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.ABSTRACT 

A new notation is introduced for representiDg :real-time 
schedulln,g at the task and event lP.vel. These schedules a:re called 
control structures. The primary coutructs iJlcluded which direct the 
flow of control are sequencing, iteration. and preemption. Additional 
notation allows the :representation of interrupt masking. task 
termination by ezterBa1 events, taslt :restart as well as :resumption 
from. the JIC)lllt of preempt1oa and codestripping. AJ&mithms are given 
for flDdi:ng Ula ....,.~ • .suucture. of a gi'VIQl COAtJ01, structure in 
the notation.. - ', - ,, ' 

' ' ' 

The t;ypes of :representable cont:rol structu:res are classified by 
the topology of their Control Flow Graphs. It :Is shown that although 
brancbiv« is allowed in the preemption structure, a tree-shaped 
preemption structure cannot be represented. Both partial and total 
orderings of tasks and interrupt priorities are supported, however. 

A.~ fo~ d.esczibiJl&, ~~t.iDHt .R~es <>f C9ntr<>l 
struc;twes ~ 1d~-aJMi,it. is, . .-ea ~- ~.Uuiat -~iJI .• D\R#Oi\S 
about task execu~-~- •:~t:t1~~~--~~-?nnot lie 
drawn regardiDg :real-time perf'ormance of a control structure. · A series 
of algorithms is presented which make use of these assumptions, and 
find values for task. execution times in the presence of preemption. 
The algorithms can analyze control structures COJ1taintn,g the principal 
conLTOl featu:res; suggestions are given for further development· of 
algorithms which can analyze any representable control structure. 

· Thesis Supervisor: Stqhen A. Ward 
Alsistani Professor•. of E1ect:rical 
Engin.eerillg and· Computer Science 

Kax words ilDd. phrases; Beal-time. control structure, 
control now graph, scheduling, interrupts, l.ateucy, codestripping. 
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1 : Introduction 

In an artlcle entltled "Toward a dlsclpllne, of reaHime programmlno11 (Wirth 

77b], Nlklaus Wirth has divided programming Into three categories ba,e_d on the-In

creasing complexity of validating their programs: 

1. Sequential programming 

2. Multip,:ogratllllliAe 

3. R .. Htme proana•~ 

tn a real-time system, a program may be· attetnptfng fo control cir to react to 

certain . external processes which cannot be forded to cooperate with -programmed 

processes through Utt of a synchronization 'ptbfmfve such as a sem'aphote. [Dijkstra 

88] or a monitor [Hoare 74]. In order to ·coottttnate Itself with these external, 

non-programmable processes, the real-time ·pragtam ·•mii8t If~ someth1ng about Its 

own executlon speed. Thus Its correctness wm · he de~endent on the speed of the 

p,oeessor on which It is run; but this Is notla ·prof)erfy of';the' program ltseff; Wirth 

ldantlfle1t -thfs as the •sentlal diatfn_guhrfllitg featiir• ·of re~tlme programming. 

This thesis does not directly addreu ttte li'W'e of Villdattlhi{ real-time programs. 

IMtead, It 'deata with' th rep,...entatlorf of sch~et fbi-''re~tlme programs called 

conlm1 stn.tefures, · and' some aspect•· of ··ii\eaaurlhg '1t8'Ftr"'J pi'(jp~rties· of ·the 

resulting control structures. In the sense tfiat'~ \,r theise-:rttal-~e proper

ties-may be 11 P,tlNI~ 'for "'allttil-flbn'of ~f·· proot~.' h work 'preaented 

here dees t.,,.senr; ii contribution 'tci on., aspect -of ttMi valdatibn "~robtem. 

-7-



Introduction Section 1 

1. 1: Related Reu•ch 

Most of the previous studies in the field of real-time programming have been 

- ' -

centered on one of two major areas, the design of languages for real-time program-

ming, and scheduling to meet real-time deadlines. 

The development of languages for real-time programming can be split between 

77; Ormlckl 77; PhlHlps 76; Wirth 77a], and the creatltiifdfeltirely new 1anguages 

tailored to the requirements of reaHlme progr ... [Kennesay 76; Kieburtz 75; 

Schoeffler 70]. The essence of ~• e~ ~-- f.>een to provide SQJlle Interface 

between the real-tune .Pl'09"fllll and the schedullne: of Jtself 4IJd other progra1119, ei

ther through access to the proc.sors Interrupt syst•m, clocka and/or tillaera,. or 

by Influencing the proceuor'~ sc:he®'lng routlnee. -Such ft.Mturea pr4\licie onty a 
- . 

· 1ow level capability fc;,r detennlnlna a proceas~ re.t:~ ~vlor; In 80lll8 ,cuee it 

may be possible to think of .all the tlluing interactions that: coukl Impact on tile 

correctness of a .· real-time e)'stem. ,but the burden of doing 80 has usually f~ . . ·' 

IROSt hea.vHy (~nd often totally) on tJ1e pn;9.,..e,;. -P•c~"aa baste M.aaelQA

lng priorities to diff,!~Pl, :tuts ~t typtc_atly 1 ~ IJt&de by:~ ~is, In the 
- • • ~ , ' < • • • - ,. • • C • • - • -

hope that ~~ng has _ ~ over:kloked._ As tba "'--~-~ •~tel\ ;Jnf;rea~a, U... 

compJextty_of the p~"' ,growe_;~ weU,_ uglll~~,.,..•~ becoaes •x~~ 

tedious a11d error-protMt. if not lm~ible. _ 
•• < - - • i .. ~: l" C • • , ...,_. •. • 

requirements cannot be met by that particular systea. Sollle ayate11S (such as the 

CONSORT system of the Domain Speciftc Syste111& Research group at MIT) have 

-8-



· · S.Cflon 1.1 

b"n developed whteh C4IR do this -for •• lllllted class- of Pl'Olratns, but to the 

autt,or's knowledge no ona baa yet cnulted •· ayetearw·do·ttlla fn' 11•n.,at.· Howev

er, consl"8rabfe reaeerch hu INNm dofflr·oo seh..,UlqJ'taatca In ttle· p,esence &f 

hard· real-time deadllftea. 

Moet of the aignitlcant results obtahted· have been·buad on;reatticttng atten

ti911 tea IJnlited elaNea .of, control atructu,- ,typee;; Far' •x•~ • :4 IIIUltlprbcfesse; 

envll'OQlent ~• there • a ;ptlf'tiek·ord.-lng:,ef -.s,t,ut no Jteratton outside et 

'I\IISks. [IA4lR&chtJ,. S;ll·~ an etc,orithmwt,tcb. llillHl,conatruct neapoptlmal task lats 

(execution orderings) for almost any combination of task run ,..-~:.,d: deaclllrilht 

If the schedule 1s fuH to capacity with:, ,taeka wlialie' .compM'tibA ttMes are 

guar~teed, his str•tecw attow9 .. the,-•ystem1m taM ott- addNIIOnal. a,n~rte.id 

His acheme cto.a eot coulder ,the' effea.ta of· t,r■ ••F tlDll. bowe\ief. ''6.,.ln f8tirlln 

72] and Liu and L.•yJ-- [Liu :73] ttava1 ,~. studied· the problelfl of 

achedcuitna t~ which-.. -Iterated but ttave nosrelattve·ONI..,.... setln gives 

scheduling algorithms based on ftxttd. ~ ·ttm•1•llctasJ, ,and relattve -uroencY; 

The last Is a dynamic priority scheme, where the processor re-evaluates the priori

ties of each task at every Interrupt, and selects for execution the one with the 

earlleat deadline. This method 1s shown to produce a schedule which meets real

time deadlines If any schedule will, but Sarlin's analyals neglects the overhead of 

context switching. 

A different approach Is taken by [Hennessy 76; Kleburtz 75] In their mlcropro-
. ~ ,. ~ 

cessor language TOMAL; Instead of using an interrupt system. they have a com

pUer Insert calls to a task control monitor ( which Is created along with the compile-

...... 



Related Research Sectidn 1;1 

tion of • •et of progrw) at spedflc points In the COIIIPlect COde. This provides 

asauranca. that the task .co.ta IIIOllitor wlttJBt ·eon11.a: wltflifl· a 1lnlte •aftd botlrided 

lnterv., .after-Nch cacfastrlp,,a.1be code be · lfbr·cds ts·ftatlled. This is 

slmHar to a time sHcing system which allocates execution tfllle.ffti· 11xed · amoonts to 

94ldl task,· but. !the .u.e ·slices are synctvOniZ8d with. ~ execution. The 

leoQth Of· .. O()destrlp is daterlllined 'IJV· Ula: r...-,nse flllte: ffMlll,eillMta of the 

tut(. and Ute ONIPler Cttn· detefalne, wbet:hw 1·t11e >J>~ wpplled requ1re-· 

aents are In· contlct. The notation otven· ills Clills 1ttllle .,,._,the~-~ of 

A WCll'k wbldl le -relatad- .lll) the- preaent one act In fact C011tp1811ientary is that' 

of Teixeira--[Teixelra 78]. Much of the-~'-.,.... hertt was-~ 

there. partlo&tlMy .that of Chapter 5, .._. • ..,,...., f8f ......ang reaHiile pro-

Chapter 2 to denote saquencillg;andrbndinli of la.aka. Mlll·letudy centers, howev

er •. on finding ilChedulea ,to tll8et reaH:Jae.; COMtNlnWf 1fHt•'orletitation ·t,f tt'le 

preaeat wo,Jc is deacribea-ln the follcMlngaecllott.• 

1.22 Objectlv• 

The principal goal of this research Is twofold; to develop a convenient 
.:: • : - • ~ '!..._. ,-·\·:: _...:., \,. ·r· .--:_- .f -

. 

representation for real-tlllle control structures, and to demo.,atrate how such a. 

representation is useful as a basis for analyzing reaHilne prop«ties for speciffc 

control structwes. 

The representation as developed IIK>dels contrd structur• at the tuk and In-

-to-



Objectives Section 1.2 

terrupt level; the tasks are aqu• w be tMtlf--coft,tetfl.,t program units whose ex

ecution time is qounded, and. interrupts ,ar.e, oaprN8ntecl u. oc:cur,rences ot event 

variables. The event verl&bles GOUid ~ .,._,;to rap""'8flt any .event however, 

which might be · synchronous or asynchronous wUih reepect to the executing task. 

The notation can represent total and partial orderings among its tasks, and . iteration 

of tasks at a, single p,:.iorlty ~--°' ac~ ae'(eral.JMk,rtty :levels. As weH as 

repr,esentlng conve,itlonal sm{lle .4Jld .. awltHe¥el 4ntafruPt atructwes. the ~trol 

structures given here car;i represent •ver.- 1Mtconventlonal preemption structures, 

structure which may Itself be branched. 

As well as representing this basic frame\NCWt,''the capabmty is provided to 

represent: 

1. Cqc:testripplng aa pr4Nlousl)t • "-.er.-.. 
2. External termination of a task or group of tasks by an event 

oc~urrence (as ~p~ed to !~,~~8!,il~ f.~:,'!!~~p .~em). 

3. Indication that a task or group of ta•s Is not preemptlble by 
• set of eve,.., ' · · ' ·· · · " .·.. ·'·'' •' · · · · 

4. The choice between restarfflist a · s,tiemptecf task or • group of 
tasks from the beginning vs. resuming ,x•~u~ ~. th;• point (?f 
~1~1. !' .• ,. ·.''.• . ·, '.•\ ;· .,'•"' ,,'/ "'l"l.· ...... ,, . ' • 

:,'.~-.} 

Thus a rather generai notation Is given, which in addition represents all of this in-
:-- ·._'.il:.l'<- ':co•.-'., .• ----· • c" , ::}. ,4 . .t~·lb ;/. <·:::,_:.,~':, ',~;;, · ,:·· .-/r~. "· ··: 

formation rather compactly. · The · notation may be used In any application where it 

ts n~be$Sa,')' fo'c~munlcate .,...ethlng;-t--~'control at,..;~tU.:e of this sort, be.~ 
'. ·~·,'1,. > •.' • 'f..,~-;; ~-.' '; • > ~;' 

human to human, human to machine, or machine to machine. In the second case. 

the apeclftc applications In mind are representation of a control structure for 
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anelysis, and for describing te a reat-ttme systellr · what ·sort ·l;f· control· structure ft 

sboutd eatablsh for a set of tasks with· T•at-tlM -eonstratnts~ In this vein~ the no

tation is quite independent Of IIMclllne archft:ecture;' ancf · ·tf11.Ur · a subset of the 

language.. can be chosen for a ta,vet MChirNt Which supports the ·control features 

included therein. 

Thia leads Into the second goat of the tnvesttgatfun. · which ts to demonstrate 

how atoorittlma can be developed wlttdr- aacertaln 'NHJiftlllle ·prop4'rttes ·for ·control 

structures of the Janguage. There are several ttme· lhtervata which are proliably · of 

common Interest to • large aegment of uaere of reaM:llne prooratns. such as: 

1. The maximum delay between the occurrence of an event and 
the lnltiatloa of lte ~..,_ 

2. The maximum time required to execute a set of tasks at a 
given priority. with preemption. 

3. The maxlml.1111 time that •ay etepse -wfttlout thefe; being mi· ex
ecution of a given set of tasks. 

This is not Intended to be an exhaustive survey of real-time properties, but rather 

an Introduction to the usage of the notation as· the toun•t.iqcl-. -19" auqb W1alyals. 

Indeed, It ~ llkety that eef::h.r~fll-:~e-_ayat411\l,~ .. ~-·~ -~ r~lltflllts and 

characterlS'tics; It is hop~d that ~rt appropriate subset 'of ttle _ ,;..,.•.-can be 

chosen to model those characteristics, and algorithms developed which ar~ suited . _ 
< ,"'- .... ~· :,, .",~ ", -~ ;;~, "_.\_.,.,__ ~:;-:-:-._•_"([ -~~ a:\:~~.,; ... i"":;- ~ • -~--:.: - -: 

to an appllcat1on•s special needs. In addition. many appllcatlona wUI hCtve na.,ural _, 
-:::~-· ·, :,.; ~ ; ·;·.-,r'. .. : ~ :~" ::·:_.:,::,· -.._.,__ .. ; ., , ·,:. . 

restrictions which lead to simpler algorithms; It Is with Intent of Ul"""1ratlng this 
~ .,,, ,._ . ~;(': _?"< :.: ~ - i:;;~-. ... ,--~ ·~ - - ·>•_:i,:-'..._. :'.:. 

point that several special case algorlthma are developed. 
' . j;'; . - , ~. ..-

-ta-



Objectives Section 1.2 

1.3: OutHne of the Th .. 1. 

The next chapter presents a c~S,,~i......,.ar •·ithe control structure 

language, as well as giving the semantics for each construct. Sequencing, iteration 

and preemption are the principal features, with extensions added as described In 

Section 1 .2. Methods of determining the overall preemption structure of a control 

structure are also presented. 

Having introduced the notation, Chapter 3 presents the concept of a Control 
. . • • .:.-, , , -~--- ,"·.,· :~_~L!",.·:_?._,.t-,- t.,i; . -

Flow Graph (CFG) ·[AHen 76; Fosdick 76], which gives a graphic representation for 

, .. "''-' .· 
the paths of control flow dictated by a given control structure. A definition of ab-

solute priority levels la~e'd ftom ll contn:if11ftro6tore~ CFG";tap'resenlatlon. Then 

• classlflcatlon of'.contf'o1--~e-typei ,.Plwtitltable by'the,·hdtatron Is given, 

based on the topology-of thelf'CFG"s. tn ~; ..... tyees·o'f ·b()fltrol_ structures 
> ' • -, -, ! ~ ; ~ •, ~ < • > •' • ~ .:,•' C • ' S 

which are not representable are descrtbed. 

Chapter 4; the requirements for knowing certain _,.~,.-I.It event timings fn ad

vance Is also discussed here. 

Thia leads Into Chapter 5, where a hierarchical series of algorithms Is present

ed which are designed to find the worst cases for 801118 of the real-time properties 
t'' ~(';~~- ,.,_-,; . ~ -

of Increasingly compffc~ted classes of control a~ctures. The most general al~ 

rlthm given Is appHcable to the set of control structures which Includes the basic 
• ... , • 4<-~' ~ ,.,,~ ,;,~,, 

frainewoiic of. sequencing, .Iteration and - preemption .. The types of modifications 
, •.'.-'•,...l.-: ,;-;tfl~f?'"5_':.. .. } -; _,,;·~ ~_. 

which would be required to analyze any representable control structure are dis-

cussed, although det~lled algorithms are not given. 



2: A llatation for ....._ ..... Control Structures 

2. 1: Introduction 

In this chapter a notation for representing real-tl1Re control structures wiH be 

developed. The Intention is to provide a general analytical tool which wiU be suit-
• • - ~ • '. - • < - •· , , '. ~ j~-! a l- .,'- 1" ; . j 

able for representing most of the possible_ \lfays to share •. proces,SQI' among th~. 

members of a set of tasks. This wiH include: 

1. Sequencing: a tptal ordering of taeka,,~ ~ uecutec:I. 

2. Iteration: cyclic executloo.of .so,ne ordered set of.tasks. . '' .·- - ... ,,, .. - ·. . . 

3. Preemption: a P4'~ qr~~~.~ Ule,~flHlC8 
of an ewnt forces termination of execution of the currently run
ning task and starts execution of • n,-, ~. "• ,· . ,, , . 

A context-free grallltllU ·wnt be deVelopecf to d9flne the syntax of the representa

tion. It la SUflllllarlzed In. Appendbc A. ' 

2.2: The Basic Control Structure 

The real-time system to be represented Is modelled as a set of prc;,cedures to 
. r ~~.t- ~.1~_., ~:J_ . :~ .· :_.-~:-

be run, caHed t&slcs, a control structure which speclfkNl_the orde! .C!'f' ~•• ord

ers) In which the tasks may be run, and a procesllOI' which executes th,e tasks ac-. 
. } -·(,;-;f_~-----~ i: ~- _):•,": <.· - ,,,c :.= 

cording to the scheduAng constraints specified by the control structure. 
-.;. -- ·-: ; ::-- • ""';,"f ::: ' : ·-. ~ .. 

Thua the flow of data between tasks, If there ls any. need not be a concern; 
,- - ,} .., . . ., - •~ i_"., .~. . .. ~ , •. ._ • C" , 

It Is assumed that any execution ordertng needed to preserve the Intended seman-
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tics of the COO'lputatlon (data flow) will be 4111111odtad itt'fhe ooM.i'ot structure. For 

example, If an output of task A~.~, lqp~~ot;~ f•~P1• <:e>n~ ~~uctt,re as

sociated with their execution should ensure that task A COft'IPletes execution be-
,;: 

fore task B begins. 

Further, the detailed flow of Information and control within a task, I.e. among 
: f- ' . ·;'{;;;{, .;. >. .. -· ' . 

Its Internal variables and Instructions respectively. need not be of concern either. 

blished; this Is discussed further In Section· 4~2'. 

A task wlll be represented by a tasl< Identifier ("<ta$k Id>"), which In most of 

the examples wlll be a single capital letter (though It need not _ be). Figure 2.1 

ahows the grammar which defines task Identifiers. 

<task Id) ::= (letter>·l <task Id> (alpfianumerlc) 

<fetter> :ts A 1 8 f C I ... I Z 

<alph~rlc> /J11t<1etter) -f '<digit) 

<dlQfri' ::==' 0 I 1 'T'!l'-• f 9 

· · '' Ff~ 2. 1. 'syntax for t_;k ldentffle~s. 

Next to a single task, the almpleat thing to represent la the sequencing of two 
. --:~t; ,Ji'.ii" ;{~ -:· ·; - -

or more taaka which are totally ordered. This Is done In the natural way, by Hstln~ 
~--, j~··-:.._:~.: ·,,-~ • ':;.:/':. -~ "'! ~~i .-~!(;;~~-;~. ·- -~ l l ', 

the taak ldentlflers In the order of execution of their corraepondlnt taaka, separat

ed by blank spaces for parsing. A string of one or more taaka wlH be called a 

basic control structure, or <basic cs>. Note that It. ls P4Jrml••lble tc:, ffet:" ,-i..~ )d 
." ::.:: ;~, ",. -. _::_ ,-,· '.,.~.~-·,;· a ·::·· ;~·-= ,,,. _; ·.• r_ -,,..., 

mont Via Gne&.iln 4•Gdlc •>, to ,_,._tfttti'fs1~'Mtti,~~t!lf, 9irP~, . , 
•,·>.;;' .• 'c-.,", .. -. ,..,.,.._ , __ -. • 

task la executed more than once with zero or fflOl"e other task executions 

-16-
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sandwiched In between.
1 

The -~ ia: 

<bulc cs>::• <tas'k'td> f <&4$k:. cs> ll <task kl> 

where ••• represents the blank space tenninal syabol. 

