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MANAGEMENT OF OBJECT HISTORIES IN THE SW ALLOW REPOSITORY 

ABSTRACT 

SW ALLOW is an experimental distributed data storage system that provides personal computers 

with a uniform interface to their local data and the data stored in shared remote servers called 

repositories. The SW ALLOW repositories provide reliable, secure, and efficient long-term storage 

for both very small and very large objects and support updating of a group of objects at one or 

several repositories in a single atomic action. The repositories support, with some minor 

modifications, the object model developed by Reed [REED 78). 

The core of the repository is stable append-only storage called the Version Storage (VS). VS is the 

only stable storage in the repository. It contains the histories of all objects in the repository and all 

the information needed for crash recovery. It is assumed that VS wilt be implemented with write

once storage devices such as optical disks. The upper 2n words of VS are kept in the Online 

Version Storage (OVS). Techniques similar to real-time garbage collection are used to keep the 

current versions of frequently used objects in OVS. Two different policies for retaining current 

versions of objects in OVS arc investigated; the actual implementation further depends on the type 

of storage devices used for OVS. 

A critical concern addressed throughout the design of the repository is recovery from system crashes 

and storage device failures. The crash recovery of the repositories is based entirety on the 

information contained in VS; VS is scanned sequentially, starting from its current end, until all 

objects histories have been reconstructed. The recovery can be distributed over time, such that the 

recovery process is invoked for one object at a time, as individual objects are accessed. The same 

mechanism is used to recover commit records, which are data structures that record the state of 

atomic actions and group together the objects to be updated in a single atomic action. The 

implementation of commit records in the repository guarantees that all updates made by a specific 

atomic action are either all completed or all undone, regardless of failures. Further, interrupted 

atomic actions can be continued from the point of interruption, without any additional (backward) 

recovery. 
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MANAGEMENT OF OBJECT HISTORIES IN THE SWALLOW REPOSITORY 

SW ALLOW is an experimental project that will test feasibility of several advanced ideas on design 

of object-oriented distributed systems. Its purpose is to provide reliable, secure and efficient storage 

in a distributed environment consisting of many personal machines and one or more shared 

repositories. The objectives and the overall structure of SW ALLOW are presented in [REED 80); 

the major components of the SW ALLOW system are shown again in Figure L 

Each personal machine runs a subsystem called a broker that interacts with the manager of the local 

storage device and the remote repositories; this broker implements a uniforn1 interface to all objects 

accessible from the personal computer. The repositories provide _stable, reliable, long-term storage 

for untyped objects. They must handle efficiently both very small and very large objects and 

provide mechanisms for updating of a group of objects at one or more physical nodes in a single 

atomic action. 

This report discusses the organization and management of the repositories in the SW ALLOW 

system. The repositories support, with some minor modifications, the object model developed by 

Recd [REED 78). This model provides the basis for synchronization and recovery in the 

implementation of atomic actions. The main features of Reed's object model are outlined in 

Section l; however, the material presented in this report assumes a much deeper knowledge of 

Reed's work. 

1. Object model 

An object can be viewed as a history of all the states assumed by the object since its creation. Each 

distinguishable (abstract) state of an object is represented by a special immutable entity called a 

version. In addition to having a value, a version has a time attribute that specifies its range of 

validity. lbe range of validity of a particular version is the time interval in the history of the object 

during which the object was known to be in the state represented by the version. Each version 

delimits the range of validity of the preceding version. All operations on objects include an implicit 

parameter, a pseudo-time, which specifies the exact point in the object's history to which this 

operation refers. A read operation selects a version that has the highest "start time" that is lower 

than the pseudo-time p specified in the read request. If the "end time" of that version is lower 

than p, it is extended to p. A write operation creates first a token, which has to be explicitly 

committed to become a version. The start time of that version is the pseudo-time specified in the 

write request. A token can be later discarded, thus returning the object history to the state that 

existed prior to the execution of the write operation. 
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The object model supports construction of atomic actions. An atomic action is a control abstraction 

that guarantees the following: 

i. atomic actions are mutually exclusive, that is, operations performed as part of one atomic 

action cannot see or interfere with the tokens created within a different atomic action, and 

ii. the tokens created as part of the same atomic action are either all committed (converted 

into versions) or all aborted (removed from the object histories). 

Associated with an atomic action is a pseudo-temporal environment and a possibility. Alt operations 

performed within an atomic action are assigned pseudo-times from the same pseudo-temporal 

environment; the pseudo-temporal environment is a mechanism for making atomic actions mutually 

exclusive. A possibility is a group of tokens created by a specific atomic action. The possibility 

mechanism guarantees that only the atomic action that created the tokens can read them and that 

the tokens are either alt committed or all aborted. 

Possibilities are represented by commit records. A commit record is a data structure that records 

the state of a possibility and keeps track of what entities arc dependent on the outcome of the 

possibility. A commit record is created with the possibility state set to unknown. When an atomic 

action completes successfully, the possibility that represents it is committed and the possibility state 

in the commit record is set to committed. If the atomic action is aborted, the possibility state in the 

commit record becomes aborted. The commit record includes a list of references to tokens created 

by the atomic action. Also, each token contains a reference to its commit record. 

Construction of atomic actions is controlled by the brokers. This includes generation of the pseudo

temporal environment for atomic actions and creation and commitment or abortion of possibilities. 

The tokens in the same possibility can be created by different brokers; thus the commit records are 

shared data structures and must be in some repository. The repositories therefore must implement 

two abstractions: the object histories and the commit records. The fo11owing are the operations that 

can be requested by the brokers to be performed by the repositories. (Although the requests are shown in 

the form of procedure calls, this does not imply that a remote. procedure call type of protricol will be used [LAMP 79). 

Also, the lists of parameters as shown are not n~rily complete. Specifically, instead of a general acknowledgement, 

the repository will return enough information about the request and its result to make the response self-identifying. If 

the requested operation cannot be performed. the repository returns an error m~ge.): 

Requests that pertain to object histories: 

create (pseudo-time, commit-record-id) returns (object-id) 

read (object-id, pseudo-time, commit-record-id) returns (value) 
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create-token (object-id, pseudo-time, commit-record-id, value) returns (ack) 

delete (object-id, pseudo-time, commit-record-id) returns (ack) 

Requests that pertain to commit records: 

create (timeout) returns (ack) 

test (commit-record-id) returns (commit-record-state) 

commit (commit-record-id) returns (ack) 

abort (commit-record-id) returns (ack) 

Additional operations on commit records must be supported in order to implement possibilities that 

involve objects in more than one repository (distributed possibilities); these operations, which can be 

requested only by a repository, will be discussed in Secion · 5. 

1.1 Representation of object histories 

In Reed's original model, there may be time intervals in the object history that do not have 

corresponding versions (Figure 2). A new version can be created belatedly in any such time interval 

(by creating and committing a token), or the interval can be diminished when a request to read the 

value of the object at a time point that falls within this interval is executed. The latter action 

extends the validity range of the immediately preceding version, up to (including) the pseudo-time 

of the read request. Both of these forms of "eduction" have to be accomodated in the object history 

representation. 

Figure 3a shows a linked list representation where the range of validity and the state of the version 

(token/committed) is physically a part of each version representation [REED 78, REED 79]. An 

alternative representation is to concentrate the various information about versions, including the 

pointers to the actual values, in a separate data structure which becomes a part of the object header 

(Figure 3b ). The main problem with the first scheme is that the entities that represent versions are 

not immutable. The range of validity changes as versions are read. Also, if a new version is inserted 

into a gap, the "next version" link of the version that follows the new one in time must be changed. 

Similarly, if an action that produced a token is aborted. the token must be discarded, that is, the 

token must be removed from the history by destroying the pointer to the token. Another 

disadvantage is that if an operation refers to an older part of the history, it is necessary to inspect all 

newer versions to find the appropriate version (or gap). The other scheme (b) leads to more 

complicated storage management The size of the object header varies from object to object and 

changes as new versions are created; also, since it must be possible to insert new entries anywhere 

in the version list, a simple array representation is not possible. Second, the number of versions in 
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Token x2 was created after version V 3 and token X 1. Version V 3 was committed recently, but has 
not had its state encached yet. Reading the object at time t1 will return the value of version V1. 
Reading the object at time t2 will return the value of version V 2, after extending the validity of this 
version (end time le) to t2. Attempts to read the object at time t3 and t4 will result in a wait. 
pending commitment or abortion of tokens X2 and x1 respectively, unless the read operation is 
requested from within the same possibility under which the token was created. 
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an object history may grow very large, and old versions must be removed from online storage. If 

the stored versions physically contain the validity range and linking information, this information 

will be purged from online storage automatically with the old versions. If the list of version 

references is kept in the object header, it may have to be pruned separately. 

It is highly desirable to represent versions by immutable storage entities. Perhaps the strongest 

reason for this restriction is that it is much simpler to design mechanisms to ensure integrity of 

stored versions. 

One of the main functions of the repository is to provide very reliable storage. This means that the 

physical storage must be stable, that is, the infonnation stored in it must not decay over time. In 

addition, it is necessary to ensure that information written to i~ is either written completely and 

correctly or not at all, that is, that the operations on stable storage are atomic. Since no physical 

device provides storage with these properties, the atomic stable storage must be implemented as an 

abstraction, using hardware components with less desirable properties. In particular, atomic stable 

storage must be designed to tolerate processor crashes during write operations and decays of the 

storage media. This is accomplished by writing the data twice, into decay-independent sets [LAMP 

79). 

An operation that is most difficult to perfonn atomically is an in-place update of stored information. 

An atomic update means that either the content of the updated entity is changed into the new 

value or, if the operation fails, the value of this entity is left unchanged. That is, atomicity 

guarantees that a stored entity is never left in an inconsistent state where the old value has been lost 

and the new value is incorrect. To perfonn an atomic update, the two copies of stored information 

in the decay-independent sets must be changed strictly sequentially, i.e. the first write must 

complete successfully (correct data written to correct address) before the second write is initiated. If 

the storage model does not have to support an update operation, the problem of atomicity is 

simplified. It is still necessary to have two copies for stability, and the ability to detect and correct 

bad writes, but the two writes into the two decay-independent sets can be done concurrently. 

A second strong motivation for choosing an immutable representation for object versions and tokens 

is the possibility of using optical disks, which are write-once storage. The given object model will 

require a large amount of storage. Thus, it is important to utilize storage devices that are: 1) 

inexpensive, 2) easy to store offline. To provide fast access to old versions, a random access device 

is needed. Optical disks look promising in all these aspects. 

To satisfy the immutability requirement with the present object model, it would be necessary to use 

the scheme of Figure 3b. However, it will be shown that with a minor modification to the 
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conceptual object model it is possible (and better) to include most information about versions in the 

version representation. 

1.2 Modified object model 

If we al1ow insertion of new versions in an arbitrary place in the list, the information about the 

ordering of the existing versions (the physical pointers to stored versions) must be kept in storage 

that allows multiple (unlimited) writes. In addition, the "end time" information for each version 

has to be kept in such storage, since it must be changed when a version is to be read at a pseudo

time greater than the current end time. Another possiblility would be to completely rewrite each 

version every time its end time must be extended and when a new version is inserted after it, but 

such a scheme does not seem practical. 

Let us constrain the conceptual model such that when a new version is created, the end time of the 

previous version is extended to close the gap. This_ means that new versions can be inserted only at 

the "current" end of the list. Also, each object can have at most one token. Actually, an object could 

have multiple "dependent" tokens at the "current" end, as it is done in Takagi's scheme [f AKA 79). This possibility will 

not be investigated in this report. However, with the exception of the current (latest) version and the 

token, the end time of a version can be derived from the start time of the next newer version and 

thus does not have to be included in the version representation. Consequently, an object history 

can be represented by a fixed-size object header and a growing list of immutable entities that 

represent the versions. 

The data stmctures needed to represent an object history are shown in Figure 4. The object header 

contains a reference to the current version of the object and the end time of the current version. 

This time is updated every time the current version is read past its end time. The object header also 

includes a token reference that is either null if the object does not have a token or it contains the 

physical address of the current token. One reason for including both the current version reference 

and the token reference in the object header is that it is simpler to discard a token (remove it from 

the object history) when the atomic action that created it is aborted. However, having both of these 

references in the object header L crucial to the storage management, as will be seen later. Tokens 

can be read from within the atomic actions that created them; each such read extends the end time 

of this future version. Since the end time of the current version should not be automatically 

extended up to the start time of the token until that token is actually committed, it is necessary to 

keep track of the end time of the tokens as well as the end time of the current versions. It should be 

kept in mind that the current version end time and token end time in the object header are pseudo-times that do not 

necessarily correspond to real time. Finally, a reference to the commit record for the current token is 
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contained in the object header, although this is only an optimization, since this infonilation is 

present also in the token. 

