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ABSTRACT

Structural sandwich panels can fail in several ways. The faces and core
can yield plastically or fracture depending on the nature ocf the
materials from which they are made; the compressive face can buckle
locally, or "wrinkle"; and the bond between faces and core can fracture
causing delamination. The critical failure mode, which occurs at the
lowest load, depends on the properties of the face and core materials
and on the design of the beam. Here, we develop equations describing
the load at which failure occurs for each possible failure mode for a
rectangular sandwich beam with face and core materials that yield
plastically. We then develop a failure mode map, with axes of core
relative density and the ratio of face thickness to span length, which,
for a given loading configuration and set of face and unfoamed solid
core materials, shows the dominant failure mode for every possible beam
design. Tests on sandwich beams with aluminium faces and rigid
polyurethane foam cores show that the equations and map describe failure
wvell. The map can then be used to design the minimum weight sandwich
beam for a given strength requirement.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Composite structural members made of two thin, stiff faces
separated by a weak, light-veight core are known as sandwich panels.
Separation of the stiff faces by the core increases the moment of
inertia of a sandwich beam or plate with little increase in weight,
giving an efficient member for resisting bending and buckling. Sandwich
construction is frequently found in nature, where mechanical design Is
often optimized. For example, in the human skull, two thin, outer
layers of dense, compact bone are separated by a light-weight core of
sponge-like cancellous bone; and in the iris leaf, the almost fully
dense and relatively stiff, fibre-composite-like ribs on the outer skin
of the leaf are separated by weak, low density cells in the core. 1In
both instances, the sandwich structure results in a lower weight member.

In man-made sandwich structures aluminium, wood and fibre-
reinforced plastics, are commonly used as face or skin materials while
balsa, honeycombs and polymeric foams are often used in the core.
Honeycomb cores are used in applications where the weight of the panel
is the only critical factor as, for example, in structural components of
aircraft. Foam cores are usually preferred in applications where low
thermal conductivity is required in addition to low weight, as in
portable buildings, mobile homes and refrigerated shipping containers.
In this study ve analyze the failure of foam-core sandvich beams made up
of materials which yield plastically and describe how the weight of such
a sandvich beam can be minimized for a given strength. Sandwich beams
with rigid foamed polyurethane cores and aluminium faces were used in
the experimental portion of the project. These are typical materials;
the analysis is applicable to any combination of isotropic face and
foamed core materials which fail by yielding.

1.2 APPLICATIONS

To date, panels for use in the building industry have been of a
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mainly semi-structural character, carrying relatively small loads over
fairly long spans. In the non-residential building market sandwich
panel roofing 1is gaining increasing popularity because of its 1low
veight. Other construction applications include: portable buildings and
fold-up bridges (of potential use to the Army); energy efficient housing
using prefabricated steel panels with urethane insulation between them
for use in Arctic areas (which minimizes the use of electricity and
heating fuel); and construction in remote areas (a recent application of
this is in the replacement of remote lighthouses with new units of
balsa-cored sandwich structures which are flown in by helicopter). Some
of the above construction applications are illustrated in Fig. 1.1.

Sandwich construction has been widely applied in the aircraft
industry for flooring, helicopter rotor blades, and tail and wing
components. Panels for aircraft structures almost invariably employ
fibre composite faces with metal or paper-resin honeycomb or corrugated
cores. The automobile industry is beginning to wuse the concepts
developed by the aircraft industry for sandwich construction in the cars
of the future. Sandwich panels are also used in modern sports
equipment: the decks and hulls of racing yachts, and water and snow skis
are often made using sandwich construction.

The use of structural sandwich members has already gained wide
acceptance in several applications, especially those in which the weight
of the member is critical.

1.3 MINIMUM VEIGHT DESIGN OF SANDWICH PANELS

Sandwich construction is most beneficial for building a light,
cheap structure. Consider a simple example: let us assume that we want
to construct a simply supported beam (1 = span = 96 in (2438.4 mm); b =
width = 6.3 in (160 mm)) subject to three-point bending load, with a
given stiffness requirement, i.e. load/mid-span deflection, of, say,
3654.5 1bin~1 (640 Nmm~1). 1If we decide to make a rectangular beam of
aluminium alone, the required weight is 126.42 1b (57.34 Kgf). Based on
a recent optimization analysis [16] for sandwich beams with rigid
polyurethane cores we can estimate the weights of the aluminium and the
foam material, if we decide to construct the beam using these materials,
as 9.247 1b (4.194 Kgf) and 37.19 1b (16.87 Kgf), respectively. The
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total weight of the resulting member is 46.437 1lb (21.064 Kgf) (see also
Fig. 1.2). This simple example reveals that for the same structural
requirement (bending stiffness in this case), sandwich construction
leads to a weight reduction of about 63%! It can be argued that this is
an unrealistically high figure for the weight reduction as a solid
aluminium I beam would have a lower weight than a rectangular one.
Perhaps of more significance is the fact that similar weight reductions
can be obtained in sandwich plates; in this case there is no equivalent
of the I beam for a solid aluminium plate. The large weight reduction
possible with sandwich panels is advantageous in reducing transit and
labor costs for portable structures or structures in remote areas.

A cost comparison of the two different approaches of constructing
the beam of the previous example reveals that sandwich construction in
this case will result in an approximately 25% cheaper member.

In conclusion, the need for the optimum use of the materials in the
design of 1lightweight sandwich panels is imperative. Optimization
analyses of sandwich members aim to develop a method of designing the
lightest possible member for some specified structural requirement. The
requirement may be that the panel must have some given stiffness, or
strength, or combination of stiffness and strength. There may be
dimensional constraints also: the face and the core may have to be
within certain size limitations determined by the availability of
materials, or the depth of the panel may have to be less than some
maximum allowable dimension. Previous optimization studies have usually
focused on determining the core and face thickness which minimize the
weight of a panel assuming that the core and face materizls are
completely specified, and that their densities, elastic moduli and
strengths are known. Work on relating core properties (such as the
elastic and shear moduli) to core density allows core density to be
optimized. Previous analyses based on linear relationships between core
properties and density do not provide reliable solutions to the
optimization problem, because these relationships are not valid for
foams. Recent analyses for non-linear relationships between foam
properties and density have also been done and are considered in the
present research work. So far, this work has successfully been applied
to minimizing the weight of sandwich beams and plates for a given
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stiffness requirement. Closed form solutions for the core density and
the core ana face thicknesses which minimize the weight of foam core
sandwich beams and plates subject to a stiffness constraint have been
developed.

Here we are interested in minimizing the weight of a sandwich beam
for a strength constraint, or a combination of stiffness and strength
constraints. The first step in analyzing the strength constraint
problem is to identify the possible modes of failure in a sandwich beam
and to develop equations which describe the failure loads for each mode.
Given the failure mode equations we can plot them on a failure mode map,
a diagram with the horizontal axis corresponding to the ratio of the
thickness of the face, t, over the span-length, 1, and the vertical axis
corresponding to the ratio of the density of the core material, Per
over the density of the unfoamed solid material, Ps- The plot is
divided into several regions, each one reflecting a failure mode. A
typical failure mode map is illustrated in Fig. 1.3. It should be
noticed that different maps must be constructed for different loading
configurations.

The main goal of this work is to develop failure equations and
failure mode maps for sandwich beams and to use the failure maps to
suggest a method for designing the minimum weight sandwich beam for a
given strength. With a map describing the way in which a sandwich beam
can fail, the equations giving the failure load and the optimization
analysis, the designer will be able to select his materials properties
and dimensions appropriately.

1.4 OUTLINE OF THE THESIS

The present work is organized in seven chapters, with the main
emphasis given in chapters 3, 4, 5, and 6 in which both the analytical
and experimental work are described and the optimization analysis is
presented.

Chapter 2 is devoted to a brief literature review. This review
describes the literature on: a) the observed failure modes in sandwich
beams; b) the optimization of sandwich panel design; c) property-density
relationships for foamed core materials.
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The analytical work for this research is presented in Chapter 3.
After identifying stresses in structural sandwich beams and analyzing
each possible failure mode, an equation is obtained, describing the
failure load for the mode given the properties of the face material and
the solid from which the core is foamed, and the loading configuration.

Chapter 4 presents the experimental procedure and all of the
experimental results. Material properties of the aiuminium used in the
face and of the foamed polyurethane used in the core are reported. The
constants of proportionality for core properties are calculated £from
test data. Using the correct constants of proportionality, a failure
mode map for a sandwich beam loaded in three-point bending is plotted
using reasonable ranges of the design variables with a FORTRAN program,
given in the Appendix. A set of sandwich beams which should have the
various failure modes shown in the failure mode map can then be designed
and tested to failure. Results of the tests are given, noting the way in
which failure occurs. These results are finally plotted on the failure
mode map.

A discussion of the results is given in Chapter 5. The agreement
of the experimental results with the analytical work is discussed and a
description of any anomalies in the experimental procedure is also
presented. Suggestions for simplification of the analysis are also
given.

The optimization analysis is presented in Chapter 6. The failure
mode maps developed in Chapters 3 and 4 are used in the minimum weight
analysis of a sandwich beam for a given strength requirement. By noting
that the face and core of a sandwich beam should fail simultaneously
(otherwise, the unfailed componenent 1is overdesigned), the minimum
weight design of a beam is found for a given strength, in a closed form
solution.

Chapter 7 summarizes the main findings that have come out of the
research work. The validity of both the analytical and the experimental
work is discussed, as well as new ideas to have come out of the prcject.
Finally, a description of additional work suggested by the project, and
new research directions is presented.



19

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

The literature from three relevant areas is reviewed in this
chapter. First, the failure modes observed in sandwich beams are
identified and described; the load required to cause failure in each
case is given in Chapter 3. Next, previous minimum weight design
studies are reviewed and the ways in which this study differs from them
are indicated. And finally, the non-linear property-density
relationships for the foam core, used in developing the failure mode
maps and in the optimization analysis, are summarized.

2.2 FAILURE MODES IN SANDWICH BEAMS

Several failure modes have been observed in sandwich composites
(Fig. 2.1). Which mode occurs depends on the loading configuration, the
properties of the face and the core materials and the member dimensions.
The main modes of failure of sandwich composites made of face and core
materials which yield plasticaily are summarized in this section. 4
more detailed presentation, including the failure equations for each
mode, is given in Chapter 3.

Under axial loading, failure may occur in two ways: by overall
buckling or by face dimpling. Overall buckling can be described by the
Euler load for a column, using the equivalent flexural rigidity for the
sandwich [2,11,24]. Face dimpling occurs with a wavelength equal to the
cell size of the core [2,11,22,28]); it is usually only significant for
honeycomb cores with a large cell size (eg. 1/4"-1/2"). Because
sandvich panels are typically used to resist flexural loads rather than
axial ones, the axial failure modes are not considered in any more
detail in this thesis (Fig. 2.1 a, b).

In flexure, several modes of failure exist. The face may either
yield or wrinkle; delamination of the bond between the face and the core
may occur; and the core may fail in tension, compression, shear, or by
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local crushing.

A common failure mode of composite sandwich members is the yielding
of the face material due to high normal stresses generated by bending
[2,26]. When these normal stresses exceed the yield stress of the face
material, it yields and eventually ruptures (Fig. 2.1lc).

The compression faces of sandwich members are sometimes subject to
a particular kind of local instability described as wrinkling, in which
the wavelength of the buckled form is of the same order as the thickness
of the core (Fig. 2.1d). A special theory is needed to predict this
behavior; the analysis [2] is presented in Chapter 3.

A failure mode of considerable importance is the so-called bond
decohesion or simply debonding or delamination (Fig 2.le). A current
search in the literature shows that there is not a unique theory for the
problem of delamination. Basically, two entirely different approaches
exist. A summary is given here {[8,10,21]. The fracture mechanics
approach explains the debonding of the face and core materials based on
the critical stress intensity factor of the adhesive. A second approach
compares the shear stress between the face and the core, caused by the
externally applied loads, with the shear strength of the adhesive. A
more complete description for both cases is given in the next Chapter.

Ve should also mention that, theoretically it is also possible for
the core to yield in shear, tension or compression, depending on how the
corresponding strengths compare to the stresses caused by the loads
[2,28]. These last three modes of failure are shown in Fig. 2.if), g)
and h) and a more detailed treatment is given in the subsequent Chapter.

As may be expected, when high lateral loads are applied on a small
area of the member, high local stresses may arise leading to local
crushing of the core material, as is shown in Fig. 2.1i) [2,11]. The
use of bearing plates at the loading points avoids this type of failure.

2.3 OPTIMIZATION OF SANDWICH PANEL DESIGN

Optimization analyses in sandvich members minimize the weight
subject to a given stiffness or strength or some combination of both.
Most of the work done to date has aimed at finding the values of the
face and core thicknesses which minimize weight; in these studies it has
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been assumed that the face and core materials are completely specified
and that their moduli, strengths and densities are known. Allen [2]
shows how this can be done for sandwich beams subject to a stiffness
constraint. Huang and Alspaugh [20] and Ueng and Liu [27] have done the
optimization analysis of the core and face thicknesses for highly
constrained members. Huang and Alspaugh minimized the weight for the
strength requirements of maximum allowable bending stress and shear
stress, as well as for a deflection requirement. Ueng and Liu did
analogous work for a specific type of corrugated core. Due to the
complexity of the constraints in both these problems, the solutions were
obtained by numerical techniques; no closed form solution was possible.

