
MIT/1£S/TR-243

MANAGEMENT OF OBJECT HIS'IDRIES

IN THE

SWALIDW REPOSI'IORY

Liba Svobodova

This blank page was inserted to presenie pagination.

i\l\N \(,1::\1 H\T 01- OB.I I· Cl I W-iTORI FS IN Tl IFS\\ .\LIO\\' lffl'OSITORY

I illil Srnbodova

July I 1)80

I Iii:, rC\('iirl'i1 11·:i•; ·111ppc1rtcd Ii: the 1\d1 :111ccd Rcscdrch l)rojL'Cls :\gc11q ()ft lie I)cp:1rt111c11t of Dcl'cnsc
;111d 11;is llllllliLOrcd by the· Uffo_c lll i\c11al Rc,c;i1cil under co11tr;il·l 11umlwr NUlllll \·75-C-0661

f'vL\S\M'l I ll';l:TI S !NSTITUI I: 01· TLCI I NOi OGY

11\1\CJIUTORY HW C0~.1PlJli:l{ SCIENCE

CMv! BRll)(il.:. f\L\:,__;s,\CI I U'.,l:TI S 02139

MANAGEMENT OF OBJECT HISTORIES IN THE SW ALLOW REPOSITORY

ABSTRACT

SW ALLOW is an experimental distributed data storage system that provides personal computers

with a uniform interface to their local data and the data stored in shared remote servers called

repositories. The SW ALLOW repositories provide reliable, secure, and efficient long-term storage

for both very small and very large objects and support updating of a group of objects at one or

several repositories in a single atomic action. The repositories support, with some minor

modifications, the object model developed by Reed [REED 78).

The core of the repository is stable append-only storage called the Version Storage (VS). VS is the

only stable storage in the repository. It contains the histories of all objects in the repository and all

the information needed for crash recovery. It is assumed that VS wilt be implemented with write

once storage devices such as optical disks. The upper 2n words of VS are kept in the Online

Version Storage (OVS). Techniques similar to real-time garbage collection are used to keep the

current versions of frequently used objects in OVS. Two different policies for retaining current

versions of objects in OVS arc investigated; the actual implementation further depends on the type

of storage devices used for OVS.

A critical concern addressed throughout the design of the repository is recovery from system crashes

and storage device failures. The crash recovery of the repositories is based entirety on the

information contained in VS; VS is scanned sequentially, starting from its current end, until all

objects histories have been reconstructed. The recovery can be distributed over time, such that the

recovery process is invoked for one object at a time, as individual objects are accessed. The same

mechanism is used to recover commit records, which are data structures that record the state of

atomic actions and group together the objects to be updated in a single atomic action. The

implementation of commit records in the repository guarantees that all updates made by a specific

atomic action are either all completed or all undone, regardless of failures. Further, interrupted

atomic actions can be continued from the point of interruption, without any additional (backward)

recovery.

Keywords: Distributed systems, atomic actions, storage management, reliability, recovery.

.\CKNO\YLEl)GEI\IENT

This work builds directly on the Phi) thesis of David Recd. The object model de\elopcd in that

thesis forms the basis of the repository design: also, the idea of implementing a wstem of this kind

with write-once storage devices is Reed's.

I ,1111 inclebtcd tn all those people who have participated in the discussion meetings of the

SWAl.10\V project :,ince il'-i beginning in the foll !IJ79, in p;irtirnlar, to those people who hav1e

st:1ycd I\ ith it: Cail 1\rcns. l<;iren Soll in~. and l);in ThcriaulL anu of course. I),1\ id Recd. who

sta1tcd the project and is lcadi11g it. Their criticisn, :ind suggestions were \Cry 1aluablc in sh;1pi11g

;111d cL,ril"ying the ide,,s presented in this report. l·inally. I 11 ish to thank Jerry S,dtzcr for his

enrnur;igcmenl and critical co1rnnc11ts on e;irlicr drafts.

ii

CONTENfS

1. Object model 1

4
8
10

1.1
1.2
1.3

Representation of object histories
Modified object model
Implementation issues

2. Version Storage 12
2.1 Online Version Storage 12
2.2 Transfer of data between primary memory and VS 16

2.2.l Packing of version images in VS buffers 16
2.2.2 Partitioning of large objects 17

2.3 Mapping VS address space onto physical storage devices. 20

3. Management of OVS 24
3.1 Current versions of all objects maintained in OVS 24
3.2 Most recently used current versions maintained in OVS 28
3.3 Adapting OVS management to an implementation with

write-once devices 29
3.4 Online support for VS 35

4. Management of objects 43
4.1 Object headers 44
4.2 Synchronization 46
4.3 Object directory 49

5. Management of commit records 50
5.1 Representing commit records as objects 51
5.2 Distributed possibilities 57

6. Recovery
6.1
6.2
6.3
6.4

7. Summary

References

Appendix:

Retrieval of VS images
Reconstruction of object headers
Real-time recovery
Communication with brokers

Structure of the repository

iii

61
62
63
66
68

69

73

74

MANAGEMENT OF OBJECT HISTORIES IN THE SWALLOW REPOSITORY

SW ALLOW is an experimental project that will test feasibility of several advanced ideas on design

of object-oriented distributed systems. Its purpose is to provide reliable, secure and efficient storage

in a distributed environment consisting of many personal machines and one or more shared

repositories. The objectives and the overall structure of SW ALLOW are presented in [REED 80);

the major components of the SW ALLOW system are shown again in Figure L

Each personal machine runs a subsystem called a broker that interacts with the manager of the local

storage device and the remote repositories; this broker implements a uniforn1 interface to all objects

accessible from the personal computer. The repositories provide _stable, reliable, long-term storage

for untyped objects. They must handle efficiently both very small and very large objects and

provide mechanisms for updating of a group of objects at one or more physical nodes in a single

atomic action.

This report discusses the organization and management of the repositories in the SW ALLOW

system. The repositories support, with some minor modifications, the object model developed by

Recd [REED 78). This model provides the basis for synchronization and recovery in the

implementation of atomic actions. The main features of Reed's object model are outlined in

Section l; however, the material presented in this report assumes a much deeper knowledge of

Reed's work.

1. Object model

An object can be viewed as a history of all the states assumed by the object since its creation. Each

distinguishable (abstract) state of an object is represented by a special immutable entity called a

version. In addition to having a value, a version has a time attribute that specifies its range of

validity. lbe range of validity of a particular version is the time interval in the history of the object

during which the object was known to be in the state represented by the version. Each version

delimits the range of validity of the preceding version. All operations on objects include an implicit

parameter, a pseudo-time, which specifies the exact point in the object's history to which this

operation refers. A read operation selects a version that has the highest "start time" that is lower

than the pseudo-time p specified in the read request. If the "end time" of that version is lower

than p, it is extended to p. A write operation creates first a token, which has to be explicitly

committed to become a version. The start time of that version is the pseudo-time specified in the

write request. A token can be later discarded, thus returning the object history to the state that

existed prior to the execution of the write operation.

1

Client
nudes

' - ,_,~;-«-

16-
I local

' storage

I
I
I
I
I ,,epos1tory

I
I
I
'--

---i---•• ... LWIE--.. -~- -- - '·''L..~~

!l1oker IJrokm

Network

F1epository

Storage devices

Figure 1: Structure of the SWALLOW system

2

Client -,---
interface

Swallow

The object model supports construction of atomic actions. An atomic action is a control abstraction

that guarantees the following:

i. atomic actions are mutually exclusive, that is, operations performed as part of one atomic

action cannot see or interfere with the tokens created within a different atomic action, and

ii. the tokens created as part of the same atomic action are either all committed (converted

into versions) or all aborted (removed from the object histories).

