
MIT/I.CS/TR-230

L ,~
. ' f,'

' . / /t f L-' -~.\

vVI, /

THE CXMPLEXITY OF THE MAXIMUM NEIW)RK FLCW PROBLEM

Alan Edward Baratz

THE COMPLEXITY OF THE MAXIMUM NETWORK FLOW PROBLEM

Alan Edward Baratz

March 1980

This report was prepared with the support of the National Science
Foundation research grant MCS78-05849.

Cambridge

Massachusetts Institute of Technology

Laboratory for Computer Science

Massachusetts 02139

2

THE COMPLEXITY OF THE MAXIMUM NETWORK FLOW PROBLEM

by

Alan Ed1-1ard Baratz

Submitted to the Department of Electrical Engineering
and Computer Science on May 21, 1979 in partial fulfi I lment

of the requirements for the Degree of

Master of Science

Abstract: This thesis deals with the computational complexity of the
maximum net1r1ork flo1-1 problem. We first introduce the basic concepts and
fundamental theorems upon which the study of "max-flow" has been bui It. We
then trace the development of ma><-flo1-1 algorithms from the original
"labeling algorithm" of Ford and Fulkerson, through a recent 0(V·E·log2V>
a I gar i thm due to Ga Ii I and Naamad. We inc I ude a description of each of
these algorithms, along with a proof of correctness and proof of running
time for most of them. Finally 1-1e turn our attention to the problem of
establishing lo1-1er bounds on the complexity of max-flo1-1. We sho1-1 that a
straightforward application of the polyhedral lo1-1er bound technique
developed by Yao, Avis and Rivest fails to produce a non-linear lower bound
on ma><-flo1-1. In the process, ho1-1ever, 1-1e prove several interesting results
concerning the facial structure of a class of polyhedra very closely
related to the ma><imum network flo1-1 problem.

Key words: computat i ona I comp I ex i ty, geometric comp I e>< i ty, neh1ork f I ow,
polyhedral decision problem

Thesis Supervisor: Ronald L. Rivest

Title: Associate Professor of Electrical Engineering and Computer Science

3

ACKNOWLEDGEMENTS

I am deeply indebted to my thesis supervisor, Professor Ronald

Rivest, for first introducing me to the ma><imum nehmrk-flow problem and

for his continued support and guidance. I believe that my association with

him has been the single most important factor in my graduate education.

would also like to thank Jeffrey Jaffe and Michael Loui for

numerous enlightening discussions. I am especially grateful for their

constructive criticism of my work.

Finally, I would very much like to thank my mother Adele, my uncle

Char I es, and my f i ancee Raque I for their constant I ove and support. They

always seem to be avai I able when I need them. I am especially grateful to

Raquel for her faith and understanding through these past few months. This

thesis is, in spirit, as much hers as it is mine,

4

TABLE OF CONTENTS

Abstract ...
Ackno1-1ledgements

1. Introduction

...

An Overvie1-1 of the Thesis .•••••••••••••••••

2

3

5 1.1

1.2

1.3

Basic Definitions and Concepts •••••••••••••••••••••••••••••• 7

Fundamental Theorems ..
2. Upper Bounds on Max-Flow

2.1

2.2

2.3

2.4

2.5

2.6

Introduction ..
.. Ford and Fulkerson

Edmonds and Karp ..
Oinic ...
Karzanov ..
Further Improvements ..

3. Lower Bounds on Max-Flow

3.1

3.2

3.3

3.4

3.5

Introduction ..
The Model of Computation ••••••••••••••
Polyhedral Decision Problems
App I i cat i ans

Conclusi-ons

to Ma><-F I ow ••••••••••••••••••••••••••••••••••••

...
References,

12

22

24

29

32

41

49

52

53

54

56

66

67

5

CHAPiER 1 - INTRODUCTION

1.1 An Overview of the Thesis

The problem of determining a makimum steady state flow from one

point to another in a network with edge capacity constraints, has come to

be known as the maximum network flow problem ("mak-flow" in short). L.A.

Ford and D.R. Fulkerson [91 were the first to study mak-flow as a

computational problem. They developed the first mak-flow algorithm in the

mid 1950's and laid the groundwork for much of the research that was to

fol low. Since that time mak-flow has been widely studied and has developed.

great practical application, especially in the analysis of transportation

and communication networks. This thesis 1-1i 11 be concerned 1-1i th the

computational complexity of the maximum net1-1ork flo1-1 problem, investigating

both upper and lo1-1er bounds on the problem.

The remainder of this chapter will be devoted to a development of

the foundation necessary for any coherent study of the maximum net1-1ork flow

problem. We 1-1i I I begin by presenting the basic definitions and concepts

that have become standard in the max-flo1-1 I iterature. We shal I then

introduce the fundamental theorems upon 1-1hich the study of max-flo1-1 has

been bui It. These theorems, due originally to Ford and Fulkerson [9], are

known as the Augmenting Path Theorem, the Integral Flo1-1 Theorem and the

Max-Flow Min-Cut Theorem.

The second chapter in this thesis 1-1111 deal with upper bounds on

the complexity of the maximum net1-1ork flo1-1 problem. The long and

intriguing history of the search for such bounds is summarized below in

G

Table 1.1.

Upper Bounds on Max-Flow

1) Ford and Fulkerson (1956)
2) Edmonds and Karp (1969)
3) Oinic 11970)
4) Karzanov (1973)
5) Cherkasky 11976)
6) Gali I (1978)
7) Malhotra, Kumar and Maheshwari (1978)
8) Gali I and Naamad (1978)

Table 1.1

Unbounded
OCV•E2)

o cv2-El
ocv3)
o cv2-E112>

0 cv5l3.E2/3>

ocv3 >

o CV·E·I olv>

Each of these bounds has been demonstrated by the construction of a max­

flow algorithm which has the specified worst case running time. Chapter 2

wi I I consist of a survey of each of these algorithms. We note here that

the a Igor i thm deve I oped by Ma I hotra, Kumar and Maheshwar i [16], which we

w i I I ca I I the MKM a Igor i thm, does not resu It in an asymptotic improvement

over the previous three algorithms. However, this algorithm is very simple

and is probably the best algorithm to use on dense networks <E~V2).

The determination of lower bounds on the computational complexity

of the maximum network flow problem has thus far received little attention

in the Ii terature. In Chapter 3, however, we sha 11 investigate one

part i cu I ar approach to est ab Ii sh i ng a non-Ii near I ower bound on the

complexity of max-flow. The technique we shall deal with is the polyhedral

technique developed in 1977 by A.C. Yao, O.M. Avis and R.L. Rivest [211.

We wi I I show that a straightforward application of this technique fai Is to

7

prod~ce a non-linear lower bound on max-flow. In the process, however, we

shal I answer several questions concerning the facial structure of a class

of polyhedra very closely related to the max-flow problem.

1.2 Basic Definitions and Concepts

This section wi I I be devoted to a presentation of the basic

definitions and concepts that have become standard in the study of max­

flow. We wi I I begin by defining a network and a legal flow function on a

network. These concepts wi 11 then be used to develop a. formal definition

of the maximum network flow problem. Finally we wi 11 introduce the basic

notions of a cut and a flow augmenting path,

Def i n i t i on 1. 1:

A network n = (G,s,t,c) is a 4-tuple with the properties:

1) G = (V,E) is a finite directed graph composed of a
set of vertices, V, and a set of edges, E.

2) Two distinct vertices seV and teV are specified as
the source and sink respectively,

3) Each edge eEE is assigned a non-negative real number
c(e), cal led the capacity of edge e.

For any vertex veV, ln(v) denotes the set of all edges incoming to

v and Out(v) denotes the set of all edges outgoing from v. An edge e,

directed from a vertex u to a vertex v in a network n, will often be

denoted by the ordered pair es(u,v).

Examp I e 1. 1: (Neh1ork n0 i

V ~ {s,a,b,c,d,t}
E = {<s,a),(s,b),(a,cl,(a,dl,

(b,dl, (c~tl, (d,tl}
c(e) = 10 [for all eeE s.t. e~(a,d))
c(a,d) "'1
ln(t) • {<c,tl,(d,tl}
Out (s l = { (s, al , (s, b) }

Definition 1.2:

8

10

10

A~ flo1,.1 function f on a net1-1ork n associates 1-1ith each edge

eeE a real number fie) satisfying the conditions:

Cl) 0sf(elsc(el, for each edge eeE

C2) L f (el
eeln(v)

- L f Ce) • 0, for each verte>< veV-{s, t}.
eeOut (v)

The value of a legal flo1,.1 function f is defined to be:

(1.1) v(f) = L f(e)
eeln(t)

- L He>.
eeOut (t)

Informally 1-1e say f is a steady state flo1,.1 from s tot and f(e) is

the steady state flo1,.1 through edge e. Thus, condition Cl tells us that the

steady state flo1,.1 through any edge must be non-negative and not e><ceed the

capacity of that edge. Further, condition C2 states that any steady state

flow from s to t must have the property that flo1,,1 is conserved at every

vertex other than the source and the sink,

Def i n i t i on 1. 3:

An edge e, incident upon vertices u and v in a net1,,1ork n, is said

to be useful from vertex u to verte>< I/ with respect to a legal flo1,,1

9

function f defined on n, if either:

Example 1.2:

1} e•(u,v} and f(e}<c(e}
or

2} e•(v,u) and f(e)>0,

The fol lowing legal flow function fe is defined on network n0 from
Example 1.1:

.f0 (s,a) .. 5 f0 (s,b) - 0
f0 (a,c) = 4 f0 (a,d) - 1
f0 (b,d) = 0 f0<c,t) = 4

f0 (d, t) - 1

10,0

V (f0) = f0 (c,t) + f0 (d,t) - 0 • 4+1 • 5

Note - (s,b) is useful from s to b but not useful from b to s
(a, d) is useful from d to a but not useful from a to d
(a,c) is useful from a to c and from c to a

Let us now consider a legal flow function, defined on a network n,

1-1hose value is maximum over the set of values of all legal flow functions

defined on n. Such a flow function is said to be maximum with respect to

n. Notice that the existence of a maximum flow function on a network is

not open to question since a network is composed of only finite capacity

edges. Further, notice that there may exist more than one distinct maximum

flow function on a network.

Definition 1.4: (Max-Flow)

The maximum network flow problem is defined as the problem of

10

computing a maximum flow·function on a network given as input.

We now turn our attention to the basic concepts underlying the

theory on which the study of the maximum network flow problem has been

bu i It. In particular, we present the notions of a cut and a flow

augmenting path.

Definition 1.5:

A cut in a network n is a set of vertices X with the properties:

1) XcV.

2) seX.

3) teX where X • V-X.

The set of al I edges eeE which are directed from a vertex in X to a vertex

in X is denoted by CX;X). The capacity of a cut Xis defined to be:

(1.2) CCX) = ~ cCe).

ee(X;X)

Example 1.3:

The following cut x0 is defined on network n0 from Example 1.1:

x0 - {s, a, d}

x0 = {b,c, t}

I
110 I

C(X0) = c{s,b) + c(a,c) + c(d,t) • 10+10+10 • 30

11

Def i ri i t ion 1. 6:

A ~ p, from vertex v1 to vertex vn in a net1-1ork n, is a

sequence of distinct vertices and edges p • v1e1v2e2 ••• vn-len-lvn (n~2)

such that vieV (for each i•l, ••• ,n), eieE {for each i•l, ••• ,n-1} and

either ei = (vi,vi+l>, in 1-1hich case ei is said to be a for1-1ard edge in p,

or ei = (vi+l'vi), in 1-1hich case ei is said to be a reverse edge in p, for

each i=l, ••• ,n-1. Any path composed of only for1-1ard edges is cal led a

chain. Note that a path is defined to be acyclic.