The data structures that represent the versions arc called version images. A version image contains, 

in addition to the "value" field, the "start time" ls, a reference to the immediately preceding 

version, the uid of the object it represents and a reference to the commit record for this version. 

The last two items are needed for recovery, as wiU be explained later. The time 1s specifies the 

beginning of the time interval in the object's history represented by that version. Again, ts is not the 

real time when the version image was created, but the pseudo-time specified in the request to create a token. 

It is important to make a distinction between versions and the representation of versions, that is, the 

version images. A version is a logical concept; it is the value of the object during a specific interval 

in the object's history. A version image represents either a version or a token; to determine which 

of these two it represents. it is necessary to inspect the object header or the commit record specified 

in the version image. Several copies of a version image may coexist in the repository. Since versions are 

immutable, this does not cause any synchronization problem. Also, a version· image may remain in the 

repository although it no longer represents a valid version. Thus to discard a token when the action 

that created it is aborted, it is sufficient to set the token reference field in the object header to null. 

In addition to eliminating the need to include mutable data structures in the version representation, 

the modified model also eliminates the need to perform a write operation when an older version is 

read. The lost ability to leave regions of the object's history undefined and create versions in such 

regions later does not reduce significantly the power of the object model. In most situations, an 

object that is to be updated is read first, and it is desirable to extend the end time of the read 

version up to the start time of the new version to ensure that the object has not been changed after 

it was read. 

1.3 Implementation issues 

A crucial problem is to find an efficient and reliable scheme for mapping object histories into 

physical storage. The two structures used to implement object histories, the object header and the 

list of version images, require different models of storage and different management policies. 

Object headers are mutable and therefore must be kept in storage that allows modifications of 

stored information. The version images arc immutable and thus can be stored in write-once storage. 

In addition, the reliability requirements arc different. 

The main issue in the implementation of the lists of versions is storage allocation and management. 

Giving each object a section of consecutive physical storage locations for its entire history is clearly 
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infeasible. Rather, it seems natural to view the version storage as a history of creation and updates 

of all the objects in the repository. Section 2 develops a model of the version storage as an infinite 

append-only file. Since it is infeasible to keep the entire version storage online, the online portion 

of the version storage must be "reusable", that is, it must be possible to free it for newer version 

images. This problem is studied in more depth in Section 3. That section addresses also the 

problem of the assignment and management of the physical storage devices used to implement VS. 

The role and management of object headers is discussed in Section 4. It is too expensive to 

immediately reflect all changes to an object header in stable storage. Therefore, the object headers 

are viewed only as hints that may be destroyed by a processor or storage device failure, but are 

reconstructable from the information contained in the version images. That section also addresses 

how objects are located and how concurrent requests for the same object are synchronized. 

Section 5 discusses the implementation and management of commit records. Commit records are 

special data types provided by the repository, but are ultimately mapped into the same object model 

as other data. For possibilities that include objects in more than one repository, commit record 

representatives are added to the model. 

Recovery issues are addressed throughout this report, but the major step, the reconstruction of 

object headers, is described in Section 6. Finally, Section 7 presents a summary, including a list of 

issues that must be studied in more depth. 
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2. Version Storage 

The core of the repository is the Version Storage (VS). Abstractly, VS is an infinite append-only 

tape. VS stores information as s~ble immutable entities. These entities will be called VS images. 

A VS image consists of two fields: the data field. which at this level is simply an uninterpreted 

sequence of bits, and the size field. VS is the only stable storage in the repository. It will contain 

all versions of all objects in the repository. In addition, all the information needed for a crash 

recovery must be stored in VS, as immutable VS images. 

Version images, as described in Section 1.2, are contained in the data field of VS images. That is, 

for storage in VS, an envelope that contains the size field is added (Figure 5). The version 

references in individual VS images as well as the current version reference and the token reference 

in the object header are directly the addresses of the representing VS images in VS, Avi· The lists 

of versions representing histories of different objects are intertwined in VS; their ordering in VS is 

determined by the relative frequencies of updates of individual objects. And to some extent also by read 

activities, as will be seen later. 

Since VS may grow arbitrarily large, it is infeasible to keep it online in its entirety. The issues of 

what information should be kept online and how the onlinc storage is to be managed are discussed 

in Section 2.1. Section 2.2 is concerned with the transfer of data between the primary memory and 

VS. Small objects (version images of small objects) must be packed into buffers while large objects 

have to be partitioned into smaller pieces. Finally, Section 2.3 discusses some problems with the 

mapping of the VS address space into the physical address spaces of the used storage devices. 

2.1 Online Version Storage 

Only a fraction of the information contained in VS can be made available online. One approach is 

to add a special kind of cache for the current versions of all objects. The most straightforward 

policy for controlling the use of such a cache is to replace (overwrite) the version in the cache when 

a new version of that object is created. However, this new version may never be committed; when 

it is written into the cache, it is only a token. Alternatively, the cache could be assigned to contain 

the latest committed version of each object and the tokens. When a token is committed, the other, 

now old, version would be deleted and the freed space reused. Since version images can vary 

greatly in size, the cache storage would become fragmented and it would be necessary to do 

recompaction or garbage-collection. lbis problem arises even if tokens are allowed to overwrite the 

committed versions in the cache, since subsequent versions of an object can have greatly different 

sizes! Another unpleasant aspect of this form of caching is that there is no easy way to deduce the 

location of a version images in the cache from its address in VS and vice versa; thus two addresses 

12 
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have to be remembered for each version image in the cache. 

Instead of using a cache, the Online Version Storage (OVS), that is, the portion of VS currently 

available online, will be the most recent 2n words of VS. OVS will be implemented as a circular 

buffer, as illustrated in Figure 6. Mark ME will be used to specify the current end of VS on the 

device that serves as OVS. New version images are created always in OVS, but for read requests, it 

is necessary to determine if an image of the specified version exists in OVS. Such a check is very 

simple: if (AE - Avi) < = 2n. where AE is the VS address of ME, then the version image is in 

OVS, and its address in OVS is (Avi mod 2n). 

OVS shall contain the version images created during the interval (1c·T, tc> where tc is the current 

time and T is determined by the speed with which the available online version storage fills up. 

Unfortunately, since versions of different objects are created at different rates even the current 

versions of some objects may disappear from OVS. To make sure that all or some objects (for 

example, those objects that are read frequently) retain their current versions in OVS, it is necessary 

to copy version images in OVS, and consequently in VS. 

To preserve the current versions of objects in OVS, it is not sufficient to copy just the immediate 

current versions when the time comes to reuse the respective fragment of OVS space: the tokens 

have to be copied too. But, if an object has a token at the time the latest image of the current 

version is to disappear from OVS, it is still necessary to copy the current version, since the token 

later may be aborted. 

When an image of a current version or a token is copied, the appropriate reference in the object 

header must be changed. But if an object has a token, a reference to the current version appears 

not only in the object header, but also in the token. Since the tokens are to be immutable, the 

reference to the current version embedded in the token cannot be changed; it will always refer to 

the version image that represented the current version at the time when the token was created. 

Fortunately, the fact that the reference in the token is not modified does not lead to an error. If the 

token becomes a version image, the reference to the copied version, which existed only in the object 

header, is replaced by the referei.ce to the version image of the former token. The copied version 

image in OVS is effectively lost, but the object does have its current version in OVS. If the token is 

aborted, the current version is found in OVS as it should be. 

To summarize, as a consequence of the copying, VS may contain many version images that 

represent the same version, but only one of these images is accessible by following the chain of 

pointers in the object history. The other images use up storage, but do not have an adverse impact 

on the implementation of the object histories. 
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A more detailed model of OVS will be presented in Section 3. Two different policies for retaining 

version images in OVS will be investigated: one policy is to keep the current versions of all objects 

in OVS; the other is to keep in OVS only the current versions of those objects that have been used 

in the recent past. The actual implementation of these policies depends further on the type of 

storage devices used. 

2.2 Transfer or data between primary memory and stable VS 

The repository has to handle efficiently objects of greatly varying size, from very small ones (< 100 

bytes) to very large ones (> 100 Kbytes). It would be very expensive to write small version images 

into VS individually. Because of the constraints of the communication network and protocols, very 

large objects will be sent to the repository in pieces; it would be ~ery expensive if not impossible to 

buffer very large objects in primary memory. 

Thus, prior to creating new versions of objects in VS, it is necessary to: 

1. pack small version images (tokens) before writing theID to VS 

2. fragment large objects before writing them to VS. 

For easier management of VS (mainly for faster VS address resolution and object location), it is 

desirable to allocate VS in fixed-sized blocks. 'Ibese fixed-sized blocks, or pages, are the units of 

atomic write into VS. Both the packing and fragmentation must take this into consideration. 

2.2.1 Packing or version images in VS buffers 

Let us first look at the packing problem. Basically, as tokens for new versions are created, their 

version images are placed into a buffer in main memory. This buffer consists of one or more pages. 

When a buffer page is full, it is written atomically into VS. However, there are two problems with 

this scenario. First, creation of a token is a commitment that, regardless of processor, memory, or 

device failures, if and when the possibility under which the token was created is committed, the 

token is in the repository, undamaged. Thus a creation of a token cannot be acknowledged until 

the token has been written into stable VS. This action is delayed by the packing process; since new 

tokens will not be created at a constant rate, on an occasion, it may take a long time to fill up a 

page. Thus, a timeout should be associated with each buffer page; if a buffer page is not filled up 

before the timeout, it is written into stable storage partially empty. 'Ibe filling of the buffer is sped 

up by the copying process which creates copies of old current versions and tokens at the "high" end 

of VS; these copies again are first written into the buffer. 

The second problem is what to do if a version image just created or copied does not fit into the 
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space remaining in the buffer page. Or, restated, the question is whether a version image should be 

allowed to cross a page boundary. Although such a provision would lead to a better storage 

utilization and a possibility to deal more flexibly with large objects, there are strong reasons for not 

pennitting it. Once split version images are permitted, almost every page will end with a split 

image, unless some restrictions are imposed in regards to how version images can be split. A read 

operation on a split image requires more than one VS access. Two vs accesses if the maximum permitted 

size of a version image is one page. Also, crash recovery would be slightly more complicated: since the 

repository may crash between the writes that involve a split image, the recovery algorithm would 

have to detect that the image is incomplete. The last consideration is that the buffer pages that 

contain parts of a split image have to be mapped sequentially into the VS address space. The 

alternative scheme described next will demonstrate the advantage of the lack of this restriction. 

If split version images are not allowed, it does not mean that the buffer pages have to be written 

into VS half empty. As already indicated, the buffer in the main memory may consist of several 

pages, or, better, at any time, there may be severa{ one-page buffers for VS in the main memory, as 

shown in Figure 7. The timeout for each buffer is set when the first version image is placed into 

that buffer. Now, new version images can be placed into any of the existing buffers, or, if no 

buffer offers enough space, a new buffer may be created, subject to a limit on the number of 

buffers allowed. If no more buffers may be created, one must be written into VS before the new 

version image can be placed. Since no ordering (precedence constraints) exist among the buffers, 

they can be written into VS in any order. Thus the VS manager may select the buffer which is 

most full, or the one which is closest to its timeout. That buffer is then assigned the next sequential 

VS page address. This means that the actual VS address of a version image is not known until the containing page 

is written into vs. The timeout associated with each buffer guarantees that no buffer will wait forever 

for a version image of the "right" size. 

2.2.2 Partitioning of large objects 

Large objects are partitioned invisibly to the brokers. However, this partitioning is not performed 

solely by the repository, but starts at the level of the communication protocols, since the amount of 

data that can be sent in a single packet is limited. If this amount is less than or equal to the page 

size in the repository, no further partitioning is needed; otherwise the data received in individual 

packets must be further divided. In either case, the fragments of an object (token) received in 

different packets can be processed and written into VS as they arrive; each fragment will become a 

separate version image. Since this partitioning is invisible to the brokers, a broker must always read 

or write the whole object, i.e., it is not possible to retrieve or to update only a small portion. This 

means that it should be sufficient to chain together the fragments of such an object and let the 
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object header point to the last fragment; it is not necessary to have random access to the individual · 

fragments. Unfortunately, if a version image that represents such a fragment of an object is copied 

by the OVS manager, it would be necessary to modify a pointer in the version image that represents 

the next piece, but this is impossible since the version images are immutable. On the other hand, 

since the whole object (object version) will be read, all fragments should be copied, and the 

embedded pointers can be modified as each fragment is copied. However, although the object 

header must point to the last fragment, the copying must start with the first fragment, otherwise the 

new VS addresses of the individual fragments cannot be determined. Actually, this also impacts the 

initial creation of a version of a partitioned object A version image of a piece k cannot be created 

until the VS address of the version image of the fragment k-1 is known; this again imposes 

precedence constraints on the set of buffers for VS. 

