
Knowledge Flow Analysis for Security Protocols

Emina Torlak, Marten van Dijk, Blaise Gassend, Daniel Jackson, and Srinivas Devadas
{emina, marten, gassend, dnj, devadas}@mit.edu

August 8, 2005

Abstract

Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A

protocol is described by a collection of rules constraining the propagation of knowledge amongst princi-

pals. Because this characterization corresponds closely to informal descriptions of protocols, it allows a

succinct and natural formalization; because it abstracts away message ordering, and handles communica-

tions between principals and applications of cryptographic primitives uniformly, it is readily represented

in a standard logic. A generic framework in the Alloy modelling language is presented, and instantiated

for two standard protocols, and a new key management scheme.

1 Introduction

One area of major successes for formal methods has been the verification of security protocols. A number of

specialized tools have been developed in the last decade that have exposed subtle flaws in existing protocols

(see, e.g. [12; 29]). For the most part, however, these tools have been used by the researchers that developed

them, and less attention has been paid to usability issues.

This paper presents a new approach to formulating and checking cryptographic protocols. It does not

enable any new form of analysis. Instead, it makes verification more accessible to the designers of protocols.

Its key contribution is a new characterization of these protocols that is both closer to how designers conceive

them, and amenable to a more direct encoding in standard first-order logic. This more direct encoding allows

existing tools to be applied as black boxes without modification; it requires no tweaking of parameters or

issuing of special directives by the user. Moreover, because the semantic gap between informal descriptions

of protocols and their formalization is smaller, there are fewer opportunities for errors to creep in.

In this paper, the Alloy modeling language is used to record the details of the protocol and its security

goals, and the Alloy Analyzer is used to find flaws. The approach, however, requires no special features of

Alloy or its analysis, and could be applied in the context of any formal method based on first-order logic.

Its simplicity suggests that it may be useful in teaching; indeed, using the approach, we have explained

cryptographic protocols to undergraduates who have had only a few weeks of experience in formal methods.

Our approach, which we callknowledge flow analysis, gives a uniform framework for expressing the

actions of principals, assumptions on intruders, and properties of cryptographic primitives. The dynamic

behaviour of the protocol is described by an initial state of knowledge, and a collection of rules that dictate

how knowledge may flow amongst principals. A state is given by a relation mapping principals to the values

1

they know; the allowable knowledge flows can thus be succinctly described as a standard transition relation

on knowledge states, written as a constraint.

This simple setup allows us to model a range of intruder capabilities and to detect replay, parallel session,

type flaw, and binding attacks. We have applied it to both symmetric and public-key cryptography under the

Dolev-Yao [16] approach. The modeling framework itself is more general, however, and can be extended

to include the properties of cryptographic primitives [10; 14; 33; 42] and an unbounded number of sessions

with bounded messages [11].

This approach grew out of an effort to check a new cryptographic scheme [20; 21]. Knowledge flow

analysis described here was the final result of a series of incremental attempts at formalizing and checking

the protocol using the Alloy language and tool. This process helped crystallize our intuitions, and drew out a

number of important assumptions. The final analysis, although only performed over a finite domain, actually

establishes the correctness of the protocol for unbounded instantiations because of a special property of this

protocol. The Alloy models developed for this case study were generalized into a simple framework that

was subsequently applied to some standard protocols, such as Needham-Schroeder [36] and Otway-Rees

[40].

The contributions of this paper are:

1. the knowledge flow formalism, which characterizes the dynamic behaviour of a cryptographic pro-

tocol in terms of the increasing knowledge of the principals, avoiding the need to impose an explicit

ordering on messages;

2. a realization in the Alloy modelling language as a generic framework with a library of primitives that

can be easily instantiated for a variety of protocols;

3. soundness and completeness results that guarantee that (1) any counterexample generated by the an-

alyzer to a security theorem is legitimate, and not an artifact of the modelling framework, formalism

or analysis; and (2) that if a counterexample exists involving any number of message exchanges and

any number of steps, it will be found, so long as the number of parallel sessions is within a prescribed

bound;

4. case study applications of the approach to two well-known protocols, one of which (Needham-

Schroeder) is explained in detail, and to a new key management scheme based on controlled physical

random functions [20; 21].

Section 2 explains the key intuitions underlying the approach, using Needham Schroeder as an example.

Section 3 shows the complete formalization of this example, including the statement of the security goal, and

a discussion of the counterexample corresponding to the well-known attack. Section 4 gives a mathematical

summary of the approach without reference to any particular modeling language that might serve as a basis

for implementations in other tools, and which makes precise the assumptions underlying the model. The

paper closes with an evaluation and a discussion of related work.

2

Figure 1: Knowledge Flow in Needham-Schroeder Protocol

2 Knowledge Flow Basics

The key idea behind knowledge flow analysis is the observation that, at the most basic level, the purpose

of a security protocol is to distribute knowledge among its legitimate participants. A protocol is flawed

if it allows an intruder to learn a value that is intended to remain strictly within the legitimate principals’

pool of knowledge. To gain more intuition about knowledge flows in security applications, consider the

Needham-Schroeder Public Key Protocol [36] shown in Figure 1.

We have two principals, Alice and Bob, each of whom has an initial pool of knowledge represented

with white boxes. Alice’s initial knowledge, for example, consists of her own public/private key pair

PK(A)/SK(A), identity A, nonceNA, and Bob’s public keyPK(B) and identityB. The purpose of

the protocol is to distribute the nonces between Alice and Bob in such a way that the following conditions

hold at the end: (1) Alice and Bob both knowNA andNB, and (2) no other principal knows the nonces.

To initiate the protocol, Alice first expands her pool of knowledge to includeEPK(B)(A,NA), an en-

cryption of her identity and nonce with Bob’s public key. She then sends the cipher to Bob who decrypts it

using his private key,SK(B). At the end of the first step of the protocol, each principal’s knowledge has

increased to include the values in light gray boxes. Bob performs the second step of the protocol by adding

EPK(A)(NA, NB) to his current knowledge and sending the cipher to Alice. She uses her private key to

decrypt Bob’s message and extractNB. By usingNB andPK(B), Alice can set up an authenticated and

private channel with Bob as is done during the final step of the protocol in which Alice createsEPK(B)(NB)
and forwards it to Bob. Both Alice and Bob now know the two nonces and share all other knowledge except

3

ALICE time BOB

~
0

I PK(B) I~~

their secret keys.