Associated with an atomic action is a pseudo-temporal environment and a possibility. Alt operations

performed within an atomic action are assigned pseudo-times from the same pseudo-temporal

environment; the pseudo-temporal environment is a mechanism for making atomic actions mutually

exclusive. A possibility is a group of tokens created by a specific atomic action. The possibility

mechanism guarantees that only the atomic action that created the tokens can read them and that

the tokens are either alt committed or all aborted.

Possibilities are represented by commit records. A commit record is a data structure that records

the state of a possibility and keeps track of what entities arc dependent on the outcome of the

possibility. A commit record is created with the possibility state set to unknown. When an atomic

action completes successfully, the possibility that represents it is committed and the possibility state

in the commit record is set to committed. If the atomic action is aborted, the possibility state in the

commit record becomes aborted. The commit record includes a list of references to tokens created

by the atomic action. Also, each token contains a reference to its commit record.

Construction of atomic actions is controlled by the brokers. This includes generation of the pseudo

temporal environment for atomic actions and creation and commitment or abortion of possibilities.

The tokens in the same possibility can be created by different brokers; thus the commit records are

shared data structures and must be in some repository. The repositories therefore must implement

two abstractions: the object histories and the commit records. The fo11owing are the operations that

can be requested by the brokers to be performed by the repositories. (Although the requests are shown in

the form of procedure calls, this does not imply that a remote. procedure call type of protricol will be used [LAMP 79).

Also, the lists of parameters as shown are not n~rily complete. Specifically, instead of a general acknowledgement,

the repository will return enough information about the request and its result to make the response self-identifying. If

the requested operation cannot be performed. the repository returns an error m~ge.):

Requests that pertain to object histories:

create (pseudo-time, commit-record-id) returns (object-id)

read (object-id, pseudo-time, commit-record-id) returns (value)

3

create-token (object-id, pseudo-time, commit-record-id, value) returns (ack)

delete (object-id, pseudo-time, commit-record-id) returns (ack)

Requests that pertain to commit records:

create (timeout) returns (ack)

test (commit-record-id) returns (commit-record-state)

commit (commit-record-id) returns (ack)

abort (commit-record-id) returns (ack)

Additional operations on commit records must be supported in order to implement possibilities that

involve objects in more than one repository (distributed possibilities); these operations, which can be

requested only by a repository, will be discussed in Secion · 5.

1.1 Representation of object histories

In Reed's original model, there may be time intervals in the object history that do not have

corresponding versions (Figure 2). A new version can be created belatedly in any such time interval

(by creating and committing a token), or the interval can be diminished when a request to read the

value of the object at a time point that falls within this interval is executed. The latter action

extends the validity range of the immediately preceding version, up to (including) the pseudo-time

of the read request. Both of these forms of "eduction" have to be accomodated in the object history

representation.

Figure 3a shows a linked list representation where the range of validity and the state of the version

(token/committed) is physically a part of each version representation [REED 78, REED 79]. An

alternative representation is to concentrate the various information about versions, including the

pointers to the actual values, in a separate data structure which becomes a part of the object header

(Figure 3b). The main problem with the first scheme is that the entities that represent versions are

not immutable. The range of validity changes as versions are read. Also, if a new version is inserted

into a gap, the "next version" link of the version that follows the new one in time must be changed.

Similarly, if an action that produced a token is aborted. the token must be discarded, that is, the

token must be removed from the history by destroying the pointer to the token. Another

disadvantage is that if an operation refers to an older part of the history, it is necessary to inspect all

newer versions to find the appropriate version (or gap). The other scheme (b) leads to more

complicated storage management The size of the object header varies from object to object and

changes as new versions are created; also, since it must be possible to insert new entries anywhere

in the version list, a simple array representation is not possible. Second, the number of versions in

4

object
creation

token

x2

unknown

commit record

CR
3

committed

commit record

CR
1

Figure 2: An example of an object history.

token

x1

unknown

commit record

CR
2

Token x2 was created after version V 3 and token X 1. Version V 3 was committed recently, but has
not had its state encached yet. Reading the object at time t1 will return the value of version V1.
Reading the object at time t2 will return the value of version V 2, after extending the validity of this
version (end time le) to t2. Attempts to read the object at time t3 and t4 will result in a wait.
pending commitment or abortion of tokens X2 and x1 respectively, unless the read operation is
requested from within the same possibility under which the token was created.

5

otlteetld

nil

t ts ts

te t te"

committed committed

x1

unknown

v3 X2

committed unknown

a.v.'lllallls ... * ,

b. Version information concentrated
in the object header

v2

Figure 3: Possible representations of known object histories;
shown for the example given in Figure 2.

6

V1

an object history may grow very large, and old versions must be removed from online storage. If

the stored versions physically contain the validity range and linking information, this information

will be purged from online storage automatically with the old versions. If the list of version

references is kept in the object header, it may have to be pruned separately.

It is highly desirable to represent versions by immutable storage entities. Perhaps the strongest

reason for this restriction is that it is much simpler to design mechanisms to ensure integrity of

stored versions.

One of the main functions of the repository is to provide very reliable storage. This means that the

physical storage must be stable, that is, the infonnation stored in it must not decay over time. In

addition, it is necessary to ensure that information written to i~ is either written completely and

correctly or not at all, that is, that the operations on stable storage are atomic. Since no physical

device provides storage with these properties, the atomic stable storage must be implemented as an

abstraction, using hardware components with less desirable properties. In particular, atomic stable

storage must be designed to tolerate processor crashes during write operations and decays of the

storage media. This is accomplished by writing the data twice, into decay-independent sets [LAMP

79).

An operation that is most difficult to perfonn atomically is an in-place update of stored information.

An atomic update means that either the content of the updated entity is changed into the new

value or, if the operation fails, the value of this entity is left unchanged. That is, atomicity

guarantees that a stored entity is never left in an inconsistent state where the old value has been lost

and the new value is incorrect. To perfonn an atomic update, the two copies of stored information

in the decay-independent sets must be changed strictly sequentially, i.e. the first write must

complete successfully (correct data written to correct address) before the second write is initiated. If

the storage model does not have to support an update operation, the problem of atomicity is

simplified. It is still necessary to have two copies for stability, and the ability to detect and correct

bad writes, but the two writes into the two decay-independent sets can be done concurrently.

A second strong motivation for choosing an immutable representation for object versions and tokens

is the possibility of using optical disks, which are write-once storage. The given object model will

require a large amount of storage. Thus, it is important to utilize storage devices that are: 1)

inexpensive, 2) easy to store offline. To provide fast access to old versions, a random access device

is needed. Optical disks look promising in all these aspects.

To satisfy the immutability requirement with the present object model, it would be necessary to use

the scheme of Figure 3b. However, it will be shown that with a minor modification to the

7

conceptual object model it is possible (and better) to include most information about versions in the

version representation.

1.2 Modified object model

If we al1ow insertion of new versions in an arbitrary place in the list, the information about the

ordering of the existing versions (the physical pointers to stored versions) must be kept in storage

that allows multiple (unlimited) writes. In addition, the "end time" information for each version

has to be kept in such storage, since it must be changed when a version is to be read at a pseudo

time greater than the current end time. Another possiblility would be to completely rewrite each

version every time its end time must be extended and when a new version is inserted after it, but

such a scheme does not seem practical.