Def in i ti on 1. 7:

A flo1-1 augmenting path, 1-1ith respect to a legal flo1-1 function f on

a net1-1ork n, is a path p' 1-1ith the property that each edge eiep' is useful

from vertex viep' to vertex vi+lep', A flo1-1 augmenting path from the

source to the sink is called an s-t flo1-1 augmenting path. We shal I see in

the next section that an s-t flo1-1 augmenting path is a path along which f

can be augmented (i.e. the value off can be increased),

Example 1.4:

The fol lo1-1ing s-t flo1-1 augmenting path Pg is defined with respect

to the legal flo1-1 function f0 from Example 1,2:

Pe c s(s,b)b(b,d)d(a,d)a(a,c)c{c,t)t

Note - (s,b),(b,d),(a,c) and (c,t) are all for1-1ard edges along Pg
(a,d) is a reverse edge along P0•

12

1.3 Fundamental Theorems

The study of the maximum network flow problem has been based on

three fundamental theorems first proven by Ford and Fulkerson [9] in the

mid 1950's. These theorems are known as the Augmenting Path Theorem, the

Integral Flow Theorem and the Max-Flow Min-Cut Theorem. This section wil I

be used to develop formal proofs of each of these theorems. We wi I I begin

by proving the following principle lemma which we alluded to at the end of

the last section.

Lemma 1. 1:

If there exists an s-t flow augmenting path p', with respect to a

legal flow function f on a network n, then there exists a legal flow

function f' on n such that v(f'}>v(f).

Proof:

Let p'=v1e1v2e2 .•• vn-len-lvn (n~2) be an s-t flow augmenting path

with respect to a legal flow function f on a network n. Define the sets

Ee {eeE I e is not an edge in p'}

E1 = {eeE I e is a forward edge in p"}

E2 -{eeE I e is a reverse edge in p'}.

Note that E1uE2 i5 the set of all edges in p' and that E0uE1uE2 is the set

of al I edges inn (i.e. E9UE1UEz • EL

Since p' is an s-t flow augmenting path, it follows from Definition

1. 7 that v1 =s, vn=t and ei is useful from vi to vi+l' for each i•l, ••• ,n-1.

More explicitly, applying Definition 1.3 yields:

(1. 3J

(1. 4)

13

f(e)<c(e) => c(e)-f(e)>0, for each edge eeE1

and

f(e)>0, for each edge eeE2•

No~ construct the function f' as follows:

(1.5)

(1.6)

(1. 7)

(1. 8)

(1. 9)

,..
c(e)~c(e)-f(e), for each eeE1
,..
c(e)~f(e), for each eeE2

,..
a ~ min c(e)

eeE1 uE2

f'(e}~f(e), for each eeE0

f'(e)~f(e)+3, for each eeE1

f'(e)~f(e)-4, for each eeE2•

It must now be shown that f' is a legal flow function on n and that

v(f')>v(f). (Notice that f' is defined on all edges eeE.)

To show that f' is a legal flow function on n, we must simply

prove that f' satisfies both condition Cl and condition C2 of Definition

1.2. Let us first consider condition Cl. Since f is a legal flow function

on n, it follows from Definition 1.2 that:

(1. 10) 0sf(e)sc(e), for all eeE.

Thus, applying (1.7) yields:

(1.11) 0sf'(e)sc(e), for all eeE0•
,..

We now notice, from (1.3) and (1.4), that c(e)>0 for all eeE1uE2 and thus

&>0. Combining this with (1.8) and (1.9), we have:

(1. 12)

(1. 13)

f ' (e)> f (e) , for a I I e eE 1

and

t'(e)<f(e), for all eeE2•

14

We can now apply (1.10) and (1.12) to (1.8) to obtain:

(1.14) 0<f' (el Sc (el, for a II eeE1•

Similarly, we can apply (1.10) and (1.13) to (1,9) to obtain:

(1.15) 0sf'(el<cCel, for all eeE2•

Therefore, combining (1.11}, U.14) and (1.15), 1-1e have:

0sf'(elsc(e), for all eeE

and thus f' satisfies condition Cl of Definition 1.2.

We must no1-1 prove that f' satisfies condition C2 of Definition 1,2,

This is accomplished by considering any verte>< v'eV-{s,t}. Since f is a

legal flo1-1 function on n, it fol lo1-1s from Definition 1.2 that:

(1.16) L t<ei
eeln(v')

- L f cei - 0.
eeOut (v')

.Further, if v' is not a verte>< along the path p', then all of the edges

incident upon v' must be contained in the set E0• Thus, combining (1.7) and

{1.16) yields:

L f, <e>
eel n (v')

- L f' cei
eeOut (v')

= L f ce1
eeln(v')

- L f{e) - 0.
eeOut (v')

(for all v'eV-{s,t} and v'tp')

If, ho1-1ever, v' is a verte>< along the path p', then let i be the inde>< of

, I , (. , ') V a ong p I • e. V = Vi Ep • Since p' is acyclic and v't{s, t}, there

must be exactly t1-1O distinct edges incident upon v' which are contained in

p", namely ei-l and ei. All other edges incident upon v' are therefore

contained in the set E0• We must no1-1 consider each of the fol lo1-1ing four'

possible cases:

For

15

1) 8 i-le:E1 and eie:E1

2) 8 i-le:E1 and eie:E2

3) 8 i-le:E2 and eie:E1

4) ei_1e:E2 and eie:E2,

case 1, we combine (1.7)' (1. 8) and (1. 16) to obtain:

L f., 1e>
eel n (v')

- L f'(e>
eeOut (v')

[(L fie>)+ a] -
ee:ln(v')

[(Lfle>)+a]
ee:Out (v')

'" (L fie)) - (L fie)) + 8 - &
ee:ln(v') ee:Out(v')

- L f <e>
eeln(v')

- L fie> • 0.
eeOut (v')

The same result is proven for cases 2, 3 and 4 similarly, We therefore

have that:

L f'(e>
ee:ln(v')

- L f'(e> - 0,
eeOut (v')

for al I v'e:V-{s, t}

and thus f' satisfies condition C2 of Definition 1,2,

To show that v(f')>v(f), we first notice that there is exactly one

edge incident upon t which is contained in the path p', namely en-1' All

other edges incident upon tare therefore contained in the set E0• We must

now consider each of the fol lowing two possible cases:

1) en-1 e:E1

2) en-1 e:E2,

For case 1, we can simply combine (1,1) of Definition 1,2, (1.7) and (1,8)

to obtain:

V (f ') . L t' <e>
ee:ln(t)

- L f'<e>
ee:Out (t)

= [(L fie)) + 8] - L f (e)
ee:ln(t) ee:Out(t)

16

• ~ f (e)
eeln(t)

- ~ f(e)
eeOut<t)

• v(f} + I > v(f).

+ f

(since 1>0)

The same result is proven for case 2 similarly. We therefore have that

v(f') > v(f}.

□

The proof of Lemma 1.1 reveals a fairly simple procedure for

augmenting an existing legal flo1-1 function on a net1-1ork, given a

corresponding s-t flo1-1 augmenting path. The procedure consists of

determining the "excess capacity" along each edge in the flo1-1 augmenting

path, as defined by (1.5) and (1.6), and then increasing the flo1-1 along al I

for1-1ard edges and decreasing the flow along all reverse edges in the path.

The amount by 1-1hich flow is increased or decreased along each edge is

simply the minimum excess capacity over all edges in the flo1-1 augmenting

path.

We now present a lemma which wi 11 be useful in demonstrating a

relationship bet1-1een the capacity of a cut and the value of a legal flo1,.1

function on a network.

Lemma 1. 2:

Proof: ---

Given any·cut X and any legal flow function f on a network n,

v(f) • ~ f(e) - ~ f(e).
ee(X;X) ee(X;X)

Let X be any cut and f be any legal flow function on a net1-1ork n.

17

Then by condition CZ of Definition 1.2 and the fact thats t X, we have:

(1. 17) (:~: He) - L f<e)) .. 0.
v e:X- I t I e e: In (v) ee:Ou t (v)

Combining (1.1) of Definition 1.2 and (1.17) yields:

(1.18) V (f) = L He)
ee:ln(t)

- L f <e>
ee:Out (t)

- ~ f(e)).

ve:X- (t} ee:ln(v) ee:Out (v)

Si mp I i fy i ng (1 • 18) we ob ta i n:

V (f) = L (L f <e> - L t<e>)
ve:X ee:In(v) ee:Out (v)

= L L f <e> L L f<eJ.

ve:X ee:In(v) ve:X ee:Out (v)

Thus, we have that the value off is equal to the sum of the flow along al I

edges directed into a vertex in X minus the sum of the flow along al I edges

directed out of a vertex in X. If we now consider separately those edges

directed from a vertex in X to a vertex in X and those edges directed from

a vertex in X to a vertex in X, we obtain:

V (f) = (:~: f <e> + L t<e>) - (L f <e>
ee:CX;X) ee:(X;X) ee:<X;XJ

"' L f (e) - L f<eJ.

ee:(X;XJ ee:(X;XJ

Corollary 1.1:

+ ~ f(e))

ee:<X;XJ

□

If the value of a legal flow function f" is equal to the capacity

of some cut X" on a network n, then f" is maximum on n and X" has minimum

capacity over al I cuts on n.

Proof:

Let X be any cut and f be any legal flow function on the network

18

n. Then by Lemma 1.2 we have that:

V (f) • ~ f(e)

ee(X;X)
- ~ t<e) •

eeO(;X)

Applying condition Cl of Definition 1.2 we obtain:

v(f) :S ~ c(e)

ee CX; X)

and thus by (1.2) of Definition 1.5:

(1.19) v(f) s C(X).

Therefore. if (1.19) holds by equality for some legal flow function f' and

some cut X' on the network n, then f' must be maximum on n and X' must

have minimum capacity over all cuts on n.

□

We are now ready to present the three fundamental theorems upon

which the study of max-flow has been built.

Theorem 1.1: (Augmenting Path Theorem)

A legal flow function f on a network n is maximum if and only if

there exists no s-t flow augmenting path with respect to f on n.

Proof:

Clearly, if there exists an s-t flow augmenting path 1-1ith respect

to a legal flow function f on a net1-1ork n, then by Lemma 1.1 f is not

maximum on n. Assume now that there is no s-t flow augmenting path Mith

respect to f on n and define the set Sas follows:

S = {veV j 3 an s-v flow augmenting path with respect to f on n} u {s}.

19

Since there is no s-t flow augmenting path with respect to f on n, it can

easily be seen from Definition 1.5 that S forms a cut inn. Further, from

Definition 1.3 and Definition 1.7 we have that f(e)•c(e) for each edge

eE(S;S) and f(e) = 0 for each edge eeCS;S). We can now apply Lemma 1.2 to

obtain:

V (f) - L f Ce) - L f <e>
ee(S;S) eeCS;S)

- L cee>
ee(S;S)

- CCS).