Following the flow of knowledge in the Needham-Schroeder protocol provides a crucial insight under-

lying our analysis method. Namely, a principal can learn a value in one of three ways; he can

· draw the value at the start,

· computeit using his current knowledge, or

· learn it by communication.

Our analysis treats the latter two ways of obtaining knowledge as equivalent. Specifically, we can think of

Alice’s computingEPK(B)(A,NA) as her learning it from a principal calledEncryptorwhose initial pool

of values includes all possible ciphers: Alice sends the tuple(PK(B), (A,NA)) to Encryptorwho responds

by sending back the encryption of(A,NA) with PK(B).
Treating cryptographic primitives as principals allows us to consider the total pool of knowledge to be

fixed. That is, the set of all values before and after the execution of a security protocol is the same; the only

difference is the distribution of those values among the principals. Since we assume that principals never

forget values, the set of principals who know a value at the end of a protocol session subsumes the set of

principals who drew the value at the beginning.

The goal of analyzing knowledge flows in a protocol is to verify that particular values never leak out of

the honest participants’ pool of knowledge. In other words,we are interested in analyzing the flow of knowl-

edge from an intruder’s perspective. This observation allows us to make sound simplifying assumptions that

drastically reduce the effort needed to formalize a protocol in terms of knowledge flows:

· We need not encode the flows of knowledge among the honest principals, such as the flow which

allows Alice to learnEPK(A)(NA, NB) from Encryptor. Rather, we may assume that each honest

principal draws all values in the total knowledge pool and specify protocols solely in terms of the

intruders’ knowledge flows (sections 4.1 and 4.2).

· We may model all adversaries, including the untrusted public network, with a single opponent whom

we callOscar. The soundness of this approach is formally proved in section 4.3. Intuitively, the ap-

proach makes sense if we note that the potential adversaries will be most effective when they collabo-

rate and share knowledge among themselves. Hence, we can replace the (collaboration of) adversaries

with a single principal who possesses all their knowledge, without excluding any intrusion scenarios.

In our example, the flow of knowledge from the intruder’s perspective starts with the protocol initial-

ization messageEPK(B)(A,NA), since Oscar needs no prior knowledge to learn the first cipher that Alice

sends to Bob. In general, because Oscar includes the untrusted public network, he learns the first message

of the protocol for free, regardless of who its intended recipient and sender are:

∀p∈{a,b},p′∈{a,b}∪O [∅ → EPK(p′)(I(p), N(ε, I(p)))]. (1)

The variablesa andb denote the honest principals (Alice and Bob), and the setO stands for Oscar. The

notationN(ε, I(p)) represents the nonce that the nonce primitiveN generated for the principal identified

4

by I(p) using the random valueε as the seed. For example, Alice’s identity isI(a) = A and Alice’s

nonce isN(ε, I(a)) = NA. The empty set means that Oscar does not need prior knowledge to learn

EPK(p′)(I(p), N(ε, I(p))).
Once his pool of knowledge includesEPK(B)(A,NA), Oscar learns the corresponding response,EPK(A)(NA, NB).

More generally1,

∀p′∈{a,b},p∈{a,b}∪O,v∈V [c → EPK(p)(v,N(c, I(p′)))] (2)

wherec = EPK(p′)(I(p), v).

The variableV denotes the set of all values, or the fixed pool of knowledge. Note that our formalization

constrains the seed of Bob’s nonce to be Alice’s initialization message. This is needed to establish that

Bob’s nonce was generated in the context of the protocol session started by Alice withEPK(B)(A,NA).
The resulting correspondence between the nonces prevents our analysis from sounding false alarms when

Oscar legitimately obtains two nonces from Alice and Bob by running a valid protocol session with each.

Oscar learns the final message,EPK(B)(NB), as a consequence of knowingEPK(A)(NA, NB). For-

mally,

∀p∈{a,b},p′∈{a,b}∪O,v∈V[
{EPK(p)(N(ε, I(p)), v))} → EPK(p′)(v)

]
. (3)

3 Example

The Needham-Schroeder protocol is vulnerable to a parallel session attack discovered by Gavin Lowe [28].

This section presents a knowledge flow analysis of the protocol that reproduces Lowe’s results, and gives

a flavor of the expressiveness and simplicity of our method. We have encoded the knowledge flows in the

Alloy modelling language [26] and used the Alloy Analyzer [25] to find the attack. However, the modelling

pattern presented here is applicable to any first-order logic with relations and transitive closure.

3.1 Encoding Basic Entities and Relations

The basic components of a knowledge flow model are the setsPrincipal andV alue, and the relations

draws, learns, andknows (Model Excerpt 1).

The setPrincipal includes all principals in a protocol – the legitimate protocol participants, represented

by the subsetHonestUser, and the intruders, represented byOscar. The setV alue models the fixed pool

of knowledge on which a protocol operates. We distinguish betweenAtomicV alues, which are uninter-

preted, andCompositeV alues, which may consist of other values and are learned by communicating with

cryptographic primitives. In the example from Figure 1, Alice and Bob are members ofHonestUser;

1We use the parameterv in c instead ofN(ε, I(p)) becausep′, the recipient ofc, cannot conclusively determine thatv is, in
fact, the nonceN(ε, I(p)).

5

Model Excerpt 1 Generic Model of Principals and Values
1 module kf/basicdeclarations
2

3 abstract sig Value {}
4 sig CompositeValue extends Value {}
5 sig AtomicValue extends Value {}
6

7 abstract sig Principal {
8 draws: set Value,
9 owns: set draws

10 }{ no owns & (Principal - this).@owns }
11

12 sig HonestUser extends Principal {
13 }{ draws = Value }
14

15 one sig Oscar extends Principal {
16 knows: set Value,
17 learns: knows->knows
18 }{ no ˆlearns & iden }
19

20 pred InitialKnowledge() {
21 no CompositeValue & Oscar.draws }
22

23 pred FinalKnowledge() {
24 all v: Value |
25 v in (Oscar.draws). * (Oscar.learns) iff
26 v in Oscar.knows }

V alue consists of the union of values enclosed in the boxes ‘Alice’ and ‘Bob’; the identifiersA andB are

AtomicV alues, and the ciphers areCompositeV alues.

The relationdraws (line 8) maps each principal to the set of values known by that principal at the

beginning of the protocol. For example, both Alice and Bob draw Alice’s identityA at the start of the

protocol session shown in Figure 1. The declaration ofowns (line 9) together with the constraint on line

10 relate a principal to the set of drawn values which uniquely identify him. Bob, for instance,owns his

identity,B, even though both he and Alice draw it.