Little attention has been paid to the optimum design of sandwich
members not only with respect to the core and face thicknesses but also
vith respect to the core density. Wittrick [29] and Ackers [1], working
on sandvich columns with foamed calcium alginate cores, both recognized
that there is an optimum core density which minimizes the weight. Their
optimization analyses were based on the given strength requirement.
They considered the Euler buckling, face wrinkling and face yielding
failure modes. Tests on foamed calcium alginate showed that its Young'’s
modulus varied linearly with density. From this, Wittrick assumed that
the shear modulus also varied linearly with density. By substituting
these expressions into the failure equations and considering Euler
failure and face wrinkling to occur simultaneously, Wittrick developed
expressions for core and face thicknesses as well as for core density
wvhich minimized the weight for a given strength requirement. A similar
analysis has been made by Kuenzi [23], who worked on the use of the wood
cores in sandwich construction. He optimized sandwich design for the
cases of a given equivalent flexural rigidity requirement, a given
bending moment capacity (strength) requirement and a given buckling
resistance. In the last two cases he used linear relationships between
moduli and density, valid for wood cores.

A recent extensive study of the mechanical behavior of cellular
solids has shown that these linear moduli-density relationships are not
generally valid for foams [13,14,15]. Using non-linear relationships
between moduli and densities, Gibson and Demsetz {12,16] minimized the
wveight of sandwich beams and plates with rigid foam cores with respect
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to core density as well as with respect to the core and face thicknesses
for a given stiffness requirement. That was very important because
realistic core property-density relationships for foams were used for
the first time in weight minimization analyses. The present work adds
something new: the use of non-linear core property-density relationships
in minimum weight design of structural sandwich beams for a given
strength requirement.

2.4 FOAM CORE PROPERTY-DENSITY RELATIONSHIPS

Relating core properties such as the moduli and collapse strengths
to core density allows core density to be included as a variable in the
optimization analysis for sandwich beams. Early optimization studies
used a linear relationship between the core moduli and density
11,23,29}. A recent extensive study into the mechanics of cellular
solids such as foams and woods has shown that these linear moduli-
density relationships are not generally valid [13,14,15]. Instead, it
was found that, for foams, Young’s modulus and the shear modulus are

theoretically proportional to the density squared:

2
E./Eg = (P/p)°% . (2.1)

' 2
G./E; = 0.4(p_/p)* , (2.2)

vhere E., G and P, are the core Young’s modulus, shear modulus and

c
density, respectively. Eg and pg correspond to the cell-wall
material’s Young’s modulus and density. Similar expressions were

derived for the elastic and plastic strengths of a foam core. Elastic
collapse occurs when the core cells buckle elastically causing the foam
to collapse elastically. Cellular materials may also collapse by a
second mechanism. If the cell-wall material has a plastic yield point,
then the foam as a whole may show plastic behavior. The following two
formulas have been derived for the strength of the core [14]:

L
- 2
T1/Eg = 0.05(p /p )% (2.3

]
) 3
01/0ys = 0.30(p_/p_) /2 (2.4)
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a:l and 0;1 are the stresses at failure for elastic (buckling) or
plastic behavior respectively and Uys is the yield stress of the cell-
wall material. The last two formulas are valid for p./pg < 0.30 and
Po/Ps < 0.63 respectively. It must be noted that the agreement of the
above expressions with experimental results is very good (Fig. 2.2-2.5).

In this study we are concerned with the failure of sandwich beams
made up of materials which yield plastically; in this case equation

(2.4) gives the relevant strength for a core.

The next Chapter is devoted to the formulation cf equations
describing the failure modes of sandwich beams subject to bending.



CHAPTER 3

ANALYTICAL FORMULATION OF

FAILURE MODE EQUATIONS

3.1 GENERAL

As we have already mentioned in Chapter 3, six different failure
modes are possible for rectangular sandwich beams made from materials
vhich yield plastically and are subjected to bending. They are: face
yielding, face wrinkling, bond decohesion, core shear, core tension and
core compression. In this Chapter we first describe the stresses acting
in a sandvich beam and then derive an equation describing the failure
load for each mode given the loading conditions, the member dimensions
and the properties of the faces, the foam core and the adhesive used to
construct the beam. The procedure followed is general without
considering for example, specific values for materials properties or
support conditions. This Chapter concludes by introducing the
construction of a failure mode map using the failure equations.

3.2 STRESSES IN SANDVICH BEAMS

Allen [2] presents a good review of the application of ordinary
beam theory to sandwich beams; the following summary is based on his
review. A typical sandwich beam is illustrated in Fig. 3.1. The faces
are each of thickness t and the low density core is of thickness c¢. The
overall depth is h and the width b. The face and core materials are
assumed to be isotropic. Use of the ordinary beam theory leads to the
vell-known relationship between bending moment (M) and curvature (1/R):

1
R {(3.1)

NIZ
-

vhere EI is the flexural rigidity, which, for convenience, is denoted by
the single symbol D. The flexural rigidity of a sandwich beam is given
(from the parallel axis theorem) by:

3 2 3
. g bt btd be® (3.2)
D = Ec=¢ *Eg 3  *Ec73
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vhere Eg and E. are the Young’s moduli of the faces and core
respectively and d is the distance between the centroids of the two
faces:

h+c
d = == . (3.3)

The beam is assumed to be narrow, so that stresses in the y direction
can be taken as zero. The first and third terms in equation (3.2) are
the bending stiffnesses of the faces about their own centroidal axis and
that of the core about its centroidal axis. The second term is the
bending stiffness of the faces about the beam’s centroidal axis and in
practical sandwiches is invariably dominant. The first amounts to less
than 2% of the second wher

3(%)2550 X (3.4)

The error introduced by neglecting the first term is therefore
negligible provided d/t > 4.08. The third term amounts to less than 2%
of the second when
E 2
f tod
6 g cle) »s0 . (3.5)

Ve can conclude that if the "thin face and compliant core approximation"
holds (first and third terms in equation (3.2) can be neglected) the
flexural rigidity of the sandwich beam is given by:

2
btd

Use of ordinary bending theory leads to the following equations for
the normal stresses in the faces and the core, respectively:

= Mz < h._h =<
Oc =D Ee (2 $2¢ 5 7 -3 ¢2¢ f) . (3.7a)
Mz '
e b B (Fa3) . (3.7b)

Now, consider a section of a homogeneous beam with second moment of
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inertia I and width b, at a level 21. The shear stress, T, at a depth
z, below the centroid of the cross-section is given by

Qs
=15 - (3.8)

In the above formula S is the first moment of area of the part of the
section for which z > z; and Q is the shear force at that section.
Equation (3.8) is not directly applicable to a sandwich beam because the
modulus of elasticity is not the same for all elements of the cross-
section. To account for this, the expression for the shear stress can
be written as

1. QJI(SE)

Db ’ (3.9)

vhere 2 (SE) represents the sum of the products of S and E of all parts
of the section for which z > z;. Based on this formulation we can
express the shear stress at a level z in the core of a sandwich beam as:

E_ 2
= Qg dt c(c” 2
T= D[Ef Es 2(4 2 )] i (3.10)

A similar expression can be obtained for the shear stress in the faces.
The complete distribution of shear stresses across the depth of the
cross-section of the sandwich beam is illustrated in Fig. 3.2a. Using
equation (3.10) we can derive that the ratio of the maximum core shear
stress to the minimum core shear stress is

T
_Cm_ax_ = _EE c_z +1
T E td '

cmin £

FYEN

This expression is within 2% of unity if

td
c ¢ >0 (3.11)

-
o

Considering that the ratio d/c is usually near to unity, one may observe
that conditions (3.5) and (3.11) are similar in effect. As a result,
vhen a core is too compliant to provide a significant contribution to
the flexural rigidity of the member, the shear stress may be assumed



nearly constant over the depth of the core. Based on this assumption we
can write the constant shear stress in the core as
E_td

- Q f
T= D 3 . (3.12)

A combination of (3.12) with (3.6) leads to the following:

~ 2 (3.13)

T= be

Q
bd
The shear stress distribution is summarized in Fig. 3.2.

3.3 FACE YIELDING

Consider a rectangular sandwvich beam under a general 1loading
configuration P as shown in Fig. 3.3. The normal stress distribution at
the critical section of the beam (that where the bending moment takes
its maximum value) is also shown in Fig. 3.3. The normal stresses are
assumed to be uniform over the face thicknesses; this approximation is
valid if the faces are thin. The bending moment, M, at the critical

section is given as

Pl

M =c, - (3.14)

vhere the constant c; depends on the loading arrangement and the support
conditions. For the case of a simply supported beam loaded in the
middle of its span with a concentrated load P, cq takes the value 4. If
the beam fails by face yielding, the normal stress in the face at the
critical section, O¢, equals the yield stress of that face, U&f’

g_=0 . (3.15)

The stress Of can be expressed in terms of the bending moment as

ME
- £ ¢
% =5 3 - (3.16)

According to section 3.2 the flexural rigidity D is approximated as

2
btd
D = Ef—z . (3.17)
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vhere E¢ is the Young’s modulus for the face material and all other
dimensions (b, t and d) are as shown in Fig. 3.1. Substituting
equations (3.14) and (3.17) in (3.15) we obtain:

Plc

. 3.18
c1btd2 ( )

Gf =

Finally, substitution of (3.18) in (3.15) yields the equation that
describes the face yielding failure mode:

d” t
.19)
b . T - (3

At this point we should keep in mind that the last equation is valid in
all cases where the thin-face and compliant core approximations hold.

3.4 FACE WRINKLING

The compression face of a sandwich beam subject to bending is
likely to fail by a particular kind of local instability described as
vrinkling. Consider an infinitely long strut attached to an elastic
medium which extends to infinity on one side of the strut, as is shown
in Fig. 3.4. This is a reasonable idealization for the face of a
sandwich member as will be explained later. We can assume a state of
plain stress (o&:O) provided that the beam’s width b is small. The
strut is considered to be of rectangular section and of thickness t; it
is also described by the differential equation

+F 2 =b0 ’ (3.20)

with D denoting its flexural rigidity, o, the normal stress beiween the

z
strut and the face of the supporting medium (foam) and w the

corresponding displacement in the z-direction; P is the axial force.

Assuming buckling into sinusoidal waves (half-wavelength = 1) wve

can write:

w = wmsin-—— . (3.21)

Considering compatibility of displacements, it can be shown [2] that the
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stress 0, which must exist to deform :the medium in this manner is

o =-32 nx
z 1 Wm51n 1 P (3.22)

vhere

ZnEc

(3-Vc)(1+vc)

E. and v, are the modulus of elasticity and Poisson’s ratio for the core
material, respectively. Combining equations (3.20), (3.21) and (3.22)
ve obtain:

n4 2

D —& -F
14

|

. A
=1 - (3.23)

N

1

F ip equation (3.23) is the critical value of the axial load that must
exist ian the buckled condition. D and F in equation (3.23) can be
wvritten as

D=—4— ., F=0bt ,

vith E¢ and o denoting the modulus of elasticity of the strut and the
compressive critical stress in the face, respectively. Therefore,
equation (3.23) can now be written as follows:

o= TR 50

One can observe that the critical stress is a quadratic function of the
ratio 1/t (Fig. 3.5). Its first derivative with respect to this ratio
leads to the following expression for the minimum critical stress:

_ 1/3_2/3 ) VY 21-1/3
O, = B,Ef Ec vhere B1 = 3[12(3 Vc) (14vc) ]. (3.25)

Variations in the Poisson’s ratio of the supporting medium, only
slightly affect the values of the constant By; a typical value is 0.57.

The stresses in the core which are associated with the sinuso.idal
disturbance at the surface (z=0) decrease as 2z increases; at a
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sufficiently large value of 2z they may be regarded as negligible.
Consequently, the compression face of a sandwich beam may be idealized
in the manner of Fig. 3.4. provided the depth of the core is
sufficiently great to allow the effects of the disturbance at one
interface to die away before reaching the other.

Equation (3.25) with By = 0.57 may therefore be taken as a measure
of the stress in the face at which wrinkling occurs, provided the core
is thick. Ve can conclude that a face wrinkling failure mode will take
place when the normal stress in the face at the critical section (where
the bending moment is maximum), Of» becomes equal to the critical stress
of equation (3.25):

- 1/3.2/3
O¢ = 0.57E. /" . (3.26)
Theoretical work [15] has related the elastic modvlus of a foam core,
relative density of the foam, p./pg:

to the elastic modulus of the solid core material, Eg and to the

_ (P
The results of many measurements agree well with this expression. There
is small variation in the exponent caused by the distribution of solid
between the faces and edges of the cells in the foam. For generality,
we assume that this relationship holds as

P \A
Ec = C, ?z: Es . (3.28)

vhere cq and A are constants which are determined experimentally. It
should be remembered that p, and pg are the densities of the foamed core
and unfoamed solid core materials, respectively. Substituting (3.28)
into (3.26) and taking O¢ from (3.16) we find:

1/3.2/3(Pe VA3
f s Ps

2

P = 0.57c,c2’3 % % ) (3.29)

163 E

This equation describes the face wrinkling failure mode.
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3.5 BOND DECOHESION

A first approach to the debonding mechanism of sandwich members is
to consider delamination when the shear stress in a region of the
adhesive reaches its shear strength:

T ='r; (3.30)

adh dh °

The shear stress, Tadh in the adhesive, at a given section, is given by
(equation (3.13) )

Toan = = (3.31)

and is maximum at the section where the shear force Q is maximized,
i.e., at the critical section. A debonding type of failure will
initiate from this section when

Q _r* (3.32)
B adh - .

