
CAMBRIDGE

MAC TR-148

PROGRAM RESTRUCTURING FOR VIRTUAL MEMORY SYSTEMS

Jerry ~i lliam Johnson

March 1975

This research uas supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2095 uhich
uas monitored by ONR Contract No. N00014-70-
A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

This empty page was substih,ted for a
blank page in the original document.

PROGRAM RESTRUCTURING FOR VIRTUAL MEMORY SYSTEMS

by

Jerry ~illia■ Johnson

ABSTRACT

The problem area addressed in this report* is program restructuring.
a method of reordering the relocatable sectors (subroutine and data
modules) of a program in its address space to increase the locality of
the program's reference behavior, thereby reducing the number of page
fetches required for its execution in a virtual me■ory system.

Theoretical upper and louer (optimum) bounds are derived for the
paging performance of programs over all partitions of relocatable sectors
into pages.

Program restructuring techniques are developed uhich use intersector
reference models based on sector Morking sets and sector stack distances.
These intersector reference models identify the local reference behavior.
and clustering procedure, are developed that use this local reference
behavior to rearrange sectors into pages such that significant
improvement in paging performance is obtained.

Results of measurements of paging performance obtained in the
computer laboratory are discussed. The relationship betMeen the paging
performance of a program restructured by the practical restructuring
algorithms and the theoretical bounds on paging performance are coMpared.

*This Technical Report reproduces a thesis of the sa■e title submitted to
the Department of Electrical Engineering, M.I.T., on June 15, 1974, in

·partial fulfillment ~f the require■ents for the degree of Doctor of
Philosophy.

ii

ACKNOII..EOGBENT

I especiaHy e>cpress tay apprec1ation t-o ■y thesis supervisor,
Professor Stuart E. Madnick, for the subs·tantial tiae and effort he spent
supervising the thesis and in particutar for hie enthuaiaa■ throughout
the course of the research.

I also wish to thank Professor J. D. Bruce and Professor V. R. Pratt
for their helphd co•nnts which greatly i ■prtwed the presentation of the
work and for their encourage■ant throughout the course of the research.

Appreciation is extended to IBM's Caabridge Scientific Center for
Making the CP-ats coaputer syatea availaltle for conducting the
experi ■ental part of this research. I alao wiah to atngle out Don
Hatfield and Coyt Ti lt■an of Hit for their helpful aeel-atance and ■any
editorial co•■ents.

I thank the ■e■bers of the Progra■■ ing Technology Division of
Project MAC for Making the Oynaic Modeling Syatn available for
co■posing and repr-oducing this report on-tine. I ateo thank Albert Vezza
for his enceurag.MNmt and INfflV helpful suggestions during the research
period, Stewart Galley for his unifying editorlai coaaents and Susan
Pitkin for pel"'foraing aH the on-line editing that traneplred between the
thesis and this report. · ·

I especially thank ■Y wife, Janet N. Johnson, for her patience and
understanding throughout ay years of graduate study at 11.1.T.

The author is grateful to Project nAC and 1811 for their financial
support.

~ork reported herein uas supported in part by Project MAC. an
M.I.T. research project sponsored bV the Advanced ReNarch
Projects Agency, Oepartaent of Defense, under office of Naval
Researeh Contract Nonr-4182(81).

iii

TABLE OF CONTENTS

SECTION

ABSTRACT

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Motivation

1.3 The Nature of PrograM Restructuring

1.4 Importance of Program Restructuring

1.4.1 Comeau's Results

1.4.2 Results of Hatfield and Gerald

1.4.3 Program Design Considerations

1.4.4 Related Performance B~nefits

PAGE

i i

i i i

yj i

he

1

1

1

3

7

8

8

10

12

1.5 Related Research and the Need for Further Research 12

1.5.1 lntersector Reference Models

1.5.2 Reordering Procedures

1.5.3 Sector Ordering Evaluators

1.5.4 Performance Bounds

16

17

19

28

iv

1.6 S......-y of Go-a1s

CHAPTER 2 FORIW. I ZAT UJN OF ¥18TUM. flEt10RV

SVSTE11S

22

24

2.1 lntroduct ic:m 24

2.2 MajOf" Paraaeters of a Two-le¥el Virtual ,.._,,..,

Syste■ 24

2. :Z. 1 Con f i gur-at i on 2S

2.2.2 Pregr-a Behavior 28

2. 2. 3 Auto•at i c Manage■ent A Igor i th■ 38

2.3 The Virtual Storage ftodel 32

2. 4 Per foraance tleasures 32

2.4.1 Effective Capacity 33

2.4.2 Effective Cost 33

2.4.3 Effective Access Tiae 33

2.4.4 Page Trace Siaulation 36

2. 5 Page Fetch Function Perfor■ance flodel 38

2.5.1 Reptace■ent Afgorith■ Considerationa 39

2.5.2 Progru STructure Consl1Serattena 44

2.6 Sector Fetch Function Perforttance rlodel S8

CHAPTER 3 PAGING PERFOffflAHCE BUUNOS

3.1 Introduction

3.2 Lower Bounds

3.3 Upper Bounds

54

54

S6

71

y

3.4 Simple Example of Computing Bounds 75

3.5 Extensions to Louer Bounds 88

3.6 Bound for Uorking Set Manage■ent 186

3.6.1 Louer Bounds for Working Set Manage■ent 118

3.6.2 Upper Bounds for Working Set Manage■ent 119

CHAPTER 4 INTERSECTOR REFERENCE MODELS 122

4.1 Introduction 122

4.2 lntersector Reference Models 123

4.2.1 The HG lntersector Model 124

4.2.2 Working Set Intersector Reference Models 126

4.2.3 LRU Stack lntersector Reference Model 136

CHAPTER 5 CLUSTERING PROCEDURES

5.1 Introduction

5.2 Clustering Procedures

5.3 Nearest Neighbor Methods

5.4 Hatfield and Gerald Method

5.5 Sector Interchange Procedure

5.6 lntercluster Bonding Method

CHAPTER 6 EXPERIMENTAL RESULTS

6.1 Introduction

6.2 Restructuring Phase 1

143

143

143

144

150

151

157

167

167

174

vi

6.2.1 Constrained Procedures

6.2.2 Unconstrained Procedures

6.2.3 Theoretical Bounds

6.3 Restructuring Phase 2

6.4 Restructuring Phase 3

6.5 Effects of Input Data

CHAPTER 7 DISCUSSION AND CONCLUSION

7.1 Introduction

7.2 Summary

7.3 Further Work

REFERENCES

175

180

184

191

194

197

203

203

203

204

206

vii

LIST OF FIGURES

FIGURE

1 (a) Two Level Hierarchical System

(b) Virtual or Composite Memory Syste•

(c) Representative Parameters for Several

Virtual Memory Systems

PAGE

27

27

27

2 Logical Address Structure 29

3 Lower Bound on FFp Given by Theorem 1 65

4 The Allowable Values of FFp as a Function of IMPI 76

5 Parachor Curve of FFs(IMsl,ST,Fd,Ro) 134

6 Parachor Curve Illustrating Values for D 142

7 Results for Phase 1 176

8 Results for Phase 1

9 Results for Phase 1

10 Results for Phase 1

11 Results for Phase 1

12 Results for Phase 1

13 Results for Phase 1

14 Results for Phase 1

15 Results for Phase 2

16 Results for Phase 2

17 Results for Phase 3

177

179

181

183

185

189

190

192

195

196

18 Re9ults for Phase 1

19 Results for Phase 1

20 Results for Phase 2

21 Results for Phase 3

viii

199

200

202

202

IX

LIST OF TABLES

TABLE PAGE

1 Major Parameters of T~o-Level Hierarchical

Virtual Memory Systems 26

2 Example of Page Trace Si mu I at ion to Determine FFp 37

3 Parameters for Curves of Figure 12 186

4 Parameters for Curves of Figure 15 193

This empty page was substih,ted for a
blank page in the original document.

CHAPTER 1

1.1 Introduction

In this chapter, the proble■ of restructuring progra■s to i ■prove

their paging perfor■ance in virtual ■e■ory eyete■e is presented.

1.2 Motivation

As the use of ■ultiprogra■■ ing and virtual ■e■ory techniques has

become more widespread, ~he performance of paged virtual ■e■ory

hierarchies has become ■ore important. The fact that paged virtual

memory systems can be made to perfor■ efficiently at all depends

primarily on an inherent property of progra■ behavior known as •progra■

locality" [01,02,03,041. Progra■ locality arises fro■ empirical

observations that actual programs cluster their ■e■ory references so

that, during any interval of ti ■e, only a subset of the information

available is actually referenced. If a program is favoring a subset of

its information at some particular ti ■e, we should like very ■uch to have

this subset in primary memory. As a result, ■uch of the research efforts

■ade to optimize the performance of programs in virtual ■e■ory syste■s

were spent devising strategies for page manage■ent algorith■s that could

■axi ■ ize the probability of finding in primary ■e■ory the infor■ation

2

needed by the ,Cfll:J at the t i 1te i t is referenced, thereby ■in i • i zing the

nu■ber of pege fetches. S--eral 1ttudtea 181 ,92.021 have ehown that th Is

probabi 1 i ty strengtv de,mlde on the -reference patterns of the prograa

being executed, 1that is, on hou diatribttted in the virtual address space

are the intorution iteta succes,tNfg:refeNnCed by the processor.

Generally, the lilgher the degree af t,ucal-ity of a progr-•, the higher the

perfor11ance of the virtuat aeaory eptn ,with respect to that progra■•

However, sever.a1 coapar htona of page ro11Ph1caent atgor I thlla have been

reported [81,ffl,Cll, often realizing n tweh ft 31 to 48-percant

i11prove11ent trOII une algorithll ,to another for certain progra■s. In

particular, an atgorithll h.u been found '&ll,flU that gives the ■ ini ■u■

nu■ber of page f.etches for a -prc,gr-aa. ;Even though 1'he •inillUII

replace■ent algc,rUh• i·s pracUo_aHv unreaHZabte, •• it requires a

knowledge of the future page ref·erencn of the progr• every ti■e a page

fetch occurs, the atgoritM ia 1-,,ortant because one can use It as a

theoretical bound against which the perforaance of anu other paglng

algorith■ can be capared.

ln all the studies of developing page ■anageaent algori thn to

increase the perfor■ance of virtual ■eaory svatHa, the progra's page

reference pattern and hence its locality ia considered as a

non-•odjfiabJe input to the aystH. In contrast to the e,cploitation of

the e,cisting local itv of progran by paging algorithlls, relatively I ittle

attention has been paid to another iaportant ■ethod of obtaining better

perfor■ance fro■ virtual tteaory ayete■a. Thia uthod le to increaee the

3

degree of locality of the progra■ to be executed. Even less research has

been focused on developing bounds on the perfor■ance i ■prove■ent due to

opti ■u■ progra■ locality.

In this report, Me propose to focus ■ost of our research efforts

in the study of program restructuring [C2,Hl,021, a ■ethod of rearranging

the relocatable sectors (subroutine and data modules) of a program, to

increase the locality of the progra■ 's reference behavior and thereby

reduce the nu■ber of page fetches required for eMecution in a virtual

■emory system. The essential idea behind progra■ restructuring to bring

about this localization in its reference behavior is to take sectors of

the program that are used closely together in ti ■e and cluster the■

closely together in the virtual address space.

1.3 The Nature of Progra■ Restructuring

The nature of progra■ restructuring methods that have been

proposed so far can be classified along several dimensions. Mith respect

to the extent of the progra■mer's involvement, restructuring can be

manual or automatic. depending on Mhether rearrangement decisions are

made by man or computer. With respect to the level at which

restructuring is applied, Me can ■ake a distinction between external and

internal reordering. In external reordering, the sectors Mhich are

rearranged in virtual me■ory are relocatable sectors of instructions

4

and/or data. •Internal restructuring consish of reordering parta of

re I ocatable sectors with respect to Heh other or ai•ply deciding where

to insert page breaks in the code ,flCl.VH. External rntructuring ia

faster and cheaper since ; t ne¥er requires reprogr ... ing. Ioli th respect

to the type o.f iaf,.,..H-1. oe tth,,km. .. a ..,...tr,uo.tvr ing procedure i • based.

there are stttiiO ftthode, which only aae "" of the knowledge of the

static proper-ties of the progrM. and dynaic nthoda. which are baaed on

data.' collected .during mcecutlon. r...,...•+ing the dynaaic behavior of

the progra•.

Algori thlN for at1tottatic restructuring can be applied at

co■pi lat ion t• lf they er• -.tftotio1 •••• •--••• are those aethoda

which construc.i a, graph -110del of the ,....,... te lie reetructur.ed. whose

sectors are repr....,ted t,v ,qrt,,k,ee ,(.,._.. , ... ,tght ia the eize of the

sector) and arc• r.epreeent the transition• (data or control references)•

and then cluster verticee according to conuctivlty conaideratlcms or to

the cyclic structure of the gr*h fll3.,Ll,.R1,¥2J.. Ila .are intereeted in

auto,atjc. e,ct1rnal progr• restructuring Nthoda based on the progra■'e

dynaaic behavior and in ••••.-.t diecuaatona we wi 11 eiapty cal I this

progra■ restr,uc.tw ing.

In order to pr~vide IIOre insight into the character of progra■

restructuring which we will etuctv, we ■ake the following general

assu•ptlons. A progrM eoneiete of a finite Ht of relocatable data and

procedure sectors. Tkeu sectors are qpaq,ue, since we are concerned with

the interaction• a■ong the sector• and._ we not concerned with Mhat

5

goes on inside each sector. The average size of a relocatable sector is

smal I with respect to the size of a page (between one-tenth and one-half

page size}.

Informally, the basic approach to progra■ restructuring is to run

the progra■ with a set of •typical• input data, record the sector

reference behavior, formulate an intersector reference ■odel based on the

recorded infor■ation, and then apply a progra■ restructuring procedure

which uses the ■odel of intersector reference behavior to reorder or

partition the sectors into logical pages such that the intersector

references a■ong sectors in different pages is ■ ini ■ ized.

The ai ■ of progra■ restructuring is to increase the locality of

the progra■ 's address reference pattern by reordering the relocatable

sectors in virtual ■e■ory such that sectors that are needed within a

relatively short ti ■e of one another are found in the sa■e logical page

or in logical pages that would otherwise tend to be in pri ■ary ■e■ory at

the sa■e ti ■e. The act of restructuring will tend to create a situation

in which there are either very strong or very weak affinity bonds between

logical pages. The resultant goal of progra■ restructuring is to

■ ini ■ ize the page fetches required by a progra■ during its execution in a

virtual me■ory system. This is a very difficult goal to achieve because

the nu■ber of page fetches is a function of pri ■ary ■e■ory al located to

the progra■, the page size, the fetch and replace■ent policies, the

sector reference behavior, and the selected ordering of sectors into

6

logical pa-gee.

ln o.....,. to ,1iJOae ure foNNIHy tbe·nature of the restructuring

prob le■ for ;any 1trotJNIII ■odel.ed ·t,y a set of relocatable eectora of

specHMld ·am end ••-•aetarMI eectur..,,tt,ee-'dncrittklg the sector

reference behe¥i·or, Me need Hie fol hn1ifllg 1ilefinttlona.

A p~agt,• i11 regarded ae a·dir-ected.-a,h G of• nodes, of size

Si> 8, i • 1, ••• ,t■• f+.e .. noctee,·~t retaaatab·l.e eectora. Let N be

the page size, ,-..cf, ·that 8 ,< Sr·< >N for al I i. Lat C • (c1J),

i, j • 1, ••• ;a{t,e;;a Mei-ted COR119C'ttvr,tu:,aat,ri,c tlncrl:bing the edges of

G. The e.dge9 of G repr.eunt the ifltersector refttl"ence behavior of the

progr••· WHh _,.. (i ,J) i•• -aseeciated a ccnrt c,1 -~ -8 of traversing

that edge. Wow -to • dMMttle the we-t intet-ncter reference wade I C fro■ the

Measured sector ·trace ia an i-,.ortent r....,.ch l'N"Db·t... However, ciJ

•ight represent ·the pt"ttbability tbet eector i r8'fereneee sector j, or

ciJ ■ ight be the total maber of ·tiaes actor i 11akea a data reference

or a tran•s·fer of control to •ctor j, or ideally cil would represent

the nu■ber of page fetchee which would occur due to sector i referencing

sector j in a given vir-tual 11811Cff>V svet• unteaa i and J-e grouped

into the s•e page.

Let n be the fflJIIIJer of logical pagee of the restructured progra■•

Ann-way reetructuring of Gia• eet of noM1tPtU, pairwise diJJoint

subsets (pages) of G, p1 , ••• ,p11 such that

7

U! 1 Pi • G and IPi I~ N for all i, where IPi I stands for the

size of subset Pi• and equals the su■ of the sizes of all the sectors

of Pi. The cost definition for the restructured G is the su■■ation of

Cij over al I i and j such that i and j are in different subsets

(pages). The cost is thus the su■ of all eMternal costs in the partition

of G. A restructuring of G is opti ■al if it achieves ■ ini ■u■ eMternal

cost or equivalently ■aMi ■u■ internal cost, because the total cost of al I

edges is constant.

~e can now point to two distinct and difficult proble■s

associated with progra■ restructuring. One is, given G and C, how to

find an opti ■um restructuring of G, and the other is how to ■odel the

intersector reference behavior C such that an opti ■u■ solution to the

restructuring proble■ for■ulated on C gives the ■ ini ■u■ nu■ber of page

fetches for a virtual ■e■ory syste■•

1.4 Importance of Progra■ Restructuring

The potential of progra■ restructuring for i ■proving the

performance of progra■s running in a virtual ■e■ory syste■ can be beet

illustrated by citing so■e reported results.

8·

The fi~•t· pub·liehttd reav.Us,·of progr•·,n,structur·ing to increase

the perfor•IH'.IG8 of progra•• in a vir-tual,, eystew was in 1967 by L.

I.I. Co•eau CC21. CollNU reports that thee ordering of relocatable eectore

of code over vir-tual pages can have a profound effect art paging

perforaance.. J-.,,parUCtJlar, he· found·that the nullber of page fetches

during an assellbly could be decreased by a factor of five by changing the

ordering of the·IMN't,itor aodulee-at ,.,_, ti•• Faur orderings of the

aonitor aoduhtsr;A8f"1t coa,,areo under ttte· ... prlaery .. .,,.V constraints

and the saae· pagJ119··al9'f'"1 thin... ft•'·-♦--ttca4 arttarh• produced 6588

page fetches, the-'. randN:, ordar gave. ,\38.,.fetdles., and ordllr based on

knowledge of ta pave•fl,n amt, funct,J.GftS,, d··tlie ncluin resulted in 2488

fetche9. afltcic-811: .,....,.1,.baaedtm'the hfloN.t..,_ et the func,ttons of the

aodul••• page size and •·ctetai lecl ttie-tery of·,.tnt8"'11GdUle aetivitv

generated.while, the progru. wa in e,cecution produced 1288 fetches.

A subsequent e,cperiaent by Tsaco,. Coaeav and rtargol in [Tl]•

perfor•ed on M l8'1/368 l'lodel 48 in·a CP/"8 envirORNnt, shows that

paging activity i&: reduced: auctt IIOJ"e bV •"·good to•~ of operating

systH eubrout ••• · thaft,. by rep4.ac....,t MIGi" i thlle.

1.4.2 Resulte of Hatfield and Geratd

9

In 1971 Hatfield and Gerald CHll reported that i ■provements in

paging performance, on the IBM/360 Model 67, in the range of two-to-one

to ten-to-one can occur by using experi ■ental techniques, based on

information compiled fro■ sector reference traces, to restructure the

relocatable sectors of compilers, editors, and assemblers. This is a

significant reduction in the number of page fetches experienced by

existing, frequently executed progra■s, and how close this ia to the

opti ■u■ reduction is currently unknown.

Also, they present an excellent discussion supported by ■any

detailed measurements, which shows that the sector reference behavior of

■oat programs they examined (especially the syste■ progra■s: co■pilers,

assemblers, editors, etc.) proved to be re■arkably insensitive to the

input data in rather large domains. This is very i ■portant because there

is no merit in tracing a program~ massaging the traced data, reloading

sectors, and ■easuring changes in paging rates if the i ■prove■ent only

holds for the particular set of input data used when it was being traced.

Fortunately, the relative number of intersector references of ■any

commonly used progra■s is rather insensitive to input data. However, it

is certainly still true, especially for particular application progra■s,

that the uniformity of intersector references over a range of input data

should be established before sector reordering on the basis of

intersector behavior is atte■pted.

18

In adaiti:on, tttey reported that progra restruc.turing to increase

the locality. in pn,vra reference patterns can have a ltUCh aore profound

effect on paghlg .. perferaance in a vlrtua __,,, ...,tea than page

rep I acettent ••ver i tfwe.

1.4.3 PrograaO.Sign Considerations

Another technique of increesing the degree of locality of

prograes, but certainly not the easiest to accoapl i sh, conei eta of

teaching the""°" a■■er• how to deattn _,.. t.ecal .,,....,._ 184,BS,Gl,MU,

■aking thett m of tile· hipo, .. tant language tramtl•·tor considerations,

providing thetl 111·ith Untlllbiguaua f~ about the paging perfor■ance of

their prograaa and showing thelt hOM the SV1JMII penal izea those progra■a

which exhibit a poor degree of locality. The typicaf attitude of virtual

■eaory egst .. designers NV be-eased Ilg Denning lD21 when he states,

•it is not known whether progr....,.a can be properly educated, inculcated

ui th the 'right' rules of thuttb, ae that they habitual ty produce progra■e

ui th •good• t,.ecat i ty. • Unfortunately, the freedell of the progr-era

fro■ the need to NOrry about phys i ca I llellOrV apace and i ta ■anage■en t i n

a virtual NllC'JrV svetH is a Njor otJatacle to their education in the art

of locality.

Therefore, e9t)8Cial ly for frequently eMecuted progr•• such aa

operating eyate■s. assellblera, coapilera, editors, production progra■a,

11

etc., we can see the appeal and the potential rewards of the prograM

restructuring approach, that is, to design the program without

excessively caring about its locality, and then to rearrange its

relocatable code and data sectors in the virtual address space so as to

make its reference pattern more local.

12

1.4.4 Related- Perfor•ance Benefits

If we can reduce the nuMber of page fetches required by progra■

restructuring, we will get iMproved perfor■ance in several areas:

1. Reduced time spent paging.

2. Less supervisory overhead spent in ■ain
'\

11e11ory and paging ■anagemen,t.

3. Better throughput on the average, because a

prograa wi 11 interfere with others less.

4. Better paging operation when it is needed,

because there will be less contention for the

paging device.

1. 5 Re I a ted Research and the Need for Further Research

The only comprehensive research in the area of auto■atic progra■

restructuring was reported by Hatfield and Gerald CHlJ. The essence of

their work can be interpreted in the following context. A progra■

consisting of• relocata~le sectors occupying n logical pages of virtual

■emory was run with a typical set of input data and sufficient

information was recorded during the run to produce a co■plete sector

trace. A complete sector trace is the ti ■e sequence of all sector

references (instruction and data references) during progra■ execution.

13

A "nearness ■atrix" C for Modeling intersector behavior was

constructed fro■ the sector trace. The nearness ■atriK is an ■x■ ■atriM.

whose entry Cij(l sis ffl, 1 s j s ■) is the nu■ber of ti ■es sector j

fol lowed sector i in the sector trace or equivalently the nu■ber of ti ■ea

sector referenced sector j during the execution of the progra■• This

■atrix is equivalent to a directed graph G of• nodes where the arc fro■

node i (corresponding to sector i) to node j has Cij as its weight.

No computationally feasible procedure was found to produce and

prove an opti ■um restructuring of G, based on C, into pages, i.e. one

that mini ■ ized the summation of Cij over all i and j such that sector

i and sector j are grouped into different pages. Instead heuristic

approaches were used to restructure G. One method used essentially the

largest values of the eigenvectors of Casa basis for grouping sectors

together. Another heuristic approach which gave slightly better results

was a procedure which atte■pted to cluster sectors into pages, under the

constraint that the size of each cluster be no greater than the page

size, such that the square of the interconnecting weighted arc distances

between pages were minimized.

The latter heuristic approach is quite si ■ ilar to the procedure

reported by Charney [C3J which partitions a network of interconnecting

co■ponents into groups of co■ponents such that the total nu■ber of

interconnecting wires between groups tends to be ■ ini ■ ized.

14

As ffatfiltld and Gerald peinted out, a disadvant:age of pr-ogra■

res true tur i·ng 'foNle,t atect on the nearnea11 H1'r he C is that the nearness

aatri>c contains gfot,af inforwiation about Netor interaction, whereas

paging depenoa _, local refer1!tflCe p1tt'trns. Fer P911Pfe, consider two

sector ~•fer-anee tracn 51 and ·5z. A99Ulle that sectOf"'tl i and j are

re.ferenced exactly k tiaes in both tracn. Let S1 • cx 1 (1 j)k «"2 and S2 •

u 1 (i ju2)k wherw « 1 and u1 represent long sector r-efrence

strings. The value C;1 is k in both cases and c, is larger in

S 1 • Therefore. fhe prubabilit'y that ttte cl'uetering afgori th■ wi 11

group i and J together is greater for S1 than Sz. However, the cost

of not groupiftV ttNtll together' h1 gr:eaiter for 5'2, slnce the nuaber of

page faults due to the referencn j haecUatety fol lowing those to i wi 11

be at •os t 1 for S I for a I f real WIIOf"y st %ft greater than one and can

be 1t for S2 for· ,oerta•r-n •:z 's. In other-de, even an opt i·•u•

solution of the restructuring probfa for1R1fated on the nearness aatrhc

■ay not give the ■ ln h1u• nullb8r of page faul t-s.

·Hatfield and Gerald rea1 ized that there are ■anv cases where the

nearness aatrhc aione does not have al I the irtforaatiort needed for

producing a good sector ordering and that the ordering obtained by the

restructuring afgorith11 fr-ow the available infor■ation ia based on

heuristlcs. Accordingly they euppte11ented the auta11atic sector

reordering phaae with a hand Hn·iahlng phase of additional sector

reordering based on cotaplex hullaft interpretation of the progrn' s use of

virtual ■e■orv over the courae of its execution aa displayed via an

15

interactive graphics package. Even though the reordering phase based on

hu•an decisions provided additional i ■prove■ents in paging perfor■ance.

it can be quite ti ■e consuming, and the results are so■ewhat dependent on

the i ■agination and insight possesed by the program■er ■aking the

decisions. Further■ore, the absence of any knowledge about the ■axi ■u■

possible i ■prove■ent Makes it difficult to deter■ ine a suitable stopping

point based on so■e cost-perfor■ance criteria.

In order to deter■ ine if a new ordering is actually better or

worse than an old ordering, they simulated the paging performance of each

ordering over a range of pri ■ary ■emory sizes and page replace■ent

policies •. Evaluation of sector orderings by si ■ulation can be an

expensive process if ■any sector orderings are co■pared.

Based on the current state of research into the proble■ of

program restructuring as discussed above, we can identify several areas

of potentially rewarding research. Ue will assu■e that a progra■ is

■odeled by a set of relocatable sectors of specified size and a sector

trace describing the sector reference behavior.

1.S.1 lnteraec:.tor Ref.-ance l'ladeta

Me need a. U.deL 9f._intv•c.;tor referenGe behaYior C, defined oYer

the sector trace. that incorpor.atee aore of the locaJ reference behavior

of the progra upon which paging act11aUy -,.mis than that captured by

the nearness aatrix. For e,caaple, the probability that a reference fro■

sector i to ~tor j wi l I cauu a page fault is related to auch local

lnfor•ation as the ti ■• elapnd aince _the laat reference to sector J and

the nutlber of dietinct eectore referenced •••• the IHt reference to

sector j in the sector trace. If the Uae I_• short eince sector j was

I ast referred to and H ttle virtual •--11 apeoe NH u•ed during that

ti•e, it is probab.le that aector j ie still in prl■•u ••orv and a new

reference wi I I not ~- a page fetch. · If the ti• and epace traversed

between references to j are large, it ie probable that a page fetch wi 11

occur unless j is grouped i-nto the eaae page aa the refel'"encing sector or

so•e recently referenced Hctor. &. pr,oitMlee to foraulate and investigate

two approaches which ... to have potential for identifying and

quantifying local aector reference behavior which can be u..«t to weight

Cil entries. These approaches are band on nctor uorklng eete and

sector stack distances defined over the sector trace.

17

1.5.2 Reordering Procedures

Another area concerns finding better procedures for restructuring

or grouping them relocatable sectors of a progra■ into n logical pages

such that the reordered progra■ achieves or tends to achieve the ■ ini ■u•

external cost for■ulated on an intersector reference ■odel C. A strictly

eMhaustive procedure for finding the ■ ini ■u■ cost grouping is often out

of the question. To see this, consider the si ■ple proble• of dividing•

sectors into pages containing g sectors each. The total nu■ber of

groupings is as follows:

Groupings• --~•L'~· __
{g !) m/1 { ■/g) !

For ■ost values of• and g, this expression yields a very large

nu■ber; for exa■ple, if•• 48 and g • 4, it is greater than 1825 •

Formally, the problem could be solved as an integer linear progra■■ ing

problem, with a large number of constraint equations necessary to express

the uniformity of the partition [Jl]. However, since it see■s likely

that any direct approach to finding an opti ■al solution wil I require an

inordinate amount of computation, the quest for better heuristic ■ethods

appears to be the best approach. The first and fore■ost consideration in

developing heuristics for co■binatorial proble■s of this type is finding

18

a procedure that is poMerful and yet sufficiently fast to be practical.

A process Mhose running time groMs exponentially Mith the number of

sectors is not likely to be practical.

19

1.5.3 Sector Ordering Evaluators

A computationally ine~pensive evaluator of sector orderings is

needed so that a neu ordering can be eati ■ated as better or Morse than an

old ordering without si ■ulating paging perfor■ance for a pri ■ary ■e■ory

size and page replace■ent algorith■•

One theoretical approach recently reported by Sekino [S41 ■ay be

applied, given a sector ordering into pages and the probabilities of

sector i referencing sector j for all and j, to co■pute the page fetch

probability. However, a Major drawback of this approach is that after

the probabifities of going fro■ one syste■ state to another are• co■puted

(where a syste■ state is deter■ ined by the r pages of an n page progra■

in pri ■ary ■e■ory, the page being referenced, and the state of the

replacement algorithm), then, even in its si ■plest for■ulation, the

solution of r•(~) si ■ultaneous equations are required (a solution

computationally infeasible for, values of n and r usually encountered in

real progra■s).

Another approach relies on the ability to construct a ■atriM

■odel describing the intersector reference behavior fro■ the sector

trace, given additional knowledge about the size of available primary

memory and the paging policies, such that the cost of a sector ordering

(i.e. the cost of the interpage arcs cut) produced by a reordering

algorithm, is proportional to the nu■ber of page fetches eMpected for

28

that order.i•• How .9UCceHful is this approach or .any other

coaputational ly inexpensiYe approach is an open reeearch question. but

the e>eistence•f .thh1 prableaald the:petanUaJ-. of any solution

points out. in iNlrt. the .i••nee -v.a4• of Ute ne,ct research topic.