The fieldknows (line 16) defines the set of all values that Oscar can learn by using the knowledge

flows available to him; this includes the knowledge obtainable from both the protocol rules and the cryp-

tographic primitives. The acyclic relationlearns (lines 17-18) encodes the partial ordering on Oscar’s

maximal knowledge, enforced by the flows from which the knowledge was acquired. For example, the pro-

tocol rule 2 specifies that Oscar learnsEPK(A)(NA, NB) from EPK(B)(A,NA). Hence,Oscar.knows

6

contains both ciphers andOscar.learns includes the mapping

〈EPK(B)(A,NA), EPK(A)(NA, NB)〉.

The predicateInitialKnowledge states that Oscar may not draw any composite values. Rather, he

must learn them from the protocol rules or the primitives. The predicateFinalKnowledge specifies that

Oscar’s maximal knowledge contains a valuev if and only if Oscar drawsv or he learns it from a knowledge

flow originating in his initial knowledge.

3.2 Modelling Cryptographic Primitives

The Needham-Schroeder protocol requires the use of cryptographic primitives to encrypt/decrypt messages

and generate nonces. Our encoding of the knowledge flows and values associated with these primitives is

shown in Model Excerpt 2. Note that we do not explicitly model primitives as principals. Instead, we define

the pools of values drawn by the primitives as signatures and encode their input/output behavior as predi-

cates. For example, the initial knowledge ofEncryptor is given by the setCiphertext, andEncryptor’s

operation is encoded in the predicatesEncryptor andDecryptor .

A Ciphertext represents an encryption of a non-emptyplaintext (line 31) with a givenkey (line 32).

The predicateEncryptor formalizes the encryption knowledge flow from Oscar’s perspective. It states

that, in order to learn the cipherv from the Encryptor, Oscar must provide the inputx consisting of the

plaintext and the key associated withv. Similarly, the predicateDecryptor stipulates that Oscar can learn

the plaintextv after he presents the inputx consisting of an encryption ofv and the corresponding decryption

key.

Note that this model of ciphers accommodates both public and symmetric key encryption. Symmetric

key encryption is the default; invoking the predicatePublicKeyCryptography switches on public key

encryption. Any atomic value owned by a principal can serve as his public/private key pair. The public

portion of any principal’s key is accessible to Oscar through thedraws relation. The decryption constraint

on line 42 ensures that Oscar can decrypt a message only if heowns the value representing the public/private

key pair.

Nonces are encoded as composites with two fields,seed andid. The fieldid stores the identity of the

principal to whom the nonce was issued. The predicateNonceGenerator says that, from Oscar’s point

of view, the generator will issue a nonce labeled with Oscar’s identifier when presented with the input seed

x.

3.3 Modelling Protocol Rules

The models presented so far are a part of a generic Alloy framework developed for analyzing knowledge

flows. This section describes the values and rules specific to the Needham-Schroeder protocol.

Principals’ identifiers are modelled as atomic values contained in the setIdentity (Model Excerpt 3,

line 64). Each principalowns anIdentity (67), which also doubles as its owners’ public/private key pairs

(68).

7

Model Excerpt 2 Cryptographic Values and Primitives
27 module kf/primitives/encryption
28 open kf/basicdeclarations
29

30 sig Ciphertext extends CompositeValue {
31 plaintext: some Value,
32 key: Value }
33

34 pred PublicKeyCryptography() {
35 Ciphertext.key in Principal.owns & AtomicValue }
36

37 pred Encryptor(x: set Value, v : Value) {
38 v in Ciphertext && x = v.key + v.plaintext }
39

40 pred Decryptor(x: set Value, v : Value) {
41 some c : plaintext.v | x = (c.key + c) &&
42 (PublicKeyCryptography() =>
43 c.key in Oscar.owns) }
44

45 pred PerfectCryptography() {
46 (all disj c1,c2: Ciphertext | c1.plaintext !=
47 c2.plaintext || c1.key != c2.key)
48 (all c : Ciphertext | c != c.key &&
49 c != c.plaintext) }
...

50 module kf/primitives/nonces
51 open kf/basicdeclarations
52

53 sig Nonce extends CompositeValue {
54 seed : Value,
55 id : Value }
56

57 pred NonceGenerator(x: set Value, v : Value) {
58 v in Nonce && v.id in Oscar.owns && x = v.seed }

The ProtocolRules predicate (line 74) embeds the knowledge flow rules given by equations 1-3

into first-order logic. The predicateApplyRules states that thelearns relation may map the set of values

x to the valuev if and only if the protocol or primitive rules define a knowledge flow fromx to v.

3.4 Checking Security

The predicateSecurityAssumptions in Model Excerpt 4 models our assumptions about the properties

of cryptographic primitives and principals. We assume perfect public key cryptography (line 94) and the use

8

Model Excerpt 3 Needham-Schroeder Protocol
59 module kf/needham schroeder
60 open kf/basicdeclarations
61 open kf/primitives/encryption
62 open kf/primitives/nonces
63

64 sig Identity extends AtomicValue {}
65

66 pred IdentitiesAreKeys() {
67 all p : Principal | some p.owns & Identity &&
68 Ciphertext.key in Identity }
69

70 pred PrimitiveRules(x : set Value, v : Value) {
71 Encryptor(x,v) || Decryptor(x,v) ||
72 NonceGenerator(x,v) }
73

74 pred ProtocolRules(x : set Value, v : Value) {
75 v in Ciphertext && {
76 (x : some Oscar.draws &&
77 let text = v.plaintext, n = text & Nonce |
78 #text = 2 && one n && n.seed in AtomicValue &&
79 n.id = text & Identity) ||
80 (x : one Ciphertext && (some n : seed.x |
81 #x.plaintext = 2 && v.key in x.plaintext &&
82 n.id = x.key &&
83 v.plaintext = (x.plaintext - v.key) + n)) ||
84 (x : one Ciphertext &&
85 (some n : id.(x.key) & Nonce |
86 #x.plaintext = 2 && n in x.plaintext &&
87 v.plaintext = x.plaintext - n)) }}
88

89 pred ApplyRules() {
90 all v : Value | let x = Oscar.learns.v |
91 some x <=> PrimitiveRules(x, v) ||
92 ProtocolRules(x, v) }

of identifiers as public/private key pairs (line 95).