Thus, by Corollary 1.2 we have that f is maximum on n.
D

Theorem 1. 2: (I ntegra I FI ow Theorem)

There exists an integral valued maximum flow function on any

network defined by an integral valued capacity function.

Proof:

Let n be any network defined by an integral valued capacity

function and let f♦ be the zero flow function on n, defined by f♦ {e)•0 for

each edge eeE (Notice that such a flow function wi I I be a legal flow

function on any network). We can now compute a maximum flow function on n
as fol lows:

while there exists an s-t flow augmenting path

with respect to f♦ on n

do augment f♦ as outlined in

the proof of Lemma 1.1.

20

An examination of (1.5) through (1.9) reveals that the legal flow function

generated at each iteration of this procedure wi I I be integral valued.

Thus by Lemma 1.1, the value of each successive legal flow function

generated must be at least one integral unit greater than the value of the

previous legal flow function. Combining this fact with {1.19) and Theorem

1. 1, we now have that our procedure must ha It within a finite number of

steps, yielding an integral valued maximum flow function on n.
D

Theorem 1. 3: (Max-FI 01-1 Min-Cut Theorem)

The value of any maximum flow function on a network n is equal to

the minimum cut capacity over all cuts on n.

Proof: ---
let f be any maximum flow function defined on a network n.

Applying Theorem 1.1 we have that there is no s-t flow augmenting path with

respect to f on n. It now follows immediately from the proof of Theorem

1.1 that there exists a cut Son n such that:

v{f) • C{S).

Further, by Carol lary 1.2 we have that the cut S must have minimum capacity

over al I cuts on n. Thus, the value of any maximum flow function on n is

equal to the minimum cut capacity over all cuts on n.
D

We shal I see in Chapter 2 how the previous three theorems form the

basis for a I I the max-f I ow a I gar i thms that have thus far been deve I oped.

21

In fact, we 1,.1ill see that each algorithm is actually a variation of the

procedure given in the proof of Theorem 1.2.

22

CHAPTER 2 - UPPER BOUNDS ON MAX-FLOW

2.1 Introduction

The formal definition of the ma><imum neh1ork floi.J problem, as

presented in Section 1.2. can be e><plicitly stated as folloi.Js. Given any

neti.Jork n as input, compute values of the variables Xe [for each eeEl so

as to ma><imize the objective function

subject to the constraints

L Xe
eeOut(t)

Xe~ 0, for each eeE

Xe~ c(e). for each eeE

L Xe -
eeln(v)

~ Xe
eeOut (v)

= 0, for each veV-{s, t}.

Thus the ma><imum neti.Jork flow problem can be viewed as an optimization

problem in which a I inear function must be ma><imized subject to a system of

linear equations and linear inequalities. G.B. Dantzig [4] developed an

algorithm in the early 1950's, known as the simple>< method, which could be

used to solve such linear programming problems, Although it would not be

incorrect to consider the simple>< method to be the first ma><-flow

algorithm, it is usually not treated as such. The simple>< method is a very

general algorithm_ which has an unbounded worst case running time. We have

included it here only for the sake of completeness.

L.R. Ford and D.R. Fulkerson [9) were the first to produce

significant research results concerning, specifically, the ma><imum network

f I 01-.1 prob I em. In the mid 1950' s they proved the .Augmenting Path Theorem,

23

the Integral Flow Theorem, and the Max-Flow Min-Cut Theorem. These

fundamental results led directly to their development of the labeling

algorithm for solving the ma><imum net"4ork flow problem. The labeling

algorithm is a straightforward algorithm which simply augments an existing

legal flow function along some s-t flow augmenting path in a network, This

process is then repeated until there no longer e><ist any s-t flo"4

augmenting paths in the net1,4ork. The labeling algorithm, although it also

has an unbounded worst case running time, remained in successful use for

almost 15 years.

In 1969, J. Edmonds and R.M. Karp [71 developed a variation of the

labeling algorithm which utilized a Breadth First Search in picking out the

s-t flow augmenting paths in order of increasing length, This resulted in

a much more efficient algorithm with a bounded O(IVl·IE1 2) worst case

running t i me. Independently and a short time later, E.A. Dinic [51

developed an improved version of Edmonds and Karp's algorithm. Dinic also

uti I ized the technique of Breadth First Search but he developed an

.algorithm with time complexity O(IVl 2•1EI).

A.V. Karzanov [141 modified Dinic's algorithm in 1973 to obtain an

O(IVl 3) ma><-flow algorithm. Karzanov's algorithm was unique in that it

simultaneously augmented an e><isting legal flo"4 function along several s-t

flow augmenting paths. In 1976, 8.V. Cherkasky [10] showed ho1-1 to combine

Dinic's algorithm with Karzanov's algorithm to produce a new and very

complex O(IVl 2 •1E1 112) max-flow algorithm. Two years later, Zvi Gali I (10]

improved Cherkasky's algorithm to O{IVIS/J.IE1 213) by developing a

technique for retaining useful information about the structure of the

24

neti.1ork,

In 1978 V.M. Malhotra, M. Pramodh Kumar and S.N. Mahesh1-1ari UGJ

discovered a very simple 0(1¥1 3) max-flo1-1 algorithm 1-1hich 1-1e shall cal I the

MKM algorithm. Their algorithm, similar to Karzanov's algorithm in that it

simultaneously augments along several s-t flo1-1 augmenting paths, requires

very I it t I e overhead. A I though the MKM a I gar i thm does not resu It in an

asymptotic improvement over the previous three algorithms, its simplicity

makes it perhaps the best algorithm to use on very dense net1-1orks (E~V2).

Finally, Gali I and A. Naamad [121 have recently developed a

modification to the original Oinic algorithm 1-1hich results in an algorithm

i.Jith time complexity O(IVl•IEl·log2 IVI). Their modification of Oinic's

algorithm is similar to Gal il's modification of Cherkasky's algorithm.

Once again a technique is developed for retaining useful information about

the structure of the net1-1ork.

The remainder of this chapter will be devoted to a closer

examination of each of the maximum network flow algorithms.

2.2 Ford and Fulkerson

Ford and Fulkerson [91 developed the first maximum net1-1ork flo1-1

algorithm, known as the labeling algorithm, in 1956. Their algorithm simply

augments, along some s-t flow augmenting path, the existing legal flo1-1

function on a net1-1ork. This augmentation is then repeated unti I there no

longer exist any s-t flo1-1 augmenting paths on the network, In practice the

zero flo1-1 function (i.e. f(e)-0 for all edges e) is used as the initial

existing legal flo1-1 function.

25

The labeling algorithm is composed of two basic routines which are

iterated unti I a maximum flow function is computed. The first routine

essentially searches in a systematic way for an s-t flow augmenting path on

the network. The second routine then augments the existing legal flow

function along this flow augmenting path. The actual flow augmentation is

performed exactly as out I ined in the proof of Lemma 1.1. The fol lowing

explanation of the labeling algorithm is taken from (13]:

Step 1. Labeling Process.

Every vertex is always in one of three states, labeled and scanned,

labeled and unscanned, or unlabeled. A vertex is labeled and scanned if it

has a label and we have inspected all vertices adjacent to it. A vertex is

labeled and unscanned if it has a label but not all vertices adjacent to it

have been inspected. A vertex is unlabeled if it has no label.

Initially, al I vertices are unlabeled. A label for a vertex vj

always has two parts. The first part is the index of a vertex vi, which

indicates that we can send flow from vi to vj, and the second part is a

number which indicates the maximum amount of flow we can send from the

source to vj without violating the capacity constraints. We first assign

the label ts+,e(s)=col to the source, vs. The first label simply says that

we can send flow from the source to itself; the number IIO indicates that

there is no upper-bound on how much can be sent. The source is now labeled

and unscanned and al I other vertices are unlabeled. In general, select a

vertex v j which is I abe I ed and unscanned. Assume v j has a I abe I of the

form ti+,e(j)J or [i-,e(j)l. For all adjacent vertices vk which are

unlabeled, adjacent to vj via an edge directed from vj to vk, and for which

26

the edge e=(vj,vk) is useful from vj to vk (i.e. f(vj,vk)<c(vj'vk}), assign

the label [j+,e(kll to vk, 1-1here:

e(k) = min[e(j), c(vj,vk}-f(vj,vk)J.

For al I adjacent vertices vk 1-1hich are unlabeled, adjacent to vj via an

edge directed from vk to V j' and for 1-1hich the edge e• (vk, v j) is useful

from v.
J

to vk (i.e. f(vk,vj}>0), assign the label cr,e(k)] to vk, 1-1here:

e (kl "'min[e(j), f(vk,vj)J.

The + and the - signs in the labels indicate 1-1hether the

corresponding edges appear as for1-1ard or reverse edges in the s-t flo1-1

augmenting path. No1-1 al I the vertices adjacent to vj have labels; vj is

considered to be labeled and scanned and may be disregarded during the rest

of this step. (If one inspects all the vertices adjacent to vj and cannot

label al I these vertices, then vj is also considered to be a labeled and

scanned vertex.) Al I the vertices vk are no1-1 labeled and unscanned.

Continue to assign labels to vertices adjacent to labeled and

unscanned vertices unti I either the sink is labeled or no more labels can

be assigned and the sink is un I abe I ed. If the sink cannot be I abe I ed, no

s-t flo1-1 augmenting path exists and, hence, the existing flo1-1 function is

maximum. If the sink is labeled, an s-t flo1-1 augmenting path has been

found and the flo1-1 augmentation can be performed using step 2.

Step 2. Flo1-1 Change.

As sum e t hat the s i n k i s I ab e I e d [k + , e (t) J • Le t

f(vk,vt}+-f(vk,vt)+e(t) and turn to vk. If vk is labeled [j+,e(k)], let

f<vj,vk)+-f(vj,vkl+e(t) and turn to vj' If vk is labeled cr,e<k)J, let

f(vk,vj)+-f(vk,vj)-e(t) and turn to vj. Continue until the source is

27

reached. Erase the labels on all the vertices and go back to step 1.

When the labeling algorithm terminates, the set of al I labeled

vertices clearly forms a cut in the network. Further, applying Lemma 1.2

revea Is that the capacity of this cut must be equal to the value of the

e><isting legal flow function on the network. Thus by Corollary 1.1, the

e><isting legal flow function must be ma><imum. It now remains to be shoi..m

that the labeling algorithm will always terminate within a finite number of

steps.

Let us first consider the case in which the network is defined by

an integral valued capacity function. By the same argument as that used in

the proof of Theorem 1.2, it can easily be seen that the labeling algorithm

wi 11 terminate after at most v(fma><) iterations, where v(fma><) is the

finite value of a ma><imum flow function on the network. Further, each

iteration wi 11 require at most O(IEI) operations since each edge is

e><amined at most twice in the labeling procedure and at most once in the

augmenting procedure. Thus we have that the I abe Ii ng a Igor i thm w i I I

correctly compute, in time 0(1El·v(f
111

a><)), a ma><imum flow function on any

network defined by an integral valued capacity function. It can also be

shown, however, that there actually e><ist networks which force the labeling

algorithm to perform v(fma><) iterations. Consider for e><ample the network

n1 in Figure 2.1.-

28

N N N

Figure 2.1

If the labeling algc:irithm, beginning 1-1ith the zero flo1-1 function on n1 ,

augments only along the paths s(s,a)a(a,c)c(c,f)f(f,h)h(h,t}t and

s{s,b)b(b,d)d(d,f)f(c,f)c(c,e)e(e,g)g(g,t)t in alternating order, then 2·N

• v(fmax) flo1-1 augmentations 1-1ill be required. Thus the algorithm will

iterate v(fmax) times. Notice that the inefficiency in this example is

based on the fact that the labeling algorithm permits the augmentation, at

each iteration, along any one of several existing s-t flo1-1 augmenting

paths.

