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PROGRAM RESTRUCTURING FOR VIRTUAL MEMORY SYSTEMS 

by 

Jerry ~illia■ Johnson 

ABSTRACT 

The problem area addressed in this report* is program restructuring. 
a method of reordering the relocatable sectors (subroutine and data 
modules) of a program in its address space to increase the locality of 
the program's reference behavior, thereby reducing the number of page 
fetches required for its execution in a virtual me■ory system. 

Theoretical upper and louer (optimum) bounds are derived for the 
paging performance of programs over all partitions of relocatable sectors 
into pages. 

Program restructuring techniques are developed uhich use intersector 
reference models based on sector Morking sets and sector stack distances. 
These intersector reference models identify the local reference behavior. 
and clustering procedure, are developed that use this local reference 
behavior to rearrange sectors into pages such that significant 
improvement in paging performance is obtained. 

Results of measurements of paging performance obtained in the 
computer laboratory are discussed. The relationship betMeen the paging 
performance of a program restructured by the practical restructuring 
algorithms and the theoretical bounds on paging performance are coMpared. 

*This Technical Report reproduces a thesis of the sa■e title submitted to 
the Department of Electrical Engineering, M.I.T., on June 15, 1974, in 

·partial fulfillment ~f the require■ents for the degree of Doctor of 
Philosophy. 
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CHAPTER 1 

1.1 Introduction 

In this chapter, the proble■ of restructuring progra■s to i ■prove 

their paging perfor■ance in virtual ■e■ory eyete■e is presented. 

1.2 Motivation 

As the use of ■ultiprogra■■ ing and virtual ■e■ory techniques has 

become more widespread, ~he performance of paged virtual ■e■ory 

hierarchies has become ■ore important. The fact that paged virtual 

memory systems can be made to perfor■ efficiently at all depends 

primarily on an inherent property of progra■ behavior known as •progra■ 

locality" [01,02,03,041. Progra■ locality arises fro■ empirical 

observations that actual programs cluster their ■e■ory references so 

that, during any interval of ti ■e, only a subset of the information 

available is actually referenced. If a program is favoring a subset of 

its information at some particular ti ■e, we should like very ■uch to have 

this subset in primary memory. As a result, ■uch of the research efforts 

■ade to optimize the performance of programs in virtual ■e■ory syste■s 

were spent devising strategies for page manage■ent algorith■s that could 

■axi ■ ize the probability of finding in primary ■e■ory the infor■ation 
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needed by the ,Cfll:J at the t i 1te i t is referenced, thereby ■in i • i zing the 

nu■ber of pege fetches. S--eral 1ttudtea 181 ,92.021 have ehown that th Is 

probabi 1 i ty strengtv de,mlde on the -reference patterns of the prograa 

being executed, 1that is, on hou diatribttted in the virtual address space 

are the intorution iteta succes,tNfg:refeNnCed by the processor. 

Generally, the lilgher the degree af t,ucal-ity of a progr-•, the higher the 

perfor11ance of the virtuat aeaory eptn ,with respect to that progra■• 

However, sever.a1 coapar htona of page ro11Ph1caent atgor I thlla have been 

reported [81,ffl,Cll, often realizing n tweh ft 31 to 48-percant 

i11prove11ent trOII une algorithll ,to another for certain progra■s. In 

particular, an atgorithll h.u been found '&ll,flU that gives the ■ ini ■u■ 

nu■ber of page f.etches for a -prc,gr-aa. ;Even though 1'he •inillUII 

replace■ent algc,rUh• i·s pracUo_aHv unreaHZabte, •• it requires a 

knowledge of the future page ref·erencn of the progr• every ti■e a page 

fetch occurs, the atgoritM ia 1-,,ortant because one can use It as a 

theoretical bound against which the perforaance of anu other paglng 

algorith■ can be capared. 

ln all the studies of developing page ■anageaent algori thn to 

increase the perfor■ance of virtual ■eaory svatHa, the progra's page 

reference pattern and hence its locality ia considered as a 

non-•odjfiabJe input to the aystH. In contrast to the e,cploitation of 

the e,cisting local itv of progran by paging algorithlls, relatively I ittle 

attention has been paid to another iaportant ■ethod of obtaining better 

perfor■ance fro■ virtual tteaory ayete■a. Thia uthod le to increaee the 
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degree of locality of the progra■ to be executed. Even less research has 

been focused on developing bounds on the perfor■ance i ■prove■ent due to 

opti ■u■ progra■ locality. 

In this report, Me propose to focus ■ost of our research efforts 

in the study of program restructuring [C2,Hl,021, a ■ethod of rearranging 

the relocatable sectors (subroutine and data modules) of a program, to 

increase the locality of the progra■ 's reference behavior and thereby 

reduce the nu■ber of page fetches required for eMecution in a virtual 

■emory system. The essential idea behind progra■ restructuring to bring 

about this localization in its reference behavior is to take sectors of 

the program that are used closely together in ti ■e and cluster the■ 

closely together in the virtual address space. 

1.3 The Nature of Progra■ Restructuring 

The nature of progra■ restructuring methods that have been 

proposed so far can be classified along several dimensions. Mith respect 

to the extent of the progra■mer's involvement, restructuring can be 

manual or automatic. depending on Mhether rearrangement decisions are 

made by man or computer. With respect to the level at which 

restructuring is applied, Me can ■ake a distinction between external and 

internal reordering. In external reordering, the sectors Mhich are 

rearranged in virtual me■ory are relocatable sectors of instructions 
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and/or data. •Internal restructuring consish of reordering parta of 

re I ocatable sectors with respect to Heh other or ai•ply deciding where 

to insert page breaks in the code ,flCl.VH. External rntructuring ia 

faster and cheaper since ; t ne¥er requires reprogr ... ing. Ioli th respect 

to the type o.f iaf,.,..H-1. oe tth,,km. .. a ..,...tr,uo.tvr ing procedure i • based. 

there are stttiiO ftthode, which only aae "" of the knowledge of the 

static proper-ties of the progrM. and dynaic nthoda. which are baaed on 

data.' collected .during mcecutlon. r...,...•+ing the dynaaic behavior of 

the progra•. 

Algori thlN for at1tottatic restructuring can be applied at 

co■pi lat ion t• lf they er• -.tftotio1 •••• •--••• are those aethoda 

which construc.i a, graph -110del of the ,....,... te lie reetructur.ed. whose 

sectors are repr....,ted t,v ,qrt,,k,ee ,(.,._.. , ... ,tght ia the eize of the 

sector) and arc• r.epreeent the transition• (data or control references)• 

and then cluster verticee according to conuctivlty conaideratlcms or to 

the cyclic structure of the gr*h fll3.,Ll,.R1,¥2J.. Ila .are intereeted in 

auto,atjc. e,ct1rnal progr• restructuring Nthoda based on the progra■'e 

dynaaic behavior and in ••••.-.t diecuaatona we wi 11 eiapty cal I this 

progra■ restr,uc.tw ing. 

In order to pr~vide IIOre insight into the character of progra■ 

restructuring which we will etuctv, we ■ake the following general 

assu•ptlons. A progrM eoneiete of a finite Ht of relocatable data and 

procedure sectors. Tkeu sectors are qpaq,ue, since we are concerned with 

the interaction• a■ong the sector• and._ we not concerned with Mhat 
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goes on inside each sector. The average size of a relocatable sector is 

smal I with respect to the size of a page (between one-tenth and one-half 

page size}. 

Informally, the basic approach to progra■ restructuring is to run 

the progra■ with a set of •typical• input data, record the sector 

reference behavior, formulate an intersector reference ■odel based on the 

recorded infor■ation, and then apply a progra■ restructuring procedure 

which uses the ■odel of intersector reference behavior to reorder or 

partition the sectors into logical pages such that the intersector 

references a■ong sectors in different pages is ■ ini ■ ized. 

The ai ■ of progra■ restructuring is to increase the locality of 

the progra■ 's address reference pattern by reordering the relocatable 

sectors in virtual ■e■ory such that sectors that are needed within a 

relatively short ti ■e of one another are found in the sa■e logical page 

or in logical pages that would otherwise tend to be in pri ■ary ■e■ory at 

the sa■e ti ■e. The act of restructuring will tend to create a situation 

in which there are either very strong or very weak affinity bonds between 

logical pages. The resultant goal of progra■ restructuring is to 

■ ini ■ ize the page fetches required by a progra■ during its execution in a 

virtual me■ory system. This is a very difficult goal to achieve because 

the nu■ber of page fetches is a function of pri ■ary ■e■ory al located to 

the progra■, the page size, the fetch and replace■ent policies, the 

sector reference behavior, and the selected ordering of sectors into 



6 

logical pa-gee. 

ln o.....,. to ,1iJOae ure foNNIHy tbe·nature of the restructuring 

prob le■ for ;any 1trotJNIII ■odel.ed ·t,y a set of relocatable eectora of 

specHMld ·am end ••-•aetarMI eectur..,,tt,ee-'dncrittklg the sector 

reference behe¥i·or, Me need Hie fol hn1ifllg 1ilefinttlona. 

A p~agt,• i11 regarded ae a·dir-ected.-a,h G of• nodes, of size 

Si> 8, i • 1, ••• ,t■• f+.e .. noctee,·~t retaaatab·l.e eectora. Let N be 

the page size, ,-..cf, ·that 8 ,< Sr·< >N for al I i. Lat C • (c1J), 

i, j • 1, ••• ;a{t,e;;a Mei-ted COR119C'ttvr,tu:,aat,ri,c tlncrl:bing the edges of 

G. The e.dge9 of G repr.eunt the ifltersector refttl"ence behavior of the 

progr••· WHh _,.. ( i ,J) i•• -aseeciated a ccnrt c,1 -~ -8 of traversing 

that edge. Wow -to • dMMttle the we-t intet-ncter reference wade I C fro■ the 

Measured sector ·trace ia an i-,.ortent r....,.ch l'N"Db·t... However, ciJ 

•ight represent ·the pt"ttbability tbet eector i r8'fereneee sector j, or 

ciJ ■ ight be the total maber of ·tiaes actor i 11akea a data reference 

or a tran•s·fer of control to •ctor j, or ideally cil would represent 

the nu■ber of page fetchee which would occur due to sector i referencing 

sector j in a given vir-tual 11811Cff>V svet• unteaa i and J ....-e grouped 

into the s•e page. 

Let n be the fflJIIIJer of logical pagee of the restructured progra■• 

Ann-way reetructuring of Gia• eet of noM1tPtU, pairwise diJJoint 

subsets (pages) of G, p1 , ••• ,p11 such that 
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U! 1 Pi • G and IPi I~ N for all i, where IPi I stands for the 

size of subset Pi• and equals the su■ of the sizes of all the sectors 

of Pi. The cost definition for the restructured G is the su■■ation of 

Cij over al I i and j such that i and j are in different subsets 

(pages). The cost is thus the su■ of all eMternal costs in the partition 

of G. A restructuring of G is opti ■al if it achieves ■ ini ■u■ eMternal 

cost or equivalently ■aMi ■u■ internal cost, because the total cost of al I 

edges is constant. 

~e can now point to two distinct and difficult proble■s 

associated with progra■ restructuring. One is, given G and C, how to 

find an opti ■um restructuring of G, and the other is how to ■odel the 

intersector reference behavior C such that an opti ■u■ solution to the 

restructuring proble■ for■ulated on C gives the ■ ini ■u■ nu■ber of page 

fetches for a virtual ■e■ory syste■• 

1.4 Importance of Progra■ Restructuring 

The potential of progra■ restructuring for i ■proving the 

performance of progra■s running in a virtual ■e■ory syste■ can be beet 

illustrated by citing so■e reported results. 
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The fi~•t· pub·liehttd reav.Us,·of progr•·,n,structur·ing to increase 

the perfor•IH'.IG8 of progra•• in a vir-tual ....,, eystew was in 1967 by L. 

I.I. Co•eau CC21. CollNU reports that thee ordering of relocatable eectore 

of code over vir-tual pages can have a profound effect art paging 

perforaance.. J-.,,parUCtJlar, he· found·that the nullber of page fetches 

during an assellbly could be decreased by a factor of five by changing the 

ordering of the·IMN't,itor aodulee-at ,.,_, ti•• Faur orderings of the 

aonitor aoduhtsr;A8f"1t coa,,areo under ttte· ... prlaery .. .,,.V constraints 

and the saae· pagJ119··al9'f'"1 thin... ft•'·-♦--ttca4 arttarh• produced 6588 

page fetches, the-'. randN:, ordar gave. ,\38.,.fetdles., and ordllr based on 

knowledge of ta pave•fl,n amt, funct,J.GftS,, d··tlie ncluin resulted in 2488 

fetche9. afltcic-811: .,....,.1,.baaedtm'the hfloN.t..,_ et the func,ttons of the 

aodul••• page size and •·ctetai lecl ttie-tery of·,.tnt8"'11GdUle aetivitv 

generated.while, the progru. wa in e,cecution produced 1288 fetches. 

A subsequent e,cperiaent by Tsaco,. Coaeav and rtargol in [Tl]• 

perfor•ed on M l8'1/368 l'lodel 48 in·a CP/"8 envirORNnt, shows that 

paging activity i&: reduced: auctt IIOJ"e bV •"·good to•~ of operating 

systH eubrout ••• · thaft,. by rep4.ac....,t MIGi" i thlle. 

1.4.2 Resulte of Hatfield and Geratd 
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In 1971 Hatfield and Gerald CHll reported that i ■provements in 

paging performance, on the IBM/360 Model 67, in the range of two-to-one 

to ten-to-one can occur by using experi ■ental techniques, based on 

information compiled fro■ sector reference traces, to restructure the 

relocatable sectors of compilers, editors, and assemblers. This is a 

significant reduction in the number of page fetches experienced by 

existing, frequently executed progra■s, and how close this ia to the 

opti ■u■ reduction is currently unknown. 

Also, they present an excellent discussion supported by ■any 

detailed measurements, which shows that the sector reference behavior of 

■oat programs they examined (especially the syste■ progra■s: co■pilers, 

assemblers, editors, etc.) proved to be re■arkably insensitive to the 

input data in rather large domains. This is very i ■portant because there 

is no merit in tracing a program~ massaging the traced data, reloading 

sectors, and ■easuring changes in paging rates if the i ■prove■ent only 

holds for the particular set of input data used when it was being traced. 

Fortunately, the relative number of intersector references of ■any 

commonly used progra■s is rather insensitive to input data. However, it 

is certainly still true, especially for particular application progra■s, 

that the uniformity of intersector references over a range of input data 

should be established before sector reordering on the basis of 

intersector behavior is atte■pted. 
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In adaiti:on, tttey reported that progra restruc.turing to increase 

the locality. in pn,vra reference patterns can have a ltUCh aore profound 

effect on paghlg .. perferaance in a vlrtua __,,, ...,tea than page 

rep I acettent ••ver i tfwe. 

1.4.3 PrograaO.Sign Considerations 

Another technique of increesing the degree of locality of 

prograes, but certainly not the easiest to accoapl i sh, conei eta of 

teaching the""°" a■■er• how to deattn _,.. t.ecal .,,....,._ 184,BS,Gl,MU, 

■aking thett m of tile· hipo, .. tant language tramtl•·tor considerations, 

providing thetl 111·ith Untlllbiguaua f~ about the paging perfor■ance of 

their prograaa and showing thelt hOM the SV1JMII penal izea those progra■a 

which exhibit a poor degree of locality. The typicaf attitude of virtual 

■eaory egst .. designers NV be ....-eased Ilg Denning lD21 when he states, 

•it is not known whether progr....,.a can be properly educated, inculcated 

ui th the 'right' rules of thuttb, ae that they habitual ty produce progra■e 

ui th •good• t,.ecat i ty. • Unfortunately, the freedell of the progr-era 

fro■ the need to NOrry about phys i ca I llellOrV apace and i ta ■anage■en t i n 

a virtual NllC'JrV svetH is a Njor otJatacle to their education in the art 

of locality. 

Therefore, e9t)8Cial ly for frequently eMecuted progr•• such aa 

operating eyate■s. assellblera, coapilera, editors, production progra■a, 
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etc., we can see the appeal and the potential rewards of the prograM 

restructuring approach, that is, to design the program without 

excessively caring about its locality, and then to rearrange its 

relocatable code and data sectors in the virtual address space so as to 

make its reference pattern more local. 
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1.4.4 Related- Perfor•ance Benefits 

If we can reduce the nuMber of page fetches required by progra■ 

restructuring, we will get iMproved perfor■ance in several areas: 

1. Reduced time spent paging. 

2. Less supervisory overhead spent in ■ain 
'\ 

11e11ory and paging ■anagemen,t. 

3. Better throughput on the average, because a 

prograa wi 11 interfere with others less. 

4. Better paging operation when it is needed, 

because there will be less contention for the 

paging device. 

1. 5 Re I a ted Research and the Need for Further Research 

The only comprehensive research in the area of auto■atic progra■ 

restructuring was reported by Hatfield and Gerald CHlJ. The essence of 

their work can be interpreted in the following context. A progra■ 

consisting of• relocata~le sectors occupying n logical pages of virtual 

■emory was run with a typical set of input data and sufficient 

information was recorded during the run to produce a co■plete sector 

trace. A complete sector trace is the ti ■e sequence of all sector 

references (instruction and data references) during progra■ execution. 
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A "nearness ■atrix" C for Modeling intersector behavior was 

constructed fro■ the sector trace. The nearness ■atriK is an ■x■ ■atriM. 

whose entry Cij(l sis ffl, 1 s j s ■) is the nu■ber of ti ■es sector j 

fol lowed sector i in the sector trace or equivalently the nu■ber of ti ■ea 

sector referenced sector j during the execution of the progra■• This 

■atrix is equivalent to a directed graph G of• nodes where the arc fro■ 

node i (corresponding to sector i) to node j has Cij as its weight. 

No computationally feasible procedure was found to produce and 

prove an opti ■um restructuring of G, based on C, into pages, i.e. one 

that mini ■ ized the summation of Cij over all i and j such that sector 

i and sector j are grouped into different pages. Instead heuristic 

approaches were used to restructure G. One method used essentially the 

largest values of the eigenvectors of Casa basis for grouping sectors 

together. Another heuristic approach which gave slightly better results 

was a procedure which atte■pted to cluster sectors into pages, under the 

constraint that the size of each cluster be no greater than the page 

size, such that the square of the interconnecting weighted arc distances 

between pages were minimized. 

The latter heuristic approach is quite si ■ ilar to the procedure 

reported by Charney [C3J which partitions a network of interconnecting 

co■ponents into groups of co■ponents such that the total nu■ber of 

interconnecting wires between groups tends to be ■ ini ■ ized. 
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As ffatfiltld and Gerald peinted out, a disadvant:age of pr-ogra■ 

res true tur i·ng 'foNle,t atect on the nearnea11 H1'r he C is that the nearness 

aatri>c contains gfot,af inforwiation about Netor interaction, whereas 

paging depenoa _, local refer1!tflCe p1tt'trns. Fer P911Pfe, consider two 

sector ~•fer-anee tracn 51 and ·5z. A99Ulle that sectOf"'tl i and j are 

re.ferenced exactly k tiaes in both tracn. Let S1 • cx 1 (1 j)k «"2 and S2 • 

u 1 ( i ju2 )k wherw « 1 and u1 represent long sector r-efrence 

strings. The value C;1 is k in both cases and c, is larger in 

S 1 • Therefore. fhe prubabilit'y that ttte cl'uetering afgori th■ wi 11 

group i and J together is greater for S1 than Sz. However, the cost 

of not groupiftV ttNtll together' h1 gr:eaiter for 5'2, slnce the nuaber of 

page faults due to the referencn j haecUatety fol lowing those to i wi 11 

be at •os t 1 for S I for a I f real WIIOf"y st %ft greater than one and can 

be 1t for S2 for· ,oerta•r-n •:z 's. In other ....-de, even an opt i·•u• 

solution of the restructuring probfa for1R1fated on the nearness aatrhc 

■ay not give the ■ ln h1u• nullb8r of page faul t-s. 

·Hatfield and Gerald rea1 ized that there are ■anv cases where the 

nearness aatrhc aione does not have al I the irtforaatiort needed for 

producing a good sector ordering and that the ordering obtained by the 

restructuring afgorith11 fr-ow the available infor■ation ia based on 

heuristlcs. Accordingly they euppte11ented the auta11atic sector 

reordering phaae with a hand Hn·iahlng phase of additional sector 

reordering based on cotaplex hullaft interpretation of the progrn' s use of 

virtual ■e■orv over the courae of its execution aa displayed via an 
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interactive graphics package. Even though the reordering phase based on 

hu•an decisions provided additional i ■prove■ents in paging perfor■ance. 

it can be quite ti ■e consuming, and the results are so■ewhat dependent on 

the i ■agination and insight possesed by the program■er ■aking the 

decisions. Further■ore, the absence of any knowledge about the ■axi ■u■ 

possible i ■prove■ent Makes it difficult to deter■ ine a suitable stopping 

point based on so■e cost-perfor■ance criteria. 

In order to deter■ ine if a new ordering is actually better or 

worse than an old ordering, they simulated the paging performance of each 

ordering over a range of pri ■ary ■emory sizes and page replace■ent 

policies •. Evaluation of sector orderings by si ■ulation can be an 

expensive process if ■any sector orderings are co■pared. 

Based on the current state of research into the proble■ of 

program restructuring as discussed above, we can identify several areas 

of potentially rewarding research. Ue will assu■e that a progra■ is 

■odeled by a set of relocatable sectors of specified size and a sector 

trace describing the sector reference behavior. 



1.S.1 lnteraec:.tor Ref.-ance l'ladeta 

Me need a. U.deL 9f._intv•c.;tor referenGe behaYior C, defined oYer 

the sector trace. that incorpor.atee aore of the locaJ reference behavior 

of the progra upon which paging act11aUy -,.mis than that captured by 

the nearness aatrix. For e,caaple, the probability that a reference fro■ 

sector i to ~tor j wi l I cauu a page fault is related to auch local 

lnfor•ation as the ti ■• elapnd aince _the laat reference to sector J and 

the nutlber of dietinct eectore referenced •••• the IHt reference to 

sector j in the sector trace. If the Uae I_• short eince sector j was 

I ast referred to and H ttle virtual •--11 apeoe NH u•ed during that 

ti•e, it is probab.le that aector j ie still in prl■•u ••orv and a new 

reference wi I I not ~- a page fetch. · If the ti• and epace traversed 

between references to j are large, it ie probable that a page fetch wi 11 

occur unless j is grouped i-nto the eaae page aa the refel'"encing sector or 

so•e recently referenced Hctor. &. pr,oitMlee to foraulate and investigate 

two approaches which ... to have potential for identifying and 

quantifying local aector reference behavior which can be u..«t to weight 

Cil entries. These approaches are band on nctor uorklng eete and 

sector stack distances defined over the sector trace. 
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1.5.2 Reordering Procedures 

Another area concerns finding better procedures for restructuring 

or grouping them relocatable sectors of a progra■ into n logical pages 

such that the reordered progra■ achieves or tends to achieve the ■ ini ■u• 

external cost for■ulated on an intersector reference ■odel C. A strictly 

eMhaustive procedure for finding the ■ ini ■u■ cost grouping is often out 

of the question. To see this, consider the si ■ple proble• of dividing• 

sectors into pages containing g sectors each. The total nu■ber of 

groupings is as follows: 

Groupings• --~•L'~· __ 
{g ! ) m/1 { ■/g) ! 

For ■ost values of• and g, this expression yields a very large 

nu■ber; for exa■ple, if•• 48 and g • 4, it is greater than 1825 • 

Formally, the problem could be solved as an integer linear progra■■ ing 

problem, with a large number of constraint equations necessary to express 

the uniformity of the partition [Jl]. However, since it see■s likely 

that any direct approach to finding an opti ■al solution wil I require an 

inordinate amount of computation, the quest for better heuristic ■ethods 

appears to be the best approach. The first and fore■ost consideration in 

developing heuristics for co■binatorial proble■s of this type is finding 
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a procedure that is poMerful and yet sufficiently fast to be practical. 

A process Mhose running time groMs exponentially Mith the number of 

sectors is not likely to be practical. 
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1.5.3 Sector Ordering Evaluators 

A computationally ine~pensive evaluator of sector orderings is 

needed so that a neu ordering can be eati ■ated as better or Morse than an 

old ordering without si ■ulating paging perfor■ance for a pri ■ary ■e■ory 

size and page replace■ent algorith■• 

One theoretical approach recently reported by Sekino [S41 ■ay be 

applied, given a sector ordering into pages and the probabilities of 

sector i referencing sector j for all and j, to co■pute the page fetch 

probability. However, a Major drawback of this approach is that after 

the probabifities of going fro■ one syste■ state to another are• co■puted 

(where a syste■ state is deter■ ined by the r pages of an n page progra■ 

in pri ■ary ■e■ory, the page being referenced, and the state of the 

replacement algorithm), then, even in its si ■plest for■ulation, the 

solution of r•(~) si ■ultaneous equations are required (a solution 

computationally infeasible for, values of n and r usually encountered in 

real progra■s). 

Another approach relies on the ability to construct a ■atriM 

■odel describing the intersector reference behavior fro■ the sector 

trace, given additional knowledge about the size of available primary 

memory and the paging policies, such that the cost of a sector ordering 

(i.e. the cost of the interpage arcs cut) produced by a reordering 

algorithm, is proportional to the nu■ber of page fetches eMpected for 
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that order.i•• How .9UCceHful is this approach or .any other 

coaputational ly inexpensiYe approach is an open reeearch question. but 

the e>eistence•f .thh1 prableaald the:petanUaJ . ...-. of any solution 

points out. in iNlrt. the .i••nee -v.a4• of Ute ne,ct research topic. 

1.S.4 Perforunoe Bounde 

The tr•endouslu large ftUllber of ..:,tor ,ONNri-• and the 

difficulty ad-, ... inwuWld.lloth.,in.cheoaiq,e,.PN•Uvelu good 

orderin~ and i,a,..,..,._t,..hlt, ,.,._.,__..._...,._....,.._. wor.ee than an old 

ordering i 11.ue.v.,ate. ,tM viul __, .. to,..,..,U.,,etica.J. baunde on the 

opti_,. iapn,.~ ,in .tfle ....,..,..,. ....... ·Of ,W#,twaA •w.v avate■e 
through progr.-,,,NletNw._.,.,_,. -

I f bGunds -• -the ,ai-maua .n•ar ol ,.._.. fet-ollle• ,Uhlch cou Id occur 

during e.,cecuti• ;a.f • 1PNlll"• ._. ,any ,. ... ..,.i..nlt of. relocatable sectors 

into logical pagea w.ere knoun. they .cmdd ,b,e .uaeds to deter■ ine whether 

or not a given .proer,:n should be conaidered for reatructuring based on 

i ta current pagi-ng perfor■ance; to evaluat19 the raeutta of a 

restructuring ..,__,,. •• whether .autOMt+c. aanuat or both. for a given 

progra■.; and 'tl\t onecepti ze ...uhan a ..-. .....-a •e.tr.i.lCture i.• found. 

AutouHc t"'e&tP-uct.urlng pr~ baaed on heur.iatlce appear to 

be the only C011P1ttational tv -feaalbte .apprCUICb.. It le uni il,e,l.v that anv 
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one procedure will provide near opti ■u■ solutions for all progra■s. One 

attractive methodology for progra■ restructuring when bounds on the 

optimum performance are known is to have a set of auto■atic restructuring 

procedures available which can be successively applied to a partjculac 

program until a reasonably good solution is obtained. In the case uhen 

no reasonably good solution is found auto■atically, a decision to 

consider manual restructuring and its extent can be ■ade based on the 

potential for additional i ■prove■ent versus its expected cost. 

The theoretical work reported in the literature to date in 

developing bounds on the paging perfor■ance in virtual ■e■ory syste■s 

that can result fro■ progra■ restructuring is nil. Me will present a 

formal approach to this proble■ and so■e preli ■ inary results in the neMt 

two sections of this report. 

It is our objective to develop upper and lower bounds on the 

number of page fetches which can occur over all reorderings of sectors 

into logical pages of a progra■, for any progra■ ■odeled by: a set of 

relocatable sectors of specified size, a sector trace describing the 

intersector behavior, any two-level virtual me■ory syste■ Modeled by ita 

page size, pri ■ary memory size available to the progra■, and page 

replacement and fetch policies. 
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1. 6 Su ... Y: of Goa I e 

l.. ForaaHze: .., --,..,._ the effect Gf the 

str-uctural order ifttl o.f a pr'""'aa• e relocatable 

aector• upon i ta pag.ifllt tNlf"'forwe in 

v-k-tuat ••r-v. avat .... 

2. Qeyelat, theoreticat liNlund9 on the optillUlt 

............. t t11< tM ,_.i:4119 ,_.foNlartc• ef 

progra119 ,,n virtual....,.., ...,t ... Milich can 

re.vu froa: r~tur Ing the Petecat'al>te 

nctor• of prc,raa. 

3. Develop theoreHcal botmds on ho.N •bad• the 

pag,i,ng per foraance of ,....,. .. can get i f the 

•worst• ordering e-f relocatabt•• sector-a i• 

chaeen. 

4. -Foraaf i ze mm IIOdeJe of progr• refer·ence 

behavior. 8UCh n intereector reference llode I a 

baHd on sector working Nts and sector stack 

di-stances, and Malyze their effect on reordering 

procedures for iaproving the paging perfor■ance 
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of programs. 

5. Design and develop practical algorithms for 

restructuring programs to improve their paging 

performance in virtual memory systems. 

6. Perform measurements to compare the relationship 

bet~een the improvements in paging performance 

produced by these practical algorithms and the 

optimum improvement specified by the theoretical 

bounds. 
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CHAPTER 2 

·FURMLI ZAHON, OF VUUUM. "8Ul¥ SVSTEMS 

2.1 I ntroducHon . 

I n th i s sect i on a toraaH ~et hm of. the fvnd ... ,d a 1 

characteri9tics of two-level virtual -erv syat•• i·a presented and 

certain per for.aance ae&sures are derived. The purpoH of th is c_hapter 

is to develop the terMinology and the frauwork necessary to view this 

research in i ta proper perapeeHve •. 

2.2 Major Paratteters of a Two-Level Virt.ual ne110ry Syate■ 

Figure 1 and Table 1 present the ■ajor para•eters of a two-level 
' . . 

virtual memory systeM. · These paraaeters can be grouped into_ three 

categories: (1) Configuration, (2) Autoaatic Manage■ent Algorith■•• and 

(3) Progra• Behavior. 
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2.2.1 Configuration 

Virtual 111e111ory is assuaed in this thesis to be i ■ple■ented by 

paging on a tMo-level hierarchical physical ■e■ory sy-ste■ consisting of 

pri ■ary memory, Mp, and secondarw·•e■ory, Ss. (Note that Me have chosen 

the notation Ss for secondary ■e■ory, i.e., secondary storage, because 

the notation Ms Mould. lead to notational conflicts later in this 

report). Each storage device is·pa~titioned into physical blocks called 

pages. A page is the basic unit of infor■ation transferred between Mp 

and Ss. The page size {usually 4,096 or 2,048 bytes) Is denoted by N. 

Each ■emory device is further characterized by .its rando• access ti ■e 

Ti, transfer rate Bi, cost/byte Ci, and capacity in pages I Mi I -

I.le assu111.e that Tp < Ts, Bp > Bs, Cp > Cs and 111pl < fSsl. 