The security property that the protocol should satisfy is given by the predicateSecurityTheorem . It

states that Oscar’s maximal knowledge never contains two nonces,nA andnB, such thatnB is generated

by Bob in response to a protocol initialization message sent by Alice (a cipher containing Alice’s identity

and one of her nonces). The assertionSecurity stitches the model together to stipulate that the security

property should hold if Oscar obtains his maximal knowledge by applying the knowledge flow rules to the

values he draws.

9

Model Excerpt 4 Security Assumptions and Theorem
93 pred SecurityAssumptions() {
94 PerfectCryptography() && PublicKeyCryptography()
95 IdentitiesAreKeys() }
96

97 pred SecurityTheorem() {
98 no disj Alice, Bob : HonestUser,
99 nA, nB : Oscar.knows & Nonce |

100 nA.id in Alice.owns && nB.id in Bob.owns &&
101 (some c : Ciphertext | nB.seed = c &&
102 c.key = nB.id &&
103 c.plaintext = nA.id + nA) }
104

105 assert Security {
106 InitialKnowledge() && FinalKnowledge() &&
107 SecurityAssumptions() && ApplyRules() =>
108 SecurityTheorem() }

The Alloy Analyzer generates a counterexample to theSecurity assertion (Figure 2) that is a knowl-

edge flow representation of the parallel session attack discovered by Lowe [28]. Alice usescipher0 to

initiate the protocol with Oscar, who extractsnA and forwards it to Bob incipher1. Thinking that he is au-

thenticating with Alice, Bob responds withcipher2 which Oscar simply forwards to Alice. She completes

the session with Oscar by sending himnB, which she believes is his nonce, incipher3. Oscar now knows

bothnA andnB, contrary to our claim.

Figure 2: Parallel Session Attack on the Needham-Schroeder Protocol

4 Knowledge Flow Analysis

Knowledge flow analysis is based on a simple mathematical foundation. This section formalizes the ideas

outlined in the discussion of knowledge flow basics. We describe howcommunication rulesdirect knowl-

edge flows (4.1), show that our treatment of primitives ensures a fixed pool of values (4.2), formulate the

analysis problem in terms of Oscar’s knowledge flows (4.3), and present a small-model theorem which

makes our analysis complete for a bounded number of parallel protocol sessions (4.4).

10

cipher□
plaintext: A, nA

ke . 0

learns learns cipher1
1------- plaintext: A, nA

ke : B

learns ci pher2 learns cipher3 learns
,__ ___ __, plaintext: nB, nA ,__ ___ ___.,., plaintext: nB 1-------

~ . A ~ . O

nB
id : B

seed : cipher1

4.1 Communicating Knowledge

We denote the sets of allprincipals andvaluesby P andV . A subset ofP × V is a state of knowledge

drawn fromK = 2P×V , the set of all possible states of knowledge. For a given state of knowledgek ∈ K,

we say that “p knowsv” if (p, v) ∈ k.

Definition 1 A tuple (R, k0) is a knowledge flowfor (P, V) directed by thecommunication rulesR ⊆
P × V × P ×K and originating from the statek0 ∈ K.

A communication rule describes the conditions under which one principal may gain knowledge from an-

other. For example, the rule(e,EPK(pb)(v), pa, {(pa, PK(pb)), (pa, v)}) states that the encryptore will tell

the cipherEPK(b)(v)) to the principalpa if pa knowspb’s public key and the plaintextv.

Note that our definition of a communication rule limits the class of protocols expressible in the knowl-

edge flow framework. In particular, our rules cannot be used to specify conditions under which information

is withheldfrom a principal, such as “a will not tell v to b if b knowsx”. Although many practical protocols

do not require this form of expressiveness, withholding of knowledge is an essential concept in systems that

use certificates: revoking a certificate requires withholding of information. We are working on reformu-

lating the certificate revocation problem using valid and invalid certificate sets, which should allow us to

circumvent this limitation.

Given a set of communication rulesR, we say thatk′ ∈ K is reachable fromk ∈ K via R if k′ is the

result of applying all rules inR to k at most once; i.e.k′ = fR(k) where

Definition 2 fR : K −→ K such that

fR(k) = k ∪

(pa, v) :
(pb, v) ∈ k, ka ⊆ k, and

(pb, v, pa, ka) ∈ R,

for somepb ∈ P andka ∈ K

 .

A state of knowledgekn is reachable in the context of a knowledge flow(R, k0) if kn = fn
R(k0). The

maximal state of knowledgef∗R(k0) is the limit of kn = fn
R(k0) asn → ∞. A state of knowledgef∗Rκ

(κ)
is valid for a knowledge flow(R, k0) if Rκ ⊆ R andκ ⊆ k0. SincefR(k0) is monotonically increasing2 in

R andk0, any valid state of knowledge is a subset of the maximal state of knowledge. Hence, the maximal

state of knowledge is also the smallest fixed point offR which subsumesk0.

4.2 Initial Knowledge

For each valuev, Source(v) = {p : (p, v) ∈ k0} defines the set of principals who drawv. In the knowledge

flow framwork, a principalp outside ofSource(v) can learnv only by communicating with principals

who knowv. We therefore treat cryptographic primitives, and other computationally feasible algorithms,

as principals. For example, suppose that, in practice,p can computev by applying the algorithmA to

2It is evident from Definition 2 that self-rules such asr = (p, v, p, kp) ∈ R do not affect the flow of knowledge:fR(k) =
fR−{r}(k). We therefore assume thatR does not contain any self-rules.

11

inputs i1, i2, . . . , in. We modelA by adding the principalA to P , the tuple(A, v) to k0, and the rule

(A, v, p, {(p, i1), (p, i2), . . . (p, in)}) to R.

Our treatment of primitives ensures thatKnowledge(k0) = {v : (p, v) ∈ k0 for somep ∈ P} consists

of all learnable values. Hence,V is the same in the initial and the maximal state of knowledge,

Knowledge(k0) = Knowledge(f∗R(k0)), (4)

which implies that we can safely restrict our analysis to the subset ofR applicable tok0. Formally,

(4) =⇒ fR(k0) = fR(k0)(k0) andf∗R(k0) = f∗R(k0)(k0),

whereR(k0) =

{
(pb, x, pa, ka) ∈ R :

{x} ∪ {v : (pa, v) ∈ ka}
⊆ Knowledge(k0)

}
.

