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CHAPiER 1 - INTRODUCTION 

1.1 An Overview of the Thesis 

The problem of determining a makimum steady state flow from one 

point to another in a network with edge capacity constraints, has come to 

be known as the maximum network flow problem ("mak-flow" in short). L.A. 

Ford and D.R. Fulkerson [91 were the first to study mak-flow as a 

computational problem. They developed the first mak-flow algorithm in the 

mid 1950's and laid the groundwork for much of the research that was to 

fol low. Since that time mak-flow has been widely studied and has developed. 

great practical application, especially in the analysis of transportation 

and communication networks. This thesis 1-1i 11 be concerned 1-1i th the 

computational complexity of the maximum net1-1ork flo1-1 problem, investigating 

both upper and lo1-1er bounds on the problem. 

The remainder of this chapter will be devoted to a development of 

the foundation necessary for any coherent study of the maximum net1-1ork flow 

problem. We 1-1i I I begin by presenting the basic definitions and concepts 

that have become standard in the max-flo1-1 I iterature. We shal I then 

introduce the fundamental theorems upon 1-1hich the study of max-flo1-1 has 

been bui It. These theorems, due originally to Ford and Fulkerson [9], are 

known as the Augmenting Path Theorem, the Integral Flo1-1 Theorem and the 

Max-Flow Min-Cut Theorem. 

The second chapter in this thesis 1-1111 deal with upper bounds on 

the complexity of the maximum net1-1ork flo1-1 problem. The long and 

intriguing history of the search for such bounds is summarized below in 
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Table 1.1. 

Upper Bounds on Max-Flow 

1) Ford and Fulkerson (1956) 
2) Edmonds and Karp (1969) 
3) Oinic 11970) 
4) Karzanov (1973) 
5) Cherkasky 11976) 
6) Gali I (1978) 
7) Malhotra, Kumar and Maheshwari (1978) 
8) Gali I and Naamad (1978) 

Table 1.1 

Unbounded 
OCV•E2) 

o cv2-El 
ocv3) 
o cv2-E112> 

0 cv5l3.E2/3> 

ocv3 > 

o CV·E·I olv> 

Each of these bounds has been demonstrated by the construction of a max­

flow algorithm which has the specified worst case running time. Chapter 2 

wi I I consist of a survey of each of these algorithms. We note here that 

the a Igor i thm deve I oped by Ma I hotra, Kumar and Maheshwar i [16], which we 

w i I I ca I I the MKM a Igor i thm, does not resu It in an asymptotic improvement 

over the previous three algorithms. However, this algorithm is very simple 

and is probably the best algorithm to use on dense networks <E~V2). 

The determination of lower bounds on the computational complexity 

of the maximum network flow problem has thus far received little attention 

in the Ii terature. In Chapter 3, however, we sha 11 investigate one 

part i cu I ar approach to est ab Ii sh i ng a non-Ii near I ower bound on the 

complexity of max-flow. The technique we shall deal with is the polyhedral 

technique developed in 1977 by A.C. Yao, O.M. Avis and R.L. Rivest [211. 

We wi I I show that a straightforward application of this technique fai Is to 
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prod~ce a non-linear lower bound on max-flow. In the process, however, we 

shal I answer several questions concerning the facial structure of a class 

of polyhedra very closely related to the max-flow problem. 

1.2 Basic Definitions and Concepts 

This section wi I I be devoted to a presentation of the basic 

definitions and concepts that have become standard in the study of max­

flow. We wi I I begin by defining a network and a legal flow function on a 

network. These concepts wi 11 then be used to develop a. formal definition 

of the maximum network flow problem. Finally we wi 11 introduce the basic 

notions of a cut and a flow augmenting path, 

Def i n i t i on 1. 1: 

A network n = (G,s,t,c) is a 4-tuple with the properties: 

1) G = (V,E) is a finite directed graph composed of a 
set of vertices, V, and a set of edges, E. 

2) Two distinct vertices seV and teV are specified as 
the source and sink respectively, 

3) Each edge eEE is assigned a non-negative real number 
c(e), cal led the capacity of edge e. 

For any vertex veV, ln(v) denotes the set of all edges incoming to 

v and Out(v) denotes the set of all edges outgoing from v. An edge e, 

directed from a vertex u to a vertex v in a network n, will often be 

denoted by the ordered pair es(u,v). 



Examp I e 1. 1: (Neh1ork n0 i 

V ~ {s,a,b,c,d,t} 
E = {<s,a),(s,b),(a,cl,(a,dl, 

(b,dl, (c~tl, (d,tl} 
c(e) = 10 [for all eeE s.t. e~(a,d)) 
c(a,d) "'1 
ln(t) • {<c,tl,(d,tl} 
Out ( s l = { ( s, al , ( s, b) } 

Definition 1.2: 

8 
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A~ flo1,.1 function f on a net1-1ork n associates 1-1ith each edge 

eeE a real number fie) satisfying the conditions: 

Cl) 0sf(elsc(el, for each edge eeE 

C2) L f (el 
eeln(v) 

- L f Ce) • 0, for each verte>< veV-{s, t}. 
eeOut (v) 

The value of a legal flo1,.1 function f is defined to be: 

(1.1) v(f) = L f(e) 
eeln(t) 

- L He>. 
eeOut (t) 

Informally 1-1e say f is a steady state flo1,.1 from s tot and f(e) is 

the steady state flo1,.1 through edge e. Thus, condition Cl tells us that the 

steady state flo1,.1 through any edge must be non-negative and not e><ceed the 

capacity of that edge. Further, condition C2 states that any steady state 

flow from s to t must have the property that flo1,,1 is conserved at every 

vertex other than the source and the sink, 

Def i n i t i on 1. 3: 

An edge e, incident upon vertices u and v in a net1,,1ork n, is said 

to be useful from vertex u to verte>< I/ with respect to a legal flo1,,1 
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function f defined on n, if either: 

Example 1.2: 

1} e•(u,v} and f(e}<c(e} 
or 

2} e•(v,u) and f(e)>0, 

The fol lowing legal flow function fe is defined on network n0 from 
Example 1.1: 

.f0 (s,a) .. 5 f0 (s,b) - 0 
f0 (a,c) = 4 f0 (a,d) - 1 
f0 (b,d) = 0 f0<c,t) = 4 

f0 (d, t) - 1 

10,0 

V ( f0) = f0 (c,t) + f0 (d,t) - 0 • 4+1 • 5 

Note - (s,b) is useful from s to b but not useful from b to s 
(a, d) is useful from d to a but not useful from a to d 
(a,c) is useful from a to c and from c to a 

Let us now consider a legal flow function, defined on a network n, 

1-1hose value is maximum over the set of values of all legal flow functions 

defined on n. Such a flow function is said to be maximum with respect to 

n. Notice that the existence of a maximum flow function on a network is 

not open to question since a network is composed of only finite capacity 

edges. Further, notice that there may exist more than one distinct maximum 

flow function on a network. 

Definition 1.4: (Max-Flow) 

The maximum network flow problem is defined as the problem of 
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computing a maximum flow·function on a network given as input. 

We now turn our attention to the basic concepts underlying the 

theory on which the study of the maximum network flow problem has been 

bu i It. In particular, we present the notions of a cut and a flow 

augmenting path. 

Definition 1.5: 

A cut in a network n is a set of vertices X with the properties: 

1) XcV. 

2) seX. 

3) teX where X • V-X. 

The set of al I edges eeE which are directed from a vertex in X to a vertex 

in X is denoted by CX;X). The capacity of a cut Xis defined to be: 

(1.2) CCX) = ~ cCe). 

ee(X;X) 

Example 1.3: 

The following cut x0 is defined on network n0 from Example 1.1: 

x0 - {s, a, d} 

x0 = {b,c, t} 

I 
110 I 

C(X0) = c{s,b) + c(a,c) + c(d,t) • 10+10+10 • 30 



11 

Def i ri i t ion 1. 6: 

A ~ p, from vertex v1 to vertex vn in a net1-1ork n, is a 

sequence of distinct vertices and edges p • v1e1v2e2 ••• vn-len-lvn (n~2) 

such that vieV (for each i•l, ••• ,n), eieE {for each i•l, ••• ,n-1} and 

either ei = (vi,vi+l>, in 1-1hich case ei is said to be a for1-1ard edge in p, 

or ei = (vi+l'vi), in 1-1hich case ei is said to be a reverse edge in p, for 

each i=l, ••• ,n-1. Any path composed of only for1-1ard edges is cal led a 

chain. Note that a path is defined to be acyclic. 

Def in i ti on 1. 7: 

A flo1-1 augmenting path, 1-1ith respect to a legal flo1-1 function f on 

a net1-1ork n, is a path p' 1-1ith the property that each edge eiep' is useful 

from vertex viep' to vertex vi+lep', A flo1-1 augmenting path from the 

source to the sink is called an s-t flo1-1 augmenting path. We shal I see in 

the next section that an s-t flo1-1 augmenting path is a path along which f 

can be augmented (i.e. the value off can be increased), 

Example 1.4: 

The fol lo1-1ing s-t flo1-1 augmenting path Pg is defined with respect 

to the legal flo1-1 function f0 from Example 1,2: 

Pe c s(s,b)b(b,d)d(a,d)a(a,c)c{c,t)t 

Note - (s,b),(b,d),(a,c) and (c,t) are all for1-1ard edges along Pg 
(a,d) is a reverse edge along P0• 
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1.3 Fundamental Theorems 

The study of the maximum network flow problem has been based on 

three fundamental theorems first proven by Ford and Fulkerson [9] in the 

mid 1950's. These theorems are known as the Augmenting Path Theorem, the 

Integral Flow Theorem and the Max-Flow Min-Cut Theorem. This section wil I 

be used to develop formal proofs of each of these theorems. We wi I I begin 

by proving the following principle lemma which we alluded to at the end of 

the last section. 

Lemma 1. 1: 

If there exists an s-t flow augmenting path p', with respect to a 

legal flow function f on a network n, then there exists a legal flow 

function f' on n such that v(f'}>v(f). 

Proof: 

Let p'=v1e1v2e2 .•• vn-len-lvn (n~2) be an s-t flow augmenting path 

with respect to a legal flow function f on a network n. Define the sets 

Ee {eeE I e is not an edge in p'} 

E1 = {eeE I e is a forward edge in p"} 

E2 -{eeE I e is a reverse edge in p'}. 

Note that E1uE2 i5 the set of all edges in p' and that E0uE1uE2 is the set 

of al I edges inn (i.e. E9UE1UEz • EL 

Since p' is an s-t flow augmenting path, it follows from Definition 

1. 7 that v1 =s, vn=t and ei is useful from vi to vi+l' for each i•l, ••• ,n-1. 