The sllllplest control structure Is just a basic control structure: 

<control structure> ::= <baste cs> 

Thus the gruuner given so far Is eufflcient to rep,1,em __,.task.execution and 

sequenced task execution control structures. 

u, Flow of Control 

It is useful to fonnaHze the notion of control flow with respect to control struc

ture execution. The processor foRow8 the •1natructions• ...,plied. by. a control 
• ' • • < : • , 

structure, doing both •appllcatlona-oriented• work (wtlen tt ._ ~. ex~ the 
. . .· : ': ,. ~ "'.. . 

statements of a task), and 0 systetna-0r1ented• .wprk (.tt-.n ~ is 4•~· which 
. • ·-: ~ :,, 4_, ~ - -

task to execute next according to the constraints .. embedded Jn the control struc-
,~ -~ . . . - ·. . ' 

ture). In either case, the actual machine Instr~ ~' executed at any time 
-.~ j .,. ,, 

wlB be associated with a particular symbol in the control structure representation; 

It wffl be said that at that time the locus of control (abbreviated LC) is at that 

symbol. for example, In the following control structure: 

1. Every occurrence of a task Id In a control structure represents a separate ~ 
atantiation of that .t~kh,.,ith Its qwn ~te. uat. . . TJus ,-.,.ec:1 ·to .. aodel: . ....,. · 
trantty' coditd rouflnea. . ' . . . " . . . . 

-us-
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AB 

when Instructions of task A are executing. LC Is at A; · when Instructions of task B 

are executing, LC Is at B. 

2.4: Closed Control Structures 

It Is desirable to Introduce parentheslzatlon for the grouping of task id's in the 

natural way. In particular, this will be needed to lndicate the scope of the various 

apeclal symbols which will be used for ftarattori, pfealllptlon, etc. It will also be 

helpful In constraining the class of tegal control. atructures to exclude nonsensical 

onea, such u those ln which some taaks can never execute,, r~rdless of.-preemp-, . . \ _., .. - ' .;, ", ' . . . - - -. ' 

tkm timing consideration,. Parentbttslzed (s-)control. structures wlll. be called 
;• • . -,; - $ 

closed cont.rol structures, and the class wm be_ add,ed, to _a,s nece~•tY for aadditlon-
.. . - - •. ~- . , . , .. ' 

al representation.al power. Ai the top levef. closed contr.ol str1.1ctures wUI be Includ

ed In the set of legal control structures. Figure 2.2 gives the syntax for closed 
·l";-

control structures; a syntax Is also given for closed control structure lists, which 

wfU be needed later to represent more complex control structures. 

<control structure> ::= <basic cs> I <closed cs> 

<closed cs> ::= (<basic cs>) I (<closed cs> (basic cs>) I (<closed cs list>) 

<closed cs Ust> ::= <closed cs> I <cioa.t·os M> <obied cs> 

Fl9- 2.2. Syntax, far olonct conln>I .nroctures. 
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2.a, 1terat1on 

Most real-time process control applloatlona r•qulr~ th• periodic repetition of a 

certain task or aaquenc• of tub. BorrowlnQ from the notatJon. of. re81,11ar expru

elona, the asterisk Is used to Indicate a endless repetition of a control structure. 

lt8 BNf: 

<Iterative cs> ::= <basic ca>• I <ctoaect ca>• f <bale ca> (iterative ca> 

From a flow of control Viewpoint, when LC ·rtJachu an; ~~ tolloWlri,r a rtgbt 

parenttteala, It returns to the 11N1tcflfng 18ft -pat'etttiMtsls. 'tt tt 'reactia an aaterlsk 

followlng a taalc Id, It r-,.ata tfla1 tuk. 

The 1lnaJ expariafon of tfte top-level deflnlttori of control' 'structure la: 

'~~ ::, 

(control structure> ::• (basic ca> I <ctoHd ca> I (Iterative cs> 

2.8: PreelllPflon 

With the claaa of. 4lOfttrol ......, •. "'.,.'"" N;,:far.,.._,enty execution se

quencea poalble ~ those In which the order of tuk execution la entirety 

predetel'llllned (static). In many attuatJona, a p,ocuaor wlll need to respond to 

...... 
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asynchronous •vent• -$uoh as krter,upte, ,wllleh -May ndt occur· af !predictable times. 

It may b~,,dApalr•~- to hawe·.uch _,.,_,itrf.,._ ttle •~utidrt''of a ·different part 

of ~e control atn.tctMr• than was ;previouaty, tn cont'rel. lnfOl"fflidly, this w111· be 

modelled by placing sub-control structures Into the overall control structure tn -order 

of non-decreasing priority. Demarcation of the priority levels Is achieved by indi

cating that a control structure Is preemptlble. Figure 2'.3 qives ~ 8.Y'ltax fQr 
. ' ---.~ t~)~-~ .~4..:<-) ~ ' ~ -~ ... ""' ' '.' ~ . 

preemptlble control structures. Preemption Is Initiated by occurrence of a partlcu-
...:; . • •, "ire':..' ¥ - , _F ;·. ~ ' ' ' > (, 

lar event (which may be complex)~ so an event var/able Is Included which stao~ 
. -

for the event. 

<preemptlble cs> ::= (cQntrol •tructure> / _(event var> 
• • • ., • • f • • ,. ~ • 

<event var> ::= e<integer> 

<Integer> ::= <~git> I <Integer> <~il,t> 

<closed cs> ::= (<basic cs>) I (<closed cs> (basic cs>) I (<closed cs list>) I 
• ~ - • ; .~¥ -, ; ~1 :. ,. ! ) ., 

( <preemptlble cs>) I ( <closed cs> <preemptible cs>) 

·Consider the following simple example, which IIIOdels a control structure with a 
• : ,,, ~: •~: • (.-,_. ':,(,. -~ , .:. J -,-, • l 

alngle level of Interruption: 

The Interpretation- of thus .oonvot s~- la-that A-runa·;•Nteclly urittl •vent e1 

1. The event variable Itself Is not complex, but It may represent a complex avant. 
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happena; thla Initiates II. wt'llch ~ecutes ~ then' t.C Mtvrfte to A•. 

The . AtJXt eec.tton . wra deacnlM!t: how ,_... c•••• ~ ;,stn'Jcturea are 

represented .{uslftQ the ~ ayntex), auc:h ,aa 1l'ION 11Wl'1g .. IIUfttpfe tevets of 

Interruption. 

2.8.2: Muttlpte Priority Level Control Struotunta 

lnfonnafly. event· vari&btea He at the lnt«face between control stluctures of 

different priority, the control structure to th1I left of the 11 /<event var>• conatru~ 

tlon having the tower priority. If LC la In the lower priority control structure when 

the event happens. It wll IROV8 to the control structure lrnffledlately to the right of 

the event variable. 

Thua a oontrol structure with three priortty levels might appear as: 

The preemption structure (for each event, the tasks which It may preampt) la fairly 

straightforward here; e1 pree•ta A tSr' B, e2 preetnph A. 8. C or ·o. But the nota

tion is capable of repr .. entlng more complex control structures,. and a . mei:!1'>d of 

preclsely deterntlnmg the preemption structure la needed. 

The "Interrupts• or •preempts• relation la tranafttve; If e1 Interrupts A. Initiat

ing C, and C Is lntenuptlbte by e2, · ~ i.' "ia · Interruptible by e2. Moreover• an 

tasks ot a slngle basic control strUOba"a:wll na et 1tNi ----·~ty MMtl, so baste. 

control structures can be con81dered as units, rather than examining the preamp-

1. Although a later section wffl Introduce the capability of IIHlsl<lng speclflc Inter-

-ao-
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tton of Individual tasks.1 

The "Jnterrupts8 Nhrtlon wilt now '·be f~d~ ta: 1t Wffl be estab.lbJhed clear-
. '." ,.• ·) .·· ~ '"·, . ':, ; : .'!j . "' . 

ly for each event In a control structure which basic control structures it may 
,. J ; f"" ·' ~·~ --~ ' ' 5: · '• ' . .._ , . '• · '.- -, .; ,. · .... _ 

preempt. The set of tasks which are lnterrup~le by a , cer,t~n .. evf!Qt wm be re-
- .·J_ , ' ~~i .iic-,: . :,~" ' :--

ferred to as the scope of that event. The 11inte"upts 11 relation for ,-. control struc-. . ~ . - ··. ';'_ ~ - . . 

ture wlll be represented by a Boolean matrix I with n rows and columns, where n is 

the number. of !basic contto1- atructures ·In th~;•~ 8ttuctln-e be,ng a.r1QJyzed. A 
·- . ~ ·i:HL __ ., ·::, •·-" 

single basJc cs.,_.. ,,AOOfatect Wltff 'each row / •~ ·cdfum,!( I, . flir 1 i $ .l $ n. The 
'- • - 1, :: - > -:: < :,·' .;, c,, --~ 1-:::_•. , •• __ ;.' • ..) -.:.. • ' • -' 

basic cs associated With row (and cotumn) Fwll•tie'refef'red to"ii "basic cs I." 

The first event to the left of eaohtflaste CS' wnfmf dalled that basic cs's Ini

tiating event. If 1[/,J] = 1, It means that basic cs / runs at a higher priority t~"' 

basic cs j; In particular, It means tha~ basic.~ rs lnft!a_tin9_ .everJ~ c~ pr,t,mpt 
, ,_.. -~- ~ '1 - ' -.;t·: 11}:. :,<· , ,·-_. ~ ·~ .. 

basic cs J. The matrix I Is computed according to_ the alQOrithm ,given in Flga,,r:;~_2.4. 
. . ' , -·.r ~·--:·:_., ~-, : --.; > .-·,~;_-~~-! ·:,,-~ !-,., • ;,J . . ; 

This matrix specifies which events cause preemptions across the lt~~~r 
between adjacent priority levels. Since the "lnterrupts0 relation is transitive, the 

" >, > " : :, , ' , C • ,t •• • i • ••;i-'. : - • •-~ -:-::•. 

transitive closure of this 1nt11.a ;,retetf0rt1 fS'I the 'CC>inpfitt• · pYeemptlon strucfure; · th1s · 

specifies, for each event In the control •~~ture, e~~~t~_.whf_c~ ~•sic. ~•.s It CllfJ._. 
• __ , .. • .v •• ~:, • ~J .. ~ .. r. _;·_· ·,!(_ .. ....,_.,,. --~·. • , h-.-• ... , 

preempt. Computing !he tran,stti~~ _ ~'?9ura of.~~ ,r~~ .. ~•m:~,nte(I . .,Y J -~ 

stralghtf~~~~- Let~ be~ ~;~e ~ure of I. Then t+ .~ I + 12 + ••• + 1", 

where + is normal nai.Mx ~~: '.-BIJolean}!I•~ ·•~ ;Is performed like 

regular matrix multiplication except 'AND' Is .aj,l>stttut•d for 'Ttr.aeS' and "OR' for 

rupts whffe a particular task Is executing. 
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Algorithm 2.11 

1 , L•t o b• the 04.ffllber 0.f .~• Cfc'I .lrt, tmt COfttfol atruoture~ ,.. 
S()(ffllte • ·unique Integer from. 1 ton with ••ch butc ca. 

2. lnltlallze I to be an nxn matrix of nroee. 

a. For each bulc ca ,. do ate.,. 4 and 6. 

4. If bealc ca I has no Initiating event, leave row I of I equal to 
all zeroea. 

f;. If Nale ce , h4e t1n loltt~tina ~t •• find the. oantl'Ol struc
ture lmmad .. tely preceding the COMtructlon "/e.• Call this •~ 
trol etr,uc·• It.~. B)t ... ayn~ o1,Af••--- ooallal-•truotllr .. , 
control atruoture A wtJi be either • beak:. oloattd or Iterative ca. 
For ••oil beu: ~•JJn ~•~·,A;:Mt 1(1-JJ...-:oto1~ 

,... 2A. ComputmQ, ...... tfflt, •• ' .. 

, Consider an example of a control structure which contains preemptlble control 
' 

atruotureti, and which can be uaed to mwtrate the construction of the •1nte"upta• 

Example 2. t• 

" ~· ~ _ ~ . • I 1 - • • ', . . . · - ' 

Notice that· this control structure contains four basic control structures, A 8, C, D 
~+ . r-; .. ~:..,-~.~' 

and E. The lnftletlno events for theae bulc ca•a are aa epecffled In figure 2.5. 

Basic CS 
A·tl 
C 
D 
E 

lnftla Eve,rt Row . .J 
none 1 
e1 2 
e2 a 
ea 4 

Fig. 2.e. Initiating event. for Example 2. 1. 

The matrix I la formed following Algorithm 2.1, and It appears In Figure 2.e. 
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1 • A B has no Initiating event, so row 1 = [O O O O] 

2. C's initiating event Is e1. The control s1i'uuture preceding e1 
Is (A 8) 111 , which contains the basic cs A B. ;fm.nr,J[~, 1] := 1. 

3. D's initiating event is e2. The:. iWJltrol 5tructure preceding e2 
Is ((A B) 111/e1)C)* which contains tile basic· cs'& A f3 end C. Thus 
1(3, 1] := 1 and 1(3,2] := 1. 

4. E"s initiating event Is e3. The control structure preceding e3 
Is D. Thus ( 4,3] : 111 1. 

I AB C D E 
AB o· 0 0 0 

C 1 0 0 9 . 
D 1 1 0 ·o ·.· 
E 0 0 1 0 .. 

Fig. 2.8. The I matrix for Example 2.1. 

Now, to get the overaH preeMptton structure, compute I+, the transitive closure 

of I, as shown In Figure 2. 7. 

I+ AB C D ·e 
AB b 0 0 0 
C 1 0 0 

l'\ J> .. 
0 1 1 0 0 
E 1 1 1 0 

Ft9. 2. 7. 1+ for Example 2.1. 

The preemption relatione of the control·:eti'Ucture are suntmarlzed In 'figure 2.8. 
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LC at Pr 
Aare 
A'.Ol":8 
A Of 8 

C 
C 
D 
E none 

' 

tnltl•t•• 
C 
0 
E 
0 
E 
E 

none 

fto. 2.8. Preemptton structure for ExallPl8 2-t, 

2.8.a: Occvrrenc• of l:venu 

The notion of an event •happening• 18 purpoa•flJIIY left vague; each appHca

tlon of the notation can att,acb Its own 01eanl1J9. , Fpr the purpose at hand It is 

•uflk:lent to assume that an event varklble le Dk• • ftafiJ which gets set when Its 

associated event occurs. The processor checke ell the event variables before be

ginning execution of 1Wery IMtr:u<:tion.. The lollow--'19 lldc>IINJly. deacrlbu what hap

pen• If any flag la found to be set: 

1. In the case where LC Is to the right of the event variable 
which has been set, no Immediate ··effect on execution of the 
currently running tu\1{ r.esutt;a. The cw,tf'll:IY ,r""""'8 task is of a 
higher priority than ttt«t whtcb la l'e,questfnf \tMl lnterrupt, 

. .- . ,_;.' ·. 

,·· . ·.• . ' . ! 
2. The event variable :remains set. until auch tlM as LC ls to the 
left of It and In a butc cs ·w111cl\ le p.....,,Ut,le by It, at which 
time It wlll cause a prae-,tlon. · . , 

. 

3. If more than one event corresponding to event variables to 
the right of LC hu happened, then the rightmost one represents 
~ ...... ~ llltem,pt '-'-"INt)..~,t_Q •uaa·to the ftlllt , 

1. Generaffy, a queue of requests la associated with a given event variable, $0 

that addltlonat occurrences of the event will be remembered If they occur before 
the Initial occurrence I• noted by the processor. By specifying • length for this 
queue, a system which remembers ao arbitrary number of event occurrences can 
be modelled. 
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of it (assuming, of course, that LC was within a basic cs preempti
ble by the event). 

4. Completion of the control structure at a given priority "resets" 
the event variable which triggered Its execution; note that this 
must be done at completion rather than at initiation so that if the 
control structure is preempted before It completes, then LC will 
return to it when it is once again the highest priority control 
structure requesting processor service. 

2.6.4: Substructure at a Single Priority Level 

A useful extension to the scheme is to provide for arbitrarily many control 

structures1 to reside at the same priority level, but to be Initiated by different 

events. During execution of one of these control structures, occurrence of events 

In the other(s) at the same priority level will have no (preemptive) effect. The 

principle syntactic change is to allow replacement of an event variable by an event 

coupled list, as shown In Figure 2.9. 

<preernptlble cs> ::= <control structure> / <event list> 

<event list> ::= <event var> I (<event coupled list>) I 

( <event coupled list> )lll 

<event coupled list> ::= <event var>: <control structure> I 

<event coupled list> 'I' <event var>: <control structure> 

where 'I' means the terminal symbol 1-

Fig. 2.9. Syntax for event coupled preemptlble control structures. 

1. Of arbitrary complexity, e.g. there may be additional local priority structure. 
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Conslder an· example: 

Preemption rights are as follows: 

LC at 
A 
A 

B or C 

Preemptlble b 
e1 
a2 

none 

Section 2.6.4 

Execution of B or C continues· uninterrupted to- tetmination. Termtrurtlon of B or C 

returns LC to A (unlea e1 or e2 has happened agllln). 

A alight modfflcatlon In the pc>aitlon of the tarmlruif ,_. leaves the Interrupt struc

ture the same but results tn different behavior Oft teririlnatfon of· B or C: 

(A•J(e1: B le2: C)1t) 

The Idea here is that once either B or C has been initiated (through occurrence of 

e1 or e2, respectively), control Is never again returned to A. Instead, B and C wlll 

be executed every time e 1 or e2 occurs. 

2.8.6: Determining the lnterrupt. Structure 

Since arbitrary conqo.l st&14cturn may r~ kl,MI event ~led list, It follows 

that such structures may contain additional .~ti!J •(or . .,,mt ~d Uata} .,which 

trigger even more deeply nested cqntrol atructur"8. 

This abHlty to nest control structures raises a new semantic issue; what 

should be the aeope of.even.ta whictl·at"a,mt~at tlm·-too-tevel tff'11le,:eve,rt coupled 

llat? The choice made here Is to let any event In an event coupled 11st have the 
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same scope external to the event coupled list that an event variable would have if 

it were substituted for the event coupled list. Consider the following: 

Example 2.2. (A/(e1 :((B/e2)C)je3:((D/e4)E)))"' 

The scope of e1, e2, e3 and e4 external to the event coupled list 

(e1 :((B/e2)C)le3:((0/e4)E)) is the same as that of e5 in: 

(A/e5) 

namely, the control structure to the left of the slash in the construction "/(<event 

coupled list>)". 

The initiating events, as shown In Figure 2.10, are determined as before: the 

first event variable to the left of each basic cs. The internal scope of the event 

variables Is somewhat different, though. Events In event coupled lists may not 

preempt any task in the 11st which Is separated from the event by a "I", Thus in 

the above example, e3 and e4 may not preempt B or C. Therefore Algorithm 2.1 

must be modified to reflect this. Figure 2.11 shows the resulting algorithm. 

Basic cs Initiating event 
A none 
B e1 
C e2 
D e3 
E e4 

Fig. 2.1 O. Initiating events for Example 2.2. 
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1. Let n be the nuaber of butc ca~•· m tlle OOfttral atructure 
under exallllnatlon. Aaaociate a unique Integer from 1 to n with 
each baalc ca. 

2. lnltlatlze I to be an nxn matrix of zeroes. 

3. For each baalc ca I, do atepa 4 and 6. 

4. ff basic cs / hu no inftiating event, leave row I ot I equal to 
alt zeroes. 

6. If basic cs i has an initiating event e, then this event appears 
tn either a "/e0 construction or a •fe" construction. 

a. If e appears In a "/en construction, call the 
control structure Immediately preceding • /•" 
•control structure If..• For each bulc. cs J In con
trol structure A, nt (/ J} equal to 1 ~ 

b. If e appears In a •Je• construction, then e 
cannot preempt any other bulc cs•• in the 
event coupled 11st of which ft ·re" a IINMiiber. Its 
scope etarta at ~ control atructwe tq the left 
of the •1• rn the constructfot, •t(<event 'coupled 
Hat>)•. This will be the control ,structure 
preceding the first tinmatctied 1eft paterttheala 
to the left of e. Call this •control atru~ le." 
for eactr baste cs J In · contri:i atructute ~ a~t 
l[/J] equal to 1. 

Fig. 2.11. Computing I for cs's containing event coupled Rats. 