4.3 Adversaries’ Knowledge

Let O ⊆ P be a group of collaborating adversaries. We collapseO into a single principalo using the

following merging function:

Merge(p) =

{
o if p ∈ O,

p if p 6∈ O

Merge(k) = {(Merge(p), v) : (p, v) ∈ k}
Merge(r) = (Merge(pb), v, Merge(pa),Merge(ka))

wherer = (pb, v, pa, ka) ∈ R

The merging of adversaries does not rule out any attacks becauseMerge(f∗R(k0)) ⊆ f∗Merge(R)(Merge(k0)).
We subsequently assume thatMerge is implied and useP , R, andk0 to refer toMerge(P), Merge(R),
andMerge(k0).

Security properties of protocols are expressed as predicates on the values known to Oscar in the maximal

state of knowledge. We therefore restrict our analysis of knowledge flows to finding all the values in the

projection off∗R(k0)(k0) on Oscar. Specifically, we introduce the projection functiongR,k0 and show that its

smallest fixed point is the image of Oscar underf∗R(k0)(k0).

Definition 3 Let X → x denote the existence of a rule(p, x, o, kσ) ∈ R(k0) for somep ∈ P − {o} and

kσ ∈ K with X = {v : (o, v) ∈ kσ}. We definegR,k : 2V −→ 2V as

gR,k0(X) = X ∪ {x : Xσ → x for someXσ ⊆ X} .

The set of values reachable fromX is given byg∗R,k0
(X), which is the limit ofgn

R,k0
(X) asn →∞.

SincefR(k0) is monotonically increasing inR andk0, Oscar’s pool of values underf∗R(k0) is maximized

if (a) Oscar tells everything he knows to the honest principals and (b) the honest principals tell everything

they know to each other. Therefore,(P − {o})×Knowledge(k0) should be included in the maximal state

12

of knowledge. This is equivalent to assuming that each honest principal drawsKnowledge(k0) because

k ⊆ f∗R(k0) implies thatf∗R(k0) = f∗R(k0 ∪ k).

Lemma 4 Let [(P − {o}) × V0] ⊆ k0 with V0 = Knowledge(k0) and letkn = fn
R(k0). Then there exists

a unique setXn ⊆ V such that

kn = [(P − {o})× V0] ∪ [{o} ×Xn]. (5)

The setXn has the property thatXn = gn
R,k0

(X0).

Proof.

We use induction onn. For n = 0, Xn = X0 = gn
R,k0

(X0). Since(P − {o}) × V0 ⊆ k0 and

V0 = Knowledge(k0), there exists a uniqueX0 such thatk0 satisfies (5).

Let Xn = gn
R(X0) be a unique solution to (5) and

Knowledge(kn) = V0 (our induction hypothesis). We know thatkn+1 = fR(kn) and, therefore,Knowledge(kn+1) =
Knowledge(kn) = V0. Together with[(P − {o})× V0] ⊆ kn ⊆ kn+1, this implies the existence a unique

Xn+1 for whichkn+1 satisfies (5). We now need to prove thatXn+1 = gn+1
R,k0

(X0).
Definition (5) lets us infer thatx ∈ Xn+1 ⇐⇒ (o, x) ∈ kn+1 = fR(kn). According to Definition

(2), (o, x) ∈ fR(kn) if and only if i) (o, x) ∈ kn, which is, by (5), equivalent tox ∈ Xn, or ii) there

exists ap ∈ P andkσ ∈ K such that(p, x) ∈ kn, kσ ⊆ kn, and(p, x, o, kσ) ∈ R. Since there are no

self-rules(o, v, o, kσ) ∈ R, we know thatp ∈ P − {o}. This, together withx ∈ Xn+1 ⊆ V0, implies that

(p, x) ∈ [(P − {o})× V0] ⊆ kn. Given[(P − {o})× V0] ⊆ kn andV0 = Knowledge(kn), the condition

kσ ⊆ kn is equivalent to

Xσ = {v : (o, v) ∈ kσ} ⊆ {v : (o, v) ∈ kn} = Xn and

{v : (o, v) ∈ kσ} ⊆ V0.

Sincex ∈ Xn+1 ⊆ V0, {v : (o, v) ∈ kσ} ⊆ V0 gives us(p, x, o, kσ) ∈ R(k0). Therefore, case ii) holds if

and only if there exists a setXσ ⊆ Xn such thatXσ → x. By Definition (3), case i) or case ii) holds if and

only if x ∈ gR,k0(Xn). Hence,Xn+1 = gR,k0(Xn) and the lemma follows by induction onn.

�

4.4 Detecting Intruders

Let m be the total number of values used in a single protocol session, including the subterms of each

composite value. Suppose that Oscar can use only the primitives whichcomposeor decomposeinputs

and for which the composition rules have no collisions (e.g encryptor/decryptor). Then, the theory in [41]

implies the following: if there exists an attack in which Oscar usesw parallel protocol sessions, then such

an attack need not involve more thanw ·m values. From (4) we infer that this corresponds to a valid state of

knowledgef∗R(kσ) derived from the setkσ ⊆ k0 of cardinality|Knowledge(kσ)| ≤ wm. By Lemma 4, we

13

can conclusivelydecidewhether there is an attack which usesw parallel protocol sessions by computing{
v ∈ g∗R,kσ

(Xσ) :
for [{o} ×Xσ] ⊆ kσ ⊆ k0

with |Knowledge(kσ)| ≤ wm

}
. (6)

5 Evaluation

We have applied the theory developed in the previous section to check the security of the original [36] and

modified [28] Needham-Schroeder Public Key Protocol, the Otway-Rees Mutual Authentication Protocol

[40], and the bootstrapping and renewal protocols based on Controlled Physical Random Functions (CPUFs)

[20; 21].

The knowledge flows of the protocols were embedded into Alloy using the pattern presented in section

3. The pattern is embodied in a general Alloy framework for knowledge flow analysis which includes

definitions of basic concepts (Model Excerpt 1), a library of primitives, and a model outline for specifying

protocol rules and security theorems. For example, Model Excerpt 2 shows portions of Alloy modules that

encode generic encryption/decryption and nonce generator primitives, and Model Excerpts 3 and 4 comprise

an instantiation of the modelling outline for the Needham-Schroeder protocol.

We have found that the Alloy framework and its associated tool support make the process of knowledge

flow modelling fast, simple, and accurate. Our analysis is sound and, since most cryptographic primitives

used in practice are composing/decomposing, we can make it complete for a bounded number of parallel

sessions by applying the results from section 4.4. In the case of the modified Needham-Schroeder protocol,

for example, we have proved that it is secure against all attacks that use two parallel sessions. The analysis

of the Otway-Rees protocol (Appendix A) produced the type flaw attack described in [8]. We found the

CUPFs protocols (Appendix B) to be secure for a single protocol session and, therefore, for an unlimited

number of sessions.