1.S.4 Perforunoe Bounde

The tr•endouslu large ftUllber of ..:,tor ,ONNri-• and the

difficulty ad-, ... inwuWld.lloth.,in.cheoaiq,e,.PN•Uvelu good

orderin~ and i,a,..,..,._t,..hlt, ,.,._.,__..._...,._....,.._. wor.ee than an old

ordering i 11.ue.v.,ate. ,tM viul __, .. to,..,..,U.,,etica.J. baunde on the

opti_,. iapn,.~ ,in .tfle,..,..,. ·Of ,W#,twaA •w.v avate■e
through progr.-,,,NletNw._.,.,_,. -

I f bGunds -• -the ,ai-maua .n•ar ol ,.._.. fet-ollle• ,Uhlch cou Id occur

during e.,cecuti• ;a.f • 1PNlll"• ._. ,any ,.,.i..nlt of. relocatable sectors

into logical pagea w.ere knoun. they .cmdd ,b,e .uaeds to deter■ ine whether

or not a given .proer,:n should be conaidered for reatructuring based on

i ta current pagi-ng perfor■ance; to evaluat19 the raeutta of a

restructuring ..,__,,. •• whether .autOMt+c. aanuat or both. for a given

progra■.; and 'tl\t onecepti ze ...uhan a ..-.-a •e.tr.i.lCture i.• found.

AutouHc t"'e&tP-uct.urlng pr~ baaed on heur.iatlce appear to

be the only C011P1ttational tv -feaalbte .apprCUICb.. It le uni il,e,l.v that anv

21

one procedure will provide near opti ■u■ solutions for all progra■s. One

attractive methodology for progra■ restructuring when bounds on the

optimum performance are known is to have a set of auto■atic restructuring

procedures available which can be successively applied to a partjculac

program until a reasonably good solution is obtained. In the case uhen

no reasonably good solution is found auto■atically, a decision to

consider manual restructuring and its extent can be ■ade based on the

potential for additional i ■prove■ent versus its expected cost.

The theoretical work reported in the literature to date in

developing bounds on the paging perfor■ance in virtual ■e■ory syste■s

that can result fro■ progra■ restructuring is nil. Me will present a

formal approach to this proble■ and so■e preli ■ inary results in the neMt

two sections of this report.

It is our objective to develop upper and lower bounds on the

number of page fetches which can occur over all reorderings of sectors

into logical pages of a progra■, for any progra■ ■odeled by: a set of

relocatable sectors of specified size, a sector trace describing the

intersector behavior, any two-level virtual me■ory syste■ Modeled by ita

page size, pri ■ary memory size available to the progra■, and page

replacement and fetch policies.

22

1. 6 Su ... Y: of Goa I e

l.. ForaaHze: .., --,..,._ the effect Gf the

str-uctural order ifttl o.f a pr'""'aa• e relocatable

aector• upon i ta pag.ifllt tNlf"'forwe in

v-k-tuat ••r-v. avat

2. Qeyelat, theoreticat liNlund9 on the optillUlt

............. t t11< tM ,_.i:4119 ,_.foNlartc• ef

progra119 ,,n virtual....,.., ...,t ... Milich can

re.vu froa: r~tur Ing the Petecat'al>te

nctor• of prc,raa.

3. Develop theoreHcal botmds on ho.N •bad• the

pag,i,ng per foraance of ,....,. .. can get i f the

•worst• ordering e-f relocatabt•• sector-a i•

chaeen.

4. -Foraaf i ze mm IIOdeJe of progr• refer·ence

behavior. 8UCh n intereector reference llode I a

baHd on sector working Nts and sector stack

di-stances, and Malyze their effect on reordering

procedures for iaproving the paging perfor■ance

23

of programs.

5. Design and develop practical algorithms for

restructuring programs to improve their paging

performance in virtual memory systems.

6. Perform measurements to compare the relationship

bet~een the improvements in paging performance

produced by these practical algorithms and the

optimum improvement specified by the theoretical

bounds.

24

CHAPTER 2

·FURMLI ZAHON, OF VUUUM. "8Ul¥ SVSTEMS

2.1 I ntroducHon .

I n th i s sect i on a toraaH ~et hm of. the fvnd ... ,d a 1

characteri9tics of two-level virtual -erv syat•• i·a presented and

certain per for.aance ae&sures are derived. The purpoH of th is c_hapter

is to develop the terMinology and the frauwork necessary to view this

research in i ta proper perapeeHve •.

2.2 Major Paratteters of a Two-Level Virt.ual ne110ry Syate■

Figure 1 and Table 1 present the ■ajor para•eters of a two-level
' . .

virtual memory systeM. · These paraaeters can be grouped into_ three

categories: (1) Configuration, (2) Autoaatic Manage■ent Algorith■•• and

(3) Progra• Behavior.

25

2.2.1 Configuration

Virtual 111e111ory is assuaed in this thesis to be i ■ple■ented by

paging on a tMo-level hierarchical physical ■e■ory sy-ste■ consisting of

pri ■ary memory, Mp, and secondarw·•e■ory, Ss. (Note that Me have chosen

the notation Ss for secondary ■e■ory, i.e., secondary storage, because

the notation Ms Mould. lead to notational conflicts later in this

report). Each storage device is·pa~titioned into physical blocks called

pages. A page is the basic unit of infor■ation transferred between Mp

and Ss. The page size {usually 4,096 or 2,048 bytes) Is denoted by N.

Each ■emory device is further characterized by .its rando• access ti ■e

Ti, transfer rate Bi, cost/byte Ci, and capacity in pages I Mi I -

I.le assu111.e that Tp < Ts, Bp > Bs, Cp > Cs and 111pl < fSsl.

26

Conf i gura:tJort

L Mp is the· pri ury store

2. Ss is the• secondary s,to.re

3 Jtti I· i. s, the s,i za,, i.n,:, .,..._, of the i-th store

4-., B, is the trans,f..,., rate a:f ttut i-th store

5-. c. ,. is- the, cos-tit.mi t, o-f- the i-th ·stot"'e

6-•. Ti j9 the averaget ace:ne ti lte of the i-th

7. N,: is the nt111ber of' t,vht11' in a page (page

1. F i s the, fe,t.ch· al gvHttlt

Program Behav-i or

1. A I s the I og-ica I ad$!etrs trace

Tab.le 1

Major Parueters of Tua-Level
Hierarchical Virtual Me•ory Syste•s

store

size)

27

AJ. B).
Processor Processor
A ,,. a 1 , a2 , A • a 1 , a2 , •••

' ' .
fTp, BpJ nv.Bv) ,, •

I

(Cv, IMvl) r
I

I
!

fTs,Bs,N)

•

(Cs, 1 s.1,

Cl.
IBM/360-67 IBM/370-165

Mp Core Cache
IMPI 192 pages 16K bytes
Cp 11.53/byte 8.80/byte
Tp 375 ns 160 ns
Bp 21Mb/s 100Mb/s
Ms Oi sk Main Store
1s.1 2048 pages 512K bytes
Cs 10.04/byte 10.50/byte
Ts 8.6 ms 1.44i,s
Bs 1.2Mb/s 16Mb/s
N 4096 bytes 32 bytes
Tv 805 ns 230 ns
Cv 10.18/byte 10.77/byte
IMvl 2048 pages 512K bytes

Figure 1.

AJ. T1-10 Level Storage Hierarchy System. 8). Virtual or
Composite Memory System. CJ. Representatative
Parameters for Several Virtual Me■ory Systems.

28

2.2.2 Program Behavior

The processor, under program control, generates a sequential

sequence of references to the storage system. The processor references

are in the form of logical address references or virtual memory

references which serve to uniquely identify each unit of stored

information inderendent of its locati.on in Mp or Ss. The time sequence

of logical address references is called an address trace, A and Is

defined as:

A I 2 l = a .a , •.• ,a.

Each logical address, ai, may be separated into a logical page

reference and an offset Mithin that logical page. This separation

process is pictorially illustr11ted in Figure 2 uhere the set of 2**"

possible addresses are partitioned into 2••n 1 pages of 2••n2 m N

logical addresses each. The time sequence of logical page references la

cal led a page trace, P and is defined ae:

P I 2 l
.. p '" , ••• ,p

29

---------n-bits---------.i

L____ -~---- Ad-dress

a)Logical Address

---------n-bits

Page Displacement

i. - n 1 -bi ts --\- n2 -bi ts-~--~ ~

(n = n 1 + n 2)

b) Logical Address Partitioned into

Page Address and Displacement

Figure 2

Logical Address Structure

38

I nforut ion ■ovettent between tip and Se is acc911fJJi shed by

transferring pa~s between t1J) and Ss. We can analyze inter level

11tove11ent for address trace A by considering the corresponding page trace

P.

One 11ethod of constructing a rltf)resentation or •odel of a

complex activity such as progra behavior is to first analyze a

particular character izaHon and then gr-..,_l ly introduce additional

detai I. In the .:aae of progr• behavior, it is con•enient to begin by

considering only the address trace and the corre9f)0'1ding page trac.e.

Later, we wi I I consider the effect of the pregr••• structure on lte

behavior.

2.2.3 Autot1atic Managennt Algorith■

Since a processor can service only that portion of a progra■

which resides within pri ■ary •e•ory, which is relatively s■all in size,

the operating syste• 11Ust e,wrcise a special atgorith■, called a paging

algorith11, to keep the ••ost acti-ve• pages of a progra■ in pri ■ary

memory. This is acco11pl ished by transferring pages of the progra• back

and forth between pri ■ary and secondary ltellOries. The goal Qf a paging

algorithm is to ■alCi ■ ize the RUltber of tl ■es logical inforaation i-s In

the primary ■e•ory when being referenced·.

31

The paging algorith• must consist of tMo basic policies. The

Fetch policy. F, decides Mhen and Mhich infor•ati~n should be moved up

from Ss to Mp. The Replacement policy. R, decides when and uhich pages

should be transferred doMn fro■ Mp to Ss.

Oefini tions

1. a= la,b, ••• I is a finite set of logical pages

2 P I 2 l• t Q • .. p ,P , ••• p ts a page trace uith pt •

3. M~ ~ a is the COM tents of Mp at ti Me t ..

4. F"' f 1 ,f 2 , ••• fl is a finite th,e sequence of L sets,

f 1 ~ a, 1 ~ t ~ L.

5 R I 2 L ()' • = r , r , ••• , r • ♦ 1 s a f in i te t i ■e sequence

of L sets, r 1
~ Q,1 ~ t ~ L.

6. M~ • (M1
;

1 -r1
) u f 1

, 1 ~ t ~ L.

7. F and Rare valid if t1 n M1
;

1
• ♦ .r1_~ M1j;1

and pt t M~ ,

The F and R policies are defined to denote a particular

realization of a paging algorithm for a given trace P. For a page trace

and initial primary memory state n:, a F-policy and a A-policy

together determine the time sequence of priMary Memory states that Mi II

occur as the virtual memory system processes the trace. ~e Mi 11

consider only valid F and R policies. That is, none of the pages

fetched at time t, f1
, may be in primary memory at time t-1; the set

of pages re1toved at tie t, P-', IN&t b& in priury HIM.WY at t-1; and

the page refert,-nee, at ti1te t, p1 , ttvttt be· itt .,,.,..,.y aeaorv at ti ■e t.

2.3 The VirtuaJ Storage Medel

A tMo-levet hierar-chi.cal virtual ator-., -,ate■,. V, is co■poaed

of a 11 the parueters descr itled, aboMtH

V • f l<conf iguraHon>,<prograa. behavi,Of">.,.<a.1...,..U..._>l

V - fl< I Mp I, Tp. Cp.Bp .• I Sal• Te,Ca,.Ss.,N>, <A>, <F, R>l

The rationale for two-level hierarchical virtual ae■ory systa••

as shoMn in Figure 1 ia to aplQ> ht, e,q.,""'9 i ¥8 fC!MI capac i ty faet ae■ories.

Mp, Mi th ine,cpensive large capacity slower ■e■ori••• Ss, such that the

co111pos i te or virtual ■e■ory syste■ approeches the epeed of the expensive

11e111ory and the capacity and cost/unit of storage of the i ne,cpens i. ve

Melllory.

2.4 Perfor•ance t1easuree

The rationale for a virtual 11e•ory aysto, V, i ■■ediately

suggests three 11easures of its effective perforllflnCe. These three

11easures are its effective capacity lt'tvl, effective cost/unit, Cv, and

effective access titte, Tv.

33

2.4.1 Effective Capacity

The ef feet i ve capacity IMv I • ISs I is achieved through the

paging algorith• of the virtual •e•ory syste■ and the constraint that

all logical pages initially reside in Sa.

2.4.2 Effectiv~ Cost

The effective cost Cv is defined as folloMs:

Cv • ColMol+CslSsl

IMpl+ISsl

The effective cost Cv is seen to approach the coat Cs under the usual

condition that the size· of secondary •••ory is ■uch 1,rger than the size

of pri ■ary ■e■ory.

2.4.3 Effective Access Ti•e

For si•plicity in developing techniques for analyzi~g and.

providing insight into the ■uch ■ore difficult .,....o~le■ of the effective

access t i11te, Tv, ue Mi 11 first consider a detland fetch pol icy. Fd •

Later, our cansiderat ions w-i t I focus an other fetch policies.

Assut1e that, at ti•e t, the preceaeor generates a logical

address ref-eNmce a1
, sahic:h rri-ere 'to,_.. t,. At that point in ti•e,

the page p May reside in t1p or Ss. ·Umfer a ·deaand fetch policy Fd, if p

is in Mp, the reference proceed• and'"° page acweant occurs.

Otherui se, if p is in Ss, a page fautt ·or 1fi1W! fetch occurs and the page

i s au t ot11a t i ca I t y ·tr.amJferred to· flp and ttte re,f.eumce proceeds. If Mp

Mere already h.tH. -the rnovet ,ot icy, R, IIUtt be eaptoV9d · to reMOve

soae page in t'lp to provide ,spaee .for tfl8 MU .-.. ,...,..t.

Foraalty, a dnand page fetch lKJI h:u f'.d, far a virtual •e•ory

system V is defined n foltows:

Recal I that

1 P I 2 l • - p • p , ••• • lf

and N.

2.

3.

Def i n i t i on of F d

i • the "89e trace deter■ i ned froa A

is a ¥81 id fetch pol icy.

i11 a val id ret10¥al pol icy.

1 I t r,t-1 · t 1 • f p E , , then f d • r • ♦-

35

2. If p1
..f' M1

;'. and IM1j,1 l<IMPI,

then f~ • tp1 I and r 1 • +.
3. If p',.f' M1j,1 and IM1j,11•1Mpl.

then f~ .. lp1 I and r 1 • la}

where a E M1j,1 and a is "e I ected by

the re■oval alg9rith■•

Under de11and paging. the pr i ■a,;-~ •~•or11. Mp a i ■p I y f i I Is as

required by 1 and 2, Mhi le t.he. first, IMpJ pages "°e referenced ..
• ' _-.f ' . • ·' ~ • '

Subsequently, referenced pages ar~ swapped bet~een 11p and Sa as required

by 1 and 3.

Let FFp. the nu■ber of page fetches fro• Ss during the

processing of a page trace P, be defined as the RISI.I. fetch function and

rts value given by:

By analogy to the page fetch functio~. the nullber of references

satisfied by Mp is cal led the uu. guccetp f~Upn,. SFp, and it can be

coaputed as

SFp • IPI-FFp.

36

The ef'fec.tive access tin, Tv. of a virtual •enry ayste• V, le

defined as fol lous:

Tv s FFpTs + (1-(Efll)) Tp
tPI IP'I

The vatue of the effective accesg tlMe Tv, Is seen to approach

the fast access tiMe Tp, of pri ■ary ■enry as,.the value of the fetch

frequency function, Ffp/lPI, is reduced toward zwo or equivalently, for

a given page traceP, as the vatue of the page, fetch function FFp

approaches zero. There·fore, w see that the va.-tue of FFp is a cruc 1 a I

11easure of the perfor•ance of a•progr.n in a virtual n■ory syate■• In

general, ue uish to ••ni ■•ize thtt· page fetch function in order to

11ini11ize the effective access ti•e Tv.

2.4.4 Page Trace Si ■ulation

One 11ethod to deter■ ine the value of the page fetch function

FFp, for a given virtual N■ory systeM Vis to coapute the resultant

page trace P, fro■ the address trace A and the page size N, then

si11ulate the paging algoritha-s, F and R, and record the contents of np

at each step of the page trace. Table 2 i I lustrates this step-by-step

simulation, assu■ ing de■and paging and LRU (Least Recently Used)

reMova I. The contents of Mp are shotm ordere~ to ref I ect the LRU

ordering: the top page is the page aost recently fetched into Mps the

bottoffl page is the page least recently used by the progra• and la the

..

37

Virtual memory system V • f <<IMPI, Tp,Cp,Bp,ISsl,Ts,Cs,Bs,N>,

<A>, <F,R>) Mith parameters

A I 2 12 - a , a , ••• ,a

P • a,b,a,b,c,c,b,a,a,b,b,a, where pi • integer (ai/N).

Houever, we have used lower case letters to represent

logical page addresses instead of page nu■bers because

it simplifies the presentation.

IPI - 12

Q = lab c) and IOI • 3 ~ ISel

IMPI = 2

F • demand fetch, Fd

R • LAU replacement, R~u

Simulation:

Time 1 2 3 4 5 6 7 8 9 10

Page Trace,P a b a b c c b a a b

Fetch, F a b 0 0 c 0 0 a 0 0

Remove RLRU 0 0 0 0 a 0 0 C 0 0

M~ · contents a b a b C C b a a b

after time t a b a b b C b b a

RESULTS:

If~ I - 4

lli • 4/12
IPI

Tv •TS+ lli
3 3

Table 2

11 12

b a

0 0

e e
b a

a b

Example of Page Trace Si ■ulation to Oeter■ ine FFp

31

page se I ec ted for re■oval Mhen neceS&at'y.

2.5 Page Fetch Funct'ion Pertorunce Model

Fro111 the- above discussion, we otiffrve that several para■eters

of a virtual ntenrory syste■· V•H<lffPI, Tp,Cp,Bp, ISsl, Ts,Cs,Bs,N>, <A>,

<F,R>) influence the vatue of the p~ fetch function, FFp. These

para111e ters are the page size N, the progra's stOt""age reference pattern

A, and the re11toval pot icy R, the fetch pot icy F and the el ze of pr I ■ary

Me1tory I Mp 1- Therefore, we define

-The significance of all these'para■eters on the page fetch

function measure wi 11 be considered amt i-nve11t igated. Special e•phasi s

wi 11 be focused on analyzing and understaflding the relationship bet"een

the progra11' s structure and the logical addre99 trace.

We will not elaborate in great detail, but it should_be pointed

out that, for hierarchically-structured virtual ■e■ory eysteMs of ■ore

than two levels. say K levels, and deaand paging (those studied by

Madnick CM3}), Me can derive the effective page trace and thus the page

fetch function for paging to the i-th level fro■ level i-1 (level 1 Is

pri ■ary memory). To illustrate this, note that the resultant fetch

39

pol icy at level i-1, Fi-I = f_ 1 ,fl1 , ••• f_ 1 ,

is essentially the page trace Pi for level i. There is an easy

compression of Fi-I to 0111it the values of t!_ 1 • ♦ and a

minor relabeling required to adjust for the difference in page size used

by Mi and Mi-I of P: .. f/_ 1 (Ni-I -1/Ni). This

procedure is applicable for all levels 1 ~ i ~ k, and the goal of a

k-level memory system is to minimize Ik~l1 FFPi* rPi+J •

2.5.1 Replacement Algorithm Considerations

Even though Me Mill be primarily concerned with the effect of a

program's structure on the value of the page fetch function, FFp, we

need to consider some important effects of the page removal algorith■ on

FFp. Many removal algorithms have been proposed and studied in the

past, such as First-In-First-Out (FIFO), Least Recently Used (LRUJ, and

Belady's [B11 Optimum algorithm (0). I.le will define these removal

algorithms under demand fetch to illustrate how particular algorith■a

may be specified in our general modeJ of removal policies, and to

establish exactly what these algorithms mean, since they wi I I be

referred to frequently in the remainder of the thesis. Furthermore, ue

have chosen to discuss this particular sub,et of removal algorithms

because they Mill enable us to present several important and wel I known

properties of removal algorithms which will eventual1y be needed In our

research. Let:

40

1. P I 2
:a ·P • p , ••• • pl be a page trace computed fro•

A and N.

2. IMPI = number of page frames in primary memory, Mp.

3. Mp1 = the set of pages in Mp at time t.

4 F I 2 L I' • d ~ fd ,fd , •.. ,fd be a demand fetch po icy as

previous I y defined. Reca 11 that the

definition of Fd specifies.all the

mechanics of paging except the page to be

selected for replacement.

The LRU remova I po Ii cy, RLRU , is defined for demand fetch, Fd,

A I 2 L as LRU .. r LRU • r LRU •••• r LRU Mhere

dRu = ♦ if f~ • ♦ or IMpt- 11 < IMpl; ot~eruise,
. t
rLRU • a, Mhere a is ttle page in Mp uhich uas least recently

referenced.

The optimum removal policy, Ro, is defined for demand fetch, Fd, as

R I 2 l h t .a. • f ft .a. o "' r O , r O , ••• , r O M ere r O =- ,. 1 d = .,, or

IMp'- 11 < IMPI; otheruise, r~ • a, uhere a is the page

in Mpt-t 1-1i th the longest future time to next reference in the page

t P f I I f a c Mpt- t · f d . th race. , romp. ts never re erence again, en

its time of next reference is assumed to be•. If a page must be

removed at time t, and several pages have the same longest future ti ■e

to next reference (i.e., alt equal to ~) then remove any one of the

page.s.

41

Under demand fetch, the First-In-First-Out replacement pol icy,

RFwo is defined as

R I 2 L FIFO = r FIFO. r FIFO ••••• r FIFO where

r~1FO = ♦ if f~ = ♦ or IMpt-ll<IMpl; otherwise,

r}.FO • a Mhere a is the page in Mpt-l which has been in

Mpt-l longer than any other page in Mpt-l.

~e now present several well known properties of these replaceMent

algorithms.

Lemma 1.

For a given page trace, P, primary memory size of IMPI page fra■es,

and demand fetch pol icy, 'Fd, then the number of page fetches using any

valid removal policy Ra is greater than or equal to the number of page

fetches using the optimum replacement policy, Ro. The proof of this

Lemma can be found using various techniques in CAl,Ml] and is not

repeated here •.

Inclusion Property:

Under demand fetch, Fd, any replacement policy is said to satisfy

the inclusion property if for all page traces, P,

a. Mp1 H) c Mp1 (2) c • • • c Mpt (n), where Mpt (j) is the

contents of primary memory Mp at time t if the size of Mp is j page

frames (i.e., IMPI .. j), 1 ~ j ~ n.

b. At any time t after Mp has becoMe filled, there is a strict

42

repl ace11ten't ordering referred to atr the •replace■ent stack,• RS,

RS= rs(l),rst2l, ••• ,rs(nl, Ntfere rstj) • rtp1 (j)-Mp1 {j-1} for

j "" 1. 2, ••• , n, and rtt-ln}· is the page to· be rnoved ne><t.

The general cla-s- of dftfanc:t ... fetieh repJM:'Heftt atgortth11s which

satisfy the inclusion property are: referred to 1111 • ■ tack algorith•s• In

the Ii terature. The class of st.ack a-lgori thas, aa noted by Denning

£011, "contains all the reasartclbhr at,g:tff'lth••·•-•

Leinma 2.

The number of page fetches requjred bV- any. atack algori th• for any

page trace is a 11tOnotonic funcHon of pri ■arv Mettory size, IMpl, in page

fra11tes. To see this, r,ote that if there is a fetch at ti•e t for a

prlftlaf'y 111e11tory of a ghen size, there 11Ust also be one at ti11e t fpr

ev_er·y pr i1nary. ld■ory of !!l■a-1 hrr ai:ze. The proof .of_ tJli·s Let11•a .can -b•

found in rDl,llllJ.

Lemma 3.

Demand fetch Mi th LRU reaoval and de.and fetch with Opt i_11tu111

replacement are stack algorith■a. The. proof of this Le■■.a. ·can be found

· in CMlJ.

IJe ui 11 refer to the. above wet I-known properties several ti111ee in

the rest of this- thesis. At this point in tin, ue can i111111ediatet.y

conclude that, for any ll1J:,I and A,

43

a. FFp(IMPl,N,A,Fd,RoJ ~ FFp(jMp1,N,A,Fd,Ra) from lemma 1, uhen

Fd, Ro are demand fetch and optimum removal policies and Fd, Ra are

demand fetch and any removal policies.

b. FFp (I Mp I, N, A, Fd, RLRU J ~ FFp (I Mp' I, N, A, Fd,RLRU) and

FFp(IMPl,N,A,Fd,RoJ ~ FFp(IMp'l,N,A,Fd,Ro) fro■ Lemmas 2 and 3

Mhere IMpl ~ IMp'I•

Due to its simplicity, the FIFO replacement algorithm Mas used in

many of the early paging systems. In recent times it has been

discovered that FIFO has certain disturbing pecularitles, such as the

possibility that the number of page fetches Mill double for a memory

size increase of one page frame [Al,Ml). Hence, FIFO Is not a stack

algorithm, and Me cannot claim that, for any A and IMPI,

FFp{IMpl,N,A,Fd,RF1FO> ~ FFp(IMp' l,N,A,Fd,RF1ro>, Mhere

I Mp I > I Mp' I •

Thus, Me observe that the inclusion property of stack algorithms is an

important property.

Various forms of the LRU replacement algorithm frequently occur in

contemporary virtual memory systems. Empirically, LRU replacement has

been found to closely approximate the paging performance obtained by the

optimum algorithm for many actual programs. The opti111u111 policy is not

physically realizable since it requires future knouledge about reference

behavior, but it can be used as a theoretical basis for perf~rmance

comparison Mith practical algorithms. Houever, the value of the page

44

fetch function.

FFp(JMpf,N,A,Fd.Ro) .•.. z~1 lf~f ia.phvsi:oalty r•alizable IB6J

since it does not require future,._nowl'ed.ge.

For any page trace P • p1 ,p2 , ••• ,pl and pri ■ary ■e■ory size

IMpf. Belady has given a one-pass procedure uhich Mill co■pute the value

that If~ I i.,ould take on under opti ■u11 re■oval for any 1 ~ t ~ L

'-lithout any knouledge of the page fr-ace after t (i.e.,

p'•' ,p'•2 ••••• pl). In particular, this procedure deter■ ines

'-lhe ther I f~ I • 1 or It~. I - .+, but it does not specify of uhat

page f.~ consists.

2.5.2 Progra11 Structure Considerations

In this section, Me Mill AMtend the page fetch function perfor•ance

11ode I to account for the progra■' s structure.

The progra■s Me consider are defined to consist of a set of

• relocatable sectors of specified sizes. The structure of a progra■ le

specified by a particular load ordering sequence of its sectors in its

virtual address space. This ordering is called a sector ordering SO,

and is defined as

45

Mhere 5 1 denotes the first, 52 the second, and Sm the last ~ector

loaded in the virtual address space. Thus a program can have 111!

distinct structures, one for each possible sector ordering, so.

Ho"'ever, once a sector ordering is chosen, it does not change during

execution of the program. Let 151 I be the size of the jth sector and

let LISi I be the load address of 51 in the virtual address space of

the

the program. If the sectors are loaded contiguously in virtual memory.

then LISi I = Ii;_\ ISi 1- In any event, Me assu111e that the

structure of a program is completely specified by its sector ordering

SO, Mhich is further defined to include the size and load addresses of

al I its sectors. Therefore the sector ordering SO of a program

specifies the load sequence, 51 ,52 , ••• , Sm, and the values of

151 I and LI 5i I for a I I 1 ~ j ~ m.

We have previously modeled the program behavior by its logical

address trace A I 2 L a ,a , ••• , a and have shoMn that the address

trace A and the page size N are sufficient to determine the page trace

P I 2 L ,. p ,p ••••• p • HoMever, the address trace and hence the page

trace depends on the particular sector ordering chosen for the progra■•

For example, if a', the logical addres~ referenced at time t , is

Mi thin sec tor j, then the va I ue of at depends on Mhere 5; is in the

sector ordering SO.

In order to study the effect of a progra■'i, structure on its paging

performance, ~ Mi It -.m:tel a progra' s tJeha•ior by i ta sector trace.

The sec tor trace ST of a progra■ is deHned to be the t I ae sequence of

sector references and is given by

I 2 5L ST • S , S , ••••

where st denotes the se-ctor refet1tnced at t iMa t.

Given the I rJg i ca I address trace A corre91>0nd ing to a spec i f I c

sector ordering SO, the nctor tr'ace ST can t,e ,aaaily OOllputed fro■ the

I oad addresses of the ,11,ctors. Then this sector trace can be used to

coRlpute the pa,ge tr-ace resulting frot1 any progr• restructuring

specified by a neu sector ordering if the sector-a do not cross page

boundaries.

In particular, given a progru tlOdeled by its sector trace ST and

its sector ordering SO., the page referenced at ti ■e t, pt, is given by

pt - integer fl1S1 I IN),

where 51 is the sector referenced at t l•e t In the sector trace ST,

LIS' I is the load addreu of sector 51 given by the sector ordering

SO, and N is the page size. Ue are assu■ ing at this point that

individual sectors do not cross page boundaries.

47

As long as this is true, Me can define the restructuring of a

program as a part.ition of the relocatable sectors into logical pages.

In par t i cu I ar, I et,

1. a• 15 1 ,52 , ••• ,5ml be the set of relocatable

sectors making up a program.

2. n = the number of log:cal pages of size N of the

restructured program.

Then an n-uay restructuring of Pis defined as a partition

Il • ln1 , Il2, ••• , IlnJ uhere Il has the fol louing properties:

a. U ?. 1 Il i ,. Q, Il i n Il j • ♦ for a I I i ,. j •

I 5k I ~ N for a II Ili, 1 ~ ~ n.

Thus, Me see that a partition, Il, specifies the set of relocatable

sectors grouped into each logical page. ~e Mill assume that the set of

sectors in n 1 are loaded one after another into logical page 1, then

the set of sectors In n2 are loaded one after another into logical

page 2, etc., unti I all the sectors are loaded in the logical address

span of the program. If I ISkl<N, then there Mill be a hole or
Skc Il i

a non-referenced area in the top of page i.

Therefore, given any partition, Il, of the relocatable sectors into

logical pages and any sector trace, Me can compute the page trace

48

immediately. For exa·111ple, let S1 be the sector referenced at ti111e t ·

in the sector trace and let S1 {ll j, then the page, p1 ~ referenced at

t h,e t is j.

Fro111 the above, discusslon, we obseFVe that -- given any tMo-level

virtual 11elftory syste• V, Mith page slze N, Mith pri ■ary 111e111ory size of

IMpf page fra11res, "4i th ~ny val id page fetch algorithll Fa, and Mi th any

valid page re■ovat algorith■ Ra-- we have the value of the page fetch

function FFp. This FFp is for a progra■ uhose structure is Modeled by

any partition, Ila, and uhose reference behavior is ■odeled by a sector

trace ST. FFp can be unique-ly defined tn tern of the foflowing

para111eters:

FFp=FFpl IMpl ,N, Ila.ST ,Fa,8at.

For a particular virtual ■e■ory syste■, V, the values of IMPI, N,

Fa,Ra are fixed, and a given reference behavior fixes the value of ST.

Under these conditions, the value of FFp becot1es a function of the

different partitions of relocatable sectors into pages. Houever, aa

pointed out in Chapter 1, the nu■ber of different partitions beco•es

astronomical for ■any· typical progra■s. For exnple, phase 1 of the AED

comp i I er has 1075 different partitions. For such progra■s it is

impossible troll any pract·icaJ point-of-view to deter■ ine the best

progra• structure Cthe n that ■ ini ■izea FFp) for a given reference

behavior by trying out al I partitions.