The control structure of Example_. 2.2 haa the followlng preemption relatlon
shlps: 

LC at Pr--~bv 
A e1, e2, ea, e4 
B •2 
C none 
D e4 
E none 
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Since two or more tasks may reside at the same priority level, such as B and C 

above, a natural question arises; what happens If both e1 and a3 pccur 11sirn_µltan.e:" 
. /'~"QS: ~~t,,····;•~::·~~·- -~~-;-· ;:~.;"<".- · 

oualy," at least within the resolution of the Interrupt ~ystem.1 Most sy!tems ~d<,>Pt 
·. ";_. . ·."' . . . ,. _';'·""·~.,~ .... : ,,.: - ~ '••:~: ' - . -

some arbitrary metr!c to resolve such sltuatlona. A typical .Qne Is the dlstao~~ .. Qf .. 
_ _ _,•· , ,,_ . -::,·-:: · :~o.·c:;-'.f (-~t-,.o,", t·-,,·•••.·"; !,:;'.·· :... ,, · ~~ ·.>:·:~·-· 

the Interrupting device from the CPU. A aimH~r appr,oach Is t~tsen h.ere. If J11<)re. 
·; , ;', :1! \d -:-::~::, :·; :_~; ... '·"?3-~J<:: --- ~.: . , 

. than one event is found to have occurred at the same priority level, then control is . -- . :u..._,.-._; ·,::· .. ;-~~,_; .. . , - . 

arbltrarlly given to the first (leftmost) one in the event coupled 11st. 
. .. :.}~.. ~: ' '{ ·; -~ 

However, with the addition of event coupled lists, "forksu are Introduced Into 
.... ~ <v,., , . -~- ~·-' ,.;- i ;~ , , .. · : _, .. : 1 :·,:- -~- ~--· · ,.._ "· · ..,· ':I 

the preemption structure, as shown In Figure 2.12. A dlao,&fll §~~h ,as, tht! Is 9alle~ • 
. , , :·. ~.: . . .' ; - ;·l·"t ;.~ ;-J!'-,,-:.; :. : , . ::: st? ··;--!" .,..i.,. • • _ 

a Control Flow Graph, and wlH be defined formally and "'8~ extensively In the, 11ext 
-. , : -,~ .. ,.:::.. :· ~-; -; ;, '.'·s ~: ' 

chapter. For now It is sufficient to note that this dlagr:am "µnravelf#" the preemp-
• . .. . , ., . '.·' . ,.;:·;-· '·". ,> . . . .• 

tlon structure so that the relative priority levels of each task are displayed. If two 
, ,_ , -:,, , ~~ : - • •, T_ • -~ 

or more events happen together, priority Is given to the event which Initiates the 

task having higher priority, as was done bef~e. In the above example, If e1 and 
·:.., )· (f ', 

e4 happen simultaneously control Is given flrst to E (which e4 initiates). 

Fig. 2.12. Preemption structure for Example 2.2. 
' ... ) · 

1. Typically the presence of lnte!rupt requests !fUI ~ .!~~k~~ tq,r ~ce .p.,r In- .' 
atn,ctN111;CJ'f,Slle, SO'an,·:1ttftlt!flupta;~- ltitwweri twt>'lucfl'ch'acka WIR be lndls
tlnguiahable as to their ordering In time. 



Determining the Interrupt Structure Seotion 2.6;.6 

2.7i llon-preemptlble Taeka 

It Is occasionally necessary to perform all or some subset of a control structure•s 

tasks tri a non-preempttble mode, even though in the 1att~ caae other tasks at that 

priority level may be preemptlble. Simply indicating that a task la non-preemptlble 
, ' ·, 

Is equivalent to saying that the Interrupt system is •turned off" while that task is 

In execution. For generality, the notation allows as an alternative the specification 

of exactly those events which are not allowed to interrupt the task. Both capabili

ties are provided with the augmented syntax, shown In flour• 2. 13. The scope of 

the symbol for non-preemptlbllity extends to closed control structures In the natural 

way, I.e. every taste In the closed cs Is non-preemptfble. 

<basic cs> : := <task> J <basfc cs> 16 <task> 

<task> ::= <task Id> I (non-pree,npttbte tid> 

<non-preemptlble tld> ::= •<task> I '(<ev tlst>)<task> 

<av list> ::= <event var> I <ev llst>,<event var> 

<non-preemptlble closed cs> ::= •<c1osed cs> f '( <ev Ust> )<closed cs> 

<closed cs> ::= .•• (aatae as Nt&-e plus: ) ... I <~praeenptfbte closed cs> 

Fig. 2. 1 a. Synt.ex for non-pree111ptlble taska-

Preflxtng a task Id (or a cloaed cs} with u apostrophe {e.g. 1A) Indicates that that 

task Is not preemptible by any event. If there Is an event list after the apostrophe 
- -

(e.g. '(e1 )A), then tflat task is not preenaptlbte by any event In the event llat. 

furtherJftOl"e, It fa not preemptibfe by. any 811\1111,t .. .,... -ooukl.lead'-to pre •IIPtlon · by 

an event In the event 11st. For example: 
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(((((A•/e1 )C(e3)B C)/e2)0/e3)E)• 

Here . If LC Is at B, It Is not preemptlble by e3 or e2, since e2 Initiates D which Is 

preemptlble by e3. 

Algorithm 2.2 can still be used to determine the nominal preemption structure 

for the control structure's set of basic ca•.~ However. the output of Algorithm 2.2 

must then be modified by removing preemptlbility relations as specified. 

2.81 Stopptna the Flow ,of Control 

Although , the emphuia has beet1 on how LC moves within a control structure, 

U..e may well be times when- ·there la· stMply nd' wortc ·tc, ·be 'dorie for the moment. 

It is worth pointing out MMN the exlstJ;tg-.,,nota1:len'fndfriates··th1s with some exam

ples. 

Baalcally LC will halt when It .ntiar: 

1. Reaches the "end" of a control structure. and finds no • ., , or 

2. Reaches a slash ('f) beyond which no events (which are ca• 
pable of interrJ,Jpting .the .fontroJ structure to :the left o.f the aluh) 
have occurted. 

Several examples are given In Figure 2.14 to clarify this concept; for conciseness, 

a typical (but not unique) task strJng which 1111•~ .be ...... ated bV each control 

structure Is given. Additional notation should be self-explanatory. 
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((A11/e1 )8)• -> A A A 4111 B A A A e1 8 ••. 

((A/e1 )B)" -> A (watt) e1 B A (wait) el 8 •.. 

((A•/e1 )8} --> A A A e1 B (halt) 

(((A"/e1 )B)/e2)" -> A A A e1 8 (wait) e2 A A A ... 

F19. 2.14. 1:xamples of proceaso'r ldllng. 

2.8. 1 : Breaks In Event Coupled Lista 

Section 2.8 

In light of the Interpretation given to constc-uets Whlon 1111SU1t: in atopplnt the 

flow of control, it wlll be noted that there t4l no- wey to -..ay.ttwation to a:portlon 

of the control structure whlcll ln~kldafll -11 of a loweri : priority controf 8tructure · and 

part of an event coupled 11st. What A•. n ...... 4- Vie OOIICept of a breel<, which le 

essentially a restricted "go to• statement; It directs LC to jump over the rest of 

the event coupled list to the right parenthesla INtohlfte the --lnlttal left .,_,enthesls 

of the event coupled list. Thus It enables . the ltttra~ •t ~• on~ of the event 

coupled 11st to be applied to any Intermediate part of the list as nttec:Jed. The syn

tax for a bfllM la the U~arrow (t) at the pofnt wfiere the b,~~ Is deaited; It al-... ~- - . 

ways follows a basic control structure, so It can be Incorporated Into that BNF: 

<beak: cs> ::= <task> t <basic cs> • <task> J <baali:" cs> 1' 

As an example, consider the control structure of Example 2.2 modified to Include 

two breaks: 

(A/(e1 :((Bt /e2)C)la3:((Df /e4)E)))• 



Breaks in event Coupled Lists Section 2.8.1 

NowJ wben LC reaches the an~ of .B or I;), It retw}ls to ~· ins .. d of waltJng for e2 

or e4, respectively. 

2.8: External Termination of a Control Structure 

Consider the control structure: 

Example 2.a. 

Since B11 Is non-termiaatlng and runs at a higher prtertty than A11, A wlll never be ex

ecuted again once e1 occurs. 1 There la notbjng ~(I with this per •• but wJth 

the given notation It la not possible to. represent the case where occurrence of e2 

aborts the repetition of 8, and returns control to A* after executing C rather than 

to Blll. 

To do this, the notation must be able to Indicate that occurrence of an event 

terminates execution of a particular control structure, and thus LC does not return 

to that control structure until Its initiating event occurs again. The modified syn

tax: 

_<task> ::= <task Id> I <non-preemptlble ti_~> J <abort tld> 

<abort tld> ::= 8<task> I a( <ev Hat> )<task> 

<abort cs>::= •<closed cs> I ct(<ev_llst>)<~d.~> 

<closed cs> ::= ••. (same as before plus: ) ... I <abort ~a> 
' '•, ·:· "f , 

Thus It can be specified that any event a~ • ta8.k (e.g. 88) or set of i.ks 

1. R~.U, that an ev.ent 11.flag," 111 this.~~ •:t• -. . .- ........ O.ff ·untH the end 1>f 
the control structure which Its occurrence Initiates~ B* has no. end. 
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(e.g. Cl(A 8 C)) or that any aet of eventa causN tennlnatk>n (e.g. 9(e2)8). The 

event which aborts the task(s) need not be the same as the one which causes 

preemption In a particular case; execution Is terminated as long as the aborting 

event occurs sometime after preemption and before LC returns to the task. 

If the control structure of Example 2.3 la changed to make 8 an <abort tld>, 

the desired behavior Is obtained: 

Now the string tA A A e1 -B B B e2 c A A A ..• • can be 1enerated. '#hera repetition 

of A and B te for an arbitrary· ntllllber of tllnea. 

2.10: Return of Control to a Pr-,npted Taak 

There are two dlatlnct choices of what to do when LC returns to a task which 

was interrupted during its execution: either resume execution from where It left 
', 

off, or start over again from the beginning of the task. Thea~ two strategies wlll 

be referred to as resumption and restarting respectively. Each strategy has Its 

advantages and may be the best choice In different situations. A task which Is In

terrupted often enough may never complete If ft la always restarted from the begin

ning. On the other hand, in a process control situation the Inputs to an Interrupted 

task may have changed radically sklce It was preempted, land reaumlng the compu

tation started with the -old Inputs may , lead to anachronistic outputs which are not 

relevant to the current contnJI sftuatteri~" Thertlfont, It la dMlrabte to Incorporate 

means of representfno both strategies In ttte·not~ For ci>lllplete generaftty, It 
~- - --

muat be capable of handling a situation where two different taaks In the same con-
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trol structure may follow the two different strategies. Furthermore, It Is necessary 

to remember the point of interruption In the case of resumption, so the processor 

will know where to resume execution. 

When the problem of restarting a control structure Is examined carefully, it Is 

seen that there are really two sub-cases which are of interest. First it must be 

recognized that the actual unit which Is restarted is the task. At the next higher 

level, a task appears In a control structure as part of a basic control structure. 

Thus the problem Is really how to restart a (basic cs>. If there is only one task in 

the <basic cs>, the problem Is easily solved-simply restart that task. If there Is 

more than one task In the <basic cs>, then the entire <basic cs> could be restart

ed from the beginning of Its first task, or it could be restarted from the beginning 

of the task which was partially finished when the preemption occurred. For exam

ple, consider the following control structure: 

(((A B)"/e1 )C D)" 

If event e1 occurs, and C D executes, (A B)• must be restarted (or resumed). 

Here are the possibilities: 

1 . Resume from the point of Interruption, in either A or B. 

2. Restart from the beginning of A. 

3. Restart at the beginning of A if LC was at A when e1 oc
curred; restart at the beginning of B if LC was at B when e1 oc
curred. 

The first case wlll be the default case, and !s assumed for all basic control struc

tures as they have been so far defined. The second case will be called global 
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restart, the third oue locl/ll ,...,.,_ tt a •YM8X· la ·detltNtd' ·tot the concept di Glo

b.a reau.rt, Jt 0M H IMe4 to eyathulz'le: locat .-t«tt .... 1-,.C ... case •. Thus & 

syntax will be given caned "restart ca", and Jt,WII 1141V9::8Manttcs of'•gtobat re• 

tart". the ~. CMe .a:aov •• 

<reatart ca> ::i= > <t>urc ca> 

To control the scope of the restart symbol, restart control structures are Intro

duced Into other control structures strictly through their appearance In closed con-
: r ~ 

trol atructurea: 

<closed ca> ::= ( (basic cs> ) J ( <praeap~ .~ )J 

( <closed ca> <pr-....,,tlbte ca> .> I ~. <closed .ca> <ba8k: oa> ) I 

( <cloeed ca Hat> ) I ( <r .. tvt 9S> ) 

Here la an example of a control structure contalfllno .f'Ntarta:- .. 

((((>A B)(C DX()EX>f)})fe 1 )G)-

Execution of thla. control structure proc .. da klenUcelly to tlMrt of ttte b_,c control 

structure (A 8 C O E F) until event e1 happena. Thia cm,e-:oeoutton of G; after 

G completes: 

1. If LC was at A or B when e1 _....,,....... i.C retume to the be
ginning of A (global restart of (>A 8)). 

2. If LC waa at C or O wben •1 happ•ect, lC rMUnl8& frOM the 
point of Interruption In either C or D. 

3. If LC waa at E or F when e1 hapeene◄, LC .r•tl#• to the be
ginning of e· or F respecttvely (note·· that focal reatart of CE F) la 
equivalent to ((>E)(>F))). 

---
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2. 1 O. 1 : Conditional Restart of a Control Structure 

There Is another possibility which should be represented. In some instances, a 

task should be restarted if it was preempted by one event (or one of a set of 

events), but resumed if It was preempted by another. This is handled by explicitly 

listing the events which would cause restart of a task. Thus a restart cs without 

an event list Is unconditionally restarted, while one with an event list is only res

tarted if an event In Its event list occurred since It was last run.1 

<restart cs> ::= > (basic cs> I > (<ev list>) <basic cs> 

Example: 

Here A Is restarted If either 

1. A Is preempted by e2 or 

2. A is preempted by e 1 , which starts B. B is then preempted by 
e2 before completion. 

B Is unconditionally restarted, and A is resumed if e2 does not occur between the 

time of A's preemption by e1 and the resumption of A. 

1. Note that this means that the restart causing event need not be the one which 
caused the task's preemption; there may have been a chain of preemptions which 
Included the restart causing event, and this Is deemed sufficient cause for restart. 
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2. 11 : Code•trlpplng 

A tim•sHced allocation of processor time can be represented with the existing 

notation by letting the event variables stand for timer-generated Interrupts. One 

addltlonal form of preemption which wtH be expffcltly represented hare Is codestrlp

plng, as outlined In Section 1 . 1 . 

In codestrtpplng, cal1a to the operating system are Inserted Into a task by the 

compiler at calculated Intervals, resulting In preemption of the tuk when they are 

executed. The syntax Is as follows: 

<codestrlpped ca> ::;; <basic cs> / <Integer> 

<preemptlble cs> ::=- <control structure> / <event Hat> I <codestrtpped ca> 

Thus codestrlpped control structures are Introduced . Into other control structures 

under the same syntax as preemptlble control structures. An example of a codes

tripped control structure: 

((A B/6)C)• 

The meaning here Is that the basic control structure AB Is executed 1/6 at a time, 

based on Its tot.I (Nthnated) execution- t11ne1 it 18 · then preempted and· C is exe

cuted. When C ftniahea, LC r•turna to tha · point of ,......ptlon, and executes 

another 1 /6 of the way through A B (whether this Is actually In A or In B depends 

of course on their relative lengths). Thus C will be executed five times for every 

alngle execution of A B. 

Notice that control structures such aa (>A 8/10) are syntacttaally megal; the 

notion of globally r..tartlng (or locdy restarttng, for that matter) A B la lncompatl-

---
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ble with the semantics of codestrlpping. Furthermore, codestripplng of closed con

trol structures could lead to highly ambiguous or meaningless structures and is 

disallowed, This prevents such structures as ((A 8/5)/1 O) and (((A BK/e1)C)/5). 

Structures which execute untll they either finish a codestrlp or are Interrupted by 

an event are allowed, as they should be, e.g. (((A B/5)/e1 )C)K which executes C 

for every 1 /5 of A B executed and whenever e1 happens. 
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a.1: Introduction 

Thia chapter presents • catalog_ of c;c;>ntl1X •~tw• 1¥P41S ~ the nota.tioA" 

of the preceding chapter is capable of representing. It is not claillled that every 

concetvable type of representable control structtwe le included, but the 11st at

tempts to be comprehensive as to general forms. Sotlle examples are also given of 

types of control structures which are not representable. 

a.2: Control Flow Graplla 

Control structures can be conveniently categorized by the topology of their 

Cont.rol Flow Graphs. or CFG's. A CFG Is a directed graph; more precisely, It ia a 

set of nodea and directed arcs. where a node represents a basic cs and an arc 

represents the movement of LC between two nodea. The nodes bear the names of 

the basic CS
9
S which they represent. 

Consider an arc A which originates at bask: cs o and has aa a destination 

basic cs d. If o occurs to the left of d In the control structure, then arc A is a 

forward arc; otherwise, It Is a bacl<ward or bacl< arc. Either type of arc may bear 

labels: 

1. An arc which represents the uninterrupted flow of control due 
to termination of a basic cs is a forward arc, and Is unlabelled. 
Note that thla Includes breaks as detafled In Section 2.8.1. 

2. An arc which represents the flow of control due to preemption 
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by an event occurring Is a forward arc (an event arc) and is la
belled with the corresponding event variable. 

3. An arc which represents the flow of control due to iteration is 
a back arc and Is labelled with an 11111111

• 

It may seem that tasks rather than basic cs's should be at the nodes of CFG's, 

and In fact the algorithms used for determining real-time latencies must sometimes 

deal with control flow at the task level. However, this additional detail adds noth

ing to the breadth of representable control structure types, and In fact detracts 

from the readability of the CFG's.1 

figure 3.1 gives an example of the CFG for a simple control structure. 

A B--e1--c ,.._ __ __,/ 

Fig. a.1. CFG for ((A B)/e1 )C)". 

A string naming the tasks and (optionally) the events encountered in a path taken 

by LC through a CFG Is called an execution of the corresponding control structure. 

AB e1 C A B and A e1 C A e1 C are both executions of the above cs. 

1. If, for example, a basic cs is preemptible by event el, then every task in the 
basic cs would have a forward arc labelled e/. 
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a.2. 1: Prlorftv Laveta 

As an extra benefit. the CFG notation provides a convenient mechanism for for-
., 1~ .. -

maHzlng the concept of priority level. which has been: ua4kt aomewt111t lntultlvely 

thus far. To flnd the p~ level of basic ca I, do the follQwlng: 

1. let the teftaoat basic oa 1n the CCNitro1 ·structure have prforlty 
0 by definition. 

2. Find the acycUc path from the priority O basic ca to basic cs / 
havjng the fargest·R...., of-ewent··arca.: . ·• . . . 

a. The priority of basic cs I la equal to the nwnber ot·event ates 
In thla path. 

a.a: Interrupt Driven Control Structuru 
··.. ! ·, ~ 

The CFG's for control structures using only s~uenclng and Iteration are fairly 

straightforward and do not expand the catalog of representable control structures 

by much. The sequence of tasks within a baalc cs la knpllcltly represented, and 

forward control flow from one basic cs to another sJmpty' b'anslates to an unlabelled 

arc In the CfG. 

, The morl · 1ntereating CFG"s are those which are derived from control structures 

having event varlabfea. It Is readily apparent that . the notation has ~erably 

more tlexiblllty than that which is needed for representing traditional priority inter

rupt schemes. This ffexiblllty is derived prlncipally through the placement of the 

• 11111 Iteration character and by use of the branching Introduced by event coupled 

Hats. The latter has been mentioned briefly; the former .~ cl.-ritl,Qatfqn. 
'' 

A back arc can be originated frOm any basic cs by 'foliowlng It with an ..... . 
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However, there Is a degree of ·freedom in spectfytng the <lestlnat/on of the back 

arc; this will be exerdsed In ettlargtng, the·· eatatocr of control structures. Funda

mentally, the back arc may return to the same priority level, a k>Wter one,' or the 

lowest one. If It does not return to the lowest level, a certain "shrinkage" In the 
( ,• \. t,~' > • /,/ e 

future range of LC Is experienced. This wlH be elaborated on shortly. Additional 

varta1!1ons, an .u-, fundamental typel are aehleved thtouOh·tiae of the Interrupt mask 

(flOfl-preemptlble tld), externa1 abort and ,etttart/reautlle' capabilities.· 

a.a. 1: Globally Cyclic Control Structure• 
, .. _ 

Under this category Is Included all control structures with Cf G's such that 

every back arc, regardless of tts originating priority level, goes to the first task of 

the lowest priority level. Informally, this means that upon completion of the tasks 

at a given priority level, the processor will scan all the event variables In the con

trol structure from the lowest level to the tllghest, and begin execution of the 

highest level task pending. l,tris Is as opp()88d to control structures with local cy

cles, Where the lower priority events are not necessarily considered In each such 

situation. 

