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Abstract

Episodic resuspension and deposition of bottom sediment can have a
large influence on water quality thereby making it important to be able to
predict the amount of sediment which is resuspended in shallow water
bodies during storm events. In response to this need an instrument system
was assembled having the capability of measuing wind speed and direction,
wave characteristics, water velocities and suspended sediment
concentration. Field experiments were planned and executed in Lake
Balaton, a large (700 km® surface area) but shallow (mean depth 3.1 m)
lake in Hungary, as part of a co-operative study with the Hungarian
government into the causes and effects of various processes on the

eutrophication of the lake.

The data collected in the field study was used to show that the
bottom stress associated with surface waves was typically much greater
than that due to the mean current in Lake Balaton and therefore wave

stress dominates the resuspension process.

A wave hindcasting model, based on shallow water modifications made
to the SMB relationships as presented in CERC (1977), was found to match
measured time histories of significant wave height extremely well at the
two field sites. Variations in the observed wave periods were not as well

reproduced in a dynamic sense.

A review of previous research on cohesive sediment transport led to
the recommendation of a boundary condition appropriate for use with field
data. A simple model of the depth-averaged suspended sediment
concentration using this boundary condition was calibrated to 11 hours of

hydrodynamic and concentration data measured during a storm. A
verification of the model using wind data from a nearby meteoroiogical

station, the wave hindcasting model and 15 days of concentration
measurements yielded excellent results.

Thesis Supervisor: Dr. Donald R. F. Harleman
Title: Professor of Civil Engineering and Ford Professor of Engineering
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Chapter 1

Introduction

The progression of our understanding of aquatic environmental
pollution problems has revealed the fact that many aspects of water
quality depend critically on physical processes in addition to more
readily recognized chemical and biological processes. Examples of this
include (i) horizontal transport and its influence on lateral
inhomogeneity within a water body, (ii) vertical transport of nutrients
and organisms through the thermocline in a stratified water body, (iii)
micro-scale transport of nutrients into a cell’'s immediate environment and
(iv) effects on light penetration, heat absorption and internal loading
due to the resuspension of bottom sediments.

The purpose of this study is to examine the processes responsible for
the resuspension and transport of fine sediments in a shallow water body

and to include them in a model capable of predicting the sediment

concentration in the water column. Ultimately, this could be used as a
component of a water quality model. This work concentrates on the

behavior of fine sediments, (i.e., silts and clays), for several reasons:

(i) fine sediments have the largest surface area to volume ratio
and therefore provide the largest available space for the bonding of

chemical substances per unit volume,
(ii) fine sediments (particularly clays) typically have excess

negative surface charge which facilitates bonding with positively

charged ions,
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(iii) fine sediments have smaller fall velocities than coarser
fractions and therefore remain in suspension the longest. As a
consequence of this silts and clays are more easily transported in
surface runoff and very often compose the major part of the sediments
in lakes and estuaries —- particularly those most severly affected by
eutrophication. For example 90 per cent of the sediments are in the

silt-clay size range in Lake Erie (Lick, 1982).

Numerous qualitative examples exist which illustrate the commonplace
nature of sediment resuspension in both deep and shallow lakes. For
example Davis (1973), Pennington (1974), and Serruya (1977), have analyzed
sediment trap data in several deep, stratified lakes and found substantial
quantities of resuspended bottom material present during spring and fall
overturn. Davis (1973) and Rosa (1985) have compared sediment trap data
from shallow well-mixed water columns with that from stratified water
columns and found more frequent and more substantial resuspension in the
shallow waters.

It is interesting to note that sediment traps are usually used to
quantify the flux of particulate matter settling through the water column
and presumably being transported to the sediments. Unfortunately, the
interpretation of these data is often made difficult by the need to
distinguish between material which is allochthonous, or a new input to the
system, and that which is autochthonous, or in this case resuspended. The

ability to predict the amount of resuspension which occurs would aid

greatly in the routine analysis of these measurements, (Gabrielson and

Lukatelich, 1985 and Ovaitt and Nixon, 1975).