More explicitly, applying Definition 1.3 yields: 



(1. 3J 

(1. 4) 
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f(e)<c(e) => c(e)-f(e)>0, for each edge eeE1 

and 

f(e)>0, for each edge eeE2• 

No~ construct the function f' as follows: 

(1.5) 

(1.6) 

(1. 7) 

(1. 8) 

(1. 9) 

,.. 
c(e)~c(e)-f(e), for each eeE1 
,.. 
c(e)~f(e), for each eeE2 

,.. 
a ~ min c(e) 

eeE1 uE2 

f'(e}~f(e), for each eeE0 

f'(e)~f(e)+3, for each eeE1 

f'(e)~f(e)-4, for each eeE2• 

It must now be shown that f' is a legal flow function on n and that 

v(f')>v(f). (Notice that f' is defined on all edges eeE.) 

To show that f' is a legal flow function on n, we must simply 

prove that f' satisfies both condition Cl and condition C2 of Definition 

1.2. Let us first consider condition Cl. Since f is a legal flow function 

on n, it follows from Definition 1.2 that: 

(1. 10) 0sf(e)sc(e), for all eeE. 

Thus, applying (1.7) yields: 

(1.11) 0sf'(e)sc(e), for all eeE0• 
,.. 

We now notice, from (1.3) and (1.4), that c(e)>0 for all eeE1uE2 and thus 

&>0. Combining this with (1.8) and (1.9), we have: 

(1. 12) 

(1. 13) 

f ' ( e )> f ( e) , for a I I e eE 1 

and 

t'(e)<f(e), for all eeE2• 
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We can now apply (1.10) and (1.12) to (1.8) to obtain: 

(1.14) 0<f' (el Sc (el, for a II eeE1• 

Similarly, we can apply (1.10) and (1.13) to (1,9) to obtain: 

(1.15) 0sf'(el<cCel, for all eeE2• 

Therefore, combining (1.11}, U.14) and (1.15), 1-1e have: 

0sf'(elsc(e), for all eeE 

and thus f' satisfies condition Cl of Definition 1.2. 

We must no1-1 prove that f' satisfies condition C2 of Definition 1,2, 

This is accomplished by considering any verte>< v'eV-{s,t}. Since f is a 

legal flo1-1 function on n, it fol lo1-1s from Definition 1.2 that: 

(1.16) L t<ei 
eeln(v') 

- L f cei - 0. 
eeOut (v') 

.Further, if v' is not a verte>< along the path p', then all of the edges 

incident upon v' must be contained in the set E0• Thus, combining (1.7) and 

{1.16) yields: 

L f, <e> 
eel n (v') 

- L f' cei 
eeOut (v') 

= L f ce1 
eeln(v') 

- L f{e) - 0. 
eeOut (v') 

(for all v'eV-{s,t} and v'tp') 

If, ho1-1ever, v' is a verte>< along the path p', then let i be the inde>< of 

, I , (. , ') V a ong p I • e. V = Vi Ep • Since p' is acyclic and v't{s, t}, there 

must be exactly t1-1O distinct edges incident upon v' which are contained in 

p", namely ei-l and ei. All other edges incident upon v' are therefore 

contained in the set E0• We must no1-1 consider each of the fol lo1-1ing four' 

possible cases: 
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1) 8 i-le:E1 and eie:E1 

2) 8 i-le:E1 and eie:E2 

3) 8 i-le:E2 and eie:E1 

4) ei_1e:E2 and eie:E2, 

case 1, we combine (1.7)' (1. 8) and (1. 16) to obtain: 

L f., 1e> 
eel n (v') 

- L f'(e> 
eeOut (v') 

[(L fie>)+ a] -
ee:ln(v') 

[(Lfle>)+a] 
ee:Out (v') 

'" (L fie)) - (L fie)) + 8 - & 
ee:ln(v') ee:Out(v') 

- L f <e> 
eeln(v') 

- L fie> • 0. 
eeOut (v') 

The same result is proven for cases 2, 3 and 4 similarly, We therefore 

have that: 

L f'(e> 
ee:ln(v') 

- L f'(e> - 0, 
eeOut (v') 

for al I v'e:V-{s, t} 

and thus f' satisfies condition C2 of Definition 1,2, 

To show that v(f')>v(f), we first notice that there is exactly one 

edge incident upon t which is contained in the path p', namely en-1' All 

other edges incident upon tare therefore contained in the set E0• We must 

now consider each of the fol lowing two possible cases: 

1) en-1 e:E1 

2) en-1 e:E2, 

For case 1, we can simply combine (1,1) of Definition 1,2, (1.7) and (1,8) 

to obtain: 

V ( f ') . L t' <e> 
ee:ln(t) 

- L f'<e> 
ee:Out ( t) 

= [ (L fie)) + 8] - L f (e) 
ee:ln(t) ee:Out(t) 
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• ~ f (e) 
eeln(t) 

- ~ f(e) 
eeOut<t) 

• v(f} + I > v(f). 

+ f 

(since 1>0) 

The same result is proven for case 2 similarly. We therefore have that 

v(f') > v(f}. 

□ 

The proof of Lemma 1.1 reveals a fairly simple procedure for 

augmenting an existing legal flo1-1 function on a net1-1ork, given a 

corresponding s-t flo1-1 augmenting path. The procedure consists of 

determining the "excess capacity" along each edge in the flo1-1 augmenting 

path, as defined by (1.5) and (1.6), and then increasing the flo1-1 along al I 

for1-1ard edges and decreasing the flow along all reverse edges in the path. 

The amount by 1-1hich flow is increased or decreased along each edge is 

simply the minimum excess capacity over all edges in the flo1-1 augmenting 

path. 

We now present a lemma which wi 11 be useful in demonstrating a 

relationship bet1-1een the capacity of a cut and the value of a legal flo1,.1 

function on a network. 

Lemma 1. 2: 

Proof: ---

Given any·cut X and any legal flow function f on a network n, 

v(f) • ~ f(e) - ~ f(e). 
ee(X;X) ee(X;X) 

Let X be any cut and f be any legal flow function on a net1-1ork n. 
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Then by condition CZ of Definition 1.2 and the fact thats t X, we have: 

(1. 17) (:~: He) - L f<e)) .. 0. 
v e:X- I t I e e: In ( v) ee:Ou t ( v) 

Combining (1.1) of Definition 1.2 and (1.17) yields: 

(1.18) V ( f) = L He) 
ee:ln(t) 

- L f <e> 
ee:Out ( t) 

- ~ f(e) ). 

ve:X- (t} ee:ln(v) ee:Out (v) 

Si mp I i fy i ng (1 • 18) we ob ta i n: 

V ( f) = L (L f <e> - L t<e>) 
ve:X ee:In(v) ee:Out (v) 

= L L f <e> L L f<eJ. 

ve:X ee:In(v) ve:X ee:Out (v) 

Thus, we have that the value off is equal to the sum of the flow along al I 

edges directed into a vertex in X minus the sum of the flow along al I edges 

directed out of a vertex in X. If we now consider separately those edges 

directed from a vertex in X to a vertex in X and those edges directed from 

a vertex in X to a vertex in X, we obtain: 

V ( f) = (:~: f <e> + L t<e>) - (L f <e> 
ee:CX;X) ee:(X;X) ee:<X;XJ 

"' L f (e) - L f<eJ. 

ee:(X;XJ ee:(X;XJ 

Corollary 1.1: 

+ ~ f(e)) 

ee:<X;XJ 

□ 

If the value of a legal flow function f" is equal to the capacity 

of some cut X" on a network n, then f" is maximum on n and X" has minimum 

capacity over al I cuts on n. 

Proof: 

Let X be any cut and f be any legal flow function on the network 
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n. Then by Lemma 1.2 we have that: 

V ( f) • ~ f(e) 

ee(X;X) 
- ~ t<e) • 

eeO(;X) 

Applying condition Cl of Definition 1.2 we obtain: 

v(f) :S ~ c(e) 

ee CX; X) 

and thus by (1.2) of Definition 1.5: 

(1.19) v(f) s C(X). 

Therefore. if (1.19) holds by equality for some legal flow function f' and 

some cut X' on the network n, then f' must be maximum on n and X' must 

have minimum capacity over all cuts on n. 

□ 

We are now ready to present the three fundamental theorems upon 

which the study of max-flow has been built. 

Theorem 1.1: (Augmenting Path Theorem) 

A legal flow function f on a network n is maximum if and only if 

there exists no s-t flow augmenting path with respect to f on n. 

Proof: 

Clearly, if there exists an s-t flow augmenting path 1-1ith respect 

to a legal flow function f on a net1-1ork n, then by Lemma 1.1 f is not 

maximum on n. Assume now that there is no s-t flow augmenting path Mith 

respect to f on n and define the set Sas follows: 

S = {veV j 3 an s-v flow augmenting path with respect to f on n} u {s}. 
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Since there is no s-t flow augmenting path with respect to f on n, it can 

easily be seen from Definition 1.5 that S forms a cut inn. Further, from 

Definition 1.3 and Definition 1.7 we have that f(e)•c(e) for each edge 

eE(S;S) and f(e) = 0 for each edge eeCS;S). We can now apply Lemma 1.2 to 

obtain: 

V ( f) - L f Ce) - L f <e> 
ee(S;S) eeCS;S) 

- L cee> 
ee(S;S) 

- CCS). 

Thus, by Corollary 1.2 we have that f is maximum on n. 
D 

Theorem 1. 2: ( I ntegra I FI ow Theorem) 

There exists an integral valued maximum flow function on any 

network defined by an integral valued capacity function. 

Proof: 

Let n be any network defined by an integral valued capacity 

function and let f♦ be the zero flow function on n, defined by f♦ {e)•0 for 

each edge eeE (Notice that such a flow function wi I I be a legal flow 

function on any network). We can now compute a maximum flow function on n 
as fol lows: 

while there exists an s-t flow augmenting path 

with respect to f♦ on n 

do augment f♦ as outlined in 

the proof of Lemma 1.1. 
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An examination of (1.5) through (1.9) reveals that the legal flow function 

generated at each iteration of this procedure wi I I be integral valued. 

Thus by Lemma 1.1, the value of each successive legal flow function 

generated must be at least one integral unit greater than the value of the 

previous legal flow function. Combining this fact with {1.19) and Theorem 

1. 1, we now have that our procedure must ha It within a finite number of 

steps, yielding an integral valued maximum flow function on n. 
D 

Theorem 1. 3: (Max-FI 01-1 Min-Cut Theorem) 

The value of any maximum flow function on a network n is equal to 

the minimum cut capacity over all cuts on n. 

Proof: ---
let f be any maximum flow function defined on a network n. 

Applying Theorem 1.1 we have that there is no s-t flow augmenting path with 

respect to f on n. It now follows immediately from the proof of Theorem 

1.1 that there exists a cut Son n such that: 

v{f) • C{S). 