The shear force, Q, at the critical section is given as

P
E; . (3.33)

Q =

vhere the constant cy is dependent on the loading arrangement and the
support conditions. For the case of a simply supported beam loaded in
the middle of its span with a concentrated load P, ¢y takes the value 2.
Substituting (3.33) in (3.32) we can derive the failure mode equation
for the debonding mechanism considering the adhesive’s shear strength
approach as

P = czTadhbc . (3.34)

At this point we should notice that it would be more accurate to
compare the adhesive’s shear strength with the maximum principal shear
stress in the bond, evaluated at the interface between the face and the
adhesive. Hence, the formulation followed here is quite simplistic and
a more detailed analysis for the debonding mechanism is the subject of
future research work.
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As we have noticed in Chapter 2, a second, entirely different
approach may be used to the delamination problem. The debonding
mechanism is theoretically governed by a mixed mode delamination, mode I
and mode II, using the well-known fracture mechanics terminology [19].
Mode I is related to normal stresses and mode II is related to the in-
plane shear stresses, both occuring in an element of the adhesive.
These two modes and the normal and shear stress distribution are
depicted in Fig. 3.6. In fact, mixed mode failure is rare. In most
engineering materials it is always mode I that governs failure. 1In our
case this can be verified if the ratio of the shear stress in the
adhesive, Tadh® ©over the normal stress, O,dh: 1s small compared to 1.
We consider Oadh to be the maximum normal stress in the adhesive, which
implies that this occurs near the boundary with the face, and is
therefore equal to 0f (see Fig. 3.6). As a result (equation (3.18) )

- . _Plc
Oadh = O = — . (3.35)

c1btd

The shear stress in the adhesive is given by

T = P
adh czbc (3.36)
and the Tadh/ohdh ratio becomes
T c 2
adh _ ©1 ted :
T . ) - (3.37)

Equation (3.37) shows that for practical cases the Tadh/0adn ratio at
the critical section of a sandwich member is small enough, thus allowing
us to neglect the mode II effects in the fracture of the adhesive.
Subsequently, the fracture mechanics approach to the problem predicts
debonding failure when

cradh\/na= xICadh . (3.38)

where Kicadh is the critical stress intensity factor for the adhesive
and ais an initial flaw size; inherent in the flaw size is significant
uncertainty. Substituting (3.35) in (3.38) we solve for the failure
load P which is given as
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K1cadn b a® e
c

. (3.39)
! \ﬁTa 1

This approach is useful in obtaining an approximate solution for

P =c

the initiation of fracture in the adhesive 1layer. However, it has
several limitations: it does not explain why the crack propagates
parallel to the face-core interface and does not account for the
contribution of the release of strain energy in the face and core to the
driving force to propagate the crack.

In summary, the debonding mechanism, looked upon two different
points of view can be described by either equation (3.34) or equation
(3.39). The values of the parameters involved in both these equations
have to be determined experimentally and which of the two equations is
more realistic will be shown from experimental results, as it will be
presented in Chapter 4.

3.6 CORE SHEAR

If the cell-wall material of the core has a plastic yield point,
vhich is the case when we deal with rigid polyurethane foams, then the
foam as a whole may yield in shear . In other words, the combination of
normal and shear stresses in an element of the core is such that the
resulting maximum shear stress, Tcmax
then the core will fail plastically in shear. The critical value Tz is
the shear strength of the core corresponding to significant deviation
from linearity and to initiation of a yielding plateau in the shear
stress-strain diagram. Therefore, the condition for a shear-type of

, reaches a critical value, Tz,

core failure is

T =T, (3.40)
(:max o]

This type of failure will initiate at the "most critical" element
of a critical section of a beam. The critical section is the one where
the combination of normal and shear stresses is the most severe, while
the most critical element is one at the extreme core fibre where the
normal stress takes its maximum value (assuming constant shear stress
distribution in the core). This is shown in Fig. 3.7. The maximum
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shear stress in a core element is given by

1
T =’V/E§'+TZ (3.41)
cmax 4 c .

The shear strength of the core is related to the solid core material
yield stress according to the formula

. P \B
TC = c4<%;> o;s . (3.42)

where ¢, and B are constants which have to be determined experimentally.
Recent work [15] has shown that ¢, and B should be approximately equal
to 0.30 and 1.50, respectively.

The stresses 0. and 1, are given as follows:

PlEcc
UE = — 2 ’ (3.43a)
c,btd”E
1 f
T = F (3.43b)
c czbc ‘ :

Using the relationship between E. and E; (equation (3.28)), substituting
(3.43a) and (3.43b) in (3.41) and equating the right hand side terms of
(3.41) and (3.42) we obtain the shear failure criterion for rectangular
sandwich beams:

P = . (3.44)

3.7 CORE TENSION

Similar arguments as the ones presented for the core shear failure
mode apply to the case of tensile failure of the core of a rectangular
sandwich beam. When the combination of normal and shear stresses in an
element of the core is such that the resulting maximum principal tensile
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stress, 07, reaches the tensile strength of the core, ag't, then the
core will fail in tension. Again the tensile strength of the core
corresponds to significant deviation from linearity and to initiation of
a ylelding plateau in the tensile stress-strain diagram. Ve state that
the criterion for a tensile-type failure of the core can be expressed as

i c.t ° (3.45)

This type of failure will initiate at the most critical element of
a critical section in the member. The critical section is the one where
the combination of normal and shear stresses is the most severe, and the
most critical element is at the extreme core fibre where the normal
stress takes its maximum value assuming that the shear stress
distribution in the core is constant (Fig. 3.7). The maximum principal
stress in a core element is

o, = (3.46)

1

The tensile strength of the core is related to the solid core material
yield stress according to the equation

» P _\C
o = —c
c.t * cs(ps) %s - (3.47)

vhere cg and C are constants which have to be determined experimentally.
For a plastic type of behavior of the core at failure the constants Cg
and C should be approximately equal to 0.30 and 1.50, respectively [15].

The stresses 0. and T, are given by equations (3.43). Taking into
c and B¢ (equation (3.28)),
substituting (3.43) in (3.46) and equating the right hand side terms of
(3.46) and (3.47) we obtain the tensile failure criterion for
rectangular sandwich beams in the form

account the relationship between E
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osrg) %t

P = (pc)A < ) 2 1 (3.48)
(:3 K Esc -p: (1 )2
t 2 t 2 c,C
2°1'T'Efd 2¢:1 1 Efd 2

Sometimes, sandwich members which are properly designed to avoid
tensile (plastic) yielding may fail in a catastrophic way by fast
fracture. This is possible to happen when we deal with a specific type
of rigid foams, known as glassy or brittle foams. The study of the
behavior of that particular type of foams is outside the scope of this
work.

3.8 CORE COMPRESSION

The mechanism is quite similar to tensile (plastic) failure: when
the maximum principal stress, 01, reaches the compressive strength of

the core, o“'c, then the core will fail in compression. Following the

arguments ;zr the shear and tensile strengths of the core, the
compressive strength of the core corresponds to significant deviation
from linearity and to initiation of a yielding plateau in the
compressive stress-strain diagram. We can now state that the criterion
for a compressive-type failure of the core is

-
g =0 (3.49)
1 c,C

and this type of failure will initiate at the most critical element of a
critical section in the member (see comments following equation (3.45)).
Fig. 3.7 is relevant but this time failure will initiate in a critical
element at the compressive extreme core fibre. The maximum principal
stress in a core element is given by equation (3.46) while the
compressive strength of the core can be written as

A
GC,C = CGG—;) UYS . (3.50)

Again, the constants cg and D are to be determined experimentally.
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Performing similar substitutions as previously, the equation describing
the core compression failure mode for rectangular sandwich beams is the
same as (3.48) with Cg and D standing for cg and C, respectively.

3.9 FAILURE MODE MAPS

For each possible failure mode for rectangular sandwich beams, an
equation vas obtained describing the load P at which the mode occurs,
given the material properties, the beam geometry and the loading and
support conditions. By equating pairs of these equations, another set
of equations describing the transition from one failure mode to another
can be obtained. For example, the failure equations for face yielding
and face wrinkling are (3.19) and (3.20), respectively. Transition from
one of these tvo failure modes to the other is described by

2 2A/3
c 0, ¢b % L- 0.57c c2/332_./3E:/3<2c> bg—- L (3.51)
S
or
Pe Oyt 3/2h (3.52)
P, “\o 57c2/3 1/3,2/3 . :
f s

Given the materials properties the right hand side of equation (3.52)
can be evaluated exactly, providing us with information about the foam
density, Per wvhich corresponds to the transition between face yielding
and wrinkling.

As a second example, consider the equations for face yielding and
core shear failure modes, (3.19) and (3.44) respectively. Transition
betveen these modes occurs when

Pc B
dz t €4 Ps o&sb
°1nybc—T= ~ . (3.53)
@) =],
c c
R
t 2 c,C
201 -l— Efd 2

A more careful examination of the transition equations between pairs of
failure modes reveals that if cx~d these equations do not include b, ¢
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and d as variables. Therefore, given the material properties and
loading and support conditions, the transition equations depend only on
the t/1 and p./pg ratios. This implies that we can plot the transition
equations on a diagram with axes corresponding to the two above
mentioned ratios. The resulting "failure mode map" indicates the
regions in which each failure mode is dominant. This is important: for
a given rectangular sandwich beam with known loading-support conditions
and material properties (i.e. given pP./Ps and t/1 ratios) we will be
able by just looking at the failure mode map to recognize the nature of
the imminent mode of failure. Then, by going to the corresponding
failure mode equation, we will be in a position to evaluate the maximum
load that the member can stand. This is cne of the most significant
findings of this work.

One can realize that in order to plot a realistic failure mode map
ve must know the values of all the parameters involved in the equations
describing the failure loads for each mode. Such values must be
determined experimentally, and this is one of the topics of the
subsequent Chapter.

3.10 SUMMARY

Equations describing the face yielding, face wrinkling, debonding,
core shear, core tension and core compression failure modes for
rectangular sandwich beams have been developed in this Chapter. For the
debonding mechanism, two different possible approaches were used
yielding in a set of two equations. As it will be presented in Chapter
4, which of the two equations for this failure mode is more realistic,
vill be experimentally determined. The failure equations are summarized
here for convenience:

1) Face yielding: 2

2) Face wrinkling:

P = 0.57c,c2/3

163 E

1/3.2/3(Pe VA3 a? ¢
£ s s c 1 :

3) Debonding:
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Adhesive shear strength approach:

)
!

Fracture mechanics approach:

4) Core shear:

5) Core tension:

c5<}c) Gysb
P 2 R
<; ) Egc 2
&
c
1

2 ;)
1 Efd 2

("i> e

2°11 £

6) Core compression: same as in 5) with cg and D instead of ¢g and C,
respectively.

The parameters involved in the above failure equations are also
summarized here:

P : failure load

C1s € : constants depending on the loading-support

conditions
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b : width of beam

c : depth of core

d : distance between center-lines of opposite faces
t : face thickness

1 ¢ span

Pec : core density

Ps : solid core material density

E¢ : elastic modulus for face

Eg : elastic modulus for solid core material
O&f : yield strength of face

Tadh ¢ shear strength of adhesive

Kicadh ¢ fracture toughness of adhesive

a : initial crack half-length

Oys ¢ yield strength of solid core material

€3, A : constants in the core-compressive modulus equation

€4» B : constants in the core shear strength equation

c5y C : constants in the core tensile strength equation
D

61 : constants in the core compressive strength equation

Transitions between pairs of failure modes can be described by

equating the corresponding equations for the load P. This leads to
idea of constructing a failure mode map with parameters the Pe/Ps
t/1 ratios, providing information about the mode that will occur
given member sizes, materials and loading-support conditions.

The experimental determination of the parameters involved in
failure mode equations and the construction of failure mode maps
presented, among others, in Chapter 4.

the
and
for

the
are
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CHAPTER 4

EXPERIMENTAL RESULTS -

FAILURE MODE MAPS

4.1 GENERAL

The scope of this Chapter is to present the experimental results
for the failure of sandwich beams and, using these results, to construct
failure mode maps for rectangular sandwich beams. A set of experiments
was carried out to determine the parameters relating to the face and
core properties in the failure mode equaticns. Using the values of the
measured parameters the failure equations were finalized and used to
obtain the failure mode maps. Based on the configuration of these maps
and taking into account practical design requirements a series of
sandvich beams was designed to be tested to failure, in order to verify
the validity of the failure map. These tests and their results are
described here; in addition, they are also used to obtain a final
failure mode map for rectangular sandwich beams.

4.2 FACE YIELD STRENGTH

The load at which face yielding occurs depends on the yield
strength of the face material. The material used as face material
throughout this study was aluminium (alloy no. 1100-H14). In order to
measure its yield strength five specimens were loaded in tension using
an Instron machine [4]. The shape of a typical specimen is shown in
Fig. 4.1 along vith a typical tensile load-strain curve corresponding to
one of the five tests that were conducted.

The yield strength on such a curve corresponds to the first
deviation from linearity. The values of the yield stresses measured are
summarized below as follows:

Specimen # Yield stress (psi)

1 11932
12545
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3 12874
12015
5 12975

The mean value of the above values is 12468 psi (86 Mpa). We have thus

obtained the face material yield strength, o

yE? wvhich can readily be

used in equation (3.19).