49

From our di~cussion in Chapter 1, we know that for a given sector

trace, a partition Il which groups sectors into pages such that the

number of intersector references between pages of the partition is

minimized may not minimize FFp. In fact, we presented a quite• plausible

sector trace where such a Il would indeed be a very bad partition. One

major goal of this thesis is to find some way of computing the mini ■u■

value of FFp over all partitions.

If upper and lower bounds on the value of FFp over al I partitions

can be found, then a particular program structure could be evaluated as

good or bad. Furthermore, those bounds would provide a means of

evaluating the ability of practical clustering procedures to produce a

good program structure.

The practical drawback of the model developed for the page fetch

function, FFp, is that sectors are not allowed to cross page boundaries.

Even though this may not be a serious drawback, we will eventually try

to extend the model of FFp to take into account the case when sectors

may cross page boundaries.

SI

2.6 Sector Fetch Function PerfortNnce rtodet

IJe wi 11 "°" define a Measure Off the tnfor11ation transfer betueen

the hm levels of a virtual nt10ry svste• which is independent of the

sector ordering. In the ne>et section, ue uifl nploy this easure to

find theoretical upper and lower bounds on the vatue of the page fetch

function over all sector partiti0f't9.

If we assue that the basic ·unit of inforaation transfer betueen

the two levels of a virtual aettory syatea V' Is a sector Instead of a

page, ue can for111ulate a aeasure on the tnterlevel. aove11ent of

infor•ation during the e,cecution of a progras Nhich la ·independent of

its sector ordering ..

let FFs, the nutlber of sector tetchn which occur in a virtual ·

memory syste• V'. during the processing of a sector trace ST, be def lnad

as the sector fetch function. The processing of a sector trace in v• la

cal led sectoring and can be interpreted si ■ ilarly to the processing of a

page trace or paging in V as previously discussed.

Since the virtual 11eaory syste■, V', for aectoring is to be

modified slightly fro• the virtual naory eystea, v. used in• our

diacuasion of paging, we need to define the notion of eectoring 110re

precise I y.

51

The parameters of a demand sectored virtual 111e■ory system, V', are

defined as fol loMs:

1. I Ms I is ca I I ed the size of the pr i 111ary 111e110ry, Ms.

IMsl is the number of sector frames in the pri111ary memory.

The size of these sector frames, say In bytes, need not be the

same. Instead Me assume that the size af a sector frame in

bytes is exactly equal to the size in bytes of the sector it

contains. Thus, the size in bytes of any sector fra111e and of

Ms can vary Mith time if the sector sizes are different, but

the important fact is that the number of sector frames in Ms

is fixed and equal to fMsl. In contrast, ue should point out

that the siz'e, IMPI, of the primary 11e111ory, Mp, for a paged.

virtual memory system, V, Mas defined to be the number of page

frames of fixed size Nin the pri ■ary ■e11ory Mp.

2. ST= S1 ,S2 , ••• ,SL is a sector trace of a

program.

3. is the demand sector

fetch policy of V'.

4. R I 2 l • r ,r , ..• ,r is the sector re11oval

pol icy of V'.

Let Mst denote the set of sectors in primary llle■ory at time t and

1Ms1 I denote the cardinality of this set.

52

NoM, demand sectoring and the value of the sector fetch function.

·FFs, is defined as fol lcu,s:

a. I f

b. If

c. I f

51
E M t-1 s , then f' d • r• .. ♦

· and Ms1 .. Ms'- 1•

s' .f' Ms'- 1 and IMs'- 11 < IMsl, then

f~ ""1S1 I , r 1 = ♦ and

Ms1 = Ms1- 1 + IS1 I

s' .e- Ms'- 1 and IMs'- 11 = IMsl, then

t f d = 1S1 I , r' = ISi and

Ms1 = Mst-l + 1s1 1 - {SI Mhere

Sc Ms~ 1 , and Sis selected in accordance

Mith the removal algorithm.

d. FF s .. :t~. 1 If~ I.

The value of the sector fetch function FFs, for any sector trace.

ST, can be uniquely determined by simulating algorlthM Fd and R for a

primary memory of size IMsl at each step of the sector trace.

Therefore, Me define

FF s = FF s (IM s I , ST, F d. R).

It should be clear that the value of FFs Mill be the same for any

sector ordering, since the sector trace is independent of the sector

ordering. It should also be ciear, from the definition of IMsl and

parts a. and b. of the definition of demand sectoring, that the value of

FFs for a given sector trace is independent of the sector sizes. ~e do

53

not need to be concerned ~ith the implementation problems associated

~ith the variable sector frame sizes of V', since ~e ~i I I be using the

sector fetch function only as an analytic tool, and since ~e can

determine the value of FFs through simulation ~ithout even kno~ing the

sector sizes.

In the next Chapter, the sector fetch function, FFs, ~i I I be

uti I ized to provide upper and lo~er bounds for the page fetch function,

FFp.

This empty page was substih,ted for a
blank page in the original document.

54

CHAPTER 3

PAGING PERFORMANCE BOUNDS

3.1 Introduction

In this chapter, Me Mill investigate the effect of a program's

structure on its paging performance in a virtual ■emory system. Ue wl I I

begin by presenting theoretical upper and lower bounds on the value of

the page fetch function, FFp(IM~l,N, Ila,ST,F,R), over all partitions,

Ila, of relocatable sectors into logical pages for fixed values of the

other parameters.

Recal I that the value of the page fetch function,

FFp(IMPl,N, Il,ST,F,R}, is the number of page fetches a program would

experience in a two-leyel virtual memory system, V, with primary memory

size of IMPI page frames of size N, using the page fetch and removal

algorithms, F and R, respectively, for a given sector trace, ST, and

program structure, Il. We would like to present a uniform method that

would bound the value of the page fetch function, FFp, over al I

partitions, Ila, of relocatable sectors into logical pages for "any" fiMed

values of the remaining parameters. The merit of such a uniform bounding

method Mould be tMo-fold. First, it would be applicable to any two-level

virtual memory system, V, that is, any values of IMPI, N, F, and R.

Second, it uould be appl le.able for ang p,,ograa behavior characterized by

a sector trace.

In contrast to a unifor•approach, a second approach uould be to

bound the value of FFp over all partitions wben certain or all of the

·remaining parameters are constrained. For e)«lllfJle. we could assu•a that

IMpl s 1, F • demand fetch, R • FIFO replace11ent and ST• any fiMed

sector tr.ace, and then derhe boundtl 0 im FFp o.,.,. aU Da. .c·1ear I y, the

disadvantage of the second approach is tha·t itNOuldhave quite liMlted

applications. However, one advantage· of the aecomt·approach is that the

addl t ionat knoutedge gained t,y. fh<it:tg oertai·n paraaeters of the "irtual

memory system could peraH th& uti Hzatlon of bounding aethods uhlch

would result in tighter bounds. Me wi 11 investigate both approaches In

this chapter. I.le have the conviction that a uni fora approach over al I

virtual me111ory system paraaeters .amt alt sector traces is vital for

genera I app Ii cabi I itY• However, given a lffli fora boundt°ng aethod, It

would certainly be uorthwhile to in~estigate the possibility of obtaining

tighter bounds uhen feasible constraints on certaJn paraaeters of the

virtual memory system are specified.

I.le begin by illlf)Osing constraints upon the structure of the progra■•

that is, on the partitions, n , of relocatalJle nctors Into pages, and

then gradually remove these constra1nta.

56

3.2 Louer Bounds

Let us constrain the structure of a progra• such that each logical

page contains at most k sectors. In particular, let:

1. Program,. 1S 1 ,S2 , ••• ,Sml be a finite set of

m re I ocatab I e sectors such that I Si I .5. N for 0 .5. i .5. ■; that

is, the sector size in bytes is less than the page size, N, in

bytes; otherMise, the sector size may vary.

2. Ila= f Il 1 , Il2 , ••• , Ilnl be any partition of

them relocatable sectors into n logical pages uhere the nu■ber

of sectors I Ili I in page j satisfies the constraint

1 ~ I Il; I .5. k.

3. Recall from our definition of n that

:t ISi I .5. N must alMays be true.
Si tili

Thus, Me are currently concerned Mith all the partitions, Ila, Mhich

restructure a program such that each logical page has k or feuer sectors.

The sector sizes may vary, but the sum of the sector sizes grouped into a

page must not exceed the page size. With thi~ rather flexible constraint

on the al louable partitions, Me can find a louer bound for the value of

the page fetch functi~n. FFp, over all such partitions for a given sector

trace and any virtual memory system. We present this loMer bound in

Theorem 1.

· 57

Theorem 1

Given any two-level virtual nwry 9Y&'tet1 V, wUh page size N,

primary memory size JMpl, and any vafid pa94f raplaee•ent algorith• Ra,

any va Ii d page fetch. a Igor i th• Fa, and' 3ftV sector t.raee ST'a, then, for

-any partition Ila, of re'locatabte aector's into h'fiC&'l pages of the

program where each page cot1tain9 at ■os:t k sectors, the ■ ini ■u• nutlber of

page fetches given by the page fetch fum:thm IRJdel, Ff'p, has a lower_

bound given by:

k*FFp(IMP! ,N, Ila.Sla,Fa,RaJ ~ FFs ttrtst • ft1p-f•,ST • STa,Fd,Ro)

uhere the value of the sector fetch function, FFs, i_s the nultber of

sector fetches which occur in a two-tevef vtrtue-1 ...,,-y evate• V', wl th

primary memory size IM•i • fflp-1 •• t1'19 sector trace STa, dettand

fetch Fd, and opt iMUtt reptacnerrct At>.

Coro 11 ary la

The size of Mp in bytes Is equal tot.he size of Ms in bytes if each

page is completely filled uith exactly k nctorsof the saMe size.

Proof of Theore111 1

Notation and properties

Let STa • >< 1 ,,c2 , ••• ,,l where ,ct is the netor referenced at

t i111e t. For virtuai N'tlrdry systea V cffld FFp let: -

58

1. Ila =- f Il 1 , Il2 , ••• , Iln J be any

2.

partition of sectors into then logical pages of the progra■

Mhere each page contains at most k sectors. (Thie

interpretation of a partition Mill be useful later in this

thesis.)

p I 2 l • p , p , ••• , p be the resu I tant page

trace computed uniquely from ST and Ila, such that if

x1 ,Ilj , then p1
• j.

3. M~ be the set of pages in Mp at ti11e t

and M~ = ♦-

4. F8 .. f~, f~, ••• f~ be any fetch pol icy

Mhere t!n M~ 1 ~ ♦ and If! I = the number ~f

pages in t! and x1
£ [M1

~
1

U f!].

SR I 2 L I. • · a • r a , r 8 , ••• r 8 be any remova po I Icy

Mhere r 1 ,.. Mt-I
8 la p

6.

Given the above notation and properties, Me Mill first prove:

Lemma 4.

For each Fa and Ra there exists a demand fetch and re11oval policy,

Fd and Rd, for the FFs model such that

k*FFp{jMpl,N, Ila,STa,Fa,RaJ ~ FFs{IMsl .. IMpl•k,ST=STa,Fd,Rd).

Proof:

For the FFs modeli Fd and Rd Mill be constructed by forming a

sequence of valid replacement and fetch policies

S9

1. F I 2 L t
I • ft ,ft , ••.• ,ft and f1 •

the set of sectors aaking up the aet of pages in f!, for

1 s t s L, lfflef"e I u. f! I• the nutlber of aet:tors in the set.

2. Si111ilarly R1 • r 1
1 ,r~ , •••• r\ Md

r \ • U r ! , for 1 s. t s L.

3. Fh • F6 • f~,f~ ,f~ and

Rh - Rd
I 2 L

•rd,rd•···•rd• for 1-s.tsl...,..e

f~
t • rd - + if ,ct f t1\i1 I t fd • x' and

d - ·♦ if ,c
1 , M1d1 and IM1d1 I < I Ms I ;

f~ • ><t and r~ • bt n';i if ,ct ~ tt1, 1

· and tM\i 1 t • ftlsl; and

M~ • (M1;j1 u f~ J-r~ to aatiafy deltlnd

sectoring.

For reasons of e><pedlency, the proof of LeMa 4 will be divided into

tMo parts, Le111111as 4a and 4b.

le111111a 4a:

If IMsl 2:. I tMpll, then for (f 1 ,R1) • (Fa,RaJ, there e,cists a
val id sequence of sector replace■ent and fetch s,ol'icies

(F 1 ,R 1) , ff 2 ,R2 J, ••• , (Fh,Rh) such that (fh,fll)•tfd,Rd) and

2:\. 1 It\ I ~ l:\.1 If~ I; Mhere I IMPI I denotes the aaxi•u• nu111ber

of sectors that could ever be found in Mp. (Note that. in

60

A proof similar to Lemma 4a has been givey by [Ml] for pure paging

systems. Houever, ue need the follouing proof to ■ake our eMtensions

easier to understand.

Proof of Lemma 4a.

The procedure for constructing F1 and R1 fro• their im11ediate

predecessors F1_1 and R1_1 in the FF8 model for 1 ~ j ~ h is:

STEP 1.

Choose the sma 11 est t such that f}_ 1 and/or ri1 do

not satisfy demand sectoring.

STEP 2.

Let z' be the sector (xtl referenced at time t in the FFs model.

CASE .1.

Nou suppose that f}. 1 does not satisfy de■and sectoring.

la.

l f t <Land z'f t then set t! f z' I , and f i- I • -I

ft~ I
I == ff.I U

1- l (f! I -J- I z' 1.) . This construction insures that

ff.I
J contains the sectors already fetched by the

FFP model but not fetched by the FF8 model (i.e. deferred sector

fetches).

&1

lb.

I f t .. L aAd z' f tf_, ' then •-t t\· .. lz'} •

le.

If t < L and z' f tl_ 1 , then set tf • ♦» aM, f'j1 • t 1t1, U ti, . Note that

this al lows the refer-ene:e ,cJ • z• htr~•becUNN· sector z'(ni,. · z'f

M:_, • since z' E n,1 and lttil • lttat for a:t.,fi 1 s. j s. h, and since

!Mel.?. IIMPII- The last fact, lftttf.?. Hfflttt, aJIOMe 111-1 to ho-ld

I IMPI I sectors; therefore we· can al,wav.e- k1"111t a aeetor in 111-1 unt 11

the corresponding page i a· re1MW.N° ff"ott'lf""-'•aa 9Mnilft· ht CASE 2 belou.

ld.

I f t .. L and z • _,_ f ~- I . , then set t\ • ♦11 The refef!'ence- proceeds

due to the sue arguttent as- given in le •.

In al f subcases of CASE 1 note· tha·t• F1 ie vatidc slnce

t} f M1J1 for 1 s. t s. L, that F1 eati sfie& daand· sectoring at

least up through ti•e t, and that. zi1 It} f s %t1 lfi11 •

CASE 2

Now suppose that rJ_1 does not satisfy deaend sectoring.

2a.

If t < L, and tl .. lz' I and ltt1j_11 I • IM&I, ee-t

r ! '"' lb' I f -- b',. 1
1 or so...... ~ r;.. 1 and

Note that since

62

above operations are aluays defined. Also, note that r~ 1 is

constrained here and in all subcases to contain only the sectors already

removed in pages by the FFP model but not yet removed by the FF8

mode I; therefore, a sector ui 11 not be remov~d fro■ FF8 unt i I the

corresponding page is removed from FFP. Thia constraint is enforceable

since the memory size of FFs at each step j, IMjl • IMsl, satisfies the

relation IMj I ~ I IMpl I for 1 ~ j ~ h.

2b.

If t =- L and f~ = fz' J and 1Mt~1
1 I • IMsl, then

r\ = (b'I ~ r_ 1 •

2c.

If t < L, and f) .. ♦ or 1Mtj_1
1 l<IMsl, then set r} • ♦

and rh 1 r•• 1 u 1
I = i-1 rj-1 •

2d.

I f t ,. L, and f~ • ♦ or I Mt1_11 I < I Ms I , then r~ • •·

In al I subcases of CASE 2, note that Ai is valid since

for 1 ~ t ~ L, and that R1 satisfies demand

sectoring at least up through time t.

A final comment: if it ever occurs that z'c: rJ_ 1 and

z•~ fi,, then simply remove z' from both. This only reduces the

value of lfJ I, and it takes care of the case uhen a page is fetched

Into and replaced from Mp ulthout having al.I of its sectors referenced.

The above procedure, after being applied at most h times, must terMinate

63

with a vat id rep!.acet1ent and fetch poHcv pair (A., .F11) such that:

:t\., It\ I?. t\., ltlt-
Hence, Le••a 4a is proved.

Choosing tMst • ff'tpl 11k satisfiss le111ta 4a and we i ■aediately get

%\., It\ I ?. %\., If~ I • FFs(tttsl•fl1pf •.sT.Fd.Rdl.

Lemma 4b.

2:\.1 t t\ t s k•FFt:,f fNpl ,N, Ila .STa.Fa,Ra) •.

Proof:

:t\. 1 It\ .. :t\.1 tut! t • t\., It! I tut! I / If! I-

But l ut! I / It! I s. k, since IUf! I is the m.MlbM' of sector-a in

t! and If~ I is the nulltber of pages in t! . Hence.

%\. 1 It\ t s k• %\. 1 It! I • k11 FFp0'1pJ.N,Ua.STa.Fa,Ral.

Lemma 4b is proved.

From Lemmas 4a and 4b, we i ■Hdiately get

k•FFp(IMpl ,N, Ila ,.STa,Fa,Ral ?. FFs(IMsl • IMPI a.STa.Fd,Rd) •.

and Lemma 4 is ~roved.

From Lemma 1 of Chapter 2, we know that

FFs(IMsl • IMPI *k,ST,Fd,Rdl?. FFs(IMsl • f'1pl 11k,ST.Fd,Ro).

64

From Lemma 1 and Lemma 4 ue immediately get

k*FFP {IMpl ,N, Ila,STa,Fa,Ra) ~ FF8 (IMsl • IMPI *k,STa,Fd,Rol

and Theorem 1 is proved.

Proof of Corollary la.

The size of Mp in bytes is IMPl*N, an~ the size of Ms in bytes ia

(IMPl*k)frames* (N/k)bytes/frame = IMPl*N.

Nou, a few comments about Theorem 1. For any given progra■ behavior·

characterized by a sector trace, Theorem 1 provides a method of coMputing

a louer bound on the inprovement in paging performance over all sector

partitions into logical pages, uhen pages are constrained to have k or

feuer sectors. The louer bound given by Theorem 1 is valid for any

virtual memory system. Another beneficial property of Theorem 1 is that

the louer bound is specified in terms of a stack algorithm~ Me know that

Ro is a stack algorithm from Lemma 3. Furthermore, it is wel I known

that, for all stack algorithms, the number of page fetches required to

process a page trace can be computed for all primary ■emory sizes fro■

one simulation run. For a general discussion of the procedure, the

interested reader should see [Ml], and for a particular discussion of a

simulation procedure for the optimum replacement algorithm which requires

only one pass through the page trace, reference is made to [851. Me

implemented the latter method for the sector fetch function, FFs, and

from one simulation run through any sector trace Me were able to plot

FFs(IMsl s IMPI * k,ST,Fd,Ro)/k as a function of IMPI•

65

Figure 3 conveys the general shape of this bound.

FFp

/ FFsljMs) • jMp)k* k,ST,Fd,Ro)

IMPI

FIGURE 3.

lo~er Bound on FFp Given by Theore• 1

66

The utility of such a curve as shoMn in Figure 3 le as folloMs.

Theorem 1 states that the number of page fetches given by the page fetch

function FFp(IMPl,N, Ila,ST,Fa,Ra) for the same sector trace cannot be

reduced beloM the curve shoMn in Figure 3 by any reordering of sectors

into logical pages regardless of the paging algorithMs e■ployed.

Given that Me have a procedure for loMer bounding the effects of a

program's structure on its paging perfor■ance in any virtual memory

system, an interesting question is, ju~t hoM tight is this bound for

popular virtual memory systems? If Fa is constrained to be demand fetch

and Ra is constrained to be LAU, FIFO or Opti ■um replacement, then Me

could prove, by example, that the loMer bound on FFp given by Theore■ 1

can be the greatest loMer bound for certain sector traces and• only a

loMer bound for others. We Mill shoM that it can be the greatest louer

bound in a folloMing example later in this thesis.

We Mi I I present and discuss emp1rical results in Chapter 6 Mhich

ii lustrate that the bound given by Theorem 1 is indeed rather tight for

real programs running in a paged virtual memory systeM using demand fetch

and LAU replacement. We Mill not discuss particular e■pirical results In

this chapter because Me Mant to relate the results to intersector

reference models, to clustering procedures and to theoretical bounds at

the same time. lntersector Reference models Mill be developed in Chapter

4 and clustering procedures in Chapter 5, and in Chapter 6 Me shoM the

results of applying these methods to restructure real programs such that

97

the resulting nu111ber of page fetches i9 quite close to the theoretical

bound developed in this Chapter tor 1t0st •eMOry sizes and popular paging

algorith111s.

Now consider restricting the fetch ·and -replaceMent policies of FFp

to be demand fetch and LRU replaceaent. :Under this restriction, can we

replace the opti11al sector replace111ent policy, Ro, of the sector fetch

function, FFs, by s0111e leH efficient t)OHcy such as LRU and hence

produce a tighter l°"er bound on ffp over al I partitions? This I ine of

logic led to the fol lowing questlon: is 1t true that

k*FFp(!Mpl,N, lla,STa,Fd,RtRU) ?. FFs{IMsl • fMp1 * k,STa,Fd,RtRU J?

It seems intuitive that the above conjecture Mould be true even for

the case where each logical page contained exactly k sectors. Here, the

sectored 111e111ory could contain exactly the satle nUltber of sectors as the

paged memory could contain. Futher111ore, at 111ost k sector fetches would

be required to bring into Ms the same infor111ai:ion brought into Mp by one

page fault. One 111ight e,cpect that, for progra111s having a good structure.

i.e., alt pages contain sectors that are used together, each page fetch

should produce k sector fetches. Hence, ue have divid.ed the value of FFa

by k in the conjecture. In spite of its intuitive appeal, we can prove

that the conjecture is not true far all progru behavior. In order to

validate this clai111, ue present the following Theore111.

68

Therem 2

For any two-level virtual memory syste■ V, Mith page size N, pri•aru

memory size IMpl, demand fetch Fd, and LAU replacement RLRU, then

there exists a sector tr~ce ST, and a partition ll of relocatable sectors

into logical pages where each page contains k sectors, such that

k*FFp(IMpl ,N, Il ,ST,Fd,RLRU J < FFs(fMsl ... IMPI •k,ST,Fd,RLRU J,

Mhere the value of the sector fetch function FFs is the number of sector

fetches which occur in a tuo-level virtual ■e■ory V', Mith primary •e•oru

size IMsl = IMpl * k, using demand fetch Fd, LAU replace11ent RLRU,

and the same sector trace ST.

Proof

Consider the virtual memory system Mith ihe parameters:

IMPI .. 3 pages

k = 3 or each page of size N contains three sectors.

IMsl = IMPI *k = 9 sector frames

F • demand or Fd

R = LAU or RLRU

Program= labcdefghijklJ, a set of 12 relocatable

sectors of size N/3.

ST= (adgjklhiefbc) 2 •

1sr1 = 24

Consider Il •labc,def,ghi,jkll where A• abc, B • def, etc. Then

for ST .. adgj'kthiefbc adgjkJhte'fbc

P ,. ABC 000 CCB BAA MIC ODO CQLBAA

F d s ABC 088 980 8A0 · 818 liJl8 ;,888 ·,eM

ALRU • 080 A08 880 808 U8 Ml8 888 tD8

M~ • ABC 000 CCB BAA -ABC DOil CCB BAA

AB CCC DOC Cf38 BAB CCC DOC C88

A BBB 880 DCC tCA· BBB .• eao ,.9CC

L.ae· I

Now, we cmrpute the nutlber of eector httchn for the sue sector

trace.

ST • adgjk thief ~cadg jklhi efbc

Fd = adgjk thief bcadg jklhi efbc

RLRU • 80000 8988a dg jk I h ittfb cadg

Ms "' adgjk lhief bcadg jklhi etbc

adgj klhie fbcad gjklh iefb

adg jklhi efbca dgjkl hief

ad gJk th iefbc -adgjk. thte

a dgjkl hiefb cadgj kfhi

adgjk thief bcadg jklh

78

adgj klhie fbcad gjkl

adg jklhi efbca dgjk

ad gjklh iefbc adgj

Lsame_J

FF s =- l: 2
i~ 1 I ti I .. 24 sector tau I ts.

;, FFp • 7 < FFs/k • 24/3 = 8 QED.

It is interesting to observe that, if the above sector trace,

ST .. (adgjklhiefbc) 2 , consisting of tuo cycles through the same sector

reference pattern, uere generalized to a sector trace

ST= (adgiklhiefbc)n, consisting of n cycles, then FFp • 3+2n and

FFs • 12n. Hence, FFp is approximately a factor of 2 less than (FFs)/k

for large n. These last tuo values of FFp and FFs are easily verified by

observing that the paging and sectoring s1111ulations of every cycle after

the first are respectively the s.ame.

In our empirical studies of the paging behavior of real programs. we

found instances uhere

k•FFp(IMPI ,N, Il,ST,Fd,RLRU) < FFs(IMsl .. IMpl •k,ST,Fd,RLRU).

These instances occurred for memory sizes IMPI in the region of low

paging rates under good p~ogra• structures, i;e., under partitions which

produced lou values for FFp.

71

We point out in passing that other ei ■ itar atteilpts to bound FFp for

certain MelltOry constraints faited. For ,mcaapte,

k•FFp(IMPl ,N, ll ,ST,Fd,Rrlfo) is not lcmer bot.inded bt,

FFs(IMsl • IMPI .tt,ST,Fd,Rflfo).

The interested reader 111ay verify this by going through the

simulation in the proof of Theore• 2 with Rrlfo and

ST• la def be ghi jkl de), while keeping everything else the ea11e.

3.3 Upper Bounds

Hou large can the value of the page fetch function beco■e by

choosing the •uorst• progra• structure, that is, the progra■ structure

Mhich results fro• the partition, n, that •axi ■ lzes the vatue of FFp?

Theorem 3

Given any two-level virtual ■eMory syste111 V, Mith page size~.

pri111ary memory size IMPI, deMand fetch Fd, LRU replace■ent RLRU. and

any sector trace STa, then for any partition, Ila, of the relocatable

sectors into logical pages of the progra■, the 11a>eiMu11 nu■ber of page

fetches given by the page fetch function FFp is upper bounded by

FFp (!Mp I, N, Ila, Sla,Fd,RLRU) ~ FF a (!Ms I • !Mt> I, ST • STa,Fd,RLRU J.

Mhere the value of the sector fetch function, FFs, is the number of

sector fetches which occur in a two-level virtual ■e■ory syste■ V', Mith

priMary memory size IMsl • IMPI, de■and fetch fd, and LAU replace11ent

72

RLRU, using the same sector trace ST • STa.

Proof: Let:

ST I 2 L
~)(,>< , ••• ,>< be any sector trace.

n =- I Il 1 , Ilz ' ••• • Iln l be any partition of sectors

into pages.

p I 2 L "' p ,p • ••• ,P be the resu I tant page trace

computed from Il, and ST.

M~ = contents of memory of FFp model at tiMe t.

M~ • contents of memory of FFs model at time t.

Fp I 2 L Fd of FFp. .. fp,fp,•••,fp -
Rp r' 2 L

= RLRU of FFp. = • r P ' • . • 'r P p

Fs f I 2 L • Fd of FFs. .. s • f s •••• ' f 8

Rs .. rl 2 L • RLRU of FFs. s ,rs • .•• 'rs

Suppose, at time t in the FFp model, that p1 • z, the page

containing the set of sectors Ilz is referenced. Then, at time t in

the FFs model, ><1 = z' is the sector referenced, where sector z' ~ llz.

CASE 1.

Suppose p1 ~ Mp1
-

1
• Then f~ .. ••

l f x1 , Ms'- 1
, then f~ • ♦, and If~ I .. If~ I•

If ><1 i Ms1
- 1 , then ·ti= lb'},' Ms1• 1 , and

I f~ I < I ti 1-

73

CASE 2.

Suppose p' ,' Mp1
"

1
• Th:en fi • tzl, amt

r~ • lbl £ Mpt-l under LAU.

If >e1 ; Ms'·' • then fi • lz' I, r! • tb'·t £ ,npt-l under

LRU, and It~ I • If~ f.

If >et E Ms1
•

1
• then f~ = ♦, and If~ I > If! f. This

cond i ti on causes a prob le■•

l,le Mi 11 prove that p1 f Mp1• 1 and x1 ~ f1a1• 1 can never occur

together.

Assunte >e1
E Msi-l • Let t' < t, be the largest tiH, t', such

that ,/ • ,ct, then p1 E tlp1'. Since p1 ~ t1pt-l , then

there otcurred at least fl'tpl distinct ·1)898 1"eference11 to ·Mp in the

interval (t-1-t',t-ll none of Mhhm 11tff"e•p'. l...,.efore, these were at

least tMsl..,IMPI di9tinct 1tector referencn t'o "• tn the interval

(t-1-t'. t-1) none of Mhtt?h uere •' and .,c't 1ts1• 1 but thl s

contradicts fla • Ru~u. lttue, ,c'f' ns•-1 if -p1f' rtp1• 1 •

Hence, :tl, If~ I .! %~1 If! I. and the Theorea

is proved.

Coro 11 ary 3a

FFs(k* fMpl,ST,Fd,Ro)/k ~ FFp(tftpl,N, lla,STa,Fd,Ruw) .s. FFs(IMpf,ST,Fd,Rd J

Proof:

Fol loMs i ■■ediately fro■ Theorns 1, 3.

74

Theorem 3 provides an upper bound on the value of the page fetch

function, FFp, over alJ partitions, Ila, of the relocatable sectors into

logical pages for virtual memory systems which e■ploy the popular de•and

fetch and LRU removal algorithms. Under what conditions Mi II the upper

bound given by Theorem 3 be the least upper bound or even a tight upper

bound?

Let the interval of time between a fetch of any page and the

subsequent removal of that page be called a page lifetiMe. Now, consider

a partition, Ile, of sectors into logical pages, such that, during a

I ifetime, of any page, only one of the sectors of that page is

referenced. However, let this one sector be referenced any number of

times in a given page lifetime, and let the particular sector which is

referenced vary from lifetime to lifetime. Ue will say that such a

partition satisfies the page lifetime constraint.

For any partitions which satisfy the page lifetime constraint, it is

obvious that Theorem 3 is the least upper bound. This implies that the

extent to which partitions exist which group sectors together which are

not used close together In time is the extent to which Theorem 3 wi II

produce a tight bound.

Since LRU is also a stack algorithm, the values for the upper bound

given by Theorem 3 can be computed for all memory sizes by one simulation

of the sectoring activity for FFs(IMsl ~ IMPl,ST,Fd,RLRU).

75

Therefore,· by applying Theore■s 1 and 3 a ·graph et•i lar in for• to that

sh01,n in Figure 4 can be obtained. The gap between the hao curves

represents the range of values of the-page· fetch function, FFp, over al·I

part i t i on s when de11attd page fetch and l:.:RU page rep I acewen t po I i c i es are

e11pfoyed. For a particular progra structure, the value of FFp in

re I at ion to the upper and louer bounds ·can be used to evaluat~ the

potential of progra• restructuring.