Further, by Carol lary 1.2 we have that the cut S must have minimum capacity 

over al I cuts on n. Thus, the value of any maximum flow function on n is 

equal to the minimum cut capacity over all cuts on n. 
D 

We shal I see in Chapter 2 how the previous three theorems form the 

basis for a I I the max-f I ow a I gar i thms that have thus far been deve I oped. 
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In fact, we 1,.1ill see that each algorithm is actually a variation of the 

procedure given in the proof of Theorem 1.2. 
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CHAPTER 2 - UPPER BOUNDS ON MAX-FLOW 

2.1 Introduction 

The formal definition of the ma><imum neh1ork floi.J problem, as 

presented in Section 1.2. can be e><plicitly stated as folloi.Js. Given any 

neti.Jork n as input, compute values of the variables Xe [for each eeEl so 

as to ma><imize the objective function 

subject to the constraints 

L Xe 
eeOut(t) 

Xe~ 0, for each eeE 

Xe~ c(e). for each eeE 

L Xe -
eeln(v) 

~ Xe 
eeOut (v) 

= 0, for each veV-{s, t}. 

Thus the ma><imum neti.Jork flow problem can be viewed as an optimization 

problem in which a I inear function must be ma><imized subject to a system of 

linear equations and linear inequalities. G.B. Dantzig [4] developed an 

algorithm in the early 1950's, known as the simple>< method, which could be 

used to solve such linear programming problems, Although it would not be 

incorrect to consider the simple>< method to be the first ma><-flow 

algorithm, it is usually not treated as such. The simple>< method is a very 

general algorithm_ which has an unbounded worst case running time. We have 

included it here only for the sake of completeness. 

L.R. Ford and D.R. Fulkerson [9) were the first to produce 

significant research results concerning, specifically, the ma><imum network 

f I 01-.1 prob I em. In the mid 1950' s they proved the .Augmenting Path Theorem, 
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the Integral Flow Theorem, and the Max-Flow Min-Cut Theorem. These 

fundamental results led directly to their development of the labeling 

algorithm for solving the ma><imum net"4ork flow problem. The labeling 

algorithm is a straightforward algorithm which simply augments an existing 

legal flow function along some s-t flow augmenting path in a network, This 

process is then repeated until there no longer e><ist any s-t flo"4 

augmenting paths in the net1,4ork. The labeling algorithm, although it also 

has an unbounded worst case running time, remained in successful use for 

almost 15 years. 

In 1969, J. Edmonds and R.M. Karp [71 developed a variation of the 

labeling algorithm which utilized a Breadth First Search in picking out the 

s-t flow augmenting paths in order of increasing length, This resulted in 

a much more efficient algorithm with a bounded O(IVl·IE1 2 ) worst case 

running t i me. Independently and a short time later, E.A. Dinic [51 

developed an improved version of Edmonds and Karp's algorithm. Dinic also 

uti I ized the technique of Breadth First Search but he developed an 

.algorithm with time complexity O(IVl 2•1EI). 

A.V. Karzanov [141 modified Dinic's algorithm in 1973 to obtain an 

O(IVl 3 ) ma><-flow algorithm. Karzanov's algorithm was unique in that it 

simultaneously augmented an e><isting legal flo"4 function along several s-t 

flow augmenting paths. In 1976, 8.V. Cherkasky [10] showed ho1-1 to combine 

Dinic's algorithm with Karzanov's algorithm to produce a new and very 

complex O(IVl 2 •1E1 112) max-flow algorithm. Two years later, Zvi Gali I (10] 

improved Cherkasky's algorithm to O{IVIS/J.IE1 213 ) by developing a 

technique for retaining useful information about the structure of the 
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neti.1ork, 

In 1978 V.M. Malhotra, M. Pramodh Kumar and S.N. Mahesh1-1ari UGJ 

discovered a very simple 0(1¥1 3) max-flo1-1 algorithm 1-1hich 1-1e shall cal I the 

MKM algorithm. Their algorithm, similar to Karzanov's algorithm in that it 

simultaneously augments along several s-t flo1-1 augmenting paths, requires 

very I it t I e overhead. A I though the MKM a I gar i thm does not resu It in an 

asymptotic improvement over the previous three algorithms, its simplicity 

makes it perhaps the best algorithm to use on very dense net1-1orks (E~V2). 

Finally, Gali I and A. Naamad [121 have recently developed a 

modification to the original Oinic algorithm 1-1hich results in an algorithm 

i.Jith time complexity O(IVl•IEl·log2 IVI). Their modification of Oinic's 

algorithm is similar to Gal il's modification of Cherkasky's algorithm. 

Once again a technique is developed for retaining useful information about 

the structure of the net1-1ork. 

The remainder of this chapter will be devoted to a closer 

examination of each of the maximum network flow algorithms. 

2.2 Ford and Fulkerson 

Ford and Fulkerson [91 developed the first maximum net1-1ork flo1-1 

algorithm, known as the labeling algorithm, in 1956. Their algorithm simply 

augments, along some s-t flow augmenting path, the existing legal flo1-1 

function on a net1-1ork. This augmentation is then repeated unti I there no 

longer exist any s-t flo1-1 augmenting paths on the network, In practice the 

zero flo1-1 function (i.e. f(e)-0 for all edges e) is used as the initial 

existing legal flo1-1 function. 
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The labeling algorithm is composed of two basic routines which are 

iterated unti I a maximum flow function is computed. The first routine 

essentially searches in a systematic way for an s-t flow augmenting path on 

the network. The second routine then augments the existing legal flow 

function along this flow augmenting path. The actual flow augmentation is 

performed exactly as out I ined in the proof of Lemma 1.1. The fol lowing 

explanation of the labeling algorithm is taken from (13]: 

Step 1. Labeling Process. 

Every vertex is always in one of three states, labeled and scanned, 

labeled and unscanned, or unlabeled. A vertex is labeled and scanned if it 

has a label and we have inspected all vertices adjacent to it. A vertex is 

labeled and unscanned if it has a label but not all vertices adjacent to it 

have been inspected. A vertex is unlabeled if it has no label. 

Initially, al I vertices are unlabeled. A label for a vertex vj 

always has two parts. The first part is the index of a vertex vi, which 

indicates that we can send flow from vi to vj, and the second part is a 

number which indicates the maximum amount of flow we can send from the 

source to vj without violating the capacity constraints. We first assign 

the label ts+,e(s)=col to the source, vs. The first label simply says that 

we can send flow from the source to itself; the number IIO indicates that 

there is no upper-bound on how much can be sent. The source is now labeled 

and unscanned and al I other vertices are unlabeled. In general, select a 

vertex v j which is I abe I ed and unscanned. Assume v j has a I abe I of the 

form ti+,e(j)J or [i-,e(j)l. For all adjacent vertices vk which are 

unlabeled, adjacent to vj via an edge directed from vj to vk, and for which 
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the edge e=(vj,vk) is useful from vj to vk (i.e. f(vj,vk)<c(vj'vk}), assign 

the label [j+,e(kll to vk, 1-1here: 

e(k) = min[e(j), c(vj,vk}-f(vj,vk)J. 

For al I adjacent vertices vk 1-1hich are unlabeled, adjacent to vj via an 

edge directed from vk to V j' and for 1-1hich the edge e• ( vk, v j) is useful 

from v. 
J 

to vk (i.e. f(vk,vj}>0), assign the label cr,e(k)] to vk, 1-1here: 

e (kl "'min[e(j), f(vk,vj)J. 

The + and the - signs in the labels indicate 1-1hether the 

corresponding edges appear as for1-1ard or reverse edges in the s-t flo1-1 

augmenting path. No1-1 al I the vertices adjacent to vj have labels; vj is 

considered to be labeled and scanned and may be disregarded during the rest 

of this step. (If one inspects all the vertices adjacent to vj and cannot 

label al I these vertices, then vj is also considered to be a labeled and 

scanned vertex.) Al I the vertices vk are no1-1 labeled and unscanned. 

Continue to assign labels to vertices adjacent to labeled and 

unscanned vertices unti I either the sink is labeled or no more labels can 

be assigned and the sink is un I abe I ed. If the sink cannot be I abe I ed, no 

s-t flo1-1 augmenting path exists and, hence, the existing flo1-1 function is 

maximum. If the sink is labeled, an s-t flo1-1 augmenting path has been 

found and the flo1-1 augmentation can be performed using step 2. 

Step 2. Flo1-1 Change. 

As sum e t hat the s i n k i s I ab e I e d [ k + , e ( t ) J • Le t 

f(vk,vt}+-f(vk,vt)+e(t) and turn to vk. If vk is labeled [j+,e(k)], let 

f<vj,vk)+-f(vj,vkl+e(t) and turn to vj' If vk is labeled cr,e<k)J, let 

f(vk,vj)+-f(vk,vj)-e(t) and turn to vj. Continue until the source is 
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reached. Erase the labels on all the vertices and go back to step 1. 

When the labeling algorithm terminates, the set of al I labeled 

vertices clearly forms a cut in the network. Further, applying Lemma 1.2 

revea Is that the capacity of this cut must be equal to the value of the 

e><isting legal flow function on the network. Thus by Corollary 1.1, the 

e><isting legal flow function must be ma><imum. It now remains to be shoi..m 

that the labeling algorithm will always terminate within a finite number of 

steps. 

Let us first consider the case in which the network is defined by 

an integral valued capacity function. By the same argument as that used in 

the proof of Theorem 1.2, it can easily be seen that the labeling algorithm 

wi 11 terminate after at most v(fma><) iterations, where v(fma><) is the 

finite value of a ma><imum flow function on the network. Further, each 

iteration wi 11 require at most O(IEI) operations since each edge is 

e><amined at most twice in the labeling procedure and at most once in the 

augmenting procedure. Thus we have that the I abe Ii ng a Igor i thm w i I I 

correctly compute, in time 0(1El·v(f
111

a><)), a ma><imum flow function on any 

network defined by an integral valued capacity function. It can also be 

shown, however, that there actually e><ist networks which force the labeling 

algorithm to perform v(fma><) iterations. Consider for e><ample the network 

n1 in Figure 2.1.-
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N N N 

Figure 2.1 

If the labeling algc:irithm, beginning 1-1ith the zero flo1-1 function on n1 , 

augments only along the paths s(s,a)a(a,c)c(c,f)f(f,h)h(h,t}t and 

s{s,b)b(b,d)d(d,f)f(c,f)c(c,e)e(e,g)g(g,t)t in alternating order, then 2·N 

• v(fmax) flo1-1 augmentations 1-1ill be required. Thus the algorithm will 

iterate v(fmax) times. Notice that the inefficiency in this example is 

based on the fact that the labeling algorithm permits the augmentation, at 

each iteration, along any one of several existing s-t flo1-1 augmenting 

paths. 

