of p1(α) trivially does not apply; if a ∈ T ,
then, since T is not enabled from lstate(α), there is no ρ such that (lstate(α), a, ρ) ∈ DP , and
thus, again, the first case of the definition of p1(α) does not apply.

2. If T is enabled from lstate(α), then, trivially, p2(α) = 0. Furthermore, we claim that µ(α) =∑
(a,q) p1(αaq): Indeed, there exists only one action b ∈ T that is enabled from lstate(α). By

definition of p1, p1(αaq) = 0 if a 6= b (either a /∈ T or a is not enabled from lstate(α)). Thus,∑
(a,q) p1(αaq) =

∑
q p1(αbq) =

∑
q µ(α)µα,b(q). This in turn is equal to µ(α) since

∑
q µα,b(q) =

1.

22

In each case, we get µ(α) = p2(α) +
∑

(a,q) p1(αaq), as needed. 2

Lemma 3.30 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete probability measure over
finite execution fragments and ρ be a finite sequence of tasks. Then apply(µ, ρ) is a discrete probability
measure over finite execution fragments.

Proof. By a simple inductive argument. The key part of the inductive step consists of showing that,
for each measure ε on finite executions fragments and each task T , apply(ε, T) is a probability measure
over finite execution fragments.

Let ε′ be apply(ε, T). The fact that ε′ is a measure on finite execution fragments follows di-
rectly by Item 2 of the definition of apply(,). To show that ε′ is in fact a probability measure, we
show that

∑
α∈frags∗(P) ε′(α) = 1. By Item 2 of the definition of apply(,),

∑
α∈frags∗(P) ε′(α) =∑

α∈frags∗(P)(p1(α)+p2(α)). By rearranging terms,
∑

α∈frags∗(P) ε′(α) =
∑

q p1(q)+
∑

α∈frags∗(P)(p2(α)+∑
(a,q):αaq∈frags∗(P) p1(αaq)). By Lemma 3.29, the right side becomes

∑
α∈frags∗(P) ε(α). Since∑

α∈frags∗(P) ε(α) = 1, then also
∑

α∈frags∗(P) ε′(α) = 1, as needed. 2

Lemma 3.31 Let {µi}i be a countable family of discrete probability measures on finite execution frag-
ments and let {pi}i be a countable family of probabilities such that

∑
i pi = 1. Let T be a task. Then,

apply(
∑

i piµi, T) =
∑

i pi apply(µi, T).

Proof. Let p1 and p2 be the functions used in the definition of apply(
∑

i piµi, T), and let, for
each i, pi

1 and pi
2 be the functions used in the definition of apply(µi, T). Let α be a finite execu-

tion fragment. We show that p1(α) =
∑

i pip
i
1(α) and p2(α) =

∑
i pip

i
2(α). Then it follows that

apply(
∑

i piµi, T)(α) =
∑

i pi apply(µi, T)(α) since apply(
∑

i piµi, T)(α) is defined to be p1(α)+p2(α),
and

∑
i pi apply(µi, T)(α) =

∑
i pi(pi

1(α) + pi
2(α)) =

∑
i pip

i
1(α) +

∑
i pip

i
2(α) = p1(α) + p2(α).

To prove our claim about p1 we distinguish two cases. If α can be written as α′ a q, where α′ ∈
supp(µ), a ∈ T , and (lstate(α′), a, ρ) ∈ DP , then, by Definition 3.27, p1(α) = (

∑
i piµi)(α′)ρ(q), and,

for each i, pi
1(α) = µi(α′)ρ(q). Thus, p1(α) =

∑
i pip

i
1(α) trivially. Otherwise, again by Definition 3.27,

p1(α) = 0, and, for each i, pi
1(α) = 0. Thus, p1(α) =

∑
i pip

i
1(α) trivially.

To prove our claim about p2 we also distinguish two cases. If T is not enabled inlstate(α), then,
by Definition 3.27, p2(α) = (

∑
i piµi)(α), and, for each i, pi

2(α) = µi(α). Thus, p2(α) =
∑

i pip
i
2(α)

trivially. Otherwise, again by Definition 3.27, p2(α) = 0, and, for each i, pi
2(α) = 0. Thus, p2(α) =∑

i pip
i
2(α) trivially. 2

Proposition 3.32 Let {µi}i be a countable family of discrete probability measures on finite execution
fragments and let {pi}i be a countable family of probabilities such that

∑
i pi = 1. Let ρ be a finite

sequence of tasks. Then, apply(
∑

i piµi, ρ) =
∑

i pi apply(µi, ρ).

Proof. We proceed by induction on the length of ρ. If ρ = λ, then the result is trivial since
apply(·, λ) is defined to be the identity function, which distributes over convex combinations of prob-
ability measures. For the inductive step, let ρ be ρ′T . By Definition 3.27, apply(

∑
i piµi, ρ

′T) =
apply(apply(

∑
i piµi, ρ

′), T). By induction, apply(
∑

i piµi, ρ
′) =

∑
i pi apply(µi, ρ

′). Thus, we obtain
apply(

∑
i piµi, ρ

′T) = apply(
∑

i pi apply(µi, ρ
′), T). By Lemma 3.30, for each i, apply(µi, ρ

′) is a dis-
crete probability measure over finite execution fragments. By Lemma 3.31, apply(

∑
i pi apply(µi, ρ

′), T) =∑
i pi apply(apply(µi, ρ

′), T), and by Definition 3.27, for each i, apply(apply(µi, ρ
′), T) = apply(µi, ρ

′T).
Thus, apply(

∑
i piµi, ρ

′T) =
∑

i pi apply(µi, ρ
′T) as needed. 2

We now prove that apply(µ, ρ) returns a generalized probabilistic execution fragment generated by
µ (and some ordinary scheduler). This result is stated as Proposition 3.41. Our proof uses a series of
auxiliary lemmas.

Lemma 3.33 Let T = (P, RA, RS) be a closed task-PIOA. Let µ′ = apply(µ, T). Then, for each finite
execution fragment α:

23

1. If α consists of a single state q, then µ′(Cα) = µ(Cα).

2. If α = α̃aq and a /∈ T , then µ′(Cα) = µ(Cα).

3. If α = α̃aq and a ∈ T , then µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q).

Proof. Let p1 and p2 be the functions used in the definition of apply(µ, T), and let α be a finite
execution fragment. By definition of a cone and of µ′, µ′(Cα) =

∑
α′|α≤α′(p1(α′) + p2(α′)). By

definition of a cone and Lemma 3.29, µ(Cα) =
∑

α′|α≤α′(p2(α′) +
∑

(a,q):α′aq∈frags∗(P) p1(α′aq)) =∑
α′|α≤α′(p1(α′) + p2(α′)) − p1(α). Thus, µ′(Cα) = µ(Cα) + p1(α). We distinguish three cases. If α

consists of a single state, then p1(α) = 0 by Lemma 3.29, yielding µ′(Cα) = µ(Cα). If α = α̃aq and
a /∈ T , then p1(α) = 0 by definition, yielding µ′(Cα) = µ(Cα). Finally, if α = α̃aq and a ∈ T , then
p1(α) = µ(α̃)µα̃,a(q) by definition, yielding µ′(Cα) = µ(Cα) + µ(α̃)µα̃,a(q). 2

Lemma 3.34 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete measure over finite
execution fragments, T a task, and µ′ = apply(µ, T).
Then µ ≤ µ′.

Proof. Follows directly by Lemma 3.33. 2

Lemma 3.35 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete measure over finite
execution fragments and let ρ1 and ρ2 be two finite sequences of tasks such that ρ1 is a prefix of ρ2.
Then apply(µ, ρ1) ≤ apply(µ, ρ2).

Proof. Simple inductive argument using Lemma 3.34 for the inductive step. 2

Lemma 3.36 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete measure over finite
execution fragments. Then apply(µ, λ) is a generalized probabilistic execution fragment generated by µ.

Proof. Follows directly by the definitions by defining a scheduler σ such that σ(α)(tr) = 0 for each
finite execution fragment α and each transition tr. 2

Lemma 3.37 Let T = (P, RA, RS) be a closed task-PIOA. Let µ be a discrete probability measure over
finite execution fragments of P, ρ a task scheduler for T , and q a state of T .
Then apply(µ, ρ)(Cq) = µ(Cq).

Proof. We prove the result for finite ρ’s by induction on the length of ρ. Then the result for infinite
ρ’s follows by limit. The base case is trivial since, by definition, apply(µ, ρ) = µ. For the inductive
step, let ρ = ρ′T , and let ε be apply(µ, ρ′). By definition of apply(,), apply(µ, ρ) = apply(ε, T). By
induction, ε(Cq) = µ(Cq). We show that apply(ε, T)(Cq) = ε(Cq), which suffices.

Let ε′ be apply(ε, T). By definition of cone, ε′(Cq) =
∑

α:q≤α ε′(α). Since, by Lemma 3.30, both
ε and ε′ are measures over finite execution fragments, we can restrict the sum to finite execution
fragments. Let p1 and p2 be the two functions used for the computation of ε′(α) according to Item 2 in
the definition of apply(ε, T). Then ε′(Cq) =

∑
α∈execs∗(P):q≤α(p1(α) + p2(α)). By rearranging terms,

we get ε′(Cq) = p1(q) +
∑

α∈execs∗(P):q≤α(p2(α) +
∑

(a,s) p1(Cαas)). By Lemma 3.29, the right side of
the equation above is

∑
α:q≤α ε(α), that is, ε(Cq), as needed. 2

Lemma 3.38 Let T = (P, RA, RS) be a closed task-PIOA. If ε is a generalized probabilistic execution
fragment generated by a measure µ, then, for each task T , apply(ε, T) is a generalized probabilistic
execution fragment generated by µ.

Proof. Let σ be a scheduler that, together with µ, generates ε (that is, εσ,µ = ε). Let ε′ be apply(ε, T).
Let σ′ be a new scheduler such that, for each finite execution fragment α, if ε′(Cα)− µ(Cα − {α}) = 0,
then σ′(α)(tr) = 0, otherwise,

24

σ′(α)(tr) =

ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

(σ(α)(tr) + σ(α)(⊥)) if tr ∈ D(lstate(α)) and act(tr) ∈ T ,

ε(Cα)− µ(Cα − {α})
ε′(Cα)− µ(Cα − {α})

σ(α)(tr) otherwise

where D(lstate(α)) denotes the set of transitions of D with source state lstate(α) and act(tr) denotes
the action that occurs in tr. We first prove that σ′, thus defined, is a scheduler. We prove by induction
on the length of a finite execution fragment α that εσ′,µ(Cα) = ε′(Cα).

For the base case, let α = q. By Lemma 3.17, εσ,µ(Cq) = µ(Cq) and εσ′,µ(Cq) = µ(Cq). Thus,
εσ′,µ(Cq) = εσ,µ(Cq). The right-hand-side is in turn equal to ε(Cq) by definition, which is equal to
ε′(Cq) by Lemma 3.37. Thus, εσ′,µ(Cq) = ε′(Cq), as needed.

For the inductive step, let α = α̃aq. By Lemma 3.17 and Equation (1), the definition of the measure
of a cone, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)µσ′(α̃)(a, q).

We know that a is enabled from lstate(α̃), because α is an execution fragment of P. Thus, trα̃,a

and µα̃,a are defined. By expanding µσ′(α̃)(a, q) in the equation above, we get

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)σ′(α̃)(trα̃,a)µα̃,a(q). (2)

We distinguish three cases.

1. ε′(Cα̃)− µ(Cα̃ − {α̃}) = 0.

By inductive hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Then by Lemma 3.19, εσ′,µ(Cα) = µ(Cα). We show
that ε′(Cα) = µ(Cα), which suffices.

By Lemma 3.34, ε(Cα̃) ≤ ε′(Cα̃). Thus, combining with ε′(Cα̃) − µ(Cα̃ − {α̃}) = 0, we get
ε(Cα̃) − µ(Cα̃ − {α̃}) ≤ 0. On the other hand, from Lemma 3.18, and from ε = εσ,µ, we derive
ε(Cα̃)− µ(Cα̃ − {α̃}) ≥ 0. Thus, ε(Cα̃)− µ(Cα̃ − {α̃}) = 0.

By Lemma 3.19, since εσ,µ = ε and ε(Cα̃)− µ(Cα̃ − {α̃}) = 0, we get ε(Cα) = µ(Cα).

By Lemma 3.34, since Cα̃ − {α̃} is a union of cones, µ(Cα̃ − {α̃}) ≤ ε(Cα̃ − {α̃}). By adding
ε({α̃}) on both sides, we get µ(Cα̃ − {α̃}) + ε({α̃}) ≤ ε(Cα̃ − {α̃}) + ε({α̃}) = ε(Cα̃). Since
ε(Cα̃) = µ(Cα̃ − {α̃}), from the previous inequalities we derive ε(Cα̃) + ε({α̃}) ≤ ε(Cα̃), which
implies ε({α̃}) = 0. By Lemma 3.33, cases 2 and 3, ε′(Cα) = ε(Cα), which is equal to µ(Cα), as
needed.

2. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a 6∈ T .

By Equation (2) and by definition of σ′,

εσ′,µ(Cα) = µ(Cα) +
∑

α′≤α̃

µ(α′)εσ′,α′(Cα̃)
ε(Cα̃)− µ(Cα̃ − {α̃})
ε′(Cα̃)− µ(Cα̃ − {α̃})

σ(α̃)(trα̃,a)µα̃,a(q).

Observe that in the sum above only the factors µ(α′)εσ′,α′(Cα̃) are not constant with respect
to the choice of α′. By Lemma 3.18 and algebraic manipulation,

∑
α′≤α̃ µ(α′)εσ′,α′(Cα̃) =

εσ′,µ(Cα̃) − µ(Cα̃ − {α̃}). By inductive hypothesis, εσ′,µ(Cα̃) = ε′(Cα̃). Thus, by replacing∑
α′≤α̃ µ(α′)εσ′,α′(Cα̃) with ε′(Cα̃)−µ(Cα̃−{α̃}) and simplifying the resulting expression, we get

εσ′,µ(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(trα̃,a)µα̃,a(q).

Since, by definition, ε = εσ,µ, by Lemma 3.19, the right side of the equation above is ε(Cα). By
Lemma 3.33, Part 2, ε(Cα) = ε′(Cα). Thus, εσ′,µ(Cα) = ε′(Cα), as needed.

25

3. ε′(Cα̃)− µ(Cα̃ − {α̃}) > 0 and a ∈ T .

By following the same approach as in the previous case,

εσ′,µ(Cα) = µ(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))(σ(α̃)(trα̃,a) + σ(α̃)(⊥))µα̃,a(q).

Since, as shown in the previous case, ε(Cα) = µ(Cα)+(ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(tr ˜alpha,a)µα̃,a(q),
the equation above becomes

εσ′,µ(Cα) = ε(Cα) + (ε(Cα̃)− µ(Cα̃ − {α̃}))σ(α̃)(⊥)µα̃,a(q).

By replacing (ε(Cα̃) − µ(Cα̃ − {α̃}))σ(α̃)(⊥) according to Lemma 3.20, and observing that, by
definition, ε = εσ,µ, we get

εσ′,µ(Cα) = ε(Cα) + ε(α̃)µα̃,a(q).

Then, the result follows by Lemma 3.33, Part 3.

2

Lemma 3.39 Let T = (P, RA, RS) be a closed task-PIOA. For each probability measure µ on finite ex-
ecution fragments and each finite sequence of tasks ρ, apply(µ, ρ) is a generalized probabilistic execution
fragment generated by µ.

Proof. Simple inductive argument using Lemma 3.36 for the base case and Lemma 3.38 for the
inductive step. 2

Lemma 3.40 Let T = (P, RA, RS) be a closed task-PIOA. For each measure µ on finite execution
fragments and each infinite sequence of tasks ρ, apply(µ, ρ) is a generalized probabilistic execution
fragment generated by µ.

Proof. For each i ≥ 0, let ρi be the prefix of ρ consisting of the first i tasks of ρ, and let εi be
apply(µ, ρi). By Lemmas 3.39 and 3.35 ε0, ε1, . . . is a chain of generalized probabilistic execution frag-
ments generated by µ. By Proposition 3.22, limi→∞ εi is a generalized probabilistic execution fragment
generated by µ, which suffices since, by definition, apply(µ, ρ) is limi→∞ εi. 2

Now we can prove Proposition 3.41, our main target. It says that any probability measure on
execution fragments that is generated by apply(µ, ρ) for any µ and ρ, is a “standard” probability
measure on execution fragments—one that is generable from µ using a traditional scheduler.

Proposition 3.41 Let T = (P, RA, RS) be a closed task-PIOA. For each measure µ on finite execution
fragments and each sequence of tasks ρ, apply(µ, ρ) is a generalized probabilistic execution fragment
generated by µ.

Proof. Follows directly by Lemmas 3.39 and 3.40. 2

Lemma 3.42 Let T = (P, RA, RS) be a closed task-PIOA. Let ρ1, ρ2, · · · be a finite or infinite sequence
of finite task schedulers and let µ be a discrete probability measure on finite execution fragments. For
each i > 0, let εi = apply(µ, ρ1ρ2 · · · ρi), where ρ1, · · · ρi denotes the concatenation of the sequences ρ1

through ρi. Let ρ be the concatenation of all the ρi’s, and let ε = apply(µ, ρ). Then the εi’s form a
chain and ε = limi→∞ εi.

Proof. The fact that the εi’s form a chain follows by Lemma 3.34. For the limit property, if the
sequence ρ1, ρ2, . . . is finite, then the result is immediate. Otherwise, it is enough to observe that the
sequence ε1, ε2, . . . is a sub-sequence of the sequence used in the definition of apply(µ, ρ1ρ2 . . .) that has
the same limit. 2

26

A generalized probabilistic execution fragment of a closed task-PIOA T is any generalized probabilis-
tic execution fragment of the underlying PIOA P that is generated from any µ and any task scheduler
ρ, as apply(µ, ρ). If supp(µ) is included in the set of states of P, then we call apply(µ, ρ) a probabilistic
execution fragment of T . Finally, for the start state q̄, we call apply(q̄, ρ) a probabilistic execution of T .

Now we consider trace distributions of task-PIOAs. Namely, for any µ and ρ, we write tdist(µ, ρ)
as shorthand for tdist(apply(µ, ρ)). We write tdist(ρ) as shorthand for tdist(δ(apply(q̄,))ρ), where
q̄ is the unique start state. A trace distribution of T is any tdist(ρ). We use tdists(T) for a closed
task-PIOA T to denote the set {tdist(ρ) : ρ is a task scheduler for T }.

3.3.4 Composition

The systems in this paper are described as compositions of task-PIOAs. Here we show how to regard
such a composition as a task-PIOA.

Definition 3.43 To define composition of task-PIOAs, we need an additional compatibility requirement.
Namely, we say that two task-PIOAs T1 = (P1, RA1, RS1) and T2 = (P2, RA2, RS2) are compatible
provided that the following conditions are satisfied:

1. The underlying automata P1 and P2 are compatible.

2. For every task T1 of T1 and every task T2 of T2, either T1 = T2 or T1 ∩ T2 = ∅.

Then we define the composition T = (P, RA, RS) of two compatible task-PIOAs T1 = (P1, RA1, RS1)
and T2 = (P2, RA2, RS2), denoted by T1‖T2, as follows:

• P = P1‖P2.

• RA is RA1 ∪RA2.

• RS is the equivalence relation defined as follows: q ≡RS q′ iff qdPi ≡RSi
q′dPi for every i ∈ {1, 2}.

We sometimes write qdTi to denote qdPi for i ∈ {0, 1}.

Proposition 3.44 T1‖T2 is a task-PIOA.

Proof. We must show that T1‖T2 satifies the consistency properties 1–4 in the definition of a task-
PIOA.

1. Next-action determinism: Let (q1, q2) be a state of P1‖P2 and T an output or internal task in RA.
Then T is an output or internal task of one of the two components, without loss of generality, of
P1. By next-action determinism of T1, at most one action a ∈ T is enabled in q1, and hence at
most that same action a is enabled in (q1, q2).

2. Random-choice consistency: Let ((q1, q2), a, µ1 × µ2) be a transition of P1‖P2. Consider each
i = 1, 2: If a is an action of Pi, then (qi, a, µi) is a transition of Pi. Then by random-choice
consistency of Ti, supp(µi) ⊆ Si for some Si ∈ RSi. On the other hand, if a is not an action of
Pi, then supp(µi) is just {qi}, which trivially is a subset of Si for some Si ∈ RSi.

Now, supp(µ1 × µ2) = supp(µ1)× supp(µ2) ⊆ S1 × S2. By definition of RS in terms of RS1 and
RS2, S1 × S2 ∈ RS, so this yields the conclusion.

3. Transition consistency: Suppose that ((q1
1 , q1

2), a1, µ1
1 × µ1

2) and ((q2
1 , q2

2), a2, µ2
1 × µ2

2) are two
transitions of P1 × P2 and suppose that (q1

1 , q1
2) ≡RS (q2

1 , q2
2) and a1 ≡RA a2. Then q1

1 ≡RS1 q2
1

and q1
2 ≡RS2 q2

2 .

Consider each i = 1, 2: If a1 is an action of Pi, then since a1 ≡RA a2, and by definition of the
tasks of T1‖T2 and compatibility, a2 is also an action of Pi. Then (q1

i , a1, µ1
i) and (q2

i , a2, µ2
i) are

27

both transitions of Pi. Then by transition consistency of Pi, supp(µ1
i) ∪ supp(µ2

i) ⊆ Si for some
Si ∈ RSi.

On the other hand, if a1 is not an action of Pi, then neither is a2. In this case, supp(µ1
i) is just q1

i

and supp(µ2
i) is q2

i ; since q1
i ≡RSi

q2
i , there again exists a single equivalence class Si ∈ RSi such

that supp(µ1
i) ∪ supp(µ2

i) ⊆ Si.

Now, supp(µ1
1×µ1

2) = supp(µ1
1)× supp(µ1

2) ⊆ S1×S2, and similarly supp(µ2
1×µ2

2) = supp(µ2
1)×

supp(µ2
2) ⊆ S1×S2, So, supp(µ1

1×µ1
2)∪ supp(µ2

1×µ2
2) ⊆ S1×S2. Since S1×S2 ∈ RS, this yields

the conclusion.

4. Enabling consistency: Suppose that (q1
1 , q1

2) ≡RS (q2
1 , q2

2), a1 is an output or internal action of
P1‖P2, and ((q1

1 , q1
2), a1, µ1

1×µ1
2) is a transition of P1‖P2. Then a1 is an output or internal action

of one of the two component automata, without loss of generality, of P1. Then q1
1 ≡RS1 q2

1 and
(q1

1 , a1, µ1
1) is a transition of P1 Then by enabling consistency for T1, there exists a transition

(q2
1 , a2, µ2

1) of P1 such that a1 ≡RA a2.

Now, if a2 is an action of P2, then it must be an input, and so is enabled from all states. Therefore,
in this case, there exists a transition (q2

2 , a2, µ2
2) of P1. Then ((q2

1 , q2
2), a2, µ2

1 × µ2
2) is a transition

of P1‖P2, as needed.

On the other hand, if a2 is not an action of P2, then ((q2
1 , q2

2), a2, µ2
1×µ2

2) is a transition of P1‖P2,
where µ2

2 is the Dirac distribution δ(q2
2). Either way, we have the needed transition.

2

3.3.5 Hiding

We define a hiding operation for task-PIOAs, which hides output tasks.

Definition 3.45 Let T = (P, RA, RS) be a task-PIOA where P = (Q, q̄, I, O,H,D), and let U ⊆ RA
be a set of output tasks. Let S = ∪T∈UT , that is, S is the set of actions in all the tasks in U . Then we
define hide(T ,U) to be (hide(P, S), RA, RS).

3.3.6 Environments

We define the notion of environment as follows.

Definition 3.46 Suppose T and E are task-PIOAs. We say that E is an environment for T iff E is
compatible with T , T ‖E is closed and E has a special output action named accept.

The special accept output action is used by the environment to distinguish between different task-
PIOAs.

The following lemma about the existence of environments will be useful later, for example, in the
proof of Lemma 3.62, which asserts the transitivity property of our time-bounded implementation no-
tion. It says that, if a set of task PIOAs {T1, · · · , Tn,U} are comparable task-PIOAs (see Definition 3.48)
and E is an environment for every Ti, then E can be transformed into an environment E ′ for both every
Ti and U through some renaming of the actions of E which does not modify its way of interacting with
the Ti’s.

Lemma 3.47 Suppose T1, . . . , Tn, U and E are task-PIOAs, all Ti’s and U are comparable, and E is
an environment for every Ti. Then there exists a task-PIOA E ′ that is isomorphic to E, such that E ′ is
an environment for every Ti and U ; this isomorphism preserves all external actions of E.

Proof. We define an environment E ′ by using a bijective renaming function f : AE → AE′ that
preserves the partition into input, output and internal actions. For simplicity, we assume that, if
f(a) 6= a, then f(a) 6∈

⋃
i=1...n ATi

∪ AU ∪ AE . We also write IT and OT instead of ITi
and OTi

, as all
Ti have the same inputs and outputs.

28

The isomorphism condition implies that the renaming function f is the identity for all actions in
(IE ∩OT) ∪ (OE ∪ IT): it does not alter the communication between the Ti and E in any way.

If we check the properties guaranteed by the fact that U is comparable to every Ti, we may observe
that E is an environment for U if HU ∩ AE = ∅. Respecting this condition might require renaming all
actions of E . This is however not the case, as HU ∩ ((IE ∩OT)∪ (OE ∩ IT)) = ∅ since U is comparable to
every Ti and the internal actions of U are disjoint from its input and output actions. So, renaming all
actions of E which are internal actions of U will never require to violate the restriction on f we stated
in the last paragraph. 2

3.3.7 Implementation

Our notion of implementation for task-PIOAs is based on probabilistic executions that look the same
to any environment for the PIOAs. This notion of implementation makes sense only for comparable
task-PIOAs.

Definition 3.48 Two task-PIOAs (P1, RA1, RS1) and (P2, RA2, RS2) are comparable if:

1. P1 and P2 are comparable (have the same external signature) .

2. RA1 and RA2 contain exactly the same external tasks.

We now define the ≤0-implementation notion for task-PIOAs.

Definition 3.49 Suppose T1 and T2 are two comparable task-PIOAs. We say that T1 ≤0 T2 provided
that, for every environment E for both T1 and T2, tdists(T1||E) ⊆ tdists(T2||E).

3.3.8 Simulation Relations

We now present our new simulation relation definition. Our definition differs from previous definitions
for simulation relations for PIOAs, for example, those in [Segala95], in that it relates two distributions
on states, rather than two states, or a state and a distribution. Also, our definition uses the task
structure.

Like other definitions for simulations for PIOAs, our new definition includes a start condition and
a step condition. However, our step condition is not the most obvious: Starting from two distributions
ε1 and ε2, where ε1 R ε2, we end up with two distributions ε′1 and ε′2. We do not require that ε′1 R
ε′2; instead, we require that ε′1 and ε′2 be decomposable into related distributions. To describe this
decomposition, we use the expansion notion defined in Section 3.1.2.

Definition 3.50 Let T1 = (P1, RA1, RS1) and P2 = (P2, RA2, RS2) be two comprable closed task-
PIOAs. Let R be a relation on discrete distributions over finite execution fragments such that, if ε1 R ε2
then

• tdist(ε1) = tdist(ε2).

• there exist equivalence classes S1 ∈ RS1 and S2 ∈ RS2 such that supp(lstate(ε1)) ⊆ S1 and
supp(lstate(ε2)) ⊆ S2.

Then we say that R is a simulation relation from T1 to T2 if it satisfies the following properties:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: There exists a mapping corrtasks : (RS1 ×RA1)→ RA2
∗ such that the fol-

lowing holds: If ε1 R ε2 and T is a task of T1, then ε′1 E(R) ε′2, where ε′1 = apply(ε1, T) and
ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).1

1That is, we apply the corrtasks function to the unique equivalence class of all the final states of the execution
fragments in ε1.

29

The following lemma gives a simple consequence of our simulation relation definition. The definition
of a simulation relation says that any two R-related distributions on finite execution fragments must have
the same trace distribution. This lemma extends this property by saying that any pair of distributions
on execution fragments that are related by the expansion of the relation R, E(R), must also have the
same trace distribution. (For the proof, the only property of simulation relations that we need is that
related distributions on execution fragments have the same trace distribution.)

Lemma 3.51 Let T1 and T2 be two closed task-PIOAs, R a simulation from T1 to T2. Let ε1 and ε2 be
discrete distributions on finite execution fragments of T1 and T2, respectively, such that ε1 E(R) ε2.
Then tdist(ε1) = tdist(ε2).

Proof. Let η1, η2 and w be the measures and weighting functions used to prove that ε1 E(R) ε2.
Since ε1 = f latten(η1), tdist(ε1) =

∑
ρ1∈supp(η1)

η1(ρ1) tdist(ρ1). Since w is a weighting function, we
can rewrite the expression on the right as

∑
ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ1). Since ρ1 R ρ2

whenever w(ρ1, ρ2) > 0, and since, by the definition of a simulation relation, tdist(ρ1) = tdist(ρ2)
whenever ρ1 R ρ2, we can replace tdist(ρ1) by tdist(ρ2).
Thus, tdist(ε1) =

∑
ρ1∈supp(η1)

∑
ρ2∈supp(η2)

w(ρ1, ρ2) tdist(ρ2). By exchanging sums, this last expres-
sion is equal to

∑
ρ2∈supp(η2)

∑
ρ1∈supp(η1)

w(ρ1, ρ2) tdist(ρ2).
Now, since w is a weighting function, we can simplify the inner sum, thus getting tdist(ε1) =∑

ρ2∈supp(η2)
η2(ρ2) tdist(ρ2). Since ε2 = f latten(η2), the right-hand side can be rewritten as tdist(ε2).

Thus, tdist(ε1) = tdist(ε2), as needed. 2

We now prove Theorem 3.53, which asserts that simulation relations are sound for showing inclusion
of sets of trace distributions. We first give a lemma that provides the inductive step that we need for
the proof of the main theorem.

Lemma 3.52 Let T1 and T2 be two closed task-PIOAs, let R be a simulation relation from T1 to T2,
and let corrtasks be a mapping that satisfies the conditions required for a simulation relation.
Let ρ1 and ρ2 be finite task schedulers of T1 and T2 respectively. Let ε1 = apply(δ(q̄1), ρ1) and ε2 =
apply(δ(q̄2), ρ2) be the respective discrete distributions on finite executions of T1 and T2 generated by ρ1

and ρ2. Suppose that ε1 E(R) ε2.
Let T be a task of T1. Let ε′1 = apply(δ(q̄1), ρ1T) and let ε′2 = apply(δ(q̄2), ρ2 corrtasks([lstate(ε1)], T))2

Then ε′1 E(R) ε′2.

Proof. Let η1, η2 and w be the measures and weighting function that witness ε1 E(R) ε2. Observe
that ε′1 = apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)). Recall that by Lemma 3.28, there
is a single class S such that supp(lstate(ε1)) ⊆ S.

We apply Lemma 3.4: Define the function f on discrete distributions on finite execution fragments
of T1 by f(ε) = apply(ε, T), and the function g on discrete distributions on finite execution fragments of
T2 by g(ε) = apply(ε, corrtasks([lstate(ε1)], T)). We show that the hypothesis of Lemma 3.4 is satisfied,
which implies that, by Lemma 3.4, ε′1 E(R) ε′2, as needed.

Distributivity of f and g follows directly by Proposition 3.32. Let µ1, µ2 be two measures such that
w(µ1, µ2) > 0. We must show that f(µ1) E(R) g(µ2). Since w is a weighting function for ε1 E(R) ε2,
µ1 R µ2. By the step condition for R, apply(µ1, T) E(R) apply(µ2, corrtasks([lstate(µ1)], T)).

Observe that apply(µ1, T) = f(µ1). We show that apply(µ2, corrtasks([lstate(µ1)], T)) = g(µ2),
which yields f(µ1) E(R) g(µ2). For this purpose, by definition of g, it suffices to show that [lstate(µ1)] =
[lstate(ε1)]. Since ε1 = f latten(η1), and since, by the fact that w(µ1, µ2) > 0, η1(µ1) > 0, supp(µ1) ⊆
supp(ε1). Thus, [lstate(µ1)] = [lstate(ε1)], as needed. 2

The following theorem, Theorem 3.53, is the main soundness result. The proof simply puts the
pieces together, using only Lemmas 3.42 (which says that the probabilistic execution generated by an
infinite task scheduler can be seen as the limit of the probabilistic executions generated by some of the

2Lemma 3.28 implies that there is a single equivalence class S such that supp(lstate(ε1)) ⊆ S. Thus, ε′
2 is well defined.

30

finite prefixes of the task scheduler), 3.52 (the step condition), 3.51 (related probabilistic executions
have the same trace distribution), and 3.14 (limit commutes with tdist).

Theorem 3.53 Let T1 and T2 be two comparable closed task-PIOAs. If there exists a simulation relation
from T1 to T2, then tdists(T1) ⊆ tdists(T2).

Proof. Let R be the assumed simulation relation from T1 to T2. Let ε1 be the probabilistic execution
of T1 generated by q̄1 and a (finite or infinite) task scheduler, T1, T2, · · · . For each i > 0, define ρi to
be corrtasks([lstate(apply(q̄1, T1 · · ·Ti−1))], Ti). Let ε2 be the probabilistic execution generated by q̄2

and the concatenation ρ1ρ2 · · · . We claim that tdist(ε1) = tdist(ε2), which suffices.
For each j ≥ 0, let ε1,j = apply(q̄1, T1 · · ·Tj), and ε2,j = apply(q̄2, ρ1 · · · ρj). By Lemma 3.42, for

each j ≥ 0, ε1,j ≤ ε1,j+1 and ε2,j ≤ ε2,j+1, and furthermore, limj→∞ ε1,j = ε1 and limj→∞ ε2,j = ε2.
Also, note that for every j ≥ 0, apply(ε1,j , Tj+1) = ε1,j+1 and apply(ε2,j , ρj+1) = ε2,j+1.

Observe that ε1,0 = δ(q̄1) and ε2,0 = δ(q̄2). By the start condition for a simulation relation and a
trivial expansion, we see that ε1,0 E(R) ε2,0. Then by induction, using Lemma 3.52 for the inductive
step, for each j ≥ 0, ε1,j E(R) ε2,j . Then, by Lemma 3.51, for each j ≥ 0, tdist(ε1,j) = tdist(ε2,j). By
Lemma 3.14, tdist(ε1) = limj→∞ tdist(ε1,j), and tdist(ε2) = limj→∞ tdist(ε2,j). Since for each j ≥ 0,
tdist(ε1,j) = tdist(ε2,j), we conclude tdist(ε1) = tdist(ε2), as needed. 2

In order to use our implementation results in a setting involving polynomial time bounds, we need a
slight variant of Theorem 3.53. This variant assumes a constant bound on the lengths of the corrtasks
sequences, and guarantees a bound on the ratio of the sizes of the high-level and low-level task schedulers.

Theorem 3.54 Let T1 and T2 be two closed task-PIOAs, and c ∈ N. Suppose there exists a simulation
relation from T1 to T2, for which |corrtasks(S, T)| ≤ c for every S and T .
If τ is a trace distribution of T1 that is generated by a task scheduler ρ1, then τ is also generated by
some task scheduler ρ2 for T2, with |ρ2| ≤ c|ρ1|.

Proof. By examination of the proof of the proof of Theorem 3.53. 2

The proofs presented in Sections 9-12 use a special case of the simulation relation definition, which
we describe here.

Lemma 3.55 Let T1 = (P1, RA1, RS1) and P2 = (P2, RA2, RS2) be two comparable closed task-PIOAs.
Let R be a relation from discrete measures on finite execution fragments of T1 to discrete measures on
finite execution fragments of T2 such that, if ε1Rε2 then

• tdist(ε1) = tdist(ε2).

• there exists equivalence classes S1 ∈ RS1 and S2 ∈ RS2 such that supp(lstate(ε1)) ⊆ S1 and
supp(lstate(ε2)) ⊆ S2.

Suppose further that the following conditions hold:

1. Start condition: δ(q̄1) R δ(q̄2).

2. Step condition: There exists a mapping corrtasks : (RS1 ×RA1)→ RA2
∗ such that, if ε1Rε2

and T is a task of T1 that is enabled in supp(lstate(ε1)), then there exist

• a probability measure p on a countable index set I,

• probability measures ε′1j, j ∈ I, on finite execution fragments of P1, and

• probability measures ε′2j, j ∈ I, on finite execution fragments of P2,

such that:

• for each j ∈ I, ε′1jRε′2j,

31

•
∑

j∈I p(j)(ε′1j) = apply(ε1, T), and

•
∑

j∈I p(j)(ε′2j) = apply(ε2, corrtasks([lstate(ε1)], T)).

Then R is a simulation relation from T1 to T2.

Proof. Straightforward, by Lemma 3.3. The additional enabling condition for T added here is not a
serious restriction: for each non-enabled task T , we can make corrtasks = λ. 2

3.4 Time-Bounded Task-PIOAs

In this section, we impose time bounds on task-PIOAs. We will use this in the next section to define
polynomial-time-bounded task-PIOAs.

3.4.1 Time-Bounded Task-PIOAs

We assume a standard bit-string representation scheme for actions and tasks, which is the same for all
task-PIOAs that have these actions and tasks. We write 〈a〉 for the representation of action a, and 〈T 〉
for the representation of task T .

Definition 3.56 Task-PIOA T is said to be b-time-bounded, where b ∈ R≥0, provided that:

1. Automaton parts: Every state q, transition tr, and state equivalence class S has a bit-string
representation, which we denote by 〈q〉, 〈tr〉, and 〈S〉, respectively. The length of the bit-string
representation of every action, state, transition, task, and state equivalence class of T is at most
b.

2. Decoding: There is a deterministic Turing machine that, given the representation of a candidate
state q, decides whether q is a state of T , and always runs in time at most b. Also, there is a
deterministic Turing machine that, given the representation of a candidate state q, decides whether
q is the unique start state of T . Similarly for a candidate input action, output action, internal
action, transition, input task, output task, internal task, or state equivalence class. Also, there is
a deterministic Turing machine that, given the representation of two candidate actions a1 and a2,
decides whether (a1, a2) ∈ RA, and always runs in time at most b; similarly for the representation
of two candidate states q1 and q2 and RS. Also, there is a deterministic Turing machine that,
given the representation of an action a of T and a task T , decides whether a ∈ T ; again, this
machine runs in time b.

3. Determining the next action: There is a deterministic Turing machine Mact that, given the
representation of a state q of T and the representation of an output or internal task T of T ,
produces the representation of the unique action a in task T that is enabled in q if one exists, and
otherwise produces a special “no-action” indicator. Moreover, Mact always runs in time at most
b.