26 

Conf i gura:tJort 

L Mp is the· pri ury store 

2. Ss is the• secondary s,to.re 

3 .... Jtti I· i. s, the s,i za,, i.n,:, .,..._, of the i-th store 

4-., B, is the trans,f..,., rate a:f ttut i-th store 

5-. c. ,. is- the, cos-tit.mi t, o-f- the i-th ·stot"'e 

6-•. Ti j9 the averaget ace:ne ti lte of the i-th 

7. N,: is the nt111ber of' t,vht11' in a page (page 

1. F i s the, fe,t.ch· al gvHttlt 

Program Behav-i or 

1. A I s the I og-ica I ad$!etrs trace 

Tab.le 1 

Major Parueters of Tua-Level 
Hierarchical Virtual Me•ory Syste•s 

store 

size) 
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AJ. B). 
Processor Processor 
A ,,. a 1 , a2 , A • a 1 , a2 , ••• 

' ' . 
fTp, BpJ nv.Bv) ,, • 

I 

(Cv, IMvl) r 
I 

I 
! 

fTs,Bs,N) 

• 

(Cs, 1 s.1, 

Cl. 
IBM/360-67 IBM/370-165 

Mp Core Cache 
IMPI 192 pages 16K bytes 
Cp 11.53/byte 8.80/byte 
Tp 375 ns 160 ns 
Bp 21Mb/s 100Mb/s 
Ms Oi sk Main Store 
1s.1 2048 pages 512K bytes 
Cs 10.04/byte 10.50/byte 
Ts 8.6 ms 1.44i,s 
Bs 1.2Mb/s 16Mb/s 
N 4096 bytes 32 bytes 
Tv 805 ns 230 ns 
Cv 10.18/byte 10.77/byte 
IMvl 2048 pages 512K bytes 

Figure 1. 

AJ. T1-10 Level Storage Hierarchy System. 8). Virtual or 
Composite Memory System. CJ. Representatative 
Parameters for Several Virtual Me■ory Systems. 
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2.2.2 Program Behavior 

The processor, under program control, generates a sequential 

sequence of references to the storage system. The processor references 

are in the form of logical address references or virtual memory 

references which serve to uniquely identify each unit of stored 

information inderendent of its locati.on in Mp or Ss. The time sequence 

of logical address references is called an address trace, A and Is 

defined as: 

A I 2 l = a .a , •.• ,a. 

Each logical address, ai, may be separated into a logical page 

reference and an offset Mithin that logical page. This separation 

process is pictorially illustr11ted in Figure 2 uhere the set of 2**" 

possible addresses are partitioned into 2••n 1 pages of 2••n2 m N 

logical addresses each. The time sequence of logical page references la 

cal led a page trace, P and is defined ae: 

P I 2 l 
.. p '" , ••• ,p 
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---------n-bits---------.i 

L____ -~---- Ad-dress 

a)Logical Address 

---------n-bits 

Page Displacement 

i. - n 1 -bi ts --\- n2 -bi ts-~--~ ~ 

( n = n 1 + n 2 ) 

b) Logical Address Partitioned into 

Page Address and Displacement 

Figure 2 

Logical Address Structure 
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I nforut ion ■ovettent between tip and Se is acc911fJJi shed by 

transferring pa~s between t1J) and Ss. We can analyze inter level 

11tove11ent for address trace A by considering the corresponding page trace 

P. 

One 11ethod of constructing a rltf)resentation or •odel of a 

complex activity such as progra behavior is to first analyze a 

particular character izaHon and then gr-..,_l ly introduce additional 

detai I. In the .:aae of progr• behavior, it is con•enient to begin by 

considering only the address trace and the corre9f)0'1ding page trac.e. 

Later, we wi I I consider the effect of the pregr••• structure on lte 

behavior. 

2.2.3 Autot1atic Managennt Algorith■ 

Since a processor can service only that portion of a progra■ 

which resides within pri ■ary •e•ory, which is relatively s■all in size, 

the operating syste• 11Ust e,wrcise a special atgorith■, called a paging 

algorith11, to keep the ••ost acti-ve• pages of a progra■ in pri ■ary 

memory. This is acco11pl ished by transferring pages of the progra• back 

and forth between pri ■ary and secondary ltellOries. The goal Qf a paging 

algorithm is to ■alCi ■ ize the RUltber of tl ■es logical inforaation i-s In 

the primary ■e•ory when being referenced·. 
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The paging algorith• must consist of tMo basic policies. The 

Fetch policy. F, decides Mhen and Mhich infor•ati~n should be moved up 

from Ss to Mp. The Replacement policy. R, decides when and uhich pages 

should be transferred doMn fro■ Mp to Ss. 

Oefini tions 

1. a= la,b, ••• I is a finite set of logical pages 

2 P I 2 l• t Q • .. p ,P , ••• p ts a page trace uith pt • 

3. M~ ~ a is the COM tents of Mp at ti Me t .. 

4. F"' f 1 ,f 2 , ••• fl is a finite th,e sequence of L sets, 

f 1 ~ a, 1 ~ t ~ L. 

5 R I 2 L ()' • = r , r , ••• , r • ♦ 1 s a f in i te t i ■e sequence 

of L sets, r 1
~ Q,1 ~ t ~ L. 

6. M~ • (M1
;

1 -r1 
) u f 1 

, 1 ~ t ~ L. 

7. F and Rare valid if t1 n M1
;

1 
• ♦ .r1_~ M1j;1 

and pt t M~ , 

The F and R policies are defined to denote a particular 

realization of a paging algorithm for a given trace P. For a page trace 

and initial primary memory state n:, a F-policy and a A-policy 

together determine the time sequence of priMary Memory states that Mi II 

occur as the virtual memory system processes the trace. ~e Mi 11 

consider only valid F and R policies. That is, none of the pages 

fetched at time t, f1
, may be in primary memory at time t-1; the set 



of pages re1toved at tie t, P-', IN&t b& in priury HIM.WY at t-1; and 

the page refert,-nee, at ti1te t, p1 , ttvttt be· itt .,,.,..,.y aeaorv at ti ■e t. 

2.3 The VirtuaJ Storage Medel 

A tMo-levet hierar-chi.cal virtual ator-., -,ate■,. V, is co■poaed 

of a 11 the parueters descr itled, aboMtH 

V • f l<conf iguraHon>,<prograa. behavi,Of">.,.<a.1...,..U..._>l 

V - fl< I Mp I, Tp. Cp.Bp .• I Sal• Te,Ca,.Ss.,N>, <A>, <F, R>l 

The rationale for two-level hierarchical virtual ae■ory systa•• 

as shoMn in Figure 1 ia to aplQ> ht, e,q.,""'9 i ¥8 fC!MI capac i ty faet ae■ories. 

Mp, Mi th ine,cpensive large capacity slower ■e■ori••• Ss, such that the 

co111pos i te or virtual ■e■ory syste■ approeches the epeed of the expensive 

11e111ory and the capacity and cost/unit of storage of the i ne,cpens i. ve 

Melllory. 

2.4 Perfor•ance t1easuree 

The rationale for a virtual 11e•ory aysto, V, i ■■ediately 

suggests three 11easures of its effective perforllflnCe. These three 

11easures are its effective capacity lt'tvl, effective cost/unit, Cv, and 

effective access titte, Tv. 
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2.4.1 Effective Capacity 

The ef feet i ve capacity IMv I • ISs I is achieved through the 

paging algorith• of the virtual •e•ory syste■ and the constraint that 

all logical pages initially reside in Sa. 

2.4.2 Effectiv~ Cost 

The effective cost Cv is defined as folloMs: 

Cv • ColMol+CslSsl 

IMpl+ISsl 

The effective cost Cv is seen to approach the coat Cs under the usual 

condition that the size· of secondary •••ory is ■uch 1,rger than the size 

of pri ■ary ■e■ory. 

2.4.3 Effective Access Ti•e 

For si•plicity in developing techniques for analyzi~g and. 

providing insight into the ■uch ■ore difficult .,....o~le■ of the effective 



access t i11te, Tv, ue Mi 11 first consider a detland fetch pol icy. Fd • 

Later, our cansiderat ions w-i t I focus an other fetch policies. 

Assut1e that, at ti•e t, the preceaeor generates a logical 

address ref-eNmce a1
, sahic:h rri-ere 'to,_.. t,. At that point in ti•e, 

the page p May reside in t1p or Ss. ·Umfer a ·deaand fetch policy Fd, if p 

is in Mp, the reference proceed• and'"° page acweant occurs. 

Otherui se, if p is in Ss, a page fautt ·or 1fi1W! fetch occurs and the page 

i s au t ot11a t i ca I t y ·tr.amJferred to· flp and ttte re,f.eumce proceeds. If Mp 

Mere already h.tH. -the rnovet ,ot icy, R, IIUtt be eaptoV9d · to reMOve 

soae page in t'lp to provide ,spaee .for tfl8 MU .-.. ,...,..t. 

Foraalty, a dnand page fetch lKJI h:u f'.d, far a virtual •e•ory 

system V is defined n foltows: 

Recal I that 

1 P I 2 l • - p • p , ••• • lf 

and N. 

2. 

3. 

Def i n i t i on of F d 

i • the "89e trace deter■ i ned froa A 

is a ¥81 id fetch pol icy. 

i11 a val id ret10¥al pol icy. 

1 I t r,t-1 · t 1 • f p E , , then f d • r • ♦-
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2. If p1
..f' M1

;'. and IM1j,1 l<IMPI, 

then f~ • tp1 I and r 1 • +. 
3. If p',.f' M1j,1 and IM1j,11•1Mpl. 

then f~ .. lp1 I and r 1 • la} 

where a E M1j,1 and a is "e I ected by 

the re■oval alg9rith■• 

Under de11and paging. the pr i ■a,;-~ •~•or11. Mp a i ■p I y f i I Is as 

required by 1 and 2, Mhi le t.he. first, IMpJ pages "°e referenced .. 
• ' _-.f ' . • ·' ~ • ' 

Subsequently, referenced pages ar~ swapped bet~een 11p and Sa as required 

by 1 and 3. 

Let FFp. the nu■ber of page fetches fro• Ss during the 

processing of a page trace P, be defined as the RISI.I. fetch function and 

rts value given by: 

By analogy to the page fetch functio~. the nullber of references 

satisfied by Mp is cal led the uu. guccetp f~Upn,. SFp, and it can be 

coaputed as 

SFp • IPI-FFp. 
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The ef'fec.tive access tin, Tv. of a virtual •enry ayste• V, le 

defined as fol lous: 

Tv s FFpTs + (1-(Efll)) Tp 
tPI IP'I 

The vatue of the effective accesg tlMe Tv, Is seen to approach 

the fast access tiMe Tp, of pri ■ary ■enry as,.the value of the fetch 

frequency function, Ffp/lPI, is reduced toward zwo or equivalently, for 

a given page traceP, as the vatue of the page, fetch function FFp 

approaches zero. There·fore, w see that the va.-tue of FFp is a cruc 1 a I 

11easure of the perfor•ance of a•progr.n in a virtual n■ory syate■• In 

general, ue uish to ••ni ■•ize thtt· page fetch function in order to 

11ini11ize the effective access ti•e Tv. 

2.4.4 Page Trace Si ■ulation 

One 11ethod to deter■ ine the value of the page fetch function 

FFp, for a given virtual N■ory systeM Vis to coapute the resultant 

page trace P, fro■ the address trace A and the page size N, then 

si11ulate the paging algoritha-s, F and R, and record the contents of np 

at each step of the page trace. Table 2 i I lustrates this step-by-step 

simulation, assu■ ing de■and paging and LRU (Least Recently Used) 

reMova I. The contents of Mp are shotm ordere~ to ref I ect the LRU 

ordering: the top page is the page aost recently fetched into Mps the 

bottoffl page is the page least recently used by the progra• and la the 

.. 
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Virtual memory system V • f <<IMPI, Tp,Cp,Bp,ISsl,Ts,Cs,Bs,N>, 

<A>, <F,R>) Mith parameters 

A I 2 12 - a , a , ••• ,a 

P • a,b,a,b,c,c,b,a,a,b,b,a, where pi • integer (ai/N). 

Houever, we have used lower case letters to represent 

logical page addresses instead of page nu■bers because 

it simplifies the presentation. 

IPI - 12 

Q = lab c) and IOI • 3 ~ ISel 

IMPI = 2 

F • demand fetch, Fd 

R • LAU replacement, R~u 

Simulation: 

Time 1 2 3 4 5 6 7 8 9 10 

Page Trace,P a b a b c c b a a b 

Fetch, F a b 0 0 c 0 0 a 0 0 

Remove RLRU 0 0 0 0 a 0 0 C 0 0 

M~ · contents a b a b C C b a a b 

after time t a b a b b C b b a 

RESULTS: 

If~ I - 4 

lli • 4/12 
IPI 

Tv •TS+ lli 
3 3 

Table 2 

11 12 

b a 

0 0 

e e 
b a 

a b 

Example of Page Trace Si ■ulation to Oeter■ ine FFp 
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page se I ec ted for re■oval Mhen neceS&at'y. 

2.5 Page Fetch Funct'ion Pertorunce Model 

Fro111 the- above discussion, we otiffrve that several para■eters 

of a virtual ntenrory syste■· V•H<lffPI, Tp,Cp,Bp, ISsl, Ts,Cs,Bs,N>, <A>, 

<F,R>) influence the vatue of the p~ fetch function, FFp. These 

para111e ters are the page size N, the progra's stOt""age reference pattern 

A, and the re11toval pot icy R, the fetch pot icy F and the el ze of pr I ■ary 

Me1tory I Mp 1- Therefore, we define 

-The significance of all these'para■eters on the page fetch 

function measure wi 11 be considered amt i-nve11t igated. Special e•phasi s 

wi 11 be focused on analyzing and understaflding the relationship bet"een 

the progra11' s structure and the logical addre99 trace. 

We will not elaborate in great detail, but it should_be pointed 

out that, for hierarchically-structured virtual ■e■ory eysteMs of ■ore 

than two levels. say K levels, and deaand paging (those studied by 

Madnick CM3}), Me can derive the effective page trace and thus the page 

fetch function for paging to the i-th level fro■ level i-1 (level 1 Is 

pri ■ary memory). To illustrate this, note that the resultant fetch 
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pol icy at level i-1, Fi-I = f\_ 1 ,fl1 , ••• f\_ 1 , 

is essentially the page trace Pi for level i. There is an easy 

compression of Fi-I to 0111it the values of t!_ 1 • ♦ and a 

minor relabeling required to adjust for the difference in page size used 

by Mi and Mi-I of P: .. f/_ 1 (Ni-I -1/Ni). This 

procedure is applicable for all levels 1 ~ i ~ k, and the goal of a 

k-level memory system is to minimize Ik~l1 FFPi* rPi+J • 

2.5.1 Replacement Algorithm Considerations 

Even though Me Mill be primarily concerned with the effect of a 

program's structure on the value of the page fetch function, FFp, we 

need to consider some important effects of the page removal algorith■ on 

FFp. Many removal algorithms have been proposed and studied in the 

past, such as First-In-First-Out (FIFO), Least Recently Used (LRUJ, and 

Belady's [B11 Optimum algorithm (0). I.le will define these removal 

algorithms under demand fetch to illustrate how particular algorith■a 

may be specified in our general modeJ of removal policies, and to 

establish exactly what these algorithms mean, since they wi I I be 

referred to frequently in the remainder of the thesis. Furthermore, ue 

have chosen to discuss this particular sub,et of removal algorithms 

because they Mill enable us to present several important and wel I known 

properties of removal algorithms which will eventual1y be needed In our 

research. Let: 
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1. P I 2 
:a ·P • p , ••• • pl be a page trace computed fro• 

A and N. 

2. IMPI = number of page frames in primary memory, Mp. 

3. Mp1 = the set of pages in Mp at time t. 

4 F I 2 L I' • d ~ fd ,fd , •.. ,fd be a demand fetch po icy as 

previous I y defined. Reca 11 that the 

definition of Fd specifies.all the 

mechanics of paging except the page to be 

selected for replacement. 

The LRU remova I po Ii cy, RLRU , is defined for demand fetch, Fd, 

A I 2 L as LRU .. r LRU • r LRU •••• r LRU Mhere 

dRu = ♦ if f~ • ♦ or IMpt- 11 < IMpl; ot~eruise, 
. t 
rLRU • a, Mhere a is ttle page in Mp uhich uas least recently 

referenced. 

The optimum removal policy, Ro, is defined for demand fetch, Fd, as 

R I 2 l h t .a. • f ft .a. o "' r O , r O , ••• , r O M ere r O =- ,. 1 d = .,, or 

IMp'- 11 < IMPI; otheruise, r~ • a, uhere a is the page 

in Mpt-t 1-1i th the longest future time to next reference in the page 

t P f I I f a c Mpt- t · f d . th race. , romp. ts never re erence again, en 

its time of next reference is assumed to be•. If a page must be 

removed at time t, and several pages have the same longest future ti ■e 

to next reference (i.e., alt equal to ~) then remove any one of the 

page.s. 
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Under demand fetch, the First-In-First-Out replacement pol icy, 

RFwo is defined as 

R I 2 L FIFO = r FIFO. r FIFO ••••• r FIFO where 

r~1FO = ♦ if f~ = ♦ or IMpt-ll<IMpl; otherwise, 

r}.FO • a Mhere a is the page in Mpt-l which has been in 

Mpt-l longer than any other page in Mpt-l. 

~e now present several well known properties of these replaceMent 

algorithms. 

Lemma 1. 

For a given page trace, P, primary memory size of IMPI page fra■es, 

and demand fetch pol icy, 'Fd, then the number of page fetches using any 

valid removal policy Ra is greater than or equal to the number of page 

fetches using the optimum replacement policy, Ro. The proof of this 

Lemma can be found using various techniques in CAl,Ml] and is not 

repeated here •. 

Inclusion Property: 

Under demand fetch, Fd, any replacement policy is said to satisfy 

the inclusion property if for all page traces, P, 

a. Mp1 H) c Mp1 (2) c • • • c Mpt (n), where Mpt ( j) is the 

contents of primary memory Mp at time t if the size of Mp is j page 

frames (i.e., IMPI .. j), 1 ~ j ~ n. 

b. At any time t after Mp has becoMe filled, there is a strict 
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repl ace11ten't ordering referred to atr the •replace■ent stack,• RS, 

RS= rs(l),rst2l, ••• ,rs(nl, Ntfere rstj) • rtp1 (j)-Mp1 {j-1} for 

j "" 1. 2, ••• , n, and rtt-ln}· is the page to· be rnoved ne><t. 

The general cla-s- of dftfanc:t ... fetieh repJM:'Heftt atgortth11s which 

satisfy the inclusion property are: referred to 1111 • ■ tack algorith•s• In 

the Ii terature. The class of st.ack a-lgori thas, aa noted by Denning 

£011, "contains all the reasartclbhr at,g:tff'lth••·•-• 

Leinma 2. 

The number of page fetches requjred bV- any. atack algori th• for any 

page trace is a 11tOnotonic funcHon of pri ■arv Mettory size, IMpl, in page 

fra11tes. To see this, r,ote that if there is a fetch at ti•e t for a 

prlftlaf'y 111e11tory of a ghen size, there 11Ust also be one at ti11e t fpr 

ev_er·y pr i1nary. ld■ory of !!l■a-1 hrr ai:ze. The proof .of_ tJli·s Let11•a .can -b• 

found in rDl,llllJ. 

Lemma 3. 

Demand fetch Mi th LRU reaoval and de.and fetch with Opt i_11tu111 

replacement are stack algorith■a. The. proof of this Le■■.a. ·can be found 

· in CMlJ. 

IJe ui 11 refer to the. above wet I-known properties several ti111ee in 

the rest of this- thesis. At this point in tin, ue can i111111ediatet.y 

conclude that, for any ll1J:,I and A, 
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a. FFp(IMPl,N,A,Fd,RoJ ~ FFp(jMp1,N,A,Fd,Ra) from lemma 1, uhen 

Fd, Ro are demand fetch and optimum removal policies and Fd, Ra are 

demand fetch and any removal policies. 

b. FFp ( I Mp I, N, A, Fd, RLRU J ~ FFp ( I Mp' I, N, A, Fd,RLRU ) and 

FFp(IMPl,N,A,Fd,RoJ ~ FFp(IMp'l,N,A,Fd,Ro) fro■ Lemmas 2 and 3 

Mhere IMpl ~ IMp'I• 

Due to its simplicity, the FIFO replacement algorithm Mas used in 

many of the early paging systems. In recent times it has been 

discovered that FIFO has certain disturbing pecularitles, such as the 

possibility that the number of page fetches Mill double for a memory 

size increase of one page frame [Al,Ml). Hence, FIFO Is not a stack 

algorithm, and Me cannot claim that, for any A and IMPI, 

FFp{IMpl,N,A,Fd,RF1FO> ~ FFp(IMp' l,N,A,Fd,RF1ro>, Mhere 

I Mp I > I Mp' I • 

Thus, Me observe that the inclusion property of stack algorithms is an 

important property. 

Various forms of the LRU replacement algorithm frequently occur in 

contemporary virtual memory systems. Empirically, LRU replacement has 

been found to closely approximate the paging performance obtained by the 

optimum algorithm for many actual programs. The opti111u111 policy is not 

physically realizable since it requires future knouledge about reference 

behavior, but it can be used as a theoretical basis for perf~rmance 

comparison Mith practical algorithms. Houever, the value of the page 
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fetch function. 

FFp(JMpf,N,A,Fd.Ro) .•.. z~1 lf~f ia.phvsi:oalty r•alizable IB6J 

since it does not require future,._nowl'ed.ge. 

For any page trace P • p1 ,p2 , ••• ,pl and pri ■ary ■e■ory size 

IMpf. Belady has given a one-pass procedure uhich Mill co■pute the value 

that If~ I i.,ould take on under opti ■u11 re■oval for any 1 ~ t ~ L 

'-lithout any knouledge of the page fr-ace after t (i.e., 

p'•' ,p'•2 ••••• pl). In particular, this procedure deter■ ines 

'-lhe ther I f~ I • 1 or It~. I - .+, but it does not specify of uhat 

page f.~ consists. 

2.5.2 Progra11 Structure Considerations 

In this section, Me Mill AMtend the page fetch function perfor•ance 

11ode I to account for the progra■' s structure. 

The progra■s Me consider are defined to consist of a set of 

• relocatable sectors of specified sizes. The structure of a progra■ le 

specified by a particular load ordering sequence of its sectors in its 

virtual address space. This ordering is called a sector ordering SO, 

and is defined as 
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Mhere 5 1 denotes the first, 52 the second, and Sm the last ~ector 

loaded in the virtual address space. Thus a program can have 111! 

distinct structures, one for each possible sector ordering, so. 

Ho"'ever, once a sector ordering is chosen, it does not change during 

execution of the program. Let 151 I be the size of the jth sector and 

let LISi I be the load address of 51 in the virtual address space of 

the 

the program. If the sectors are loaded contiguously in virtual memory. 

then LISi I = Ii;_\ ISi 1- In any event, Me assu111e that the 

structure of a program is completely specified by its sector ordering 

SO, Mhich is further defined to include the size and load addresses of 

al I its sectors. Therefore the sector ordering SO of a program 

specifies the load sequence, 51 ,52 , ••• , Sm, and the values of 

151 I and LI 5i I for a I I 1 ~ j ~ m. 

We have previously modeled the program behavior by its logical 

address trace A I 2 L a ,a , ••• , a and have shoMn that the address 

trace A and the page size N are sufficient to determine the page trace 

P I 2 L ,. p ,p ••••• p • HoMever, the address trace and hence the page 

trace depends on the particular sector ordering chosen for the progra■• 

For example, if a', the logical addres~ referenced at time t , is 

Mi thin sec tor j, then the va I ue of at depends on Mhere 5; is in the 

sector ordering SO. 



In order to study the effect of a progra■'i, structure on its paging 

performance, ~ Mi It -.m:tel a progra' s tJeha•ior by i ta sector trace. 

The sec tor trace ST of a progra■ is deHned to be the t I ae sequence of 

sector references and is given by 

I 2 5L ST • S , S , •••• 

where st denotes the se-ctor refet1tnced at t iMa t. 

Given the I rJg i ca I address trace A corre91>0nd ing to a spec i f I c 

sector ordering SO, the nctor tr'ace ST can t,e ,aaaily OOllputed fro■ the 

I oad addresses of the ,11,ctors. Then this sector trace can be used to 

coRlpute the pa,ge tr-ace resulting frot1 any progr• restructuring 

specified by a neu sector ordering if the sector-a do not cross page 

boundaries. 

In particular, given a progru tlOdeled by its sector trace ST and 

its sector ordering SO., the page referenced at ti ■e t, pt, is given by 

pt - integer fl1S1 I IN), 

where 51 is the sector referenced at t l•e t In the sector trace ST, 

LIS' I is the load addreu of sector 51 given by the sector ordering 

SO, and N is the page size. Ue are assu■ ing at this point that 

individual sectors do not cross page boundaries. 
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As long as this is true, Me can define the restructuring of a 

program as a part.ition of the relocatable sectors into logical pages. 

In par t i cu I ar, I et, 

1. a• 15 1 ,52 , ••• ,5ml be the set of relocatable 

sectors making up a program. 

2. n = the number of log:cal pages of size N of the 

restructured program. 

Then an n-uay restructuring of Pis defined as a partition 

Il • ln1 , Il2, ••• , IlnJ uhere Il has the fol louing properties: 

a. U ?. 1 Il i ,. Q, Il i n Il j • ♦ for a I I i ,. j • 

I 5k I ~ N for a II Ili, 1 ~ ~ n. 

Thus, Me see that a partition, Il, specifies the set of relocatable 

sectors grouped into each logical page. ~e Mill assume that the set of 

sectors in n 1 are loaded one after another into logical page 1, then 

the set of sectors In n2 are loaded one after another into logical 

page 2, etc., unti I all the sectors are loaded in the logical address 

span of the program. If I ISkl<N, then there Mill be a hole or 
Skc Il i 

a non-referenced area in the top of page i. 

Therefore, given any partition, Il, of the relocatable sectors into 

logical pages and any sector trace, Me can compute the page trace 
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immediately. For exa·111ple, let S1 be the sector referenced at ti111e t · 

in the sector trace and let S1 {ll j, then the page, p1 ~ referenced at 

t h,e t is j. 

Fro111 the above, discusslon, we obseFVe that -- given any tMo-level 

virtual 11elftory syste• V, Mith page slze N, Mith pri ■ary 111e111ory size of 

IMpf page fra11res, "4i th ~ny val id page fetch algorithll Fa, and Mi th any 

valid page re■ovat algorith■ Ra-- we have the value of the page fetch 

function FFp. This FFp is for a progra■ uhose structure is Modeled by 

any partition, Ila, and uhose reference behavior is ■odeled by a sector 

trace ST. FFp can be unique-ly defined tn tern of the foflowing 

para111eters: 

FFp=FFpl IMpl ,N, Ila.ST ,Fa,8at. 

For a particular virtual ■e■ory syste■, V, the values of IMPI, N, 

Fa,Ra are fixed, and a given reference behavior fixes the value of ST. 

Under these conditions, the value of FFp becot1es a function of the 

different partitions of relocatable sectors into pages. Houever, aa 

pointed out in Chapter 1, the nu■ber of different partitions beco•es 

astronomical for ■any· typical progra■s. For exnple, phase 1 of the AED 

comp i I er has 1075 different partitions. For such progra■s it is 

impossible troll any pract·icaJ point-of-view to deter■ ine the best 

progra• structure Cthe n that ■ ini ■izea FFp) for a given reference 

behavior by trying out al I partitions. 
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From our di~cussion in Chapter 1, we know that for a given sector 

trace, a partition Il which groups sectors into pages such that the 

number of intersector references between pages of the partition is 

minimized may not minimize FFp. In fact, we presented a quite• plausible 

sector trace where such a Il would indeed be a very bad partition. One 

major goal of this thesis is to find some way of computing the mini ■u■ 

value of FFp over all partitions. 

If upper and lower bounds on the value of FFp over al I partitions 

can be found, then a particular program structure could be evaluated as 

good or bad. Furthermore, those bounds would provide a means of 

evaluating the ability of practical clustering procedures to produce a 

good program structure. 

The practical drawback of the model developed for the page fetch 

function, FFp, is that sectors are not allowed to cross page boundaries. 

Even though this may not be a serious drawback, we will eventually try 

to extend the model of FFp to take into account the case when sectors 

may cross page boundaries. 
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2.6 Sector Fetch Function PerfortNnce rtodet 

IJe wi 11 "°" define a Measure Off the tnfor11ation transfer betueen 

the hm levels of a virtual nt10ry svste• which is independent of the 

sector ordering. In the ne>et section, ue uifl nploy this easure to 

find theoretical upper and lower bounds on the vatue of the page fetch 

function over all sector partiti0f't9. 

If we assue that the basic ·unit of inforaation transfer betueen 

the two levels of a virtual aettory syatea V' Is a sector Instead of a 

page, ue can for111ulate a aeasure on the tnterlevel. aove11ent of 

infor•ation during the e,cecution of a progras Nhich la ·independent of 

its sector ordering .. 

let FFs, the nutlber of sector tetchn which occur in a virtual · 

memory syste• V'. during the processing of a sector trace ST, be def lnad 

as the sector fetch function. The processing of a sector trace in v• la 

cal led sectoring and can be interpreted si ■ ilarly to the processing of a 

page trace or paging in V as previously discussed. 

Since the virtual 11eaory syste■, V', for aectoring is to be 

modified slightly fro• the virtual naory eystea, v. used in• our 

diacuasion of paging, we need to define the notion of eectoring 110re 

precise I y. 
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The parameters of a demand sectored virtual 111e■ory system, V', are 

defined as fol loMs: 

1. I Ms I is ca I I ed the size of the pr i 111ary 111e110ry, Ms. 

IMsl is the number of sector frames in the pri111ary memory. 

The size of these sector frames, say In bytes, need not be the 

same. Instead Me assume that the size af a sector frame in 

bytes is exactly equal to the size in bytes of the sector it 

contains. Thus, the size in bytes of any sector fra111e and of 

Ms can vary Mith time if the sector sizes are different, but 

the important fact is that the number of sector frames in Ms 

is fixed and equal to fMsl. In contrast, ue should point out 

that the siz'e, IMPI, of the primary 11e111ory, Mp, for a paged. 

virtual memory system, V, Mas defined to be the number of page 

frames of fixed size Nin the pri ■ary ■e11ory Mp. 

2. ST= S1 ,S2 , ••• ,SL is a sector trace of a 

program. 

3. is the demand sector 

fetch policy of V'. 

4. R I 2 l • r ,r , ..• ,r is the sector re11oval 

pol icy of V'. 

Let Mst denote the set of sectors in primary llle■ory at time t and 

1Ms1 I denote the cardinality of this set. 
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NoM, demand sectoring and the value of the sector fetch function. 

·FFs, is defined as fol lcu,s: 

a. I f 

b. If 

c. I f 

51 
E M t-1 s , then f' d • r• .. ♦ 

· and Ms1 .. Ms'- 1• 

s' .f' Ms'- 1 and IMs'- 11 < IMsl, then 

f~ ""1S1 I , r 1 = ♦ and 

Ms1 = Ms1- 1 + IS1 I 

s' .e- Ms'- 1 and IMs'- 11 = IMsl, then 

t f d = 1S1 I , r' = ISi and 

Ms1 = Mst-l + 1s1 1 - {SI Mhere 

Sc Ms~ 1 , and Sis selected in accordance 

Mith the removal algorithm. 

d. FF s .. :t~. 1 If~ I. 