The traditional Interrupt d)'Menia • avaffable, on moet processors fall Into this 

category; such ayabima, •• fu,_., autJcD\fldtHFfntb ~ fypea, Which are called 

here the !WM· priority aystetR and the strong p;l'ortty eyatetn. In ttre weak priority 

system, although arlatlfatton betweeff;Jnterru,:,t8 •fioM: two or·iffore events Is provid

ed, there Is actually only • 411nele .tf:Ue . Jevetd lntef'tuptlon. There fa a 11user11 or 

•matnN progNUR .whlcf1 runs at ttH!t·~ ~,' and::aily m11itber of events may 
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each preempt It; ~ver. no _,.,,t may Interrupt,_,.,. taek; which gained controUt

self. via an Interrupt. , Thia type of .control. ~•- la repr,aam,tad ualng •vent 

coupled llsts. q. In Example 3. 1. 

Example a.1. (MAIN/(e1: Afe2: Ble3: c))• 

The CFG (Figura 3.2) ~ an lnterru.pt brenc:11 ma ._.. for every tntwniS»arao 

event, to the bulc ca. It lnlUatea. -. ~111en of:- A, a,or .C,. forc1ea lC to nttl.t(ll;:tD 

MAIN, so there la a back arc from each of them. For the sake of keeping the CFG's 

readable, multiple back arcs with the same destinations wlll be CORtblned. as Is 

done In Figure 3.2. It Is worth keeping In mind, however, that this does not Imply 

that another type of node (Junction) has been added. 

_ A strong pr.iarlty ~1:8111 ~ • prQCel-·> ~dhe cUl'l'tllltly runnklO 

task has a. prlorlty o 8NOCleted .wffll. ft.-and'"aa,y· 4NeAt8 .~ wlttt. prtartty m 

> n may preempt It. With U..·· exQePtlon of Ute ailtl.y: pn,vlcled for mutdag Inter

rupts, the proceaac:,r runs .. hlf,llest ~,tut,---. ~cNl!Vk:e cat .any time. 

Thia type of multlple_pflorlty.Jayej Int_,....,. . ., NPraunted lay atnct neatillg 
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of preemptlble (and Iterative) control structures, as shoWn 1ft Example 3.2. 

Example 3.2. ((((A111/e1 )B)"/e2)C)111 

The general form can be recursively constructed; each "layer" looks Ilka: 

(( <Iterative cs>/ <event var> )<basic cs>)" 

which is Itself an Iterative cs. The <b•slc cs> run~ at the .next higher priority than 
< ' ' t, > ' • 

. the rightmost basic cs In the <pree,nptlble c~>. 

A CFG for Example 3.2 Is given In Figure 3.3; It can ~~ seen that the proper

ties of nested Interrupt systems have natural analogues In the graph: 

1. Let er and J be basic cs•s in the CF~. . If thefe is an acyclic 
path from er to - whose last arc Is labelled e/, then there is an 
arc from • to J Jabelled e/. T~ls p~rty .,,,tams. from the transi
tivity of Interruption In a nested, mufflple priority system. 

2. There Is a back arc from the last basic cs at each priority lev
el to the beginning of the ~llft, P~l~ P•slc ,cs.. ~~er ~prnpla
tlon of the control structure at a given ·priority level, LC returns to 
the highest level with a pending request. 

(,---e-1===•n-:--e2~-~ 
L.--1 I 

Fig. 3.3. CFG for .Example 3.2. 
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a.a.2: Acyclic Control atruo ..... 

At the other end of the spectrum are found control etructures with no back 
'l'.: .!'.':: ~ ' ' 

arcs; these represent completely non-Iterative systems where the flow of control 

terminates when tt reacbae Ute end of any pathi ·-8uctl CORtl'GI MrUo'tUNMt · are furth

er subdivided into two type~: 

1. Linear control_ structures • control),ow is str.alabt-llne and thus 
antlrety:Ptedeterllilned, o•in the exitftpte of Ffsjure 8.4.· . 

2. Branched control structurita :. ·re4i.~tllll~f declalone baaed on 
event occurren~•- deta-..,e the. •~t 1J(Jw. pf ooo~ ne AQ
unt 8.6., whtch -~ ari exaaple. ·· -· ' 

The sub Ject of llnear control structures does not leave IIIUCh room for discussion 

and 18 Included _matnly for comp~tene,il. ~i, ~it •~i-~ Jnterestlng ob

servations · -that can be made about branched _oqfltrql. •tOJC~ representable with 

the notation, and which apply Independently_ of whether . ~ are Qyoles present; 

these wlll tie· conslder•d In the fo1~1ng SEKitlon, · 
' . . . 

""A--ee1a--->aB C~D 

Fig. a.4. CFG far the control etructure ((A/~1)(8 C)D). 
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---------e2--+C 

Fig. 3.6. CFG for the control structure (A/(e1 :(B/(e2:Cle3:D))le4:E)). 

a.a.2. 1 : Branched Control Structures 

It Is Interesting to note that whlle tree-shaped CFG's such as the one In Figure 

3.6 can be represented, allowing arbitrary tree-shaped Interrupt structures is not 

compatible with the transitivity of interruption. In f11ct, the notation cannot 

represent any tree of depth greater than one where the forward arcs are all event 

arcs. Thus a CFG such as the one in Figure 3. 7 has no corresponding control struc-

fig. 3.8. A tre&shaped CFG, for (A/(e1 :Bfe2:C)). 

For example, consider an attempt to dertv.e a control structure for the CFG in 

Figure a. 7, • tree with a depth of 2. By Algorithm 2.2, It Is found that slnc:e C In

terrupts B and B Interrupts A, C must also Interrupt A. Thus an arc labelled e2 
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RtUSt be added from A to c. and tile tree structure Is lost. Event e2 (and e3) can 

be IIIUked from lnterruptln9 A; but . ~:-4t1 ·fac .-, auked, since It initiates B 
-- " 

which la tntarruptlble by e2. Thia- ew lmt of.: Has 1JClitg APPhs to WIY otltar at-

teapt tD produce • tre•sheped control alft.K.turW,df depth greater than 1. 

A 

Fig. a.7. A CFG which has no correaponclng coalml etructure. 

Eaaantlaly. this raatltcttan aaya that there CMftOt be CXXllrol structures wfllch 
~ ' ~ -.:, .. 
-f. -: ~· ~- .-·, :-:- -

have COlllpletely local PJ'88111Ption structures~ and yet at 1he HIiie ~ be lrlltlated 
{;,: ·:-;z: r>4~.t r~ •'_;" . , ·- ._.,...,. 

by aome event. To Incorporate tNs type of atructwe woutd require • notion of •to-.. ~ '..._;. 

cal" and •glaba,- events, with aultable reatrictiona on their scope. The addltlonal 

00111ptaxlty this would Introduce may be Jncolllpatl>le with the attempt to keep the 

notation conc1se, but this may be • 1ag1ca1 extmlSlon of tt1e 1angua99 for .,.. ap

pllcatlons. 

AHhcJuoh It does mt represent a .,.......,~ structura. ,._.. 3.8 show• a CFG 

wNch Is ..._ to that of Figure 3.7. but wNcll la repNIS8'ctable, and by the follow

ing .canbd 8bucture: 

fA Bl(at:C Je2: 1>)) 

The MC from A 1D B f'8Pf•.-.t• coclbd flaw on Wlllinatlon of A, but A cannot be llt-
tanupted. 
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Fig. a.a. A representable tree-shaped CFG. 

a.a.a: Locally Cyclic Contrel Structures 

Included In this clfl88 •• all thoC!I•· oontral structures he.vlng back arcs which 

do not r"turn LC to the low_.t priority level-, task. Thia QtoUp Is flff'thet subdivided 

Into strycture.s which never return control to tbe towe&t prlortty task, and those 

which may or may not make the return at sOlll8:patnt.· Whle'the emphnls· here is 

on returning to the lowest priority level, the same sort of distinctions can be made 

about any priority level and Its superiors. Examples of each case wlU be given. 

a.a.a.1: Dynamically Decreulng the Range of LC 

Consider the followlng general form of control structure: 

Example a.a. C ••• <preemptlble cs><closed cs>11J<event var> ... )• 

This has a non-terminating "<closed cs>•" construction, which corresponds to a 

back arc In the CFG from the end to the beginning of the closed cs. Although the 

rightmost Nlllff forces LC to return to the beginning of the control structure (If the 

■-• la reached), the <preemptlble cs> wlll not be resumed since the following ,. 
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(closed cs> runs at • higher p.rto,tty, .end Is non-tennlnatln.g. 

Figure 3.9 gives the CFG for the control auc_... 

({(A/e1XB C)•Je2)D)'I 

which has the above general form. It can be seen that once a non-tennlnatlng loop 

Is entered. although It may be preempted by higher priority tuka (either momentari

ly or pennanentty), control wll not return 1D .-.,,~ IIHtil.rt. -nu.i-1
~ 'CCll,bol 

atructure ,fla8 etfectlvely ......... Ill 1llat certafni1aalat.,. no longs executable. 

This ~ •Y oc:ca,r .1n ataaea." tt uwe •• ·awerat W8i'i1i which lnllfate 1tera:
ttve. control ~ •net which occur In allCC9Nfan; or If lliay OCClir aft'atonce. 

Fig. a.a. a=e for Exa111p1e a.4.. 

a.a.a.2: External T..........._ a, Local cyc1as 

A local cycle need not always Indicate a decreasing control atrJ,cture. If the . 

•<abort cs>• construction Is ~ then control may realde for a arbltrartly long 

Unle in a given sub-structure (local cycle), and ~ return tu lower prlortty levels 
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when th-. aborting event occurs. The control atl!Ueture of Example 3.4 can be 

modl1Jed by the addition of a single •a0 symbol: 

Example 3.6. (((A/e1 )8(8 c)•Je2)D)• 

Now when e2 occurs. It "shuts .off" e1, •• wel as lnft.tetfrlO O. This Is a dynamic 

behavior and as such Is not well suited to representation by a CFG; however the 

real-time latency algorithms must certainly take account of It. 

a.a.a.a: Restrictions on Local Cycles 

A back arc can ~.., fonned fron,·,ttte end to ~,beflnnlng of any closed control 

structure, and hence,,,~r9 ls, HtUe. restriction ·ort fts rl.nge 1'f pcsslble destinations. 

One notable exception OC<=IQ In ttle prea_,.. of event cdupled Hats. Figure 3.1 o 

gives a CFG which doea not have a carr-.pondlftg' control structure; Its megaUty Is 

the presence of a back ,_.,.c which cuts acroas the' 91•,eyntactlc boundary In an 

ev.ent eoupled 11st. 

Pig. a.to. CFG with an llle9al back arc. 
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Essentially. this ·says that the totting cauaed ~ event eoupted ·11sta forms two 

or more independent sub-control at~ and LC ·cannot a,ve ffltely from· one to 

the other. However, It Is poaslble that an avant external to all the branch~ may 

preempt any of th8RI; thus a CFG Identical to that of Figure 3. 10, except that It 

has no .back. arc. correa,ienda to th9 legaf control· l'trl.tt'mJre: 

(((A/(e1: Bfe2: C))/a3)0) 

8.4: CFGa at the Tuk Level 

There are several vad4ltl0ne · on the geaeNt· cluaNleetlonS pt.aented here 

which artae prlnctpally when control, flow at the ~-- ;tevet la comddered. As 

previously mentioned. the complexity of the' ·resu111n9 CFQ'a ,liffllts their usefulness. 

Thus these variations are 1110nt suitably -dlecuaaed- In the· context of tatency algo

rithms; furthermore,. they do not Introduce new generel Cfedeis;of controt structure 

types as far as the topology of their CFGs Is concerned, but Instead result 1n per,;; 

turbatlons of those already considered. 

However, It Is reasonable to examine the changes which- would be Induced on a 

CFG whfch has single tasks at Its nodes-, rather than basic cs's. Use of the •<non

praemptlble closed cs>" or "<~preemptlble ttd>" constructions results In the re

llOVal of the appropriate event arcs. In addition, tf the task Immediately prior to 

the •J<event var)" construction Is masked, an unlabeled forward arc Is added to 

shoW the flow of control which occurs on t•...,_tlon of· ttMt _.ed task. 

The default mode of control return to a preempted task Is resumption, as dis-
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cussed In Chapter 2. Thus any arc (backward or forward) to a preemptlble cs of 

this type must be dynamically relocated 'tD. point to tlte tan which was fn execu

tion when preemption occurred. Again, this Is not easily representable with a static 

CFG, and in fact corresponds to the need to store some "state" Information while a 

task is dormant. 

If a task Is to be restarted, this problem does not arise; In fact, If an entire 

closed cs Is of restart type, there wlll be no arcs pointing to tasks Internal to the 

closed cs which originate outside of It. The only entry point from the external 

world's point of view Is the beginning of the Initial task. 



4.1 s Introduction 

A primary anotlvetlon behind devetoping the 1enguege presented In Chapter 2 Js 
. . 

to provide a repreaentatlon of control etructuree suitable for uee u an analytical 

tool. Speciffcaffy, it provides a convenient fonut for ~eying preemption and 

control flow Information to an algorithm which then detennlnea rea.,tlm~ _ properties 

of the given control 9tructure. 

The algorithftlS to be given here we not Intended to provide an exhaustive 

analysis of a control structure, but rather to be representative of the types of 

analysis which may be performed. The re•tllne properties ••uured here are of 

common Interest; however, It wtU probably btl the cue that, depending on the 

needs of the particular user, different real-time propertlea may be of special In

terest. In many cases, the given algorithm.a can be adapted for measuring different 

Intervals wtth mlnlmai changes. In other cases totaUy new mgorlthms may be need

ed. but parts of those given wttt stiff be ueeful. 

Much of the termfnology ueed here wu developed In [Telx8'ra 78] and the 

reader Is referred there for a complete c:Nacuealon. 

A prlnclpat goal here wlH be to develop algorithms for determming the worat 

case /Ill.ency of a l18t of tasks In a given control structure. tnfonnaffy. the worst 

cue latency of a Hat of tuks • (written •<•» te the longest time that can el-.pstt 

without there being a COlltf)lete execution of each task In the list In the order 
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given. The list of tasks whose latency is being measured will be referred to as a 

constraint. The latency of a constraint is measured with respect to an execution 

of a given control structure, where an execution is a list of tasks In the order in 

which they are executed by the CPU in a particular invocation of that control 

structure. Each element (task Id) of the execution has a weight associated with 

It, written as J<task id>I, The weight represents an upper bound on that task's 

execution time on a particular processor. 

Note that depending on event timings, a number of different executions (of 

finite or Infinite length) may be generated by a single control structure. Consider 

the control structure: 

(5.1) 

Possible executions Include: 

A BA BAB .. . 

ABC ABC .. . 

ABABCABABC ... 

among many others. Also note that In the case of preemption a task may be 

suspended and restarted, and thus partial weighting (or Its effective equivalent) 

must be accounted for. 

The weight of a 11st of tasks Is the sum of their Individual weights. The worst 

case latency of a constraint a with respect to an execution (J, Is the sublist of (J 

with greatest weight which does not contain a. The term "contains" as used here 

means that the elements of a occur In order and with their full weights; there may 
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be arbitrarily many other taeks lnterteaved. For example, (A Ii C D) contains (A C) 

as well,as (A -8), but It doe9 not contain (C'S). 

The provlslorr that the tasfcs be lncfttded with . their full weights is emphasized 

for the following reason. In many reef.time prooess control applcatlons, the Inputs 

to • tNk ,nay -chenoe at Hy tlMe, but the scheduling of task lnltlatton may not be 

synchronized wlttl the arrival of new Inputs. · Thus It Is entirely possfble that new 

Inputs may arrive Immediately after the Initiation of a task,, i.e~, after It has already 

read the outdated Inputs. Given ttils pose1bllty,· It may ·be that nearly two complete 

occurrences of the COMtralnt may be· executed · 1n an lniitrva1 which stin does not 
. . . 

contain (In the strict senae defined above) a single occurrence Of ffie Bat. for ex-

ample, given the control structure (A B C)•, consider the execution A B C A B c. If 

an Input to A arrives Immediately after A reads its old Input~ then it is only after 

the second occurrence of C has completed Its executton::tttat a11--th'a tasks In the 

constraint will have been executed in order (the constraint ta alltlslled ;by such an 

executJon). Thus a way Is needed to represent an execution whose end-tesks are 

weighted Just less than their nominal values; the notation cho&eft Is ble.cketlng 

auch a task on its "short side"; [A means "begin just after the start of A11
, and C] 

l'IMRlns •stop Just before ttte finish of c•. The wetght of such a task Is Its nominal 

weight minus•• where• fs arbltrarlty smalf: .Yttus the worst"caae latency of (AC) in 

(A B c)• is I [A B C A B C] I• 

The 11st (A 8 C A B C) ts an example of a crlt1cal Window for (A C), where a 

1. Unless It Is known that the timings of such data arrtv"bs . ca11. be synchrQOlzed 
with taak Initiation, It must-be assumed that ws coufd'--occur at any time after A Is 
Initiated. 
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critical window Is deflned as a list • ,uch• m,ai. f :~~s two occurrences of a 

const~alnt C but [•l con~ins no .occur;r.:•~-~ C.~t ln:•~ cea8&,tha,,w0l'1't ca• 
latency of a cOOBtre,lnt wiH turn out to be the,~•t\t pf,~,qrltl<::4J:,wJndow fthe most 

critical window). The worst case latency of a CC>Mt.r~,A#,lth-.ffHlll,!8C-t to a control 

structure (as opPQ8ed to ~ executJop) Is ,taken,over all,,tJl•rl)08Sible executions 

that may be generated by the control structur~ -, no nwattel wtNlt-the event ·timiftp 

(within spttcified limit$),,_ ther~ can be no ~ il[ltefM,J · whk;h ~· not 4;:ootaln the 

11st. Thus part of the problem faced la. to ~f¥.. th• types of ~ecutic>M whlott 

may be g~riereted by a cOQtroJ structure and, n.v~ .tihe";cholc~ amens, th9fll for 

finding the worst case, . since . otherwise ~ ~~~- •xploalon · In t,- ·number• 

of possible executions would m«I.C• the prob..,. lntr~ble. 

4.21 Weights of Task Identifiers 

It was mfin~ed;-, f,>r1E!~. above th•~. a weight is .-.,elated --'A(lth every task 

l~entlfler, .repre~entJ":Q ,an upp_er bo~ on ,it,l "ex,~ Jifl\9 ... Naturally• ·ttu, ntMSt · 

be with respect to a P.,:t,cular.prac~. ~t.avenJNJtb,~ restric;~ tber•·•• 

some dlfflcultles in determining a meaningful upper bound on execution time. Aside 

from Input dependent computation times, there are processor dependent variables 

such as me~ accae~ tl111e In a vlrb,f,1 •t<>r"P .a~tQ.. TJ,e ,\¥Pl"4t ca,se- thae 

would occur when all . memory r.eJ•r.,ces . •8".e, tQ. tne •la¥t••t storge device, but 

the proba~lllty of •~h a cas" actuany oc;QUr,:ing._.ffl•)f ,~ nearly .ze,o. On the other 
r . • ' • 

hand, there 111ay be •1n uncotnfortab.Jy Iara• v.,-,lan~ ,~lat~ with. the mean ac

cess time when crltlco.Dy tlme-depeJldant prooa.Nes are !involved •. It• se~ .then 
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that In such a cue one muat either arrive at a statlatlcatly reasonable upper bound 

Oft lll8IIIOrY accua time or change the storage allocation parameters of time depen

dent tasks· to ·ensure their residence at a partlcular' level at above (In acceaa 

speed) of the ....... Nerardty. 

tf an upper boand en the execution time· far a task does not exist, this would 

llllply potentially in11nfte worst case ratenctes and thete would be no purpose to ap

ptytno the Qlven here. tf there la any qastton of tile value of an upper 

bound. then It must be chosen carefully ln llght of the ·par1:Jcdar appUcatlon of the 

latency tnfonna.tloft. Th• wew,t of each task ·• be 1111 lnPut to the latency algo

rttttaa along with the control abuc'tura, and ft wll lMt eavinad that a function (table 

look-up) exists which returns this weight fri response to flle notation f<task ld>f. 