4. Determining the next state: There is a probabilistic Turing machine Mstate that, given the
representation of a state q of T , and the representation of an action a of T that is enabled in q,
produces the representation of the next state resulting from the unique transition of T of the form
(q, a, µ). Moreover, Mstate always runs in time at most b.

Moreover, we require that every Turing machine mentioned in this definition can be described using
a bit string of length at most b, according to some standard encoding of Turing machines.

In the rest of this paper, we will not explicitly distinguish 〈x〉 from x.

32

3.4.2 Composition

We have already defined composition for task-PIOAs. Now we show that the composition of two time-
bounded task-PIOAs is also time-bounded, with a bound that is simply related to the bounds for the
two components.

Lemma 3.57 There exists a constant c such that the following holds. Suppose T1 is a b1-time-bounded
task-PIOA and T2 is a b2-time-bounded task-PIOA, where b1, b2 ≥ 1. Then T1‖T2 is a c(b1+b2)-bounded
task-PIOA.

Proof. We describe how the different bounds of Def. 3.56 combine when we compose T1 and T2.

1. Automaton parts: Every action or task of T1‖T2 has a standard representation, which is the
same as its representation in T1 or T2. The length of this representation is, therefore, at most
max(b1, b2).

Every state of T1‖T2 can be represented with a 2(b1 + b2) + 2 ≤ 3(b1 + b2)-bit string, by following
each bit of the bit-string representations of the states of T1 and T2 with a zero, and then concate-
nating the results, separating them with the string 11. Likewise, every transition of T1‖T2 can be
represented as a 3(b1 + b2)-bit string, by combining the representations of transitions of one or
both of the component automata, and every state equivalence class of T1‖T2 can be represented
as a 3(b1 + b2)-bit string, by combining the representations of state equivalence classes of both
automata.

2. Decoding: It is possible to decide whether a candidate state q = (q1, q2) is a state of T1‖T2 by
checking if q1 is a state of T1 and q2 is a state of T2. Similar verifications can be carried out for
candidate start states and for candidate state equivalence classes.

It is possible to decide if a candidate input action is an input action of T1‖T2 by checking if it
is an input action of T1 or T2 but not an output action of T1 or T2. It is possible to decide if a
candidate internal (resp. output) action is an internal (resp. output) action of T1‖T2 by checking
if it is an internal (resp. output) action of T1 or T2. A similar verification can be carried out for
input, internal and output tasks.

Given two candidate actions a1 and a2 of T1‖T2, it is possible to decide whether (a1, a2) ∈ RAT1‖T2

by checking if (a1, a2) ∈ RAT1 or (a1, a2) ∈ RAT2 . Given two candidate states q and q′ of
T1‖T2, it is possible to decide whether (q, q′) ∈ RST1‖T2 by checking if (qdT1, q′dT1) ∈ RST1 and
(qdT2, q′dT2) ∈ RST2 (this restriction notation is defined after Definition 3.43). Also, given an
action a of T1‖T2 and a task T of T1‖T2, it is possible to decide whether a ∈ T by determining a
component automaton Ti that has T as a task and using the procedure assumed for Ti to check
whether a ∈ T .

All these verifications can be done in time O(b1 + b2).

3. Determining the next action: Assume Mact1 and Mact2 are the deterministic Turing machines
described in part 3 of Def. 3.56 for T1 and T2 respectively. We define Mact for T1‖T2 as the
deterministic Turing machine that, given state q = (q1, q2) of T1‖T2 where q1 = qdT1 and q2 = qdT2
and task T , outputs:

• The action (or “no-action” indicator) that is output by Mact1(q1, T), if T is an output or
internal task of T1.
• The action (or “no-action” indicator) that is output by Mact2(q2, T) if T is an output or

internal task of T2.

Mact always operates within time O(b1 + b2): this time is sufficient to determine whether T is an
output or internal task of T1 or T2, to extract the needed part of q to supply to Mact1 or Mact2,
and to run Mact1 or Mact2.

33

4. Determining the next state: Assume Mstate1 and Mstate2 are the probabilistic Turing machines
described in part 4 of Def. 3.56 for T1 and T2 respectively. We define Mstate for T1‖T2 as the
probabilistic Turing machine that, given state q = (q1, q2) of T1‖T2 where q1 = qdT1 and q2 = qdT2
and action a, outputs the next state of T1‖T2 as q′ = (q′1, q

′
2), where q′1 is the next state of T1 and

q′2 is the next state of T2. The state q′ is computed as follows:

• If a is an action of T1 then q′1 is the output of Mstate1(q1, a), while q′1 = q1 otherwise.

• If a is an action of T2 then q′2 is the output of Mstate2(q2, a), while q′2 = q2 otherwise.

Mstate always operates within time O(b1 + b2): this time is sufficient to determine whether a is
an action of T1 and/or T2, to extract the needed parts of q to supply to Mact1 and/or Mact2, and
to run Mstate1 and/or Mstate2.

Using standard Turing machine encodings, each of the needed Turing machines can be reprsented using
O(b1 + b2) bits. 2

For the rest of the paper, we fix some constant ccomp satisfying the conditions of Lemma 3.57.

3.4.3 Hiding

Lemma 3.58 There exists a constant c such that the following holds. Suppose T is a b-time-bounded
task-PIOA, where b ∈ R≥0, b ≥ 1. Let U be a subset of the set of output tasks of T , where |U| ≤ c′.
Then hide(T ,U) is a c(c′ + 1)b-time-bounded task-PIOA.

Proof. All properties for hide(T ,U) are straightforward to check, except for the following.

1. Output actions: To check whether a given action a is an output action of hide(T ,U), we use
the fact that a is an output action of hide(T ,U) if and only if a is an output of T and is not in
any task in U . So, to determine whether a is an output of hide(T ,U), we can use the procedure
for checking whether a is an output of T , followed by checking whether a is in each task in U .

2. Internal actions: To check whether a given action a is an internal action of hide(T ,U), we use
the fact that a is an internal action of hide(T ,U) if and only if a is an internal action of T or a
is in some task in U . So, to determine whether a is an internal action of hide(T ,U), we can use
the procedure for checking whether a is an internal action of T , followed by checking whether a
is in each task in U .

3. Output tasks: To check whether a given task T is an output task of hide(T ,U), we use the fact
that T is an output task of hide(T ,U) if and only if T is an output task of T and T /∈ U . So,
to determine whether T is an output task of hide(T ,U), we can use the procedure for checking
whether T is an output task of T , followed by comparing T with each task in U . Each of these
comparisons takes time proportional to b, which is a bound on the length of the tasks of T .

4. Internal tasks: To check whether a given task T is an internal task of hide(T ,U), we use the
fact that T is an internal task of hide(T ,U) if and only if T is an internal task of T or T ∈ U . So,
to determine whether T is an internal task of hide(T ,U), we can use the procedure for checking
whether T is an internal task of T , followed by comparing T with each task in U . Again, each of
these comparisons takes time proportional to b which is a bound on the length of the tasks of T .

In all cases, the total time is proportional to (c′ + 1)b. Using standard Turing machine encodings, each
of the needed Turing machines can be represented using O(b1 + b2) bits. 2

For the rest of this paper, we fix some constant chide satisfying the conditions of Lemma 3.58.

34

3.4.4 Time-Bounded Task Scheduler

Definition 3.59 Let ρ be a task scheduler for closed task-PIOA T , and let b ∈ N. Then we say that ρ
is b-time-bounded if |ρ| ≤ b, that is, if the number of tasks in the task scheduler ρ is at most b.

3.4.5 Implementation

In Section 3.3.7, we defined an implementation relation ≤0 for task-PIOAs. Informally speaking, for
task-PIOAs T1 and T2, T1 ≤0 T2 means that T1 “looks the same” as T2, to any environment E . Here,
“looking the same” means that any trace distribution of T1‖E is also a trace distribution of T2‖E .

Now we define another implementation relation, ≤ε,b,b1,b2 , for task-PIOAs that allows some dis-
crepancies in the trace distributions and also takes time bounds into account. Informally speaking,
T1 ≤ε,b,b1,b2 T2 means that T1 “looks almost the same” as task-PIOA T2 to any b-time-bounded envi-
ronment E . The subscripts b1 and b2 in the relation ≤ε,b,b1,b2 represent time bounds on task schedulers.
Namely, in the definition of ≤ε,b,b1,b2 , we assume that scheduling in T1‖E is controlled by a b1-time-
bounded task scheduler, and require that scheduling in T2‖E be controlled by a b2-bounded task sched-
uler. The fact that these task-PIOAs look “almost the same” is observed through the special accept
output of E :

Definition 3.60 If T is a closed task-PIOA and ρ is a task scheduler for T , then we define

Paccept(T , ρ) = Pr[β ← tdist(T , ρ) : β contains accept],

that is, the probability that a trace chosen randomly from the trace distribution generated by ρ contains
the accept output action.

Definition 3.61 Suppose T1 and T2 are comparable task-PIOAs, ε, b ∈ R≥0, and b1, b2 ∈ N. Then we
say that T1 ≤ε,b,b1,b2 T2 provided that, for every b-time-bounded environment E for both T1 and T2, and
for every b1-time-bounded task scheduler ρ1 for T1‖E, there is a b2-time-bounded task scheduler ρ2 for
T2‖E such that

|Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)| ≤ ε.

A useful property of the ≤ε,b,b1,b2 relation is that it is transitive:

Lemma 3.62 Suppose T1, T2 and T3 are three comparable task-PIOAs such that T1 ≤ε12,b,b1,b2 T2 and
T2 ≤ε23,b,b2,b3 T3, where ε, b ∈ R≥0 and b1, b2, b3 ∈ N.
Then T1 ≤ε12+ε23,b,b1,b3 T3.

Proof. Fix T1, T2, T3 and all the constants as in the hypotheses. Consider any b-time-bounded
environment E for T1 and T3. We must show that, for every b1-time-bounded task scheduler ρ1 for T1,
there is a b3-time-bounded task scheduler ρ3 for T3 such that

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)| ≤ ε12 + ε23.

Fix ρ1 to be any b1-time-bounded task scheduler for T1. We consider two cases.
First, suppose that E is also an environment for T2. Then, since T1 ≤ε12,b,b1,b2 T2, we know that

there is a b2-time-bounded task scheduler ρ2 for T2‖E such that

|Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)| ≤ ε12.

Then since T2 ≤ε23,b,b2,b3 T3, we may conclude that there is a b3-time-bounded task scheduler ρ3 for
T3‖E such that

|Paccept(T2‖E , ρ2)− Paccept(T3‖E , ρ3)| ≤ ε23.

35

Combining these two properties, we obtain that:

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)|
≤ |Paccept(T1‖E , ρ1)− Paccept(T2‖E , ρ2)]|

+|Paccept(T2‖E , ρ2)− Paccept(T3‖E , ρ3)]|
≤ ε12 + ε23,

as needed.
Second, consider the case where E is not an environment for T2. Then by Lemma 3.47, we obtain

another environment E ′ for T1, T2, and T3, such that E‖T1 is isomorphic to E ′‖T1 and E‖T3 is isomorphic
to E ′‖T3. We then apply case 1 to E ′, obtaining a b3-time-bounded task scheduler ρ3 for T3 such that

|Paccept(T1‖E ′, ρ1)− Paccept(T3‖E ′, ρ3)| ≤ ε12 + ε23.

The isomorphism implies that

Paccept(T1‖E , ρ1) = Paccept(T1‖E ′, ρ1)

and
Paccept(T3‖E , ρ3) = Paccept(T3‖E ′, ρ3).

Therefore,

|Paccept(T1‖E , ρ1)− Paccept(T3‖E , ρ3)|
= |Paccept(T1‖E ′, ρ1)− Paccept(T3‖E ′, ρ3)|
≤ ε12 + ε23,

as needed. 2

Another useful property of the ≤ε,b,b1,b2 relation is that, under certain conditions, it is preserved
under composition:

Lemma 3.63 Suppose ε, b, b3 ∈ R≥0, and b1, b2 ∈ N. Suppose that T1, T2 are comparable task-PIOAs
such that T1 ≤ε,ccomp(b+b3),b1,b2 T2. Suppose that T3 is a b3-time-bounded task-PIOA that is compatible
with both T1 and T2.
Then T1‖T3 ≤ε,b,b1,b2 T2‖T3.

Proof. Fix T1, T2 and T3 and all the constants as in the hypotheses. Consider any b-time-bounded
environment E for T1‖T3 and T2‖T3. We must show that, for every b1-time-bounded task scheduler ρ1

for T1‖T3, there is a b2-time-bounded task scheduler ρ2 for T2‖T3 such that

|Paccept(T1‖T3‖E , ρ1)− Paccept(T2‖T3‖E , ρ2)| ≤ ε.

To show this, fix ρ1 to be any b1-time-bounded task scheduler for T1‖T3. The composition T3‖E is
an environment for T1 and T2. Moreover, Lemma 3.57 implies that T3‖E is ccomp(b+ b3)-time-bounded.

Since T1 ≤ε,ccomp(b+b3),b1,b2 T2, T3‖E is a ccomp(b + b3)-time-bounded environment for T1 and T2,
and ρ1 is a b1-time-bounded task scheduler for T1‖E , we know that there is a b2-time-bounded task
scheduler ρ2 for T2‖E such that

|Paccept(T1‖T3‖E , ρ1)− Paccept(T2‖T3‖E , ρ2)| ≤ ε.

This is as needed. 2

One last interesting property of our ≤ε,b,b1,b2 relation is that it is preserved when hiding output
actions of the related task-PIOAs:

Lemma 3.64 Suppose ε, b ∈ R≥0, and b1, b2 ∈ N. Suppose that T1, T2 are comparable task-PIOAs such
that T1 ≤ε,b,b1,b2 T2. Suppose also that U is a set of output tasks of both T1 and T2.
Then hide(T1,U) ≤ε,b,b1,b2 hide(T2,U).

Proof. This follows from the fact that every b-bounded environment for hide(T1,U) and hide(T2,U)
is also a b-bounded environment for T1 and T2. 2

36

3.4.6 Simulation Relations

The simulation relation we defined in Section 3.3.8 can be applied to time-bounded task-PIOAs. We
obtain the following additional soundness theorem:

Theorem 3.65 Let T1 and T2 be two comparable task-PIOAs, b ∈ R≥0, and c, b1 ∈ N. Suppose that,
for every b-bounded environment E for T1 and T2, there exists a simulation relation from T1‖E to T2‖E,
for which |corrtasks(S, T)| ≤ c for every S and T .
Then T1 ≤0,b,b1,cb1 T2.

Proof. By Theorem 3.54 and the definition of our new implementation relationship. 2

3.5 Task-PIOA Families

Here we define families of task-PIOAs, and define what it means for a family of task-PIOAs to be
time-bounded by a function of the index of the family.

3.5.1 Basic Definitions

A task-PIOA family, T , is an indexed set, {Tk}k∈N, of task-PIOAs. A task-PIOA family T = {Tk}k∈N

is said to be closed provided that, for every k, Tk is closed.
Two task-PIOA families T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are said to be comparable provided

that, for every k, (T1)k and (T2)k are comparable.
Two task-PIOA families T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are said to be compatible pro-

vided that, for every k, (T1)k and (T2)k are compatible. Two compatible task-PIOA families T 1 =
{(T1)k}k∈N and T 2 = {(T2)k}k∈N can be composed to yield T = {(T)k}k∈N = T 1‖T 2 by defining
(T)k = (T1)k‖(T2)k for every k.

Definition 3.66 A task-set family for a task-PIOA family T = {Tk}k∈N is an indexed set, U =
{Uk}k∈N, where each Uk is a set of tasks of Tk. We say that U is an output-task-set family if each Uk

is a set of output tasks of Tk.
If T is a task-PIOA family and U is an output-task-set family for T , then we define hide(T ,U) to

be the family (hide(Tk,Uk))k∈N.

A task-scheduler family ρ for a closed task-PIOA family T = {Tk}k∈N is an indexed set, {ρk}k∈N of
task schedulers, where ρk is a task scheduler for Tk.

3.5.2 Time-Bounded Task-PIOA Families

Definition 3.67 The task-PIOA family T = {Tk}k∈N is said to be b-time-bounded (or non-uniformly
b-time bounded), where b : N→ R≥0, provided that Tk is b(k)-time bounded for every k.

This definition allows different Turing machines to be used for each k. In some situations, we will
add a uniformity condition requiring the same Turing machines to be used for all task-PIOAs of the
family; these machines receive k as an auxiliary input.

Definition 3.68 The task-PIOA family T = {Tk}k∈N is said to be uniformly b-time-bounded, where
b : N→ R≥0, provided that:

1. Tk is b(k)-bounded for every k.

2. There is a deterministic Turing machine that, given k and a candidate state q, decides whether
q is a state of Tk, and always runs in time at most b(k). Similarly for a candidate start state,
input action, output action, internal action, transition, input task, output task, internal task,
or state equivalence class. Also, there is a deterministic Turing machine that, given k and two

37

candidate actions a1 and a2, decides whether (a1, a2) ∈ RATk
, and always runs in time at most

b(k); similarly for two candidate states q1 and q2, k and RSTk
. Also, there is a deterministic

Turing machine that, given k, an action a of Tk and a task T , decides whether a ∈ T ; again this
machine runs in time at most b(k).

3. There is a deterministic Turing machine Mact that, given k, state q of Tk and an output or
internal task T of Tk, produces the unique action a in task T that is enabled in q if one exists,
and otherwise produces a special “no-action” indicator. Moreover, Mact always runs in time at
most b(k).

4. There is a probabilistic Turing machine Mstate that, given k, state q of Tk, and the representation
of an action a of Tk that is enabled in q, produces the next state resulting from the unique transition
of Tk of the form (q, a, µ). Moreover, Mstate always runs in time at most b(k).

Lemma 3.69 Suppose T 1 and T 2 are two compatible task-PIOA families, T 1 is b1-time-bounded, and
T 2 is b2-time-bounded, where b1, b2 : N→ R≥0. Then T 1‖T 2 is a ccomp(b1+b2)-time-bounded task-PIOA
family.

Proof. By Lemma 3.57 and the definition of a time-bounded task-PIOA family. 2

Lemma 3.70 Suppose T is a b-time-bounded task-PIOA family, where b : N → R≥0. Suppose that
U = {Uk}k∈N is a task-set family for T , where each Uk is a set of output tasks for Tk with |Uk| ≤ c.
Then hide(T ,U) is a chide(c + 1)b-time-bounded task-PIOA family.

Proof. By Lemma 3.58. 2

Definition 3.71 Let ρ = {ρk}k∈N be a task-scheduler family for a closed task-PIOA family T =
{Tk}k∈N. Then ρ is said to be b-time-bounded, where b : N → R≥0 provided that ρk is b(k)-time
bounded for every k.

Now we extend the time-bounded implementation notion to task-PIOA families:

Definition 3.72 Suppose T 1 = {(T1)k}k∈N and T 2 = {(T2)k}k∈N are comparable task-PIOA families
and ε, b, b1 and b2 are functions, where ε, b : N → R≥0, and b1, b2 : N → N. Then we say that
T 1 ≤ε,b,b1,b2 T 2 provided that (T1)k ≤ε(k),b(k),b1(k),b2(k) (T2)k for every k.

Our previous transitivity result for individual automata carries over to families:

Lemma 3.73 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such that T 1 ≤ε12,b,b1,b2

T 2 and T 2 ≤ε23,b,b2,b3 T 3, where ε, b : N→ R≥0 and b1, b2 : N→ N.
Then T 1 ≤ε12+ε23,b,b1,b3 T 3.

Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N and T 3 = {(T3)k}k∈N are three compara-
ble task-PIOA families satisfying the hypotheses. Then Definition 3.72 implies that, for every k,
(T1)k ≤ε12(k),b(k),b1(k),b2(k) (T2)k and (T2)k ≤ε23(k),b(k),b2(k),b3(k) (T3)k . Lemma 3.62 then implies that,
for every k, (T1)k ≤ε12(k)+ε23(k),b(k),b1(k),b3(k) (T3)k. Applying Definition 3.72 once again, we obtain that
T 1 ≤ε12+ε23,b,b1,b3 T 3, as needed. 2

Our previous composition result for individual automata also carries over to families:

Lemma 3.74 Suppose ε, b, b3 : N → R≥0, and b1, b2 : N → N. Suppose T 1 and T 2 are comparable
families of task-PIOAs such that T 1 ≤ε,ccomp(b+b3),b1,b2 T 2. Suppose that T 3 is a b3-time-bounded task-
PIOA family that is compatible with both T 1 and T 2.
Then T 1‖T 3 ≤ε,b,b1,b2 T 2‖T 3.

38

Proof. Fix T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N, T 3 = {(T3)k}k∈N and all the functions as in the
hypotheses. By Definition 3.72, for every k, (T1)k ≤ε(k),ccomp(b+b3)(k),b1(k),b2(k) (T2)k. Lemma 3.63 then
implies that, for every k, (T1)k‖(T3)k ≤ε(k),b(k),b1(k),b2(k) (T2)k‖(T3)k. Applying Definition 3.72 once
again, we obtain that T 1‖T 3 ≤ε,b,b1,b2 T 2‖T 3, as needed. 2

Hiding output actions of task-PIOA families also preserves the new relation:

Lemma 3.75 Suppose ε, b : N → R≥0, and b1, b2 : N → N. Suppose that T 1 and T 2 are comparable
task-PIOA families such that T 1 ≤ε,b,b1,b2 T 2. Suppose that U is an output-task-set family for both T 1

and T 2.
Then hide(T 1,U) ≤ε,b,b1,b2 hide(T 2,U).

Proof. By Lemma 3.64. 2

Finally, we obtain a soundness result for simulation relations:

Theorem 3.76 Let T 1 and T 2 be comparable task-PIOA families, c ∈ N, b : N→ R≥0, and b1 : N→ N.
Suppose that, for every k, and for every b(k)-bounded environment E for (T1)k and (T2)k, there exists
a simulation relation from (T1)k‖E to (T2)k‖E, for which |corrtasks(S, T)| ≤ c for every S and T .
Then T 1 ≤0,b,b1,cb1 T 2.

Proof. By Theorem 3.65. 2

3.5.3 Polynomial-Time Task-PIOA Families

Definition 3.77 The task-PIOA family T is said to be polynomial-time-bounded (or non-uniformly
polynomial-time-bounded) provided that there exists a polynomial p such that T is p-time-bounded.
T is said to be uniformly polynomial-time-bounded provided that there exists a polynomial p such

that T is uniformly p-time-bounded.

Lemma 3.78 Suppose T 1 and T 2 are two compatible polynomial time task-PIOA families. Then
T 1‖T 2 is a polynomial-time-bounded task-PIOA family.

Proof. Suppose p1 and p2 are polynomials such that T 1 is p1-time-bounded and T 2 is p2-time-
bounded. Then by Lemma 3.57, Then T 1‖T 2 is ccomp(p1 + p2)-time-bounded, which implies that it is
polynomial-time-bounded. 2

Lemma 3.79 Suppose T is a polynomial-time-bounded task-PIOA family. Suppose that U = {Uk}k∈N

is a task-set family for T , where each Uk is a set of output tasks for Tk with |Uk| ≤ c. Then hide(T ,U)
is a polynomial-time-bounded task-PIOA family.

Proof. By Lemma 3.70. 2

Definition 3.80 Let ρ = {ρk}k∈N be a task-scheduler family for a closed task-PIOA family T =
{Tk}k∈N. Then ρ is said to be polynomial time-bounded provided that there exists a polynomial p
such that ρ is p-time-bounded.

In the context of cryptography, we will want to say that, for every polynomial-time-bounded environ-
ment, the probability of distinguishing two systems is “negligible”. The notion of negligible probability
is expressed by saying that the that the probability must be less than a negligible function ε:

Definition 3.81 A function ε is said to be negligible iff, for every constant c ∈ R+, there exists k0

such that, ∀k ≥ k0, ε(k) < 1
kc .

39

Definition 3.82 Suppose T 1 and T 2 are comparable task-PIOA families. We say that T 1 ≤neg,pt T 2

iff, for every polynomial p and polynomial p1, there is a polynomial p2 and a negligible function ε such
that T 1 ≤ε,p,p1,p2 T 2.

Lemma 3.83 Suppose T 1, T 2 and T 3 are three comparable task-PIOA families such that T 1 ≤neg,pt T 2

and T 2 ≤neg,pt T 3.
Then T 1 ≤neg,pt T 3.

Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N and T 3 = {(T3)k}k∈N are three comparable
task-PIOA families satisfying the hypotheses. To show that T 1 ≤neg,pt T 3, we fix polynomials p and
p1; we must obtain a polynomial p3 and a negligible function ε13 such that T 1 ≤ε13,p,p1,p3 T 3.

Since T 1 ≤neg,pt T 2, we know that there exist polynomial p2 and negligible function ε12 such that
T 1 ≤ε12,p,p1,p2 T 3. Then since T 2 ≤neg,pt T 3, we may conclude that there exist polynomial p3 and
negligible function ε23 such that T 1 ≤ε23,p,p2,p3 T 3. Let ε13 = ε12 + ε23. Then Lemma 3.73 implies that
T 1 ≤ε13,p,p1,p3 T 3, as needed. 2

The ≤neg,pt relation is also preserved under composition with polynomial-time bounded task-PIOA
families.

Lemma 3.84 Suppose T 1, T 2 are comparable families of task-PIOAs such that T 1 ≤neg,pt T 2, and
suppose T 3 is a polynomial time-bounded task-PIOA family, compatible with both T 1 and T 2.
Then T 1‖T 3 ≤neg,pt T 2‖T 3.

Proof. Suppose T 1 = {(T1)k}k∈N, T 2 = {(T2)k}k∈N, and T 3 = {(T3)k}k∈N are as in the hypothe-
ses. Fix polynomial q such that T 3 is q-time-bounded. To show that T 1‖T 3 ≤neg,pt T 2‖T 3, we
fix polynomials p and p1; we must obtain a polynomial p2 and a negligible function ε such that
T 1‖T 3 ≤ε,p,p1,p2 T 2‖T 3.

Define p′ to be the polynomial ccomp(p + q). Since T 1 ≤neg,pt T 2, there exist a polynomial p2 and a
negligible function ε such that T 1 ≤ε,p′,p1,p2 T 2. Lemma 3.74 then implies that T 1‖T 3 ≤ε,p,p1,p2 T 2‖T 3,
as needed. 2

Hiding output actions of the task-PIOAs that we compare also preserves the ≤neg,pt relation.

Lemma 3.85 Suppose that T 1 and T 2 are comparable task-PIOA families such that T 1 ≤neg,pt T 2.
Suppose that U is an output-task-set family for both T 1 and T 2.
Then hide(T 1,U) ≤neg,pt hide(T 2,U).

Proof. By Lemma 3.75. 2

And we have another soundness result for simulation relations:

Theorem 3.86 Let T 1 and T 2 be comparable task-PIOA families, c ∈ N.
Suppose that for every polynomial p, for every k, and for every p(k)-bounded environment E for (T1)k

and (T2)k, there exists a simulation relation from (T1)k‖E to (T2)k‖E, for which |corrtasks(S, T)| ≤ c
for every S and T .
Then T 1 ≤neg,pt T 2.

Proof. By Theorem 3.76. 2

40

4 Ideal Systems for Oblivious Transfer

Having developed the basic machinery, we are ready to tackle our example. In this section, we define
“ideal systems” for Oblivious Transfer, which are used as specifications for the correctness and secrecy
properties that are supposed to be guaranteed by an Oblivious Transfer protocol. The definitions are
based on Canetti’s definition of Oblivious Transfer in the Universal Composability framework [c01].

We parameterize our ideal systems by a set C ⊆ {Trans,Rec}, which indicates the corrupted end-
points. The system consists of two interacting task-PIOAs: the Functionality Funct(C) and the Simu-
lator Sim(C), given in Figures 1 and 2.

Notation: The states of each task-PIOA for which we provide explicit code are structured in terms
of a collection of state variables. Given a state q of a task-PIOA and a state variable v, we write q.v
for the value of v in state q.

4.1 The Oblivious Transfer Functionality

Funct(C) has two endpoints corresponding to Trans and Rec. Funct(C) receives in inputs at both
endpoints. If Rec ∈ C, then Funct(C) produces out′ outputs at the Rec endpoint, which are inputs
to Sim(C), Otherwise, it produces out outputs, which are not inputs to Sim(C). Task-PIOA Funct is
defined in Figure 1.

Funct(C) :

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
in(i)Rec , i ∈ {0, 1}

Output:
if Rec /∈ C then out(x)Rec , x ∈ {0, 1}
if Rec ∈ C then out′(x)Rec , x ∈ {0, 1}

State:
inval(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
inval(Rec) ∈ {0, 1,⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

out(x)Rec or out′(x)Rec

Precondition:
inval(Trans), inval(Rec) 6= ⊥
x = inval(Trans)(inval(Rec))

Effect:
none

Tasks: {in(∗)Trans}, {in(∗)Rec}.
If Rec /∈ C then {out(∗)Rec}.
If Rec ∈ C then {out′(∗)Rec}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and q1.inval(Rec) = ⊥ iff q2.inval(Rec) = ⊥.

Figure 1: The Functionality, Funct(C)

4.2 The Simulator

Sim(C) is an arbitrary task-PIOA satisfying certain constraints. Sim(C) receives in inputs at endpoints
in C. It also acts as an intermediary for outputs at Rec if Rec ∈ C, receiving out′ outputs from Funct(C)

41

and producing out outputs. Sim(C) may also have other, arbitrary, input and output actions. The
constraints on the signature and relations of Sim(C) is given in Figure 2.

Signature:
Input:

if Trans ∈ C then
in(x)Trans , x ∈ ({0, 1} → {0, 1})

if Rec ∈ C then
in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}

Arbitrary other input actions

Output:
if Rec ∈ C then

out(x)Rec , x ∈ {0, 1}
Arbitrary other output actions

Internal:
Arbitrary internal actions

Tasks:
If Trans ∈ C then {in(∗)Trans}.
If Rec ∈ C then {in(∗)Rec}, {out′(∗)Rec}, {out(∗)Rec}.
Arbitrary tasks for other actions.

State relation: Arbitrary, subject to the consistency requirements given in Definition 3.25.

Figure 2: Constraints on Sim(C)

4.3 The Complete System

A complete ideal system with parameter C is obtained by composing the task-PIOA Funct(C) with
some Sim(C), and then, if Rec ∈ C, hiding all out′ actions.

5 Random Source Automata

We will sometimes find it convenient to separate out random choices into separate “random source”
components. One type of random source is one that simply chooses and outputs a single value, obtained
from a designated probability distribution. We define this type of source by a task-PIOA Src(D,µ),
parameterized by a probability distribution (D,µ). When µ is the uniform distribution over D, we
write simply Src(D).

The code for task-PIOA Src(D,µ) appears in Figure 3. Note that the equivalence classes obliterate
distinctions based on the particular randomly chosen values.

We extend this definition to indexed families of data types and distributions, D = {Dk}k∈N and
µ = {µk}k∈N, to yield an indexed family of random source automata, Src(D,µ) = {Src(Dk, µk)}k∈N.
As before, when every µk is the uniform distribution, we write simply Src(D) = {Src(Dk)}k∈N.

6 Real Systems

A real system is defined as a parameterized task-PIOA, with the following parameters:

• D, a finite domain.

• Tdp, a set of trap door permutations for domain D.

• C ⊆ {Trans,Rec}, representing the corrupted endpoints.

Based on these, we define the following derived sets:

• Tdpp = {(f, f−1) : f ∈ Tdp}, the set of trap door permutation pairs for domain D. If p =
(f, f−1) ∈ Tdpp, then we refer to the components f and f−1 of p using record notation, as
p.funct and p.inverse, respectively.

• M , the message alphabet, equal to {(1, f) : f ∈ Tdp} ∪ {(2, z) : z ∈ ({0, 1} → D)} ∪ {(3, b) : b ∈
({0, 1} → {0, 1})}.

42

Src(D, µ):

Signature:
Input:

none
Output:

rand(d), d ∈ D

Internal:
choose− rand

State:
chosenval ∈ D ∪ {⊥}, initially ⊥

Transitions:

choose− rand
Precondition:

chosenval = ⊥
Effect:

chosenval := choose-random(D, µ)

rand(d)
Precondition:

d = chosenval 6= ⊥
Effect:

none

Tasks: {choose− rand}, {rand(∗)}.

State relation: q1 and q2 are related iff:

q1.chosenval = ⊥ iff q2.chosenval = ⊥.

Figure 3: Code for Src(D,µ)

A real system with parameters (D,Tdp,C) consists of five interacting task-PIOAs: The Transmitter
Trans(D,Tdp), the Receiver Rec(D,Tdp,C), the Adversary Adv(D,Tdp,C), and two random source
automata Src(Tdpp)tdpp and Src({0, 1} → D)yval. Src(Tdpp)tdpp and Src({0, 1} → D)yval are iso-
morphic to Src(Tdpp) and Src({0, 1} → D) defined as in Section 5; the difference is that the literal
subscripts tdpp and yval are added to the names of the automata and to their actions. Throughout
this section, we abbreviate the automaton names by omiting their parameters when no confusion seems
likely.

6.1 The Transmitter

Trans(D,Tdp) receives in inputs from the environment of the real system. It produces send outputs
to and receives receive inputs from Adv . It also receives randtdpp inputs from Srctdpp. Task-PIOA
Trans(D,Tdp) is defined in Figure 4.

Lemma 6.1 In every reachable state of Trans(D,Tdp): If bval 6= ⊥ then tdpp 6= ⊥, zval 6= ⊥,
inval 6= ⊥, and ∀i ∈ {0, 1}, bval(i) = B(tdpp.inverse(zval(i)))⊕ inval(i).

6.2 The Receiver

Rec(D,Tdp,C) receives in inputs from the environment of the real system. Also, if Rec ∈ C, then
Rec(D,Tdp,C) produces out′ outputs to Adv , whereas if Rec /∈ C, then Rec(D,Tdp,C) produces out
outputs for the environment. Rec(D,Tdp,C) provides send outputs to and receives receive inputs from
Adv . It also receives randyval inputs from Srcyval.

Task-PIOA Rec(D,Tdp,C) is defined in Figure 5.

Lemma 6.2 In every reachable state of Rec(D,Tdp,C):

1. If zval = z 6= ⊥ then yval 6= ⊥, inval 6= ⊥, tdp 6= ⊥, z(inval) = tdp(yval(inval)), and z(1 −
inval) = yval(1− inval).

43

Trans(D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp
receive(2, z)Trans , z ∈ ({0, 1} → D)

Output:
send(1, f)Trans , f ∈ Tdp
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})

Internal:
fix− bvalTrans

State:
inval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval = ⊥ then inval := x

rand(p)tdpp

Effect:
if tdpp = ⊥ then tdpp := p

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

receive(2, z)Trans

Effect:
if zval = ⊥ then zval := z

fix− bvalTrans

Precondition:
tdpp, zval, inval 6= ⊥
bval = ⊥

Effect:
for i ∈ {0, 1} do

bval(i) = B(tdpp.inverse(zval(i)))⊕ inval(i)

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {in(∗)Trans}, {rand(∗)tdpp}, {send(1, ∗)Trans},
{receive(2, ∗)Trans}, {send(3, ∗)Trans}, {fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval = ⊥ iff q2.inval = ⊥, q1.tdpp = ⊥ iff q2.tdpp = ⊥, q1.zval = ⊥ iff q2.zval = ⊥, and q1.bval = ⊥ iff q2.bval = ⊥.

Figure 4: Code for Trans(D,Tdp)

6.3 The Adversary

The Adversary encompasses the communication channel, although its powers to affect the communi-
cation are weak (it can hear messages and decide when to deliver them, but cannot manufacture or
corrupt messages).

Adv(D,Tdp,C) has two endpoints corresponding to Trans and Rec. It receives in inputs from
the environment for endpoints in C. It also acts as an intermediary for outputs at endpoints in C,
specifically, if R ∈ C, Adv(D,Tdp,C) receives out′ outputs from Rec and provides out outputs to the
environment at endpoint Rec. Adv(D,Tdp,C) also receives send inputs from and provides receive
outputs to Trans and Rec. It also receives random inputs from the random sources of corrupted
parties: rand(p)tdpp from Srctdpp if Trans ∈ C and rand(y)yval if Rec ∈ C. Finally, Adv(D,Tdp,C)
may communicate with the environment, using other, arbitrary inputs and outputs. We call these “new”
inputs and outputs here. We assume that they are disjoint from all the other actions that appear in any
of our explicitly-defined components. Thus, they will not be shared with any other state components
we define. (Later, when we consider closing the system with an environment automaton, we will allow

44

Rec(D, Tdp, C) :

Signature:
Input:

in(i)Rec , i ∈ {0, 1}
rand(y)yval, y ∈ ({0, 1} → D)
receive(1, f)Rec , f ∈ Tdp
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})

Output:
send(2, z)Rec , z ∈ ({0, 1} → D)
if Rec /∈ C then out(x)Rec , x ∈ {0, 1}
if Rec ∈ C then out′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

State:
inval ∈ {0, 1,⊥}, initially ⊥
tdp ∈ Tdp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
outval ∈ {0, 1,⊥}, initially ⊥

Transitions:

in(i)Rec

Effect:
if inval = ⊥ then inval := i

rand(y)yval

Effect:
if yval = ⊥ then yval := y

receive(1, f)Rec

Effect:
if tdp = ⊥ then tdp := f

fix− zvalRec

Precondition:
yval, inval, tdp 6= ⊥
zval = ⊥

Effect:
zval(inval) := tdp(yval(inval))
zval(1− inval) := yval(1− inval)

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

receive(3, b)Rec

Effect:
if yval 6= ⊥ and outval = ⊥ then

outval := b(inval)⊕B(yval(inval))

out(x)Rec or out′(x)Rec

Precondition:
x = outval 6= ⊥

Effect:
none

Tasks:

{in(∗)Rec}, {rand(∗)yval}, {receive(1, ∗)Rec}, {send(2, ∗)Rec}, {receive(3, ∗)Rec}, {fix− zvalRec}.
If Rec ∈ C then {out(∗)Rec}.
If Rec /∈ C then {out′(∗)Rec}.

State relation: q1 and q2 are related iff:

q1.inval = ⊥ iff q2.inval = ⊥, and similarly for tdp, yval, zval, and outval.

Figure 5: Code for Rec(D,Tdp,C)

these new actions to be shared with the environment.)
The Adversary again depends on the set C of corrupted parties. Also, for each case, there are

actually a set of possible adversary automata, not just one. This set is captured by the “arbitrary”
designation throughout the descriptions. The Adversary Adv(D,Tdp,C) is defined in Figures 6 and 7 .

6.4 The complete system

A complete real system with parameters (D,Tdp,C) is the result of composing the task-PIOAs
Trans(D,Tdp), Rec(D,Tdp,C), Src(Tdpp)tdpp and Src({0, 1} → D)yval and some adversary
Adv(D,Tdp,C), and then, hiding all the send, receive and rand actions. If Rec ∈ C we also hide
out′ outputs of Rec.