The main limitation of our approach is that it is not fully general. As pointed out in section 4.1, protocols

thatwithhold information under certain conditions cannot be formulated as knowledge flows. However, this

limitation does not significantly detract from practical usefulness of knowledge flow analysis: as far as we

know, few practical protocols contain information-withholding rules.

6 Related Work

The first formalisms designed for reasoning about cryptographic protocols are belief logics such as BAN

logic [8], used by the Convince tool [27] with the HOL theorem prover [24], and its generalizations (GNY

[23], AT [3], and SVO logic [44] which the C3PO tool [15] employs with the Isabelle theorem prover [39]).

Belief logics are difficult to use since the logical form of a protocol does not correspond to the protocol itself

in an obvious way. Almost indistinguishable formulations of the same problem lead to different results. It

is also hard to know if a formulation is over constrained or if any important assumptions are missing. BAN

logic and its derivatives cannot deal with security flaws resulting from interleaving of protocol steps [7] and

cannot express any properties of protocols other than authentication [30]. To overcome these limitations,

14

the knowledge flow formalism has, like other approaches [12; 29; 32; 35; 43], a concrete operational model

of protocol execution. Our model also includes a description of how the honest participants in the protocol

behave and a description of how an adversary can interfere with the execution of the protocol.

Specialized model checkers such as Casper [29], Murφ [35], Brutus [12], TAPS [13], and ProVerif [1]

have been successfully used to analyze security protocols. Like knowledge flow analysis in Alloy, these

tools are based on state space exploration which leads to an exponential complexity. Athena [43] is based

on a modification of the strand space model [18]. Even though it reduces the state space explosion problem,

it remains exponential. Multiset rewriting [17] in combination with tree automata is used in Timbuk [19].

The relation between multiset rewriting and strand spaces is analyzed in [9]. The relation between multiset

rewriting and process algebras [2; 34] is analyzed in [5].

Proof building tools such as NRL, based on Prolog [32], have also been helpful for analyzing security

protocols. However, they are not fully automatic and often require extensive user intervention. Model

checkers lead to completely automated tools which generate counterexamples if a protocol is flawed. For

theorem-proving-based approaches, counterexamples are hard to produce.

For completeness, we note that if the initial knowledge of the intruder consists of a finite number of

explicit (non-parameterized, non-symbolic) values, then a polynomial time intruder detection algorithm can

be shown to exist using a generalization of the proof normalization arguments [4; 22; 31], which were

employed in [6; 37] and have been implemented in the framework [38]. However, in practice, the initial

knowledge of an intruder is unbounded and represented by a finite number of parameterized sets, each

having an infinite number of elements.

The key advantage of the knowledge flow approach over other formalisms is its simplicity and flexi-

bility. It is simple in the sense that the underlying mathematics is straightforward and elementary; it does

not require any specialized background (in logic). It is flexible in the sense that the same library of cryp-

tographic primitives can be used to model different protocols and that the security of a complex scheme

involving multiple protocols can be verified. Knowledge Flow Analysys allows modeling of confidentiality

and authenticity via a wide range of primitives such as pairing, union, hashing, symmetric key encryption,

public key encryption, MACs and digital signatures.

Our formalism derives its simplicity from being just sufficiently expressive to enable modelling of prac-

tical cryptographic protocols. In particular, existentials [17] cannot be encoded as knowledge flows; existen-

tials are implicitly modeled in Oscar’s initial knowledge. As mentioned in Section (4.1), NP-hardness proofs

which use (existential) Horn clause reduction [17] or SAT3 reduction [41] are not applicable to Knowledge

Flow Analysis.

7 Conclusion

This paper introduces a new method for formalizing and checking security protocols. Our approach enables

natural encoding of protocol rules, simple treatment of primitives, direct embedding into first order logic,

and sound analysis that is also complete for many practical protocols.

We have developed a general framework for analyzing knowledge flows using the Alloy Analyzer. The

15

framework has been used to generate easily understandable knowledge flow representations of parallel ses-

sion and type flaw attacks on the Needham-Schroeder and Otway-Rees protocols. We have also instantiated

it with the rules for CPUFs key management protocols and verified the protocols’ correctness for an unlim-

ited number of parallel sessions.

We believe that knowledge flow analysis may be polynomial-time decidable for some protocols. Future

work will involve identifying the class of protocols whose knowledge flows are analyzable in polynomial

time and developing a specialized tool for checking them.

Acknowledgments

We would like to thank Viktor Kuncak, Ishan Sachdev, and Ilya Shlyakhter for their contributions to and

comments on earlier versions of this work.

References

[1] M. Ababi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs.

Journal of the ACM, 52(1):102–146, 2005.

[2] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the spi calculus. InProc. of

CONCUR ’97: Concurrency Theory, 8th International Conference, LNCS 1243, pages 59–73, 1997.

[3] M. Abadi and M. Tuttle. A semantics for a logic of authentication. InProceedings of the Tenth Annual

ACM Symposium on Principles of Distributed Computing, pages 201–216, 1991.

[4] D. Basin and H. Ganzinger. Automated complexity analysis based on ordered resolution.JACM,

48(1):70–109, 2001.

[5] S. Bistarelli, I. Cervesato, G. Lenzini, and F. Martinelli. Relating process algebras and multiset rewrit-

ing for immediate decryption protocols. In2nd Int. Workshop on Mathematical Methods, Models and

Architectures for Computer Networks Security (MMM-ACNS), LNCS 2776, pages 86–99, 2003.

[6] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Flow logic for dolev-yao secrecy in cryptographic

processes.Future Gener. Comput. Syst., 18(6):747–756, 2002.

[7] C. Boyd and W. Mao. On a limitation of ban logic. InAdvances in Cryptology: Eurocrypt ’93,

Springer-Verlag, pages 240–247, 1993.

[8] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Trans. Comput. Syst.,

8(1):18–36, 1990.

[9] I. Cervesato, N. Durgin, J.Mitchell, P. Lincoln, and A. Scedrov. A comparison between strand spaces

and multiset rewriting for security protocol analysis. InSoftware Security Theories and Systems, Mext-

NSF-JSPS International Symposium, ISSS 2002, LLNCS 426, 2003.