We shall no1-1 consider the case in 1-1hich the net1-1ork is not defined

by an integral valued capacity function. Ford and Fulkerson [9) were able

to demonstrate the some1-1hat surprising result that their labeling algorithm

might fail to terminate if the net1-1ork 1-1as composed of irrational edge

capacities. This result 1-1as based on interpreting the labeling process

broadly enough to permit the selection of any s-t flo1-1 augmenting path at

each iteration of the computation. Thus the labeling algorithm essentially

has an unbounded 1-1orst case running time. We remark, ho1-1ever, that

computers only deal 1-1ith rational numbers and thus in practice we could

expect the labeling algorithm to halt and yield a correct ans1-1er. In fact,

29

despite its 1,.1eaknesses, the labeling algorithm was successfully used for

almost 15 years.

2.3 Edmonds and Karp

In 1969 Edmonds and Karp [7] showed how the labeling algorithm

could be modified to obtain a bounded worst case running time. In light of

our previous remarks, it should not be surprising to learn that their

modification was essentially an ordering on the selection of the s-t flo1,.1

augmenting paths. Edmonds and Karp suggested augmenting along the shortest

s-t flo1,.1 augmenting path (i.e. an s-t flo1-1 augmenting path containing a

minimum number of edges) at each iteration. This can be easily

accomplished by modifying the labeling process so that the vertices are

scanned in the same order in 1-1hich they receive labels (i.e. by imposing a

Breadth First Search on the labeling process>. The remainder of the

I abe I i ng a Igor i thm is unchanged. The running ti me bound on Edmonds and

Karp's "first labeled, first scanned" modification of the labeling

algorithm is derived from the fol lo1-1ing results [15].

Consider any ne t1-1ork n upon 1-1h i ch there is defined a I ega I f I ow

function f. Let ~(k) denote the minimum number of edges in an s-u flow u

augmenting path after k augmentations off. Similarly, let f'~k) denote the

minimum number of edges in a u-t flo1-1 augmenting path after k augmentations

of f.

Lemma 2.1:

If each flo1,.1 augmentation off is made along an e-t augmenting path

30

with a minimum number of edges, then:

c, (k+ll c!! c, (k)
u u

and
.,<k+ll c!! 1"{k)

u u

for al I u,k.

Proof: (From [151)

Assume that c,~k+l) < c,~kl, for some u,k, Moreover, let:

(2.1) .,<k+l) = min {c,(k+l)
U V V

CI ear I y c, ~k+l) ~ 1 Con I y c, !k+ll - 0), and there must be some f i na I edge

Cu,v) or (v,u) in a shortest s-u flo1-1 augmenting path after the {k+U st

augnientation of f. Suppose this edge is (v,u), a forward edge, with

f{v,u)<c{v,u) (the proof is similar for (u,v)). Then O'~k+l) • O'!k+l) + 1

and by (2.1) ,

{2.2) .. (k+l) (k) 1
vu c!! O'v + •

Further, it must have been that f(v,u)-c(v,u) after the kth augmentat~on of

f; otherwise c,~k) s c,!k)+l s c,~k+ll, contrary to the assumption, But if

f(v,u)=c(v,u) after the kth augmentation off and f(v,u)<dv,u) after the

(k+U st augmentation off, it follows that (v,u) was a reverse edge in ,he

(k+l) st s-t flow augmenting path along which f was augmented. Since that

path contained a minimum number of edges,

.. (k) • .. (k) l vv vu + •

Combining this with (2.2), however, we obtain:

c, (k) +2 s c, (k+ll
u u '

contrary to our assumption. The assumption that c,~k+l) < .,<kl
u i 9

31

therefore false.

The proof that r(k+l) ~ f(k) parallels the above. u u

□

Theorem 2.1:

If each flo1-1 augmentation off is made along an s-t augmenting path

with a minimum number of edges, then a maximum flo1-1 function is obtained

after no more than IYl·IEl/2 augmentations of f,

Proof: (From (15])

Each time an augmentation off is made, at least one edge in the s­

t augmenting path is "critical" in the sense that it limits the amount of

augmentation. The flo1-1 through such an edge (u,v) is either increased to

capacity or decreased to zero. Suppose (u, v) is a er it i ca I edge in the

(k+ll 5t s-t augmenting path, The number of edges in the augmenting path is

a(k) + 1 (k) = a(k) + 1 (k)
U U V V '

The next time edge (u,v) appears in an s-t augmenting path, say the

(l+ll st , it will be with the opposite orientation. That is, if it was a

forward edge in the (k+U st , it is a reverse edge in the (i+U st , and vice

versa. If (u,v) was a for1-1ard edge in the (k+l) 5t s-t augmenting path (the

proof is similar for a reverse edge), then:

and

32

It fol lol-ls that each succeeding s-t augmenting path in 1,,1hich (u,v) is a

critical edge is at least t1,,10 edges longer than the preceding one.

No flol-l augmenting path may contain more than IVl-1 edges.

Therefore, no edge may be a critical edge more than IVl/2 times. But each

s-t augmenting path along 1,,1hich f is augmented contains a critical edge.

Therefore there can be no more than IVl·IEl/2 successive s-t flol-l

augmenting paths and this completes the proof,

□

Since Edmonds and Karp's algorithm differs from the original

I abe I i ng a Igor i thm on I y in the order in 1-lh i ch the unscanned vertices are

scanned, it fol lol-ls that their algorithm 1-li 11 yield a ma><imum flol-l function

if it halts and that their algorithm 1,,1ill require only O(IEI) operations

per iteration. By Theorem 2.1, ho1,,1ever, Edmonds and Karp's algorithm is

guaranteed to halt after at most IVl·IEl/2 iterations. Further, this

result is independent of the capacity function; holding for irrational

valued capacity functions as 1,,1ell as integral valued capacity functions.

Thus Edmonds and Karp's algorithm 1,,1ill correctly compute, in time

0(1Vl•IE1 2 >, a ma><imum flol-l function on any net1,,1ork given as input.

2.4 Oinic

In 1970, E.A. Oinic [51 developed a ma><imum net1,,1ork flo1,,1 algorithm

1-li th a bounded 0(1Vl 2 •1EIJ 1,,1orst case running time. Oinic's algorithm,

Ii ke Edmonds and Karp's a Igor i thm, is based on successive f I ow

33

augmentations along s-t flo1,.1 augmenting paths of rninirnurn length. Oinic,

however, noticed that a single breadth first search of a flow network could

be used to isolate all minimum length s-t flo1,.1 augmenting paths. Based on

this observation, Oinic's ma><-flow algorithm is much more efficient than

the "first labeled, first scanned" algorithm of Edmonds and Karp. In order

to present Oinic's algorithm, we must first introduce the notion of a

layered network.

Def in i ti on 2. 1:

A layered net1,.1ork LN is a network whose vertex set is partitioned

into disjoint subsets v0,v1, ••• ,VR such that v0 • {a} and v1 • {t}. We say

that Vi is the i th ~ in LN (for 0sisl.) and that I. is the length of the

layered network LN. Each edge e=(u,v) in LN has the property that if ueVi

then veVi+l (i.e. every edge in LN is directed from one layer to the

next).

Examp I e 2.1: (layered Net1,.1ork LN0)

E={<s,a), (s,b), (a,c), (a,d),
(b,d), (c, t), (d, t)}

c(e)-1 [for al I eeEJ

Each iteration of Oinic's algorithm is called a phase and each

phase is divided into two procedures. The first procedure generates a

layered net1,.1ork from the original input network, in such a 1,.1ay that the

34

layered network isolates al I e><isting minimum length s-t flo1-1 augmenting

paths. The second procedure then uses this layered network to successively

augment the existing legal flo1-1 function along these minimum length s-t

flow augmenting paths. We 1-1i 11 first describe ho1-1 Dinic's algorithm

performs each of these procedures and then 1-1e 1-1ill state the entire

algorithm.

The first task performed during each phase of Dinic's algorithm is

the construction of the layered net1-1ork. The layers composing this net1-1ork

are created from a breadth first search of the input net1-1ork. This breadth

first search begins at the source and traverses only for1-1ard directed edges

with flow less than capacity or back1-1ard directed edges 1-1ith flo1-1 greater

than zero (i.e. only "useful" edges). The search terminates 1-1hen either

the sink is reached or no ne1-1 vertices can be visited and the sink has not

been reached. When the sink cannot be reached, ho1-1ever, the e><isting legal

flow function is a maximum flo1-1 function and Oinic's algorithm halts.

Notice that performing the search in this 1-1ay assures that there exists a

flow augmenting path from the source to each verte>< visited. The layers,

Vi, are finally formed by partitioning the vertices visited according to

the length of their path of discovery from the source. Every verte>< veVi

wi 11 then have the property that the shortest s-v flo1-1 augmenting path,

with respect to the existing legal flo1-1 function on the input network, is

of length i. Therefore, the length of the layered net1-1ork constructed wil I

be equal to the length of the shortest e><isting s-t flo1-1 augmenting path.

The fol lowing procedure formalizes this construction [81.

35

procedure LN en, f):

begin

end.

i: =0;

~hile (i:•i+l) > 0 do

begin

end

T:={veV I v,t.Vj for j<i and there e><ists a

useful edge from a verte>< in Vi-l to v};

l.!. T-♦ then halt (the e><isting f is maximum)

else l.!. teT then begin

l: •i;

i I •-1

end

e I se V,: •T
-- I

Once the layers have been generated, the layered network's edge set

and capacity function are constructed. The edge set is simply constructed

from al I edges in the original input net~ork ~hich are useful from a vertex

in Vi to a vertex in Vi+l (for al I 0:sis.l>. Every edge in the layered

net~ork, however, is directed from the i th layer to the (i+l> st layer,

regardless of its orientation in the input net~ork. Any edge in the

layered net~ork ~hose orientation is different in the input network is said

36

to be a reverse edge in the layered nehwrk. Similarly, any edge in the

layered network whose orientation is the same in the input network is said
A

to be a forward edge in the layered net1,.1ork. The capacity function c is

then created from the excess capacity a I ong each edge in the I ayered

network as fol lows:

" c (eh-c (e)-f Ce), for a 11 for1,.1ard edges in the I ayered net1-1ork

and

" c(e)t-f(e), for al I reverse edges in the layered network,

where f is the existing legal flow function and c is the capacity function

on the input network. It should no1,.1 be clear that every s-t chain in the

layered network corresponds to an existing minimum length s-t flow

augmenting path in the input neh1ork. Further, every minimum length s-t

flow augmenting path in the input net1,.1ork is represented by an s-t chain in

the layered network. Thus the layered network constructed during each

phase of Oinic's algorithm essentially isolates all existing minimum length

s-t flow augmenting paths.