45

Adv(D, Tdp, C):

Signature:
Input:

send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
if T ∈ C then

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp

if Rec ∈ C then in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}
rand(y)yval, y ∈ ({0, 1} → D)

Arbitrary other input actions; call these “new” input actions

Output:
receive(1, f)Rec , f ∈ Tdp
receive(2, z)Trans , z ∈ ({0, 1} → D)
receive(3, b)Rec , b ∈ ({0, 1} → {0, 1})
if R ∈ C then

out(x)Rec , x ∈ {0, 1}
Arbitrary other output actions,

call these “new” output actions
Internal:

Arbitrary internal actions;
call these “new” internal actions

State:
messages, a set of pairs in M × {Trans,Rec}, initially ∅
if R ∈ C then outval(Rec) ∈ {0, 1,⊥}, initially ⊥
Arbitrary other variables; call these “new” variables

Transitions:

send(m)Trans

Effect:
messages := messages ∪ {(m,Rec)}

send(m)Rec

Effect:
messages := messages ∪ {(m,Trans)}

receive(m)Trans

Precondition:
(m,Trans) ∈ messages

Effect:
none

receive(m)Rec

Precondition:
(m,Rec) ∈ messages

Effect:
none

out′(x)Rec

Effect:
if outval(Rec) = ⊥ then outval(Rec) := x

out(x)Rec

Precondition:
x = outval(Rec) 6= ⊥

Effect:
none

in(x)Trans , in(i)Rec , rand(p)tdpp, or rand(y)yval

Effect:
Arbitrary changes to new state variables

New input action
Effect:

Arbitrary changes to new state variables

New output or internal action
Precondition:

Arbitrary
Effect:

Arbitrary changes to new state variables

Figure 6: Code for Adv(D,Tdp,C) (Part I)

Lemma 6.3 In every reachable state of RS the following hold:

1. If Rec.yval 6= ⊥ then Srcyval.chosenval = Rec.yval.

Lemma 6.4 In every reachable state of RS the following hold:

1. Adv .messages contains at most one round 1 message, at most one round 2 message, and at most
one round 3 message.

2. If Adv .messages contains (1, f) then Trans.tdpp.funct = f .

3. If Adv .messages contains (2, z) then Rec.zval = z.

4. If Adv .messages contains (3, b) then Trans(D,Tdp).bval = b.

46

Tasks: {send(1, ∗)Trans)}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {receive(1, ∗)Rec}, {receive(2, ∗)Trans}, {receive(3, ∗)Rec},
If Trans ∈ C then {in(∗)Trans}, {rand(∗)tdpp.
If Rec ∈ C then {in(∗)Rec}, {out′(∗)Rec}, {rand(∗)yval}, {out(∗)Rec}.
Arbitrary tasks for new actions.

State relation: Arbitrary RS, subject to consistency requirements, and such that there exists an equivalence
relation RN on the valuations of the new variables where (q1, q2) ∈ RS iff:

1. There is a bijection between q1.messages and q2.messages, such that if ((i1, m1), p1) ∈ q1.messages corresponds
to ((i2, m2), p2) ∈ q2.messages then i1 = i2 and p1 = p2.

2. If Rec ∈ C then q1.outval(Rec) = ⊥ iff q2.outval(Rec) = ⊥.

3. The valuations on new variables in q1 and q2 are RN -related.

Figure 7: Code for Adv(D,Tdp,C) (Part II)

5. If Rec.tdp = f 6= ⊥ then

(a) Adv .messages contains (1, f).

(b) Trans.tdpp 6= ⊥ and Trans.tdpp.funct = f .

6. If Rec.zval = z 6= ⊥ then Rec.yval 6= ⊥, Rec.inval 6= ⊥, Rec.tdp 6= ⊥, z(Rec.inval) =
Rec.tdp(Rec.yval(Rec.inval)), and z(1− Rec.inval) = Rec.yval(1− Rec.inval).

7. If Trans.zval = z 6= ⊥ then

(a) Adv .messages contains (2, z).

(b) Rec.zval = z.

8. If Trans.bval = b 6= ⊥ then

(a) Trans.tdpp 6= ⊥, Trans.zval 6= ⊥, Trans.inval 6= ⊥, and i ∈ {0, 1},
b(i) = B(Trans.tdpp.inverse(Trans.zval(i)))⊕ Trans.inval(i).

(b) Rec.inval 6= ⊥ and for i = Rec.inval, b(i) = B(Rec.yval(i))⊕ Trans.inval(i).

9. If Rec.outval = x 6= ⊥ then

(a) x = Trans.bval(Rec.inval)⊕B(Rec.yval(Rec.inval)).

(b) x = Trans.inval(Rec.inval).

10. If Trans.tdpp 6= ⊥ and Trans.zval 6= ⊥, then Rec.yval 6= ⊥, Rec.inval 6= ⊥, and in addition
Trans.tdpp.inverse(Trans.zval(Rec.inval)) = Rec.yval(Rec.inval).

In addition, invariants can be proved for the four individual cases, for instance:

Lemma 6.5 If C = {Rec} then, in every reachable state of RS (D,Tdp,C), the following holds:

1. If Adv .outval(Rec) = b 6= ⊥ then Rec.outval = b.

7 The Main Theorems

In this section, we state the main theorem of this paper. It is really four theorems, for the four possible
sets of corrupted parties.

The theorems involve task-PIOA families, which are defined by instantiating the real and ideal
systems with families of domains and trap-door permutations.

47

7.1 Families of Sets

We assume two families of sets:

• D = {Dk}k∈N, a family of finite domains. For example, Dk might be the set of length k bit
strings.

• Tdp = {Tdpk}k∈N, a family of sets of trap-door permutations such that the domain of f ∈ Tdpk

is Dk.

We also define the following derived families of sets:

• Tdpp = {Tdppk}k∈N, a family of sets of trap-door permutations pairs. Each set Tdppk is the set
{(f, f−1) : f ∈ Tdpk}. As before, if p = (f, f−1) then we refer to the two components of p as
p.funct and p.inverse, respectively.

• M = {Mk}k∈N, a family of message alphabets, where Mk = {(1, f) : f ∈ Tdpk} ∪ {(2, z) : z ∈
({0, 1} → Dk)} ∪ {(3, b) : b ∈ ({0, 1} → {0, 1})}.

7.2 Families of Systems

A real-system family RS for domain family D, trap-door permutation set family Tdp, and C ⊆
{Trans,Rec} is a family {RSk}k∈N, where, for each k, RSk is a real system with parameters (Dk, Tdpk, C).
Thus, RSk = Trans(Dk, Tdpk)‖Rec(Dk, Tdpk, C)‖Src(Tdppk)tdpp‖Src({0, 1} → Dk)yval‖Advk, where
Advk is some adversary Adv(Dk, Tdpk, C).

An ideal-system family IS for C ⊆ {Trans,Rec} is a family {ISk}k∈N, where, for each k, ISk is an
ideal system with parameter C. Thus, ISk = Funct(C)k‖Simk, where Simk is some simulator Sim(C).

7.3 Theorem Statements

In the following theorem, the four possible values of C yield four theorems, which we prove in Sections 9,
10, 11, and 12, respectively.

Theorem 7.1 For every C ⊆ {Trans,Rec} the following holds:
Let RS be a real-system family for (D,Tdp,C), in which the family Adv of adversary automata is
polynomial-time-bounded.
Then there exists an ideal-system family IS for C, in which the family Sim is polynomial-time-bounded,
and such that RS ≤neg,pt IS .

8 Hard-Core Predicates

In this section, we define a cryptographic primitive—a hard-core predicate for a trap-door permutation—
that we use in several of our system descriptions. We define this in terms of task-PIOAs, and relate
the new definition to the standard cryptographic definition. Using our new task-PIOA formulation, we
show some consequences of the definition, in particular, we show how a hard-core predicate retains its
properties if it is used twice, and if it is combined with another value using an ⊕ operation.

Throughout this section, we fix D = {Dk}k∈N to be a family of finite domains, and Tdp = {Tdpk}k∈N

to be a family of sets of trap-door permutations such that the domain of f ∈ Tdpk is Dk.

8.1 Standard Definition of a Hard-Core Predicate

Informally, we say that B is a hard-core predicate for a set of trap-door permutations if, given a trap-
door permutation f in the set, an element z of the domain of this permutation, and a bit b, no efficient
algorithm can guess whether b = B(f−1(z)) or is a random bit with a non-negligible advantage.

More precisely, we define a hard-core predicate as follows:

48

Definition 8.1 A hard-core predicate for D and Tdp is a predicate B :
⋃

k∈N Dk → {0, 1}, such that

1. B is polynomial-time computable.

2. For every probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N,3 there is a negligible
function ε such that, for all k,

Pr[f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1]

−

Pr[f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1]

≤ ε(k).

Note that, when A is a finite set, the notation x← A means that x is selected randomly (according to
the uniform distribution) from A.

This definition is a reformulation of Def. 2.5.1 of [Foundations of Cryptography, Volume I Basic
Tools, by Oded Goldreich, Cambridge University Press, 2001, reprint of 2003, p. 64.] [goldreich03].

8.2 Redefinition of Hard-Core Predicates in Terms of PIOAs

We now show how this last definition can be expressed in terms of task-PIOAs. To this purpose, we
define two new task-PIOA families. The first one, denoted by SH (for “System providing a Hard-core
bit”), outputs a random trap-door permutation, a random element z of the domain of this permutation,
and the bit B(f−1(z)). The second, denoted by SHR (for “System in which the Hard-core bit is
replaced by a Random bit”), is the same as the previous one excepted that the output bit b is simply
a random bit.

With these two PIOA families, Definition 8.1 of hard-core predicates can be expressed
in terms of task-PIOAs by saying that SH ≤neg,pt SHR, which means (informally) that, for every

polynomial-time-bounded family E of environments for SH and SHR, every polynomial-time-bounded
task-scheduler family for SH‖E , generates a family of trace distributions of SH‖E that can be mimicked
by SHR‖E with an appropriate task-scheduler family.

Definition 8.2 The task-PIOA family SH is defined as hiderand(y)yval
(Srctdp‖Srcyval‖H), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srcyval = {(Srcyval)k}k∈N, where each (Srcyval)k is isomorphic to Src(Dk),

• H = {Hk}k∈N, where each Hk receives the permutation f from (Srctdp)k and the element y ∈
Dk from (Srcyval)k, and outputs the two values z = f(y) and B(y). Each Hk is defined as
H(Dk, Tdpk, B), where H(D,Tdp,B) is defined in Fig. 8.

Definition 8.3 The task-PIOA family SHR is defined as (Srctdp‖Srczval‖Srcbval), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srczval = {(Srczval)k}k∈N, where each (Srczval)k is isomorphic to Src(Dk),

• Srcbval = {(Srcbval)k}k∈N, where each (Srcbval)k is isomorphic to Src({0, 1}).

Definition 8.4 A hard-core predicate for D and Tdp is a polynomial-time-computable predicate B :⋃
k∈N Dk → {0, 1}, such that SH ≤neg,pt SHR.

3This is defined to be a family of predicates that can be evaluated by a non-uniform family (Mk)k of probabilistic
polynomial-time-bounded Turing machines, that is, by a family of Turing machines for which there exist polynomials p
and q such that each Mk executes in time at most p(k) and has a standard representation of length at most q(k). An
equivalent requirement is that the predicates are computable by a family of Boolean circuits where the kth circuit in the
family is of size at most p(k).

49

H(D, Tdp, B) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(y)yval, y ∈ D

Output:
rand(z)zval, z ∈ D
rand(b)bval, b ∈ {0, 1}

Internal:
fix− bval
fix− zval

State:
fval ∈ Tdp ∪ ⊥, initially ⊥
yval ∈ D ∪ ⊥, initially ⊥
zval ∈ D ∪ ⊥, initially ⊥
bval ∈ {0, 1} ∪ ⊥, initially ⊥

Transitions:

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(y)yval

Effect:
if yval = ⊥ then yval := y

fix− zval
Precondition:

fval 6= ⊥, yval 6= ⊥
Effect:

if zval = ⊥ then zval := fval(yval)

fix− bval
Precondition:

yval 6= ⊥
Effect:

if bval = ⊥ then bval := B(yval)

rand(z)zval

Precondition:
z = zval 6= ⊥

Effect:
none

rand(b)bval

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {rand(∗)tdp}, {rand(∗)yval}, {fix− bval}, {fix− zval}, {rand(∗)zval}, {rand(∗)bval}.
State relation: q1 and q2 are related iff:

q1.fval = ⊥ iff q2.fval = ⊥, and similarly for yval, zval, and bval.

Figure 8: Hard-core predicate automaton, H(D,Tdp,B)

We show that this definition is equivalent to Definition 8.1 by means of the following two theorems.

Theorem 8.5 If B is a hard-core predicate for D and Tdp according to Definition 8.1, then B is also
a hard-core predicate for D and Tdp according to Definition 8.4.

Proof. Suppose that B is a hard-core predicate for D and Tdp according to Definition 8.1. Defini-
tion 8.1 implies that B is polynomial-time computable, which is required by Definition 8.4.

It remains to show that SH ≤neg,pt SHR, where the same B defined above is used in the definition
of SH. To show this, we fix polynomials p and p1. It suffices to show the existence of a negligible
function ε such that SH ≤ε,p,p1,p1 SHR. This amounts to proving the existence of a negligible function
ε such that, for every k ∈ N, SHk ≤ε(k),p(k),p1(k),p1(k) SHRk. Unwinding this definition further, this
means that it is enough to show the existence of a negligible function ε such that, for every k ∈ N,
for every p(k)-time-bounded environment E for SHk and SHRk, and for every p1(k)-bounded task
scheduler ρ1 for SHk‖E , there exists a p1(k)-bounded task scheduler ρ2 for SHRk‖E , such that

|Paccept(SHk‖E , ρ1)− Paccept(SHRk‖E , ρ2)| ≤ ε(k).

50

We first define a homomorphism of task schedulers. Specifically, for every k and every environment E
for SHk and SHRk, we define a homomorphism hom from task schedulers of SHk‖E to task schedulers
of SHRk‖E . Namely,

1. Replace each occurrence of the {choose − randyval} and {randyval} tasks of (Srcyval)k with the
empty task sequence λ.

2. Replace each occurrence of the {fix−bval} task of Hk with the {choose−bval} task of (Srcbval)k.

3. Replace each occurrence of the {fix−zval} task of Hk with the {choose−zval} task of (Srczval)k.

4. Keep every other task unchanged.

Note that homomorphism hom is independent of k and E . Also, note that hom is length-nonincreasing:
for every task scheduler ρ1 of SHk‖E , |hom(ρ1)| ≤ |ρ1|.

Thus, it is enough to show the existence of a negligible function ε such that, for every k ∈ N, for every
p(k)-time-bounded environment E for SHk and SHRk, and for every p1(k)-bounded task scheduler ρ1

for SHk‖E ,
|Paccept(SHk‖E , ρ1)− Paccept(SHRk‖E , hom(ρ1))| ≤ ε(k).

Now, for every k ∈ N, define (Emax)k to be a p(k)-time-bounded environment for SHk and define
(ρ1max)k to be a p1(k)-time-bounded scheduler for SHk‖(Emax)k, with the property that, for every
p(k)-time-bounded environment E for SHk and every p1(k)-time-bounded scheduler ρ1 for SHk‖E ,

|Paccept(SHk‖E , ρ1)−Paccept(SHRk‖E , hom(ρ1))| ≤
|Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)k))|

To see that such (Emax)k and (ρ1max)k must exist, note that we are considering only E for which all
parts of the description are bounded by p(k), and only ρ1 with length at most p1(k). Since there are
only a finite number of such (E , ρ1) pairs (up to isomorphism), we can select a particular pair that
maximizes the given difference.

This means that it is enough to show the existence of a negligible function ε such that, for every
k ∈ N,

|Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)k))| ≤ ε(k).

To show this, we will apply Definition 8.1. This requires us to define an appropriate probabilistic
polynomial-time non-uniform predicate G = (Gk)k∈N.

We define Gk as follows: Gk has three input arguments: f ∈ Tdpk, z ∈ Dk and b ∈ {0, 1}; we only
care what Gk does if its inputs are in these designated sets. For these inputs, Gk simulates the behavior
of (Emax)k when it is executed with (ρ1max)k, as follows:

1. Gk reads its inputs f , z and b.

2. Gk then reads the tasks in (ρ1max)k, one by one. For each task T that it reads:

• Gk determines (in polynomial time) whether T is a task of (Emax)k and goes on to the next
task if it is not.

• If T is an output or internal task of (Emax)k, then Gk simulates the performance of T , by de-
termining the unique enabled action (in polynomial time) and the next state (in probabilistic
polynomial time).

• If T is an input task of (Emax)k of the form {rand(∗)tdp} then Gk simulates the action
rand(f)tdp, where f is Gk’s first input argument. Similarly, if T is of the form {rand(∗)zval}
then Gk simulates the action rand(z)zval, where z is Gk’s second input argument. And if
T is of the form {rand(∗)bval} then Gk simulates rand(b)bval, where b is Gk’s third input
argument.

51

3. After completing the processing of (ρ1max)k, Gk checks if the accept action has been performed.
It outputs 1 in that case, and 0 otherwise.

Now, Definition 8.1 guarantees that there is a negligible function ε such that, for all k,

Pr[f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1]

−

Pr[f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1]

≤ ε(k).

By the definitions of SH and SHR, and the homomorphism hom, we observe that:

Paccept(SHk‖(Emax)k, (ρ1max)k) =

Pr[f ← Tdpk;

z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1]

and

Paccept(SHRk‖(Emax)k, hom((ρ1max)k)) =

Pr[f ← Tdpk;

z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1]

.

Therefore, we conclude that, for every k ∈ N,

Paccept(SHk‖(Emax)k, (ρ1max)k)− Paccept(SHRk‖(Emax)k, hom((ρ1max)) ≤ ε(k),

which is what we needed to show. 2

Theorem 8.6 If B is a hard-core predicate for D and Tdp according to Definition 8.4, then B is also
a hard-core predicate for D and Tdp according to Definition 8.1.

Proof. Suppose that B is a hard-core predicate for D and Tdp according to Definition 8.4. Defini-
tion 8.4 implies that B is polynomial-time computable, which is required by Definition 8.1.

It remains to show that, for every probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N,
there is a negligible function ε such that, for every k ∈ N,

Pr[f ← Tdpk;
z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1]

−

Pr[f ← Tdpk;
z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1]

≤ ε(k).

For the rest of this proof, we define PH(G, k) and PHR(G, k) as:

PH(G, k) =

Pr[f ← Tdpk;

z ← Dk;
b← B(f−1(z)) :
Gk(f, z, b) = 1]

 and PHR(G, k) =

Pr[f ← Tdpk;

z ← Dk;
b← {0, 1} :
Gk(f, z, b) = 1]

for any non-uniform predicate G = {Gk}k∈N and any k ∈ N.

Now, fix any probabilistic polynomial-time non-uniform predicate G = {Gk}k∈N. Starting from this
predicate, we define a polynomial-time-bounded environment family E(G) = {(E(G))k}k∈N for both SH
and SHR. Each (E(G))k is defined as E(Gk)(Dk, Tdpk, B), where E(G)(D,Tdp,B) is defined in Fig. 9.

52

E(G)(D, Tdp, B) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(z)zval, z ∈ D
rand(b)bval, b ∈ {0, 1}

Output:
accept

State:
fval ∈ Tdp ∪ ⊥, initially ⊥
zval ∈ D ∪ ⊥, initially ⊥
bval ∈ {0, 1} ∪ ⊥, initially ⊥

Transitions:

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(z)zval

Effect:
if zval = ⊥ then zval := z

rand(b)bval

Effect:
if bval = ⊥ then bval := b

accept
Precondition:

fval, zval, bval 6= ⊥
G(fval, zval, bval) = 1

Effect:
none

Tasks: {rand(∗)tdp}, {rand(∗)zval}, {rand(∗)bval}, {accept}.
State relation: q1 and q2 are related iff:

q1.fval = ⊥ iff q2.fval = ⊥, and similarly for zval, and bval.

Figure 9: Environment evaluating the G predicate, E(G)(D,Tdp,B)

We also define a polynomial-time-bounded task-scheduler family ρ1 = {(ρ1)k}k∈N for SH‖E(G): for
every k,

(ρ1)k ={choose− randtdp}{rand(∗)tdp}
{choose− randyval}{rand(∗)yval}
{fix− zval}{rand(∗)zval}
{fix− bval}{rand(∗)bval}
{accept}.

We observe that, from the definition of SHk, (E(G))k and (ρ1)k:

Paccept(SHk‖(E(G))k, (ρ1)k) = PH(G, k).

Definition 8.4 guarantees that there is a polynomial p and a negligible function ε such that, for every
k, there is a p(k)-bounded task-scheduler (ρ2)k such that:

|Paccept(SHk‖(E(G))k, (ρ1)k)− Paccept(SHRk‖(E(G))k, (ρ2)k)| ≤ ε(k).

Consider now the probabilistic polynomial-time non-uniform predicate G′ = {G′
k}k∈N where G′

k =
1 − Gk. For this predicate, Def. 8.4 also guarantees that there are a polynomial p′ and a negligible
function ε′ such that, for every k, there is a p′(k)-bounded task-scheduler (ρ′2)k such that:

|Paccept(SHk‖(E(G′))k, (ρ1)k)− Paccept(SHRk‖(E(G′))k, (ρ′2)k)| ≤ ε′(k).

53

We now define a new negligible function εmax as εmax(k) = max(ε(k), ε′(k)) for every k. Since εmax

is a negligible function, there is an index k0 such that εmax(k) < 1
2 for every k ≥ k0. Let us examine

the possible values of Paccept(SHRk‖(E(G))k, (ρ2)k) for every k ≥ k0.
Fix any k ≥ k0. Suppose first that (ρ2)k is such that:

Paccept(SHRk‖(E(G))k, (ρ2)k) = PHR(G, k),

which is the case when (ρ2)k schedules the choose− randtdp task followed by the rand(∗)tdp task, the
choose − randzval task followed by the rand(∗)zval task, the choose − randbval task followed by the
rand(∗)bval task, and all these tasks followed by the accept task (in the rest of this proof, we will refer
to this as (ρ2)k correctly scheduling accept). For this (ρ2)k, we have that

|PH(G, k)− PHR(G, k)| ≤ ε(k) ≤ εmax(k).

Suppose now that (ρ2)k is such that Paccept(SHRk‖(E(G))k, (ρ2)k) is independent of G, that is,
(ρ2)k does not correctly schedule the accept task. In that case, Paccept(SHRk‖(E(G))k, (ρ2)k) = 0.
Therefore,

Paccept(SHk‖(E(G))k, (ρ1)k) ≤ ε(k) ≤ εmax(k) <
1
2

and
Paccept(SHk‖(E(G′))k, (ρ1)k) = 1− Paccept(SHk‖(E(G))k, (ρ1)k) >

1
2
,

which in turn imply that Paccept(SHRk‖(E(G′))k, (ρ′2)k) > 0 since ε′(k) < 1
2 . But the probability

Paccept(SHRk‖(E(G′))k, (ρ′2)k) can only be different from 0 if (ρ′2)k correctly schedules accept. So, we
have that:

Paccept(SHRk‖(E(G′))k, (ρ′2)k) = PHR(G′, k)

and

|PH(G, k)− PHR(G, k)| = |(1− PH(G′, k))− (1− PHR(G′, k))|
= |PH(G′, k)− PHR(G′, k)|
≤ ε′(k) ≤ εmax(k).

So, |PH(G, k)−PHR(G, k)| ≤ εmax(k) for every k ≥ k0. Finally, if we define the negligible function
ε′max as:

ε′max(k) =
{

1 if k < k0

εmax(k) otherwise,

the relation |PH(G, k)− PHR(G, k)| ≤ ε′max(k) holds for every k ∈ N, as needed. 2

8.3 Consequences of the New Definition

In this subsection, we formulate in our framework two important consequences that follow from our new
definition of a hard-core predicate, and that are used in our analysis of the Oblivious Transfer algorithm.
The first one says that a hard-core predicate can be applied to two values, and a probabilistic polynomial-
time environment still cannot distinguish the results from random values. This fact is needed because,
in the Oblivious Transfer protocol, the transmitter applies the hard-core predicate to both f−1(zval(0))
and f−1(zval(1)), where f is the chosen trap-door function.

The second consequence says that, if the results of applying a hard-core predicate are combined
with inputs from the environment using ⊕, the final results still look random to the environment. This
fact is needed because, in the protocol, the transmitter computes and sends B(f−1(zval(i)))⊕ inval(i),
i ∈ {0, 1}, rather than just B(f−1(zval(i))).

54

8.3.1 Applying a Hard-Core Predicate Twice

Here, we show, if B is a hard-core predicate, then no probabilistic polynomial-time environment can dis-
tinguish the distribution (f, z(0), z(1), B(f−1(z(0))), B(f−1(z(1)))) from the distribution (f, z(0), z(1),
b(0), b(1)), where f is a randomly-chosen trap-door permutation, z(0) and z(1) are randomly-chosen
elements of the domain Dk, and b(0) and b(1) are randomly-chosen bits. We do this by defining two
systems that produce the two distributions, and showing that one implements the other. We use our
second definition of hard-core predicate, Definition 8.4.

Definition 8.7 The task-PIOA family SH2 is defined as hide{rand(y)yval0,rand(y)yval1}(Srctdp‖Srcyval0‖
Srcyval1‖H0‖H1), where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srcyval0 = {(Srcyval0)k}k∈N, Srcyval1 = {(Srcyval1)k}k∈N, where each (Srcyval0)k and each
(Srcyval1)k is isomorphic to Src(Dk),

• H0 = {H0k}k∈N and H1 = {H1k}k∈N are two instances of H, where all actions have the cor-
responding index 0 or 1 appended to their name (e.g., rand(z)zval is renamed as rand(z)zval0 in
H0). The only exception is the rand(f)tdp action, which is kept as it is in H: we use the same
trapdoor permutation for both task-PIOA families.

Definition 8.8 The task-PIOA family SHR2 is defined as (Srctdp‖Srczval0‖Srczval1‖Srcbval0‖Srcbval1),
where

• Srctdp = {(Srctdp)k}k∈N, where each (Srctdp)k is isomorphic to Src(Tdpk),

• Srczval0 = {(Srczval0)k}k∈N and Srczval1 = {(Srczval1)k}k∈N, where each (Srczval0)k and each
(Srczval1)k is isomorphic to Src(Dk),

• Srcbval0 = {(Srcbval0)k}k∈N and Srcbval1 = {(Srcbval1)k}k∈N, where each (Srcbval0)k and each
(Srcbval1)k is isomorphic to Src({0, 1})

Lemma 8.9 If B is a hard-core predicate, then SH2 ≤neg,pt SHR2.

Proof. By Theorem 8.5, we may assume that SH ≤neg,pt SHR. To prove that SH2 ≤neg,pt SHR2,
we introduce a new task-PIOA family Int, which is intermediate between SH2 and SHR2. Int is
defined as hiderand(y)yval0(Srctdp‖Srcyval0‖H0‖Srczval1‖Srcbval1), where

• Srctdp is exactly as in SH2 and SHR2.

• Srcyval0 and H0 are as in SH2.

• Srczval1 and Srcbval1 are as in SHR2.

Thus, Int generates one of the bits, bval0, using the hard-core predicate B, as in SH2, and generates
the other, bval1, randomly, as in SHR2.

We claim that SH2 ≤neg,pt Int. To see this, note that Definition 8.1 implies that

hiderand(y)yval1(Srctdp‖Srcyval1‖H1) ≤neg,pt Srctdp‖Srczval1‖Srcbval1.

This is because these two systems are simple renamings of the SH and SHR systems described in
Section 8.2.

Now let I be the task-PIOA family hiderand(y)yval0(Srcyval0‖H0). It is easy to see, from the code
for the two components of I, that I is polynomial-time-bounded. Then Lemma 3.74 implies that

hiderand(y)yval1(Srctdp‖Srcyval1‖H1)‖I ≤neg,pt Srctdp‖Srczval1‖Srcbval1‖I.

55

Since the left-hand side of this relation is SH2 and the right-hand side is Int, this implies SH2 ≤neg,pt

Int, as needed.
Next, we claim that Int ≤neg,pt SHR2. To see this, note that Definition 8.1 implies that

hiderand(y)yval0(Srctdp‖Srcyval0‖H0) ≤neg,pt Srctdp‖Srczval0‖Srcbval0.

Now let I be the polynomial-time-bounded task-PIOA family Srczval1‖Srcbval1. Then Lemma 3.74
implies that

hiderand(y)yval0(Srctdp‖Srcyval0‖H0)‖I ≤neg,pt Srctdp‖Srczval0‖Srcbval0‖I.

Since the left-hand side of this relation is Int and the right-hand side is SHR2, this implies Int ≤neg,pt

SHR2, as needed.
Since SH2 ≤neg,pt Int and Int ≤neg,pt SHR2, transitivity of ≤neg,pt (Lemma 3.83) implies that

SH2 ≤neg,pt SHR2. 2

8.3.2 Combining two hard-core bits with two input values

This material is for Case 1 of the proof.
In the Oblivious Transfer protocol, the transmitter does not send B(f−1(zi)) (i ∈ {0, 1}), but rather,

B(f−1(zi)) ⊕ xi, where xi is an input bit provided by the environment. In this subsection, we prove
that the resulting bits still look random to a polynomial-time-bounded environment. This result follows
from the fact that B is a hard-core predicate, without requiring any new computational assumptions.

For this purpose, we add an interface that efficiently reduces any instance of the computational
problem specific to our protocol into an instance of the computational problem we examined in the
previous subsection. Specifically, we define a new polynomial time-bounded task-PIOA family Ifc =
{Ifck}k∈N. Task-PIOA Ifck receives, as inputs, a trapdoor permitation f , two bits b0 and b1, two
elements, z0 and z1, of Dk, and a pair of bits (x0, x1), and outputs the same trapdoor permutation f ,
the two pairs (z0, z1), and (b0 ⊕ x0, b1 ⊕ x1). Interface automaton Ifck is defined to be Ifc(Tdpk, Dk),
where Ifc(Tdp,D) is defined in Fig. 10.

Now we define SHOT and SHROT , two task-PIOA families that we will need to compare in our
proofs in Section 9.5.

Definition 8.10 Consider the task-set family U = {Uk}k∈N, where Uk is the set {{rand(∗)tdp},
{rand(∗)zval0}, {rand(∗)zval1}, {rand(∗)bval0}, {rand(∗)bval1}} of tasks of SH2k and SHR2k. The
task-PIOA family SHOT = {SHOTk}k∈N is defined as hideU (SH2‖Ifc). Also, the task-PIOA family
SHROT = {SHROTk}k∈N is defined as hideU (SHR2‖Ifc).

Lemma 8.11 SHOT ≤neg,pt SHROT .

Proof. By Lemma 8.9, SH2 ≤neg,pt SHR2. The task-PIOA family Ifc is polynomial-time-bounded.
Therefore, since the ≤neg,pt relation is preserved when the related automata are composed with
polynomial-time-bounded task-PIOA families (Lemma 3.74),

SH2‖Ifc ≤neg,pt SHR2‖Ifc.

Then, since hiding output tasks of polynomial-time-bounded task-PIOA families preserves the
≤neg,pt relation (Lemma 3.85), we have that

hideU (SH2‖Ifc) ≤neg,pt hideU (SHR2‖Ifc),

which in turn implies that SHOT ≤neg,pt SHROT . 2

Some invariants will be helpful in the later proofs:

Lemma 8.12 In all reachable states of SHOT :

56

Ifc(Tdp, D) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(z)zval0, rand(z)zval1, z ∈ D
rand(b)bval0, rand(b)bval1, b ∈ {0, 1}
in(x)Trans , x ∈ {0, 1} → {0, 1}

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ {0, 1} → D
send(3, b)Trans , b ∈ {0, 1} → {0, 1}

Internal:
fix− bxorx

State:
fval ∈ Tdp ∪ ⊥, initially ⊥,
zval ∈ {0, 1} → (D ∪ ⊥), initially identically ⊥
bval ∈ {0, 1} → {0, 1,⊥}, initially identically ⊥
xval, bxorx ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

rand(f)tdp

Effect:
if fval = ⊥ then fval := z

rand(z)zvali, i ∈ {0, 1}
Effect:

if zval(i) = ⊥ then zval(i) := z

rand(b)bvali, i ∈ {0, 1}
Effect:

if bval(i) = ⊥ then bval(i) := b

in(x)Trans

Effect:
if xval = ⊥ then xval := x

fix− bxorx
Precondition:

∀i ∈ {0, 1}, bval(i) 6= ⊥
xval, fval, zval 6= ⊥
bxorx = ⊥

Effect:
for i ∈ {0, 1} do

bxorx(i) := bval(i)⊕ xval(i)

send(1, f)Trans

Precondition:
fval 6= ⊥
f = fval

Effect:
none

send(2, z)Rec

Precondition:
zval(i) 6= ⊥ (i ∈ {0, 1})
z = zval

Effect:
none

send(3, b)Trans

Precondition:
bxorx 6= ⊥
b = bxorx

Effect:
none

Tasks: {rand(∗)tdp}, {rand(∗)zval0}, {rand(∗)zval1}, {rand(∗)bval0}, {rand(∗)bval1}, {in(∗)Trans}, {fix − bxorx},
{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}.
State relation: q1 and q2 are related iff:

q1.fval = ⊥ iff q2.fval = ⊥, and similarly for xval and bxorx;

∀i ∈ {0, 1}, q1.bval(i) = ⊥ iff q2.bval(i) = ⊥, and similarly for zval(i).

Figure 10: Interface, Ifc(Tdp,D)

1. Ifc.fval = H0.fval = H1.fval.

2. If Ifc.fval 6= ⊥ then Ifc.fval = Srctdp.chosenval.

3. If Hi.yval 6= ⊥ then Hi.yval = Srcyvali.chosenval.

4. If Hi.zval 6= ⊥ then Hi.yval 6= ⊥, Hi.fval 6= ⊥, and Hi.xval = Hi.fval(Hi.yval).

5. If Hi.bval 6= ⊥ then Hi.yval 6= ⊥ and Hi.bval = B(Hi.yval).

6. If Ifc.bval(i) 6= ⊥ then Ifc.bval(i) = Hi.bval.

57

7. If Ifc.bxorx 6= ⊥ then Ifc.xval 6= ⊥, for i ∈ {0, 1}, Ifc.bval(i) 6= ⊥, and for i ∈ {0, 1},
Ifc.bxorx(i) = Ifc.bval(i)⊕ Ifc.xval(i).

Lemma 8.13 In all reachable states of SHROT :

1. If Ifc.fval 6= ⊥ then Ifc.fval = Srctdp.chosenval.

2. If Ifc.zval(0) 6= ⊥ then Ifc.zval(0) = Srczval0.chosenval.

3. If Ifc.zval(1) 6= ⊥ then Ifc.zval(1) = Srczval1.chosenval.

4. If Ifc.bval(0) 6= ⊥ then Ifc.bval(0) = Srcbval0.chosenval.

5. If Ifc.bval(1) 6= ⊥ then Ifc.bval(1) = Srcbval1.chosenval.

6. If Ifc.bxorx 6= ⊥ then Ifc.xval 6= ⊥, for i ∈ {0, 1}, Ifc.bval(i) 6= ⊥, and for i ∈ {0, 1},
Ifc.bxorx(i) = Ifc.bval(i)⊕ Ifc.xval(i).

8.3.3 Combining a single hard-core bit with an input value

For Case 2 of the proof, we define new SHOT ′ and SHROT ′ families.

Definition 8.14 The task-PIOA family SHOT ′ is defined as

hide{rand(∗)tdp,rand(∗)zval,rand(∗)bval,rand(∗)yval′}(SH‖Srcyval′‖Ifc′),

where

• SH is given in Def. 8.2,

• Srcyval′ = {(Srcyval′)k}k∈N, where each (Srcyval′)k is isomorphic to Src(Dk),

• Ifc′ is defined in Fig. 11 and 12.

Definition 8.15 The task-PIOA family SHROT ′ is defined as

hide{rand(∗)tdp,rand(∗)zval,rand(∗)bval,rand(∗)yval′}(SHR‖Srcyval′‖Ifc′),

where SHR is given in Def. 8.3 while Srcyval′ and Ifc′ are as in Def. 8.14.

Again, we have:

Lemma 8.16 SHOT ′ ≤neg,pt SHROT ′.

Proof. By Definition 8.4, SH ≤neg,pt SHR. The task-PIOA families Ifc′ and Srcyval′ are polynomial-
time-bounded. Therefore, since the ≤neg,pt relation is preserved when the related automata are com-
posed with polynomial-time-bounded task-PIOA families (Lemma 3.84),

SH‖Ifc′‖Srcyval′ ≤neg,pt SHR‖Ifc′‖Srcyval′ .

Now, if we define U = {rand(∗)tdp, rand(∗)zval, rand(∗)bval, rand(∗)yval′}, we have that

hideU (SH‖Ifc′‖Srcyval′) ≤neg,pt hideU (SHR‖Ifc′‖Srcyval′),

since hiding output tasks of polynomial-time-bounded task-PIOA families preserves the ≤neg,pt relation
(Lemma 3.85).

This is equivalent to say that SHOT ′ ≤neg,pt SHROT ′. 2

Some invariants will be helpful in the later proofs:

58

Ifc′(Tdp, D) :

Signature:
Input:

rand(f)tdp, f ∈ Tdp
rand(z)zval, z ∈ D
rand(y)yval′ , y ∈ D
rand(b)bval, b ∈ {0, 1}
in(x)Trans , x ∈ {0, 1} → {0, 1}
in(i)Rec , i ∈ {0, 1}
out′(x)Rec , x ∈ {0, 1}

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ {0, 1} → D
send(3, b)Trans , b ∈ {0, 1} → {0, 1}
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
fval ∈ (Tdp ∪ ⊥), initially ⊥,
zval′ ∈ (D ∪ ⊥), initially ⊥
yval′ ∈ (D ∪ ⊥), initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval′ ∈ {0, 1,⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Figure 11: Interface, Ifc′(Tdp,D) (Part I)

Lemma 8.17 In all reachable states of SHOT ′:

1. Ifc′.fval = H.fval.

2. If Ifc′.fval 6= ⊥ then Ifc′.fval = Srctdp.chosenval.

3. If H.yval 6= ⊥ then H.yval = Srcyval.chosenval.

4. If Ifc′.yval′ 6= ⊥ then Ifc′.yval′ = Srcyval′ .chosenval.

5. If H.zval 6= ⊥ then H.fval 6= ⊥, H.yval 6= ⊥ and H.zval = H.fval(H.yval).

6. If Ifc′.zval′ 6= ⊥ then Ifc′.zval′ = H.zval.

7. If H.bval 6= ⊥ then H.yval 6= ⊥ and H.bval = B(H.yval).

8. If Ifc′.bval′ 6= ⊥ then Ifc′.bval′ = H.bval.

9. If Ifc′.zval 6= ⊥ then Ifc′.yval′ 6= ⊥ and Ifc′.bval′ 6= ⊥.

Lemma 8.18 In all reachable states of SHROT ′:

1. If Ifc′.fval 6= ⊥ then Ifc′.fval = Srctdp.chosenval.

2. If Ifc′.zval′ 6= ⊥ then Ifc′.zval′ = Srczval.chosenval.

3. If Ifc′.yval′ 6= ⊥ then Ifc′.yval′ = Srcyval′ .chosenval.

4. If Ifc′.bval′ 6= ⊥ then Ifc′.bval′ = Srcbval.chosenval.

9 Correctness Proof, Case 1: Neither Party Corrupted

To show correctness, we consider four cases, based on which parties are corrupted. This section is
devoted to the case where neither party is corrupted, that is, where C = ∅, and Sections 10-12 deal
with the other three cases.