- 17 -




Qualitative field evidence suggests suspended sediment has several
affects on water quality. Barcia (1974) used in situ enclosures and
artificial mixing to show that sediment resuspension could deplete
concentrations of dissolved oxygen and increase ammonia concentrations to
toxic levels and therefore bring about the collapse of algal blooms in
shallow prairie pothole lakes (depths 2.4-5.1m). Lijklema (1977) showed a
correlation between wind speed and total phosphorus measurements in Lake
Ijsselmeer, (depth 1-2m). Ryding and Forsberg (1977) correlated ammonium
and total phosphorus concentrations in Lake Uttran (mean depth 5.7 m) to
the daily average speed of winds aligned with the lake's long axis. They
also found the July - September average chl-a value, (chl-a is typically
used as a measure of algal population), was related to the average wind
speed aligned with the lake axis for the four years after the principal
external nutrient sources to the lake were diverted. Peters and Cattaneo
(1984), made measurements as often as twice daily in waters of 0.5, 1.2,
3, 8, and 100 meters depth in a small cove of Lake Memphremagog. They
found total phosphorus concentrations at the three shallowest sites
increased on stormy days, but found no trend in the concentration of
dissolved reactive phosphorus or the rate of algal phosphorus uptake.
Walker and O’Donnell (1981) found a coupling between the chemical and
biological processes in the lagoon waters of the Great Barrier Reef and
the benthic processes due to the wind driven resuspension of bottom
sediment.

In most fresh water systems phosphorus is the limiting element of
eutrophication, therefore the following remarks concern it specifically.
It is classically held that in aerobic, vertically-mixed lakes there is a

net flow of phosphorus into the sediments (Wetzel 1975). The predominant
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mechanism for this is the settling of organic and inorganic particulate
matter. A significant portion of the mineralization of organic material
occurs at the sediment surface, thereby releasing dissolved phosphorus
into the interstitial pore water. Gelencser et al (1982) found that the
pore water in Lake Balaton, Hungary, had dissolved reactive phosphorus
concentrations which were two orders of magnitude larger than the
overlying water. The high diffusive flux from the sediments to the
overlying water, which would be expected, is drastically reduced by the
strong tendency of phosphate to adsorb onto solid phases -- particularly
those formed by iron, aluminum and calcium. These act as a phosphorus
trap, virtually sealing off the sediments to active exchange with the
water column.

However, recent work has shown that phosphorus adsorption/desorption
onto calcite and ferric hydroxide occurs rapidly and is highly dependent
on the phosphorus concentration of the surrounding water and somewhat
dependent on pH, (Gelencser et al., 1982). This suggests a scenario in
which particulate organic matter settles to the sediment, is mineralized
and releases dissolved phosphorus to the interstitial water which is then
adsorbed onto the particulate phase. If the sediment is resuspended a
change in pH as well as ambient phosphorus concentration occurs and the
phosphorus desorbs into the water.

Gelencser et al (1982) performed laboratory experiments which support
this scenario and if extrapolated to Lake Balaton suggest that a moderate
storm, leading to 25 mg/l average increase in suspended solids, could

cause a release of 250-500 kg P over the whole lake, the same order of

magni tude as the daily external load.
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Holdren and Armstrong (1980) incubated intact sediment cores from the
epilimnion of four Wisconsin lakes to determine the affect of various
environmental parameters on sediment phosphorus release. Sediment
resuspension was shown to either release or remove phosphorus from the
water column depending on the sediment content, the temperature and the
redox potential.

Bates and Neafus (1980) obtained a small increase in dissolved
phosphorus levels in laboratory cultures which included sediments from
Lake Carl Blackwell, Oklahoma, when the sediments were mixed into
suspension. The interpretation of these laboratory results should be made
with caution, however, since the conditions in the laboratory are not
necessarily natural ones.

Ryding and Forsberg (1977) presented nutrient budget calculations for
four lakes all of which showed the in lake release of phosphorus from the
sediments was substantially greater than that measured in laboratory
cultures.

Yousef et al. (1980) found significant phosphorus enrichment can
occur when bottom sediments are resuspended by motor boats in shallow
lakes.