To overcome these problems, it is necessary to have a special pointer array. There are several 

reasons for not including this pointer array in the object header: as will be seen in Section 4, the 

entire object header must be reconstructable from the information stored in VS and therefore the 

images of the individual fragments would have to include additional information; object headers 

would have different sizes, and the size of a particular object header could vary over its lifetime; 

but the most serious problem is that this would necessitate reconsideration of how to represent 

object histories. What would be the meaning of the "previous version" reference in each version 

image? Different versions of an object can be partitioned in different ways, so there is no 

meaningful mapping between fragment k of one version and fragment k of the preceding version. 

Thus the pointer array will be stored in VS. In fact, it will look like a version image. This does 

not require any changes to the object header: the current version reference and the token reference 

simply point to images that contain the appropriate pointer arrays, as do the "previous version" 

pointers in each version image. A version image constructed in this way will be called a structured 

version image. The individual fragments referred to through this pointer array can be of different 

sizes. Both the VS image that contains the pointer array and the images of the individual fragments 

will be packed in VS buffers as before. 

Both for normal operations on objects and for recovery, the information whether a version is simple 

(represented by a single version image) or structured must be included in the version images 

themselves. It does not make sense, though, to propagate this distinction into the definition of an 

object, since the representation may change during object's lifetime: as an object changes size, 

individual versions may be either simple or structured. This can also happen because of changes in 

the tower level communication protocols (flow control). Also, it is superfluous to include all the 

information so far associated with all version images in those images that represent the individual 
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fragments of a structured object version. In fact, none of these fields is needed! Thus for 

representation of object versions and tokens, the repository should provide three distinct types of 

stable entities: 

simple version image: 

header of structured 

version image: 

data image: 

self-identifying; 

data field contains the actual data 

self-identifying; 

data field contains an array of pointers 

to data images 

interpretable only in the context of 

the appropriate structured version image; 

not used during recovery. 

Figure 8 shows a fraction of an object history that uses both simple and structured version images, 

and consequently all three types of stable entities just described. However, these distinct entities 

should be supported on a higher level of abstraction than VS; the stability is assured by mapping 

them into the same uninterpreted stable VS images. 

Use of structured version images does not impose any precedence constraints on the transfer of 

main memory buffers to VS. Of course, the header of a structured version image cannot be created 

until all data images of that version have been written into VS, since the VS addresses are not 

known until then. If such a version image is copied by the OVS manager, it is necessary to create a 

new header after all data images have been copied. Structured version images are substantially 

more expensive than simple version images, thus fragmentation should be used only when 

necessary. 

2.3 Mapping VS address space onto physical storage devices 

To ensure that the version storage is stable, all VS images should be written twice, that is, the entire 

VS should be duplicated. It can Je assumed that two separately controlled physical devices provide 

decay-independent sets from the point of view of physical failures of the driving hardware, e.g. head 

crashes. As discussed earlier, the two write operations to duplicate VS can be performed 

concurrently, thus the response time performance does not have to degrade significantly as a price 

for stability. 

In addition to ensuring stability of stored information, it is necessary to ensure that version images 

are written correctly into VS. The usual approach is to follow each write by a read and a test 
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operation. If it is decided (after possibly several read and test attempts) that the write was incorrect, 

the write operation must be repeated. However, if the physical device is write-once only, the 

repeated write has to write the data to a new address! This may happen even with devices that 

allow multiple writes to the same location, since some areas on a device may be faulty, and 

consequently a write operation to such a location can never succeed. This problem can be handled 

in two ways. One is to leave a "hole" in the VS address space. The other one is to mask the bad 

write on the device level by writing into an alternative address in an area specifically reserved for 

this purpose. In the first case, the correct VS address cannot be determined until after the write to 

VS has succeeded. This means only that the token reference (or the current version reference, when 

a copy operation is performed by the OVS manager) in the object header cannot be set until the VS 

write terminates, but this order must be upheld anyway. However, the duplication of VS creates 

an additional problem. The address of each of the two copies of each version image must be easily 

computable from the VS address. Thus, for a duplicated write if one write operation does not 

succeed, the other one must be invalidated also. Thus, the same "hole" (bad data) has to be created 

on both devices. This scheme, however, cannot support recovery from later decays. When it is 

discovered that some old version was damaged on one device, than in order to restore the 

redundancy for the future, it would be necessary to copy the entire device, but in this process. 

different bad writes may occur, and the two copies of that part of VS would be out of sync! Note 

that it is not possible to copy just the respective version image (from the other device), since then 

the entire "newer history" of that object, that is, the portion of the object history between the 

current version and the version represented by the defective version image, would have to be 

recreated. 

Thus, the chosen approach is to preserve the continuity of the VS address space. Each device must 

have a reserved area that provides substitute locations for data that could not be written into its 

correct address. There still may be "holes" on the device, but when such a hole is detected, the 

reserved area is searched for the missing data. Thus both write and read operations on VS may 

require several device accesses, but presumably the reserved area will be used only in rare cases, so 

the performance penalty should be low. However, the fact that the device manager decides that a 

write was unsuccessful does not guarantee that on a later read the same entity will be detected as 

bad. Thus, the device manager should explicitely mark (overwrite) the areas declared to be holes, 

in such a way that holes can be reliably detected in the future. 

Fina11y, it is necessary to address the problem of VS performance. The provision for maintaining 

the current versions online is only the first step. The performance of the repository will depend 

strongly on the performance of OVS, that is, on the speed of reading from and writing to OVS. 
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Since write operations are multiplexed with random read accesses, the low overhead of the 

sequential write (append) operations on VS is lost. However, the repository is shared, and thus 

there may be many outstanding read requests to different locations of the OVS device. The 

performance of the device (throughput) can be improved significantly if these requests are processed 

in an order that minimizes the positioning overhead. The most effective disk scheduling algorithm 

is to scan the disk in alternating directions, servicing requests in the order of their physical 

addresses. Several variants of the basic SCAN algorithm were developed and analyzed [COFF 73); 

however, since the address distribution of requests in OVS is not completely random, it may be 

possible to find a variant of SCAN that will perform better than these general algorithms. Also, a 

possible enhancement of the SCAN scheduling algorithm for the OVS device is to force a write of 

one of the VS buffers when the disk heads reach the current end of OVS (Mp). 

In addition to finding a suitable algorithm for the OVS device management, performance of VS can 

also be influenced by: 

i. assigning physical addresses to VS addresses 

ii. mapping VS access requests to physical devices. 

One possibility is to interleave VS, that is, assign consecutive VS blocks to different physical devices. 

This of course requires additional device drives. However, it is possible to take advantage of the 

duplication of VS. If both devices in this duplicated implementation provide fast random read 

access, a read request can be satisfied by either of the two devices and can be scheduled for that 

device which is more convenient (i.e., not currently busy, or needs less time to locate the requested 

version image). 
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3. Management of OVS 

The Online Version Storage is very important to the perfonnance of the repository. As presented in 

Section 2.1, OVS is an online address space managed as a circular buffer that contains the most 

recent 2n words of VS. If no version images must be copied, removal of old version images is 

accomplished by simply overwriting them as ME, the end of VS mark, reaches that part of OVS. 

However, if a version image must be copied to maintain the current version of the respective object 

in OVS, a rather unpleasant situation may arise: in order to write a version image for a new 

version, the OVS manager must copy one or more version images that lay ahead of ME to make 

enough space for this new version image. However, in order to make space for the copied version 

images, more space has to be freed. Such a "chain reaction" can be prevented if the OV~ 01anager 

looks ahead at which version images may have to be copied and• perfonns the copying before that 

part of OVS space must be overwritten. On the other hand, if the copying is postponed, it may not be necessary 

to copy an old version image of a current version physically, since it is approximately in the right place with respect to 

ME. but some storage may have to be wasted in return. Mc will be used to mark the copy point in· OVS. 

Mc specifies how far the OVS manager has cleared OVS for an immediate reusal, that is, no . 

version images need be copied before that part of OVS can be reused. (ME - Mc)mod 2n is then 

the amount of the immediately reuseable space. 

The main problem in managing OVS is how to detennine when a version image must be copied. It 

is clearly wasteful to examine every single version image in OVS as the copy mark Mc moves; most 

version images should not have to be copied, since the respective objects already will have newer 

versions. If this assumption does not hold, then this whole approach is wrong. Since the infonnation whether a 

version image represents the current version or the token of an object is embedded only in the 

object header, the decision process concerning what and when to copy should start at the object 

headers. 

In order to maintain the current versions of all objects in OVS, the objects should be ordered 

according to the time when their current versions were last written into VS. This approach is 

investigated in Section 3.1. In Section 3.2 the requirement that each object must have at least one 

version in OVS is relaxed; this leads to a much simpler implementation. In Section 3.3, 

management of OVS is reexamined and adjusted to an implementation with write-once storage 

devices. Section 3.4 looks at the implementation of OVS from the point of view of the number of 

device drives needed. 

3.1 Current versions of all objects maintained in OVS 

The general moving window scheme outlined earlier can be restated as follows. When more OVS 
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has to be cleared for reuse, the OVS manager will search for the object that has not had a new 

version image written into O VS for the longest time. The current version of this object will be 

referred to as the oldest current version in OVS. Let us call it X. Note that this is not n~rily the 

oldest current version in the repository, that is, a current version with the lowest creation time 1s· since that one may have 

been copied more recently. Let Ac be the VS address of Mc- Then Ax >= Ac, where Ax is the VS 

address of x, since by definition the portion of OVS "older" than the position of Mc has already 

been cleared. All version images older than X, that is, with addresses Avi < AX, can be deleted; 

this means that Mc can be moved to Ax (Figure 9). However, if Ac = Ax, it is necessary to 

copy X to the "newer" portion of OVS. 

The first problem is how to find X. First let us assume that all objects in the repository are 

ordered according to the time the last version image of their current version was written into OVS, 

that is, according to the VS address of the last image of their current versions. The OVS manager 

will maintain a sorted list of objects; let it be called COPYLIST. COPYLIST in fact would contain just 

pointers to the object headers. The object with the oldest current version in OVS is on the top of the 

list. When a new version image for some object is written into OVS, the object should move to the 

bottom of COPYLIST. Unfortunately, the new version image may, and in most cases will, 

represent a token. Since a token may be later aborted, it is not appropriate to move the object to 

the bottom of the COPYLIST at the time the version image for the token is created. Now, assume 

that an object has a token, and its current version will become subject to being overwritten if Mc is 

moved. The current version must be copied, again because the token may be later aborted. But 

what should be the relative position of the object in the COPYLIST after the current version has 

been copied? Since the version image of the token precedes the new version image of the current 

version, the position of the object in the COPYLIST is determined by the token. If the token is 

later committed, nothing need be done. If the token is aborted, the object must be moved to a 

position in COPYLIST that corresponds to the location of the current version in OVS. If the 

current version has not been copied since the creation of the token, no action is necessary. 

Finally, if the fate of the token is still undecided when Mc reaches the respective version image, 

the token must be copied, or, more precisely, the representing version image must be copied. That 

is, the OVS manager must al~•J look for the oldest token in O VS, as it clears OVS. 

To summarize, an object is eligible to move in the COPYLIST only when: 

1. its current version is copied or 

2. its token is committed or 

3. its token is aborted or 

4. its token is copied. 
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Figure 9: Release of OVS occupied by old versions. 

Since objects 1345, 2500 and 2483 already have newer versions, the portion of OVS between Mc 
and Mc' can be released without having to copy any version image. Note that the version images 
in the cleared storage are still accessible. 
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Let Acv and At be the current version and the token reference contained in the object header. 