59

Ifc′(Tdp, D) :

Transitions:

out′(x)Rec

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

in(x)Trans

Effect:
if inval2(Trans) = ⊥ then inval2(Trans) := x

rand(f)tdp

Effect:
if fval = ⊥ then fval := f

rand(y)yval′

Effect:
if yval′ = ⊥ then yval′ := y

rand(z)zval

Effect:
if zval′ = ⊥ then zval′ := z

rand(b)bval

Effect:
if bval′ = ⊥ then bval′ := b

fix− zvalRec

Precondition:
yval′, zval′, bval′, inval(Rec), fval 6= ⊥
zval = ⊥

Effect:
zval(inval(Rec)) := fval(yval′)
zval(1− inval(Rec)) := zval′

fix− bvalTrans

Precondition:
bval′, yval′ 6= ⊥
inval(Trans), inval2(Trans), inval(Rec) 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval′)⊕ inval(Trans)
bval(1− inval(Rec)) :=

bval′ ⊕ inval2(Trans)(1− inval(Rec))

out′′(x)Rec

Precondition:
x = inval(Trans) 6= ⊥

Effect:
none

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {rand(∗)tdp}, {rand(∗)yval′}, {rand(∗)zval}, {rand(∗)bval}, {in(∗)Trans}, {in(∗)Rec}, {out′(∗)Rec},
{send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.
State relation: q1 and q2 are related iff:

q1.fval = ⊥ iff q2.fval = ⊥, and similarly for zval′, yval′, zval, bval, bval′, inval(Trans), inval(Rec) and inval2(Trans).

Figure 12: Interface, Ifc′(Tdp,D) (Part II)

60

Theorem 9.1 Let RS be a real-system family for (D,Tdp,C), C = ∅, in which the family Adv of
adversary automata is polynomial-time-bounded.
Then there exists an ideal-system family IS for C = ∅, in which the family Sim is polynomial-time-
bounded, and such that RS ≤neg,pt IS .

Since C = ∅ everywhere in this section, we drop explicit mention of C from now on in the section.
We begin by expressing each Simk as a composition of automata. This composition describes

the particular simulation strategy needed to mimic the behavior of the real system. We define a
“structured ideal system” SISk to be the composition of this structed simulator with Functk. It is easy
to see that SIS is an ideal-system family, according to our definition of an ideal system. Moreover, if
Adv is polynomial-time-bounded, then Sim is also polynomial-time-bounded. It remains to show that
RS ≤neg,pt SIS .

In order to show that RS ≤neg,pt SIS , we use two intermediate families of systems, Int1 and Int2 .
These two families of systems are nearly identical; in fact, they differ only in that Int1 uses a hard-core
predicate of a trap-door permutation in situations where Int2 uses random bits. Then the proof breaks
down into three pieces, showing that RS ≤neg,pt Int1 , that Int1 ≤neg,pt Int2 , and that Int2 ≤neg,pt SIS .
All reasoning about computational indistinguishability and other cryptographic issues is isolated to the
middle level, the proof that Int1 ≤neg,pt Int2 .

To show that Int1 ≤neg,pt Int2 , we use results from Section 8. The style of the proof that Int1 ≤neg,pt

Int2 is an alternative to the usual “Distinguisher” arguments from the traditional cryptographic protocol
literature. Our proof does not contain any arguments “by contradiction”; instead, it relies on positive
results about implementation, composition, and hiding. The essential technical ideas that appear in
the usual Distinguisher argument still appear in our argument, but in a direct (and systematic) way.

The proofs that RS ≤neg,pt Int1 and that Int2 implements SIS do not involve cryptographic issues.
They are reasonably straightforward, using simulation relations of the new kind defined in Section 3.3.8.

The multi-level structure, with intermediate levels Int1 and Int2 , is also used for the case where
C = {R}, that is, where only the Receiver is corrupted. However, it is not needed for the other two
cases, where C = {T} and where C = {T,R}.

In the rest of this section, we fix a particular polynomial-time-bounded adversary family Adv .

9.1 Simulator structure

For each k, we define a structured simulator SSimk, as the composition of the following five task-PIOAs,
with all send, receive, and rand actions hidden.

• TR(Dk, Tdpk), an abstract combination of Trans(Dk, Tdpk) and Rec(Dk, Tdpk, ∅).

• (Src(Tdppk)tdpp)k, isomorphic to Src(Tdppk).

• (Src({0, 1} → Dk)zval)k, isomorphic to Src({0, 1} → Dk).

• (Src({0, 1} → {0, 1})bval)k, isomorphic to Src({0, 1} → {0, 1}).

• Advk, the same adversary as in RSk.

TR has send outputs that are inputs to Adv . Adv ’s receive outputs are not connected to anything.
Adv may also interact with the environment, using other inputs and outputs.

TR(D,Tdp) is defined (for arbitrary parameters D and Tdp) in Figure 13. TR simply acquires, as
input, a trap-door permutation pair, a pair of D values, and a pair of bits, and sends these in round 1,
round 2, and round 3 messages respectively.

We define SISk, the structured ideal system, to be the composition Functk‖SSimk.

Lemma 9.2 In every reachable state of SISk:

1. Advk.messages contains at most one round 1 message, at most one round 2 message, and at most
one round 3 message.

61

TR(D, Tdp):

Signature:
Input:

rand(p)tdpp, p ∈ Tdpp
rand(z)zval, z ∈ ({0, 1} → D)
rand(b)bval, b ∈ ({0, 1} → {0, 1})

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})

State:
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

rand(p)tdpp

Effect:
if tdpp = ⊥ then tdpp := p

rand(z)zval

Effect:
if zval = ⊥ then zval := z

rand(b)bval

Effect:
if bval = ⊥ then bval := b

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {rand(∗)tdpp}, {rand(∗)zval}, {rand(∗)bval}, {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans}.

State relation: q1 and q2 are related iff:
q1.tdpp = ⊥ iff q2.tdpp = ⊥, and similarly for zval and bval.

Figure 13: TR(D,Tdp), for the case where C = ∅.

2. If Advk.messages contains (1, f) then TRk.tdp = f .

3. If Advk.messages contains (2, z) then TRk.zval = z.

4. If Advk.messages contains (3, b) then TRk.bval = b.

5. If TR.bval 6= ⊥ then TR.bval = Srcbval.chosenval.

Note that an ideal system ISk consists of Functk and some Simk satisfying the constraints defined in
Figure 2. By definition, SISk is a specific system consisting of Functk and a particular simulator, SSimk,
that satisfies those contraints. Therefore, to prove Theorem 9.1, it suffices to prove that RS ≤neg,pt SIS .

9.2 Int1

We define system Int1 k to be the same as SISk except that TR(Dk, Tdpk) is replaced by TR1 (Dk, Tdpk).
Code for TR1 (D,Tdp) appears in Figure 14. TR1 differs from TR as follows: TR1 has input actions
in(x)Trans , by which it receives transmitter input values directly from the environment. Also, TR1
does not have an input randbval; rather, TR1 calculates bval values using the hard-core predicate B
and the inverse of the trap-door permutation applied to the zval values, combined with the transmitter
input values.

62

TR1 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp
rand(z)zval, z ∈ ({0, 1} → D)

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})

Internal:
fix− bvalTrans

State:
inval(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

rand(p)tdpp or rand(z)zval

Effect:
As for TR(D, Tdp).

fix− bvalTrans

Precondition:
tdpp, zval, inval 6= ⊥
bval = ⊥

Effect:
for i ∈ {0, 1} do

bval(i) :=
B(tdpp.inverse(zval(i)))⊕ inval(Trans)(i)

send(1, f)Trans , send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {in(∗)Trans}, {rand(∗)tdpp}, {rand(∗)zval}, {send(1, ∗)Trans}, {send(2, ∗)Rec}, {send(3, ∗)Trans},
{fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and similarly for tdpp, zval, and bval.

Figure 14: TR1 (D,Tdp), for the case where C = ∅.

Lemma 9.3 In every reachable state of Int1 k:

1. If TR1 .zval 6= ⊥ then Srczval.chosenval = TR1 .zval.

9.3 Int2

We define Int2 k to be the same as SISk except that:

1. It includes a new random source (Src({0, 1} → {0, 1})cval)k, which is isomorphic to Src({0, 1} →
{0, 1}).

2. TR(Dk, Tdpk) is replaced by TR2 (Dk, Tdpk), where TR2 (D,TDp) is identical to TR1 (D,Tdp)
except that:

(a) TR2 includes an extra state variable cval ∈ ({0, 1} → {0, 1}).
(b) TR2 has input action rand(c)cval, which sets cval := c.

(c) The line in fix − bvalTrans in which the bval values are chosen is replaced by the line:
for i ∈ {0, 1} do bval(i) := cval(i)⊕ inval(i). That is, instead of calculating the bval values

63

using the hard-core predicate, TR2 obtains them by applying ⊕ to two bits chosen randomly
and the actual x inputs.

The code for TR2 (D,Tdp) appears in Figure 15.

TR2 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
rand(p)tdpp, p ∈ Tdpp
rand(z)zval, z ∈ ({0, 1} → D)
rand(c)cval, c ∈ ({0, 1} → {0, 1})

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})

Internal:
fix− bvalTrans

State:
inval(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
cval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

rand(p)tdpp or rand(z)zval

Effect:
As for TR(D, Tdp).

rand(c)cval

Effect:
if cval = ⊥ then cval := z

fix− bvalTrans

Precondition:
tdpp, zval, cval, inval 6= ⊥
bval = ⊥

Effect:
for i ∈ {0, 1} do

bval(i) := cval(i)⊕ inval(Trans)(i)

send(1, f)Trans , send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {in(∗)Trans}, {rand(∗)tdpp}, {rand(∗)zval}, {rand(∗)cval}, {send(1, ∗)Trans}, {send(2, ∗)Trans},
{send(3, ∗)Trans}, {fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and similarly for tdpp, zval, and cval.

Figure 15: TR2 (D,Tdp), for the case where C = ∅.

Lemma 9.4 In every reachable state of Int2 k:

1. If TR2 .cval 6= ⊥ then TR2 .cval = Srccval.chosenval.

9.4 RS implements Int1

We show:

Lemma 9.5 For every k, RSk ≤0 Int1 k.

We prove Lemma 9.5 by choosing an arbitrary environment Env for RSk and Int1 k, and estab-
lishing a simulation relation from RSk‖Env to Int1 k‖Env . (See Section 3.3.6 for the definition of an
environment.) Then we appeal to Theorem 3.55, the soundness result for simulation relations.

64

An interesting issue in proving Lemma 9.5 is in reconciling the different ways in which zval gets
defined in RS and Int1 . In RS , the choice is made in two steps, first choosing the yval values randomly
and then calculating the zval values from the yval values, whereas in Int1 , the zval values are chosen
randomly, in one step.

We also show the following lemma, which is what we need to put the pieces of the proof together:

Lemma 9.6 RS ≤neg,pt Int1 .

Lemma 9.6 does not quite follow from Lemma 9.5. The reason is that the statement of Lemma 9.5
does not provide us with the needed bound on the growth of the length of the schedules. However, the
simulation relation used to prove Lemma 9.5 does indeed guarantee such a bound; in fact, for each step
of RSk, the step correspondence yields at most two steps of Int1 k.

In the rest of this subsection, we fix Env , an environment for RSk and Int1 k. We also suppress
mention of k everywhere.

9.4.1 State correspondence

Here we define the correspondence R from states of RS‖Env to states of Int1‖Env , which we will show
to be a simulation relation in Section 9.4.2.

In this mapping, most of the correspondences between variables are simple and direct. The one
exception is the correspondences involving the randomly-chosen zval and yval values. Namely, in the
Int1 system, zval is chosen in one step, whereas in the RS system, zval is determined in three steps:
first, yval is chosen randomly, then communicated to Rec, and then used to compute zval. We choose
to allow the steps where zval’s value is determined to correspond at the two levels. Therefore, the states
before zval is determined in the Int1 system correspond to several kinds of states in the RS system,
representing the different stages before zval is determined. In particular, before zval is determined in
the RS system, a distribution on choices of yval in the RS system corresponds to “no choice” in the
Int1 system.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of RS‖Env and
Int1‖Env , respectively, satisfying the following properties:

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exist state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct .inval(Trans) = s.Trans.inval.

(b) u.Funct .inval(Rec) = s.Rec.inval.

(c) u.TR1 .inval(Trans) = s.Trans.inval.

(d) u.TR1 .tdpp = s.Trans.tdpp.

(e) u.TR1 .zval = s.Rec.zval.

(f) u.TR1 .bval = s.Trans.bval.

(g) u.Srctdpp = s.Srctdpp.

(h) u.Srczval.chosenval = s.Rec.zval.

(i) u.Adv = s.Adv .
That is, the entire state is the same.

(j) u.Env = s.Env .

65

2. For every u ∈ supp(lstate(ε2)):
If u.TR1 .zval = ⊥ then one of the following holds:

(a) For every s ∈ supp(lstate(ε1)), s.Srcyval.chosenval = ⊥.
That is, in all the states in the support of lstate(ε1), yval has not yet been chosen.

(b) For every s ∈ supp(lstate(ε1)), s.Rec.yval = ⊥, and lstate(ε1).Srcyval.chosenval is the
uniform distribution on {0, 1} → D.
That is, in all the states in the support of lstate(ε1), yval has already been chosen by the
Srcyval, but has not yet been output to Rec. Moreover, the values chosen by the Src form a
uniform distribution.

(c) lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D.

9.4.2 The mapping proof

Lemma 9.7 The relation R defined in Section 9.4.1 is a simulation relation from RS‖Env to Int1‖Env.
Furthermore, for each step of RS‖Env, the step correspondence yields at most two steps of Int1‖Env,
that is, for every S, T , |corrtasks(S, T)| ≤ 2.

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the the
unique start states s and u of RS‖Env and Int1‖Env , respectively, are R-related. Property 1 of R
holds because the state components of s and u on which R depends are all ⊥. Property 2 of R holds
because s.Srcyval.chosenval = ⊥.
Step condition: We define corrtasks(RSRS‖Env ×RARS‖Env)→ RA∗

Int1‖Env as follows:
For any (S, T) ∈ (RSRS‖Env ×RARS‖Env):

• If T ∈ {{in(x)Trans}, {in(i)Rec}, {choose − randtdpp}, {randtdpp}, {fix − bvalTrans},
{send(1, f)Trans}, {receive(1, f)Rec}, {send(2, z)Rec}, {receive(2, z)Trans}, {send(3, b)Trans},
{receive(3, b)Rec}, or {out(x)Rec}}, then corrtasks(S, T) = T .

• If T is an output or internal task of Env or Adv that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T ∈ {{choose− randyval}, {randyval}} then corrtasks(S, T) = λ (the empty sequence).

• If T = {fix− zvalRec} then corrtasks(S, T) = {choose− randzval} {randzval}.

Suppose (ε1, ε2) ∈ R and T is a task of RS‖Env that is enabled in supp(lstate(ε1)). Let ε′1 =
apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).

The state equivalence property for ε1 and ε2 and Lemma 3.28 imply the state equivalence property
for ε′1 and ε′2; that is, there exist state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env such
that supp(lstate(ε′1)) ⊆ S1 and supp(lstate(ε′2)) ⊆ S2.

Claim 1:

1. The state of Env is the same in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)); let qEnv denote
this state of Env .

This follows from Property 1(j) of R.

2. The state of Adv is the same in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)); let qAdv denote
this state of Adv .

This follows from Property 1(i) of R.

66

Claim 2:

1. If T (defined above) is an output or internal task of Env , then

(a) T is enabled in every state in supp(lstate(ε2)).
To see this, fix any state u ∈ supp(lstate(ε2)); we show that T is enabled in u. Choose any
s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an output or internal task of Env , T
is enabled in s.Env . Since, by Claim 1, u.Env = s.Env , T is enabled in u.Env , and hence in
u, as needed.

(b) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
By the next-action-determinism property for Env , we know that there is a unique action
a ∈ T that is enabled in qEnv . Since T is an output or internal task of Env , a is also the
unique action in T that is enabled in each state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

(c) There is a unique transition of Env from qEnv with action a; let trEnv = (qEnv , a, µEnv) be
this transition.
This follows from next-transition determinism for Env .

2. If T is an output or internal task of Adv , then

(a) T is enabled in every state in supp(lstate(ε2)).
By an argument analogous to the one for Env .

(b) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).
(c) There is a unique transition of Adv from qAdv with action a; let trAdv = (qAdv , a, µAdv) be

this transition.

We establish the step condition by considering cases based on the value of T . In each case, we first
show that the sequence of tasks corrtasks([lstate(ε1)]], T) is enabled in every state in supp(lstate(ε2)).
Then we define a probability measure p on an index set I, and for each j ∈ I, two probability measures
ε′1j and ε′2j , on execution fragments of RS‖Env and Int1‖Env respectively.

The rest of the proof consists of showing, for each j ∈ I, that (ε′1j , ε
′
2j) ∈ R, and that ε′1 =∑

j∈I p(j)(ε′1j) and ε′2 =
∑

j∈I p(j)(ε′2j).
In each case, the two summations will follow easily from the definition of apply(,) and the definitions

of p(j), ε′1j , and ε′2j , so we will not mention them within the individual cases. More specifically, in each
proof case, p satisfies one of the following conditions: (1) p is the Dirac measure on I = {1}, (2) p is
the uniform probability distribution on a finite set I of indices, or (3) p is a probability distribution on
a countable set I such that, for every j ∈ I, p(j) = µ(xj), where µ is a fixed probability distribution
and xj is an element in supp(µ) that is defined within the proof case. Whenever (1) holds, ε′1 and
ε′2 are defined to be ε′11 and ε′21, respectively, so the summation clearly holds. Whenever (2) holds,
the first summation follows from the following facts: (a) Each execution fragment α ∈ supp(ε′1) is in
supp(ε′1j) for a unique j; for every j′ 6= j, ε′1j′(α) = 0. (b) For each execution fragment α ∈ supp(ε′1),
ε′1(α) = p(j)ε′1j(α) for the unique j in property (a); this is because apply(,) causes a choice from a
uniform distribution and because of the way ε′1j is defined. The second summation holds for similar
reasons. The reasoning for case (3) is similar to that for case (2), but using µ instead of the uniform
distibution.

To show that (ε′1j , ε
′
2j) ∈ R, we must establish Properties 1 and 2 of the definition of R for ε′1j and

ε′2j . We must also show the trace distribution equivalence and state equivalence properties for ε′1j and
ε′2j .

The state equivalence property follows for a generic reason: As noted above, there exist state equiva-
lence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env such that supp(lstate(ε′1)) ⊆ S1 and supp(lstate(ε′2)) ⊆
S2. Since supp(ε′1j ⊆ supp(ε′1) and supp(ε′2j ⊆ supp(ε′2), it follows that supp(lstate(ε′1j)) ⊆ S1 and
supp(lstate(ε′2j)) ⊆ S2. This implies state equivalence for ε′1j and ε′2j . Thus, we will not mention the
state equivalence property within the individual proof cases.

We now proceed to consider the proof cases.

67

1. T = {in(x)Trans}.
Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(x)Trans for a particular value of x.

Next, we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p be
the probability measure on index set I such that, for each j ∈ I, p(j) = µEnv (qj). For each
j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of the form α′ a qj ,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; it remains to show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2

of the definition of R for ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

If s.Trans.inval 6= ⊥ then by Properties 1(a) and 1(c), u.Funct .inval(Trans) 6= ⊥ and
u.TR1 .inval(Trans) 6= ⊥. In this case, task T has no effect on any component other than
Env , in either system. Since s′.Env = qj = u′.Env by definition, it is easy to see that Property 1
holds for s′ and u′, and hence, for ε′1 and ε′2.

Now suppose that s.Trans.inval = ⊥.
Then again by Properties 1(a) and 1(c), u.Funct .inval(Trans) = u.TR1 .inval(Trans) = ⊥. Then
by the definitions of RS and Int1 , we know that application of T updates Trans.inval in the RS
system, and Funct .inval(Trans) and TR1 .inval(Trans) in the Int1 system. It also updates the
state of Env in both systems.

We know by Property 1(a) that u.Funct .inval(Trans) = s.Trans.inval, by Property 1(c) that
u.TR1 .inval(Trans) = s.Trans.inval, and by Property 1(j) that u.Env = s.Env . By the ef-
fects of T in the definitions of Trans, Funct, and TR1 , we know that u′.Funct .inval(Trans) =
s′.Trans.inval, and u′.TR1 .inval(Trans) = s′.Trans.inval; hence, Properties 1(a) and 1(c) hold
for s′ and u′. We also know that Property 1(j) holds for s′ and u′ by definition of ε′1j and ε′2j :
in both s′ and u′, the state of Env is qj . Since no state component other than Trans.inval and
Env in the RS system, and Funct .inval(Trans), TR1 .inval(Trans), and Env in the Int1 system,
is updated by the application of T , we conclude that Property 1 holds for s′ and u′, and hence,
for ε′1j and ε′2j .

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2j)) such that u′.TR1 .zval = ⊥.
We need to show that one of the following holds:

(a) For every s′ ∈ supp(lstate(ε′1j)), s′.Srcyval.chosenval = ⊥.

(b) For every s′ ∈ supp(lstate(ε′1j)), s′.Rec.yval = ⊥, and lstate(ε′1j).Srcyval.chosenval is the
uniform distribution on {0, 1} → D.

(c) lstate(ε′1j).Rec.yval is the uniform distribution on {0, 1} → D.

Let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env . By
the effects of T , we know that u.TR1 .zval = u′.TR1 .zval = ⊥. Then, by Property 2 for u, one
of the following holds:

(a) For every s ∈ supp(lstate(ε1)), s.Srcyval.chosenval = ⊥.

(b) For every s ∈ supp(lstate(ε1)), s.Rec.yval = ⊥, and lstate(ε1).Srcyval.chosenval is the
uniform distribution on {0, 1} → D.

(c) lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D.

68

If (a) holds for ε1 and u, then consider any s′ ∈ supp(lstate(ε′1j)). Let s be any state in
supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . We have by (a) that
s.Srcyval.chosenval = ⊥.
By definition of the effects of T , s′.Srcyval.chosenval = s.Srcyval.chosenval = ⊥, and so (a) holds
for ε′1j and u′.

If (b) holds for ε1 and u, then consider any s′ ∈ supp(lstate(ε′1j)). Let s be any state in
supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . We have by (b) that
s.Rec.yval⊥. By the effects of T , s′.Rec.yval = s.Rec.yval = ⊥, so the first part of (b) holds. For
the second part of (b), recall that we have defined ε′1j in such way that for each α ∈ supp(ε′1j),
where α is of the form α′ a qj , we have ε′1j(α) = ε1(α′). Since T transitions do not affect the value
of Srcyval.chosenval, we have that lstate(ε′1j).Srcyval.chosenval = lstate(ε1).Srcyval.chosenval,
and so (b) holds for ε′1j and u′.

If (c) holds for ε1 and u, then we argue as for the second part of (b), using the fact that T
transitions do not affect Rec.yval. Thus, (c) holds for ε′1j and u′. Therefore, in all cases, Property
2 holds for ε′1j and u′, and hence for ε′1j and ε′2j .

Finally, we show that tdist(ε′1j) = tdist(ε′2j). Since ε′1j and ε′2j are derived from ε′1 and ε′2 by
apply(,) and a is the unique action in T that is enabled in all states in supp(ε1) ∪ supp(ε2),
we know that each trace in supp(tdist(ε′1j)) is of the form β1 a, where β1 ∈ supp(tdist(ε1)),
and each trace in supp(tdist(ε′2j)) is of the form β2 a, where β2 ∈ supp(tdist(ε2)). In fact,
tdist(ε′1j)(β1 a) = tdist(ε1)(β1) and tdist(ε′2j)(β2 a) = tdist(ε2)(β2). Since tdist(ε)1 = tdist(ε2),
we have tdist(ε′1j) = tdist(ε′2j), as needed.

2. T = {in(i)Rec}.
Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(i)Rec for a particular value of i.

The rest of the proof for this case follows the proof for T = {in(x)Trans}. The only difference
is that, in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of
T affects only Rec.inval and Env in the RS system, and Funct .inval(Rec) and Env in the Int1
system, and use Properties 1(b) and 1(j) instead of Properties 1(a), 1(c), and 1(j).

3. T = {choose− randtdpp}.
We first show that T is enabled in every state in supp(lstate(ε2)). Thus, fix any state u ∈
supp(lstate(ε2)); we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is
enabled in s and T is an internal task of Srctdpp, T is enabled in s.Srctdpp. The precondition of T
in the definition of Srctdpp implies that s.Srctdpp.chosenval = ⊥. By Property 1(g), u.Srctdpp =
s.Srctdpp. So, T is enabled in u.Srctdpp, and hence in u, as needed.

Next we define the probability measures needed to show the step correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|; that is, p(j) = 1/r
for each j ∈ I. For each j ∈ I, we define probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval
is the jth element in domain Tdp (in some enumeration). For each α ∈ supp(ε′1j) of the form
α′ choose− randtdpp q, let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)).
By definitions of ε′1j and ε′2j , we know that u′.Srctdpp.chosenval = s′.Srctdpp.chosenval. Hence,
Property 1(g) holds for s′ and u′. Since no component other than Srctdpp.chosenval is updated
by the application of T , we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

69

The proof for Property 2 is similar to the corresponding part of the proof for T = {in(x)Trans}.
For trace distribution equivalence, we must show that tdist(ε′1j) = tdist(ε′2j). Since ε′1j and ε′2j are
derived from ε′1 and ε′2 by apply(,) and the actions that are enabled in states in supp(ε1)∪supp(ε2)
are internal, tdist(ε1j) = tdist(ε1) and tdist(ε2j) = tdist(ε2). Since tdist(ε)1 = tdist(ε2), we have
tdist(ε′1j) = tdist(ε′2j), as needed.

4. T = {rand(p)tdpp}.
We first show that T is enabled in every state in supp(lstate(ε2)). Thus, fix any state u ∈
supp(lstate(ε2)); we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is en-
abled in s and T is an output task of Srctdpp, T is enabled in s.Srctdpp and so s.Srctdpp.chosenval 6=
⊥. By Property 1(g) for s and u, u.Srctdpp = s.Srctdpp. So, T is enabled in u.Srctdpp, and hence
in u, as needed.

We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)), as in the proofs for Claim 1 and Claim 2. Here, we use Property 1(g) instead of
1(j).

The probability measures for this case are trivial: Let I be the singleton index set {1}, let p be
the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish

Properties 1 and 2 of R for ε′1 and ε′2, and show trace distribution equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

By definitions of RS and Int1 we know that application of T updates Trans.tdpp in the RS system,
and TR1 .tdpp in the Int1 system. We know by Property 1(d) that u.TR1 .tdpp = s.Trans.tdpp.
By the effects of T in Trans and TR1 , we know that u′.TR1 .tdpp = s′.Trans.tdpp; hence, Property
1(d) holds. Since no component other than Trans.tdpp in the RS system and TR1 .tdpp in the
Int1 system is updated by the application of T , we conclude that Property 1 holds for s′ and u′,
and hence, for ε′1 and ε′2.

The proofs for Property 2 and trace distribution equivalence are similar to the corresponding parts
of the proof for T = {in(x)Trans}, using ε′1 and ε′2 instead of ε′1j and ε′2j .

5. T = {choose− randyval}.
Here, a random choice is made in the RS system but not in the Int1 system.
Since corrtasks([lstate(ε1)], T) = λ, no enabling condition needs to be shown. Also, we have
ε′2 = ε2.

Let p be the Dirac measure on the single index 1 and let ε′11 = ε′1 and ε′21 = ε′2. To show that
(ε′1, ε

′
2) ∈ R, we establish Properties 1 and 2 of R for ε′1 and ε′2, and show trace distribution

equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Since
ε′2 = ε2, we know that u′ ∈ supp(lstate(ε2)). Let s be any state in supp(lstate(ε1)) such that
s′ ∈ supp(µs) where (s, choose − randyval, µs) ∈ DRS‖Env . We know that Property 1 holds for
s and u′. Observe that the application of T updates only the s.Srcyval.chosenval component in
the RS system and the application of λ leaves u′ unchanged. Since Property 1 does not mention
Srcyval.chosenval, we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2)) such that u′.TR1 .zval = ⊥. We
show that Property 2(b) holds; that is, we show that for every s′ ∈ supp(lstate(ε′1)), s′.Rec.yval =
⊥, and lstate(ε′1).Srcyval.chosenval is the uniform distribution on {0, 1} → D.

Consider any s′ ∈ supp(lstate(ε′1)). Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs)
where (s, choose−randyval, µs) ∈ DRS‖Env . Since choose−randyval is enabled in s, we know that
s.Srcyval.chosenval = ⊥. Therefore, by Lemma 6.3, s.Rec.yval = ⊥. Since T does not update
Rec.yval we have s′.Rec.yval = ⊥. Hence, the first part of 2(b) holds.

70

For the second part of 2(b), the effects of T imply that Srcyval.chosenval is chosen according to
the uniform probability distribution on domain {0, 1} → D. So, lstate(ε′1).Srcyval.chosenval is
the uniform distribution on {0, 1} → D, as needed.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

6. T = {rand(y)yval}.
Here, a step is taken in the RS system but not in the Int1 system. Since corrtasks([lstate(ε1)], T) =
λ, no enabling condition needs to be shown, and ε′2 = ε2.

Next, we define the probability measures. Let I be the singleton index set {1}, let p be the Dirac
measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish Properties 1

and 2 of R for ε′1 and ε′2, and show trace distribution equivalence.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Since
ε′2 = ε2, we know that u′ ∈ supp(lstate(ε2)). Let s be any state in supp(lstate(ε1)) such that
s′ ∈ supp(µs) where (s, rand(y)yval, µs) ∈ DRS‖Env and y = (s.Srcyval.chosenval). We know that
Property 1 holds for s and u′. Observe that the application of T updates only the s.Rec.yval
component in the RS system and the application of λ leaves u′ unchanged. Since Property 1 does
not mention Rec.yval, we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2)) such that u′.TR1 .zval = ⊥. We
show that Property 2(c) holds; that is, we show that lstate(ε′1).Rec.yval is the uniform distribution
on {0, 1} → D.

Since u′ ∈ supp(lstate(ε2)), we know that Property 2 holds for u′ and ε1. However, 2(a) cannot
hold because T is enabled in supp(lstate(ε1)), so either 2(b) or 2(c) must hold for u′ and ε1. If 2(b)
holds for u′ and ε1, then consider any s′ ∈ supp(lstate(ε′1)). Let s be any state in supp(lstate(ε1))
such that s′ ∈ supp(µs) where (s, rand(y)yval, µs) ∈ DRS‖Env and y = s.Srcyval.chosenval. We
know that s.Rec.yval = ⊥ and lstate(ε1).Srcyval.chosenval is the uniform distribution on {0, 1} →
D. Then, by the effects of T and the definition of ε′1, s′.Rec.yval 6= ⊥ and lstate(ε′1).Rec.yval is
the uniform distribution on {0, 1} → D, and hence 2(c) holds for u′ and ε′1, as needed.

On the other hand, if 2(c) holds for u′ and ε1, then we know that lstate(ε1).Rec.yval is the uniform
distribution on {0, 1} → D. Since the application of T affects Rec.yval only if it is ⊥, we know
that lstate(ε′1).Rec.yval = lstate(ε1).Rec.yval. Therefore, in this case 2(c) holds for u′ and ε′1, as
needed to show Property 2.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

7. T = {fix− zvalRec}.
Here, a deterministic step in the RS system maps to a random choice in the Int1 system. We first
show that the sequence of tasks {choose − randzval} {randzval} is enabled in supp(lstate(ε2)).
First, consider any state u ∈ supp(lstate(ε2)); we show that {choose − randzval} is enabled in
u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an internal task of Rec,
T is enabled in s.Rec. By the precondition of the fix − zvalRec action in Rec, we know that
s.Rec.zval = ⊥. By Property 1(h) for s and u, u.Srczval.chosenval = ⊥. So, {choose− randzval}
is enabled in u, as needed.

Now, let ε′′2 be the measure apply(ε2, {choose− randzval}). We claim that {rand(z)zval} is en-
abled in supp(lstate(ε′′2)). Consider any state u′′ ∈ supp(lstate(ε′′2)). By the effect of {choose −
randzval}, we know that u′′.Srczval.chosenval 6= ⊥, which is the only precondition on actions in
{rand(z)zval}. Thus, {rand(z)zval} is enabled in supp(lstate(ε′′2)), as needed.

Next, we claim that lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D. To see this,
consider any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since s.Rec.zval = ⊥,

71

by Property 1(e), we have u.TR1 .zval = ⊥. Then by Property 2 for u and ε1, we know that one
of the following holds:

(a) s.Srcyval.chosenval = ⊥.

(b) s.Rec.yval = ⊥ and lstate(ε1).Srcyval.chosenval is the uniform distribution on {0, 1} → D.

(c) lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D.

However, since T is enabled in supp(lstate(ε1)), we know that s.Rec.yval 6= ⊥, so (b) can-
not hold. Using Lemma 6.3, we see that also (a) cannot hold. Therefore, (c) holds; that is,
lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D, as needed.

Next, we show that lstate(ε′1).Rec.zval is the uniform distribution on {0, 1} → D: By Property
1(b), Rec.inval is the same in all states in supp(lstate(ε1)). By Lemma 6.4 5(b) and Property
1(d), Rec.tdp is the same in every state in supp(lstate(ε1)). The effect of a fix− zvalRec action
gives Rec.zval(inval) = tdp(yval(inval)) and Rec.zval(1 − inval) = yval(1 − inval) where tdp
is a permutation. Thus, since lstate(ε1).Rec.yval is the uniform distribution on {0, 1} → D, it
follows that lstate(ε′1).Rec.zval is also the uniform distribution on {0, 1} → D.

Next, we define the probability measures needed to show the step correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |{0, 1} → D| = |D|2. That
is, p(j) = 1/r for each j ∈ I. For each j ∈ I, we define probability measure ε′1j as follows. The
support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Rec.zval is
the jth element of the domain {0, 1} → D. For each α ∈ supp(ε′1j) of the form α′ fix− zvalRec q,
let ε′1j(α) = ε1(α′). Similarly, we define probability measure ε′2j as follows. The support supp(ε′2j)
is the set of execution fragments α ∈ supp(ε′2) such that lstate(α).TR1 .zval is the jth element of
the domain {0, 1} → D. For each α ∈ supp(ε′2j) of the form α′ choose− randzval q randzvalq

′, let
ε′2j(α) = ε2(α′).

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). By
definitions of RS and Int1 , we know that application of T updates Rec.zval in the RS system
and application of the sequence {choose − randzval} {randzval} updates Srczval.chosenval and
TR1 .zval in the Int1 system. We show that Properties 1(e) and 1(h) hold for u′ and s′.

Property 1(e) follows from the definitions of ε′1j and ε′2j ; both actions give the same element of
the domain {0, 1} → D when projected onto Rec.zval and TR1 .zval. For Property 1(h), we
use the fact that u′.TR1 .zval = s′.Rec.zval, and we observe in addition that if u′.TR1 .zval 6=
⊥, then u′.TR1 .zval = u′.Srczval.chosenval, by Lemma 9.3. Since no state component other
than Rec.zval in the RS system is updated by the application of T , and no state component
other than TR1 .zval(Trans) and Srczval.chosenval is updated by the application of {choose −
randzval} {randzval} in the Int1 system, we conclude that Property 1 holds for s′ and u′, and
hence, for ε′1 and ε′2.

Property 2 holds trivially in this case since for any state u′ ∈ supp(lstate(ε′2j)), we have
u′.TR1 .zval 6= ⊥ by definition of ε′2j .

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

8. T = {fix− bvalTrans}
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an internal task of Trans, T is enabled in s.Trans, and s.Trans.zval 6= ⊥, s.Trans.tdpp 6= ⊥,
s.Trans.inval 6= ⊥, and s.Trans.bval = ⊥. By Property 1(c), u.TR1 .inval(Trans) = s.Trans.inval 6=
⊥. By Property 1(d), u.TR1 .tdpp = s.Trans.tdpp 6= ⊥. By Lemma 6.4 7(b), s.Rec.zval 6= ⊥, and

72

by Property 1(e), u.TR1 .zval = s.Rec.zval 6= ⊥. Finally, by Property 1(f), u.TR1 .bval = ⊥. So,
T is enabled in u.TR1 , and hence in u, as needed.

Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2.
To show that (ε′1, ε

′
2) ∈ R, we establish Properties 1 and 2 of R for ε′1 and ε′2, and show trace

distribution equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs), where (s, fix − bvalTrans , µs) ∈
DRS‖Env . Similarly, let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu), where (u, fix−
bvalTrans , µu) ∈ DInt1‖Env .

By definitions of RS and Int1 we know that application of T updates Trans.bval in the RS
system and TR1 .bval in the Int1 system. By the effects of T in the two systems, we know that
u′.TR1 .bval = s′.Trans.bval; hence, Property 1(f) holds. Since no state component other than
Trans.bval in the RS system, and TR1 .bval in the Int1 system is updated by the application of
T , we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2)). We show that u′.TR1 .zval 6= ⊥,
and therefore Property 2 of R holds trivially. Let u be some state in supp(lstate(ε2)) such that
u′ ∈ supp(µu) where (u, fix− bvalTrans , µu) ∈ DInt1‖Env . Since T is enabled in u, we know that
u.TR1 .zval 6= ⊥. By the effects of T , we know that u′.TR1 .zval = u.TR1 .zval 6= ⊥, as claimed.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

9. T = {send(1, f)Trans}.
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an output task of Trans, T is enabled in s.Trans, and so s.Trans.tdpp 6= ⊥. By Property 1(d),
u.TR1 .tdpp = s.Trans.tdpp. So, T is enabled in u.TR1 , and hence in u, as needed.

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(d) that variables Trans.tdpp and TR1 .tdpp have the
same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Since the parameter f in send(1, f)Trans is defined to be Trans.tdpp.funct, we conclude that
the action send(1,Trans.tdpp.funct) is the unique action in T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)). We use a to refer to send(1,Trans.tdpp.funct) in the rest of
the proof for this case.

Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2.
To show that (ε′1, ε

′
2) ∈ R, we establish Properties 1 and 2 of R for ε′1 and ε′2, and show trace

distribution equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

By definitions of RS and Int1 we know that application of T updates only Adv .messages in both
the RS and Int1 systems. By Property 1(i), u.Adv = s.Adv . It is obvious that u′.Adv = s′.Adv
and that 1(i) holds, since Adv is the same automaton in both systems. Since no component other
than Adv .messages is updated, we conclude that Property 1 holds for s′ and u′, and hence, for
ε′1 and ε′2.

The proofs for Property 2 and trace distribution equivalence are similar to the corresponding parts
of the proof for T = {in(x)Trans}, using ε′1 and ε′2 instead of ε′1j and ε′2j .

10. T = {send(2, z)Rec}.
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T

73

is an output task of Rec, T is enabled in s.Rec, and therefore s.Rec.zval 6= ⊥. By Property 1(e),
u.TR1 .zval = s.Rec.zval 6= ⊥. So, T is enabled in u.Rec, and hence in u, as needed.

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(e) that variables Rec.zval and TR1 .zval have the same
unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)), and there is a unique action
a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Note that here a is
send(2, z)Rec for a fixed value of z.

The rest is identical to the proof for T = {send(1, f)Trans}.

11. T = {send(3, b)Trans}.
The proof that T is enabled in every state in supp(lstate(ε2)) is analogous to the corresponding
part of the proof for T = {send(1, f)Trans}, using Property 1(f) instead of 1(d).

We also show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)), arguing as in the case for T = {send(1, f)Trans}. Here, the unique action is
determined by fixing the value of parameter b to the value of variables Trans.bval and TR1 .bval,
which is the same in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

The rest of the proof is identical to the proof for T = {send(1, f)Trans}.

12. T = {receive(1, f)Rec}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here,
a is receive(1, f)Rec for a fixed value of f .

The rest is similar to the proof for T = {send(1, f)Trans}. The only difference is that in showing
that Property 1 holds, we use the fact that application of T updates only Rec.tdp in RS and that
R does not depend on this component.

13. T = {receive(2, z)Trans}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here
a is receive(2, z)Trans for a fixed value of z.

The rest of the proof differs from the proof for T = {receive(1, f)Rec} only in showing that
Property 1 holds; here we use the fact that the application of T updates Trans.zval only, which
has no effect R.

14. T = {receive(3, b)Rec}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here
a is receive(3, b)Rec for a fixed value of b.

The rest of the proof differs from the porof for T = {receive(1, f)Rec} only in showing that
Property 1 holds; here, we use the fact that the application of T updates Rec.outval only, which
has no effect on R.

15. T = {out(x)Rec}.
We first show that T is enabled in every state in supp(lstate(ε2)). So, fix any state u ∈
supp(lstate(ε2)); we show that T is enabled in u. Note that T is an output task of Funct in
the Int1 system. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an output
task of Rec in RS , T is enabled in s.Rec and s.Rec.outval 6= ⊥. Then, by Lemma 6.4 9(b), we know

74

that s.Rec.outval = s.Trans.inval(s.Rec.inval) 6= ⊥. By Property 1(a), u.Funct .inval(Trans) =
s.Trans.inval and by Property 1(b) u.Funct .inval(Rec) = s.Rec.inval. Therefore, we have that
u.Funct .inval(Trans) 6= ⊥ and u.Funct .inval(Rec) 6= ⊥. So, T is enabled in u.Funct , and hence
in u, as needed.

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(a) that Trans.inval is the same in all states in
supp(lstate(ε1)) and by Property 1(b) that Rec.inval is the same in all states in supp(lstate(ε1)).
Since T is enabled in supp(lstate(ε1)), we know by the precondition of actions in T and by
Lemma 6.4 9(b) that out(s.Trans.inval(s.Rec.inval)) is the unique action in T that is enabled in
supp(lstate(ε1)). We use a to refer to out(s.Trans.inval(s.Rec.inval)) in the rest of the proof for
this case. Similarly, by Property 1(a) we know that Funct .inval(Trans) is the same in all states in
supp(lstate(ε2)) and is equal to Trans.inval. By Properties 1(b) we know that Funct .inval(Rec)
is the same in all states in supp(lstate(ε2)) and is equal to Rec.inval. Hence, a is also the unique
action that is enabled in supp(lstate(ε2)), and thus in supp(lstate(ε1)) ∪ supp(lstate(ε2)), as
needed.

Then next-transition determinism for Env implies that there is a unique transition of Env from
qEnv with action a. Let trEnv = (qEnv , a, µEnv) be this unique transition.

Next we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p be
the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For each
j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of the form α′ a qj ,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

By the definitions of the RS and Int1 systems, we know that application of T does not update
any state component of RS or Int1 ; however, it may update the state of Env in both systems.
Since Property 1 holds for s and u, we know that all the parts of Property 1 except possible for
1(j) also hold for s′ and u′. We also know that 1(j) holds for s′ and u′ by definition of ε′1j and
ε′2j : in both s′ and u′, the state of Env is qj . Thus, Property 1 holds for s′ and u′, and hence, for
ε′1 and ε′2.

The proofs for Property 2 and trace distribution equivalence are similar to the corresponding parts
of the proof for T = {in(x)Trans}.

16. T is an output task of Env and an input task of Adv .

Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Also,
by next-transition determinism, it follows that there is a unique transition of Adv with action a
from qAdv . Let trAdv = (qAdv , a, µAdv) be this transition.

Suppose that supp(µEnv × µAdv) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is a
countable index set. Let p be the probability measure on the index set I such that, for each j ∈ I,
p(j) = (µEnv × µAdv)(q1j , q2j). For each j ∈ I, we define probability measure ε′1j as follows. The
support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env = q1j

and lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let ε′1j(α) = ε1(α′). We
construct ε′2j analogously from ε′2.

75

In the rest of the proof we proceed as for T = {in(x)Trans}. The only difference is that in showing
Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects only the
states of Adv and Env (by definition of the RS and Int1 systems) and use Properties 1(i) and
1(j).

17. T is either an output task of Env that is not an input task of Adv , Trans, or Rec, or is an internal
task of Env .

Since T is an output or internal task of Env , Claim 2 implies that T is enabled in every
state in supp(lstate(ε2)), that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), and that there is a unique transition trEnv = (qEnv , a, µEnv)
of Env from qEnv with action a.

To show the step correspondence, we proceed as for T = {in(x)Trans}. The only difference is that
in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects
only the state of Env , and use Property 1(j).

18. T is an output task of Adv and an input task of Env .

Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Also,
by next-transition determinism, it follows that there is a unique transition of Env with action a
from qEnv . Let trEnv = (qEnv , a, µEnv) be this transition.

To show the step correspondence, we proceed as for T = {in(x)Trans}, using Properties 1(i) and
1(j).

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

19. T is either an output task of Adv that is not an input task of Env , Trans, or Rec, or is an internal
task of Adv .

Since T is an output or internal task of Adv , Claim 2 implies that T is enabled in every
state in supp(lstate(ε2)), that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), and that there is a unique transition trAdv = (qAdv , a, µAdv)
of Adv from qAdv with action a.

To show the step correspondence, we proceed as for T = {in(x)Trans}, but using Adv instead
of Env . In showing that Property 1 holds for ε′1j and ε′2j , for a fixed j, we use the fact that
application of T affects only the state of Adv (by definition of RS and Int1) and use Property
1(i).

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

2

Proof. (Of Lemma 9.5:)
By Lemma 9.7, R is a simulation relation from RSk‖Env to Int1 k‖Env . Then Theorem 3.53 implies that
tdists(RSk‖Env) ⊆ tdists(Int1 k‖Env). Since Env was chosen arbitrarily, this implies (by definition of
≤0) that RSk ≤0 Int1 k. 2

Proof. (Of Lemma 9.6:)
By Lemma 9.7, R is a simulation relation from RSk‖Env to Int1 k‖Env for which |corrtasks(S, T)| ≤ 2
for every S and T . Also, note that Lemma 9.7 holds for every k and for every environment Env for RS
and Int1 (without any time-bound assumption). Thus, the hypotheses of Theorem 3.86 are satisfied,
so by that theorem, RS ≤neg,pt Int1 . 2

76

9.5 Int1 implements Int2

This step introduces an ε-approximation into the implementation relation, for some negligible function
ε that is obtained from the definition of a hard-core predicate. We show:

Lemma 9.8 Assume that Adv is a polynomial-time-bounded family of adversary automata. Then
Int1 ≤neg,pt Int2 .

In order to prove this lemma, we consider the following two task-PIOA families, SInt1 and SInt2 ,
which are subsystems of the Int1 and Int2 families respectively:

• SInt1 = hide{rand(∗)tdpp}∪{rand(∗)zval}(TR1‖Srctdpp‖Srczval),

• SInt2 = hide{rand(∗)tdpp}∪{rand(∗)zval}∪{rand(∗)cval}(TR2‖Srctdpp‖Srczval‖Srccval).

Next, using mappings of the sort we used in Section 9.4, we will show that SInt1 ≤0 SHOT and
SHROT ≤0 SInt2 or, more precisely, that SInt1 k ≤0 SHOTk and SHROTk ≤0 SInt2 k for every k.
In the rest of this subsection, we suppress the mention of k everywhere.

Finally, using the properties of these mappings and the different properties of the ≤neg,pt relation,
we will prove the expected relation.

9.5.1 The SInt1 subsystem implements SHOT

Fix any environment Env ′ for both SInt1 and SHOT . We define a simulation relation R from
SInt1‖Env ′ to SHOT‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SInt1‖Env ′ and
SHOT‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence properties.
Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Ifc.xval = s.TR1 .inval(Trans).
(b) if s.Srctdpp.chosenval 6= ⊥ then u.Srctdp.chosenval = s.Srctdpp.chosenval.funct.
(c) u.Srcyval0.chosenval = ⊥ iff s.Srczval.chosenval = ⊥.
(d) u.Srcyval1.chosenval = ⊥ iff s.Srczval.chosenval = ⊥.
(e) if s.Srczval.chosenval 6= ⊥ then

u.H0.yval = s.Srctdpp.chosenval.inverse(s.Srczval.chosenval(0)) and
u.H1.yval = s.Srctdpp.chosenval.inverse(s.Srczval.chosenval(1))

(f) u.H0.zval = s.Srczval.chosenval(0) and u.H1.zval = s.Srczval.chosenval(1).
(g) if s.TR1 .tdpp 6= ⊥ then u.Ifc.fval = s.TR1 .tdpp.funct.
(h) u.Ifc.zval = s.TR1 .zval.
(i) If u.Ifc.bval 6= ⊥ then u.Ifc.bval = B(s.TR1 .tdpp.inverse(s.TR1 .zval)).
(j) u.Ifc.bxorx = s.TR1 .bval.
(k) u.Env ′ = s.Env ′.

2. For every s ∈ support(lstate(ε1)):
If s.Srctdpp.chosenval = ⊥ then one of the following holds:

(a) s.Srczval.chosenval = ⊥ and, for every u ∈ support(lstate(ε2)), u.Srctdp.chosenval = ⊥.
(That is, f has not yet been chosen in SHOT .)

(b) s.Srczval.chosenval 6= ⊥ and, for every u ∈ support(lstate(ε2)), u.Srctdp.chosenval 6= ⊥,
and u.Ifc.fval = ⊥; also lstate(ε2).Srctdp.chosenval is the uniform distribution on Tdp.
(That is, the choice has already been made in SHOT , but has not yet been communicated
by Srctdp to H0, H1, and Ifc.)

77

(c) s.Srczval.chosenval 6= ⊥ and lstate(ε2).Ifc.fval is the uniform distribution on Tdp. (That is,
the choice has already been made in SHOT , and communicated to the other components.)

Lemma 9.9 The relation R defined above is a simulation relation from SInt1‖Env′ to SHOT‖Env′.
Furthermore, for each step of SInt1‖Env′, the step correspondence yields at most eight steps of
SHOT‖Env′, that is, for every S, T , |corrtasks(S, T)| ≤ 8.

there are several possible step correspondences, and we are not sure that we exhibit the most efficient
one. Maybe we could formulate these lemmas as:

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SInt1‖Env ′ and SHOT‖Env ′, respectively, are R-related. Property 1 of R holds
because the state components of s and u on which R depends are all ⊥. Property 2 of R holds because
s.Srczval.chosenval = ⊥ and u.Srctdp.chosenval = ⊥.
Step condition: We define corrtasks(RSSInt1‖Env ′ ×RASInt1‖Env ′)→ RA∗

SHOT‖Env ′ as follows:
For any (S, T) ∈ (RSSInt1‖Env ′ ×RASInt1‖Env ′):

• If T = {in(x)Trans} then corrtasks(S, T) = {in(x)Trans}.

• If T = {choose−randtdpp} and s.Srczval.chosenval = ⊥ in every state s of S then corrtasks(S, T) =
{choose− randtdp}.

• If T = {choose−randtdpp} and s.Srczval.chosenval 6= ⊥ in every state s of S then corrtasks(S, T) =
λ.

• If T = {choose − randzval} and s.TR1.tdpp 6= ⊥ in every state s of S then corrtasks(S, T) =
{choose−randyval0}{choose−randyval1}{rand(y)yval0}{rand(y)yval1}{fix−zval0}{fix−zval1}.

• If T = {choose− randzval} and s.TR1.tdpp = ⊥ and s.Srctdpp.chosenval 6= ⊥ in every state s of
S then corrtasks(S, T) = {rand(f)tdp}{choose − randyval0}{choose − randyval1}{rand(y)yval0}
{rand(y)yval1}{fix − zval0}{fix − zval1}. This case corresponds to the fact that the random
permutation has already been chosen in SHOT , but not yet transmitted to H0 and H1.

• If T = {choose−randzval} and s.Srctdpp.chosenval = ⊥ in every state s of S then corrtasks(S, T) =
{choose − randtdp}{rand(f)tdp}{choose − randyval0}{choose − randyval1}{rand(y)yval0}
{rand(y)yval1}{fix − zval0}{fix − zval1}. This case corresponds to the fact that the random
permutation has not yet been chosen in SHOT .

• If T = {rand(p)tdpp} then corrtasks(S, T) = {rand(f)tdp}.

• If T = {rand(z)zval} then corrtasks(S, T) = {rand(z)zval0}{rand(z)zval1}.

• If T = {fix − bvalTrans} then corrtasks(S, T) = {fix − bval0}{fix − bval1}{rand(b)bval0}
{rand(b)bval1}{fix− bxorx}.

• If T ∈ {{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}} then corrtasks(S, T) = {T}.

There are two interesting points in this correspondence. The first one comes from the fact that
the z-values are chosen randomly in Int1 while they are computed as the image of randomly selected
y-values through the permutation f in SHOT . This difference imposes that, in SHOT , the trapdoor
permutation f must have been selected in order to be able to compute the z-values.

The second interesting point comes from the fact that the b-values are computed as B(f−1(z)) in
SInt1 and as B(y) in SHOT . As a consequence of this, f must have been selected in order to compute
the b-values in SInt1 , while this is not necessary in SHOT . However, this does not require any specific
treatment here as the corrtasks function is only applied on enabled tasks: it is therefore not possible
that SHOT performs a fix− bvalTrans step without any corresponding step of Int1 .

78

Suppose (ε1, ε2) ∈ R and T is a task of SInt1‖Env ′ that is enabled in supp(lstate(ε1)). Let ε′1 =
apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).

The proof follows the same outline as that of Lemma 9.7. State equivalence follows as in that proof.
Identical versions of Claim 1 and Claim 2 in that proof carry over for Env′ to this case. We again
consider cases based on the values of T (and S when needed).

1. T = {in(x)Trans} then corrtasks(S, T) = {in(x)Trans}
The treatment of this case is similar as the one described in the proof of Lemma 9.7.

2. T = {choose− randtdpp} and s.Srczval.chosenval = ⊥ in every state s of S.

We first show that T ′ = corrtasks(S, T) = {choose − randtdp} is enabled in every state in
supp(lstate(ε2)). Thus, fix any state u ∈ supp(lstate(ε2)); we show that T ′ is enabled in u. Choose
any s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an internal task of Srctdpp, T is enabled in
s.Srctdpp. The precondition of T in the definition of Srctdpp implies that s.Srctdpp.chosenval = ⊥.
Now, since Srczval.chosenval = ⊥ and ε1Rε2, we know that s.Srctdp.chosenval = ⊥.

Next, we define the probability measures needed to show the correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|; that is, p(j) = 1/r
for each j ∈ I. For each j ∈ I, we define the probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval
is the j-th element in domain Tdpp (in some enumeration). For each α ∈ supp(ε′1j) of the form
α′choose − randtdppq, let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2, assuming that
the enumeration of the elements of the domain of Tdp is performed in the same order as the
enumeration of the permutation pairs of Tdpp, that is, the j-th permutation of Tdp is also the
j-th permutation of Tdpp.

Now, it is easy to check that ε′1jRε′2j : for any states s′ ∈ supp(lstate(ε′1j) and u′ ∈ supp(lstate(ε′2j)
the only updated components are s′.Srctdpp.chosenval and u′.Srctdp.chosenval, they are different
from ⊥ and s′.Srctdpp.chosenval.funct = u′.Srctdp.chosenval.

3. T = {choose− randtdpp} and s.Srczval.chosenval 6= ⊥ in every state s of S.

Since, in that case, corrtasks([lstate(ε1)], T) = λ, no enabling condition needs to be shown and
ε′2 = ε2.

Next, we define the probability measures needed to show the correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|; that is, p(j) = 1/r
for each j ∈ I. For each j ∈ I, we define the probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval
is the j-th element in domain Tdpp (in some enumeration). For each α ∈ supp(ε′1j) of the form
α′choose− randtdppq, let ε′1j(α) = ε1(α′).

Now, we define ε′2j from ε′2. The support supp(ε′2j) is the set of execution fragments α ∈ supp(ε′2)
such that lstate(α).Srctdp.chosenval is the j-th element in domain Tdp (according to the same
enumeration as above). Furthermore, for each α ∈ supp(ε′2j), let ε′2j(α) = ε′2(α) (this is acceptable
since lstate(ε′2).Srctdp.chosenval is the uniform distribution on Tdp).

Now, it is easy to check that ε′1jRε′2j : for any states s′ ∈ supp(lstate(ε′1j) and u′ ∈ supp(lstate(ε′2j)
the only updated component is s′.Srctdpp.chosenval, which becomes different from ⊥, and
s′.Srctdpp.chosenval.funct = u′.Srctdp.chosenval.

4. T = {choose− randzval} and s.TR1.fval 6= ⊥ in every state s of S.

We first check that all tasks in the sequence corrtasks(S, T) = {choose − randyval0}{choose −
randyval1}{rand(y)yval0} {rand(y)yval1}{fix − zval0}{fix − zval1} are enabled. Thus, fix any
state u ∈ supp(lstate(ε2)); we show that the sequence of tasks corrtasks(S, T) is enabled in u.
Choose any s ∈ supp(lstate(ε1)).

79

The {choose− randyval0} and {choose− randyval1} tasks are enabled because R guarantees that
u.Srcyval0.chosenval = ⊥ and u.Srcyval1.chosenval = ⊥ when s.Srczval.chosenval = ⊥, which is
the case since T = {choose− randzval} is enabled.

Next, {rand(y)yval0} and {rand(y)yval1} are enabled because u.Srcyval0.chosenval 6= ⊥ and
u.Srcyval1.chosenval 6= ⊥ now. Finally, the {fix − zval0} and {fix − zval1} tasks are enabled
because

• u.H0.fval 6= ⊥ and u.H1.fval 6= ⊥, which is guaranteed by the assumption that s.TR1.fval 6=
⊥

• u.H0.yval 6= ⊥ and u.H1.yval 6= ⊥, which is guaranteed by the execution of the {rand(y)yval0}
and {rand(y)yval1} tasks just before.

Next, we define the probability measures needed to show the correspondence. Let p be the uniform
probability measure on the index set I = {1 · · · r} where r = |D|2; that is, p(j) = 1/r for each
j ∈ I.

The support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srczval.
chosenval is the j-th element in domain {0, 1} → D (in some enumeration). For each α ∈
supp(ε′1j) of the form α′choose− randzvalq, let ε′1j(α) = ε1(α′).

Now, we define ε′2j from ε′2. The support supp(ε′2j) is the set of execution fragments α ∈ supp(ε′2)
such that (lstate(α).H0.zval, lstate(α).H1.zval) = (z(0), z(1)) where z is the j-th element in
domain {0, 1} → D (according to the same enumeration as above). This correspondence preserves
the trace distributions since u.Srcyval0.chosenval and u.Srcyval1.chosenval are selected from D
according to the uniform distribution and u.H0.zval and u.H1.zval are computed as the image
of these two elements of D through a permutation.

Now, it is easy to check that ε′1jRε′2j : for any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j))
the only updated components are

• s′.Srczval.chosenval, u′.Srcyval0.chosenval and u′.Srcyval1.chosenval which all become dif-
ferent from ⊥, and

• u′.H0.zval and u′.H1.zval which remain equal to s′.Srczval.chosenval(0) and s′.Srczval.
chosenval(1).

5. T = {choose− randzval} and s.TR1.tdpp = ⊥ and s.Srctdpp.chosenval 6= ⊥ in every state s of S.

corrtasks(S, T) is defined in the same way as in the previous case, except that we add a new task
at the beginning of corrtasks(S, T): {rand(f)tdp}.
This task is enabled since we now that s.Srctdpp.chosenval 6= ⊥ in every state s of S. Now, we
can define the probability measures needed to show the correspondence in a similar way as in
the previous case. The state variables which are changed in this case are those considered in the
previous case, except H0.fval, H1.fval and Ifc.fval which were equal to ⊥ in all states of ε2
and become the uniform distribution on Tdp in ε′2.

6. T = {choose− randzval} and s.Srctdpp.chosenval = ⊥ in every state s of S.

corrtasks(S, T) is defined in the same way as in the previous case, except that we add a new task
at the beginning of corrtasks(S, T): {choose− randtdp}.
This task is enabled since we now that s.Srctdpp.chosenval = ⊥ in every state s of S. Furthermore,
executing {choose− randtdp} enables the {rand(f)tdp} task. The other tasks are enabled for the
same reasons as above.

Now, we can define the probability measures needed to show the correspondence in a similar way
as in the previous case. The state variables which are changed in this case are those considered
in the previous case, except Srctdp.chosenval which was equal to ⊥ in all states of ε2 and become
the uniform distribution on Tdp in ε′2.

80

7. T = {rand(p)tdpp}.
The treatment of this case is similar to the corresponding one in the proof of Lemma 9.7.

8. T = {rand(z)zval}.
The treatment of this case is similar to the corresponding one in the proof of Lemma 9.7.

9. T = {fix− bvalTrans}.
We first check that all tasks in the sequence corrtasks(S, T) = {fix − bval0}{fix − bval1}
{rand(b)bval0}{rand(b)bval1}{fix− bxorx} are enabled. Thus, fix any state u ∈ supp(lstate(ε2));
we show that the sequence of tasks corrtasks(S, T) is enabled in u. Choose any s ∈ supp(lstate(ε1)).

The fact that T is enabled in s guarantees that s.TR1 .tdpp 6= ⊥, s.TR1 .zval 6= ⊥,
s.TR1 .inval(Trans) 6= ⊥ and s.TR1 .bval = ⊥. We then conclude that:

• the {fix−bval0} and {fix−bval1} tasks are enabled since they only require that u.H0.yval 6=
⊥ and u.H1.yval 6= ⊥, which is guaranteed by the fact that s.TR1 .zval 6= ⊥,

• the {rand(b)bval0} and {rand(b)bval1} tasks are enabled since they only require u.H0.bval 6=
⊥ and u.H1.bval 6= ⊥, which is guaranteed by the fact that we just executed the the {fix−
bval0} and {fix− bval1} tasks.

• the {fix− bxorx} is enabled since it requires that:

– u.Ifc.bval(i) 6= ⊥ (i ∈ {0, 1}, which is guaranteed by the fact that we just executed the
{rand(b)bval0} and {rand(b)bval1} tasks,

– u.Ifc.xval 6= ⊥, which is guaranteed by the fact that s.TR1 .inval(Trans) 6= ⊥ and the
relation R,

– u.Ifc.fval 6= ⊥, which is guaranteed by the fact that s.TR1 .tdpp 6= ⊥ and the relation
R,

– u.Ifc.zval 6= ⊥, which is guaranteed by the fact that s.TR1 .zval 6= ⊥ and the relation
R,

– u.Ifc.bxorx = ⊥, which is guaranteed by the fact that s.TR1 .bval = ⊥ and the relation
R.

s.TR1 .bval(i) and u.Ifc.bxorx compute the same values in SInt1 and SHOT , so the remaining
part of the mapping do not raise any specific problem.

10. T ∈ {{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}}
The treatment of these cases is similar to the corresponding ones in the proof of Lemma 9.7.

2

9.5.2 SHROT implements the Int2 subsystem

Fix any environment Env ′ for both SHROT and SInt2 . We define a simulation relation R from
SHROT‖Env ′ to SInt2‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SHROT‖Env ′ and
SInt2‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence properties.
Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) s.Ifc.xval = u.TR2 .inval(Trans).

(b) s.Srctdp.chosenval = u.Srctdpp.chosenval.funct.

(c) s.Ifc.fval = u.TR2 .tdpp.funct.

81

(d) u.Srczval.chosenval 6= ⊥ iff for i ∈ {0, 1}, s.Srczvali 6= ⊥.

(e) If u.Srczval.chosenval 6= ⊥ then for i ∈ {0, 1}, u.Srczval.chosenval(i) = s.Srczvali.

(f) u.Srccval.chosenval 6= ⊥ iff for i ∈ {0, 1}, s.Srcbvali 6= ⊥.

(g) If u.Srccval.chosenval 6= ⊥ then for i ∈ {0, 1}, u.Srccval.chosenval(i) = s.Srcbvali.

(h) u.TR2 .zval 6= ⊥ iff for i ∈ {0, 1}, s.Ifc.zval(i) 6= ⊥.

(i) If u.TR2 .zval 6= ⊥ then u.TR2 .zval = s.Ifc.zval.

(j) u.TR2 .cval 6= ⊥ iff for i ∈ {0, 1}, s.Ifc.bval(i) 6= ⊥.

(k) If u.TR2 .cval 6= ⊥ then u.TR2 .cval = s.Ifc.bval.

(l) s.Ifc.bxorx = u.TR2 .bval.

(m) u.Env ′ = s.Env ′.

2. For every u ∈ supp(lstate(ε1)):

(a) If u.Srczval.chosenval = ⊥ then one of the following holds:

i. For every s ∈ supp(lstate(ε1)), for i ∈ {0, 1}, s.Srczvali = ⊥.
ii. For some i ∈ {0, 1}: for every s ∈ supp(lstate(ε1)), s.Srczvali = ⊥, and s.Srczval(1−i).

chosenval is the uniform distribution on D.

(b) If u.Srccval.chosenval = ⊥ then one of the following holds:

i. For every s ∈ supp(lstate(ε1)), for i ∈ {0, 1}, s.Srcbvali = ⊥.
ii. For some i ∈ {0, 1}: for every s ∈ supp(lstate(ε1)), s.Srcbvali = ⊥, and s.Srcbval(1−i).

chosenval is the uniform distribution on {0, 1}.

Lemma 9.10 The relation R defined above is a simulation relation from SHROT‖Env′ to SInt2‖Env′.
Furthermore, for each step of SHROT‖Env′, the step correspondence yields at most one step of
SInt2‖Env′, that is, for every S, T , |corrtasks(S, T)| ≤ 1.

Proof. We show that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SInt2‖Env ′ and SHROT‖Env ′, respectively, are R-related. The two properties
of R hold because the state components of s and u on which R depends are all ⊥.
Step condition: We define corrtasks(RSSHROT‖Env ′ ×RASHROT‖Env ′)→ RA∗

SInt2‖Env ′ as follows:
For any (S, T) ∈ (RSSHROT‖Env ′ ×RASHROT‖Env ′):

• If T = {in(x)Trans} then corrtasks(S, T) = T .

• If T = {choose− randtdp} then corrtasks(S, T) = {choose− randtdpp}.

• If T = {rand(f)tdp} then corrtasks(S, T) = {rand(p)tdpp}.

• For i ∈ {0, 1}:

1. If T = {choose − randzval(i)} and s.Srczval(1−i).chosenval = ⊥ in every state s of S then
corrtasks(S, T) = λ.

2. If T = {choose − randzval(i)} and s.Srczval(1−i).chosenval 6= ⊥ in every state s of S then
corrtasks(S, T) = {choose− randzval}.

3. If T = {rand(z)zval(i)} and s.Ifc.zval(1− i) = ⊥ in every state s of S then corrtasks(S, T) =
λ.

4. If T = {rand(z)zval(i)} and s.Ifc.zval(1− i) 6= ⊥ in every state s of S then corrtasks(S, T) =
{rand(z)zval}.

82

• For i ∈ {0, 1}:

1. If T = {choose − randbval(i)} and s.Srcbval(1−i).chosenval = ⊥ in every state s of S then
corrtasks(S, T) = λ.

2. If T = {choose − randbval(i)} and s.Srcbval(1−i).chosenval 6= ⊥ in every state s of S then
corrtasks(S, T) = {choose− randcval}.

3. If T = {rand(b)bval(i)} and s.Ifc.bval(1− i) = ⊥ in every state s of S then corrtasks(S, T) =
λ.

4. If T = {rand(b)bval(i)} and s.Ifc.bval(1− i) 6= ⊥ in every state s of S then corrtasks(S, T) =
{rand(c)cval}.

• If T = {fix− bxorx} then corrtasks(S, T) = {fix− bvalTrans}.

• If T ∈ {{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}} then corrtasks(S, T) = T .

The only interesting cases are those corresponding to the selection and to the transmission of
s.Src.zval(i).chosenval and s.Src.bval(i).chosenval. Each of these pairs of elements are selected into
two random sources in SHROT while they are selected as pairs of random elements into a single random
source in SInt2 .

We manage these differences in a simple way: when the first element of a pair is selected (resp.
transmitted) in SHROT , we do not define any corresponding steps in SInt2 , while the pairs are
selected (resp. transmitted) in SInt2 when the second element of the pair is selected (resp. transmitted)
in SHROT . This way to proceed will not raise any problem as all tasks of Ifc depending on these values
are enabled only when both z-values and b-values have been transmitted.

Suppose (ε1, ε2) ∈ R and T is a task of SHROT‖Env ′ that is enabled in supp(lstate(ε1)). Let
ε′1 = apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).

The proof follows the same outline as that of Lemma 9.7. State equivalence follows as in that proof.
Identical versions of Claim 1 and Claim 2 in that proof carry over for Env′ to this case. We again
consider cases based on the values of T (and S when needed).

1. T = {in(x)Trans} then corrtasks(S, T) = {in(x)Trans}
The treatment of this case is similar as the one described in the proof of Lemma 9.7.

2. T = {choose− randtdp}
The treatment of this case is similar as Case 2 in the proof of Lemma 9.9.

3. T = {rand(f)tdp}
The treatment of this case is similar as Case 4 in the proof of Lemma 9.7.

4. T = {choose− randzval(i)} and s.Srczval(1−i).chosenval = ⊥ in every state s of S.

There is no enabling condition to check since corrtasks(S, T) = λ.

Let p be the Dirac measure on the single index 1 and let ε′11 = ε′1, and ε′21 = ε′2 = ε2. To show
that ε′1Rε′2, we establish Properties 1 and 2 of R for ε′1 and ε′2. Trace equivalence is immediate
since T is an internal task.

We observe that ε′1Rε′2 because, when executing T the only modified state variable is
s.Srczval(i).chosenval, Properties 1d, 1e are true because s.Srczval(i).chosenval remains ⊥, Prop-
erty 2(a)i was true in all states of supp(lstate(ε1)), which implies that 2(a)ii is true in all states
of supp(lstate(ε′1)).

5. T = {choose− randzval(i)} and s.Srczval(1−i).chosenval 6= ⊥ in every state s of S.

We first need to check that corrtasks(S, T) = {choose − randzval} is enabled in all states of
support(lstate(ε2)). The fact that T is enabled in all states of support(lstate(ε1)) and Property 1d

83

imply that u.Srczval.chosenval = ⊥ in all states of support(lstate(ε2)), which is the condition
required for the {choose− randzval} task to be enabled.

Let p be the uniform probability measure on the index set I = {1 · · · r} where r = |D|2;
that is, p(j) = 1/r for each j ∈ I. For each j ∈ I, we define the probability measure ε′1j

as follows. The support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that
(lstate(α).Srczval0.chosenval, lstate(α).Srczval1.chosenval) is the j-th element in domain {0, 1} →
D (in some fixed enumeration). For each α ∈ supp(ε′1) of the form α′choose−randzval(i)q, let ε′1j =
ε′1(α). This is acceptable since both lstate(α).Srczval0.chosenval and lstate(α).Srczval1.chosenval
are the uniform distribution on D.

Now, we define ε′2j from ε′2. The support supp(ε′2j) is the set of execution fragments α ∈ supp(ε′2)
such that lstate(α).Srczval.chosenval is the j-th element in domain {0, 1} → D, keeping the
same enumeration as in the previous paragraph. For each α ∈ supp(ε′2) of the form α′choose −
randzvalq, let ε′2j = ε′2(α). Again, this is acceptable since lstate(α).Srczval.chosenval is the
uniform distribution on {0, 1} → D.

The trace equivalence property of R is preserved because both T and corrtasks(S, T) are internal
tasks. We now verify that ε′1jRε′2j for every j. Fix some j ∈ I. The only changing variables in
supp(lstate(ε1)) and supp(lstate(ε2)) are s.Srczval(i).chosenval and u.Srczval.chosenval. Prop-
erty 1d remains true because s.Srczval0.chosenval, s.Srczval1.chosenval and u.Srczval.chosenval
are all different from ⊥ now. Property 1e remains true because we are using one single enumeration
of the elements of {0, 1} → D. Eventually, Property 2a holds because u.Srczval.chosenval 6= ⊥ in
all states of supp(lstate(ε2)).

6. T = {rand(z)zval(i)} and s.Ifc.zval(1− i) = ⊥ in every state s of S.

Applying T and corrtasks(S, T) may have two types of consequences. First, it might be the
case that T has already been applied before. In that case, supp(lstate(ε1)) = supp(lstate(ε′1)),
supp(lstate(ε2)) = supp(lstate(ε′2)), and it is immediate that the different conditions on R still
hold.

On the other hand, if s.Ifc.zval(i) = ⊥ in every state s of S, applying T and corrtasks(S, T)
only changes s.Ifc.zval(i) in all states s of supp(lstate(ε1)). We observe that s.Ifc.zval(i) only
appears in Properties 1h and 1i, and these properties remain true after applying those tasks
because we know that s.Ifc.zval(1− i) = ⊥ in every state s of S.

7. T = {rand(z)zval(i)} and s.Ifc.zval(1− i) 6= ⊥ in every state s of S.

Again, applying T and corrtasks(S, T) may have two types of consequences. First, it might be the
case that T has already been applied before and, in this case, the considerations of the previous
paragraph still apply.

On the other hand, if s.Ifc.zval(i) = ⊥ in every state s of S, applying T and corrtasks(S, T)
only changes s.Ifc.zval(i) in all states s of supp(lstate(ε1)) and u.TR2.zval. We observe that
these variables only appears in Properties 1h and 1i, and these properties remain true after
applying those tasks because u.TR2.zval = s.Ifc.zval in all states s ∈ supp(lstate(ε′1)) and
u ∈ supp(lstate(ε′2)), as guaranteed by Property 1e of relation R and Lemma 8.13.

8. T = {choose− randbval(i)}, T = {rand(b)bval(i)}.
The treatment of the four corresponding cases is similar to those corresponding to the tasks
{choose− randzval(i)} and {rand(z)zval(i)}.

9. T = {fix− bxorx}.
We first need to check that corrtasks(S, T) = {fix − bvalTrans} is enabled in all states of
support(lstate(ε2)). Since T is enabled in all states of support(lstate(ε1)), we know that
s.Ifc.bval 6= ⊥, s.Ifc.xval 6= ⊥, s.Ifc.fval 6= ⊥, s.Ifc.zval 6= ⊥ and s.Ifc.bxorx = ⊥.
Now, Properties 1j and 1k of R imply that u.TR2.cval 6= ⊥, Property 1a of R implies that

84

u.TR2.inval(Trans) 6= ⊥, Property 1c of R implies that u.TR2.tdpp 6= ⊥, Property 1h of R im-
plies that u.TR2.zval 6= ⊥ and Property 1l of R implies that u.TR2.bval = ⊥. We can check that
these properties guarantee that {fix− bvalTrans} is enabled in all states of support(lstate(ε2)).

Finally, the definition of the fix − bxorx and fix − bvalTrans actions show that the only state
variables modified by the corresponding tasks are s.Ifc.bxorx and u.Ifc.bval, which only appear
in Property 1l of R. It is easy to see that this property remains verified by using Properties 1a
and 1k of R and observing that s.Ifc.bxorx and u.Ifc.bval are computed in the same way from
equal state variables.

10. T ∈ {{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}}.
The treatment of these cases is similar to the corresponding ones in the proof of Lemma 9.7.

2

9.5.3 Int1 implements Int2

Proof. (of Lemma 9.8)
In Lemma 9.9 and 9.10, we proved that SInt1 ≤0 SHOT and SHROT ≤0 SInt2 . Furthermore, the
corrtasks mappings we used in these proofs only increase the length of the schedules by a constant
factor. So, we can use the soundness result of our simulation relation given in Thm. 3.86 to deduce that
SInt1 ≤neg,pt SHOT and SHROT ≤neg,pt SInt2

Now, since SHOT ≤neg,pt SHROT (see Lemma 8.11) and since the ≤neg,pt implementation relation
is transitive (see Lemma 3.83), we obtain SInt1 ≤neg,pt SInt2 .

Now, by composing SInt1 and SInt2 with the polynomial-time bounded task-PIOA families Adv
and Funct , and using Lemma 3.84, we obtain:

Funct‖Adv‖SInt1 ≤neg,pt Funct‖Adv‖SInt2 .

Now, coming back to the definitions of SInt1 and SInt1 , we observe that this is equivalent to saying
that:

hide{rand(∗)tdpp}∪{rand(∗)zval}(Funct‖Adv‖TR1‖Srctdpp‖Srczval)

≤neg,pt hide{rand(∗)tdpp}∪{rand(∗)zval}∪{rand(∗)cval}(Funct‖Adv‖TR2‖Srctdpp‖Srczval‖Srccval),

or in other words, Int1 ≤neg,pt Int2 , as needed. 2

9.6 Int2 implements SIS

We show:

Lemma 9.11 For every k, Int2 k ≤0 SISk.