16

[10] Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An np decision procedure for protocol

insecurity with xor. InLICS’03, 2003.

[11] Y. Chevalier, R. K̈usters, M. Rusinowitch, M. Turuani, and L. Vigneron. Extending the dolev-yao

intruder for analyzing an unbounded number of sessions. Technical Report RR-4869, Rapport de

recherche de l’INRIA-Lorraine, Equipe : CASSIS, July 2003.

[12] E. Clarke, S. Jha, and W. Marrero. Verifying security protocols with brutus.ACM Transactions on

Software Engineering and Methodology, 9(4):443–487, 2000.

[13] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. InComputer Security Foundations

Workshop, 2004.

[14] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity decision in

presence of exclusive or. In18th Annual IEEE Symposium on Logic in Computer Science (LICS’03),

pages 271–280, 2003.

[15] A. H. Dekker. C3po: A tool for automatic sound cryptographic protocol analysis. In13th IEEE

Computer Security Foundations Workshop (CSFW’00), 2000.

[16] D. Dolev and A. Yao. On the security of public key protocols.IEEE Transactions on Information

Theory, 29(2):198–208, 1983.

[17] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and the complexity of

bounded security protocols.Journal of Computer Security, 1:677–722, 2004.

[18] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol correct?

In Proceedings of 1998 IEEE Symposium on Security and Privacy, 1998.

[19] G. Feuillade, T. Genet, and V. V. T. Tong. Reachability analysis of term rewriting systems.Technical

Report RR-4970, INRIA, 2003, to be published in the Journal of Automated Reasoning, 2004.

[20] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled physical random functions. In

Proceedings of the 18th Annual Computer Security Applications Conference, 2002.

[21] B. L. P. Gassend. Physical random functions. Master’s thesis, MIT, 2003.

[22] R. Givan and D. Mcallester. Polynomial-time computation via local inference relations.ACM Trans.

Comput. Logic, 3(4):521–541, 2002.

[23] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols. InPro-

ceedings of the IEEE Symposium on Security and Privacy, pages 234–248, 1990.

[24] M. J. C. Gordon and T. F. Melham.Introduction to HOL, a theorem proving environment for higher-

order logic. Cambridge University Press, Cambridge, England, 1993.

17

[25] D. Jackson. Automating first-order relational logic. InProc. ACM SIGSOFT Conf. Foundations of

Software Engineering / European Software Engineering Conference (FSE/ESEC ’00), 2000.

[26] D. Jackson. Alloy: a lightweight object modelling notation.ACM TOSEM, 11(2):256–290, 2002.

[27] R. W. Lichota, G. L. Hammonds, and S. H. Brackin. Verifying cryptographic protocols for electronic

commerce. InProceedings of the Second USENIX Workshop on Electronic Commerce, pages 53–65,

1996.

[28] G. Lowe. Breaking and fixing the needham-schröder public-key protocol using csp and fdr. In2nd

International Workshop on Tools and Algorithms for Construction and Analysis of Systems, 1996.

[29] G. Lowe. Casper: A compiler for the analysis of security protocols. InProceedings of the 1997 IEEE

Computer Society Symposium on Research in Security and Privacy, pages 18–30, 1997.

[30] W. Mao and C. Boyd. Towards formal analysis of security protocols. InProceedings of the Computer

Security Foundation Workshop VI, pages 147–158, 1993.

[31] D. McAllester. Automatic recognition of tractability in inference relations.Journal of ACM, 40(2),

1993.

[32] C. A. Meadows. The nrl protocol analyzer: An overview. InProceedings of the 2nd Conference on the

Practical Applications of Prolog, 1994.

[33] J. Millen and V. Shmatikov. Symbolic protocol analysis with an abelian group operator or diffie-

hellman exponentiation.Journal of Computer Security, 2004.

[34] R. Milner. Communicating and Mobile Systems: theπ-Calculus. Cambridge University Press, 2000.

[35] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using murφ. In

Proceedings of the 1997 IEEE Symposium on Research in Security and Privacy, pages 141–153, 1997.

[36] R. Needham and M. Schröder. Using encryption for authentication in large networks of computers.

Communications of the ACM, 21(12):993–999, 1978.

[37] F. Nielson, H. R. Nielson, and H. Seidl. Cryptographic analysis in cubic time. InTOSCA’01, volume 62

of ENTCS, 2001.

[38] F. Nielson, H. R. Nielson, H. Sun, M. Buchholtz, R. R. Hansen, H. Pilegaard, and H. Seidl. The

succinct solver suite. In10th TACAS, volume 2988 ofLNCS, 2004.

[39] T. Nipkow, L. Paulson, and M. Wenzel.Isabelle/HOL Tutorial Draft, March 8 2002.

[40] D. Otway and O. Rees. Efficient and timely mutual authentication.Operating Systems Review, 21:8–

10, January 1987.

18

[41] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is np-complete. In

Proceedings of the 14th Computer Security Foundations Workshop, pages 174–187, 2001.

[42] V. Shmatikov. Decidable analysis of cryptographic protocols with products and modular exponentia-

tion. In ESOP’04, volume 2986 ofLNCS, 2004.

[43] D. Song, S. Berezin, and A. Perrig. Athena, a novel approach to efficient automatic security protocol

analysis.Journal of Computer Security, 9(1), 2001.

[44] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol logics. InProceedings of

the 13th Symposium on Security and Privacy, 1994.

Appendix A The Otway-Rees Protocol

1 module kf/otwayreese

2 open kf/basicdeclarations

3 open kf/primitives/encryption

4 open kf/primitives/nonces

5

6 sig Message extends CompositeValue {
7 contents: some Value }
8

9 sig Identity extends AtomicValue {}
10

11 pred PrimitiveRules(x : set Value, v : Value) {
12 Encryptor(x,v) || Decryptor(x,v) || NonceGenerator(x,v) ||