In Chapter 6, we will present upirical results which show that the

bounds given by Theorem 3 are quite reasonable for several actual

progra11s. This i11plies that real f)rograa can hav.e sector arrange11enta

which result in a lot of page fetches. In fact ue found In our studies

of real progra111s that the actual value of the page fetch function can

vary by a factor of tens for two different orderings of sectors into the

logical pages. Al I of these results for real progr•s are given in

Chapter 6. However, we wi 11 nou present an e>eatlfJle which ui 11 show the

logistics of applying TheoreMs 1 and 3.

3.4 Si11ple E~a•ple of Co11puting Bounds

Ue have chosen a very si ■ple, co111pressed sector trace of a rather

9Mal I program so that (a) we can illustrate the actual co■putation of the

upper and iower bounds and (b) ue can easily obtain the best and worst

sector partitions. Note that this exaaple does not represent any of the

FFp

Upper Baun

76

Theorem 3 d giver. by

b Theorem 1 d Given y Lo~er Baun .

IMPI

FIGURE 4.

The Al lo~able a a Function of IMPI V lues of FFp as

n

real progra111s we tested, since in those case-a, the •iniwM nu■ber of

references in any sector trace was over U2 •i 111on. Even though this

e,ca11ple does not represent an actual progra9y it don indicate that. even

Mhen· 2/3 of this progra11 can fit tnhl pri••Y NIKW"y. there is a Mide

variation in its paging behavior over sector partitions. It also

i I lustrates that there are siaple sector traces lfflere ther bounds given by

Theorems 1 and 3 are siMultaneously the greatest lower bound and the

sMal lest upper bound, respectively.

Exa■ple of Results:

Consider a vi r tua I •••ory qate•, w.i tn paraaeterin

IMpf • 2.

k=3 sectors per page.

F .. demand or Fd.

R • LRU, or RLRU •

Program .. {abcdefghi I, a se·t ·of 9 rel ocataltle

sectors of size N/3.

ST .. aehae hbdgb dgaeh bf i cf i beha dgadg.

ISTI • 38.

78

Applying Theorem 1, we compute FFs(IMsl-6,ST,Fd,Ro):

ST• aehae hbdgb dgaeh bficf ibeha dgadg

Fd ,. aeh00 0bdg0 00000 0f ic0 0000a dg000

R0 • 00000 00000 00000 0dga0 0000c fi000

M~ • aehae hbdgb dgaeh bficf ibeha dgadg

aeha ehbdg bdgae hbfic figeh adgad

aeh aehbd gbdga ehbf i Cf i be hadga.

aehh hhbdg aehbb bcf ib ehhhh

aee eehbd gaehh hhcf i beeee

aa aaehb dgaee eehcf ibbbb

Theoretical minimum• 12/3 • 4 page fetches.

--**

Applying Theorem 3, we compute _FFs(IMsl•2,ST,Fd,RtRU):

ST= aehae hbdgb dgaeh bficf ibeha dgadg

F d • aehae hbdgb dgaeh bf i cf i b_eha dgadg

RLRU "' 00aeh aehbd gbdga ehb f i cf i be hadga

M~ • aehae hbdgb dgaeh bficf ibeha dgadg

aeha ehbdg bdgae hbfic fibeh adgad

Theoretical maximum"' 30 page fetches.

There are: 9! • 280 distinct Mays of
(3 !) 9/3 (9/3) !

reordering the 9 relocatable sectors into 3 pages.

79

Comrider H 1 • labc def ghil s.here page A • abc • etc.

Nou ue co111pute FFp{IMpl • 2, 8 1 ,ST,Fd,RtRU).

For ST • (aehae hbdgb dgaeh bffcf ibeWa dgadgl, we get

P • ABCAB CABCA BCABC ABCAB CMCA ·BCABC

F d • ABCAB CABCA BCABC ABCMt CAICA BCABC

RtRU "' 00ABC ABCAB CABCA BCABC A8CA8 CABCA

Mi • ABCAB CABCA BCABC ABCMJ 'CMJCA BCABC

ABCA BCABC ABCAB CABCA BCABC ABCAB

FFp .. i\. 1 lf~I • 38 page fetches for n1 • theoretical

Ila>< h1u11t.

Consider Il2 • tdag beh cfil, uhere page A• dag ,· etc.

Nou a.ie co111pute FFp(fMpl • 2, R2 ,ST,Fd,Ruru J.

For ST • {aehae hbdgb dgaeh bficf ibeha dgadgt, ua get

P • ABBAS BBAAB AAABB BCCCC CBBBA AAAAA

F "'AB000 00000 00008 8C008 0800A 88888

R "'00000 00080 08090 8A000 8888C 89888

ni,., ABBAB BBAAB AAABB BCCCC C88BA AAAAA

AABA AABBA BBBAA ABBBB BCCCB 88888

80

FFp = I 3
~ 1 If~ I= 4 page fetches for Il2 • theoretical

minimum.

**

In the above example, the theoretical ■ ini•u• value of FFP = 4

from Theorem 1 and the theoretical maxi•u• value of FFP • 30 fro•

Theorem 3 Mere found to be the greatest lower bound and the s■allest

upper bound respectively over all partitions, n.

3.5 Extensions to lower Bounds

In section 3.2, lower bounds were derived for the case Mhere each

page contained at most k sectors. In this section, Me would like to

relax this constraint.

What were the problems associated with the constraint that pages of

a partition must contain at most k sectors? There are no problems Mhen

the sectors are all the same size. Houever, when the sizes of the

sectors vary considerably, it becomes more compleM to determine the beat

k. For example, if one chooses k to be, the maMi ■u• nu■ber of sectors

Mhich could fit into any page, then the set of all partitions are

al loMable, but the value of

FFs(!Ms!=!Mp! *k,ST,Fd,Ro)
k

81

•ight not produce a bound which is as tight as ue can produce. This is

due to two reasons. First, sinct! rnsJ-fftpl * k, the size of Ms ■ ight be

I ar-ger than necessary to alN8\f8 ho'hl the aetm-• pr-tNMmt in pages of 11p.

Note that so11te pages of f1p ■ ight hold f....,. thank sectors and that FFs

is a 11tonotonical ly decreasing function of tlhl. Second, perhaps Ne can

reduce the diYisor k when so■e p8gtt9 11Ust COfftetn fewe,, than k sectore.

On the other hand, if one chooBes k ta l'MI 11GB vatue less than the

■a><i11u11 nu11ber of sectors which could fit into a page, then soMe of the

partitions are not considered.

Ue Mil I nou consider all partitions of relc,c.atat»Je sectors into

pages. The onty consiraint is as before,

:t ISj I s. N for al I i, which siaptv
s1 .. ni

states that the size of any bf•ock of the partHion in bytes aust be Iese

than the page size, M, in bytes. Nou that this aet of all partitions ia

the sa111e as the set of parHtions Mhen k is cho9wn equal to the Ma>eillUII

nu11ber of sectors which could ,...icall1' Ht Into a page. Hcn.,ever, we

wl 11 find tighter bounds.

Consider a prograa which consists of ■ relocatable sectors of

various sizes. Ue define the •sector size vector•, SS, to be a sequence

of sizes of thes.e • sectors, SS • tS1 1.1S2 l, ••• , fS.t, euch that

ISi I s ISjl for at I i s j, 1 s j, i s_ •• Mhere ISi I le the size of Si in

82

bytes. Recall that:

IMpl is the number of page frames in the

paged memory, Mp.

N is the page frame size in bytes.

NoM Me define a function, f 1 , in terms of IMPI, N, and SS:

f 1 (IMPl,N,SS) 2 the maximum number of sectors of sizes in 55 Mhich can

be packed into a set of IMPI page frames of size N bytes each, uhen

sectors are not alloued to cross page bo~ndaries.

E><ample.

Let:

151 I "" 152 I = IS3 I • 1000 bytes; 1S4 I • 2888 bytes;

1S5 I .. 1S6 I • 3000 bytes.

N = 4000 bytes

then,

f 1 (1, N, ss) ,. 3

f 1 (2, N, ss) .. 5

f 1 (3, N, ss) .. 6

Since the computation of f 1 can become a comple>< combinatorial

problem in itself, Me Mill give an easy method of co■puting an upper

bound for f 1 •

'83

The function· t1 is defined In ter■a of fMpf ,N.SS as fol lous.

f1 (IMpf ,N, SSJ • 14 if and only if

%~. I IS i I ?. I Mp I ~ and zwi:,1, rs i f < f Mp f ,

It should be clear that ft (Jf1pf,N,SS-J ,s. f~ (·fftpl.N,SSt for all

JMpl ,N,SS. For the above e,ca■ple,

f1 U,N,SJ • 4

t1 (2,N, SJ • 5

f1 (3,N, S) • 6.

Let us interpret a particular for■ of f 1 s that i~, If IMpl • 2.

then f 1 (2,N,SS) is by definition the ■a>eillUtl nUllbfir of sectors uhich

can be packed into 2 page fraaes of N bytes each.

IJe can use f 1 (ftlpl,N,SSJ, f 1 {2,N,SS) and the sector fetch

function, FFs, to louer bound the page fetch functloN, FFp, as fol Iowas

Theorem 4.

Given any two-level virtual ■e■ory syste■ V, with page size N,

pri ■ary 111e1mry size fMpf, any val id page raplace■ent algori th• Ra, de■and

page fetch Fd, and any sector trace STa, then for any partition Oa of the

relocatable sectors into the logical pages of the progra■ , the ■ inl ■u■

nuMber of page fetches given by the page fetch hmction Ffp Is lower

bounded by

FFp(fMp1,N, lla,STa,Fd,Ra) ?. (fFs(IMsl - ., (H!el,N,SS),ST,Fd.RoU
f1 Ci,N,SS)12

- A,

84

Mhere A= 2f 1 U,N,SS}-f 1 (2,N,SS}, and
f 1 (2, N, SS}

Mhere the value of the sector fetch function FFs is the number of sector

fetches which occur in a two-level virtual memory system V', with pri ■ary

memory size IMsl = f 1 {IMpl,N,SS), using demand fetch Fd, optimum

replacement algorithm Ro, and the same sector trace ST• STa. The

function f 1 is as previously defined, and SS is the sector size vector.

Coro I I ary 4a

FFp(IMpl,N, Ila,STa,Fd,Ra) 2:. ffFs(!Msl • f 1 (fMpl,N,SS),ST,Fd.Ro>J-1
f1 (2,N,SSJ/2

Coro I I ary 4b

FFp(IMpl,N-, Ila,STa,Fd,Ra) 2:. <FFs(!Msl .. IJ 1 ,ST,Fd,RoJ-1,
Wz /2

where W1 equals either f 1 {fMpf,N,SS) or f~ (IMpf,N,SS), and IJ2

independently of 1-1 1 equals either f 1 (2,N,SS) or f~ (2,N,5S).

Coro I lary 4b says that we can lower bound FFp in terms of the easily

computed function f~ •

Coro I I ary 4c

FFs(IMsl = !Mp! *k, Ila,STa,Fd,Ro) s_ FFs(IMsf • f 1 (IMpf,N,SS),ST,Fd,Ro)
k f 1 12,N,SS}/2

Coro I lary 4c states that the bounds given by Theorem 4 may be tighter

than the bounds given by Theorem 1 where k is the maximum number of

sectors which can physically fit into a page.

8S

Proof of Theorem 4

Notation and properties

L ST I 2 l t • . ed et 8 • >< , ,c , ••• , ,c where >< l 9 the nc t.or ref er enc

at ti111e t. For virtual ltelK>ry svate11 V and Ffp, hth

1. n. • tn 1 , 0 2 , ••• , Rn t be any parti ticm of aectors into

the n logical pages of the progra where each page contains any .

nu11tber of sectors such thet % JSH .s. N for
S J f:Ri

1 .s. .s. n.

2. P • (p1 ,p2 , ••• ,pt) be the resultant page trace co•puted

uniquely fro111 ST and na , such that, if -1 E llj , then p' • j.

3.

4.

5.

F I f2 a • f 1 , 1

tl E Ila and fl I. 11pl-l

be the d"1111d fetch po I i cv,, where

and I tl l • 1 or I·, the

number of pages in fl . Note that ue have chosen to denote Fd

for FFp by Fa to a¥oid notational conflict Mith the Fd for FFe.

Ra ,. r~ be anv reMOYa t po I icy where

rl E na and rl s; 11p1
-• and lrl I • 1 or I, the

nu11tber of pages in rl.
M' p be the set of pages in tip at tiM t and r1':, • 8.

First we prove Lettt1a S.

86

Lemma 5:

There exists valid demand fetch and removal policies, Fd and Rd, for

the FFs model such that

FFp(IMpl,N, Ila,STa,Fd,Ra) ~ FFs(jMsl • f 1 (IMpl,N,SSl,ST,Fd,Rd)- A,
f1 (2,N,SS)/2

uhere A • 2f 1 H,N,SS)-f 1 (2,N,SS)
f 1 (2,N,SS)

Proof:

For the FFs model, Fd and Rd Mill be constructed by forming a

sequence of valid replacement and fetch policies

ff1 ,R1), ff2 ,R2), ••• , (Fh,Rh), uhere:

1. FI = f 1
1 • f~ •••• , f~ and f\ .. g (f!) =

the set of sectors making up the page inf!, for 1 ~ t ~ L.

2. Similarly R1 • r 1
1 ,r~ , ••• ,r\ and

r \ = g (r ~) , for 1 ~ t ~ L •

3. Fh .. Fd "" f ~ , f~ , ••• , t~ and

for 1 ~ t ~ L Mhere

f~ = ,ct and

d = 0 if ,ct~ M\j1 and IM';j1 l<IMsl;

f~ = x' and d .. {bl C ntdl if

x' ~ M'ct 1 and IM'd' • IMsl; and

M~ .. (M\j 1 u f~)-r~ to satisfy demand

sectoring.

87

Since 1Msj ... f 1 (IMpl,N,SS)?:. IIMpll, Lena 4a·saya that the above

construction e,cists such that

·Therefore, Me have Fact 1:

Fact 1.

I f t, I .. l ?!. °"'l•l If~ I • FFs(IMsl•ft (IMpt ,.N,SS) .ST ,Fd,Rd).

Nol-4, let's prove Fact 2.

Fact 2.

l:\.1 If' I ~ t U 1 (2,N,SS)FFp(1t1pl,N, Ila,STa,Fd.Ra)+f 1 (2,N,SS) •4))/2

Proof.

J:\., It~ I • t\. 1 lgU!)I. t\., It! ltgH!)I

s i nee It! I • 1 i ff I g u! JI > 8 and It! I • B i ff

jgtf!)t = 0.

Note that I g tf!) I is the nu•be.r of sec tors in the page specified ~Y t! .
Also, note that t\. 1 lf!I-FFp(IMpl,N, Ila,STa,Fd,Ra).

Noi.4 let's compress Fa,. f~ ,f~ , ••• ,f~ to get

' 'I '2 'L' t F1 • f 1 , fa , ••• , fa by taking out alt the f8 • 8.

88

Clearly :t\. 1
t L' 't I fa I • :t 1-1 I fa I and

Furthermore, note that, under the definition of demand fetch, no two

successive page fetches can be to the same page. This is obvious, since

under demand fetch a page is fetched and is kept in pri ■ary 111eMory untl I

it has to be removed to make room for another page.

There fore no hm successive va I ues g (f~1) and g (t'!• 1) can

be the same.

Nou, the sum I f~1 I lg{f~1
) I is clearly maxi111ized

·if, for al I odd t, lg{f;1) I is equal to the ■aximu• number of

'I sectors uhich can fit in a page, and if, for all event, Jg(f1) I is

equal to the next maximum number of sectors uhich can fit in a page.

Thus,

for odd L'.

89

Note that f 1 (1,N,SS).f 1 H,N,SSl+f1 (2,.N:,SSl-f 1 (21N-,SS), and thus
2 2

. for at I L'.

~ u, (2,N,SS) FFp(IMt>l,N. na,STa,Fd,Ra)+(2t, U,M.SS)-f1 (2,N,SS))/2

and Fact" 2 is proved.

Fro• Fact 1 and Fact 2,· we have

This proves le••a 5.

Nou, fro• Le111•a 1, we knou that,

FFs(IMsl • f 1 (lr1pl,N,SS),ST,Fd,ffd) ?. FFa(Jttsl • t 1 (1'1pl,N,SSJ,ST,Fd,RoJ

Therefore, Theore• 4 follows i•ediate!y. OED.

Proof of Corollary 4a:

It fol lows i•11ediately fro■ . the fact that

8 ~ 2t 1 U,N,SS)-f 1 l2,N,SS) ~ 1.
f 1 (2,N, SSJ

90

Proof of corollary 4b:

Coro I lary 4b follous directly from Theore■ 4 and Lemmas 2, 3.

Lemmas 2, 3 give,

FFs(IMsl=f 1 (IMpl,N,SSl,ST,Fd,Rol ~ FFs(IMsl-1.1 1 ,ST,Fd,Ro)

since W1 ~ f 1 (IMPI ,N,SS). The divisor goes through since

1.1 2 ~ f 1 (2,N,SS).

·Proof of carol lary 4c:

Carol lary 4c follous from Lemmas 2, 3 since

IMPI *k ~ ~, (IMpl,N,SSl, and k ~ f 1 (2,N,SS)/2.

To compute the louer bound of Theorem 4, simply make one sector

s i mu I at ion run through the sec tor trace and record the number of sec tor

fetches for each possible sector memory size. Then for a particular

value of IMpl, use f 1 (IMpl,N,SS) to select the proper value of FFs and

divide by f 1 (2,N,SS) to get the bound.

If the objective is to louer bound FFp over all partitions, then

Theorem 4 may give tighter bounds than Theorem 1 if the range of sector

sizes is large. For this is the case uhen f 1 {IMpl,N,SS) < k* IMpj.

Furthermore, f 1 (IMpl,N,SS) can become substantially less thank* IMPI

for large values of IMpl. The term, f 1 (2,N,SS)/2, in the lo1,,1er bound

is the average value of k for- the tuo pages having the largest number of

sectors. We cannot extend this average over all pages, since every other

page fetch could be to the page containing the largest number of sectors,

91

Mhi le every intervening fetch could be to the page having the second

largest number of sectors. Even if all pages are fetched, if the above

behavior occurs sufficient I y of ten in the e,cecuti on of a prograM, then we

sti II cannot average over all pages.

Is there any way to compensate for the case when some sectors are

much larger than others? For ease in the following discussion, let the

average vaue of k for the two pages having the largest number of sectors,

f 1 (2,N,SS)l2, be denoted by k', and let the average size of these

sectors be denoted by Nik'. In o,rder to i I lustrate some typical values

one may encounter. we point out that for the real programs we

investigated, the values of k' were on the order of 3 to 6, and, hence,

Nik' was 113 tC) 116 of a page for a page size of 4896 bytes. Now let•s

assume that Me are given a particular program, 0, and we compute the

value of Nik' and find that there are several sectors whose sizes are

considerably larger than Nik'. Now consider what happens if we break up

these large sectors into as many subsectors as we can without increasing

the value of k'. This new program with the targe sectors replaced by the

smaller subsectors is called Q*. Given Q*, it is still quite easy to

compute a sector trace over O* from the address trace. Ue call such a

sector trace ST*. Using this sector trace, ST*, and the program,

a•, we can apply Theorem 4 to compute the lower bound on the page fetch .

function, FFp, over al I partitions, Ila*, of sectors of a• into

logical pages. Me present two important observations on this lower

bound:

92

A). This loMer bound is valid over all partitions of sectors of

a• into pages. Therefore, the loMer bound is certainly true for al I

the partitions over Q* that are constrained to comply ulth a. That is,

if a page in a partition of Q* contained one subsector of a sector,

then it Mould have to contain all the subsectors of that sector. This

restriction on the set of all partitions over er siMply produces the

set of partitions Mhich result Mhen reprogramming is not alloued.

Let Ilar* denote any such restricted partitions of Q*.

B>. This loMer bound using ST* and Ilar* over a• is probably

much larger for most real programs than the loMer bound computed by

Theorem 4 using ST and Ila over a. The rationale for this is simply that

it Mi I I take several subsector fetches to bring into the sectored •e•oru

the same information that could be fetched by one large-sector fetch.

Observation B need not necessarily be true; that is, the lower

bound Mhich results from breaking up the large sectors could

theoretically be smaller than the lower bdund computed by not breaking up

the large sectors. HoMever, this presents no practical problems. Since

both methods Mi II produce valid loMer bounds, Me simply compute both and

use the greater loMer bound. In our analysis of real programs, we found

that the loMer bound computed from breaking up the large sectors was

substantially larger than the loMer bound computed uhen the large sectors

were not divided.

93

We Mi 11 nou foraat ize the notions of a" and Si+ and define the

relationship betMeen Q and a• amt behreen ST and sr. Than, Theore■

S is presented, which states that the pave fetch. function, FFp, Is lower

bounded in ter•s of the sectoring behavior given bgST"'.

Let, Q - a, u 02 -fset of ■ relocatable sector• of any progra•I

such that f 1 (2,N,5S)/2 • k/2 and ISi I .s. ISH for al I SI t a1 and

Sj t 02 •

Let, SS • Ir, l,lrz.l,••••lrkl,lrk+tl, ••• ,lr .. l be the sector

size vector of Q; that is, rit Q.and lril .s. lr-11 for I .s. j and

I rm I .s. N,· the page size.

Note that Irk I is the size of the largest sector In Oi•

Further11ore,· note that th'e above construction la always possible.

Now. Me break up the large aectors of Q into subsectora. Let

Si • IS i i * l for 1 .s. i .s. k and

S . IS.• S. • 5 ·• I f k . _.,_ th t ,_ ,,,12,••··•,: or <1.S.MSU""" 8
I

This last constraint is sufficient to guarantee that

(f 1 (2,N,SS))/2 • k/2 does not change because of the nal I subeectora.

In practice, one could choose ISij• I• Irk I for 1 .s. j < Ii and

I rk I .s. IS i j* I < 2 Irk I for J ;. Ii •

94

NoM define, Q"• Qj u 02= fset of•• relocatable sectors

of the same program)

Mhere aj ... ISj I. S22, ••• skk) and

Let, SS" • lrj I, lr2 I, ••• , Ir~, I be the sector size vector

of a•, I rf I ~ I rj I tor i ~ j.

Note that (f 1 (2,N,SS)J/2-<t 1 {2,N,SS*J)/2.

Given any address trace, A, and the sector ordering of the progra■a

a and Q* for that address trace, Me can easily co■pute:

ST • 5 1
, 52 , ••• , 5L for Q and ST*• 5"1, 5*2, ••• ,S'"- for Q*, uhere

st E a and 5•tf U" •

Note that, if S~ • Sij* then S1~ Si for 1 ~ts L.

Thus, Me can also compute ST fro■ ST*.

Theorem 5 is presented in terms of the above definitions of a• and

ST*.

Theore11 5.

Given any tMo-level virtual ■emory syste■ V, Mith page size N,

primary memory size IMpl, any valid page replace■ent algorithm Ra,

demand page fetch Fd, and any sector trace STa, then for any partition,

95

Ila, of the relocatable sectors into the logical pages of the progra■, Q,

the minimum number of page fetches given by the page fetch function.

FFp, is loMer bounded by

FFp(IMpl,N,Ila,STa,Fd,Ra) ~ FFs(fMs! • f 1 (fMpj,N,SS•J,ST .. STa* ,Fd,Ro)- 4,
f 1 (2,N,SS)/2

1-1here A "' 2f 1 (1,N,SS) - f 1 (2,N,SS),
f 1 (2, N, 55)

and Mhere the value of the sector fetch function FFs is the number of

sector fetches Mhich occur in a two-level virtual Memory system v•. with

primary memory size jMsl • f 1 (IMPl,N,SS*), using deMand fetch Fd,

optimum replacement algorithm Ro, and sector trace ST"' STa*. The

function f 1 is previously defined, SS is the sector size vector of 0,

and SS* is the sector size vector of Q*.

Proof:

Let a, ST, Q'* and ST* be e,cactly as defined h1111ediately before

Theorem 5 ~as stated.

Let Ila*= I Ilj, Il2 , .•• , IT~ l be any partition of the

relocatable sectors of Q* into logical pages, where page k • nt

for 1 ~ k ~ n and I Is if' I ~ N.
S1';tilk

Applying Theorem 4 to a• gives by simple substitution,

FFp(IMpj,N,Ila* ,ST* ,Fd,Ra) ~ FFs(IMs! = f 1 (IMp!,N,SS*),ST*,Fd,Rol-4,
f 1 (2,N,SS*)/2

and since f 1 {2,N,SS*)/2 "' f 1 (2,N,SS)/2 Me get

FFp (I Mp I, N, Ila~ ST* ,Fd,Ra) ~ FFs (!Ms I .. f 1 (!Mp I ,N, SS*), ST• ,Fd, Ro)-4.
f 1 (2, N , ss) /2

96

Let Ila= 1Il 1 , n 2 , ••• , fin} be any partition of relocatable sectors

of Q into logical pages such that t !Sil~ N and Si ca,
Si Eilk.

Mhere page k = Ilk for 1 ~ k ~ n.

Given any Ila, then we construct Ilar• as follo1,1s:

Ilar"'"' IIlr j , Ilr2 , ... , nr: I such that,

for al I Si E Ilk, s i j* (Ilrk*

for 1 ~ k ~ I· I and page k = Ilrk* for 1 ~k ~ n.

Now,

FFp(IMpl,N,ITar•,sr-,Fd,RaJ ~FFs(!Msj .. f 1 (!Mp!,N,SS*),ST"',Fd,Ro)- A,
f1 (2,N,SSJ/2

since the set of al I nar* is a subset of the set of al I Ila*.

Now we prove _that

FFp(IMpl,N, Ilar• ,ST* ,Fd,Ra) .. FFp(IMpl,N, Ila,ST,Fd,Ra)

~e need to show that the page trace

P* = •I ,.2 •l t d f p ,p , ••• ,p , co111pu e ro111 Ilar• and ST11
, is the

same as the page trace P = p1 ,p2 , ••• ,p 1 , co111puted fro■ Ila and ST.

Let ST* .. s·1 , S"'2 , ••• , s•l and ST .. S 1 , S2 , ••• , 5l •

Let the sector referenced in ST* at time t be S~ for 1st s L,

Then s•' .. Si j• for some 1 ~ ~ 111' and 1 ~ j ~ Ii ,

97

and Sit f llrk* for SOM 1 S. k S. n. Heftce, p.c • k.

Given s•t • Si j*, then S1 • Si, and, given Si j* t llrk*,

then Si t Ilk. Hence, p1- k, and we have p~ ~ p1 for 1st SL.

Therefore,

FFp(IMpl ,N, llar* ,ST* ,Fd,Ral • Ffp(fMpJ,N, lla,ST,Fd,Ral and

FFp(IMp I ,N Ila, ST ,Fd,Ra) ?. FFs(Jftal • f1 Httpt,N,Str J ,sr ,Fd,Ra) - A,
f 1 (2, N,..SSJ /2

QED.

The fol lowing sh1ple eM311ple is given to i I luatrate that Theore• S

can produce a tighter bound than Theore• 4. Thia e,caaple is ■ade as

sl11ple as possible such that the 11eehanics of applying Theore■ S can be

presented.

E>ea11ple:

Let O = 1S 1 ,S2 •••• ,S 12 I wher-e I Si I • 1888 bytes for

1 s. s. 8, and !Sil• 4888 bytes for 8 <i $ 12 and N • 4888 bytes. Now

let's divide Si for 8 <is. 12 into four parts, each being 1898 bytes

long; i.e., Si beco•es 1Si 1 ,Si 2 ,Si 3 ,Si~I ..tiere

IS i j I • 1088 bytes for 1 s. j s 4. Thus,

98

This represents the compressed reference

behavior of one pass through a· where every

.....

uni t of a· is touched. It is reasonab I e to assume that such sec tor

behavior could represent one pass through a small loop of a much larger

real program.

Evaluating FFp(IMpl,N:4000, Ila,ST,Fd,Ra), gives 6 page fetches uhen

Ili = ISi+GI for 2 <i ~ 6, and IMpl and Ra take on any values. It

should be clear that this partition minimizes FFp.

Theorem 4 gives a loMer bound for FFp of

FFs(IMsl = f 1 (IMp!,N,SS),ST,Fd,Rol - A= (12/4)-0 ... 3,
f 1 (2 , N, SS) /2 '

for al I values of IMsl. Note that f 1 (2,N,SS) • 8 and

f 1 (l,N,SS) • 4, hence A= 0. Theorem 5 gives a lower bound for FFp

of FFs(IMsl,. f1 (!Mp!,N,ss·>,sT",Fd,Ro) - A .. (24/4)-0 .. 6,
f 1 (2,N,55)/2

for al I values of IMsl. Thus, Theorem 5 gives the greater louer bound,

and it is a factor of 2 better than the bound given by Theorem 4.

99

Now we extend Theotems 4 and 5 to include the cases Mhere sectors

can be any size, and we let the sectors cross page boundaries.

~e now present Theorem 6 which lower bounds FFp over all sector

orderings SO into then-page logical address space. The sectors can be

any size and may cross page boundaries. This Model corresponds to the

case where sectors are clustered together into groups and then these

groups are packed into the virtual address space.

Since sectors may cross page boundaries, one may not be able to

determine the page trace fro■ the sector trace ST. Ue define SOT to be

the sector trace consisting of ordered pairs of elements:

SOT .. (5 1 ,0 1), (52 ,02), ••• , (SL ,OL) where S1 is the

sector referenced at time tan~ 01 is the offset in S1 referenced at

time t. Given a sector trace SOT and a sector ordering SO as defined in

Chapter 2, the page trace follows immediately.

Note that SOT• is exactly the same as ST* except that the

elements of SOT* are simply ordered pairs. Also note that the

construction of Q* is not affected by allowing sectors to cross page

boundar i es.

Theorem 6.

Given any two-level virtual memory system V, with page size N,

primary memory size fMpf, any valid page replacement algorithm Ra,

demand page fetch Fd, and any sector trace SOTa, then for any sector

100

ordering SOa, of the relocatable sectors into the logical address space

of the program a, the minimum number of page fetches given by the page

fetch function FFp, is loMer bounded by

A.

FFp(IMpl,N,SOa,SOTa,Fd,Ra) ~ FFs(!Ms!,. f~ (IMp!,N,SS),ST • SOTa,Fd.Ro)- 4
f1 (2,N,SS)/2

and by

B.

FFp(IMpl,N,SOa,SOTa,Fd,Ra) ~ FFs(IMs! = f1 (!Mp!,N,SS•),ST• SOTa* ,Fd,Rol- 4
f1 (2,N, SS) /2

1-1here 4,. 2f1 U,N,SS)-f~ (2,N,SS),
f1 (2,N,SS)

and Mhere the value of the sector fetch function FFs is the number of

sector ~etches Mhich occur in a two-level virtual memory system V', Mith

primary size IMsl, using demand fetch Fd and optiMuM replacement Ro, and

sector trace ST= SOTa in part A and ST,. SOTa• in part B.

Proof of Theorem 6:

Let SOT8 = (S 1 ,0 1) , (52 ,02), ••• , (SL ,OL), 1-1here S1 I e

the sector referenced at time t and 01 is the offset. For virtual

memory system V and FFp, let:

111

1. SOa be any sector ordering of the reletcatable sectors In the n

pages of the addres• apace of progrN Q.