Then Table 1 shows under what conditions the object does move in the COPYLIST. A graphical 

illustration for a simpler kind of COPYLIST will be found in Section 3.3, in Figure 11. If a nil reference (no 

token exists) is represented by a negative number, then to test for an existence of a token when the 

current version is copied, it is sufficient to test if Acv < Al' Thus, for any of the four kinds of 

events, the resulting position of the object in the COPYLIST is always detennined by the greater of 

Acv and At prior to that event 

event: 
object is eligible to 
move in COPYLIST 

current version 
is copied 

token is committed 

token is aborted 

token is copied 

Table 1: Management of COPYLIST 

condition: 
object is moved 
inCOPYLIST 

object has a token 

Acv< At 

At<Acv 

At< ACY 

result: 
position of 
the object in 
COPYLIST 
determined by 

At 

At 

Acv 

ACY 

The overhead of clearing OVS for reuse should be distributed over time. The OVS manager can be 

implemented as a demon process that runs concurrently with the processes that create and commit 

tokens. To maintain the amount of cleared OVS within specified limits, the demon is run when 

<Me, Mc> drops below the lower limit, and it goes to sleep when it has cleared enough space as 

determined by the upper limit. A large amount of OVS may be cleared in just one step, by 

jumping to the oldest current version or token in OVS. Thus it is quite possible that the amount of 

cleared space far exceeds the upper limit; many new version images may be created before it is 

necessary to run the demon again. The demon should not copy the oldest current version or token 

unless more clear space is necessary. If the demon stops at such a version, it may be that the next 

time it is run, the respective object will by then have a newer version, and thus no copying is 

needed. On the other hand, the demon may run into a situation when it must copy almost every 

version; this, of course, will not free any space. If this is just a local phenomenon, that is, the 

images of the current versions of some objects became clustered, the demon will eventually release 

enough space (unless none of these objects is ever updated again). Otherwise, it might be an 
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indication that the system is saturated. 

This scheme could be finely tuned to operate with a very small amount of cleared storage. This in 

turn means that multiple copies of a version or a token exist in OVS for only a very brief time 

interval; thus it is possible to achieve very good OVS utilization, in terms of the useful information 

stored. However, even if the entire COPYLIST could be kept in primary memory, the overhead 

of re-sorting the COPYLIST may be significant. This problem can be eliminated if a different 

policy for keeping current versions in OVS is adopted, as discussed in the following sections. 

3.2 Most recently used current versions maintained in OVS 

In the schemes described in the preceeding section, the OVS manager must maintain at least the 

current version of every object in OVS. This means that if T is the average time it takes to cycle 

through OVS, then the current version of an object that has not been updated for n-T will be 

copied n times. This represents a performance penalty that may be unnecessary, since some objects 

will not even be read for Jong periods of time, yet the OVS manager will keep copying them in 

OVS. To give a more specific example, in a reasonably busy repository, a 300 Mbyte disk used as 

OVS may fill up in less than a day. It is highly likely that many objects in the repository will be 

dormant for many days, weeks, or even months; copying them every day would be quite wasteful. 

The OVS management policy will be relaxed such that only those objects that had their current 

version actually accessed (read, or had a new version created) since 1c - T will be kept in OVS, 

where T is again the time it takes to fill up OVS. With this relaxation, copying of dormant objects 

is avoided. In addition, the copying process can be simplified. In particular: 

i. it is not necessary to sort objects to keep track of which objects must have their current 

versions or tokens copied as the OVS manager works on clearing OVS; the current versions 

and tokens can be copied as they are accessed, 

ii. no special demon process is necessary to clear OVS; clearing of OVS is automatically 

distributed over time. 

Let Mc specify again the copy point. If Mc = ME, (i.e., AE - Ac = 2n), an object will maintain 

its current version in OVS only if a new version is created at least every T time units. If AE - Ac 

< 2n, the version images of the current version and tokens that are in this portion of OVS will be 

copied in OVS when read. The bigger the distance between Mc and Me, the less frequently must 

the current versions be read to remain in OVS. An additional optimization is possible: if the 

version image to be copied is close to ME (mod 2n), then if one is willing to sacrifice th.e 
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intervening storage, such a version image does not have to be copied, since the storage between the 

version image and ME is in a sense already "cleared." 

A version (token) reference is resolved as before: if AE - Avi =::; 2n, the representing version image 

is in OVS. In addition, when a version image of a current version or a token is read, then if Avi < 
Ac, a copy of this version image will be created in OVS. To improve the chances that the current 

version is in OVS, at the time a token is committed, that version image should also be copied, if its 

address is lower than Ac- If a current version is not represented in OVS, the appropriate version 

image is retrieved from the offline VS and written at the current end of OVS. Thus current 

versions of objects that have not been read for a long time can be reinstalled in OVS with this 

simple mechanism. Finally, it would be possible to provide a simple "refresh" process for those 

objects that should always stay online. This process would periodically read such objects to force 

their copying in OVS. 

3.3 Adapting OVS management to an implementation with write-once devices. 

The two schemes presented in the preceding sections assumed that OVS is implemented with 

reusable physical storage, that is, tl,lat new and copied version images simply overwrite those with 

addreses lower than AE - 2n. This means, however, that the overwritten images must be preserved 

at some other device that is a part of the pennanent VS. Alternatively, the storage devices used in 

OVS can be the actual VS. When a device is filled up, it is removed and stored offiine, and a fresh 

device replaces it. Since the devices are written only once, VS can be implemented entirely with 

optical disks. Unfortunately, the fine tuning, which is the major attraction of the schemes presented 

so far cannot be achieved when OVS is implemented in this way since the OVS space can be 

"reused" only by replacing an entire device. Rather, OVS should be viewed as being divided into 

fixed-sized partitions, where each partition corresponds to one physical device. 

To implement the same policy as the one used in Section 3.1, when the current versions of all 

objects are to be kept in OVS, it is necessary to have the minimum of three partitions. These 

partitions, called here LOW space, MIDDLE space, and HIGH space do not have to be of equal 

size, but for simplicity, let us assume that they are. Again, OVS will iJe managed as a circular 

buffer (Figure 10). When the MIDDLE space becomes full, all the version images in the LOW 

space will be purged and the spaces will be reassigned such that: 

MIDDLE 

HIGH 

LOW 

LOW 

MIDDLE 

HIGH 
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ME marks again the current end of VS in OVS; ME falls into either the MIDDLE or HIGH space. 

Mc points always to the beginning of the LOW space; it moves only when the spaces are 

reassigned. To ensure that each existing object will retain an image of the current version in OVS, 

it is necessary to find all objects that have their current versions in the LOW space. Copies of these 

versions will be created in the NEW space, which is free at the beginning of the purge of the LOW 

space. 

This scheme reduces the sorting problem into a tripartite sort. An object is logically mapped into 

the space which is the older of: the space that contains the last version image that represents the 

current version, and the space that contains the last version image that represents the token, if any. 

The conditions under which an object moves into a higher space are similar to those for the 

previous scheme. Let Scv and St be the OVS spaces that correspond to the addresses Acv and At at 

a given moment. An object is then mapped as specified by Table 2, where the ordering on the 

spaces is LOW<MIDDLE<HIGH. The possible changes in the logical mapping of an object into 

the three spaces are illustrated in Figure 11. 

event: 
object is eligible to move 
to a higher space 

current version is copied 
token is committed 
token is aborted 
token is copied 

Table 2: Mapping to OVS spaces 

condition: 
object is moved to a 
higher space 

object has a token and Scv<St 
8cv<8t 
8t<8cv 
St<Scv 

result: 
mapping of the object to 
OVS spaces determined 
by 

This OVS management scheme is not limited to an implementation with write-once devices. It is 

possible to take advantage of the simplified ordering on objects required by this scheme even if the 

physical OVS device is reuseable. 

If OVS is implemented with write-once devices, then although the physical storage capacity of OVS 

is 2n words, OVS does not contain the most recent 2n words of VS as before. This is because when 

the LOW space is reassigned as the HIGH space, the physical device for this part of the OVS must 

be replaced with a fresh one and thus the corresponding OVS address space does not contain valid 

version images. In fact, on average, 50 percent of OVS will be empty. This has to be reflected in 

the resolution of version references. Let us use another mark, ML, to identify the oldest valid VS 

image in OVS: ML will point to the beginning of the LOW space. In this scheme, ML is the same .as 
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Mc, but it will be different for the other copy policy, as discussed below. A version image is in OVS only if 

AL < Avi < AE-

If the management policy is to maintain in OVS only those current versions that have been actually 

used in the recent past, it is sufficient to divide OVS into two partitions, LOW space and HIGH 

space. When the current version of an object is read, the address of that version image, Acv• is 

used to determine whether this image is in the LOW or the HIGH space. If it is in the LOW 

space, it is copied into the HIGH space. New versions (tokens) are created always in the HIGH 

space, that is, ME maps always into the HIGH space. The copy mark Mc must point to the 

beginning of the HIGH space and the mark ML to the beginning of the LOW space. Again, if Avi 

~ Av the version image is in OVS. If a version image represents a current version, then if Avi < 
Ac, the version image will be copied. 

These schemes resemble real-time copying garbage collection algorithms. However, in the context 

of garbage collection, objects that are not copied into the HIGH space are irretrievably lost. Thus, 

any object to which there exists a valid reference must be copied. This would mean copying the 

entire histories of all objects in the repository. Thus although the bipartite (and tripartite) OVS 

model and copying of version images was borrowed from the work on garbage collection, the 

implementation details are significantly different. A copying "garbage collector" for large paged virtual 

memory that works in a similar way as the schemes presented here was recently proposed for the LISP machine, but the 

details have not been worked out yet 

3.4 Online support for VS 

As already discussed in the previous section, the physical support of OVS may be reusable storage 

devices that are maintained permanently online, or just "reusable" device drives, where the storage 

devices are replaced with fresh ones as they become full. The latter approach has the advantage 

that the entire VS can be implemented exclusively with optical disks. To implement the schemes 

presented in Section 3.3, one device drive is needed for each OVS space. When the LOW space is 

filled up, the device that contains the LOW space is replaced with a fresh device, and the replaced 

device becomes part of the offiine version storage. In particular, if the policy that only those 

current versions and tokens actually accessed are to be maintained in OVS is adopted, two drives 

are needed; an implementation of OVS that uses this management scheme will be examined in 

more detail. 

As said earlier, the entire VS should be duplicated for stability. However, since version images are 

created only in one space at any time, only one additional device drive is necessary, to duplicate this 

space. This duplicate is removed when that space is filled up, and replaced with a fresh device that 
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is assigned to the next space. 

Finally, if it is necessary to read a version that is not available in OVS, the respective device has to 

be found and brought online. This requires yet another drive. Figure 12 illustrates the 

implementation with the minimum number of device drives. 

To avoid long delays due to the manual replacement of the storage devices, it is necessary to add 

one more drive. Two drives arc used for the LOW and HIGH spaces as before, and two drives are 

assigned to VS backup, but the actual assignment of the drives changes as illustrated in Figure 13. 

Each OVS space is divided into two equal parts, and each part is mapped into a different backup · 

device. When the HIGH space is filled halfway, the backup device is full and the backup is 

redirected to the other backup device. The full backup device is replaced with a fresh device, and 

once the HIGH space is full, this device will become the new HIGH space; thus the drive is 

reassigned from the backup function to the "current VS" status. Basically, at any time, the 

assignment of the drives is: 

current VS: 

backup: 

LOW space 

HIGH space 

low part of HIGH space 

high part of HIGH space 

when the HIGH space fills up, i +- i + 1 

Di mod 4 

D(i+l)mod 4 

D(i+2)mod 4 

D(i+3)mod 4 

The same scheme can be implemented with a reusable device such as a conventional magnetic disk 

in the following way. Both partitions, the LOW and the HIGH space, can be mapped to the same 

device. As the spaces are switched, the LOW space is simply overwritten. Of course, it is necessary 

to ensure that the version images that will be overwritten will not be lost from VS. If we assume 

that all images are written twice for stability, the second copy could be made in nonreusable storage, 

thus guaranteeing that when the OVS device is reused, there does exist another copy of each 

overwritten version image in VS. However, this does not ensure future stability, since once a 

version image is overwritten in OVS, only one copy wilt continue to exist Thus if it is required 

that the copies of all images are maintained in VS, then either every image must be written three 

times when it is created, or, a copy of the LOW space must be made in nonreusable storage before 

the LOW space is reused. The latter looks like a better solution. In particular, as a fresh HIGH 

space begins to fill up, the LOW space can be copied onto another device (Figure 14). 

The minimum number of device drives needed is the same as in the implementation that uses 

optical disks only. Although OVS can be put now on a single device, two devices are needed for 
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backup. Finally, as before, an additional drive is needed to bring selected pieces of VS online when 

a reference to an old version that is not in OVS is made. 

