
CAMBRIDGE

MIT/LCS/TR-182

A Framework for Pracauing Dialogue

Gretchen P. Brown

June 1177

Thia r,_rch WU lllpported bJ the
Advanced JltNIJ'Ch Projecta Apley of the
Department ol Dtftnll and WU manttored
by the Officl ol Naval JltllUCh under
Contract NumlMr NOOOH-71-C-OML

Masaachusetts Institute of Technology

Laboratory for Computer Sci..-.C.

(formerly Project MAC)

MASSACHUSETTS 021'9

2

Abstract

This report describes a framework. for handling mixecMnitiative English dialogue in a
console MIilon environment, with emphaiia on ncopltlon. Within this framework, both
linguistic and non•Unpiltk: activltiel are modlllld by ltnldllret called ""'"""'• which are a
declarative form of procedural knowledse. Our dtlisn foeu1t1_on units of linguistic activity
larpr than the lpllCh act. ,o that the prapnuic UICI umantic context of an utterance can be
used to guide ltl illtlrpretation. Also important ii the tnatffl4IDt of lndirecc speech acts, e-1 .. the
different ways to uk a queation, stve a command, etc.

Olvm the static model o(dialope embodied in the methods, the problem is to find the
correct ffllthod .., that nllttl to a particular input. Wt handle this problem throuch a
combination of careful ltl'UCtUral dllttnctionl and tht U11 ti multiple recapWon 1tr1t11i11.
The dialape methods are UIICI. to ~ apectatlont dynamk&Uy, apecial structures are used
to facilitate matchtnl, and a buk: dJltinction bttwtln four major utterance claues ii uaed to
determine which of lffll'.&I ovttall matching should be med for a 11ven expectation.

Acknowledgements

This research was supported by the Advanced R...,.ch Projects Agency of the Department of
Defenae and was manttancl by the Office of Naval Rtllll'Ch und• ConU'&ct Number NOOOH
'5-C-086L The apedfic:adonl for SUsit Sottware wn develaped by Proteuor William Martin,
and many of the ldtu preatntld here grew out of dilCU__, with him and with the L.C.S.
Knowledce Buld Systama Group. My thanka to B. Bruce, C. Bullwinkle, L Hawkinson, R.
Krumland, E. Lnia, W. Lane, W. Mark, A. Sunguralf, ancl P. Szolovits for their help and
advice.

Contents

1

2

3

3.1

3.2

3.3

3.4

4

5

6

6.1

6.2

6.3

7

7.1

7.2

8

9

10

3

A Framework for Processing Dialogue

Introduction . 4

Keeping Dialogue Manageable •.•...•..•.•....•.•.• 8

Conversational Exchanges ••••••..••...•.•........ 11

What They are and Bow to Model Thea ••••••••••••• 11

Core Methods . • • • . • • • • • • • . • . . • . • . . . • • . • . 16

Basic Utterance Types ••.•••.•.•.••...•.•••...•.• 19

Analyzing the Sample Dialogue ••••••••••••••••••• 23

An Introduction to the OWL System ••.•.•...•••••. 25

An Outline of 'Recognition Strategy .•.••..•.•..•• 32

Recognizing When a New Task is Inltiated •••••••• 38

The hoblem . 38

Initiator Keys .••••••••••.•••••.••.••.•..•...... 42

When Not to Match Against Initiator Keys •••••••. 46

Fitting a Uaer Input to Open Tasks ..•........... 48

Expectations • . . • • • . • . • 48

WAY Evaluators . . • . • • . . • • . . . • • 52

The Best-Laid Plans: Recognition in Failure ••••• 56

Situations

Metadiscussion
Conclusions

References•...•..•....•.....................

Append.h ••

59

62

64

66

4

1. Introduction

In recent years, increasing a&tention bu been gtven to expert aystema in domains such as

management information, medical. records and dilgnolia, alftbraic manipulation, and automatic

programming. The expert aystem hu some spedaUzed knowledge and capabililiel, and its user

11 usually auumed to be knowledgeable In tht area of application, although not necessarily

knowledgable about computer operations or computer languages. There 11 a good dal of

support for the premise that a f1exJble, reliable natural language interface would increase the

uaef'ulneu of expert ayattms and widen their uw cammunlty. The tuk of constructing such

an interface, however, hu turned out to be a dlffiaalt one.

This paper describe& a framework. far such an English languace interface, using

automatic prapammiflC u the area of' aystam expertue. The user would come to the system

with an idea of the input/output behavior he or she wanted from a computer program, and the

expert system would produce the proc,am to thlN specifications. Automatic programming is a

good domain for the purpose of' exploring 11111'/expert system interfaces because it demands

relatively complex linguistic capabilities: in the normal course of writing a program not only

are questions uk.ed and anawered, but descriptionl and explanations must be generated as well

Any natural language interface for this domain, then, is forced to deal not only with individual

sentences but also with several sentences relating to each other and to the rest of the dialogue.

The framework that will be presented is dfligned far typed, rather than spoken, English

dialogue in a mixed-initiative conlOle NUion environment. The basic approach lak.en has been

to model dialogue u a process. Knowledge of' how to carry out a dialogue 11 represented

5

explicitly in the 1yatem, primarily in tht form of structur• called 1Mtltod1. Methods are written

in OWL. a language tor reprtllntin1 know~ their function ii to provide a declarative

representation for proc:tdural knowledp. Mtthodl are wed to represent both linguiltic and

non-linguiltic acdvldel. In addition, they are· med to represent both k.nowledg~ about

particular talks (such u writing a pro,nm for antane •> and more gfnel'al knowled1e

about dialogue (for aample, the sequencta of activity that correspond to uk.ing and answering

a question, uktnc for and cfvi"I a dacrlptlon, and 10 forth). The limllar treatment of talk

k.nowledp and pneral dialogue knowledp ltlml from the conviction that a1thou1h the two

areas differ in same respects. activltlel from both anu contribute directly to dialogue

prodUCCion.

The introduction of a Jet or mtthoda ii nat, however, enough. We allO need mechanilml

that enable III to u,e methods ro model /Mrtlau• dialagueL There are two Iida to thil

problem: a system mu1t be able to relate a user input. to the oncmnc dialogue, and it must be

able to generate an output. Thia paper wiU focus an the former requirement. which amounts to

language understanding. Wt do not undtnllimate the difficulty of language generation, but it

appean to be euier to achieve a minual level of uaefulneu in. a generator than in an

understanding module.

The ideas presented here have been implemented in a prototype system called Susie

Software. I The SJltlffl currently performs the Internal manipulations necmary to support the

I. Susie Software ii embedded in the OWL-I system. which runs on a PDP-10 under ITS. OWL
ls being developed at M.I.T's Laboratory for Computer Science by the Knowledge Based
Systems Croup under the clirectlon of William A. Martin. Dnelopmtnt of the Susie Software
dialogue facility began in 197-f.

6

ample dialogue 1tven in r11ure 1. Thtre and in othtr exampla of dialogue, asterisks indicate

lines typed by the· uaer. Note that the protatype ayatem currently inputs and outputs OWL

expreutons rather th111 Enrlilh ones; the boundariea of the Implementation wiJI be diacuued

rurther in the course ol the presentatlon.

In temu of current artificial intelligence research, OWL methods correspond roughly to

Minsky's rramea [II] ar Schank and Abellon'a acrtpta Dfl althouch the highly centralized

control atructure of the OWL Interpreter dtrfenntia• it from many exlltinc lmplemencationL

The dialogue environment that we have chOIIII ii limilar to that dllCl'ibed by Deuuch I?,] for

the worutation domain and alto that dtlcrtbld by J.S .. Brown et.al [2] ror tlM SOPHIE 1ystem,

but our work. diff'en from both or theat in the Incorporation ol an explidt model of dialope

activitiel. FinaUy, the method• that ·are 1111d to model dialape resemble the social· action.

paradtgma of Bruce C,] u well u the reprtNlllaCiolu of dJalape pnm dacribed by Levin

and Moon [ll Thi moat important contrue -- .Mhodl on thl one hand and social

action paradlgml and dalope pma on the other ii the cliltlnction between acandard path

method atepa and recovtrJ path 1t1p1. Thu dutinc:tlon, which ii atranglJ madvated by acceu

conlideratlonl. wiU be dilcuued in more detail below.

In the sections that follow, we look flnt at the waya that the Sulie Sortware environment

wu conatraiMd in an effort to limit the problem. Section S then dilcuua the UM or mec~•

to model dialogue activities, and Section f gtv• a brief lAtroduction to the OWL-I syacern.

FOClllling on recopltion, Section 5 IUmMltiltl the approach taken, and sections 6 through 9

discuu recognition for individual' utterance typea. Finally, Section 10 conliders the prototype

system in the light of the requirements of a practical working environment. An introduction to

OWL-I notation can be found in the appendix.

7

1 Hello, I am Susie. What is your name?
• Bill
• I need a prapam to manipulate blocu wriCttn.

I can help JOU write a prapam· ,Which butldl a ICll'll uanc the blocks from another scene.
5 • That ii what I want.

O.K. I need a d-=ription of the initial and final anes.
• The final KIM cmatainl S blocb: Bl, B2. and BS.

O.K.
• What elle do you want to know about the final scene?

10 What are the polldona of Bl. B2, and BS wiCh ft1p1CC to each other?
• Bl ii on top of B2 and BS ii on tap of BL

O.K.
• Initially, all of them are on the table.

O.K.
15 • Can you write the program from that?

I have enough inf~ to saart Writing the program. I can't determine
all of the tnf ormation which I wiU need until I write the program.
• O.K.

Do you want me to decide implementation islues such u what hand to grasp a block with?
• Yes.

20 I have finished the program. Do you want me to describe it?
• Yes.

Using my left hand, fint I put Bl on top of B2. and then I put
B3 on top of Bl.
• Oood-bye.

Figure 1. A sample dialogue with Susie Software.

8

2. Keeping Dialogue Manageable

In the Sulie Software effort. we have explored waya to achieve a level of dialogue

flexibility withaut acrifldng pl'OCtllin(reliability and while keepln1 response time within

nuanable bounda. Unfortunately, the experitnce in cornputattonal linpistia has been that

even relatively unaU amounts of flexibility in a natural Jancua1e system can lead to gn ve

combinatorial difficulta To keep the dlalape problem mana,table. Suaie'a environment wu

carefully constrained along the following dimenaianl:

(1) communication channel
(2) choke of application uea
(3) number of tub performed
(-t) complexity of l8ll&Dtic domain

Alon1 the first of thlle dimensions, communication channel, the limltatiOn to typed input and

output has already been mentioned. We are alto usuminJ that input is free of spelling error•

and grau grammatkal lnaccuradel (althouch run sentences ue not required). Finally, there is

a alight control biU on the aide of the 1,-n. atnce the user may type only when an asterisk. Is

output by Susie and then only a single ..,tenet or llfttence fragment at a time.

The second constraint ii the choice of application area. Here. the decision to construct a

task-orNnted environment (in the Mnse used by Deutsch 00) u opposed to, say, a system to

model casual dialogue already acts u a constraint For example, a task environment defines

the aspects of UNI' input that ue Important. so that the problem of deciding why a piece of

information was input ii gnatly reduaid. Beyoncl this, the ltl'UCtUre of the primary task area

chosen for Susie Sof'tware - programming - aUowa us to exploit stron1 expeccauons once a

9

specific task ls underway. At any given point in the course of producing a program there are

only a small number of basic ways that the uaer and the system may interact (although the

conlmt of these interactions, of' course, wlll vary considerably).

Third on the list of constraints is the number of different tasks performed. Susie's

projected abilities are limited to writing programs and answering user questions about system

capabilities and previous activities. This means that the range of user requests for new tasks is

relatively small. The limitation on tasks turns out to be panicularly helpful in a mixed

initiative environment where any uaer utterance may theoretically be the stan of a new task.

The founh and final constraint is on the scope of the semantic domain. We have been

working with the world of 2-dimenslonal toy blocks, a common stantn1 point due to the

simplicity of the domain and its clearly defined semantia. We envision a system bulk along the

principles found ln Susie Software to be useful in areas such u business payroll processing,

inventory control, etc. These domains are not trivial ones, but they also are not u complex u

some others.

Besides constraining the environment in the four ways discussed, we believe it is

necessary to embed a Jilnif icant amount of knowledge in a system .. This knowledge is of two

basic types: knowledge about the semantic domain and knowledge about dialogue in general

Taking the semantic domain first, we feel that it is essential that the domain be spanned in

order for a system of this type to be practical By •spannecs■ we do not necessarily mean that

every pouible URI' qumion can be anawertd or every poulble program produced. Instead, we

mean that the system should have a good enough model of' itlelf so that questions or requests

that cannot be handled can be given appropriate ruponsa A simple "I don't understand•

10

would not be consldered adequate in moat cues. Note that at present no attempt is made to

span the semantia of the blocks world, and correspondingly the implementation lacks

robustnesli the domain-specific kaowltdge that is in the system, however, seems to be a

representative sample.