2. P - p 1 ,p2
, ••• ,Pl be the resuH_,t page. tr-ace coaputed

uniquely fr01t SOTa and SBa, such that pt. (l(S1 J+O'JIN.

3. · I 2 l Fa • f •. f 1 ••••• '• be the $tllaml- fetch pot icv, where

t!.. lp1 I or I; f! n npt-l • I. Note th-at NB have

chosen to denote Fd of the FFp llodef by Fa to avoid notational

conflict with the Fd of the Ffs Medel.

4. Ra • r Lr! , ... , r~ be anv reac1Yal pot' lcv under deaand

fetch, where r: ~ npt-l and Ir! f •1 or 8.

s. r,p'.. mp1
-
1

- rl > u fl anct 11p• - •·

Fi rs t we prove the fol lONing le1111a.

Le■■a 6:

There exists a vaf id detland fetch and ret10val pol icy, fd and Rd.

for the FFs MC>del such that

FFp (IMpl .N. SOa, SOTa,Fa,Ra) ~ FF st lff•I • t1 lU1pl,Jl.§S) ,!$QTa,Fd,RdJ- 6,
,, f2,N.SJ:/2

where d • 2f~ U ,N, S)-f~ (2,N,SS) ..
f~ (2,N,SS)

For the FFs Model, Fd and Rd wifl be constructed by forMlng a val Id

sequence of repface11ent and fetch pol i-cies

102

1. F1 • t'i ,f~ , ••• ,tl1 , and t\ • g(f~) .. the set of

sectors having any of their parts inf~ for 1 ~ t ~ L.

2. Similarly, R1 "" r'i ,r~ , ••• ,r\, and

3.

4.

r\ = g(r!) "' the set of sectors having any of their parts in

r' a for 1 ~ t ~ L.

Fh - fd = I 2 L fd,fd••••,fd, and

Rh = Rd '"'
I 2 L rd ,rd , ••• ,rd• for 1 ~ t ~ L,

r~"" 0, if ><1 ..f' Mdt-l and lMdt-l I< I Ms I;

f~ :s ><1 and d,. lbl c Mdt-l , if ><1 K' Mdt-l and

I Mdt-l I• I Ms I; and Md1 ,. (Md1-Lr~) U. f~ to

satisfy demand sectoring.

Mhere

Lemma 4a is still true for this case when sectors May cross page

boundaries. The proof of Lemma 4a when sectors are allowed to cross

page boundaries is exactly the same as before e,ccept that we add the

fol lowing to the proof. lRecal I that z' is the sector referenced at

ti me t. J

If it ever occurs that z' t f~ 1 and z' E Mp1• 1 , then

simply remove z' from ti,. This only reduces the value of

It} I and it keeps sector z' from being added to the deferral sector

I is t -when z' is in the sectored 111emory.

183

above construction e,cists such that

Fact 3

%\., I t•1 I ~ (fj (2,N,SSlFFplltlpl,N,SO,SOT,Fd,RdU + fj {2,N,SSJ• 4
2 2

The proof of Fact 3 is exactly the salle as Fact 2 of theore■ 4

except that I g (fl) I becottes the nutlber. of aecter• ha¥tng any of

. t• their parts 1n 1 •

Hence Le••a 6 is true. La■a S and LNN 1 prove part A of the

Theore■.

Proof of part B.

Given any address trace A and any D, construct o•. SOT, and

SOT4' exactly as in Theore• 5, e,ccept denote the ete■ents of SOT and

SOT* as ordered pairs.

The proof of part Bis al ■ost exactly the aa■e as the proof of

Theore■ 5. Ue point out the exceptions betou.

104

Instead of applying Theorem 4 to Q* as in Theorem 5, ue apply

part A of Theorem 6 to Q* and use the fact that

t1 (2,N,SS) '"' t1 (2,N.ss•) to get

FFp(IMpl ,N,SOa* ,SOT* ,Fd,Ral ?. FFs{IMs!=f'j (!Mp! ,N,SS*) ,SOT* ,Fd,Rol- A

f'j (2,N,SS)/2

In the proof of Theorem 5, ue restricted the set of Ila such that

subsectors could not be in different pages. Here ue restrict the set

SOA of a 11 soa• to get the subset SOAR • Let >< E SOA,

then>< f SOAR if the subsectors of each sector in>< occur together

as a subsequence of SOar*, and if the subsectors of each sector are

ordered in the subsequence as they occur in the sector. Ue are siMply

restricting the set of al I SOa* such that ue get the set of .al I SOa

Mhen the common subsectors of each subsequence of each SOar* are

concatenated together.

Since the above result, FFp?. FFs, is true for all SOa*, ·it must

be true for any constrained subset of SOa*. In particular it must be

true for al I SOar*. Thus

FFp (I Mp I' N, soar* • SOT*. Fd, Ra) ?. FFs (!Ms I - f'j q Mp I' N, ss·) I SOT* I Fd, Ro) - A
f'j (2. N, SSJ /2

Nou ue need to shou, as in Theorem 5, that the page trace P*

computed from SOar* and SOT* is the same as the page trace P

computed from SOT and SOa. This is obvious fro■ the construction of

SOar* and SOT*. That is, P*1 computed from (S*1 ,0*1)

105

and SOar• must be the same as P1 computed from (51 ,01) and SOa.

Thus, FFpllMpl,N,SOa,SOT,Fd,Ra) = FFp(IMPl,N,SOar* ,SOT* ,Fd,Ral

and the proof of B fol lo~s immediately. QEO.

106

3.6 Bounds for Working Set Management

Theorems 1-5 give upper and louer bounds on the number of page

fetches required to execute a program in any fixed primary memory size.

Houever, there are paging algorithms uhich exploit the important progra■

property of locality by attempting to dynamically allocate various

amounts of primary memory space to a program as it executes. Recal I

that, intuitively, locality means that during a given interval of

execution a program addresses only a subset of total addressable space.

Houever, for different intervals, the size of this subset may vary.

From this notion of locality comes that of "uorklng sets", and a theory

of primary memory based on this notion has been proposed and extensively

investigated in (01,02,03). Therefore, Me uil1 extend our definition of

the page fetch function, FFp, to include uorking set memory management.

In order to incorporate the page uorking set concept into the

methodology ue adopted in Chapter 2 for presenting paging algorith■s,

recal I the fol louing definitions. Assume that:

Q .. IA,8, •• l is a finite set of logical pages.

P I 2 L • t . th t 0·. • p , p , ••• , p , s a page . race u I p f

Mp'~ a is the contents of Mp at time t.

F = f 1 , f 2 , ••• , fl is the page fetch pol icy.

R I 2 L I = r , r , ••• , r is the page rep acement po I icy.

A paging algorithm based on the page uorking set principle is defined as

fol lous.

187

a. Up (0, T) .. ♦

b. Mp t = IJp (t , TJ and 1Mp1 I • up (t, T), 0 ~ t ~ L

. c. f' = ♦ if p1 IE IJp (t-1, TJ • Mpt-1 , 1 ~ t ~ L

d. f' - p' i f pt K Up (t-1, TJ M t-1 .. p • 1 s. t s. L

e. r',. Up(t,T)-IJp(t-1,Tl; note that I r 1 I s. 1, 1 s. t s. L

Thus, Me see that under a page Marking set strategy, the contents of

primary memory at time t, M~, ls simply the ~orking set, Up(t,T), and

that the amount of primary 111emory allocated to a program expands and

contracts as the uorking set size Mp(t,T) expands and contracts. A page

reference at time t, ~, causes a page fetch intQ primary memory If

and only if p is not in the working set at tl ■e t-1. Note also that a

page is removed fro111 pr i111ary memory at ti-me t if and only if it is in

the Marking set at time t-1 and it is no longer in the Marking set at

ti Ille t.

From the above discussion, Me observe that the number of page

fetches required by a program during its execution using the page

Marking set memory management technique is uniquely determined fro■ th~

page trace, P, and the uorking set parameter, T. Therefore, the

definition of the page fetch function, FFp, under page Morking set

memory management can be expressed as a function of the folloMing

parameters:

FFp = FFp(IM~ I= Mp(t,TJ,N, na,STa,IJp(t,T)).

108

The parameters in this definition of FFp for Marking sets are

identical to those previously prl!sented for the page fetch function,

FFp, except for two instances. The first parameter, Mhich denotes the

primary memory size, is equated to wp(t,T) to illustrate that the size

of Mp varies Mith the size of working set. The other instance is

strictly notational, i.e., Me have replaced the fetch and replace■ent

parameters, F and A, Mith Wp(t,T) to illustrate that the F and R

policies are those defined for Marking set memory management. We could

have used Fw and RM, but we think that Wp(t,T) is simply clearer.

We can also extend the definition of the sector fetch function,

FFs, such that it denotes the number of sector fetches which occur in a

virtual memory system during the processing of a sector trace under

sector working set memory management.

Consider a program whose behavior is modeled by a sector trace, ST.

Then the sector working set at time t, Ws(t,T), is defined to be the

distinct set of sectors referenced in the sector trace, ST, during the

time interval (t-T,T). The number of sectors in the sector working set

at time t is defined to be the sector working set size and is denoted by

ws(t, T). The maximum value of the sector working set size for a given

sector trace is denoted ws(t,T)max. Note that us(t,T)max ~ T. Let:

a. Program~ la,b, •• I, a finite set of relocatable sectors.

b. ST,. S 1 ,S2 , ••• ,SL, a sector trace with S1 E Program.

Program, the set of sectors in primary memory

189

:at tin t.

d. F f I f2 · .fl - ' . the sector · ♦e:tch i,oi icy.

Then the sector behavior of a ,PN9F:• ustng sector Nertling set aew-v

a. Usu,. T) • •

b. nst - Ws{t, l) Md tfl91 I - :"'9'(t, n' • 5. t s L

c. ft• • tf S1
E W.U-1,,.f) • fls1

•
1

, 1 ·~ t ·.s. l

d. f 1 • st if S1 ~ Ws(t-1~ T) • 'fts1• 1 , 1 :S. t :S. L.

e. r' • UeU,lJ-Wstt--1,ll, 8 s. t s_ l.

Thus, the contents of rariaary NIIOr.y at On·t fs the •eetor MOrklng eet

at tim.e t, Us(t, n, and a sector Mtfer<ene9 at t+.e t causes a sector

fetch if and on I y if S1 .t' U1tH-l, Tt. Note that the set of sectors that

are generated by the 11ector ~lng ett1: stretew to'be in pri ■ary ■eltOry

at tiae t ts WsH,Tt, na •atter·what the •izft of 1he lndividUal •ector•

are.

.
The sector fetch function. Ffs, for ·the aectar ..,,.._ ing set strategy

FFs • ffs(Itta' I • .wsU, TJ ,ST ,WeU,TH.

We observe, as before, that the :yafue of the aector fetch function, FFe.

which is the nu■ber of sector fetches requiNtd to .,...ocee1t a sector

trace, is unlquetu deter1tined t,y the ST and the .Matt. n paraaeters.

_+ •"':'ff'::~ .. ,.,,:• .. ,.,- a,';,, . - ~ .. - -·

118

The not ion of characterizing the local behavior o_f a progra• in

teras of its sector working set has two p.6tenti~l applications. The

first is to ut i Ii ze the t i ■e var ing sector working Nt to identify the

sectors which should be clustered together in order to ainiMize page

faults. This application turns out to be very uaeful and is discusaed

in ful I detai I in Chapter 4. The second is to find upper and loMer

bounds on the paging behavior, FFp, of progra■s using the page Marking

set strategy in teras of the sector behavior, FFs, uaing sector Morklng

set ae■ory 111anage11ent. This approach proves succeaeful for the upper

bounds but fails for the lower bounds. Even though the approach falls

to produce lower bounds, Part A of the fol lowing theore■ points out an

interesting relationship that can e,cist bet~et!n the nuaber of page

fetches and the nu■ber of .sector fetchee for progr.:a•s using working set

111eaory 111anage11ent.

3.6.1 Lower Bounds for Marking Set nanage■ent

Recall that ws(t,TJ ■a,c is defined to be the aa,cj•u• value of the

sector working set size for a given sector trace.

Theore111 7

Given any two-level virtual ■e■ory syete■ v. with page aize N,

pri11ary Me111ory size 1Mp1 I • wplt, n, using paged work.Ing aet ae■ory

11anage111ent l,lp(t, n, and sector trace STa, then for any partition, na, of

111

the rel()catable sectors Into logical pages of the progra• uhere each

page contains k or feuer sectors, the •inillUII n\.111ber of page fetches,

given by FFp(ll1p1 I • uptt, Tl,N, lla,STa,Wpft, TH,

A. is not lower bounded by

FFs(IMs1 j • wslt,k1 n,st • STa,Ustt,k, l)) and
k• k2

B. is not louer bounded by FFs(l"'91 • k• T,ST•STa,Fd,RLBM) .but
k-

c. is lower bounded by FFs(lnsf • k• we(t, T>•a,c·,ST • STa.Fd.Ro),
. k .

uhere the value of the sector fetch function, FFe, is the nu■ber of

sector fetches uhich occur in a two-level virtual ■enory eyste• V', w1th

pri ■ary 111e111ory size fMsl, with the sa11e sector trace ST-Sta, using

sector uorking set •anage•ent in Part A, using deaand fetch, LRU

replace111ent in Part B and using de■and fetch, optillU■ replace11ent in

Part C. The value of k1 and k2 are any arbitrarily large integers

greater than 1. (The value of f 1 is as previously defined, and SS ia

the sector size vector.) · The value of ws(t,T)aa,c is the ■a,cl ■u• value

of ws(t,T) over ST.

Part A of the above theore■ states that there are sector traces

such that the nu■ber of sector fetches required to process the sector

trace is arb i trar it y f arger than the nu■ber of. page fetches requ I red to

112

process the corresponding page trace under a good sector ordering.

Moreover, it states that this is even true Mhen the MlndoM size of the

sector working set is made arbitrarily large and the resulting nu11ber of

sector fetches divided by an arbitrarily large constant. I.le clai• that

this is counter-intuitive, because a) if the sector uorklng set uindoM

size were simply kT, then the sector Marking set could contain the sa•e

number of sectors as those contained in a page uorking set of size Ta

and b) dividing FFs by k alone Mould account for the fact that as •any

ask sector fetches are required to bring a page of inforMation into

pri11ary memory.

Proof of Part A:

We need to show that there exists a set of para■eters such that

FFp(IMpt I ,. wplt,Tl,N, Il,ST,I.IP lt,TJ) < FFs(!Ms1 I• us(t,k 1 Tl,ST,l.lsU.k1 TH
k * k2

Let:

T = 2

k 1 ,k2 = any fixed arbitrarily large integers.

k = 2

Program= (abxy), a set of 4 relocatable sectors

each of size S, where S = Nik.

ST = ((ax)m (by)m_)" be the sector trace.

Il =flab), lxy)) where page A= la,b) and page X s lx,y).

lll

P .. ((A)Hm (AX'J"')n • (AXJZIM is the page· trace.

Up(8', T} • Wtri8,k1 n • ·~

a. Not.1, it is c I ear fro•' the deflni N·off• of Wp:lt, n and

P • (AX) zmn that

FFp(lnp' I - a.,p(t,n,N<, ll ,ST.If, (t,T)J • 2 for atl • and n.

b. Noa.,, to evaluate FFs.

ST =- ((a,c)"' (byt"') n illfJHes· F'Failffit I •: we·tt',k1 TJ ,ST ,Me(t, k 1 T)) • 4n.

Proof:

Part 1.

Consider the sub.-stri ng reference p:a,ttern (ft)m. Observe that the

first reference to this substring· occurs· at tins t • 1+4tli for

i • 0', 1, ••• , n - 1. Utt:48', k 1 TJ • lt bV ctwfinit Ion.

Ms(t,k1 T} • {b,yl for t • 1'+4tfi i • 1,2, ••• ,n·..;. 1.

This is true because for each of thase Uaes, t, the last 2■ reference•

uere to b or y. Since 2■· > k 1 T, only bandy. can be in WsU,k 1 T);

and since k 1 T ?. 2, both b and y ■uat mt· in WeH,k 1 J).

Hence, for each of the n occurrences of the substring (a,c) 111 in the

sector trace, exactly two sector fetches are required to bring a and ,c

into the working set, where they stay while proceuing the re■aining

references in the substring, since k 1 T ?. 2.

114

Part 2.

Consider the substring reference pattern (by)m. The first

reference to this substring occurs at times t • 1+■ (41-2) for

i • 1,2 •.. ,n.

The l.ls(t,k 1 T) • fa,><} fort• l+111(4i-2), i - 1,2, ••• ,n, since at each

of these times, t, the last 2m references Mere to a ~r x. Since

m > k I T, on I y a and >< can be in lols (t, k I Tl ; and

since k 1 T ?:. 2, both a and >< must be in lols(t,k 1 n.
Thus, for each of then occurrences of the substring (by)m in the

sector trace, tMo sector fetches are required to bring bandy into

l.ls(t,k 1 T), and moreover only tMo are required since k 1 T ?:. 2.

Therefore, FFs(IMs' I = Ms<t,k 1 T),ST,l.ls(t,k 1 T)) • 4n.

NoM,

FFs/(k*k2) = 4n/(k*k2) > (4k*k 2)/k*k2 = 4 > FFp • 2

and this proves part A of Theore111 7.

What causes this strange behavior in the nu■ber of sector fetches?

Is it true for only strange and rare sector traces or could it be

e><pected to occur in many common sector traces? I.le claim that this

behavior could occur in many sector traces. In order to provide so■e

insight into this claim, consider the sector trace ST• tt 1 cx2 cx3 ,

where a 2 =((a><)m (by)m)" and a 1 , a3 represent any Ion~

sector reference strings. The proof of part A shoMs that the ratio

115

(FF s/FFp) > k2 for the eubstr i ng a 2 , where k2 can be ■ade

arbitrarily large bg choosing n sufficiently large. Therefore, the

ratio (FFs/FFpl C'&ll st I ti btt ••• ·arttt tf'!'lr'Hy hn•p for f heed er I and

a3 by simply Making n suffi.cientty lar'ge. A generality of this brief

argument says ttfat, when a sech:t1' tt-11ee has any thJbstring consist Ing of

tight embedded I oops, the nuabet' at' •edtor fetches •ay beco■e ■uch

larger than the corresponding f'Mlbet" of- page fetches. One e,cplanatlon

of this pheno11tenon is as fel':f.owsi ·tlgtit inner loops {i.e., {b,c) m))

drown out the benefit ga·ined by aattlng the nctor window size I arge

(i.e. , the value of Ws H, n becotlt!W J&;wt: f'f • ,. n. am i I e the outer I oop

causes the sec tors in the ifflftrr' taupe h, be fetched over and over. In

contrast, the paged working set having a ••all window size, relative to

11, is able to contain a11 the sectors in the nbedded loops (i.e., (a,cl,

{byl) throughout consecuiive cycles of the outer loOJ>, if at least one

sector fro• each inner loop is gn,uptm ,.-.to the sae page.

From the above discussion, we observe that the page working set can

contain more of the II09t recently referenced ~actors than the sector

Mt>rk i ng set, even when the I at'ter hatJ an arbitrar i I y I c,rge i., i ndou size.

Ue can eliminate this comHtlott by redefining the sector working set as

follous. Reca11 that the nctor wrking set, ~s(t,T), has been defined

to contain the set of distinct sectors referenced in the last T

references. If ue 11odlfied the definition of Ms{t, T) suet- that it

contains the set of T •ost recently referenced sectors, and i'f Me choose

T to be k ti ■es the page working set uindoM size. then the page working

116

set could never contain more of the most recently referenced sectors

than those contained by this sector Morking set. HoMever, this neu

definition of the sector Morking set is equivalent to demand fetch, LRU

replacement in a memory of fixed size equal to k times the page uorking

set Mindou size. Thus, a plau~ible conjecture ls that the number of

page fetches under a page Morking set strategy could be louer bounded by

the number of sector fetches under demand fetch, LAU replacement in a

memory size as described above. HoMever, Part B of Theorem 7 states

that this conjecture is not true.

Proof of Part B.

We have to shou that there exists a set of parameters such that

FFp(IMpt I= up(t,TJ,N, Ila,STa,Wp(t,TJJ < FFs(IMsl • k•T,ST • STa,Fd.RLeu)•
k

Let:

Program ,. fa, b, c, d, e, f, g, hi, a set of

8 relocatable sectors of size N/2.

k = 2

N,. tMice the sector size.

T = 3.

ST~ (acd bef bgh acd aef b) be the se~tor trace.

ISTI = 16.

Ila =- f fa,bl, lc,dJ, {e, fJ ,.{g,h) J, Mhere page

A = fa, bl·, page B = le, d), etc.

P = (A BB ACC ADO ABB ACC AJ be the resulting page

trace.

Mp m~ H .. ·ff.·• 8.

IMsl • k•T • 6.

117

Si-..laHon of pagi·ng behM,tor to get ffp givesz

P "'ABB ACC AOO ·ABB ACC A

f w • A88 8C8 808 188 8C9 8

Uptt, T) • ABB ACC Mil MS ACC ·A

AA BAA CM OM-BMC

8 C D 8

Tcontenta of JilpU, n lMectiately before 6th

reference.

Siaulation of sector behavior gi¥H;

ST • acd bef bgh acd aef b

F • acd bef 0gh acd 8ef b

M - acd bef bgh acd aef b

ac dbe fbg hac dff f

a cdb efb gha cda e

acd def bgh hcd a

ac cde tt,g ghc ti

a acd efb bgh c

118

Resu I ts:

FFs .. l: 1
i~I ffdl = 14 sector fetches.

FFp • 6 c FFs/k ~ 14/2 = 7, QED •.

HoMever, if Me change the LRU replacement algorith• of Part B to the

optimum replacement algorithm, then the value of FFp under page Marking

set management can be loMer bounded. This loMer bound Is given by Part

C of Theorem 7.

Proof of Part C.

Note that IMpt I = 1.1p(t, TJ s. 1.1s(t, Tha,c s. T.

a.

FFp(IM~I .. MpH,Tl,N,IIa,ST8 ,t.lp{t,TJ)

~ FFp' (IMP
1
1 = Ms {t, nmax,N,Ila,STa,Fd,RLRU) •

since Mp1
• t.lp{t,T) ~Mp,. by definition of t.lp(t,T) and the

definition of Mp~ under demand fetch, LRU replacement; that is,

Mp, alMays contains the set consisting of the IMp'I • ws(t,T)max

most recently referenced pages, Mhile-Mpt contains the set consisting

of the Mp(t,T) most recently referenced pages.

b.

FFp' (1Mp'11 = Ms (t, T)max ,N, Ila,ST8 ,Fd ,RLRU)

~ FFs(IMs I = k*Ms (t,nmax ,ST .. ST.,Fd,Ro)
k

by Theorem 1, and this proves part C of Theorem 7

Coro I l~ry to Theorem 7, Part C.

119

where A and t 1 are defined as in Theore■ S.
Proof.

IJe know from the proof of Part C that

Ffp (fMp1 I .. Wp u,n,N, na,Sl,,ltpH,TJ)

~ FF~ qr,p I - w9 tt, n ·"· Da,ST1 ,F1t.ftiw J.

and applying Theore■ 5 to Ffp' · proves the corol larv i••ediatety.

3.6.2 Upper Bournfs for lilorking Set tfanegettent

An upper bound on the ftUllber of page fetches for vl~tuaJ ■e■ory

eyste11ts using the page i:aorking eet strategy le given in Theore■ 8.

Theore■ 8

Givan any two- leve I vi rtua·I 11'8110l"\I syet .. V, with page size N,

pri•ary 11ettory size ll'ttt' f • wpH,TJ, using pave working set ■e■ory

1.anage11tent IJp(t, n. and any sector trace Sta, then for any partition,

Ila, of the relocatable sectors into logiC'81 pages, where each page

contains k or fewer sectors, th& llalCl■u• nutlber of page fetches given by

the page fetch function, FFp, is upper bounded by

FFp(1Mp1 I - WP (t, n ,N, na,STa,l,lp(t, T)) s FFs(fMs• I - w, (t, T) ,ST ,Iola (t, T)).

where the value of the sector fetch function FFs is the nu■ber of sector

fetches which occur in a two-level virtual ■e■ory ayate■ V', with

pri11ary 11e111ory size 1Ms1 I• wslt,T), the sa■e sector trace ST• STa,

using sector working 9et 11anage■ent l,ls(t, T).

Proof:

Let:

128

a = tS 1 ,S2 , ••• ,SmJ = tset of relocatable sectors

of the program).

Ila • I I1 1 , I12 , ••• , Iln) be any partition of Q

such that IIljl :5. k,

ST = >< I 2 L b t t h ,>< , ••• ,x e any sec or race, Mere

x1 Ea, 1 :5. t :5. L.

P I 2 L = p ,P , •.. ,p be the page trace, where

p1 = j i f x1
f n j.

Mp1 • Wp(t,T) be the set of pages in memory

of FFp at time t.

Ms1
• Ws(t,T} be the set of sectors in MeMory

of FFs at time t.

pol icy of FFp.

= demand fetch policy of FFp.

• Marking set replacement

Fs =- f~, f~, ••• , f~ = demand fetch pol icy of FFs.

R I 2 L I· s = rs ,rs , ••• ,rs • Marking set replacement po icy of

FFs.

Suppose at time t, in the FFp model, that~ • j, the page j

containing the set of Ilj sectors, is referenced. Then at time t, in

the FFs model, x1 = a is the sector referenced, where a E Ilj. We need

to shou that I\.1 If~ I :5. I~.1 If~ I•

Case 1. Suppose p1
f Mp1- 1 • I.Ip (t-1, T); t

_then f P • ♦-

a. If x1
E- Ms'- 1

= WsCt-1,T), then fi = 0 and If~ I• lfi I•

121

b. If ,c
1 ; Ms1- 1 • lihH-1, n, Utan fi • fat It U.H-1, Tt and

It~ I < It~ 1-

Ca9e 2. Suppose p1 ~ np1• I • Wp(It-1, Tl; then f~ • ljl.

a. If ,c1 K Ma1• 1 • Us {t-1, T), then t! •·tw K W.H-1, TJ and

It~ I. - I t~ I.

b. If)Ct c; Ms1- 1 • WsH-1, Tl, then fl • t and

If~ I > If~ I• This condition i I lustra.tn the only way that page

fetches can e,cceed sec·tor fet'Ches. Mtn,e...,., if • shou that

p1 ...r Mp H-1. T) • > ,c
1 ..f' Wslt-1, n, then aase 21> can never occur.

Let p1 K Wp (t-1, TJ, and a'99Ulte 'llit c; h':H-1., TJ. Since x1 E Us (t-1, T) •

there e>eists a ti•e t' in the ionterv,a•I u.:.1-T,t-U such that

><1 = ,ct' • Let p11
• k be the page refer-~ at Hitt! t' in the

page trace P. IJe know that ,c"E Rk, since sect•• are not al lowed to

cross page boundari·es. We also JffloM that pr t WpH-1, TJ because the

i.tindow wize is T for btrih tt,e page worltlng aet Mp and the aector i.tarking

set Ws. But this contradicts the httWlfJtion1 therefote

,c1 ~ W-s(t-1,T).

Hence, t~.1 If~ I s %\.1 I ft I and the theore■ i • r,roved.

4.1 Introduction

122

CHAPTER 4

INTERSECTOR REFERENCE MODELS

In the previous chapter, ue presented upper and louer bounds on the

number of page fetches uhich could occur in a virtual memory system, for

a given program reference behavior, over any restructuring of the

relocatable sectors into logicat pages of the program. The next phase Is

to develop and present practical techrriques for restructuring a progra■

to achieve good I oca I i ty of reference for the progralR in vi r tua I memory

systems. The task of program reorganization for virtual memory systems

ui I I be separated into tuo logical parts. The first part is to develop

automatic techniques for identifying the dynamic intersector reference

behavior of programs executing in virtual memory systems. The second

part is to provide clustering procedures uhich utilize the intersector

reference behavior to rearrange the relocatable sectors of a program into

its logical pages such that good locality of reference exists in the page

trace of the restructured program.· The basic idea of the second part Is

to assign the most strongly related sectors to common pages.

In this chapter, ue address the problem.of lntersector reference

models. In the next chapter, automatic clustering pro.cedures are

presented, and finally, in Chapter 6, the results of applying these

123

■ethods to reat progrns are investigated and cottpared Mith the

theoretical bounds.

4.2 lntersector Reference t1odels

I t is knoun that a progratr' s page r11,fer-eftce patterns have a s tr-ong

effect on paging perforunce i:n vh·tua1 1iell0f"1J 9gtitetRs. It is al so knoun

CHU that the sector reference behavi,or o'f 'tranV c0tn1on progra11s, such as

co111pi lers. asseMbters, editors, e1tc., ~ov11s to be re11arkably insen11i tive

to the input data in rather large do•atns. For eMBllple, the studies of

Hat f i e Id and Gerald EHl J rev.ea 1ed t.flat the groups of sec tors Mh i ch uere

used frequently together in the a:sset1bty of one. progra■ turned out to be

essentially the sa11e as the groups .of ncters which uere used frequently

together in the asse■bty of another progrn. The basic difference

betueen assemblies uas that the groups of sectors which were used

together for short hiput progra■s uere shtply used together 111ore often

for long input progrns. Supported .by these e11plrical observations of

Hatfield and Gerald, ue decided to characterize the reference beha~ior of

a program by its sector trace and to base our practical restructuring

Methods on this reference behavior. l,le Mill elaborate on th~ soundness

of this decision in Chapter 6 wl!ten ue co•pare the paging perfor11ance of

r-eal programs over prograa structures deri•ed frOlt different sector

traces.

124

Another important reason for basing restructuring Methods on a

sector trace is that the results of the last chapter May be used to

compare the paging behavior of a restructured program with the

theoretical best and Morst paging behavior for that sector trace.

Given a sector trace, our objective is to specify the strength of

the intersector references such that a clustering procedure that groups

the strongly connected sectors together into logical pages produces a

program structure that tends to minimize the number of page fetches. We

begin by presenting Hatfield and Gerald's [HGJ intersector reference

model for defining the strength of connection between sectors.

4.2.1 The HG lntersector Reference Model

The HG intersector reference model consists of a symmetric matri><,

H, shoMing the strength of ~onnection between the sectors of the progra■

to be reorganized. Let:

Then

Q = 1S 1 ,S2 , ••• ,Sm) be the program of m relocatable secto'rs;

ST= S 1 ,S2 , ••• ,SL be a sector trace of the program.

H .. [Hij) for i,j = 1,2, ••. ,111, where Hij • t\. 1 k(i,j,t},

125

uhere k (i , j. tJ • 1 if st si andSt.i • l, or gt • j ancf 51♦1 • i ;
and k (i, j, tJ • 0 otherMi se.

Thus, the value of Hi j is si,tlfl'IY the nuttber .o'f tiaes that sector

referenced sector j plus the n.Ultber 1tf ·UMe ·that eector j referenced

sector i in 1he sector trace.

Using this intersector -reference ltOdel, Hatfield and Gerald uere

ab I e to find iinprovettenh in the nwaber e·f ·~ f8'tches on the order of

tuo-to-one to ten-to-one by cltHJteri-ng nc+or-• •·ittt large Hi j va1Uft9 into

the same page. This ·is the sa.e ae ch.ta,leriflg sect.rs int1> pages 9t.1Ch

that the value of Hi j is naf i for i and j ln dH-fer-ent pages.