4.a: Properties of Event Vartabf• 

fn Ol'der to arrive at worst case latency times for a~ control structure containing 

event variables It Is neceaaary to know something 'illOr'e about the timing of the 

events repreaented. To Hfustrate, consfder the control structure: 

(6.2) 

ff e1 never occurs, the only possfMe execution of this control structure Js (AB AB 

A B .•. ). The ta'tency l(A 8} In this case · 1a . 2<1Al+f81) - ~. alnce the longest subffst . 

which does not contain A B would be [A 8 A B]. On the other hand, If e1 occurs at 

least once every fef+fDt seconds, then ftA 8) Is 1111,dte, · a1nce tfle only execution 

generated la (C D C D C D ... ) (ignOl'ln(I poalbht Initial executions of A and B). If 
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the control structure contains more event variables It may become difficult to deter

mine the worst case latency (the largest l(A B)) by inspection, and the need for 

additional Information about the event varJables ls clear. 

In particular, what Is needed is the following: 

1. ft mln(e1 ): the minimum period of event e1; It Is guaranteed 

that e1 will not occur more than once In any Interval of ff min(e1) 

aeconds. 

2. ft max(e i ): the maximum period of event e 1; It is guaranteed 

that there will be at least one occurrence of e I In any interval of 

ft max(e1) seconds. 

It Is entirely plausible and indeed likely that In some situations tr min(e i) will be 

the same as ff max(e i ). This is the case for all regularly occurring cyclic events, 

such as data sampling, processor time slicing, etc. 

In general, It Is impossible to distinguish a ffmin(ei) whl~h is less than the pro-

cessor Instruction cycle time from an Infinitesimal one since the processor could not 

possibly respond to an event which occurred at that rate In any meaningful way. 

In fact, for a reasonable system, one would have to pick a tr min (e 1) considerably 

larger than the Instruction cycle time, but the actual value will be application 

dependent. For most events of interest it wi11 be possible to determine a reason

ably tight .-min(e; ); e.g., If the event represents an 1/0 service request, It cannot 

occur more often than some time Interval dependent on the 1/0 device's maximum 

character transmission rate. 

Unfortunately, finding a good value for .-max(e;) is more difficult in many cases. 

-69-



Properties of Event Variables Section 4.3 

An event often represents an exceptional condition, which may never arise In par

ticular executions. , fortunately. most control stri.tdture• wl1I not put time critlc~I 

tasks In such a position that their Initiation de'pends on w,..(e1), but rather lt Is 

.. ' 
more Hkely that the completion of a constraint may be influenced by time lost after 

such an event occurs; and the time Jost wfH be>a funt:tton cit ,.,min {e1), not 

•max<•,). If a good value of •max<e1) Is not available for a parttcua..-avant, then 

It Is more 11kety -that the Interval of Interest wootd be tfte maxffllunt ,tfrne from the 

occurrence of e1 to the Initiation and/or comp~tlon of Its ~'fted control struc-

ture. rather than the longest time between such executions (a latency value). 



S: Algorithms 

a.1 : Introduction 

A series of hierarchically related algorithms will be presented in this chapter, 

which will be directed at the problem of finding the worst case latency of a con

straint with respect to a given control structure. Each algorithm In the hierarchy is 

applicable to a larger subset of the set of all representable control structures, and 

may call upon the algorithms designed for solution of the problem on a lesser sub

set as subroutines. 

The overhead due to context switching Is not explicitly taken into considera

tion here. It may be accounted for by a fractional reduction of the effective pro

cessing power of the CPU, when computing the worst case task weights. If this Is 

not satisfactory, then the algorithms could be adjusted so that each event oc

currence and corresponding initiation Is counted, and the overhead due to each 

could be added to the delays attributed to Interruption. 

As the worst case latency algorithms are developed, it will be seen that the 

determination of algorithms to measure several other real-time properties, Interest

Ing in their own right, is required. Finally, special cases may result In substantial 

slmplificatlon to the algorithms, and examples of this effect are Included. 
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5.2: Latenclea In th• Absence of Preemption 

The first step taken here toward the general sotutlon of the worst case laten

cy problem la the development of algorlthma to determine the latencies when no 

preemption la present, I.e. when there are no event variables or ~•IP& in . th• 

control stl'\ICture. This leaves control stru~tur,s wt,lcta, Q41!R8!;.ate.; .ftftlte. ,and., infinite 
_, ·-. I' 

lists of tasks, In which an tasks execute. to ~Uon. QDCtl lmtlatect. 
•.- ··- . - , .• j ·: ·:::. .. ·-

Since only non-terminating Iteration la r.epr~•cl Qo tta. ~~• of pr...,.. - -·" - ~ ' . - . _..,, ., - . - .. 

tton). aH flnlte Hats must contain no ~•tlv~ compen8Qta.. . Fuc;thermortt, any finite 

llat L Of tasks which contal,is at least ... Ofl8 oc;:cUR"eac• .of • constraint C lllaY · be 

broken down Into a aeries of possibly overlapping sublists: 

wttll reapect to a C011tttralnt C ....,e: 

.1. J1 and , 2 each COi'lfaltf one rriatance ·o1 C, but , 11 and C-2 
~. no lnlltancee of C. 

2. The • 1 •• are critical wlnclQwa far ,c., 

(6.1) 

The subHet , 1 la the head of the Rat L having minimum weight ~nd which also 

contains one instance of C; 6 2 la the tall with least weight which ~allts one In

stance of c. The Hat•, Is the critical ~ .whlcb ai.n. ·•t· the 1nt 11,etenee Ill 

L of the first task In C; •, la the crltlcal window which starts at the Ith instance 

In L of the first task in C. If L contains no critical window, there wlR be no • 1 ••• 

1. If L doea not contain C, then the latency of C In L la lnflnlte. 

-sa-
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almllarly, If L begins or ends with a crltk:aJ wJl'Jdow the'1 J1 or 12 re-,>ectively may 

also be empty. 

Figure 5.1 gives an example of the breakdown f~ the list (A B C D B C B C E) 
. - ~· ~~,;_< • 

and the constraint (B C). Note the overlapping of the sublists, and that In this 

t--J,.--t 1-----,-•e, "l 
A B C D B 

•1 
C IF ·». · E 

~12-1 

l"llecw•m 6.1. The latency of a ,constraint. C with PNPtlCt ta~ flnfte 11st; L which 

cont.alns at ~~t, ~ OC<;;Urttttl°-'!t ,e/ -F •r ~ ~ J'!"~•d ...... in 
the set of .... t,. {11, •t• · · ~ ••-~),,~rf,Ula ,.-1 4 ~ J1"a are u 
deftned above .. 

Proof. The proof wlH, be Qiya~ in twp p•~; , .-~t'!J~Y; ~ that any •~ 'Nhlch 
contains at least~, oc~urr~c• «?'· p ~o '?:.l~'k~ 1n~~,4bQY• ~• to 
obtll1n such a·· sat of' aublftlts which Incl~• all ~~, t~s . •~. the ~q,ln•!, ~~•-. an~. 
aecand,al»y. ahowlng, that' no:«hw•11lltllft:ncJlittfthfl M"'imiffliava:a 'lfeat• latency 
for c. 

The- proof Of the first part Is given by;c atw,wfng 'a• meth~cf of constructing the 
aet <-1, • 1• • 2 • • • • ••n' la} given such.• J'-lrL,Jltld~• cD91tatQltntQ., 

(5.2)' 
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where the ♦ 1 ~. do not contaln c ancf may be empty.' ·11 ,; 1 overlaps·., 1 + 1• then ♦ 1 + 1 
wlH be empty. Thia set of sublists Includes every task in L, and with n<> pe~J~: 
tion of the original ordering. Then: · ·, · ,,, 

2. • 1 ta the 11st starting at -, 1 and continuing to the end of ., 1 + p 

Including ♦ 1 + 1. Note that since ., 1 and ·-, 1 + 1 may overlap,-~. 1 Is 

not. their concatenation. 

3. 112 Is 'n-1 appended to •n· 
·.. . . 1 

Now for the proof· that U. worst case latency of ·c In L Is the maxllftllffl of 
<lll1l,l-1l,l-2I• ···,1•11 1,1112'}- 71 " ' : 1' 

_,. ~ ... 

Since the •,'a are all the critical windows In L, they repreaent all the lists • 

~ti,.:::: ~? ~e,;r:.&rC:2'~cz~b,~-1W~ C~a~:::a~i:;;: 
without introducing C to the lnteNal. Since the concatenation of 
CJ1, •1• •2- · · • •"n• 12> ~4,and.,mne,,ot,U... '8bleta .oan_ lMt~Updlllded 

:===g;.:,~~~ ~~-~~~c; ~ 
of the above sublists. That such a sublist with greater lat~}ddel, :f\Ot exist Is 
demonstrated by case analysts. 

Again, constder the llfl' L'~reorga!lfzed aa Bf -.CNatioo":c~:.?)- )4ow. su~po4e ~t there extats · it -subffat f \Vhlch 1!,lcl~.1>~. )>f~i)~ 5 of, •t• ,artd ~ttu1t ~J > 
t'1J ~ .»I )_ .,_,I• -r.-~ • •--'.--•Jh♦,ptor lttllllllLIW net,coetun111,•" 
thing past .,, (without containing C) and hence Ill < 11111· But If # starts at the 

begjn~\'19 of:-,t• It CC>lfld.~ufcie qp_,..,._,_.th•-,,.. ~ ~•• 11'1~1' ►,,t~. If-• be

gins past the beQJnnlilo.ef,s;y,, It cannot contalrf ~---t"'2• ancf'hence llf (" 
1-11- Thus such a sublist# does not exist. 

... . -- -

, The sam11 ffne of r••~~t,)~,L~'.'~~;·••:•~~. ~WS:fttM' ~htF~an 
any of {#1, «·1, · · · ••n• ,-2} Ctiririot b~~~,:~~~!~/ro-::=jr ~dJa:cent,•/•!: 
or •n and /12 . Thus the worst case latency of C In L wll be the IIMlXllnum of (1111 I, 
1•1 I• • · · • l•n I, 1'21>- c "' 

Algorithm 5.1, FLA TENCY, summarizes the procedure to be followed In finding the 
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worst case latency of a constraint C with respect to a finite list' L. 

Algorithm a~ 1. FLA1ENCY(1., C) 

IIJputa: L. • Ii& of teak ld•tfflw• (a baatc-control•struefture); l{/} fa the Ith task 
tn-L 

C, the .conetralnt.(tllao a 11st of t•k identlttitrs)i: C[l]'ts ~ ith task in C. 
,t -(:· '.'.'",! .:.f' ,; ._. . ~s;-. • f ,_-:·,i·il,~fa--

Outputs: (l(C), start.Jndex, tlmshJndex); 

llethod: 

l(C) Is the worst cue latency of C in L. _. 

start_lndex Is the Index of the first task of the sublist of L which displays 
the worst latency for C. 

· ~,'· · · · • · - .,. , ·· : ' - · ,. , , ~.:· • . .' .: ~ .:· r ·· ., .,~ .-,; Ji"; ··• • -.• ' · ,, J, i. 
0 

ftnlsh_lndex Is the lndex ·of the last task of the subllat of L which displays 
th• worst_~,~, for c; _ ,n',• 

1. Scan L to find: 

fJ1, the head of L with least w~lght which contains C. 

•,, I = 1 to n where n Is the number of occurrences of C In L 

llllnua 1. 

fJ2 , the tall of L with least weight which contains C. 

This la accompllahed as follows. All scans start from the marl< point., lnltlal
ly L[1 ]. 

a. Reset the mark point to be the first occurrence of C[ 1] found 
during ... h acu.-," jf Mt4Cautr•ca ,of_jt'lf•J.; ·•·~ the Nrk 
point Is set to the task past the end of the current acan. 

b. tJ1 Is found by scanning until a C01Rplete occurrence of C has 
been founcf. & - • • 

o. The fi 1 •• ara 'the flats Whleh:, exa~y' cbntafn two occurrences 

of Cj they w• ~:~ ~~,Mttli..,k ,point for one oo
currence of-C, and than scanning frolll the new mark point for the 
aecond occurrence of C. 
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dow. 

e. If no occurrence of C is found In l., return. (•, -1, -1 ). : , 

2. The welghta Qfc,eie<:tusublst.,.. acc111■uliN6 dllrlng~eabtt scan, •~wel 
as the start_lndex and flnlshJndex for that scan. At the 8'lcti of each 
scan the weight Is 00111pared to the largest found ao far, and saved as the 
new ~iltlu•tc l(Cl, Jf ._It ;'9 ;>i_.atBf;c:,(ln {~J!caN, :atlltt.JAtdex and 
flnlsh_lndex are updated to the values for the just scanned Ost). 

3. Return the flnal values (MAXIMUMCi-11, 1-1 1, • · ·, 1-nl• 1'21>• 

atarLlndex, flniah.Jndex). 

5.31 Latencies of Constraints in Cyclic Contff)I_ Stnli:tur .. 
~ -- . . . . ... t . " i : ' '-

In the specified language an Infinite 11st of taste fa ~a'ted by the Iteration 

construct; Iteration ls either applied to an entire controt e.tructure or; to the last 
- •. j- •:,•· : - • . ~ C ~ 

closed control structure in a <~ed cs Hat>~ Thu$ l~flnJte U.ta are either entirely 

cycHc (the entire structure la repeated): 

(ABCDE)111 (6.3) 

or have a start-up period followed by a steady state cycling: 

(AB C){D E)11t (5.4) 

It would be Indeed Wtfor.tunata If . the enttre Jftflnlta 1st ~ to be examined to find 

the worst case latency, but due to the restrictions on its cyclic nature only a rea

sonably smaH number of cycles ( to be determined) have to be ~tlffllned to flnd the 

worst case. ThU$ the .inteotion here qi to reclt,ace tbe cue c,t &f.l inftnlte list to a 

finite list which contatna the wonit case, and use AlgorfttlM 5."1, FLA TENCY, on the 

result. 

The prtnciple questton 18 thus to detemlne how many cycles of the iterative 
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portion of the list need be appended to the non-iterative portion (If there Is one) in 

order to generate a list containing the worst case latency of a specified constraint. 

First, though, It must be determined whether or not the latency is Infinite (assuming 

no task ld has infinite weight). 

Lemma 5. 1. Given a control structure (♦ )(# )" and a constraint C, the worst case 
latency of C In (♦)(#)" is infinite iff C contains a task A which is not con
tained Inf. 

Proof. If # does not contain a task A which Is In C, then (#)" is an Infinitely long 
list (and hence of Infinite weight) which does not contain C, and thus in which C 
has Infinite latency. 

If f does contain every task In C, then If C contains n tasks at least every n 
repetitions of 'I, contains C and hence the latency of C in (♦)(#)it could not be 
Infinite. a 

Once It has been established that the latency is not infinite, the following theorem 

can be applied to find the sublist which contains the sublist with the worst case la

tency. 

Theorem 5.2. Given an Iterative control structure L = (♦)(# )it and a constraint C 
containing n task identifiers, then If the latency of C in L is not infinite, 
the 11st formed by appending n + 1 copies of it to ♦ contains the sublist 
with the worst case latency for C In L. 

Proof. Theorem 6.1 established that the worst case latency of a constraint in a 
11st of tasks was either a critical window •, or a head or tall of the 11st fJ1 or fJ2 . 

By Lemma 5.1, If the latency is not infinite then it contains every task in C. There
fore 

(6.5) 

where 'ltn means n copies off appended to each other. This is true since n copies 
of '1 must contain C, since each -t, contains each task identifier In C. Note that /J 1 
might be wholly contained In ♦, nonetheless. 
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By similar reasoning! 

•• 1n+1 (6.6) 

contains the moat crltlcat Wlndc>W· of. {ffl)•; if ttie· 'most crittcaf wtndew is c~ 
talned In ♦, then equation (5.6) must contain It. Otharwuse, It is contained in 
(♦)(f)•. If the most critical window starts in ♦ but ericls•llflfi,-tffiert'it ~nhot go 

any further th11n #n slnpe the ..-St a. pqp~ ._ of #, , .. t.- ~toln, ~~: thua •~tion: 
(6.6) coiftalns •tt1e lliost cJttlcal.wJn~ fftilta: ki'..~'A~e~.isp.:- : ,· 

finally, suppose that (f)• contains the most critical window. Consider the list I 
formed by starting at tbe fi!st Ofi;;ur~~e of fL1J,Jn~~-,-~,~ ~9f:#s •nd endln9' 
at the 1~ ~c;urre,n.c• of qn,] •~tJh\tl~ +. ,1,t,COl?1.f•t #-:, ,~: la,t t~t JX>1Jt.an 
two oceurrenc'es of t:,' since f 1 tmough f n contain C, and I 2 ~ ~i,+1 ~tatn, 

C. If [I] contains no occurrences of C, then I is a critical window. If I is a critical 
w1~,.., ~no,,c~ witldew carr:e,c:181ti11Wh1Chita fa,geF . ..,_ ,,.,_. lt~WOUk'I have 
to be ~t,u~ -·- ,·«·more . tl•h• ... '." ·caples • .,,_ #'=•and~ woulll ~ -~ 
Thus if I is a crltlcal window, It is the most critical window in (f)". But if I la'ricif'tf 
crltlcal wtndow, then It muat contain a crltlcal window, and by the same logic this 
critical window must be the most critical window In (# )". c 

._ '. ::;. ',;i ~-'.";: 

Algorithm 5.2, ILATENCY1 shows how to use Theorem 5.2 coupled with the algo, 

rlthm FLATENCY to determine the worst case latency of a constraint with respect 

to any control structure which does not contain preemption. 

Alga'tlllnl 5.2. ILATE~Y(J.., C) 

lnpm: I., _a contra structure which does not caiitaln .prellMp,ljon. ·- -' · 

C, a constraint (list of task Identifiers). 
~ , > V.'i "1,-

0Uiputal ,, (l(C), -1:arUndex. nua:;tuka) -

.. thod: 

l(C), the worst case latency of C · in L. 

atart.Jndex, the index In L of the first task of the 11st whose weight is 
l(C). t 

num_tasks, the number of tasks In the 11st ~ wel~:t Is l(C). 
• • < <: • ," • ' ~: • • • C :_._ ' _; ~ • • ., •• C • 

1. If L Is not Iterative. let (l(C); ablrtincNK,~~x) 11, FLATENCY(t.. • 
C); return(l(C), start_index, flnlatUndex • start.Jndex + 1 ). 
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2. If L is Iterative, then divide L Into Its Iterative and non-Iterative (if 
any) parts: L = (♦)(# )". 

a. If I does not contain every task in C (not necessarily in ord
er), return(oo, -1, -1 ). 

b. let K = ♦, -1,n + 1 where n is the number of tasks in C. Let 
(l(C), start_index, finlsh_index) = FLATENCY(K, C); return(l(C), 
atart_lndex, flnish_index - start_index + 1 ). 

6.4: Latencies of Constraints in Preemptible Control Structures 

The next complication to be dealt with is the presence of event variables and 

multiple priority levels, Implying the possibility of preemption before completion of a 

constraint, and thus additional weight for the worst case latency. In fact, at this 

point the possibility of infinite latencies arises due to lockout by higher priority 

tasks, even though the constraint may be contained in an iterative portion of the 

control structure. 

The general case of preemptlble control structures contains many additional 

complexities, If one includes external termination of control structures, non

preemptible tasks, codestripping, restarting, and Idle time due to stopping the flow 

of control. Thus, In keeping with the theme of building a hierarchy of algorithms 

which handle increasing complexity with each new layer, the applicability of the 

next algorithm is restricted to include all the control structures allowable as inputs 

to !LATENCY, plus those containing <event list>'s (<event var>•s and <event cou

pled llst>'s). Specifically there are the following restrictions: 

1. No external termination ( <abort tid) or <abort cs>). 

2. No restarting of control structures ( <restart cs>). 
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3. No codeatrlpplng ( <codeatrlpped cs>). 