Let us constrain the conceptual model such that when a new version is created, the end time of the

previous version is extended to close the gap. This_ means that new versions can be inserted only at

the "current" end of the list. Also, each object can have at most one token. Actually, an object could

have multiple "dependent" tokens at the "current" end, as it is done in Takagi's scheme [f AKA 79). This possibility will

not be investigated in this report. However, with the exception of the current (latest) version and the

token, the end time of a version can be derived from the start time of the next newer version and

thus does not have to be included in the version representation. Consequently, an object history

can be represented by a fixed-size object header and a growing list of immutable entities that

represent the versions.

The data stmctures needed to represent an object history are shown in Figure 4. The object header

contains a reference to the current version of the object and the end time of the current version.

This time is updated every time the current version is read past its end time. The object header also

includes a token reference that is either null if the object does not have a token or it contains the

physical address of the current token. One reason for including both the current version reference

and the token reference in the object header is that it is simpler to discard a token (remove it from

the object history) when the atomic action that created it is aborted. However, having both of these

references in the object header L crucial to the storage management, as will be seen later. Tokens

can be read from within the atomic actions that created them; each such read extends the end time

of this future version. Since the end time of the current version should not be automatically

extended up to the start time of the token until that token is actually committed, it is necessary to

keep track of the end time of the tokens as well as the end time of the current versions. It should be

kept in mind that the current version end time and token end time in the object header are pseudo-times that do not

necessarily correspond to real time. Finally, a reference to the commit record for the current token is

8

object uid

object header commit record

object uid

current version reference

current version end time

token reference

token end time

commit record reference

object uid

nil

ts ts ts ts

CRref CRref CRref CRref

v1 v2 V3 x1

current token
version

~--~ -----~-- ----

~

Figure 4: Representation of the object history for the modified object model;
it is not possible to create token x2 in this model.

9

contained in the object header, although this is only an optimization, since this infonilation is

present also in the token.

The data structures that represent the versions arc called version images. A version image contains,

in addition to the "value" field, the "start time" ls, a reference to the immediately preceding

version, the uid of the object it represents and a reference to the commit record for this version.

The last two items are needed for recovery, as wiU be explained later. The time 1s specifies the

beginning of the time interval in the object's history represented by that version. Again, ts is not the

real time when the version image was created, but the pseudo-time specified in the request to create a token.

It is important to make a distinction between versions and the representation of versions, that is, the

version images. A version is a logical concept; it is the value of the object during a specific interval

in the object's history. A version image represents either a version or a token; to determine which

of these two it represents. it is necessary to inspect the object header or the commit record specified

in the version image. Several copies of a version image may coexist in the repository. Since versions are

immutable, this does not cause any synchronization problem. Also, a version· image may remain in the

repository although it no longer represents a valid version. Thus to discard a token when the action

that created it is aborted, it is sufficient to set the token reference field in the object header to null.

In addition to eliminating the need to include mutable data structures in the version representation,

the modified model also eliminates the need to perform a write operation when an older version is

read. The lost ability to leave regions of the object's history undefined and create versions in such

regions later does not reduce significantly the power of the object model. In most situations, an

object that is to be updated is read first, and it is desirable to extend the end time of the read

version up to the start time of the new version to ensure that the object has not been changed after

it was read.

1.3 Implementation issues

A crucial problem is to find an efficient and reliable scheme for mapping object histories into

physical storage. The two structures used to implement object histories, the object header and the

list of version images, require different models of storage and different management policies.

Object headers are mutable and therefore must be kept in storage that allows modifications of

stored information. The version images arc immutable and thus can be stored in write-once storage.

In addition, the reliability requirements arc different.

The main issue in the implementation of the lists of versions is storage allocation and management.

Giving each object a section of consecutive physical storage locations for its entire history is clearly

10

infeasible. Rather, it seems natural to view the version storage as a history of creation and updates

of all the objects in the repository. Section 2 develops a model of the version storage as an infinite

append-only file. Since it is infeasible to keep the entire version storage online, the online portion

of the version storage must be "reusable", that is, it must be possible to free it for newer version

images. This problem is studied in more depth in Section 3. That section addresses also the

problem of the assignment and management of the physical storage devices used to implement VS.

The role and management of object headers is discussed in Section 4. It is too expensive to

immediately reflect all changes to an object header in stable storage. Therefore, the object headers

are viewed only as hints that may be destroyed by a processor or storage device failure, but are

reconstructable from the information contained in the version images. That section also addresses

how objects are located and how concurrent requests for the same object are synchronized.

Section 5 discusses the implementation and management of commit records. Commit records are

special data types provided by the repository, but are ultimately mapped into the same object model

as other data. For possibilities that include objects in more than one repository, commit record

representatives are added to the model.

Recovery issues are addressed throughout this report, but the major step, the reconstruction of

object headers, is described in Section 6. Finally, Section 7 presents a summary, including a list of

issues that must be studied in more depth.

11

2. Version Storage

The core of the repository is the Version Storage (VS). Abstractly, VS is an infinite append-only

tape. VS stores information as s~ble immutable entities. These entities will be called VS images.

A VS image consists of two fields: the data field. which at this level is simply an uninterpreted

sequence of bits, and the size field. VS is the only stable storage in the repository. It will contain

all versions of all objects in the repository. In addition, all the information needed for a crash

recovery must be stored in VS, as immutable VS images.

Version images, as described in Section 1.2, are contained in the data field of VS images. That is,

for storage in VS, an envelope that contains the size field is added (Figure 5). The version

references in individual VS images as well as the current version reference and the token reference

in the object header are directly the addresses of the representing VS images in VS, Avi· The lists

of versions representing histories of different objects are intertwined in VS; their ordering in VS is

determined by the relative frequencies of updates of individual objects. And to some extent also by read

activities, as will be seen later.

Since VS may grow arbitrarily large, it is infeasible to keep it online in its entirety. The issues of

what information should be kept online and how the onlinc storage is to be managed are discussed

in Section 2.1. Section 2.2 is concerned with the transfer of data between the primary memory and

VS. Small objects (version images of small objects) must be packed into buffers while large objects

have to be partitioned into smaller pieces. Finally, Section 2.3 discusses some problems with the

mapping of the VS address space into the physical address spaces of the used storage devices.

2.1 Online Version Storage

Only a fraction of the information contained in VS can be made available online. One approach is

to add a special kind of cache for the current versions of all objects. The most straightforward

policy for controlling the use of such a cache is to replace (overwrite) the version in the cache when

a new version of that object is created. However, this new version may never be committed; when

it is written into the cache, it is only a token. Alternatively, the cache could be assigned to contain

the latest committed version of each object and the tokens. When a token is committed, the other,

now old, version would be deleted and the freed space reused. Since version images can vary

greatly in size, the cache storage would become fragmented and it would be necessary to do

recompaction or garbage-collection. lbis problem arises even if tokens are allowed to overwrite the

committed versions in the cache, since subsequent versions of an object can have greatly different

sizes! Another unpleasant aspect of this form of caching is that there is no easy way to deduce the

location of a version images in the cache from its address in VS and vice versa; thus two addresses

12

size size field

object uid

previous version
reference

ts
► data field

CR reference

value

Figure 5: VS imago representing a version image.

13

have to be remembered for each version image in the cache.

Instead of using a cache, the Online Version Storage (OVS), that is, the portion of VS currently

available online, will be the most recent 2n words of VS. OVS will be implemented as a circular

buffer, as illustrated in Figure 6. Mark ME will be used to specify the current end of VS on the

device that serves as OVS. New version images are created always in OVS, but for read requests, it

is necessary to determine if an image of the specified version exists in OVS. Such a check is very

simple: if (AE - Avi) < = 2n. where AE is the VS address of ME, then the version image is in

OVS, and its address in OVS is (Avi mod 2n).