We shall no1-1 consider the case in 1-1hich the net1-1ork is not defined 

by an integral valued capacity function. Ford and Fulkerson [9) were able 

to demonstrate the some1-1hat surprising result that their labeling algorithm 

might fail to terminate if the net1-1ork 1-1as composed of irrational edge 

capacities. This result 1-1as based on interpreting the labeling process 

broadly enough to permit the selection of any s-t flo1-1 augmenting path at 

each iteration of the computation. Thus the labeling algorithm essentially 

has an unbounded 1-1orst case running time. We remark, ho1-1ever, that 

computers only deal 1-1ith rational numbers and thus in practice we could 

expect the labeling algorithm to halt and yield a correct ans1-1er. In fact, 
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despite its 1,.1eaknesses, the labeling algorithm was successfully used for 

almost 15 years. 

2.3 Edmonds and Karp 

In 1969 Edmonds and Karp [7] showed how the labeling algorithm 

could be modified to obtain a bounded worst case running time. In light of 

our previous remarks, it should not be surprising to learn that their 

modification was essentially an ordering on the selection of the s-t flo1,.1 

augmenting paths. Edmonds and Karp suggested augmenting along the shortest 

s-t flo1,.1 augmenting path (i.e. an s-t flo1-1 augmenting path containing a 

minimum number of edges) at each iteration. This can be easily 

accomplished by modifying the labeling process so that the vertices are 

scanned in the same order in 1-1hich they receive labels (i.e. by imposing a 

Breadth First Search on the labeling process>. The remainder of the 

I abe I i ng a Igor i thm is unchanged. The running ti me bound on Edmonds and 

Karp's "first labeled, first scanned" modification of the labeling 

algorithm is derived from the fol lo1-1ing results [15]. 

Consider any ne t1-1ork n upon 1-1h i ch there is defined a I ega I f I ow 

function f. Let ~(k) denote the minimum number of edges in an s-u flow u 

augmenting path after k augmentations off. Similarly, let f'~k) denote the 

minimum number of edges in a u-t flo1-1 augmenting path after k augmentations 

of f. 

Lemma 2.1: 

If each flo1,.1 augmentation off is made along an e-t augmenting path 
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with a minimum number of edges, then: 

c, (k+ll c!! c, (k) 
u u 

and 
.,<k+ll c!! 1"{k) 

u u 

for al I u,k. 

Proof: (From [151) 

Assume that c,~k+l) < c,~kl, for some u,k, Moreover, let: 

(2.1) .,<k+l) = min {c,(k+l) 
U V V 

CI ear I y c, ~k+l) ~ 1 Con I y c, !k+ll - 0), and there must be some f i na I edge 

Cu,v) or (v,u) in a shortest s-u flo1-1 augmenting path after the {k+U st 

augnientation of f. Suppose this edge is (v,u), a forward edge, with 

f{v,u)<c{v,u) (the proof is similar for (u,v)). Then O'~k+l) • O'!k+l) + 1 

and by (2.1) , 

{2.2) .. (k+l) (k) 1 
vu c!! O'v + • 

Further, it must have been that f(v,u)-c(v,u) after the kth augmentat~on of 

f; otherwise c,~k) s c,!k)+l s c,~k+ll, contrary to the assumption, But if 

f(v,u)=c(v,u) after the kth augmentation off and f(v,u)<dv,u) after the 

(k+U st augmentation off, it follows that (v,u) was a reverse edge in ,he 

(k+l) st s-t flow augmenting path along which f was augmented. Since that 

path contained a minimum number of edges, 

.. (k) • .. (k) l vv vu + • 

Combining this with (2.2), however, we obtain: 

c, (k) +2 s c, (k+ll 
u u ' 

contrary to our assumption. The assumption that c,~k+l) < .,<kl 
u i 9 



31 

therefore false. 

The proof that r(k+l) ~ f(k) parallels the above. u u 

□ 

Theorem 2.1: 

If each flo1-1 augmentation off is made along an s-t augmenting path 

with a minimum number of edges, then a maximum flo1-1 function is obtained 

after no more than IYl·IEl/2 augmentations of f, 

Proof: (From (15]) 

Each time an augmentation off is made, at least one edge in the s­

t augmenting path is "critical" in the sense that it limits the amount of 

augmentation. The flo1-1 through such an edge (u,v) is either increased to 

capacity or decreased to zero. Suppose (u, v) is a er it i ca I edge in the 

(k+ll 5t s-t augmenting path, The number of edges in the augmenting path is 

a(k) + 1 (k) = a(k) + 1 (k) 
U U V V ' 

The next time edge (u,v) appears in an s-t augmenting path, say the 

(l+ll st , it will be with the opposite orientation. That is, if it was a 

forward edge in the (k+U st , it is a reverse edge in the (i+U st , and vice 

versa. If (u,v) was a for1-1ard edge in the (k+l) 5t s-t augmenting path (the 

proof is similar for a reverse edge), then: 

and 
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It fol lol-ls that each succeeding s-t augmenting path in 1,,1hich (u,v) is a 

critical edge is at least t1,,10 edges longer than the preceding one. 

No flol-l augmenting path may contain more than IVl-1 edges. 

Therefore, no edge may be a critical edge more than IVl/2 times. But each 

s-t augmenting path along 1,,1hich f is augmented contains a critical edge. 

Therefore there can be no more than IVl·IEl/2 successive s-t flol-l 

augmenting paths and this completes the proof, 

□ 

Since Edmonds and Karp's algorithm differs from the original 

I abe I i ng a Igor i thm on I y in the order in 1-lh i ch the unscanned vertices are 

scanned, it fol lol-ls that their algorithm 1-li 11 yield a ma><imum flol-l function 

if it halts and that their algorithm 1,,1ill require only O(IEI) operations 

per iteration. By Theorem 2.1, ho1,,1ever, Edmonds and Karp's algorithm is 

guaranteed to halt after at most IVl·IEl/2 iterations. Further, this 

result is independent of the capacity function; holding for irrational 

valued capacity functions as 1,,1ell as integral valued capacity functions. 

Thus Edmonds and Karp's algorithm 1,,1ill correctly compute, in time 

0(1Vl•IE1 2 >, a ma><imum flol-l function on any net1,,1ork given as input. 

2.4 Oinic 

In 1970, E.A. Oinic [51 developed a ma><imum net1,,1ork flo1,,1 algorithm 

1-li th a bounded 0(1Vl 2 •1EIJ 1,,1orst case running time. Oinic's algorithm, 

Ii ke Edmonds and Karp's a Igor i thm, is based on successive f I ow 
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augmentations along s-t flo1,.1 augmenting paths of rninirnurn length. Oinic, 

however, noticed that a single breadth first search of a flow network could 

be used to isolate all minimum length s-t flo1,.1 augmenting paths. Based on 

this observation, Oinic's ma><-flow algorithm is much more efficient than 

the "first labeled, first scanned" algorithm of Edmonds and Karp. In order 

to present Oinic's algorithm, we must first introduce the notion of a 

layered network. 

Def in i ti on 2. 1: 

A layered net1,.1ork LN is a network whose vertex set is partitioned 

into disjoint subsets v0,v1, ••• ,VR such that v0 • {a} and v1 • {t}. We say 

that Vi is the i th ~ in LN (for 0sisl.) and that I. is the length of the 

layered network LN. Each edge e=(u,v) in LN has the property that if ueVi 

then veVi+l (i.e. every edge in LN is directed from one layer to the 

next). 

Examp I e 2.1: (layered Net1,.1ork LN0) 

E={<s,a), (s,b), (a,c), (a,d), 
(b,d), (c, t), (d, t)} 

c(e)-1 [for al I eeEJ 

Each iteration of Oinic's algorithm is called a phase and each 

phase is divided into two procedures. The first procedure generates a 

layered net1,.1ork from the original input network, in such a 1,.1ay that the 
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layered network isolates al I e><isting minimum length s-t flo1-1 augmenting 

paths. The second procedure then uses this layered network to successively 

augment the existing legal flo1-1 function along these minimum length s-t 

flow augmenting paths. We 1-1i 11 first describe ho1-1 Dinic's algorithm 

performs each of these procedures and then 1-1e 1-1ill state the entire 

algorithm. 

The first task performed during each phase of Dinic's algorithm is 

the construction of the layered net1-1ork. The layers composing this net1-1ork 

are created from a breadth first search of the input net1-1ork. This breadth 

first search begins at the source and traverses only for1-1ard directed edges 

with flow less than capacity or back1-1ard directed edges 1-1ith flo1-1 greater 

than zero (i.e. only "useful" edges). The search terminates 1-1hen either 

the sink is reached or no ne1-1 vertices can be visited and the sink has not 

been reached. When the sink cannot be reached, ho1-1ever, the e><isting legal 

flow function is a maximum flo1-1 function and Oinic's algorithm halts. 

Notice that performing the search in this 1-1ay assures that there exists a 

flow augmenting path from the source to each verte>< visited. The layers, 

Vi, are finally formed by partitioning the vertices visited according to 

the length of their path of discovery from the source. Every verte>< veVi 

wi 11 then have the property that the shortest s-v flo1-1 augmenting path, 

with respect to the existing legal flo1-1 function on the input network, is 

of length i. Therefore, the length of the layered net1-1ork constructed wil I 

be equal to the length of the shortest e><isting s-t flo1-1 augmenting path. 

The fol lowing procedure formalizes this construction [81. 
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procedure LN en, f): 

begin 

end. 

i: =0; 

~hile (i:•i+l) > 0 do 

begin 

end 

T:={veV I v,t.Vj for j<i and there e><ists a 

useful edge from a verte>< in Vi-l to v}; 

l.!. T-♦ then halt (the e><isting f is maximum) 

else l.!. teT then begin 

l: •i; 

i I •-1 

end 

e I se V,: •T 
-- I 

Once the layers have been generated, the layered network's edge set 

and capacity function are constructed. The edge set is simply constructed 

from al I edges in the original input net~ork ~hich are useful from a vertex 

in Vi to a vertex in Vi+l (for al I 0:sis.l>. Every edge in the layered 

net~ork, however, is directed from the i th layer to the (i+l> st layer, 

regardless of its orientation in the input net~ork. Any edge in the 

layered net~ork ~hose orientation is different in the input network is said 
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to be a reverse edge in the layered nehwrk. Similarly, any edge in the 

layered network whose orientation is the same in the input network is said 
A 

to be a forward edge in the layered net1,.1ork. The capacity function c is 

then created from the excess capacity a I ong each edge in the I ayered 

network as fol lows: 

" c (eh-c (e)-f Ce), for a 11 for1,.1ard edges in the I ayered net1-1ork 

and 

" c(e)t-f(e), for al I reverse edges in the layered network, 

where f is the existing legal flow function and c is the capacity function 

on the input network. It should no1,.1 be clear that every s-t chain in the 

layered network corresponds to an existing minimum length s-t flow 

augmenting path in the input neh1ork. Further, every minimum length s-t 

flow augmenting path in the input net1,.1ork is represented by an s-t chain in 

the layered network. Thus the layered network constructed during each 

phase of Oinic's algorithm essentially isolates all existing minimum length 

s-t flow augmenting paths. 