The second task performed during each phase of Oinic's algorithm is

the flow augmentation. Starting at the sink in the ne1,.1ly consiructed

layered network, the algorithm follo1,.1s edges backward to the source to find

an s-t flo1,.1 augmenting path. CRecall that every s-t chain in the layered

network corresponds to an existing s-t flow augmenting path in the input

network.) The existing legal flow function is then augmented along this

path as out I ined in the proof of Lemma 1.1. Notice that the excess capacity

along each edge in the flow augmenting path is given by the layered network

" capacity function, c. After augmenting along this path, the algorithm

37

" adjusts the capacity function c to reflect the ne1,.1 excess capacity along

each edge in the path. It a I so de I etes from the I ayered network a 11 edges

in the path whose excess capacity drops to zero. Finally, it deletes from

the layered net1,.1ork al I vertices and their incident edges which are no

longer reachable from the source or the sink, This is accomplished by

de I et i ng a I I vertices 1-Jh i ch either have no incoming edges or have no

outgoing edges, and continuing to delete such vertices until every vertex

left in the layered network has at least one incoming and one outgoing

edge. After al I necessary deletions have been performed, the algorithm

searches for another flo1,.1 augmenting path and the augmentation process is

repeated. This continues until there no longer exist any s-t chains in the

layered network.

Oinic's complete max-flo1,.1 algorithm is: (From [20])

procedure DINIC(n):

initialize existing legal flow function f, on input network n, to 0;

while "true" do

construct layered net1,.1ork, LN;

for each vertex v in LN do

begin

calculate indegree (v);

calculate outdegree (v);

if (indegree (v)=0) or (outdegree (v)=0) then

add v to nullist

end.

38

while t is a vertex in LN do

begin

end

trace back from t to s to find an augmenting path;

augment f along this path:
A

update c with new excess capacity along each edge in path;

delete from LN all edges along path which now have zero
A

excess capacity (i.e. c(e)=0), updating indegrees,

outdegrees, and nullist;

while some vertex vis on nullist do

delete v and incident edges from LN and from nul list,

updating indegrees, outd~grees, and nullist

Recal I that Dinic's algorithm terminates when the breadth first

search performed in constructing each layered network fai Is to reach the

sink. When this occurs, however, the set of all visited vertices clearly

forms a cut in the input network. Further,' applying Lemma 1.2 reveals that

the capacity of this cut must be equal to the value of the existing legal

flow function. Thus by Corollary 1.1, the existing legal flow function

must be maximum. It now remains to be shown that Oinic's algorithm wi 11

all-lays terminate 1-1ithin time O(IVl 2•1EIL This is proven as a consequence

of the fol lowing lemma [8] which shows that the number of phases is bounded

39

by jVj.

Let tk denote the I ength of the I ayered neh1ork constructed during

the kth phase of Oinic's algorithm.

Lemma 2.2:

If the (k+l) st phase of Oinic's algorithm is not the last, then

Proof: <From [8))

Consider any s-t chain in the layered network constructed during

the (k+l) st phase of Oinic's algorithm:

e.lic.+1

• • • V ~-+-1---1--➔) t •

First, let us assume that all the vertices in this chain appear in

the k th layered network. Let Vj be the j th layer of the k th layered

network. We claim that if vaeVb then a~b. This is proven by induction on

a. For a=0, (v0=s) the claim is obviously true. Now assume va+leVc. If

csb+l the inductive step is trivial. If, however, c>b+l then the edge ea+l

was not used in the k th phase since it was not even in the k th layered

network, in which only edges between adjacent layers appear. But if ea+l

was not used in· the k th phase and is useful from va to va+l in the

beginning of the (k+l) st phase, then it was useful from va to va+l in the

beginning of the kth phase. Thus, va+l cannot belong to Ve (by procedure

LN). Now, in part i cu I ar,

Further, equality cannot hold because then the entire s-t chain would have

40

been in the kth layered network, and if all its edges are sti II useful at

the beginning of the (k+l) st phase then we have a contradiction to the

termination of the kth phase.

If not al I the vertices in the s-t chain appear in the kth layered

nehwrk then let ea+l
va > va+l be the first edge such that for some b,

vae:Vb but va+l is not in the kth layered network, Thus, ea+l was not used

in the kth phase. Since it is useful in the beginning of the {k+l> st

phase, however, it was also useful in the beginning of the kth phase. Thus

the only possible reason for va+l not to belong to Vb+l is that b+l•.lk.

Further, by the argument of the previous paragraph a~b. Therefore, a+l~.lk

□

Coro 11 ary 2.1:

Given any network n as input, the number of phases performed by

Oinic's algorithm must be less than or equal to IVI,

Proof:

Any layered network constructed by Dinic's algorithm must contain

no more than IV I I ayers. Thus by Lemma 2. 2 there can be at most IV I

phases.

□

We now notice that the time required during each phase of Oinic's

algorithm, to construct the layered neh,ork and initialize the indegrees,

outdegrees, and nullist is bounded by O(IEI), Further, each floi.:

augmentation requires time O(IVI) and there can be at most O(IEI) such

41

augmentations since each augmentation causes the deletion of at least one

edge from the layered neh10rk. Finally, the total time required during

each phase of Oinic's algorithm to delete edges, delete vertices, and

update indegrees, outdegrees, and nullist is bounded by O(IEI). This

results from the fact that each edge and each vertex can be deleted from

the layered network at most once. It should no~ be clear that each phase

(iteration) of Oinic's algorithm has time complexity O(IVl•IEIL Thus by

Coral lary 2.1, we have that Oinic's algorithm ~ill always terminate within

time O(IVl 2•1EIL Therefore, Oinic's algorithm ~i II correctly compute, in

time 0(1Vl 2•1EI), a maximum flow function on any network given as input.

2.5 Karzanov

A.V. Karzanov [8,141 modified Oinic's algorithm in 1973 to obtain

an O(IVl 3) maximum network flow algorithm. Karzanov noticed that the

layered network constructed during each phase of Oinic's algorithm could be

used to simultaneously augment along all existing minimum length s-t flow

augmenting paths. He then showed how this simultaneous augmentation could

be performed in time O(IVl 2L Karzanov's algorithm is the result of

replacing Oinic's O(IVl•IEI) successive flow augmentation procedure with

this new 0(1Vl 2) simultaneous flow augmentation procedure.

Karzanov's results are based on the notion of a maximal flow

" function. A maximal flow function f, on a network n, is defined to be any

I ega I f I ow function on n which has the property that every s-t chain in n

contains at I east one saturated edge (i.e. at I east one edge e such that

" f(e)=c(e)). From t,he fol lowing example it can be seen that" a maximal flow

42

function on a network need not be a maximum flo1-1 function on that network.

Example 2.2:

A

The fol lowing maximal flo1-1 function fg is defined on the layered
network LN0 from Example 2.1:

1,0

" f 0 Ca,cl=0

1,0

A

v(fe>•l is not maximum.

Karzanov noticed that the flo1-1 augmentation required during each

phase of Oinic's algorithm could be achieved by simply augmenting the

" existing legal flow function f with any ma><imal flo1-1 function f on the

current layered network. Once such a maximal flow function had been

computed, the flow modification could be performed as fol lo1-1s:

A

f'(eJ+.-f(e}+f(e), for all for1-1ard edges in the layered network

and
A

f'(e}+-f(e}-f(e), for all reverse edges in the layered network,

It can eas i I y be seen that per forming the augmentation in this manner is

essentially the same as simultaneously augmenting along al I e><isting

minimum length s-t flow augmenting paths, where each individual

augmentation is performed e><actly as outlined in the proof of Lemma 1.1.

Karzanov used this clever augmentation technique to develop the fol lowing

modification of Oinic's algorithm.

43

procedure KARZANOV (n):

begin

initialize existing legal flou function f, on input netuork n, to 0;

1-1hile "true" do

begin

construct layered netuork, LN;
,.

compute maximal flou function f on LN;

for each edge e inn do
,.

l!. e is a foruard edge in LN then f(e):•f(e)+f(e)
A

else l!. e is a reverse edge in LN then f(e):•f(e)-f(e)

end

end.

Notice that Karzanov's algorithm, like Oinic's algorithm,

terminates 1-1hen the breadth first search performed in constructing each

layered net1-1ork fai Is to reach the sink. By the same argument as that used

for Dinic's algorithm, ho1-1ever, the existing legal flou function must be

maximum 1-1hen this occurs. Therefore if Karzanov's algorithm halts, then

the existing legal flo1-1 function must be a maximum flo1-1 function on the

input netl-lork, Next I-le notice that the proof of Lemma 2,2 is valid for

Karzanov's algorithm as 1-1el I as Oinic's algorithm. Thus given any network

n as input, the number of phases performed by Karzanov's algorithm must be

less than or equal to IVI, It should also be clear, houever, that the time

re.quired to construct each layered net1-1ork and perform each flo1-1

modification is bounded by O{IEI), Therefore if 1-1e let t denote the time

required to compute each maximal flo1-1 function, then Karzanov's algorithm

44

is guaranteed to halt within time O(IVl·IEI + IVl•t). We wi 11 now show how

Karzanov's algorithm computes each maximal flow function in time O(IV1 2) to

yield an 0(1¥1 3) max-flow algorithm,

Karzanov's algorithm computes each maximal flow function by

successively improving an existing illegal flow function, called a preflow

function, on the current layered network LN [8,10,14]. For each vertex v

in LN, let ln'Cv) denote the set of al I edges incoming to v in LN and let

Out'(v} denote the set of all edges outgoing from v in LN. A preflow
,.,

function f, on the layered network LN, associates with each edge e in LN a
,.,

real number f(e) satisfying the conditions:

,., ,..
C3) 0sf(e)sc(e), for each edge e in LN

C4) L f (e)

eel n' (v)
~ L f Ce), for each vertex v~s,t in LN.
eeOut'(v)

Thus a pref low function is simply a flow function which satisfies the

capacity constraint but not necessarily the conservation constraint of a

legal flow function. For· each vertex v~s,t in LN, we define excess(v} to

be the excess flow entering v:

excess(v) = L f(e)
eeln' (v)

- Lt' (e>.
eeOut' (v)

If excess(v)>0 then v is said to be unbalanced; otherwise v is said to be

balanced. The source and the sink are always considered balanced.

Throughout the execution of Karzanov's maximal flow procedure,

every edge in LN is dee I ared either open or c I osed. In it i a I I y a I I edges

are declared open. As the algorithm proceeds, however, some of the edges

45

wi I I be declared closed. Once an edge is declared closed, the flow through

it wi I I remain unchanged to the end of the procedure.

Karzanov's maximal flow procedure alternates between pushing

add i ti ona I f I ow from unba I anced vertices and ba I anc i ng the unba I anced

vertices that are generated during these pushes. The pushing of flow is

achieved through repeated calls to a procedure PUSH(i), with increasing i

Cl0]. The procedure PUSH (i) considers in turn each unba I anced ver te>< in

layer Vi, attempting to push flow from it to vertices in layer Vi+l' For

each unbalanced verte>< veVi, the procedure considers in turn each open

edge in Out'(v) and sends through it the maximum possible amount of flow.