OVS shall contain the version images created during the interval (1c·T, tc> where tc is the current

time and T is determined by the speed with which the available online version storage fills up.

Unfortunately, since versions of different objects are created at different rates even the current

versions of some objects may disappear from OVS. To make sure that all or some objects (for

example, those objects that are read frequently) retain their current versions in OVS, it is necessary

to copy version images in OVS, and consequently in VS.

To preserve the current versions of objects in OVS, it is not sufficient to copy just the immediate

current versions when the time comes to reuse the respective fragment of OVS space: the tokens

have to be copied too. But, if an object has a token at the time the latest image of the current

version is to disappear from OVS, it is still necessary to copy the current version, since the token

later may be aborted.

When an image of a current version or a token is copied, the appropriate reference in the object

header must be changed. But if an object has a token, a reference to the current version appears

not only in the object header, but also in the token. Since the tokens are to be immutable, the

reference to the current version embedded in the token cannot be changed; it will always refer to

the version image that represented the current version at the time when the token was created.

Fortunately, the fact that the reference in the token is not modified does not lead to an error. If the

token becomes a version image, the reference to the copied version, which existed only in the object

header, is replaced by the referei.ce to the version image of the former token. The copied version

image in OVS is effectively lost, but the object does have its current version in OVS. If the token is

aborted, the current version is found in OVS as it should be.

To summarize, as a consequence of the copying, VS may contain many version images that

represent the same version, but only one of these images is accessible by following the chain of

pointers in the object history. The other images use up storage, but do not have an adverse impact

on the implementation of the object histories.

14

ovs

0

vs

$ free storage

M'
,.,

E I\

' ' ' \
I \

I \
I \

I \

Figure 6: OVS as a circular buffer.

New version images arc appended at the mark ME·

15

A more detailed model of OVS will be presented in Section 3. Two different policies for retaining

version images in OVS will be investigated: one policy is to keep the current versions of all objects

in OVS; the other is to keep in OVS only the current versions of those objects that have been used

in the recent past. The actual implementation of these policies depends further on the type of

storage devices used.

2.2 Transfer or data between primary memory and stable VS

The repository has to handle efficiently objects of greatly varying size, from very small ones (< 100

bytes) to very large ones (> 100 Kbytes). It would be very expensive to write small version images

into VS individually. Because of the constraints of the communication network and protocols, very

large objects will be sent to the repository in pieces; it would be ~ery expensive if not impossible to

buffer very large objects in primary memory.

Thus, prior to creating new versions of objects in VS, it is necessary to:

1. pack small version images (tokens) before writing theID to VS

2. fragment large objects before writing them to VS.

For easier management of VS (mainly for faster VS address resolution and object location), it is

desirable to allocate VS in fixed-sized blocks. 'Ibese fixed-sized blocks, or pages, are the units of

atomic write into VS. Both the packing and fragmentation must take this into consideration.

2.2.1 Packing or version images in VS buffers

Let us first look at the packing problem. Basically, as tokens for new versions are created, their

version images are placed into a buffer in main memory. This buffer consists of one or more pages.

When a buffer page is full, it is written atomically into VS. However, there are two problems with

this scenario. First, creation of a token is a commitment that, regardless of processor, memory, or

device failures, if and when the possibility under which the token was created is committed, the

token is in the repository, undamaged. Thus a creation of a token cannot be acknowledged until

the token has been written into stable VS. This action is delayed by the packing process; since new

tokens will not be created at a constant rate, on an occasion, it may take a long time to fill up a

page. Thus, a timeout should be associated with each buffer page; if a buffer page is not filled up

before the timeout, it is written into stable storage partially empty. 'Ibe filling of the buffer is sped

up by the copying process which creates copies of old current versions and tokens at the "high" end

of VS; these copies again are first written into the buffer.

The second problem is what to do if a version image just created or copied does not fit into the

16

space remaining in the buffer page. Or, restated, the question is whether a version image should be

allowed to cross a page boundary. Although such a provision would lead to a better storage

utilization and a possibility to deal more flexibly with large objects, there are strong reasons for not

pennitting it. Once split version images are permitted, almost every page will end with a split

image, unless some restrictions are imposed in regards to how version images can be split. A read

operation on a split image requires more than one VS access. Two vs accesses if the maximum permitted

size of a version image is one page. Also, crash recovery would be slightly more complicated: since the

repository may crash between the writes that involve a split image, the recovery algorithm would

have to detect that the image is incomplete. The last consideration is that the buffer pages that

contain parts of a split image have to be mapped sequentially into the VS address space. The

alternative scheme described next will demonstrate the advantage of the lack of this restriction.

If split version images are not allowed, it does not mean that the buffer pages have to be written

into VS half empty. As already indicated, the buffer in the main memory may consist of several

pages, or, better, at any time, there may be severa{ one-page buffers for VS in the main memory, as

shown in Figure 7. The timeout for each buffer is set when the first version image is placed into

that buffer. Now, new version images can be placed into any of the existing buffers, or, if no

buffer offers enough space, a new buffer may be created, subject to a limit on the number of

buffers allowed. If no more buffers may be created, one must be written into VS before the new

version image can be placed. Since no ordering (precedence constraints) exist among the buffers,

they can be written into VS in any order. Thus the VS manager may select the buffer which is

most full, or the one which is closest to its timeout. That buffer is then assigned the next sequential

VS page address. This means that the actual VS address of a version image is not known until the containing page

is written into vs. The timeout associated with each buffer guarantees that no buffer will wait forever

for a version image of the "right" size.

2.2.2 Partitioning of large objects

Large objects are partitioned invisibly to the brokers. However, this partitioning is not performed

solely by the repository, but starts at the level of the communication protocols, since the amount of

data that can be sent in a single packet is limited. If this amount is less than or equal to the page

size in the repository, no further partitioning is needed; otherwise the data received in individual

packets must be further divided. In either case, the fragments of an object (token) received in

different packets can be processed and written into VS as they arrive; each fragment will become a

separate version image. Since this partitioning is invisible to the brokers, a broker must always read

or write the whole object, i.e., it is not possible to retrieve or to update only a small portion. This

means that it should be sufficient to chain together the fragments of such an object and let the

17

vs
buffers

ovs

VS

.... 1

0

//// ,,..

....,a

i3 ie

'

.....

....,,

i7 is

I

I

'

•' 2n-1 ~
I "I

I ,:) ' '

'
E ' ' '

I ' '
I '

' ' ' '

Figure 7: Writing VS image into VS.

Images ik are packed in one-page buffers. k specifies the order in which they were created. Since
buffer 2 is full, it is written into VS (via OVS) before buffer 1.

18

object header point to the last fragment; it is not necessary to have random access to the individual ·

fragments. Unfortunately, if a version image that represents such a fragment of an object is copied

by the OVS manager, it would be necessary to modify a pointer in the version image that represents

the next piece, but this is impossible since the version images are immutable. On the other hand,

since the whole object (object version) will be read, all fragments should be copied, and the

embedded pointers can be modified as each fragment is copied. However, although the object

header must point to the last fragment, the copying must start with the first fragment, otherwise the

new VS addresses of the individual fragments cannot be determined. Actually, this also impacts the

initial creation of a version of a partitioned object A version image of a piece k cannot be created

until the VS address of the version image of the fragment k-1 is known; this again imposes

precedence constraints on the set of buffers for VS.