The value of the sector fetch function FFs, for any sector trace. 

ST, can be uniquely determined by simulating algorlthM Fd and R for a 

primary memory of size IMsl at each step of the sector trace. 

Therefore, Me define 

FF s = FF s (IM s I , ST, F d. R). 

It should be clear that the value of FFs Mill be the same for any 

sector ordering, since the sector trace is independent of the sector 

ordering. It should also be ciear, from the definition of IMsl and 

parts a. and b. of the definition of demand sectoring, that the value of 

FFs for a given sector trace is independent of the sector sizes. ~e do 
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not need to be concerned ~ith the implementation problems associated 

~ith the variable sector frame sizes of V', since ~e ~i I I be using the 

sector fetch function only as an analytic tool, and since ~e can 

determine the value of FFs through simulation ~ithout even kno~ing the 

sector sizes. 

In the next Chapter, the sector fetch function, FFs, ~i I I be 

uti I ized to provide upper and lo~er bounds for the page fetch function, 

FFp. 
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CHAPTER 3 

PAGING PERFORMANCE BOUNDS 

3.1 Introduction 

In this chapter, Me Mill investigate the effect of a program's 

structure on its paging performance in a virtual ■emory system. Ue wl I I 

begin by presenting theoretical upper and lower bounds on the value of 

the page fetch function, FFp(IM~l,N, Ila,ST,F,R), over all partitions, 

Ila, of relocatable sectors into logical pages for fixed values of the 

other parameters. 

Recal I that the value of the page fetch function, 

FFp(IMPl,N, Il,ST,F,R}, is the number of page fetches a program would 

experience in a two-leyel virtual memory system, V, with primary memory 

size of IMPI page frames of size N, using the page fetch and removal 

algorithms, F and R, respectively, for a given sector trace, ST, and 

program structure, Il. We would like to present a uniform method that 

would bound the value of the page fetch function, FFp, over al I 

partitions, Ila, of relocatable sectors into logical pages for "any" fiMed 

values of the remaining parameters. The merit of such a uniform bounding 

method Mould be tMo-fold. First, it would be applicable to any two-level 



virtual memory system, V, that is, any values of IMPI, N, F, and R. 

Second, it uould be appl le.able for ang p,,ograa behavior characterized by 

a sector trace. 

In contrast to a unifor•approach, a second approach uould be to 

bound the value of FFp over all partitions wben certain or all of the 

·remaining parameters are constrained. For e)«lllfJle. we could assu•a that 

IMpl s 1, F • demand fetch, R • FIFO replace11ent and ST• any fiMed 

sector tr.ace, and then derhe boundtl 0 im FFp o.,.,. aU Da. .c·1ear I y, the 

disadvantage of the second approach is tha·t itNOuldhave quite liMlted 

applications. However, one advantage· of the aecomt·approach is that the 

addl t ionat knoutedge gained t,y. fh<it:tg oertai·n paraaeters of the "irtual 

memory system could peraH th& uti Hzatlon of bounding aethods uhlch 

would result in tighter bounds. Me wi 11 investigate both approaches In 

this chapter. I.le have the conviction that a uni fora approach over al I 

virtual me111ory system paraaeters .amt alt sector traces is vital for 

genera I app Ii cabi I itY• However, given a lffli fora boundt°ng aethod, It 

would certainly be uorthwhile to in~estigate the possibility of obtaining 

tighter bounds uhen feasible constraints on certaJn paraaeters of the 

virtual memory system are specified. 

I.le begin by illlf)Osing constraints upon the structure of the progra■• 

that is, on the partitions, n , of relocatalJle nctors Into pages, and 

then gradually remove these constra1nta. 
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3.2 Louer Bounds 

Let us constrain the structure of a progra• such that each logical 

page contains at most k sectors. In particular, let: 

1. Program,. 1S 1 ,S2 , ••• ,Sml be a finite set of 

m re I ocatab I e sectors such that I Si I .5. N for 0 .5. i .5. ■; that 

is, the sector size in bytes is less than the page size, N, in 

bytes; otherMise, the sector size may vary. 

2. Ila= f Il 1 , Il2 , ••• , Ilnl be any partition of 

them relocatable sectors into n logical pages uhere the nu■ber 

of sectors I Ili I in page j satisfies the constraint 

1 ~ I Il; I .5. k. 

3. Recall from our definition of n that 

:t ISi I .5. N must alMays be true. 
Si tili 

Thus, Me are currently concerned Mith all the partitions, Ila, Mhich 

restructure a program such that each logical page has k or feuer sectors. 

The sector sizes may vary, but the sum of the sector sizes grouped into a 

page must not exceed the page size. With thi~ rather flexible constraint 

on the al louable partitions, Me can find a louer bound for the value of 

the page fetch functi~n. FFp, over all such partitions for a given sector 

trace and any virtual memory system. We present this loMer bound in 

Theorem 1. 
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Theorem 1 

Given any two-level virtual nwry 9Y&'tet1 V, wUh page size N, 

primary memory size JMpl, and any vafid pa94f raplaee•ent algorith• Ra, 

any va Ii d page fetch. a Igor i th• Fa, and' 3ftV sector t.raee ST'a, then, for 

-any partition Ila, of re'locatabte aector's into h'fiC&'l pages of the 

program where each page cot1tain9 at ■os:t k sectors, the ■ ini ■u• nutlber of 

page fetches given by the page fetch fum:thm IRJdel, Ff'p, has a lower_ 

bound given by: 

k*FFp( IMP! ,N, Ila.Sla,Fa,RaJ ~ FFs ttrtst • ft1p-f•,ST • STa,Fd,Ro) 

uhere the value of the sector fetch function, FFs, i_s the nultber of 

sector fetches which occur in a two-tevef vtrtue-1 ...,,-y evate• V', wl th 

primary memory size IM•i • fflp-1 •• t1'19 .... sector trace STa, dettand 

fetch Fd, and opt iMUtt reptacnerrct At>. 

Coro 11 ary la 

The size of Mp in bytes Is equal tot.he size of Ms in bytes if each 

page is completely filled uith exactly k nctorsof the saMe size. 

Proof of Theore111 1 

Notation and properties 

Let STa • >< 1 ,,c2 , ••• ,,l where ,ct is the netor referenced at 

t i111e t. For virtuai N'tlrdry systea V cffld FFp let: -
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1. Ila =- f Il 1 , Il2 , ••• , Iln J be any 

2. 

partition of sectors into then logical pages of the progra■ 

Mhere each page contains at most k sectors. (Thie 

interpretation of a partition Mill be useful later in this 

thesis.) 

p I 2 l • p , p , ••• , p be the resu I tant page 

trace computed uniquely from ST and Ila, such that if 

x1 ,Ilj , then p1 
• j. 

3. M~ be the set of pages in Mp at ti11e t 

and M~ = ♦-

4. F8 .. f~, f~, ••• f~ be any fetch pol icy 

Mhere t!n M~ 1 ~ ♦ and If! I = the number ~f 

pages in t! and x1 
£ [ M1

~
1 

U f!]. 

SR I 2 L I. • · a • r a , r 8 , ••• r 8 be any remova po I Icy 

Mhere r 1 ,.. Mt-I 
8 la p 

6. 

Given the above notation and properties, Me Mill first prove: 

Lemma 4. 

For each Fa and Ra there exists a demand fetch and re11oval policy, 

Fd and Rd, for the FFs model such that 

k*FFp{jMpl,N, Ila,STa,Fa,RaJ ~ FFs{IMsl .. IMpl•k,ST=STa,Fd,Rd). 

Proof: 

For the FFs modeli Fd and Rd Mill be constructed by forming a 

sequence of valid replacement and fetch policies 
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1. F I 2 L t 
I • ft ,ft , ••.• ,ft and f1 • 

the set of sectors aaking up the aet of pages in f!, for 

1 s t s L, lfflef"e I u. f! I• the nutlber of aet:tors in the set. 

2. Si111ilarly R1 • r 1
1 ,r~ , •••• r\ Md 

r \ • U r ! , for 1 s. t s L. 

3. Fh • F6 • f~,f~ .... ,f~ and 

Rh - Rd 
I 2 L 

•rd,rd•···•rd• for 1-s.tsl...,..e 

f~ 
t • rd - + if ,ct f t1\i1 I t fd • x' and 

d - ·♦ if ,c
1 , M1d1 and IM1d1 I < I Ms I ; 

f~ • ><t and r~ • bt n';i if ,ct ~ tt1, 1 

· and tM\i 1 t • ftlsl; and 

M~ • (M1;j1 u f~ J-r~ to aatiafy deltlnd 

sectoring. 

For reasons of e><pedlency, the proof of LeMa 4 will be divided into 

tMo parts, Le111111as 4a and 4b. 

le111111a 4a: 

If IMsl 2:. I tMpll, then for (f 1 ,R1 ) • (Fa,RaJ, there e,cists a 
val id sequence of sector replace■ent and fetch s,ol'icies 

(F 1 ,R 1 ) , ff 2 ,R2 J, ••• , (Fh,Rh) such that (fh,fll)•tfd,Rd) and 

2:\. 1 It\ I ~ l:\.1 If~ I; Mhere I IMPI I denotes the aaxi•u• nu111ber 

of sectors that could ever be found in Mp. (Note that. in 
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A proof similar to Lemma 4a has been givey by [Ml] for pure paging 

systems. Houever, ue need the follouing proof to ■ake our eMtensions 

easier to understand. 

Proof of Lemma 4a. 

The procedure for constructing F1 and R1 fro• their im11ediate 

predecessors F1_1 and R1_1 in the FF8 model for 1 ~ j ~ h is: 

STEP 1. 

Choose the sma 11 est t such that f}_ 1 and/or ri1 do 

not satisfy demand sectoring. 

STEP 2. 

Let z' be the sector (xtl referenced at time t in the FFs model. 

CASE .1. 

Nou suppose that f}. 1 does not satisfy de■and sectoring. 

la. 

l f t <Land z'f t then set t! f z' I , and f i- I • -I 

ft~ I 
I == ff.I U 

1- l ( f! I -J- I z' 1. ) . This construction insures that 

ff.I 
J contains the sectors already fetched by the 

FFP model but not fetched by the FF8 model (i.e. deferred sector 

fetches). 
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lb. 

I f t .. L aAd z' f tf_, ' then •-t t\· .. lz'} • 

le. 

If t < L and z' f tl_ 1 , then set tf • ♦» aM, f'j1 • t 1t1, U ti, . Note that 

this al lows the refer-ene:e ,cJ • z• htr~•becUNN· sector z'( ni,. · z'f 

M:_, • since z' E n,1 and lttil • lttat for a:t.,fi 1 s. j s. h, and since 

!Mel.?. IIMPII- The last fact, lftttf.?. Hfflttt, aJIOMe 111-1 to ho-ld 

I IMPI I sectors; therefore we· can al,wav.e- k1"111t a aeetor in 111-1 unt 11 

the corresponding page i a· re1MW.N° ff"ott'lf""-'•aa 9Mnilft· ht CASE 2 belou. 

ld. 

I f t .. L and z • _,_ f ~- I . , then set t\ • ♦11 The refef!'ence- proceeds 

due to the sue arguttent as- given in le •. 

In al f subcases of CASE 1 note· tha·t• F1 ie vatidc slnce 

t} f M1J1 for 1 s. t s. L, that F1 eati sfie& daand· sectoring at 

least up through ti•e t, and that. zi1 It} f s %t1 lfi11 • 

CASE 2 

Now suppose that rJ_1 does not satisfy deaend sectoring. 

2a. 

If t < L, and tl .. lz' I and ltt1j_11 I • IM&I, ee-t 

r ! '"' lb' I f -- b',. 1 
1 or so...... ~ r;.. 1 and 

Note that since 
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above operations are aluays defined. Also, note that r~ 1 is 

constrained here and in all subcases to contain only the sectors already 

removed in pages by the FFP model but not yet removed by the FF8 

mode I; therefore, a sector ui 11 not be remov~d fro■ FF8 unt i I the 

corresponding page is removed from FFP. Thia constraint is enforceable 

since the memory size of FFs at each step j, IMjl • IMsl, satisfies the 

relation IMj I ~ I IMpl I for 1 ~ j ~ h. 

2b. 

If t =- L and f~ = fz' J and 1Mt~1
1 I • IMsl, then 

r\ = (b'I ~ r\_ 1 • 

2c. 

If t < L, and f) .. ♦ or 1Mtj_1
1 l<IMsl, then set r} • ♦ 

and rh 1 r•• 1 u 1 
I = i-1 rj-1 • 

2d. 

I f t ,. L, and f~ • ♦ or I Mt1_11 I < I Ms I , then r~ • •· 

In al I subcases of CASE 2, note that Ai is valid since 

for 1 ~ t ~ L, and that R1 satisfies demand 

sectoring at least up through time t. 

A final comment: if it ever occurs that z'c: rJ_ 1 and 

z•~ fi,, then simply remove z' from both. This only reduces the 

value of lfJ I, and it takes care of the case uhen a page is fetched 

Into and replaced from Mp ulthout having al.I of its sectors referenced. 

The above procedure, after being applied at most h times, must terMinate 
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with a vat id rep!.acet1ent and fetch poHcv pair (A., .F11 ) such that: 

:t\., It\ I?. t\., ltlt-
Hence, Le••a 4a is proved. 

Choosing tMst • ff'tpl 11k satisfiss le111ta 4a and we i ■aediately get 

%\., It\ I ?. %\., If~ I • FFs( tttsl•fl1pf •.sT.Fd.Rdl. 

Lemma 4b. 

2:\.1 t t\ t s k•FFt:,f fNpl ,N, Ila .STa.Fa,Ra) •. 

Proof: 

:t\. 1 It\ .. :t\.1 tut! t • t\., It! I tut! I / If! I-

But l ut! I / It! I s. k, since IUf! I is the m.MlbM' of sector-a in 

t! and If~ I is the nulltber of pages in t! . Hence. 

%\. 1 It\ t s k• %\. 1 It! I • k11 FFp0'1pJ.N,Ua.STa.Fa,Ral. 

Lemma 4b is proved. 

From Lemmas 4a and 4b, we i ■Hdiately get 

k•FFp(IMpl ,N, Ila ,.STa,Fa,Ral ?. FFs(IMsl • IMPI a.STa.Fd,Rd) •. 

and Lemma 4 is ~roved. 

From Lemma 1 of Chapter 2, we know that 

FFs(IMsl • IMPI *k,ST,Fd,Rdl?. FFs(IMsl • f'1pl 11k,ST.Fd,Ro). 
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From Lemma 1 and Lemma 4 ue immediately get 

k*FFP {IMpl ,N, Ila,STa,Fa,Ra) ~ FF8 (IMsl • IMPI *k,STa,Fd,Rol 

and Theorem 1 is proved. 

Proof of Corollary la. 

The size of Mp in bytes is IMPl*N, an~ the size of Ms in bytes ia 

(IMPl*k)frames* (N/k)bytes/frame = IMPl*N. 

Nou, a few comments about Theorem 1. For any given progra■ behavior· 

characterized by a sector trace, Theorem 1 provides a method of coMputing 

a louer bound on the inprovement in paging performance over all sector 

partitions into logical pages, uhen pages are constrained to have k or 

feuer sectors. The louer bound given by Theorem 1 is valid for any 

virtual memory system. Another beneficial property of Theorem 1 is that 

the louer bound is specified in terms of a stack algorithm~ Me know that 

Ro is a stack algorithm from Lemma 3. Furthermore, it is wel I known 

that, for all stack algorithms, the number of page fetches required to 

process a page trace can be computed for all primary ■emory sizes fro■ 

one simulation run. For a general discussion of the procedure, the 

interested reader should see [Ml], and for a particular discussion of a 

simulation procedure for the optimum replacement algorithm which requires 

only one pass through the page trace, reference is made to [851. Me 

implemented the latter method for the sector fetch function, FFs, and 

from one simulation run through any sector trace Me were able to plot 

FFs(IMsl s IMPI * k,ST,Fd,Ro)/k as a function of IMPI• 
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Figure 3 conveys the general shape of this bound. 

FFp 

/ FFsljMs) • jMp)k* k,ST,Fd,Ro) 

IMPI 

FIGURE 3. 

lo~er Bound on FFp Given by Theore• 1 
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The utility of such a curve as shoMn in Figure 3 le as folloMs. 

Theorem 1 states that the number of page fetches given by the page fetch 

function FFp(IMPl,N, Ila,ST,Fa,Ra) for the same sector trace cannot be 

reduced beloM the curve shoMn in Figure 3 by any reordering of sectors 

into logical pages regardless of the paging algorithMs e■ployed. 

Given that Me have a procedure for loMer bounding the effects of a 

program's structure on its paging perfor■ance in any virtual memory 

system, an interesting question is, ju~t hoM tight is this bound for 

popular virtual memory systems? If Fa is constrained to be demand fetch 

and Ra is constrained to be LAU, FIFO or Opti ■um replacement, then Me 

could prove, by example, that the loMer bound on FFp given by Theore■ 1 

can be the greatest loMer bound for certain sector traces and• only a 

loMer bound for others. We Mill shoM that it can be the greatest louer 

bound in a folloMing example later in this thesis. 

We Mi I I present and discuss emp1rical results in Chapter 6 Mhich 

ii lustrate that the bound given by Theorem 1 is indeed rather tight for 

real programs running in a paged virtual memory systeM using demand fetch 

and LAU replacement. We Mill not discuss particular e■pirical results In 

this chapter because Me Mant to relate the results to intersector 

reference models, to clustering procedures and to theoretical bounds at 

the same time. lntersector Reference models Mill be developed in Chapter 

4 and clustering procedures in Chapter 5, and in Chapter 6 Me shoM the 

results of applying these methods to restructure real programs such that 
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the resulting nu111ber of page fetches i9 quite close to the theoretical 

bound developed in this Chapter tor 1t0st •eMOry sizes and popular paging 

algorith111s. 

Now consider restricting the fetch ·and -replaceMent policies of FFp 

to be demand fetch and LRU replaceaent. :Under this restriction, can we 

replace the opti11al sector replace111ent policy, Ro, of the sector fetch 

function, FFs, by s0111e leH efficient t)OHcy such as LRU and hence 

produce a tighter l°"er bound on ffp over al I partitions? This I ine of 

logic led to the fol lowing questlon: is 1t true that 

k*FFp(!Mpl,N, lla,STa,Fd,RtRU ) ?. FFs{IMsl • fMp1 * k,STa,Fd,RtRU J? 

It seems intuitive that the above conjecture Mould be true even for 

the case where each logical page contained exactly k sectors. Here, the 

sectored 111e111ory could contain exactly the satle nUltber of sectors as the 

paged memory could contain. Futher111ore, at 111ost k sector fetches would 

be required to bring into Ms the same infor111ai:ion brought into Mp by one 

page fault. One 111ight e,cpect that, for progra111s having a good structure. 

i.e., alt pages contain sectors that are used together, each page fetch 

should produce k sector fetches. Hence, ue have divid.ed the value of FFa 

by k in the conjecture. In spite of its intuitive appeal, we can prove 

that the conjecture is not true far all progru behavior. In order to 

validate this clai111, ue present the following Theore111. 
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Therem 2 

For any two-level virtual memory syste■ V, Mith page size N, pri•aru 

memory size IMpl, demand fetch Fd, and LAU replacement RLRU, then 

there exists a sector tr~ce ST, and a partition ll of relocatable sectors 

into logical pages where each page contains k sectors, such that 

k*FFp(IMpl ,N, Il ,ST,Fd,RLRU J < FFs(fMsl ... IMPI •k,ST,Fd,RLRU J, 

Mhere the value of the sector fetch function FFs is the number of sector 

fetches which occur in a tuo-level virtual ■e■ory V', Mith primary •e•oru 

size IMsl = IMpl * k, using demand fetch Fd, LAU replace11ent RLRU, 

and the same sector trace ST. 

Proof 

Consider the virtual memory system Mith ihe parameters: 

IMPI .. 3 pages 

k = 3 or each page of size N contains three sectors. 

IMsl = IMPI *k = 9 sector frames 

F • demand or Fd 

R = LAU or RLRU 

Program= labcdefghijklJ, a set of 12 relocatable 

sectors of size N/3. 

ST= (adgjklhiefbc) 2 • 

1sr1 = 24 

********************************************************************* 



Consider Il •labc,def,ghi,jkll where A• abc, B • def, etc. Then 

for ST .. adgj'kthiefbc adgjkJhte'fbc 

P ,. ABC 000 CCB BAA MIC ODO CQLBAA 

F d s ABC 088 980 8A0 · 818 liJl8 ;,888 ·,eM 

ALRU • 080 A08 880 808 U8 Ml8 888 tD8 

M~ • ABC 000 CCB BAA -ABC DOil CCB BAA 

AB CCC DOC Cf38 BAB CCC DOC C88 

A BBB 880 DCC tCA· BBB .• eao ,.9CC 

L.ae· I 

Now, we cmrpute the nutlber of eector httchn for the sue sector 

trace. 

ST • adgjk thief ~cadg jklhi efbc 

Fd = adgjk thief bcadg jklhi efbc 

RLRU • 80000 8988a dg jk I h ittfb cadg 

Ms "' adgjk lhief bcadg jklhi etbc 

adgj klhie fbcad gjklh iefb 

adg jklhi efbca dgjkl hief 

ad gJk th iefbc -adgjk. thte 

a dgjkl hiefb cadgj kfhi 

adgjk thief bcadg jklh 
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adgj klhie fbcad gjkl 

adg jklhi efbca dgjk 

ad gjklh iefbc adgj 

Lsame_J 

FF s =- l: 2
i~ 1 I ti I .. 24 sector tau I ts. 

;, FFp • 7 < FFs/k • 24/3 = 8 QED. 

******************************************************************* 

It is interesting to observe that, if the above sector trace, 

ST .. (adgjklhiefbc) 2 , consisting of tuo cycles through the same sector 

reference pattern, uere generalized to a sector trace 

ST= (adgiklhiefbc)n, consisting of n cycles, then FFp • 3+2n and 

FFs • 12n. Hence, FFp is approximately a factor of 2 less than (FFs)/k 

for large n. These last tuo values of FFp and FFs are easily verified by 

observing that the paging and sectoring s1111ulations of every cycle after 

the first are respectively the s.ame. 

In our empirical studies of the paging behavior of real programs. we 

found instances uhere 

k•FFp( IMPI ,N, Il,ST,Fd,RLRU) < FFs(IMsl .. IMpl •k,ST,Fd,RLRU). 

These instances occurred for memory sizes IMPI in the region of low 

paging rates under good p~ogra• structures, i;e., under partitions which 

produced lou values for FFp. 
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We point out in passing that other ei ■ itar atteilpts to bound FFp for 

certain MelltOry constraints faited. For ,mcaapte, 

k•FFp( IMPl ,N, ll ,ST,Fd,Rrlfo) is not lcmer bot.inded bt, 

FFs(IMsl • IMPI .tt,ST,Fd,Rflfo ). 

The interested reader 111ay verify this by going through the 

simulation in the proof of Theore• 2 with Rrlfo and 

ST• la def be ghi jkl de), while keeping everything else the ea11e. 

3.3 Upper Bounds 

Hou large can the value of the page fetch function beco■e by 

choosing the •uorst• progra• structure, that is, the progra■ structure 

Mhich results fro• the partition, n, that •axi ■ lzes the vatue of FFp? 

Theorem 3 

Given any two-level virtual ■eMory syste111 V, Mith page size~. 

pri111ary memory size IMPI, deMand fetch Fd, LRU replace■ent RLRU. and 

any sector trace STa, then for any partition, Ila, of the relocatable 

sectors into logical pages of the progra■, the 11a>eiMu11 nu■ber of page 

fetches given by the page fetch function FFp is upper bounded by 

FFp (!Mp I, N, Ila, Sla,Fd,RLRU ) ~ FF a ( !Ms I • !Mt> I, ST • STa,Fd,RLRU J. 

Mhere the value of the sector fetch function, FFs, is the number of 

sector fetches which occur in a two-level virtual ■e■ory syste■ V', Mith 

priMary memory size IMsl • IMPI, de■and fetch fd, and LAU replace11ent 
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RLRU, using the same sector trace ST • STa. 

Proof: Let: 

ST I 2 L 
~ )( ,>< , ••• ,>< be any sector trace. 

n =- I Il 1 , Ilz ' ••• • Iln l be any partition of sectors 

into pages. 

p I 2 L "' p ,p • ••• ,P be the resu I tant page trace 

computed from Il, and ST. 

M~ = contents of memory of FFp model at tiMe t. 

M~ • contents of memory of FFs model at time t. 

Fp I 2 L Fd of FFp. .. fp,fp,•••,fp -
Rp r' 2 L 

= RLRU of FFp. = • r P ' • . • 'r P p 

Fs f I 2 L • Fd of FFs. .. s • f s •••• ' f 8 

Rs .. rl 2 L • RLRU of FFs. s ,rs • .•• 'rs 

Suppose, at time t in the FFp model, that p1 • z, the page 

containing the set of sectors Ilz is referenced. Then, at time t in 

the FFs model, ><1 = z' is the sector referenced, where sector z' ~ llz. 

CASE 1. 

Suppose p1 ~ Mp1
-

1
• Then f~ .. •• 

l f x1 , Ms'- 1 
, then f~ • ♦, and If~ I .. If~ I• 

If ><1 i Ms1
- 1 , then ·ti= lb'},' Ms1• 1 , and 

I f~ I < I ti 1-
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CASE 2. 

Suppose p' ,' Mp1
"

1 
• Th:en fi • tzl, amt 

r~ • lbl £ Mpt-l under LAU. 

If >e1 ; Ms'·' • then fi • lz' I, r! • tb'·t £ ,npt-l under 

LRU, and It~ I • If~ f. 

If >et E Ms1
•

1
• then f~ = ♦, and If~ I > If! f. This 

cond i ti on causes a prob le■• 

l,le Mi 11 prove that p1 f Mp1• 1 and x1 ~ f1a1• 1 can never occur 

together. 

Assunte >e1 
E Msi-l • Let t' < t, be the largest tiH, t', such 

that ,/ • ,ct, then p1 E tlp1'. Since p1 ~ t1pt-l , then 

there otcurred at least fl'tpl distinct ·1)898 1"eference11 to ·Mp in the 

interval (t-1-t',t-ll none of Mhhm 11tff"e•p'. l...,.efore, these were at 

least tMsl..,IMPI di9tinct 1tector referencn t'o "• tn the interval 

( t-1-t'. t-1) none of Mhtt?h uere •' and .,c't 1ts1• 1 but thl s 

contradicts fla • Ru~u. lttue, ,c'f' ns•-1 if -p1f' rtp1• 1 • 

Hence, :tl, If~ I .! %~1 If! I. and the Theorea 

is proved. 

Coro 11 ary 3a 

FFs(k* fMpl,ST,Fd,Ro)/k ~ FFp(tftpl,N, lla,STa,Fd,Ruw ) .s. FFs(IMpf,ST,Fd,Rd J 

Proof: 

Fol loMs i ■■ediately fro■ Theorns 1, 3. 
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Theorem 3 provides an upper bound on the value of the page fetch 

function, FFp, over alJ partitions, Ila, of the relocatable sectors into 

logical pages for virtual memory systems which e■ploy the popular de•and 

fetch and LRU removal algorithms. Under what conditions Mi II the upper 

bound given by Theorem 3 be the least upper bound or even a tight upper 

bound? 

Let the interval of time between a fetch of any page and the 

subsequent removal of that page be called a page lifetiMe. Now, consider 

a partition, Ile, of sectors into logical pages, such that, during a 

I ifetime, of any page, only one of the sectors of that page is 

referenced. However, let this one sector be referenced any number of 

times in a given page lifetime, and let the particular sector which is 

referenced vary from lifetime to lifetime. Ue will say that such a 

partition satisfies the page lifetime constraint. 

For any partitions which satisfy the page lifetime constraint, it is 

obvious that Theorem 3 is the least upper bound. This implies that the 

extent to which partitions exist which group sectors together which are 

not used close together In time is the extent to which Theorem 3 wi II 

produce a tight bound. 

Since LRU is also a stack algorithm, the values for the upper bound 

given by Theorem 3 can be computed for all memory sizes by one simulation 

of the sectoring activity for FFs(IMsl ~ IMPl,ST,Fd,RLRU ). 
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Therefore,· by applying Theore■s 1 and 3 a ·graph et•i lar in for• to that 

sh01,n in Figure 4 can be obtained. The gap between the hao curves 

represents the range of values of the-page· fetch function, FFp, over al·I 

part i t i on s when de11attd page fetch and l:.:RU page rep I acewen t po I i c i es are 

e11pfoyed. For a particular progra structure, the value of FFp in 

re I at ion to the upper and louer bounds ·can be used to evaluat~ the 

potential of progra• restructuring. 

In Chapter 6, we will present upirical results which show that the 

bounds given by Theorem 3 are quite reasonable for several actual 

progra11s. This i11plies that real f)rograa can hav.e sector arrange11enta 

which result in a lot of page fetches. In fact ue found In our studies 

of real progra111s that the actual value of the page fetch function can 

vary by a factor of tens for two different orderings of sectors into the 

logical pages. Al I of these results for real progr•s are given in 

Chapter 6. However, we wi 11 nou present an e>eatlfJle which ui 11 show the 

logistics of applying TheoreMs 1 and 3. 

3.4 Si11ple E~a•ple of Co11puting Bounds 

Ue have chosen a very si ■ple, co111pressed sector trace of a rather 

9Mal I program so that (a) we can illustrate the actual co■putation of the 

upper and iower bounds and (b) ue can easily obtain the best and worst 

sector partitions. Note that this exaaple does not represent any of the 
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Theorem 3 d giver. by 

b Theorem 1 d Given y Lo~er Baun . 

IMPI 

FIGURE 4. 

The Al lo~able a a Function of IMPI V lues of FFp as 
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real progra111s we tested, since in those case-a, the •iniwM nu■ber of 

references in any sector trace was over U2 •i 111on. Even though this 

e,ca11ple does not represent an actual progra9y it don indicate that. even 

Mhen· 2/3 of this progra11 can fit tnhl pri••Y NIKW"y. there is a Mide 

variation in its paging behavior over sector partitions. It also 

i I lustrates that there are siaple sector traces lfflere ther bounds given by 

Theorems 1 and 3 are siMultaneously the greatest lower bound and the 

sMal lest upper bound, respectively. 

Exa■ple of Results: 

Consider a vi r tua I •••ory qate•, w.i tn paraaeterin 

IMpf • 2. 

k=3 sectors per page. 

F .. demand or Fd. 

R • LRU, or RLRU • 

Program .. {abcdefghi I, a se·t ·of 9 rel ocataltle 

sectors of size N/3. 

ST .. aehae hbdgb dgaeh bf i cf i beha dgadg. 