4. No non-preernptlble tasks ( <non-preemptlble tid> or <~ 
praa.,,tible olosad ca)~ 

6. No stopping of LC. The highest priority ready task must al
ways ~ , ~ted without dea.y. Thus • control .. tructure such 
as: 

(6.7) 

la illegal but 

(6.8) 

Is ·not. Event coupled llsts must contain breaks (cf. Section 

!;;6~1 !Je7:i·:T!. =t~ ~, ~;: ev..-taJ la UMI:_ 

8. Constraints inusf ·be contained whoffy\n a subcont;o/ structure, 
d~~ed, ~• • _ ferlea of ~~ RS•~-.llll-,tlltf~~.d>r.<~•4 ~ 
Reta at a single priority level. In CFG terms. a aubcontrol struc-
twe Is ·~- acycllc. path -~ ~ -~~~~wr,;.. ~'i,~ 
contains no event area. back arcs or breaks. This allows an pro-
cessor time spent at any other level to be treated as an ~ 
to worst case latency, and lets the details of exactly which 

. task& are contdbu11,Qg t0:·- the inc.r•-...--. kln9r9" .. _ ~lti,c,nally, 
-the tasks of the conatraint must - not be , contained In more than 
one sut>contr~ stna~ture.,.Jf.~ .,.~-~ _,i~t ope,tatell" 
cy In the entire control structure wookl. be :;· the vmlnlmum of the 
_worst ca,se .latt¥,lcl.._ l~,~~c:syb~t,pl a~~.-~. ~na __ 
the constraint; ... thus the present. atgorlttims 'still give an upper 
~d. Tbe ~~.t.• 18 t~ tf,;-t~;~H~-M\lb«.. ~d 
by an execution wNch spans two or more priority 'levels, then the 
tasks .ttelnG .executtt4 ~g er••~A'JltiQn.:~\.~ ~ft, and 
can no longer' be fwnpect together and treated as tiine lost to ln
terr&.ap,s. 

7. ln1fntte event g1,19ues. An ~, ~- ,-~ .~ auitably 
high nUIRber representing the maxlfflUffl ponible nwnber of pending 
events) of occurt-,cea of_ ••ch ev.ntJ .,-a -I~ Thia 
means that If ari· 'event happens before the previous occurrence 
hu been cleared (by completion of the Initiated control struc
ture), the new ~e wlif'lie hela~-'1'1 ~ ~ and' not· fgnc:red. · 
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6.4. 1 : Deftnltlona and General Approach 

The addJtion of PNHNllfttlon to•• control wuctUM lntroducea several Interesting 

timing. que.stlons. for, ~aAIPle: 

1. The worst case latency of a constraint as previously defined, 
I.e . . the ,~,~•t U,.. tha,t. C.!11'\ p~ .. ~~tJ~!lr., ~~1~,~1'3te. 
execut10n-~ ••dh · taat 1n the constraint In order. This may now 
be ~.~d by ln/tllltl~ .~•~ ,a, ¥f,•,. ~ ,>,r~~t~ Ji!Jay. ~ni
tfatfon' delay la time lost due to the irilthltlng svent not yet having 
occurred. 

2. The worst case latency of art event.., deftnad •s the lqngast 
tlnie that .cah elapse tietween. ffie occurrence . of an event and 
the start of the aubcontrol structure which it initiates. What ex
aotlv ,CGft8tltut.a:ltt.._..atlMkln of.a:Cldbcontiof•~ra .m·be'fm
plementatlon dependent. 

3. Related to (2), It may be desired to know the worst case exe
cutloll time of'• fist of btelGa at •igt.vWi ~ leHI; 1.tlts Is their 
execution time In the absence of preemption plus the most possi
ble titne las~ '9 ..,,_mptlort. This• ,_y 'IAf,•Jltore-' ~ t:h. {'f}' In 
cases where occurrence of an event signals the arrival of new 
data, rather than .....,.. tttat tuk 1111t1atton,1s -~ad 
with data arrival times. 

In all tt,ue cases It will be ,necMS&Jy to make some asauinptions which could 

lead to an upper bound wlllCh ta aomewtlat .,...., 'thMf ftie •~ worst case (In 
.. 'fc ~ ~ . ~ ,~ r 

addition to the uncertainty In the estimate of worst ~,.,~, ,ttxecutlon 'l;ime). In 

particular, Teixeira ~s shqwn LT•l~ira 78]. ~•t,~. ~•t CIMMI·• ocours when all 
..\, : ' ,:;: C 

Interrupting events happen at the beginning of an Interval and continue happening 

at their maxlJnum nite. If may.· b~ tbaJ tbe -~~r•~ of: the events cou

pled with the execution times rif their sub~t~ .. structu;es·:' Is such that the 

events coufd never ofl. h-,,pen t<>gether; If .. th~ , is known Ip .. a. ~cular case then 

Its worst ease may be different, and the lnltlal p~, Qf U... -,.,,ta could be ad

Juated acc;~dlng.ly. The algorlthms do alloW. ,$1>,ecttl.ca.tton, Qf e\«Sot phases. as will 
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be seen. In any case the algorlttuns do give ,an. UPP&f· boUnd to the problem. 

The worst case. latency .of a oonstmlnt whlelt--·~ at·· i:,riortty 'O (the 

lowest priority) can be determined In terms of noalMll'-llllte In the· .ntsence Of 

preemption plus time lost to lnterrupt8j t~ lnttµltklr._delay ,._ctnotJpe considered. 
• ~ •• - • ¥ 

·. - • ' . ~ - . }-; .• - -. ~ :..~, - .:~.J'. . _ _,__. 

The fundalltentat dftte,ence between tasks at ~ 0 ,an4. pdoflties Qr¥ter than 
~ ··. . . - ._ ', .-•~~ ;_• ~ .. J. • . " -

, . 

O Is that if the worst case latency· of a constraint ~~ ..,...· ~ oae execu-

tion of tasks at a priority level greater than 0 1 there may be delay due to initiation 

of that prto,tty, level (whfcll MUSt be ~- ~c~~ · ~ •~ of the Initiating 
. . 

event in tbe wor.i caee) for the addttlonal taek ·--.mtlona. ·· lite 1oWIMlt priority 

level Is asaumed to be always running or ready, and thus has no such delay. 

In gener«I there wjl be some thought reqlllired to pinpoint 1htJ WOl'4t case for 

any time Interval. of Interest; .once clet8f'llllhed.,_·U. algQtlUlnf,to wsure such a 

time interval canlaa CQPB~ed using the follo~·baalc tecbntque. 

1. Determine the relative priorities of every basic cs In the 
over..U contrQI- stn,4cture, Md, •SN.GI•• .ttn: 81ief1 ... event variable 
the,subcontrol structure which It initiates (cf. Section 2.6.5). The 
p~ QJ.,..,.,,a~a,ol ..,._..r&,Md:b lalttat!WI& ..-1 ate -the· 
same. It is assumed that ., min and ., max are known for each 

• event (cf> Sectb1''4.8). . ·. .. 

2. Oetenatne whettler 'the t1me· mterval'(tateriby 'or otherwise) Is 
Infinite. This may be done in two st~ps: 

a. If the time Interval is Infinite In the absence of 
preempttan (dtitermlnad ·-. ptevlocisty '.ihbwri)~ · 'then It is 
lnflnlte In the presence of pr~tlon •. 

~-~- . ~, - ,---.! ::>c- .· --~:~ 

b. Otherwise, flnd out wheth_,- higher, priority, ti,~ks can 
eutllcfently toed down the prbcenor acfthlf'the''fnterval 
of interest Is never ~~ed- ~a-~ f91: ~ 
tMa- Wll'be shown; ·' .• . '.. . ... ··· . 

3. If ft Is not tnflnfte, determine the." Interval 1n the absence of 
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_preemet1on and•other delays~ 
. . 

4. factor In the Joss of time due tq,~t~-AM,~er . ._,aye; 
lifting any of the restrictions given in Section 6.4 will usually be 
seen .•s PfITTMfM.tiioM pf .U.. fffto(.,i, 

- ' I • • ~, • • • • ~ 

&.4.2: Finding 1nftllft• t.atenca.. 

The control structures represented ~ere provldet no , Pf_itJrl _method of guaran

teeing f~ •f f>NMIIIIP-tQt Js preaent; - ._.,. It is •ntlnll!, poulble that in the 

worst case some tasks In the control structure may never be executed due to 

preemption by ftlghefl~rfOrity tasks. 

. .-· .:;--,:-.. ::: ; . ",• - ': .. , ; ,,. 

at low computational coat, and this must be done before continuing with the 

analysis. ·If the latency' at a ·given priority le~el la __ l~ftnlt~ ~n the iterative aolu-
i ) 

tlona to be used for solving for loss of time due to preemption do not converge. 
-~ " . t .. .., f~- ~-

The metho4 used is, to--da~~: a, to.ct f-.ctw,·-•;~aclt' aubcontrol structure that 

can preempt a gtven°one, and If the load is~ 1 then t~~·~iven control structure's 

tasks wilt never execute: 

In order to find the load factor due to a aubcontrol atructwe f with initiating 

event e1, It. la- .nea.,.,a,y tp panWow tbe<Jtflt at~8¥alitr,Jn . .-e OV.!f.4.oontrol atruc-
: J 

ture as follows: 

1. Ealwaysi the set of events which can always preempt t, but 

can never be preempted by ~,- _ Thaee _ant the_-~~ _of hlU!'er 
absolute priority than e1, aa'founcf by Aloo,lthm 2.2: ... 

2. E11111n_tle; .:Ttw la U. nt of IW..._ wlltoh caanot preempt f 
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and cannot be preempted by e1, but ••dloalaniov• e1, tf e1 
and one of them are both pending at the same. timf!. This s,t is 
the Gft1on of tfNj folkMlllffll sets:' . . . ; ., . 

a. Events which have the same abaoltrte priority ·as e1, 
but occur to Its left In the same event coupled list. 

b. Events which have the same absolute priority as e1, 

but occur In a different event couet,c:I .~...,•J• ·-~· 
ly to the left of the event coupled list containing #. 

c. Events which have higher ~e priority than e # 
but oocur:-in an event couptecl 1st· wlilclt· ..... not contain . .,. 

3. E1oae_t#e; Thia la the set of evenu, ~ch ;c~l p,-e,mpt # 
and cannot be preempted by e1 , but:.•# Is c~. o_ver ~e, of, 

tttam ff botfl are pendtnsf at·tlfa same Wthit. Thil a'et of events la 
the union of the following se~: 

~ -. :-. . ' 

a. E~ents which have the same .fll>solute pr~ as e-,, 

but occur to Its right in the s8.Rle event coupled 11st. 

b. Events which have the same ~t~ priority as e #' 
but are in a diWerent fient' coupted'lllt 1wt'ifctda entirety 
to the right of the event coupled •~-~on~_#. 

c. Events which have a lower absolute ~. ~n e1 •. 
but occur In an event coupled llat which does not contain 

••• 
4. E,_,; Thia Is the eat of eventa-;wftleh can. ·never preempt 

e #' and Initiate subcontrol structures which can always be 

preempted by e1. These are the events of lower absolute priori-

ty than••· 

As an example, consider the control structure: 

(A/(e 1 :8/(e2:Cfe3:D)le4:El(a6:Ffa6:G)))• 
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Its preemption struc~re appears In _Figure W. and· the partitioning of Its events In 

Figure 5.3. 

Fl9. 6.2. Preemption structure for (5.9). 

Initiating Event 
EMways Eflllii lie E1e..,_tle l!never /l'ask 

none/A e1,e2,e3,e4,e5,e8 none none none 
e1/B e21 e3 e5, e8 e4 none 
e2/C . " .. nan&,,,., ... , «8. e4, e51 e6 e1 none -
e3/D none e2 e4.e6,e6 e1 
e4/E e5.e6 e1,e2,e3 none none 
e5/F none e2,e3 e1, ee a4 
-,a none., , . .. ,•2t•. as , .. e4 .. 

.. 

·Fig. I.a. Partitioning the events of (6.9): 

To decide whether a task A at a given priority level In a control structure may 

never execute, partition the events of the control structure relative to A as Just 

described. Each event initiates a subcontrol structure (at a slngle priority level); 

let e1 initiate subcontrol structure # 1. The worst case load of a given subcontrol 
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atructl.lre on the ·proeesaor occurs when lta tllltiatfilg event: happens at · tts maximum 

frequency: 

(6.10) 

The total load factor Is the sum of the worst case load factor for each event which 

might participate In the blocl<out of A; . ·~s Is the set E ,,,_,,,IJU = 
> -; 

{Ealways U Ewln_tle>• atnce these 4'8 exactly :those·events which conalstentty get 

control over e A no matter how long e A may have been waiting In queue. Of course, 

- . 

tf A is in the lowest priority control structure,· there Is no e A and the set Ew/ n_tle 

la empty; but the analysis of possible blockout due to preemption Is 1Jnchanged. 

Let the events In E prae,,,pts be { e1, • • • ,e J }; then U. "total load factor Is: 

Total load factor(A) • "ii I .. ' t . 
"_, • 1111n<•1) 

(5.11) 

If the total load factor la ~ 1.0, then the task A (and any ottt. task lft the same 

basic cs as A) never gets executed; Its worst case latency a. lnffnlta. All the fol-.. . - - ,(_.' 

lowing algorithms aaaunte that thta check has been made before they are called, so 

that a finite solution la known to exist. 

_.,._ 
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The problem of determining the time taken up by preefilP,ttort lends Itself naturi 

ally to an Iterative 801utlon. In the worst case It must be assumed that every In

terrupting event happens at Its lila.xllM.am. fr•quency (once every 1r min seconds). 

A8 the tasks Initiated by one Interruption are being executed, there may be addl

Uonal event occ:urrences • . ~uetng; ftlrthar d•~~ c:eto ... lily equation (6~11 ), If the 
' . ' J . . 

load factor Is < 1 It Is guaranteed that at_ some. PQ111t. Jbe ;~•s.t< in quastlo(l (the one 
' , > • ', • - ._ ... •• _, • : ~ - " • : ·_ ~ ' 

being preempted) will execute; but It Is not clear when and for how long before it 

la preempted again. 

The problem Is then to solve for the telal time taken to execute some set of 

tasks # of total weight W f • In the presence of a set of Interrupting events 
:. . -~ 

{ e 1, • • • , e J} which all happen at time zero and then again 'v"ry _:, ,,,,aCe;) 

seconds, each Initiating subcontrol structures with weights {W 1, • • • , W J }. The 

total time, T #' Is: 

(6.12) 

The centng function Is chosen st.nee _the :CNQtlent 

(6.18) 

gives the number of occurrences for eA .ffl, the.mterval [T 1; laut since alt events 
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happen at the beginning of the Interval (In the wurst· ca-.} l>ff4J acldltlc,nal oc

CURence must be added 

but If the event -occuns et the' exact end of ·the: Nerial '• this occurrence nwst 
not be counted since ~ w11 atr .. cfy be completed _:_ ·.thus the choice of 

(6.16} 

A quick Iterative solution to (6. 12) Is had by noticing that an excellent lower bound 

la the aolutlon to 

(6.18} 

which la 

(6.17) 

Notice· that the denominator Is exactly 1 - E~tion (5.11), the total load factor, 

which has already been computed. Equation 6. 17 implies that running -, with inter-

_.,._ 
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load factor of the intarR4P,tlng ~-•· 

~ ..,atton (ft 1~) 18 solved lteratrvety by :•~tt.'f1g 

(6.18) 

anct tt..n, aoMn~ for r
111

: , 

(6.19) 

with Ti and this process converges very rapidly since the initial gue~ 18 so near 
., . ; . . ~ - . -

the final value. 

Given a CQaJ>ute~ whloh takes a ~· tlla&-.t- In the -.ence ot lntei'ruption, 

Algorlthm 6.3, PTIME, computes the total time taken to do the computation In the 

presence of, Interrupts. ll 141 usuNd .tffllt, there a., ftO lnlti.-.ra ad&y Involved, I.e . 
. _;--.,"'f.'., :I 

PTIME fln• , ~ ~•t :,.:ue lntwval wblob; oontalna :t NCOhde of tftRe In which 

preempting tasks are not executing. 

Algorlthm 6.3. PTIME(t, EIM..,.,.) 

lnputa: t. a time which reprea,u1t.1' computation time In the· ... nee of preemption • 

.EprNlltpta• a ••t of ..• v..-te which qan .,,. ... •~ COIIIPUtatloft whlCII 

takes t seconds. 

-79-
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OUtput: tp• the time taken In the worst case wlltf lht~ tt> per1onn a ~ 

tlon which takes t ~ ~lt.)~•~,.~:C~~~-••'41111•. tilt the 
events In E pr■1 a,pt~- happen as soon as the COIIIPlltation starts. and ~ 

lla1bod: 

tlnue at their max.__ rate) 

1. Lat WI = t. Let {a,-,i •; • ~ e1} be the events In Epreempts· Let 

{W1• • • • • W 1} be the weights of the subcontrol structures Initiated by 

the corresponding events. Then solve equation (5. 1 Si) .{QI" u -~ value._ 
of T f; solve equation (6.19) repeatedly for T f ~ 'the 'ftbr-of tt '·, -

n n-1 
endtng when T t = T f . Retum(T f ). 

n n-1 a 

&.4.4: AppRcatlona of PTIIIE 

tJalng th& algoritlua p-r.-e me- eaa cletennille aaverat ~tlllle PfOl,eltl&a of In-
- f --

tereat for control structwes whlch meet the restrictions of Section 5.4. It must be 

kept in mind that there la a dlstfnction between the follow".ng two sets of events: 

a. The set of events which can preempt a task af'ter It hu been 
lnltietwd. M well as Utce prtortty-,ov. tts! ~ ,event wflle It 
Is pending. 

b. The set of eventa which get priority over an event If it is 
pending IMlt lla&;not yet- beeft: ~-~ -~ proceew (no 
tasks have been Initiated due to lta occurrence), but cannot 
preeapt- any-.-.. 1h - -.COAtlel ...... wlfcll "tMt event 
Initiates. 

The worst case latency of any constraint which is in the subcontrol structure 
-~ ... . •:_~:;.y~,,:.. ,.., } . ·~:?: 

at priority O can also be directly determined. The --.CHD.i between this appllca-

tion and the one juat mentioned is that tlle mnstraJnt· ,_.. not bit contii.lned In· a 

sfngle copy of the aubcontrot- structure. stnce the t,rblty 8 ~ structure 

has no Initiating event and hence no initiation delay, the worst case latency of a 
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constraint C can be determined In two stlllpa: 

Algorithm 6.4. PRIOLATENCY(f, C) 

Inputs: #. a subcontrol structure which runs at priority 0. 

C, a constraint. 

Output: l(C), the worst case latency of C Inf~· 

Method:· 
1 •. Find (l(C), ,iart.Jndax, num_t~a) /1: J~J:~t4CY(~~J;:),~ the w~st case hl· 
tency of C 1h 'ffle absiiOce of praitnptlbn. 

2.. Let· E ,,,...,,,-,.. hli ttul •t of W,eveftttl M tft4tt !eritlrW cOfftiio1 ·structure~' 

The worst cue latency of C Is PTIME(l(C), Epreem~=~·. 

Another appllcatlon la to determine the latency of an event e 1, that is, how 
.. 1 • :-.; .·~: \· _.:"' __ ;-$ • _,· ~, :'".,:~ •.\.e \,' · ;i1-. _.· <:-~-, . -~ 

long Is It in tb~ worst .~a,,. b~twet1tn .~4:'. ~c;~•n<?-• :,9,,f iW e.ye~t .-.nd the initicatk>n 

of the corresponding aubcontrol structure. This can be found as follows: 
'c-,, : . t', ,,, f; 

Aloorithm 6.6. ELATENCV(•, e1) 

Inputs: •, the least amount of time that can elap• before a task can be con-
sidered lrfitiat,d. _ , . , i \ ' 

. ' 

• I ' the ev.tt whose latency Ill bf;l_lng c:letritr-ed. 

OUtput: t
8 

, the longest time that can elapse after e1 occurs before Its subcontrol . 

atr'ucture ge6i=tn1t1ated. . . . ,.,· . ' . ", .. , ' . 

Methoch 
1. let the s-~ ■-= (E~M~Jn_.> relative to the event .,. ' ; ,,., •; 
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6.4.6: Adding Phase Relationships to P'AIE 

For a more general fonnulatlon, it Is useful to ~ve a~~ble t~e me~na of 
l .' ~, 4 

• • ~~ ' ? l.1, 

determining execution tkne In the presence of Interruptions when ~h• Interrupting 

events may have started happening at any lndMduaUy determined time rather than 
,,..,, ..... 

an starting at time zero. For this JH.lrpose, the phase of an event ls here defined as 

the time since Its last occurrence. Thus for a set of events {e1, · • • , e1}_ ttler_e 

may be associated a &et of i,hases ♦ ~Jf.1-• :~ • •; +1}. _ If it. _~,v.n~ •• f?CCUrrlng 

the next occurrence of e1. 