In addition to knowlldp abaut the llffl&ntk domain, we mentioned knowledre about

dialogue. We beliffe that a flexible, reliable. and efficient dialogue processing system needs a

sound model of dialape ltl'Uc:tUre. In a sense. this model is the grammar of dialope. although

the model that wiU be dilculled hen la a computational one, nat tuily reduced to a Mt of rules.

(No such attempt bu. in fact. been made.) The term ''""""' is used for what others might

call the syntax of dlalape. Many •1CrUCtUra1• phenomena are semantic ln flavor (akhough

they do not necessarily vary according to the specific Nmantic domain). and the use of the term

s,ntax might be milllldinJ. For -.,nple, the race that qutlCions get answers is easily enough

called •dtalopa ayn&ac:Uc,• but the fact that Wwtn may have a110dated stipulations C'\'a.

if-9) or q~alif'icationl ("Ya, but-i bectna to stretch the c:annotations of the term s,nttUtk. The

model of dialogue to be ducussed will therefore be ref erred to u a structural one.

The Susle Software mviranment. thin, hu two propertiel that we consider crucial for a

fint pass at flexible, practxal. man-machine cUalape. Fine, it is carefully constrained, and,

second, the system contains a model of the ltrUCCUrll upeccs of dialope. It is this scructural

model that will be the topic of the rest of this paper.

11

S. Conversational Exchan&U

5.1. What They are and How to ~odel Them

Lookinl at the sample diatocue, we can pick out groups of lines that appar to belon1

together. A simple example of such a unit would be a question plus its answer:

What is your name?
• BUI

This is an example of what we will call a conwrscttonal acliang,. At the more complex end of

the conversational exchanre scale (akhough outside the scope of the Susie system), would be an

exchange like formal debate. A debate program might consist of several subsections and many

steps. The conversational exchange is a structure at the interpersonal level of dialogue. This

places it at a higher level than the speech act (Searle D&D, which does exist in a conversational

environment but which ii carried out by a llngle agent. For example. promising and accepting

the promile would be two speech acts. but they would form a angle conversational exchange.

The notion of a conversational exchange ii llmllar ln spirit to the ldeu of sequence and

adjacency pair formulated by Schegloff and Sacks 051 In both cases the concern is to establish

a structural unit with uaociated expectations. so that it is pouible, among other things, to

account for a situation where some conversational event does flOt occur.

This is not to say, of course, that dlalocues can only proceed by relentleuly completing

conversational exchanges. Many dialogues are much lea orderly, their structure influenced by a

set of competing goals. In Carbonell [.fl we see an example of a conversational exchange (a

question-.nswer sequence) that remains temporarily uncompleted:

Approx what ii the area of Argentina?

•Tell me IOffllthinl about Ptn1t

Peru ii a country.
It ii 1ocata:I in South America.
The capital of Peru ii Lima.

12

Now anawer the queatian you didn't anaw• before.

•The ana ~ Arpntlna ii U00.000 square miltu

Thua. while the nadon of a canvenational achan1e ii an· important one. it ahould not be

rigidly applied in modelling a partieular dialope. We.will• that the Susie Software system

uaes the expectation• aet up by a canvenational exchange in attempting to undentand a user

input, but these expectations are ulld in a very flexible way.

Canvenational exchan1• are modelled uan1 OWL-I methods. Since the question-answer

exchange ii a relatively limple example, we will pursue tt further. An Englilh translation of'

the OWL-I method f'or the qutltion-amwtr achanp ii (iYln in· Fiprt 2. The actual method,

along with an introduction to OWL-I notation, can bt found in tht appendix. Methods have

three main parts: a header, argument lpldfkationa. and procedure atepa. The header ii tht

method'• unique name, the argument specifications, orpnized into semantic cues, are wed for

type checking of inputs to the method or to lpldty the form of outpuu. and procature lteps.

along with their aslOdated input cue wtphltnta, form the body of the method. The ateps

come in two varieties, stnfl4rd /#Illa and ,,_,,, /#It"- Thia dilttnction will be discussed

further later on, but, buically, ltllldard paths repwt the ways that an exchange can •go

right,• while recovery patha give same of the possible measures to be taken when an exchange

13

The atructun of OWL-I rnethodl ii reflected in Fipn 2. Here, •uk.-and-an1wer•

corresponds to the header of the actual method. ASK-AND-ANSWER, which la an OWL-I

concept (Concepts. the buic unit of OWL-I, will be discuued in Section +, here and

throughout thil paper OWL-I conctpta will appear in capital lltten.) The ar1ument

apedf icationa for thil •ample conlilt of input cuea only; output cue apecif tcationl deacrtbin1

the reaulta of methoda do occur frequendy, but none were uaed for ASK-AND-ANSWER.

Loolr.in1 at the object cue lpldttcation in.Ftcun 2. we• that ASK-AND-ANSWER handlel

: '

all question, beud• how- and why-queattona. These other two varlltiel of question are

handled by ASK-AND-DESCRIBE and ASK·AND-EXPLAIN, two methods that will be

discuued funher later on in thil IICtion. Two other semantic cues wed for ask-and-answer

are the qent and c:o-qent. correspondinf to the participants in the exchance. By convention,

the agent of an entire dialape method la the apnt of the f trat seep, so that we can identify the

agent of the method with the participant who ttans It off.

The standard path steps for the question-answer exchanp ue steps l though of in Figure

2. The ask.-and-anawer method also has two recovery paths, akhough more could be written

euily enough. The first handlta the situation when an answer can only be given if there is an

auoc:lated stipulation, e.g., if line 19 of the sample dialogue were, "Y• if I tan 411 ,au tlbotlt

tw '"'"'• The NCOnd recovery path handlta the cue when no answer can be found. Both
I

of these failurea occur in the process of flricling the answer, step S, but the recovery path ls

associated with the ask-and-answer meth~. A different recovery path would be used if the

find-answer routine were called in another context. e.g .. r-.soning.

An imponant point about the uk-and-anawer example is that it contains the parta played

14

uk-and-answer

object: the question to be uked
(not a how· or why- quation)

agent: a penon or computer aystem
co-agent: a person or computer aystem

method:

1. The agent asks the question.
2. The co-agent now knows what the queation is.
S. The co-agent rtnda the answer.
4. The co-agent g&v• the anawtr and the agent gives an

(optional) acknowlldpment.

recovery path 1: lf a stipulation ls found alon1 with the answer
JUI The co-agent states the stipulation.
RL2 The agent a1rees to it.

recovery path 2: it the anawtr ls unknown
R2.l The co-agent saya that he dolsn't know the answer.

Figure 2. An English representation of a method for uklng a question and getting
an answer.

15

by both ,peak.en and ii intended for uae by the Interpreter whether it ii Susie or the user who

ia the one to initiate the exchange by uking the question. we will call this latter property

S/#4ut truu~. If ask-and-answer and the other dialogue methods are speaker

independent. then it ii up to the Interpreter to determine wh•her a partiaalar uuerance is to be

generated or understood. There are. in fact. three poaible modes of interpretation2 for a step

in a dialogue method:

(1) Carry out the step (e.g., uk a question).

(2) Recognize that a step hu happened (e.g., that an answer to your question has been

given).

(S) Assume that a step hu happened (e.g.. if your conversational partner gave the

an1wer, then he had to perform tht mental proc:ea of finding the answer f irsl)

i
Given the input case lettings in a call, the Interpreter uses a • of simple rules to determine the

mode of a step. Modelling the actions of both participants in a single method simplifies

procramming, redua11 the rotal number of methods to be written and maintained, and increase&

the uaefulnesa of methods. since they may allO be wed in a pure recosnitton lituation, where
I

the hearer is not a participant in the dialope.

One final general point about the dialogue methods ii their abbreviated form. For any

given apeech act. only production ii represented explicidy, and the activities of the other

2. A difference of terminology here. Throughout this paper. the words tnt,rpr,t and
tntn;,,tatton will be uaed to indicate actions of the OWL-I Interpreter. The meaning of
tntn;,11 found in utural lnf114p lnt111W1tatlon (u opposed to 7&4ttU'al lanpa11 pn,ratlon)
will be conveyed by r,a,ptu and its variants.

16

partner are left impUtit. Thus, akhough the Susie programs are speak.er independent in the

technical sense defined. they are not without a biu: it does not matter who ii specified as the

agent of a communication step, but. whoever ii. the •story• ii told from hil point of view.1

i.ucening• steps are left implicit not because they are unimportant. but because the form and

timing are predictable. Where a joint model of communication wu necessary (e.g.. when

misunderstandings occur) the system would be apected to expand the abbreviated model

expressed in the dialogue methods.

S.2. · Core Methods

In addition to the uk.-and-anawer 'method. the Susie Software system currently contains

thirty other methods needed either to run the ample dialogue directly or to provide a rich

enough environment to test the procedure llllction and matchJng routines. Recall that the

method representation conventions do not require the OWL-I programmer to diltinguish

between methods dtsiped solely for dialogue. methods that we dialogue to gather information

in order to get other work done. and non-dialogue methods such as block manipulation

routines. It is useful, however, to diltin.-itsh domain dependent method• that will necessarily

grow as the system ls extended from the set of domain independent methods that can be

programmed once and for all, requiring only minor modifications thereafter. This domain

independent group of methods which consiltl of dual-participant methods built around speech

acts, will be called""' tll4lop, uWs.

S. In describin1 the •active• bias of the method representation style. we do not mean to imply
that the rat of the aystem shares this b~ In fact. it does not.

17

Since core dialogue methods are organized around speech acu. let us start with the

treatment of speech_ acts in the Sulie Software system. The current implementation

diltlnguishes three categories which are represented by their corresponding OWL-I conceptl as

COMMAND-REQ.UEST. ASK, and TELL COMMAND·REQ.UEST encompasses the full

range of requests for a nonverbal activity, ranging over the different authority relationships

from ordering to pleading. Beaides nonverbal activities, it also handles requests for speech acts

for which the requeater is not to be the dtleinacton (e.g .. "Tell Harry what you told me.;. ASK

conveys a request for information, and TELL is the act that conveys information. Thia is a

very simple taxonomy, and u a system became more complex we would want to see it enriched.

Searle, in 07]. auggests five categorlea that would be weful u a top level of speech act

organization for implementation: representatives (to commit the speak.er to the truth of a

proposition), directives (to get someone to do something, either verbal or nonverbal),

commisaives (to commit the speak.er to IOfflt future course of action), expresaives (e.g .• thank.,

apologize, welcome), and declaratives (inltltutionalized speech acts such u christening a ship or

declaring war). These categories are useful, but it is the next, more specialized, level in the

taxonomy that is of most interest to us here, since this is the level that would begin to have

corresponding core dialogue methods. Let us consider each of Searle1
1 classes in turn. looking

at the class _members important to the Sulie Software implementation and their corresponding

core methods.

In a task-oriented system. the repraentative of moat interest is TELL. since this is the

speech act that makes statements. The correaponding core method is ST ATE-AND

ACKNOWLEDOE, which is a TELL activity followed by an optional acknowledgement on

18

the part of the hearer. Moving on to directives. three varieties are of interest: SUGGEST,

COMMAND·REQ.LJEST, and ASK. SUGGEST conveys a request that the hearer entertain

an idea (and so this type of request must also be ruled out of the range of COMMAND·

REQ.UEST). SUGGEST and Its corrupondtns core method SUGGEST-AND-ACCEPT are

not used by the Implementation at this time.

Two I imponant core methods usociated with COMMAND·REQ.UEST are

COMMAND-AND-RESPOND and ASK-FOR-AND-HELP. Each starts with a

COMMAND-REQ.UEST for an activity within the range of this speech act. The difference

between the methods ii that ln COMMAND-AND-RESPOND the requester doea not expect to

do any of the talk. while in ASK-FOR-AND-HELP the tulc. ii divided up between the

requester (agent) and the barer (co-acent). Thua. ASK·FOR·AND--HELP hu an explicit

subatep for dividing up the task appropriately.