Suspended sediments also influence the depth of light penetration in
a water body. In Lake Balaton, Hungary, (mean depth 3.1 m), suspended
solids concentrations range from 5-200 mg/1, and allow the depth of "light
penetration” to vary from the entire water depth to tens of centimeters.

The potential importance of resuspension should be contrasted with
the ignorance with which sediment interaction is included in water quality
models. Typically sediments are treated as a black box into which

particulates settle and from which nutrients are exchanged via a diffusive
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type process. For example three eutrophication models (Leonov, 1980;
Kutas and Herodek, 1986; and Van Straten, 1980) have been developed for
Lake Balaton. All three models consider the importance of extinction on
light penetration in the water column, yet none include the role of
resuspended sediment in extinction. All three models consider nutrient
exchange between the sediment and water, but only Leonov (1980) makes any
attempt to include the effect of resuspension. This was done by assuming
that resuspended particulate inorganic phosphorus (RPIP) and resuspended
dissolved inorganic phosphorus (RDIP) were related to wind speed by
separate power laws. The implementation of these relations required
values to be assigned to four parameters. Leonov (1980) calibrated these
parameters along with numerous others based on routine water quality
measurements (which do not include measurements of RPIP or RDIP) typically
made bi-weekly or monthly within the lake. Considering that the
characteristic hydrodynamic forcings in the lake are storms of 12-24 hour
duration, it seems difficult to believe that the resuspension effect was
accurately represented.

To this point, a case has been presented for the importance of
sediment resuspension in affecting lake eutrophication -- particularly in |
shallow lakes. One potential mechanism for studying this process is to
monitor in situ the changes in the aquatic chemistry and biology caused by
natural or artificially created resuspension events. Unfortunately,
specific cause and effect relationships are difficult to isolate since
resuspension can concurrently have opposite effects on a single process,
e.g. if resuspension increased the nutrient supply it would tend to
increase the algal growth rate but at the same time the decreased light

penetration would decrease the growth rate. Also, results gathered from
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these experiments are of little use in describing the transport of trace
metals, pcb’'s and other potential toxins which often adsorb to fine
sediments in natural water bodies. Finally, these experiments shed little
light on the physical process of resuspension of fine sediments -- a topic
which until very recently has been studied only in laboratory flumes under
steady flow conditions. Therefore, it is assumed that the influence of
fine sediment resuspension on water quality can be separated into at least
two parts, i.e., the chemical and biological interactions which occur
between a suspended particle and its aqueous environment and the
hydrodynamical processes which cause that particle to be eroded from its
sediment bed. It is the intention of this work to focus on the latter
process.

The field study and modeling which comprise the major part of the
work described in the remainder of this document were conducted at Lake
Balaton, Hungary, which is shown in Figure 1.1. The lake has a maximum
length of 77.8 km and an average width of 7.7 km. Two additional unique
physical features of the lake are its shallow depths, (mean depth 3.1m),
and the Tihany Penninsula, which nearly divides the lake into two parts.
The narrow neck of water connecting the two ends of the lake contains the
maximum water depth, which reaches 11.6 m. As shown in Figure 1.1, the

lake has been arbitrarily segmented into four basins primarily for the

purposes of scientific study. These basins are referred to in the
remainder of this document in terms of the major city associated with
each, i.e. from west to east, Keszthely Basin, Szigliget Basin, Szemes
Basin, and Siofok Basin.

The principal tributary to the lake is the Zala River, located at the

western end, while the only outflow is the Sio Canal near the eastern end.
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The hydrologic through flow is very low in the lake (~ 0.01 cm/s) and the
tributary input is quite closely balanced by evaporative loss. The
principal hydrodynamic forcing in the lake is due to storm related wind
events. The prevailing wind direction is roughly from the NNW and,
therefore, transverse to the lake's long axis.