In addition, there may be one or more pending occurrence of any of the events 

may be determined. These two factors alter the time due to preemption equation 

(5. 12) as follows: 

(6.20) 

A good lower bound to this Is its aolutlon without the C?tt""8,~; 

(6.21) 
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The solution Is again fouDct by aolvlnf,{6.21) for tiletWiltlal·value 1 # ·end then 
0 

solving (5.20) for T '# using the previous value T... until they are equal. A sum-
n ~n-1 

mary Is given below as Algorithm 5.6, PHTIME. Ntrte ~hat If ♦k-- ,rn,4t!.e1t.) end O" - O 

for all I<, PHTIME computes the same value as PTIME. 

Algorithm S.e. PHTIME(t. Epreempt.s' ♦, 8) 

Inputs: t, a time which represents computation fflne lrt thif'llMe{lce .. o'f preemption. 

Epreempts, a aet of events which can preempt the computation taking t 

seconds. 

♦, a set of phases, one for ea~h ~-~•~t In Ep,-.,,pf••· 

0, a set of lnltlally pending occurra,ice~ one for,.eac.;I} •vent In Epree,,,pts· 

Output: tph, the time taken in ~ worst case. to.~ • ~~Ion which 

takes t seconds to perform with no Interrupts. The worst case Involves 
preem,,tlon ey all._ ;events• 1tt Epr.i,i,'pi'a • ofte#Je.a'~, subject to 

Method: 

the constraints of ♦, O,. and 'It.min-for ••~b event. 

1. let W '# • t. Let { e 1• • • • • e J} be the •~ants In E prf)flRJR_ts. Let 

{WI, · • · . W J} be the weights o1 'the au6conttof ~ttuc.tuNs lnltlated 'by 
the corresponding events. Then solye aquatiqp (5.21) fc;w _an. fnlti-al voJue . 
1. ; 80k1e •fiRfUatlon f5~20) tepeatlktly . ft>r -T •. ·ualng. the previous value 

O n 
of T 1 , , terminating when thev •r• '"'al. r ,.· ... 1a·ttae,value tabe ,... 

n-1 n 
tumect as tplt, 
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Algorithm 5.5 gives a method for determining the .111axllllum time that. can ~lapse 
)'~ . - ~ ' - . 

4-' 

between the occurrence of an event e1 and Initiation of Its :·$4.lbcontrol structure. 

This 1s fairly shnp1y dOne since whUe e1 is pending the set of events that can 

preempt It Is static. Once Its subcontrol structure has been Initiated, however, 

only events In Ea,ways can Interrupt; 11owttv.,-, If_!")/' ~,:U.... evanta doee-~..-

any event In e.,,,,n_u. wlll take prlorl-t)' over fftSUIIIPtion of •l•- aubcontrol •~ 

tura. 

This compttcates the determination of worst caae execution time {and latert-
j .:....• -, 

cles, as wm be seen In the · next section) for a task subset I of the subcontrol 

structufit, Note, hoWever, that ff the set e_:,ln_tie llf eiftpty (and; therefore the set 

of lnterruptJnv events Is static), that PHT1ME can be used to get the oon-ect result. 

In general ~ tba f'aault mua_t be found ift •• i 1, debtnllinJllg ·wtaen I can 

be executed. The next 11lgorltttm detennlnes·.the worst ca~ time to execute a set 

of tasks I, contained In a single subcontrol struc~e. given the sets of events : 

E411wap and Ewu,J./e for I and their Initial. v~ ~f\ + and· Cl.. It asswia.a that I 

has been juat Initiated 4nd then flnda the U.e t,. trpm..~~.)p completion of I. 

Thta Is done by flrat finding how long It wll be before al the pendJng .interrupts, If 

any (based on ♦ and 0), are processed and I can be r88UlltecL,. Then the earUest 

occurrence of an event In Ea1ways martcs the next preemption of I. At that point 

any accumulated occurrences of events In e..,,n_t/e will cause executions of their 

aubcontrol structures to be C0111pleted before I can be resumed. This partitioning 
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of the total time taken to execute I Is repeated until all of · I Is ,completed. Note 

that ~• method 4Des not require detennlnatlon: Of an eRct schedule for all the 
. ' 

tasks In the control structure, although the exact times when I wlll be executed 

are found. Algorfthln 6.7, SCSTIME (for ""sut:h::ontroi' st~~ture execution time") de

~la ttle procedure. Mote that -this afgotttt,m does not •ddreu . the problem of 

det•rmlnlng execution time for a set of t~sfcli wfflch ma~,i;!t~~l(JJ ·more ttt.an one In-
- ·~""' :, . ' . , . . -· " 

vocation of a subcorat,ol structure. 
. ~ '. 

Algorithm IJ.T. SCSTIME(I, E~_.,8 ,· l!~ln_tl,, J,,,~) 
., 

lnputaz I, a sublist of the tasks In a subcontrol structure. 

Ea/ways, r~latfve t~,e,. r,~ lnltlatlbg av,nt. : 
. . ! , \!. \' 

Ewin tie' relative to e1. 

♦, phases for events in Ea/ways and Ewln_tie: 

o, tn1t1at1y pending occurrences for eventl!t In e ..... lll1d Ewin tie• 
! ' -

Output: tp, the longest possible time to execute I with Interruptions. 
. !. --·-~~ ,; :.i; 

•wln_tle, the ftnal phases for all the events In Ew/n_t/e. 

) \ ~ .,...., . ~" ' 

Ow/n_t/e, the flnal number of pending occurrences for an the events In 

Methods 

Ew1n_i1e· 

1. Set •cum = 0, the cumulative execution time for I. Sett 1 = O. 

2. Find how long a can execute before It la preempted by an event from 
Ea/ways. Thia Is: 

(6.22) 
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Go to step (4). 

3. find bow long I C4ln be executed, before an event froa Ea,ways 

preempts It; this occurs at time: 
. ~ ·. 

t 2 • (least multiple of ,.. m;n<e,,_) > t 1 tor an el< • ~...,.,_) 
. ' 

4. If. lcu, + t 2 - t 1 > Ill, I will· IXJllllpleta in -tht.: lqteryal;,dX)aputetp • t 1 

+ Ill • 'cum• compute .•.~(nJ/e ,~ ~tk>r? (~:~5-~~•nd,~ubs!itutin~ tp 
for t 2 ; C0111Pute OwlnJle using equation (6.24) and substituting tp for t 2 . 

Return (tp, ♦wln_tle' Owln_tle). Otherwlsa-.t•lcum ._..cum .+'t 2 - t 1' 

6. Set O • 1 for the e\le~t from E~~--~ ~- th• (>l'et11BPtic.lo~ 

Sonte events in Ewln_tie may afao bi pending:· 

(6.24) 

6. Update phases for alt events: 

7. Find new value of t 1, the next resumption time of I: 

t 1 • t 2 + PHTIME(,, Ea/ways U Ewln_~le' •~, 0) (5.26) 

8. Repeat steps (3) through (7) until tennfnatton of I Is d•ot- In step 
(4). . . '• 

---
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SA. 1: .Latenclea for. eonatrlllnta. at PlterlttM ·> e 

The worst case latency may. be desired for a constraint which ls satlsfi~~ , ~
1 

an execution o1 a subcontrol structure at a priority greater than O. If the execu

tion which represents the greatest fatency ·-,tn>oi~ two or more lnvocatlo~s · tjf' that 

aubcontrol structure, the poaslblffty o1 initiation delay must be considered as weif 
as Interruption delay. Each of these delays may Involve 4: different set of ·preempt

ing events. 

There are thus several comptexltles to be dealt with In the geneMI case, even 

with control structures meeting the restrictions of Section 6.4; . ..,,ver there are 

aJao several special cases with simpler solutions. An example • ,MieriC:the sets 

Ewln_tle and e,ose_tle are empty; it will be shown how to make use of this 

slmpllflcatlon In a later section. 

Recall the notation of Section 5.2, whe,e a sut,control stru~tur,e ♦ was llro,ken _ 
,, '·. .. ; ~ ' . . ~· : ': ; .: ' . . . 1 ~ ' , . . ' ' ~ !j"-..- . 

down Into components ~ 1 •• 1• · • • , •n• - 2) relative to a conatralnt C, where the 

J '-'".; -~ .. ~ .• ·h~ ·\.."~ 

•, 'a were critical windows and the J1 's eac'h contained one occurrence of C. 
}'-·' 

The worst case latency of C In a control structure containing # at a priority 

level vr•t•r than zetO is· found : as fo11oWtl. 'tl!it ••;, t>e' ffii;lnitfatlng event' for i. 

There are· two candidate time intervals which may be the worst cue latency for C. 

The int, t- ·, Is the maximum· del~y be~e~~· ~c~r~e~~e~
0

~f el plus the maximum 
1 ' ' . . •C, 

~ii 

delay to complete - 1 with preemption. The second, t• , la the maximum time taken 
' ·• ::, .41!1:i';-: . . . 0 

to complete •,,,. th-. ~t crltJ~I wJn~, 9f f., ~.wj#t, pr~tlo,a. Either one 

may Involve more than one invocation of #.., Md .• beft04t ~ •••~· . To show 
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that either ~ or t• could be ~ woret ..,. latancy. tor c, . .conslcler a allllple ex• 
1 m 

Exmnple 6. 1. 

where 

W'INX(e1) = 10 88C. 

IAI c 1 aec. 

181 = 2 aec. 

fCI = t aac. 

IOI• a sec. 

The most crlticaf window for the constraint (C) Is (C D C), with a weight of 5 

seconds. However, the longest time that elapaea without an occurrence of C is 13 

seconds, which Is ', , or rmax(e1) + IBI + ICf. 1{1oi were chanQed to be 16 
1 . 

seconds, though, (C D C) would stiff be the most critical window for (C), but now 

t• is 1 7 seconds, which Is greater than ', • 
m 1 

Thus the two candidate tJmes must b~ COIRPUted u.d the;if ....-um rewrned 

as l(C). Note that since the entire control structure is repeated, the task Hat 
. ":Ci ' 

starting at , 2 and wrapping around through , 1 , is a critic.al _w1r1c1«:>w1 call ~ •_, and, 
, - . , . -

must have weight greater than , 2 ; therefore , 2 cannot take longer than It to exe

cute, and need not be considered as a candidate for l(C). Furthermore, It might be 

theuQht·that the weight of •i plus the detay·due to·lnltlatlori of lt8 aeoond part, , 2• 

may In total be greater· than the weight of an otherwise llk>lt crtttcal window which 

---
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Is caotalned In# and henpe haa po lnitiatkln •1a¥•uoclat•d,wtth It. To showthls 

Is untrue, It Is only necessary to show that_ the. wel~t oi:,~f. w,IU:t Initiation delay 

must be less than t•m and t,
1

, since the addlitc,n ?f delay~ ,d~e to l~terruptlons Is 

a monotonlcallyJncreaama f4111ct1pn of~~ t_,. wlttaout·fflterruptiona. 

Thus assume that •- Is not the most critical '!"l"~ of # f~ C (If It Is,, It wlH 

be considered by the algorlthms and thus there Is no need to Justify Its exclusion). 

But If thl~ Is the case, then there Is a critical wlndow'•m In # with greater weight 

than -,r thus· the tlitte to exedote •- rs leas than or equal to 

(6.22) 

In the absence of fntertupt1ons. · But since t-,1 Is s 1-ml• equation (6.22) Is s 

.,max(e#). Thia In tum la less than t,, which Includes .,,mex(e#) as one of Its sum

mands. Thus It Is sufficient to find the maximum oft- and t• . 
1 m 

Consider the compui.t1on qf t• . first the moat crfflcat. wlndqw must be found 
m . 

r·t 

for C In # using the algorithm for iterative control structures, ILA TENCY ... ,._,t• that 

In this case since the enttr.-,·
0

.ubcontrol struct.,,;,j get~ repeated, the head CJ1) of 

(#)1111 containing C cannot represent the worst latency for C by Itself (without inltla-
···-' ~ ·, 

tlon delay); there must be a critical window of greater weight which Includes J1 

as Its second occurrence of C. 

Therefore !LATENCY will return l(C), the weight of th~. most critical window • 111 

---
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In (#>-- ll.ATENCY aleo returu start.Jnclex, the Index Iii f :of ttie first task of •m• 

and nutn_tUks, the nutnber of tasks In••· Knowing this, It can be determined how 

many times•·• the fnltlatJng event for f. must occur cluring •m•• execution (i.e., by 

knowing how •tlAY coptea of f .,._ lnctudecFln ••J- Parlltkin •,.. Into the sublists 

{•m ••m , · • · , •m }, where each •,. la a portion of••· which ill contained in (a 
1 2 n I 

sfngle copy of) f. Since t ta the longest possible tlllle to execute •,., It raust .. . - ,_ --- ' 

be assumed that aR the lnterr~ts happen, ~l,9,ly_ ~•. ,._..tlon of •• and 

continue at their maxllllulll rates. whlle the Initiating event •• happens at Its 

efowest rate. 

Figure 5.4 shows the time tine for part of a •~ •~ of • QdtlcaJ win,, 

dow •m which la not contained by a single copy off. 

1----1----1----2----1----a----1----4---..:t----&---..:1----e----f 
• # • • • • 
# a tar ta m • # 1J1 

ocotars t 1 occurs 2 
starts enda second at~rts 

tlaia . 

fig. 6.4. Partial execution of a critical window •m· 

In the worst case, the Initiation del~y of Interval (4) will be the maximum poasi

bfe, with the constraint that Interval (3) RtUSt be at Its 111axlnwln too (greatest 

alllOUnt of time lost to Interrupts). Therefore the intervals (1) and (2) must be 
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~,.at ttlelr mlffllftUfn, t.a.,no ~pWft.,,· Thus~ (1') ts assumed to be 

" 

lengthening Interval (4); If It is known In a particular case that preemption must 
.,-:.>":, .~ f;n.:, '"'i .":"'.~~ 

occur during Intervals (1) and (2), an adJustfflent can be made In the ~hases of the 
~ { ,",:: ·""'; ~" 

Interrupting events at the beginning of interval (3). 

Mi was prevtduafy atiitec:t, Tt Ii as'sulh~cl th1.t'"tt,e ~~st case is when all events 
. ··;. ·:-~,'.,·- ~~ __ ,,r;j~..,,._wi_c_ .. .:_'._'~ ... ::" .. · ' .. .,._ -:-,- !! }.;: ~ <,,-

occur ·#IOht after •m starts, "'so. the· feilcitfa· 'of ."'b,tfirvaf (3), t(~)~ ·as found from 

1 ·-~ t.;:'~;;-~: ~•:J :;--:., . 

SCSTIMEC•m 
1

• Ea/ways' Ewln_tle' ♦, 0) where Ea/ways and Ewin tie are det~, 

11lnad,relatlve to•,,, ♦ •(O,;;. .• , 0) 41fHNI • (1·; ~ ~-~:. ¥J'fdt jf'thtt:lwi,ntii: .. '· 

(6.27):: 

- -~ _.;• 3. --1-.;:.-:, ... _._; :·--:-·- .••• :_,_:':!-_t~;r·--f _. •- . --~ "-~ 

upper boonct determined l>y the algorlthm.-·15urlng Interval (4), any of the _events in 

tba cantrati,atruoture •t1:t,.-.. ~ ·'8~,JNW~i .... ,~.; ...a ifin •• ,: a,J. arbWarlly ' 

comp~e.x. ~~l~g .~ 'ffl9D.9 .. ... ,#er~ .,,.).,w .• ~,-.-ilD tae e:uct,ordef' c:A-

occurrences; 

,. 

I.e .• to get the true picture, the -~·~,c,~~~~-~ .~'flla,.tt• •~d 
~.,. 

r 

E10ll8_tle relative to ef/Wy event must be considered, since the reference point 

provided by knowledge that e# was pending haa been loa!. ~s makes ftnd~g _an 
C ~ •,, < .. ', ,--;- < • 

analytic solution for the values of ♦ and O at the end of Interval (4) quite compll-
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cated, and two alternatives are provided here .. instead. Nate that the relatiVe lffi

portance of this is dw»endent on •• retative s~ of fnteivaf.(4); 1n··the extretite 

case, If It is zero, then there is no problem at alL 

The simpler method (and the one used here) is to aasUllle that all events In 

Ealways and Ewln_tie get blocked out during lnterv~I ~4), •~ thus thek' ♦"s and o•~ 

get updated accordingly. This win provide an upRCH". bou~ which •• high ~y the 
, : . -

amount of execution of preempting .tasks which. could have taken pJace during inter• 

val (4) and wiU now Instead be added to the preemption delays of the next Inter

val 

Unfortunately, ~ la nqt the only CORIPllc•Uon. ln,.U.. worst cue, - event· 

from EloseJJe might get c:~tr~ Just bercx,-e the end of IIJJ~~al. {~). CJd lnltlate a 
' ' . ~ . 

aubcontrol structure which could not be preempted by ••· The event e1 In 

Eloae_tie which Initiates a subcontrd stnietute :that ·;u~ 'fer' the longest time 

without being preempted by an event .In E•••·· or f;.wlnJle. ,(given their. ♦'s &1Jd 

O's at the end of Interval (4)) is chosen, slnqe <>n~e i'tJJ,tts};\li,PPted,}~ h4s Jess 

priority than •·• by definition. Let the hlng~ 9f this tlllle. be tp .and then the tjJne 

O's are updated and the prooeaa Is repeated u from 1.tte atffl of'•m , terminating· 
1 

when the end of • m Is reached. 
n 

The alternative method Is to determine an exact schedule for Interval (4). 

Then It win be known whether or not an event from Eloee_tle can get control and 
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keep It past the end of Interval (4), and the exact ♦•s and O's for all the events 

can be determined. This Is the method of choice If the initiation delay· 1s known to 

be atoniflcant. 

The interval t1 Is measured on a sftGhtly different time line: 
1 

1----o----1----1----1----2----1----a----1----4----1----6----1 
e J i e J 
# 1 1 i 1 

occurs 1 1 occurs 2 
a tarts ends aecGfld starts 

tJIM 

Fig. 6.6. Partial execution of i 1. 

To find ~ , the execution of J 1 Is broken down Into parts which are contained In a 
1 

single copy of t,, Just as was done for •m· Here the worst case Is when all inter

rupts happen at the beginning of interval (1) and continue at their m~mum rate, 

since the length of Interval (0) Is fixed at ,r max<•,>; this gives the gre~test delay 

during interval (1 ). Interval (1) Is thus the maximum lnitle,tlon delay for t, with 

preemption, Including the posslbllity of an -.vent from E1088_t/e getting control just 

before e1 happens and causing further delay as pre9~8i~ discussed. The times 

of the remaining intervals are ·found as was done for the •m 'a, computing the Initial 
I 

♦'s and n's appropriately. 

This procedure Is detailed In Algorithm 6.8, LATENCY. 
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Algoritlull a.a: l.A~Y(~ #) 

Inputs: c. a constraint 

Sectillo ,5.4. 7 

#, a subcontrol structure containing al the tasks in C, in a rmtJol _.IIO" 
tura meeting the restrictions of Section 5.4, and where the worst case ta
tency of C la knawll not ta -.,. Id llr "P>'· ......_ (6.,c1 l i 

OUtpvt: t{C), the worst case latency of C In the control structure containing f. 

Method: 
1. Find l(C), starLindex, and nutn_taab by executing ILATENCY((#)''. C). 
Let • m be the crfflcaf window startfllg at start.Index and continuing for 

ftUIILtaska. 

2. Find the sublists of •,,,: f•,,, , •m , • • • • •,. ) ,.._,e each •m Is 
1 2 R . ' I 

the caapSetely ceidafned in a ~ cdliy ·tiff-#. If the number of taaka In 
f fa IC. then •• • f[atart.JndexJ through f[A]. •• through •m = #. 

1 2 n-1 
and•,. = #[1] through f[nutR_tasks - A(n ~ 2) - (It - start.Jndex + 1)). 

n --. :, 

3. Since the worst case involvN llt4XRIIUlll Initiation delay for#, assume 
lnterva.Ss (1) ~ (~) (see ~• -cfi.•4~ "4~•}vft,t.out_ H•..,,~ .. n.u. 
'ct> • o ·uc1 tc2> = ft - 1-m 

1 
T, i1nc1 ♦1 • tc1> + 1t2 >- at t11e start at 1nterve1 

(3). 

4. Find the sets E-,waya• and Etlt,l,nJle relative ~-•·· Set ♦ = 0 and O = 
1 for all events in these ·sets. Find .the set f.bl&Jle relative 'to e,. Set 

1-,. =. o. •~• the ~• I • o. Rapen ...,_, (6): tftleugll (1) unti 

the end of•-,..• reaclted in step (6). 