The third directive. ASK, hu three ulOdated core methods, ASK·AND·ANSWER. ,

ASK-AND-DESCRIBE. and ASK-AND--EXPLAIN. AJ mentioned above. ASK-AND·

ANSWER handlea moat what·, where-, whether-, and when-questions. Why-questions are

handled by ASK-AND-EXPLAIN, and how-questions are spilt between ASK·AND·

DESCRIBE and ASK-AND-EXPLAIN depending on the type of information that seems

appropriate. Of coune ASK-AND-DESCRIBE and ASK-AND-EXPLAIN can also be

triggered by a direct request for a description or explanation, respectively. The motivation for

distinguishing ASK-AND-DESCRIBE and ASK-AND-EXPLAIN fr~ ASK·AND-ANSWER

is that the first two will tend to be involved with tonger answers that require more selection

and organization of the information. ASK-AND-DESCRIBE and ASK-AND-EXPLAIN are

19

distinguished from each other by the upects of the topic that are considered relevant; for

ASK-AND-EXPLAIN,_ the emphasis iJ on causal relationships.

This a~ntl for the core methods used in the current implementation, although it is

easy enough to write additional onea, such u PROMISE-AND-ACCEPT to correspond to the

commissive PROMISE. In addition, we would probably want to add separate concepts and

core methods for expreuives such u GREET and GREET-AND-RESPOND, TAKE-LEAVE

and TAKE-LEAVE-AND-RESPOND, APOLOGIZE-FOR and APOLOGIZE-AND

RESPOND, and THANK-FOR and THANK-FOR-AND-ACKNOWLEDGE. All or these

speech acts are used in the implementation, akhough they are currently handled by TELL, with

any response also conveyed using a TELL. S.rle's r ifth clus. declaratives, seems to be less

relevant for a console session environment

The core methods described constitute a good working set for the Susie Software

environment. The reader should k.eep in mind. however, that core methods are only part or

the total set of dialogue methods. Later on in this section, core methods and other methods will

be combined to analyze the sample dialogue.

S.S. Basic Utterance Types

In analyzing dialogues. it is useful to distinguish four basic types of utterance. Several of

•
these have been mentioned previously, but it ii time to give them a more formal introduction.

Viewed in terms of methods, the first two catepriea of utterance correspond to types of method
! '

steps, and the third category contains deviations from the normally expected path or paths,

20

with the deviations. again, having corresponding method steps. The fourth categpry contains

utterances that specify how other utterances fit into t~ ongoing dialogue.

In a task environment the tuks must begin in some way, and we will call the class of

utterances that may start oft a tuk inUlators. Recall that in the Susie Software environment

there are two types of tasks, program writing and question answering. (Each of these may of

course be composed of subtasks.) In this environment, then, initiators are either requests for a

program or for information. Not an conversational exchanges are started off by initiators. An

utterance corresponding to the first step in STATE-AND-ACKNOWLEDGE, for example,

will be called a lead-in; it is not an initiator, however, sine, it would not start off one of SuSie's

two top level activities. Note that initiator and lead-in uttcances are not necessarily produced
'

by the first steps of methods; instead, they ue produced by the first speech act steps. A mental

process step, for example, might be the first atep in a method but would not produce any

verbal output.

The next utterance type is the standard path successor step: an utterance may correspond

to a step in a task that is already underway. Examples would be the answer to a question or

the acknowledgement of a statement. Standard paths are the normally expected sequences or

events for an activity. When a description of an activity is liven, it is the standard path steps

that are included. If deviations from the standard path(s) are described at all, it is only the

most important ones that are 11ven. This indicates that the standard paths of an activity

embody the minimum of necessary information about it. Further Justification of the notion of

standard path is found in Dl

A third basic utterance type is ''"""'1 dtscusston. The standard paths of a dialogue

21

method are intended to apecify the relatively lffllll number or waya that an exchange can be

concluded aucceufully. Thia ii fine u lonr u the dialogue pa u intended and no

expectation• are violated. In practkt thil will probably nat be tonr, and recovery diacuaaion

will result Let ua look at an example from the aample dialogue:

6 O.K. I need a description of the initial and final scenes.
• The rtnal 1e1ne mntatna s blocu: Bl, B2. and 'B1
O.K.
• What else do you want to know about the final acene?

10 What are the politlonl or Bl. B2. and IS with r-,.ct to each other?
• Bl ii on top of B2 and BS ii on top of BL
O.K.
• Initially, all of them are on the table.

In line 6 Sulie uka for a deacription and in line 7 the uaer acaru to give lt. This is represented

by the method ASK-AND-DESCRIBE. At line 9 the user indicates that hil model of what

Susie wants to know ls insufflctenL When this happens, a recovery path is entered to

accomplish the same goal by usuming leas knowledge on the part of the mer. This ii reflected

in line 10, where Susie asks a question, thereby communicating what it is she wants to know.

By line 12. the diff icuky hu been cleared up. and the dialogue is back on the standard path of

the uk-and-describe exchange.

Among the failure conditions that will generate discussion. we have concentrated on lack

of the information necessary to make a dedsion, since this is the cue that comes up in the

Susie dialogue. Other recovery dilculaion may come up u a result of contradictions (in a sense.

the overabundance or information) and miaunderstancUnp. Of the structurea nltded to model

recovery dlacullion, one, the ncovery path, hu already been introduced. Recovery paths are a

22

very local way to model recovery dilclluion, and they ue not expected to be useful for all ca1e1

where expectations an violated. A more g•eral mechanllm ii also ~ry. and for this we·

look to autonomous OWL-I methods for handling particular failures. Such autonomous

methods are part of the general OWL-I failure mechanism. Note that the sample dialogue does

not contain any lines that have been modelled with the general failure mechanism, so that this

possibility will not be considered in detail In this paper.

Turning from rtcovery discussion, the fourth basic utterance type is m,t,ultscusslon.

Utterances classified as metadilcUssion deal with the conversational situation itself. These

utterances are used to change the flow of activity in a dialogue or clarify the current flow of

activity. Based on the diaJocua we have looked at, it appears that true metadlscussion

involves a relatively narrow range of utterances. Many utterancea that one would initially class

u metadllcussion because they deal with the conditions of conversation turn out, on closer

examination, to be better clauified as recovery dilcussion. For the Susie Software environment,

we have found only three categories of utterances that are purely metadiscussion. The user can

either suspend an activity ("Let's stop this for now.i. reopen a suspended or closed one (-i want

to go back to the first program you wrote. i. or specify what he or she is going to do next

c•Now I'll tell you about the final scene. i. Note that the sample dialogue does not contain any

examples of metadilcuuion as we have defined it, although metadilcussion has been handled

In the. design of the recognition process.

This finilh11 the dlscuuion of the four basic utterance types: initiator, standard path

successor step, recovery dilcuuion, and metadilcussion. The distinction wut be important to the

system when it comes time to develop structural expectations about the form of a user input.

and this distinction will form the basil for the approach to matching for recognition.

23

3.-t. Analyzing the Sample Dialogue

Oiven the dialogue methods and the f'our basic utterance types, we can describe the

conversational exchange structure of the ample dialogue f'rom Figure L The sample dialogue

is f'irat of all a console sewon, so we have the method ((PARTICIPATE IN) CONSOLE·

SESSION). · (The liJnif'lcance of parentheaea in OWL-I concepts is explained in the appendix.)

The f'irat steps of' this procedure handle the greeting and Introductions (lines 1-2) and the last

step handles the closing (line 2S). In the middle of' this method is the call to carry out one of

Susie's two top level activities, writing a program or answering a question, a step that may be

repeated an indef'intte number of times. The sample dialogue shows one of the top level

activities: lines S-22 contain a program writing exchange.

We tum now to the program writing exchange, with line S u the initiator. This line

triggers COMMANJ>.AND·RESPOND. In lines +-5 Susie finds that her capabilities are not

u broad u the user's general request, and an attempt is made to get a more apecif'lc idea of'

what the user wants. These lines are treated u a temporary departure from the COMMAND·

AND-RESPOND method onto a recovery path.

Once the user's request is clarified, the system enters the (WRITE PROGRAM) method.

In this procedure, conversational steps are intermixed with non-conversational ones, i.e. the

actual program-writing calls. Susie's f'irst step in writing a program is a call to (OET

DESCRIPTION), where there are currently .two alternatives. If' the user probably has no idea

of the properties of' the input and output that are of interest, he or she can be guided through

the description by a series of ASK·AND-ANSWERs f'or which Susie generates questions. If the

. 24

user is assumed to know the relevant upecu. u is the cue in the sample dialogue, then a •

subcall is made to ASK-AND-DESCRIBE. In the sample, the request and the subsequent

description conltitute the exchanges from Una 8 to 17. In the course of the description the user

finds he does not know exaaly what Sulit wants to know, and a recovery path is entered, u

discussed previously. This is done instead of a more general reselection of atrategies, which is

a more difficult proc:eu to controJ. When the difficulty ii past, the dialogue rerurns to a

normal description-giving process. which ii brought to a close (implicitly) by the user question

and its answer, lines 15-17.

With input and output conditions described, Susie can . now go ~ to write the program.

More information is needed, however, so she returns to the user with a question-answer

' exchange handled by ASK-AND-ANSWER, lines 18-19. When the program is finished, Susie

notifies the user and then does an ASK-AND-ANSWER to find out whether a description of

the program is wanted (lines 20-20. Since in this case the uw does want a description, that

becomes the final step of the (WRITE PROGRAM)_ method (line 22). At the same time, this

utterance completes the open COMMAND-AND-RESPOND aaivity and the aaivity for

achieving a top level task.

We have seen how the idea of a conversational exchange and the corresponding OWL

methods can be used to analyze the structure of a dialogue. This is only part of the story.
I

however, since mechanisms are needed to choose the particular methods that model each line.

These mechanisms wm be introduced in the sections that follow.

25

-t. An Introduction to the OWL System

The Susie Software system ls embedded in OWL-I. A general understanding of the aims

and operation of the OWL-I system ls neceuary tor an undentanding of the recognition

mechan~ that will be described, so a brief' introduction will be given here. OWL-I became

operational in September 197&; since that time, a new version of the system, OWL-II has been

under development. The OWL syatem ls continually evolving coward two goals: first, to provide

an environment for the reprt1entation and use of expert knowledge and, second, to do limited·

domain processing of natural language. It is our belief that the paths to meet these two goals

are not completely disjoint and that some of the orpnizational principles and structures used to

handle English will carry over to the structuring and uie of expert knowledge as well This

sections surveys the majOr modules of the OW!r-1 system;• the appendiX for an explanation

of OWL-I notation.

Figure S shows the major modules of the OW!r-1 system.4 The Linguistic Memory System

(LMS) is dexrtbed in [7] and 081 and is used to build and maintain the knowledge base. For

our purposes here, it ls sufflctent to •Y that OWL representations are made up of data

structures called ,ont1flts, using the operations of sfl,datuatlon and 1flDtllJltatlon. Specialization

is the subcategorization operation used for hierarchical ordering of concepts. Modification

allows properties, including complex structures such u ·procedures, to be associated with

concepts. Both the immediate specializations (called bramA6s) of a concept and its properties

4. LMS was implemented by Lowell Hawkimon, and implementations of the Interpreter's
Carry-out, .Evaluate, and Whether modulea were done by Alexander Sunguroff, William Long,
and William Swartout re,pectively. The generator was done by William Swartout, and the
parser is currently being developed by William Martin and Peter Szolvits. Other modula were
implemented by the author.

26

USER

.ENGL I SH PARSER

REFERENCE MATCHER

Oil. INTERPRETER

I CARRY-OUT I I RECOGNIZE I
I EV AL:UA TE I

LINGUISTIC
MB1JRY
SVSTEM(LMS)

ENGLISH GENERATOR

PRE-GENERATOR

I ASSUME I
I LIET~R I

CONCEPT
TREE.

Figure 3. The Major co111ponent1 of the OWL-I system.

27

are round on ita r,jnmu ltst.

The backbone of the knowledge bue ii the concept tree. The OWL-I concept tree, which

wu constructed by William Martin, contains concepts for the words of Basic English (Ogden

D2D plus other conceptl of reneral applicability, among them a set of semantic cues. The

concept tree ii wed by every module in the system, althourh much of the original

organizational impetus wu the attempt to ref1ect replarities perceived in English usage. Each

expert system embedded in OWL would bring ltl own Mt of concepta to add u specializations of

the already-exileing tree. and this augmented tree would then be used in both natural language

processinl and raaanmc aperatianL The concept tree is one (but not the only) place where the

analysts of natural lanpap orpnlzation is applied to the problem of orpniling expert

knowledge. Incllvlclual conc:epta will be explained u they come up in the course of the

dtacusslon.

Note that the OWL system hu opted for a tree rather than a more general hierarchy.

This reflecta a simplification for purpoaes of computational efficiency, but it does not constitute

a restriction on computational power. While ach concept ii usumed to have only one primary

superclass. other clus membershipl can be entlred on the concept•• reference lisL For example,

the concept repraenting an individual penon would be a specialization of the concept

HUMAN (although not neceaarily a branch), but it might have on its reference list the various

roles and properties of the individual, e.g .. ADULT, LISP-PROORAMMER, VEOETARIAN,

(AGENT (MOVE BLOCK-A)), etc.