The second task performed during each phase of Oinic's algorithm is 

the flow augmentation. Starting at the sink in the ne1,.1ly consiructed 

layered network, the algorithm follo1,.1s edges backward to the source to find 

an s-t flo1,.1 augmenting path. CRecall that every s-t chain in the layered 

network corresponds to an existing s-t flow augmenting path in the input 

network.) The existing legal flow function is then augmented along this 

path as out I ined in the proof of Lemma 1.1. Notice that the excess capacity 

along each edge in the flow augmenting path is given by the layered network 

" capacity function, c. After augmenting along this path, the algorithm 
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" adjusts the capacity function c to reflect the ne1,.1 excess capacity along 

each edge in the path. It a I so de I etes from the I ayered network a 11 edges 

in the path whose excess capacity drops to zero. Finally, it deletes from 

the layered net1,.1ork al I vertices and their incident edges which are no 

longer reachable from the source or the sink, This is accomplished by 

de I et i ng a I I vertices 1-Jh i ch either have no incoming edges or have no 

outgoing edges, and continuing to delete such vertices until every vertex 

left in the layered network has at least one incoming and one outgoing 

edge. After al I necessary deletions have been performed, the algorithm 

searches for another flo1,.1 augmenting path and the augmentation process is 

repeated. This continues until there no longer exist any s-t chains in the 

layered network. 

Oinic's complete max-flo1,.1 algorithm is: (From [20]) 

procedure DINIC(n): 

initialize existing legal flow function f, on input network n, to 0; 

while "true" do 

construct layered net1,.1ork, LN; 

for each vertex v in LN do 

begin 

calculate indegree (v); 

calculate outdegree (v); 

if (indegree (v)=0) or (outdegree (v)=0) then 

add v to nullist 



end. 

38 

while t is a vertex in LN do 

begin 

end 

trace back from t to s to find an augmenting path; 

augment f along this path: 
A 

update c with new excess capacity along each edge in path; 

delete from LN all edges along path which now have zero 
A 

excess capacity (i.e. c(e)=0), updating indegrees, 

outdegrees, and nullist; 

while some vertex vis on nullist do 

delete v and incident edges from LN and from nul list, 

updating indegrees, outd~grees, and nullist 

Recal I that Dinic's algorithm terminates when the breadth first 

search performed in constructing each layered network fai Is to reach the 

sink. When this occurs, however, the set of all visited vertices clearly 

forms a cut in the input network. Further,' applying Lemma 1.2 reveals that 

the capacity of this cut must be equal to the value of the existing legal 

flow function. Thus by Corollary 1.1, the existing legal flow function 

must be maximum. It now remains to be shown that Oinic's algorithm wi 11 

all-lays terminate 1-1ithin time O(IVl 2•1EIL This is proven as a consequence 

of the fol lowing lemma [8] which shows that the number of phases is bounded 
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by jVj. 

Let tk denote the I ength of the I ayered neh1ork constructed during 

the kth phase of Oinic's algorithm. 

Lemma 2.2: 

If the (k+l) st phase of Oinic's algorithm is not the last, then 

Proof: <From [8)) 

Consider any s-t chain in the layered network constructed during 

the (k+l) st phase of Oinic's algorithm: 

e.lic.+1 

• • • V ~-+-1---1--➔) t • 

First, let us assume that all the vertices in this chain appear in 

the k th layered network. Let Vj be the j th layer of the k th layered 

network. We claim that if vaeVb then a~b. This is proven by induction on 

a. For a=0, (v0=s) the claim is obviously true. Now assume va+leVc. If 

csb+l the inductive step is trivial. If, however, c>b+l then the edge ea+l 

was not used in the k th phase since it was not even in the k th layered 

network, in which only edges between adjacent layers appear. But if ea+l 

was not used in· the k th phase and is useful from va to va+l in the 

beginning of the (k+l) st phase, then it was useful from va to va+l in the 

beginning of the kth phase. Thus, va+l cannot belong to Ve (by procedure 

LN). Now, in part i cu I ar, 

Further, equality cannot hold because then the entire s-t chain would have 
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been in the kth layered network, and if all its edges are sti II useful at 

the beginning of the (k+l) st phase then we have a contradiction to the 

termination of the kth phase. 

If not al I the vertices in the s-t chain appear in the kth layered 

nehwrk then let ea+l 
va > va+l be the first edge such that for some b, 

vae:Vb but va+l is not in the kth layered network, Thus, ea+l was not used 

in the kth phase. Since it is useful in the beginning of the {k+l> st 

phase, however, it was also useful in the beginning of the kth phase. Thus 

the only possible reason for va+l not to belong to Vb+l is that b+l•.lk. 

Further, by the argument of the previous paragraph a~b. Therefore, a+l~.lk 

□ 

Coro 11 ary 2.1: 

Given any network n as input, the number of phases performed by 

Oinic's algorithm must be less than or equal to IVI, 

Proof: 

Any layered network constructed by Dinic's algorithm must contain 

no more than IV I I ayers. Thus by Lemma 2. 2 there can be at most IV I 

phases. 

□ 

We now notice that the time required during each phase of Oinic's 

algorithm, to construct the layered neh,ork and initialize the indegrees, 

outdegrees, and nullist is bounded by O(IEI), Further, each floi.: 

augmentation requires time O(IVI) and there can be at most O(IEI) such 
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augmentations since each augmentation causes the deletion of at least one 

edge from the layered neh10rk. Finally, the total time required during 

each phase of Oinic's algorithm to delete edges, delete vertices, and 

update indegrees, outdegrees, and nullist is bounded by O(IEI). This 

results from the fact that each edge and each vertex can be deleted from 

the layered network at most once. It should no~ be clear that each phase 

(iteration) of Oinic's algorithm has time complexity O(IVl•IEIL Thus by 

Coral lary 2.1, we have that Oinic's algorithm ~ill always terminate within 

time O(IVl 2•1EIL Therefore, Oinic's algorithm ~i II correctly compute, in 

time 0(1Vl 2•1EI), a maximum flow function on any network given as input. 

2.5 Karzanov 

A.V. Karzanov [8,141 modified Oinic's algorithm in 1973 to obtain 

an O(IVl 3 ) maximum network flow algorithm. Karzanov noticed that the 

layered network constructed during each phase of Oinic's algorithm could be 

used to simultaneously augment along all existing minimum length s-t flow 

augmenting paths. He then showed how this simultaneous augmentation could 

be performed in time O(IVl 2L Karzanov's algorithm is the result of 

replacing Oinic's O(IVl•IEI) successive flow augmentation procedure with 

this new 0(1Vl 2) simultaneous flow augmentation procedure. 

Karzanov's results are based on the notion of a maximal flow 

" function. A maximal flow function f, on a network n, is defined to be any 

I ega I f I ow function on n which has the property that every s-t chain in n 

contains at I east one saturated edge (i.e. at I east one edge e such that 

" f(e)=c(e)). From t,he fol lowing example it can be seen that" a maximal flow 
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function on a network need not be a maximum flo1-1 function on that network. 

Example 2.2: 

A 

The fol lowing maximal flo1-1 function fg is defined on the layered 
network LN0 from Example 2.1: 

1,0 

" f 0 Ca,cl=0 

1,0 

A 

v(fe>•l is not maximum. 

Karzanov noticed that the flo1-1 augmentation required during each 

phase of Oinic's algorithm could be achieved by simply augmenting the 

" existing legal flow function f with any ma><imal flo1-1 function f on the 

current layered network. Once such a maximal flow function had been 

computed, the flow modification could be performed as fol lo1-1s: 

A 

f'(eJ+.-f(e}+f(e), for all for1-1ard edges in the layered network 

and 
A 

f'(e}+-f(e}-f(e), for all reverse edges in the layered network, 

It can eas i I y be seen that per forming the augmentation in this manner is 

essentially the same as simultaneously augmenting along al I e><isting 

minimum length s-t flow augmenting paths, where each individual 

augmentation is performed e><actly as outlined in the proof of Lemma 1.1. 

Karzanov used this clever augmentation technique to develop the fol lowing 

modification of Oinic's algorithm. 
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procedure KARZANOV (n): 

begin 

initialize existing legal flou function f, on input netuork n, to 0; 

1-1hile "true" do 

begin 

construct layered netuork, LN; 
,. 

compute maximal flou function f on LN; 

for each edge e inn do 
,. 

l!. e is a foruard edge in LN then f(e):•f(e)+f(e) 
A 

else l!. e is a reverse edge in LN then f(e):•f(e)-f(e) 

end 

end. 

Notice that Karzanov's algorithm, like Oinic's algorithm, 

terminates 1-1hen the breadth first search performed in constructing each 

layered net1-1ork fai Is to reach the sink. By the same argument as that used 

for Dinic's algorithm, ho1-1ever, the existing legal flou function must be 

maximum 1-1hen this occurs. Therefore if Karzanov's algorithm halts, then 

the existing legal flo1-1 function must be a maximum flo1-1 function on the 

input netl-lork, Next I-le notice that the proof of Lemma 2,2 is valid for 

Karzanov's algorithm as 1-1el I as Oinic's algorithm. Thus given any network 

n as input, the number of phases performed by Karzanov's algorithm must be 

less than or equal to IVI, It should also be clear, houever, that the time 

re.quired to construct each layered net1-1ork and perform each flo1-1 

modification is bounded by O{IEI), Therefore if 1-1e let t denote the time 

required to compute each maximal flo1-1 function, then Karzanov's algorithm 
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is guaranteed to halt within time O(IVl·IEI + IVl•t). We wi 11 now show how 

Karzanov's algorithm computes each maximal flow function in time O(IV1 2) to 

yield an 0(1¥1 3) max-flow algorithm, 

Karzanov's algorithm computes each maximal flow function by 

successively improving an existing illegal flow function, called a preflow 

function, on the current layered network LN [8,10,14]. For each vertex v 

in LN, let ln'Cv) denote the set of al I edges incoming to v in LN and let 

Out'(v} denote the set of all edges outgoing from v in LN. A preflow 
,., 

function f, on the layered network LN, associates with each edge e in LN a 
,., 

real number f(e) satisfying the conditions: 

,., ,.. 
C3) 0sf(e)sc(e), for each edge e in LN 

C4) L f (e) 

eel n' (v) 
~ L f Ce), for each vertex v~s,t in LN. 
eeOut'(v) 

Thus a pref low function is simply a flow function which satisfies the 

capacity constraint but not necessarily the conservation constraint of a 

legal flow function. For· each vertex v~s,t in LN, we define excess(v} to 

be the excess flow entering v: 

excess(v) = L f(e) 
eeln' (v) 

- Lt' (e>. 
eeOut' (v) 

If excess(v)>0 then v is said to be unbalanced; otherwise v is said to be 

balanced. The source and the sink are always considered balanced. 