Even though these results are quite ittpreeaive, the values of Hi j In

the HG intersector reference •odel do not contain any inforination about

the I ength of the ti•e in·terva·I between aucceseive references of sector I.

to sector j. Hence, the strength of connection, Hi j, betueen sector i and

j is the satne for large ti11e inler¥&1s and short H•e intervals.

Houever, paging may depend quite heavily on the length of these ti ■e

i nterva Is. For e,ca111pte, assu11e that sector I references sector j 188

ti ■es (Hij = 100) in a sector trace of 288,188 references. Now let•s

consider tMo different plausible exaaples of hou these references could

occur. First, these references could occur with short ti•e inter~als

between them such that a1 I 188 references occur within 580 succes'sive

references of the sector trace. Second, these references could occur

with sotile long ti11e interval11 betueen the■ euch that 18 of these

references could be found in each 20,888 successive references of the

126

sector trace. Even though the strength of connection ls the same for

these tuo examples, the tendency for a reference from sector to sector

j to cause a page fetch uhen they are not in the saMe page can be

considerably larger in the second example,

Furthermore, the tendency of a reference froM sector i to sector j

to cause a page fetch is related to such local information as the tiMe

elapsed since the last reference to sectot j and the number of distinct

9ectors referenced since the last reference to sector j in the sector

trace. If the time is short since sector j Mas last referenced, and

I ittle virtual memory space Mas used during that time, it is probable

that sector j is sti I I in primary memory and a neM reference wi I I not

cause a page· fetch. If the time and space traversed betMeen references

to j is large, it is likely that a page fetch uill occur unless j is

grouped into the same page as the referencing sector or some recently

referenced sector. We will nou present tuo intersector reference Models

which have potential for identifying and incorporating local sector

reference behavior into the strength of connection between sectors.

4.2.2 Working Set Intersector Reference Models

The sector working set, Ws(t,T), will be used to define the strength

of connection between sectors for a given sector trace.

Let:

127

Q "' fS 1 • 5 2 •••• S■t IIH! a •,~n of •-reh»catable sectors.

ST .. 5 1 • s2 ••• ~ st be a sector 'tracs of the progra•

uhere 5t t Q.

P .. pl ,P2 , ••• PL be the restJIHng page trace of the

progra11 uhere pl i:s the •P898 referenced at ti ■e t.

If S1 .. Sj ls the sector referenced at ti ■e t, then we define

P1 • Ps j to denote the page referenced· a·t ·o- t. Pa J is to be

interpreted as the page contahtlng sector j. Utt have adopted this

notation ·to 111a1(.e the foHo~ing dl90ft9i·tm easter to understand.

· Recal I that the sector •war-king Mft, w.u;n, is defined to be the

set of distinct sec-tors reter-.mced in the ti,•• interval t-T to t of the

sector trace. S+••Harly, •tfflt ,page wo..-.tflg set, MpH, T), ts the set of

dlstinct JJA"ges re·f-erem:1td ln the tille rfttw-ftit t-T tat of the page

trace.

FACT 1.

Let S 1 = S j tr and let S j ,' We U-1, H • Then P1 • P s j I Up U-1 , T)

i ff S j ~ Psi for some Si • Us (T-1, TJ.

The proof of Fact 1 follows i ■■ediately fro■ the definition of

IJp(t-1,TJ, uhich is the set of dhtinct -pages in the sequence

P t-1-T p· t-T p· t-l d th def" . t. f s • s , ••• , s , an e . 1n1 . ,on o

IJs(t-1. Tt, which is the set of distinct sectors in the sequence

128

St-1-T 5t-T 51-1 , , ... , .

Fact 1 states that, Mhen sector j is referenced at time t and sector

j is not in the sector Morking set, then the page referenced at time t

Mi I I be in the page Morking set if sector j is .grouped into a page Mith

any one of the sectors in the sector Marking set. Furthermore, it states

that the page referenced at time t Mil I not be in the page working set If

sector j is not grouped into a page with one of the sectors in the sector

Morking set.

FACT 2.

Let S1 = Sj and let Sj E IJs{t-1,TJ. Then pt .. Psj E l-lp(t-1,T>.

Fact 2 also fol lous immediately from the definition of IJs(t,T) and

IJp (t, T).

Fact 2 states that, when sector j is referenced at time t and sector

j is in the sector working set, then the page referenced at time t Mill

be in the page working set.

FACT 3.

IJe want the entry l-lij + IJji in the intersector reference model to be

the number of pag~ fetches Mhich Mill go away if sector i and sector j

are grouped into the same page.

129

Using the above three facts as a basis, Me present the procedure

for constructing the intersector reference model, W = [Wij], for i, j •

1,2, .•• ,m. At each instant of time, t, for 1 ~ t ~ L, do the fol l01,1ing.

Step 1. If 51 = Sj and Sj ~Ws(t-1,T), then incre111ent Wij by 1 for all

Si f Ws(t-1, TJ.

Step 2. If S1 = Sj and Sj ¥ Ws(t-1,TJ, then increment Wjj by 1.

Step 3. If 51 = Sj and Sj E Ws(t-1,TJ, then no increment is required.

Simply stated, the above procedure Morks as fotloMs. If sector j is

not in the sector uorking set Mhen it is referenced, then increment its

connectivity strength Mith all the sectors in the sector uorking set.

Moreover, if sector j is in the sector Marking set uhen it is referenced,

then do not change the- strength of connection betMeen sector j and the

other sectors.

We observe that the value of the intersector strength becomes

Wij = I_ 1 k(i,j,t),

uhere k(i,j,t} = 1 if 51 = Sj ~ Ws(t-1,TJ and Si E Ws(t-1, TJ,
1 if 51 = Sj, Ws(t-1,TI and i s j,
0 otherl4ise.

Note that Wij + Wji is the number of page fetches uhich Mi I I go away

if sectors i and j are grouped together in the same page. The sum of the

diagonal elements of the intersector reference model, Ij. 1 Wjj, is

130

the number of sector fetches which occurred for the sector Marking set.

This Mi II also be the number of page fetches for the page Marking set If

no sectors are combined together in pages. The number of page fetches

after combining only sectors i and j will be l:";.. 1 &Jjj - IJij -IJji.

FACT 4.

If exactly two sectors are grouped into each of then logical pages.

then the number of times a page is referenced and not found in the page

Marking set is given by

"ffl 11 • •
'-J•l"JJ - :t IJi. + IJji .. Pk J I , J t

i - j

for 1 ~ k -~ n.

Fact 4 fol lows directly from the construction of IJij, since IJij +

IJji is the number of page fetch•s Mhich are eli ■ inated-by grouping i and

j together in the same page, and since grouping I and j together does not

affect the value of l,lkl + 1411c for grouping any other two sectors

k and I together in a different page.

Unfortunately, we cannot extend Fact 4 to handle the case when ■ore

than two sectors are al lowed to ba grouped into a page. This occurs

because the matrix, IJ, does not contain enough information to determine

the number of page fetches which will be eliminated by grouping three or

more sectors into a page. For example, IJjj is the number of fetches of

sector j. IJij and IJkj are the number of times that sector i and sector

k,respectively, were in the working set when a fetch of j was made. The

131

proble• is that sectors i amt··kbothuyhavebeen in the sector uorking

set at the ti 111e that a reference to j caused a fetch. Let the number of

sector fetches of sector j, which will be resolved by grouping sectors 1,

k, and j together into a page, be denoted by Rikj.

Then,

MA)(CIJ i j , IJk j] ~ R i k j ~ 1,1 i j + Uk j.

I.le should point out a:t th"is tin that the above relations can be

ut i Ii zed in a c I uster ing procedure. Suppose sectors i, j, and k are

grouped together into a page. Then the unresolved sector fetches of i,

j, and k, denoted by U' ijk, is the nwmer of page fetches of this page

which Mi 11 occur if no other sector is grouped with i, j, and k.

But

U'ijk ~ Uii + Mjj + Ukk - MIN[Rikjl - MIN [Rijkl - MINCRjkiJ.

Note, al so, from Fact 4, that

u• i j "'&Ji i + &Jjj - Ui j - Wji, f.or tha ca-se of two sectors in a page.

Therefore, a clustering procedure could dynamically deter11ine a louer

bound on the nu111ber of page fetches which could be resolved by adding

another sector to a page.

Since the value of Uij depends on the window size T of the sector

working set &Js(t,T), we need to elaborate on how one selects a "good

value" for T.

132

For real programs, Me measured the improvement in paging perforMance

for restructured programs as a function of T. That is, Me computed the

· intersector reference model~ for various values of T, and for each U Me

restructured the program and computed its paging performance. The

detailed results of these experiments are presented in Chapter 6.

HoMever, the significant characteristics of these results are as fol loMs.

For a given program, the best improvements in paging performance, as a

function of T, occur for a rather large bandMidth of T values. For

example, values of 1000 ~ T ~ 5800 produced essentially the same and the

best improvement in paging performance of certain programs. For al I

programs tested, the bandMidth of T values that resulted in the best

improvement in paging performance Mas several thousand instructions:

hoMever, the location of this bandMidth of T values in the set of al I T

values varied from program to program. A serendipitous observation of

the correlation betMeen the banduidth of good T values and the "knee" of

the parachor curve of the sector fetch function, FFs(IMsl,ST,Fd,Ro),

produced an interesting empirical result~

The parachor turve is .a graph of FFs(IMsl,ST,Fd,Ro) versus the

amount of primary memory IMsl available for execution. A typical

parachor curve for FFs is shoMn in Figure 5. The value of FFs is a

monotonically decreasing function of IMsl. For most observed progra■s,

there is a threshold region at uhich,

a} if the amount of primary memory is decreased further, the number of

sector fetches increases very rapidly, and,

133

b) i f the amount of pr i Mary -.e11ory is increased further, the number of

sector fetches decreattes very slm.1ly.

This threshold region is depicted rn Figure s·and is cal led the knee

of the parachor curve. The values of f11sl i-n the knee of the parachor

indicate hou many sectors are requfred to be in the pri•ary ■e■ory to

11aintain a "reasonabt-e• level ·of -perfvr:.ance.

let the average sector Norking set size be denoted by Ms (T) and be

defined as,

Ms (TJ .. (ltl)·Z\.1 ws(t,n

Now ue present a •e·thod which identifie-e values of the uir,dou aize T

for use in the construction of the t11ter19ec1:er reference Model W.

Exper imentat Resu It:

For a I I the progra11s we tested, the bam:l&frdth of T va I ues which

resulted in the best r11Prove.ent in pagi·ng perforaance corresponds to

those values of T for which ··the 8'11!rllge ·sector uorklng set size w9 (T)

uas equal to

a) sonte value of tMsl in the knee of the parachor curve of

FFstlMsl,ST,Fd,RoJ, -0r to

b) some value of tMs I s I ightf y natter than those values of !Ms I found in

the ~nee of the parachor CUf''Y8.

This e,cperi1111mtal re&Ult was particularly handy in our research,

s i nee we had a I ready coMputed the parathor -curve of · FF s (I Ms I , ST, F d, Ro)

FFs

134

4:2___ FFs (IMsl,ST,Fd,Rol

I

I

Va I ues for L.1 5 fl)

L ___ __j'.
14:.-+1-:-_-:":+:---------------------• I Ms I
I I ◄ -.,1

Knee

FIGURE 5.

Parachor Curve of FFs {IMsl,ST,Fd,Ro)

135

for use in establishing the lover bounds.

If the window size, T, is very s■atf, for e><aMple T•l, then the

value of Ulj is Much larger than the nu■ber of page fetches resolved by

group i ng i and j together for aos t ■e11ory s i:zes. On the other hand, i f

the va1ue of T is very laige, for exa11ple 26,888, then the value of l,li J

is 111uch snta I I er than the nU11ber of page fetches reso I ved by grouping i

and j together for 11ost ■e111ory sizes. Houever, if T is such that the

average working set size ls in the knee of the par-achor curve, then the

value of· wi j represents the intersector ac_tivi ty Mhen the prograM has

just enough space to e,cecute efficiently. This corresponds to the

intersector activity that ue wmt to represent in. the inter-sector

reference Model, U.

In addition to the aboYe i·ntersector reference ■ode I based on the

sector working set, we decided to Investigate the potential of the

fol lowing model. Let the intersector reference, M', be a• x • Matrix

defined as follows:

IJ'ij,. I\. 1 k(i.j,t) for i.j • 1,2, ... ,a,

where k(i,j,t) 2 1 if S .. Sj E Ws(t-1,TJ and Si E IJs(t-1,T);

0 otherwise.

The value of U'ij is the nu■ber of ti ■es that sector j was

referenced when sector j and sector i uere both in the sector working

set. Therefore, if the value of U' i j is large, then Si and Sj were in

the sector Morking set together ■any ti ■es. Note that U' jj is the nu■ber

136

of references to sector j Mhich Mill not cause a page fetch. In

contrast, Wjj of the previous model is the number of references to sector

j Mhich Mi I I cause a page fetch unless Sj is grouped Mith some Si.

HoMever, W' i j does measure the tendency for sectors. i and j to be found

in the sector Marking set together. Clustering procedures Mhich group

sectors into pages Mith large W'ij values will tend to reduce the size of

the page Morking set and hence increase the locality of the restructured

program.

We conclude Mith a feM comments about the intersector reference

models based on the sector Marking set, Ws(t,T). The HG intersector

reference model, H, is a special case of the intersector reference model.

W. They are the same when Wis computed from a sector working set with

windoM size, T, equal to one. The notion of using sector working sets to

define the strength of connection betMeen blocks has been investigated

concurrently but independently of this Mork by Masuda CMG) and Ferrari

[Fl]. Masuda's use of block working sets is quite different from this

Mork, Mhi le Ferrari's is similar in some aspects.

4.2.3 LAU Stack lntersector Reference Model

The "LAU sector stack" will be used to define the strength of

connection betMeen sectors for a given sector trace.

137

Consider dehland fetch. LRtJ replacMttmt on a sector trace,

ST S I 52 5t gl , • , ••• , , •••. ,, , O¥er

Fro• Chapter 2, we know that Ult aati11fln the i111elusion property, i •. e ••

f1s' (1 t ~ Ms' (2l ~ • • • ~ tte' f•1) • ffs:t t•• +1) • "91 t•' +2) •...
uhere Its' (j t is the contents of the aector HttOr\J "'9 at ti ae t uhen the

size of '1s is j sector fr ans (i.e., Hts' I • j), and •' is the nu■ber

of di st inc t sec tors ref.erenced tn the sequence S 1 • s2 , .•. , S1 •

Because of the inclusion property,, the priaary 1tettory contents rta1

at any H•e t and for alt ca,acities can be reprttsented in the fol louing

terse and useful way_. We order the di9'ttnct se·t of sectors in the

sequence S 1 ,S2 , ••• ,s' into a ti,at ca•lt-ed the UIY sec-tor stack which

is defined as SS1 • SS1 UJ,SS1 {;2J, •••. ,SS1 laf) ...,_..,

SS' (it • Ma1 (i)-th,1 ti-tJ. Not,e that

rts1 (i) .. ♦S51 U) , 551 (21, ••• SS1 (U I tor
1S51 U) , S51 (2), ••• SS1 ta1)) for

< •'. - .
> •'.

The LAU sector stack ha• no entries at tilN t • 8. The top of the

stack is defined a,s ss' U), whil-e the botto■ of the stack is defined as

sst , .. t •.

The LRU sector stac.k, just after sector reference st at ti•e t. is

simply the I ist of the set of ■1 sectors of the prograt1 ordered

according to recency of usage; i.e., SS1 tkl •s the kth 11ost recently

used sector relative to st.

138

The position of sector j in the stack just before sector reference

S', at time t, is defined as the sector stack distance and is denoted

by A' j. Furthermore, 4 1 j == aa if Sj has not been referenced. Thus,

A1 j -fk if ss' (k) "' Sj. 1 ~ k ~ m'
l "° otheri.,i se

From the definition of stack distances, ue observe thats'= Sj

Mi 11 cause a sector· fetch under demand fetch, LRU replacement unless

A' j ~ I Ms I 1r1here !Ms I is the number of sector fra11es in the sectored

primary memory.

Nou, ti.,o facts are presented Mhich relate the sector stack distances

at time t uith the parameters of a paged virtual memory system using

demand fetch and LRU replacement on the page trace

P I 2 I L IM j = p ,p , ••• ,p , •.• ,p in a primary memory of p page frames.

The page, p1
, referenced at time t must contain the sector st,

referenced at time t.

FACT 1.

let 51 = Sj, and let 61 j > jMpf. Then P'E Mp1 if Sj is

grouped into the same page Mith some Si i.,here 61 i ~ jMpj.

Proof.

Note that 61 j > IMPI states that the sector stack di stance at t i•e

t to sector j is greater than the number of page frames in Mp.

Suppose Sj is grouped Mith some Si, Mhere d1 i ~ IMpl, Then the sector,

139

S-i, is uong the l,f!fpl 110st f"eceff•tl'1J' referenced ttector1r. Therefore, the

page- containi119 Si wst N aaong, Ute ~f wet rec1mOy r.eferenced pages,

since we are aasutti"'9 that the ·tteetor·e are Nat ler th-. pages.

FACT 2.

Let .S1 - Sj, and let A1 j :s, lltpf. Then p1 , n,,1 ~

Fact 2 fol lcm-s fl"o• the arguaent applied to- Si in Fact 1. Me can use

Facts 1 and 2 as a basis for defining the strength of connection between

sectors. Fact 2 states that, if 51 • Sj and A1 j :s, fMpl, then Sj ui f I

not cause a page fetch; hence, for such references, the strength of

connection betueen Sj and the other HCtora need not be increented.

Ho&iever, if 41 j > INt>f, then Sj Milt no.t cause a page· fetch when ft fa

grouped 1-fi th any sect1>r Si Ni th a1 i ~ lftt>I. For the tatter case, the

strength of connection betMNn Sj and at t Si Mith &1 i :s, IMpt Mi 11 be

increMented by 1.

NoM, 1-1e define the intersector reference Model baaed on the LRU

sector stack distance as a • x • ■atri>c, U, Mhera

U i j ,. I\. 1 V (i .j , tJ and

1 if S1
• Sj and 41 j > D and A1 i ~ D;

V Ci, j, t) • 1 if S1
... S j and A1 j > 0 and i • j;

0 otherwise.

140

If the value of Dis one, then the intersector reference model, U,

· is the same as the intersector reference model of Hatfield and Gerald.

HoMever, Me got the best results (feMest page fetches after

restructuring) Mith values of D equal to the number of sectors, IMsl,

corresponding to the high side of the knee of the parachor curve

FFs(IMsl,ST,Fd,Ro). Figure 6 shoMs the typical shape of FFs as a

function of IMsl and the range of the values of O which gave excel lent

results for al I real programs Me investigated.

One explanation Mhich provides some insight into why the values of 0

corresponding to the knee region of FFs produce reasonable values for the

strengths of connection betMeen sectors is as follous.

If O is very smal I, say 1, then the strength of connection betMeen

tMo sectors, Uij, is proportional to the number of page fetches only when

the paged primary memory has one page frame. However, most large

programs Mi I I not execute efficiently uhen allocated one page frame. If

the value of IMpl for efficient execution is much larger than 0-1, then

the strength of connection Uij for some i and j may not even be loosely

proportional to the number of page fetches resolved when they are grouped

together. For very smal I values of 0, Ulj may be excessively larger than

the number of page fetches uhich are resolved by grouping i and j

together; for very large values of D, Uij may be excessively smaller

than the number of page fetches resolved uhen i and j are placed

together. Values of Din the region of the knee of the curve represent

141

the intersector activity ~hen the program has just enough space to

execute efficiently. This is the intersector activity that ~e ~ant the

interGector reference model to measure.

FFs

142

~ FFs(IMsl ,ST,FO,Ro)

I

I

Region

~----.;.-' -;....
1 --+-, ,----------------------- !Ms I

'◄•---·· I D I

FIGURE 6.

Parachor Curve I I lustrating Values For D

This empty page was substih,ted for a
blank page in the original document.

143

CHAPTER 5

CLUSTERING PROCEDURES

5.1 Introduction

The purpose of this chapter is to present the automatic clustering

methods Mhich Mere used in conjunction Mith the intersector reference

models to restructure programs. The experimental results which show the

effect of these clustering techniques on the paging performance of

restructured program~ are presented in Chapter 6.

5.2 Clustering Procedures

The clustering methods presented in this chapter may be applied to

any of the intersector reference matrix models of Chapter 4. ·Hence, ue

Mi I I denote any of these intersector.reference models with the.generic

C • CCijl. In those cases where a particular intersector reference

model is needed, the notation of Chapter 4 will be used.

We knoM of no efficient procedure to produce and prove the opti ■al

partition of sectors into pages to maximize the sum ot the intersector

144

connect ions Ci j ui thin al I pages. ·several clustering procedures based

on heuristic approaches are pr-esented in this chapter uhich have the

fol louing significant properties.. First, they are coapletely auta11atica

that i s, these procedures are -not ·IIJaH:d -on -.....,. I or • eyeba I I •

reorder ings. Second, al f these procedt.tres-produced re11tructur·ed

progra•s uhich showed substantial iaproYetNn~• in their paging

per for11tance. Thi rd, these clustering pr,oced,.,N,s are quite fast .. •

The technique of the fol louing cluetering procedures is to take an

intersector reference •odel-of inter11ector IJcmd strengths and cluster

relocatable sectors into page-s such that 1fite 9UII of the sector bonds

within p-a'1es tends 0to be ll&J(i•ized.

5.3 Nearest Neighbor Methods

In this sect ion, we present eevera1 hierarchical methods uhich

cluster the nearest two clueters under a specified bond strength

def in i t ion one after another.

Given any tuo clusters of relocatable sectors, G,c and Gy, the

intercluster bond is denoted by 8b,y). Several intercluster bond

definitions are given below; then a clustering procedure is defined

over the interctuster bonds.

145

In the follouing definitions. the intersector reference matri,c,

C = [Cij). is assumed to be symmetric. If the intersector reference

matrix is not symmetric, then each occurrence of Cij should be replaced

uith (Cij + Cji)/2. The notation IGxl denotes the size of cluster GK In

bytes, and N denotes the page size in bytes.

A. Constrained Nearest Neighbor Bond

The Constrained Nearest Neighbor bond, CNN, betueen any tuo

clusters Gx and Gy is defined as

B(x,y) =- Max ICij: iEGx,jfGyl uhen IG><I + IGyl ~N.

undefined uhen IG><I + IGyl > N.

B. Constrained Farthest Neighbor bbnd

The Constrained Farthest Neighbor Bond, CFN, between any tuo

clusters, Gx and Gy. is defined as

B(x,y) "' min (Ci j: iEG><, jEGyl when IG><I + IGyJ ~ N;

undefined when IGxl + IGyl>N.

C. Constrained Average Neighbor Bond

The Constrained Average Neighbor bond, CAN, between any tuo

clusters, G>< and Gy, is defined as

146

Bhc.y) • tl/n•v• %ifG• %Jf&y Cij when IG,cl + 1Gv1 s. N;

undefined when fG,cl + IGyl > N.

Here "•v is the nullber of Cij > 8 ulth i E Gx., j E Gy. Note that n111 is

the number of arcs between Gx and Gy. and it is not the su■ .. of the·

values on these arcs.

O. Constrained Average Neighbor Weighted Bond

The Constrained Average Neighbor Wttight11d befld, CANU, betueeti any

h.10 clusters, G>< and Gy, is defined as

B he, y) • "•v* tlln.yl %~c.. %~ Ci j when IGxt + IGy I s. N;

undefined when. fG,c l+IGyf > N.

Hence,

B(x,y) • :Z:ifG• %ltGy Ci j Mhen fG,cl + IGyl s N.

A clustering procedure is now defined for use with any one of t~e

above definitions of 84,c,y).

First, choose any one of the above definitions of 8(,c,y). Second.

partition the II relocatable sectors of a progra• into exactly M

clusters, 1-1here each cluster contains one sector. Then, at each step in

the clustering process, the nearest tuo clusters are combined to for■ a

ne1-1 cluster. The nearest two clusters are defined to be the tuo

147

clusters Gx and Gy which have the largest value of B(x,y). When the su■

of the size of the two clusters becomes larger than the page size in the

clustering process, these two clusters are not considered to be

connected; that is, their bond strength is undefined. The process

comes to an end when new clusters cease to appear.

When the above clustering procedure is applied to the Constrained

Nearest Neighbor bond definition of B(x,y), it Mill be referred to as

the CNN procedure; when applied to the CAN definition of B(x,y), it

Mi I I be referred to as the CAN procedure, etc.

Al I of these clustering methods are computationally fast, easy to

implement, and they tend to group the sectors uith the strongest

intersector strengths, Cij, into the same page. Hence, they tend to

minimize the interaction of sectors clustered into different pages.

The CNN, CFN, and CAN procedures are variations of clustering

procedures uhich are uidely used in the field of multivariate analysis.

The Constrained Average Neighbor Weighted bond, CANW, procedure Mas

developed in this research. In fact, we experimented Mith several

Meighted versions of the CNN, CFN and CAN procedures. However, the CANU

procedure consistently produced program structures uhich required feuer

page fetches than the program structures produced by the CNN, CFN, and

CAN procedures or by any of the other ueighted versions Me examined.

One explanation for the success of the CANW procedure is that at each

148

step it combines the t110 cluat-ers lthich have the ■ost total intersector

connections between the■•

In the above Constrai·ned Neighbor tlond ctefinlthms, CNN, CfN, CAN.

and CANU, the constraint fG><I-+ lGvl ~N insttru that the size of a

cluster never exceede the page size. ~ver, natural clusters of

sectors •ay in reaHty be I•..- or ..atier than a ,ege size~ It 1a of

course conceivable to aake clt1111ters caverJng several pages Mithout any

conaiderat ion of page sizes and to aesi91t ••ach of thn to seyeraf

contiguous pages. In order to evatuate th.e aerits of atlouing cluster ■

to becOllle any natural size, we e>eperill8nted uith

a) the Unconstratned Neare9t N't!tghbor bond, UNN,

b) the Unconstrained Farthest Neighbor -bond, UFN,

c) the Unconstrained Average Neigftbor bond, UAR, and

d) th1! Unconstrained Average Netghbor Weighted bond, UANU_,

uhere UNN, UFN, UAN, and UANM are defined to be exactly the sa•e as CNN,

CFN. CAN, and CAMI, respectively, Mrttl the eMCet,ti-on that. the constraint

fG,cl + tGy(.5. N is not present in the unconstrained cases. That is, in

the unconstrained cases, clusters .av be cOllbined ind•pendently of their

sizes.

The clustering procedure for the con-strained clusters had to be

modified slightly in order to be appficabte for the unconstrained

clusters. The clustertng procedure for the- Ufteon&trained clusters ia aa

fol lows.

149

Choose any one of the unconstrained definitions of B(x,y).

Partition them relocatable sectors of a progra• into exactly m

clusters, Mhere each cluster contains one ~ector. Then, at each step in

the clustering process, the nearest tMo clusters (i.e., the tuo Mith the

largest value of B(x,y)) are combined. NoM Me Mill define uhat ue Mean

by combine.

Let the tMo clusters Mhich are to be combined at any step of the

clustering process be denoted by

Gx = 5>< 1,5>< 2, ••• ,5><; and

Gy = Sy 1,Sy2, ••• ,Sy1,

uhere the cluster Gx is defined to be the ordered list of i sectors, and

the cluster Gy is defined to be the ordered list of j sectors. The

combination of the clusters Gx + Gy is defined to be the ordered list of

i + j sectors

Gx + Gy =- Sx 1,Sx2, ••• ,S><i,Sy 1,Sy2, ••• ,Sy1•

Since each cluster starts out Mith one sector, the above definition

of combining tMo clusters insures that the relative order in uhich

sectors are clustered is preserved. This is•important in the

unconstrained case, because the clustering procedure ends uhen al I the

clusters Mhich are connected are grouped into one gia~t cluster, uhich

could be the Mhole program.

158

Note that the order of the sectors in the constrained clusters is

not important, because a constrained ctuster 14ifl always fit into a

page.

5.4 Hatt ield and Gerald Method

The Hatfield and Gerald clustering procedtlre can be applied to any

intersector reference ■atri>c 110del, C • (Cijl. The HG clustering

procedure is defined in detail in IHlJ and is briefly su••arized belou.

Let

E • CE i j] , i , j • l, 2, ••• • • (• i s the nuMber of sect ors) ,

'-there

Eij • -Cij when i-j

I'j .. 1 Ci j + 2• when • j.

The inverse 11atri>< of E is calculated, then a row in the inverse is

chosen, and a set of sectors in that roM are clustered into a page, and

the process is iterated until all sectors are a•signed.

Ue thank Don Hatfield for providing a copy of his restructuring

progra111 for use in our res.tructuring e,cperi111ents.

151

5.5 Sector Interchange Procedure

The sector interchange procedure, SIP, is developed in this

section. The SIP begins with the set of III relocatable sectors of a

program partitioned into n blocks. That is, assume that a partition, Il,

of the set of sectors, IS 1 ,S2 , ••• ,5111l, making up a program is given.

Let TI be denoted by

TI = ITI 1 ,Il2 , ••• ,IlnJ where llljl is the number of sectors in \he j-th

block of TI.

The blocks, Ilx, of Il may represent the logical pages of a progra■,

a.,here the sum of the sizes of the sectors making up a block of Il is less

than the ~age size, or the blocks of Il may represent natural clusters of

sectors, where the sum of the sizes of the· sectors making up a block ■ay

be greater than a page size.

The basic strategy of the sector interchange procedure, SIP, is to

reassign sectors to blocks of Il by exchanging two sectors of different

blocks uhen the exchange provides a positive contribution to the au• of

the sector connections within blocks. In order to be More precise, Me

need to define a few terms. Let

C = (Cijl be a symmetric intersector reference

matrix for i,j ~ m, and

P = IS 1 • S2 , ••• , 5ml denote the set of sectors

making up a program.

152

Definitions:

The co111ple111ent of fi>< is denoted '."'Il>< and

.... nx .. m; E n : n; - Il><l

Let Si E Ilx; then the i.·ntrablock

bond of sector i, Si, t1i th 'block ft,c ts

defined as

B (i , Il><) • tiE"x Ci j

Let Si E.· Ilx and Si K Ily; then the interbtock

bond of sectQr i Mi th block Ry is ,deHned as

8 (i , Ily J .. %;.11y Ci j

Let Si 4i Il><; · then the interbloc,k bond ·of nctor

i ,Mith all other blocks is deHned as

8(i,-,fi><) • l:;t.nx Cij

The qua Ii ty .of the bond for the i th sector is defined as

q" (i)=B(i,Il,c) - B(i,-Il,c), where Si E ft,c.

The qua Ii ty of a sector partition n is

defined as

o" • l:siEP q11 • i J

The goal of the sector interchange procedure, SIP, is to 11a,ci•ize

the qua Ii ty Q" by interchanging sectors between blocks of the

partition. LJe now pre9ent an efficient 11ethod to find an opti111al

assign111ent of sectors to blocks under fhe constraint that each

· interchange consists of eKchanging a sector of on"e block ui th a sector

of another- block.

153

Lemma 6

let Si E Ilx and Sj E Ily. If Si and Sj are interchanged, the net

gain in the quality Q", denoted by A Qn (i,j), is given by

A a" (i,j) "'4CB(j,IlxJ - B(j,Ily) + B(i,Ily) - B(i,Ilx) - 2CijJ.

Proof:

Let Si E Ilx, Sj t Ily and Il><, Ily E Il. Nau, interchange sectors Si

and Sj uhich produces the neu partition n•.
A Qn (i, j} = Q" - a: • IskEP qn (k) - ISktP q; (k) • IskfP qn (k) - q; (k} •

Let .c1 q (kl .. q" (k) - q; (k).