To overcome these problems, it is necessary to have a special pointer array. There are several

reasons for not including this pointer array in the object header: as will be seen in Section 4, the

entire object header must be reconstructable from the information stored in VS and therefore the

images of the individual fragments would have to include additional information; object headers

would have different sizes, and the size of a particular object header could vary over its lifetime;

but the most serious problem is that this would necessitate reconsideration of how to represent

object histories. What would be the meaning of the "previous version" reference in each version

image? Different versions of an object can be partitioned in different ways, so there is no

meaningful mapping between fragment k of one version and fragment k of the preceding version.

Thus the pointer array will be stored in VS. In fact, it will look like a version image. This does

not require any changes to the object header: the current version reference and the token reference

simply point to images that contain the appropriate pointer arrays, as do the "previous version"

pointers in each version image. A version image constructed in this way will be called a structured

version image. The individual fragments referred to through this pointer array can be of different

sizes. Both the VS image that contains the pointer array and the images of the individual fragments

will be packed in VS buffers as before.

Both for normal operations on objects and for recovery, the information whether a version is simple

(represented by a single version image) or structured must be included in the version images

themselves. It does not make sense, though, to propagate this distinction into the definition of an

object, since the representation may change during object's lifetime: as an object changes size,

individual versions may be either simple or structured. This can also happen because of changes in

the tower level communication protocols (flow control). Also, it is superfluous to include all the

information so far associated with all version images in those images that represent the individual

19

------ - --------~-

fragments of a structured object version. In fact, none of these fields is needed! Thus for

representation of object versions and tokens, the repository should provide three distinct types of

stable entities:

simple version image:

header of structured

version image:

data image:

self-identifying;

data field contains the actual data

self-identifying;

data field contains an array of pointers

to data images

interpretable only in the context of

the appropriate structured version image;

not used during recovery.

Figure 8 shows a fraction of an object history that uses both simple and structured version images,

and consequently all three types of stable entities just described. However, these distinct entities

should be supported on a higher level of abstraction than VS; the stability is assured by mapping

them into the same uninterpreted stable VS images.

Use of structured version images does not impose any precedence constraints on the transfer of

main memory buffers to VS. Of course, the header of a structured version image cannot be created

until all data images of that version have been written into VS, since the VS addresses are not

known until then. If such a version image is copied by the OVS manager, it is necessary to create a

new header after all data images have been copied. Structured version images are substantially

more expensive than simple version images, thus fragmentation should be used only when

necessary.

2.3 Mapping VS address space onto physical storage devices

To ensure that the version storage is stable, all VS images should be written twice, that is, the entire

VS should be duplicated. It can Je assumed that two separately controlled physical devices provide

decay-independent sets from the point of view of physical failures of the driving hardware, e.g. head

crashes. As discussed earlier, the two write operations to duplicate VS can be performed

concurrently, thus the response time performance does not have to degrade significantly as a price

for stability.

In addition to ensuring stability of stored information, it is necessary to ensure that version images

are written correctly into VS. The usual approach is to follow each write by a read and a test

20

objectuid

(
!u rrent version reference I ICR
current version end time

~
••

token reference -

token end time

commit record reference _

size

\
type= 1

objectuid

-
t !I

V
size

size size CRref ~ type=2

type= 1 type=2 ..
object uid

:~ -
/ -r-,.

size ts .j
size

type=O CRref 1/
type:2 size

object uid ~ type=2 , .. -
ts ~

..... size

CRref ~\ type::2

size size

type=2 type= 2
Type: 0 = simple version image

Type: 1 = header of stuctured
version image

T,-:1 ■ ----

Figure 8: Representation of large object versions.

The current version and the token are reprresented as structured version images.

21

operation. If it is decided (after possibly several read and test attempts) that the write was incorrect,

the write operation must be repeated. However, if the physical device is write-once only, the

repeated write has to write the data to a new address! This may happen even with devices that

allow multiple writes to the same location, since some areas on a device may be faulty, and

consequently a write operation to such a location can never succeed. This problem can be handled

in two ways. One is to leave a "hole" in the VS address space. The other one is to mask the bad

write on the device level by writing into an alternative address in an area specifically reserved for

this purpose. In the first case, the correct VS address cannot be determined until after the write to

VS has succeeded. This means only that the token reference (or the current version reference, when

a copy operation is performed by the OVS manager) in the object header cannot be set until the VS

write terminates, but this order must be upheld anyway. However, the duplication of VS creates

an additional problem. The address of each of the two copies of each version image must be easily

computable from the VS address. Thus, for a duplicated write if one write operation does not

succeed, the other one must be invalidated also. Thus, the same "hole" (bad data) has to be created

on both devices. This scheme, however, cannot support recovery from later decays. When it is

discovered that some old version was damaged on one device, than in order to restore the

redundancy for the future, it would be necessary to copy the entire device, but in this process.

different bad writes may occur, and the two copies of that part of VS would be out of sync! Note

that it is not possible to copy just the respective version image (from the other device), since then

the entire "newer history" of that object, that is, the portion of the object history between the

current version and the version represented by the defective version image, would have to be

recreated.

Thus, the chosen approach is to preserve the continuity of the VS address space. Each device must

have a reserved area that provides substitute locations for data that could not be written into its

correct address. There still may be "holes" on the device, but when such a hole is detected, the

reserved area is searched for the missing data. Thus both write and read operations on VS may

require several device accesses, but presumably the reserved area will be used only in rare cases, so

the performance penalty should be low. However, the fact that the device manager decides that a

write was unsuccessful does not guarantee that on a later read the same entity will be detected as

bad. Thus, the device manager should explicitely mark (overwrite) the areas declared to be holes,

in such a way that holes can be reliably detected in the future.

Fina11y, it is necessary to address the problem of VS performance. The provision for maintaining

the current versions online is only the first step. The performance of the repository will depend

strongly on the performance of OVS, that is, on the speed of reading from and writing to OVS.

22

Since write operations are multiplexed with random read accesses, the low overhead of the

sequential write (append) operations on VS is lost. However, the repository is shared, and thus

there may be many outstanding read requests to different locations of the OVS device. The

performance of the device (throughput) can be improved significantly if these requests are processed

in an order that minimizes the positioning overhead. The most effective disk scheduling algorithm

is to scan the disk in alternating directions, servicing requests in the order of their physical

addresses. Several variants of the basic SCAN algorithm were developed and analyzed [COFF 73);

however, since the address distribution of requests in OVS is not completely random, it may be

possible to find a variant of SCAN that will perform better than these general algorithms. Also, a

possible enhancement of the SCAN scheduling algorithm for the OVS device is to force a write of

one of the VS buffers when the disk heads reach the current end of OVS (Mp).

In addition to finding a suitable algorithm for the OVS device management, performance of VS can

also be influenced by:

i. assigning physical addresses to VS addresses

ii. mapping VS access requests to physical devices.

One possibility is to interleave VS, that is, assign consecutive VS blocks to different physical devices.

This of course requires additional device drives. However, it is possible to take advantage of the

duplication of VS. If both devices in this duplicated implementation provide fast random read

access, a read request can be satisfied by either of the two devices and can be scheduled for that

device which is more convenient (i.e., not currently busy, or needs less time to locate the requested

version image).

23

3. Management of OVS

The Online Version Storage is very important to the perfonnance of the repository. As presented in

Section 2.1, OVS is an online address space managed as a circular buffer that contains the most

recent 2n words of VS. If no version images must be copied, removal of old version images is

accomplished by simply overwriting them as ME, the end of VS mark, reaches that part of OVS.