This brinrs us to the OWL-I Interpreter. The Interpreter executes methods, for

example the OWL-I representation of the uk-and-answer dialogue method discussed in Section

28

SJ. It ia the Job of the Interpreter module Carry-out to 10 through the atepa of a method. f irat

evaluating them with respect to the current fflVironment. It thffl matches these evaluated calla

againlt the available methods to find appropriate aubprocedurea. Restrictions on what can ·fill

each input cue UIOdated with a method art Ulld in thil matching proceu. The fact that

method selection ii a matching proceu means that it ia sensitive to additions to the method

library, even though no change ii made to the call The uae of the evaluated call in matching

allows the choke of method to be routinely dependent on the current operating environment.

which introduces considerable flexibility. It. also means that one cannot predict a P,IMi which

method will be selected for a call Thia faa hu aignlflcant implications for recognition. as we

will aee in Section 7J. Note also that ln the OWL-I system no attempt is made to simulate

diltrlbuted control, e.g., in the uae of demons. ExQtion of methods ii highly centralized.

guided by a single control loop in the Interpreter.

A record of the execution process is kept in the ,wnt tr11, _ which is also used by the

Interpreter in making control decisions. The events on the tree correspond to the substeps of

the methods executed. Put events are not removed from the tree, so that they are available for

inspection, question answering, resumption (in the case of uncompleted events), etc. It is

important not to confuse the event tree with the concept tree. The former ii built by the

Interpreter u a record of methods executed in the course of a console lllsion, while the latter is

a part of the knowledge but, embodying the first cut at organizing all of the concepts known

to the syatem, not only the events. In this regard·. the event tree can be thought of as

intermediate term memory, used to record the current problem solving aeuion and organized

chronologically. The concept tree can be thought of u long term memory and is not organized

chronologically.

29

Several Interpreter modules shown in Figure 9 come into play in the course of carrying

out a method. The module Evaluate takes OWL-I forms and returns instantiations with respect

to some environment, for example when a call is evaluated before the search for a method to

carry it out. The module Whether takes predicates and tells whether or not they hold in the

current operating environment. To do this, it uses a combination of built-in strategies and

user-supplied procedures.

Two other Interpreter modules, Recognize and Assume, were added specifically to handle

dialogue. Recognize develops and maintains expectations, using these to fit user inputs into the

ongoing dialogue. This recognition process will be discussed in detail in the sections that

follow. The Assume module handles method steps that are carried out by the user but which

have no corresponding input to the console, e.g., reasoning steps. There are a number of

complex and interesting issues that surround assumptions about the knowledge and mental

processes of others, especially those issues surrounding level of detail. The approach taken in

the system module Assume is that routine assumption mode processing should be minimal; if,

however, failures occur, it may then be necessary to go back and make assumptions in more

detail. For example, in order to point out an error in reasoning it might be necessary to have

fairly detailed assumptions about the reasoning process involved. The implementation reflects
!

the routine part of this approach, but right now detailed assumptions are implemented in only

a very limited way. In routine situations, the Interpreter notes an assumption mode call on the

event tree by putting it on the subevent list of the event of which it is a subcall, without

making a separate event or doing any method selection. This gives the Interpreter an

unbroken record of the paths taken through the methods that have been executed. If later on

30

it becomes necessary to expand out an uaumptiOn, then the call can be used and the expansion

can be done, primarily using the procedures in Carry-out

Two other major modules shown~ Figure Sare the parser and the generator. Since the

dialogue routines are not currently interfaced to these modules, they will not be discussed in

detail in this paper. The paner and gmerator do. however, brine up an important distinction

between t1t1nr,tn IIWl and w.r/au snnantk OWL-I representations. M the name implies,

interpreter level representation ls used by the Interpreter and ls the stuff or which methods are

made. Surface semantic representation is output by the parser and ls also input by th.e

generator. The major difference between the two ls that interpreter level representation has

undergone more canonicalization than itl aurrace semantic counterpart In general, where a

surface semantic representation will look VflrJ much like itl surface English counterpart. an

interpreter level version or the same utterance will have referents substituted for referring

expressions and will have undergone more lexical standardization.

This distinction means that the output or the parser and the input to the generator are

not at the same level or representation u that uaed by the Interpreter. Two intermediate

modules are necessary to provide the translation between them: the reference matcher and the

pre-generator. The reference matcher takes the surface semantic representation output by the

parser and looks for correspondin1 interpreter level referents, both substantives and events.

The pre-generator goes in the other direction, takin1 interpreter level concepts and finding

descriptions for them and ways to express them 10 that the user will be able to identify the

sense intended. A ref'erence matcher is currently implemented, but a pre-generator is not; the

implementation, then, currently inputs a surface semantic-type representation and outputs

31

interpreter level representation. We have been careful to include information necessary for

generation at the interpreter level, and the input representation is close to the output of the

prototype parser, so that we would not anticipate an actual English interface to cause major

changes to the current design.

This accounts for the major OWL-I modules, and we are now ready to consider

recognition mode.

32

5. An Outline of Recognition Strategv

Given an Englilh Jancuace input, Susie Software must relate it to the ongoing dialogue;

that ia. Suaie muat find and inatantJate an appropriate interpreter level representation, since this

level of representation ii the one used to model the structure of dialogue. Within our

framework, then, the transition from Englilh to -interpreter level OWL-I constitutes the

recognition proceu. In thil IICtion we will outline the strategy used for recognition, starting

with a closer examination of the problem.

The basic problem for recognition ii the overabundance of alternatives. In the Susie

Software system recognition ii divided into three subprocesses: parsing. reference matching, and

expectation managemenl The parser may produce more than one surface semantic

representation for an input, and the results of a parse may contain ref erring expressions that

match more than one referenl In addition. there are several degrees of flexibility that enrich

the set of possible structural expectations. The mixed-initiative environment moves Susie

Software in the direction of normal conversation. since. if either participant may change the

flow of controi the other participant will have leas than complete knowledge about what will

happen at any given polnl In addition, activities in the Susie environment are not rigidly

ordered and disposed of. A new activity may be begun before the old one has been completed.

and an activity may be reopened after it hu been assumed to be finished. Furthermore. the

kinda of exchanges that may occur make it harder to find the boundaries between activities.

Giving a description for example. ii open-ended in a way that a multiple choice answer would

not be. Finally. u we have seen. discussion may occur on more than one level. We not only

33

have utterances that relate to a tuk directly, but alao utterances that report failure conditions in

the ongoing task and metadiscussion, that is, utterances that explidtly alter or clarify the flow

of activity.

Given these decrees of freedom, it is clear that processing of an input must be carefully

controlled. The paning ltrl.teCJ developed by Szolovits and Martin [IO] intentionally limiu the

extent of processing. For example, the concepb in ™ surface semantic representations that are

output are chosen to minimize the number of decisions that must be made by the parser. In

particular, the parser does not attempt to make distinctions that are not needed to complete the

parse. This philosophy ii similar to the approach taken by Marcus [91 but it goes beyond it in

the extent to which decisiolu are delayed.

To illustrate the decilion-delayinJ nature of the surface semantic repmentation, we can

c:oruider the different ways to •J that one undentands some information. One informal way

is to say, i get tt.• Now, i get tt• in ilolation ii ambiguous (q., Q, "Do you know anyone who

geu this journalr' A. i sec it. i. A transformation within the parser_ would have to expand

GET into its alternatives, ay RECEIVE and (GET IDEA), which is not in the spirit of a

decision-delaying surface representation. It therefore seems best to use GET in the sutface

semantic representation, then depend on interpreter level semantic structures to make · further

distinctions.

In the reference matcher, too, care must be taken to keep processing under control. Recall

that the reference rnatchtnr process scarts with the output of the parser which contains, among

other things, concepts corresponding to pronouns and definite descriptions. The reference

matching process relates the surface semantic representation to an interpreter level one,

34

resolving referenca along the way. The bulc phllmophy for reference matching hu been to

exploit both the structure bulk up on the event tree and the structural expectations (especially

the current set of possible standard path successor steps). The implementation currently

matches referents present explicitly in the structural expectations, but it does not .yet handle

referents found elsewhere in the dialogue or referents that are part of general knowledge,

independent of the dialogue. We would expect the event tree to be useful in structuring the

search for those referents not given explicitly in the expectations (see fb] for such an approach).

Whatever the cue, for all types of reference matching the process would be driven by

structural expectations; whether particular referents are present explicitly or not, the Interpreter

will always be matchln1 a wer input apinst ,,., structural expectation. Thus, while par1in1

happens in an identifiably separate pus, reference resol1_,1tion occurs u needed within the

general process of matching surface semantic repreaentations apinst interpreter level forms.

Having looked at the parsing and reference finding strategies, we can now outline the

way that structural expectations are managed by the system. Recall that distinctions among

bulc utterance types were made In Section 3.3. From special patterns that will be described and

from the dialogue methods, the syatem can derive a set of structural expectations at any given

point in the dialogue. The question ls, what should the system do with these expectations?

The first issue for expectation matching is the choice between a try-all-possibilities and a

stop-on-success strategy. Our original strategy for handling the different recognition mode

alternatives wu to try all possibilities, and then apply a decision procedure if more than one

match wu found. Without parallel processing, this approach appears to be infeasible, and we

hypothesize that a stop-on-success scheme will be sufficient as long u the match attempts are

35

ordered carefully. The change in strategy is worth -dilcUlling. because it poinu up some

important upects of the recognition proceu.

First, in a try-all-possibilities environment. the burden is placed on disambiguation, while

in a stop-on-success environment it is placed on ordering. When trying all possibilities, if

matching leaves ambiguities then there are two main sources of information: heuristics and the

conversational partner. The goal of a stop-on-auc:ceu scheme. then, should be to incorporate

these information sources. If this can be done (at least a large part of the time). then the stop

on-success scheme can perferm u well u trying all pollibillties and save time in th~ process.

Looking first at inf orrnation from the conversational partner, for a disambiguation

process the standard mechanism would be to uk for clarification. A stop-on-success scheme, on

the other hand, would depend on the partner's ability to catch incorrect interpretations from

the responses given. For our constrained environment it appears that it will be possible to

frame responses in such a way that the user will know whether or not his intentions were

interpreted correctly. If a misinterprecatlon does occur, the user's next utterance will be

something on the order of -rhat'1 not what I meant.• A general f allure method, or a small set

of them, could be used to handle this situation.

The second information source is heuristics, and we can give two examples here. The

first ls a redundanq heuristic: a speaker should not (and therefore usually will not) interrupt a

conversational exchange to initiate an essentially identical exchange. This redundancy heuristic

ls very muc:;h like one for entitles in a description: if there 11 no information to the contrary.

similar definite descriptions can usually be uaumed to have identical referents. A second

heuristic can be called the •inertia• heuristic: all else being equal. a context will tend to persist.

36

Now, in a try-all-possibilitiea ICheme, heuristics of thil sort wou1d be built into the

disambiguation routines. On the other hand, in a atop-on·succeu scheme the heuristics would

be reflected in the ordering rulea chosen. For example, both heuristics given can be

incorporated into an ordering scheme easily enough by requiring that standard and recovery

path expectations be checked before initiators. Thil insures that the right match will be found

first most of the time.

Since ordering choices are crucial to a atop-on-success scheme, the last topic for this

section will be a motivation of the Choictf made in the system. The following list sums up the

ordering of recocnitlon pouibllitiel uaed in the current implementation if no failure discussion

is underway:

(I) MetacUscuuion

(2) Standard path successor steps

(3) Recovery path lead-ins

(-i) Initiators

(5) General failure method lead-ins

C

Once a recovery path or general failure lead-in hu been processed (either recognized or

generated) then the relevant successor steps become expectations and are checked second, in

place of standard path successor steps.

Metadiscuuion 11 checked first. since this clua seems to be constrained enou1h that a

relatively small number of patterns need be matched. The alcernatives are also generally well

marked, so that mismatches will tend to be detected rapidly. Next come sta_ndard path successor

37

steps and recovery lead-ins. These are the expectations that vary most as the dialogue

procreua. Given the two heuriltica above, we want th• two clauea check.Id before initiators.

Since there are many more ways that things can ro wrong than right, the standard path

successor steps are checked first.. It may be desirable, however, to try interleaving recovery path

lead-ins with the standard path succeaon, so that a standard path successor would be checked

and then any recovery pathl related to it before the next standard path succesaor was tried.