Throughout the execution of Karzanov's maximal flow procedure, 

every edge in LN is dee I ared either open or c I osed. In it i a I I y a I I edges 

are declared open. As the algorithm proceeds, however, some of the edges 
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wi I I be declared closed. Once an edge is declared closed, the flow through 

it wi I I remain unchanged to the end of the procedure. 

Karzanov's maximal flow procedure alternates between pushing 

add i ti ona I f I ow from unba I anced vertices and ba I anc i ng the unba I anced 

vertices that are generated during these pushes. The pushing of flow is 

achieved through repeated calls to a procedure PUSH(i), with increasing i 

Cl0]. The procedure PUSH ( i) considers in turn each unba I anced ver te>< in 

layer Vi, attempting to push flow from it to vertices in layer Vi+l' For 

each unbalanced verte>< veVi, the procedure considers in turn each open 

edge in Out'(v) and sends through it the maximum possible amount of flow. 

(The two constraints that e><ist are the current e><cess of v and the amount 

of flow needed to saturate the edge.) The push from vends when either v 

becomes balanced or every edge in Out'(v) becomes either saturated (i.e • 

..., " 
f(e)=c(e)) or closed, For each verte>< u in LN there is a stack (push-down 

store) on which the history of additions of incoming flow into u is 

recorded. When the flow in an edge e•(v,ul is incremented by an amount &, 

the pair (v,a) is added to the top of the stack for vertex u. The procedure 

PUSH(i) is said to be successful if flow is pushed to layer Vi+l· If 

PUSH(i) is successful then PUSHCi+l) is called, and so on. 

A procedure BALANCE ( i) is the too I through l,,lh i ch unba I anced 

vertices become balanced. The procedure BALANCE(i) uses the stacks to 

sh i ft back f I ow from vertices in I ayer Vi to vertices in I ayer Vi -1. It 

balances in turn each of the unbalanced vertices veVi by canceling the 

most recent additions of flow into v. Clearly the last canceled addition of 

flow into v may only be partial. After each unbalanced vertex vis 
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ba I anced, a I I the edges in In' (v) are dee I ared c I osed, The procedure 

BALANCE ( i ) is a I 1,.1ays fo I I 01,.1ed by a ca 11 to PUSH ( i -1). 

Karzanov's complete maximal flow procedure is: (From [10]) 

procedure MAXIMAL CLN): 

PLOOP: 

begin 

end. 

.., 
initialize existing preflo1,.1 function f, on layered net1,.1ork LN, to 0; 

empty the stacks of all vertices in LN; 

i: =0; 

PUSH Ci); 

while the previous push 1,.1as successful and i+l<J do 

begin 

i: = i+l; 

PUSH ( i) 

if there exist unbalanced vertices in LN then 

i:=number of highest layer Vj(0<j<J) containing 

unbalanced vertices; 

BALANCE ( i ) : 

i: = i -1: 

-goto PLOOP 

" .., 
for each edge e in LN do f(e):•f(e) 
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It should now be clear that every vertex in the layered network LN 

wi 11 be balanced when Karzanov's maximal flow procedure halts. Thus the 
.., 

final existing preflow function f will in fact be a legal flow function on 

LN. In order to show that it wi 11 also be a maximal flow function on LN, 

we must introduce the notion of a blocked vertex, A vertex v in LN is said 

to be blocked with respect to the existing preflow function if every v-t 

chain in LN contains at least one saturated edge. Notice that the sources 

becomes blocked after the first execution of PUSH(0), since every edge in 

Out'(s) becomes saturated. 

Lemma 2.3: 

If a vertex in LN becomes blocked at some point in the execution of 

Kar zanov' s maxi ma I f I ow procedure, then i t remains b I ocked to the end of 

the procedure. (A proof of this lemma appears in (8).) 

Lemma 2.4: 

Every vertex in LN is balanced at most once throughout the 

execution of Karzanov's procedure, (A proof of this lemma appears in (8).) 

We can now see that the final existing pref low function on LN wit I 

be a legal flow function which has the property that every s-t chain in LN 

contains at I east one saturated edge. Therefore ,_,hen Karzanov' s maxi ma I 
.., 

flow procedure halts, the existing preflo1-1 function f 1-1ill in fact be a 

maximal flow function on the layered net1-1ork LN. It now remains to be 

shown that the procedure ,_,i II always halt ,_,ithin 0(1Vl 2) steps. 
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The total number of steps performed by Karzanov's maximal flow 

procedure is clearly bounded by the total number of flow additions and flow 

reductions performed. The number of flow reductions performed, however, is 

bounded by the number of flow additions performed since each vertex is 

balanced at most once and the history of flow additions in the stacks is 

used to perform the flo1-1 reductions. Thus it suffices to sho1-1 that the 

number of flo1,.1 additions performed by Karzanov's procedure is bounded by 

O(IVl 2>. We first notice that there can be at most one saturating flow 

addition per edge in the layered network. Since the number of edges in the 

layered network is bounded by the number of edges in the original input 

net1-1ork, however, there can be at most O(IEI> saturating flow additions. 

Next 1-1e notice that there can be at most one non-saturating flow addition 

per vertex in the layered network, between any two successive cal Is to 

BALANCE ( i l • (When f I ow is pushed from a ver te>< v in I ayer Vi, on I y the 

last edge considered in Out'(v) does not necessarily become saturated.) 

Since the number of vertices in the layered network is bounded by the 

number of vertices in the original input net1-1ork, ho1-1ever, there can be at 

most O(IVI) non-saturating flow additions between any two successive cal Is 

to BALANCE(i). From Lemma 2.4, however, there can be at most O(IVI) cal Is 

to BALANCE(il. Thus the total number of non-saturating flow additions is 

bounded by 0(1Vl 2 l and hence the total number of flow additions is bounded 

by O (IV 12). 

It should now be clear that Karzanov's maximum network flow 

algorithm wi 11 correctly compute, in time O(IVl·IEI + IVl•IVl 2l - O(IVl 3>, a 

maximum flow function on any network given as input. 
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2.6 Further Improvements 

We saw in the last section that any Q(t) algorithm for computing a 

maximal flow function on a layered network could be used to develop an 

O(IVl·IEI + IVl•tl maximum network flow algorithm. CS imp I y modify 

Karzanov's max-flow algorithm by replacing his "push and balance" procedure 

1-1i th the ne1,1 maximal flow procedure.) Notice, however, that any max-flo1-1 

algorithm developed through this technique can be no faster than 

O(IVl·IEI). Despite this fact, each of the four most recent maximum 

net1,1ork flo1,1 algorithms have been based on developing ne1,1 maximal flow 

procedures. We shall now briefly describe each of these new maximal flow 

procedures. 

In 1976 B.V. Cherkasky [101 showed how Karzanov's OCIVl 2) push and 

balance routine could be modified to run in time OCIVl·IE1 112 >. 

Cherkasky's procedure partitions the layered network into blocks of 

consecutive layers cal led super layers. It then applies Karzanov's push and 

balance techniques to these superlayers. Within the superlayers, however, 

Oinic's flo1,1 augmentation techniques are used. The result is an 

asymptotically faster but very complex maximal flow procedure. 

A little over a year later, z. Gali I [10] improved Cherkasky's 

routine to obtain a maximal flow procedure with time complexity 

O(IVl 213 •1E1 213>. Gali l's procedure differs from Cherkasky's procedure in 

the techniques used within the superlayers. Galil's routine maintains a 

special data structure containing information about the current 

"usefulness" of chains within the layered network. This data structure is 
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used to expedite the push of flo1-1 through edges 1-1ithin the superlayers. 

Like Cherkasky's routine, Galil's procedure is very complex and requires a 

great deal of overhead. 

In 1978 a very simple OCIVl 2) maximal flo1-1 procedure 1-1as developed 

by three Indians named V.M. Malhotra, M. Pramodh Kumar, and S.N. 

Mahesh1r1ar i [16]. Their procedure is based on successive I y augmenting an 

existing legal flo1-1 function on the layered net1-1ork. The procedure begins 

by determining the maximum amount of flo1-1 that can be pushed through each 

vertex v in the layered net1-1ork. This value is called the flo1-1 potential 

Pt(v) of the vertex v. Each flo1-1 augmentation is then performed in three 

steps. First a vertex 1-1ith minimum non-zero flo1-1 potential over all 

vertices in the layered net1r1ork is selected as the reference vertex, r. 

Next, Pt Cr) uni ts of f 101-1 are pushed from r to t and from s to r. The 

pushing is performed essentially as outlined in Karzanov's algorithm. 

Finally, the procedure updates the flo1-1 potential of each vertex through 

1r1hich flo1r1 has been pushed, closing all edges 1-1hich become either saturated 

or unreachable from s or t. Although this procedure is not an asymptotic 

improvement over Karzanov's push and balance routine, it is extremely 

simple and results in perhaps the best max-flo1-1 algorithm for use on dense 

net1-1orks CIEl~IVl 2 >. 

Finally, Gali I and A. Naamad [12] have recently developed an 

0(1El·log2 IVI) maximal flo1-1 procedure. This procedure is similar to 

Gali l's 0(1Vl 213 -IE1 213) maximal flo1-1 procedure in that a data structure is 

maintained for processing chains 1-1ithin the layered net1-1ork. The ne1r1 

algorithm, ho1r1ever, does not partition the layered net1r1ork into 
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super layers. 

This concludes our discussion of algorithms for computing a maximum 

flo~ function on a net~ork. We ~ill no~ turn our attention to the question 

of lo~er bounds on the computational complexity of the maximum net~ork flow 

problem. 
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CHAPTER 3 - LOWER BOUNDS ON MAX-FLOW 

3.1 Introduction 

Chapter 2 dealt with the establishment of upper bounds on the 

computational complexity of the maximum network flow problem. We traced 

the development of max-flow algorithms from the original labeling algorithm 

of Ford and Fulkerson [91, through the recent O(IVl·IEl·lollVI) algorithm 

of Gali I and Naamad [121. The very fact that the search for ne1-1 max-flow 

a I gar i thms has been so fruit fu I I eads us to now ask the question, "Can 1-1e 

do better?". Can we develop a max-flow algorithm which is asymptotically 

faster than 0(IVl·IEl·log2 1VI}? Gali I has shown [11,121 that any algorithm 

which uses 0inic's technique of dividing the problem into phases (as do al I 

the known algorithms developed since Dinic's algorithm) must have time 

complexity at least O(IVl·IEll. Further, he has conjectured an O(IVl·IEI) 

lower bound on the computational complexity of the maximum network flo1,.1 

problem. At this time, however, there is no known non-linear lower bound 

on max-flow. 