ISTI • 38. 
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Applying Theorem 1, we compute FFs(IMsl-6,ST,Fd,Ro): 

ST• aehae hbdgb dgaeh bficf ibeha dgadg 

Fd ,. aeh00 0bdg0 00000 0f ic0 0000a dg000 

R0 • 00000 00000 00000 0dga0 0000c fi000 

M~ • aehae hbdgb dgaeh bficf ibeha dgadg 

aeha ehbdg bdgae hbfic figeh adgad 

aeh aehbd gbdga ehbf i Cf i be hadga. 

aehh hhbdg aehbb bcf ib ehhhh 

aee eehbd gaehh hhcf i beeee 

aa aaehb dgaee eehcf ibbbb 

Theoretical minimum• 12/3 • 4 page fetches. 

************************************************--**** 

Applying Theorem 3, we compute _FFs(IMsl•2,ST,Fd,RtRU ): 

ST= aehae hbdgb dgaeh bficf ibeha dgadg 

F d • aehae hbdgb dgaeh bf i cf i b_eha dgadg 

RLRU "' 00aeh aehbd gbdga ehb f i cf i be hadga 

M~ • aehae hbdgb dgaeh bficf ibeha dgadg 

aeha ehbdg bdgae hbfic fibeh adgad 

Theoretical maximum"' 30 page fetches. 

******************************************************* 

There are: 9! • 280 distinct Mays of 
(3 ! ) 9/3 (9/3) ! 

reordering the 9 relocatable sectors into 3 pages. 

******************************************************* 
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Comrider H 1 • labc def ghil s.here page A • abc • etc. 

Nou ue co111pute FFp{IMpl • 2, 8 1 ,ST,Fd,RtRU ). 

For ST • (aehae hbdgb dgaeh bffcf ibeWa dgadgl, we get 

P • ABCAB CABCA BCABC ABCAB CMCA ·BCABC 

F d • ABCAB CABCA BCABC ABCMt CAICA BCABC 

RtRU "' 00ABC ABCAB CABCA BCABC A8CA8 CABCA 

Mi • ABCAB CABCA BCABC ABCMJ 'CMJCA BCABC 

ABCA BCABC ABCAB CABCA BCABC ABCAB 

FFp .. i\. 1 lf~I • 38 page fetches for n1 • theoretical 

Ila>< h1u11t. 

Consider Il2 • tdag beh cfil, uhere page A• dag ,· etc. 

Nou a.ie co111pute FFp(fMpl • 2, R2 ,ST,Fd,Ruru J. 

For ST • {aehae hbdgb dgaeh bficf ibeha dgadgt, ua get 

P • ABBAS BBAAB AAABB BCCCC CBBBA AAAAA 

F "'AB000 00000 00008 8C008 0800A 88888 

R "'00000 00080 08090 8A000 8888C 89888 

ni,., ABBAB BBAAB AAABB BCCCC C88BA AAAAA 

AABA AABBA BBBAA ABBBB BCCCB 88888 
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FFp = I 3
~ 1 If~ I= 4 page fetches for Il2 • theoretical 

minimum. 

********************************************************** 

In the above example, the theoretical ■ ini•u• value of FFP = 4 

from Theorem 1 and the theoretical maxi•u• value of FFP • 30 fro• 

Theorem 3 Mere found to be the greatest lower bound and the s■allest 

upper bound respectively over all partitions, n. 

3.5 Extensions to lower Bounds 

In section 3.2, lower bounds were derived for the case Mhere each 

page contained at most k sectors. In this section, Me would like to 

relax this constraint. 

What were the problems associated with the constraint that pages of 

a partition must contain at most k sectors? There are no problems Mhen 

the sectors are all the same size. Houever, when the sizes of the 

sectors vary considerably, it becomes more compleM to determine the beat 

k. For example, if one chooses k to be, the maMi ■u• nu■ber of sectors 

Mhich could fit into any page, then the set of all partitions are 

al loMable, but the value of 

FFs(!Ms!=!Mp! *k,ST,Fd,Ro) 
k 
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•ight not produce a bound which is as tight as ue can produce. This is 

due to two reasons. First, sinct! rnsJ-fftpl * k, the size of Ms ■ ight be 

I ar-ger than necessary to alN8\f8 ho'hl the aetm-• pr-tNMmt in pages of 11p. 

Note that so11te pages of f1p ■ ight hold f....,. thank sectors and that FFs 

is a 11tonotonical ly decreasing function of tlhl. Second, perhaps Ne can 

reduce the diYisor k when so■e p8gtt9 11Ust COfftetn fewe,, than k sectore. 

On the other hand, if one chooBes k ta l'MI 11GB vatue less than the 

■a><i11u11 nu11ber of sectors which could fit into a page, then soMe of the 

partitions are not considered. 

Ue Mil I nou consider all partitions of relc,c.atat»Je sectors into 

pages. The onty consiraint is as before, 

:t ISj I s. N for al I i, which siaptv 
s1 .. ni 

states that the size of any bf•ock of the partHion in bytes aust be Iese 

than the page size, M, in bytes. Nou that this aet of all partitions ia 

the sa111e as the set of parHtions Mhen k is cho9wn equal to the Ma>eillUII 

nu11ber of sectors which could ,...icall1' Ht Into a page. Hcn.,ever, we 

wl 11 find tighter bounds. 

Consider a prograa which consists of ■ relocatable sectors of 

various sizes. Ue define the •sector size vector•, SS, to be a sequence 

of sizes of thes.e • sectors, SS • tS1 1.1S2 l, ••• , fS.t, euch that 

ISi I s ISjl for at I i s j, 1 s j, i s_ •• Mhere ISi I le the size of Si in 
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bytes. Recall that: 

IMpl is the number of page frames in the 

paged memory, Mp. 

N is the page frame size in bytes. 

NoM Me define a function, f 1 , in terms of IMPI, N, and SS: 

f 1 (IMPl,N,SS) 2 the maximum number of sectors of sizes in 55 Mhich can 

be packed into a set of IMPI page frames of size N bytes each, uhen 

sectors are not alloued to cross page bo~ndaries. 

E><ample. 

Let: 

151 I "" 152 I = IS3 I • 1000 bytes; 1S4 I • 2888 bytes; 

1S5 I .. 1S6 I • 3000 bytes. 

N = 4000 bytes 

then, 

f 1 (1, N, ss) ,. 3 

f 1 ( 2, N, ss) .. 5 

f 1 ( 3, N, ss) .. 6 

Since the computation of f 1 can become a comple>< combinatorial 

problem in itself, Me Mill give an easy method of co■puting an upper 

bound for f 1 • 
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The function· t1 is defined In ter■a of fMpf ,N.SS as fol lous. 

f1 ( IMpf ,N, SSJ • 14 if and only if 

%~. I IS i I ?. I Mp I ~ and zwi:,1, rs i f < f Mp f , .... 

It should be clear that ft (Jf1pf,N,SS-J ,s. f~ (·fftpl.N,SSt for all 

JMpl ,N,SS. For the above e,ca■ple, 

f1 U,N,SJ • 4 

t1 (2,N, SJ • 5 

f1 (3,N, S) • 6. 

Let us interpret a particular for■ of f 1 s that i~, If IMpl • 2. 

then f 1 (2,N,SS) is by definition the ■a>eillUtl nUllbfir of sectors uhich 

can be packed into 2 page fraaes of N bytes each. 

IJe can use f 1 (ftlpl,N,SSJ, f 1 {2,N,SS) and the sector fetch 

function, FFs, to louer bound the page fetch functloN, FFp, as fol Iowas 

Theorem 4. 

Given any two-level virtual ■e■ory syste■ V, with page size N, 

pri ■ary 111e1mry size fMpf, any val id page raplace■ent algori th• Ra, de■and 

page fetch Fd, and any sector trace STa, then for any partition Oa of the 

relocatable sectors into the logical pages of the progra■ , the ■ inl ■u■ 

nuMber of page fetches given by the page fetch hmction Ffp Is lower 

bounded by 

FFp(fMp1,N, lla,STa,Fd,Ra) ?. (fFs(IMsl - ., (H!el,N,SS),ST,Fd.RoU 
f1 Ci,N,SS)12 

- A, 
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Mhere A= 2f 1 U,N,SS}-f 1 (2,N,SS}, and 
f 1 (2, N, SS} 

Mhere the value of the sector fetch function FFs is the number of sector 

fetches which occur in a two-level virtual memory system V', with pri ■ary 

memory size IMsl = f 1 {IMpl,N,SS), using demand fetch Fd, optimum 

replacement algorithm Ro, and the same sector trace ST• STa. The 

function f 1 is as previously defined, and SS is the sector size vector. 

Coro I I ary 4a 

FFp(IMpl,N, Ila,STa,Fd,Ra) 2:. ffFs(!Msl • f 1 (fMpl,N,SS),ST,Fd.Ro>J-1 
f1 (2,N,SSJ/2 

Coro I I ary 4b 

FFp(IMpl,N-, Ila,STa,Fd,Ra) 2:. <FFs(!Msl .. IJ 1 ,ST,Fd,RoJ-1, 
Wz /2 

where W1 equals either f 1 {fMpf,N,SS) or f~ (IMpf,N,SS), and IJ2 

independently of 1-1 1 equals either f 1 (2,N,SS) or f~ (2,N,5S). 

Coro I lary 4b says that we can lower bound FFp in terms of the easily 

computed function f~ • 

Coro I I ary 4c 

FFs(IMsl = !Mp! *k, Ila,STa,Fd,Ro) s_ FFs(IMsf • f 1 (IMpf,N,SS),ST,Fd,Ro) 
k f 1 12,N,SS}/2 

Coro I lary 4c states that the bounds given by Theorem 4 may be tighter 

than the bounds given by Theorem 1 where k is the maximum number of 

sectors which can physically fit into a page. 
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Proof of Theorem 4 

Notation and properties 

L ST I 2 l t • . ed et 8 • >< , ,c , ••• , ,c where >< l 9 the nc t.or ref er enc 

at ti111e t. For virtual ltelK>ry svate11 V and Ffp, hth 

1. n. • tn 1 , 0 2 , ••• , Rn t be any parti ticm of aectors into 

the n logical pages of the progra where each page contains any . 

nu11tber of sectors such thet % JSH .s. N for 
S J f:Ri 

1 .s. .s. n. 

2. P • (p1 ,p2 , ••• ,pt) be the resultant page trace co•puted 

uniquely fro111 ST and na , such that, if -1 E llj , then p' • j. 

3. 

4. 

5. 

F I f2 a • f 1 , 1 

tl E Ila and fl I. 11pl-l 

be the d"1111d fetch po I i cv,, where 

and I tl l • 1 or I·, the 

number of pages in fl . Note that ue have chosen to denote Fd 

for FFp by Fa to a¥oid notational conflict Mith the Fd for FFe. 

Ra ,. r~ be anv reMOYa t po I icy where 

rl E na and rl s; 11p1
-• and lrl I • 1 or I, the 

nu11tber of pages in rl. 
M' p be the set of pages in tip at tiM t and r1':, • 8. 

First we prove Lettt1a S. 
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Lemma 5: 

There exists valid demand fetch and removal policies, Fd and Rd, for 

the FFs model such that 

FFp(IMpl,N, Ila,STa,Fd,Ra) ~ FFs(jMsl • f 1 (IMpl,N,SSl,ST,Fd,Rd)- A, 
f1 (2,N,SS)/2 

uhere A • 2f 1 H,N,SS)-f 1 (2,N,SS) 
f 1 (2,N,SS) 

Proof: 

For the FFs model, Fd and Rd Mill be constructed by forming a 

sequence of valid replacement and fetch policies 

ff1 ,R1 ), ff2 ,R2 ), ••• , (Fh,Rh), uhere: 

1. FI = f 1
1 • f~ •••• , f~ and f\ .. g ( f! ) = 

the set of sectors making up the page inf!, for 1 ~ t ~ L. 

2. Similarly R1 • r 1
1 ,r~ , ••• ,r\ and 

r \ = g ( r ~ ) , for 1 ~ t ~ L • 

3. Fh .. Fd "" f ~ , f~ , ••• , t~ and 

for 1 ~ t ~ L Mhere 

f~ = ,ct and 

d = 0 if ,ct~ M\j1 and IM';j1 l<IMsl; 

f~ = x' and d .. {bl C ntdl if 

x' ~ M'ct 1 and IM'd' • IMsl; and 

M~ .. (M\j 1 u f~ )-r~ to satisfy demand 

sectoring. 
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Since 1Msj ... f 1 (IMpl,N,SS)?:. IIMpll, Lena 4a·saya that the above 

construction e,cists such that 

·Therefore, Me have Fact 1: 

Fact 1. 

I f t, I .. l ?!. °"'l•l If~ I • FFs( IMsl•ft (IMpt ,.N,SS) .ST ,Fd,Rd). 

Nol-4, let's prove Fact 2. 

Fact 2. 

l:\.1 If' I ~ t U 1 (2,N,SS)FFp(1t1pl,N, Ila,STa,Fd.Ra)+f 1 (2,N,SS) •4 ))/2 

Proof. 

J:\., It~ I • t\. 1 lgU! )I. t\., It! ltgH! )I 

s i nee It! I • 1 i ff I g u! JI > 8 and It! I • B i ff 

jgtf!)t = 0. 

Note that I g tf! ) I is the nu•be.r of sec tors in the page specified ~Y t! . 
Also, note that t\. 1 lf!I-FFp(IMpl,N, Ila,STa,Fd,Ra). 

Noi.4 let's compress Fa,. f~ ,f~ , ••• ,f~ to get 

' 'I '2 'L' t F1 • f 1 , fa , ••• , fa by taking out alt the f8 • 8. 
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Clearly :t\. 1 
t L' 't I fa I • :t 1-1 I fa I and 

Furthermore, note that, under the definition of demand fetch, no two 

successive page fetches can be to the same page. This is obvious, since 

under demand fetch a page is fetched and is kept in pri ■ary 111eMory untl I 

it has to be removed to make room for another page. 

There fore no hm successive va I ues g ( f~1 ) and g ( t'!• 1 ) can 

be the same. 

Nou, the sum I f~1 I lg{f~1
) I is clearly maxi111ized 

·if, for al I odd t, lg{f;1) I is equal to the ■aximu• number of 

'I sectors uhich can fit in a page, and if, for all event, Jg(f1 ) I is 

equal to the next maximum number of sectors uhich can fit in a page. 

Thus, 

for odd L'. 
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Note that f 1 (1,N,SS).f 1 H,N,SSl+f1 (2,.N:,SSl-f 1 (21N-,SS), and thus 
2 2 

. for at I L'. 

~ u, (2,N,SS) FFp(IMt>l,N. na,STa,Fd,Ra)+(2t, U,M.SS)-f1 (2,N,SS))/2 

and Fact" 2 is proved. 

Fro• Fact 1 and Fact 2,· we have 

This proves le••a 5. 

Nou, fro• Le111•a 1, we knou that, 

FFs(IMsl • f 1 (lr1pl,N,SS),ST,Fd,ffd) ?. FFa(Jttsl • t 1 (1'1pl,N,SSJ,ST,Fd,RoJ 

Therefore, Theore• 4 follows i•ediate!y. OED. 

Proof of Corollary 4a: 

It fol lows i•11ediately fro■ . the fact that 

8 ~ 2t 1 U,N,SS)-f 1 l2,N,SS) ~ 1. 
f 1 (2,N, SSJ 
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Proof of corollary 4b: 

Coro I lary 4b follous directly from Theore■ 4 and Lemmas 2, 3. 

Lemmas 2, 3 give, 

FFs(IMsl=f 1 (IMpl,N,SSl,ST,Fd,Rol ~ FFs(IMsl-1.1 1 ,ST,Fd,Ro) 

since W1 ~ f 1 ( IMPI ,N,SS). The divisor goes through since 

1.1 2 ~ f 1 (2,N,SS). 

·Proof of carol lary 4c: 

Carol lary 4c follous from Lemmas 2, 3 since 

IMPI *k ~ ~, (IMpl,N,SSl, and k ~ f 1 (2,N,SS)/2. 

To compute the louer bound of Theorem 4, simply make one sector 

s i mu I at ion run through the sec tor trace and record the number of sec tor

fetches for each possible sector memory size. Then for a particular 

value of IMpl, use f 1 (IMpl,N,SS) to select the proper value of FFs and 

divide by f 1 (2,N,SS) to get the bound. 

If the objective is to louer bound FFp over all partitions, then 

Theorem 4 may give tighter bounds than Theorem 1 if the range of sector 

sizes is large. For this is the case uhen f 1 {IMpl,N,SS) < k* IMpj. 

Furthermore, f 1 (IMpl,N,SS) can become substantially less thank* IMPI 

for large values of IMpl. The term, f 1 (2,N,SS)/2, in the lo1,,1er bound 

is the average value of k for- the tuo pages having the largest number of 

sectors. We cannot extend this average over all pages, since every other 

page fetch could be to the page containing the largest number of sectors, 
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Mhi le every intervening fetch could be to the page having the second 

largest number of sectors. Even if all pages are fetched, if the above 

behavior occurs sufficient I y of ten in the e,cecuti on of a prograM, then we 

sti II cannot average over all pages. 

Is there any way to compensate for the case when some sectors are 

much larger than others? For ease in the following discussion, let the 

average vaue of k for the two pages having the largest number of sectors, 

f 1 (2,N,SS)l2, be denoted by k', and let the average size of these 

sectors be denoted by Nik'. In o,rder to i I lustrate some typical values 

one may encounter. we point out that for the real programs we 

investigated, the values of k' were on the order of 3 to 6, and, hence, 

Nik' was 113 tC) 116 of a page for a page size of 4896 bytes. Now let•s 

assume that Me are given a particular program, 0, and we compute the 

value of Nik' and find that there are several sectors whose sizes are 

considerably larger than Nik'. Now consider what happens if we break up 

these large sectors into as many subsectors as we can without increasing 

the value of k'. This new program with the targe sectors replaced by the 

smaller subsectors is called Q*. Given Q*, it is still quite easy to 

compute a sector trace over O* from the address trace. Ue call such a 

sector trace ST*. Using this sector trace, ST*, and the program, 

a•, we can apply Theorem 4 to compute the lower bound on the page fetch . 

function, FFp, over al I partitions, Ila*, of sectors of a• into 

logical pages. Me present two important observations on this lower 

bound: 
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A). This loMer bound is valid over all partitions of sectors of 

a• into pages. Therefore, the loMer bound is certainly true for al I 

the partitions over Q* that are constrained to comply ulth a. That is, 

if a page in a partition of Q* contained one subsector of a sector, 

then it Mould have to contain all the subsectors of that sector. This 

restriction on the set of all partitions over er siMply produces the 

set of partitions Mhich result Mhen reprogramming is not alloued. 

Let Ilar* denote any such restricted partitions of Q*. 

B>. This loMer bound using ST* and Ilar* over a• is probably 

much larger for most real programs than the loMer bound computed by 

Theorem 4 using ST and Ila over a. The rationale for this is simply that 

it Mi I I take several subsector fetches to bring into the sectored •e•oru 

the same information that could be fetched by one large-sector fetch. 

Observation B need not necessarily be true; that is, the lower 

bound Mhich results from breaking up the large sectors could 

theoretically be smaller than the lower bdund computed by not breaking up 

the large sectors. HoMever, this presents no practical problems. Since 

both methods Mi II produce valid loMer bounds, Me simply compute both and 

use the greater loMer bound. In our analysis of real programs, we found 

that the loMer bound computed from breaking up the large sectors was 

substantially larger than the loMer bound computed uhen the large sectors 

were not divided. 
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We Mi 11 nou foraat ize the notions of a" and Si+ and define the 

relationship betMeen Q and a• amt behreen ST and sr. Than, Theore■ 

S is presented, which states that the pave fetch. function, FFp, Is lower 

bounded in ter•s of the sectoring behavior given bgST"'. 

Let, Q - a, u 02 -fset of ■ relocatable sector• of any progra•I 

such that f 1 (2,N,5S)/2 • k/2 and ISi I .s. ISH for al I SI t a1 and 

Sj t 02 • 

Let, SS • Ir, l,lrz.l,••••lrkl,lrk+tl, ••• ,lr .. l be the sector 

size vector of Q; that is, rit Q.and lril .s. lr-11 for I .s. j and 

I rm I .s. N,· the page size. 

Note that Irk I is the size of the largest sector In Oi• 

Further11ore,· note that th'e above construction la always possible. 

Now. Me break up the large aectors of Q into subsectora. Let 

Si • IS i i * l for 1 .s. i .s. k and 

S . IS.• S. • 5 ·• I f k . _.,_ th t ,_ ,,,12,••··•,: or <1.S.MSU""" 8 
I 

This last constraint is sufficient to guarantee that 

(f 1 (2,N,SS))/2 • k/2 does not change because of the nal I subeectora. 

In practice, one could choose ISij• I• Irk I for 1 .s. j < Ii and 

I rk I .s. IS i j* I < 2 Irk I for J ;. Ii • 
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NoM define, Q"• Qj u 02= fset of•• relocatable sectors 

of the same program) 

Mhere aj ... ISj I. S22, ••• skk ) and 

Let, SS" • lrj I, lr2 I, ••• , Ir~, I be the sector size vector 

of a•, I rf I ~ I rj I tor i ~ j. 

Note that (f 1 (2,N,SS)J/2-<t 1 {2,N,SS*J)/2. 

Given any address trace, A, and the sector ordering of the progra■a 

a and Q* for that address trace, Me can easily co■pute: 

ST • 5 1 
, 52 , ••• , 5L for Q and ST*• 5"1, 5*2, ••• ,S'"- for Q*, uhere 

st E a and 5•tf U" • 

Note that, if S~ • Sij* then S1~ Si for 1 ~ts L. 

Thus, Me can also compute ST fro■ ST*. 

Theorem 5 is presented in terms of the above definitions of a• and 

ST*. 

Theore11 5. 

Given any tMo-level virtual ■emory syste■ V, Mith page size N, 

primary memory size IMpl, any valid page replace■ent algorithm Ra, 

demand page fetch Fd, and any sector trace STa, then for any partition, 
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Ila, of the relocatable sectors into the logical pages of the progra■, Q, 

the minimum number of page fetches given by the page fetch function. 

FFp, is loMer bounded by 

FFp(IMpl,N,Ila,STa,Fd,Ra) ~ FFs(fMs! • f 1 (fMpj,N,SS•J,ST .. STa* ,Fd,Ro)- 4, 
f 1 (2,N,SS)/2 

1-1here A "' 2f 1 (1,N,SS) - f 1 (2,N,SS), 
f 1 (2, N, 55) 

and Mhere the value of the sector fetch function FFs is the number of 

sector fetches Mhich occur in a two-level virtual Memory system v•. with 

primary memory size jMsl • f 1 (IMPl,N,SS*), using deMand fetch Fd, 

optimum replacement algorithm Ro, and sector trace ST"' STa*. The 

function f 1 is previously defined, SS is the sector size vector of 0, 

and SS* is the sector size vector of Q*. 

Proof: 

Let a, ST, Q'* and ST* be e,cactly as defined h1111ediately before 

Theorem 5 ~as stated. 

Let Ila*= I Ilj, Il2 , .•• , IT~ l be any partition of the 

relocatable sectors of Q* into logical pages, where page k • nt 

for 1 ~ k ~ n and I Is if' I ~ N. 
S1';tilk 

Applying Theorem 4 to a• gives by simple substitution, 

FFp(IMpj,N,Ila* ,ST* ,Fd,Ra) ~ FFs(IMs! = f 1 (IMp!,N,SS*),ST*,Fd,Rol-4, 
f 1 (2,N,SS* )/2 

and since f 1 {2,N,SS* )/2 "' f 1 (2,N,SS)/2 Me get 

FFp (I Mp I, N, Ila~ ST* ,Fd,Ra) ~ FFs (!Ms I .. f 1 (!Mp I ,N, SS*), ST• ,Fd, Ro)-4. 
f 1 ( 2, N , ss) /2 
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Let Ila= 1Il 1 , n 2 , ••• , fin} be any partition of relocatable sectors 

of Q into logical pages such that t !Sil~ N and Si ca, 
Si Eilk. 

Mhere page k = Ilk for 1 ~ k ~ n. 

Given any Ila, then we construct Ilar• as follo1,1s: 

Ilar"'"' IIlr j , Ilr2 , ... , nr: I such that, 

for al I Si E Ilk, s i j* ( Ilrk* 

for 1 ~ k ~ I· I and page k = Ilrk* for 1 ~k ~ n. 

Now, 

FFp(IMpl,N,ITar•,sr-,Fd,RaJ ~FFs(!Msj .. f 1 (!Mp!,N,SS*),ST"',Fd,Ro)- A, 
f1 (2,N,SSJ/2 

since the set of al I nar* is a subset of the set of al I Ila*. 

Now we prove _that 

FFp(IMpl,N, Ilar• ,ST* ,Fd,Ra) .. FFp(IMpl,N, Ila,ST,Fd,Ra) 

~e need to show that the page trace 

P* = •I ,.2 •l t d f p ,p , ••• ,p , co111pu e ro111 Ilar• and ST11 
, is the 

same as the page trace P = p1 ,p2 , ••• ,p 1 , co111puted fro■ Ila and ST. 

Let ST* .. s·1 , S"'2 , ••• , s•l and ST .. S 1 , S2 , ••• , 5l • 

Let the sector referenced in ST* at time t be S~ for 1st s L, 

Then s•' .. Si j• for some 1 ~ ~ 111' and 1 ~ j ~ Ii , 
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and Sit f llrk* for SOM 1 S. k S. n. Heftce, p.c • k. 

Given s•t • Si j*, then S1 • Si, and, given Si j* t llrk*, 

then Si t Ilk. Hence, p1- k, and we have p~ ~ p1 for 1st SL. 

Therefore, 

FFp(IMpl ,N, llar* ,ST* ,Fd,Ral • Ffp(fMpJ,N, lla,ST,Fd,Ral and 

FFp(IMp I ,N Ila, ST ,Fd,Ra) ?. FFs(Jftal • f1 Httpt,N,Str J ,sr ,Fd,Ra) - A, 
f 1 (2, N,..SSJ /2 

QED. 

The fol lowing sh1ple eM311ple is given to i I luatrate that Theore• S 

can produce a tighter bound than Theore• 4. Thia e,caaple is ■ade as 

sl11ple as possible such that the 11eehanics of applying Theore■ S can be 

presented. 

E>ea11ple: 

Let O = 1S 1 ,S2 •••• ,S 12 I wher-e I Si I • 1888 bytes for 

1 s. s. 8, and !Sil• 4888 bytes for 8 <i $ 12 and N • 4888 bytes. Now 

let's divide Si for 8 <is. 12 into four parts, each being 1898 bytes 

long; i.e., Si beco•es 1Si 1 ,Si 2 ,Si 3 ,Si~I ..tiere 

IS i j I • 1088 bytes for 1 s. j s 4. Thus, 



98 

This represents the compressed reference 

behavior of one pass through a· where every 

..... 

uni t of a· is touched. It is reasonab I e to assume that such sec tor 

behavior could represent one pass through a small loop of a much larger 

real program. 

Evaluating FFp(IMpl,N:4000, Ila,ST,Fd,Ra), gives 6 page fetches uhen 

Ili = ISi+GI for 2 <i ~ 6, and IMpl and Ra take on any values. It 

should be clear that this partition minimizes FFp. 

Theorem 4 gives a loMer bound for FFp of 

FFs(IMsl = f 1 (IMp!,N,SS),ST,Fd,Rol - A= (12/4)-0 ... 3, 
f 1 ( 2 , N, SS) /2 ' 

for al I values of IMsl. Note that f 1 (2,N,SS) • 8 and 

f 1 (l,N,SS) • 4, hence A= 0. Theorem 5 gives a lower bound for FFp 

of FFs(IMsl,. f1 (!Mp!,N,ss·>,sT",Fd,Ro) - A .. (24/4)-0 .. 6, 
f 1 (2,N,55)/2 

for al I values of IMsl. Thus, Theorem 5 gives the greater louer bound, 

and it is a factor of 2 better than the bound given by Theorem 4. 
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Now we extend Theotems 4 and 5 to include the cases Mhere sectors 

can be any size, and we let the sectors cross page boundaries. 

~e now present Theorem 6 which lower bounds FFp over all sector 

orderings SO into then-page logical address space. The sectors can be 

any size and may cross page boundaries. This Model corresponds to the 

case where sectors are clustered together into groups and then these 

groups are packed into the virtual address space. 

Since sectors may cross page boundaries, one may not be able to 

determine the page trace fro■ the sector trace ST. Ue define SOT to be 

the sector trace consisting of ordered pairs of elements: 

SOT .. (5 1 ,0 1 ), (52 ,02 ), ••• , (SL ,OL) where S1 is the 

sector referenced at time tan~ 01 is the offset in S1 referenced at 

time t. Given a sector trace SOT and a sector ordering SO as defined in 

Chapter 2, the page trace follows immediately. 

Note that SOT• is exactly the same as ST* except that the 

elements of SOT* are simply ordered pairs. Also note that the 

construction of Q* is not affected by allowing sectors to cross page 

boundar i es. 

Theorem 6. 

Given any two-level virtual memory system V, with page size N, 

primary memory size fMpf, any valid page replacement algorithm Ra, 

demand page fetch Fd, and any sector trace SOTa, then for any sector 
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ordering SOa, of the relocatable sectors into the logical address space 

of the program a, the minimum number of page fetches given by the page 

fetch function FFp, is loMer bounded by 

A. 

FFp(IMpl,N,SOa,SOTa,Fd,Ra) ~ FFs(!Ms!,. f~ (IMp!,N,SS),ST • SOTa,Fd.Ro)- 4 
f1 (2,N,SS)/2 

and by 

B. 

FFp(IMpl,N,SOa,SOTa,Fd,Ra) ~ FFs(IMs! = f1 (!Mp!,N,SS• ),ST• SOTa* ,Fd,Rol- 4 
f1 (2,N, SS) /2 

1-1here 4,. 2f1 U,N,SS)-f~ (2,N,SS), 
f1 (2,N,SS) 

and Mhere the value of the sector fetch function FFs is the number of 

sector ~etches Mhich occur in a two-level virtual memory system V', Mith 

primary size IMsl, using demand fetch Fd and optiMuM replacement Ro, and 

sector trace ST= SOTa in part A and ST,. SOTa• in part B. 

Proof of Theorem 6: 

Let SOT8 = (S 1 ,0 1 ) , (52 ,02 ), ••• , (SL ,OL), 1-1here S1 I e 

the sector referenced at time t and 01 is the offset. For virtual 

memory system V and FFp, let: 
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1. SOa be any sector ordering of the reletcatable sectors In the n 

pages of the addres• apace of progrN Q. 

2. P - p 1 ,p2 
, ••• ,Pl be the resuH_,t page. tr-ace coaputed 

uniquely fr01t SOTa and SBa, such that pt. (l(S1 J+O'JIN. 

3. · I 2 l Fa • f •. f 1 ••••• '• be the $tllaml- fetch pot icv, where 

t!.. lp1 I or I; f! n npt-l • I. Note th-at NB have 

chosen to denote Fd of the FFp llodef by Fa to avoid notational 

conflict with the Fd of the Ffs Medel. 

4. Ra • r Lr! , ... , r~ be anv reac1Yal pot' lcv under deaand 

fetch, where r: ~ npt-l and Ir! f •1 or 8. 

s. r,p'.. mp1
-
1 

- rl > u fl anct 11p• - •· 

Fi rs t we prove the fol lONing le1111a. 