We are left with initiator, and lead·inl to pneral reconry methods. The order given is

probably the delirable one, although 1eneral recovery methods were not used for the sample

dialogue, so our experience ii limited. It appears that general recovery lead·ina will tend to be

difflcuk to detect, so it ii reasonable to leave these for last. Note also that if no tasks are

currently underway then thil ord•inl permits initiator pattern, to be tried right after

metadilcuuion pattema, which ii what we would want

Thia winds up the discuuion of ordering. Throughout, the buic recognition strategy

hu been chosen to keep proceutng under control The paner delays u many decisions as

pouible, the reference matcher taus advantap of expectationl developed from the dialogue

methoda, and match attempts are carefully ordered. Another very important element of the

recognition strategy ii the mixed matching scheme that hu been developed. This scheme is

based on the diltinetions between the buic utterance types that have been presented, and it is

the topic of the next sections.

A final note on the dltcullion that f ollowa: I will make the simplifying assumption that

only one surface representation hu been produced for an input. Where more than one surface

representation ia output by the paraer, attempta would be made to match each of them against

the relevant structural expectation&.

38

6. Recocni&ing When a New Task ii Initiated

6J. The Problem

At any time after the initial creettngs, the user is permitted to type an initiatOr, that is. to

start up a new top level talk, either asking a question or requesting a prGJram. · The basic

problem for Initiator procmtng, therefore. ii to recacnue when one hu occurred. To do this,

Susie takes the uaer's utterance and tries to. form a chain or event nodes connecting the top of

the event tree (or, more precilely, an event corresponding to the method step that satllf ies user

tuk requests) and the speech act event that corresponds to the user's utterance. If such a path

can be built, then the user's utterance ii us,amed to be an initiator. (The most likely competing
I

possibilities will, however, already have been. tried; see Section 5.) This path-building process

occurs in an environment of incomplete kn~ledge, since in most cues· the initiator will be the

only indication of !the user'1 goals and since many surface forms or initiaton are ambiguous.

For an example or initiator p~ng in recognition mode, assume that the only

currently open method ii to have a console seaion and the parser gets the input •ean you pick

up the block?•. The tuk of the Interpreter would be to find a speech aa step (ln the current

implementation, ASK, TELL, or COMMAND-JlEQ.UESTI that could have produced this

utterance, as well u a chain of events thati connect the current environment - the participate

in-console-seuion activity - with the speech act step chosen. Figure 4 gives a representation of

one such event chain. The purpoae of fi11ing in intermediate nodes on the event tree ls to
. .

allow processing to continue normally after a recognition step. In the example in Figure 4, once

recognition ii completed, then the next step in the ASK-AND-ANSWER method can be carried
!

40

(6) I want {need) a program to manipulate blocks written.
(7) I want {need) a program to manipulate blocks.
(8) I would like you to write a program to manipulate blocks for me.
(9) I would like a program to manipulate blocks written.
(10) I would like a program to manipulate blocks.
(11) I request that you give me a program to manipulate blocks.
(12) Give me a program to manipulate blocks.
(IS) Would {will) you 11ve me a program to· manipulate blocks?
(H) Could (can) you give me a prorram to manipulate blocks?
(15) I want {need) you to give ine a program to manipulate blocks.
(16) I would like you to ctve me a program to manipulate blocks.
(17) Write me a program, would (wiH) you?
(18) Write me a program. could (can) you?
(19) Give me a program. would (will) you?
(20) Give me a program. could {can) you?

This is not necessarily a complete list. but it does give an idea of the number of request forms

that might come up. These examples would have very different surface semantic

repreaentations, but they all would match the same interpreter level COMMAND-REQ.UEST

step. Utteranca (!) to {20) are generally caJJed lndlr,ct sp,,cl& acts. since the surface form does

not correspond directly with the intended speech act. Considering this list, it is clear that the

first problem for initiator recognition ii the range of forms that an initiator may take.

The problem of relating utterances such as (1) to (20) to their intended speech acts has

received a fair amount of attention in the linguistics literature. One approach ls that taken by

Gordon and Lakoff [61 Concentrating primarily on requests, Gordon and Lakoff propose a set

of four sincerity conditions and then give a single powerful rule to account for the different

~ys that a request can be framed. There ii some question, however. whether this rule is too

powerful. admitting utterances that are not legitimate requests. Sadock OS] responds to Gordon

and Lakoff by criticiling the approaches that try to account for the variety of ways to frame a

41

speech act by usin1 sincerity conditions and 1eneral rules. He distinguishes between the case

where an utterance hu a speech act u its meantnc and the cue where the utterance means one

speech act but entails another. An example of the f'irlt case would be the utterance or •it's cold

in here• to convey information, while an example of the second case would be the use of this

ame sentence to convey a requeat ror someone elle to close a window.

With respect to the handling of the surface reallzatlons of' a speech act. the Susie

Software implementatton bears more aimtla~ty to the ideas· of' Sadock than to those of Cordon

and Lak.off. Utterance forms corresponding to sentences (1) to (20), for example, are usociated

with an interpreter level COMMAND·REQ.UEST representation (or, in the case of ambiguous

forms, a procedure which returns COMMAND-REQ.UEST u one of its values). The way that

this auodation is done is dbcullld in the next subsection; the association itaelf can be

considered to assign rnaning for these forms. Entailed speech acts, on the other hand, would

require another level of association, probably between the two speech acts themselves, possibly

taking the surface form into account secondarily. Noie that entailed speech acts are not now

handled by the implementation, although we do not forsee significant problems in adding

them.

Having outlined the problem of multiple surface forms, we can turn now to the second

problem for initiator recocnition, ambiguity. The utterance •ean you pick up the block?• could

be either a question, u it wu interpreted above, or a request for action. Many surface forms

can be ambiguous in this way. In fact, the use of related questions, commands, and statements

to signal a speech act all but guarantees ambiguity, since the signals can also be interpreted

'
literally. This ambiguity of forms hu social utility since speech acts can be attempted and, if

42

resistance is met. the speaker can fall back on a less adventurous alternative interpretation (a

question instead of a command, for example). Thia dimenaion ii not, however, particularly

relevant in our environment, so that ambiguity ii viewed here mentiatly as a problem.

To recognize an initiator, then, it ii necessary to construct an appropriate event tree path.

The primary difficulties that confront the system in thil effort are the existence of a variety of

indirect speech acta and the inherent ambiguity of particular forms.

6.2. Initiator Keys

In the Susie Software environment, context ii not particularly useful in predicting the

nature of new tasks, so the initiator recognition scheme ii essentially bottom-up; that is, the

event corresponding to the user's utterance ii determined first, then superior evenu are

determined until the entire path hu been accounted for. To facilitate this process, special

structures called lwJs are ulld; ithe main purpose of keys ls to provide patterns for matching

initiator, and conatructing the appropriate context. In the current implementation. keys are

represented using a special type of OWL-I concept called a r,latlon. The important attribute of

relations is that they can have an auodated Nhu, which ls assigned using a left arrow. The

relations used for initiators are specializatioru of the concept INITIATOR-KEY; later on we

will see another kind of key used for metadiscussion.

Initiator keys come in two varieties: terminal and non-terminal. Terminal keys are used

to match a surface semantic representation (i.e. par1tr output) against the actual speech act step

in a dialogue method (e.g., the •understand• event in Figure 4), while non-terminal keys are

43

used to rm in the intervening events between the speech act step and the console session event

on the event tree (e.g., the get-answer and uk-and-anawer events in Figure -t). N~te that

although the Suale environment ii restricted to two top level activities (program writing and

question answering), the pattern, in the keys are more general than thia; they match requests for

information of any sort and requeata for any sort of activity with the user as beneficiary. So,

although the keys are special-purpose patterns, their usefulness is not restricted to the Susie

Software environment.

Terminal keys take the following form:

(<key type> ca subsurface level form>) <- ca method call>

The first two parts, enclosed in parentheses, are represented by a single OWL-I relation, with

the third part represented by another concept that becomes the value of that relation. The

relationship between the parts will be dilcuued in more detail below, but first we must clarify

what is meant by •subsurface level• A subsurface level form is, as the name implies, at a level

of representation intermediate between surface semantic and interpreter level. Subsurface

representations have only been used in the special matching patterns and for records kept in

the recognition process. (They would also be used u input to the pre-generator, if this were

operational.) There is not space here to go into the difference between subsurface level and the

other levels of representation in d~il. but, basically, subsurface representations differ from

surface semantic level ones in that they may contain variables that may be bound as part of a

matching process. They differ from interpreter level forms in that they mirror the surface

form of an utterance rather than its underlying speech act. For example, •1 want to know the

44

color of Block-A" would match a aubaurfact form thac ii a apedaUzation of the concept (SAY

DECLARATIVE). reflecting the declarative nature of the surface form. but the underlying

speech aa would often be interrogative. a request for information. Thus. the interpreter level

form that matched this utterance would be a apecializatif?n of ASK. One identifying

charaaeristic of subsurface forms is the fact that they are represented as specializations of

SAY. while interpreter level forms of speech acts are currently represented as specializations of

TELL. ASK. and COMMAND·REQ,UEST.

Returning to the buic form of terminal keys. the ayatem matches the output of the parser

against the keys' subsurface level forma. If a match ii found, then the value of the matching

key. the method call. is retrieved. Thia method call is either an interpreter level representation

of the underlyin1 speech act or a can to a special OWL-I disambiguation method. If there is no

ambiguity. then the key relation'• value can be used for the next stage of the match against

non-terminal keys. which will be discuued. If, on the other hand. a can to a disambiguation

method is found. then the procedure is executed to return a speech act representation. which

can then be used for the next match stage. (More on disambi1uation methods is given below.)

Note that the atruaure or keys shown here is the form produced by the programmer. When

the keys are loadld into the system, the LMS Rader adds them to the concept tree.

automatically crating a key subtree which can be used in matching. (See Hawkinson [71)

Once the event for the speech act hu been found, non·terminat keys are used to f ilt in

the higher events on the path. The buic form for a non-terminal key is as follows:

(<key type> <a method call>)
<- <either: a call to the method that contains this step

on the initial path of a top level activity
or: a call to a disambiguation method>

45

Both the first method ca11 and the value of a non-terminal key are interpreter level

representationa. The ayltlm 1tart1 with the result of the terminal key match (or the result of

proceutnc the UIOdated duambipatlon method) and match• thia apinst the method calls in

non-terminal lr.ey relations. Just u for terminal k.eya, when a match is found the value is

retrieved, and it can be uNd either to form a higher event on the event tree path or to call a

apectal dllambieuation method to chooee the correct higher event. Matches apinst non·

terminal keys are repeated until the value retrleYed can form a subevent of the general console

session event. completing the path.

We can now retum to the topic of dilambiguation. In the last subsection we observed

that indirect speech acta are by nature ambtpoua. since they can be used either for the

underlytnc speech act or for the apeech act conveyed explicitly in the surface form. A system

therefore needa a mechanilm to handle thia routine sort of ambiguity. For initiators we have

used special OWL-I methods. all of which be1ons to the class DISAMBIGUATE. The fact that

disambiguation routines are coded in OWL-I mans that they can be examined and explained

by the Interpreter. Thia ls part of the general poUcy that takes as many choices as possible out

of black boxes. allowing lnlpection and evaluation. It also mean, that the reasoning processes

needed to do disambiguation can be done by the Interpreter module Whether. The

disambiguation methods are flexible, with several different strategies available for use, among

them a last-resort request for further clarification by the user.

Thia almost concluclea the dllcuuion of initiator recocnition. Remember that initiator

keys are used only for initiators, which are lead-in, to the·two top level task.a. Thus, not all

procedurea and utterance types will have UIOdatld initiator keys - just those that lie on the

46

first event tr• branch of a top level tuk. Although the set of: top level g~ls could be

extended, there would still remain aubsceps and procedures without associated keys. Thus, one

justification for using a special matching structure rather than a more general search procedure

is that initiators are a subset of the poaible laci-lna to dialOlue methoda. Usinc this special

structure. the . Interpreter wlll not try to conatruct paths that are known " ;,tort to lead to

deadenda. Similarly. a 1eneral bottom-up sarch mechanism that tried to construct a path from

initiator to top level activity would be slowed down considerably by the fact that initiators are

not necessarily produced by the f irat step in a method. (Recall that they are produced by the

first step executed In r«opUIOft "'°"' when Susie is not the agent of the method.) Oiven the

way that OWL-I method atepa are linked, the fact that a path could not be reliably constructed

from ram aepa wauld make a general NUCh mechan&am w&thout special auuaura &nerrac&ent.

Initiator keys. then, perform three functions. First. they provide an efficient way to find

the event tree path between an utterance and the console 1111ion activity. Second, and related

to this fint point. keys provide calla to disambiguation procedures at appropriate pointJ.

Third, keys contain information about.the indirect speech.act forms ta.ken by initiators.