We prove Lemma 9.11 by choosing an arbitrary environment Env for Int2 k and SISk, establishing a
simulation relation from Int2 k‖Env to SISk‖Env , and appealing to Theorem 3.53, the soundness result
for simulation relations.

The only differences between Int2 and SIS are that Int2 uses TR2 and Srccval whereas SIS uses
TR and Srcbval. The key difference here is that TR2 calculates the bval values as ⊕’s of random cval
values and the input x values, whereas TR just chooses the bval values randomly. However, since taking
⊕ with a random bit is the same as choosing a random bit, this does not give any observably-different
behavior.

We also show:

Lemma 9.12 Int2 ≤neg,pt SIS.

In the rest of this subsection, we fix Env , an environment for Int2 k and SISk. We also suppress
mention of k everywhere.

85

9.6.1 State correspondence

Here we define the correspondence R from the states of Int2‖Env to states of SIS‖Env , which we will
show to be a simulation relation in Section 9.6.2.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of Int2‖Env and
SIS‖Env , respectively, satisfying the following properties:

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exist state equivalence classes S1 ∈ RSInt2‖Env and S2 ∈ RSSIS‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct = s.Funct .

(b) u.Funct .inval(Trans) = s.TR2 .inval(Trans).

(c) u.TR.tdpp = s.TR2 .tdpp.

(d) u.TR.zval = s.TR2 .zval.

(e) u.TR.bval = s.TR2 .bval.

(f) u.Srctdpp = s.Srctdpp.

(g) u.Srczval = s.Srczval

(h) u.Srcbval.chosenval = s.TR2 .bval.

(i) u.Adv = s.Adv .

(j) u.Env = s.Env .

2. For every u ∈ supp(lstate(ε2)):
If u.TR.bval = ⊥ then one of the following holds:

(a) For every s ∈ supp(ε1), s.Srccval.chosenval = ⊥.
That is, cval has not yet been chosen.

(b) For every s ∈ supp(ε1), s.TR2 .cval = ⊥, and lstate(ε1).Srccval.chosenval is the uniform
distribution on {0, 1} → {0, 1}.
That is, cval has been chosen by the Src, but has not yet been output to TR2 .

(c) lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}.

9.6.2 The mapping proof

Lemma 9.13 The relation R defined in Section 9.6.1 is a simulation relation from Int2‖Env to
SIS‖Env. Furthermore, for each step of Int2‖Env, the step correspondence yields at most two steps of
SIS‖Env, that is, for every S, T , |corrtasks(S, T)| ≤ 2.

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of Int2‖Env and SIS‖Env , respectively, are R-related. Property 1 holds be-
cause the state components of s and u on which R depends are all ⊥. Property 2 holds because
s.Srccval.chosenval = ⊥.

Step condition: We define corrtasks : RSInt2‖Env ×RAInt2‖Env → RA∗
SIS‖Env as follows:

For any (S, T) ∈ RSInt2‖Env ×RAInt2‖Env :

• If T ∈ {{in(x)Trans}, {in(i)Rec}, {choose− randtdpp}, {randtdpp}, {choose− randzval}, {randzval}
{send(1, f)Trans}, {receive(1, f)Rec}, {send(2, z)Rec}, {receive(2, z)Trans}, {send(3, b)Trans},
{receive(3, b)Rec}, or {out(x)Rec}}, then corrtasks(S, T) = T .

86

• If T is an output or internal task of Env or Adv that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T ∈ {{choose− randcval}, {randcval}} then corrtasks(S, T) = λ.

• If T = {fix− bvalTrans} then corrtasks(S, T) = {choose− randbval} {randbval}.

Suppose (ε1, ε2) ∈ R and T is a task of RSInt2 that is enabled in supp(lstate(ε1)). Let ε′1 =
apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).

The proof follows the same outline as that of Lemma 9.7. State equivalence follows as in that proof.
Identical versions of Claim 1 and Claim 2 in that proof carry over to this case. We again consider cases
based on the value of T .

1. T = {in(x)Trans}.
Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(x)Trans for a particular value of x.

Next we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p be
the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For each
j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of the form α′ a qj ,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu), where (u, a, µu) ∈ DSIS‖Env .

If s.TR2 .inval(Trans) 6= ⊥ then by Properties 1(a) and 1(b), u.Funct .inval(Trans) 6= ⊥ and
s.Funct .inval(Trans) 6= ⊥. In this case, task T has no effect on any component other than Env ,
in either system. Since s′.Env = qj = u′.Env by definition, it is easy to see that Property 1 holds
for s′ and u′.

Now suppose that s.TR2 .inval(Trans) = ⊥. Then again by Properties 1(a) and 1(b),
u.Funct .inval(Trans) = s.Funct .inval(Trans) = ⊥. Then by the definitions of Int2 and SIS ,
we know that application of T updates TR2 .inval(Trans) and Funct .inval(Trans) in Int2 , and
Funct .inval(Trans) in SIS . It also updates the state of Env to qj in both systems.

We know by Property 1(a) that u.Funct = s.Funct , by Property 1(b) that u.Funct .inval(Trans) =
s.TR2 .inval(Trans), and by 1(j) that u.Env = s.Env . By the effects of T in definitions of Funct
and TR2 , we know that u′.Funct = s′.Funct and u′.Funct .inval(Trans) = s′.TR2 .inval(Trans);
hence, Properties 1(a) and 1(b) hold for s′ and u′. We also know that 1(j) holds for s′ and u′ by
definition of ε′1j and ε′2j : in both s′ and u′, the state of Env is qj . Since no state component other
than TR2 .inval, Funct .inval(Trans), and Env in the TR2 system, and Funct .inval(Trans) and
Env in the SIS system, is updated by the application of T , we conclude that Property 1 holds
for s′ and u′, and hence, for ε′1 and ε′2.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2j)) such that u′.TR.bval = ⊥. We
need to show that one of the following holds:

(a) For every s′ ∈ supp(lstate(ε′1j)), s′.Srccval.chosenval = ⊥.

(b) For every s′ ∈ supp(lstate(ε′1j)), s′.TR2 .cval = ⊥, and lstate(ε′1j).Srccval.chosenval is the
uniform distribution on {0, 1} → {0, 1}.

87

(c) lstate(ε′1j).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}.

Let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DSIS‖Env . By
the effects of T , we know that u.TR.bval = u′.TR.bval = ⊥. Then, by Property 2 for ε1 and u,
one of the following holds:

(a) For every s ∈ supp(lstate(ε1)), s.Srccval.chosenval = ⊥.

(b) For every s ∈ supp(lstate(ε1)), s.TR2 .cval = ⊥, and lstate(ε1).Srccval.chosenval is the
uniform distribution on {0, 1} → {0, 1}.

(c) lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}.

If (a) holds for ε1 and u, then consider any s′ ∈ supp(lstate(ε′1j)). Let s be any state in
supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . We have by (a) that
s.Srccval.chosenval = ⊥. By the effects of T , s′.Srccval.chosenval = s.Srccval.chosenval = ⊥,
and so (a) holds for ε′1j and u′.

If (b) holds for ε1 and u, then consider any s′ ∈ supp(lstate(ε′1j)). Let s be any state in
supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . By the effects of T ,
s′.TR2 .cval = s.TR.cval = ⊥, so the first part of (b) holds. For the second part of (b), recall
that we have defined ε′1j in such a way that for each α ∈ supp(ε′1j), where α is of the form α′ a q,
we have ε′1j(α) = ε1(α′). Since T transitions do not affect the value of Srccval.chosenval, we have
that lstate(ε′1j).Srccval.chosenval = lstate(ε1).Srcyval.chosenval, and (b) holds for ε′1j and u′.

If (c) holds for ε1 and u, then we argue as for the second part of (b), using the fact that T transitions
do not affect TR2 .cval. Thus, (c) holds for ε′1j and u′. Therefore, in all cases, Property 2 holds
for ε′1j and u′, and hence for ε′1j and ε′2j .

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

2. T = {in(i)Rec}.
Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(i)Rec for a particular value of i.

The rest of the proof for this case follows the proof for T = {in(x)Trans}. The only difference
is that, in showing that Property 1 holds for ε′1j and ε′2j , for a fixed j, we use the fact that
application of T affects only Funct .inval(Rec) and Env in the Int2 system and the SIS system,
and use Properties 1(a) and 1(j).

3. T = {choose− randtdpp}.
Identical to the corresponding case in the proof of Lemma 9.7, but using Property 1(f) instead of
1(g).

4. T = {rand(p)tdpp}.
Identical to the corresponding case in the proof of Lemma 9.7, but using Properties 1(c) and 1(f)
instead of 1(d) and 1(g).

5. T = {choose− randzval}.
Identical to the proof for T = {choose− randtdpp}, but using Property 1(g) instead of 1(f).

6. T = {rand(z)zval}.
Identical to the proof for T = {rand(z)tdpp}, but using Properties 1(d) and 1(g) instead of 1(c)
and 1(f).

88

7. T = {choose− randcval}.
Here, a random choice is made in the Int2 system but not in the SIS system. Since
corrtasks([lstate(ε1)], T) = λ, no enabling condition needs to be shown. Also, we have ε′2 = ε2.

Next, we define the probability measures. Let p be the Dirac measure on the single index 1 and
let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish Properties 1 and 2 of R for ε′1

and ε′2, and show trace distribution equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Since
ε′2 = ε2, we know that u′ ∈ supp(lstate(ε2)). Let s be any state in supp(lstate(ε1)) such that
s′ ∈ supp(µs), where (s, choose − randcval, µs) ∈ DInt2‖Env . We know that Property 1 holds for
s and u′. Observe that the application of T updates only s.Srccval.chosenval component in the
RS system, and the application of λ leaves u′ unchanged. Since Property 1 does not mention
Srccval.chosenval, we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2)) such that u′.TR.bval = ⊥. We
show that Property 2(b) holds; that is, we show that for every s′ ∈ supp(lstate(ε′1)), s′.TR2 .cval =
⊥, and lstate(ε′1).Srccval.chosenval is the uniform distribution on {0, 1} → {0, 1}.
Consider any s′ ∈ supp(lstate(ε′1)). Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs)
where (s, choose − randcval, µs) ∈ DInt2‖Env . Since choose − randcval is enabled in s, we know
that s.Srccval.chosenval = ⊥. Therefore, by Lemma 9.4, s.TR2 .cval = ⊥. Since T does not
update TR2 .cval, we have s′.TR2 .cval = ⊥. Hence, the first part of 2(b) holds.

For the second part of 2(b), the effects of T imply that Srccval.chosenval is chosen according to
the uniform probability distribution on domain {0, 1} → D. So, lstate(ε′1).Srccval.chosenval gives
the uniform distribution on {0, 1} → D, as needed.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

8. T = {rand(c)cval}.
This is a case where a step is taken in the Int2 system but not in the SIS system. Since
corrtasks([lstate(ε1)], T) = λ, no enabling condition needs to be shown, and ε′2 = ε2.

Next, we define the probability measures. Let I be the singleton index set {1}, let p be the Dirac
measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2.

To show that (ε′1, ε
′
2) ∈ R, we establish Properties 1 and 2 of R for ε′1 and ε′2, and show trace

distribution equivalence.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Since
ε′2 = ε2, we know that u′ ∈ supp(lstate(ε2)). Let s be any state in supp(lstate(ε1)) such that
s′ ∈ supp(µs) where (s, rand(c)cval, µs) ∈ DInt2‖Env and c = (s.Srccval.chosenval). We know that
Property 1 holds for s and u′. Observe that the application of T updates only the s.TR2 .cval
component in the Int2 system and the application of λ leaves u′ unchanged. Since Property 1
does not mention TR2 .cval, we conclude that Property 1 holds for s′ and u′, and hence, for ε′1
and ε′2, as needed.

To establish Property 2, consider any state u′ ∈ supp(lstate(ε′2)) such that u′.TR.bval = ⊥.
We show that Property 2(c) holds; that is, we show that lstate(ε′1).TR2 .cval is the uniform
distribution on {0, 1} → {0, 1}.
Since u′ ∈ supp(lstate(ε2)), we know that Property 2 holds for u′ and ε1. However, 2(a) cannot
hold because T is enabled in supp(lstate(ε1)), so either 2(b) or 2(c) must hold for u′ and ε1.

If 2(b) holds for u′ and ε1, then consider any s′ ∈ supp(lstate(ε′1)). Let s be any state in
supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, rand(c)cval, µs) ∈ DInt2‖Env and
c = s.Srccval.chosenval. We know that s.TR2 .cval = ⊥ and lstate(ε1).Srccval.chosenval is
the uniform distribution on {0, 1} → {0, 1}. Then, by the effects of T and the definition of ε′1,

89

s′.TR2 .cval 6= ⊥ and lstate(ε′1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}, and
hence 2(c) holds for u′ and ε′1, as needed.

On the other hand, if Property (c) holds for u′ and ε1, then we know that lstate(ε1) projected
on TR2 .cval is the uniform distribution on {0, 1} → {0, 1}. Since the application of T affects
TR2 .cval only if it is ⊥, we know that lstate(ε′1).TR2 .cval = lstate(ε1).TR2 .cval. Therefore, in
this case 2(c) holds for u′ and ε′1, as needed.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

9. T = {fix− bvalTrans}.
Here, a deterministic step in the Int2 system maps to a random choice followed by a deterministic
step in the SIS system. We first show that the sequence of tasks {choose−randbval}{rand(b)bval}
is enabled in supp(lstate(ε2)). First, consider any state u ∈ supp(lstate(ε2)); we show that
{choose − randbval} is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled
in s and T is an internal task of TR2 , T is enabled in s.TR2 . By the precondition of the
fix − bvalTrans action in TR2 , we know that s.TR2 .bval = ⊥. By Property 1(h) for s and u,
u.Srcbval.chosenval = ⊥. So, {choose− randzval} is enabled in u, as needed.

Now, let ε′′2 be the measure apply(ε2, {choose− randbval}). We show that {rand(b)bval} is enabled
in supp(lstate(ε′′2)). So consider any state u′′ ∈ supp(lstate(ε′′2)). By the effect of {choose −
randbval}, we know that u′′.Srcbval.chosenval 6= ⊥, which is the only precondition on actions in
{rand(b)bval}. Thus, {rand(b)bval} is enabled in supp(lstate(ε′′2)), as needed.

Next, we claim that lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}. To see this,
consider any pair of states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since s.TR2 .bval = ⊥,
by Property 1(e) we have u.TR.bval = ⊥. Then by Property 2 for u and ε1, we know that one of
the following holds:

(a) s.Srccval.chosenval = ⊥.

(b) s.TR2 .cval = ⊥ and lstate(ε1).Srccval.chosenval is the uniform distribution on {0, 1} →
{0, 1}.

(c) lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}.

However, since T is enabled in supp(lstate(ε1)), we know that s.TR2 .cval 6= ⊥, so 2(b) cannot
hold. Using Lemma 9.4, we see that also 2(a) cannot hold. Therefore, 2(c) holds, that is,
lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1}, as needed.

Next, we show that lstate(ε′1).TR2 .bval is the uniform distribution on {0, 1} → {0, 1}. By Prop-
erty 1(b), inval(Trans) is the same in all states in supp(lstate(ε1)). The effect of a fix−bvalTrans

action in TR2 is to assign TR2 .bval a pair of bits obtained by applying ⊕ to The cval bits and the
inval(Trans) bits. Thus, since lstate(ε1).TR2 .cval is the uniform distribution on {0, 1} → {0, 1},
it follows that lstate(ε′1).TR2 .bval is the uniform distribution on {0, 1} → {0, 1}.
Next we define the probability measures needed to show the step correspondence. Let p be
the uniform probability measure on the index set I = {1 · · · r} where r = |{0, 1} → {0, 1}| =
4. That is, p(j) = 1/4 for each j ∈ I. For each j ∈ I, we define probability measure ε′1j

as follows. The support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that
lstate(α).TR2 .bval is the jth element of the domain {0, 1} → {0, 1}. For each α ∈ supp(ε′1j) of
the form α′ fix − bvalTrans q, let ε′1j(α) = ε1(α′). Similarly, we define probability distribution
ε′2j as follows. The support supp(ε′2j) is the set of execution fragments α ∈ supp(ε′2) such that
lstate(α).TR2 .bval is the jth element of the domain {0, 1} → {0, 1}. For each α ∈ supp(ε′2j) of
the form α′ choose− randbval q rand(b)bvalq

′ let ε′2j(α) = ε2(α′).

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for ε′1j

and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j . To establish Property 1, consider

90

any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). By definitions of Int2 and SIS we
know that application of T updates TR2 .bval in the Int2 system and application of the sequence
{choose− randbval} {rand(b)bval} updates Srcbval.chosenval and TR.bval in the SIS system. We
show that Properties 1(e) and 1(h) hold for u′ and s′.

Property 1(e) follows from the definitions of ε′1j and ε′2j ; both actions give the same element of
the domain {0, 1} → {0, 1} when projected onto TR2 .bval and TR.bval. For Property 1(h), we
use the fact that u′.TR.bval = s′.TR2 .bval, and we observe in addition (using Lemma 9.2) that
if u′.TR.bval 6= ⊥ then u′.Srcbval.chosenval = u′.TR.bval. Since no state component other than
TR2 .bval in the Int2 system is updated by the application of T , and no state component other than
TR.bval and Srcbval.chosenval is updated by the application of {choose−randbval}{rand(b)bval}
in the SIS system, we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

Property 2 holds trivially in this case since for any state u′ ∈ supp(lstate(ε′2j)), we have
u′.TR.bval 6= ⊥ by definition of ε′2j .

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

10. T = {send(1, f)Trans}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Trans
with TR2 and TR1 with TR, and use Properties 1(c) and 1(i) instead of 1(d) and 1(i).

11. T = {send(2, z)Rec}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Rec
with TR2 and TR1 with TR, and use Property 1(d) instead of 1(e).

12. T = {send(3, b)Trans}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Trans
with TR2 and TR1 with TR, and use Property 1(e) here instead of 1(f).

13. T = {receive(1, f)Rec}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Rec
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

14. T = {receive(2, z)Trans}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Trans
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

15. T = {receive(3, b)Rec}.
Identical to the corresponding case in the proof of Lemma 9.7, except that here we replace Rec
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

16. T = {out(x)Rec}.
This case is easier that its counterpart in the proof of Lemma 9.7, since the task is an output task
from Funct to Env in both levels. We use Property 1(a) to show enabling. The only interesting
aspect of this proof is that Env may make a probabilistic choice on the application of T . The step
correspondence can be shown by decomposing the distributions generated by application of T as
in the case for T = {in(x)Trans}.
We first show that T is enabled in every state in supp(lstate(ε2)). So, fix any state u ∈
supp(lstate(ε2)); we show that T is enabled in u. Note that T is an output task of Funct in
both systems. Choose any s ∈ supp(lstate(ε1)). By Property 1(a), u.Funct = s.Funct . So, T is
enabled in u.Funct, and hence in u, as needed.

91

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(a) that the state of Funct is the same in all states
in supp(lstate(ε1)) ∪ supp(lstate(ε2)). So, out(s.Funct.inval(Trans)(s.Funct .inval(Rec))) is the
unique action in T that is enabled in supp(lstate(ε1)) ∪ supp(lstate(ε2)). We use a to refer to
out(s.Funct .inval(Trans)(s.Funct .inval(Rec)) in the rest of the proof for this case. Then next-
transition determinism for Env implies that there is a unique transition of Env from qEnv with
action a. Let trEnv = (qEnv , a, µEnv) be this unique transition.

We define the probability measures needed to show the step correspondence as in the case for
in(x)Trans .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DSIS‖Env .

By the definitions of the Int2 and SIS systems, we know that application of T does not update
any state component of Int2 or SIS ; however, it may update the state of Env in both systems.
Since Property 1 holds for s and u, we know that all the parts of Property 1 except possible for
1(j) also hold for s′ and u′. We also know that 1(j) holds for s′ and u′ by definition of ε′1j and
ε′2j : in both s′ and u′, the state of Env is qj . Thus, Property 1 holds for s′ and u′, and hence, for
ε′1 and ε′2.

The proofs for Property 2 and trace distribution equivalence are similar to the corresponding parts
of the proof for T = {in(x)Trans}.

17. T is an output task of Env and an input task of Adv .

Identical to the corresponding case in the proof of Lemma 9.7.

18. T is an output task of Env that is not an input task of Adv , Funct , or TR2 , or T is an internal
task of Env .

Identical to the corresponding case in the proof of Lemma 9.7.

19. T is an output task of Adv and an input task of Env .

Identical to the corresponding case in the proof of Lemma 9.7.

20. T is an output task of Adv that is not an input task of Env , Funct , or TR2 , and is not a receive
task, or else T is an internal task of Adv .

Identical to the corresponding case in the proof of Lemma 9.7.

2

Proof. (Of Lemma 9.11:)
By Lemma 9.13, R is a simulation relation from Int2 k‖Env to SISk‖Env . Then Theorem 3.53 im-
plies that tdists(Int2 k‖Env) ⊆ tdists(SISk‖Env). Since Env was chosen arbitrarily, this implies (by
definition of ≤0) that RSk ≤0 Int1 k. 2

Proof. (Of Lemma 9.12:)
By Lemma 9.13, R is a simulation relation from RSk‖Env to Int1 k‖Env for which |corrtasks(S, T)| ≤ 2
for every S and T . Since that lemma holds for every k and every Env , Theorem 3.86 implies that
Int2 ≤neg,pt SIS . 2

9.7 Putting the pieces together

Proof. (of Theorem 9.1):
Lemmas 9.6, 9.8, and 9.12, and transitivity of ≤neg,pt, imply that RS ≤neg,pt SIS . Since the simulator
SSimk satisfies the constraints for a simulator in Figure 2, this implies that RS ≤neg,pt IS . 2

92

10 Correctness Proof, Case 2: Receiver Corrupted

This section contains the most interesting case: where only the receiver is corrupted. We prove the
following theorem:

Theorem 10.1 Let RS be a real-system family for (D,Tdp,C), C = {Rec}, in which the family Adv
of adversary automata is polynomial-time-bounded.
Then there exists an ideal-system family IS for C = {Rec}, in which the family Sim is polynomial-time-
bounded, and such that RS ≤neg,pt IS .

As before, since C = {Rec} everywhere in this section, we drop explicit mention of C. Again, we express
each Simk as a composition of automata, and show that RS , the real-system family, implements the
(new) structured-ideal-system family SIS . Again, we introduce two intermediate levels, Int1 and Int2 ,
for the same purpose as in Section 9.

10.1 Simulator structure

For each k, we define a structured simulator SSimk, as the composition of the following five task-PIOAs,
with all send, receive, rand and out′′ actions hidden.

• TR(Dk, Tdpk), an abstract combination of Trans(Dk, Tdpk) and Rec(Dk, Tdpk, {Rec}).

• (Src(Tdppk)tdpp)k, isomorphic to Src(Tdppk).

• (Src({0, 1} → Dk)yval)k, isomorphic to Src({0, 1} → Dk).

• (Src({0, 1})bval1)k, isomorphic to Src({0, 1}).

• Adv ′k, isomorphic to the adversary Advk in (RS)k. Adv ′k is identical to Adv except that its
out′(x)Rec input actions are renamed to out′′(x)Rec .

TR has send outputs that are inputs to Adv ′. The receive outputs of Adv ′ are not connected to
anything.

Since Rec is corrupted, Adv ′ sees inputs to Rec, and acts as an intermediary for outputs from Rec.
Thus, Adv ′ has in(i)Rec inputs, which come from the environment. Adv ′ has out′′(x)Rec inputs, which
are outputs of TR, and out(x)Rec outputs, which go to the environment. Adv ′ may also interact with
the environment, using other inputs and outputs.

Also, Funct provides out′(x)Rec outputs to TR. Thus, TR sees the output produced by Funct , which
is one of the input bits provided by the environment to Trans.

The outputs of Srctdpp and Srcbval1 go to TR only. The outputs of Srcyval go both to TR and to
Adv ′.

TR(D,Tdp) is defined in Figure 16. TR plays roles corresponding to those of both Trans and Rec
in the real system. Note that TR produces the bval values without using the inverse of the trap-door
permutation. It can do this because it knows the receiver’s input value and the yval values.

We define SISk, the structured ideal system, to be the composition Functk‖SSimk, with all the
out′(∗) actions hidden.

Lemma 10.2 In every reachable state of SISk:

1. If TRk.inval(Trans) 6= ⊥ then Functk.inval(Trans) 6= ⊥, Functk.inval(Rec) 6= ⊥, and
TRk.inval(Trans) = Functk.inval(Trans)(Functk.inval(Rec)).

93

TR(D, Tdp):

Signature:
Input:

out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)
rand(b)bval1, b ∈ {0, 1}

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
tdpp ∈ Tdp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval1 ∈ {0, 1,⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

out′(x)Rec

Effect:
if inval(Trans) = ⊥ then inval(Trans) := x

in(i)Rec

Effect:
if inval(Rec) = ⊥ then inval(Rec) := i

rand(p)tdpp

Effect:
if tdpp = ⊥ then tdpp := p

rand(y)yval

Effect:
if yval = ⊥ then yval := y

rand(b)bval1

Effect:
if bval1 = ⊥ then bval1 := b

fix− zvalRec

Precondition:
yval, inval(Rec), tdpp 6= ⊥
zval = ⊥

Effect:
zval(inval(Rec)) := tdpp.funct(yval(inval(Rec)))
zval(1− inval(Rec)) := yval(1− inval(Rec))

fix− bvalTrans

Precondition:
yval, inval(Trans), inval(Rec), bval1 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) := bval1

out′′(x)Rec

Precondition:
x = inval(Trans) 6= ⊥

Effect:
none

send(1, f)Trans

Precondition:
tdpp 6= ⊥, f = tdpp.funct

Effect:
none

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

send(3, b)Trans

Precondition:
b = bval 6= ⊥

Effect:
none

Tasks: {out′(∗)Rec}, {in(∗)Rec}, {rand(∗)tdpp}, {rand(∗)yval}, {rand(∗)bval1}, {send(1, ∗)Trans}, {send(2, ∗)Rec},
{send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and similarly for inval(Rec), tdpp, yval, zval, bval1, and bval.

Figure 16: TR(D,Tdp), for the case where C = {Rec}.

94

10.2 Int1

We define Int1 k to be the same as SISk except that TR(Dk, Tdpk) is replaced by TR1 (Dk, Tdpk),
whose code appears in Figure 17. TR1 differs from TR as follows: TR1 has input actions in(x)Trans ,
by which it receives transmitter input values directly from the environment. Also, TR1 does not have
an input randbval1 nor a bval1 state variable; rather, TR1 calculates bval values as follows: For the
chosen index i (the one that it received in the in(i)Rec input), TR1 uses the hard-core predicate applied
to the corresponding yval, combined with the transmitter input obtained as output from Funct ; for
this, TR1 does not need to use the inverse of the trap-door permutation. On the other hand, for
the non-chosen index, TR1 uses the hard-core predicate and the inverse of the trap-door permutation,
applied to the zval value.

TR1 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥

Transitions:

in(x)Trans

Effect:
if inval2(Trans) = ⊥ then inval2(Trans) := x

out′(x)Rec , in(i)Rec , rand(p)tdpp, or rand(y)yval

Effect:
As for TR(D, Tdp).

fix− bvalTrans

Precondition:
tdpp, zval, inval(Trans), inval2(Trans), inval(Rec) 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) :=

B(tdpp.inverse(zval(1− inval(Rec))))
⊕inval2(Trans)(1− inval(Rec))

fix− zvalRec , out′′(x)Rec , send(1, f)Trans ,
send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {in(∗)Trans}, {out′(∗)Rec}, {in(∗)Rec}, {rand(∗)tdpp}, {rand(∗)yval}, {send(1, ∗)Trans}, {send(2, ∗)Rec},
{send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and similarly for inval(Rec), inval2(Trans), tdpp, yval, zval, and bval.

Figure 17: TR1 (D,Tdp), for the case where C = {Rec}.

Lemma 10.3 In every reachable state of Int1 k:

95

1. If TR1 k.inval(Trans) 6= ⊥ then Functk.inval(Trans) 6= ⊥, Functk.inval(Rec) 6= ⊥, and
TR1 k.inval(Trans) = Functk.inval(Trans)(Functk.inval(Rec)).

2. If TR1 k.bval 6= ⊥ then
TR1 k.tdpp 6= ⊥, TR1 k.zval 6= ⊥, TR1 k.inval(Trans) 6= ⊥, TR1 k.inval2(Trans) 6= ⊥, and
TR1 k.inval(Rec) 6= ⊥.

10.3 Int2

Int2 k is the same as SISk, except that:

1. It includes a new random source (Src({0, 1})cval1)k, which is isomorphic to Src({0, 1}).

2. TR(Dk, Tdpk) is replaced by TR2 (Dk, Tdpk), where TRtwo(D,TDp) is identical to TR1 (D,Tdp)
except that:

(a) TR2 includes an extra state variable cval1 ∈ {0, 1}.
(b) TR2 has input action rand(c)cval1, which sets cval1 := c.

(c) The line in fix− bval in which bval(1− inval(Rec)) is determined is replaced by:

bval(1− inval(Rec)) := cval1⊕ inval2(Trans)(1− inval(Rec)).

Thus, instead of calculating the bval value for the non-selected index using the hard-core
predicate, TR2 obtains it by applying ⊕ to a bit chosen randomly and the actual x input
for that index.

The code for TR2 (D,Tdp) appears in Figure 18.

10.4 RS implements Int1

We show:

Lemma 10.4 For every k, RSk ≤0 Int1 k.

We prove Lemma 10.4 by choosing an arbitrary environment Env for RSk and Int1 k, and establishing
a simulation relation from RSk‖Env to Int1 k‖Env . Then we appeal to Theorem 3.53, the soundness
result for simulation relations. As for Case 1, the mapping must reconcile the different ways in which
zval gets defined in RS and Int1 . We also show the following lemma, which is what we need to put the
pieces of the proof together:

Lemma 10.5 RS ≤neg,pt Int1 .

In the rest of this subsection fix Env , an environment for RSk and Int1 k.

10.4.1 State correspondence

Here we define the correspondence R between the states of RS‖Env and Int1‖Env , which we will show
to be a simulation relation in Section 10.4.2.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of RS‖Env and
Int1‖Env , respectively satisfying the following properties:

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exist state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

96

TR2 (D, Tdp):

Signature:
Input:

in(x)Trans , x ∈ ({0, 1} → {0, 1})
out′(x)Rec , x ∈ {0, 1}
in(i)Rec , i ∈ {0, 1}
rand(p)tdpp, p ∈ Tdpp
rand(y)yval, y ∈ ({0, 1} → D)
rand(c)cval1, c ∈ {0, 1}

Output:
send(1, f)Trans , f ∈ Tdp
send(2, z)Rec , z ∈ ({0, 1} → D)
send(3, b)Trans , b ∈ ({0, 1} → {0, 1})
out′′(x)Rec , x ∈ {0, 1}

Internal:
fix− zvalRec

fix− bvalTrans

State:
inval(Trans), inval(Rec) ∈ {0, 1,⊥}, initially ⊥
inval2(Trans) ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
tdpp ∈ Tdpp ∪ {⊥}, initially ⊥
yval, zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥
bval ∈ ({0, 1} → {0, 1}) ∪ {⊥}, initially ⊥
cval1 ∈ {0, 1,⊥}, initially ⊥.

Transitions:

in(x)Trans

Effect:
if inval2(Trans) = ⊥ then inval2(Trans) := x

out′(x)Rec , in(i)Rec , rand(p)tdpp, or rand(y)yval

Effect:
As for TR(D, Tdp).

rand(c)cval1

Effect:
if cval1 = ⊥ then cval1 := c

fix− bvalTrans

Precondition:
yval, cval1, inval(Trans), inval2(Trans) 6= ⊥
inval(Rec) 6= ⊥
bval = ⊥

Effect:
bval(inval(Rec)) :=

B(yval(inval(Rec)))⊕ inval(Trans)
bval(1− inval(Rec)) :=

cval1⊕ inval2(Trans)(1− inval(Rec))

fix− zvalRec , out′′(x)Rec , send(1, f)Trans ,
send(2, z)Rec , or send(3, b)Trans

Precondition:
As for TR(D, Tdp).

Effect:
As for TR(D, Tdp).

Tasks: {in(∗)Trans}, {out′(∗)Rec}, {in(∗)Rec}, {rand(∗)tdpp}, {rand(∗)yval}, {rand(∗)cval1}, {send(1, ∗)Trans},
{send(2, ∗)Rec}, {send(3, ∗)Trans}, {out′′(∗)Rec}, {fix− zvalRec}, {fix− bvalTrans}.

State relation: q1 and q2 are related iff:

q1.inval(Trans) = ⊥ iff q2.inval(Trans) = ⊥, and similarly for inval(Rec), inval2(Trans), tdpp, yval, zval, bval, and

cval1.

Figure 18: TR2 (D,Tdp), for the case where C = {Rec}.

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct .inval(Trans) = s.Trans.inval.

(b) u.Funct .inval(Rec) = s.Rec.inval.

(c) If s.Rec.outval 6= ⊥ then u.TR1 .inval(Trans) = s.Rec.outval.

(d) u.TR1 .inval2(Trans) = s.Trans.inval.

(e) u.TR1 .inval(Rec) = s.Rec.inval.

(f) u.TR1 .tdpp = s.Trans.tdpp.

(g) u.TR1 .yval = s.Rec.yval.

97

(h) u.TR1 .zval = s.Rec.zval.

(i) u.TR1 .bval = s.Trans.bval.

(j) u.Srctdpp = s.Srctdpp.

(k) u.Srcyval = s.Srcyval.

(l) u.Adv ′ = s.Adv .

(m) u.Env = s.Env .

10.4.2 The mapping proof

Lemma 10.6 The relation R defined in Section 10.4.1 is a simulation relation from RS‖Env to
Int1‖Env. Furthermore, for each step of RS‖Env, the step correspondence yields at most two steps of
Int1‖Env, that is, for every S, T , |corrtasks(S, T)| ≤ 2.

The idea of the proof is as follows. All of the tasks in RS‖Env correspond to the same tasks in
Int1‖Env , with two exceptions. The first exception is the {fix−bvalTrans} task, by which Trans in the
RS system determines the value of bval, having already received its own input and a round 2 message.
This gets mapped to an output task {out′(x)Rec} from Funct to TR1 in the Int1 system, followed by
the {fix− bvalTrans} task of TR1 . The second exception is the {out′(∗)Rec} task, by which Rec in the
RS system outputs its result to Adv ; this gets mapped to the {out′′(∗)Rec} task from TR1 to Adv ′ in
the Int1 system.

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of, respectively, RS‖Env and Int1‖Env are R-related. Property 1 of R holds
because the state components of s and u on which R depends are all ⊥.
Step condition: We define corrtasks : RSRS‖Env ×RARS‖Env → RA∗

Int1‖Env as follows:
For any (S, T) ∈ (RSRS‖Env ×RARS‖Env):

• If T ∈ {{in(x)Trans}, {in(i)Rec}, {choose−randtdpp}, {randtdpp}, {choose−randyval}, {randyval},
{fix− zvalRec}, {send(1, f)Trans}, {receive(1, f)Rec}, {send(2, z)Rec}, {receive(2, z)Trans},
{send(3, b)Trans}, {receive(3, b)Rec}, or {out(x)Rec}}, then corrtasks(S, T) = T .

• If T is an output or internal task of Env or Adv that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T = {fix− bvalTrans} then corrtasks(S, T) = {out′(x)Rec} {fix− bvalTrans}.

• If T = {out′(x)Rec} then corrtasks(S, T) = {out′′(x)Rec}.

Suppose (ε1, ε2) ∈ R and T is a task of RS‖Env that is enabled in supp(lstate(ε1)). Let ε′1 =
apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).

The state equivalence property for ε1 and ε2 and Lemma 3.28 imply the state equivalence property
for ε′1 and ε′2; that is, there exist state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env such
that supp(lstate(ε′1)) ⊆ S1 and supp(lstate(ε′2)) ⊆ S2.
Claim 1:

1. The state of Env is the same in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Let qEnv denote
this state of Env .

This follows from Property 1(m).

2. The state of Adv or Adv ′ is the same in all states in supp(lstate(ε1))∪ supp(lstate(ε2)). Let qAdv

denote this state of Adv and Adv ′.

This follows from Property 1(l).

98

Claim 2:

1. If T (defined above) is an output or internal task of Env , then

(a) T is enabled in every state in supp(lstate(ε2)).

(b) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).

(c) There is a unique transition of Env from qEnv with action a; let trEnv = (qEnv , a, µEnv) be
this transition.

2. If T is an output or internal task of Adv , then

(a) T is enabled in every state in supp(lstate(ε2)).

(b) There is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)).

(c) There is a unique transition of Adv from qAdv with action a; let trAdv = (qAdv , a, µAdv) be
this transition.

We establish the step condition by considering cases based on the value of T . The proof follows the
same outline as for Lemma 9.7, except that instead of checking that Properties 1 and 2 are preserved,
we need only check Property 1.

1. T = {in(x)Trans}.
Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(x)Trans for a particular value of x.

Next we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p be
the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For each
j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of the form α′ a qj ,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; it remains to show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Property 1 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

If s.Trans.inval 6= ⊥ then by Properties 1(a) and 1(d), u.Funct .inval(Trans) 6= ⊥ and
u.TR1 .inval2(Trans) 6= ⊥. In this case, task T has no effect on any component other than Env ,
in either system. Since s′.Env = qj = u′.Env by definition, it is easy to see that Property 1 holds
for s′ and u′, and hence, for ε′1 and ε′2.

Now suppose that s.Trans.inval = ⊥. Then again by Properties 1(a) and 1(d), u.Funct .inval(Trans)
= u.TR1 .inval2(Trans) = ⊥. Then by the definitions of RS and Int1 , we know that application
of T updates Trans.inval in the RS system, and Funct .inval(Trans) and TR1 .inval2(Trans) in
the Int1 system. It also updates the state of Env in both systems.

We know by Property 1(a) that u.Funct .inval(Trans) = s.Trans.inval, by 1(d) that
u.TR1 .inval2(Trans) = s.Trans.inval, and by 1(m) that u.Env = s.Env . By the effects of T
in definitions of Trans, Funct , and TR1 , we know that u′.Funct .inval(Trans) = s′.Trans.inval,
and u′.TR1 .inval2(Trans) = s′.Trans.inval; hence, Properties 1(a) and 1(d) hold for s′ and
u′. We also know that 1(m) holds by definition of ε′1j and ε′2j . Since no component other than
Trans.inval and Env in the RS system, and Funct .inval(Trans), TR1 .inval2(Trans), and Env

99

in the Int1 system, is updated by the application of T , we conclude that Property 1 holds for s′

and u′, and hence, for ε′1 and ε′2.