However, if a version image must be copied to maintain the current version of the respective object

in OVS, a rather unpleasant situation may arise: in order to write a version image for a new

version, the OVS manager must copy one or more version images that lay ahead of ME to make

enough space for this new version image. However, in order to make space for the copied version

images, more space has to be freed. Such a "chain reaction" can be prevented if the OV~ 01anager

looks ahead at which version images may have to be copied and• perfonns the copying before that

part of OVS space must be overwritten. On the other hand, if the copying is postponed, it may not be necessary

to copy an old version image of a current version physically, since it is approximately in the right place with respect to

ME. but some storage may have to be wasted in return. Mc will be used to mark the copy point in· OVS.

Mc specifies how far the OVS manager has cleared OVS for an immediate reusal, that is, no .

version images need be copied before that part of OVS can be reused. (ME - Mc)mod 2n is then

the amount of the immediately reuseable space.

The main problem in managing OVS is how to detennine when a version image must be copied. It

is clearly wasteful to examine every single version image in OVS as the copy mark Mc moves; most

version images should not have to be copied, since the respective objects already will have newer

versions. If this assumption does not hold, then this whole approach is wrong. Since the infonnation whether a

version image represents the current version or the token of an object is embedded only in the

object header, the decision process concerning what and when to copy should start at the object

headers.

In order to maintain the current versions of all objects in OVS, the objects should be ordered

according to the time when their current versions were last written into VS. This approach is

investigated in Section 3.1. In Section 3.2 the requirement that each object must have at least one

version in OVS is relaxed; this leads to a much simpler implementation. In Section 3.3,

management of OVS is reexamined and adjusted to an implementation with write-once storage

devices. Section 3.4 looks at the implementation of OVS from the point of view of the number of

device drives needed.

3.1 Current versions of all objects maintained in OVS

The general moving window scheme outlined earlier can be restated as follows. When more OVS

24

has to be cleared for reuse, the OVS manager will search for the object that has not had a new

version image written into O VS for the longest time. The current version of this object will be

referred to as the oldest current version in OVS. Let us call it X. Note that this is not n~rily the

oldest current version in the repository, that is, a current version with the lowest creation time 1s· since that one may have

been copied more recently. Let Ac be the VS address of Mc- Then Ax >= Ac, where Ax is the VS

address of x, since by definition the portion of OVS "older" than the position of Mc has already

been cleared. All version images older than X, that is, with addresses Avi < AX, can be deleted;

this means that Mc can be moved to Ax (Figure 9). However, if Ac = Ax, it is necessary to

copy X to the "newer" portion of OVS.

The first problem is how to find X. First let us assume that all objects in the repository are

ordered according to the time the last version image of their current version was written into OVS,

that is, according to the VS address of the last image of their current versions. The OVS manager

will maintain a sorted list of objects; let it be called COPYLIST. COPYLIST in fact would contain just

pointers to the object headers. The object with the oldest current version in OVS is on the top of the

list. When a new version image for some object is written into OVS, the object should move to the

bottom of COPYLIST. Unfortunately, the new version image may, and in most cases will,

represent a token. Since a token may be later aborted, it is not appropriate to move the object to

the bottom of the COPYLIST at the time the version image for the token is created. Now, assume

that an object has a token, and its current version will become subject to being overwritten if Mc is

moved. The current version must be copied, again because the token may be later aborted. But

what should be the relative position of the object in the COPYLIST after the current version has

been copied? Since the version image of the token precedes the new version image of the current

version, the position of the object in the COPYLIST is determined by the token. If the token is

later committed, nothing need be done. If the token is aborted, the object must be moved to a

position in COPYLIST that corresponds to the location of the current version in OVS. If the

current version has not been copied since the creation of the token, no action is necessary.

Finally, if the fate of the token is still undecided when Mc reaches the respective version image,

the token must be copied, or, more precisely, the representing version image must be copied. That

is, the OVS manager must al~•J look for the oldest token in O VS, as it clears OVS.

To summarize, an object is eligible to move in the COPYLIST only when:

1. its current version is copied or

2. its token is committed or

3. its token is aborted or

4. its token is copied.

25

I •
i_..._-·-------~

object

headers

3221 1345

X

'
Mc~-----·-----... Mc

X the oldest current version version in OVS

//// cleared storage

--- pih •---V8

2500 2483

Figure 9: Release of OVS occupied by old versions.

Since objects 1345, 2500 and 2483 already have newer versions, the portion of OVS between Mc
and Mc' can be released without having to copy any version image. Note that the version images
in the cleared storage are still accessible.

26

Let Acv and At be the current version and the token reference contained in the object header.

Then Table 1 shows under what conditions the object does move in the COPYLIST. A graphical

illustration for a simpler kind of COPYLIST will be found in Section 3.3, in Figure 11. If a nil reference (no

token exists) is represented by a negative number, then to test for an existence of a token when the

current version is copied, it is sufficient to test if Acv < Al' Thus, for any of the four kinds of

events, the resulting position of the object in the COPYLIST is always detennined by the greater of

Acv and At prior to that event

event:
object is eligible to
move in COPYLIST

current version
is copied

token is committed

token is aborted

token is copied

Table 1: Management of COPYLIST

condition:
object is moved
inCOPYLIST

object has a token

Acv< At

At<Acv

At< ACY

result:
position of
the object in
COPYLIST
determined by

At

At

Acv

ACY

The overhead of clearing OVS for reuse should be distributed over time. The OVS manager can be

implemented as a demon process that runs concurrently with the processes that create and commit

tokens. To maintain the amount of cleared OVS within specified limits, the demon is run when

<Me, Mc> drops below the lower limit, and it goes to sleep when it has cleared enough space as

determined by the upper limit. A large amount of OVS may be cleared in just one step, by

jumping to the oldest current version or token in OVS. Thus it is quite possible that the amount of

cleared space far exceeds the upper limit; many new version images may be created before it is

necessary to run the demon again. The demon should not copy the oldest current version or token

unless more clear space is necessary. If the demon stops at such a version, it may be that the next

time it is run, the respective object will by then have a newer version, and thus no copying is

needed. On the other hand, the demon may run into a situation when it must copy almost every

version; this, of course, will not free any space. If this is just a local phenomenon, that is, the

images of the current versions of some objects became clustered, the demon will eventually release

enough space (unless none of these objects is ever updated again). Otherwise, it might be an

27

indication that the system is saturated.

This scheme could be finely tuned to operate with a very small amount of cleared storage. This in

turn means that multiple copies of a version or a token exist in OVS for only a very brief time

interval; thus it is possible to achieve very good OVS utilization, in terms of the useful information

stored. However, even if the entire COPYLIST could be kept in primary memory, the overhead

of re-sorting the COPYLIST may be significant. This problem can be eliminated if a different

policy for keeping current versions in OVS is adopted, as discussed in the following sections.

3.2 Most recently used current versions maintained in OVS

In the schemes described in the preceeding section, the OVS manager must maintain at least the

current version of every object in OVS. This means that if T is the average time it takes to cycle

through OVS, then the current version of an object that has not been updated for n-T will be

copied n times. This represents a performance penalty that may be unnecessary, since some objects

will not even be read for Jong periods of time, yet the OVS manager will keep copying them in

OVS. To give a more specific example, in a reasonably busy repository, a 300 Mbyte disk used as

OVS may fill up in less than a day. It is highly likely that many objects in the repository will be

dormant for many days, weeks, or even months; copying them every day would be quite wasteful.