Le■■a 6: 

There exists a vaf id detland fetch and ret10val pol icy, fd and Rd. 

for the FFs MC>del such that 

FFp (IMpl .N. SOa, SOTa,Fa,Ra) ~ FF st lff•I • t1 lU1pl,Jl.§S) ,!$QTa,Fd,RdJ- 6, 
,, f2,N.SJ:/2 

where d • 2f~ U ,N, S)-f~ (2,N,SS) .. 
f~ (2,N,SS) 

For the FFs Model, Fd and Rd wifl be constructed by forMlng a val Id 

sequence of repface11ent and fetch pol i-cies 
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1. F1 • t'i ,f~ , ••• ,tl1 , and t\ • g(f~) .. the set of 

sectors having any of their parts inf~ for 1 ~ t ~ L. 

2. Similarly, R1 "" r'i ,r~ , ••• ,r\, and 

3. 

4. 

r\ = g(r!) "' the set of sectors having any of their parts in 

r' a for 1 ~ t ~ L. 

Fh - fd = I 2 L fd,fd••••,fd, and 

Rh = Rd '"' 
I 2 L rd ,rd , ••• ,rd• for 1 ~ t ~ L, 

r~"" 0, if ><1 ..f' Mdt-l and lMdt-l I< I Ms I; 

f~ :s ><1 and d,. lbl c Mdt-l , if ><1 K' Mdt-l and 

I Mdt-l I• I Ms I; and Md1 ,. (Md1-Lr~ ) U. f~ to 

satisfy demand sectoring. 

Mhere 

Lemma 4a is still true for this case when sectors May cross page 

boundaries. The proof of Lemma 4a when sectors are allowed to cross 

page boundaries is exactly the same as before e,ccept that we add the 

fol lowing to the proof. lRecal I that z' is the sector referenced at 

ti me t. J 

If it ever occurs that z' t f~ 1 and z' E Mp1• 1 , then 

simply remove z' from ti,. This only reduces the value of 

It} I and it keeps sector z' from being added to the deferral sector 

I is t -when z' is in the sectored 111emory. 
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above construction e,cists such that 

Fact 3 

%\., I t•1 I ~ (fj (2,N,SSlFFplltlpl,N,SO,SOT,Fd,RdU + fj {2,N,SSJ• 4 
2 2 

The proof of Fact 3 is exactly the salle as Fact 2 of theore■ 4 

except that I g (fl) I becottes the nutlber. of aecter• ha¥tng any of 

. t• their parts 1n 1 • 

Hence Le••a 6 is true. La■a S and LNN 1 prove part A of the 

Theore■. 

Proof of part B. 

Given any address trace A and any D, construct o•. SOT, and 

SOT4' exactly as in Theore• 5, e,ccept denote the ete■ents of SOT and 

SOT* as ordered pairs. 

The proof of part Bis al ■ost exactly the aa■e as the proof of 

Theore■ 5. Ue point out the exceptions betou. 
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Instead of applying Theorem 4 to Q* as in Theorem 5, ue apply 

part A of Theorem 6 to Q* and use the fact that 

t1 (2,N,SS) '"' t1 (2,N.ss•) to get 

FFp(IMpl ,N,SOa* ,SOT* ,Fd,Ral ?. FFs{IMs!=f'j (!Mp! ,N,SS*) ,SOT* ,Fd,Rol- A 

f'j (2,N,SS)/2 

In the proof of Theorem 5, ue restricted the set of Ila such that 

subsectors could not be in different pages. Here ue restrict the set 

SOA of a 11 soa• to get the subset SOAR • Let >< E SOA, 

then>< f SOAR if the subsectors of each sector in>< occur together 

as a subsequence of SOar*, and if the subsectors of each sector are 

ordered in the subsequence as they occur in the sector. Ue are siMply 

restricting the set of al I SOa* such that ue get the set of .al I SOa 

Mhen the common subsectors of each subsequence of each SOar* are 

concatenated together. 

Since the above result, FFp?. FFs, is true for all SOa*, ·it must 

be true for any constrained subset of SOa*. In particular it must be 

true for al I SOar*. Thus 

FFp (I Mp I' N, soar* • SOT*. Fd, Ra) ?. FFs (!Ms I - f'j q Mp I' N, ss· ) I SOT* I Fd, Ro) - A 
f'j (2. N, SSJ /2 

Nou ue need to shou, as in Theorem 5, that the page trace P* 

computed from SOar* and SOT* is the same as the page trace P 

computed from SOT and SOa. This is obvious fro■ the construction of 

SOar* and SOT*. That is, P*1 computed from (S*1 ,0*1 ) 
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and SOar• must be the same as P1 computed from (51 ,01 ) and SOa. 

Thus, FFpllMpl,N,SOa,SOT,Fd,Ra) = FFp(IMPl,N,SOar* ,SOT* ,Fd,Ral 

and the proof of B fol lo~s immediately. QEO. 
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3.6 Bounds for Working Set Management 

Theorems 1-5 give upper and louer bounds on the number of page 

fetches required to execute a program in any fixed primary memory size. 

Houever, there are paging algorithms uhich exploit the important progra■ 

property of locality by attempting to dynamically allocate various 

amounts of primary memory space to a program as it executes. Recal I 

that, intuitively, locality means that during a given interval of 

execution a program addresses only a subset of total addressable space. 

Houever, for different intervals, the size of this subset may vary. 

From this notion of locality comes that of "uorklng sets", and a theory 

of primary memory based on this notion has been proposed and extensively 

investigated in (01,02,03). Therefore, Me uil1 extend our definition of 

the page fetch function, FFp, to include uorking set memory management. 

In order to incorporate the page uorking set concept into the 

methodology ue adopted in Chapter 2 for presenting paging algorith■s, 

recal I the fol louing definitions. Assume that: 

Q .. IA,8, •• l is a finite set of logical pages. 

P I 2 L • t . th t 0·. • p , p , ••• , p , s a page . race u I p f 

Mp'~ a is the contents of Mp at time t. 

F = f 1 , f 2 , ••• , fl is the page fetch pol icy. 

R I 2 L I = r , r , ••• , r is the page rep acement po I icy. 

A paging algorithm based on the page uorking set principle is defined as 

fol lous. 
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a. Up (0, T) .. ♦ 

b. Mp t = IJp ( t , TJ and 1Mp1 I • up ( t, T), 0 ~ t ~ L 

. c. f' = ♦ if p1 IE IJp ( t-1, TJ • Mpt-1 , 1 ~ t ~ L 

d. f' - p' i f pt K Up ( t-1, TJ M t-1 .. p • 1 s. t s. L 

e. r',. Up(t,T)-IJp(t-1,Tl; note that I r 1 I s. 1, 1 s. t s. L 

Thus, Me see that under a page Marking set strategy, the contents of 

primary memory at time t, M~, ls simply the ~orking set, Up(t,T), and 

that the amount of primary 111emory allocated to a program expands and 

contracts as the uorking set size Mp(t,T) expands and contracts. A page 

reference at time t, ~, causes a page fetch intQ primary memory If 

and only if p is not in the working set at tl ■e t-1. Note also that a 

page is removed fro111 pr i111ary memory at ti-me t if and only if it is in 

the Marking set at time t-1 and it is no longer in the Marking set at 

ti Ille t. 

From the above discussion, Me observe that the number of page 

fetches required by a program during its execution using the page 

Marking set memory management technique is uniquely determined fro■ th~ 

page trace, P, and the uorking set parameter, T. Therefore, the 

definition of the page fetch function, FFp, under page Morking set 

memory management can be expressed as a function of the folloMing 

parameters: 

FFp = FFp(IM~ I= Mp(t,TJ,N, na,STa,IJp(t,T)). 
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The parameters in this definition of FFp for Marking sets are 

identical to those previously prl!sented for the page fetch function, 

FFp, except for two instances. The first parameter, Mhich denotes the 

primary memory size, is equated to wp(t,T) to illustrate that the size 

of Mp varies Mith the size of working set. The other instance is 

strictly notational, i.e., Me have replaced the fetch and replace■ent 

parameters, F and A, Mith Wp(t,T) to illustrate that the F and R 

policies are those defined for Marking set memory management. We could 

have used Fw and RM, but we think that Wp(t,T) is simply clearer. 

We can also extend the definition of the sector fetch function, 

FFs, such that it denotes the number of sector fetches which occur in a 

virtual memory system during the processing of a sector trace under 

sector working set memory management. 

Consider a program whose behavior is modeled by a sector trace, ST. 

Then the sector working set at time t, Ws(t,T), is defined to be the 

distinct set of sectors referenced in the sector trace, ST, during the 

time interval (t-T,T). The number of sectors in the sector working set 

at time t is defined to be the sector working set size and is denoted by 

ws(t, T). The maximum value of the sector working set size for a given 

sector trace is denoted ws(t,T)max. Note that us(t,T)max ~ T. Let: 

a. Program~ la,b, •• I, a finite set of relocatable sectors. 

b. ST,. S 1 ,S2 , ••• ,SL, a sector trace with S1 E Program. 

Program, the set of sectors in primary memory 
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:at tin t. 

d. F f I f2 · .fl - . . .... ' . the sector · ♦e:tch i,oi icy. 

Then the sector behavior of a ,PN9F:• ustng sector Nertling set aew-v 

a. Usu,. T) • • 

b. nst - Ws{t, l) Md tfl91 I - :"'9'(t, n' • 5. t s L 

c. ft• • tf S1 
E W.U-1,,.f) • fls1

•
1 

, 1 ·~ t ·.s. l 

d. f 1 • st if S1 ~ Ws(t-1~ T) • 'fts1• 1 , 1 :S. t :S. L. 

e. r' • UeU,lJ-Wstt--1,ll, 8 s. t s_ l. 

Thus, the contents of rariaary NIIOr.y at On·t fs the •eetor MOrklng eet 

at tim.e t, Us(t, n, and a sector Mtfer<ene9 at t+.e t causes a sector 

fetch if and on I y if S1 .t' U1tH-l, Tt. Note that the set of sectors that 

are generated by the 11ector ~lng ett1: stretew to'be in pri ■ary ■eltOry 

at tiae t ts WsH,Tt, na •atter·what the •izft of 1he lndividUal •ector• 

are. 

. 
The sector fetch function. Ffs, for ·the aectar ..,,.._ ing set strategy 

FFs • ffs( Itta' I • .wsU, TJ ,ST ,WeU,TH. 

We observe, as before, that the :yafue of the aector fetch function, FFe. 

which is the nu■ber of sector fetches requiNtd to .,...ocee1t a sector 

trace, is unlquetu deter1tined t,y the ST and the .Matt. n paraaeters. 
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The not ion of characterizing the local behavior o_f a progra• in 

teras of its sector working set has two p.6tenti~l applications. The 

first is to ut i Ii ze the t i ■e var ing sector working Nt to identify the 

sectors which should be clustered together in order to ainiMize page 

faults. This application turns out to be very uaeful and is discusaed 

in ful I detai I in Chapter 4. The second is to find upper and loMer 

bounds on the paging behavior, FFp, of progra■s using the page Marking 

set strategy in teras of the sector behavior, FFs, uaing sector Morklng 

set ae■ory 111anage11ent. This approach proves succeaeful for the upper 

bounds but fails for the lower bounds. Even though the approach falls 

to produce lower bounds, Part A of the fol lowing theore■ points out an 

interesting relationship that can e,cist bet~et!n the nuaber of page 

fetches and the nu■ber of .sector fetchee for progr.:a•s using working set 

111eaory 111anage11ent. 

3.6.1 Lower Bounds for Marking Set nanage■ent 

Recall that ws(t,TJ ■a,c is defined to be the aa,cj•u• value of the 

sector working set size for a given sector trace. 

Theore111 7 

Given any two-level virtual ■e■ory syete■ v. with page aize N, 

pri11ary Me111ory size 1Mp1 I • wplt, n, using paged work.Ing aet ae■ory 

11anage111ent l,lp(t, n, and sector trace STa, then for any partition, na, of 
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the rel()catable sectors Into logical pages of the progra• uhere each 

page contains k or feuer sectors, the •inillUII n\.111ber of page fetches, 

given by FFp(ll1p1 I • uptt, Tl,N, lla,STa,Wpft, TH, 

A. is not lower bounded by 

FFs(IMs1 j • wslt,k1 n,st • STa,Ustt,k, l)) and 
k• k2 

B. is not louer bounded by FFs(l"'91 • k• T,ST•STa,Fd,RLBM) .but 
k-

c. is lower bounded by FFs(lnsf • k• we(t, T>•a,c·,ST • STa.Fd.Ro), 
. k . 

uhere the value of the sector fetch function, FFe, is the nu■ber of 

sector fetches uhich occur in a two-level virtual ■enory eyste• V', w1th 

pri ■ary 111e111ory size fMsl, with the sa11e sector trace ST-Sta, using 

sector uorking set •anage•ent in Part A, using deaand fetch, LRU 

replace111ent in Part B and using de■and fetch, optillU■ replace11ent in 

Part C. The value of k1 and k2 are any arbitrarily large integers 

greater than 1. (The value of f 1 is as previously defined, and SS ia 

the sector size vector.) · The value of ws(t,T)aa,c is the ■a,cl ■u• value 

of ws(t,T) over ST. 

Part A of the above theore■ states that there are sector traces 

such that the nu■ber of sector fetches required to process the sector 

trace is arb i trar it y f arger than the nu■ber of. page fetches requ I red to 
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process the corresponding page trace under a good sector ordering. 

Moreover, it states that this is even true Mhen the MlndoM size of the 

sector working set is made arbitrarily large and the resulting nu11ber of 

sector fetches divided by an arbitrarily large constant. I.le clai• that 

this is counter-intuitive, because a) if the sector uorklng set uindoM 

size were simply kT, then the sector Marking set could contain the sa•e 

number of sectors as those contained in a page uorking set of size Ta 

and b) dividing FFs by k alone Mould account for the fact that as •any 

ask sector fetches are required to bring a page of inforMation into 

pri11ary memory. 

Proof of Part A: 

We need to show that there exists a set of para■eters such that 

FFp(IMpt I ,. wplt,Tl,N, Il,ST,I.IP lt,TJ) < FFs(!Ms1 I• us(t,k 1 Tl,ST,l.lsU.k1 TH 
k * k2 

Let: 

T = 2 

k 1 ,k2 = any fixed arbitrarily large integers. 

k = 2 

Program= (abxy), a set of 4 relocatable sectors 

each of size S, where S = Nik. 

ST = ( (ax)m (by)m_)" be the sector trace. 

Il =flab), lxy)) where page A= la,b) and page X s lx,y). 
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P .. ( (A)Hm (AX'J"' )n • (AXJZIM is the page· trace. 

Up(8', T} • Wtri8,k1 n • ·~ 

a. Not.1, it is c I ear fro•' the deflni N·off• of Wp:lt, n and 

P • (AX) zmn that 

FFp(lnp' I - a.,p(t,n,N<, ll ,ST.If, (t,T)J • 2 for atl • and n. 

b. Noa.,, to evaluate FFs. 

ST =- ( (a,c)"' (byt"' ) n illfJHes· F'Failffit I •: we·tt',k1 TJ ,ST ,Me( t, k 1 T)) • 4n. 

Proof: 

Part 1. 

Consider the sub.-stri ng reference p:a,ttern (ft)m. Observe that the 

first reference to this substring· occurs· at tins t • 1+4tli for 

i • 0', 1, ••• , n - 1. Utt:48', k 1 TJ • lt bV ctwfinit Ion. 

Ms(t,k1 T} • {b,yl for t • 1'+4tfi i • 1,2, ••• ,n·..;. 1. 

This is true because for each of thase Uaes, t, the last 2■ reference• 

uere to b or y. Since 2■· > k 1 T, only bandy. can be in WsU,k 1 T); 

and since k 1 T ?. 2, both b and y ■uat mt· in WeH,k 1 J). 

Hence, for each of the n occurrences of the substring (a,c) 111 in the 

sector trace, exactly two sector fetches are required to bring a and ,c 

into the working set, where they stay while proceuing the re■aining 

references in the substring, since k 1 T ?. 2. 
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Part 2. 

Consider the substring reference pattern (by)m. The first 

reference to this substring occurs at times t • 1+■ (41-2) for 

i • 1,2 •.. ,n. 

The l.ls(t,k 1 T) • fa,><} fort• l+111(4i-2), i - 1,2, ••• ,n, since at each 

of these times, t, the last 2m references Mere to a ~r x. Since 

m > k I T, on I y a and >< can be in lols ( t, k I Tl ; and 

since k 1 T ?:. 2, both a and >< must be in lols(t,k 1 n. 
Thus, for each of then occurrences of the substring (by)m in the 

sector trace, tMo sector fetches are required to bring bandy into 

l.ls(t,k 1 T), and moreover only tMo are required since k 1 T ?:. 2. 

Therefore, FFs(IMs' I = Ms<t,k 1 T),ST,l.ls(t,k 1 T)) • 4n. 

NoM, 

FFs/(k*k2) = 4n/(k*k2) > (4k*k 2)/k*k2 = 4 > FFp • 2 

and this proves part A of Theore111 7. 

What causes this strange behavior in the nu■ber of sector fetches? 

Is it true for only strange and rare sector traces or could it be 

e><pected to occur in many common sector traces? I.le claim that this 

behavior could occur in many sector traces. In order to provide so■e 

insight into this claim, consider the sector trace ST• tt 1 cx2 cx3 , 

where a 2 =( (a><)m (by)m )" and a 1 , a3 represent any Ion~ 

sector reference strings. The proof of part A shoMs that the ratio 
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(FF s/FFp) > k2 for the eubstr i ng a 2 , where k2 can be ■ade 

arbitrarily large bg choosing n sufficiently large. Therefore, the 

ratio (FFs/FFpl C'&ll st I ti btt ••• ·arttt tf'!'lr'Hy hn•p for f heed er I and 

a3 by simply Making n suffi.cientty lar'ge. A generality of this brief 

argument says ttfat, when a sech:t1' tt-11ee has any thJbstring consist Ing of 

tight embedded I oops, the nuabet' at' •edtor fetches •ay beco■e ■uch 

larger than the corresponding f'Mlbet" of- page fetches. One e,cplanatlon 

of this pheno11tenon is as fel':f.owsi ·tlgtit inner loops {i.e., {b,c) m ) ) 

drown out the benefit ga·ined by aattlng the nctor window size I arge 

(i.e. , the value of Ws H, n becotlt!W J&;wt: f'f • ,. n. am i I e the outer I oop 

causes the sec tors in the ifflftrr' taupe h, be fetched over and over. In 

contrast, the paged working set having a ••all window size, relative to 

11, is able to contain a11 the sectors in the nbedded loops (i.e., (a,cl, 

{byl) throughout consecuiive cycles of the outer loOJ>, if at least one 

sector fro• each inner loop is gn,uptm ,.-.to the sae page. 

From the above discussion, we observe that the page working set can 

contain more of the II09t recently referenced ~actors than the sector 

Mt>rk i ng set, even when the I at'ter hatJ an arbitrar i I y I c,rge i., i ndou size. 

Ue can eliminate this comHtlott by redefining the sector working set as 

follous. Reca11 that the nctor wrking set, ~s(t,T), has been defined 

to contain the set of distinct sectors referenced in the last T 

references. If ue 11odlfied the definition of Ms{t, T) suet- that it 

contains the set of T •ost recently referenced sectors, and i'f Me choose 

T to be k ti ■es the page working set uindoM size. then the page working 
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set could never contain more of the most recently referenced sectors 

than those contained by this sector Morking set. HoMever, this neu 

definition of the sector Morking set is equivalent to demand fetch, LRU 

replacement in a memory of fixed size equal to k times the page uorking 

set Mindou size. Thus, a plau~ible conjecture ls that the number of 

page fetches under a page Morking set strategy could be louer bounded by 

the number of sector fetches under demand fetch, LAU replacement in a 

memory size as described above. HoMever, Part B of Theorem 7 states 

that this conjecture is not true. 

Proof of Part B. 

We have to shou that there exists a set of parameters such that 

FFp(IMpt I= up(t,TJ,N, Ila,STa,Wp(t,TJJ < FFs(IMsl • k•T,ST • STa,Fd.RLeu)• 
k 

Let: 

Program ,. fa, b, c, d, e, f, g, hi, a set of 

8 relocatable sectors of size N/2. 

k = 2 

N,. tMice the sector size. 

T = 3. 

ST~ (acd bef bgh acd aef b) be the se~tor trace. 

ISTI = 16. 

Ila =- f fa,bl, lc,dJ, {e, fJ ,.{g,h) J, Mhere page 

A = fa, bl·, page B = le, d), etc. 

P = (A BB ACC ADO ABB ACC AJ be the resulting page 

trace. 
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Si-..laHon of pagi·ng behM,tor to get ffp givesz 

P "'ABB ACC AOO ·ABB ACC A 

f w • A88 8C8 808 188 8C9 8 

Uptt, T) • ABB ACC Mil MS ACC ·A 

AA BAA CM OM-BMC 

8 C D 8 

Tcontenta of JilpU, n lMectiately before 6th 

reference. 

Siaulation of sector behavior gi¥H; 

ST • acd bef bgh acd aef b 

F • acd bef 0gh acd 8ef b 

M - acd bef bgh acd aef b 

ac dbe fbg hac dff f 

a cdb efb gha cda e 

acd def bgh hcd a 

ac cde tt,g ghc ti 

a acd efb bgh c 
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Resu I ts: 

FFs .. l: 1
i~I ffdl = 14 sector fetches. 

FFp • 6 c FFs/k ~ 14/2 = 7, QED •. 

HoMever, if Me change the LRU replacement algorith• of Part B to the 

optimum replacement algorithm, then the value of FFp under page Marking 

set management can be loMer bounded. This loMer bound Is given by Part 

C of Theorem 7. 

Proof of Part C. 

Note that IMpt I = 1.1p(t, TJ s. 1.1s(t, Tha,c s. T. 

a. 

FFp(IM~I .. MpH,Tl,N,IIa,ST8 ,t.lp{t,TJ) 

~ FFp' ( IMP
1
1 = Ms {t, nmax,N,Ila,STa,Fd,RLRU ) • 

since Mp1 
• t.lp{t,T) ~Mp,. by definition of t.lp(t,T) and the 

definition of Mp~ under demand fetch, LRU replacement; that is, 

Mp, alMays contains the set consisting of the IMp'I • ws(t,T)max 

most recently referenced pages, Mhile-Mpt contains the set consisting 

of the Mp(t,T) most recently referenced pages. 

b. 

FFp' ( 1Mp'11 = Ms (t, T)max ,N, Ila,ST8 ,Fd ,RLRU) 

~ FFs(IMs I = k*Ms (t,nmax ,ST .. ST.,Fd,Ro) 
k 

by Theorem 1, and this proves part C of Theorem 7 

Coro I l~ry to Theorem 7, Part C. 
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where A and t 1 are defined as in Theore■ S. 
Proof. 

IJe know from the proof of Part C that 

Ffp (fMp1 I .. Wp u,n,N, na,Sl,,ltpH,TJ) 

~ FF~ qr,p I - w9 tt, n .... ·"· Da,ST1 ,F1t.ftiw J. 

and applying Theore■ 5 to Ffp' · proves the corol larv i••ediatety. 

3.6.2 Upper Bournfs for lilorking Set tfanegettent 

An upper bound on the ftUllber of page fetches for vl~tuaJ ■e■ory 

eyste11ts using the page i:aorking eet strategy le given in Theore■ 8. 

Theore■ 8 

Givan any two- leve I vi rtua·I 11'8110l"\I syet .. V, with page size N, 

pri•ary 11ettory size ll'ttt' f • wpH,TJ, using pave working set ■e■ory 

1.anage11tent IJp(t, n. and any sector trace Sta, then for any partition, 

Ila, of the relocatable sectors into logiC'81 pages, where each page 

contains k or fewer sectors, th& llalCl■u• nutlber of page fetches given by 

the page fetch function, FFp, is upper bounded by 

FFp( 1Mp1 I - WP ( t, n ,N, na,STa,l,lp(t, T)) s FFs(fMs• I - w, (t, T) ,ST ,Iola (t, T)). 

where the value of the sector fetch function FFs is the nu■ber of sector 

fetches which occur in a two-level virtual ■e■ory ayate■ V', with 

pri11ary 11e111ory size 1Ms1 I• wslt,T), the sa■e sector trace ST• STa, 

using sector working 9et 11anage■ent l,ls(t, T). 

Proof: 

Let: 
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a = tS 1 ,S2 , ••• ,SmJ = tset of relocatable sectors 

of the program). 

Ila • I I1 1 , I12 , ••• , Iln) be any partition of Q 

such that IIljl :5. k, 

ST = >< I 2 L b t t h ,>< , ••• ,x e any sec or race, Mere 

x1 Ea, 1 :5. t :5. L. 

P I 2 L = p ,P , •.. ,p be the page trace, where 

p1 = j i f x1 
f n j. 

Mp1 • Wp(t,T) be the set of pages in memory 

of FFp at time t. 

Ms1 
• Ws(t,T} be the set of sectors in MeMory 

of FFs at time t. 

pol icy of FFp. 

= demand fetch policy of FFp. 

• Marking set replacement 

Fs =- f~, f~, ••• , f~ = demand fetch pol icy of FFs. 

R I 2 L I· s = rs ,rs , ••• ,rs • Marking set replacement po icy of 

FFs. 

Suppose at time t, in the FFp model, that~ • j, the page j 

containing the set of Ilj sectors, is referenced. Then at time t, in 

the FFs model, x1 = a is the sector referenced, where a E Ilj. We need 

to shou that I\.1 If~ I :5. I~.1 If~ I• 

Case 1. Suppose p1 
f Mp1- 1 • I.Ip ( t-1, T); t 

_then f P • ♦-

a. If x1 
E- Ms'- 1 

= WsCt-1,T), then fi = 0 and If~ I• lfi I• 
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b. If ,c
1 ; Ms1- 1 • lihH-1, n, Utan fi • fat It U.H-1, Tt and 

It~ I < It~ 1-

Ca9e 2. Suppose p1 ~ np1• I • Wp(It-1, Tl; then f~ • ljl. 

a. If ,c1 K Ma1• 1 • Us {t-1, T), then t! •·tw K W.H-1, TJ and 

It~ I. - I t~ I. 

b. If )Ct c; Ms1- 1 • WsH-1, Tl, then fl • t and 

If~ I > If~ I• This condition i I lustra.tn the only way that page 

fetches can e,cceed sec·tor fet'Ches. Mtn,e...,., if • shou that 

p1 ...r Mp H-1. T) • > ,c
1 ..f' Wslt-1, n, then aase 21> can never occur. 

Let p1 K Wp ( t-1, TJ, and a'99Ulte 'llit c; h':H-1., TJ. Since x1 E Us ( t-1, T) • 

there e>eists a ti•e t' in the ionterv,a•I u.:.1-T,t-U such that 

><1 = ,ct' • Let p11 
• k be the page refer-~ at Hitt! t' in the 

page trace P. IJe know that ,c"E Rk, since sect•• are not al lowed to 

cross page boundari·es. We also JffloM that pr t WpH-1, TJ because the 

i.tindow wize is T for btrih tt,e page worltlng aet Mp and the aector i.tarking 

set Ws. But this contradicts the httWlfJtion1 therefote 

,c1 ~ W-s(t-1,T). 

Hence, t~.1 If~ I s %\.1 I ft I and the theore■ i • r,roved. 
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CHAPTER 4 

INTERSECTOR REFERENCE MODELS 

In the previous chapter, ue presented upper and louer bounds on the 

number of page fetches uhich could occur in a virtual memory system, for 

a given program reference behavior, over any restructuring of the 

relocatable sectors into logicat pages of the program. The next phase Is 

to develop and present practical techrriques for restructuring a progra■ 

to achieve good I oca I i ty of reference for the progralR in vi r tua I memory 

systems. The task of program reorganization for virtual memory systems 

ui I I be separated into tuo logical parts. The first part is to develop 

automatic techniques for identifying the dynamic intersector reference 

behavior of programs executing in virtual memory systems. The second 

part is to provide clustering procedures uhich utilize the intersector 

reference behavior to rearrange the relocatable sectors of a program into 

its logical pages such that good locality of reference exists in the page 

trace of the restructured program.· The basic idea of the second part Is 

to assign the most strongly related sectors to common pages. 

In this chapter, ue address the problem.of lntersector reference 

models. In the next chapter, automatic clustering pro.cedures are 

presented, and finally, in Chapter 6, the results of applying these 
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■ethods to reat progrns are investigated and cottpared Mith the 

theoretical bounds. 

4.2 lntersector Reference t1odels 

I t is knoun that a progratr' s page r11,fer-eftce patterns have a s tr-ong 

effect on paging perforunce i:n vh·tua1 1iell0f"1J 9gtitetRs. It is al so knoun 

CHU that the sector reference behavi,or o'f 'tranV c0tn1on progra11s, such as 

co111pi lers. asseMbters, editors, e1tc., ~ov11s to be re11arkably insen11i tive 

to the input data in rather large do•atns. For eMBllple, the studies of 

Hat f i e Id and Gerald EHl J rev.ea 1ed t.flat the groups of sec tors Mh i ch uere 

used frequently together in the a:sset1bty of one. progra■ turned out to be 

essentially the sa11e as the groups .of ncters which uere used frequently 

together in the asse■bty of another progrn. The basic difference 

betueen assemblies uas that the groups of sectors which were used 

together for short hiput progra■s uere shtply used together 111ore often 

for long input progrns. Supported .by these e11plrical observations of 

Hatfield and Gerald, ue decided to characterize the reference beha~ior of 

a program by its sector trace and to base our practical restructuring 

Methods on this reference behavior. l,le Mill elaborate on th~ soundness 

of this decision in Chapter 6 wl!ten ue co•pare the paging perfor11ance of 

r-eal programs over prograa structures deri•ed frOlt different sector 

traces. 
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Another important reason for basing restructuring Methods on a 

sector trace is that the results of the last chapter May be used to 

compare the paging behavior of a restructured program with the 

theoretical best and Morst paging behavior for that sector trace. 

Given a sector trace, our objective is to specify the strength of 

the intersector references such that a clustering procedure that groups 

the strongly connected sectors together into logical pages produces a 

program structure that tends to minimize the number of page fetches. We 

begin by presenting Hatfield and Gerald's [HGJ intersector reference 

model for defining the strength of connection between sectors. 

4.2.1 The HG lntersector Reference Model 

The HG intersector reference model consists of a symmetric matri><, 

H, shoMing the strength of ~onnection between the sectors of the progra■ 

to be reorganized. Let: 

Then 

Q = 1S 1 ,S2 , ••• ,Sm) be the program of m relocatable secto'rs; 

ST= S 1 ,S2 , ••• ,SL be a sector trace of the program. 

H .. [Hij) for i,j = 1,2, ••. ,111, where Hij • t\. 1 k(i,j,t}, 
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uhere k ( i , j. tJ • 1 if st si andSt.i • l, or gt • j ancf 51♦1 • i ; 
and k ( i, j, tJ • 0 otherMi se. 

Thus, the value of Hi j is si,tlfl'IY the nuttber .o'f tiaes that sector 

referenced sector j plus the n.Ultber 1tf ·UMe ·that eector j referenced 

sector i in 1he sector trace. 