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

2. T = {in(i)Rec}.
Here, T is shared between Env and Adv in both systems. In addition, it is an input to Rec in the
RS system and to TR1 in the Int1 system. We must consider the probabilistic branching of Adv
as well as Env in this case.

Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(i)Rec for a particular value of i. Also, by next-transition determinism, it follows that there
is a unique transition of Adv with action a from qAdv . Let trAdv = (qAdv , a, µAdv) be this transi-
tion.

Next we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv × µAdv) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is a countable index
set. Let p be the probability measure on the index set I such that, for each j ∈ I, p(j) =
(µEnv × µAdv)(q1j , q2j). For each j ∈ I, we define probability measure ε′1j as follows. The
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env = q1j and
lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let ε′1j(α) = ε1(α′). We construct
ε′2j analogously from ε′2.

The rest of the proof for this case follows the proof for T = {in(x)Trans}. The only difference is
that in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T
affects only Rec.inval, Adv , and Env in the RS system, and Funct .inval(Rec), TR1 .inval(Rec),
Adv ′, and Env in the Int1 system, and use Properties 1(b), 1(e), 1(l) and 1(m), instead of 1(a),
1(d) and 1(m).

3. T = {choose− randtdpp}.
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an internal task of Srctdpp, T is enabled in s.Srctdpp. The precondition of T in the definition of
Srctdpp implies that s.Srctdpp.chosenval = ⊥. By Property 1(j), u.Srctdpp = s.Srctdpp. So, T is
enabled in u.Srctdpp, and hence in u, as needed.

Next we define the probability measures needed to show the step correspondence. Let p be the
uniform probability measure on the index set I = {1 · · · r} where r = |Tdp|. That is, p(j) = 1/r
for each j ∈ I. For each j ∈ I, we define probability measure ε′1j as follows. The support
supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Srctdpp.chosenval is
the jth element in domain Tdp. For each α ∈ supp(ε′1j) of the form α′ choose − randtdpp q, let
ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Property 1 of R for ε′1j and

ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). By
definitions of ε′1j and ε′2j , we know that u′.Srctdpp.chosenval = s′.Srctdpp.chosenval. Hence, Prop-
erty 1(j) holds. Since no component other than Srctdpp.chosenval is updated by the application
of T , we conclude that Property 1 holds for s′ and u′, and hence, for ε′1 and ε′2.

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

4. T = {rand(p)tdpp}.

100

We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an output task of Srctdpp, T is enabled in s.Srctdpp and s.Srctdpp.chosenval 6= ⊥. By Property
1(j), u.Srctdpp = s.Srctdpp. So, T is enabled in u.Srctdpp, and hence in u, as needed.

We show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪
supp(lstate(ε2)). We know by Property 1(j) that the state of Srctdpp is the same in all states
in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Let q denote this state of Srctdpp. By the next-action
determinism property for Srctdpp we know that there is a unique action a ∈ T that is enabled in
q. Since T is an output task of Srctdpp, a is also the unique action in T that is enabled in each
state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

The probability measures for this case are trivial: Let I be the singleton index set {1}, let p be
the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish

Property 1 of R for ε′1 and ε′2, and show trace distribution equivalence for ε′1 and ε′2.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

By definitions of RS and Int1 we know that application of T updates Trans.tdpp in the RS system,
and TR1 .tdpp in the Int1 system. We know by Property 1(f) that u.TR1 .tdpp = s.Trans.tdpp. By
the effects of T in Trans and TR1 , we know that u′.TR1 .tdpp = s′.Trans.tdpp; hence, Property
1(f) holds. Since no component other than Trans.tdpp in the RS system and TR1 .tdpp in the
Int1 system is updated by the application of T , we conclude that Property 1 holds for s′ and u′,
and hence, for ε′1 and ε′2.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

5. T = {choose− randyval}.
This case is analogous to the case for T = {choose − randtdpp}. In showing that T is enabled
in every state in supp(lstate(ε2)), we use Property 1(k) instead of 1(j). In showing the step
correspondence, we use the domain {0, 1} → D instead of Tdp and also use Property 1(k) instead
of 1(j).

6. T = {rand(y)yval}.
We show that T is enabled in every state in supp(lstate(ε2)) using an argument analogous to the
one for T = {rand(p)tdpp}. Here we use Property 1(k) instead of 1(j).

Since the application of T may cause probabilistic branching in Adv , to show the step correspon-
dence, we proceed as for T = {in(x)Trans} but using Adv and Adv ′ instead of Env . In showing
that Property 1 holds for ε′1j and ε′2j), for a fixed j, we use Properties 1(g) and 1(l) of R.

7. T = {fix− zvalRec}.
The fact that T is enabled in every state in supp(lstate(ε2)) follows from Properties 1(e), 1(g),
1(h), and 1(f) together with Lemma 6.4 5(b).

The rest of the proof is easy because zval is computed in the same way in both the RS and
Int1 systems. The only difference is that in the Int1 system, the funct component of a trap-
door permutation pair is used, whereas in the RS system this pair is not available but only a
function. The correspondence between the tdpp.funct component of TR1 and the tdp value of
Rec is established using Lemma 6.4 5(b).

8. T = {fix− bvalTrans}.
This is an interesting case, in which bval in the RS system is computed by Trans using its own
input and the contents of a received round 2 message. It corresponds to two steps in the Int1

101

system, in which TR1 first receives a value from Funct , and then uses it in the computation of
bval with the fix− bvalTrans action.

We show that the sequence of tasks {out′(x)Rec} {fix− bvalTrans} is enabled in supp(lstate(ε2)).
First, consider any state u ∈ supp(lstate(ε2)); we show that {out(′)(x)Rec} is enabled in u. Choose
any s ∈ supp(lstate(ε1)). Since T is enabled in s and T is an internal task of Trans, T is enabled
in s.Trans. By the precondition of fix − bvalTrans in Trans, we know that s.Trans.tdpp 6= ⊥,
s.Trans.zval 6= ⊥, s.Trans.inval 6= ⊥, and s.Trans.bval = ⊥. By Property 1(a) and 1(b), we have
u.Funct .inval(Trans) 6= ⊥ and u.Funct .inval(Rec) 6= ⊥. This implies that the action out′(x)Rec

is enabled in u, as needed.

Now, let ε′′2 be the measure apply(ε2, {out′(x)Rec}). We show that fix − bvalTrans is enabled in
supp(lstate(ε′′2)). So consider any state u′′ ∈ supp(lstate(ε′′2)). Choose u ∈ supp(lstate(ε2)) such
that u′′ ∈ supp(µu) where (u, fix− bvalTrans , µu) ∈ DInt1‖Env . Choose any s ∈ supp(lstate(ε1)).
Since fix−bvalTrans is enabled in s, we have s.Trans.tdpp 6= ⊥, s.Trans.zval 6= ⊥, s.Trans.inval 6=
⊥, and s.Trans.bval = ⊥. Then we have u.TR1 .tdpp 6= ⊥, by Property 1(f) applied to s and u.
And u.TR1 .zval 6= ⊥, by Property 1(h) and Lemma 6.4 part 7(b). And u.TR1 .inval2(Trans) 6=
⊥, by Property 1(d). And u.TR1 .inval(Rec) 6= ⊥, by Lemma 6.4 parts 7b and 6 and Property
1(e). And finally, u.TR1 .bval = ⊥, by Property 1(i). Since the only effect of out′(x)Rec is to set
inval(Trans) in TR1 to x if inval(Trans) = ⊥, we know that u′′.TR1 .inval(Trans) 6= ⊥, and also
that u′′.TR1 .tdpp 6= ⊥, u′′.TR1 .zval 6= ⊥, u′′.TR1 .inval2(Trans) 6= ⊥, u′′.TR1 .inval(Rec) 6= ⊥,
and u′′.TR1 .bval = ⊥. Combining all these conditions, we see that fix− bvalTrans is enabled in
u′′, as needed.

Next, we define the probability measures. Let I be the singleton index set {1}, let p be the Dirac
measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2. To show that (ε′1, ε

′
2) ∈ R, we establish Property 1

of R for ε′1 and ε′2, and show trace distribution equivalence.

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)).
Let s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, fix − bvalTrans , µs) ∈
DRS‖Env . Let u′′ be any state in supp(lstate(ε′′2)) such that u′ ∈ supp(µ′u) where (u′′, fix −
bvalTrans , µ

′
u) ∈ DInt1‖Env . Let u be any state in supp(lstate(ε2)) such that u′′ ∈ supp(µu) where

(u, out′(x)Rec , µu) ∈ DInt1‖Env .

We first show that s′.Trans.bval = u′.TR1 .bval. By the effect of T , we know that for i ∈
{0, 1}, s′.Trans.bval(i) = B(s.Trans.tdpp.inverse(s.Trans.zval(i))) ⊕ s.Trans.inval(i). All state
variables other than bval are unchanged in moving from s to s′.

Also, by the effects of the out′(x)Rec and fix − bvalTrans actions and by Lemma 10.3 (for the
second equality),
u′.TR1 .bval(u.TR1 .inval(Rec))

= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u′′.TR1 .inval(Trans)
= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u′′.Funct .inval(Trans)(u′′.Funct .inval(Rec))
= B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec))

Also, we have
u′.TR1 .bval(1− u.TR1 .inval(Rec))

= B(u.TR1 .tdpp.inverse(u.TR1 .zval(1− u.TR1 .inval(Rec))))
⊕ u.TR1 .inval2(Trans)(1− u.TR1 .inval(Rec)).

In moving from u to u′, TR1 .inval(Trans) is updated to a non-⊥ value and all other state variables
except bval are unchanged.

To show that s′.Trans.bval = u′.TR1 .bval, we consider the two indices separately:

(a) i = s.Rec.inval

Then by Property 1(e), i = u.TR1 .inval(Rec). In this case, we must show that B(s.Trans.tdpp.
inverse(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .yval(u.TR1 .inval(Rec)))⊕u.Funct .

102

inval(Trans)(u.Funct .inval(Rec)), that is, that B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕
s.Trans.inval(i) = B(u.TR1 .yval(i))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec)).
Now, s.Trans.inval(i) = s.Trans.inval(s.Rec.inval), which is in turn equal to u.Funct .inval
(Trans)(u.Funct .inval(Rec)). by Properties 1(a) and 1(b) for s and u. And s.Trans.tdpp.inverse
(s.Trans.zval(i))) = s.Rec.yval(i), by Lemma 6.4, part 10, which is equal to u.TR1 .yval(i))
by Property 1(g). Thus, s.Trans.tdpp.inverse(s.Trans.zval(i))) = u.TR1 .yval(i)), and so
B(s.Trans.tdpp.inverse(s.Trans.zval(i))) = B(u.TR1 .yval(i)). Combining the equations
yielded the needed equation B(s.Trans.tdpp.inverse(s.Trans.zval(i))) ⊕ s.Trans.inval(i) =
B(u.TR1 .yval(i))⊕ u.Funct .inval(Trans)(u.Funct .inval(Rec)).

(b) i = 1− s.Rec.inval

Then i = 1−u.TR1 .inval(Rec) by Property 1(e). In this case, we must show that B(s.Trans.tdpp.
inverse(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(1−u.TR1 .
inval(Rec))))⊕u.TR1 .inval2(Trans)(1−u.TR1 .inval(Rec)), that is, that B(s.Trans.tdpp.inverse
(s.Trans.zval(i)))⊕s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(i)))⊕u.TR1 .inval2
(Trans)(i).
Now, s.Trans.inval(i) = u.TR1 .inval2(Trans)(i) by Property 1(d). And s.Trans.tdpp =
u.TR1 .tdpp by Property 1(f). And s.Trans.zval = u.TR1 .zval by Property 1(h) and
Lemma 6.4 part 7. It follows that s.Trans.tdpp.inverse(s.Trans.zval(i)) = u.TR1 .tdpp.inverse
(u.TR1 .zval(i)), and so B(s.Trans.tdpp.inverse(s.Trans.zval(i))) = B(u.TR1 .tdpp.inverse
(u.TR1 .zval(i))). Combining the equations yields B(s.Trans.tdpp.inverse(s.Trans.zval(i)))⊕
s.Trans.inval(i) = B(u.TR1 .tdpp.inverse(u.TR1 .zval(i))) ⊕ u.TR1 .inval2(Trans)(i), as
needed.

Thus, we have shown that s′.Trans.bval = u′.TR1 .bval. To see that Property 1 holds for s′ and
u′, note that it holds for s and u, and the only changes are in the new assigments to bval (which
are equal, as just shown), and in setting u′.TR1 .inval(Trans) to a non-⊥ value. The only part of
Property 1 that mentions u′.TR1 .inval(Trans) is 1(c); thus, to see that Property 1 holds for s′

and u′ (and hence for ε′1 and ε′2), it suffices to show that Property 1(c) holds for s′ and u′.

So, suppose that s′.Rec.outval 6= ⊥. Then s′.Rec.outval = s.Rec.outval, which is equal to
s.Trans.inval(s.Rec.inval) by Lemma 6.4.
This in turn equals u.Funct .inval(Trans)(u.Funct .inval(Rec)) by Property 1(a) and 1(b) for s
and u, which is equal to u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Since we know that u′.TRone.inval(Trans) 6= ⊥, Lemma 10.3 implies that u′.TRone.inval(Trans) =
u′.Funct .inval(Trans)(u′.Funct .inval(Rec)).
Combining all the equations, we obtain that s′.Rec.outval = u′.TRone.inval(Trans), as needed
for 1(c).

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

9. T = {send(1, f)Trans}.
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an output task of Trans, T is enabled in s.Trans, and so s.Trans.tdpp 6= ⊥. By Property 1(f),
u.TR1 .tdpp = s.Trans.tdpp. So, T is enabled in u.TR1 , and hence in u, as needed.

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(f) that variables Trans.tdpp and TR1 .tdpp have the
same unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)).
Since the parameter f in send(1, f)Trans is defined to be Trans.tdpp.funct we conclude that
the action send(1,Trans.tdpp.funct) is the unique action in T that is enabled in every state in
supp(lstate(ε1))∪ supp(lstate(ε2)). We use a as a shorthand for send(1,Trans.tdpp.funct) in the
rest of the proof for this case.

103

Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2.
To show that (ε′1, ε

′
2) ∈ R, we establish Property 1 of R for ε′1 and ε′2, and show trace distribution

equivalence for ε′1 and ε′2.

To establish Property 1, consider any state s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

By definitions of RS and Int1 we know that application of T updates only Adv .messages in the
RS system and Adv ′.messages in the Int1 system. By Property 1(l), u.Adv ′ = s.Adv . It is
obvious that u′.Adv ′ = s′.Adv and that 1(l) holds, since Adv and Adv ′ are the same automaton
(except for renaming of the out′ actions). Since no component other than Adv .messages and
Adv ′.messages is updated, we conclude that Property 1 holds.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

10. T = {send(2, z)Rec}.
We first show that T is enabled in every state in supp(lstate(ε2)). Fix any state u ∈ supp(lstate(ε2));
we show that T is enabled in u. Choose any s ∈ supp(lstate(ε1)). Since T is enabled in s and T
is an output task of Rec, T is enabled in s.Rec, and therefore s.Rec.zval 6= ⊥. By Property 1(h),
u.TR1 .zval = s.Rec.zval 6= ⊥. So, T is enabled in u.Rec, and hence in u, as needed.

Next, we show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)). We know by Property 1(h) that variables Rec.zval and TR1 .zval have the same
unique value in all states in supp(lstate(ε1)) ∪ supp(lstate(ε2)), and there is a unique action
a ∈ T that is enabled in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)). Note that here a is
send(2, z)Rec for a fixed value of z.

The rest is identical to the proof for T = {send(1, f)Trans}.

11. T = {send(3, b)Trans}.
The proof that T is enabled in every state in supp(lstate(ε2)) is analogous to the corresponding
part of the proof for T = {send(1, f)Trans}. Here we use Property 1(i), instead of 1(f).

We also show that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪
supp(lstate(ε2)), arguing as in the case for T = {send(1, f)Trans}. Here, the unique action is
determined by fixing the value of parameter b to the value of variables Trans.bval and TR1 .bval,
which is the same in every state in supp(lstate(ε1)) ∪ supp(lstate(ε2)).

The rest of the proof is identical to the proof for T = {send(1, f)Trans}.

12. T = {receive(1, f)Rec}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here,
a is receive(1, f)Rec for a fixed value of f .

The rest is similar to the proof for T = {send(1, f)Trans}. The only difference is that in showing
that Property 1 holds, we use the fact that application of T updates only Rec.tdp in RS and that
R does not depend on this component.

13. T = {receive(2, z)Trans}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here
a is receive(2, z)Trans for a fixed value of z.

104

The rest of the proof differs from the case for T = {receive(1, f)Rec} only in showing that Property
1 holds; here we make use of the fact that the application of T updates Trans.zval only, which
has no effect on R.

14. T = {receive(3, b)Rec}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Here
a is receive(3, b)Rec for a fixed value of b.

The rest of the proof differs from that for T = {receive(1, f)Rec} in that in showing that
Property 1 holds, we must show that Property 1(c) is preserved. Thus, consider any state
s′ ∈ supp(lstate(ε′1)) and u′ ∈ supp(lstate(ε′2)). Let s be some state in supp(lstate(ε1)) such
that s′ ∈ supp(µs) where (s, a, µs) ∈ DRS‖Env . Similarly, let u be some state in supp(lstate(ε2))
such that u′ ∈ supp(µu) where (u, a, µu) ∈ DInt1‖Env .

We know that s′.Rec.outval 6= ⊥. Then s′.Rec.outval = s′.Trans.inval(s′.Rec.inval) by Lemma 6.4,
which is equal to s.Trans.inval(s.Rec.inval).
This in turn equals u.Funct .inval(Trans)(u.Funct .inval(Rec)) by Property 1(a) and 1(b) for s and
u. Now, s.Trans.bval 6= ⊥, by Lemma 6.4, part 4, so by Property 1(i), u.TR1 .bval 6= ⊥. Therefore,
by Lemma 10.3, u.TRone.inval(Trans) 6= ⊥, and again by Lemma 10.3, u.TRone.inval(Trans) =
u.Funct .inval(Trans)(u.Funct .inval(Rec)). Combining the equations, we obtain s′.Rec.outval =
u.TR1 .inval(Trans). Since u′.TR1 .inval(Trans) = u.TR1 .inval(Trans), we obtain s′.Rec.outval =
u′.TR1 .inval(Trans) which shows 1(c), as needed.

15. T = {out(x)Rec}.
Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. (Here
µAdv is a Dirac distribution.) Also, by next-transition determinism, it follows that there is a unique
transition of Env with action a from qEnv . Let trEnv = (qEnv , a, µEnv) be this transition.

To show the step correspondence, we proceed as for T = {in(x)Trans}, decomposing the measures
generated by the application of T according to the resulting state in Env , and using Property
1(m) to show that Property 1 holds for each component measure.

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

16. T = {out′(x)Rec}.
We first show that the corresponding task {out′′(x)} is enabled in every state in supp(lstate(ε2)).
Fix any state u ∈ supp(lstate(ε2)); we show that {out′′(x)Rec} is enabled in u. Note that
{out′′(x)Rec} is an output task of TR1 in the Int1 system. Choose any s ∈ supp(lstate(ε1)).
Since T is enabled in s and T is an output task of Rec in the RS system, T is enabled in
s.Rec and therefore s.Rec.outval 6= ⊥. Then by Property 1(c), u.TR1 .inval(Trans) 6= ⊥. So,
{out′′(x)Rec} is enabled in u.TR1 , and hence in u, as needed.

Let I be the singleton index set {1}, let p be the Dirac measure on 1, and let ε′11 = ε′1 and ε′21 = ε′2.

In showing Property 1, we use the fact that applications of T in the RS system and {out′′(x)Rec}
in the Int1 system update only the outval(Rec) state variables in both Adv and Adv ′, which
preserves Property 1.

The fact that tdist(ε′1) = tdist(ε′2) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1 and ε′2.

17. T is an output task of Env and an input task of Adv .

105

Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Also,
by next-transition determinism, it follows that there is a unique transition of Adv with action a
from qAdv . Let trAdv = (qAdv , a, µAdv) be this transition.

Suppose that supp(µEnv × µAdv) is the set {(qj1, qj2) : j ∈ I} of pairs of states, where I is a
countable index set. Let p be the probability measure on the index set I such that, for each j ∈ I,
p(j) = (µEnv × µAdv)(q1j , q2j). For each j ∈ I, we define probability measure ε′1j as follows. The
support supp(ε′1j) is the set of execution fragments α ∈ supp(ε′1) such that lstate(α).Env = q1j

and lstate(α).Adv = q2j . For each α ∈ supp(ε′1j) of the form α′ a q, let ε′1j(α) = ε1(α′). We
construct ε′2j analogously from ε′2.

In the rest of the proof we proceed as for T = {in(x)Trans}. The only difference is that in showing
Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects only the
states of Adv , Adv ′, and Env (by definition of the RS and Int1 systems) and use Properties 1(l)
and 1(m).

18. T is either an output task of Env that is not an input task of Adv , Trans, or Rec, or is an internal
task of Env .

Since T is an output or internal task of Env , Claim 2 implies that T is enabled in every
state in supp(lstate(ε2)), that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), and that there is a unique transition trEnv = (qEnv , a, µEnv)
of Env from qEnv with action a.

To show the step correspondence, we proceed as for T = {in(x)Trans}. The only difference is that
in showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T affects
only the state of Env , and use Property 1(m).

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

19. T is an output task of Adv and an input task of Env .

Since T is an output task of Adv , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trAdv = (qAdv , a, µAdv) of Adv from qAdv with action a. Also,
by next-transition determinism, it follows that there is a unique transition of Env with action a
from qEnv . Let trEnv = (qEnv , a, µEnv) be this transition.

To show the step correspondence, we proceed as for T = {in(x)Trans}, using Properties 1(l) and
1(m).

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

20. T is either an output task of Adv that is not an input task of Env , Trans, or Rec, or is an internal
task of Adv .

Since T is an output or internal task of Adv , Claim 2 implies that T is enabled in every
state in supp(lstate(ε2)), that there is a unique action a ∈ T that is enabled in every state in
supp(lstate(ε1)) ∪ supp(lstate(ε2)), and that there is a unique transition trAdv = (qAdv , a, µAdv)
of Adv from qAdv with action a.

To show the step correspondence, we proceed as for T = {in(x)Trans}, but using Adv instead of
Env . In showing Property 1 for ε′1j and ε′2j , for a fixed j, we use the fact that application of T
affects only the state of Adv (by definition of RS and Int1) and use Property 1(l).

For each index j in the decomposition, the fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact
that tdist(ε1) = tdist(ε2) and the definitions of ε′1j and ε′2j .

106

2

Proof. (Of Lemma 10.4:)
By Lemma 10.6, R is a simulation relation from RSk‖Env to Int1 k‖Env . Then Theorem 3.53 im-
plies that tdists(RSk‖Env) ⊆ tdists(Int1 k‖Env). Since Env was chosen arbitrarily, this implies (by
definition of ≤0) that RSk ≤0 Int1 k. 2

Proof. (Of Lemma 10.5:)
By Lemma 10.6, R is a simulation relation from RSk‖Env to Int1 k‖Env for which |corrtasks(S, T)| ≤ 2
for every S and T . Since that lemma holds for every k and every Env , Theorem 3.86 implies that
RS ≤neg,pt Int1 . 2

10.5 Int1 implements Int2

We show:

Lemma 10.7 Assume that Adv is a polynomial-time-bounded family of adversary automata. Then
Int1 ≤neg,pt Int2 .

In order to prove this lemma, we consider the following two task-PIOA families, SInt1 and SInt2 ,
which are subsystems of the Int1 and Int2 families respectively:

• SInt1 = hide{rand(∗)tdpp}∪{rand(∗)zval}(TR1‖Srctdpp‖Srczval),

• SInt2 = hide{rand(∗)tdpp}∪{rand(∗)zval}∪{rand(∗)cval1}(TR2‖Srctdpp‖Srczval‖Srccval1).

Next, using mappings of the sort we used in Section 9.4, we will show that SInt1 ≤0 SHOT ′ and
SHROT ′ ≤0 SInt2 , where SHOT ′ and SHROT ′ are the families defined in Section 8.3.3. More
precisely, we prove that SInt1 k ≤0 SHOT ′k and SHROT ′k ≤0 SInt2 k for every k. In the rest of this
subsection, we suppress the mention of k everywhere.

Finally, using the properties of these mappings and the different properties of the ≤neg,pt relation,
we prove the expected relation.

10.5.1 The SInt1 subsystem implements SHOT ′

Fix any environment Env ′ for both SInt1 and SHOT ′. We define a simulation relation R from
SInt1‖Env ′ to SHOT ′‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SInt1‖Env ′ and
SHOT ′‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence proper-
ties. Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

1. u.Ifc′.inval(Trans) = s.TR1 .inval(Trans).

2. u.Ifc′.inval2(Trans) = s.TR1 .inval2(Trans).

3. u.Ifc′.inval(Rec) = s.TR1 .inval(Rec).

4. if s.Srctdpp.chosenval = ⊥ then u.Srctdp.chosenval = ⊥.

5. if s.Srctdpp.chosenval 6= ⊥ then u.Srctdp.chosenval = s.Srctdpp.chosenval.funct.

6. if s.TR1 .tdpp 6= ⊥ then u.Ifc′.fval = s.TR1 .tdpp.funct.

7. if s.Srcyval.chosenval = ⊥ then u.Srcyval.chosenval = u.Srcyval′ .chosenval = ⊥

8. if s.Srcyval.chosenval 6= ⊥ then lstate(ε2).Srcyval.chosenval and lstate(ε2).Srcyval′ .chosenval are
the uniform distribution on D.

107

9. if s.TR1 .yval 6= ⊥ then u.H.yval 6= ⊥ and u.Ifc′.yval′ 6= ⊥.

10. if s.TR1 .zval = ⊥ then u.Ifc′.zval = ⊥ else

• u.Ifc′.zval(u.Ifc′.inval(Rec)) = s.TR1 .zval(s.TR1 .inval(Rec)) and

• u.Ifc′.zval(1− u.Ifc′.inval(Rec)) = s.TR1 .zval(1− s.TR1 .inval(Rec)).

11. if s.TR1 .bval = ⊥ then u.Ifc′.bval = ⊥ else

• u.Ifc′.bval(u.Ifc′.inval(Rec)) = s.TR1 .bval(s.TR1 .inval(Rec)) and

• u.Ifc′.bval(1− u.Ifc′.inval(Rec)) = s.TR1 .bval(1− s.TR1 .inval(Rec)).

12. u.Env ′ = s.Env ′.

Lemma 10.8 The relation R defined above is a simulation relation from SInt1‖Env′ to SHOT ′‖Env′.
Furthermore, for each step of SInt1‖Env′, the step correspondence yields at most five steps of
SHOT ′‖Env′, that is, for every S, T , |corrtasks(S, T)| ≤ 5.

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SInt1‖Env ′ and SHOT ′‖Env ′, respectively, are R-related: all properties of R
holds because the state components of s and u on which R depends are all ⊥.
Step condition: We define corrtasks(RSSInt1‖Env ′ ×RASInt1‖Env ′)→ RA∗

SHOT ′‖Env ′ as follows:
For any (S, T) ∈ (RSSInt1‖Env ′ ×RASInt1‖Env ′):

• If T ∈ {{in(x)Trans}, {out′(x)Rec}, {out′′(x)Rec}, {in(i)Rec}, {send(1, f)Trans}, {send(2, z)Rec},
{send(3, b)Trans}} then corrtasks(S, T) = T .

• If T is an output or internal task of Env ′ that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T = {choose− randtdpp} then corrtasks(S, T) = {choose− randtdp}.

• If T = {choose− randyval} then corrtasks(S, T) = {choose− randyval}{choose− randyval′}.

• If T = {rand(p)tdpp} then corrtasks(S, T) = {rand(f)tdp}.

• If T = {rand(y)yval} then corrtasks(S, T) = {rand(y)yval}{rand(y)yval′}.

• If T = {fix−zvalRec} then corrtasks(S, T) = {fix−zval}{rand(z)zval}{fix−bval}{rand(b)bval}
{fix− zvalRec}.

• If T = {fix− bvalTrans} then corrtasks(S, T) = {fix− bvalTrans}.

Suppose (ε1, ε2) ∈ R and T is a task of SInt1‖Env ′ that is enabled in supp(lstate(ε1)). equivalence
follows as in that proof. Identical versions of Claim 1 and Claim 2 in that proof carry over for Env′ to
this case. We simply verify that the tasks in corrtasks(S, T) are enabled when T is enabled: the other
aspects of the proof are similar to the corresponding ones in Lemma 10.6.

1. T ∈ {{in(x)Trans}, {out′(x)Rec}, {in(i)Rec}}. In these cases, T is an input task of SInt1 , which is
also the case of corrtasks(S, T) = T in SHOT ′. These input tasks are always enabled.

2. T = {out′′(x)Rec}. Consider any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since
T is enabled in s, we know that s.TR1 .inval(Trans) 6= ⊥. Now, since ε1Rε2, we know that
u.Ifc′.inval(Trans) 6= ⊥. This is sufficient to have T in enabled in u.

3. T = {send(1, f)Trans}. This case is similar to the previous one since we know that s.TR1 .tdpp 6= ⊥
and u.Ifc.fval = s.TR1 .tdpp.funct in any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)).

108

4. T = {send(2, z)Rec}. Again, this case is similar to the previous one since we know that s.TR1.zval 6=
⊥, which implies that u.Ifc′.zval 6= ⊥ in any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)).

5. T = {send(3, b)Trans}. Again, this case is similar to the previous one since we know that
s.TR1.bval 6= ⊥, which implies that u.Ifc′.bval 6= ⊥ in any states s ∈ supp(lstate(ε1)) and
u ∈ supp(lstate(ε2)).

6. T is an output or internal task of Env′ that is not one of the tasks listed above. Consider any
states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since T is enabled in s, it is also enabled in
u since we know that s.Env′ = u.Env′.

7. T = {choose − randtdpp}. We know that {choose − randtdp} is enabled in SHOT ′ because
u.Srctdp.chosenval = ⊥ when s.Srctdpp.chosenval = ⊥ in any states s ∈ supp(lstate(ε1)) and
u ∈ supp(lstate(ε2)).

8. T = {choose−randyval}. We know that {choose−randyval} and {choose−randyval′} are enabled
in SHOT ′ because u.Srcyval.chosenval = u.Srcyval′ .chosenval = ⊥ when s.Srcyval.chosenval =
⊥ in any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)).

9. T = {fix − zvalRec}. Consider any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since
T is enabled in s, we know that s.TR1 .yval 6= ⊥ and s.TR1 .tdpp 6= ⊥. Since ε1Rε2, we also
know that u.H.yval 6= ⊥, u.Ifc′′.yval′ 6= ⊥ and u.Ifc′.fval = u.H.fval 6= ⊥. So, the sequence
of tasks {fix − zval}{rand(z)zval}{fix − bval}{rand(b)bval} is enabled in u. After these tasks
have been performed, u.Ifc′.zval′ 6= ⊥ and u.Ifc′.bval′ 6= ⊥. Now, since T is enabled in s,
we know that s.TR1 .inval(Rec) 6= ⊥ and s.TR1 .zval = ⊥. Since ε1Rε2, we also know that
u.Ifc′.inval(Rec) 6= ⊥ and u.Ifc′.zval = ⊥. So, at this point, the {fix − zvalRec} task is
enabled.

10. T = {fix− bvalTrans}. Consider any states s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)). Since
T is enabled in s and ε1Rε2, we know that

• s.TR1 .zval 6= ⊥, which implies that u.Ifc′.zval 6= ⊥,

• s.TR1 .inval(Trans) 6= ⊥, which implies that u.Ifc′.inval(Trans) 6= ⊥,

• s.TR1 .inval2(Trans) 6= ⊥, which implies that u.Ifc′.inval2(Trans) 6= ⊥,

• s.TR1 .inval(Rec) 6= ⊥, which implies that u.Ifc′.inval(Rec) 6= ⊥,

• s.TR1 .bval = ⊥, which implies that u.Ifc′.bval = ⊥.

Now, we observe that, if u.Ifc′.zval 6= ⊥, then u.Ifc′.yval′ 6= ⊥ and u.Ifc′.bval′ 6= ⊥. So, all
preconditions of the {fix− bvalTrans}-task are verified in u.

2

10.5.2 SHROT ′ implements the SInt2 subsystem

Fix any environment Env ′ for both SHROT ′ and SInt2 . We define a simulation relation R from
SHROT ′‖Env ′ to SInt2‖Env ′.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of SHROT ′‖Env ′ and
SInt2‖Env ′, respectively, satisfying the trace distribution equivalence and state equivalence properties.
Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

1. u.TR2 .inval(Trans) = s.Ifc′.inval(Trans).

2. u.TR2 .inval2(Trans) = s.Ifc′.inval2(Trans).

3. u.TR2 .inval(Rec) = s.Ifc′.inval(Rec).

109

4. if s.Srctdp.chosenval = ⊥ then u.Srctdpp.chosenval = ⊥.

5. if s.Srctdp.chosenval 6= ⊥ then u.Srctdpp.chosenval.funct = s.Srctdp.chosenval.

6. if s.Ifc′.fval 6= ⊥ then u.TR2 .tdpp.funct = s.Ifc′.fval.

7. if s.Srczval.chosenval = ⊥ then u.Srcyval.chosenval = ⊥.

8. if s.Srczval.chosenval 6= ⊥ then lstate(ε2).Srcyval.chosenval is the uniform distribution on ({0, 1} →
D).

9. if s.Ifc′.zval′ 6= ⊥ then u.TR2 .yval 6= ⊥.

10. if s.Ifc′.zval = ⊥ then u.TR2 .zval = ⊥ else

• u.TR2 .zval(u.TR2 .inval(Rec)) = s.Ifc′.zval(s.Ifc′.inval(Rec)) and

• u.TR2 .zval(1− u.TR2 .inval(Rec)) = s.Ifc′.zval(1− s.Ifc′.inval(Rec)).

11. if s.Ifc′.bval = ⊥ then u.TR2 .bval = ⊥ else

• u.TR2 .bval(u.TR2 .inval(Rec)) = s.Ifc′.bval(s.Ifc′.inval(Rec)) and

• u.TR2 .bval(1− u.TR2 .inval(Rec)) = s.Ifc′.bval(1− s.Ifc′.inval(Rec)).

12. u.Env ′ = s.Env ′.

Lemma 10.9 The relation R defined above is a simulation relation from SHROT ′‖Env′ to SInt2‖Env′.
Furthermore, for each step of SHROT ′‖Env′, the step correspondence yields at most one step of
SInt2‖Env′, that is, for every S, T , |corrtasks(S, T)| ≤ 1.

Proof. We show that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of SHROT ′‖Env ′ and SInt2‖Env ′, respectively, are R-related. All properties of
R hold because the state components of s and u on which R depends are all ⊥.
Step condition: We define corrtasks(RSSHROT ′‖Env ′ ×RASHROT ′‖Env ′)→ RA∗

SInt2‖Env ′ as follows:
For any (S, T) ∈ (RSSHROT ′‖Env ′ ×RASHROT ′‖Env ′):

• If T ∈ {{in(x)Trans}, {out′(x)Rec}, {out′′(x)Rec}, {in(i)Rec}, {fix − zvalRec}, {fix − bvalTrans},
{send(1, f)Trans}, {send(2, z)Rec}, {send(3, b)Trans}} then corrtasks(S, T) = {T}.

• If T is an output or internal task of Env ′ that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T = {choose− randtdp} then corrtasks(S, T) = {choose− randtdpp}.

• If T = {rand(f)tdp} then corrtasks(S, T) = {rand(p)tdpp}.

• If T = {choose− randyval′} then corrtasks(S, T) = λ.

• If T = {rand(y)yval′} then corrtasks(S, T) = λ.

• If T = {choose− randzval} then corrtasks(S, T) = {choose− randyval}.

• If T = {rand(z)zval} then corrtasks(S, T) = {rand(y)yval}.

• If T = {choose− randbval} then corrtasks(S, T) = {choose− randcval1}.

• If T = {rand(b)bval} then corrtasks(S, T) = {rand(c)cval1}.

110

The only interesting cases in this mapping are those corresponding to the selection and to the
transmission of s.Srcyval′ .chosenval and s.Srczval.chosenval (for any state s ∈ supp(lstate(ε1))). These
two values are selected into two random sources in SHROT ′ while they are both selected into the Srcyval

random source in SInt2 .
Since all actions of Ifc′ require that both these values are defined (or do not care about them), we

manage these differences in a simple way: we do not define any task corresponding to the tasks of the
Srcyval′ source, and make the tasks of the Srczval automata correspond. This is sufficient to be sure
that TR2 .yval 6= ⊥ when both Ifc′.yval′ and Ifc′.zval′ have been set.

Proving the rest of this correspondence is fairly obvious.
2

10.5.3 Int1 implements Int2

Proof. (of Lemma 10.7)
In Lemma 10.8 and 10.9, we proved that SInt1 ≤0 SHOT ′ and SHROT ′ ≤0 SInt2 . Furthermore, the
corrtasks mappings we used in these proofs only increase the length of the schedules by a constant
factor. So, we can use the soundness result of our simulation relation given in Thm. 3.86 to deduce that
SInt1 ≤neg,pt SHOT ′ and SHROT ′ ≤neg,pt SInt2

Now, since SHOT ′ ≤neg,pt SHROT ′ (see Lemma 8.16) and since the ≤neg,pt implementation rela-
tion is transitive (see Lemma 3.83), we obtain SInt1 ≤neg,pt SInt2 .

Now, by composing SInt1 and SInt2 with the polynomial-time bounded task-PIOA families Adv
and Funct , and using Lemma 3.84, we obtain:

Funct‖Adv‖SInt1 ≤neg,pt Funct‖Adv‖SInt2 .

Now, coming back to the definitions of SInt1 and SInt1 , we observe that this is equivalent to saying
that:

hide{rand(∗)tdpp}∪{rand(∗)zval}(Funct‖Adv‖TR1‖Srctdpp‖Srczval)

≤neg,pt hide{rand(∗)tdpp}∪{rand(∗)zval}∪{rand(∗)cval1}(Funct‖Adv‖TR2‖Srctdpp‖Srczval‖Srccval1)

or, in other words, Int1 ≤neg,pt Int2 , as needed. 2

10.6 Int2 implements SIS

We show:

Lemma 10.10 For every k, Int2 k ≤0 SISk.

We prove Lemma 9.11 by choosing an arbitrary environment Env for Int2 k and SISk, establishing a
simulation relation from Int2 k‖Env to SISk‖Env , and appealing to Theorem 3.53, the soundness result
for simulation relations.

The only differences between Int2 and SIS are that Int2 uses TR2 and Srccval1 whereas SIS uses
TR and Srcbval1. The key difference here is that TR2 calculates the bval value for the non-selected
index as the ⊕ of a random cval1 bit and the real input bit, whereas TR chooses it randomly (using
bval1). Either way, it’s a random bit.