The need to replace the backup device for the HIGH space creates again the problem of long 

delays. However, this problem can be resolved without an additional drive. If a "dump" of the 

LOW space to the backup device can be finished sufficiently fast, the backup device can be 

removed before the HIGH space fills up, and replaced with a fresh device which will become the 

next "current VS" device. When the "current VS" device is filled, the VS manager switches to the 

other drive which already has a fresh device mounted. Now a fresh backup device needs to be 

mounted on the other drive; it should be possible to perform this operation and dump the current 

LOW space before the HIGH space fills up again. Figure 15 illustrates the management of the 

device drives where the VS devices are twice the size of the reusable OVS device. To start this 

duplicated VS system, the first backup device will be partially empty, corresponding to the first dump of the WW space, 

which is initially empty. 

Although it is possible to save one device drive compared to the implementation that uses only 

nonreusable devices, the performance penalties for an interleaving of the normal operation of OVS 

with the dump of the LOW space could be severe. The only real advantage of using a reusable 

device for OVS is that it is possible to apply the more flexible moving window management 

scheme. 
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4. Management of objects 

An object in the DOSS repository is an abstract type. The operations allowed on objects are: 

create (pseudo-time, commit-record-id) 

read (object-id, pseudo-time, commit-record-id) 

create-token (object-id, pseudo-time, commit-record-id) 

commit-token ( object-id, commit-record-id) 

abort-token ( object-id, commit-record-id) 

delete (object-id, pseudo-time, commit-record-id) 

These operations are necessary to support the model described in Section 1. All of these operations 

are performed as part of some atomic action. A token can be read only by the atomic action that 

created it. Similarly, until the creation of an object is committed, only the atomic action that 

created the object should be allowed to create a token for that object The commit record reference 

field in the object header can be used also for this purpose. When an object is created, this field 

will contain a reference to the commit record of the possibility for the creation; if a token is created 

later under the same possibility, the reference does not change. When the possibility is committed, 

this reference will be set to nil, regardless of whether the object has a token. Then a token can be 

created only if: the commit record reference in the object header is either nil or is the same as the 

commit record reference specified in the create-token request, and the object does not already have 

a version for the specified pseudo-time. 

In addition to the external operations listed above, operations copy-cv (copy current version) and 

copy-token are needed for OVS management, but these are only internal operations, available solely 

to the object manager. Both the external and the internal operations must start at the object header. 

Objects in the repository have identifiers that are unique both in space and time; all requests to 

perform operations on existing objects must include the uid of the desired object. The repository 

must map the object uid into a physical address of the object header. The most straightforward way 

is to have an object directory; this issue will be discussed in Section 4.3. 

Since the object headers play such an important role, they should be stored in stable storage. 

However, the object header is updated twice for each update of the object (create-token and 

commit/abort token), and may be updated when the current version or token is read (extend the 

end time). Finally, the object header is updated when the version image of the current version is 

copied. The additional disk write for each update would represent a large overhead. Further, object 

headers should be updated in place, otherwise it would be also necessary to change the map that 
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associates the object uid with the object header address. Thus read-write atomic stable storage 

would be needed, which is more difficult and expensive to implement than the append-only atomic 

stable storage used for VS. In particular, the two writes must be done sequentially. Thus the 

decision is not to reflect all changes in the object header in stable storage; Section 4.1 discusses how 

the object headers will be stored. Finally, Section 4.2 looks at the problem of synchronizing 

concurrent accesses to objects on the level of object representation. 

4.1 Object headers 

The object headers are stored on a nonvolatile storage device that allows unlimited writes (e.g., 

magnetic disk). This device provides Online Header Storage, or OHS. Object headers are brought 

into main memory as needed, and the changes made to an object header do not have to be 

propagated into the copy in OHS until the main memory used by the object header is to be 

reassigned. Since the current object headers might not be in stable storage at the time of a 

processor crash or a device crash, they must be reconstructable from the information that is in stable 

storage, in particular, the information contained in the version images. Consequently, the object 

headers themselves become hints: they are not necessary to guarantee correct operation, but of 

course are very important for good performance. 

The object header as presented in Section 1.2 does not contain all control information that must be 

associated with an object. In particular, for accountability and protection, it is necessary to associate 

with each object the owner's id and access control specification. The access control information has 

to be checked for every remote request. It should be as easy to reach as the information contained 

in the object header; the simplest strategy is to include it in the object header. However, this 

additional information must be maintained in stable storage. The approach used so far, that is, 

inclusion of all such information in version images, is rejected for two reasons: first, it represents 

additional (and possibly substantial) storage overhead. Second, it is illogical to keep write permit 

information in read-only versions. To make it stable without having to maintain the entire object 

header in stable storage, the following strategy is proposed. 

The object headers are maintainej in OHS, but OHS is not stable (i.e., it is not duplicated). In the 

terminology of Lampson and Sturgis, OHS is careful storage. The object header consists of two parts, stable 

information and a hint, as shown in Figure 16a. When an object is created, and every time the 

stable information changes, the object header is created (updated) in OHS after a new image of the 

entire object header (that is, including the hint information) is written into VS. Finally, the object 

header should be written into VS when an object is deleted. The information that the object has 

been deleted has to be included in the object header; the access control specification field could Qe 
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used also for this purpose. Thus in addition to guaranteeing that this information will not be lost, 

the repository keeps a complete history of the changes of the access rights, which may be useful for 

auditing purposes. 

To create an image of an object header, the object header is simply treated as data, and the same 

fields (envelope) are added as for version images (Figure 16b). The CR reference in an object 

header image refers to the commit record of the possibility under which the object was created, 

deleted, or the stable information changed. Thus treating object headers in this way solves not only 

the stability problem but extends the mechanism for committing tokens to the rest of the operations 

that modify the state of an object. In addition, the object may have a token, which has its own 

commit record. 

The object header images in VS have to be distinguishable from the version images and data 

images: it must be possible to determine from the stored image itself that the data field represents 

an object header. Thus object header images represent yet another tagged type of entity that can be 

stored in VS, as shown in Figure 16c. 

The hint information is guaranteed to be current only in the main memory. Once in a while, it is 

written into OHS, and it is also possible to create periodically new images of object headers in VS 

as checkpoints. Note that the images of the object headers will not be continuously copied in VS, 

since in the normal situation the object headers will be read from OHS; the VS images will be used 

only during recovery. 

4.2 Synchronization 

The repository must be able to handle several requests concurrently, since most requests will require 

one or more disk accesses. Also, the demon process of the OVS manager runs concurrently with the 

processes that execute the requests. In some cases, it is also possible to process concurrently several 

requests that pertain to the same object. 

All accesses to individual object histories have to be negotiated at the object header; a single lock or 

monitor is needed per object. The most natural place for the tock is the object header. However, 

the tocks must be "soft", that is, must be automaticatly released by a crash, otherwise if the 

operation that set the lock was aborted by a crash, the object could remain locked out This can be 

achieved by allowing locks to be set only on the copies of the object headers in main memory, but 

this approach has a serious shortcoming. For easier memory management, objects should be packed 

in pages. Since it is not possible to "expand" the object header to add the lock when the object 

header is mapped into main memory, the object header must have a permanent "lock field". If 
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locked object headers are not allowed to appear in OHS, the pages of object headers in main 

memory have to be handled carefully: they must not be "write-through", and they cannot be 

automatically paged out by the virtual memory manager, at least not while some of the object 

headers on the page have their locks set. Further, it is not possible to force a modified object header 

into OHS while some other object header on the same page is locked. Alternatively, the locks for 

each page of OHS could be kept in a special data structure (a bit vector) in main memory. Since 

all object headers are of the same size, finding the appropriate lock given the OHS address of an 

object header is not difficult 

The "automatic release of locks" after a crash can be accomplished in yet another way: the 

recovery process can simply ignore the locks set on the surviving object headers in OHS, and clear 

the locks as part of reconstructing the object headers. This assumes that no normal processing is 

allowed on any object until the object header has been inspected by the recovery process; actually, 

as will be seen in Section 6, a read request that refers to a portion of the object history that is 

accessible from the surviving object header can be· allowed to proceed, in spite of the object header 

being still locked from the epoch before the last crash. 

The simplest locking policy is to lock the object header for the duration of each of the operations 

listed in the beginning of Section 4, but for maximum concurrency, object headers should be locked 

only for the shortest possible time. This corresponds to operations on the object representation that 

must be atomic. Locking guarantees only indivisibility in the absence of failures. Recoverability is provided by the 

underlying vs system. The individual operations on objects must lock the object header as follows: 

create: locking is not necessary since the object does not become known until the 

create operation terminates (returns object-id) 

read: 

create-token: 

find the appropriate version; if it is still a token, test if it can be read; 

change the end time if needed 

i. test if this token can be created; if yes, modify the object header to indicate 

that the object now has a token (note: the VS address of the token is not 

yet known) 

ii. set the token reference after the version image of the token has been 

written into VS 

commit-token: i. change the current version reference and the current version end time 

ii. clear the token reference and the related fields (the token end time and the 

commit record reference) 

abort-token: clear the token reference and the related fields 

copy-vs: change the current version reference 
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copy-token: change the token reference 

The copying of version images, however, could cause problems when interleaved with execution of 

the external operations, in particular, commit-token or abort-token: 

i. If commit-token is executed while the current version is being copied, the OVS 

demon could change the current version reference after it has been changed to point to the 

new committed token. 

ii. If commit-token or abort-token is executed while the token is being copied, the OVS 

demon could change the token reference after it has been cleared to indicate that the object 

no longer has a token. 

The latter is a lesser problem (on the first attempt to read such a copied token, it would be 

discovered that the token was committed and the object header would be properly reset), but it is 

still annoying. An additional problem arises if the "copy when read" policy is adopted (Section 

3.2). When a version image of the current version or token is read and found to be past the copy 

mark, the OVS manager will initiate a copy operation. Now, if between the test for Avi < Ac and 

the completion of the copy operation the same image is read again, it would be copied again! In 

case of such a read and copy it is particularly undesirable to lock the object until the copy operation 

is completed, since the requested version image may have to be read from the offiine VS. To solve 

this problem, two flags should be added to the object header: cv.copy and token.copy, to indicate 

that a copy operation on the current version or the token is in progress. Subsequent read requests 

can then proceed, but if the flag is set, the positive outcome of the Avi < Ac test will not start 

another copy operation. 

The copy flags are also useful in commit-token and abort-token operations. Before changing the 

current version reference or the token reference field, these operations should check the appropriate 

copy flag. If the flag is set, the conflict can be resolved in two ways: 

i. Wait until the copy operation completes. 

ii. Abort the copy operation; that is, prevent the OVS demon from changing the current 

version or token reference. Note that the particular version image (copy) may have already been 

written into VS or will inevitably be written if it is already in some VS buffer when the copy operation 

is aborted. However, writing it into VS will not do any harm, not even with respect to object header 

reconstruction after a crash. 

Note that the create-token operation does not have to be concerned with simultaneous copying. It 
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is impossible to copy the token before create-token terminates, and it does not matter whether the 

token refers to the old or the new version image of the current version. 

4.3 Object directory 

The object directory in a repository serves two purposes: it locates objects actually stored in the 

repository, and it serves as a forwarder if an object created in that repository is moved into another 

repository. For local objects, the directory contains the OHS address of the object header. For 

objects that were moved, it contains just the id of the new repository. 

If the directory of some repository is lost or damaged, an exhaustive search of all repositories may 

have to be conducted to find an object known to have been created in that repository. Thus it is 

desirable to keep the directory in stable storage. The simplest way to accomplish this is to represent 

the directory as an object, with a reserved OHS address. Since the directory will be large, it will 

have to be represented as a structured object 

The OHS addresses do not have to change during the objects' lifetimes: thus the directory must be 

changed only when an object is created, moved to another repository, or deleted. Still, even with 

relatively infrequent changes, creating a new version of the entire directory would be very 

expensive. However, it should be possible to take advantage of the implementation of structured 

objects: for each change to the directory, it is only necessary to create a new data image of the 

affected piece a~d a new structured version image that differs from the previous one only in the 

reference to the modified piece. Since the size of individual pieces can change, the necessary 

modifications can be kept pretty localized, even if the directory is represented as a sorted list or a 

tree. If an entry is added and the size of the affected piece exceeds one page, it is simply split into 

two pieces. 