Using this intersector -reference ltOdel, Hatfield and Gerald uere 

ab I e to find iinprovettenh in the nwaber e·f ·~ f8'tches on the order of 

tuo-to-one to ten-to-one by cltHJteri-ng nc+or-• •·ittt large Hi j va1Uft9 into 

the same page. This ·is the sa.e ae ch.ta,leriflg sect.rs int1> pages 9t.1Ch 

that the value of Hi j is naf i for i and j ln dH-fer-ent pages. 

Even though these results are quite ittpreeaive, the values of Hi j In 

the HG intersector reference •odel do not contain any inforination about 

the I ength of the ti•e in·terva·I between aucceseive references of sector I. 

to sector j. Hence, the strength of connection, Hi j, betueen sector i and 

j is the satne for large ti11e inler¥&1s and short H•e intervals. 

Houever, paging may depend quite heavily on the length of these ti ■e 

i nterva Is. For e,ca111pte, assu11e that sector I references sector j 188 

ti ■es (Hij = 100) in a sector trace of 288,188 references. Now let•s 

consider tMo different plausible exaaples of hou these references could 

occur. First, these references could occur with short ti•e inter~als 

between them such that a1 I 188 references occur within 580 succes'sive 

references of the sector trace. Second, these references could occur 

with sotile long ti11e interval11 betueen the■ euch that 18 of these 

references could be found in each 20,888 successive references of the 
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sector trace. Even though the strength of connection ls the same for 

these tuo examples, the tendency for a reference from sector to sector 

j to cause a page fetch uhen they are not in the saMe page can be 

considerably larger in the second example, 

Furthermore, the tendency of a reference froM sector i to sector j 

to cause a page fetch is related to such local information as the tiMe 

elapsed since the last reference to sectot j and the number of distinct 

9ectors referenced since the last reference to sector j in the sector 

trace. If the time is short since sector j Mas last referenced, and 

I ittle virtual memory space Mas used during that time, it is probable 

that sector j is sti I I in primary memory and a neM reference wi I I not 

cause a page· fetch. If the time and space traversed betMeen references 

to j is large, it is likely that a page fetch uill occur unless j is 

grouped into the same page as the referencing sector or some recently 

referenced sector. We will nou present tuo intersector reference Models 

which have potential for identifying and incorporating local sector 

reference behavior into the strength of connection between sectors. 

4.2.2 Working Set Intersector Reference Models 

The sector working set, Ws(t,T), will be used to define the strength 

of connection between sectors for a given sector trace. 

Let: 
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Q "' fS 1 • 5 2 •••• S■t IIH! a •,~n of •-reh»catable sectors. 

ST .. 5 1 • s2 ••• ~ st be a sector 'tracs of the progra• 

uhere 5t t Q. 

P .. pl ,P2 , ••• PL be the restJIHng page trace of the 

progra11 uhere pl i:s the •P898 referenced at ti ■e t. 

If S1 .. Sj ls the sector referenced at ti ■e t, then we define 

P1 • Ps j to denote the page referenced· a·t ·o- t. Pa J is to be 

interpreted as the page contahtlng sector j. Utt have adopted this 

notation ·to 111a1(.e the foHo~ing dl90ft9i·tm easter to understand. 

· Recal I that the sector •war-king Mft, w.u;n, is defined to be the 

set of distinct sec-tors reter-.mced in the ti,•• interval t-T to t of the 

sector trace. S+••Harly, •tfflt ,page wo..-.tflg set, MpH, T), ts the set of 

dlstinct JJA"ges re·f-erem:1td ln the tille rfttw-ftit t-T tat of the page 

trace. 

FACT 1. 

Let S 1 = S j tr and let S j ,' We U-1, H • Then P1 • P s j I Up U-1 , T) 

i ff S j ~ Psi for some Si • Us (T-1, TJ. 

The proof of Fact 1 follows i ■■ediately fro■ the definition of 

IJp(t-1,TJ, uhich is the set of dhtinct -pages in the sequence 

P t-1-T p· t-T p· t-l d th def" . t. f s • s , ••• , s , an e . 1n1 . ,on o 

IJs(t-1. Tt, which is the set of distinct sectors in the sequence 
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St-1-T 5t-T 51-1 , , ... , . 

Fact 1 states that, Mhen sector j is referenced at time t and sector 

j is not in the sector Morking set, then the page referenced at time t 

Mi I I be in the page Morking set if sector j is .grouped into a page Mith 

any one of the sectors in the sector Marking set. Furthermore, it states 

that the page referenced at time t Mil I not be in the page working set If 

sector j is not grouped into a page with one of the sectors in the sector 

Morking set. 

FACT 2. 

Let S1 = Sj and let Sj E IJs{t-1,TJ. Then pt .. Psj E l-lp(t-1,T>. 

Fact 2 also fol lous immediately from the definition of IJs(t,T) and 

IJp ( t, T). 

Fact 2 states that, when sector j is referenced at time t and sector 

j is in the sector working set, then the page referenced at time t Mill 

be in the page working set. 

FACT 3. 

IJe want the entry l-lij + IJji in the intersector reference model to be 

the number of pag~ fetches Mhich Mill go away if sector i and sector j 

are grouped into the same page. 
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Using the above three facts as a basis, Me present the procedure 

for constructing the intersector reference model, W = [Wij], for i, j • 

1,2, .•• ,m. At each instant of time, t, for 1 ~ t ~ L, do the fol l01,1ing. 

Step 1. If 51 = Sj and Sj ~Ws(t-1,T), then incre111ent Wij by 1 for all 

Si f Ws(t-1, TJ. 

Step 2. If S1 = Sj and Sj ¥ Ws(t-1,TJ, then increment Wjj by 1. 

Step 3. If 51 = Sj and Sj E Ws(t-1,TJ, then no increment is required. 

Simply stated, the above procedure Morks as fotloMs. If sector j is 

not in the sector uorking set Mhen it is referenced, then increment its 

connectivity strength Mith all the sectors in the sector uorking set. 

Moreover, if sector j is in the sector Marking set uhen it is referenced, 

then do not change the- strength of connection betMeen sector j and the 

other sectors. 

We observe that the value of the intersector strength becomes 

Wij = I\_ 1 k(i,j,t), 

uhere k(i,j,t} = 1 if 51 = Sj ~ Ws(t-1,TJ and Si E Ws(t-1, TJ, 
1 if 51 = Sj, Ws(t-1,TI and i s j, 
0 otherl4ise. 

Note that Wij + Wji is the number of page fetches uhich Mi I I go away 

if sectors i and j are grouped together in the same page. The sum of the 

diagonal elements of the intersector reference model, Ij. 1 Wjj, is 
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the number of sector fetches which occurred for the sector Marking set. 

This Mi II also be the number of page fetches for the page Marking set If 

no sectors are combined together in pages. The number of page fetches 

after combining only sectors i and j will be l:";.. 1 &Jjj - IJij -IJji. 

FACT 4. 

If exactly two sectors are grouped into each of then logical pages. 

then the number of times a page is referenced and not found in the page 

Marking set is given by 

"ffl 11 • • 
'-J•l"JJ - :t IJi. + IJji .. Pk J I , J t 

i - j 

for 1 ~ k -~ n. 

Fact 4 fol lows directly from the construction of IJij, since IJij + 

IJji is the number of page fetch•s Mhich are eli ■ inated-by grouping i and 

j together in the same page, and since grouping I and j together does not 

affect the value of l,lkl + 1411c for grouping any other two sectors 

k and I together in a different page. 

Unfortunately, we cannot extend Fact 4 to handle the case when ■ore 

than two sectors are al lowed to ba grouped into a page. This occurs 

because the matrix, IJ, does not contain enough information to determine 

the number of page fetches which will be eliminated by grouping three or 

more sectors into a page. For example, IJjj is the number of fetches of 

sector j. IJij and IJkj are the number of times that sector i and sector 

k,respectively, were in the working set when a fetch of j was made. The 
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proble• is that sectors i amt··kbothuyhavebeen in the sector uorking 

set at the ti 111e that a reference to j caused a fetch. Let the number of 

sector fetches of sector j, which will be resolved by grouping sectors 1, 

k, and j together into a page, be denoted by Rikj. 

Then, 

MA)( CIJ i j , IJk j] ~ R i k j ~ 1,1 i j + Uk j. 

I.le should point out a:t th"is tin that the above relations can be 

ut i Ii zed in a c I uster ing procedure. Suppose sectors i, j, and k are 

grouped together into a page. Then the unresolved sector fetches of i, 

j, and k, denoted by U' ijk, is the nwmer of page fetches of this page 

which Mi 11 occur if no other sector is grouped with i, j, and k. 

But 

U'ijk ~ Uii + Mjj + Ukk - MIN[Rikjl - MIN [Rijkl - MINCRjkiJ. 

Note, al so, from Fact 4, that 

u• i j "'&Ji i + &Jjj - Ui j - Wji, f.or tha ca-se of two sectors in a page. 

Therefore, a clustering procedure could dynamically deter11ine a louer 

bound on the nu111ber of page fetches which could be resolved by adding 

another sector to a page. 

Since the value of Uij depends on the window size T of the sector 

working set &Js(t,T), we need to elaborate on how one selects a "good 

value" for T. 
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For real programs, Me measured the improvement in paging perforMance 

for restructured programs as a function of T. That is, Me computed the 

· intersector reference model~ for various values of T, and for each U Me 

restructured the program and computed its paging performance. The 

detailed results of these experiments are presented in Chapter 6. 

HoMever, the significant characteristics of these results are as fol loMs. 

For a given program, the best improvements in paging performance, as a 

function of T, occur for a rather large bandMidth of T values. For 

example, values of 1000 ~ T ~ 5800 produced essentially the same and the 

best improvement in paging performance of certain programs. For al I 

programs tested, the bandMidth of T values that resulted in the best 

improvement in paging performance Mas several thousand instructions: 

hoMever, the location of this bandMidth of T values in the set of al I T 

values varied from program to program. A serendipitous observation of 

the correlation betMeen the banduidth of good T values and the "knee" of 

the parachor curve of the sector fetch function, FFs(IMsl,ST,Fd,Ro), 

produced an interesting empirical result~ 

The parachor turve is .a graph of FFs(IMsl,ST,Fd,Ro) versus the 

amount of primary memory IMsl available for execution. A typical 

parachor curve for FFs is shoMn in Figure 5. The value of FFs is a 

monotonically decreasing function of IMsl. For most observed progra■s, 

there is a threshold region at uhich, 

a} if the amount of primary memory is decreased further, the number of 

sector fetches increases very rapidly, and, 
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b) i f the amount of pr i Mary -.e11ory is increased further, the number of 

sector fetches decreattes very slm.1ly. 

This threshold region is depicted rn Figure s·and is cal led the knee 

of the parachor curve. The values of f11sl i-n the knee of the parachor 

indicate hou many sectors are requfred to be in the pri•ary ■e■ory to 

11aintain a "reasonabt-e• level ·of -perfvr:.ance. 

let the average sector Norking set size be denoted by Ms (T) and be 

defined as, 

Ms (TJ .. (ltl)·Z\.1 ws(t,n 

Now ue present a •e·thod which identifie-e values of the uir,dou aize T 

for use in the construction of the t11ter19ec1:er reference Model W. 

Exper imentat Resu It: 

For a I I the progra11s we tested, the bam:l&frdth of T va I ues which 

resulted in the best r11Prove.ent in pagi·ng perforaance corresponds to 

those values of T for which ··the 8'11!rllge ·sector uorklng set size w9 (T) 

uas equal to 

a) sonte value of tMsl in the knee of the parachor curve of 

FFstlMsl,ST,Fd,RoJ, -0r to 

b) some value of tMs I s I ightf y natter than those values of !Ms I found in 

the ~nee of the parachor CUf''Y8. 

This e,cperi1111mtal re&Ult was particularly handy in our research, 

s i nee we had a I ready coMputed the parathor -curve of · FF s ( I Ms I , ST, F d, Ro) 
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4:2___ FFs (IMsl,ST,Fd,Rol 
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Va I ues for L.1 5 fl) 
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FIGURE 5. 

Parachor Curve of FFs {IMsl,ST,Fd,Ro) 
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for use in establishing the lover bounds. 

If the window size, T, is very s■atf, for e><aMple T•l, then the 

value of Ulj is Much larger than the nu■ber of page fetches resolved by 

group i ng i and j together for aos t ■e11ory s i:zes. On the other hand, i f 

the va1ue of T is very laige, for exa11ple 26,888, then the value of l,li J 

is 111uch snta I I er than the nU11ber of page fetches reso I ved by grouping i 

and j together for 11ost ■e111ory sizes. Houever, if T is such that the 

average working set size ls in the knee of the par-achor curve, then the 

value of· wi j represents the intersector ac_tivi ty Mhen the prograM has 

just enough space to e,cecute efficiently. This corresponds to the 

intersector activity that ue wmt to represent in. the inter-sector 

reference Model, U. 

In addition to the aboYe i·ntersector reference ■ode I based on the 

sector working set, we decided to Investigate the potential of the 

fol lowing model. Let the intersector reference, M', be a• x • Matrix 

defined as follows: 

IJ'ij,. I\. 1 k(i.j,t) for i.j • 1,2, ... ,a, 

where k(i,j,t) 2 1 if S .. Sj E Ws(t-1,TJ and Si E IJs(t-1,T); 

0 otherwise. 

The value of U'ij is the nu■ber of ti ■es that sector j was 

referenced when sector j and sector i uere both in the sector working 

set. Therefore, if the value of U' i j is large, then Si and Sj were in 

the sector Morking set together ■any ti ■es. Note that U' jj is the nu■ber 



136 

of references to sector j Mhich Mill not cause a page fetch. In 

contrast, Wjj of the previous model is the number of references to sector 

j Mhich Mi I I cause a page fetch unless Sj is grouped Mith some Si. 

HoMever, W' i j does measure the tendency for sectors. i and j to be found 

in the sector Marking set together. Clustering procedures Mhich group 

sectors into pages Mith large W'ij values will tend to reduce the size of 

the page Morking set and hence increase the locality of the restructured 

program. 

We conclude Mith a feM comments about the intersector reference 

models based on the sector Marking set, Ws(t,T). The HG intersector 

reference model, H, is a special case of the intersector reference model. 

W. They are the same when Wis computed from a sector working set with 

windoM size, T, equal to one. The notion of using sector working sets to 

define the strength of connection betMeen blocks has been investigated 

concurrently but independently of this Mork by Masuda CMG) and Ferrari 

[Fl]. Masuda's use of block working sets is quite different from this 

Mork, Mhi le Ferrari's is similar in some aspects. 

4.2.3 LAU Stack lntersector Reference Model 

The "LAU sector stack" will be used to define the strength of 

connection betMeen sectors for a given sector trace. 
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Consider dehland fetch. LRtJ replacMttmt on a sector trace, 

ST S I 52 5t gl , • , ••• , , •••. ,, , O¥er 

Fro• Chapter 2, we know that Ult aati11fln the i111elusion property, i •. e •• 

f1s' ( 1 t ~ Ms' (2l ~ • • • ~ tte' f•1 ) • ffs:t t•• +1) • "91 t•' +2) •... 
uhere Its' ( j t is the contents of the aector HttOr\J "'9 at ti ae t uhen the 

size of '1s is j sector fr ans (i.e., Hts' I • j), and •' is the nu■ber 

of di st inc t sec tors ref.erenced tn the sequence S 1 • s2 , .•. , S1 • 

Because of the inclusion property,, the priaary 1tettory contents rta1 

at any H•e t and for alt ca,acities can be reprttsented in the fol louing 

terse and useful way_. We order the di9'ttnct se·t of sectors in the 

sequence S 1 ,S2 , ••• ,s' into a ti,at ca•lt-ed the UIY sec-tor stack which 

is defined as SS1 • SS1 UJ,SS1 {;2J, •••. ,SS1 laf) ...,_.., 

SS' (it • Ma1 (i)-th,1 ti-tJ. Not,e that 

rts1 ( i) .. ♦S51 U) , 551 (21, ••• SS1 ( U I tor 
1S51 U) , S51 (2), ••• SS1 ta1 )) for 

< •'. - . 
> •'. 

The LAU sector stack ha• no entries at tilN t • 8. The top of the 

stack is defined a,s ss' U), whil-e the botto■ of the stack is defined as 

sst , .. t •. 

The LRU sector stac.k, just after sector reference st at ti•e t. is 

simply the I ist of the set of ■1 sectors of the prograt1 ordered 

according to recency of usage; i.e., SS1 tkl •s the kth 11ost recently 

used sector relative to st. 
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The position of sector j in the stack just before sector reference 

S', at time t, is defined as the sector stack distance and is denoted 

by A' j. Furthermore, 4 1 j == aa if Sj has not been referenced. Thus, 

A1 j -fk if ss' (k) "' Sj. 1 ~ k ~ m' 
l "° otheri.,i se 

From the definition of stack distances, ue observe thats'= Sj 

Mi 11 cause a sector· fetch under demand fetch, LRU replacement unless 

A' j ~ I Ms I 1r1here !Ms I is the number of sector fra11es in the sectored 

primary memory. 

Nou, ti.,o facts are presented Mhich relate the sector stack distances 

at time t uith the parameters of a paged virtual memory system using 

demand fetch and LRU replacement on the page trace 

P I 2 I L IM j = p ,p , ••• ,p , •.• ,p in a primary memory of p page frames. 

The page, p1
, referenced at time t must contain the sector st, 

referenced at time t. 

FACT 1. 

let 51 = Sj, and let 61 j > jMpf. Then P'E Mp1 if Sj is 

grouped into the same page Mith some Si i.,here 61 i ~ jMpj. 

Proof. 

Note that 61 j > IMPI states that the sector stack di stance at t i•e 

t to sector j is greater than the number of page frames in Mp. 

Suppose Sj is grouped Mith some Si, Mhere d1 i ~ IMpl, Then the sector, 
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S-i, is uong the l,f!fpl 110st f"eceff•tl'1J' referenced ttector1r. Therefore, the 

page- containi119 Si wst N aaong, Ute ~f wet rec1mOy r.eferenced pages, 

since we are aasutti"'9 that the ·tteetor·e are Nat ler th-. pages. 

FACT 2. 

Let .S1 - Sj, and let A1 j :s, lltpf. Then p1 , n,,1 ~ 

Fact 2 fol lcm-s fl"o• the arguaent applied to- Si in Fact 1. Me can use 

Facts 1 and 2 as a basis for defining the strength of connection between 

sectors. Fact 2 states that, if 51 • Sj and A1 j :s, fMpl, then Sj ui f I 

not cause a page fetch; hence, for such references, the strength of 

connection betueen Sj and the other HCtora need not be increented. 

Ho&iever, if 41 j > INt>f, then Sj Milt no.t cause a page· fetch when ft fa 

grouped 1-fi th any sect1>r Si Ni th a1 i ~ lftt>I. For the tatter case, the 

strength of connection betMNn Sj and at t Si Mith &1 i :s, IMpt Mi 11 be 

increMented by 1. 

NoM, 1-1e define the intersector reference Model baaed on the LRU 

sector stack distance as a • x • ■atri>c, U, Mhera 

U i j ,. I\. 1 V (i .j , tJ and 

1 if S1 
• Sj and 41 j > D and A1 i ~ D; 

V Ci, j, t) • 1 if S1 
... S j and A1 j > 0 and i • j; 

0 otherwise. 
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If the value of Dis one, then the intersector reference model, U, 

· is the same as the intersector reference model of Hatfield and Gerald. 

HoMever, Me got the best results (feMest page fetches after 

restructuring) Mith values of D equal to the number of sectors, IMsl, 

corresponding to the high side of the knee of the parachor curve 

FFs(IMsl,ST,Fd,Ro). Figure 6 shoMs the typical shape of FFs as a 

function of IMsl and the range of the values of O which gave excel lent 

results for al I real programs Me investigated. 

One explanation Mhich provides some insight into why the values of 0 

corresponding to the knee region of FFs produce reasonable values for the 

strengths of connection betMeen sectors is as follous. 

If O is very smal I, say 1, then the strength of connection betMeen 

tMo sectors, Uij, is proportional to the number of page fetches only when 

the paged primary memory has one page frame. However, most large 

programs Mi I I not execute efficiently uhen allocated one page frame. If 

the value of IMpl for efficient execution is much larger than 0-1, then 

the strength of connection Uij for some i and j may not even be loosely 

proportional to the number of page fetches resolved when they are grouped 

together. For very smal I values of 0, Ulj may be excessively larger than 

the number of page fetches uhich are resolved by grouping i and j 

together; for very large values of D, Uij may be excessively smaller 

than the number of page fetches resolved uhen i and j are placed 

together. Values of Din the region of the knee of the curve represent 
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the intersector activity ~hen the program has just enough space to 

execute efficiently. This is the intersector activity that ~e ~ant the 

interGector reference model to measure. 
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CHAPTER 5 

CLUSTERING PROCEDURES 

5.1 Introduction 

The purpose of this chapter is to present the automatic clustering 

methods Mhich Mere used in conjunction Mith the intersector reference 

models to restructure programs. The experimental results which show the 

effect of these clustering techniques on the paging performance of 

restructured program~ are presented in Chapter 6. 

5.2 Clustering Procedures 

The clustering methods presented in this chapter may be applied to 

any of the intersector reference matrix models of Chapter 4. ·Hence, ue 

Mi I I denote any of these intersector.reference models with the.generic 

C • CCijl. In those cases where a particular intersector reference 

model is needed, the notation of Chapter 4 will be used. 

We knoM of no efficient procedure to produce and prove the opti ■al 

partition of sectors into pages to maximize the sum ot the intersector 
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connect ions Ci j ui thin al I pages. ·several clustering procedures based 

on heuristic approaches are pr-esented in this chapter uhich have the 

fol louing significant properties.. First, they are coapletely auta11atica 

that i s, these procedures are -not ·IIJaH:d -on -.....,. I or • eyeba I I • 

reorder ings. Second, al f these procedt.tres-produced re11tructur·ed 

progra•s uhich showed substantial iaproYetNn~• in their paging 

per for11tance. Thi rd, these clustering pr,oced,.,N,s are quite fast .. • 

The technique of the fol louing cluetering procedures is to take an 

intersector reference •odel-of inter11ector IJcmd strengths and cluster 

relocatable sectors into page-s such that 1fite 9UII of the sector bonds 

within p-a'1es tends 0to be ll&J(i•ized. 

5.3 Nearest Neighbor Methods 

In this sect ion, we present eevera1 hierarchical methods uhich 

cluster the nearest two clueters under a specified bond strength 

def in i t ion one after another. 

Given any tuo clusters of relocatable sectors, G,c and Gy, the 

intercluster bond is denoted by 8b,y). Several intercluster bond 

definitions are given below; then a clustering procedure is defined 

over the interctuster bonds. 
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In the follouing definitions. the intersector reference matri,c, 

C = [Cij). is assumed to be symmetric. If the intersector reference 

matrix is not symmetric, then each occurrence of Cij should be replaced 

uith (Cij + Cji)/2. The notation IGxl denotes the size of cluster GK In 

bytes, and N denotes the page size in bytes. 

A. Constrained Nearest Neighbor Bond 

The Constrained Nearest Neighbor bond, CNN, betueen any tuo 

clusters Gx and Gy is defined as 

B(x,y) =- Max ICij: iEGx,jfGyl uhen IG><I + IGyl ~N. 

undefined uhen IG><I + IGyl > N. 

B. Constrained Farthest Neighbor bbnd 

The Constrained Farthest Neighbor Bond, CFN, between any tuo 

clusters, Gx and Gy. is defined as 

B(x,y) "' min (Ci j: iEG><, jEGyl when IG><I + IGyJ ~ N; 

undefined when IGxl + IGyl>N. 

C. Constrained Average Neighbor Bond 

The Constrained Average Neighbor bond, CAN, between any tuo 

clusters, G>< and Gy, is defined as 
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Bhc.y) • tl/n•v• %ifG• %Jf&y Cij when IG,cl + 1Gv1 s. N; 

undefined when fG,cl + IGyl > N. 

Here "•v is the nullber of Cij > 8 ulth i E Gx., j E Gy. Note that n111 is 

the number of arcs between Gx and Gy. and it is not the su■ .. of the· 

values on these arcs. 

O. Constrained Average Neighbor Weighted Bond 

The Constrained Average Neighbor Wttight11d befld, CANU, betueeti any 

h.10 clusters, G>< and Gy, is defined as 

B he, y) • "•v* tlln.yl %~c.. %~ Ci j when IGxt + IGy I s. N; 

undefined when. fG,c l+IGyf > N. 

Hence, 

B(x,y) • :Z:ifG• %ltGy Ci j Mhen fG,cl + IGyl s N. 

A clustering procedure is now defined for use with any one of t~e 

above definitions of 84,c,y). 

First, choose any one of the above definitions of 8(,c,y). Second. 

partition the II relocatable sectors of a progra• into exactly M 

clusters, 1-1here each cluster contains one sector. Then, at each step in 

the clustering process, the nearest tuo clusters are combined to for■ a 

ne1-1 cluster. The nearest two clusters are defined to be the tuo 
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clusters Gx and Gy which have the largest value of B(x,y). When the su■ 

of the size of the two clusters becomes larger than the page size in the 

clustering process, these two clusters are not considered to be 

connected; that is, their bond strength is undefined. The process 

comes to an end when new clusters cease to appear. 

When the above clustering procedure is applied to the Constrained 

Nearest Neighbor bond definition of B(x,y), it Mill be referred to as 

the CNN procedure; when applied to the CAN definition of B(x,y), it 

Mi I I be referred to as the CAN procedure, etc. 

Al I of these clustering methods are computationally fast, easy to 

implement, and they tend to group the sectors uith the strongest 

intersector strengths, Cij, into the same page. Hence, they tend to 

minimize the interaction of sectors clustered into different pages. 

The CNN, CFN, and CAN procedures are variations of clustering 

procedures uhich are uidely used in the field of multivariate analysis. 

The Constrained Average Neighbor Weighted bond, CANW, procedure Mas 

developed in this research. In fact, we experimented Mith several 

Meighted versions of the CNN, CFN and CAN procedures. However, the CANU 

procedure consistently produced program structures uhich required feuer 

page fetches than the program structures produced by the CNN, CFN, and 

CAN procedures or by any of the other ueighted versions Me examined. 

One explanation for the success of the CANW procedure is that at each 
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step it combines the t110 cluat-ers lthich have the ■ost total intersector 

connections between the■• 

In the above Constrai·ned Neighbor tlond ctefinlthms, CNN, CfN, CAN. 

and CANU, the constraint fG><I-+ lGvl ~N insttru that the size of a 

cluster never exceede the page size. ~ver, natural clusters of 

sectors •ay in reaHty be I•..- or ..atier than a ,ege size~ It 1a of 

course conceivable to aake clt1111ters caverJng several pages Mithout any 

conaiderat ion of page sizes and to aesi91t ••ach of thn to seyeraf 

contiguous pages. In order to evatuate th.e aerits of atlouing cluster ■ 

to becOllle any natural size, we e>eperill8nted uith 

a) the Unconstratned Neare9t N't!tghbor bond, UNN, 

b) the Unconstrained Farthest Neighbor -bond, UFN, 

c) the Unconstrained Average Neigftbor bond, UAR, and 

d) th1! Unconstrained Average Netghbor Weighted bond, UANU_, 

uhere UNN, UFN, UAN, and UANM are defined to be exactly the sa•e as CNN, 

CFN. CAN, and CAMI, respectively, Mrttl the eMCet,ti-on that. the constraint 

fG,cl + tGy( .5. N is not present in the unconstrained cases. That is, in 

the unconstrained cases, clusters .av be cOllbined ind•pendently of their 

sizes. 

The clustering procedure for the con-strained clusters had to be 

modified slightly in order to be appficabte for the unconstrained 

clusters. The clustertng procedure for the- Ufteon&trained clusters ia aa 

fol lows. 
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Choose any one of the unconstrained definitions of B(x,y). 

Partition them relocatable sectors of a progra• into exactly m 

clusters, Mhere each cluster contains one ~ector. Then, at each step in 

the clustering process, the nearest tMo clusters (i.e., the tuo Mith the 

largest value of B(x,y)) are combined. NoM Me Mill define uhat ue Mean 

by combine. 

Let the tMo clusters Mhich are to be combined at any step of the 

clustering process be denoted by 

Gx = 5>< 1,5>< 2, ••• ,5><; and 

Gy = Sy 1,Sy2, ••• ,Sy1, 

uhere the cluster Gx is defined to be the ordered list of i sectors, and 

the cluster Gy is defined to be the ordered list of j sectors. The 

combination of the clusters Gx + Gy is defined to be the ordered list of 

i + j sectors 

Gx + Gy =- Sx 1,Sx2, ••• ,S><i,Sy 1,Sy2, ••• ,Sy1• 

Since each cluster starts out Mith one sector, the above definition 

of combining tMo clusters insures that the relative order in uhich 

sectors are clustered is preserved. This is•important in the 

unconstrained case, because the clustering procedure ends uhen al I the 

clusters Mhich are connected are grouped into one gia~t cluster, uhich 

could be the Mhole program. 
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Note that the order of the sectors in the constrained clusters is 

not important, because a constrained ctuster 14ifl always fit into a 

page. 

5.4 Hatt ield and Gerald Method 

The Hatfield and Gerald clustering procedtlre can be applied to any 

intersector reference ■atri>c 110del, C • (Cijl. The HG clustering 

procedure is defined in detail in IHlJ and is briefly su••arized belou. 

Let 

E • CE i j] , i , j • l, 2, ••• • • ( • i s the nuMber of sect ors) , 

'-there 

Eij • -Cij when i-j 

I'j .. 1 Ci j + 2• when • j. 

The inverse 11atri>< of E is calculated, then a row in the inverse is 

chosen, and a set of sectors in that roM are clustered into a page, and 

the process is iterated until all sectors are a•signed. 

Ue thank Don Hatfield for providing a copy of his restructuring 

progra111 for use in our res.tructuring e,cperi111ents. 
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5.5 Sector Interchange Procedure 

The sector interchange procedure, SIP, is developed in this 

section. The SIP begins with the set of III relocatable sectors of a 

program partitioned into n blocks. That is, assume that a partition, Il, 

of the set of sectors, IS 1 ,S2 , ••• ,5111l, making up a program is given. 

Let TI be denoted by 

TI = ITI 1 ,Il2 , ••• ,IlnJ where llljl is the number of sectors in \he j-th 

block of TI. 

The blocks, Ilx, of Il may represent the logical pages of a progra■, 

a.,here the sum of the sizes of the sectors making up a block of Il is less 

than the ~age size, or the blocks of Il may represent natural clusters of 

sectors, where the sum of the sizes of the· sectors making up a block ■ay 

be greater than a page size. 

The basic strategy of the sector interchange procedure, SIP, is to 

reassign sectors to blocks of Il by exchanging two sectors of different 

blocks uhen the exchange provides a positive contribution to the au• of 

the sector connections within blocks. In order to be More precise, Me 

need to define a few terms. Let 

C = (Cijl be a symmetric intersector reference 

matrix for i,j ~ m, and 

P = IS 1 • S2 , ••• , 5ml denote the set of sectors 

making up a program. 
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Definitions: 

The co111ple111ent of fi>< is denoted '."'Il>< and 

.... nx .. m; E n : n; - Il><l 

Let Si E Ilx; then the i.·ntrablock 

bond of sector i, Si, t1i th 'block ft,c ts 

defined as 

B ( i , Il><) • tiE"x Ci j 

Let Si E.· Ilx and Si K Ily; then the interbtock 

bond of sectQr i Mi th block Ry is ,deHned as 

8 ( i , Ily J .. %;.11y Ci j 

Let Si 4i Il><; · then the interbloc,k bond ·of nctor 

i ,Mith all other blocks is deHned as 

8(i,-,fi><) • l:;t.nx Cij 

The qua Ii ty .of the bond for the i th sector is defined as 

q" (i)=B(i,Il,c) - B(i,-Il,c), where Si E ft,c. 