We also show:

Lemma 10.11 Int2 ≤neg,pt SIS.

10.6.1 State correspondence

Here we define the correspondence R from the states of Int2‖Env to states of SIS‖Env , which we will
show to be a simulation relation in Section 10.6.2.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of Int2 and SIS ,
respectively, satisfying the following properties:

111

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exist state equivalence classes S1 ∈ RSInt2‖Env and S2 ∈ RSSIS‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct = s.Funct .

(b) u.Funct .inval(Trans) = s.TR2 .inval2(Trans).

(c) u.TR.inval(Trans) = s.TR2 .inval(Trans).

(d) u.TR.inval(Rec) = s.TR2 .inval(Rec).

(e) u.TR.tdpp = s.TR2 .tdpp.

(f) u.TR.yval = s.TR2 .yval.

(g) u.TR.zval = s.TR2 .zval.

(h) If u.TR.bval1 6= ⊥ then s.TR2 .cval1 6= ⊥, s.TR2 .inval(Trans) 6= ⊥, s.TR2 .inval(Rec)) 6=
⊥, and u.TR.bval1 = s.TR2 .cval1⊕ s.TR2 .inval2(Trans)(1− s.TR2 .inval(Rec)).
That is, the high-level bval1 value is calculated as the ⊕ of the low-level cval1 value and the
transmitter’s input bit.

(i) u.TR.bval = s.TR2 .bval.

(j) u.Srctdpp = s.Srctdpp.

(k) u.Srcyval = s.Srcyval.

(l) u.Srcbval1.chosenval = TR2 .bval.

(m) u.Adv ′ = s.Adv ′.

(n) u.Env = s.Env .

2. For every u ∈ supp(lstate(ε2)): If u.TR.bval1 = ⊥ then one of the following holds:

(a) For every s ∈ supp(lstate(ε1)), s.Srccval1.chosenval = ⊥.
That is, cval1 has not been chosen.

(b) For every s ∈ supp(lstate(ε1)), s.TR2 .cval1 = ⊥, and lstate(ε1) projected on Srccval1.chosenval
is the uniform distribution on {0, 1}.

(c) lstate(ε1) projected on TR2 .cval1 is the uniform distribution on {0, 1}.

10.6.2 The mapping proof

Lemma 10.12 The relation R defined in Section 10.6.1 is a simulation relation from Int2‖Env to
SIS‖Env. Furthermore, for each step of Int2‖Env, the step correspondence yields at most three steps
of SIS‖Env, that is, for every S, T , |corrtasks(S, T)| ≤ 3.

Proof. We prove that R satisfies the two conditions in Lemma 3.55.
Start condition: It is obvious that the Dirac measures on execution fragments consisting of the unique
start states s and u of Int2‖Env and SIS‖Env , respectively, are R-related. Property 1 holds be-
cause the state components of s and u on which R depends are all ⊥. Property 2 holds because
s.Srccval1.chosenval = ⊥.

Step condition: We define corrtasks : RSInt2‖Env ×RAInt2‖Env → RA∗
SIS‖Env as follows:

For any (S, T) ∈ RSInt2‖Env ×RAInt2‖Env :

112

• If T ∈ {{in(x)Trans}, {in(i)Rec}, {choose−randtdpp}, {randtdpp}, {choose−randzval}, {randzval},
{send(1, f)Trans}, {receive(1, f)Rec}, {send(2, z)Rec}, {receive(2, z)Trans}, {send(3, b)Trans},
{receive(3, b)Rec}, or {out(x)Rec}}, then corrtasks(S, T) = T .

• If T is an output or internal task of Env or Adv that is not one of the tasks listed above, then
corrtasks(S, T) = T .

• If T ∈ {{choose− randcval1}, {randcval1}} then
corrtasks(S, T) = λ.

• If T = {fix− bvalTrans} then
corrtasks(S, T) = {choose− randbval1} {randbval1} {fix− bvalTrans}.

Suppose (ε1, ε2) ∈ R and T is a task of Int2‖Env that is enabled in supp(lstate(ε1)). Let ε′1 =
apply(ε1, T) and ε′2 = apply(ε2, corrtasks([lstate(ε1)], T)).
We establish the step condition by considering cases based on the value of T . The proof follows the
same outline as for Lemma 9.7.

1. T = {in(x)Trans}.
Task T is output from Env to both Funct and TR2 in the Int2 system, and from Env to Funct
in the SIS system.

Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(x)Trans for a particular value of x.

Next, we define the probability measures needed to show the step correspondence. Suppose that
supp(µEnv) is the set {qj : j ∈ I} of states of Env , where I is a countable index set. Let p be
the probability measure on the index set I such that, for each j ∈ I, p(j) = µEnv (qj). For each
j ∈ I, we define probability measure ε′1j as follows. The support supp(ε′1j) is the set of execution
fragments α ∈ supp(ε′1) such that lstate(α).Env = qj . For each α ∈ supp(ε′1j) of the form α′ a qj ,
let ε′1j(α) = ε1(α′). We define ε′2j analogously from ε′2.

Now fix j ∈ I; we show that (ε′1j , ε
′
2j) ∈ R. To do this, we establish Properties 1 and 2 of R for

ε′1j and ε′2j , and show trace distribution equivalence for ε′1j and ε′2j .

To establish Property 1, consider any states s′ ∈ supp(lstate(ε′1j)) and u′ ∈ supp(lstate(ε′2j)). Let
s be any state in supp(lstate(ε1)) such that s′ ∈ supp(µs) where (s, a, µs) ∈ DInt2‖Env . Similarly,
let u be any state in supp(lstate(ε2)) such that u′ ∈ supp(µu), where (u, a, µu) ∈ DSIS‖Env .

If s.TR2 .inval2(Trans) 6= ⊥ then by Properties 1(a) and 1(b), u.Funct .inval(Trans) 6= ⊥ and
s.Funct .inval(Trans) 6= ⊥. In this case, task T has no effect on any component other than Env ,
in either system. Since s′.Env = qj = u′.Env by definition, it is easy to see that Property 1 holds
for s′ and u′.

Now suppose that s.TR2 .inval2(Trans) = ⊥. Then again by Properties 1(a) and 1(b),
u.Funct .inval(Trans) = s.Funct .inval(Trans) = ⊥. Then by the definitions of Int2 and SIS ,
we know that application of T updates TR2 .inval2(Trans) and Funct .inval(Trans) in Int2 , and
Funct .inval(Trans) in SIS . It also updates the state of Env to qj in both systems.

We know by Property 1(a) that u.Funct = s.Funct , by Property 1(b) that u.Funct .inval(Trans) =
s.TR2 .inval2(Trans), and by 1(n) that u.Env = s.Env . By the effects of T in definitions of Funct
and TR2 , we know that u′.Funct = s′.Funct and u′.Funct .inval(Trans) = s′.TR2 .inval2(Trans);
hence, Properties 1(a) and 1(b) hold for s′ and u′. We also know that 1(n) holds for s′ and u′ by
definition of ε′1j and ε′2j : in both s′ and u′, the state of Env is qj . Since no state component other
than TR2 .inval2, Funct .inval(Trans), and Env in the TRtwo system, and Funct .inval(Trans)
and Env in the SIS system, is updated by the application of T , we conclude that Property 1
holds for s′ and u′, and hence, for ε′1 and ε′2.

113

The proof of Property 2 is analogous to the corresponding proof in Lemma 9.13.

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

2. T = {in(i)Rec}.
Task T is output from Env to Funct , Adv ′ and TR2 in the Int2 system, and from Env to Funct ,
Adv ′ and TR in the SIS system.

Since T is an output task of Env , Claim 2 implies that T is enabled in every state in supp(lstate(ε2)),
that there is a unique action a ∈ T that is enabled in every state in supp(lstate(ε1))∪supp(lstate(ε2)),
and that there is a unique transition trEnv = (qEnv , a, µEnv) of Env from qEnv with action a. Here,
a = in(i)Rec for a particular value of i.

The rest of the proof for this case follows the proof for T = {in(x)Trans}. The only difference
is that, in showing that Property 1 holds for ε′1j and ε′2j , for a fixed j, we use the fact that
application of T affects only Funct .inval(Rec), Env , the “new” state components of Adv ′, and
TR2 .inval(Rec) in the Int2 system, and Funct .inval(Rec), Env , the “new” state components of
Adv ′, and TR.inval(Rec) in the SIS system. We use Properties 1(a), 1(d), 1(m), and 1(n).

The fact that tdist(ε′1j) = tdist(ε′2j) follows from the fact that tdist(ε1) = tdist(ε2) and the
definitions of ε′1j and ε′2j .

3. T = {choose− randtdpp}.
Identical to the corresponding case in the proof of Lemma 10.6, using Property 1(j).

4. T = {rand(p)tdpp}.
Identical to the corresponding case in the proof of Lemma 10.6, using Properties 1(e) and 1(j).

5. T = {choose− randyval}.
Identical to the corresponding proof case in the proof of Lemma 10.6, using Property 1(k).

6. T = {rand(y)yval}.
Enabling is shown by using 1(k) and the resulting distributions are related by using 1(f).

7. T = {choose− randcval1}.
We know that for all states in supp(lstate(ε1)), cval1 has not yet been chosen.
That is, Srccval1.chosenval = ⊥. Now, applying T to ε1 gives ε′1 such that ε′1.Srccval1.chosenval
is the uniform distribution on {0, 1}. Since applying λ yields ε′2 = ε2, we can use 2(b) to show
that (ε′1, ε

′
2) ∈ R.

8. T = {rand(∗)cval1}.
We know that for all states in supp(lstate(ε1)), cval1 has already been chosen.
That is, Srccval1.chosenval 6= ⊥. Let ε′1 = apply((, ε)1, T). We know that all states in
supp(lstate(ε′1)), TR2 .cval1 6= ⊥ and lstate(ε′1).Srccval1 is the uniform distribution on {0, 1}.
Applying λ yields ε′2 = ε2.

Let p be the Dirac measure on the singleton index set {1}. Then, the only interesting part of the
proof is showing that (ε′1, ε

′
2) ∈ R. To show this, we use Property 2(b) of R.

9. T = {out′(x)Rec}.
T is output from Funct to TR2 in the Int2 system and from Funct to TR in the SIS system.

We show the enabling of {out′(x)Rec} in all states in supp(lstate(ε2)) by using Property 1(a). To
see that (ε′1, ε

′
2) ∈ R, we use Property 1(c).

114

10. T = {fix− zvalRec}.
The fact that T is enabled in all states in supp(lstate(ε2)) follows from Properties 1(f), 1(d), 1(e)
and 1(g). To see that (ε′1, ε

′
2) ∈ R, we use Property 1(g). This is straightforward because zval is

computed in the same way in TR2 and TR.

11. T = {fix− bvalTrans}.
Here, a deterministic step in the Int2 system maps to a random choice followed by two determin-
istic steps in the SIS system.

We first show that the sequence of tasks {choose− randbval1} {rand(b)bval1} {fix− bvalTrans} is
enabled in supp(lstate(ε2)).

Since T is enabled in every state s ∈ supp(lstate(ε1)), we know that s.TR2 .yval, s.TR2 .cval1,
s.TRtwo.inval(Trans), s.TR2 .inval2(Trans), and s.TR2 .inval(Rec) 6= ⊥, and s.TR2 .bval = ⊥
in every state s ∈ supp(lstate(ε1)). Then by Property 1, we know that u.TR.yval 6= ⊥ (by 1(f)),
u.TR.inval(Trans) 6= ⊥ (by 1(c)), u.TR.inval(Rec) 6= ⊥ (by 1(d)), and u.TR.bval = ⊥ (by 1(i)).
Then by Property 1(k), we know that u.Srcbval1.chosenval = ⊥. Therefore, {choose− randbval1}
is enabled from all states in supp(lstate(ε2)).

Let ε′′2 = apply(ε2, {choose− randbval1}). Clearly, {rand(∗)bval1} is enabled from all states in
supp(lstate(ε′′2)).

Let ε′′′2 = apply(ε′′2 , {randbval1}). Then we claim that {fix− bvalTrans} is enabled from all states
in supp(ε′′′2). Let u′′′ ∈ supp(ε′′′2). Then by the effects of the first two tasks in the sequence, we see
that u′′.TR.yval 6= ⊥, u′′.TR.inval(Trans) 6= ⊥, u′′.TR.inval(Rec) 6= ⊥, and u′′.TR.bval = ⊥.
Also, by the effects of {rand(b)bval1}, we have that u′′.TR.bval1 6= ⊥. Since these are all the
preconditions for fix − bvalTrans in TR, we have that {fix − bvalTrans} is enabled from u′′′, as
needed.

To see that (ε′1, ε
′
2) ∈ R, we use Property 1(h).

12. T = {out′′(x)Rec}.
T is output from TR2 to Adv ′ in the Int2 system and from TR to Adv ′ in the SIS system.
Enabling follows from 1(c) and we can show that ε′1 and ε′2 are related by using 1(m).

13. T = {send(1, f)Trans}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Trans
with TR2 and TR1 with TR and use Properties 1(e) and 1(m).

14. T = {send(2, z)Rec}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Rec
with TR2 and TR1 with TR, and use Property 1(g).

15. T = {send(3, b)Trans}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Trans
with TR2 and TR1 with TR, and use Property 1(i).

16. T = {receive(1, f)Rec}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Rec
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

17. T = {receive(2, z)Trans}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Trans
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

115

18. T = {receive(3, b)Rec}.
Identical to the corresponding case in the proof of Lemma 10.6, except that here we replace Rec
with TR2 . In showing Property 1, we use the fact that applying T has no effect in either system.

19. T = {out(x)Rec}.
This is output from from Adv ′ to Env in both systems. We use Claim 2 to show enabling. The only
interesting aspect of this proof is that Env may make a probabilistic choice on the application
of T . The step correspondence can be shown by decomposing the distributions generated by
application of T as in the case for T = {in(x)Trans}.

20. T is an output task of Env and an input task of Adv .

Identical to the corresponding case in the proof of Lemma 10.6.

21. T is an output task of Env that is not an input task of Adv , Funct , or TR2 , or T is an internal
task of Env .

Identical to the corresponding case in the proof of Lemma 10.6.

22. T is an output task of Adv and an input task of Env .

Identical to the corresponding case in the proof of Lemma 10.6.

23. T is an output task of Adv that is not an input task of Env , Funct , or TR2 , and is not a receive
task, or else T is an internal task of Adv .

Identical to the corresponding case in the proof of Lemma 10.6.

2

Proof. (Of Lemma 10.10:)
By Lemma 10.12, R is a simulation relation from Int2 k‖Env to SISk‖Env . Then Theorem 3.53 im-
plies that tdists(Int2 k‖Env) ⊆ tdists(SISk‖Env). Since Env was chosen arbitrarily, this implies (by
definition of ≤0) that RSk ≤0 Int1 k. 2

Proof. (Of Lemma 10.11:)
By Lemma 10.12, R is a simulation relation from Int2 k‖Env to SISk‖Env for which |corrtasks(S, T)| ≤
3 for every S and T . Since that lemma holds for every k and every Env , Theorem 3.86 implies that
Int2 ≤neg,pt SIS . 2

10.7 Putting the pieces together

Proof. (of Theorem 10.1):
Lemmas 10.5, 10.7, and 10.11, and transitivity of ≤neg,pt, imply that RS ≤neg,pt SIS . Since the
simulator SSimk satisfies the constraints for a simulator in Figure 2, this implies that RS ≤neg,pt IS .

2

11 Correctness Proof, Case 3: Transmitter Corrupted

Next, we consider the case where only the transmitter is corrupted. We prove the following theorem:

Theorem 11.1 Let RS be a real-system family for (D,Tdp,C), C = {Trans}, in which the family Adv
of adversary automata is polynomial-time-bounded.
Then there exists an ideal-system family IS for C = {Trans}, in which the family Sim is polynomial-
time-bounded, and such that RS ≤neg,pt IS .

Again, we drop explicit mention of C. Again, we express each Simk as a composition of automata, and
show that RS , the real-system family, implements the (new) structured-ideal-system family SIS . This
time, we do not need intermediate levels, because we do not need a Distinguisher argument.

116

11.1 Simulator structure

For each k, we define a structured simulator SSimk, as the composition of five task-PIOAs:

• Trans(Dk, Tdpk), as in RSk.

• (Src(Tdppk)tdpp)k, isomorphic to Src(Tdppk).

• (Src({0, 1} → Dk)zval)k, isomorphic to Src({0, 1} → Dk)

• (RecSim(Dk))k, an abstract version of Rec.

• Advk, as in RSk.

Trans is connected to Adv as in the real system. RecSim has send outputs that are inputs to Adv , but
has no receive inputs. Adv also has in(x)Trans inputs, which come from Env . The outputs of Srctdpp

go both to Trans and to Adv . The outputs of Srczval go to RecSim only.
RecSim(D) is defined in Figure 19. It simply chooses a pair of D values at random and sends it in

round 2 messages.

RecSim(D), where C = {T}:
Signature:
Input:

rand(z)zval, z ∈ ({0, 1} → D)
Output:

send(2, z)Rec , z ∈ ({0, 1} → D)

State:
zval ∈ ({0, 1} → D) ∪ {⊥}, initially ⊥

Transitions:

rand(z)zval

Effect:
if zval = ⊥ then zval := z

send(2, z)Rec

Precondition:
z = zval 6= ⊥

Effect:
none

Tasks: {rand(∗)zval}, {send(2, ∗)Rec}.

State relation: q1 and q2 are related iff:

q1.zval = ⊥ iff q2.zval = ⊥.

Figure 19: Code for RecSim(D), where C = {Trans}.

We define SISk, the structured ideal system, to be Functk‖SSimk. We show:

Lemma 11.2 For every k, RSk ≤0 SISk.

Lemma 11.3 RS ≤neg,pt Int1 .

In the rest of this subsection, we fix Env , an environment for RSk and SISk. We suppress mention
of k.

11.2 State correspondence

Here we define the correspondence R from states of RS‖Env to states of SIS‖Env , which we will show
to be a simulation relation in Section 11.3.

Let ε1 and ε2 be discrete probability measures on finite execution fragments of RS‖Env and SIS‖Env ,
respectively, satisfying the following properties:

117

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exists state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Funct .inval(Trans) = s.Trans.inval.

(b) u.Funct .inval(Rec) = s.Rec.inval.

(c) u.Trans = s.Trans.

(d) u.Srctdpp = s.Srctdpp.

(e) u.RecSim.zval = s.Rec.zval.

(f) u.Srczval.chosenval = s.Rec.zval.

(g) u.Adv = s.Adv .

(h) u.Env = s.Env .

2. For every u ∈ supp(lstate(ε2)):
If u.RecSim.zval = ⊥ then one of the following holds:

(a) For every s ∈ supp(lstate(ε1)), s.Srcyval.chosenval = ⊥.

(b) For every s ∈ supp(lstate(ε1)), s.Rec.yval = ⊥, and lstate(ε1).Srcyval.chosenval is the
uniform distribution on ({0, 1} → D).

(c) lstate(ε1).Rec.yval is the uniform distribution on ({0, 1} → D).

11.3 The mapping proof

Lemma 11.4 The relation R defined in Section 11.2 is a simulation relation from RS‖Env to SIS‖Env.
Furthermore, for each step of RS‖Env, the step correspondence yields at most two steps of SIS‖Env,
that is, for every S, T , |corrtasks(S, T)| ≤ 2.

Proof. We prove that R satisfies the two conditions in Lemma 3.55. The start condition is shown as in
the previous proofs. For the step condition, we define corrtasks(RSRS‖Env ×RARS‖Env)→ RA∗

SIS‖Env

as follows:
For any (S, T) ∈ (RSRS‖Env ×RARS‖Env):

• If T is any task of RS‖Env except for {choose− randyval}, {randyval}, or {fix− zvalRec},
then corrtasks(S, T) = T .

• If T ∈ {{choose− randyval}, {randyval},
then corrtasks(S, T) = λ.

• If T = {fix− zvalRec} then corrtasks(S, T) = {choose− randzval} {randzval}.

Thus, each task of RS‖Env that is locally-controlled by a common component (Trans, Adv , Srctdpp,
or Env) is replicated in SIS‖Env . For the locally-controlled tasks of Rec, there are three cases:
{send(2, ∗)Rec}, {fix−zvalRec}, and {out(∗)Rec}. We map {send(2, ∗)Rec} to the same task of RecSim,
{fix− zvalRec} to the two tasks of Srczval, choose− randzval followed by rand(∗)zval, and {out(∗)Rec}
to the same task of Funct . Finally, we map the locally-controlled tasks of Srcyval to λ.

All parts of the correspondence: enabling, preservation of Property 1, state equivalence, and trace
distribution equivalence, are straightforward. 2

118

Proof. (Of Lemma 11.2:)
By Lemma 11.4, R is a simulation relation from RSk‖Env to SISk‖Env . Then Theorem 3.53 implies
that tdists(RSk‖Env) ⊆ tdists(SISk‖Env). Since Env was chosen arbitrarily, this implies (by definition
of ≤0) that RSk ≤0 SISk. 2

Proof. (Of Lemma 11.3:)
By Lemma 11.4, R is a simulation relation from RSk‖Env to SISk‖Env for which |corrtasks(S, T)| ≤ 2
for every S and T . Since that lemma holds for every k and every Env , Theorem 3.86 implies that
RS ≤neg,pt SIS . 2

11.4 Putting the pieces together

Proof. (of Theorem 11.1):
Lemma 11.3 implies that RS ≤neg,pt SIS . Since the simulator SSimk satisfies the constraints for a
simulator in Figure 2, this implies that RS ≤neg,pt IS . 2

12 Correctness Proof, Case 4: Both Parties Corrupted

Theorem 12.1 Let RS be a real-system family for (D,Tdp,C), C = {Trans,Rec}, in which the family
Adv of adversary automata is polynomial-time-bounded.
Then there exists an ideal-system family IS for C = {Trans,Rec}, in which the family Sim is polynomial-
time-bounded, and such that RS ≤neg,pt IS .

In this case, the simulator knows everything, and so it can just play the protocol naturally, without
interacting with Funct . This proof does not need any intermediate levels.

12.1 Simulator structure

For each k, we define a structured simulator SSimk to be the same as the system RS . Thus, the
components are:

1. Trans(Dk, Tdpk).

2. Rec(Dk, Tdpk, {Trans,Rec}), with out′(x)Rec renamed to out′′(x)Rec .

3. Src({0, 1} → Dk)yval.

4. Src(Tdppk)tdpp.

5. Adv(Dk, Tdpk, {Trans,Rec}).

Env provides in(x)Trans to Funct , Trans, and Adv , and in(i)Rec outputs to Funct , Rec, and Adv . Env
receives out(x)Rec outputs from Adv , which are copies of out′′(x)Rec outputs from Rec to Adv . The
outputs of Srctdpp go both to Trans and to Adv , and the outputs of Srcyval go both to Rec and to Adv .

Lemma 12.2 For every k, RSk ≤0 SISk.

Lemma 12.3 Int2 ≤neg,pt SIS.

In the rest of this subsection, we fix Env , an environment for RSk and SISk. And we suppress
mention of k.

119

12.2 State correspondence

Here we define the correspondence R from states of RS‖Env to states of SIS‖Env , which we will show
to be a simulation relation in Section 12.3. The state correspondence is essentially the identity. More
accurately, we don’t care about the state of Funct , but we require the identity mapping for the states
of all the other components of SIS .

Let ε1 and ε2 be discrete probability measures on finite execution fragments of RS‖Env and SIS‖Env ,
respectively, satisfying the following properties:

1. Trace distribution equivalence: tdist(ε1) = tdist(ε2).

2. State equivalence: There exists state equivalence classes S1 ∈ RSRS‖Env and S2 ∈ RSInt1‖Env

such that supp(lstate(ε1)) ⊆ S1 and supp(lstate(ε2)) ⊆ S2.

Then we say that (ε1, ε2) ∈ R if and only if all of the following hold:

1. For every s ∈ supp(lstate(ε1)) and u ∈ supp(lstate(ε2)):

(a) u.Trans = s.Trans.

(b) u.Rec = s.Rec.

(c) u.Srctdpp = s.Srctdpp.

(d) u.Srcyval = s.Srcyval.

(e) u.Adv = s.Adv .

(f) u.Env = s.Env .

12.3 The mapping proof

Lemma 12.4 The relation R defined in Section 12.2 is a simulation relation from RS‖Env to SIS‖Env.
Furthermore, for each step of RS‖Env, the step correspondence yields at most one step of SIS‖Env,
that is, for every S, T , |corrtasks(S, T)| ≤ 1.

Proof. We prove that R satisfies the two conditions in Lemma 3.55. The start condition is shown as in
the previous proofs. For the step condition, we define corrtasks(RSRS‖Env ×RARS‖Env)→ RA∗

SIS‖Env

as follows:
For any (S, T) ∈ (RSRS‖Env ×RARS‖Env):

• If T is any task of RS‖Env except for {out′(x)Rec}, then corrtasks(S, T) = T .

• If T = {out′(x)Rec}, then corrtasks(S, T) = {out′′(x)Rec}.

Thus, the step correspondence is essentially the identity. Note that none of the corrtasks sequences
includes any output or internal tasks of Funct ; thus, Funct does not perform any locally-controlled
steps in any of the executions that are obtained from the simulation relation.

All parts of the correspondence: enabling, preservation of Property 1, state equivalence, and trace
distribution equivalence, are immediate.

2

Proof. (Of Lemma 12.2:)
By Lemma 12.4, R is a simulation relation from RSk‖Env to SISk‖Env . Then Theorem 3.53 implies
that tdists(RSk‖Env) ⊆ tdists(SISk‖Env). Since Env was chosen arbitrarily, this implies (by definition
of ≤0) that RSk ≤0 SISk. 2

Proof. (Of Lemma 12.3:)
By Lemma 12.4, R is a simulation relation from RSk‖Env to SISk‖Env for which |corrtasks(S, T)| ≤ 1
for every S and T . Since that lemma holds for every k and every Env , Theorem 3.86 implies that
RS ≤neg,pt SIS . 2

120

12.4 Putting the pieces together

Proof. (of Theorem 12.1):
Lemma 12.3 implies that RS ≤neg,pt SIS . Since the simulator SSimk satisfies the constraints for a
simulator in Figure 2, this implies that RS ≤neg,pt IS . 2

13 Conclusions

Summary. In this paper, we have provided a complete model and correctness proof for a simple
Oblivious Transfer protocol [gmw87], using Probabilistic I/O Automata (PIOAs) [sl95]. This involved
modeling the protocol as a system of interacting PIOAs, and the properties that the protocol is intended
to satisfy as another such system, and proving a formal correspondence between these two system
models. We have considered four cases, based on which parties (transmitter and/or receiver) are
corrupted. In all cases we have considered, the adversary is essentially an eavesdropper, not an active
malicious participant.

The algorithm uses cryptographic primitives—specifically, a trap-door permutation and a hard-core
predicate for its inverse. We have modeled the computational properties of these primitives in terms
of PIOAs. The properties we have considered include both correctness of the output produced at the
receiver end of the protocol, and secrecy of inputs and random choices of non-corrupted parties.

Following the usual proof methods for distributed algorithms, we have decomposed our proofs into
several stages, with general transitivity results used to combine the results of the stages. A feature
of our proofs is that complicated reasoning about particular cryptographic primitives—in this case, a
hard-core predicate—is isolated to a single stage of each proof.

Producing this proof required us to develop two new kinds of theory: First, we extended traditional
PIOA theory in two ways:

• We defined a new notion of tasks, which provide a mechanism to resolve nondeterministic choices.

• We defined a new kind of simulation relation, which corresponds probability distributions on
states at two levels of abstraction, and which allows splitting of distributions in order to show
that individual steps preserve the correspondence.

Second, we developed a new theory for time-bounded PIOAs, specifically:

• We defined time-bounded PIOAs, which impose time bounds on the individual steps of the PIOAs.

• We defined a new approximate, time-bounded, implementation relationship between time-bounded
PIOAs, which is sufficient to capture the typical relationships between cryptographic primitives
and the abstractions they are supposed to implement.

In the multi-stage proofs, most of the stages represent exact (not approximate) implementations;
we prove all these using standard PIOA theory, extended with our new simulation relation. The
techniques for showing this are fairly standard in the distributed algorithms research literature, based
on proving invariants and simulations by induction on the number of steps in an execution. The
remaining stages involve replacement of a cryptographic primitive with a random counterpart; we
prove that these satisfy our approximate implementation relationship. The techniques for showing
this are based on recasting the definitions of the cryptographic primitives in terms of approximate
implementation relationships, and then combining these primitives with other components in various
ways that preserve the implementation relationships. Transitivity results allow us to combine all the
implementation relationships proved at all the stages to obtain an overall approximate implementation
relationship between the Oblivious Transfer algorithm and its property specification.

121

Evaluation. We believe that these methods provide a usable, scalable structure for carrying out
complete, rigorous proofs of security protocols, assuming standard definitions for the cryptographic
primitives that they use. The example illustrates how such proofs can be carefully broken down into
manageable pieces, each piece proving a particular collection of facts. Various pieces use very different
kinds of reasoning. Thus, typical “Distinguisher” arguments about cryptographic primitives (expressed
in terms of implementation relationships) are isolated to certain stages of the proofs, whereas other
stages use inductive, assertional methods.

Traditional formal reasoning about security protocols combines with this work as follows: We can
model a system in which we use only abstract specifications for crypto primitives—for example, a
system that uses OT as a building block. We can prove correctness of that system relative to the OT
specification, using our simulation relation methods, or other methods such as model-checking. Then,
we can “plug in” an OT implementation that implements the specification approximately (according
to our approximate, time-bounded implementation relationship). Our general results about how this
relationship is preserved with respect to composition imply that the resulting system approximately
implements the system that has already been proved correct.

Future work. In this paper, the task scheduler is limited to be oblivious. It would be interesting to
allow the task scheduler more power, by allowing it to be a function from some aspects of the previous
history to the next scheduled task. The oblivious scheduler can be formulated equivalently in this
way, where the available history information is just the sequence of past tasks. However, we would
like to allow the scheduler more information, for instance, the actual states of adversarial components
(like Adv) in between all the tasks. Making an extension of this kind will require rather deep changes
throughout our work, all the way bace to the basic theory of task-PIOAs, in Section 3.

We plan to test the power of these techniques by applying them to more security protocols, including
protocols that use different cryptographic primitives, and protocols that have more powerful adversaries
(active rather than passive; adaptive). A good example is a simple key exchange protocol that uses a
basic signature scheme, and that is intended to work against an active adversary. We would also like
to consider Oblivious Transfer protocols in the presence of more powerful adversaries.

We will explore reasoning about more complicated protocols, which involve composition of many
sub-protocols (e.g., multiple instances of Oblivious Transfer, or a combination of key distribution and
secret communication); the idea is to try to use our techniques on the pieces and combine them using
our general composition results.

Some interesting security protocols do not use any cryptographic primitives, for example, protocols
that achieve perfect zero-knowledge [gmr89]. For these, our basic PIOA techniques should work,
without any need for reasoning about approximate implementations. We will consider basic zero-
knowledge protocols, for example, for graph isomorphism.

We would like to use the general methods presented here to model other cryptographic primitives,
and to capture the ways in which they can be combined and used in protocols. This will involve
restating the definitions of those primitives in terms of approximate implementation relationships with
respect to more abstract PIOAs. Expressing these primitives in this way should enable reformulating
traditional Distinguisher arguments (which proceed by contradiction) as (positive) arguments about
approximate implementation. After reformulating these primitives, it remains to analyze protocols that
use the primitives, using our mapping techniques.

A Component Interaction Diagrams

The figures that appear in this section show how the system components are connected in each of the
four cases we consider. The arrows that have no labels represent the arbitrary actions of the environment
Env. The action names send(m)Trans , receive(m)Trans , send(m)Rec and receive(m)Rec are abbreviated
to, respectively, s(m)Trans , r(m)Trans , s(m)Rec and r(m)Rec . In these figures, we abbreviate subscript
Trans by just T and subscript Rec by just R.

122

$©

$©

$©

Adv

Env

Funct

TR
rand(p)

rand(b)

rand(z)

r(m)Rr(m)T

s(m)Rs(m)T

out(x)R

in(i)R

in(x)T

SSim

Figure 20: SIS(∅)

$© Trans $©Rec

Adv

Env

rand(p) rand(y)

r(m)T

s(m)T

r(m)R

s(m)R

out(x)R

in(i)R

in(x)T

Figure 21: RS(∅)

123

$© $©

Adv

Env

Funct

TR1
rand(p) rand(z)

r(m)Rr(m)R

s(m)Rs(m)T

out(x)R

in(i)R

in(i)T

SSim

Figure 22: Int1 where neither party is corrupted

$©

$©

$©

Adv′

Env

Funct

TR
rand(p)

rand(b)

rand(y)

r(m)Rr(m)T

out(x)R

s(m)Rs(m)T

out′′(x)R

in(i)R

in(x)T

out′(x)R

SSim

Figure 23: SIS({Rec})

124

$© $©

Adv′

Env

Funct

TR1
rand(p) rand(y)

r(m)Rr(m)T

out(x)R

s(m)Rs(m)T

out′′(x)R

in(i)R

in(x)T

out′(x)R

SSim

Figure 24: Int1 where only the Receiver is corrupted

$© T $©R

A

E

rand(p)
rand(y)

r(m)T

s(m)T

r(m)R

s(m)R

out′(x)R

out(x)R

in(i)Rin(x)T

Figure 25: RS({Rec})

125

$© Trans $©RecSim

Adv

Env

Funct

rand(z)rand(p)

r(m)T

s(m)T

r(m)R

s(m)R

in(x)T

out(x)R

in(i)R

SSim

Figure 26: SIS({Trans})

$© T $©R

A

E

rand(y)rand(p)

r(m)T

s(m)T

r(m)R

s(m)R

out(x)R

in(i)R

in(x)T

Figure 27: RS({Trans})

126

$© Trans $©Rec

Adv

Env

Funct

rand(y)rand(p)

r(m)T

s(m)T

r(m)R

s(m)R

out′(x)R

out(x)R

in(i)R

in(x)T

out′(x)R

in(i)R

SSim

Figure 28: SIS({Trans,Rec})

$© Trans $©Rec

Adv

Env

rand(y)rand(p)

r(m)T

s(m)T

r(m)R

s(m)R

out′(x)R

out(x)R

in(i)Rin(x)T

Figure 29: RS({Trans,Rec})

127

Acknowledgments: We thank Frits Vaandrager for very useful preliminary discussions about how
to model the Oblivious Transfer protocol and its requirements. We also thank Michael Ben-Or, Su-
san Hohenberger, and Ron Rivest for information, perspective, and advice regarding computational
cryptography.

Ran Canetti is supported by NSF CyberTrust Grant 0430450. Ling Cheung is supported by
DFG/NWO bilateral cooperation project Validation of Stochastic Systems (VOSS2). Dilsun Kaynar
and Nancy Lynch are supported by NSF Award CCR-0326277 and DARPA/AFOSR MURI Award
F49620-02-1-0325. Olivier Pereira is a Postdoctoral Researcher of the FNRS. Part of this work was
done when he was a visiting scientist at MIT. Roberto Segala is supported by MIUR Project AIDA.

References

[ar00] M. Abadi and P. Rogaway. Reconciling Two Views of Cryptography (The Computational Sound-
ness of Formal Encryption). J. Cryptology 15(2): 103-127 (2002). Preliminary version at Inter-
national Conference on Theoretical Computer Science IFIP TCS 2000, LNCS, 2000.

[bpw03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In 10th ACM conference on computer and communications security (CCS), 2003.
Extended version at the eprint archive, http://eprint.iacr.org/2003/015/.

[b05] B. Blanchet. A Computationally Sound Automatic Prover for Cryptographic Protocols. Presen-
tation at the workshop on the link between formal and computational models. Paris, France.
June 2005. http://www.di.ens.fr/b̃lanchet/talks/WorkshopLFCM.pdf.

[c01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Avail-
able at http://eprint.iacr.org/2000/067. Extended abstract in 42nd FOCS, 2001.

[ch04] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Cryptographic Pro-
tocols (The case of encryption-based mutual authentication and key exchange). Eprint archive,
http://eprint.iacr.org/2004/334.

[dy83] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Information
Theory, 2(29), 1983.

[egl85] S. Even, O. Goldreich and A. Lempel, A randomized protocol for signing contracts, CACM,
vol. 28, No. 6, 1985, pp. 637-647.

[goldreich03] Oded Goldreich. Foundations of Cryptography. Volume I Basic Tools, Cambridge Uni-
versity Press, 2001, reprint of 2003, p. 64.

[gl89] O. Goldreich, L. A. Levin. A Hard-Core Predicate for all One-Way Functions. 21st Symposium
on Theory of Computing (STOC), ACM, 1989, pp. 25-32.

[gmw87] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game. 19th Symposium
on Theory of Computing (STOC), ACM, 1987, pp. 218-229.

[gmr89] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[h05] S. Halevi. A plausible approach to computer-aided cryptographic proofs.
eprint.iacr.org/2005/181. 2005.

[hms03] D. Hofheinz and J. Mueller-Quade and R. Steinwandt. Initiator-Resilient Universally
Composable Key Exchange. ESORICS, 2003. Extended version at the eprint archive,
eprint.iacr.org/2003/063.

128

[JL91] B. Jonsson and K.G. Larsen. Specification and Refinement of Probabilistic Processes. Proceed-
ings of the 6th IEEE Symposium on Logic in Computer Science, pages 266-277, Amsterdam,
July 1991.

[k89] J. Kilian Uses of Randomness in Algorithms and Protocols, Chapter 3, The ACM Distinghished
Dissertation 1989, MIT press.

[lsv03] Nancy Lynch, Roberto Segala and Frits Vaandrager. Compositionality for Probabilistic Au-
tomata. CONCUR 2003: Concurrency Theory (The 14th International Conference on Concur-
rency Theory, Marseille, France, September 2003). LNCS vol. 2761, pages 208-221, 2003. Fuller
version appears in Technical Report MIT-LCS-TR-907, Computer Science and Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, and was submitted
for journal publication.

[mw04] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In the 1st Theory of Cryptography Conference (TCC), LNCS 2951, pp. 133–151.
2004.

[pw00] B. Pfitzmann, M. Waidner. Composition and Integrity Preservation of Secure Reactive Systems.
In the 7th ACM Conference on Computer and Communications Security, ACM 2000, 245-254.

[r81] M. Rabin. How to exchange secrets by oblivious transfer. Tech. Memo TR-81, Aiken Computation
Laboratory, Harvard U., 1981.

[Segala95] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
Ph.D Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, MA, May 1995. Also, MIT/LCS/TR-676.

[sl95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of
Computing, Vol. 2. No. 2, pp 250-273, 1995.

[s02] V. Shoup. OAEP Reconsidered. J. Cryptology, 15(4): 223-249. 2002.

[s04] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
eprint.iacr.org/2004/332. 2004.

129