Until the early 1970's, the lake enjoyed excellent water quality, and
this, coupled with the temperate climate, contributed to its immense
popularity as a recreational area for much of Central Europe. However,
the 1970's saw a rapid decline in the water quality to the point that mid
to late summer water at the western end of the lake is aptly described as
being "pea soup," and periodic fish kills result from oxygen depletion.
Associated with this decline was the development of a water quality
gradient along the lake axis, which rougly corresponds to the distribution
of external loading. At its worst point, the western end of the lake is
severely hypertrophic while the eastern end remains mesotrophic.
Throughout this process phosphorus has been the principal limiting
nutrient, although in recent years evidence suggests that nitrogen and
light penetration may also limit algal growth in certain situations, (S.
Herodek, personal communication).

In an effort to reverse this problem, several sweeping steps have
been taken to cut off the external nutrient loadings to the lake. These
include: (1) re-routing the Zala River through a marshland near its
mouth, which will hopefully act as a natural settling basin and remove
many of the nutrients before they enter the lake, and (2) constructing an
extensive sanitary sewer system to collect and treat domestic waste and

ultimately to divert it into the Sio River, which is downstream of the

lake.
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As a result of these steps, the lake makes an interesting case study
into man-made, or so called "cultural"” eutrophication, and more
importantly into attempts to reverse this situation. It is in this
respect that an understanding of the role of sediments, which potentially
collect and store many years worth of external loadings, becomes critical.
The shallow depths and large open fetches of Lake Balaton suggest that
resuspension may play a significant part in this process.

The remainder of this document is broken up into five chapters.

Chapter 2 describes the system of field equipment developed to
measure wind events and the resulting hydrodynamic and sediment response.
Experiments were conducted at two locations in Lake Balaton in the summer
of 1985, and these results are presented as well.

Chapter 3 begins with a conceptual model of the sediment-water column
boundary, which is then used as a framework for organizing and
interpreting previous theoretical laboratory, field and modeling studies
on the response of a cohesive sediment bed to an applied forcing. The
chapter concludes with a recommended bottom flux boundary condition for
modeling the suspended sediment concentration data collected in the field
study.

Chapter 4 discusses the hydrodynamics which are responsible for

sediment resuspension. It is shown that waves can be expected to have a

dominant role throughout most of Lake Balaton. A wave hindcasting model
is presented and then verified using available historical data along with
data presented in Chapter 2.

Chapter 5 contains the resuspension model which is calibrated using
suspended sediment and simultaneous hydrodynamic data collected in

Keszthely basin as a part of this study. Verification is provided over a




15 day period using wind speeds measured at a nearby meteorological

station, the wave model developed in Chapter 4 and measured suspended

sediment concentrations.

Chapter 6 presents conclusions from this study as well as

recommendations for future work.
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Chapter 2

Field Study

One of the principal goals of this thesis was to obtain field data
detailing the hydrodynamic behavior and sediment response in Lake Balaton
to episodic storm events. Previous measurements dating back to the early
1960s have been made in Lake Balaton and have shed some light on these
processes. They are briefly reviewed after which the experiments conducted

as part of this study are presented.

2.1 PREVIOUS MEASUREMENTS IN LAKE BALATON

At various times wind speed, water level, wave parameters, water velo-
city, sediment erosion, and suspended sediment concentration have been
measured in Lake Balaton. Unfortunately much of these data exist in re-
ports written in Hungarian and therefore are somewhat obscure. However,
Somlyody (1979) has summarized the results of much of this work and his
report is used as a basis for part of the information presented below.

Wind measurements have been made at seven locations around the lake
(Figure 2.1a). Results show that typical wind events are associated with
weather fronts and have durations from 12-36 hours and on average blow from
the NNW. The terrain to the lake's north is quite hilly, causing generally
lower winds along the northern shore in comparison to the southern shore
and a substantial variabilty in the wind field along the lake.

Water level measurements have been made at as many as fifteen loca-
tions around the lake, (Figure 2.1b), and show that the lake has a

characteristic longitudinal and transverse seiching behavior. The maximum
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longitudinal difference in water level from one end to the other is about
1 m while the maximum transverse difference is about 0.40 m. Muszkalay
(1973) found a longitudinal seiche period varying from 10 minutes to 1 day
with a mean period of about 5.5 hours, while work done at the turn of the
century suggests a longitudinal seiche period of 10-11 hours and a trans-
verse period of about 40 minutes. Muszkalay (1973) proposed empirical
relationships for the maximum longitudinal water surface slope from an
analysis of typical storms using over a decade of data, (Table 2.1).