The qua Ii ty of a sector partition n is 

defined as 

o" • l:siEP q11 • i J 

The goal of the sector interchange procedure, SIP, is to 11a,ci•ize 

the qua Ii ty Q" by interchanging sectors between blocks of the 

partition. LJe now pre9ent an efficient 11ethod to find an opti111al 

assign111ent of sectors to blocks under fhe constraint that each 

· interchange consists of eKchanging a sector of on"e block ui th a sector 

of another- block. 
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Lemma 6 

let Si E Ilx and Sj E Ily. If Si and Sj are interchanged, the net 

gain in the quality Q", denoted by A Qn (i,j), is given by 

A a" (i,j) "'4CB(j,IlxJ - B(j,Ily) + B(i,Ily) - B(i,Ilx) - 2CijJ. 

Proof: 

Let Si E Ilx, Sj t Ily and Il><, Ily E Il. Nau, interchange sectors Si 

and Sj uhich produces the neu partition n•. 
A Qn ( i, j} = Q" - a: • IskEP qn (k) - ISktP q; (k) • IskfP qn (k) - q; (k} • 

Let .c1 q (kl .. q" (k) - q; (k). 

NoM Me consider 5 cases. 

Case 1. A q(k) .. 2(Ckj - Cki) for all ke Ilx, k.,ei. 

Case 2. .c1 q(k} = 2(Cki - Ckj) for al I kE Ily, k.,ej. 

Case 3. A q(k) = 0 for all kE ~(Ily + Ilx) 

Case 4. A q(il = B(j,Ilx) - B(j,Ilyl - B(j,Il>< + lly) - 2Cij 

- B(i,Ilx) + B(i,Ilyl + B(i,Il>< + Ily) 

Case 5. A qlj) = B(j,Ilxl - B(j,Ily) + B(j,ll>< + IlyJ - 2Cij 

- B(i,Ilx) + Bli,Ily) - B(i,IllC + Ily). 
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No~, 

11 a" c i • j l q(k} + ! t,,. q(k} + t,,. qli) + d q(j) 

2lB{j,Ilxl - B(i,Ilxl - Cijl 

tJ. a" < i • j l 

QED. 

+ 2£8li,Ily) - 8{j,Ily} - Cij] + t,,. q(i) + d q(j) 

4£8lj,Ilx) - B(j,Ily) + B(i,Ily) :-- B{i,Ilx) - 2Cij1. 

No~ ~e present a Lemma ~hich permits us to quickly select the Sj and Si 

for exchange. 
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Lemma 7: 

If 4 a" (i,j} is positive, then q" (il+q" (j) is negative. 

Proof: 

q"(i) ""B(i,Il,d - B(i,-.Ilx) 

.. B(i,Il><> - B(i,Ily) -B(i,-.(Ilx+Ily)) 

s i mi I ar I y, 

q" (j) = B(j,Ily) - B(j,Ilx) - B(j,-.(Ilx+Ily)) 

From Lemma 6, 

4 a" (i,j) .. 4CB(j,Ilx) - B(j,Ily) + BU,Ily) - B(i,Ilx) - 2CijJ. Hence, 

4 an (i,j) = -4Cq" (i) + q" (j) + B(i,-.(Ilx + Ily)) + B(j,-.fil >< + IlyJ) + 2CIJJ. 

But B(i,-.mx + Ily)) + B(j,-.(Ilx + Ily)) + 2Cij :!:. 0, and 

4 Q" (i,j) > 0. Thus qn (i) + qn (j) < 0. 

QED. 

FACT 1: 

The ma><imum value of 4 an (i,j) .. -4(qn (i) + q" (j)). 

This fact follous directly from the proof of Lemma 7. 

FACT 2: 

If 4 On (i,j) > 0, then (i,j) must be an element of the 

Interchange set, In, uhere 

In"" I ( i, j) : qn ( i) +q" ( j) < 0, i, jE P). 

This fact fol lous immediately from Lemma 7. 
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No~ ~e iteratively define the sector interchange procedure, SIP. 

We assume that an initial partition, n°, and an intersector reference 

matrix, C, are given. 

The operations performed in the kth pass are these: 

a. Compute the set I nK-1 

b. Select a pair (i,j) such that 

4 QnK-1 (i,j) ~ 4 QnK-l(u,v) for 

al I {u,v) E lnK-1 

c. If 4 QnK-1 ( i, jJ > 0, then interchange sectors 

of nk-l to get nk, and go to the (k + 1l th pass • 

I f ... Q (' ') 0 then stop 11 ·, th nk-l • u nK-1 I' J ~ • " 

and j 

The SIP has to terminate at some pass k, since. Ci j is finite. If it 

terminates on the kth step, th1:m nk-t is optimum in the sense that 

no pair~ise interchange can increase the value of OnK-1. This is 

obvious, since InK-1 contains al I the possibte candidates ( i, j) that 

could possibly make 4 □ nK-t positive, and since at ter•ination 

4 UnK-1 (u, v) < 0 for al I (u, vh InK-1. 

In each pass of the previous algorithm, by keeping the list of 

sectors in the set lnK-1 sorted and using Fact 1, the algorithm can be 

made much more efficient. 
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The sector interchange procedure, SIP~ is particularly useful uhen 

one has a partition, Il, where the blocks of Il represent natural clusters 

of sectors. Another application of SIP is in the evaluation of breaking 

up huge sectors into smaller parts by reprogramming. 

An ongoing research project between the author and Don Hatfield of 

IBM is to evaluate. the potential benefit of reprogramming and then 

restructuring a very large data base system. The rationale for 

reprogramming is to divide the very l~rge sectors (over 10 pages long) 

into relocatable subsectors and then restructure the neM program. 

Theorem 1 can be used to predict the theoretical best paging perforMance 

if the large data base program were broken up into exactly k sectors per 

page. Then, given an intersector reference matrix and a partition. n. 
of k sectors per block, the sector interchange procedure, SIP, can be 

used to restructure the program. 

5.6 Intercluster Bonding Method 

The purpose of the intercluster bonding method is to identify 

natural clusters of dense sector interactions. This task is 

accomplished by permuting the rows and columns of an intersector 

reference matrix model in such a way as to group the numerically larger 

matrix elements together. 
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The definition of the intercluster bond •~asure is given first, 

then we i I lustrate the capability of this 111easure to cluster the larger 

matrix elements together, and then we present a fast approximate method 

of permuting the rows and columns of a given 111atri>< such that the 

intercluster bond measure tends to be 111aximized. 

Given a symmetric intersector reference matri>< Cs [CijJ for 

i, j 2 1,2, ... ,m which represents the intersector activity between the ■ 

relocatable sectors of a progra111, we define the intercluster bond 

measure, ICB, as 

ICB(C) "' I~., Ij., Ci j {C_i-1,j + ci+l,j + ci,J-1 +Ci,j+I) 

where Co,i = Cm,t,i .. Ci,O • Ci,m+I • 0 by definl tion and Ci j ~ 0. 

I.le point out that the bond strength between tuo nearest-neighbor 

elements of C is their product. 

The intercluster bond Measure, ICB, is defined so that a matri>< C 

that has dense clusters of numerically large elements will have a large 

ICB when compared with the sam~ matri>< whose columns and rows are 

permuterl such that numerically large elements are more uniformly 

distributed over the array cells. In order to illustrate the 

sensitivity of ICB(C) to the degree of clumpiness of the large values of 

Ci j, we present the following two simple examples. Example 1 shows the 

same matrix with 5 different row and ~olumn permutations. Matri>< C5 
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Mhich has the largest intercluster bond_measure contain~ tMo 

noninteracting clusters. One cluster con~ists of the aectors a and c, 

Mhi le the other cluster consists of the sectors band d. The fact that 

matri>< C1 could be reordered to produce two noninieracting clusters i~ 

not readily apparent even for this simple example. E><ample 2 shoMs a 

slightly more comp I icated matrix. Matrix C4 of example 2 is 

characterized by a block checkerboard form, where the blocks of sectore 

along the main diagonal represent the primary sector clusters and the 

off-diagonal blocks indicate the intercluster interactions. Matrix Cs 

Mhich has the largest intersector bond measure of E><ample 2 has the aa■e 

set of primary clusters as Matrix C4 but it differs from C4 in that 

the clusters which interact the most are ordered adjacent to each other. 

The intercluster bond measure, ICB, tends to be ma><imum when the most 

strongly intraconnected sectors are clustered together and the most 

strongly interconnected clusters are clustered together. ~e cal I ICB 

the intercluster bond measure because it tends to cluster the 

intercluster connections as well as cluster sectors •. 

In our e><perimental studies, sector orderings which produced the 

largest values for the intercluster bond measure provided as good as or 

better improvemer.ts in the paging performance than any other program 

restructuring method tested. 
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Example 1: 

a b C d a b C d 

a 10 0 10 0 a 10 0 10 0 
b 0 8 0 8 b 0 8 0 8 
C 10 0 10 0 d 0 8 0 8 
d 0 8 0 8 C 10 0 10 0 

C1 matrix C2 matrix 

I CB (C 1 ) 0 ICB (C 2 I = 256 

a b C d a b d C 

a 10 0 10 0 a 10 0 0 10 
C 10 0 10 0 C 10 0 0 10 
b 0 8 0 8 b 0 8 8 0 
d 0 8 0 8 d 0 8 8 0 

C3 matrix C4 matrix 

!CB IC 3 ) -- 656 ICB(C4 I = 912 

a C b d 

a 10 10 0 0 
C 10 10 0 0 
b 0 0 8 8 
d 0 0 8 8 

C5 matrix 
ICBIC5 1 = 1312 



Example 2: 

a 
b 
C 

d 
e 
g 
f 
h 

a 
e 
C 

h 
b 
f 
d 
g 

a 
b 
C 

d 
e 
g 
h 
f 

a 

10 
10 

0 
0 
4 
0 
4 
1 

a 

10 
4 
0 
0 

10 
4 
0 
0 

a 

10 
10 

0 
0 
4 
0 
1 
4 

b 

10 
10 

0 
0 
4 
1 
0 
1 

e 

4 
10 

0 
0 
4 

10 
0 
0 

b 

10 
10 

0 
0 
4 
0 
0 
4 

C d e 

0 0 4 
0 0 4 
8 8 0 
8 8 0 
e 0 10 
0 1 0 
4 0 10 
1 e 0 

I CB ( C 1 ) • 1548 

C h b 

0 1 10 
0 0 4 
8 1 0 
1 7 0 
0 e 10 
0 0 4 
8 1 0 
1 7 0 

C2 

ICB (C 2 ) .. 1560 

C d e 

0, e 4 
0 0 4 
8 8 0 
8 8 0 
0 0 10 
1 1 0 
1 1 0 
0 0 10 

ICB (C3 ) "' 1864 
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f g h 

4 8 1 
4 8 0 
0 1 1 
e 1 l 

10 8 e 
7 e 7 
8 18 I 
7 8 7 

f d g 

4 0 0 
18 0 8 
e 8 1 
0 1 7 
4 8 8 

10 0 8 
e 8 1 
0 1 1 

g h 

0 1 4 
0 :9 4 
1 1 8 
1 1 8 
0 0 10 
7 7 8 
7 7 0 
e 0 18 



a 
b 
C 

d 
e 
f 
g 
h 

a 
b 
e 
f 
C 

d 
g 
h 

a 

10 
10 

0 
0 
4 
4 
0 
1 

a b 

10 
10 

4 
4 
0 
0 
0 
1 

b 

10 
10 

0 
0 
4 
4 
0 
0 

10 
10 

4 
4 
0 
0 
0 
0 

C d e 

0 0 4 
0 0 4 
8 8 0 
8 8 0 
0 0 10 
0 ·0 10 
1 1 0 
1 1 0 

ICB(C4 J = 2776 

e f C d 

4 4 0 
4 4 0 

10 10 0 
10 10 0 

0 0 8 
0 0 8 
0 0 1 
0 0 1 

ICB(C5 J = 3536 
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f g h 

4 0 1 
4 0 0 
0 1 1 
0 1 1 

10 0 0 
10 0 0 

0 7 7 
0 7 7 

g h 

0 0 1 
0 0 0 
0 0 0 
0 0 0 
8 1 1 
8 1 1 
1 7 7 
1 7 7 

Note that the definition of ICB may be decoMposed into the tuo 

parts as fol loMs: 

I CB (C) "" I CB (CR l+l CB (Cc), uhere 

I CB (CR ) 

ICB(Ccl 

,-m 
= ""i■ I Ci j {Ci-l,i + C;.1,i l 

Ci j {Ci,i-l + C;,J.1 ) 

The value of ICB(CR) is the sum of the rou bonds and the value of 

ICB(Cc) is the sum of the column bonds. 
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Property 1: 

The values of the rou bonds, 2:j. 1 Ci j (Ci-1,I + Ci•t,I} 

are not affected by any permutation of them columns of C. 

Proof: 

Let 1 =I 1 (1), 1 (2), ••• 1 (m)) denote any permutation 

of them columns of C producing the neu MatriM 

0= CO i j J = CCi,~<i> J • 

Then, for any 1 ~ i ~ n, 

:tj., Ci j ,ci-1,i + ci.1,; ,_ tj., ci,}(j) ,ci-1,l(j) +- ci.1,lo>l. 

This is clearly true, since i is fi>ced over the su.,mation of al I j. 

Thus, for every term in the summation on the left, 

Cij(C;. 1,; + Ci•l,l ), there must be a value k, 1 ~ks. 111, 

such that 

Ci j ,ci-1,; + ci.1,;l = ci,).<k> ,ci-1,~<k> + ci.1,~<k>>. 

Property 2: 

The va I ues of the co I umn bonds, I':-1 Ci j (Ci,J-I + Ci,J•I) 

are not affected by any permutation of them rous of C. 

Proof is the same as that of property 1. 
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Property 3: 

ICB (CR J •ICB(CcJ for syaetric •atrice9 C. 

Proof: 

I CB (CR J • I.~.1 ti•I 

- ri.. tj., 

- l:'j.~ t't, 
= ICB(Cct. 

Property 4: 

Ci j (C;..1,1 +C,.1,1 ) 

Cji(Ct,.. 1 +Cl,j.l) 

Ci j (Ci,J.-1 +C\J♦ I ) 

The contribution, to It'.:BtCJ fro.• any rou .. is only affected by the two 

adjacent rows. The contt-ibuUort to IClHCl fro• anv cotu11n ie only 

af fee ted by the· tuo actjac,mt cofUllmh 

Property 4 is obvious, since the CfffltrH,u,tion to ICB (C) fr-o• ahy 

rou i is l:,m;-1 Ci j (Ci-l,l +Cio-lJ ) and· fr-oa, any. 

co I u11n j i s :t":,. 1 Ci j (Ci,H +C~J♦ I ) • 

Fro• properti~ l amt ,2 the ■a,d•izaUon of ICB(C} o¥er al I colu■n 

and row permutations reduces to tuetaeparateopti•izations. One is for 

the rows, ICB(CR), anti the other· for the coluane. ICB(Cc). 

From properties 1, 2, and 3, we know that the row per11utation which 

ma><imizes ICB(CR ), is the sa•e as the coluan perautation that 

11ta><i111izes ICB(Cc). Thus, aH we need to do is find a row per11utation 
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that maximizes ICB(CR ), then reorder the rous and columns of C 

according to this permutation to maximize ICB(C). 

The problem can be stated formally as follous: 

Let~ -C ~ (1), ~ (2), ••• , ~ (m)J denote a permutation 

of m columns of C producing the neu ■atrix 

□= lO i j J ... [Ci,~ o> J • 

Maximization of the summed column bonds ICB(Cc) is given by, 

Max over ~ of Ij. 1 I":- 1 Di j CDi,i-l + 0~1• 11, 

Mhere ~ ranges over all m! possible permutations. 

This may be transformed into a quadratic assignment problem for Mhich 

optimal and suboptimal algorithms have been published CG3J. These 

suboptimal algorithms were not used, since they are too time comsuMing 

for large m, i.e •• they require operations which rise with the fifth 

poMer of the matrix size. 

Now Me define a suboptimal method which exploits the 

nearest-neighbor feature CMS) of property 4. This method is much faster 

than the optimal methods and is believed to produce near optimal 

orderings. The intercluster bond method is as follows: 

A. First compute and save the set of intercolumn bonds for al I pairs 

(i,j) of columns, i.e., 

I~., cki * Ck; for all 1 5.. i,j 5.. m. ""j. 

B. Pick one of the columns arbitrarily, put it into a list, and set 
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k=l. 

C. For each of the remaining m-k columns, compute the contribution to 

the intercluster bond measure for each of the k+l possib1e positions to 

the left and to the right of each of the k columns already placed in the 

I ist. Place the co.lumn that gives the largest incremental contribution 

to the interctuster bond measure in its best location in the list. 

0. If k=m, stop; otheruise, increment k by 1 and repeat step C. 

When the above procedure terminates, simply order the rows and 

columns of C in accordance Mith the list of columns. 

Property 5: 

The time for the execution of the clustering process in step C 

grous as m3 
• 

To see this, note that 

I~. 11k+l) (m-k) = m3/6 + m2/2 - (2m/3). 

The intercluster bond method will cluster the sectors into disjoint 

groups if this is possible. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

6.1 Introduction 

The purpose of this chapter is to report on an experimental study 

of the paging performance of programs. The objective of this study is 

to evaluate the practical restructuring methods developed in Chapters 4 

and 5. The evaluation consists of tuo basic parts. First. the paging 

performance produced by the different restructuring methods are related 

and contrasted uith one another. Second. the improvements in paging 

performance produced by the practical restructuring methods are compared 

Mith the theoretical best and uorst improvements as given by the bounds 

in Chapter 3. 

We have performed experiments, using the IBM System/360·Model 67 at 

the Cambridge Scientific Center, on compilers. assemblers and a large 

data base program. The results of a specific example Mil I be presented 

in detai I. We have chosen as an example the restructuring of a highly 

modular compiler CA31. This example is selected because Me have 

experimental results for all of our restructuring methods applied to 

this compiler. The author and Don Hatfield of IBM plan to publish the 

results of using some of these methods to restructure a "large data 
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base" system as soon as our results are co111p.leted. 

This compiler has 4 phases. Phase 0 is a very smal I root phase 

which simply has Phase 1 read in, and, when Phase 1 is over, has Phase 2 

read in, and, when Phase 2 is over, has Phase 3 read in. Each of the 

phases is a separate overlay in the sense that they do not share any 

address space. Therefore, we may think of Phases 1, 2, and 3 as three 

separate programs. There are between 70 and 100 relocatable sectors per 

phase. For each compilation, ue co11puted three distinct sector traces. 

One trace was for Phase 1, one for Phase 2, and one for Phase 3. In 

particular, from the time that a phase uas loaded into the address space 

unti I its subsequent removal, a full instruction trace of all references 

to the relocatable modules of that phase was recorded. This instruction 

trace and the load address of al I the relocatable sectors (modules) are 

sufficient to compute the sector trace. 

In order to compare the effectiveness of the different arrangements 

of sectors into the virtual address space, LRU and OPT paging simulators 

were developed for a single user paging against himself. Input to the 

simulator was a sequence of page requests generated from the ful I 

instruction trace and a new ordering of sectors into the address space. 

A modified version of the one pass OPT algorithm by Palermo and Belady 

(B61 was used as the OPT paging simulator. 
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When sectors have been assigned to pages, one problem remains. 

What to do about page boundaries? Holes in pages can occur if sectors 

do not fit evenly into pages. For most real programs, Me have tMo 

alternatives. First, Me do not alloM sectors to cross page boundaries, 

Mhich may cause empty space Mithin the pages. Second, Me pack sectors 

one after another into the virtual address space, leaving no holes but 

al louing the sectors to cross page boundaries. Hatfield [Hl] has 

reported on the relative success of the latter approach. 

For our experim~nts, Me packed sectors one after another into the 

virtual address space, leaving no holes betMeen the sectors. That is, 

given a partition n of the sectors in blocks, ue placed the blocks of 

the partitions into the virtual address space one after another. The 

unconstrained average neighbor Meighted bond, UANM, procedure uas used 

to automatically order the clusters for insertion into the address 

space, unless the clustering procedure produced ordered clusters. 

The next feu sections report on the results of the restructuring 

experiments performed on the different phases of the compiler. The 

basic structure of these experiments on each phase is as fol lous. 

A. A full instruction trace is recorded and mapped into a sector 

trace. 

B. An intersector reference matrix model is constructed 'from the 

sector trace. 
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C. A clustering procedure, based on a particular intersector 

reference matrix, is used to partition the relocatable sectors into 

blocks. 

0. The resulting ordered blocks of the partition are inserted into 

the address space one after another. 

E. The paging performance of the restructured program is simulated 

using LAU replacement (sometimes OPT replacement is used). ~e 

chose LAU replacement because so many contemporary virtual memory 

systems use some form of this algorithm. 

F. The theoretical upper and louer bounds on the paging 

performance are computed by applying the methods of Chapter 3 to 

the sector trace of step A and compared uith the performance found 

in step E. 

In order to identify the parameters of the page fetch function, 

FFp(IMpl,N,Ila,STa,Fd, RLRU ), which are a,ssociated uith each curve 

in the fol louing graphs, these conventions are presented. 

1. IMPI, the size of the primary memory. in pages, is used as the 

horizontal axis of the graphs. In addition to the values of IMPI, 

the horizontal axis is tagged uith the memory size in K bytes 

(K,,,10241. 

2. N, the page size in these experiments, is 4096 bytes. 

3. A partition n of relocatable sectors into clusters is denoted 

by fix or Ily for ease in interpreting the results in the fol louing 
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figures. fix is used to denote a "bad" partition, i.e., one uhich 

tends to maximize or produce a relatively large value of FFp. Ily 

denotes a "good" partition, i.e., one ~hich tends to minimize the 

value of FFp. 

A particular value of ITy is denoted by specifying the intersector 

reference matrix and the clustering procedure Mhich produced it. 

For example, 

ITylW,T=2500,CNN) 

is defined to denote the value of Ily Mhich is computed from the 

Marking set matrix, W, Mith a uindoM size of T=2500, using the 

constrained nearest neighbor procedure, CNN. 

The intersector reference matrix models used to specify a 

particular Ily Mil I be identified in terms of the fol loMing symbol as 

W = outside Morking set matrix model 

W'= inside Morking set matrix model 

T ~ MindoM size of Morking set model 

U = LRU sector stack matrix model 

□ sector stack distance 

H Hatfield and Gerald matrix model 

The clustering procedures used to specify a particular value of Ily 

Mi I I be one of the folloMing: 
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C~N = constrained nearest neighbor 

CFN = constrained farthest neighbor 

CAN= constrained average neighbor 

CANW ~ constrained average neighbor Meighted 

UNN unconstrained nearest neighbor 

UFN = unconstrained farthest neighbor 

UAN = unconstrained average neighbor 

UANW = unconstrained average neighbor 

HG= Hatfield and Gerald method 

SIP sector interchange procedure 

ICB = intercluster bond method 

As another example, 

IlylU,O-20,ICBJ 

Meighted 

represents the partition named Ily Mhen it is computed from U, Mith 0-28. 

using the ICB procedure. 

In the presentation of these experimental results, We chose to 

denote the program structure in terms of Il instead of the sector 

ordering SO, because the clustering procedure is clearer Mhen stated in 

terms of n. Houever, the reader should be auare that the blocks of the 

partition are al loued to cross page boundaries in order to eliminate 

holes in the address space. 

4. A particular value of SOTa Mill be denoted by SOT 1 , SOT 2 , and 

SOT3 for the three phases 1, 2, and 3 respectively. Furthermore, 

SOTia, SOTib, etc., uil I represent the sector trace of the ith phase 

from input program a, b, etc, uhen the distinction is important. For 
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example, SOT 2 a denotes the sector trace of Phase 2 from input progra• 

a. Note that al I of the sector traces in the simulations are ordered 

pairs (S,0) Mhere S is the sector and O is the offset referenced. This 

is necessary because ue are allouing sectors to cross page boundaries. 

5. The fetch and replacement algorithms are denoted as before, i.e .• 

Fd, RLRU , Ro, etc. 

In order to find a Ilx that tends to maximize the value of FFp, Me 

investigated random sector orderings, sector orderings based on sector 

sizes, lexical orderings (i.e., alphabetical on some character in the 

sector name), and sector orderings produced by the fol louing procedure, 

cal led BAO. Take the list L of m sectors, ordered according to their 

position in the address space under a good program structure, and do the 

fol louing to produce a partition fix of them relocatable sectors into n 

logical pages. 

1. Take the first n sectors of Land put each of them into one of 

n separate lists. 

2. Take the next n sectors of Land put each of them into one 

of the above n separate lists. 

3. Repeat 2 unti I there are no more sectors in L. Then, 

4. the collection of then separate I ists becomes Ilx. 

It turned out that all of the above methods of generating Il>< usually 

produced a Ilx that caused the value of FFp to be very large. 
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6.2 Restructuring Phase 1 

Throughout this section Me use the same sector trace, SOT 1 • In 

section 6.5 Me compare the results of program restructuring over several 

sector traces. Our results support the claim of Hatfield and Gerald, 

"many commonly used programs are rather insensitive to input data." 

Houever, Me did attempt to choose a program for tracing that 

contained most of the features of the language and that Mas relatively 

long. That is, this program uas not trivial. The sector trace of this 

program contained 7,521,205 references. Moreover, ISOT 1 1=2,001,827, 

ISOT 3 1=3,859,636 and ISOT2 l•l,660,542. 

The value of Ilx is fixed for Figures 7-14 and represents the 

program structure B1 which occurs Mhen the sectors are arran9ed in the 

address space according to their size. Even though the structure 

produced by the BAD procedure resulted in slightly more page fetches for 

most memory sizes, we selected Ilx based on the sector lengths (cal Id 

8 1 J because this represents a plausible method of loading sectors used 

by some operating systems. The choice of Ilx is used as a basis for 

i I lustrating the actual improvement in the paging performance which can 

occur for real programs uhich are restructured according to some Ily. 
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6.2.1 Constrained Procedures 

The curves of Figures 7 and 8 and the loMer.curves, labeled C, 0, 

and E, of Figure 9 shoM the ratio of the page fetch functions 

FFp(jMpl,N,ITx,S0T 1 ,Fd,RLRU) and 

FFp(jMpl,N,ny,S0T 1 ,Fd,RLRU) as a function of pri ■ary Memory size 

I Mp I in pages and as a function of Il>< and Ily Mhere Ily is coris trained. 

lly is constrained Mhen the blocks of Ily correspond to the clusters 

produced by any clustering procedure and the size of these clusters is 

constrained to be less than or equal to the page size. 

These figures reveal that the orderings of the relocatable sectors 

into primary memory can have substantial influence on the paging 

performance of virtual memory systems. Moreover, they i I lustrate that 

substantial improvements in paging performance occur over a relatively 

~ide range of primary memory sizes. 
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FIGURE 7 FFp(IMpl,N,1Tx,S01t,Fd, RLRU)/FFp (IMpl,N, Try, 

SOT1 ,Fd, R LRU) vs IM pl FOR PHASE I OF AED COMPILER 
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A 9 TT y ( W, T = IO O O , C AN W) 

B ~ TTY ( U , D = 15 , C N N) 

C 9 Try (W, T=IOOO, CAN) 

D~ Try (W,T= 1000, HG) 

N = 4096 Bytes 

lsor, 1=2,001,027 

TTx = B1 

B 
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The degree of improvement in paging performance shown in these figures 

(i.e., 7-8) is significantly larger than any previously published 

improvements obtained by restructuring. One rationale for this is that 

the intersector reference matriK models based on the working set and the 

LAU stack distances capture the intersector activity upon which paging 

depends. That is, the value, Cij, of the entry in the intersector 

reference matrices used in these eKperiments may have a strong tendency 

to be proportional to the number of page fetches which will go away if 

sector j is grouped with sector i. In particular, note the improvement 

in paging performance depicted by curves E, D, and C of Figure 9, which 

use the HG clustering technique on the sector working set intersector 

reference matrix. This improvement is about twice as much as that 

reported by Hatfield and Gerald [Hl] when the same clustering procedure 

is applied to the HG intersector reference model. Recall that the HG 

intersector reference model is the same as the sector working· set Model 

when T~l. 
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A-=} lTy (W,T=IOOO, ICB) 

8 ~ lTy ( W, T =2500, ICB) 

C ~ lTy ( W ,T= 1500 , HG) 

D ~ TTy ( W, T = 2500 , HG) 

E ~ lT y ( W , T = 5000 , HG ) 

N =4096 Bytes 

lsoT11 =2,001,021 

TTx - B - I 
A 
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FI GU RE 9 FF p ( I M p I , N , lTx , SOT 1 , F d , R L Ru ) / F F p ( I M p I, N, TT y, 

SOT,, Fd, R L RU) vs I Mpl FOR PHASE I OF AED COMPILER 
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6.2.2 Unconstrained Procedures 

The unconstrained clustering procedures presented in Chapter 5 

cluster the relocatable sectors into natural clusters without any 

constraint on the su111 of the sector sizes Making up a cluster. To date. 

no uork has been reported in the literature which incorporates this 

rather simple idea into clustering procedures. 

The curves identified by labels A and B of Figure 9 show the 

improvement in paging performance which occurred when natura1 clusters 

uere formed. These natural clusters were produced by the interclueter 

bond method, ICB, using the sector working set intersector reference 

model. These curves illustrate that .natural clusters can provide 

significantly better improve11ents in the paging performance than the 

improvement provided by the constrained clustering techniques. 

The curves of Figure 10 (eKcept curve 0) show the improvement in 

paging performance for several unconstrained clustering techniques. The 

curve label led O in Figure 10 shows the improvement in paging 

performance provided by the eKisting compiler structure. 
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A ~ lTy (W I T = 2 5 0 0, U AN W) 

B ~ 1Ty ( W, T =2500, ICB) 

C ~ TTy ( U , D = I 5, U AN W) 

D ~ lTy (Compiler) 

N =4096 Bytes 

Iser, I =2 ,001, 021 

lTx = B 1 
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FIGURE IO FFp ( IMpl, N, lTx, SOT17 Fd, R LRU )/FFp (IM p I, N, TTy, 

SOT, Fd, RLRU) vs I Mpl FOR PHASE I OF AED OOMPILER 
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Recal I that al I these improvements are relative to the program structure 

Ilx formerl by arranging the sectors into the address space in order of 

their sizes. Curve D shows that the existing compiler structure is 

substantially better than that provided by Ilx and significantly Morse 

than any of the unconstrained techniques. 

Figure 11 shous the effects of the unconstrained average neighbor 

weighted bond procedure UAN~ on the paging performance as a function of 

T for the uorking set intersector refere.nce model U. The significant 

characteristics of the curves shown in Figure 11 is that the 

improvements in paging performance are relatively the same over a broad 

range of T values. 

Note the tendency of the curves in Figure 11 to peek in the center 

region of the primary memory sizes. This tendency is due primarily to 

the fol lowing two "principles" pushing a curve together from both sides. 