The determination of lower bounds on the computational complexity 

of a problem is generally much more difficult than the establishment of 

upper bounds on the problem. In the latter case we can simply demonstrate 

an algorithm for solving the problem 1-1ithin the specified running time. In 

the former case, however, we must prove that any algorithm for solving the 

problem must require at least the specified running time, regardless of ho1,.1 

clever the algorithm. In order to somewhat simplify the lower bound 

problem, many authors have chosen to work with restricted models of 
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computation. One such model which has received considerable attention in 

the recent I iterature is the I inear decision tree model [6,18,21,221. This 

model tends to underestimate total time complexity but nevertheless enables 

us to study non-trivial lower bounds. In this chapter we shall investigate 

one particular approach to establishing non-linear lower bounds on the 

computational complexity of the maximum network flow problem relative to 

the I inear decision tree model of computation. The technique we shal I deal 

with is the polyhedral technique developed by A,C, Yao, D,M, Avis and R.L. 

Rivest [21,221. 

3.2 The Model of Computation 

The I inear decision tree model of computation is based on the 

notion of a I inear decision tree algorithm. A I inear decision tree 

algorithm, operating on input (x1, ... ,xn), is simply a finite ternary tree 

with each internal node representing a test of the form "l: ai·xi:z" and 

each leaf containing a possible output. Given any input, the algorithm 

begins at the root and proceeds by moving down the tree unti I a leaf is 

reached. At each i nterna I node the a Igor i thm per forms the specified test 

and then branches according to the result of this test (<,•,or>), Once a 

leaf is reached, the information contained in that leaf is output as the 

result of the computation and the algorithm halts, The time comptexity of 

any such algorithm is simply defined to be the height of the corresponding 

tree. 

The computational complexity of any problem relative to the linear 

decision tree model of computation can now be defined as the minimum height 
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over al I decision trees 1,.1hich solve the problem. It should be clear that 

the I inear decision tree model measures time complexity solely in terms of 

the number of comparisons and branchings required. Thus the model tends to 

underestimate the total ti.me complexity of a problem. Despite this fact, 

the I i near dee is ion tree mode I has proven usefu I in est ab I i sh i ng sever a I 

non- trivia I I 01-1er bounds. 

3.3 Polyhedral Decision Problems 

Let P .. {~elRn I .ti c;:)s0 for each i=l,2, ••• ,m} be a set of points in 

~n. 1-1here ~-{x1, ... ,xn), mis an integer and 

for real numbers A-.. The set P is said to be a polyhedron in IRn. If d 
I J 

is the dimension of the smallest subspace of IRn containing P, then P is 

also said to be a polyhedron of dimension d. (Notice that 1-Je are 

restricting our attention to homogeneous po I yhedra, i.e. cones.) On each 

subset Hof the set {1,2, •.• ,m}, we define the set of points FH(PH;;;P as 

fol 101-Js: 

FHCP) = {~elRn I Ri (~)<0 for each ieH, 

Ri (~) =0 for each i ¢-f). 

The set FH(P) is .cal led a face of the polyhedron P. If s is the dimension 

of the smallest subspace of IRn containing FH(P), then FH(P) is said to be 

a face of dimensions. (The empty face has dimension -1 by convention.) We 

shal I let F
5

CP) denote the set of all faces of dimension s of P. Notice 

that every point in P lies on some face of P and that the intersection of 
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any two faces of Pis empty. 

The polyhedral decision problem B(P) can now be defined as the 

problem of determining whether an input point ~elRn lies in the polyhedron 

P (i.e. Given any input ~elRn, is ~eP?). A linear decision tree algorithm 

for solving this problem will be a decision tree which contains a "yes" or 

"no" decision at every leaf. The computational complexity of B(P) relative 

to the linear decision tree model of computation will be denoted by l(P). 

In 1977 A.C. Yao, O.M. Avis and R.L. Rivest [211 proved the 

fol lowing fundamental theorem relating the complexity of the polyhedral 

decision problem B(P) to the facial character of the polyhedron P. 

Theorem 3.1: 

Let P • {~ I ii (~)s0 for each i•l,2, ... ,m} be a polyhedron in Rn. 

Then for each s, 

The proof of Theorem 3.1 can be found in [21). 

This theorem states that {l ( I og F 
5

) Ii near comparisons are necessary to 

determine if a point I ies in a polyhedron composed of F
8 

a-dimensional 

faces. As a result, we can determine lower bounds on the computational 

complexity of any polyhedral decision problem relative to the linear 

decision tree model of computation by simply examining the facial structure 

of the polyhedron. 
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3.4 Applications to Max-Flow 

In this section we shall consider a straightforward application of 

the concepts presented in the previous section to the problem of 

establishing a non-trivial lower bound on max-flow. We shal I first 

introduce the class of polyhedral decision problems {B(Pn) n~2}, which is 

very closely related to the maximum network flow problem. We shal I then 

formalize this relationship by showing that LCPn)-n2-2 is in fact a lower 

bound on Ln, where Ln is the linear decision tree complexity of the maximum 

network flow problem for a complete network on n vertices. Thus any lower 

bound on L(Pn) wil I also yield a lower bound on Ln. Finally we shal I prove 

the fol lowing three results concerning the facial structure of the 

polyhedra Pn (n?2l: 

1) There exists a positive constant c such that 
IF1 (P n) I ~ c·(n-2) ! , for al I n~2. 

2) There exists a positive constant c' such that 
IF1 (Pn) I s c'·(n-2) ! , for al I n~2. 

3) There exists a positive constant c'' such that 

IFs(Pn) I s 2<c"·n
2>, for al I sand for al I n~2. 

Based on these resu I ts, we can then cone I ude that Theorem 3.1 cannot be 

di_rectly applied to the class of problems {BCPn) I n~2} to obtain a non­

trivial lower bound on max-flow. 

In order to formally define the class of polyhedral decision 

problems {B<Pn) 1 · n?2}, we must introduce some new notation, Let Gn denote 

the complete directed graph on n~2 vertices in which the vertex v1 is 

specified ass and the vertex vn is specified as t, We can represent the 

sets of vertices and edges of Gnas follows: 

V. {v1,v2,v3, ••• ,vn} 
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and 

E = {eij I 1:si, j:sn}. 

Notice that IVl=n, IEl=n2 and 1-1e are defining eij to be the edge in Gn 

directed from vertex vi to vertex vj. It should be clear that any capacity 
. . 

function defined on the set E 1-1i II give rise to a complete flo1-1 net1-1ork on 

n vertices. Further, notice that the definition of a cut in a net1-1ork can 

be directly applied to the graph Gn. We no1-1 let {X1,x2 , ••• ,X2n-2} represent 

the set of al I cuts in Gn. 

For our purposes, a vector y€1Rn
2
+l 1-1i 11 be represented as 

Y= Cy 11, · · · • Y1n• • • •, Ynl, • • •, Ynn• Yn2+1). The po I yhedron P n in 1Rn
2
+l can no1,,1 

be defined as follo1,,1s: 

Pn = {yEIRn
2
+l I Yi?0 for all l:si,j:Sn, Yn2+12:0, ~(y)2:0 for all l:sk:s2n-2 }, 

1-1here 

lk (y) = Cr {yi j I eije(Xk;Xk>})-Yn2+1 • 

The polyhedral decision problem B(Pn) is to determine 1-1hether an input 

point yE1Rn
2
+l belongs to the polyhedron Pn' If 1-1e think of the set 

{Y11•···•Ynnl as defining a capacity function on the graph Gn (i.e. 

c<e- ,)=y- .), then it should be clear that a point yE1Rn
2
+l 1-1ill belong to 

I J I J 

the polyhedron Pn if and only if the follo1-1ing t1-1O relations hold: 

1) Yi -2'.0, for all l:si,j:Sn (i.e. c(eij>•Yij defines 
a legal capacity function on Gn>· 

2) 0:syn2+1:sC(Xmin), 1-1here Xmin is any minimum 

capacity cut on the net1-1ork defined by Gn 
and c( e . . ) =y ..• 

I J I J 

By Theorem 1.3, ho1-1ever, 1-1e have that C(Xmin) is equal to the value of any 

maxi mum f I 01-1 function f max on the net1-1ork defined by Gn and c Ce i j) ~y i j" 
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Therefore, it should also be clear that a point yeRn
2
+l will belong to the 

polyhedron Pn if and only if c(eij)=yij defines a legal capacity function 

on Gn and there exists some legal flow function f on the network defined by 

Gn and c(eij)=yij' such that v(fl=yn 2+l (i.e. 0syn 2+i:sv{fmax)). The 

fol lowing lemma relates the linear decision tree complexity of B(Pn) to the 

I inear decision tree complexity of the max-flow problem on a complete 

network of n vertices. 

Lemma 3.1: 

Before presenting the proof of Lemma 3.1, we should consider the 

structure of any linear decision tree algorithm which computes a maximum 

flow function on a complete network on n vertices. Such an algorithm wi I I 

be a ternary tree operating on input (y11 , ••• ,ynn), where the input defines 

a capacity function c(eij)=yij on the graph Gn. Each leaf in the tree wi I I 

contain a set of n2 I inear functions {gi j I lsi, jsn} defined on the n2 

input variables. For any input, the algorithm wil I begin at the root and 

proceed by moving down the tree unt i I a I eaf is reached. Once a I eaf is 

reached, a maximum flow function fma>< on the network defined by the graph 

Gn and the input (y 11 ,, .. ,Ynn), t,.Jifl be given by fma><(eij)"' 

gij<Y11•··••Ynn). We should note that on every nett,.Jork there wi I I exist a 

maxi mum f I ow function that can be comp I ete I y defined by a set of Ii near 

combinations of the edge capacities on the network. 
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Proof of Lemma 3.1: 

Let T be any optimal linear decision tree algorithm for computing a 

maximum flow function on a complete neh1ork on n vertices. Clearly the 

height of T must be Ln. Further, we can obtain a linear decision tree T' 

for the problem B(Pn) by modifying T as follows. Place the root of T below 

a new sequence of n2 distinct tests of the form "Is Yij?:0?" such that the 

root of T is reached if and only if all of these new tests produce a "yes" 

answer. Then replace each leaf in T with a new test of the form "Is 

>0?" Yn2+l- . 

being a new input). The new tree T' should be constructed in such a way 

that if any of the new I y added tests produce a "no" answer, then a I eaf 

containing a "no" decision ls reached. Otherwise a leaf containing a "yes" 

decision is reached. Since the value v(fmax> is simply a sum of the gij 

available at each leaf in T, it should be clear that T' is in fact a linear 

decision tree algorithm for solving the problem B(Pn). The height of T', 

however, is Ln+n2+2 and thus we have the relation: 

LCPn> s Ln+n2+2 

=$ Ln?: 2 LCP n)-n -2. 