Water velocity was measured by Muszkalay (1973) at three locations in
the lake and by Shanahan (1981) at several additional locations
(Figure 2.1c). Most noteworthy of Muszkalay's measurements were the
results obtained from a vertical mooring of four current meters at the
narrowest point in the lake, the Tihany Strait. These showed a strong
unidirectional current over the depth which was principally due to the lake
seiching motion. Again based on his data Muszkalay (1973) defined an
empirical relationship between the maximum value of this unidirectional
current and the water surface slope, (Table 2.1).

Shanahan (1981) deployed a Marsh-McBirney electromagnetic current
meter attached to a 5 m-long pole and visual readout over the side of an
anchored ship and made short-term measurements of the vertical distribution

of the mean horizontal velocity by raising and lowering the current meter

to selected elevations. The measurements were made over three days during

which the winds were light ranging up to 3.5 m/s. Shanahan (1981) verified
the strong unidirectional currents in the Tihany Strait but at other
locations found highly transient values apparently responding to the
unsteady turbulent transport of wind shear vertically in the water column

as well as the seiching behavior. Rarely did he find the classical
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Table 2.1 Empirical Relationships Describing Lake Balaton Hydrodynamics
(from Muszalay, 1973)

I. longitudinal Water Surface Slope
(i) wind directed within 22.5° of the lake's long axis

I =3.8x 10'7D°‘25(Wal_ - 2.8) (2.1)

(ii) otherwise

I

1.05 x 107D 28(W  + 13.5)7°- ¢ (2.2)

where:
I = maximum water surface slope (maximum difference in water levels
between the extreme ends of the lake divided by the length of the
lake).

waL= longitudinal component of maximum instantaneous wind speed at

Szemes. (Somlyody and Virtaen, (1982), found the maximum wind
speed typically exceeds the hourly average wind speed by a factor
of 1.2 - 1.3.)

D = wind duration in hours (Eqs. 2.1 and 2.2 valid for D < 12 hours)

II. Water Velocity at Tihany Strait

500 I°°® - 0.5 (2.3)

-3
n

velocity in Tihany Strait 1 m below the surface

o
]

III. Wave Relationships at Szemes

(i) Mid-Lake Station (depth = 4 m)

H = 0.0827(W_ - 1)0-72¢ (2.4)
12w -8
T = a (2.5)
20 + WL '

Near-Shore Station (depth = 2.5 m, 200 m N of southern shore)

H = K,(wa - 2)0-728 (2.6)
sowl.s
T= 2 (2.7)
K, + 15W'"®
a
Wind Direction _NNW NW,N_ WNW.NNE _W.NE
K, 0.1125 0.1025 0.0855 0.0685
Kz 168 192 192 192
WSW,ENE _SW.E  SSW,S,SSE ESE,SE
0.0585  0.0525 0.0470
192 192 192

where:
H = rms of 100 waves (meters)
T = waver period (sec)
Wa = wind speed (m/s)



velocity distribution consisting of a surface current aligned with the wind
and a bottom return current in the opposite direction.

Wave measurements have been made at four locations in Lake Balaton
(Figure 2.1d). Typically these were conducted three times daily, each over
a 5-minute duration. Muszkalay (1973) analyzed the measurements by
examining groups of 100 waves. Statistical results for the mid-lake and
near-shore station at Szemes are shown in Figure 2.2. Empirical fits made
to the data are included in the figures. The relationships are listed in
Table 2.1. The effect of varying wind direction, (presumably a fetch
effect), was noted in the nearshore measurements and empirical
coefficients. Unfortunately neither fetch nor depth were explicitly
included in these empirical relationships and therefore it is not possible
to extrapolate their predictions to other locations around the lake.