6.S. When Not to Match Apinat Initiator Keya

The Jut topic for this section ii whether initiator matchea must alwaya be attempted. Are

there types of inputs for which matches against initiator keya are clearly ruled out? First. in

typed dialogue It appears that for two aorta of input the initiator possibilities need not be tried

at all:

(l) ~entence fragments, including placeholders such as O.K.

47

(2) Complete 11ntencea beginning with '" and nlf'

For thae two cateprta of LIMI' input, there ii no n..S to macch apinst initiator keys.

5. The only exception to (2) appears to be when '" is used to establish a helping or
command relationship (e.g., -Yea. I'd like to uaow when the 5:15 train gets in to
Portland~,. Thia aeema to be tn anawer to an uaumed •ean I help your This special
cue should be my to screen, ainca lt ii always found at the beginning or the
conversation after the hello-ing ii done.

48

7. Fitting a User Input to Open Tasks

Susie Software uses the dialogue methods to generate structural expectations that are

dependent on the course of the console session to date. In this section we consider the situation

in which execution of one or more methods is already in progress and the next step on a

standard path is to be executed in recognition mode. To perform the appropriate match, the

Interpreter first needs the ability to detect possible next steps, and, second, it needs to do the

actual matching as efficiently as possible. These two topics are discussed in the subsections that

follow.

7.1. Expectations

For a given step in a method, how many possible standard path successor steps are we

talking about? There is, of course, the possibility of branching within a method, using the

OWL-I conditional IF-THEN. In addition, an IF-THEN that is not inside the scope of an OR

effectively makes the consequent an optional step, so that the Interpreter must be ready to

recognize either the optional step or its successor. Another complication arises from the fact

that the ends of some steps are not always clearly marked (e.g., in giving a description). The

Interpreter must be ready, then, to detect the completion of a step by matching against steps

that continue methods higher on the event tree.

This seems to exhaust the possibilities, since there are some sorts of situations that

probably do not come up. In the specifications for Susie Software, we admit the possibility of

49

carrying out two activities (e.g., writing two programs) by alternating steps. To switch from one

activity to another and back, however, it appears that the rules of dialogue require the use of

metadiscussion. The user would have to specify which task a particular utterance applied to.

Similarly, to re-open a previously completed or suspended activity, the user would have to state

his intentions explicitly. Neither of these situations, then, would have to be handled by the

normal standard path expectations mechanism. We are therefore left with a relatively small

number of possible standard path successor steps; ten possibilities probably borders on

pathological for this environment

With such a small number of possible standard path successors, how could the system

possibly run into trouble? Unfortunately, there is not far to look. Two difficulties come up

here. First, as with initiators, there may be I variety of indirect speech act forms used to

convey a single interpreter level standard path successor. Second, the OWL-I Interpreter's

method selection mechanism presents special problems for recognition. The first issue is

considered in the next subsection, while the second is discussed below.

Recall that OWL-I method selection involves a match on the can evaluated in the current

operating environment so that it is not in general possible to predict a priori which method will

be selected to carry out a particular can. Compared to other processes in the system, the method

selection process is a relatively expensive one. The problem for recognition is that a standard

path successor step will not necessarily be a simple speech act step (currently, TELL, ASK, or

COMMAND-REQ.UEST) but may instead be a call to a general dialogue ·method which

effects, at some level of embedding, the simple speech act. We will call standard path successor

steps that are not themselves simple speech acts non-terminals. For example, when Susie asks

\

---~- I ___ ~---·-·-----~··-· ••
'' -.. :

so

the uaer ror a deacriptlon or the input and output conditions of the desired proeram, she

executes a COMMAND-REQ.UEIT atep. The recornltiOn mode step that tollowa ii not,.

however, a TELL but instead a non-terminal call to STATE•AND·ACKNOWLEDOE which

itself contain• a call to TILL. In renerai it may be neceuary to go through several layers or

calla and procedure selection proc:eues bef'ore the actual speech act step i1 found.

The dialogue system has gone throuch leVer&I different implementation phases in an

attempt to d•l with this problem. Briefly, the tact that method selection depends on matching

in the current operatiftC environment make it difficult to compile method• into simple speech

acts so that non-cerminal calla ~Id effectively be eliminated. It ii also not clear that

compilation p1'114111tl a long term solution, becaua intermediate event tree nodes may convey

important information ror the purpose of reference resolution. A second alternative is a

straiJht top-down expanaion of the non-terminal call at recocnitian time; however, the fact that

method aelection is a relatively apenaive operation maka this unattractive, since the worst case

occurs when the utterance faila to match the expectation at alt Finally, althou(h the core

methods do not tend to take advantae• of the full power of the OWL-I method selector, this

doa -not help us in ncognidon, since these problema come up for any OWL-I method that has,

at some level, a simple speech act as its lead-in.

The non-terminal recognition ~heme currently implemented is a mixture or top-down

and bottom-up matching that relies on the programmer's ability to predict the set of dialogue

methods that will be possible matches for the non-terminal call, and then continue this

prediction process an IUbstepa until speech act steps are found. The aet or possible lead·ins for

a method is specified using the O\VL-1 relation LEAD-IN, which takes the form:

51

(LEAD-IN <method-I>)
<-

<the apeech act steps that are lead-ins to methocl-1>

Note that method-I above need not have the speech act steps u immediate substeps; this

situation, in fact, ii ane in which the apecial LEAD-IN atructUre ii particUlarly uaeful. Ctven a

LEAD-IN relation, the input utterance ii matchtd apinlt the values in tum. If no matches are

found, then this standard path successor step can be abandoned, thereby minimizing the time

taken for many of the non-matches.

If the input matches one of the values of the LEAD-IN relation, then the Interpreter can

construa an event for the buk apeech act step and an event for its containing method, which
I

is recoverable from any variables in the matching LEAD-IN value, due to the way that OWL-I

variables are constructed (see the appendix). The construction of the events for the basic

speech act ltep and the containing activity ii the bottom-up put of the process, and once this is

done an attempt ii made to attach the new events to the event tree. If, however, intervening

events are atilt needed, then the event path ii constructed top-down until the bottom-up event

fragment can be attached. Note that the new path constructed ii not attached to the event tree

until it is completed. in case this path tum, out to be incorrect and must be discarded. In the

methods for the sample dialogue and in other examples considered, calling depth for non

terminals and subatep fan-out wu limited enough to k.eep the top-down expansion phase under

control. It is not clear at thil time whether thil tcheme will continue to be sufficient u the

library of methods grows.

One other problem that ii always with us ii ambiguity. For atandard path successors. at

52

least within the framework of the current matching scheme, it does not appear that we will find

disambiguation mechanisms to be u important as they are elsewhere in the system. With a

stop-on-success matching scheme. ambiguities among possible standard path successors are not

detected directly; where one occurs, the system must rely on the user to detect any errors made.

In a try-all-possibilities scheme, on the other hand, disambiguation plays a more prominent role,

in that more than one standard path successor could match an utterance. But. even in this case,

it appears that our domain is structured in such a way that few ambiguities will occur between

standard path possibilities and most will occur across types (e.g .. an utterance might be either

an initiator or a standard path successor). To the extent that standard path ambiguity i~

detected by the system, the remedy would seem to be the use of a few general purpose

disambiguation procedures (such u asking the user for more information) rather than

depending on special purpose methodL This is because it will not in general be possible to

predict the sorts of ambiguities that will occur between standard path successor steps in the

same way that it is for, say, initiators.

Given thil general discussion of expectation management for standard path successors,

we can now consider the handling of indirect speech actL

7.2. WAY Evaluators

Just as for initiaton, there will tend to be several different ways to phrase a next-step

utterance. To acceu these different utterance forms, we can use a method type called an

naluator. the similarity between this name and the Evaluate module is intended. An evaluator

53

is an OWL-I method with a header that is a relation and a standard path that gives criteria r or

choosin1 between poulble values. The evaluaton that are uaed here are WAY evaluators,

which give alternate ways to convey the same interpreter level message. The use of WAY

evaluators will be explained for recognition, but they are also intended to be used for

generation.

Figure 5 1tv11 an Englilh tranalation of a WAY evaluator. This particular example is a

relatively simple one, but it is weful for illustration. It ls intended to apply to situations where

a statement hu just been made and the acknowledgment given is meant to convey that the

statement hu been understood. Among the ways to phrase the acknowledgment are, •o.K., • •1

understand,■ •1 Me,• and "I get it.• There are no doubt more possibilities and the conditions

for each could be tightened up, but this example is enough to sketch out the approach that hu

been taken. What the WAY evaluator offers ls a link between certain interpreter level

representations (e.g., the representation for acknowled(ing a statement) and a set of subsurface

level forms (e.g., the representation• for the ways to frame the acknowledgement). In the actual

OWL-I method, the alternative forms would be aulped to the output case PRINCIPAL

RESUL T, so that a given choice would be considered the resuk of the method. In its primary

use the WAY evaluator would be run u part of the generation process. to select a basic

subsurface semantic form for a speech act call in the current environment The phrase in tlt1

cu.rrfflt nunronmnt is important here because it justifies the use of a procedural form;

otherwise, a simple lilt of the posaibi1ities would be sufficient. The subsurface form supplied

by the WAY evaluator would be passed in to the pre-generator to start the generation process.

For recognition mode matching, the Interpreter will be starting with an ASK, TELL, or

COMMAND-REQ.UEST step. Using this step, the recognition module constructs an OWL-I

54

find a way to acknowJeclge a statement
objlct a variable for the ways to acknow1ed1e a statement
q.,t a penon or computer ayatern

method:

either
(1) If the context ii informal and it was a routine process

to integrate the statement in with existing knowledce.
ay •o.K.•

(2) If the context is informal but the integration process
was not routine. say i get it.•

(S) If the context is formal and the integration process
was quite difficult. then ay i see.•

(<f) If the context wu formal and the integration process
· wu not routine, then 11.y i understand.•

Figure 5. An Englilh representation or a method for choosing a way to
acknowledge a statement.

55

method call, then u111 the Interpreter's method selection routine to choose an appropriate WA V

evaluator. The PRINCIP AL·RESUL T alternatives of tht evaluator found can then be used to

match against the surface representation of the user's input Either one sub surf ace level

alternative will be found to match or, if none do, then the successor step can be eliminated as a

possibility altogether. Once a match is found, the implications of a user's choice can be derived

by an inspection of the path of tests leading to that particular result. While these implications

are not particularly important for our pu~ right now (since many center on politeness and

authority relationships), they are important in human-to-human interaction and might prove

useful as we try to fine-tune the system.

To sum up, WAY routines are limited in their uses and simple in their structure, but

their style is important. They are apedal-purpose atructura to perform a function that might

be done by a general deduction mechanism in other systems. By differentiating among the

IOl'tl of inferences that must be made, we can ilolate special bits of knowledge and know

exactly when they are to be accessed, Finally, note that part of the information present in

WAY evaluaton ii allo found in initiator keJa. The information is represented in different

ways, however, reflecting the hybrid approach talc.en in successor step matching as compared to

the euentlally bottom-up approach taken in initiator matching.

56

8. The Best-Laid Plans: Recognition in Failure Situations

The next topic is what happens when a failure situation either occurs for the user or is

detected by him. The user either reporu the failure explicitly or the failure is implicit in an

utterance, and it is the job of the Interpreter to do the necessary recognition. How can this be

done? We first discuss the access of expectations for failure conditions and then look at

matching. A more general discussion of failure handling in a conversational environment is

given in al

In section 3.3, recovery discussion was divided into two types, that represented by recovery

paths and that represented by general OWL-I recovery methods. Natura1ly, access of failure

expectations will differ with the type of representation. Reca11 that autonomous recovery

methods are not needed for the sample dialogue, so this area of the design was not emphasized.

Existing mechanisms could be used to access and match these recovery methods, but it is not

dear that this will be adequate if the number of recovery methods is large. At this time,

however, only a sma11 range of failures seem to require the generality of recovery methods, so it

seems better to delay any speculation about the sort of access mechanism that would be required

until more experience has been accumulated.

This leaves the problem of recognizing recovery path lead-ins. When recovery paths are

accessed in carry-out mode, a search up the event tree path is done, using the type and site of

the failure to select the appropriate path. Where more than one match occurs, the one highest

on the event tree is chosen, allowing context to affect the selection in a modest way. For

recognition mode, however, the failure is not available (since it occurred for the user), so it is

57

necessary to check the lead-in for each recovery path on the event tree path, matching it

against the'incoming utterance. There may be a fair number of recovery paths to be inspected,

but the number will be far smaller than the total set.

The access mechanism is complicated slightly by the existence of assumption mode steps.