The OVS management policy will be relaxed such that only those objects that had their current

version actually accessed (read, or had a new version created) since 1c - T will be kept in OVS,

where T is again the time it takes to fill up OVS. With this relaxation, copying of dormant objects

is avoided. In addition, the copying process can be simplified. In particular:

i. it is not necessary to sort objects to keep track of which objects must have their current

versions or tokens copied as the OVS manager works on clearing OVS; the current versions

and tokens can be copied as they are accessed,

ii. no special demon process is necessary to clear OVS; clearing of OVS is automatically

distributed over time.

Let Mc specify again the copy point. If Mc = ME, (i.e., AE - Ac = 2n), an object will maintain

its current version in OVS only if a new version is created at least every T time units. If AE - Ac

< 2n, the version images of the current version and tokens that are in this portion of OVS will be

copied in OVS when read. The bigger the distance between Mc and Me, the less frequently must

the current versions be read to remain in OVS. An additional optimization is possible: if the

version image to be copied is close to ME (mod 2n), then if one is willing to sacrifice th.e

28

intervening storage, such a version image does not have to be copied, since the storage between the

version image and ME is in a sense already "cleared."

A version (token) reference is resolved as before: if AE - Avi =::; 2n, the representing version image

is in OVS. In addition, when a version image of a current version or a token is read, then if Avi <
Ac, a copy of this version image will be created in OVS. To improve the chances that the current

version is in OVS, at the time a token is committed, that version image should also be copied, if its

address is lower than Ac- If a current version is not represented in OVS, the appropriate version

image is retrieved from the offline VS and written at the current end of OVS. Thus current

versions of objects that have not been read for a long time can be reinstalled in OVS with this

simple mechanism. Finally, it would be possible to provide a simple "refresh" process for those

objects that should always stay online. This process would periodically read such objects to force

their copying in OVS.

3.3 Adapting OVS management to an implementation with write-once devices.

The two schemes presented in the preceding sections assumed that OVS is implemented with

reusable physical storage, that is, tl,lat new and copied version images simply overwrite those with

addreses lower than AE - 2n. This means, however, that the overwritten images must be preserved

at some other device that is a part of the pennanent VS. Alternatively, the storage devices used in

OVS can be the actual VS. When a device is filled up, it is removed and stored offiine, and a fresh

device replaces it. Since the devices are written only once, VS can be implemented entirely with

optical disks. Unfortunately, the fine tuning, which is the major attraction of the schemes presented

so far cannot be achieved when OVS is implemented in this way since the OVS space can be

"reused" only by replacing an entire device. Rather, OVS should be viewed as being divided into

fixed-sized partitions, where each partition corresponds to one physical device.

To implement the same policy as the one used in Section 3.1, when the current versions of all

objects are to be kept in OVS, it is necessary to have the minimum of three partitions. These

partitions, called here LOW space, MIDDLE space, and HIGH space do not have to be of equal

size, but for simplicity, let us assume that they are. Again, OVS will iJe managed as a circular

buffer (Figure 10). When the MIDDLE space becomes full, all the version images in the LOW

space will be purged and the spaces will be reassigned such that:

MIDDLE

HIGH

LOW

LOW

MIDDLE

HIGH

29

..... -'
\

\

t i ti

CR ref CR ref

LOW space

HIGH space

............

tk
CR ref

MIDDLE space

.. The _ ... lla111n•1 _ _,,

lecllllF .. LOW._..

M
C

LOW space

.........

\
\

b) The current version of object 3221 was copied,

and the spaces were reassigned

~ cleared storage

,__._storage

30

HIGH space

M
E

MIDDLE space

ovs

ME marks again the current end of VS in OVS; ME falls into either the MIDDLE or HIGH space.

Mc points always to the beginning of the LOW space; it moves only when the spaces are

reassigned. To ensure that each existing object will retain an image of the current version in OVS,

it is necessary to find all objects that have their current versions in the LOW space. Copies of these

versions will be created in the NEW space, which is free at the beginning of the purge of the LOW

space.

This scheme reduces the sorting problem into a tripartite sort. An object is logically mapped into

the space which is the older of: the space that contains the last version image that represents the

current version, and the space that contains the last version image that represents the token, if any.

The conditions under which an object moves into a higher space are similar to those for the

previous scheme. Let Scv and St be the OVS spaces that correspond to the addresses Acv and At at

a given moment. An object is then mapped as specified by Table 2, where the ordering on the

spaces is LOW<MIDDLE<HIGH. The possible changes in the logical mapping of an object into

the three spaces are illustrated in Figure 11.

event:
object is eligible to move
to a higher space

current version is copied
token is committed
token is aborted
token is copied

Table 2: Mapping to OVS spaces

condition:
object is moved to a
higher space

object has a token and Scv<St
8cv<8t
8t<8cv
St<Scv

result:
mapping of the object to
OVS spaces determined
by

This OVS management scheme is not limited to an implementation with write-once devices. It is

possible to take advantage of the simplified ordering on objects required by this scheme even if the

physical OVS device is reuseable.

If OVS is implemented with write-once devices, then although the physical storage capacity of OVS

is 2n words, OVS does not contain the most recent 2n words of VS as before. This is because when

the LOW space is reassigned as the HIGH space, the physical device for this part of the OVS must

be replaced with a fresh one and thus the corresponding OVS address space does not contain valid

version images. In fact, on average, 50 percent of OVS will be empty. This has to be reflected in

the resolution of version references. Let us use another mark, ML, to identify the oldest valid VS

image in OVS: ML will point to the beginning of the LOW space. In this scheme, ML is the same .as

31

...,

LOW space MIDDLE space HIGH space

a. Situation just prior to the begin..._ el • ~ II .. LOW_ ot,fect 3ft1 ties
its current version in the LO'lf space ., • 111111111 Ill ... MIDDLE space .

""'I:- - -' -------
\

I
\

size

3221

' -
CR ref

LOW space

.......

..........

MIDDLE space

, 3221

.....

HIGH space

It ,_...., --- --

Figure 11 : Resolving the token problem.

32

ovs

ovs

..........
~-----

\ ovs
\ '

\

size

'
size size

\
3221 ' .3221 \ 3221

' --.
t2 t2 t 1

CR ref CR ref CR ref

HIGH space LOW space MIDDLE space

C. - &Cl I -- ti - .. - IIMI
GI Mf, - I N -- IRli .. tGI

............

...., ____ - - - - - - - - - - ' --c- ovs
\ ' '\

size

'
size size

\ \

'
3221 ' 3221 \ 3221

' ,_
t2 t2 t

CR ref CR ref CR ref

HIGH space LOW space MIDDLE space

............ w

d. a1M1 ----•• ■If .. •asu1e•
'"''' 9) --....... l■IIIL TIie --, _.,,
in ovs.

Figure 11 : Resolving the token problem. (Cont.)

33

ovs

OVS

M
E

ff

HIGH space

HIGH space

..
C

M
C

cleared space

........... vs

... ,
\

\
\

'
12

CR ref

LOW space

"411--..
\

\
size

\ 3221

.....

12

CR ref

LOW space

size

t 13

CR ref CR ref

MIDDLE space

........

\
size

3221
\ -

CRref

MIDDLE space

f,,.. -- -

Figure 11 : Resolving the token problem. (Cont.)

34

Mc, but it will be different for the other copy policy, as discussed below. A version image is in OVS only if

AL < Avi < AE-

If the management policy is to maintain in OVS only those current versions that have been actually

used in the recent past, it is sufficient to divide OVS into two partitions, LOW space and HIGH

space. When the current version of an object is read, the address of that version image, Acv• is

used to determine whether this image is in the LOW or the HIGH space. If it is in the LOW

space, it is copied into the HIGH space. New versions (tokens) are created always in the HIGH

space, that is, ME maps always into the HIGH space. The copy mark Mc must point to the

beginning of the HIGH space and the mark ML to the beginning of the LOW space. Again, if Avi

~ Av the version image is in OVS. If a version image represents a current version, then if Avi <
Ac, the version image will be copied.