Suspended sediment and erosion measurements have been made at a large
number of sites throughout the lake. Characteristic results are that the
southern shore is being eroded as rapidly as 1 m/year. Erosion is
particulary great during events in which the wind blows from the north
across the lake, which is roughly the prevailing direction. Under these
circumstances it is believed the soil eroded from the southern shore is
transported toward the northern shore by a near-bottom return current. As
a result the southern shore has been stripped of its fine sediment and
consists mostly of coarse material while the bottom along the northern side
is typically fine. This has been qualitatively verified by following
marked sediment particles in the field, by a physical model in the
laboratory and by observations that particle sizes in suspension along the

northern shore after a storm are often larger than those in the sediment.
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The most extensive data set regarding suspended sediment in Lake
Balaton has been collected by Somlyody (1980). Daily measurements were
made in 4 m-deep water, in the middle of the lake at Szemes for 4% months
during the summer of 1979. Samples taken from five locations over the
vertical showed a sediment concentration that was effectively uniform to
within 1 m of the bottom. Unfortunately the only other data measured at
the time were wind speed and direction at the shore-based meteorological
stations. (Note: the station shown in Figures 2.la-d in the middle of the
lake opposite Szemes was destroyed in a storm in the early 1970s.) The
daily sampling period makes quantitative conclusions about the sediment
response to storm events difficult since frequently these events last for
less than a day. Also it is difficult to distinguish the difference
between sediment resuspended at the sampling point and sediment resuspended
in the near-shore region and transported to the sampling location.

A final data set which is useful in the present context is the recent
work of Mate (1985) who has mapped the sediment characteristics in Lake
Balaton, taking over 6,000 core samples of the upper sediment layer (at
least ten samples/square km). Among the paramters determined were particle
size distribution, based on a correlation to hygroscopic moisture, and
various chemical contents. Figure 2.3 shows the results of the particle
size analysis and is generally consistent with the concept of coarser
sediment along the southern shore and finer material toward the north.

Overall, the previous measurements in the lake provide a reasonable
qualitative description as well as some quantitative information about the
lake behavior under storms and about the behavior of bottom sediment.

However, to date there has been no combined effort to measure both types of
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processes simultaneously and therefore to examine sediment response in

detail under measured hydrodynamic conditions.

2.2 EQUIPMENT

It was necessary to assemble a system of equipment that was capable of
measuring both the pertinent hydrodynamic processes and the sediment
response. The selected system consisted of a wave staff, wind speed and
direction equipment, an ABSS particle detector, two BASS current meters, a
data logger capable of sampling and recording data from each of these
instruments and a remote radio control. The entire package was mounted on
an aluminum tripod as shown in Figure 2.4. A large part of this equipment
was built by the Sea Data Corporation of Newton, Massachusetts, to meet
this project's needs. Specifically, they designed and constructed the data
logger and the wave staff. They also constructed part of the two BASS
current meters. Each piece of equipment is described below in more detail
together with design information and calibrations when appropriate.

For posterity’s sake a short note should be included about the Sea
Data Corporation. Initial contact was made with this company in the Fall
of 1983 leading to design specifications and the awarding of a contract in
early 1984. The company gave a completion date of the beginning of June
1984. In reality almost no work was initiated on this equipment before the
completion date. A system was not delivered until January 1985 at which
time tests showed that none of the instruments worked correctly, if at all.
Thereaf ter, six months of the writer's time was required to work out many
of the system's problems. These problems ranged from miswired cables, to

inferior workmanship, to faulty design and they ultimately led to the
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premature termination of the experiments as well as to the inability to use
data from the wave staff. It was also discovered that at least one of the
circuit boards included in the BASS current meters, as delivered by the Sea
Data Corp., had actually been loaned to that company by the original
designer, Dr. A. J. Williams III of the Woods Hole Oceanographic

Institution (WHOI), to be used as a construction guide and for testing.

2.2.1 Data logger

The data logger was designed to aquire and record data in "bursts.”
Using such a strategy the instrument was turned on for a specified time, to
standby for a specified time, and then on again, etc. This allowed the
collection of data at a relatively high frequency without filling up the
storage medium (in this case a cassette tape) in an unreasonably short
period of time. The on and standby times for which the equipment was set
are listed in Table 2.2 together with the total amount of operating time
before a cassette tape became filled. Using the remote radio control it

was possible to switch between sampling strategies as well as turn the

equipment to continuous standby.