4.3 FOAM COMPRESSIVE STRENGTH AND ELASTIC MODULUS

According to the discussion presented in Chapter 3, the foam
elastic modulus and compressive strength are related to properties of
the solid core material. These relationships are given by equations
(3.28) and (3.50) wvith the observation that the constants ¢y, A, cg and
D are to be determined experimentally. To measure these constants a
series of cubic foam specimens 2x2x2 inches3 vere tested in compression,
using an Instron machine with a maximum load capacity of 10000 1lbs [5].
Four different foam densities were used, 4, 6, 10, and 20 1b/ft3.
Taking the density of the solid polyurethane to L. 75 lb/ft3 [{15], this
gives ratios of P./ps of 0.0533, 0.08, 0.13 and 0.27.

The anisotropy in the material was measured by testing cubic
specimens in three directions: one parallel to the rise direction and
the other two perpendicular, thus examining the material properties in
three orthogonal directions (Fig. 4.2).

Typical compressive load-deflection curves for specimens made of
all four densities mentioned above and for loading parallel to all three
directions are given in Fig. 4.3-4.10. The results of the tests are
summarized in Table 4.1. It should be noted that five specimens were
tested for each loading case. The elastic moduli were evaluated using
the straight portion of the load-deflection curves while the compressive
strengths wvere evaluated at the intersection of the yielding plateau
wvith the straight portion corresponding to linear behavior. By
inspection of the values in Table 4.1 one may derive the useful result
that the foam has the same properties in both directions perpendicular
to the rise and different in the rise direction. We can therefore
separate the foam properties using as a basis the rise direction as
follows: the properties differ between the rise direction and any other
direction perpendicular to that. Taking the average values of Table
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4.1, we can now summarize the results obtained from the series of
compression tests as follows:

Density Ec" EQL ag,c" G:,QL
ratio, p./pg  (psi) (psi) (psi) (psi)
0.0533 4418 1897 109.45 39.65
0.08 5289 3610 170.05 133.50
0.13 12174 6850 327.60 244,30
0.27 29677 30807 1082.00 1119.00

The subscript n denotes the rise direction while the subscript 1 denotes
any other perpendicular to that. In order to avoid any confusion
regarding the loading directions, we make the pre-agreement to treat the
case where stresses develop perpendicular to the rise direction only.

That means that in a typical flexural loading condition of a rectangular
beam the rise has to be parallel to the height of the beam. Based on
this pre-agreement, we can now continue taking into account properties
of the core material only perpeadicular to the rise direction.

The results of the compression tests are now plotted in log-log
scale as shown in Fig. 4.11 and 4.12. The linear regression analysis
based on the test results yields the following equations for the elastic
modulus and compressive strength of the foam:

E. \1-71

T ° 1.13(;—) p (4.1)
s S
x

O P.\!.98

5 = o.az<%=) . (4.2)
vs s

The lines corresponding to these equations are shown in Fig. 4.11 and
4.12 respectively. The subscripts denoting the loading direction have
been dropped under the assumption that we will no longer deal with the
direction of rise. The values of 232 Ksi (1600 Mpa) and 18.4 Ksi (127
Mpa) were used for the elastic modulus, Eg, and the yield strength, oy
of the unfoamed solid core material, respectively [25].

If we compare equations (4.1) and (4.2) with (3.28) and (3.50) we
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find that we have experimentally obtained the values of the constants
c3, A, cg and D involved in the failure mode equations. These are:

c3 = 1.13 , A= 1.71
cg = 0.82 , D = 1.98

Data in the literature suggest values of cy and cg of 1 and 0.3. A and
D theoretically found to be 2 and 1.5 [15]. One can thus consider the
experimental procedure and results presented in this section reliable.

4.4 FOAM SHEAR STRENGTH

As it was discussed in Chapter 3, we need to relate the shear
strength of the rigid foam to 1its density, after doing some
normalization with respect to the properties of the solid core material
(see equation (3.42)). The constants ¢4 and B involved in equation
(3.42) have to be determined experimentally. For this purpose, it was
decided that five specimens of cach of the densities of 4, 6, 10 and 20
1b/ft3 be tested in direct shear [6]. In order to simulate a pure shear
condition the specimens were tested as is shown in Fig. 4.13. All
specimens were identically formed as parallelepiped prisms with
dimensions 1x1x3 inches. They were rigidly supported by means of
0.5x1x5 inch steel plates bonded to the facings as shown in the above
Figure. The load was applied at the ends of the rigid plates in
tension, using an Instron machine. As wve vwere interested only in
evaluating the maximum strength from the shear stress-strain curves, the
measurement of displacements was not accurate (horizontal axis). A
typical curve is shown qualitatively in Fig. 4.14 together with the
definition of maximum (or ultimate) shear strength.

In the experimental procedure we are interested in shear stresses
developed in the plane of the rise direction (see discussion in
paragraph 4.4). In order to achieve this, the foam specimens were
bonded to the steel plates in such a manner that the rise direction was
perpendicular to the face of the plates. Therefore we should keep in
mind that all the results obtained correspond to development of shear
stresses in the plane of the rise direction. All experimental results
from foam shear tests are summarized in Table 4.2. Taking the average
of the values in this Table we have the following results:



45

Density
ratio, p./pPg 0.0533 0.08 0.133 0.267

Tz (psi) 72 112.8 246 801.8

The findings of the shear tests can now be plotted in log-log scale
as shown in Fig. 4.15, where a linear regression line is passed through
the points of experimentally measured values for the shear strength.

Finally, a linear regression analysis based on these values yields
the following equation for the shear strength of the rigid polyurethane

foam:
Tt p_\1.52
ac = 0.31 —p‘-:— . (4.3)
vs s

Again here, the values of 18.4 Ksi (127 Mpa) and 75 1b/£t> were used for
the solid foam material yield strength and density, respectively.

Comparing equation (4.3) with (3.42) we are now in a position to
know the values of the constants Cy4 and B involved in the failure meode
equations. These are:

¢; = 0.31 , D = 1.52

Data available in the literature suggest that c,=0.3. In theory D is
equal to 1.50 ([15]. Therefore, one could obviously recognize an
extremely good agreement of experimental results with theory.

4.5 FOAM TENSILE STRENGTH

Equation (3.47) relates the foam tensile strength, a:,t' to its
density, p., and to properties of the unfoamed, solid core material.
The unknown parameters cg5 and C involved in equation (3.47) were
determined experimentally. To do this, the foam specimens were tested
in tension, using an Instron machine with gripping devices [7]. The
testing apparatus with a typical specimen is shown in Fig. 4.16. Four
different foam densities were used, 4, 6, 10 and 20 1b/ft3, resulting in
Pc/Ps ratios of 0.0533, 0.08, 0.13, 0.27 respectively. For each density
value five specimens were cut. Therefore the total number of foam
tensile tests that were performed was twenty. In the experimental
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procedure we were interested for stresses developed perpendicular to the
rise direction. Considering this, all specimens were appropriately cut.

Typical tensile load-deflection curves are given in Fig.4.17-4.20,
one for each different foam density. Based on the values of the
ultimate loads obtained from such curves the foam tensile strength was
then computed, and the results for all specimens are summarized in Table
4.3. Taking the average of the values in this Table, for each density,
we obtain the following results for the tensile strength:

Density
ratio, Pc/Ps 0.0533 0.08 0.133 0.267

G:,t (psi) 98.56 158.39 354.38 892.04

The results of the foam tensile tests can now be plotted in log-log
scale as shown in Fig. 4.21, where a linear regression line is passed
through the points of experimentally measured values for the tensile

strength.

. Finally, a linear regression analysis based on these results yields
the following equation for the tensile strength of the rigid
polyurethane foam:

\1.39
c.t = 0-31(_p_C_. . (4.4)
Ps

The values of 18.4 Ksi (127 Mpa) and 75 1b/ft3 vere used for the solid
foam material yield strength and density, respectively.

A comparison of equations (3.47) and (4.4) reveals that the values
of the parameters cg and C involved in the failure mode equations are
0.31 and 1.39, respectively. The expected values [15] for cg and C are
0.30 and 1.50, respectively. We can therefore visualize that the
agreement of experimental results with theory is quite satisfactory.

4.6 ADHESIVE SHEAR STRENGTH

The shear strength of the adhesive, -r;dh' used in the equation
describing the debonding mechanism, is a property of the specific
adhesive used at the interface between the face and the foam. Any time
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a new adhesive is used for bonding the two materials, one has to
determine experimentally its shear strength. The adhesive employed in
this study was polyester resin and its shear strength was measured as
shown in Fig. 4.22. Steel plates were sand-blasted and glued with
polyester resin and then subjected to tension after a cure of two days.
In a way similar to that presented in section 4.4 for the foam shear
strength, eight tests were carried out and the results obtained are

summarized here:

Test, # Adhesive shear
strength, T34, (psi)

1973
1982
1804
2135
1771
1767
1993
2201

W N O W N

The mean value of these results is 1953 psi (13.5 Mpa) and the standard
deviation 153 psi, resulting in a coefficient of variation of B8X%.
Therefore, for the adhesive used in this study we will consider:

T'adh = 1953 psi

4.7 ADHESIVE CRITICAL STRESS INTENSITY FACTOR

Based on the fracture mechanics approach for the debonding
mechanism in sandwich beams, in order to define the failure load (see
equation (3.39)), we must evaluate the fracture toughness, Kicadh’ of
the adhesive used. Fig. 4.23 shows the experimental configuration of a
typical test for evaluating the toughness, Gg,4qn of the adhesive ([8]}.
The parameters in Fig. 4.23 are related with the formula

T 2 .2
Gcadh * 3BEI [°(°’°°) +h ] ’

with I-Bh3/12 and a,=0.6h. For each test for the evaluation of the
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fracture properties of the adhesive two steel plates were glued together
with polyester resin of thickness 2h, having an initial flaw size a,
according to Fig. 4.23. The plates were appropriately gripped and
subject to tension with an Instron machine. The load T corresponding to
the propagation of the crack, d, was recorded and used in equation (4.5)
for the evaluation of the product Gg ghE.

Five different series of tests were conducted, with the parameter
a taking values 0.197 inch (0.005m), 5.906 inch (0.15m), 7.874 inch
(0.20m), 9.842 inch (0.25m) and 11.811 inch (0.30m). For each value of
d ten tests were performed. In each test the following values for B and
h wvere considered:

B = 0.787 inch (0.02m) , h = 0.118 inch (0.003m).

The results of all series of tests are summarized in Table 4.4.
For each of the five different test series the critical stress intensity
factor, Kycagn: vas evalnated as the square root of the product Gpy4hE
obtained by equation (4.5). Fig. 4.24 shows the variation of Kyc,a4n
with the initial crack lengthd. It is summarized as follows:

a (in) 0.197 5.966 7.874  9.842 11.811
Krcagn (Ks¥inl/2) 0.381 0.424 0.398  0.378  0.417

Finally, the mean value for the critical stress intensity factor for the
adhesive was obtained based on all the experimental results, and is
K1cadh=0-40 Ksiinl/2 (0.44 MNm~3/2),

4.8 SUMMARY OF EXPERIMENTAL RESULTS

All series of tests presented so far aimed at evaluating the
parameters involved in the failure mode equations which were obtained
analytically in Chapter 3. Mean values, standard deviations and
coefficients of variation for all these parameters are given below for

convenience:

Parameter Mean value Standard deviation Coeff. of variation

Oyf 12468 psi 435 psi 3.5%
Tadh 1953 psi 153 psi 8%
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Kicadh 0-40 Ksiinl/2 0.038 Ksiinl/? 9.6%
cq 1.13 0.09 8%

A 1.71 0.14 8.2%
B 1.52 0.13 8.5%
cs 0.31 0.036 11.6%
c 1.39 0.11 7.9%
cq 0.82 0.08 9.7%
D 1.98 0.17 8.6%

Other parameters used in the failure equations were assumed as
follows:

ps = 75 1b/fe3
E¢ = 10153 Ksi
Ec = 232 Ksi

Oys = 18.4 Ksi

4.9 FAILURE MODE MAPS

In Chapter 3 we developed a set of equations describing each
possible failure mode for a rectangular sandwich beam. Each equation
gives the load P at which the corresponding failure mode will occur,
given the material properties, the beam geometry and the loading and
support conditions. The parameters involved in the failure mode
equations were determined experimentally and the results were presented
in previous sections of this Chapter. Substituting for these
parameters, the failure equations can be written as functions of the
ratios t/1 and p./pg.

We have a total of seven failure mode equations. However, the
debonding mechanism is described by two alternate expressions (equations
(3.34) and (3.39)). Therefore, we have two possible sets of failure
equations for rectangular sandwich beams, each one containing six
equations. Moreover, upon substitution of the experimentally determined
parameters into the failure equations one finds that the load which
corresponds to the core compression failure is always higher than the
load which describes the core tension failure. This happens because the
parameters c¢g and D are larger than the parameters cg and C,
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respectively. This implies that a core compression failure mode is not
expected to occur, because the core tension failure mode will develop
first. Under this observation we will not consider the core compression
failure equation further. As a result, we finally have two possible
sets of equations with five equations each. The only difference between
the two sets is the expression for the debonding failure. Following the
procedure of section 3.9 we can now obtain a failure mode map for each
set of equations.