Requests received by the repository must contain the uid of the desired object The OHS address 

of the object header is obtained from the directory. To improve performance it is possible to return 

to the brokers also the OHS addresses. These addresses can then be included in future requests, in 

addition to the object uid. However, they are merely hints, that is, it is not guaranteed that the 

particular object can still be found at that address when the request is received. Prior to accessing 

an object, the object manager would have to check the validity of the hint by testing it against the 

object uid in the object header. If the hint as received is invalid, a new hint can be sent back as 

part of the response to that request This kind of hint could be included also in the directory for 

those objects that were moved into another directory. 
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5. Management of commit records 

Repositories must implement another abstract entity -- the commit record. A commit record 

includes the state of the possibility it represents, a timeout, and a list of tokens (references to 

tokens) created under that possibility. Commit records are mutable entities: both the possibility 

state and the list of tokens must be modifiable. While a commit record is still in an unknown state, 

tokens can be added to (and possibly deleted from) the list in the commit record. Once the 

possibility is completed, the state of a commit record is set to committed or aborted and tokens can 

only be removed from the list. 

The list of tokens associated with each commit record is only an optimization; it is not needed to 

preserve consistency as required by the atomic action that created. the possibility. Each token refers 

to its commit record; thus whether or not a token can be converted into a version can be 

determined by inquiring about the state of the commit record specified in this reference. This 

process can be sped up with the help of the token list: when the possibility is committed or aborted, 

all local tokens can be committed or aborted immediately. Another optimization is that it is 

possible to delete the commit record once all of the tokens on the list have been processed. If the 

token list cannot be guaranteed to include all tokens created under that possibility, then the commit 

record must never be deleted, because there is no other mechanism to insure that all tokens are 

infonned about the final state of the possibility. 

In Reed's original model (REED 78], the commit record of a committed possibility is assumed to be 

stored in atomic stable storage until all tokens on the list have been reliably changed to versions. 

Commit records of uncommitted possibilities (aborted, or possibilities the state of which is still 

unknown) do not have to be kept in stable storage: if the commit record cannot be found, the 

possibility can be assumed to have been aborted. Unfortunately, when the recovery of the 

repositories is considered, the list of tokens in a commit record is not sufficient to determine when a 

commit record can be deleted. In the present model, the conversion of tokens into versions is done 

merely by changing the references in the object header, and, as discussed in Section 4, the object 

headers are not stable. As it will be seen in Section 6, for recovery purposes, it is necessary to be 

able to detennine the state of a possibility for a long time after all the tokens have been converted 

into versions. This means that committed commit records must never completely disappear from the 

repository; Section 5.1 presents a scheme that accomplishes this by representing commit records as 

objects. A consequence of the chosen representation is that the token lists need never be stored in 

stable storage. The fact that the token list docs not have to be stable simplifies also the 

implementation of distributed possibilities as discussed in Section 5.2. 
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5.1 Representing commit records as objects 

For stability, commit records can be mapped into VS. Since nothing ever disappears from VS, a 

commit record can be reconstructed even after it has been deleted at the level of abstraction 

implemented by the commit record manager. Commit records could be represented by yet another 

type of stable entity (similar to the object header image), or, they could be represented as objects. 

Implementing commit records as objects has the advantage that all externally accessible entities in 

the repository can be located and access to them controlled by the same mechanisms. On the other 

hand, the object abstraction needs to be extended to facilitate implementation of commit records, as 

will be seen later. 

There are several possible ways to implement commit records as objects. The following approach 

was chosen because it utilizes best the mechanisms already present in the object model. When the 

repository receives a request to create a commit record, it creates an object. The objects and tokens 

created under this possibility will use, as their commit record reference, the uid of this object. Since 

creation of objects also must happen under some possibility, it is necessary to supply a commit 

record reference for the object that will represent a commit record. Recall that this commit record 

reference appears in both the OHS image and the VS image of the object header when an object is created. Creation 

of a commit record can be committed immediately. Thus a simple solution is to set the commit 

record reference for a commit record object to nil, to indicate that such an object is implicitly 

committed. 

Each stable image of a commit record contains the state of the possibility. The commit record 

reference in the version image of an object representing a commit record is again nil. In this case, 

however, nil commit record reference does not mean that the version image is implicitly committed. 

Rather, such a version image refers indirectly to itself: the actual state of the possibility, and 

consequently of the representing version image, is embedded in the data field of that version image. 

It might be more suggestive to let the commit record reference in version images of a commit record refer to the commit 

record itself, but it is easier to test for a nil reference than to detect such a circular reference. 

As will be seen in Section 6, the \st of tokens associated with a commit record does not have to be 

stored in stable storage, since it is only a hint; it is not needed for recovery. If the repository 

crashes, all objects will be recovered individually by locating their latest version images in VS. In 

this process, the object manager will determine whether a version image represents a version or a 

token by inspecting the appropriate commit record; this must be done even for those version images 

that have earlier been determined to represent committed versions. Thus if the repository crashes 

after a possibility was committed but before all of the tokens have been converted into versions, it is 
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not necessary to resume or restart the conversion process since it will be finished automatically as 

part of recovery of the individual objects. The only reason for including the token list in a stable 

image of a commit record is to aid in error detection: prior to converting a token, the token list can 

be used to verify that this token is indeed part of that possibility. 

The representation of a commit record is shown in Figure 17. In addition to creating an object as 

the commit record representation, the create-commit-record operation creates also a token for that 

object. Then the waiting for the outcome of a possibility can be accomplished through the already 

existing mechanism: a process attempting to read the commit record object will find a token, and 

consequently the read operation will be delayed until the token is either committed or aborted. To 

commit a possibility, the commit record manager creates the last version image for the commit 

record object that has the possibility state in the data field set to committed; this is a committed 

version which also commits all the preceding tokens. Now, if the possibility is aborted, it should be 

sufficient to abort the tokens of the commit record. For easier recovery from crashes, however, the 

commit record manager should, after aborting the existing tokens of the commit record, create a 

stable version with the possibility state set to aborted (Figure 17c). Finally, although deletion of an 

object is merely a deletion of the object header, it is still important to be able to delete commit 

records, since OHS is limited. With the chosen representation, commit records have to be explicitly 

deleted even if a possibility is aborted internally, by a repository crash or because of a timeout 

The commit record manager should delete a commit record after it has processed the associated list 

of tokens. Such a deletion is again implicitly committed. Thus the VS image of the object header 

created by the delete operation will have the commit record reference set to nil. If the repository 

crashes before the commit record could be deleted, the commit record object will be recovered; it 

should be deleted as part of the recovery. 

The present object model does not permit creation of another token and its commitment if the 

object already has a token. Since a token of a commit record cannot be turned into a version with 

the existing mechanisms, it is not possible to create the final version of a commit record as 

described above. It would be possible to add another operation, create-version, that would ignore 

the token, but a more general solution is to extend the object model such that it allows creation of 

more than one token for the same object within the same possibility. As presented in the beginning 

of Section 4, the object model already allows, within the same possibility, creation of a token for a 

newly created and uncommitted object; the extension needed to support multiple tokens is very 

simple. To create another token, a version image is created as for the first token, but the "previous 

version" field in this verion image must refer now to the preceding token (Figure 18). The token 

reference in the object header is changed to point to the version image of the new token. The 

commit record reference is unchanged since the new token is created under the same possibility. 
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When the possibility is committed, this entire chain of tokens is committed at once. This does not 

require any changes: the current version reference becomes the reference to the last token, and the 

token reference is set to nil. Similarly, when the possibility is aborted, the entire chain of tokens is 

aborted. This extension to the object model facilitates checkpointing of commit records and data 

objects in general; as an extreme, commit records can be made stable throughout their lifetime. To 

achieve the latter, every time a token reference is added, a new version image (token) including the 

current list of tokens would have to be created for the commit record. However, special care must 

be taken when a token is copied by the OVS manager. First, only the latest token (which, if 

committed, wilt become the current version) should be subject to copying. Second, if a copy-token 

operation is in progress, it should be completed before an additional token can be created. 

Commit records represent yet another problem. Once the possibility state is set to committed or 

aborted, it must not change in the future. If commit records are represented as objects, this means 

that it must not be possible to create another version of the representing object. This restriction 

must be enforced by the commit record manager, but it is aided on the object level by the access 

specification field, which can be set to restrict the right to update the representing object to the 

owner, that is, the repository. 

5.2 Distributed possibilities 

For a distributed possibility, that is, a possibility that includes objects in more than one repository, a 

primary commit record is created in one repository, and commit record representatives are created in 

each other repository that contains a token for this possibility (Figure 19). When a possibility is 

committed or aborted, this state is encached in the commit record representatives in all involved 

nodes, and the committment or deletion of tokens is done locally. 

The introduction of commit record representatives complicates the protocol for commiting a 

possibility. To be able to rely on the token lists in deciding when to delete a commit record, all 

representatives with their lists of tokens must be first forced to stable storage before a decision can 

be made whether the possibility can be committed: a two-phase commit protocol is needed. An 

alternative solution is to treat the token lists in the representatives only as hints, and rely on the 

dual mechanism, that is, the commit record references embedded in the individual tokens. A 

protocol of this kind is outlined below. 

Commit record representatives can be implemented in the following way. To create a commit 

record representative, the repository creates again an object with nil as the commit record reference 

(implicitly committed). In addition, it creates a token for this object, with the uid of the primary 

commit record as its commit record reference. All local tokens for this possibility will refer to the 
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object which is the local representative. When the final state of the possibility is known, the token 

of the commit record representative is either committed or aborted. If nothing else is done, then 

during crash recovery, it would be necessary to inquire again about the state of the primary commit 

record, and primary commit records would have to be maintained (be easily accessible) forever. 

Thus it is desirable to encache the state of the possibility locally in such a way that crash recovery 

can be confined to the failed repository. Again, it is only necessary to create a committed version 

of the commit record representative with the final state of the possibility (committed or aborted) 

embedded in it; the commit record reference in this version is now nil. 

The actual protocol for distributed possibilities is summarized below: 

Token accumulation phase: A repository receives a request to create a token for object x and 

examines the commit record id contained in the request; this is always the id of the primary commit 

record. If the respective object does not already have a committed version for the specified pseudo· 

time, or another token that was created under a different possibility, the repository proceeds to 

create the token. The create-token operation still can fail, if the repository finds out that the possibility specified in 

the request has already been committed or aborted. If this repository does not contain the primary commit 

record, it checks whether it already has a representative for this commit record. If not, it sends a 

request to the primary commit record for a permit to create a local representative. If approved, it 

creates the representative. Once the local commit record representative is located or created, the 

repository creates the token for object x and sets its commit record reference to the id of the object 

that represents the commit record. 

When the request to create a commit record representative is approved by the primary commit 

record, a reference to that commit record representative, or, more precisely, a reference to the token 

of the representing object, is added to the list of tokens of the primary commit record. Note that 

obtaining an approval from the primary commit record is again only an optimization. 

If a repository fails during the token accumulation phase, the list of tokens, if it existed only in the 

main memory, is lost This does not mean, however, that the entire atomic action must be aborted, 

since the representing object is guaranteed to survive the crash. The onl) complication is that the 

tokens (including the tokens of the representatives in other repositories) will have to be converted 

individually, as other atomic actions attempt to access those objects. 

Commit point: Requests to commit or abort a possibility must be sent to the primary commit 

record. When the repository that contains the primary commit record receives such a request, it 

creates a version image of the primary commit record, with the possibility state being either 

committed or aborted. This version image may contain also the list of local tokens and the 
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references to the tokens of the representatives in other repositories. 

Conversion of tokens: After the commit point, the tokens at the same repository as the primary 

commit record are removed from the list and converted into versions or aborted. A message 

specifying the final state of the possibility is sent to each repository that contains a representative for 

this commit record. Each such repository, when it receives such a message, creates a version image 

of its local representative; the possibility state in this version image is set to the same value as the 

state in the version of the primary commit record. The repository then replies with a commit-ack 

message to the primary and starts converting the local tokens and removing them from the list of 

the local representative. 

Deletion of commit record representative: When all local tokens in the list of a commit record 

representative are removed, the commit record is deleted, and consequently the representing object 

is deleted. This approach should be followed even if the posssibility has been aborted. 

Deletion of the primary commit record: When the primary record representative receives a commit

ack message from a representative, it removes the token reference for this representative from its 

list lbe primary commit record can be deleted when its token list is empty. 