The first principle is that for small values of IMPI, one clustering 

method "cannot uin" over another method. The second principle is that 

for large values of IMPI, one clustering approach "cannot lose" over 

another approach. However, in the middle range of the values of IMpl. 

there may be enough primary memory available to contain most of the 

sectors referenced close together in time when they are clustered 

together into groups. Note that in this region there can be tMo levels 

of clustering for good structures. The first level is that sectors are 

clustered together by the clustering procedure. The second level is 
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A~ lTy ( w, T = I 000, UA NW l 

8 ~ lfy (W,T =25000, UANW) 

C ~ 1Ty (W, T =5,000, UANW) 

N = 4096 Bytes 

5 
20K 

A 

~x 
X 

10 
40K 

15 
60K 

20 
BOK 

25 
IOOK 

FIGURE 11 FFp (IMPl,N,TTx,sor1 , Fd, RLRuJIFFp(IMpl, N, TTy, 
SOT,, Fd, R L RU ) vs I Msl FOR PHASE I OF A ED COMPILER 
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that clusters are clustered together by the paging mechanism. 

6.2.3 Theoretical Bounds 

In Figure 12 the performance for the best program structure, i.e., 

the one produced by Ily(U,T=2500,UANW), is compared uith the theoretical 

best performance given by Theorem 8. Observe that Table 3 precisely 

defines the parameters for the curves shoun in Figure 12. Curve B shoMs 

the ratio of the page fetches experienced by the program under the 

structure produced by Ily(U,T-2500,UANW) to the theoretical louer bound 

on the page fetches. That is, curve B depicts 

FFp(IMPl,N,Ily,SOT 1 ,Fd,R~u )/the Lower Bound. This ratio can 

never be less t~an one and would be equal to one when the theoretical 

best performance occurred for a given program structure. Figure 12 

shoMs several significant characteristics. The performance produced by 

the structure Ily(U,T=2500,UANW) is relatively close to the lower bound 

for large regions of primary memory size. Furthermore, it is close to 

the louer bound in the primary memory regions of loM paging rates. This 

latter fact can be seen by observing the curves in Figure 13. Curve D 

of Figure 13 shows the number of page fetches for the structure 

Ily{W,T=2500,UANW), and curve A shous the theoretical louer bound for- the 

number of page fetches over all Ily. 
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See Table 3 for not a ti on 

A~ F Fp ( Tr x, R L RU )/F F P ( 1T Y, R L RU) 

B ~ FFp (TT y ,R L RU)/ Theoretical Min. FFp 

C ~ Theoretical Max FFp/FFp (lTx,RLRU) 

D~ FFp (lTx,RLRu)/FFp (lTy,Ro) 

E=> FFp (1Ty,Ro)/Theor. Min FFp 

Try (W,T=2500,UANW) 

TTx = 8 I 

N = 4 096 Bytes 

ISOT1I =2,001,027 
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FIGURE 12 Comparison of Actual and Theoretical Ratios of FFp 
FOR PHASE I OF AED COMPILER 
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Graph A is: 

Ffp (111p I ,N, Il,c, SOT I ,Fd,RlRU ) /FFp ( 111pl ,N,lly,SOT l ,Fd,RLRU) 

Graph B iss 

Graph C is: 

FFs(ll'tsl • l'1pl,SOT1 ,Fd,RLRU HFFp(IMPl,N,ft,c,SOT1 ,Fd,RLRIJ l 

Graph O is: 

FFp (fMpl ,N, llx,SOT 1 ,Fd,RLRU) /Ffp( lftpl ,N,lly,SOT 1 ,Fd,Ro) 

Graph E is: 

FFp( 1,...,1,N, lly,.SOT 1 ,Fd,Ro>JFFs( lflsl • f I Ul1pl,N,ss• l,SOTi ,Fd,RoJ - A 
f1 (2,N,SSJ/2 

where ll,c • Bl, lly(M, T • 2588,UANIU, N • 4896 Bytes 

ISOTtl • 2,881,827 

Note that FFs(lttsj • f1 (ft1pl ,N,SS*) ,SOTi 1Fd,Ro) - A 
f1 (2,N,SS)/2 

shown in 8 and E above la the- lower bound of FFp given 
in Theore• 6 •. 

Note that FFs(IMsl • lt1pl,SOT1 ,Fd,RtRU) 

shown in C above is the upper bound of Ffp given by 
Theore■ 3. 

Table 3 
Para■eters for Curves in Figure 12 
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Curve B of Figure 12 indicates that the louer bound may be loose 

for very smal I values of IMpl or that the structure Ily(W,T=2500,UANW) 

does not cluster sectors very Mell for small values of IMpl. The 

conjecture is that the loMer bound may be loose for very smal I values of 

IMPI since this phenomenon is observed in all of our experiments. This 

is not a serious practical draMback, because even for the louer bound 

the paging activity is pr~hibltively large for very smal I IMPI• Since 

the louer bound is valid over all replacement algorithms, Me compared 

the ratio of the performance of the good structure Ily using OPT 

replacement to the loMer bound. This ratio is curve E of Figure 12. 

Curve C of Figure 12 illustrates the ratio of the theoretical upper 

bound given by Theorem 3 to the bad performance. The bad performance is 

the number of page fetches produced Mith the structure Ilx. 

The upper bound is relatively close to the "uorstR performance 

resulting from the structure Ilx for most values of IMPI• For large 

values of IMPI the upper bound is not very tight. The upper bound Ml I I 

be tight as long as the sectors Mhich are clustered into a page are 

never used together Mhen that page is in Mp. Houever, as the size of Mp 

increases, it becomes more and more difficult for this condition to be 

satisfied. Hence, the upper bound groMs very rapidly for values of IMpl 

approaching the length of the program. HoMever, for values of IMPI in 

the region Mhere the program Mould probably be run, the upper bound is 

reasonable. 
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Figure 13 9hmas the m.mber of page f~tches given by: 

A. the tower bound. 

B. the upper bound. 

C. H,e bad structure, n)(. 

a. the good structur1!, fty «.a, T •2591, t.MflO under LRU. 

E. 1he good structure, ·ny GI, T -2598 • UMIIJ under OPT. 

Figure 14 is sr11Pty the valuet!I for curves A. C, .amt D of Figure 13 shown 

at a ntuch I arger scale. 

In su-.ary, Figure• S-14 9hoN that the JM19htg perfor■ance •ay vary 

by a factor of 12 to 38 for large rqions of priury ••ory size fttpl, 

This occurs when the uncooatrained c1U9tertng ·procedures are used in 

conjunction with the sector working set and the LRU stack intersector 

reference wtatr ices; that is, for fiy(U, T•25118,UM61), IlyU.I, T "'!2588, ICBJ 

and fly(U,0 ... 15,UANU). The use of clustering procedures which cluster 

sectors into natural clusters can produce prograt1 structures uhich 

require significantly fewer page fetches than required. by progra• 

structures based on constrained clusterrng procedures. 
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A= FFs (I Ms I= f 1 ( IM p I, N, ss*) SOTi*,Fd, Ro)-6 

f
1 

(2,N,SS)/2 

B ~ FF s ( I Ms I = I M p I , SOT 1 , F d , R LR u ) 

C ~FF p ( I Mp I , N, TT x , SOT, , F d , R LR u ) 

D~FFp{IMpl, N, Try, SOTi,Fd, RLRU) 
' 

E~FFp{IMpl, N,TTy,SOT1,Fd, Ro) 

TTx = B 1 

TTy ( W,T =2500, UANW) 

N = 4096 Bytes 

1sor,I= 2,001,021 

Theoretical 
Worst 
Cose 

A~E 

5k , 
Theoret icol ~ 

0 

Best x ....... x 
Cose 'X......_ 
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FIGURE 13 Total Page Fetches vs jMpj 
FOR PHASE I OF AED COMPILER 
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FIGURE 14 Enlarged Scale for Curves A, C, and D of Figure Fffi 

PHASE I OF AED COMPILER 
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6.3 Restructuring Phase 2 

Figure 15 shoMs the results of restructuring Phase_2 over sector 

trace SOT 2 , Mhere ISOT 2 l=l,660,542. Table 4 precisely defines the 

curves of Figure 15. The bad order Ilx • B2 for Phase 2 ls computed by 

the procedure BAO, Mhich is compared to the order produced by 

Ily(W,T=2500,UANW). The curves of Figure 15 may be interpreted similarly 

to those of Figure 12 of Phase 1. The variation in the paging 

performance of Phase 2 as a function of program structure is not as 

large as that of Phase 1. HoMever, the largest improvement in the 

paging performance of Phase 2 occurs Mhen approximately one half of 

Phase 2 can fit into primary memory. 
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See Table 4 for full comphtte explanation of curves. 

A =1; FFp (lTx)/FFp (ITy) where lTx = 82 and Try (W,T = 2500, ICB) 

B :> FFp { lTx)/ FFp (Try) where lTx = B 2 and Try ( W, T = 2 500, UANW) 

C• FFp (TT'x)/FFp (lTy) where 1Tx=B2 and Try= Compiler Order 

D=> Ffp (Tfy)/Theor. min FFp where lTy {W, T= 2500,UANW) 

E i:+ Theor. Mox FFp /FFp ( 1Txl where lTx = B 2 

fSOT21= 1,660,542 

5 10 15 20 
20K 40K 60K SOK 

E 

J,./ 
,, 

25 
IOOK 

FIGURE 15 Page Fetch Ratios PHASE 2 OF AED COMPILER 



193 

Graph A is: 

FFp (I Mp I , N, Il><, SOT 2 , Fd, RLRU ) /FFp (I Mp I, N, Ily, SOT 2 , Fd, RLRU ) 

Il>< a B2 and Ily(W,T • 2500,ICB) 

Graph B is: 

FFp ( I Mp I, N, Il><, SOT 2 ,Fd,RLRU ) /FFp (!Mp I ,N,Ily,SOT 2 ,Fd,RLRU ) 

Il>< • B2 and Ily(W,T • 2500,UANW) 

Graph C is: 

FFp (I Mp I , N, Il><, SOT 2 , Fd, RLRU ) /FFp (!Mp I, N, Ily, SOT 2 , Fd, RLRU ) 

n~ • B2 and Ily - Co■piler Order 

Graph D is: 

FFp(IMpl,N,Ily,SOT2 ,Fd,RLRU )/FFe(IMel • f 1 (1Mpl,N,SS*J,SOT2 ,Fd,Ro) - 6 
f 1 12,N,SSI 72 

lly(W,T • 2500,UANW) 

Graph Eis: 

FFs(IMsl • fMpl,SOT2 ,Fd,RLRU )/FFp(IMpl,N,Il><,SOT2 ,Fd,RLRU) 

ll>< = 82 

Table 4 

Para■eters for Curves in Figure 15 
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6.4 Restructuring Phase 3 

Phase 3 is rest~uctured from a sector trace SOT3 which contained 

3,859.636 references. The program structure Ilx is a random ordering of 

sectors into the virtual address space. Program structures 

Ily(W,T=2500,ICB>. Ily(U,T=2500,UANI.I) and 

Ily(U,O~20,ICBJ 

produced substantial improve■ents in the paging performance over. 

Ilx =83 • These improvements are illustrated in curves A, B, and C of 

Figure 16. These curves have the highest peaks of any improvements over 

sector orderings that Me found. Curve D of Figure 16 shows the ratio of 

the paging performance obtained from Ilx to the performance of the 

existing compiler ordering. The theoretical lower·and upper bounds are 

presented in Figure 17 in the same manner as for Phase 1 and 2. 

Nou we present a feM general comments about Phase 1, 2, and 3. Al I 

three phases indicate that significant variations in paging performance 

can occur for different arrangements of the relocatable sectors in 

virtual memory. The unconstrained clustering procedures, ICB and UANM, 

produced the best program performance over all memory ;sizes for all 

three phases. The constrained procedures are not shown for Phases 2 and 

3 since they produced the same relative improvement in these phases as 

in Phase 1. The theoretical louer bounds are relatively good indicators 

of the best paging performance of all three phases for al I but the 

smallest primary memory sizes. 
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FIGURE 16 FFp { IMPI, N,Trx,SOT3 ,Fd, RLRU )/ FFp {IMpj N, Try, 
SOT3,Fd, RLRU) vs IMPI FOR PHASE 3 OF AED 

COMPILER 
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FIGURE 17 FFp (I Mpl,N,TTx,S0T1 ,Fd, RLRU)/FFp ( IMP!, N ,TTy, S0T1,Fd, 

RLRul vs fMpf FOR PHASE 3 OF AED COMPILER 
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6.5 Effects of Input Data 

In order to es tab I i sh the effect that the input program to be 

compiled has on the paging performance, we conducted the fol louing 

e><periments: 

E><periment 1: 

A. We took the above sector trace SOT I and co111puted the progra■ 

structure lly{W,T=2500,UANW). 

B. We measured a second program trace SOT 1 a which corresponds 

to a completely different program and re-structured the compiler to 

get llya{W,T=2500,UANW) based on SOT 1 a. 

C. A third sector trace SOT 1 b was measured, and, based on this 

sector trace, the program structure llyb(lol,T-2500,UANW) Mas 

computed. 

Al I three of the progra~ structures, lly, llya and Ilyb should tend to 

minimize the paye fetches for the traces SOT 1 , SOT 1 a, and SOT 1 b 

respectively. HoMever, Mi I I the structures specified by Ilya or by Ilyb 

tend to minimize the page fetches for SOT 1 ? · 
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Figure 18 contains all the information shoMn in Figure 13 for Phase 

1. That is, it shows the value of the page fetch function FFp for 

SOT 1 and Ily as curve D, and it shows the other curves of Figure 13 for 

visual comparison. Curve Fin Figure 18 represents the value of FFp as 

a function of the same reference behavior SOT 1 and Ilya. Curve G 

i I lustrates the value of FFp as a function of the same reference 

behavior SOT 1 and Ilyb. 

Therefore, the curves 0, F, and G represent the paging perfor■ances 

·of Phase 1 of the compiler for a single sector trace and three different 

partitions of sectors into clusters. The results of this experiment 

revea I that a good program structure !Jenerated froM one sector trace Is 

a good program structure for other sector traces. 

Experiment 2: 

Now we give another experiment. For Ily~ Ilya and Ilyb from the above 

ex per i men t, we use the BAD procedure on each Il to get fix, Ilxa, and ll,cb 

respectively. Then, using the same sector trace SOT 1 , the fol lo1,,1ing 

rat_ios are computed and plotted in Figure 19. 

A. FFp{ •• ,Ilx,SOT 1 , •• )/FFp{ •• ,Ily,SOT 1 , •• ) 

8. FFp{ •. ,Ilxa,SOT 1 , •• J/FFp( •• ,Ilya,SOT 1 , •• } 

C. Ffp{..,Ilxb,SOT 1 , •• J/FFp( •• ,Ilyb,SOT 1 , •• ) 
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A~ FFs ( IMsl = t 1 (IMpl, N, ss1 sor,~Fd,Ro)-b. 
f 1 ( 2 ,N , SS) / 2 

B~ FFs (IMsl =IMpl, SOT
1

, Fd, RLRU) 

c~ FFp (IMpl ,N,rrx,soT1,Fd, RLRu) 

D=:> F Fp( IM p I, N, TTy, SOT
11

Fd, R LRu) 

E=:>FFp(IMpl,N, Try, sor, ,Fd, Ro) 

TTx = B 1 

TTy ( W, T =2500, UANW) 

N =4096 Bytes 

lsor1 I= 2, oo ,, 021 

F = FF p ( I M p I , N, Try O , S OT1, F d , R L RU ) 

TTy0 (W,T=2500,UANW) FROM SOT
10 

G= FFp (IMpj, N,TTyb,SOT1,Fd, RLRU) 

Tryb ( w, TF =2500, UANW) FROM sor,b 

Theoretical Worst 
Case 

Theoretic a ,~x, , 
Best Cose X-.x ' 'x .... 
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---
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FIGURE 18 Tota I Page F etches vs I Mp I FOR PHASE OF AED 
COMPILER 
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FIGURE 19 Comparison of Page Fetch Ratios for Different Program 

Structures FOR PHASE I OF AED COMPILER 
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These ratios are the improvements in paging performance over the same 

sector trace for three pairs of program structures. Each pair consists 

of a BAO structure and a good structure. FurtherMore, each pair is 

constructed from a different sector trace. Houever, the possible 

improvement in paging performance for each pair is nearly the same. 

Experiments 3 and 4: 

Experiments 3 and 4 for Phase 2 and 3 respectively are quite 

similar to Experiment 1 for Phase 1. The only difference is that, in 3 

and 4, the ratios of FFp( •• ,Ily,SOT2 , •• )/FFp( •• ,Ilya,SOT 2 , •• ) and of 

FFpL.,Ily,SOT2 , •• J/FFp( •. ,Ilyb,SOT2 , •• ) are plotted as sho"'n in 

Figures 20 and 21 instead of the magnitude of these values of FFp shoMn 

in Figure 18. In Figure 18 it is difficult to distinguish betueen the 

three curves because of the scale problems. Figures 20 and 21 do aMay 

Mith the scale problems but do not sho"'_the relationship of these values 

to the overall picture as is done in Figure 18. From"Figures 20 and 21 

"'e observe that a good program structure computed from one sector trace 

turns out to be a good program structure for another sector trace. 
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3.0 A= FFp ( ... TTy, SOT2 .. , )/FFp ( ... lTy0 , SOT2 , ... ) 

B= FFp ( ... TTy, SOT2 ... ) / FFp ( ... TTyb, SOT2, ... ) 

where TTy is based on SOT 2 
2.0 TTy0 is based on SOT 

2 
1.e TTyb is based on SOT2: 
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FIGURE 2 0 Ratios of Page Fetches For 7T Based on Different 
Sector Traces FOR PHASE 2 OF A ED COMPILER 
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FIGURE 21 Ratios of Page Fetches For TT Based on Different 
Sector Traces FOR PHASE 3 OF AED COMPILER 
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CHAPTER 7 

DISCUSSION ANO CONCLUSION 

7.1 Introduction 

This report has presented theoretical and e~periMental results 

~hich show that program restructuring has a significant effect on the 

paging performance of virtual memory systems. 

7.2 Summary 

The problem of restructuring programs to improve their p_aging 

performance in virtual memory systems was presented in Chapter 1. 

In Chapter 2 we formalized the notion of the page fetch function 

and the sector fetch function. The page fetch function models the 

paging behavior, and the sector fetch function models the sectoring 

behavior. 

In Chapter 3 the sector fetch function was used to produce upper 

and lower theoretical bounds in the page fetch function over al I 
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reorderings of the relocatable sectors into the address space. 

lntersector reference models based on sector uorking sets and LRU 

stack distances were developed in Chapter 4. In Chapter 5 several 

clustering methods were developed uhich used the intersector reference 

models to produce a restructured program. 

In Chapter 6 the effect of program restructuring on the paging 

performance of real programs was investigated empirically and 

theoretically. In particular, we showed that improvements in paging 

performance of factors of 20 to 40 is not uncommon for relatively large 

regions of primary memory size. 

7.3 Further Work 

The research reported in this report pro~ides a basis for 

additional investigation in several areas of program restructuring. 

The ~ork described in this report addresses a problem that is as 

hard as the seemly intractable problems studied by Cook [CS] and Karp 

[KG]. Recent work by several people has revealed fast algorithms for 

near optimal solutions to some of these problems. The clustering 

techniques described in Chapter 5 have been shown of value for 

particular but not trivial examples that occur in practice. It 1-1ou.ld be 
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of considerable interest to knoM to Mhat e~tent these techniques can be 

relied on over al I possible sector traces. Can our techniques be shown 

to yield solutions that come Mithin a factor of tMo of our loMer bounds? 

If not, are there algorithms that do come near our loMer bounds? 

Alternatively,can our loMer bounds be improved? 

We did not investigate the problem of sector duplication in this 

thesis. We claim that the results of Chapter 3 can be applied in a 

straightforMard manner to produce loMer bounds on the paging performance 

Mhen sector duplication is alloMed. Another related problem is how to 

incorporate sector duplication into the intersector reference models and 

into the clustering procedures. 

Another area is the problem of deciding Mhen it is best for sectors 

to cross page boundaries and Mhen it is best to have holes in pages. 

An ongoing research project betMeen the author and Oon Hatfield of 

IBM is to use the theoretical results of Chapter 3 to evaluate the 

potential benefit of reprogramming and then restructuring a very large 

data base system. This large data base system has sectors Mhich are 

over 10 pages long. For e~ample, Theorem 1 can be used to predict the 

theoretical best paging performance if the large data base system is 

broken up into k sectors per page. Thus, the problem is to determine 

the k that provides the best theoretical improvement and then use the 

magnitude of this improvement as a basis for deciding whether or not 

reprogramming is advisable. 



206 

REFERENCES 

Al Aho, A. V., P. J. Denning, and J. D. UI Iman, "Principles of 

Optimal Page Replacement", Jour. Acn.._ Vol. 18, No. 1, Jan. 

1971, pp. 80-93. 

A2 Arora, S. R., and A. Gallo, "Optimal Sizing~ Loading and Re

loading in a Multi-Level Memory Hierarchy System", AFIPS C5mf.. 

Proc., Vol. 38, 1971, pp. 337-344. 

Bl Belady, L. A., "A Study of Replacement Algbrithms for a 

Virtual-Storage Computer•, rnt1 Systems JQ.w:., Vol. 5, No. 2. 

1966, pp. 78-101. 

82 Bra~n, B. 5., and F. G. Gustavson, "Program Behavior in a 

Paging Environment", AFIPS Conf. Proc., Vol 33, Part 2, 1968., 

pp. 1019-1032. 

B3 Baer, J., and R. Caughey, "Segmentation and Optimization of 

Programs from Cyclic Structure Analysis", ~ Cont. ~ •• 

Vol. 40, 1972, pp. 23-36. 

84 Baer, J., and G. R. Sager, "Measurement and Improvement of 

Program Behavior Under Paging Systems", in Statistical 

Computer Performance Evaluation, ed. by W. Freiberger 



207 

(proceedings of a conference held at Broun University, Nov. 

1971), Academic Press, Neu York, N.V., 1972, pp 241-246. 

BS Braun, B. S., F. G. Gustavson, and E. S. Mankin, "Sorting in a 

Paging Environment", Comm. ACM, Vol. 13, No. 8, Aug. 1978. 

pp.483-494. 

B6 Belady, L. A., and F. P. Palermo, "On-line Measurement of 

Paging Behavior by the Multivalued MIN Algorithm", IBM Jour. 

Res. Develop., Vol. 18, No. 1, Jan. 1974, pp. 2-19. 

Cl Coffman, E. G., and L. C. Varian, "Further E~perimental Data on 

the Behavior of Programs in a Paging Environment". Comm. ruJl. 

Vol. 11, No. 7, July 1968, pp. 471-474. 

C2 Comeau, L. W., "A Study of the Effect of User Program 

Optimization in a Paging System", ACM~- on Operating 

System Principles, Gatlinburg, Tenn., 1967. 

C3 Charney, H. R. and D. L. Plato, "Efficient Partitioning ·of 

Components"~. SHARE/ACM/IEEE Design Automation Workshop. 

Washington, O. C., July 1968, paper no. 16. 

C4 Corbato, F. J., "A Paging E~periment With the Multics System•. 

l.!! Honor of Philip tL.. Morse, edited by H. Feshbach and K. U. 



208 

Ingard, MIT Press, Cambridge, Mass., 1969, pp. 217-228. 

CS Cook, S.A., "The Complexity of Theorem-Proving Procedures•, 

Proc. of Third Annual ACM Symp. on Theory of Computing, 

1971, pp. 151-158. 

01 Denning, P. J., "The Working-set Model for Program Behavior•, 

Comm. ACM, Vol. 11, No. 5, May 1968, pp. 323-333. 

02 Denning, P. J., "Virtual Memory", Computjng Surveys, Vol. 2, 

No. 3, Sept. 1970, pp. 153-190. 

03 Denning, P. J., "On Modeling Program Behavior", AFIPS Conf. 

Pro~ .• Vol. 40, 1972, pp. 937-944. 

Fl Ferrari, □., "A Tool for Automatic Program Restructuring,• 

Proc. ACM Ann. Conf., Aug. 1973, pp. 228-231. 

Gl Guertin, R. L., "Programming in a Paging Environment", 

Dat~m~_! ion Vo I. 18, No. 2, Feb. 1972, pp. 48-55. 

G2 Gilmore, P. C., and R. E. Gomory,"The Theory and Computation of 

Knapsack Functions", Operations B.fil!., Vol. 14, 1966, pp. 

1045-1074. 



209 

Hl Hatfield, 0. J. and J. Gerald, "Program Restructuring for 

Virtual Memory", J.m1 Systems Jour., Vol. 10, No. 3, 1971. 

pp. 168-192. 

H2 Hatfield, D. J., "EKperiments on Page Size, Program Access 

Patterns and Virtual Memory Performance", lfill. Jour. ~

□eve I op., Vo I. 16, No. 1, January 1972, pp. 58-66. 

11 lnfo~matics, Inc., 0 EKperiments in Automatic Paging", Report 

RADC-TR-71-231, Rome Air Development Center, Air Force Systeas 

Command, Griffies Air Force Base, NeM York, Nov. 1971. 

Jl Jensen, P. A., "Optimum Net~ork Partitioning", Operations 

Res., Vol. 19, 1971, pp.916-932. 

J2 Jarvis, R. A., and E. A. Ed~ard, "Clustering Using a 

Similarity Measure Based on Shared Near Neighbors", 

IEEE Trans. on Computers, Vol. C-22, No. 11, November 1973. 

pp. 1025-1034. 

Kl Kernighan, B. W., "Optimal Sequential Partitions of 

Graphs", Jour. ACM, Vo I. 18, No. 1, Jan. 1971, pp. 34-48. 

K2 King, W. F., Ill, "Analysis of Demand Paging Algorithms", 

ProG_. _IFIP Congress, TA-3, August 1971, pp. 485-490. 



218 

K3 Kuehner, C. J, and 8. Randell, •oe111and Paging in Perspective•. 

AFIPS Ctmf. e..tm;_., Vol. 33, Part 2, 1968, pp. 1011-1818. 

K4 Kernighan, B. IJ., •s.oae Graph Partitioning Proble111s Related to 

Prograwi Sepentation", Ph.O. ThesJs, Princeton Univ., 

Princeton, N. J., Jan. 1969, 117 i,p .• 

KS Kernighan, B.'U., and S. Un, •An Eff ichm·t Heur 1st ic Procedure 

for Partitioning Graptts•, Ibt kU Ss,stn.Jechnical Journal. 

Vol. 49, No. 2, Feb. 1971, pp. 291-388. 

K6 Karp, R. M., •Rttducibi I ities Aalsng .Coabinatorial Prob le••• •. 

Cg11p.te,tj ty a.! w,Nuter C0111PUtatipn1. edited by R. E. Mi Iler

and J. 1,1. That'Cher, Ptenuw Press. 1972, pp. 85-183. 

Ll loue, T .C., •Au tout ic Seg111antat ion of Cyclic Progra111 

Structures Based on Connectivity and Processor Ti111ing•. C,ga. 

ACM, Vol. 13, No. 1, Jan. 1971, pp. 3-6. 

L2 LeMis, P. A. IJ. and P. C. Vue, •statistical. Analysis of Progr-a■ 

Reference Patterns in a Paging Erwiron11ent•, ~- lfEE. 

I nternat i ona I CoMputer: Society CttOtrenee. Sept. 1971, pp. 

133-134. 



211 

L3 LeM, A., "On Optimal Pagination of PrograMs", University 21. 

HaMaii Information Sciences Report, Honolulu, HaMai i, 1978. 

L4 Luccio, F., and M. Sami, "On The Decomposition of NetMorks in 

Minimally Interconnected SubnetMorks", lfEE .Ir:..filu!. on 

Computers, Vol. Ct-16,pp. 184-188, May, 1969. 

LS Lukes, J. A., "Combinatorial Solutions to Partitioning 

Problems", STAN-CS-72-293, Stanford University, May 1972, 138 

pp. 

L6 Ling, R.F., "On the Theory and Construction of K-Clusters,• 

Ml Mattson, R. L., J. Gecsei, D.R. Slutz, and I. L. Traiger, 

"Evaluation Techniques for Storage Hierarchies", IBM Syste111s 

Jour., Vol. 9, No. 2, 1970, pp. 78-117. 

M2 McKel lar, A. C., and E.G. Coffman, "Organizing Matrices and 

Matri>< Operations for Paged Memory Systeffls", Comm. ACM, Vol. 

12, No. 3, March 1969, pp. , 153-164. 

M3 Madnick, S. E., "Storage Hierarchy Systems", MIT Project MAC 

Report MAC-TR-107, Massachusetts Institute of Technology, 

Cambridge, Mass., April 1973, 155 pp. 



212 

M4 Madnick, S. E. and J. J. Donovan, •0ptrrating Syste•s•, McGr8N

Hi 11, Ne1,1 York, 1974. 

M5 McCormick, J, U. T., Jr., et at., •Probln Deco•position and 

Data Reorganization by a Clustering Technique", Operations 

Res.,· Vol. 28, 1.972, pp. 993-1889. 

MS Masuda, T., et al., •Opti•iz&tion of Prograa Organization in 

Virtual Storage Syste•s by.Cluster Analysis", unpublished 

1,1orking paper, 1974. 

M7 Mi yaMota, I., •oata Reference Characteristics of Database 

Application Progrn", Nippon Electric C011Pany, Li ■ i ted, Fuchu. 

Tokyo, unpublished working p-aper. 

Pl Pratt, V. R., "An N LOG N Algoritha to Distribute N Records 

Opt i1wally in a Sequential ·Access. Fi le"',· C01tQlguci tu gj_ Cogute,: 

Cqmput~tions, edited by R. E. Ni lier and J .. _W. Thatcher, 

Plenu111 Press, 1972, pp. lll-118. 

Al Ra111amoorthy, C. V., "The Analytic Design of a Oyna■ ic look 

Ahead and PrograM Seg11enting Syste■ for nut t iprogra■■ed 

Computers". &:.ID;.. ACtt Nationai Cmf.., 1966, pp. 229-248. 



213 

S1 Saltzer, J. H., "A Simple Linear Model of Demand Paging 

Performance", MIT Project MAC Report in progress. 

S2 Spirn, J. R., and P. J. Denning, "E~peri ■ents Mith Progra• 

Locality", AFIPS Cont. Proc., Vol. 41, Part 1, 1972, pp. 

611-622. 

S3 Smith, J. L., "Multiprogramming Under a Page on Demand 

Strategy", Comm. ACM, Vol. 10, No. 18, Oct. 1967, pp. 

636-646. 

Tl Tsao, R. F., L. ~. Comeau, and B. H. Margolin, "A Multi Factor 

Paging Experiment 1: The Experiment and the Conclusions•, in 

Statistical Computer Performance Evaluation. ~d. by~. 

Freiberger (proceedings of a conference held at BroMn 

University, Nov. 1971) Academic Press, NeM York, pp. 183-

134. 

Vl Varian, L. C., and E.G. Coffman, "An Empirical Study of the 

Behavior of Multi-programming". 

V2 Ver Hoef, E. E., "Automatic Program Segmentation Based on 

Boolean Connectivity", AFIPS l&nf. Proc., Vol. 38, 1971, PP• 

491-496. 