Considering the approach which uses the shear strength of the
adhesive to describe the debonding mechanism, we developed the failure
mode map shown in Fig. 4.25 for a simply supported beam loaded at mid-
span with a concentrated load. The adhesive fracture mechanics approach
for the debonding mechanism resulted in the construction of failure mode
maps such as those shown in Fig. 4.26-4.27, for different initial crack
lengths, d. Ve must emphasize that each failure mode map corresponds to
a specific loading and support configuration. The experimentally
obtained mean values of the parameters involved in the failure equations
wvere used for the construction of the maps presented here and the
influence of the variation in these parameters to the failure mode maps
is discussed in the subsequent Chapter.

The failure maps in Fig. 4.26-4.27 predict that failure mostly
happens by debonding, which, as we will discuss later, was not verified
by the experimental results. However, we should notice that the
fracture approach used here is quite simplistic and needs additional
work. Alternatively, the failure mode map in Fig. 4.25 is divided in
four regions, each one corresponding to a failure mode. This map
provides qualitative information regarding the imminent mode of failure
for simply supported rectangular sandwich beams. We can clearly observe
that face failure is expected for small t/l1 ratios. More specifically,
the face is expected to wrinkle when we deal with small p./pg ratios
(veak core) and is expected to yield when the p./p; ratio is larger.
For t/1 increasing, when p./ps is small (weak core) the core is expected
to fail in shear, while when p./pg is larger the face is expected to
yield; for very large t/1 and p./pg ratios a debonding type of failure
is expected. These observations are intuitively justified. Indeed, as
experimental results will reveal at subsequent sections, the failure
mode map in Pig. 4.25 seems to be quite reliable, giving thus a
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"preference" to the adhesive shear strength approach for the debonding
mechanism between the face and the core.

Usual design requirements [2] imply that the face thickness over
span ratio, t/1, vary in the range 0.0002-0.01. A slightly wider range
has been used for the construction of failure mode maps in this study
(0.0001-0.1). Moreover, the Pe’/Ps ratio was assumed to vary in the
range 0.01-1, which covers all feasible core densities. The validity of
a possible failure mode map is now questionable. Do test results, in
general, agree with one of the failure mode maps shown in Fig.
4.25-4.27? This is discussed in the subsequent Chapter. The need of
test data lead to a series of tests described next.

4.10 BEAM TESTS-EXPERIMENTAL METHOD

In order to check the failure equations and the failure mode maps
developed above we decided to test a series of sandwich beams with rigid
polyurethane foam cores to failure. The beams were designed with
varying core densities and face thickness to span ratios. A list of the
beam designs used is given in Table 4.5. Four beams of each geometry
wvere made by cutting the foam and aluminium to the correct size and then
bonding them together with polyester adhesive resin. Before the bonding
procedure the aluminium faces were sand-blasted. The specimens were
clamped together using weights and the adhesive was cured overnight.

The beams were tested in three-point bending using roller supports
and a screw jack to apply the load. In order to avoid any 1local
crushing of the core near the region of the concentrated load, P, a
steel plate was used to distribute this 1load. The 1load-deflection
behavior of each beam was plotted using an X-Y recorder. Photographs
vere taken of each beam at the first deviation from linearity in the
load-deflection curve and as the failure progressed.

4.11 RESULTS OF BEAM TESTS

The tests on the sandwich beams produced three main modes of
failure: face yielding, face wrinkling and core shear. Out of 124 beams
tested 3 failed by debonding and 4 failed by local crushing of the core.
Each failure mode gave a distinct load-deflection curve; typical
examples of such curves are shown in Fig. 4.28. All curves are linear
elastic initially.
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The load-deflection curves of beams that failed by face yielding
shoved a flattening corresponding to yield followed by eventual face
wrinkling after extensive yielding. Strong indication of face yielding
vas the presence of Luders bands on the tensile face of the specimens
observed after unloading. Beams with higher density cores yielded more
extensively than ones with lower density cores before face wrinkling
occured; this was expected since the resistance provided by the higher
density cores 1is greater. In order to be consistent with the
development of the failure equation for the face yielding and with the
measured yield strength of the aluminium, we measured the failure loads
at the first deviation from linearity in the load-deflection curves.

The load-deflection curves of the beams that failed by plastic
shearing of the cove are similar to those for failure by plastic yield
of the face; this was expected since the yielding in the core material
results in a yield plateau. Since Luders bands were not observed in the
face, there should be no confusion with the face yielding failure mode.
In this case, the yielding is generally less extensive before the load-
deflection curve is terminated by the formation of a diagonal shear
crack in the specimen. The development of the equation that describes
the core shear failure mode is based on the ultimate shear strength of
the core. Therefore, for the core shear case, we measured the failure
loads corresponding to the yield plateau in the load-deflection curves.

The beams that failed by face wrinkling behaved linearly-
elastically up to the load at which wrinkling occured. Wrinkling
resulted in a sudden drop in the load carried by the beam. This is
where the failure load was measured.

Typical photographs of each failure mode are given in Fig. 4.29.
Table 4.6 summarizes the measured failure loads and modes for all
specimens tested and the coresponding calculated failure loads according
to the equations developed in Chapter 3. The results indicate that the
simplistic fracture mechanics approach for the debonding mechanism of
the adhesive does not lead to results in agreement with the experiments.
Hence, the failure mode maps given in Fig. 4.26-4.27 will not be
considered any more in the present work. However, additional work needs
to be done on a more accurate fracture mechanics approach to the
debonding mechanism. The failure map in Fig. 4.25 turns out to be in a
good agreement with the test results; further discussion of the
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agreement between the analytical and experimental work will be presented
in Chapter 5. All test results are now plotted on the failure map based
on the adhesive shear strength approach for the debonding mechanism.
This is illustrated in Fig. 4.30. Fig. 4.31 shows the failure mode map
under consideration with load contours which were constructed based on
the failure load equations; in order to compare the validity of these
contour lines with test results, their construction corresponds to
sandwich beams with width b=1" and core depth c=1", which was the case
for most of the beam designs that were tested to failure (d is assumed
equal to c). On the failure map of Fig. 4.31 the average values of the
measured failure loads are also plotted; this plot indicates excellent
agreement between predicted and measured failure loads.

4.12 SUMMARY

In this Chapter the experimental procedures are described and
results are given for the evaluation of all parameters involved in the
failure mode equations. The parameters obtained are in a quite
satisfactory agreement with theoretically derived values for the
material properties. These parameters are then used together with the
failure mode equations given at the end of Chapter 3 for the
construction of failure mode maps. These maps are diagrams which show
the transitions between the failure modes. Assuming for a sandwich beam
that its face is thin compared to its depth (i.e. c=~d), the failure
mode maps can be constructed with variables the ratios of t/1 and Pc/Ps
only. Because we developed two possible equations for the debonding
mechanism of the adhesive in sandwich beams, two sets of failure maps

were constructed.

In order to check the failure equations and the failure loads, a
set of beams with rigid polyurethane foams were tested to failure.
Based on the test results the adhesive shear strength approach to the
debonding mechanism of the adhesive seems to be justified; for this case
results are in very good agreement with expected loads and failure
modes. Three failure modes were produced by the beam tests: face
yielding, face wrinkling and core shear. Further discussion and
comparisons are the subject of Chapter 5.



54

CHAPTER 5

DISCUSSION

5.1 GENERAL

The consistency of all the experimental results related to the
study of the failure modes of rectangular sandwich beams is discussed in
this Chapter. In addition, the agreement between the analysis and
measured loads and failure modes is also discussed. Based on the
results, a simplification of the analysis is presented. Finally, the
effect of the variation in the parameters involved in the failure
equations, on the failure mode map is presented and some comments are

given for the construction of failure maps for other cases.

5.2 DISCUSSION

Tests on the foam to be used in the core gave almost all the
parameters involved in the failure equations. The results are
summarized in section 4.8 together with the coefficients of variation
for each parameter. The variation is of the order of 8% which is
considered reasonable and acceptable. The conclusion is that the
derivation of these parameters was done in a rather reliable manner.

Table 4.6 lists the calculated and average measured failure loads
for each sandwich beam tested along with the mode of failure. The
results are also plotted on the failure maps of Fig. 4.30 and 4.31.
There is close agreement between the calculated and measured failure
loads and in the mode of failure. The agreement is still good if we
approximate the flexural rigidity of the member with D = Efbtc2/2,
except for the beams with large t/1 ratio. However, using the more
exact formula D = Efbtd2/2, most of the calculated failure loads are
within 10% of the measured loads, and all but 4 out of the 124 beams
tested are within 15%.

Out of all the beams tested only 3 failed by debonding; no
systematic trend in the design of the beams that failed by debonding
could be detected. Most probably these beams had significant defects
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introduced into the adhesive when the beams were prepared. It is
interesting to note that in two out of the three cases in which
debonding occurred, the failure load was close to that calculated for
the predicted load. Since the beams tested cover most of the practical
range of t/1 and p./ps we conclude that if some care is taken to avoid
introducing defects into the adhesive when making sandwich beams,
debonding is unlikely to occur. More work needs to be done on the
debonding mechanism to fully understand it. A general observation is
that the failure of sandwich beams with rigid foam cores is most likely
to occur under face yield or face wrinkling or core shear. In
comparison with the test results, the analytical formulas give excellent
results for the face yield mode, are slightly unsafe for the face
wrinkling mode and slightly conservative for the core shear mode. Given
the structural sandwich beam the designer can predict the imminent mode
of failure using the failure map, and then using the corresponding
equation given at the end of Chapter 3 he should be able to evaluate the
failure load. At this point, a safety factor could also be applied,
depending on the member’s importance.

5.3 MODIFICATION OF THE ANALYSIS

For small t/1 (and t/c) ratios one can approximate the equivalent
flexural rigidity of a sandwich beam as Efbtc2/2. Relevant comments are
given in section 3.2.

Moreover, the failure equation for the core shear can be
simplified. For the combinations of core density, Pc/Ps' and the ratio
of face thickness to span length, t/l, for which core shear is the
dominant failure mode, the normal stresses in the core are negligible
compared to the shearing stresses. In this case, the failure equation

for core shear becomes simply:
P = coc,(p_/p)Bo _bc . (5.1)
T 274 ¢ s ys

Using this simplified equation for core shear failure, and considering
c~d in all failure equations, closed form solutions for the equations
describing the transition between one failure mode and another can be
found; for the modes shown on the failure map (Fig. 4.33) they are
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listed in Table 5.1. This suggests that a simpler way of plotting the
failure map for a sandwich panel would be to first assume that the
normal stresses in the core are insignificant in the region in which
core shear is the dominant failure mode. The map can then be plotted
using the closed form solutions for the transition equations. Finally,
the region in which core shear is the dominant failure mode should be
checked to ensure that the normal stresses are small relative to the
shearing stresses in the core.

As we noticed before, none of the foam cores failed in tension or
compression. Normal stresses in the core are largest, relative to the
shearing stresses, when the face thickness to span ratio, t/1, is small
a.d the core relative density is high. But in this region of the
failure mode map, normal stresses in the faces are also high. Tensile
yield failure in the core precedes yield in the faces if:

Using equations (3.7) for the normal stresses in the face and the core,
and the general relationships for foam properties [15]:

c.t’' f
* _ 3/2
o&,t = 0.3(Pc/Ps) O&s p

_ 2
ve observe that tensile yield failure of the core precedes tensile yield
failure of the face if:

g g
0.3(p_sp) "% X5 « E‘f’—f
S

Foams used in the cores of sandwvich panels generally have a relative
density greater than 0.05, and the ratio of o}s/Es for polymeric
materials used to make the foam cores is generally about 1/20. The
ratio °§s’Ef for metal face materials is usually about 1/1000 so that,
in practice, tensile yielding of the face always precedes that of the
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core.

5.4 VARIATIONS IN THE FAILURE MODE MAP

In this section we discuss the effect of the variation in all
parameters involved in the failure mode equations, on the failure mode
map. To study this effect, we constructed maps using the mean values of
these parameters plus and minus one standard deviation. The maps thus
obtained are given in Fig. 5.1-5.8.

The largest source of variation in the failure maps arises from the
variability in the properties of the foam used in the core. In general,
the maps have the same form as those shown in Chapter 4. The boundaries
on the failure mode map are most sensitive to the parameters A and B, as
might be expected as they act as exponents in the failure equations.
All these effects are shown in Fig. 5.1-5.8. It is interesting to
notice that core tension appears as a failure mode if C or cg varies.
With solid lines we represent the boundaries based on the mean values of
the parameters. Dashed and dotted lines represent the boundaries for
the parameters plus and minus one standard deviation respectively.

5.5 FAILURE MAPS FOR OTHER CASES

The formulation given for the construction of failure maps for
rectangular sandwich beams is general. For other loading and support
conditions one only needs to change the parameters c; and cy. As an
example, we give a map for a simply supported beam with two concentrated
loads applied at 1/3 and 2/3 of the span. This is shown in Fig. 5.9.
The general form of this map is the same as that shown in Chapter 4.

Failure mode maps can also be constructed for sandwich plates with
foam cores. The procedure is the same as that followed here: using the
equations describing the normal and shearing stresses in the faces and
the core of a sandwich plate and the equations describing how the core
properties depend on core density, a set of failure equations for each
mode of failure can be developed. The failure mode map can then be
constructed by equating pairs of failure equations.