NoM Me consider 5 cases.

Case 1. A q(k) .. 2(Ckj - Cki) for all ke Ilx, k.,ei.

Case 2. .c1 q(k} = 2(Cki - Ckj) for al I kE Ily, k.,ej.

Case 3. A q(k) = 0 for all kE ~(Ily + Ilx)

Case 4. A q(il = B(j,Ilx) - B(j,Ilyl - B(j,Il>< + lly) - 2Cij

- B(i,Ilx) + B(i,Ilyl + B(i,Il>< + Ily)

Case 5. A qlj) = B(j,Ilxl - B(j,Ily) + B(j,ll>< + IlyJ - 2Cij

- B(i,Ilx) + Bli,Ily) - B(i,IllC + Ily).

154

No~,

11 a" c i • j l q(k} + ! t,,. q(k} + t,,. qli) + d q(j)

2lB{j,Ilxl - B(i,Ilxl - Cijl

tJ. a" < i • j l

QED.

+ 2£8li,Ily) - 8{j,Ily} - Cij] + t,,. q(i) + d q(j)

4£8lj,Ilx) - B(j,Ily) + B(i,Ily) :-- B{i,Ilx) - 2Cij1.

No~ ~e present a Lemma ~hich permits us to quickly select the Sj and Si

for exchange.

155

Lemma 7:

If 4 a" (i,j} is positive, then q" (il+q" (j) is negative.

Proof:

q"(i) ""B(i,Il,d - B(i,-.Ilx)

.. B(i,Il><> - B(i,Ily) -B(i,-.(Ilx+Ily))

s i mi I ar I y,

q" (j) = B(j,Ily) - B(j,Ilx) - B(j,-.(Ilx+Ily))

From Lemma 6,

4 a" (i,j) .. 4CB(j,Ilx) - B(j,Ily) + BU,Ily) - B(i,Ilx) - 2CijJ. Hence,

4 an (i,j) = -4Cq" (i) + q" (j) + B(i,-.(Ilx + Ily)) + B(j,-.fil >< + IlyJ) + 2CIJJ.

But B(i,-.mx + Ily)) + B(j,-.(Ilx + Ily)) + 2Cij :!:. 0, and

4 Q" (i,j) > 0. Thus qn (i) + qn (j) < 0.

QED.

FACT 1:

The ma><imum value of 4 an (i,j) .. -4(qn (i) + q" (j)).

This fact follous directly from the proof of Lemma 7.

FACT 2:

If 4 On (i,j) > 0, then (i,j) must be an element of the

Interchange set, In, uhere

In"" I (i, j) : qn (i) +q" (j) < 0, i, jE P).

This fact fol lous immediately from Lemma 7.

156

No~ ~e iteratively define the sector interchange procedure, SIP.

We assume that an initial partition, n°, and an intersector reference

matrix, C, are given.

The operations performed in the kth pass are these:

a. Compute the set I nK-1

b. Select a pair (i,j) such that

4 QnK-1 (i,j) ~ 4 QnK-l(u,v) for

al I {u,v) E lnK-1

c. If 4 QnK-1 (i, jJ > 0, then interchange sectors

of nk-l to get nk, and go to the (k + 1l th pass •

I f ... Q (' ') 0 then stop 11 ·, th nk-l • u nK-1 I' J ~ • "

and j

The SIP has to terminate at some pass k, since. Ci j is finite. If it

terminates on the kth step, th1:m nk-t is optimum in the sense that

no pair~ise interchange can increase the value of OnK-1. This is

obvious, since InK-1 contains al I the possibte candidates (i, j) that

could possibly make 4 □ nK-t positive, and since at ter•ination

4 UnK-1 (u, v) < 0 for al I (u, vh InK-1.

In each pass of the previous algorithm, by keeping the list of

sectors in the set lnK-1 sorted and using Fact 1, the algorithm can be

made much more efficient.

157

The sector interchange procedure, SIP~ is particularly useful uhen

one has a partition, Il, where the blocks of Il represent natural clusters

of sectors. Another application of SIP is in the evaluation of breaking

up huge sectors into smaller parts by reprogramming.

An ongoing research project between the author and Don Hatfield of

IBM is to evaluate. the potential benefit of reprogramming and then

restructuring a very large data base system. The rationale for

reprogramming is to divide the very l~rge sectors (over 10 pages long)

into relocatable subsectors and then restructure the neM program.

Theorem 1 can be used to predict the theoretical best paging perforMance

if the large data base program were broken up into exactly k sectors per

page. Then, given an intersector reference matrix and a partition. n.
of k sectors per block, the sector interchange procedure, SIP, can be

used to restructure the program.

5.6 Intercluster Bonding Method

The purpose of the intercluster bonding method is to identify

natural clusters of dense sector interactions. This task is

accomplished by permuting the rows and columns of an intersector

reference matrix model in such a way as to group the numerically larger

matrix elements together.

158

The definition of the intercluster bond •~asure is given first,

then we i I lustrate the capability of this 111easure to cluster the larger

matrix elements together, and then we present a fast approximate method

of permuting the rows and columns of a given 111atri>< such that the

intercluster bond measure tends to be 111aximized.

Given a symmetric intersector reference matri>< Cs [CijJ for

i, j 2 1,2, ... ,m which represents the intersector activity between the ■

relocatable sectors of a progra111, we define the intercluster bond

measure, ICB, as

ICB(C) "' I~., Ij., Ci j {C_i-1,j + ci+l,j + ci,J-1 +Ci,j+I)

where Co,i = Cm,t,i .. Ci,O • Ci,m+I • 0 by definl tion and Ci j ~ 0.

I.le point out that the bond strength between tuo nearest-neighbor

elements of C is their product.

The intercluster bond Measure, ICB, is defined so that a matri>< C

that has dense clusters of numerically large elements will have a large

ICB when compared with the sam~ matri>< whose columns and rows are

permuterl such that numerically large elements are more uniformly

distributed over the array cells. In order to illustrate the

sensitivity of ICB(C) to the degree of clumpiness of the large values of

Ci j, we present the following two simple examples. Example 1 shows the

same matrix with 5 different row and ~olumn permutations. Matri>< C5

159

Mhich has the largest intercluster bond_measure contain~ tMo

noninteracting clusters. One cluster con~ists of the aectors a and c,

Mhi le the other cluster consists of the sectors band d. The fact that

matri>< C1 could be reordered to produce two noninieracting clusters i~

not readily apparent even for this simple example. E><ample 2 shoMs a

slightly more comp I icated matrix. Matrix C4 of example 2 is

characterized by a block checkerboard form, where the blocks of sectore

along the main diagonal represent the primary sector clusters and the

off-diagonal blocks indicate the intercluster interactions. Matrix Cs

Mhich has the largest intersector bond measure of E><ample 2 has the aa■e

set of primary clusters as Matrix C4 but it differs from C4 in that

the clusters which interact the most are ordered adjacent to each other.

The intercluster bond measure, ICB, tends to be ma><imum when the most

strongly intraconnected sectors are clustered together and the most

strongly interconnected clusters are clustered together. ~e cal I ICB

the intercluster bond measure because it tends to cluster the

intercluster connections as well as cluster sectors •.

In our e><perimental studies, sector orderings which produced the

largest values for the intercluster bond measure provided as good as or

better improvemer.ts in the paging performance than any other program

restructuring method tested.

160

Example 1:

a b C d a b C d

a 10 0 10 0 a 10 0 10 0
b 0 8 0 8 b 0 8 0 8
C 10 0 10 0 d 0 8 0 8
d 0 8 0 8 C 10 0 10 0

C1 matrix C2 matrix

I CB (C 1) 0 ICB (C 2 I = 256

a b C d a b d C

a 10 0 10 0 a 10 0 0 10
C 10 0 10 0 C 10 0 0 10
b 0 8 0 8 b 0 8 8 0
d 0 8 0 8 d 0 8 8 0

C3 matrix C4 matrix

!CB IC 3) -- 656 ICB(C4 I = 912

a C b d

a 10 10 0 0
C 10 10 0 0
b 0 0 8 8
d 0 0 8 8

C5 matrix
ICBIC5 1 = 1312

Example 2:

a
b
C

d
e
g
f
h

a
e
C

h
b
f
d
g

a
b
C

d
e
g
h
f

a

10
10

0
0
4
0
4
1

a

10
4
0
0

10
4
0
0

a

10
10

0
0
4
0
1
4

b

10
10

0
0
4
1
0
1

e

4
10

0
0
4

10
0
0

b

10
10

0
0
4
0
0
4

C d e

0 0 4
0 0 4
8 8 0
8 8 0
e 0 10
0 1 0
4 0 10
1 e 0

I CB (C 1) • 1548

C h b

0 1 10
0 0 4
8 1 0
1 7 0
0 e 10
0 0 4
8 1 0
1 7 0

C2

ICB (C 2) .. 1560

C d e

0, e 4
0 0 4
8 8 0
8 8 0
0 0 10
1 1 0
1 1 0
0 0 10

ICB (C3) "' 1864

161

f g h

4 8 1
4 8 0
0 1 1
e 1 l

10 8 e
7 e 7
8 18 I
7 8 7

f d g

4 0 0
18 0 8
e 8 1
0 1 7
4 8 8

10 0 8
e 8 1
0 1 1

g h

0 1 4
0 :9 4
1 1 8
1 1 8
0 0 10
7 7 8
7 7 0
e 0 18

a
b
C

d
e
f
g
h

a
b
e
f
C

d
g
h

a

10
10

0
0
4
4
0
1

a b

10
10

4
4
0
0
0
1

b

10
10

0
0
4
4
0
0

10
10

4
4
0
0
0
0

C d e

0 0 4
0 0 4
8 8 0
8 8 0
0 0 10
0 ·0 10
1 1 0
1 1 0

ICB(C4 J = 2776

e f C d

4 4 0
4 4 0

10 10 0
10 10 0

0 0 8
0 0 8
0 0 1
0 0 1

ICB(C5 J = 3536

162

f g h

4 0 1
4 0 0
0 1 1
0 1 1

10 0 0
10 0 0

0 7 7
0 7 7

g h

0 0 1
0 0 0
0 0 0
0 0 0
8 1 1
8 1 1
1 7 7
1 7 7

Note that the definition of ICB may be decoMposed into the tuo

parts as fol loMs:

I CB (C) "" I CB (CR l+l CB (Cc), uhere

I CB (CR)

ICB(Ccl

,-m
= ""i■ I Ci j {Ci-l,i + C;.1,i l

Ci j {Ci,i-l + C;,J.1)

The value of ICB(CR) is the sum of the rou bonds and the value of

ICB(Cc) is the sum of the column bonds.

163

Property 1:

The values of the rou bonds, 2:j. 1 Ci j (Ci-1,I + Ci•t,I}

are not affected by any permutation of them columns of C.

Proof:

Let 1 =I 1 (1), 1 (2), ••• 1 (m)) denote any permutation

of them columns of C producing the neu MatriM

0= CO i j J = CCi,~<i> J •

Then, for any 1 ~ i ~ n,

:tj., Ci j ,ci-1,i + ci.1,; ,_ tj., ci,}(j) ,ci-1,l(j) +- ci.1,lo>l.

This is clearly true, since i is fi>ced over the su.,mation of al I j.

Thus, for every term in the summation on the left,

Cij(C;. 1,; + Ci•l,l), there must be a value k, 1 ~ks. 111,

such that

Ci j ,ci-1,; + ci.1,;l = ci,).<k> ,ci-1,~<k> + ci.1,~<k>>.

Property 2:

The va I ues of the co I umn bonds, I':-1 Ci j (Ci,J-I + Ci,J•I)

are not affected by any permutation of them rous of C.

Proof is the same as that of property 1.

164

Property 3:

ICB (CR J •ICB(CcJ for syaetric •atrice9 C.

Proof:

I CB (CR J • I.~.1 ti•I

- ri.. tj.,

- l:'j.~ t't,
= ICB(Cct.

Property 4:

Ci j (C;..1,1 +C,.1,1)

Cji(Ct,.. 1 +Cl,j.l)

Ci j (Ci,J.-1 +C\J♦ I)

The contribution, to It'.:BtCJ fro.• any rou .. is only affected by the two

adjacent rows. The contt-ibuUort to IClHCl fro• anv cotu11n ie only

af fee ted by the· tuo actjac,mt cofUllmh

Property 4 is obvious, since the CfffltrH,u,tion to ICB (C) fr-o• ahy

rou i is l:,m;-1 Ci j (Ci-l,l +Cio-lJ) and· fr-oa, any.

co I u11n j i s :t":,. 1 Ci j (Ci,H +C~J♦ I) •

Fro• properti~ l amt ,2 the ■a,d•izaUon of ICB(C} o¥er al I colu■n

and row permutations reduces to tuetaeparateopti•izations. One is for

the rows, ICB(CR), anti the other· for the coluane. ICB(Cc).

From properties 1, 2, and 3, we know that the row per11utation which

ma><imizes ICB(CR), is the sa•e as the coluan perautation that

11ta><i111izes ICB(Cc). Thus, aH we need to do is find a row per11utation

165

that maximizes ICB(CR), then reorder the rous and columns of C

according to this permutation to maximize ICB(C).

The problem can be stated formally as follous:

Let~ -C ~ (1), ~ (2), ••• , ~ (m)J denote a permutation

of m columns of C producing the neu ■atrix

□= lO i j J ... [Ci,~ o> J •

Maximization of the summed column bonds ICB(Cc) is given by,

Max over ~ of Ij. 1 I":- 1 Di j CDi,i-l + 0~1• 11,

Mhere ~ ranges over all m! possible permutations.

This may be transformed into a quadratic assignment problem for Mhich

optimal and suboptimal algorithms have been published CG3J. These

suboptimal algorithms were not used, since they are too time comsuMing

for large m, i.e •• they require operations which rise with the fifth

poMer of the matrix size.

Now Me define a suboptimal method which exploits the

nearest-neighbor feature CMS) of property 4. This method is much faster

than the optimal methods and is believed to produce near optimal

orderings. The intercluster bond method is as follows:

A. First compute and save the set of intercolumn bonds for al I pairs

(i,j) of columns, i.e.,

I~., cki * Ck; for all 1 5.. i,j 5.. m. ""j.

B. Pick one of the columns arbitrarily, put it into a list, and set

166

k=l.

C. For each of the remaining m-k columns, compute the contribution to

the intercluster bond measure for each of the k+l possib1e positions to

the left and to the right of each of the k columns already placed in the

I ist. Place the co.lumn that gives the largest incremental contribution

to the interctuster bond measure in its best location in the list.

0. If k=m, stop; otheruise, increment k by 1 and repeat step C.

When the above procedure terminates, simply order the rows and

columns of C in accordance Mith the list of columns.

Property 5:

The time for the execution of the clustering process in step C

grous as m3
•

To see this, note that

I~. 11k+l) (m-k) = m3/6 + m2/2 - (2m/3).

The intercluster bond method will cluster the sectors into disjoint

groups if this is possible.

167

CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Introduction

The purpose of this chapter is to report on an experimental study

of the paging performance of programs. The objective of this study is

to evaluate the practical restructuring methods developed in Chapters 4

and 5. The evaluation consists of tuo basic parts. First. the paging

performance produced by the different restructuring methods are related

and contrasted uith one another. Second. the improvements in paging

performance produced by the practical restructuring methods are compared

Mith the theoretical best and uorst improvements as given by the bounds

in Chapter 3.

We have performed experiments, using the IBM System/360·Model 67 at

the Cambridge Scientific Center, on compilers. assemblers and a large

data base program. The results of a specific example Mil I be presented

in detai I. We have chosen as an example the restructuring of a highly

modular compiler CA31. This example is selected because Me have

experimental results for all of our restructuring methods applied to

this compiler. The author and Don Hatfield of IBM plan to publish the

results of using some of these methods to restructure a "large data

168

base" system as soon as our results are co111p.leted.

This compiler has 4 phases. Phase 0 is a very smal I root phase

which simply has Phase 1 read in, and, when Phase 1 is over, has Phase 2

read in, and, when Phase 2 is over, has Phase 3 read in. Each of the

phases is a separate overlay in the sense that they do not share any

address space. Therefore, we may think of Phases 1, 2, and 3 as three

separate programs. There are between 70 and 100 relocatable sectors per

phase. For each compilation, ue co11puted three distinct sector traces.

One trace was for Phase 1, one for Phase 2, and one for Phase 3. In

particular, from the time that a phase uas loaded into the address space

unti I its subsequent removal, a full instruction trace of all references

to the relocatable modules of that phase was recorded. This instruction

trace and the load address of al I the relocatable sectors (modules) are

sufficient to compute the sector trace.

In order to compare the effectiveness of the different arrangements

of sectors into the virtual address space, LRU and OPT paging simulators

were developed for a single user paging against himself. Input to the

simulator was a sequence of page requests generated from the ful I

instruction trace and a new ordering of sectors into the address space.

A modified version of the one pass OPT algorithm by Palermo and Belady

(B61 was used as the OPT paging simulator.

169

When sectors have been assigned to pages, one problem remains.

What to do about page boundaries? Holes in pages can occur if sectors

do not fit evenly into pages. For most real programs, Me have tMo

alternatives. First, Me do not alloM sectors to cross page boundaries,

Mhich may cause empty space Mithin the pages. Second, Me pack sectors

one after another into the virtual address space, leaving no holes but

al louing the sectors to cross page boundaries. Hatfield [Hl] has

reported on the relative success of the latter approach.

For our experim~nts, Me packed sectors one after another into the

virtual address space, leaving no holes betMeen the sectors. That is,

given a partition n of the sectors in blocks, ue placed the blocks of

the partitions into the virtual address space one after another. The

unconstrained average neighbor Meighted bond, UANM, procedure uas used

to automatically order the clusters for insertion into the address

space, unless the clustering procedure produced ordered clusters.

The next feu sections report on the results of the restructuring

experiments performed on the different phases of the compiler. The

basic structure of these experiments on each phase is as fol lous.

A. A full instruction trace is recorded and mapped into a sector

trace.

B. An intersector reference matrix model is constructed 'from the

sector trace.

178

C. A clustering procedure, based on a particular intersector

reference matrix, is used to partition the relocatable sectors into

blocks.

0. The resulting ordered blocks of the partition are inserted into

the address space one after another.

E. The paging performance of the restructured program is simulated

using LAU replacement (sometimes OPT replacement is used). ~e

chose LAU replacement because so many contemporary virtual memory

systems use some form of this algorithm.

F. The theoretical upper and louer bounds on the paging

performance are computed by applying the methods of Chapter 3 to

the sector trace of step A and compared uith the performance found

in step E.

In order to identify the parameters of the page fetch function,

FFp(IMpl,N,Ila,STa,Fd, RLRU), which are a,ssociated uith each curve

in the fol louing graphs, these conventions are presented.

1. IMPI, the size of the primary memory. in pages, is used as the

horizontal axis of the graphs. In addition to the values of IMPI,

the horizontal axis is tagged uith the memory size in K bytes

(K,,,10241.

2. N, the page size in these experiments, is 4096 bytes.

3. A partition n of relocatable sectors into clusters is denoted

by fix or Ily for ease in interpreting the results in the fol louing

171

figures. fix is used to denote a "bad" partition, i.e., one uhich

tends to maximize or produce a relatively large value of FFp. Ily

denotes a "good" partition, i.e., one ~hich tends to minimize the

value of FFp.

A particular value of ITy is denoted by specifying the intersector

reference matrix and the clustering procedure Mhich produced it.

For example,

ITylW,T=2500,CNN)

is defined to denote the value of Ily Mhich is computed from the

Marking set matrix, W, Mith a uindoM size of T=2500, using the

constrained nearest neighbor procedure, CNN.

The intersector reference matrix models used to specify a

particular Ily Mil I be identified in terms of the fol loMing symbol as

W = outside Morking set matrix model

W'= inside Morking set matrix model

T ~ MindoM size of Morking set model

U = LRU sector stack matrix model

□ sector stack distance

H Hatfield and Gerald matrix model

The clustering procedures used to specify a particular value of Ily

Mi I I be one of the folloMing:

172

C~N = constrained nearest neighbor

CFN = constrained farthest neighbor

CAN= constrained average neighbor

CANW ~ constrained average neighbor Meighted

UNN unconstrained nearest neighbor

UFN = unconstrained farthest neighbor

UAN = unconstrained average neighbor

UANW = unconstrained average neighbor

HG= Hatfield and Gerald method

SIP sector interchange procedure

ICB = intercluster bond method

As another example,

IlylU,O-20,ICBJ

Meighted

represents the partition named Ily Mhen it is computed from U, Mith 0-28.

using the ICB procedure.

In the presentation of these experimental results, We chose to

denote the program structure in terms of Il instead of the sector

ordering SO, because the clustering procedure is clearer Mhen stated in

terms of n. Houever, the reader should be auare that the blocks of the

partition are al loued to cross page boundaries in order to eliminate

holes in the address space.

4. A particular value of SOTa Mill be denoted by SOT 1 , SOT 2 , and

SOT3 for the three phases 1, 2, and 3 respectively. Furthermore,

SOTia, SOTib, etc., uil I represent the sector trace of the ith phase

from input program a, b, etc, uhen the distinction is important. For

173

example, SOT 2 a denotes the sector trace of Phase 2 from input progra•

a. Note that al I of the sector traces in the simulations are ordered

pairs (S,0) Mhere S is the sector and O is the offset referenced. This

is necessary because ue are allouing sectors to cross page boundaries.

5. The fetch and replacement algorithms are denoted as before, i.e .•

Fd, RLRU , Ro, etc.

In order to find a Ilx that tends to maximize the value of FFp, Me

investigated random sector orderings, sector orderings based on sector

sizes, lexical orderings (i.e., alphabetical on some character in the

sector name), and sector orderings produced by the fol louing procedure,

cal led BAO. Take the list L of m sectors, ordered according to their

position in the address space under a good program structure, and do the

fol louing to produce a partition fix of them relocatable sectors into n

logical pages.

1. Take the first n sectors of Land put each of them into one of

n separate lists.

2. Take the next n sectors of Land put each of them into one

of the above n separate lists.

3. Repeat 2 unti I there are no more sectors in L. Then,

4. the collection of then separate I ists becomes Ilx.

It turned out that all of the above methods of generating Il>< usually

produced a Ilx that caused the value of FFp to be very large.

174

6.2 Restructuring Phase 1

Throughout this section Me use the same sector trace, SOT 1 • In

section 6.5 Me compare the results of program restructuring over several

sector traces. Our results support the claim of Hatfield and Gerald,

"many commonly used programs are rather insensitive to input data."

Houever, Me did attempt to choose a program for tracing that

contained most of the features of the language and that Mas relatively

long. That is, this program uas not trivial. The sector trace of this

program contained 7,521,205 references. Moreover, ISOT 1 1=2,001,827,

ISOT 3 1=3,859,636 and ISOT2 l•l,660,542.

The value of Ilx is fixed for Figures 7-14 and represents the

program structure B1 which occurs Mhen the sectors are arran9ed in the

address space according to their size. Even though the structure

produced by the BAD procedure resulted in slightly more page fetches for

most memory sizes, we selected Ilx based on the sector lengths (cal Id

8 1 J because this represents a plausible method of loading sectors used

by some operating systems. The choice of Ilx is used as a basis for

i I lustrating the actual improvement in the paging performance which can

occur for real programs uhich are restructured according to some Ily.

175

6.2.1 Constrained Procedures

The curves of Figures 7 and 8 and the loMer.curves, labeled C, 0,

and E, of Figure 9 shoM the ratio of the page fetch functions

FFp(jMpl,N,ITx,S0T 1 ,Fd,RLRU) and

FFp(jMpl,N,ny,S0T 1 ,Fd,RLRU) as a function of pri ■ary Memory size

I Mp I in pages and as a function of Il>< and Ily Mhere Ily is coris trained.

lly is constrained Mhen the blocks of Ily correspond to the clusters

produced by any clustering procedure and the size of these clusters is

constrained to be less than or equal to the page size.

These figures reveal that the orderings of the relocatable sectors

into primary memory can have substantial influence on the paging

performance of virtual memory systems. Moreover, they i I lustrate that

substantial improvements in paging performance occur over a relatively

~ide range of primary memory sizes.

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

A~ Try (U, D = 20, CFN)

B~ Try (W, T = 2500, CANW)

C ~ 1Ty (W, T = 2500, HG)

D~ Try (W, T= 2500, SIP}

N = 4096 Bytes

I SOT, I= 2 ,00f ,027

176

3[1Ei:i~~=-~__L _ _il_
0 5

20K
10

40K
15

60K
20
SOK

25
IOOK

FIGURE 7 FFp(IMpl,N,1Tx,S01t,Fd, RLRU)/FFp (IMpl,N, Try,

SOT1 ,Fd, R LRU) vs IM pl FOR PHASE I OF AED COMPILER

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

177

A 9 TT y (W, T = IO O O , C AN W)

B ~ TTY (U , D = 15 , C N N)

C 9 Try (W, T=IOOO, CAN)

D~ Try (W,T= 1000, HG)

N = 4096 Bytes

lsor, 1=2,001,027

TTx = B1

B

x ... x-x,x

x--~x-><~o 'x\

0 5 10 15 20 25
20K 40K 60K SOK IOOK

F I G URE 8 F F p (I M p I , N , TT x , SOT I' F d , R L RU) / FF P (I M P I , N , TTY,
sor,, Fd, RLRU) VS IMpl FOR PHASE I OF AED COMPILER

178

The degree of improvement in paging performance shown in these figures

(i.e., 7-8) is significantly larger than any previously published

improvements obtained by restructuring. One rationale for this is that

the intersector reference matriK models based on the working set and the

LAU stack distances capture the intersector activity upon which paging

depends. That is, the value, Cij, of the entry in the intersector

reference matrices used in these eKperiments may have a strong tendency

to be proportional to the number of page fetches which will go away if

sector j is grouped with sector i. In particular, note the improvement

in paging performance depicted by curves E, D, and C of Figure 9, which

use the HG clustering technique on the sector working set intersector

reference matrix. This improvement is about twice as much as that

reported by Hatfield and Gerald [Hl] when the same clustering procedure

is applied to the HG intersector reference model. Recall that the HG

intersector reference model is the same as the sector working· set Model

when T~l.

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

,

179

A-=} lTy (W,T=IOOO, ICB)

8 ~ lTy (W, T =2500, ICB)

C ~ lTy (W ,T= 1500 , HG)

D ~ TTy (W, T = 2500 , HG)

E ~ lT y (W , T = 5000 , HG)

N =4096 Bytes

lsoT11 =2,001,021

TTx - B - I
A

0 5 10 15 20 25
20K 40K 60K 80K IOOK

FI GU RE 9 FF p (I M p I , N , lTx , SOT 1 , F d , R L Ru) / F F p (I M p I, N, TT y,

SOT,, Fd, R L RU) vs I Mpl FOR PHASE I OF AED COMPILER

188

6.2.2 Unconstrained Procedures

The unconstrained clustering procedures presented in Chapter 5

cluster the relocatable sectors into natural clusters without any

constraint on the su111 of the sector sizes Making up a cluster. To date.

no uork has been reported in the literature which incorporates this

rather simple idea into clustering procedures.

The curves identified by labels A and B of Figure 9 show the

improvement in paging performance which occurred when natura1 clusters

uere formed. These natural clusters were produced by the interclueter

bond method, ICB, using the sector working set intersector reference

model. These curves illustrate that .natural clusters can provide

significantly better improve11ents in the paging performance than the

improvement provided by the constrained clustering techniques.

The curves of Figure 10 (eKcept curve 0) show the improvement in

paging performance for several unconstrained clustering techniques. The

curve label led O in Figure 10 shows the improvement in paging

performance provided by the eKisting compiler structure.

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

0

181

A ~ lTy (W I T = 2 5 0 0, U AN W)

B ~ 1Ty (W, T =2500, ICB)

C ~ TTy (U , D = I 5, U AN W)

D ~ lTy (Compiler)

N =4096 Bytes

Iser, I =2 ,001, 021

lTx = B 1

5
20K

10

40K
15

60K

B

20

SOK

25
IOOK

FIGURE IO FFp (IMpl, N, lTx, SOT17 Fd, R LRU)/FFp (IM p I, N, TTy,

SOT, Fd, RLRU) vs I Mpl FOR PHASE I OF AED OOMPILER

182

Recal I that al I these improvements are relative to the program structure

Ilx formerl by arranging the sectors into the address space in order of

their sizes. Curve D shows that the existing compiler structure is

substantially better than that provided by Ilx and significantly Morse

than any of the unconstrained techniques.

Figure 11 shous the effects of the unconstrained average neighbor

weighted bond procedure UAN~ on the paging performance as a function of

T for the uorking set intersector refere.nce model U. The significant

characteristics of the curves shown in Figure 11 is that the

improvements in paging performance are relatively the same over a broad

range of T values.

Note the tendency of the curves in Figure 11 to peek in the center

region of the primary memory sizes. This tendency is due primarily to

the fol lowing two "principles" pushing a curve together from both sides.

The first principle is that for small values of IMPI, one clustering

method "cannot uin" over another method. The second principle is that

for large values of IMPI, one clustering approach "cannot lose" over

another approach. However, in the middle range of the values of IMpl.

there may be enough primary memory available to contain most of the

sectors referenced close together in time when they are clustered

together into groups. Note that in this region there can be tMo levels

of clustering for good structures. The first level is that sectors are

clustered together by the clustering procedure. The second level is

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

183

A~ lTy (w, T = I 000, UA NW l

8 ~ lfy (W,T =25000, UANW)

C ~ 1Ty (W, T =5,000, UANW)

N = 4096 Bytes

5
20K

A

~x
X

10
40K

15
60K

20
BOK

25
IOOK

FIGURE 11 FFp (IMPl,N,TTx,sor1 , Fd, RLRuJIFFp(IMpl, N, TTy,
SOT,, Fd, R L RU) vs I Msl FOR PHASE I OF A ED COMPILER

184

that clusters are clustered together by the paging mechanism.

6.2.3 Theoretical Bounds

In Figure 12 the performance for the best program structure, i.e.,

the one produced by Ily(U,T=2500,UANW), is compared uith the theoretical

best performance given by Theorem 8. Observe that Table 3 precisely

defines the parameters for the curves shoun in Figure 12. Curve B shoMs

the ratio of the page fetches experienced by the program under the

structure produced by Ily(U,T-2500,UANW) to the theoretical louer bound

on the page fetches. That is, curve B depicts

FFp(IMPl,N,Ily,SOT 1 ,Fd,R~u)/the Lower Bound. This ratio can

never be less t~an one and would be equal to one when the theoretical

best performance occurred for a given program structure. Figure 12

shoMs several significant characteristics. The performance produced by

the structure Ily(U,T=2500,UANW) is relatively close to the lower bound

for large regions of primary memory size. Furthermore, it is close to

the louer bound in the primary memory regions of loM paging rates. This

latter fact can be seen by observing the curves in Figure 13. Curve D

of Figure 13 shows the number of page fetches for the structure

Ily{W,T=2500,UANW), and curve A shous the theoretical louer bound for- the

number of page fetches over all Ily.