. . 

e. Set I = 1 + · 1. Find \a> • tp• ·which 1s returned · by 
SCSTIME{•m/ Eelwey.s• E,.,iR_t/JJ' •• D) . . ~) •• t t.,. + t~i S~t ♦ and,0 • 

for the events In e,.,,n_t/e to the values ••ln_tle and a,.,,n_tie returned 
lty 8CSTIME. ff # • II. 00 to step fet • ..,.._ . ·ta a!Gapufed-' 

1 

e. At the end of 'ca)• since •• waa In control, none of. the events In 

' Eallnp was pending. 1llua set 8 • O aact: 

-94-



latencies for Constraints at Priorities > O Section 5.4. 7 

7. Let tc4 ) • ,r max(a1) - tc3 ) - •i· ff t(A-) > o. tbflfe Is an initiation delay 

and the foltowfng must be done: · 

(5.29) 

(5.30) 

b. Find the event e1 e e,,,.._t/e which Initiates a subcontrol 

structure that can run the longest before (or without) being 
preempted by an event In {Ea,ways U Ewln_tle }; this can be done 

by conalderlng each event In ,E,.,_..:;t,. }n , ~~ Jet ~, be the 

time whk::h elapses past the ~.~d of lntery•!(~) ~y~ toe,-

c. Find tbe initiation delay of•,,, 
/+1 

(5.31) 

d. Set t• • t• + t14} + t..,_,....,. 
"' ·m ' ,.._, 

•· Set •;. - 0, and: 

(&32) 

:.-.: ;t_ 

for all events ";. In {Ea,ways U Ewln_tle }. 

•· Set ♦# • tdelay· 

If t(4 ) Is zero, sat +1 • •• + t(a) - • max<•,>. 
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8. And '- ; find ,S 1 of (# )• by scannfntl until the first occurrence of C 
1 . .,· 

hp been scanned. 0Mde-J1 iflt0-J111b•W •s :•s~~#e (~ ._;,, .fh step (2). 

getting as a result C, 1 , i 1 • • i 1 ), ~e this n may be different 
1 2 n 

flollt the n obtafftecl for .-,,, • 

Q. Refer to flgUTe 6.6. The time of lnt•rval (Q). %o)' Is •max<e,~. As

auMe all tWents · 1n {£always U Ewln_tle} occur at the end of this Interval, 

and continue at their m~1.1111 respective rates. Thus set O = 1 and ♦ = 0 
for an these events. Let "•l·•·'(b)i •~~J = o. Starting at step (7b), ex-

ecute just as for•,,,, substftuttltlf't-· fort • and ,s1 for•,,, .. 
1J1 •,,, / / 

10. Return MAXIMUM(t.. , t ). -,,, •., 

&.&: Spec;fal c .... -and EatenelDna 

There are many special cases which result in, much simpler algorithms. Each al

gorithm presented In the prevlou& aectlOlt la · ~• towertla a subset of control 

structure types which qontalns the prevlo!,ts ~l ,and some .additional control 
' ~ ' - . 

structure types; It is seen that In general, as the llUlllber of different types In the 

subset Increases, so does the compfexfty of ilfle r.-utttna tdgorithms. 

As an example of another Important special . .QIS@t, . cq,aii!ll,ir jlndtng any of the 

real-time properties for a subcontrol structure . whose sets Eloae_t/e and Ewln_tle 

ate· empty, e.g •• as would be the ca,e In a ~,strudture containing no event 

coupled lists. Now all of the complications due to having the s~t of preempting 
. ~ ·.:~ ·.. ,•. .·. ~~ ~ -. _;--:' 

-~ . _.r~ : . .J..!; ~ , '-~ 

event varlables change dynamically drop out - the statically determined set 

Ea,ways ta the on1y set that may preempt, and by' cfeflnlti6n It can always preempt. 



Special Cases and Extensions Section 5.5 

The simpllflctltlons this • Introduces are· sutistanflal; · take the· most complex of the 

algorltbms of the previous Motion, Algorithm 6.8, LA'tl:NCV, for examp1e. in step 

(6), SCSTIME can be replaced by the almpter ·0PHTIME. There may stlll be an Initia

tion delay tc4 ,. t,ut there la no 1onger tM· ponlbfflty of''an event from e,oae_tle 

getting controt · arrd prolonging the Initiation time. 

Aa far as extel'ISlona to the algorithms go, there are two prlnclpal areas to con

sider~ one Is the determination of algorithms for real-time properties not discussed 

here and which are germane to a speclftc appllcatlon, and
0

the other is the llftlng of 

the restrictions of Stfotlon 5.4 to allow any representable control structure to be 

analyzed. Since the first area requires an application r~latlve to which suitable al

gOrlthms can be developed, only the• secon<f area wlll . be covered here. 

The dtfflcufty involved In Dftlng the Ntstric&M '~f Section 5.4 varies consider

ably from one restriction to the next, Md·heftffllr"tftey are ·discussed here one at 

time. The faltowlng ctiacuaslons n· not lntandecl"'to·t,e ffie flrtal w<Jrd on th1! topic, 

nor are aH the detmls supplled for a ,parttcutar method· of ltftfng each restriction. 

Instead, the Intention Is to point out the dtfflculties lnv6fved· 1n· each case and to 

make suggestions as to how they might be overcome. 

a.a. t 1 -Extemal l'ennlaaatu 

Recall that there ua two typea ofLltef'atfoh, In effect, that can be applied to a 

aubcontrol etructura; local. and glo&at. it a aubcontrot' sttucture Is locally cyclic, It 

mea,.,U..t that partroutar 8Ubcontrol etruature executes; fnde11iilte1Y, without requir

ing relnltiatlon by Its lntthlting event. This le equfvatetit,c 'then, to having an event 

_..,_ 



External Termirtatlon Section 5.5. 1 

which Initiates a subcontrol structure with . lnftntte weight. If, instead, It Is part of a 

globally cycHc control structure, th-,, It too .w1u. lte .repeated indeftnltely, but only 

one time per Initiating event occurrerJCe. Both· of .tfleae -types are. allowed •under 

the restrlctlons of Section 5.41 beoeuae tlHt- we._ta of t.tle Initiated subcontrol 

structures are flxed, even though they may J,e Infinite tn. the 19<:ally cyclic case. 
• . ., J' -

However, there 18 the potentlal for a subcontrol a~tur, INhlch has Jnflnite (and 

thus flxed) weight with no external tennln,atlon to _haVEt v~JiY~~t In the pres

ence of external termination. Thus the delays enoounter,ed In the execution of 
' ;,. , ' 

lower priority control structures due to Interrupts,. which. l11tlated <abort cs)•a 

(those which may be externally terminated) ~ vary acPQf.dlpg to how IQng the 

<abort cs> executes before It gets preempted. An upper ~nd on tha. time can 

be found If a good value Is known for -, max of the teraalna.tlng event; if there Is 

more than one such event,. the. anlnlnlUln of their INXlaum periods my be used. 

Note that this .a.a contplfcat,Mt the ctet.,...tkln · of ad · facta' (equation 

(6.11 )), since that depends u wel-c,n '""""gi a· lmawn w,per·.balmd f« the weight 

of each subcontrol structure. 

5.6.2: Restart Control Structures 

This Is another case which 11ay lead to variable subcoMrG&•atructurec:executlon 

times. Every time a <restart ca) get& ,, ... pted .. ttte tillle nits current execution 

18 extended by Its nonaJnaJ weight kl tile abs- of preemption; It. • eseentially 

the opposite <>f external tenatnatton. rtus ., <reatert ce> needs· a non-preempted 

Interval equal to Its l'IOllllnal w.tlght In whlclr to execute.. Ta flnd, wtlether such an 
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interval exists, one must sea whether the phnaa of all the events In the sets 

ea/ways and E.win_tle relative to the <restart cs> can be adjusted so that It gets 

preempted at least once every !<restart cs>I • • seconds,. This can be either very 

simple, as In the case where there Is only one event that can preempt the <restart 

cs>, or very complex, If there are many events and their interrelationships must be 

considered. 

&.&.as Codestrlpplng 

This Is somewhat simpler to handle. If one of the Interrupting events Initiates 

a <codeatrlppad ca>, then the delay It causes Is armply Its nominal weight divided 

by the number of codestrlps, e.g. the weight ef {A/5) Is Jusf JAi /5. If the tasks 

whose execution time Is being measured are codestrlpped, though, It is as if they 

were preempted by an event with variable • min - to get this effect, a dummy 

event can be substituted for the integer which teUs how many codestrips there 

are, and its phase can be adjusted every tl~e the ~codestripped cs> Is resumed 

so that It will cause preemption at the time when a single ~oc:lestrlp would have 

finished. 

6.8.4: Non-Preemptlble Task• 

Let # meas be a subcontrof · structure whose real-time properties are being 

measured. Then If a subcontrol structure of higher priority than , meas Includes 

non-preemptlble tasks, the effect on f ,,,._ Is unnoticeable - these tasks would 
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have been exec-uted to completion anyway before ~ meas was resumed. If aH of 

# meas is non-preemptible, then its computation tfme need not Include the effects of 

those Interrupts which cannot · preempt It, and the sets Ealways arid Ewln_tle can 

be adjusted accordingly. If only a part of # meas la non-preemptible, then the ♦•s 

and O's of interrupting events must be updated when the non-preemptlble part has 

been executed. If a subcontrol structure of lower priority than t, meas Is non-

preemptlble, then if the Interval t, meas includes an Initiation delay, it must be In

creased by the maximum amount possible due to execution of tasks which e• can

not preempt. Thia can be handled simffarly to tl:le case where an event from 

e,oae_Ue gets control just before•• occurs. 

6.6.6: Stopping the Flow of Control 

This Is another case which may result In effectively varying the weights of 

aubcontrol structures and hence the delay due to preemptions which Include their 

execution. It l:tas some slmllarltles to external termination; consider the example 

given in equation (5.7), repeated here: 

((((A"/e1 )B)/e2)C)111 

The problem Is that the e_ffect of the delay Jn executJna ,-, due to.e1's oc~urrence 

Is dependent on the period of e2 - hence the simflarlty to external, termination. 

The difference Is that the minimum effective weight of 8 Is stiff IBI, since an oc

currence of e2 before the end of B preempts B, but leaves the remainder of B to 

-100-



Stopping the Flow of Control Section 5.6.5 

be resumed once C Is done. 

Thus the techniques for elCtemai t4itllllnatton Mn' be applied ftere, with the con

straint that the ■lnlmwn weight ot a· subcontrol structure Is stllf Its nomlnal weight. 

a.a.e: Conatralnts at llor• than One Priority Level 

To be able to consider the worst case latencies of constraints whose member 

tasks are found at different priority levels and thus in different subcontrot struc

tures Is a difficult problem. To determine this, the executions of tasks at lower and 

higher priority levels can no longer be lumped together and treated as a delay, 

since at the very least it must be known when every task which occurs In the con

straint Is executed, regardless of what Its priority may be. Thus algorithms of a 

very different sort from those In the previous sections are probably required, and 

the poaalblllty of simulation to determine an exact schedule may provide a starting 

point. 

a.a. 7: Finite Event Queues 

If· only a ftnlte number of event occurrences can be remembered, and this 

number Is small enough so that some event occurrences are Ignored, then from 

i 'a point of view, the delays due to preemption computed previously may be 
meas 

too high but cannot be too tow. The equations which determine the time lost to 

preemption must be adjusted to Include a maximum value of 0. 

When computing Initiation delay, It muat now, be seen whether, In the worst 

case, the Initiation delay may be prolonged due the Initiating , event's occurrence 

being ignored. 
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A new notation ._. been .,.,., which repmaetata · i'eaHlllle ·control· structures·. at 

a high (task and event) and Implementation-free level, Including sequencing, Itera

tion and preemption as primary constructs. The notation can represent convention

al single and multiple level Interrupt structures as wen as ~traditional ones 

where branching of the preemption structure la generalized. A total priority order

Ing may be described, or arbltrarHy many events and subcontrol structures may re

side at the same priority level. An algorithm la given for determining the preemption 

relationship for any <event, task> couple in the control structure, as well as a com,, 

pletely deterministic method of selecting a task for service if several events with 

arbitrary priorities are pending (possibly equal). It may be Interesting to consider 

the modlflcatlons necessary to the algorithms If It la assU111ed that the. processor 

chooses at random from among an the pending events of the hi,tlest priority. 

Additionally, notation Is given for representing task termination by external 

event occurrences (as opposed to temporary preemption), ~crlbing whethfr a 
=~~~~~ . . - . 

control structure should be restarted from Its ftrst task or resumed from the point 

of preemption, codestripplng, and masking of a set of interrupts while any given 
< - ,· _--s,- '~ -

task Is executing. It is shown that due to the assumed transitivity of the 

•preempts" relation, the sets of events chosen for these special cases might 

necessarlly Include other events not expllcltly mentioned. 

The notation Is compact, and provides a convenient format for conveying a lot 

of Information about the control b relat~ ~g- the members of a set of 
. . . ~ . 

tasks. A complete BNF specification Is provided, and a parser can be (and has 

-toa-



I 

Conclusions and Directions for Future Reseatch Section 6 

been) constructed using any of a numb'er of extant complter-'eompllets which accept 

BNF apeclftcatlons. 

Cl...- -of ,..,,re.-.ntable-· control structures are given, typed by the topology 

of. their controf 1loW gtaphs. · · It Is showrr 'that partial as \VeU as total orderings of 

taat<a- and events cart be achteved throtlgh-~ the uae 'of tfte e\1enf coupled 11st, which 

Introduces forks Into the control flow graph. A method for recursively constructing 

a llutttf,1e Pf10rltY ktvet' 'Cenl'tOt · ftttlCttJNJ of· fhe· :tradftlonat 'fype Is· 'gtveri~ . The dis

tinction- ia -made betWeen· Ii controt·'structute Which atipports •·· processor priority 

and one W9'1c:h astuany ttaa:t,nfy a'·slngte fhet· of ~•f•ven though there may 

be a set of several . fnt8rruptirist events which are. ordfW'ed aliloWO themselves. It is 

shown that ··wtilhl In generaf the need for ttn lyf,Et of coritrof sttucttire Its percelved 

to be stn,noest 'In situations where representatton of periodic evel"lts 'anti task exe

cutions prevalls,. ap'ertoit6 control 111:ructurea· :.,.i repreffirtabte: • 1-fo\river, a true 

tree-shaped Jntert"lipt' 1istructure cartnot 0be cctdevid due to'ffi., tr4nsltlvlty:·of the, 

"Pr•emptst' relation~ tn adffltlon, while Iteration can 'be '&Jiplled to any closed or 

basic- control structure, a back are cannot' orlgtnate:'fi\:Jni' the lhfddte of one event 

coupled lltt'and tetflllnMe hf·ttte ihfddfe oaf another:'.• this Is hat felt to 'be a serious 

reautotlon, ·howeVer-;- 8lftce) ft ht llkety that g~ of "tilake In 11:'tlubcorrt:rol structure. 

are related and expected to be executecf'aa a ,t,t6ct,.? 

The second half of -the thesis concentNtes on describing the sorts of real-time 

properties which may be of Interest to a ueer of any . reaf¼ttme syitem, and :demon

strattna how they can be llieaaured for C011tl'Ol 11tructurea: ·rep;esentable u~Hrig the 

notatlan •presented here. Th& worst case fat.hey 'of a cdfffltra1nt Js found; 'to be a 

property MIOSe -detenntnatlon Involves conq:;utatlon of ·several other . properties as 
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subroutines. The difficulty of finding "1, upper,. bound .on t.a~, ex~ tllle Is -cMe

cussed. although without this knowledge It Is doubtful that much f~:,~ Of 

value coulct be performed. AdditJ,.m411)' • . ~.on.the ~ -~ -1,.._ period 

for each even_t are ne~4ed~ 1he algorith~,,r~t re~Jlp, ~ If-._. tMftoda 

are not known, It wlll _J)e dlfflcult to f(){~ , • .,.~ ~09' for :the convol 
' - . . - - . ~ 

structure. 

Next several algorit~- fQr PUil~Rq a.t~• V♦ -Velo.Ped. .... ~ a 

larger set of contrQI s~cture types. up to•~•.,_,~,~ - enUre,.--buk: 

framework of sequencing. . .Iteration and preemP#Pf1. }.ilon9 ,.\he 't'-flYa Jt ia etJOWII how. 
- -

to determine If a r~J>OllS• time might be. k\ffnit._ andJt ": ._,..,,.. UJ&t tbjs la done . . . - -., . 

before atte{llptlng to ~ ,my of the ••~· .~ ~ ~ va,iaus time inter

vals. A_n algorithm is given which ~ the-~ of ,U. due.to preenaptlon if 

the set of preetN>tlng ,ven~ la static. &Qd 1W. u.sioSJ 4t It la ,tlhewa, haw. to detennlne 

the latency of a constraint ~tAl.r,ed .IJI a .P~--Oa,8~,§tr.uctufe, and the 

wor,t case initiation delay for an even~ at • ,eiven pricarity .ktveL - The worst case 

assumed here Is the occwrence at the ~-of ~ lnt._t\Y-at.of -all inte,,rupta. 

and their reQCcurrence at.th«tk lndl~aJ ~lC:II\IJtHJJ. ~ ~. _...a190rltlHn la. 

also given whlctt detenalne4_ preemp~.~Jf __ ... •-•·•~ ~- le kllOWll 

at the beginning of the Interval belqg ,me-.~• 

The enacts on the~• alQ<Klthms of -adding ~ atruotv,p,o.ontaining. -.ch of 

the restricted Items of. Sec~n 5.4 is ~~, ,~ •tttti.gatlQA.Ja_ ~ · 

here to '1ncover the detaila of tba proble"s ~~h •• ~ out •. _ .Another ...,.,u, _ 
thing would be to devak)p analyses bNed on & prol;)ablletic ~ reU..r. tlMm: on 

the worst case; e.g., what Is the prob~ that • given oc;JQatraiQt wHI have a la-
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tency of no more than n seconds? Flnally, an Important result would be the 

development of a general algorithm which could determine t!'le latency for any of 

the representable control structures •. The .~ of $1Ch a teak :should not be 

underestimated; Indeed, In the words of Niklaus Wirth: 

It does not appear feasible at this time to postulate any generally 
valid and at the same time practically useful rules for the de.termi
nation of execution time bounds for sys~ using proc::essol shar
ing. [Wirth 77b] 



Appendix A: Su111mary of BIIF for ~-- COlltf'OI Stnieturea 

<oontrol structure> ::= <basic cs> I <closed cs> I <iterative cs> 

<ta• tc:t> ::= <letter> I <tastt id> <afph&numeric> 

<letter> ::= A I 8 I C I ... f Z 

<alphanumeric> ::= (letter> J <dlQJt> 

(diglO : := 0 I 1 I 2 I ... f 9 

<basic cs> ::= <task> I <basic cs> • <task> I <basic cs> 1' 

<task> ::= <task id> I <non-preemptible tid> f <abort tid> 

<closed cs> ::= ( <basic cs> ) I ( <preemptible cs> ) I ( <closed cs Hat> ) I 

( (closed cs> <preemptible cs> ) I ( <closed cs> <basic <;a) ) I 

( <restart cs> ) I <non-preemptlble closed cs> I <abort cs> 

<closed cs nst> ::• <closed cs> I <closed cs Ust> <closed cs> 

<Iterative cs> : := <basic cs>• J <closed cs>• I (basic cs> <Iterative cs> 

<preemptible cs> ::= <control structure> / <event Hst> I <codestrlpped cs> 

<event var> ::= e<tnteger> 

<Integer> ::= <digtO I <integer> <digit> 

-106-



<event list> : := <event var> I ( <event 'coupted list>) I 

( <event coupled list>)• 

<event coupled Hat> ::• <event var>: <control structure> I 

<event coupled fist) tr <event vat>t (control structure> 

<non,-preemptlble tid) ::• t<taak> I ·c<ev lleO}<tnk> 

(ftOn-preamptlble closed cs> :i• '<cloeec:l'ca> j '{<ev list~?<c,OSed cs> 

<av llat> ::• <event vat> I <ev Hst>,<event var> 

<abort tld> ::• e<taak> I 9(<ev list>)<task> 

(abort ca> : :m •<81Necl ce> I 8{<av Ust>}<erosed cs> 

<restart ca> ::• > <kale cc> I > (<av flat>) <bftlb cs> 

(codestrlpped cs> ::• <basic cs> / <integer> 
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