For example, Susie uu a question. The user then tries to understand the question and finds

the answer. The user', next standatd path auccessor step would be to give the anawer, and this

is Susie's first recognition mode step. If, however, something has gone wrong, then the user's

next utterance may be part of a recovery path. The failure could have occurred in the

understanding proceu (e.g .. •1 don't know what you mean by.";, in the .anawer. finding process.
I

or it could be related to the proceu of giving the anawer. Thus, it is necessary to check

recovery paths related to assumption mode ateps u well as steps executed in recognition mode.

Where more than one poulble alte of the failure exists, we have been checking the possibilities

in the temporal order apecified by the methods. since this seems to be as good u any.

One feature of recovery paths that was mentioned in passing above ls that they may be

associated with higher level methods (those methods that call the method in which the failure

occurs); therefore, the particular recovery paths available for a given failure become context

dependent. This feature causes no special difficulties for recornttion, and in fact it sometimes

provides an advantage. If a failure occurs inside a step executed in assumption mode by Susie,

then it may be necessary to go back and add an event and subevents for the assumption step to

the event tree, in order to get at recovery paths. If, however, a recovery path associated with a

higher event is the one used, then this expansion will not be necessary.

The next topic for this section is matching. Basically, recovery path lead-ins can be

58

handled in a manner similar to standard path successor steps, i.e. by matching on PRINCIPAL·

RESUL Ts of WAY evaluators. The mechanism used for handling non-terminal standard path

successor steps was abo adopted here. The only difference between standard and recovery path

recognition steps SNms to lie in the WAY evaluators themselves. Some utterance types seem

exclusively failure-related, such u the statement of a tack of information as a way to request it

(e.g., •1 don't know x.; Moreover, tl)e connotations of some utterances seem to differ

according to whether they are used u recovery path lead~ns or in other contexts. These two

facts together indicate the need for at least some independent structure for WAY evaluators for

recovery paths. Where independent recovery path WAY evaluators entail too much

duplication, a combined structure could be used, with properties distinguishing exclusively

failure-related usages from others.

Recognition of recovery discussion, then, is a relatively straightforward process. We

have concentrated on the use of recovery paths, where access is similar to that for carry-out

mode, and matching is similar to that done for standard path successor steps.

59

9. M etadiscussion

Metadiscussion is used to change the flow or activity in a dialogue or clarify the current

flow of activity. In the system, metadiscussion recognition is done using a set of patterns caned

JMttUliscwslon up. These are similar to initiator keys, except that metadiscussion keys are noc

a reflection of other structures (i.e. method steps) in the same way that initiator keys are;

instead, they themselves are the primary structure.

In the Susie Software environment, three sorts of metadiscussion are possible: either an

activity is suspended, a previously suspended or completed activity is reopened, or a description

of what is to come next ii given. Accordingly, the concepts for metadiscussion keys are

specializations of the relation METADISCUSSION-KEY, with this category divided into three

subcategories marked by the concepts SUSPEND, RESUME, and INFORM. The basic form

of a metadiscussion key is u follows:

(<key type> <a subsurface level representation>)<- <the corresponding method call>

The matching process for metadiscussion keys is similar to that for terminal initiator keys. (See

Section 6.2.) The surface semantic representation output by the parser is matched against the

aubsurface level forms of the lc.eya until a match ii found, and then the associated value is

picked up. Th• value of a metadtacuwon key ts an interpreter level call to a method, for

example a call to the method to resume an activity. Because of the way that keys are

represented, a match against the subsurface level rorm causes the appropriate binding of its

variables and at the same time causes the method call in the value to be appropriately

60

instantiated, so that the normal Carry-out method 11lect10n process can be applled to it. Once

recognition of the user's utterance Is complete, then, the value of the rnetadlscuulon key can be

used to guide Susie's response.

So far, metacU1cuuion proceuing seems to be quite simple, but there Is one complication.

The operational definition of rnetadiscussion used in the system ls that it is a sentence or

phrase that changu the way other sentences or phrases are interpreted, in particular by

chanJinJ in some way the sec of pattern matches that is tried. Note that. u we are construin1

it. not all metadiscuuion is sentential Some seems to be phrasal, u in a, tltl r.ua,, W /all, r.u,'rt

on tltl subj«t, Cndn1 ball to tlil lcst ;ro,ra,n. etc. Besidu theae more or leu stock phrases, it
;

appears that general time phruea can be ulld u metadiscuuion. Consider the f oJlowing

example from Deutleh [5]:

k I have the jaws around the hub. How should I take it off now?

E: Tighten the screw in the center of the puller_,that should slide the wheel off the shaft.

A: OK. It's off.

k A little metal semicircle fell off when Itook the wheel off.

Deutsch observes that the phrase a,/a,n / tooJr. tit, 'tllli11l off is used to reopen an already

completed subtask. In our framework, this phrase would be classified u metadiscussion

associated with the reopening of a task to initiate a recovery procedure. Time phrases are not.

however, restricted to this usage; for example, • Mter you pulled the plug, did the water run

out?•. Within our framework, the difrerence between the two uses of time phrases is that in

the first cue, once a subtuk has been closed by a successful recognition step (•o.K. It's off.;,

, l

'

61

auociated recovery procedures are no longer directly accesaibte. The time phrue is therefore a

necessary c~ to the 1yaeem to retum attention to the event named, making the patterns needed

to interpret the nae ol the utterance available. In the second example, however, the necessary

patlllml (in this cue. initiator key1) are routinely available. The time phrase is necessary to

answer the question, but it ii not necessary for finding the correct pattern in the first place.

Whm rnetadlscnuion forms.• complete utterance. the system can match the appropriate

metadiscuuion key and then carry out the call given in the value.. When metadiscussion is

phri.1&1, on the other hand, the ayatem will aptn be matching metadiscuuion keys. but the

activities given u valuea for these keys wlll have to specify further matching operations in

order to compllre the proceuin1 of the uuerana and, ln dolnl so, verify that the phrase wu

actually actinC U meladilCUuion.

62

10. ConclufiOn•

Thu paper _hu dflCrilMd a · framework tor Pl'OCIIIUII mixed-initiative typed dialogue,

wMh apec:ial altallian to recapidaft. RecopWon ii done 111ing a set of dlaque methods

w1111M in OWL-I. a 11t ol ,pedal NCGpitian p1U1rft1. and multiple rnatchinJ atrategies. The
I

dalague ffllthada and the rapltian pauema are wed to provide structural expectations. some

ol which an dff.,.. clynamicallJ. The tuk......_ naaun or the envtronmmt meant that

the ltnldUral Gpaclldana wtn be I relaciVtlJ pad IOUrct ol Information, and thil in tum

allows a pad deal ol flexibtlltJ to be lncorporalld into the Slllle Software system.

The tmportant qutltion for a natural lanpace .,- or this IOl't ii its extensibility.

Can the dtligll p,111RIINI hen be adaptld tor nal-world lnterldian with an expert system?

Ftnt. the cUalape ffllthodl tnclude both anantic domain dependlnt plans (e,1 .. the

prapam wridng one) ucl dGmaln lndtpenclalt OMI, the core llllthoda. If we were to add new

IUkl ID the s... 8aflWln IIIVlronmlilt the core dlalape ffllthodl would continue to be

a;pUcable. Mono,•, taking Seule's ipllCh &di u a pkle, it ii probablJ pouible to write a

mmpllta llt ol an dlalape methads. (The number ol t.._ would be on the order of a

hundred and ctrtalnlJ Im than a thausand.) leyond the accompanying r1CGpition patterns

and .methodl, no new structure would have to be added to the lystlffl to accomodate these new

an ffllthada, and at one lnel we cauld then •J chat we had a very general aystem.

There ii man ID dlalape. however, than dorllMn indepencltnt structures, and the

cpleltion al extelllibllitJ ii more problematic .UMa the domain that hu been chosen. In order

ID provAde .._.. with a warking 1J111m, we would have to apan the llfflafttk domain. This

·•

63

requires more domain dependent dialogue methods, which would be relatively straiJhtf orward.

Beyond this, it requlrta apecial atructurea and a pod dal of built-in knowledge to handle

ralGllinJ. reference nsoluttan. and the framing of meuagea for generation. Crucial to thia ii

aim a fadlltJ f• rnaclelUna tht knowledp of tht uaer. These illUel have not been ignored in

1J1DM1 developmalt. but more wort. some of lt theoretical. would have to be done before we

muld art to talk. about SUlie Software u a practlcal system.

K11p&nc thlle NNl"Yltionl in mind, wt feel it ii fair to ay that the Sulie Software

dllip mnttitutes a 1t1p in the direction of flexible, reliable, tuk-oriented dialope proceuing.

The design incarponb11 dlff erent kinds of knowledge needed to model dialogue, and It

aa:amodata dilcoune phenomena auch u indirect speech acts and intenentential reference.

Our a.pertence with the prototype 171tem hu been positive, and we feel that the approach

taken In Suaie Software II a promising one.

64.

References

Dl Brown, O.P. Failure and recovery in natural language dlalope. in progress.

[2] Brown, J.S.. Bunin, R.R,. ·Mid BelL A.G. SOPHIE: A aophiltkated instructional
••........_ f• lllcii"I ~ (aft example ol Al jn CAI). BBN
Report No. t'JIO (Matdl ll'H). lolt, laraMk.1114 N....,._ Inc., Cambrldp. Mau.

DJ Bruce. B.C. BelW a,-~ languap unclenrandinC, BBN Report No. 2l'7S (January
1975). Bolt. Baranlll. and Newman, Inc., Cambrtdfe, Mau.

(f] Carbanell, J. Mlwtl·l'llltlatlff Mn-C.r,,ur lnstnldllntll Dllllop,1, Doctoral thesis,
EllcCrical Enptalrlnc Dlpt.. MJ.T .. Caml.mdp, Mua. W10. .

151 Deutsch, B. C. The structure or task oriented dialogs, Procudln1s IEEE s;.«la
s,-,-,u. Cal'Mp-Mellon Uni'lftty, ~h, PL.(April lt"H).

[6] Gordon, D. and Lakatf, G. Convenatklnal paatulares, in: Cole and Morgan (Eds.) S,ntax
..,, 3ntatlU, •ol S.. Academic Preu, New York. 1175.

m Hawkinson, L The representation of canc:epts in OWL, A4NJ&U Pa,t,n1 of IM Fw,rtl.
/wt,,,..._ /_, CtmJ,r,lt, on Ar#jldtll '"""""'"• Tbilili. Oearcia, USSR
(Stptlmber 1971).

[I] Levin, J.A. and Moon, J.A. Dialope p-= meta-communlcatlon scrucsurea for natural
....... tntlraaian, Ill/RI,..,,_. (January 1977), USC/Information Scienca lnatitute.
Muina del R-,, CaW.

[I] Marcus. M. Diapaua u a nation of grammar, TAlorltllGl /ssrus In Na,tu.,a,/, Lanptil'
P'IICWl.a1, An lnllrdildpUnarJ Worklhop III Campulational Linguutia, PaJChololJ,
Linplltia, and Ardfldal ~ CamlH1dp. Mus. (June lt'IS).

00] Martin, W. A. A computational appNIICh to modem linptatica, in procraa.

· DI] Minsky, M. A framework for representing knowledge, in: Winston (Ed.), Visual
,.,,,,,_,,,_ Prow,-,, MIT Presa. Cambridge, Mau. l975.

D2l Ogden, C.K. Jcsll Bnflui, Harcourt Brace and World, New York, 1968.

[IS] Sadock. J.M. To,,crtl a, Ltnputt.c T,,_.,, of S/lffda Acts, Academic Preas, New York, 197-t.

Of] Schank, R.C. and Abelson, R.P. Scripts, plans, and knowledge, AdNnu Pa,t,n1 of tM
F°""i, Int.,..,,_,, Joi.at Ctmfa,nu on Ar#jldtll lntllllpnu, Tbilisi, Georgia, USSR
(Stptlmber ni

65

[16] Scherloff. E. and Saw. H. Openln1 up cloalnca. Snnlottu., 8 (lffl).

06] Searle, J. R. Sf>,«la Acts, University Preu, Cambridge, 1969.

D7l Searle, J. R. A taxonomy of lllocutlonary acts. in: Gunderson (Ed.), Mtnn,sota Studt,s In
tlw P~ of lA•p,,lf, Univenity of MinllllOtl Preu, Minn•polil (forthcoming).

DI] Szolovits. P,. Hawkinson, L.. and Martin. W.A. An overview of OWL. a lancuage for
knowledge representation. to appear in: Proc11tltn1s of tlw WorluAo/J on Natu.ral
Lcnp,,p ft!, l7111Ndltm .Ula Data Basis, International lnltltute for Applied Systema
Analysis, Laxenburg, Auatria.

66

Appendix

For raden intenllCad tn ~ detail, we include a brief survey or OWL-I notation, alon1

with an example ol an OWL-I method.