(The two constraints that e><ist are the current e><cess of v and the amount

of flow needed to saturate the edge.) The push from vends when either v

becomes balanced or every edge in Out'(v) becomes either saturated (i.e •

..., "
f(e)=c(e)) or closed, For each verte>< u in LN there is a stack (push-down

store) on which the history of additions of incoming flow into u is

recorded. When the flow in an edge e•(v,ul is incremented by an amount &,

the pair (v,a) is added to the top of the stack for vertex u. The procedure

PUSH(i) is said to be successful if flow is pushed to layer Vi+l· If

PUSH(i) is successful then PUSHCi+l) is called, and so on.

A procedure BALANCE (i) is the too I through l,,lh i ch unba I anced

vertices become balanced. The procedure BALANCE(i) uses the stacks to

sh i ft back f I ow from vertices in I ayer Vi to vertices in I ayer Vi -1. It

balances in turn each of the unbalanced vertices veVi by canceling the

most recent additions of flow into v. Clearly the last canceled addition of

flow into v may only be partial. After each unbalanced vertex vis

46

ba I anced, a I I the edges in In' (v) are dee I ared c I osed, The procedure

BALANCE (i) is a I 1,.1ays fo I I 01,.1ed by a ca 11 to PUSH (i -1).

Karzanov's complete maximal flow procedure is: (From [10])

procedure MAXIMAL CLN):

PLOOP:

begin

end.

..,
initialize existing preflo1,.1 function f, on layered net1,.1ork LN, to 0;

empty the stacks of all vertices in LN;

i: =0;

PUSH Ci);

while the previous push 1,.1as successful and i+l<J do

begin

i: = i+l;

PUSH (i)

if there exist unbalanced vertices in LN then

i:=number of highest layer Vj(0<j<J) containing

unbalanced vertices;

BALANCE (i) :

i: = i -1:

-goto PLOOP

" ..,
for each edge e in LN do f(e):•f(e)

47

It should now be clear that every vertex in the layered network LN

wi 11 be balanced when Karzanov's maximal flow procedure halts. Thus the
..,

final existing preflow function f will in fact be a legal flow function on

LN. In order to show that it wi 11 also be a maximal flow function on LN,

we must introduce the notion of a blocked vertex, A vertex v in LN is said

to be blocked with respect to the existing preflow function if every v-t

chain in LN contains at least one saturated edge. Notice that the sources

becomes blocked after the first execution of PUSH(0), since every edge in

Out'(s) becomes saturated.

Lemma 2.3:

If a vertex in LN becomes blocked at some point in the execution of

Kar zanov' s maxi ma I f I ow procedure, then i t remains b I ocked to the end of

the procedure. (A proof of this lemma appears in (8).)

Lemma 2.4:

Every vertex in LN is balanced at most once throughout the

execution of Karzanov's procedure, (A proof of this lemma appears in (8).)

We can now see that the final existing pref low function on LN wit I

be a legal flow function which has the property that every s-t chain in LN

contains at I east one saturated edge. Therefore ,_,hen Karzanov' s maxi ma I
..,

flow procedure halts, the existing preflo1-1 function f 1-1ill in fact be a

maximal flow function on the layered net1-1ork LN. It now remains to be

shown that the procedure ,_,i II always halt ,_,ithin 0(1Vl 2) steps.

48

The total number of steps performed by Karzanov's maximal flow

procedure is clearly bounded by the total number of flow additions and flow

reductions performed. The number of flow reductions performed, however, is

bounded by the number of flow additions performed since each vertex is

balanced at most once and the history of flow additions in the stacks is

used to perform the flo1-1 reductions. Thus it suffices to sho1-1 that the

number of flo1,.1 additions performed by Karzanov's procedure is bounded by

O(IVl 2>. We first notice that there can be at most one saturating flow

addition per edge in the layered network. Since the number of edges in the

layered network is bounded by the number of edges in the original input

net1-1ork, however, there can be at most O(IEI> saturating flow additions.

Next 1-1e notice that there can be at most one non-saturating flow addition

per vertex in the layered network, between any two successive cal Is to

BALANCE (i l • (When f I ow is pushed from a ver te>< v in I ayer Vi, on I y the

last edge considered in Out'(v) does not necessarily become saturated.)

Since the number of vertices in the layered network is bounded by the

number of vertices in the original input net1-1ork, ho1-1ever, there can be at

most O(IVI) non-saturating flow additions between any two successive cal Is

to BALANCE(i). From Lemma 2.4, however, there can be at most O(IVI) cal Is

to BALANCE(il. Thus the total number of non-saturating flow additions is

bounded by 0(1Vl 2 l and hence the total number of flow additions is bounded

by O (IV 12).

It should now be clear that Karzanov's maximum network flow

algorithm wi 11 correctly compute, in time O(IVl·IEI + IVl•IVl 2l - O(IVl 3>, a

maximum flow function on any network given as input.

49

2.6 Further Improvements

We saw in the last section that any Q(t) algorithm for computing a

maximal flow function on a layered network could be used to develop an

O(IVl·IEI + IVl•tl maximum network flow algorithm. CS imp I y modify

Karzanov's max-flow algorithm by replacing his "push and balance" procedure

1-1i th the ne1,1 maximal flow procedure.) Notice, however, that any max-flo1-1

algorithm developed through this technique can be no faster than

O(IVl·IEI). Despite this fact, each of the four most recent maximum

net1,1ork flo1,1 algorithms have been based on developing ne1,1 maximal flow

procedures. We shall now briefly describe each of these new maximal flow

procedures.

In 1976 B.V. Cherkasky [101 showed how Karzanov's OCIVl 2) push and

balance routine could be modified to run in time OCIVl·IE1 112 >.

Cherkasky's procedure partitions the layered network into blocks of

consecutive layers cal led super layers. It then applies Karzanov's push and

balance techniques to these superlayers. Within the superlayers, however,

Oinic's flo1,1 augmentation techniques are used. The result is an

asymptotically faster but very complex maximal flow procedure.

A little over a year later, z. Gali I [10] improved Cherkasky's

routine to obtain a maximal flow procedure with time complexity

O(IVl 213 •1E1 213>. Gali l's procedure differs from Cherkasky's procedure in

the techniques used within the superlayers. Galil's routine maintains a

special data structure containing information about the current

"usefulness" of chains within the layered network. This data structure is

50

used to expedite the push of flo1-1 through edges 1-1ithin the superlayers.

Like Cherkasky's routine, Galil's procedure is very complex and requires a

great deal of overhead.

In 1978 a very simple OCIVl 2) maximal flo1-1 procedure 1-1as developed

by three Indians named V.M. Malhotra, M. Pramodh Kumar, and S.N.

Mahesh1r1ar i [16]. Their procedure is based on successive I y augmenting an

existing legal flo1-1 function on the layered net1-1ork. The procedure begins

by determining the maximum amount of flo1-1 that can be pushed through each

vertex v in the layered net1-1ork. This value is called the flo1-1 potential

Pt(v) of the vertex v. Each flo1-1 augmentation is then performed in three

steps. First a vertex 1-1ith minimum non-zero flo1-1 potential over all

vertices in the layered net1r1ork is selected as the reference vertex, r.

Next, Pt Cr) uni ts of f 101-1 are pushed from r to t and from s to r. The

pushing is performed essentially as outlined in Karzanov's algorithm.

Finally, the procedure updates the flo1-1 potential of each vertex through

1r1hich flo1r1 has been pushed, closing all edges 1-1hich become either saturated

or unreachable from s or t. Although this procedure is not an asymptotic

improvement over Karzanov's push and balance routine, it is extremely

simple and results in perhaps the best max-flo1-1 algorithm for use on dense

net1-1orks CIEl~IVl 2 >.

Finally, Gali I and A. Naamad [12] have recently developed an

0(1El·log2 IVI) maximal flo1-1 procedure. This procedure is similar to

Gali l's 0(1Vl 213 -IE1 213) maximal flo1-1 procedure in that a data structure is

maintained for processing chains 1-1ithin the layered net1-1ork. The ne1r1

algorithm, ho1r1ever, does not partition the layered net1r1ork into

51

super layers.

This concludes our discussion of algorithms for computing a maximum

flo~ function on a net~ork. We ~ill no~ turn our attention to the question

of lo~er bounds on the computational complexity of the maximum net~ork flow

problem.

52

CHAPTER 3 - LOWER BOUNDS ON MAX-FLOW

3.1 Introduction

Chapter 2 dealt with the establishment of upper bounds on the

computational complexity of the maximum network flow problem. We traced

the development of max-flow algorithms from the original labeling algorithm

of Ford and Fulkerson [91, through the recent O(IVl·IEl·lollVI) algorithm

of Gali I and Naamad [121. The very fact that the search for ne1-1 max-flow

a I gar i thms has been so fruit fu I I eads us to now ask the question, "Can 1-1e

do better?". Can we develop a max-flow algorithm which is asymptotically

faster than 0(IVl·IEl·log2 1VI}? Gali I has shown [11,121 that any algorithm

which uses 0inic's technique of dividing the problem into phases (as do al I

the known algorithms developed since Dinic's algorithm) must have time

complexity at least O(IVl·IEll. Further, he has conjectured an O(IVl·IEI)

lower bound on the computational complexity of the maximum network flo1,.1

problem. At this time, however, there is no known non-linear lower bound

on max-flow.

The determination of lower bounds on the computational complexity

of a problem is generally much more difficult than the establishment of

upper bounds on the problem. In the latter case we can simply demonstrate

an algorithm for solving the problem 1-1ithin the specified running time. In

the former case, however, we must prove that any algorithm for solving the

problem must require at least the specified running time, regardless of ho1,.1

clever the algorithm. In order to somewhat simplify the lower bound

problem, many authors have chosen to work with restricted models of

53

computation. One such model which has received considerable attention in

the recent I iterature is the I inear decision tree model [6,18,21,221. This

model tends to underestimate total time complexity but nevertheless enables

us to study non-trivial lower bounds. In this chapter we shall investigate

one particular approach to establishing non-linear lower bounds on the

computational complexity of the maximum network flow problem relative to

the I inear decision tree model of computation. The technique we shal I deal

with is the polyhedral technique developed by A,C, Yao, D,M, Avis and R.L.

Rivest [21,221.

3.2 The Model of Computation

The I inear decision tree model of computation is based on the

notion of a I inear decision tree algorithm. A I inear decision tree

algorithm, operating on input (x1, ... ,xn), is simply a finite ternary tree

with each internal node representing a test of the form "l: ai·xi:z" and

each leaf containing a possible output. Given any input, the algorithm

begins at the root and proceeds by moving down the tree unti I a leaf is

reached. At each i nterna I node the a Igor i thm per forms the specified test

and then branches according to the result of this test (<,•,or>), Once a

leaf is reached, the information contained in that leaf is output as the

result of the computation and the algorithm halts, The time comptexity of

any such algorithm is simply defined to be the height of the corresponding

tree.

The computational complexity of any problem relative to the linear

decision tree model of computation can now be defined as the minimum height

54

over al I decision trees 1,.1hich solve the problem. It should be clear that

the I inear decision tree model measures time complexity solely in terms of

the number of comparisons and branchings required. Thus the model tends to

underestimate the total ti.me complexity of a problem. Despite this fact,

the I i near dee is ion tree mode I has proven usefu I in est ab I i sh i ng sever a I

non- trivia I I 01-1er bounds.