Detemzining the state of a token during normal operation: To determine the real state of a token, 

the commit record reference in the token is used to find the local commit record representative. If 

the local object representing the commit record still has a token, then if the commit record 

reference in this token is nil, this object represents the primary commit record and the state of the 

possibility is still unknown. Otherwise, it is necessary to inquire at the primary commit record, 

which is specified by the commit record reference. If the commit record has a committed version, 

the state of the possibility is known locally, and is embedded in that version. 

A repository should maintain a map from the primary commit record ids to the ids of the local 

commit record representatives. This map does not have to be stable. According to the protocol 

above, if a local commit record representative is not found through this map, the repository must 

send a request to the primary commit record to approve a creation of a representative. If the 

primary commit record contains a reference to a representative at that repository, its id (the uid of 

the representing object) will be returned. If the repository containing the primary commit record 

failed also and lost the token list but the atomic action continues, the requesting repository may 

· receive an approval to create a new local record representative. This means that a repository may 

have more than one local representative for the same possibility, but the mechanisms of the object 

model and the particular implementation of the commit record representatives still guarantee 

consistency. 
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6. Recovery 

At the core of the reliability measures adopted for the repository is the distinction between stable 

information and hints. A hint is information that is not essential for correct functioning of a 

system, but is important or even essential for good performance. In the SW ALLOW repositories, 

all information in main memory and in OHS is considered to be hints reconstructable from the 

information in VS. The integrity of information stored in VS and OHS is assumed to be testable: 

this is accomplished by associating a checksum with each page. 

Since during normal operation, the repository relics primarily on the hints, it is also important to be 

able to check the integrity of the hints. A checksum could be used also on each page in main 

memory, but since most hints (the object headers) change frequently, it is not feasible to recompute 

the checksum for each such change. In most cases, however, the validity of hints can be tested 

against the information in VS. For example, the current version and token reference fields of the 

object header must contain a VS address Avi · which is: 

i. valid in VS address space, 

ii. Avi < AE-

iii. the object uid contained in the first word of the version image represented by this 

VS image matches the uid in the object header. 

Only the last test is necessary to ensure that the accessed entity is indeed a version of the given 

object, but the first two tests can save time, since they can catch some errors without having to 

access VS. 

The bulk of this section concentrates on the problem of recovering objects from system crashes and 

storage device decays. It is assumed that a system crash invalidates the entire content of the main 

memory. The major part of a crash recovery is reconstruction of object headers, since the current 

state of the recently active objects may have existed only in the main memory. 

If the latest version image (the current version or a token) of an object is known, all older versions 

can be found by following the chain of references embedded in the individual version images. If 

this information is lost ( when the current state of the object header is lost or damaged), it is 

necessary to find this version image by searching VS. This is why each version image must include 

the uid of the object of which it is a part. If each object is guaranteed to have at least the version 

images of the current version and the token in OVS, a backward search of OVS will find the 

beginning of all object histories. Otherwise the search must be extended to the offiine portion of 

vs. 
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The recovery process must examine every VS image, starting from the end of VS. The issues of 

how to find the end of VS and how to isolate individual VS images on a VS page are discussed in 

Section 6.1. Section 6.2 presents an algorithm for reconstructing the object headers from the 

information in VS. Section 6.3 describes how recovery of individual objects can be distributed over 

time, triggered by an access to an object Section 6.4 discusses the effect of a failure of a repository 

on the communication protocol between the repository and the brokers. 

6.1 Retrieval of VS images 

Before recovery of object headers can begin, it is necessary to find the current end of the version 

storage, that is, the address of the latest page written into OVS; the mark ME can be viewed as 

pointing to the end of this page. This address could be found by searching from the low end of 

OVS · or from the copy mark, in the direction of increasing VS addresses. In some of the OVS 

management schemes, these other marks are implicit, and thus no additional precautions must be 

taken. To remember the end of VS reliably, the mark ME would have to be kept in stable storage. 

Otherwise, Me can be found by searching for the first "free page." On an optical disk, this means 

the beginning of the area that has not yet been written. On a magnetic disk, each page, as released 

by the OVS demon, could be marked as "free." Such information provides a useful check in 

general: before the version buffer in main memory is written into VS, the specified OVS page 

should be checked if it is free. 

The failure might have occurred between the two physical writes in the duplicated implementation 

of stable VS. If the latest page as written to one of the devices is found correct, the VS write can 

be completed, that is, that page is written also to the other device; otherwise that page should be 

marked as bad, and the end of VS set to the end of the preceding page (the latest page on the other 

device). No external request (that is, a request from a broker or another repository) for which some 

information has to be written into VS is acknowledged until both writes complete; thus if a (dual) 

VS page is declared bad because the second write did not complete correctly, no harm is done. 

However, if the write is completed during recovery, the create-token requests that caused creation of 

VS images on that page cannot be acknowledged, since the repository lost all information about 

these requests. The original requestors may retry their requests, in which case the recovered 

repository will send back an acknowledgement, as discussed in Section 6.4. Otherwise, the 

individual tokens on that page eventually will be aborted because of a timeout Copies of version 

images made by the OVS manager will be found and incorporated into the chains representing the 

object histories by the main recovery process. 

The next problem is to isolate the individual VS images. The scan of VS should proceed from its 
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high end towards the low end; for individual pages, this means from the end of a page towards its 

beginning. This means that the size field should be at higher-address end of a VS image. Since for 

normal use, the position of the size field must be computable from the VS address contained in a 

version or token reference, this implies that VS images should be stored so that their first word, that 

is, the word specified by those references, has the highest VS address. Finally, if a page is not 

completely filled when written into VS, a dummy data image should be created in the unused space. 

This dummy data image will be discovered only during recovery, but it will be automatically 

ignored since all data images are ignored during recovery: only the size field of the representing 

VS image is used to get to the beginning of the preceding VS image. 

6.2 Reconstruction of object headers 

Since most repository crashes will not damage OHS, the recovery process can use OHS image as the 

starting point. As stated earlier, il is assumed that a checksum is associated with eadt OHS page, and that it is 

sufficient to test the integrity of the object headers on the page. The value of the field that specifies the end 

validity time of the current version in the object header in OHS provides a logical delimitation for 

recovery: only if some version (token) was created after this time (this would mean that the OHS 

image was not updated), the hint in the object header must be updated (reconstructed) from the 

information in VS. Unfortunately, because of the copying of version images in VS, there is no 

simple unique mapping from time to a physical location in VS. Thus only the current version 

reference Acv and the token reference, At, in the surviving object header are useful: VS must be 

searched only as far as the higher of these two addresses. 

If the object header in OHS is damaged, VS must be searched until all of the following is found: 

1) a version image of the current version 

2) a version image of the token (if any) 

3) an image of the object header. 

If the OHS image is not damaged but is merely obsolete, it is only necessary to find the first two 

items. If the found image of the object header precedes the version images of both the current 

version and the token (i.e., it is the latest entity in VS pertaining to this object), the object header is 

recovered without any further search. If a version image of a token is found first, it is not necessary 

to search for a version image of the current version, since a reference to it is contained in the token. 

However, if a version image of the committed version is found first, it could be a copy, and thus it 

is still necessary to search for a token. Moreover, this version image does not necessarily represent 

the current version! This can happen if the current version had been copied while the object had 

had a token, such as in Figure 8b, after which the token was committed but not copied. 
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Fortunately, these two anomalies are mutually exclusive. Thus, if the first version image viL (latest 

in VS), found for a particular object represents a committed version, it is necessary to continue the 

search until a version image vix that represents a different version or a valid (not aborted) token is 

found. If an image of the object header is found next after viL, then vix is the version image 

pointed to by the token reference, if not nil, the current version reference otherwise. Now viL 

represents the current version if: 

1) vix represents a token or 

2) ts(vix) < ls(viL) where ts is the start validity time of that version. 

If ts(vix) > ts(vi0, then vix is the current version and the object does not have a token. 

A token representation is indistinguishable from a version representation. If there exists a reference 

to version image X in another version image, X must be a committed version. But if a version 

image is retrieved without such context, to distinguish between a committed version and a token, it 

is necessary to check the commit record, or, more specifically, the local commit record 

representative. This is why a version image of a token (and consequently, a version) must contain 

the uid of its commit record. Also, when an image of an object header is found, it may have been 

written into VS as part of an operation that has not yet been committed. Recall that a VS image of 

the object header is made when the object's status is changed: the object is created or deleted, or 

its access specification is changed. Again, it is necessary to use the commit record reference in the 

object header image to determine the state of the possibility under which the status of the object 

was to be changed. Thus an important part of reconstructing the object headers is finding the 

appropriate commit records. 

Since commit records are represented by objects, they must first be recovered by the same 

mechanism as objects representing clients' data. However, at the time of a crash, a large portion of 

the commit records that will have to be inspected during recovery have been probably deleted. 

This means that their object headers were written into VS, marked as deleted. The repository does 

not have to recover deleted objects (given that the deletion was committed), but it must temporarily 

recover deleted commit records, ;:,0 that other objects can be recovered. Since VS images of object 

headers are easily distinguishable (their commit record reference is nil), the handling of deleted 

commit records does not represent a major problem. 

The copying of version images by the OVS manager complicates also the reconstruction of the 

relevant commit records. Without copying, the commit record of a possibility that reached the 

final state would be guaranteed to be recovered prior to all version images and object header images 

created under that possibility. When a committed version image is copied, it gets "ahead" of its 
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commit record, that is, the recovery process will find that version image before it recovers the 

commit record. This can happen even if the copied version image is still a token: if the copying of 

the token occurs just before the state of the possibility is finalized, the copy of the token and the 

version image of the commit record may end up in different VS buffers, and be written into VS in 

the reverse order. The images of object headers are always ordered correctly in VS, since they are 

read from VS only during recovery and therefore are not copied by the OVS manager. 

The search process sketched in the beginning of this section must be expanded to take into account 

the problem of recovering the commit records. It is assumed that only the final state of a possibility 

is recorded in stable storage. Also, if the recovery process docs not find a version representing the 

final state of a given possibility, it cannot abort the possibility, since the reconstructed local object 

might be just a representative of the commit record. 

Again, the exact recovery of individual objects depends on in what order the various relevant 

entities are found: 

► The first entity found is an image of the object header: 

Since the VS images of object headers are not copied in OVS, then if the changes to the object 

status as reflected by this object header image were finalized (committed or aborted), the 

appropriate commit record version must have been already found by the recovery process. If it 

has not been found, the possibility is still in unknown state. In any case, the current version 

reference and token reference in this object header image can be used to rebuild the object 

header in OHS. If the found object header image is not committed, the version reference in this 

image can be used to find the preceding VS image of the object header which contains the 

correct stable information for this object. 

► The first entity found is a version image; call it again viL: 

1. 'Ibe commit record for this version image has already been reconstructed. This can happen 

only if: 

a. viL is a committed version that has not been copied; since this is the first image found, 

the object docs not have a token. 

b. viL is an aborted token. Embedded in this token is a reference to the current version; 

neither the current version nor the commit record for the current version have to be 

searched. 

2. The commit record has not been reconstructed yet. This can happen if: 
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a. The final version of the commit record has not been created yet, thus viL represents a 

token. 

b. viL represents a committed version that was copied by the OVS manager. 

c. viL represents an aborted token that got ahead of the final version of the commit record 

due to the nonsequential management of the VS buffers. 

To resolve this uncertainty, it is necessary to continue the search of VS until one of the 

following is found: 

i. A version image of the commit record: 

- If the embedded possibility state is unknown, viL is a token, and it contains a 

reference to the current version. 

- If the embedded possibility state is committed, viL is a copy of the current 

version; it is still necessary to search for the possible token. 

- If the embedded possibility state is aborted, viL is a copy of an aborted token. viL 

contains a reference to the current version, and the object does not have a token. 

ii. Another version image, vix, created under a different possibility than viL (this 

restriction is sufficient to handle correctly situations where vix is just another copy of the same version 

image, and also the cases when multiple tokens were created under the same possibility): 

- If tg(vix) < tg(viv then viL must be a token. Embedded in viL is a reference to 

the current version; this is not necessarily vix, since vix could be an aborted token 

or a no longer accessible copy of an earlier version. 

- If tg(vix) > tg(viv, then viL must be a copy. If vix is a token or an aborted 

token, then viL represents the current version, otherwise it is a copy of the 

preceding version. Thus it is necessary to continue the search of VS until the 

commit record for vix is reconstructed. 

Finally, the object headers contain the end time of the current version and the token; this 

information also must be reconstructed somehow. If an object has a token, the end time of the 

current version must be one "tick" less than the creation time of the token. The end time of the 

token, and if an object does not have a token, then the end time of the current version, ought to be 

set to the current time, that is, the time when the object is recovered. 