The maps developed here are useful in the minimum weight analysis
of a sandvich beam of a given strength. This is the subject of the next
Chapter.
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CHAPTER 6

MINIMUM WEIGHT DESIGN FOR

A GIVEN STRENGTH REQUIREMENT

6.1 GENERAL

In most applications, sandwich construction is used to reduce the
weight of structural components. In this Chapter we describe how the
weight of a sandwich beam with a foam core can be minimized for a given
strength requirement. The analysis that follows assumes that both the
face and core materials yield plastically and makes use of the failure
mode map developed in Chapter 4. The analysis gives the thicknesses of
the face and the core and the density of the core which minimize the
weight of a rectangular sandwich beam of a given strength. The ideas
developed here can also be applied to sandwich panels made from
materials that fracture. However, failure equations for face and core
fracture are required to do this.

6.2 ANALYSIS

Our purpose is to minimize the weight of a sandwich beam for a
given strength. Ve assume that both the face and solid unfoamed core
materials are known and that they yield plastically. We aim to find the
values of the face thickness, t

t» the core thickness, ) and of the

c
op op
relative density of the core, p, pt/ps, which minimize the weight of the

beam for a given strength.

In Chapter 4 we developed a failure mode map for rectangular
sandwich beams with aluminium faces and rigid polyurethane foam cores.
This map is divided into four regions, each one corresponding to a
failure mode. The modes that are s5hown are: face yielding, face
wrinkling, core plastic shear and debonding. The results of tests on a
wide range of sandwich beams verified the validity of the failure map.
Debonding was not found to be a significant failure mode in the tests
conducted. The equations describing each mode of failure are given in
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Chapter 3. As we discussed in Chapter 5, the equations for the modes of
failure that appear on the failure map can be simplified. For
convenience, we list them in Table 6.1. Consider now the optimum design
of the sandwich beam. One approach to the optimization analysis is to
use each of the four failure equations of Table 6.1 in turn as the
constraint equation and to optimize the beam design for each. A
comparison of the four "optima" corresponding to the four failure modes
would then give the minimum weight design. This beam design could then
be plotted on the failure mode map to ensure that it failed in the
assumed mode. Another approach is based on the observation that at the
optimum design, the face and core will fail at the same load. If this
vere not the case, the unfailed component would be overdesigned and the
wveight of the member could be reduced further by reducing the weight of
the unfailed component. Beam designs which give simultaneous face and
core failure are those corresponding to one of the transition lines on
the failure moda map. Based on this observation, we now proceed with
the minimum weight analysis. We have to consider the analysis of two
cases: flrst, simultaneous failure by face yielding and core shear, and
then simultaneous failure by face wrinkling and core shear.

6.2.1 Simultaneous failure by face yielding and core shear

The load at which failure occurs by face yielding is Pfy:

= L
Pfy = c10}fbc T - (6.1)

. Rearranging this to obtain the face thickness, t, in terms of the core
thickness, c:

P
fy 1
t = . (6.2)
b c1a}fc
The load at which failure occurs by core shear, P ., is given as:
- B
Pog = €564(P./pg) O, bc . (6.3)

Solving this equation for the relative density of the core, Pe’/Psr in
terms of the core thickness, c:
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P 1/B
/p. = ([—=2— . (6.4)
pc s <;zc40}sb;>

The expressions for face thickness and core density ((6.2) and (6.4))
can be substituted into the equation for the weight of the beam:

W= 2pfb1t + pcblc (6.5)
or
pfvlz Pcs 1/8 1-1/B
W= 2p + (bc) 1p_ . (6.6)
f c,o}fc c2c4o§s ps

The optimum core thickness, Copt) Can now be found by setting the
derivative of the weight equation with respect to the core thickness
equal to zero:

A _ (6.7)
=0
Doing this, we find:
B_
1 -
c . = |2 Pep_1 [Po2%%s) 1R 2871 (6.8)
opt ~ P. b c,O P ) ’
s 17yf

Note that we set P . = Pfy = P. Optimum values of t and p, which
minimize the weight of the beam are found by substituting equation (6.8)
into equations (6.2) and (6.4). The result is:

P 1 .
-2 =— (6.9)

Pe p 1 fbc2c40'ys 1/Bq2B-1
ny__-E c,O A. P ‘ ]

_ P 1 . .1
Pcopt'Ps (bczc ﬂ'yf A (6.10)
Pe 1 lbczc o, )1/3}23-1
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6.2.2 Simultaneous face wrinklingz and core shear

The analysis for simultaneous face wrinkling and core shear is
analogous. Face wrinkling occurs at a load, Peyt

_ 2/3 1/3 2/3 2A/3
wa- 0. 57c1 3 Ef (p /P ) bc(t/1) (6.11)
from which
1
fw
t= . (6.12)
0.57¢c 1 2/33;/3 2/3(p /P )ZA/3bc

Using equation (6.3) for failure by core shear, we find:

e _< 2 )UB (6.13)
ps 2 40- bc .
Again, substituting these two expressions into the weight equation
gives:
W = 2pcblt + p.blc =
12 1
r P B 6.%>
=2p 273 fys 2/3 75| (e o) (be)" Clpg. (6.14)
19'57° Eg (Pc/pPg) 2%4%

The optimum design is again found by setting the derivative of the
veight equation with respect to the core thickness equal to zero. Doing
this we find:

-1
2A 1 2A 1
c .= -_ps (33'3 ){ P B'B 2(39-2"5) (6.15)
opt pr 2A-3B F2c4a;s P

where z = 0.57C1C32/3Ef1/3E32/3.
The optimum values of the core density and the face thickness can be
found by substituting equation (6.15) into equations (6.12) and (6.13).

The result is:
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p = p ( P j)/B 6
Copt | S c2c4a§sbcopt (6.16)
Pl
t = (6.17)
opt 2(p, /Ps)ZA/abcopt
opt

The optimum design is now given comparing the resulting beam weight
for the two cases. This should then be checked to ensure that the
optimum beam design fails in the way assumed.

The ratio of the weight of the faces to that of the core is 1 for
simultaneous face yielding and core shear and (3-3B)/(2A-3B) for
simultaneous face wrinkling and core shear.

6.2.3 Other cases

One might argue that we have neglected the debonding failure mode
in the analysis. The whole region in the failure map that corresponds
to the debonding mode of failure, is associated with only one value of
the failure load,

-

Pa = €Taanbc - (6.18)
This implies that the minimum weight design corresponds to a point
within the debonding region for which both Pc4°s and t/1 are minimized.
This point is the end of the face yielding-core shear transition line,
tovards the top and right of the failure map. 1In other words, the
analysis in this case is exactly the same as that of section 6.2.1 with
the restriction that

c._, = —fe—oH . (6.19)

opt
€2TaanP

We should also cover the possibility of simultaneous failure of the
face by both yielding and wrinkling. The analysis in this case is
analogous to that presented in sections 6.2.1 and 6.2.2. However, the
veight that is obtained in this case is higher than the weight produced
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by simultaneous failure by face wrinkling and core shear. This verifies
the statement that for minimum weight design the face and core should
fail simultaneously.

6.3 DISCUSSION

The analysis described above gives closed form solutions for the
optimum weight design of sandwich beams subject to a strength
constraint. It gives values of the face and core thicknesses and cf the
core density which minimize the weight of the sandwich beam assuming
that the loading configuration is known and that the face and solid core
materials fail plastically and are known.

The success of the method described above suggests that the
analysis can be extended to other, more complex cases. In particular,
it would seem possible to develop failure maps and a minimum weight
analysis for face and core materials that fracture instead of yield;
this would be useful in designing beams with fibre composite faces. In
addition, it should also be possible to develop failure maps and a
minimum wveight analysis for sandwich plates.

In some applications, the design of the sandwich member must
satisfy more than one constraint; for example, it may be required to
have a given stiffness and strength. The analysis developed here
suggests that this optimization problem can be solved by considering the
minimum weight design for four different constraint conditions:
stiffness and failure by face yielding; stiffness and failure by face
wrinkling; stiffness and failure by core shear; and stiffness and
failure by debonding. A comparison of the weights of the four resulting
beam designs would then give the optimum design. Finally, the failure
mode of the optimum design would have to be checked to ensure that it
corresponded to the assumed failure mode for the optimization.
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CHAPTER 7

SUMMARY-CONCLUSIONS

7.1 GENERAL

Structural members made of two thin stiff faces separated by a
light-weight core are known as sandwich panels. The separation of the
faces by the core increases the moment of inertia of the panel with
little increase in weight, producing an efficient member for resisting
bending and buckling loads. Because of this they are often used in
applications where minimizing the weight of the panel is critical.

The scope of the present research work was first to identify and
model the modes of failure in structural sandwich beams made of rigid
polyurethane foam cores and aluminium faces, and to apply the results to
the minimum weight design of composite members for a strength
requirement.

Sandwich beams loaded in bending can fail in several ways. The
tension and compression faces may fail uniaxially. Using aluminium
faces this failure is characterized by yielding. The compression face
may also buckle 1locally by "wrinkling". The core, too, can fail,
although this seems to have attracted less attention than face failure.
The most common mode of core failure is shear. Other possible modes are
tensile or compressive yield. Finally the bond between the face and
core can fail.

For each possible mode of failure, an equation was derived
describing the load at which a sandwich beam with given geometry,
loading and support conditions would fail. The analytical formulation
of these equations was based on non-linear relationships between the
foam and the solid core material properties. Another assumption was
that the faces are thin relative to the core.

Two different approaches were considered for the formulation of the
equation describing the debonding mechanism. One was based on the shear
strength of the adhesive and another on the fracture mechanism
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associated with the propagation of cracks at the face-core interface.

Each failure equation depends on three sets of variables: those
relating to the loading configuration; those relating to the material
properties of the face and the solid from which the core is foamed and
those relating to the beam design. The beam design at which two failure
modes occur simultaneously can be found by equating the failure
equations for the two modes. For a given loading configuration and set
of face and solid core properties, this produces a failure mode
transition equation which can then be plotted on a diagram with axes for
each of the beam design parameters to show the combinations of design
parameters which give each failure mode. This is known as a failure
mode map.

The parameters involved in the failure equations which are related
to materials properties were determined experimentally. Such parameters
vere the face yield strength, the foam compressive strength, tensile
strength and elastic modulus, and the adhesive shear strength and
critical stress intensity factor. It was thus possible to construct two
different failure mode maps, one corresponding to each debonding
mechanism assumed.

Sandwich beams with rigid polyurethane foam cores and aluminium
faces were made and tested tc check the failure equations and the
failure mode maps developed. The beams were tested in three-point
bending. The load-deflection behavior of each beam was plotted and used
to identify the failure load. Three main failure modes were produced by
the beam tests: face yielding, face wrinkling and core shear. Out of
124 beams tested 3 failed by debonding and 4 by indentation of the core.

A comparison of the analytical and experimental results indicated
that the failure equations can be simplified. This was done, and the
nev set of equations was used for the minimum weight design of sandwich
beams for a strength requirement.

The optimum weight analysis was based on the observation that at
the optimum design, the face and core will fail at the same load. If
this were not the case, the unfailed component would be overdesigned.
Beam designs which give simultaneous face and core failure are those
corresponding to one of the transition lines on the failure mode map.
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The analysis gave closed form solutions for the optimum design of
composite beams subject to a strength constraint. It gave values of the
face and core thicknesses and of the core density which minimize the
wveight of the beam assuming that the loading configuration is known and
that the face and solid core materials fail plastically and are known.
This was done for the first time, wusing realistic (non-linear)
relationships between moduli and densities of the foam and unfoamed core
material.

7.2 CONCLUSIONS

The failure modes that characterize the behavior of rectangular
sandwvich beams in bending can be described by analytical expressions for
the load that corresponds to failure.

These expressions lead to the construction of failure mode maps
which allow the designer to recognize the nature of the imminent failure
mode of a given structural member with known loading conditions. Then,
the corresponding equation yields the maximum load that the member can
safely carry.

Two different expressions for the debonding mechanism were
developed. None of the expressions was verified, since debonding was
not observed as a mode of failure in the experimental procedure that was
carried out. Further work is required to characterize debonding in
sandwich beams.

A simplified way of constructing the failure mode map has been
suggested based on the assumption that within the core shear failure
regime the normal stresses in the core are small relative to the
shearing stresses.

The non-linear relationships between the rigid polyurethane foam
and the solid core material moduli and strengths were experimentally
verified. Measured values were found in good agreement with these
theoretically derived.

The polyurethane foam material was not found to be isotropic;
different properties were measured in directions parallel and
perpendicular to the rise.

The equation developed for the compressive failure of the core
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gives always a higher load than that is predicted by the equation for
the tensile failure of the core. That means that a core compressive
type of failure is not expected to occur.

Tests on sandwich beams produced three main modes of failure: face
yielding, face wrinkling and core shear. The failure equations for
these three modes were found to accurately describe the load at failure.

Measured and expected failure loads were found in very good

agreement, especially when the beam’s flexural rigidity was approximated
as Egbtd?/2.

The failure mode map that was constructed based on the adhesive
shear strength was verified by test results. However, debonding was not
found to be an important mode of failure in the sandwich beams tested.
Therefore, the boundaries of the debonding region within the failure
mode map are not yet accurately determined.

If some care 1is taken to avoid introducing defects into the
adhesive when making sandwich beams, debonding is rather unlikely to
occur.

At the optimum weight design, the face and core will fail at the
same load. This allows to obtain closed form solutions for the minimum
weight design of sandwich beams subject to a strength constraint.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The mechanics of the debonding type of failure are not well
understood. No satisfactory solution of this problem exists. Further
research is required to understand the debonding mechanism and describe
the load at which bond failure occurs in sandwich beams.