3.3 Polyhedral Decision Problems

Let P .. {~elRn I .ti c;:)s0 for each i=l,2, ••• ,m} be a set of points in

~n. 1-1here ~-{x1, ... ,xn), mis an integer and

for real numbers A-.. The set P is said to be a polyhedron in IRn. If d
I J

is the dimension of the smallest subspace of IRn containing P, then P is

also said to be a polyhedron of dimension d. (Notice that 1-Je are

restricting our attention to homogeneous po I yhedra, i.e. cones.) On each

subset Hof the set {1,2, •.• ,m}, we define the set of points FH(PH;;;P as

fol 101-Js:

FHCP) = {~elRn I Ri (~)<0 for each ieH,

Ri (~) =0 for each i ¢-f).

The set FH(P) is .cal led a face of the polyhedron P. If s is the dimension

of the smallest subspace of IRn containing FH(P), then FH(P) is said to be

a face of dimensions. (The empty face has dimension -1 by convention.) We

shal I let F
5

CP) denote the set of all faces of dimension s of P. Notice

that every point in P lies on some face of P and that the intersection of

55

any two faces of Pis empty.

The polyhedral decision problem B(P) can now be defined as the

problem of determining whether an input point ~elRn lies in the polyhedron

P (i.e. Given any input ~elRn, is ~eP?). A linear decision tree algorithm

for solving this problem will be a decision tree which contains a "yes" or

"no" decision at every leaf. The computational complexity of B(P) relative

to the linear decision tree model of computation will be denoted by l(P).

In 1977 A.C. Yao, O.M. Avis and R.L. Rivest [211 proved the

fol lowing fundamental theorem relating the complexity of the polyhedral

decision problem B(P) to the facial character of the polyhedron P.

Theorem 3.1:

Let P • {~ I ii (~)s0 for each i•l,2, ... ,m} be a polyhedron in Rn.

Then for each s,

The proof of Theorem 3.1 can be found in [21).

This theorem states that {l (I og F
5

) Ii near comparisons are necessary to

determine if a point I ies in a polyhedron composed of F
8

a-dimensional

faces. As a result, we can determine lower bounds on the computational

complexity of any polyhedral decision problem relative to the linear

decision tree model of computation by simply examining the facial structure

of the polyhedron.

56

3.4 Applications to Max-Flow

In this section we shall consider a straightforward application of

the concepts presented in the previous section to the problem of

establishing a non-trivial lower bound on max-flow. We shal I first

introduce the class of polyhedral decision problems {B(Pn) n~2}, which is

very closely related to the maximum network flow problem. We shal I then

formalize this relationship by showing that LCPn)-n2-2 is in fact a lower

bound on Ln, where Ln is the linear decision tree complexity of the maximum

network flow problem for a complete network on n vertices. Thus any lower

bound on L(Pn) wil I also yield a lower bound on Ln. Finally we shal I prove

the fol lowing three results concerning the facial structure of the

polyhedra Pn (n?2l:

1) There exists a positive constant c such that
IF1 (P n) I ~ c·(n-2) ! , for al I n~2.

2) There exists a positive constant c' such that
IF1 (Pn) I s c'·(n-2) ! , for al I n~2.

3) There exists a positive constant c'' such that

IFs(Pn) I s 2<c"·n
2>, for al I sand for al I n~2.

Based on these resu I ts, we can then cone I ude that Theorem 3.1 cannot be

di_rectly applied to the class of problems {BCPn) I n~2} to obtain a non­

trivial lower bound on max-flow.

In order to formally define the class of polyhedral decision

problems {B<Pn) 1 · n?2}, we must introduce some new notation, Let Gn denote

the complete directed graph on n~2 vertices in which the vertex v1 is

specified ass and the vertex vn is specified as t, We can represent the

sets of vertices and edges of Gnas follows:

V. {v1,v2,v3, ••• ,vn}

57

and

E = {eij I 1:si, j:sn}.

Notice that IVl=n, IEl=n2 and 1-1e are defining eij to be the edge in Gn

directed from vertex vi to vertex vj. It should be clear that any capacity
. .

function defined on the set E 1-1i II give rise to a complete flo1-1 net1-1ork on

n vertices. Further, notice that the definition of a cut in a net1-1ork can

be directly applied to the graph Gn. We no1-1 let {X1,x2 , ••• ,X2n-2} represent

the set of al I cuts in Gn.

For our purposes, a vector y€1Rn
2
+l 1-1i 11 be represented as

Y= Cy 11, · · · • Y1n• • • •, Ynl, • • •, Ynn• Yn2+1). The po I yhedron P n in 1Rn
2
+l can no1,,1

be defined as follo1,,1s:

Pn = {yEIRn
2
+l I Yi?0 for all l:si,j:Sn, Yn2+12:0, ~(y)2:0 for all l:sk:s2n-2 },

1-1here

lk (y) = Cr {yi j I eije(Xk;Xk>})-Yn2+1 •

The polyhedral decision problem B(Pn) is to determine 1-1hether an input

point yE1Rn
2
+l belongs to the polyhedron Pn' If 1-1e think of the set

{Y11•···•Ynnl as defining a capacity function on the graph Gn (i.e.

c<e- ,)=y- .), then it should be clear that a point yE1Rn
2
+l 1-1ill belong to

I J I J

the polyhedron Pn if and only if the follo1-1ing t1-1O relations hold:

1) Yi -2'.0, for all l:si,j:Sn (i.e. c(eij>•Yij defines
a legal capacity function on Gn>·

2) 0:syn2+1:sC(Xmin), 1-1here Xmin is any minimum

capacity cut on the net1-1ork defined by Gn
and c(e . .) =y ..•

I J I J

By Theorem 1.3, ho1-1ever, 1-1e have that C(Xmin) is equal to the value of any

maxi mum f I 01-1 function f max on the net1-1ork defined by Gn and c Ce i j) ~y i j"

58

Therefore, it should also be clear that a point yeRn
2
+l will belong to the

polyhedron Pn if and only if c(eij)=yij defines a legal capacity function

on Gn and there exists some legal flow function f on the network defined by

Gn and c(eij)=yij' such that v(fl=yn 2+l (i.e. 0syn 2+i:sv{fmax)). The

fol lowing lemma relates the linear decision tree complexity of B(Pn) to the

I inear decision tree complexity of the max-flow problem on a complete

network of n vertices.

Lemma 3.1:

Before presenting the proof of Lemma 3.1, we should consider the

structure of any linear decision tree algorithm which computes a maximum

flow function on a complete network on n vertices. Such an algorithm wi I I

be a ternary tree operating on input (y11 , ••• ,ynn), where the input defines

a capacity function c(eij)=yij on the graph Gn. Each leaf in the tree wi I I

contain a set of n2 I inear functions {gi j I lsi, jsn} defined on the n2

input variables. For any input, the algorithm wil I begin at the root and

proceed by moving down the tree unt i I a I eaf is reached. Once a I eaf is

reached, a maximum flow function fma>< on the network defined by the graph

Gn and the input (y 11 ,, .. ,Ynn), t,.Jifl be given by fma><(eij)"'

gij<Y11•··••Ynn). We should note that on every nett,.Jork there wi I I exist a

maxi mum f I ow function that can be comp I ete I y defined by a set of Ii near

combinations of the edge capacities on the network.

59

Proof of Lemma 3.1:

Let T be any optimal linear decision tree algorithm for computing a

maximum flow function on a complete neh1ork on n vertices. Clearly the

height of T must be Ln. Further, we can obtain a linear decision tree T'

for the problem B(Pn) by modifying T as follows. Place the root of T below

a new sequence of n2 distinct tests of the form "Is Yij?:0?" such that the

root of T is reached if and only if all of these new tests produce a "yes"

answer. Then replace each leaf in T with a new test of the form "Is

>0?" Yn2+l- .

being a new input). The new tree T' should be constructed in such a way

that if any of the new I y added tests produce a "no" answer, then a I eaf

containing a "no" decision ls reached. Otherwise a leaf containing a "yes"

decision is reached. Since the value v(fmax> is simply a sum of the gij

available at each leaf in T, it should be clear that T' is in fact a linear

decision tree algorithm for solving the problem B(Pn). The height of T',

however, is Ln+n2+2 and thus we have the relation:

LCPn> s Ln+n2+2

=$ Ln?: 2 LCP n)-n -2.

□

The problem of establishing a non-trivial lower bound on the I inear

decision tree complexity of the maximum network flow problem has now been

reduced to the problem of establishing a non-trivial lower bound on L<Pn),

for each n?:2. By Theorem 3.1, however, we can establish lower bounds on

L(Pn), for each n?:2, by simply examining the facial structure of the

60

polyhedra Pn. The remainder of this section ~i 11 be devoted to proving

several lemmas concerning the number of faces composing each of these

polyhedra. We ~i I I essentially sho~ that each polyhedron is composed of

relatively few faces and thus Theorem 3.1 can be of no use in establishing

a non-I inear lower bound {if one exists) on any L{Pn)'

Lemma 3.2:

There exists a positive constant c such that !Fi (Pn) I 2: c·(n-2) !,

for a 11 n<!:2.

Proof:

Consider any n<!:2 and let p' be an s-t chain in the graph Gn' Now

consider the point y'e~n
2
+l with the properties:

1) y~-=1 if e--ep', for all lsi,jsn
I J I J

2) y i j =0 i f e i j ftp' , for a I I 1 s i , j Sn

3) Y~2+1 -=l.

Clearly the pointy' belongs to the polyhedron Pn and so there must exist

some face of Pn containing y' (since every point in a polyhedron lies on

some face of that polyhedron). Let Fy,(Pn) denote the face of P
0

which

contains the pointy'. Therefore, Fy,(Pn) is the set of all points y''eP
0

1-1hich satisfy:

(3. 1)

(3. 2)

(3.3)

Yij=0 iff Yij""0, for all lsi,jsn

Y~2+1>0

ik Cy'') s0 if f .tk (y') •0, for a II lsks2°-2.

From (3.1) and (3.2) it should be clear that every point y"eFY,(Pn) wi 11

be non-zero in exactly the same co-ordinates. Further, applying this

61

observation to (3.3) and the fact that p' is an s-t chain in Gn• we must

have th t ,, ,, f h ,, (1 . .) a Yi j=Yn2+1 or eac non-zero Yi j S1, JSn • Thus it must be the

case that every point in the set Fy,(Pn) is simply a scalar multiple of the

ll)n2+1 point y'. It should now be clear that the smallest subspace of ~

containing the set Fy,(Pn) has dimension 1. Thus we have that

Fy,<Pn)eF1 <Pn). Finally, notice that each distinct s-t chain in Gn will

give rise to a distinct !-dimensional face of Pn. Therefore, if Z denotes

the number of distinct s-t chains in the graph Gn then we must have:

(3.4)

Si nee Gn is a comp I ete graph on n vertices, however, the va I ue Z can be

expressed by the following formula:

n-1

Z • ~ ln-21!/li-ll!
i-1

n-2

• (n-21 ! ·~ 1/i !
i-0

2: (n-2) !

Combining this expression with (3.4) we obtain:

Lemma 3.3:

(0! - 1)

□

There exists a positive constant c' such that IF1 (Pn) I s c'·(n-2) !,

for a I I n2:2.