During the burst (or the time the equipment was taking and recording
data) each instrument could be sampled as rapidly as 2 Hz. This top-end
rate was a compromise dictated principally by the available budget. It was
accepted as being adequate to define the surface waves which typically have
a period of about 2 sec in Lake Balaton. It was assumed that these were
the most important high-frequency energy components. Specifically,
measurements were taken at 2 Hz from the two BASS current meters, the wave

staff, and a vertical sediment profile was taken using the ABSS. The
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Table 2.2 Sampling Strategies

*Deployment time to fill a

Sampling On Time Standby Time
Rate # (min) (min) 450 ft cassette tape (hrs)
1 3 0 6
2 3 2 10
3 6 4 10
4 6 9 15
5 6 14 20
6 6 24 30
7 6 54 60
8 9 21 20
¥ 0 - -

2
These times assume a sampling frequency of 2hz while the
equipment is on

¢
In this case the instrument was in continuous standby mode

vertical ABSS profile consisted of 128 measurements, each corresponding to
the acoustic backscatter from sediments at succeedingly further distances,
Ax, from the instrument (in this case Ax * 1 cm). As a result a large
amount of data was generated by the ABSS in a very short amount of time and
it was not possible to take vertical profiles during the entire burst time.
In fact only 40 vertical profiles, one every 0.5 sec, could be taken every
3 minutes. Thus for the first 20 sec of every 3 minutes of on time the
ABSS was sampled.

Data from each instrument was recorded on a cassette tape which was
located in a remote capsule made of clear Plexiglass outside of the main

data logger and electronics housing (Figure 2.4). The remote recorder

capsule and main housing were connected by an underwater matable connector
so that a diver could remove the remote recorder capsule for the purpose of

changing the cassette tape without removing the entire instrument system.
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This greatly facilited the equipment’s use; however, ultimately it led to
the premature termination of data collection since the contacts on the
underwater connector corroded rapidly when the capsule was detached. (This
was due to the fact that the system design left the main power to the
recorder capsule on while the equipment was in standby mode). During the
course of the experiments in Lake Balaton twelve cassette tapes full of
data were written. However, due to the corroded underwater connector the
final three tapes were blank. Also, mysteriously, data on tapes 4 and 7
was unintelligible. This may have been due to improper loading of the
cassette into the recorder.

All of the equipment was powered from a battery pack consisting of
individual "D"-size batteries wired together to give the desired output
voltage and as long an operating life as possible. The battery pack was
located in the bottom of the main electronic housing. This turned out to
be quite inconvenient since the battery pack life was only 2-3 cassette
tapes. Consequently a battery change required a complete new deployment.

The data logger, electronics for each of the instruments, and the

battery were encased in a steel pressure housing and comprised the main

electronics package, (Figure 2.4).

2.92.2 Remote Radio Control

The sampling strategies shown in Table 2.2 could be set or changed by

varying an input voltage to the data logger. This was accomplished
remotely using a radio control designed and built by the author. This

capability was a crucial part of the instrument system since storms came up

often with little advance notice and were separated by prolonged periods of
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calm weather. Without this ability little useful data could have been
obtained without unreasonably frequent redeployments to change batteries.
(A single removal and redeployment took about eight hours and required at
least three people.) Thus the irregular, event-based nature of this study
necessitated the ability to vary sampling strategies. Since it was often
impossible to be physically with the equipment this had to be achieved over
short but significant distances. It was accomplished with two Radio Shack
o-watt walkie-talkies, a tone generator similar to that found on Touch-Tone
telephones, and a small tone decoding and switching circuit. The circuit
diagram is shown in Figure 2.5 while the entire switching assembly is shown
in Figure 2.6. The assembly was located in a capsule made of two short
lengths of 4"-diameter PVC pipe with two end caps and a threaded coupler.
The assembly was mounted on the mast used to support the wind-measuring
equipment. The assembly was equipped with an override switch which could

be used to manually force the equipment into a continuous sampling mode in

the case of the failure of the radio control. Overall the radio-contro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>