6.3 Real-time recovery 

The actual recovery process should be as efficient as possible so that the delays experienced by the 

clients will not be noticeable. The repository can limit the extent of crash recovery through special 

checkpoints. In addition, rather than recovering all objects in the repository before resuming 

normal processing, recovery can be distributed over time. In particular, individual objects can be 
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recovered as they are accessed. 

For this, it is necessary to be able to distinguish the epochs between different recoveries. Thus the 

repository should maintain, as part of its state, the current recovery epoch number, REN. Every 

time the recovery process is started, the repository is assigned a new REN such that these numbers 

monotorically increase in time. REN must be included also in each object header. When an object 

is created. it is assigned the current REN. When an object is accessed through any of the 

operations listed in Section 4, then if its OHS image is not damaged, the REN in the object header 

is compared to the current REN of the repository. If they differ, the object header must be 

updated to reflect the changes since the time the object header was written into VS during the 

recovery epoch as given by its REN. If the object is locked, the lock is simply broken; the locks 

must be honored only if the object REN and the current repository REN are the same. If an object 

is not used for a long time, several crashes (and recoveries} could have occurred since the object was 

created or recovered. However, since such an object has not been recovered earlier, it could not 

have been used (read or written} since the recovery epoch given by its REN, and thus to recover 

such an object, it is not necessary to search VS from its current end, but only from the point that 

corresponds to the end of that epoch. 

Thus, the recovery process should, at the commencement of a recovery, write a mark into VS that 

specifies the beginning of a new recovery epoch. For quick location of these marks, they should be 

chained together as are the histories of individual objects. Thus the recovery mark can be 

represented by an object: if the object header in OHS survives the crash, the last version is easy to 

find, and the new version of the mark can be created with the reference to the last one immediately. 

If the object header of the recovery mark is destroyed, it is necessary first to search VS for the last 

version version of the recovery mark. The object header of the recovery mark is modified only 

during recovery, and it should be forced immediately into OHS. This guarantees that the correct 

information is always in OHS and thus should survive most crashes. 

When an object is recovered, its REN in the reconstructed object header is set to the current REN. 

Also, a VS image of the object header should be created: this will delimit the extent of the next 

recovery should the OHS image be damaged. In such a case, the recovery must start from the 

current end of VS. 

In the process of reconstructing an object, it is again necessary to reconstruct the appropriate 

commit record(s}. Since atomic actions survive repository crashes, the fact that the final version of a 

commit record is not found in the same recovery epoch as the object in question does not mean 

that the state of the possibility has not been resolved. But since a commit record is also an objec;t, 
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an attempt to access it will direct automatically the recovery process into the right recovery epoch. 

6.4 Communication with brokers 

A failure of a repository can also affect the brokers. It is the resposibility of the brokers to 

supervise that requested operations are indeed performed by the repositories. If a broker does not 

receive a reply from a repository, then unless the requested operation is not important for correct 

completion of the given atomic action, the broker has two options: 

i. abort the entire atomic action, or 

ii. repeat the request. 

Now, of course it is possible that the first request was received and processed by the repository, but 

since all operations supported by the repositories are idempotent (if they carry the same pseudo

time}, duplicate requests do not represent any problem. The only complication arises if a message 

from a broker containing data for a token is delivered in pieces. Unless the entire structured 

version image was already created, if the request is repeated, the previous incomplete message must 

be discarded, since the partitioning of the repeated message may be different from the previous one. 
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7. Summary 

Figure 20 summarizes the structure of a SW ALLOW repository as a lattice of abstractions. A more 

detailed description of the structure is given in the appendix. The entire design of the repository is 

centered around the Version Storage, which is the only stable storage in the repository. In a sense, 

VS is similar to the transaction log of database management systems [ORA Y 79]. However, there is 

an important difference: VS is used not just for recovery, but it is where the actual data are. 

VS contains not only the versions of objects, but also the commit records and images of the object 

headers. However, the name Version Storage has been retained, since: 

i. commit records are represented by ordinary objects (and thus VS contains their 

versions), and 

ii. the object header images are in fact selected versions of the state of individual 

objects. 

VS is append-only storage, in accordance with the basic object model. It provides a linear paged 

address space with a straightforward mapping from the VS address into a location on the physical 

device. VS is duplicated for stability, but since no update in place is possible, the two required 

writes can be concurrent. 

Since VS may grow very large, it is impossible to maintain the entire VS online. Only the upper 2n 

words of VS are kept in the Online Version Storage. OVS would thus contain the current versions 

and tokens of the recently updated objects. To make sure that the current versions of most objects 

are found in OVS, it is necessary to copy occasionally the images of current versions and tokens to 

the high end of VS. The most reasonable policy for managing OVS seems to be to copy a version 

image when the repository is processing a read request involving a current version or a token and 

the representing VS image is found to have a lower VS address than the copy mark. This policy 

preserves locality of reference, and automatically brings back online the current versions of the 

objects that have not been used for a long time. 

OVS can be implemented with a reusable device, or with write-once devices. The latter form 

simplifies the transfer of version images from online to offline storage. The delays due to manual 

device replacement can be eliminated through a circular assignment of device drivers to different 

functions in the implementation of OVS. 

The crash recovery of the repositories is based entirely on the infonnation contained in VS. 

Current contents of object headers, although the object headers are the key elements in all 
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operations on objects, are treated as hints that are fully reconstructable from the information found 

in VS. Since the commit records are implemented as objects, they are reconstructable by the same 

process. Finally, the object directory is an object itself and hence reconstructable from the 

information in VS. 

This report presented only a skeleton for the design of the SW ALLOW repositories. Many issues 

were touched on only very lightly, and some important issues have not been addressed at all. In 

particular, performance of OVS under the proposed copying policy needs to be evaluated and the 

sketched algorithm for reconstruction of the object headers ought to be analyzed more formally for 

possible inconsistencies. Some of the additional issues are: 

i. Virtual memory. It has been assumed that both VS and OHS are divided into pages, 

and that pages from both are brought into main memory on demand. So far, OHS and VS 

have been treated as distinct address spaces. This means that to implement virtual memory 

their pages would have to be mapped into main memory in different ways. Alternatively, 

OHS and VS can be made part of the same address space, e.g., OHS can be the lowest 2k 

words of that space. 

ii. Communication with brokers and other repositories. Objects can be sent to 

repositories in pieces, subject to the constraints imposed by the communication substrate 

and communication buffer capacity of the receiver. Although the repository can deal with 

pieces of any size (if they are too big, they will be broken up further before being stored as 

data images), better performance can be achieved if the communication substrate already 

delivers pieces of the right size; the optimal size is the size of a page minus the amount of 

storage needed for the size field and the type tag which are added when a data image is 

created. 

iii. Protection. It is assumed that object versions in the repository will be stored in an 

encrypted form, where encryption provides the only kind of protection for read accesses 

[REED 80). Some protection against modification is provided by the immutability of object 

versions, but it should be possible to control the ability to create and delete objects, create 

tokens and change the state (commit or abort) of commit recor1s. Objects and commit 

records in the repository were designed to include an access control specification field which 

is stable; however, it is not clear what should be in this field and how the rights of the 

requcstors should be checked. An interesting question is what the right to read means in 

the context of the given object model. In particular, docs a revocation of such right apply 

only to the future versions of the object. or also to the current and the past versions? 

iv. The repository provides mechanisms that facilitate building of atomic actions; 

however, it is the responsibility of the users of SW ALLOW to make sure that these 
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mechanisms arc used properly. The division of responsibility for correct implementation of 

atomic actions should be studied in more depth. SWALLOW could assist in enforcing 

correct use by supcnising that: 

a. a possibility cannot be committed until all outstanding requests to create a 

token have been received and processed 

b. once a possibility is committed or aborted, no new tokens can be added. 

I lowcvcr. distributed possibilities make such checking difficult. 
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Appendix 

STRUCTURE OF THE REPOSITORY 

This appendix describes in more detail the individual modules of the repository and their logical 

interconnection (the "uses" hierarchy presented in Figure 20). Note that some modules support 

more than one abstraction developed in this report. External operations are the operations provided 

at the module's interface, that is, operations that can be invoked from other modules. Internal , 

operations are available only within the module. Recovery operations are special external operations· 

that are invoked only by the recovery process. 

Request handler 

implements: 

uses: 

repository interface 

object 
commit record 
SWALLOW Message Protocol 

The request handler inspects messages delivered by the SW ALLOW Message Protocol [REED 80) 

and invokes the appropriate manager to handle the request, and it constructs reply messages from 

the information returned by the manager. 

Commit record manager 

implements: commit record 
commit record representative 

uses: object 

external operations: 

create 

add reference 
commit 

abort 

--> 

--> 
--> 

--> 

use: 

create object 
create token 
primitives of the implementation language 
create token 
commit token 
delete reference 
delete object 
create token 
commit token 
abort token 
delete reference 
delete object 
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internal operations: 

delete reference 
delete 

recovery operations: 

none ( recovered only as objects) 

Object manager 

implements: object 

direct01y 
object history 
uid 

uses: 

external operations: 

create 

read 

create token 

commit token 

abort token 

set access control 

delete 

recovery operations: 

none 

UII) manager 

implements: 

uses: 

uid 

object history 

--> 
--> 

--> 

--> 

-- ) 

--> 

--> 

--> 

--> 

use: 

primiti,cs of the implementation language 
delete object 

use: 

get new uid 
create object history 
enter into directory 
lookup directory 
read object history 
lookup directory 
create token 
lookup directory 
commit token 
lookup directory 
abort token 
lookup directory 
set access control on object history 
lookup directory 
delete object history 
delete from directory 
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external operations: use: 

new --> may have to create new version 

recovery operations: use: 

reset uid --> reconstruct object history 

Directory manager 

implements: directory 

uses: object history 

external operations: use: 

create --> create object history 
enter --> primitives of the implementation language 
lookup --> primitives of the implementation language 

recovery operations: use: 

recover --> reconstruct object history 

Object history manager 

implements: object history 

uses: version image 
OHS image 

external operations: use: 

create --> create object header 
create version image (of object header) 
create OHS image 

read --> read object header 
read version image (returns also Ac) 
copy current version 
copy token 

create token --> read object header 
create version image 

commit token --> read object header 
abort token --> read object header 
set access control --> read object header 

create version image ( of object header) 
delete --> read object header 

create version image (of object header) 
delete OHS image 
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in tern al operations: 

create object header 
read object header 
write object header 
copy current version 
copy token 

recovery operations: 

reconstruct 

Version image manager 

--> 
--> 
--> 
--> 
--> 

--> 

implements: simple version image 
slruclured version image 
VS image of object header 

uses: VS image 

external operations: 

create version image 
read version image 
copy version image 

recovery operations: 

search 

VS image manager 

implements: 

uses: 

VS image 

vs 

external operations: 

read 
create 

--> 
--> 
--> 

--> 

--> 
--> 

use: 

primitives of the implementation language 
read 01 IS image 
write OHS image 
copy version image 
copy version image 

use: 

read object header 
search version image 
create version image ( of object header) 
write object header 

use: 

create VS image 
read VS image (returns also Ac) 
create VS image 

use: 

next VS image 

use: 

read VS page (returns also Ac) 
append VS 
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recovery operations: 

next (iterator) 

VS manager 

implements: 

uses: 

vs 
main memory page 
storage device 

external operations: 

append 
read page 

internal operations: 

append VS buffer 

reset Mc 
get Ac 
assign device drivers 

recovery operations: 

find end 
next page (iterator) 

OHS image manager 

implements: 

uses: 

OHS image 

storage device 

external operations: 

create 
read 
write 
delete 

--> 

--> 
--> 

--> 

--> 
--> 
--> 

--> 
--> 

--> 
--> 
--> 
--> 

use: 

next VS page 

use: 

append VS buffer 
read storage device page (OVS or offiine VS) 
get Ac (returned together with the requested page) 

use: 

allocate main memory page 
write storage device page 
primitives of the implementation language 

primitives of the implementation language 

primitives of the implementation language 

use: 

read storage device page (recover ME> 
read storage device page 

use: 

write storage device page 
read storage device page 
write storage device page 
write storage device page 
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recovery operations: 

none 

Crash recovery 

uses: uid 
object history 
vs 

ex tern al operations: 

start recovery 

internal operations: 

creme recovery mark 

--> 

--> 

use: 

use: 

find end of VS 
create recovery mark 

use: 

get new uicl (new REN) 
create token (for the recmery mark object) 
commit token 
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