Other failure modes are possible for materials that fracture
(brittle materials). The ideas presented in this work can be extended
to such cases.

Similar failure equations and failure mode maps can be constructed
for sandwich plates with foam cores. The procedure is the same as that
followved here: using the equations describing the normal and shearing
stresses in the faces and the core of a sandwich plate and the equations
describing how the core properties depend on core density, a set of
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failure equations for each mode of failure can be developed. The
failure mode map can then be constructed by equating pairs of failure
equations; the resulting equations describe the transition from one
failure mode to another. In practice, the transition equations will
probably be more complicated than those for beams.

The optimization analysis can be extended to multiple constraint
conditions; one can impose both stiffness and strength requirements. 1In
this case, the equations for stiffness, strength and weight should be
appropriately combined to obtain the minimum weight design. The
complexity of the equations will probably demand numerical solution of

the resulting equations.
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Table 4.1 Results of compression tests using cubic foam specimens.

x x *
.EQ Spec. EC1 OE,cl Spec. Ec2 UE’CZ Spec. E, c,c
P # |(psi) (psi) # [(psi) | (psi) # (psig (psi
1 4054 105.7 6 2083 40.6 11 1705 39.5
2 4411 110.7 7 1786 38.2 12 2027 39.7
0.05331 3 4430 111.5 8 1705 38.0 13 | 2045 40.5
4 4950 109.7 9 1875 40.6 14 | 2041 39.2
5 4240 109.5 10 1852 40.0 15 1852 40.0
1 5000 165.0 6 3448 121.7 11 3571 123.2
2 5063 172.5 7 3846 | 142.5 12 | 3333 | 128.0
0.08 3 5263 166.7 8 3849 145.0 13 3846 137.5
4 5714 173.0 9 3636 138.7 14 3571 131.2
5 5405 173.0 10 3773 142.0 15 3225 125.0
1 [11765 336.0 6 7407 | 246.2 11 | 6669 | 236.5
2 13043 343.0 7 6667 247.5 12 6896 246.7
0.13 3 13158 343.5 8 7143 250.0 13 6780 243.2
4 11364 303.0 9 6396 246.5 14 6899 247.5
5 11538 312.5 10 6667 233.7 15 6452 245.0
1 28571 1046.9 6 31579 | 1090.0 11 130769 }1106.2
2 30769 1150.0 7 32086 | 1117.5 12 128591 |1162.5
0.27 3 29630 1062.5 8 30000 | 1168.7 13 130020 {1081.2
4 130723 | 1068.7 9 132432 |1168.7 14 {28572 [1050.0
5 28692 1081.2 10 32436 | 1175.0 15 | 31579 11070.0

Ecl’ Ecz' EC3: elastic moduli in directions parallel to rise (1) and
perpendicular (2 3).
(?c ’ compressive strengths in directions parallel to

rise (1) and2 perpenaicular (2,3).
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Table 4.2 Results of shear tests using foam specimens.

Pe Spec. T

0.0533

WU WN =
N
[0 0]

109
117
121
104
113

0.08

DW=

229
258
249
243
251

0.13

v

798
806
813
187
805

0.27

v WeNo =
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Table 4.3 Results of tension tests using foam specimens.

Spec.

c,t
(psi)

0.0533

0.08

0.13

0.27

VIS W= DW= umHwNE

M WwWN=

100.00
92.70
104.65
98.67
96.77

157.40
151.00
163.27
170.23
150.05

377.91
361.10
341.58
360.75
330.57

943.70
857.68
915.20
873.89
869.75
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Table 4.4 Results of tests for the evaluation of the adhesive

fracture toughness, Kycaghe
Tabulated values correspond to fracture load, T (1bs).

Initial crack length a (mm)
Test, #

5 15 20 25 30
1 11.9 4.9 4.4 3.1 2.9
2 12.9 5.7 3.9 2.9 2.8
3 13.2 6.3 4.3 4.1 3.3
4 13.6 6.2 5.2 3.2 3.1
5 12.7 5.9 5.1 2.8 3.9
6 12.1 5.2 4.2 3.3 2.7
7 13.4 6.4 4.3 3.6 2.8
8 11.7 6.4 3.2 3.5 3.2
9 13.1 6.3 3.8 3.4 3.0
10 13.0 5.6 4.3 3.2 3.1
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Table 4.5 Design of sandwich beams tested.

t/1 t 1 c b t/c d

-) (in) (in) | (in)| (in) ) (in)
0.00040 | 0.016 | 40.00 | 2.0 | 2.0 | 0.008 2.016
0.00070 | 0.016 | 22.86 | 1.0 { 1.0 | 0.016 1.016
0.00125 | 0.025 | 206.00 | 1.0 | 1.0 | 0.025 1.025
0.00200 | 0.032 | 16.00 | 1.0 | 1.0 | 0.032 1.032
0.00400 | 0.050 | 12.50 }{ 1.0 | 1.0 | 0.050 1.050
0.00700 | 0.080 | 11.43 | 1.0 | 1.0 | 0.080 1.080
0.01000 | 0.080 8.00 | 0.8 | 1.0 | 0.100 0.880

For each ratio of t/1, beams were made with the following core densities
(and corresponding relative densities):

P (1b/ft3) 4 6 10 20
P/Ps (-)  0.0533 0.08 0.13  0.27

In addition, for ratios of t/1 = 0.0007, 0.00125, 0.002 and 0.004, beams
were made with a core density of 2 lb/ft3 (pc/Ps = 0.027).
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Table 4.6 Measured and calculated failure loads for sandwich beams.

Avg. Measured Calculated failure load (1lbs)
measu- failure
t/1 red mode

failu- Face | Face Debonding Core [Core
p./P re load yield | Wrin- shear |tension
c’'s (1bs) kling |Shear#fracture
0.00040| 83.3 |[Pace yield| 81.1 | 732.5|15560 # 0.23/Va|3174.1 | 2005.0
0.00070} 39.3 .o 36.0 | 323.0} 3915 # 0.10/va|1134.2 | 781.5
0.00125]| 74.5 .. 65.5| 581.9] 3915 # 0.18/Vva |1383.3| 928.4
0.00200| 121.2 .. 106.2 | 937.4| 3915 4 0.29/Va [1481.6 | 1126.0
0.00400) 245.2 .. 219.9 1 1907.6{ 2915 # 0.58/va |1540.0 | 1391.0
0.00700| 429.0 .. 407.2 | 3433.6] 3915 # 1.01/va |1555.3 | 1679.0
0.010001} 493.5 o 482.8 | 3996.8| 3132 # 1.15/Vva |1246.3 | 1382.0
0.00040| 80.3 |[Face yield] 81.1 | 318.2]15560 # 0.23/va |1849.0 | 1681.2
0.00070] 40.7 .. 36.0 | 140.3| 3915 # 0.10/Va’} 496.2 | 514.0
0.00125] 74.5 65.5 | 252.8]| 3915 § 0.18/va’| 507.9 | 579.4
0.00200} 118.2 106.2 | 407.3| 3915 # 0.29/vGa'| 511.6 ] 610.1
0.00400| 216.7 219.9 | 328.8} 3915 # 0.58/V&' | 514.3 | 639.2
0.00700] 396.7 .. 407.2 | 1491.8| 3915 4 1.01/V/G | 514.9 | 652.3
0.01000| 483.5 |Core shear|482.8 | 1736.5] 3132 # 1.15AQ0 | 411.0| 526.1
I0.0BI
0.00040] 80.0 |Pace yield| 81.1 182.9 115560 # 0.23/7a| 961.2 | 1334.2
0.000701 40.0 .o 36.0 80.7| 3915 # 0.10/va| 243.9 | 301.9
0.00125] 70.0 .. 65.5 | 145.3| 3915 # 0.18/va]| 245.1 | 318.7
0.002001 109.5 .. 106.2 | 234.1| 3915 # 0.29~4°] 245.5] 326.9
0.00400] 186.2 .. 219.9 | 476.4| 3915 # 0.58/VO | 245.7 | 333.9
0.00700| 263.5 |[Core shear'|407.2 | 857.4| 3915 # 1.01~a | 245.7 | 337.0
0.01000( 272.0 .. 2|1482.8 | 998.1| 3132 # 1.15~G°} 196.6 | 270.6
|0.0533|
0.00040| 79.7 |Face yield| 81.1 | 115.1]15560 # 0.23/va | 527.0| 697.6
0.00070] 36.3 .. 3] 36.0 50.8| 3915 # 0.10/va'| 132.3 | 182.7
0.00125| 64.5 65.5 91.4] 3915 4 0.18/~G | 132.4 | 187.6
0.00200] 100.0 .. 4]1106.2 | 147.31] 3915 # 0.29G | 132.5| 189.9
0.00400] 120.2 |Core shear|219.9 | 299.7] 3915 # 0.58/va| 132.5| 191.9
0.00700]| 136.7 . §]1407.2 1 539.6| 3915 4 1.01/va | 132.5}| 192.9
0.01000| 142.7 41482.8 | 629.1] 3132 # 1.15/va| 106.1 | 154.6
|0.0267l
0.00070| 20.2 |Wrinkling | 36.0 23.0! 3915 # 0.10/Va| 46.3 72.9
0.00125] 33.4 .. 65.5 41.5]1 3915 # 0.18/Vd| 46.3 73.5
0.00200] 40.5 |[Core sheafﬁ106.2 66.8| 3915 # 0.29/v0| 46.3 73.9
0.00400| 47.2 . 219.9 | 135.6] 3915 # 0.58/va| 46.3 74.0
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Notes to Table 4.6

All specimens of each beam design failed in the mode indicated in the table
wvith the following exceptions:

1. One beam failed by debonding at 225 lbs and
one failed by local crushing at 240 1lbs.

One beam failed by local crushing at 195 1lbs.
. One beam failed by debonding at 28 1lbs.
One beam failed by core shear at 90 lbs.
One beam failed by local crushing at 138 1lbs.
One beam failed by debonding at 112 1lbs.

~N O S WwN

One beam failed by face wrinkling at 39 lbs and
one failed by local crushing at 31 lbs.

Beam stresses were calculated using D = Efbt(c+t)2/2.
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Table 5.1 Transition equations for failure mode map.

Failure modes Transition equation
;ace yielﬁi o;f %K
ace wrinklin / =
g Pe’Ps *\g 5702/351/3,273
: 3 £ s
Face yield- C,C4 B 9
core shear t/1 = —— (p_/P) UYS
1 yf
2A
Face wrinkling- t/1 = ©2% (Pc) 3 Ty
core shear 0.5.7c1c§/3 Ps E;/352/3
s
T.
Face yield- - €
debonding t/1 = Eé o?dh
1 “yf
™ \1
Core shear- / {_adh |B
debonding Pe Pg = c.o
4"ys
Note:

These transition equations are based on the assumptions that c¢= d and that
normal stresses in the core are insignificant in the core shear failure
mode.
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Table 6.1 Simplified failure mode equations

Failure mode Equation

Face yielding Pfy = c1a'yfbc(t/1)

Face wrinkling Pey = 0.57c,c3"3el/ 3623 (p _sp ) 2273 \oes1)
Core shear Pcs = c?_cq(pc/ps)B Uysbc

Debonding Py = czT;dhbc




Fig.

1.1

81

Some applications of sandwich panel construction.
(a) roofing panel

(b) pre-fabricated housing

(c) 1lighthouse tower.
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Solid aluminum
beam

|

U4
o0
> Feasible region
o
£
[=)]
°
> Minimum wt.
g 30 - sandwich beam
a
)
o
=
15 (after Gibson, 1984)

0

| 1 J
0 750 1500 2250
Bending stiffness P/A , Nmm™ !

Fig. 1.2 Minimum weight as a function of stiffness for a sandwich
beam with aluminum faces (pg = 2700 Kgm~3; Ef = 70 GNm~2)

and 3 foamed polyurethane core (pg = 1200 Kgm-3, Eg = 1.6

GNm~%) in three point bending ( & = 2438.4mm; b = 160 mm).
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YOUNG'S MODULUS P

O GIBSON AND ASHBY (1982) PU(F)
D GIBSON AND ASHBY {1982) PU(F) A

& GENT AND THOMAS (1959) RL

A
v LEDERMAN (1371) RL
e GIBSON AND ASHBY (1982) PE : a 22
 GIBSON AND ASHBY (1982) PU(R] . {“'
L o BAXTER AND JONES(1972) PS —————}’ -

S
A

v PHILLIPS AND WATERMAN (1974) PU(R) "
¢ MOORE ET AL (1974) PSA

4 CHAN AND NAKAMURA{1969)PS

» BRIGHTON AND MEAZEY (1973) PVC
o WILSEA ETAL 1975 PU(R)

4 WALSH ETAL (1965) G

X PITTSBURGH-CORNING{1982) 6

s MAITI ET AL (198La) PMA

u MAITI ET AL (1984a) PE

& MAITI ET AL (1984 a) PUIF) —,

§ MAITI ET AL (198%a) M / ({

S

X

§ ZWISSLER AND ADAMS

(1983) G L'/ .»
/

¢ =06 ’ /
é

RELATIVE YOUNG'S MODULUS, Es¢
3
-e_
Q\
\

3
[
d

)
1010‘3 102 10* 1

RELATIVE DENSITY A4,

Fig. 2.2 Relative Young's modulus, E./Eg, against relative
density, p./pg-.
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SHEAR MODULUS
¢ MOORE ET AL (1974 PPC
m GIBSON AND ASHBY (1982] PU (R) “
O GIBSON AND ASHBY (1882) PUIF) ¢
1"
10" 3
uy
N
CS 2
A 10
>
-
-
O
O
>
(0 el
< 107
7
0 2
w _c
N )
<
wi -4
[o]
-5 .
10 10-3 10‘2 10‘1 1

RELATIVE DENSITY, &,

Fig. 2.3 Relative shear modulus, G./Eg, against relative
density, AR./P;.
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ELASTIC COLLAPSE

O GIBSON AND ASHBY (1982) PU (F)
D GIBSON AND ASHBY (1982)PU (F)
A GENT & THOMAS (1959) RL

e GIBSON AND ASHBY {1982) PE

W MAITI ET AL (1984 a)PE

¢ MAITI ET AL (1984a) PU(F)

CLOSED CELLS -+

2
ot o5 s "
Eg pS/ ° /
N °Y
1
o4/ 0O
/
2 107 0!