Proof:

Consider any n2:2 and let Ff<Pn) denote the set of al I !-dimensional

62

faces of the polyhedron Pn which arise from distinct s-t chains in the

graph Gn• as outlined in the proof of Lemma 3.2. Now let Q denote the set

of al I points y'ePn which satisfy any one of the fol lowing three

cond it i ens:
➔

1) y' =0

2) y~ 2+i=0, Yfn=0 and y' has exactly one non-zero co-ordinate

3) y' belongs to a face in the set Ff<Pn),

First notice that each point in Q which satisfies condition (2) belongs to

one of exactly n2-1 distinct (trivial) !-dimensional faces of Pn. Further,

notice that none of these n2-l faces belongs to the set Ff<Pn). Thus each

point in 0, except the point 0, belongs to one of exactly IF_f{Pn>l+n2-1

distinct !-dimensional faces of Pn' Next observe that every point in the

polyhedron Pn can be expressed as a convex combination of points in Q

(consider expressing a network as a sum of distinct s-t chains and isolated

edges). Therefore, every point on a !-dimensional face of Pn can be

expressed as a convex combination of points in a. Thus we must have that

the set Q contains at least one point belonging to each 1-dimenslonal face

of Pn and hence:

IF1 CPn> I s IFf<Pn>I + n2 - 1

n-2

.. (Cn-2) !·:l': 1/i !) + n2 - 1
i-0

:S 3· (n-2) ! + n2 - 1

s c' · (n-2) ! {for some positive constant
c', independent of n)

□

63

Lemma 3.4:

There exists a positive constant c" such that IFs(Pn}l :S

2<c
0

·n
2
), for al I s and for al I nl!:2.

Proof:

Consider any nl!:2 and let each vector weR2n
2

be

;1 (11
" ii ii l A polyh do P' ·,n 112n

2
can ... = ""ll•'''•'"'nn• ... ll•···•"'nn • er n n "'

represented as

noi., be defined

relative to the graph Gnas follows:

P~ = {welR2n
2

I 1,,1i /0 and i:ii j2:0 and ""i /i:ii j for al I l:si, j:Sn,

l~(wl2:0 and .Q.~(wl:s0 for all 2:sq:sn-1,

~' (wl l!:0 for a I I 1 :Sk:S2n-Z},

i..1here

and

.Q.k' (w) = L {1,.1i j I ei je(Xk;Xk)} - L {i:ii j I ei jeln(t>}.

If 1,,1e think of the set {i..111 , ••• ,1,.1nnl as defining a capacity function on the

graph Gn (i.e. c(eij)=1,.1ij) and the set {i:r11 , ... ,iJnnl as defining a flo1,,1

function on the net1,.1ork defined by G and c(e, .}.1,.1 .. (i.e. f(e, .).ij ..), n IJ IJ IJ IJ

then it should be clear that a point weR2n
2

1,.1i I I belong to the polyhedron

P~ if and only if the fol lo1,.1ing t1,.10 conditions hold:

1) c(eij)=1,.1ij defines a legal capacity function
·on the graph Gn (i.e. c(e)2:0 for each eeE).

2) f(eijl=i:iij defi~es a legal flo1,.1 function on
the net1,.1ork defined by Gn and c(eij).1,.1ij"

Notice that the constraints lk'(wll!:0 are all redundant since any legal flo1,,1

function f on a net1,.1ork n must al1,.1ays satisfy the relation v(f):sC(Xmin)•

64

where Xmin is any minimum capacity cut on n. It should now be clear that

we can determine whether a point ile1R2n
2

belongs to the polyhedron P~ by

simply testing to see if il satisfies each of the first 3n2+2n-4 constraints

defining P~. Thus there exists a straightforward linear decision tree

algorithm of height 3n2+2n-4 for solving the problem B(P~J and hence we

have the relation:

L(P~J s 3n2+2n-4 < 4n2•

Further, combining this relation with Theorem 3.1 we obtain the result:

4n2 > L<P~) ~ 1/2 log IF
9

<P~JI, for al I s

(3.5) 8n2 = 2 > IFs(P~) I, for all s.

If 1,.1e no1,.1 let F(P~) .. U Fs(P~) denote the set of all faces of the
s

polyhedron P~, then by (3.5) we have:

(3.6)

IF<P~ll s ~ z8n2

-lsss2n2

= IF <P~J I s (2n2+2) .z8n2

2
(c"•n2) = IFCP~J I s

(for some positive constant c'', independent of n),

Turning our attention back to the polyhedron Pn, let F(Pn) •

U Fs(Pn) denote the set of all faces of the polyhedron Pn. The remainder
s

of this proof wi I I essentially consist of constructing a 1-1 mapping~

from the elements of F(Pn) into the elements of F(P~J. We will then have

that IFCPnJI s IFCP~JI,

Let FHCPn)eF(Pn) be any face of the polyhedron Pn. If FH(Pn>•♦

(i.e. FH(Pn) is the empty face) then define .J,CFH(Pn)).,4>. If, however,

FH(Pn)~♦ then let y'elR"
2
+1 be some point in the set FH(Pn). Since

y'eFHCPn)~Pn, we must have that c(e, .J.y~. defines a legal capacity
I J I J

65

function on the graph Gn and that there ekists some legal flow function f'

on the network defined by Gn and c(eij)-yij' such that vCf')•y~2+1· Now

consider the point ~'e~2n
2

such that:

' ' f II wi j•Y; j• or a

and

lsi,jsn

iJ~-=f'(e ..), for all lsi,jsn.
I J I J

Clearly w'eP~ and thus there must ekist some face of P~ containing~'.

Cal I this face Fct,CP~) and define sJ,(FH(Pn»•Fct,<P~). It should now be

clear that ,J, maps each face in F(Pn) into a face in FCP~). Thus it

remains to be shown only that sJ, is a 1-1 mapping. Recall, however, that

each face of a polyhedron is uniquely determined by the set of constraints

its elements satisfy by equality. Further, notice that the points ct' and

y ✓ have the fol lo~ing relationship:

1) w~ ... 0 iff y~ ... 0, for all lsi,jsn
I J I J

2) .lk'(i:1'>•0 iff .lk(y')•0, for all lsks2n-2

3) iJij'"0 for all {ij I eijeln(t>} iff y~2+1•0.

Thus for each distinct face FH(Pn) of the polyhedron Pn• ,J,CFH(Pn)) wil I be

a distinct face of the polyhedron P~ and so sJ, is in fact a 1-1 mapping.

We can now conclude that IF(Pn) Is IF(P~)I and thus by (3.6) we have:

(, , 2)
(3 • 7) I F (P n) I s 2 c ·n •

Finally it should be clear that 1Fs(Pn)1 s IF(Pn)l, for alls, and so by

(3. 7):

□

66

3.5 Conclusions

In this chapter we presented the linear decision tree model of

computation [6,18,21,22), the notion of a polyhedron and a polyhedral

decision problem [21,221, and the class of polyhedral decision problems

n~2} which most naturally arises when considering the maximum

network flow problem. We then showed that the problem of establishing a

non-linear lower bound on the linear decision tree complexity of max-flow

can be reduced to the problem of establishing a non-linear lower bound on

L(Pn), for each n:?:2. Next we demonstrated matching upper and lower bounds

on the number of faces of dimension 1 composing each of the polyhedra Pn

(n~2). Finally, we established a 2D<n
2

) upper bound on the number of

faces, of any dimension, composing each of the polyhedra Pn. Based on our

results, we can now conclude that Theorem 3.1 can be of no use in

establishing a non-I inear lower bound on max-flow, through the class of

polyhedral decision problems {B<Pn) I n:?:2}. It remains an open question,

however, whether or not the polyhedral technique can in general be useful

for establishing non-I inear lower bounds on max-flow. There may, for

example, exist some more complex class of polyhedral decision problems that

can be reduced to max-flow.

67

REFERENCES

Cl] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

[2] O.M. Avis, "Some Polyhedral Cones Related to Metric Spaces," Ph.D.
Thesis, Department of Operations Research, Stanford University,
1977.

[3] A.E. Baratz, "Construction and Analysis of Network Flow Problem which
Forces Karzanov Algorithm to O(n3) Running Time," M.I.T. Laboratory
for Computer Science Technical Memo, LCS/TM-83, 1977.

[4] G.8. Oantzig, "Maximization of a Linear Function of Variables Subject
to Linear Inequalities," in T.C. Koopmans (ed.), Activity Analysis of
Production and Al location, John Wiley & Sons, 1951, 339-347.

CS] E.A. Oinic, "Algorithm for Solution of a Problem of Maximum Flow in a
Network with Power Estimation," Soviet Math. Dokl,, Vol. 11, 1970,
1277-1280.

[6] O.P. Dobkin, R.J. Lipton and S.P. Reiss, "Excursions Into Geometry,"
Yale University Research Report #71,

[71 J. Edmonds and R.M. Karp, "Theoretical Impro~ements in Algorithm
Efficiency for Network Flow Problems," JACM, Vol. 19, No. 2, 1972,
248-264.

[81 S. Even, "The Max Flow Algorithm of Oinic and Karzanov," M.I.T.
Laboratory for Computer Science Technical Memo, LCS/TM-80, 1976.

[9] L.R. Ford, Jr, and D.R. Fulkerson, Flows l.!! Networks, Princeton Univ.
Press, 1962.

[10] Z. Gali I, "A New Algorithm for the Maximal Flow Problem," Proceedings
19 th IEEE Symposium on Foundations of Computer Science, 1978, 231-245.

[111 z. Gali I, "On the Theoretical Efficiency of Various Network Flow
Algorithms," IBM report, RC7320, 1978.

[121 Z. Gali I and·A. Naamad, "Network Flow and Generalized Path Compression,"
The 11 th Annual ACM Symposium on Theory of Computing, 1979, 13-26.

[131 T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, 1969.

[141 A.V. Karzanov, "Determining the Maximal Flow in a Network by the
Method of Preflows," Soviet Math. Dokl., Vol. 15, 1974, 434-437.

68

[151 E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, 1976.

[161 V.M. Malhotra, M. Pramodh Kumar and S.N. Maheshwari, "An OCV3)
Algorithm for Finding Maximum Flows in Networks," Information
Processing letters, Vol. 7, No. 6, 1978, 277-278.

[171 P. McMullen and G.C. Shephard, Convex Polytopes~ the~ Bound
Conjecture, Cambridge University Press, 1971.

[181 M.O. Rabin, "Proving Simultaneous Positivity of Linear Forms," JCSS,
Vol. 6, 1972, 639-650.

(191 R.P. Stanley, "The Upper Bound Conjecture and Cohen-Macaulay Rings,"
Studies l.!! Applied Mathematics, Vol. 54, No. 2, 1975.

(201 R. Tarjan,. "Testing Graph Connectivity," The 6th Annual ACM Symposium
on Theory£.!. Computing, 1974, 185-193.

[211 A.C. Yao, O.M. Avis and R.L. Rivest, "An 0(n2 log n) Lower Bound to
the Shortest Paths Problem," The 9th Annual ACM Symposium on
Theory of Computing, 1977, 11-17.

[221 A.C. Yao and R.L. Rivest, "On The Polyhedral Decision Problem," to
appear in SIAM Journal on Computing.

[231 N. Zadeh, "Theoretical Efficiency of the Edmonds-Karp Algorithm for
Computing Maximal Flows," JACM, Vol. 19, No. 1, 1972, 184-192.