□ 

The problem of establishing a non-trivial lower bound on the I inear 

decision tree complexity of the maximum network flow problem has now been 

reduced to the problem of establishing a non-trivial lower bound on L<Pn), 

for each n?:2. By Theorem 3.1, however, we can establish lower bounds on 

L(Pn), for each n?:2, by simply examining the facial structure of the 



60 

polyhedra Pn. The remainder of this section ~i 11 be devoted to proving 

several lemmas concerning the number of faces composing each of these 

polyhedra. We ~i I I essentially sho~ that each polyhedron is composed of 

relatively few faces and thus Theorem 3.1 can be of no use in establishing 

a non-I inear lower bound {if one exists) on any L{Pn)' 

Lemma 3.2: 

There exists a positive constant c such that !Fi (Pn) I 2: c·(n-2) !, 

for a 11 n<!:2. 

Proof: 

Consider any n<!:2 and let p' be an s-t chain in the graph Gn' Now 

consider the point y'e~n
2
+l with the properties: 

1) y~-=1 if e--ep', for all lsi,jsn 
I J I J 

2) y i j =0 i f e i j ftp' , for a I I 1 s i , j Sn 

3) Y~2+1 -=l. 

Clearly the pointy' belongs to the polyhedron Pn and so there must exist 

some face of Pn containing y' (since every point in a polyhedron lies on 

some face of that polyhedron). Let Fy,(Pn) denote the face of P
0 

which 

contains the pointy'. Therefore, Fy,(Pn) is the set of all points y''eP
0 

1-1hich satisfy: 

(3. 1) 

(3. 2) 

(3.3) 

Yij=0 iff Yij""0, for all lsi,jsn 

Y~2+1>0 

ik Cy'') s0 if f .tk (y') •0, for a II lsks2°-2. 

From (3.1) and (3.2) it should be clear that every point y"eFY,(Pn) wi 11 

be non-zero in exactly the same co-ordinates. Further, applying this 
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observation to (3.3) and the fact that p' is an s-t chain in Gn• we must 

have th t ,, ,, f h ,, (1 . . ) a Yi j=Yn2+1 or eac non-zero Yi j S1, JSn • Thus it must be the 

case that every point in the set Fy,(Pn) is simply a scalar multiple of the 

ll)n2+1 point y'. It should now be clear that the smallest subspace of ~ 

containing the set Fy,(Pn) has dimension 1. Thus we have that 

Fy,<Pn)eF1 <Pn). Finally, notice that each distinct s-t chain in Gn will 

give rise to a distinct !-dimensional face of Pn. Therefore, if Z denotes 

the number of distinct s-t chains in the graph Gn then we must have: 

(3.4) 

Si nee Gn is a comp I ete graph on n vertices, however, the va I ue Z can be 

expressed by the following formula: 

n-1 

Z • ~ ln-21!/li-ll! 
i-1 

n-2 

• (n-21 ! ·~ 1/i ! 
i-0 

2: (n-2) ! 

Combining this expression with (3.4) we obtain: 

Lemma 3.3: 

(0! - 1) 

□ 

There exists a positive constant c' such that IF1 (Pn) I s c'·(n-2) !, 

for a I I n2:2. 

Proof: 

Consider any n2:2 and let Ff<Pn) denote the set of al I !-dimensional 
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faces of the polyhedron Pn which arise from distinct s-t chains in the 

graph Gn• as outlined in the proof of Lemma 3.2. Now let Q denote the set 

of al I points y'ePn which satisfy any one of the fol lowing three 

cond it i ens: 
➔ 

1) y' =0 

2) y~ 2+i=0, Yfn=0 and y' has exactly one non-zero co-ordinate 

3) y' belongs to a face in the set Ff<Pn), 

First notice that each point in Q which satisfies condition (2) belongs to 

one of exactly n2-1 distinct (trivial) !-dimensional faces of Pn. Further, 

notice that none of these n2-l faces belongs to the set Ff<Pn). Thus each 

point in 0, except the point 0, belongs to one of exactly IF_f{Pn>l+n2-1 

distinct !-dimensional faces of Pn' Next observe that every point in the 

polyhedron Pn can be expressed as a convex combination of points in Q 

(consider expressing a network as a sum of distinct s-t chains and isolated 

edges). Therefore, every point on a !-dimensional face of Pn can be 

expressed as a convex combination of points in a. Thus we must have that 

the set Q contains at least one point belonging to each 1-dimenslonal face 

of Pn and hence: 

IF1 CPn> I s IFf<Pn>I + n2 - 1 

n-2 

.. (Cn-2) !·:l': 1/i !) + n2 - 1 
i-0 

:S 3· (n-2) ! + n2 - 1 

s c' · (n-2) ! {for some positive constant 
c', independent of n) 

□ 
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Lemma 3.4: 

There exists a positive constant c" such that IFs(Pn}l :S 

2<c
0

·n
2
), for al I s and for al I nl!:2. 

Proof: 

Consider any nl!:2 and let each vector weR2n
2 

be 

;1 ( 11 
" ii ii l A polyh do P' ·,n 112n

2 
can ... = ""ll•'''•'"'nn• ... ll•···•"'nn • er n n "' 

represented as 

noi., be defined 

relative to the graph Gnas follows: 

P~ = {welR2n
2 

I 1,,1i /0 and i:ii j2:0 and ""i /i:ii j for al I l:si, j:Sn, 

l~(wl2:0 and .Q.~(wl:s0 for all 2:sq:sn-1, 

~' (wl l!:0 for a I I 1 :Sk:S2n-Z}, 

i..1here 

and 

.Q.k' (w) = L {1,.1i j I ei je(Xk;Xk)} - L {i:ii j I ei jeln(t>}. 

If 1,,1e think of the set {i..111 , ••• ,1,.1nnl as defining a capacity function on the 

graph Gn (i.e. c(eij)=1,.1ij) and the set {i:r11 , ... ,iJnnl as defining a flo1,,1 

function on the net1,.1ork defined by G and c(e, .}.1,.1 .. (i.e. f(e, .).ij .. ), n IJ IJ IJ IJ 

then it should be clear that a point weR2n
2 

1,.1i I I belong to the polyhedron 

P~ if and only if the fol lo1,.1ing t1,.10 conditions hold: 

1) c(eij)=1,.1ij defines a legal capacity function 
·on the graph Gn (i.e. c(e)2:0 for each eeE). 

2) f(eijl=i:iij defi~es a legal flo1,.1 function on 
the net1,.1ork defined by Gn and c(eij).1,.1ij" 

Notice that the constraints lk'(wll!:0 are all redundant since any legal flo1,,1 

function f on a net1,.1ork n must al1,.1ays satisfy the relation v(f):sC(Xmin)• 
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where Xmin is any minimum capacity cut on n. It should now be clear that 

we can determine whether a point ile1R2n
2 

belongs to the polyhedron P~ by 

simply testing to see if il satisfies each of the first 3n2+2n-4 constraints 

defining P~. Thus there exists a straightforward linear decision tree 

algorithm of height 3n2+2n-4 for solving the problem B(P~J and hence we 

have the relation: 

L(P~J s 3n2+2n-4 < 4n2• 

Further, combining this relation with Theorem 3.1 we obtain the result: 

4n2 > L<P~) ~ 1/2 log IF
9

<P~JI, for al I s 

(3.5) 8n2 = 2 > IFs(P~) I, for all s. 

If 1,.1e no1,.1 let F(P~) .. U Fs(P~) denote the set of all faces of the 
s 

polyhedron P~, then by (3.5) we have: 

(3.6) 

IF<P~ll s ~ z8n2 

-lsss2n2 

= IF <P~J I s (2n2+2) .z8n2 

2 
(c"•n2) = IFCP~J I s 

(for some positive constant c'', independent of n), 

Turning our attention back to the polyhedron Pn, let F(Pn) • 

U Fs(Pn) denote the set of all faces of the polyhedron Pn. The remainder 
s 

of this proof wi I I essentially consist of constructing a 1-1 mapping~ 

from the elements of F(Pn) into the elements of F(P~J. We will then have 

that IFCPnJI s IFCP~JI, 

Let FHCPn)eF(Pn) be any face of the polyhedron Pn. If FH(Pn>•♦ 

(i.e. FH(Pn) is the empty face) then define .J,CFH(Pn)).,4>. If, however, 

FH(Pn)~♦ then let y'elR"
2
+1 be some point in the set FH(Pn). Since 

y'eFHCPn)~Pn, we must have that c(e, .J.y~. defines a legal capacity 
I J I J 
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function on the graph Gn and that there ekists some legal flow function f' 

on the network defined by Gn and c(eij)-yij' such that vCf')•y~2+1· Now 

consider the point ~'e~2n
2 

such that: 

' ' f II wi j•Y; j• or a 

and 

lsi,jsn 

iJ~-=f'(e .. ), for all lsi,jsn. 
I J I J 

Clearly w'eP~ and thus there must ekist some face of P~ containing~'. 

Cal I this face Fct,CP~) and define sJ,(FH(Pn»•Fct,<P~). It should now be 

clear that ,J, maps each face in F(Pn) into a face in FCP~). Thus it 

remains to be shown only that sJ, is a 1-1 mapping. Recall, however, that 

each face of a polyhedron is uniquely determined by the set of constraints 

its elements satisfy by equality. Further, notice that the points ct' and 

y ✓ have the fol lo~ing relationship: 

1) w~ ... 0 iff y~ ... 0, for all lsi,jsn 
I J I J 

2) .lk'(i:1'>•0 iff .lk(y')•0, for all lsks2n-2 

3) iJij'"0 for all {ij I eijeln(t>} iff y~2+1•0. 

Thus for each distinct face FH(Pn) of the polyhedron Pn• ,J,CFH(Pn)) wil I be 

a distinct face of the polyhedron P~ and so sJ, is in fact a 1-1 mapping. 

We can now conclude that IF(Pn) Is IF(P~)I and thus by (3.6) we have: 

( , , 2) 
( 3 • 7 ) I F ( P n) I s 2 c ·n • 

Finally it should be clear that 1Fs(Pn)1 s IF(Pn)l, for alls, and so by 

(3. 7): 

□ 
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3.5 Conclusions 

In this chapter we presented the linear decision tree model of 

computation [6,18,21,22), the notion of a polyhedron and a polyhedral 

decision problem [21,221, and the class of polyhedral decision problems 

n~2} which most naturally arises when considering the maximum 

network flow problem. We then showed that the problem of establishing a 

non-linear lower bound on the linear decision tree complexity of max-flow 

can be reduced to the problem of establishing a non-linear lower bound on 

L(Pn), for each n:?:2. Next we demonstrated matching upper and lower bounds 

on the number of faces of dimension 1 composing each of the polyhedra Pn 

(n~2). Finally, we established a 2D<n
2

) upper bound on the number of 

faces, of any dimension, composing each of the polyhedra Pn. Based on our 

results, we can now conclude that Theorem 3.1 can be of no use in 

establishing a non-I inear lower bound on max-flow, through the class of 

polyhedral decision problems {B<Pn) I n:?:2}. It remains an open question, 

however, whether or not the polyhedral technique can in general be useful 

for establishing non-I inear lower bounds on max-flow. There may, for 

example, exist some more complex class of polyhedral decision problems that 

can be reduced to max-flow. 
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