13 (x : Message && v in x.contents) }
14

15 pred idCipher(cipher: Value) {
16 cipher : Ciphertext &&

17 some cipher.key.id & cipher.plaintext &&

18 cipher.plaintext in Identity &&

19 one cipher.plaintext - cipher.key.id }
20

21 pred keyCipher(cipher: Value) {
22 cipher : Ciphertext &&

23 some cipher.key.id }
24

25 pred message1(m: Value) {

19

26 m : Message &&

27 let cipher = m.contents & Ciphertext | {
28 idCipher(cipher) &&

29 m.contents = cipher + cipher.plaintext }}
30

31 pred message2(m: Value) {
32 m : Message &&

33 some cipher1 : Ciphertext |

34 let cipher2 = m.contents & Ciphertext - cipher1 | {
35 idCipher(cipher1) &&

36 idCipher(cipher2) &&

37 cipher1.plaintext = cipher2.plaintext &&

38 m.contents = cipher1 + cipher2 + cipher1.plaintext }}
39

40 pred message3(m: Value) {
41 m : Message &&

42 some cipher1 : Ciphertext |

43 let cipher2 = m.contents & Ciphertext - cipher1 | {
44 keyCipher(cipher1) &&

45 keyCipher(cipher2) &&

46 cipher1.plaintext = cipher2.plaintext &&

47 m.contents = cipher1 + cipher2 }}
48

49 pred message4(m: Value) {
50 m : Message &&

51 keyCipher(m.contents) }
52

53 pred ProtocolRules(x : set Value, v : Value) {
54 (x : some Oscar.draws && message1(v)) ||

55 (message1(x) && message2(v) && x.contents in v.contents) ||

56 (message2(x) && message3(v) && x.contents.key = v.contents.key) ||

57 (message3(x) && message4(v) && v.contents in x.contents) }
58

59 pred ApplyRules() {
60 all v : Value | let x = Oscar.learns.v |

61 some x <=> PrimitiveRules(x, v) || ProtocolRules(x, v) }
62

63 pred SecurityAssumptions() {
64 PerfectCryptography() &&

20

65 all p : Principal | some p.owns & Identity }
66

67 pred SecurityTheorem() {
68 no oldResp, newResp : PUFResponse,

69 renew : param.(oldResp.isRespTo) & HonestUser,

70 cipher : Ciphertext |

71 let oldChall = oldResp.isRespTo, newChall = newResp.isRespTo |

72 oldChall.isHashOf : some (AtomicValue - Oscar.draws) &&

73 cipher.key.isHashOf = oldResp + renew.hash &&

74 cipher.plaintext = newResp &&

75 newChall.isHashOf = oldChall + renew.hash &&

76 newResp in Oscar.knows }
77

78 assert Security {
79 InitialKnowledge() && FinalKnowledge() &&

80 SecurityAssumptions() && ApplyRules() => SecurityTheorem() }
81

82 pred SecurityTheorem() {
83 no m1, m2, m3, m4: Oscar.knows & Message,

84 A, B: HonestUser.owns & Identity | {
85 message1(m1) && message2(m2) &&

86 message3(m3) && message4(m4) &&

87 m1.contents.key.id = A &&

88 m2.contents.key.id = A + B &&

89 m3.contents.key.id = A + B &&

90 m4.contents.key.id = A &&

91 m4.contents.plaintext in

92 (HonestUser.draws - Oscar.draws) & AtomicValue &&

93 m4.contents.plaintext in Oscar.knows }}
94

95 assert Security {
96 InitialKnowledge() && FinalKnowledge() &&

97 SecurityAssumptions() && ApplyRules() => SecurityTheorem() }

Appendix B The CUPF Renewal Protocol

1 module kf/primitives/hashing

2 open kf/basicdeclarations

3

21

4 sig Hash extends CompositeValue {
5 isHashOf: some Value }
6

7 pred CollisionFreeHashing() {
8 all disj h1, h2: Hash | h1.isHashOf != h2.isHashOf }
9

10 pred Hasher(x : set Value, v : Value) {
11 v in Hash && x = v.isHashOf }

12 module kf/cpufs

13 open kf/basicdeclarations

14 open kf/primitives/encryption

15 open kf/primitives/hashing

16

17 sig PUFResponse extends CompositeValue {
18 isRespTo: Value }
19

20 pred UniquePUFResponses() {
21 all r: PUFResponse | r.isRespTo ! in (PUFResponse - r).isRespTo }
22

23 sig RenewProg in Principal {
24 param : Value,

25 hash : AtomicValue & owns

26 }{ param + hash in draws + knows }
27

28 pred SecretsNotLeaked() {
29 no (RenewProg & HonestUser).param.isHashOf & PUFResponse &&

30 (RenewProg & HonestUser).param in Hash }
31

32 pred GetResponsePrimitive(x : set Value, v : Value) {
33 v in PUFResponse &&

34 v.isRespTo.isHashOf = Oscar.hash + Oscar.param &&

35 x = v.isRespTo }
36

37 pred GetSecretPrimitive(x : set Value, v : Value) {
38 v in Hash &&

39 v.isHashOf = isRespTo.(Oscar.param) + Oscar.hash &&

40 x = v.isHashOf }
41

22

42 pred PrimitiveRules(x : set Value, v : Value) {
43 Encryptor(x,v) || Decryptor(x,v) ||

44 GetResponsePrimitive(x,v) || GetSecretPrimitive(x,v) }
45

46 pred ProtocolRules(x : set Value, v : Value) {
47 x : some Oscar.draws && {
48 (v in (RenewProg & HonestUser).(param + hash)) ||

49 (v in Ciphertext &&

50 some renew: RenewProg & HonestUser |

51 let renewHash = renew.hash |

52 v.key.isHashOf = isRespTo.(renew.param) + renewHash &&

53 v.plaintext.isRespTo.isHashOf = renewHash + renew.param) }}
54

55 pred ApplyRules() {
56 all v : Value | let x = Oscar.learns.v |

57 some x <=> PrimitiveRules(x, v) || ProtocolRules(x, v) }
58

59 pred SecurityAssumptions() {
60 UniquePUFResponses() && PerfectCryptography() &&

61 SingleValueEncryption() && CollisionFreeHashing() &&

62 SecretsNotLeaked() }
63

64 pred SecurityTheorem() {
65 no disj oldResp, newResp : PUFResponse,

66 renew : param.(oldResp.isRespTo) & HonestUser,

67 cipher : Ciphertext |

68 let oldChall = oldResp.isRespTo, newChall = newResp.isRespTo |

69 oldChall.isHashOf : some (AtomicValue - Oscar.draws) &&

70 cipher.key.isHashOf = oldResp + renew.hash &&

71 cipher.plaintext = newResp &&

72 newChall.isHashOf = oldChall + renew.hash &&

73 newResp in Oscar.knows }
74

75 assert Security {
76 InitialKnowledge() && FinalKnowledge() &&

77 SecurityAssumptions() && ApplyRules() => SecurityTheorem() }

23