Recall that thtre are two fundamental operations in OWL-I, apedallzatton and

modlf'icatlan. Spedalbltiona of a concept are rtpnNnted using parenthelel, e.g., (NAME

FIRST) for -rtnt name.• a apecialilatian of NAME. FlltST ii called the s;«t«tur of (NAME

FIRST). In OWL-I, identical canc:ept names comspond to identical internal ltl'Uctures, so that

two dlf'fennt 11111 ol (NAME FIRST) wiU have the ame internal repre,mtation. To represent

the ract that a caapc modif lei another concept, we UM square bracJu1t1 ro form a cnaf,la, e., ..

[PAPD OfflCE-SUPPLYl Thia •JI that the concept for paper hu the concept for office

aupply u a mocliflcatiGft. Nate that OFFICE-SUPPLY ii actually a lu,l for a concept that

might allO, for example, be wntten u (SUPPLY OFFICE). In general, labels are used u,

lncnUe l'lldal,llity, lftd thlJ are IUipld llling an equal stgn. e.g., OFFICE

SUPPLY .(SUPPLY OfflCE). A lpldal position on the reference list ii reserved for Nlu,s

ol nlatianal ~ auch u EMPLOYER, SUPPLIER, LENOTH, WIDTH, etc. The

nacatton few value uupment ii a 11ft arrow; for example,

(EMPLOYER MARY-DOE);<- UNION-c.ARBIDE

•JI that the tmploJw of Mary Doe ii Union Clrblde. A question mark. may be wed after a

relation to refer to the value. so that the following representations are equivalent:

(VALUE{EMPLOYER MARY-DO£))

67

The Interpreter can take either of these forms and evaluate them to return the current value of

the relation. Mechanisms exist to handle values that change over time and. also to handle

values that are context or world model dependent

As an abbreviation for specialization by the first concept (the subj«t) of a complex we

UN colons. Thus,

[BLOCK-A COLOR: <- RED]

is equivalent to:

[BLOCK-A (COLOR BLOCK-A)<- RED]

Both say that the color of Block-A is red. The number of colons corresponds to the level of

embedding of the square brackets, so that on input the expression

[((PUT ENTITY) ((ON TOP) ENTITY))
INSTRUMENT: <- [HAND:

(PART AGENT:)<-::]]

would be equivalent to

[((PUT ENTITY) ((ON TOP) ENTITY))
(INSTRUMENT ((PUT ENTITY) ((ON TOP) ENTITY))) <

[(HAND ((PUT ENTITY) ((ON TOP) ENTITY)))
(PART (AGENT ((PUT ENTITY) ((ON TOP) ENTITY))))<

(HAND ((PUT ENTITY) ((ON TOP) ENTITY)))]]

Both structures above express the constraint that the instrument case of the concept ((PUT

ENTITY) ((ON TOP) ENTITY)) must be bound to the agent's hand. Specialization by the

aubject of a complex is used to tie concepts into larger structures. For the OWL-I Interpreter,

colons most often indicate that a concept is to be used as a variable.

68

I

We are now in a position to look at the actual OWL-I representation for the method to

uk. and answer a question, Figure 6. The subject of the whole complex (the method header) is

ASK-AND-ANSWERi th.is means that the other concepts that follow will appear on its

reference list From the point of view of LMS, the concepts on the reference list of the ASK

AND-ANSWER header differ by· type, but they are basically semantically neutral. For the

Interpreter, however, there are important semantic distinctions between them, some of which

have already been mentioned. The first of these concepts is PLAN. The ASK-AND

ANSWER concept is thus characterized as a PLAN, which makes it possible for the Interpreter

to distingut,h it from individual ASK-AND-ANSWER events. Next in Figure 6 are the

semantic case specifications; for methods, these come from a set of twenty cases (which may,

however, be further specialized). Before discussing the content of the case specifications in

detail, it is necessary to clarify the rote of colons, numbers, and THE concepts in method

notation.

At the LMS level, we have said that colons are used to tie concepts into larger structures.

This also serves to distinguish different uses of a concept. For example, the concept AGENT

has a unique representation in LMS, so the uses of AGENT in [ASK-AND-ANSWER

AGENT <- _,] and [STATE-AND-ACKNOWLEDGE AGENT <- ...] would refer to the

saJM concept If, on the other hand, we follow AGENT with a colon in these two complexes

then there are two diff,rmt concepts: (AGENT ASK-AND-ANSWER) and (AG.ENT STATE

AND-ACKNOWLEDGE). If this degree of distinction is not enough, for example if it is

necessary to distinguish between two concepts within a complex, then OWL-I notation uses

specialization by a number .. Thus, HUMAN:1 and HUMAN:2 in ASK-AND-ANSWER

[ASX-AND-ANSWER
PLAN

69

OBJECT: <- [SlJIIMUM-CINUS1l NON-BOW-WHY-QUESTION
(COAL ACINTd <- (lN01f UNffll a))
((I& «INIOIIUTIONALLY-NONSPICD'IC .alU)

. (JOI CO-ACINTI))) A)]
ACKNTi <- (O& JIUIIANsl VIUALIZD:l)
00...ACENT: <- (O& JIUJUN:l llllALJDl4)

IIETIIOD: <--
[<AR OIJECT:)

ACINT:: <- ACINT:
DESTINATION:: <- CO-ACINT:]. ·

(BECOME ((II (SPICU'IC -RLr)): -COBJIC'l\ (J'OI CO-ACINT:)))).

[«mm MENTAL)
((SUIO(UII-CINtJS:3 (ANSWII. OIJICT:) <- :::] SOU))

ACENT:: <- CO-ACINT:
BENUIClilYa <- ACINT:l

[Sl'A TE-AND-ACDOWLIDCI SUUMUK-CINUStS THE))
ACENT:: <- CO-ACINT:
CO-ACENT= <- ACENT:]

((UCOYDY-PATH STIPULATION) ((l'IND MENTAL) SUMMUM-CENUS:3)):
<-
[(TELL (AND (SUIOIUM-CENUS:3 TBE)

(STIPULATION (PIINCIP AL-USULT
((flND MINTAL) (SIJMKUII-CINIJS:3 TRI)))?)?))

AGENT:: <- CO-ACINT:
DESTINATION:: <- AGENT:].

[(TELL [SUMMUM-CENUS:4 AffllMATIVED
AGENT:: <- CO-ACENT:
DF.STINATION:: <- ACINT:]

((RECOVERY-PATH CKNO'fl Har>) ((11ND MENTAL) SUMMUM-CENUS:3)):
<-
[(TELL (AND CBI SOIIY)

((XN()'fl NOT) ttJAT (ANSYEI OIJICT:)))))
ACINTn <- ~I

DISTINATION:a <- -~,]]

15-an '- h OWL-I rep........_. for the proceu of ukinl a question and l~"I an answer.

'

70

expand to ((HUMAN ASK-AND-ANSWER) 1) and ((HUMAN ASK-AND-ANSWER) 2), two

distinct concepts. Finally. we can go further and 1pec1aUze by THE. Thia last distinguisher

)
will be dilcuued in more detail below.

Returning now to the contents or the semantic case specifications, in order for the ASK

AND-ANSWER method to run the agent must be bound to a kind of person or computer

system, and so must the co-agent The object case here ii more complicated. The

representation starts with the concept SUMMUM-GENUS:1, which is straightforward enough.

SUMMUM~ENUS ii the top concept on the tree, 10 that any sort or input •ill match. The

initial SUMMUM-GENUS, however, is further conatrained, IO that what the representation

really says ii •any Input such that _ •. In fact. there are three constraints. First. is the concept

NON-HOW-WHY-Q.UESTION. This is defined to be a question about what. w]lere, when,

who. whether, or how much; in short, anything but a question about how or why. This concept

must be a MCOndary characterization rather than a primary one (which would appear in place

of SUMMUM-GENUS:1) due to the way the concept tree is currently arranged. As it stands

now, the question forms are split up under different concepts on the tree, so that their common

superclua includes other concepts that we would not group under NON-HOW-WHY·

Q.UESTION. This ii a frequent occurrence when one is dealing with a tree: one set of

relationships must be chosen to be primary, and the rest will then become secondary

characterizations or concepts.

The second constraint on the object cue ays that the agent•s goal is to know the answer

to the question. This points up the goal-directed nature of the exchange. The third, rather

involved. constraint on SVMMUM-GENUS:1 ay, that for the co-agent the object is

71

tnfonnatt01u1ll1 fUlftS/>ffl,Jk. This term means that on entry to the ASK-AND-ANSWER method,

the co-agent cannot bind the SUMMUM-GENUS:l to the question beca.use he does not know it

yet. (A variable may also be mstmttall1 ,umsp,ctftt, i.e. it cannot be bound because the

intended binding doa not exist yet.) The -SELF apecializer is present because specificity is

trated u a property of variables, rather than their bindings; that is, (INFORMATIQNALLV

NONSPECIFIC -SELF) is a property of SUMMUM-GENUS:l, not of a prospective binding.

Note that in the second step of the method, after the question is uked, the co-agent is assumed

to know the question, and an usertion 11 made about the new state of his knowledge base.

The semantic cue apecif ications are followed by the steps in the method. separated by

commas. (Other notation - the use of THEN concepts connecting steps - may be used when

the linear ordering supplied by commas is insufficient) The steps of ,the method are calls to

other methods. and so they have usociated input case assignments. To specify the values for

these assignments. the semantic cue names from the containing method are used u variables.

For example, the first step is.

[(ASK OBJECT:)
AOENT:: <- AGENT:
DESTINATION:: <- CO-AGENT:]

When the Interpreter evaluates these case assignments. it finds that the agent of the step ls the

current value of the agent of ASK-AND-ANSWER, and the destination of the step ls the

current value of the co-agent of ASK-AND-ANSWER. OBJECT: in (ASK OBJECT:)

evaluates to the object case setting of ASK-AND-ANSWER, which is the question to -be asked.

Thus, it is important not to confuse case sf>«ljltatlons associated with methods and case

,ustpr,wnts a110Clatld with calla.

72

The steps in the ASK-AND-ANSWER method have been discussed in Section S.1 where

Fi1ure 2 gives a translation of the content. There remain only a few more points about

notation. The SOME in the third step of Fipre 6 indicates that the variable SUMMUM

GENUS:S ii nonapeciflc (in this example. informationally nonapecific). that is. it will not be

bound until the FIND method has been carried out and the answer to the questic;,n has been

found. The SOME specializer ls a signal to Evaluate that no binding currently exists for this

variable. Note that SOME ls used to signal a nonspecific cue asstgnfllfflt; specificity was

mmtioned above for the object of ASK-AND-ANSWE}t. but this was with regard to a case

spedf'ication, rather than a cue asaignment.

Finally, we are in a position to return to the we of THE notation. for example in the

fourth step, (ST ATE-AND-ACKNOWLEDGE (SUMMUM-GENUS:S THE)). Specialization

by THE ii used to distinguish between cancepts, so that SUMMUM-GENUS:3 and

(SUMMUM-OENUS:S THE) are, apin1 two different concepts. This time, however. the

Interpreter hu special mechanisma to relate the two forma, so that both variables evaluate to

tha same binding. Thus. once SUMMUM-OENUS:S is bound to the answer in the third step,

(SUMMUM-GENUS:S THE) wil1 evaluate to that answer. The reason for THE specializers is

somewhat subtle, but it relates to the highly interrelated nature of the OWL-I knowledge base.

The ori(lnal SUMMUM-OENUS:S hu usociated with it a set of modifiers, in particular that

lt ii the answer to the question. Because of the way that reference lists are constructed, if the

SUMMUM-GENUS:S in the fourth step were not made into a separate concept, then that

STATE-AND-ACKNOWLEDGE concept would end up on the reference list of SUMMUM

GENUS:S. This could lead to some confusion in the Interpreter, especially when it came time to

73

bind SUMMUM-OENUS:S (whoae binding was delayed because it is nonspecific). THE

1pectalizatlon1 were introduced to keep mucellaneous step• and relation1hip1 on a separate

concept, diltinpilhUIJ them from thoae madlfien that will be Important in type checking for

variable bincllnc. Specialization by THE auures that no extraneou• related concepts are

retrieved whln thej an not wanted.

Thia covm the notation nasary to understand the ASK-AND-ANSWER example.

Fram thil it ahould be dlar that OW~I represencationa have different significance at different

levels of the system. and that the notation, correspondingly, hu more than one layer. LMS

dala in cmaapts, ,pedalizationa. and complex• which the wer repraenu with parentheses,

colonl, aquan bracuta. etc. The Interpreter, on the other hand, hu a hl1her level, more

NIIIUltic. point ol view, and it dais With semantic ca-. procedure calla. varlablea. and 10

forth.