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

0

185

See Table 3 for not a ti on

A~ F Fp (Tr x, R L RU)/F F P (1T Y, R L RU)

B ~ FFp (TT y ,R L RU)/ Theoretical Min. FFp

C ~ Theoretical Max FFp/FFp (lTx,RLRU)

D~ FFp (lTx,RLRu)/FFp (lTy,Ro)

E=> FFp (1Ty,Ro)/Theor. Min FFp

Try (W,T=2500,UANW)

TTx = 8 I

N = 4 096 Bytes

ISOT1I =2,001,027

5
20K

10
40K

15
60K

20
SOK

25
IOOK

FIGURE 12 Comparison of Actual and Theoretical Ratios of FFp
FOR PHASE I OF AED COMPILER

186

Graph A is:

Ffp (111p I ,N, Il,c, SOT I ,Fd,RlRU) /FFp (111pl ,N,lly,SOT l ,Fd,RLRU)

Graph B iss

Graph C is:

FFs(ll'tsl • l'1pl,SOT1 ,Fd,RLRU HFFp(IMPl,N,ft,c,SOT1 ,Fd,RLRIJ l

Graph O is:

FFp (fMpl ,N, llx,SOT 1 ,Fd,RLRU) /Ffp(lftpl ,N,lly,SOT 1 ,Fd,Ro)

Graph E is:

FFp(1,...,1,N, lly,.SOT 1 ,Fd,Ro>JFFs(lflsl • f I Ul1pl,N,ss• l,SOTi ,Fd,RoJ - A
f1 (2,N,SSJ/2

where ll,c • Bl, lly(M, T • 2588,UANIU, N • 4896 Bytes

ISOTtl • 2,881,827

Note that FFs(lttsj • f1 (ft1pl ,N,SS*) ,SOTi 1Fd,Ro) - A
f1 (2,N,SS)/2

shown in 8 and E above la the- lower bound of FFp given
in Theore• 6 •.

Note that FFs(IMsl • lt1pl,SOT1 ,Fd,RtRU)

shown in C above is the upper bound of Ffp given by
Theore■ 3.

Table 3
Para■eters for Curves in Figure 12

187

Curve B of Figure 12 indicates that the louer bound may be loose

for very smal I values of IMpl or that the structure Ily(W,T=2500,UANW)

does not cluster sectors very Mell for small values of IMpl. The

conjecture is that the loMer bound may be loose for very smal I values of

IMPI since this phenomenon is observed in all of our experiments. This

is not a serious practical draMback, because even for the louer bound

the paging activity is pr~hibltively large for very smal I IMPI• Since

the louer bound is valid over all replacement algorithms, Me compared

the ratio of the performance of the good structure Ily using OPT

replacement to the loMer bound. This ratio is curve E of Figure 12.

Curve C of Figure 12 illustrates the ratio of the theoretical upper

bound given by Theorem 3 to the bad performance. The bad performance is

the number of page fetches produced Mith the structure Ilx.

The upper bound is relatively close to the "uorstR performance

resulting from the structure Ilx for most values of IMPI• For large

values of IMPI the upper bound is not very tight. The upper bound Ml I I

be tight as long as the sectors Mhich are clustered into a page are

never used together Mhen that page is in Mp. Houever, as the size of Mp

increases, it becomes more and more difficult for this condition to be

satisfied. Hence, the upper bound groMs very rapidly for values of IMpl

approaching the length of the program. HoMever, for values of IMPI in

the region Mhere the program Mould probably be run, the upper bound is

reasonable.

1•

Figure 13 9hmas the m.mber of page f~tches given by:

A. the tower bound.

B. the upper bound.

C. H,e bad structure, n)(.

a. the good structur1!, fty «.a, T •2591, t.MflO under LRU.

E. 1he good structure, ·ny GI, T -2598 • UMIIJ under OPT.

Figure 14 is sr11Pty the valuet!I for curves A. C, .amt D of Figure 13 shown

at a ntuch I arger scale.

In su-.ary, Figure• S-14 9hoN that the JM19htg perfor■ance •ay vary

by a factor of 12 to 38 for large rqions of priury ••ory size fttpl,

This occurs when the uncooatrained c1U9tertng ·procedures are used in

conjunction with the sector working set and the LRU stack intersector

reference wtatr ices; that is, for fiy(U, T•25118,UM61), IlyU.I, T "'!2588, ICBJ

and fly(U,0 ... 15,UANU). The use of clustering procedures which cluster

sectors into natural clusters can produce prograt1 structures uhich

require significantly fewer page fetches than required. by progra•

structures based on constrained clusterrng procedures.

60k X

55k

50k

45k

40k

35k

30k X

25k

ZOk

15k

I Ok

189

A= FFs (I Ms I= f 1 (IM p I, N, ss*) SOTi*,Fd, Ro)-6

f
1

(2,N,SS)/2

B ~ FF s (I Ms I = I M p I , SOT 1 , F d , R LR u)

C ~FF p (I Mp I , N, TT x , SOT, , F d , R LR u)

D~FFp{IMpl, N, Try, SOTi,Fd, RLRU)
'

E~FFp{IMpl, N,TTy,SOT1,Fd, Ro)

TTx = B 1

TTy (W,T =2500, UANW)

N = 4096 Bytes

1sor,I= 2,001,021

Theoretical
Worst
Cose

A~E

5k ,
Theoret icol ~

0

Best x x
Cose 'X......_

5
20K

10
40K

15
60K

FIGURE 13 Total Page Fetches vs jMpj
FOR PHASE I OF AED COMPILER

20
BOK

25
IOOK

6.0 k

5.5 k

5.0k

4.5 k

4. Ok

3.5 k

3.0k

2.5k

20k

1.5 k

I .Ok

0.5k

A, D, and C are the

same as in Figure

A

5
20K

10
40K

190

15
60K

20
SOK

25
IOOK

FIGURE 14 Enlarged Scale for Curves A, C, and D of Figure Fffi

PHASE I OF AED COMPILER

191

6.3 Restructuring Phase 2

Figure 15 shoMs the results of restructuring Phase_2 over sector

trace SOT 2 , Mhere ISOT 2 l=l,660,542. Table 4 precisely defines the

curves of Figure 15. The bad order Ilx • B2 for Phase 2 ls computed by

the procedure BAO, Mhich is compared to the order produced by

Ily(W,T=2500,UANW). The curves of Figure 15 may be interpreted similarly

to those of Figure 12 of Phase 1. The variation in the paging

performance of Phase 2 as a function of program structure is not as

large as that of Phase 1. HoMever, the largest improvement in the

paging performance of Phase 2 occurs Mhen approximately one half of

Phase 2 can fit into primary memory.

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27
24

21

18

15

12

9

0

192

See Table 4 for full comphtte explanation of curves.

A =1; FFp (lTx)/FFp (ITy) where lTx = 82 and Try (W,T = 2500, ICB)

B :> FFp { lTx)/ FFp (Try) where lTx = B 2 and Try (W, T = 2 500, UANW)

C• FFp (TT'x)/FFp (lTy) where 1Tx=B2 and Try= Compiler Order

D=> Ffp (Tfy)/Theor. min FFp where lTy {W, T= 2500,UANW)

E i:+ Theor. Mox FFp /FFp (1Txl where lTx = B 2

fSOT21= 1,660,542

5 10 15 20
20K 40K 60K SOK

E

J,./
,,

25
IOOK

FIGURE 15 Page Fetch Ratios PHASE 2 OF AED COMPILER

193

Graph A is:

FFp (I Mp I , N, Il><, SOT 2 , Fd, RLRU) /FFp (I Mp I, N, Ily, SOT 2 , Fd, RLRU)

Il>< a B2 and Ily(W,T • 2500,ICB)

Graph B is:

FFp (I Mp I, N, Il><, SOT 2 ,Fd,RLRU) /FFp (!Mp I ,N,Ily,SOT 2 ,Fd,RLRU)

Il>< • B2 and Ily(W,T • 2500,UANW)

Graph C is:

FFp (I Mp I , N, Il><, SOT 2 , Fd, RLRU) /FFp (!Mp I, N, Ily, SOT 2 , Fd, RLRU)

n~ • B2 and Ily - Co■piler Order

Graph D is:

FFp(IMpl,N,Ily,SOT2 ,Fd,RLRU)/FFe(IMel • f 1 (1Mpl,N,SS*J,SOT2 ,Fd,Ro) - 6
f 1 12,N,SSI 72

lly(W,T • 2500,UANW)

Graph Eis:

FFs(IMsl • fMpl,SOT2 ,Fd,RLRU)/FFp(IMpl,N,Il><,SOT2 ,Fd,RLRU)

ll>< = 82

Table 4

Para■eters for Curves in Figure 15

194

6.4 Restructuring Phase 3

Phase 3 is rest~uctured from a sector trace SOT3 which contained

3,859.636 references. The program structure Ilx is a random ordering of

sectors into the virtual address space. Program structures

Ily(W,T=2500,ICB>. Ily(U,T=2500,UANI.I) and

Ily(U,O~20,ICBJ

produced substantial improve■ents in the paging performance over.

Ilx =83 • These improvements are illustrated in curves A, B, and C of

Figure 16. These curves have the highest peaks of any improvements over

sector orderings that Me found. Curve D of Figure 16 shows the ratio of

the paging performance obtained from Ilx to the performance of the

existing compiler ordering. The theoretical lower·and upper bounds are

presented in Figure 17 in the same manner as for Phase 1 and 2.

Nou we present a feM general comments about Phase 1, 2, and 3. Al I

three phases indicate that significant variations in paging performance

can occur for different arrangements of the relocatable sectors in

virtual memory. The unconstrained clustering procedures, ICB and UANM,

produced the best program performance over all memory ;sizes for all

three phases. The constrained procedures are not shown for Phases 2 and

3 since they produced the same relative improvement in these phases as

in Phase 1. The theoretical louer bounds are relatively good indicators

of the best paging performance of all three phases for al I but the

smallest primary memory sizes.

72 195

69 A ~Try { W,T = 2500, ICB)

66 B ~TTy{W,T=2500,UANW) A

63
C ~TTy{U,0=20, ICB)

C
D ~TT y (Compiler)

60
N ~409 6 Bytes

57 I SOT3l=3,859,636

54 TTx = 8 3

51

48

45

42

39

36

33

30

27 X

24

21 X

18 I
15 X

xi
12 I

X
9

~
x-x-'

6

3

0 5 10 15 20 2 5 30
20K 40K 60K BOK IOOK 120K

FIGURE 16 FFp { IMPI, N,Trx,SOT3 ,Fd, RLRU)/ FFp {IMpj N, Try,
SOT3,Fd, RLRU) vs IMPI FOR PHASE 3 OF AED

COMPILER

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

2t

18

15

12

9

6

3

0

A:+ 1Ty (W, T = 2500, ICB)

B ~ 1Ty (W,T = 2500, UANW)

C ~ lfy (U, D = 2 0, I C 8)

D ~ lTy (Compiler)

N = 4096 Bytes

lsoT 31=3, 859,636

TTx = B 3

lS

C

E=? FFp (IMpl,N, 1Ty,SOT3,Fd, RLRU) /

FFs (IMsl =f, 0Mpl ,N, SS *),S~, R0

ft (2, N , SS) / 2
1T y (U, D = 2 0, IC 8)

F~FFs (IMsf = IMJ>f ,SOT3 ,Fd,RLRU)/

FFp (fMpf, N, 1Tx, SOT 3,Fd, RLRU)

lTx = 8 3

5
20K

10
40K

15
60K

20
80t<

X

D

25
I00K

B

A

•

30
120K

FIGURE 17 FFp (I Mpl,N,TTx,S0T1 ,Fd, RLRU)/FFp (IMP!, N ,TTy, S0T1,Fd,

RLRul vs fMpf FOR PHASE 3 OF AED COMPILER

197

6.5 Effects of Input Data

In order to es tab I i sh the effect that the input program to be

compiled has on the paging performance, we conducted the fol louing

e><periments:

E><periment 1:

A. We took the above sector trace SOT I and co111puted the progra■

structure lly{W,T=2500,UANW).

B. We measured a second program trace SOT 1 a which corresponds

to a completely different program and re-structured the compiler to

get llya{W,T=2500,UANW) based on SOT 1 a.

C. A third sector trace SOT 1 b was measured, and, based on this

sector trace, the program structure llyb(lol,T-2500,UANW) Mas

computed.

Al I three of the progra~ structures, lly, llya and Ilyb should tend to

minimize the paye fetches for the traces SOT 1 , SOT 1 a, and SOT 1 b

respectively. HoMever, Mi I I the structures specified by Ilya or by Ilyb

tend to minimize the page fetches for SOT 1 ? ·

198

Figure 18 contains all the information shoMn in Figure 13 for Phase

1. That is, it shows the value of the page fetch function FFp for

SOT 1 and Ily as curve D, and it shows the other curves of Figure 13 for

visual comparison. Curve Fin Figure 18 represents the value of FFp as

a function of the same reference behavior SOT 1 and Ilya. Curve G

i I lustrates the value of FFp as a function of the same reference

behavior SOT 1 and Ilyb.

Therefore, the curves 0, F, and G represent the paging perfor■ances

·of Phase 1 of the compiler for a single sector trace and three different

partitions of sectors into clusters. The results of this experiment

revea I that a good program structure !Jenerated froM one sector trace Is

a good program structure for other sector traces.

Experiment 2:

Now we give another experiment. For Ily~ Ilya and Ilyb from the above

ex per i men t, we use the BAD procedure on each Il to get fix, Ilxa, and ll,cb

respectively. Then, using the same sector trace SOT 1 , the fol lo1,,1ing

rat_ios are computed and plotted in Figure 19.

A. FFp{ •• ,Ilx,SOT 1 , ••)/FFp{ •• ,Ily,SOT 1 , ••)

8. FFp{ •. ,Ilxa,SOT 1 , •• J/FFp(•• ,Ilya,SOT 1 , •• }

C. Ffp{..,Ilxb,SOT 1 , •• J/FFp(•• ,Ilyb,SOT 1 , ••)

60k

55k

50k

45k

40k

35k

30k

25 k

20k

15 k

I Ok

5k

0

X

X

I
I
I
I
I
I
I

\
I
I
I
I
I
I
I

\

* I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

\
I

X

A~

X

199

A~ FFs (IMsl = t 1 (IMpl, N, ss1 sor,~Fd,Ro)-b.
f 1 (2 ,N , SS) / 2

B~ FFs (IMsl =IMpl, SOT
1

, Fd, RLRU)

c~ FFp (IMpl ,N,rrx,soT1,Fd, RLRu)

D=:> F Fp(IM p I, N, TTy, SOT
11

Fd, R LRu)

E=:>FFp(IMpl,N, Try, sor, ,Fd, Ro)

TTx = B 1

TTy (W, T =2500, UANW)

N =4096 Bytes

lsor1 I= 2, oo ,, 021

F = FF p (I M p I , N, Try O , S OT1, F d , R L RU)

TTy0 (W,T=2500,UANW) FROM SOT
10

G= FFp (IMpj, N,TTyb,SOT1,Fd, RLRU)

Tryb (w, TF =2500, UANW) FROM sor,b

Theoretical Worst
Case

Theoretic a ,~x, ,
Best Cose X-.x ' 'x

~

5 10 15 20 25

20K 40K 60K SOK IOOK

FIGURE 18 Tota I Page F etches vs I Mp I FOR PHASE OF AED
COMPILER

72

69

66

63

60

57

54

51

48

45

42

39

36

33

30

27

24

21

18

15

12

9

6

3

0

288

A~FFp{ IMpl, N,TTx, sor1,Fd, RLRu)I FFp (IMpl, N,Try,sor1,Fd,

R LRU) where TT x and TTy (W, T = 2 500, UANW) are based on SOT I

B=>FFp{IMpl, N,TTx 0 ,SOTj,Rd, RLRU)/ FFp (IMpl, N,'ITy0 ,SOTj,Fd,RLRU)

w~re lTx0 end TTy0 (W, T =2500, UANW) ore based on SOT
10

c~ same OS 8 except TTxb and TTyb ore based on sor,b

5
20K

10
40K

15
60K

20
80K

25
IOOK

FIGURE 19 Comparison of Page Fetch Ratios for Different Program

Structures FOR PHASE I OF AED COMPILER

201

These ratios are the improvements in paging performance over the same

sector trace for three pairs of program structures. Each pair consists

of a BAO structure and a good structure. FurtherMore, each pair is

constructed from a different sector trace. Houever, the possible

improvement in paging performance for each pair is nearly the same.

Experiments 3 and 4:

Experiments 3 and 4 for Phase 2 and 3 respectively are quite

similar to Experiment 1 for Phase 1. The only difference is that, in 3

and 4, the ratios of FFp(•• ,Ily,SOT2 , ••)/FFp(•• ,Ilya,SOT 2 , ••) and of

FFpL.,Ily,SOT2 , •• J/FFp(•. ,Ilyb,SOT2 , ••) are plotted as sho"'n in

Figures 20 and 21 instead of the magnitude of these values of FFp shoMn

in Figure 18. In Figure 18 it is difficult to distinguish betueen the

three curves because of the scale problems. Figures 20 and 21 do aMay

Mith the scale problems but do not sho"'_the relationship of these values

to the overall picture as is done in Figure 18. From"Figures 20 and 21

"'e observe that a good program structure computed from one sector trace

turns out to be a good program structure for another sector trace.

202

3.0 A= FFp (... TTy, SOT2 .. ,)/FFp (... lTy0 , SOT2 , ...)

B= FFp (... TTy, SOT2 ...) / FFp (... TTyb, SOT2, ...)

where TTy is based on SOT 2
2.0 TTy0 is based on SOT

2
1.e TTyb is based on SOT2:
L6 X
I .4 ...,..x......._X v.,,,,,x- ~A
I 2 X /X -" X
. - ' 1.o,F~~~l=:Q~~-__::~.;J£_~~---:---..:..._~ ___ ...,_52;-i=o:;::;u~~~'.t--
. a 8 - -x....,x....,.x-x,x/
.6
.4
.2 0-------------------------------__.,__,___..__.___........__ ~~..__.,__.....__....__ _ _.__

5 10 15 20 25
20K 40K 60K SOK IOOK

FIGURE 2 0 Ratios of Page Fetches For 7T Based on Different
Sector Traces FOR PHASE 2 OF A ED COMPILER

3.0

2.0
1.8
I. 6
1.4

A BB same as Fig. 20 except TTy is based on SOT 3
lTy0 is based on SOT

03

TTyb is based on S0Tb
3

I. 2 [7~~~~~~~~~::;s~~~~~~~~~ i.or
.8
.6
.4
.2
o.__.....__...._......___.____._~~__,___,_~--'----'-.......... ---"-.......... --'---l'---1---1"--"--"'--..1.--'--....I....-'---

5
20K

10
40 K

15
60K

20
80 K

25
IOOK

FIGURE 21 Ratios of Page Fetches For TT Based on Different
Sector Traces FOR PHASE 3 OF AED COMPILER

283

CHAPTER 7

DISCUSSION ANO CONCLUSION

7.1 Introduction

This report has presented theoretical and e~periMental results

~hich show that program restructuring has a significant effect on the

paging performance of virtual memory systems.

7.2 Summary

The problem of restructuring programs to improve their p_aging

performance in virtual memory systems was presented in Chapter 1.

In Chapter 2 we formalized the notion of the page fetch function

and the sector fetch function. The page fetch function models the

paging behavior, and the sector fetch function models the sectoring

behavior.

In Chapter 3 the sector fetch function was used to produce upper

and lower theoretical bounds in the page fetch function over al I

204

reorderings of the relocatable sectors into the address space.

lntersector reference models based on sector uorking sets and LRU

stack distances were developed in Chapter 4. In Chapter 5 several

clustering methods were developed uhich used the intersector reference

models to produce a restructured program.

In Chapter 6 the effect of program restructuring on the paging

performance of real programs was investigated empirically and

theoretically. In particular, we showed that improvements in paging

performance of factors of 20 to 40 is not uncommon for relatively large

regions of primary memory size.

7.3 Further Work

The research reported in this report pro~ides a basis for

additional investigation in several areas of program restructuring.

The ~ork described in this report addresses a problem that is as

hard as the seemly intractable problems studied by Cook [CS] and Karp

[KG]. Recent work by several people has revealed fast algorithms for

near optimal solutions to some of these problems. The clustering

techniques described in Chapter 5 have been shown of value for

particular but not trivial examples that occur in practice. It 1-1ou.ld be

205

of considerable interest to knoM to Mhat e~tent these techniques can be

relied on over al I possible sector traces. Can our techniques be shown

to yield solutions that come Mithin a factor of tMo of our loMer bounds?

If not, are there algorithms that do come near our loMer bounds?

Alternatively,can our loMer bounds be improved?

We did not investigate the problem of sector duplication in this

thesis. We claim that the results of Chapter 3 can be applied in a

straightforMard manner to produce loMer bounds on the paging performance

Mhen sector duplication is alloMed. Another related problem is how to

incorporate sector duplication into the intersector reference models and

into the clustering procedures.

Another area is the problem of deciding Mhen it is best for sectors

to cross page boundaries and Mhen it is best to have holes in pages.

An ongoing research project betMeen the author and Oon Hatfield of

IBM is to use the theoretical results of Chapter 3 to evaluate the

potential benefit of reprogramming and then restructuring a very large

data base system. This large data base system has sectors Mhich are

over 10 pages long. For e~ample, Theorem 1 can be used to predict the

theoretical best paging performance if the large data base system is

broken up into k sectors per page. Thus, the problem is to determine

the k that provides the best theoretical improvement and then use the

magnitude of this improvement as a basis for deciding whether or not

reprogramming is advisable.

206

REFERENCES

Al Aho, A. V., P. J. Denning, and J. D. UI Iman, "Principles of

Optimal Page Replacement", Jour. Acn.._ Vol. 18, No. 1, Jan.

1971, pp. 80-93.

A2 Arora, S. R., and A. Gallo, "Optimal Sizing~ Loading and Re

loading in a Multi-Level Memory Hierarchy System", AFIPS C5mf..

Proc., Vol. 38, 1971, pp. 337-344.

Bl Belady, L. A., "A Study of Replacement Algbrithms for a

Virtual-Storage Computer•, rnt1 Systems JQ.w:., Vol. 5, No. 2.

1966, pp. 78-101.

82 Bra~n, B. 5., and F. G. Gustavson, "Program Behavior in a

Paging Environment", AFIPS Conf. Proc., Vol 33, Part 2, 1968.,

pp. 1019-1032.

B3 Baer, J., and R. Caughey, "Segmentation and Optimization of

Programs from Cyclic Structure Analysis", ~ Cont. ~ ••

Vol. 40, 1972, pp. 23-36.

84 Baer, J., and G. R. Sager, "Measurement and Improvement of

Program Behavior Under Paging Systems", in Statistical

Computer Performance Evaluation, ed. by W. Freiberger

207

(proceedings of a conference held at Broun University, Nov.

1971), Academic Press, Neu York, N.V., 1972, pp 241-246.

BS Braun, B. S., F. G. Gustavson, and E. S. Mankin, "Sorting in a

Paging Environment", Comm. ACM, Vol. 13, No. 8, Aug. 1978.

pp.483-494.

B6 Belady, L. A., and F. P. Palermo, "On-line Measurement of

Paging Behavior by the Multivalued MIN Algorithm", IBM Jour.

Res. Develop., Vol. 18, No. 1, Jan. 1974, pp. 2-19.

Cl Coffman, E. G., and L. C. Varian, "Further E~perimental Data on

the Behavior of Programs in a Paging Environment". Comm. ruJl.

Vol. 11, No. 7, July 1968, pp. 471-474.

C2 Comeau, L. W., "A Study of the Effect of User Program

Optimization in a Paging System", ACM~- on Operating

System Principles, Gatlinburg, Tenn., 1967.

C3 Charney, H. R. and D. L. Plato, "Efficient Partitioning ·of

Components"~. SHARE/ACM/IEEE Design Automation Workshop.

Washington, O. C., July 1968, paper no. 16.

C4 Corbato, F. J., "A Paging E~periment With the Multics System•.

l.!! Honor of Philip tL.. Morse, edited by H. Feshbach and K. U.

208

Ingard, MIT Press, Cambridge, Mass., 1969, pp. 217-228.

CS Cook, S.A., "The Complexity of Theorem-Proving Procedures•,

Proc. of Third Annual ACM Symp. on Theory of Computing,

1971, pp. 151-158.

01 Denning, P. J., "The Working-set Model for Program Behavior•,

Comm. ACM, Vol. 11, No. 5, May 1968, pp. 323-333.

02 Denning, P. J., "Virtual Memory", Computjng Surveys, Vol. 2,

No. 3, Sept. 1970, pp. 153-190.

03 Denning, P. J., "On Modeling Program Behavior", AFIPS Conf.

Pro~ .• Vol. 40, 1972, pp. 937-944.

Fl Ferrari, □., "A Tool for Automatic Program Restructuring,•

Proc. ACM Ann. Conf., Aug. 1973, pp. 228-231.

Gl Guertin, R. L., "Programming in a Paging Environment",

Dat~m~_! ion Vo I. 18, No. 2, Feb. 1972, pp. 48-55.

G2 Gilmore, P. C., and R. E. Gomory,"The Theory and Computation of

Knapsack Functions", Operations B.fil!., Vol. 14, 1966, pp.

1045-1074.

209

Hl Hatfield, 0. J. and J. Gerald, "Program Restructuring for

Virtual Memory", J.m1 Systems Jour., Vol. 10, No. 3, 1971.

pp. 168-192.

H2 Hatfield, D. J., "EKperiments on Page Size, Program Access

Patterns and Virtual Memory Performance", lfill. Jour. ~

□eve I op., Vo I. 16, No. 1, January 1972, pp. 58-66.

11 lnfo~matics, Inc., 0 EKperiments in Automatic Paging", Report

RADC-TR-71-231, Rome Air Development Center, Air Force Systeas

Command, Griffies Air Force Base, NeM York, Nov. 1971.

Jl Jensen, P. A., "Optimum Net~ork Partitioning", Operations

Res., Vol. 19, 1971, pp.916-932.

J2 Jarvis, R. A., and E. A. Ed~ard, "Clustering Using a

Similarity Measure Based on Shared Near Neighbors",

IEEE Trans. on Computers, Vol. C-22, No. 11, November 1973.

pp. 1025-1034.

Kl Kernighan, B. W., "Optimal Sequential Partitions of

Graphs", Jour. ACM, Vo I. 18, No. 1, Jan. 1971, pp. 34-48.

K2 King, W. F., Ill, "Analysis of Demand Paging Algorithms",

ProG_. _IFIP Congress, TA-3, August 1971, pp. 485-490.

218

K3 Kuehner, C. J, and 8. Randell, •oe111and Paging in Perspective•.

AFIPS Ctmf. e..tm;_., Vol. 33, Part 2, 1968, pp. 1011-1818.

K4 Kernighan, B. IJ., •s.oae Graph Partitioning Proble111s Related to

Prograwi Sepentation", Ph.O. ThesJs, Princeton Univ.,

Princeton, N. J., Jan. 1969, 117 i,p .•

KS Kernighan, B.'U., and S. Un, •An Eff ichm·t Heur 1st ic Procedure

for Partitioning Graptts•, Ibt kU Ss,stn.Jechnical Journal.

Vol. 49, No. 2, Feb. 1971, pp. 291-388.

K6 Karp, R. M., •Rttducibi I ities Aalsng .Coabinatorial Prob le••• •.

Cg11p.te,tj ty a.! w,Nuter C0111PUtatipn1. edited by R. E. Mi Iler

and J. 1,1. That'Cher, Ptenuw Press. 1972, pp. 85-183.

Ll loue, T .C., •Au tout ic Seg111antat ion of Cyclic Progra111

Structures Based on Connectivity and Processor Ti111ing•. C,ga.

ACM, Vol. 13, No. 1, Jan. 1971, pp. 3-6.

L2 LeMis, P. A. IJ. and P. C. Vue, •statistical. Analysis of Progr-a■

Reference Patterns in a Paging Erwiron11ent•, ~- lfEE.

I nternat i ona I CoMputer: Society CttOtrenee. Sept. 1971, pp.

133-134.

211

L3 LeM, A., "On Optimal Pagination of PrograMs", University 21.

HaMaii Information Sciences Report, Honolulu, HaMai i, 1978.

L4 Luccio, F., and M. Sami, "On The Decomposition of NetMorks in

Minimally Interconnected SubnetMorks", lfEE .Ir:..filu!. on

Computers, Vol. Ct-16,pp. 184-188, May, 1969.

LS Lukes, J. A., "Combinatorial Solutions to Partitioning

Problems", STAN-CS-72-293, Stanford University, May 1972, 138

pp.

L6 Ling, R.F., "On the Theory and Construction of K-Clusters,•

Ml Mattson, R. L., J. Gecsei, D.R. Slutz, and I. L. Traiger,

"Evaluation Techniques for Storage Hierarchies", IBM Syste111s

Jour., Vol. 9, No. 2, 1970, pp. 78-117.

M2 McKel lar, A. C., and E.G. Coffman, "Organizing Matrices and

Matri>< Operations for Paged Memory Systeffls", Comm. ACM, Vol.

12, No. 3, March 1969, pp. , 153-164.

M3 Madnick, S. E., "Storage Hierarchy Systems", MIT Project MAC

Report MAC-TR-107, Massachusetts Institute of Technology,

Cambridge, Mass., April 1973, 155 pp.

212

M4 Madnick, S. E. and J. J. Donovan, •0ptrrating Syste•s•, McGr8N

Hi 11, Ne1,1 York, 1974.

M5 McCormick, J, U. T., Jr., et at., •Probln Deco•position and

Data Reorganization by a Clustering Technique", Operations

Res.,· Vol. 28, 1.972, pp. 993-1889.

MS Masuda, T., et al., •Opti•iz&tion of Prograa Organization in

Virtual Storage Syste•s by.Cluster Analysis", unpublished

1,1orking paper, 1974.

M7 Mi yaMota, I., •oata Reference Characteristics of Database

Application Progrn", Nippon Electric C011Pany, Li ■ i ted, Fuchu.

Tokyo, unpublished working p-aper.

Pl Pratt, V. R., "An N LOG N Algoritha to Distribute N Records

Opt i1wally in a Sequential ·Access. Fi le"',· C01tQlguci tu gj_ Cogute,:

Cqmput~tions, edited by R. E. Ni lier and J .. _W. Thatcher,

Plenu111 Press, 1972, pp. lll-118.

Al Ra111amoorthy, C. V., "The Analytic Design of a Oyna■ ic look

Ahead and PrograM Seg11enting Syste■ for nut t iprogra■■ed

Computers". &:.ID;.. ACtt Nationai Cmf.., 1966, pp. 229-248.

213

S1 Saltzer, J. H., "A Simple Linear Model of Demand Paging

Performance", MIT Project MAC Report in progress.

S2 Spirn, J. R., and P. J. Denning, "E~peri ■ents Mith Progra•

Locality", AFIPS Cont. Proc., Vol. 41, Part 1, 1972, pp.

611-622.

S3 Smith, J. L., "Multiprogramming Under a Page on Demand

Strategy", Comm. ACM, Vol. 10, No. 18, Oct. 1967, pp.

636-646.

Tl Tsao, R. F., L. ~. Comeau, and B. H. Margolin, "A Multi Factor

Paging Experiment 1: The Experiment and the Conclusions•, in

Statistical Computer Performance Evaluation. ~d. by~.

Freiberger (proceedings of a conference held at BroMn

University, Nov. 1971) Academic Press, NeM York, pp. 183-

134.

Vl Varian, L. C., and E.G. Coffman, "An Empirical Study of the

Behavior of Multi-programming".

V2 Ver Hoef, E. E., "Automatic Program Segmentation Based on

Boolean Connectivity", AFIPS l&nf. Proc., Vol. 38, 1971, PP•

491-496.