RELATIVE DENSITY &4,

Fig. 2.4 Relative elastic collapse stress, U*ez/Es’

against relative density, p./pg.
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YIELD STRENGTH

1
GIBSON AND ASHBY (1982} PU(R)
PATEL AND FINNIE (1870) PU(R)
TRAEGER (1967) PU(R)
BRIGHTON AND MEAZEY (1973) PVC
MATONIS (196%) PS
WILSEA ET AL (1975) PU(R)
THORNTON AND MAGEE (19754, Al
THORNTON AND MAGEE [19750,A2 7%Mg
THORNTON AND MAGEE 19754,7075 Al

MAIT| ET AL (1984) PMA

—
(=)
T
vogbeoeoqroén

~

10

107

%10'3 0?7 107 1
RELATIVE DENSITY g/,

10

*
Fig. 2.5 Relative plastic collapse stress, UPl/Oys’
against relative density, p./pg.
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2P
— %
_ Bt _ P
-2, 05
p L
l’: . . . M
. . . L] Q
of

Normal stress
distribution at
critical section

Fig. 3.3 A rectangular sandwich beam under loading and the
normal stress distribution at the critical section.



Fig. 3.4 Axially loaded long strut attached to an elastic
medium.

Cr

- X
t

Fig. 3.5 Typical variation of critical stress with L/t
(equation (3.24)).
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(3)

rise (1) 4"’?;:'

Fig. 4.2 A cubic foam specimen with the rise direction and
both directions perpendicular to his, marked by

(1), (2) and (3).
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200 I L T 1 T

Pult
—_
load,
1b
0 1 1 1 1 : 1
0 0.06 0.11
deflection, in
200 | 1 1 1 I
Pult
load,
1b
0 i | i 1 1
0 _ 0.06 0.11

deflection, in

Fig. 4.4 Typical load-deflection curves for cubic foam specimens
loaded in two different directions perper '‘cular to the
rise, pc/ps = 0.0533.
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deflection, in
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deflection, in

Fig. 4.€ Typical load-deflection curves for cubic foam specimens
loaded in two different directions perpendicular to the
rise, p./pg = 0.08.
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ult =

load,
1b

500

0 1 | L 1 ]

0 0.12 0.22
deflection, in

1300 T T 1 Y T

ult pm = — = = = = — = — = - - - = =

load,
1b

500 = -

] ] 1 1 1
0 ‘ 0.12 0.22
deflection, in
Fig. 4.8 Typical load-deflection curves for cubic foam specimens
loaded in two different directions perpendicular to the
rise, pc/pS = 0.13.
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Relative Young's modulus, Ec/Es =)

106

100 T
[ ]
1071 -
[ ]
[ )
1.71
10~2 E./Es = 1.13 (p /pg) B
[ )

1073 : ]

1072 1071 10°

Relative density, p./p. (-)

Fig. 4.11 The elastic modulus of the polyurethane foams tested.
Data are presented for loading perpendicular to the
rise direction.



c/oys =)

*
C

Relative compressive strength, o .

10°

10

10-2

107

1
* * 1.98
Oc,c/0ys = 0-82 (p./pg)
]
1072 107t 10°
Relative density, pc/ps (-)
Fig. 4.12 The compressive strength of the polyurethane foams

tested. Data are presented for loading perpendicular
to the rise direction.
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Foam specimens

T NNy ———-

NN NN

L
L=

Steel sidebars

— S S SSSS
Al
I\

‘—r

T/2

3
~
N

Fig. 4.13 The loading arrangement for measuring the shear
strength of the foam specimens.
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shear
stress

strain

Fig. 4.14 Definition of the core shear strength.



Relative shear strength, T:/cys (=)

o
10
|
e —
[ ]
1072t * 1.52
T.c/cys = 0.31 (pc/ps)
°
[
1073 ]
1072 107! 10°
Relative density, pc/pS (-)
Fig. 4.15 The shear strength of the polyurethane foams tested.

Data are presented for loading perpendicular to the
rise direction.
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Fig. 4.16 Assembly for tension tests.
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e/oyg ()

Relative tensile strength, o

10

10~

10

10”

1.3
ocft/oys = 0.31(p./pg)

9

1075 107} 1

Relative density, pc/pS (-)

00

Fig. 4.21 The tensile strength of the polyurethane foams tested.
Data are presented for loading perpendicular to the rise
direction.
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Fig. 4.22 Assembly for measuring the shear strength of the
adhesive.

T
f:;l;;] steel sidebars

N
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1: 2h

7%

- ‘
T
l « 1

Fig. 4.23 Assembly for measuring the adhesive critical stress
intensity factor.
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250 T T T T
Face yielding t/%2 = 0.0004%
pC/pS = 0.0533
P
(1bs) = -
» o face wrinkling =
Pe L — 0 - —— _
0 | } 1 1
0 A (in) 1.0
250 I 1 1 1
Face yielding t/2 = 0.0004
, P./Pg = 0.13

0 , A (in) 1.0

Fig. 4.28 Load-deflection curves for rectangular sandwich
beams in 3-point bending; Py = failure load.
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40 L I T T T
P | Face wrinkling t/2 = 0.0007

(1bs) p./pg = 0.0267
Py

0
200 L L 1 1 1
L Face yielding £/ = 0.0007
= 0.08
P pclos
(1bs) |_
«— Face wrinkling
Pg L
0 1 ] 1
0 A (in) 1.2
200 | L ! 1 i
- Face yielding t/2 = 0.0007
pc/ps = 0.27
1 1 1

A (in)

Fig. 4.28 contiaued.
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40 | T T T T
Face wrinkling

t/e 0.00125
0.0267 o

0 A (in) 2.4
. t/% = 0.00125
P L Face yielding pc/ps - 0.08 _
(1bs) '
-
1
0 A(in) 1.2
200 ! ] 1 ! |
Face yielding t/2 = 0.00125
pc/ps = 0.13
] 1 i |
0 A (in) 1.2

Fig. 4.28 continued.
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Core shear

300

(1bs)

t/2

pclps = 0.0267

diagonal crack

and debonding

“~ face wrinkling

2.4
I LI 1 i ]
Face yielding t/2 = 0.002
e e o o — / pc/pS = 0.0533 .
face
wrinkling
[ 1
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|| | | L] ] ]
Face yielding t/2 = 0.002
= pc/ps = 0.13 b

Fig. 4.28

A (in)

continued.
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Fig. 4.28 continued.

| T A | T
Core shear t/2 = 0.004
- pc/pS = 0.0533 _
-
/ diagonal crack -
1 1 i
A (in) 1.2
! | ] t |
Face yielding t/% = 0.004
p./pg = 0.08 -
-
1 i | 1
0 A(in) 1.2
T I i L ]
- t/2 = 0.004
o./pg = 0.27 -
Face yielding J
-
i | | 1 1 |
0 A (in) 1.2



127

400 ‘ 1 {
Core shear

P b - ——— - = =

T

t/2
pclPg

0.007
0.0533

diagonal crack

0 i
0 A (in)
1000 ¥ T - T
Face yielding t/2 = 0.007
= ps/pS = 0.27
P = cracking
(1bs)
Pg
0 ] 1 1 |

A (in)
Fig. 4.28 continued.
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(1bs)

128

| 1 ] I

Core shear t/2 = 0.1 -
pc/pS = 0.08
\
diagonal crack

1 | i
A (in) L

] i | |
Core shear t/%2 = 0.0l -

pc/pS = 0.13
1
diagonal crack
] L 1 1

A (in) 0.5

Fig. 4.28 continued.
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Fig. 4.29 Photographs of typical sandwich
beams failure modes.
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Face yielding and face rupture followed by core cracking

B - e im

LOAD CELL

Fig. 4.29 continued.
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Core shear failure: first deviation from linearity
in the P-A curve and formation
of diagonal crack.

LOAD CELL

Fig. 4.29. continued.
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Core shear failure

Fig. 4.29 cortinued.
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Face wrinkling failure

Fig. 4.29 continued.



Fig. 4.29 continued.
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APPENDIX

COMPUTER PROGRAM FOR THE CONSTRUCTION
OF FAILURE MODE MAPS FOR

RECTANGULAR SANDWICH BEAMS

The program presented here was written in FORTRAN 77 and gives the
failure mode map for sandwich beams wvith known loading and support
conditions, material properties and beam geometry. The development of
this code was consistent with the analysis and terminology presented
throughout this work and the reader should have no difficulties in
following the logic of the code. Minor adjustments are probably
required, depending on the graphics device used each time.
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(C06 5008 00 0000 00 00 00 90 00 00 08 00 08 08 30 00 90 08 08 38 30 26 06 08 00 0 00 3% 30 00 00 08 3 30 9 3 % %
Cc ]
E SANDWICH BEAMS FAILURE MECHANISMS L

L]
(409 .00 62 00 00 00 90 00 08 08 90 0 0% 8 53 00 08 0 03 08 36 08 3 08 0 36 38 30 98 3 38 30 3¢ 0% 3% G4 9% 3 0%

integer prevp,st,dt,.m(360,240),eq
real min,mi
C set parameters st and dt for plotting
st=360
dt=240
C material parameters
es=1600,0
ef=70000,0
ys=127.0
yf=103,45
yb=13.5
ds=1,2
df=2,7
cl=4.0
c2=2.0
c3=1,13
c4=0,31
c5=0,31
a=1,71
b=1,52
c=1,39
IC range of relative density and t/l
di=-2,0
d2=0,0
tl1=-4,0
tl2=-1.0
C print data
print#=, “PROPERTIES OF THE SOLID CORE MRTERIRL'

prints,“Elastic Modulus ES= * ,es. Mpa”
printe,“Yield Strength YS= * .us. Mpa”
printe,”Density DS= ’,ds,” Kg/m*3”

printe, ’PRUPERTIES OF THE SKIN AND RDHESIVE’
printe, “Elastic Modulus of the skin EF= “,ef,” Mpa’®
print®,’Yield Strength of the skin YF= 7 ,yf,” Mpa”

print«,’Density of the skin DF= 7,df,” Kg/m*3°
printe,”Shear Strength of adhesive YB= “,yb,’ Mpa”
print«, " CONSTANTS”

print#,’Loading Ci= ",c1,” C2= *,c2
print«,”Compressive Modulus equation C3= ",c3,” A= ",a
printe,”Shear Strength equation C4= ”,c4,” B= ',b
printe,’Tensile Strength equation C5- ’,c5,” C= "

print«,”RANGE OF LOG(D/Ds) Di TO D2 = ,di.' T0 ’,d2,’K¢/m“3'
print#, ”RANGE OF LOG(t/1) TL1 TO TL2= “,tl14,” TO “,tl2
C identification of equation giving the smallest load
do 11 1=1,st
do 11 J=1p dt
n=10na(tli+tn(tl2-tl1)/st)
dn=10%n (di+ §n(d2-di)/dt)

eq=1
min=cieyfatn
mi=0,57ucin{c3%u0,67)u(dnuu(0,67%a))n(efun0, 33)a(esnn0,67)%tn
if(mi,lt.,min) then
min=mi
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C eq
11

eq=2
endif
mi=c2w%yb
1fimi,lt.min) then

min=mi

eq=3
endif
templ=(c3n(dnuwa)ues)/ (2, Onclutnnef)
temp2=gqrt(tempiun2+ {1 ,0/c2)uu2)
mi=(cqdn(dnwab)nysg)/temp2
1f{mi,.lt.min) then

min=mi

eq=4
endif
mi={(c5# (dnuuc)eys)/(templ+temp2)
if{imi.lt.min) then

min=mi

eq=5
endif
tthe number of the equation giving the lowest load
m{i, j)=eq
continue

IC plottingl

call move(150.0,57.0)
call draw(150,0,720,0)
call draw(940,0,720,0)
call draw(940,0,57.0)
call draw(150,0,57,.0)

do 22 §=dt,1,-1
prevp=m(1, J)
do 22 1=2,st
1fim(4, §) .ne,prevp) then
prevp=m(i, )
call move(150,0+(1-1)#790,0/st,720,0-(dt-J)*663,0/dt)
call draw(150,0+(1-1)%790,0/8t,720,0-(dt+1-4)%663,0/dt)
endif
continue
do 44 i=1,st
prevp=m(i,dt)
do 44 J=dt-1' 1' -1
1f{m(4, ) .ne.prevp) then
prevp=m{i, J)
call move(i50,0+(1-1)2790,0/st,720,0-(dt-J)«663,0/dt)
call draw(150,0+(1)*790,0/8t,720,0-(dt~-J)*663,0/dt)
endif
continue
call endplt

end