These schemes resemble real-time copying garbage collection algorithms. However, in the context

of garbage collection, objects that are not copied into the HIGH space are irretrievably lost. Thus,

any object to which there exists a valid reference must be copied. This would mean copying the

entire histories of all objects in the repository. Thus although the bipartite (and tripartite) OVS

model and copying of version images was borrowed from the work on garbage collection, the

implementation details are significantly different. A copying "garbage collector" for large paged virtual

memory that works in a similar way as the schemes presented here was recently proposed for the LISP machine, but the

details have not been worked out yet

3.4 Online support for VS

As already discussed in the previous section, the physical support of OVS may be reusable storage

devices that are maintained permanently online, or just "reusable" device drives, where the storage

devices are replaced with fresh ones as they become full. The latter approach has the advantage

that the entire VS can be implemented exclusively with optical disks. To implement the schemes

presented in Section 3.3, one device drive is needed for each OVS space. When the LOW space is

filled up, the device that contains the LOW space is replaced with a fresh device, and the replaced

device becomes part of the offiine version storage. In particular, if the policy that only those

current versions and tokens actually accessed are to be maintained in OVS is adopted, two drives

are needed; an implementation of OVS that uses this management scheme will be examined in

more detail.

As said earlier, the entire VS should be duplicated for stability. However, since version images are

created only in one space at any time, only one additional device drive is necessary, to duplicate this

space. This duplicate is removed when that space is filled up, and replaced with a fresh device that

35

is assigned to the next space.

Finally, if it is necessary to read a version that is not available in OVS, the respective device has to

be found and brought online. This requires yet another drive. Figure 12 illustrates the

implementation with the minimum number of device drives.

To avoid long delays due to the manual replacement of the storage devices, it is necessary to add

one more drive. Two drives arc used for the LOW and HIGH spaces as before, and two drives are

assigned to VS backup, but the actual assignment of the drives changes as illustrated in Figure 13.

Each OVS space is divided into two equal parts, and each part is mapped into a different backup ·

device. When the HIGH space is filled halfway, the backup device is full and the backup is

redirected to the other backup device. The full backup device is replaced with a fresh device, and

once the HIGH space is full, this device will become the new HIGH space; thus the drive is

reassigned from the backup function to the "current VS" status. Basically, at any time, the

assignment of the drives is:

current VS:

backup:

LOW space

HIGH space

low part of HIGH space

high part of HIGH space

when the HIGH space fills up, i +- i + 1

Di mod 4

D(i+l)mod 4

D(i+2)mod 4

D(i+3)mod 4

The same scheme can be implemented with a reusable device such as a conventional magnetic disk

in the following way. Both partitions, the LOW and the HIGH space, can be mapped to the same

device. As the spaces are switched, the LOW space is simply overwritten. Of course, it is necessary

to ensure that the version images that will be overwritten will not be lost from VS. If we assume

that all images are written twice for stability, the second copy could be made in nonreusable storage,

thus guaranteeing that when the OVS device is reused, there does exist another copy of each

overwritten version image in VS. However, this does not ensure future stability, since once a

version image is overwritten in OVS, only one copy wilt continue to exist Thus if it is required

that the copies of all images are maintained in VS, then either every image must be written three

times when it is created, or, a copy of the LOW space must be made in nonreusable storage before

the LOW space is reused. The latter looks like a better solution. In particular, as a fresh HIGH

space begins to fill up, the LOW space can be copied onto another device (Figure 14).

The minimum number of device drives needed is the same as in the implementation that uses

optical disks only. Although OVS can be put now on a single device, two devices are needed for

36

secuo,O
of VS \

ONLINE DEVICES

OFFLINE VS

backup

I
I

I

\

I

\
\

\

I
I

I

\
I

I
I

I

\
\

\
\

\
\

\

Figure 12: Implementing OVS/VS entirely with optical disks.

37

DO

DO

LOW 01 HIGH

backup backup

a) Device at the driver 02 is full and can be replaced;
backup switches to 03

LOW

HIGH backup

b) Device at the driver 01. is full; 02 becomes the

HIGH space. DO can be replaced.

backup .01

lm
LOW

'' - - - ::-...-

02 r~~--- °"l~;-7>1
HIGH cup

ctDDll11

FiguN 1a: nple ... ct■llan of OY8/V8 wltl opllcal dlllte;
management of device drives.

38

section
of VS 0
ONLINE DEVICES

OFFLINE VS

the VS address

\
\

\

of the first version
on the "current VS"
device

\
\
\

\
\
__

\
\

\
\

\

reusable
storage

duplicate
each version

Figure 14: Implementation of OVS/VS with a reusable OVS device.

39

backup. Finally, as before, an additional drive is needed to bring selected pieces of VS online when

a reference to an old version that is not in OVS is made.

The need to replace the backup device for the HIGH space creates again the problem of long

delays. However, this problem can be resolved without an additional drive. If a "dump" of the

LOW space to the backup device can be finished sufficiently fast, the backup device can be

removed before the HIGH space fills up, and replaced with a fresh device which will become the

next "current VS" device. When the "current VS" device is filled, the VS manager switches to the

other drive which already has a fresh device mounted. Now a fresh backup device needs to be

mounted on the other drive; it should be possible to perform this operation and dump the current

LOW space before the HIGH space fills up again. Figure 15 illustrates the management of the

device drives where the VS devices are twice the size of the reusable OVS device. To start this

duplicated VS system, the first backup device will be partially empty, corresponding to the first dump of the WW space,

which is initially empty.

Although it is possible to save one device drive compared to the implementation that uses only

nonreusable devices, the performance penalties for an interleaving of the normal operation of OVS

with the dump of the LOW space could be severe. The only real advantage of using a reusable

device for OVS is that it is possible to apply the more flexible moving window management

scheme.

40

backup
device

backup
device

01

01

' '- 02

'
a) Normal operation, dump of LOW completed

b) Sp-1 lthN, ... _,UMII ti 2
... u• • u.-. .. -• a 111

Figure 1 5: Implementation of OVS/VS with a reusable device;
management of device drives.

41

current VS
device

current VS
device

D1
' I \

'- ____ -'- ______ ::::\. D2

I I I ~ cur~ent VS
I device

' unassigned

c) Fresh device mounted on the driver D1;

momentarily, there is no backup device

I I

D1 . ~ - L - - - - _.,
, I ·02

~I~
unassigned

.c...a ·····-....... ~ ,..

Figure 15: Implementation of OVS/VS with a reusable device;
management of device drives. (Cont.)

42

4. Management of objects

An object in the DOSS repository is an abstract type. The operations allowed on objects are:

create (pseudo-time, commit-record-id)

read (object-id, pseudo-time, commit-record-id)

create-token (object-id, pseudo-time, commit-record-id)

commit-token (object-id, commit-record-id)

abort-token (object-id, commit-record-id)

delete (object-id, pseudo-time, commit-record-id)

These operations are necessary to support the model described in Section 1. All of these operations

are performed as part of some atomic action. A token can be read only by the atomic action that

created it. Similarly, until the creation of an object is committed, only the atomic action that

created the object should be allowed to create a token for that object The commit record reference

field in the object header can be used also for this purpose. When an object is created, this field

will contain a reference to the commit record of the possibility for the creation; if a token is created

later under the same possibility, the reference does not change. When the possibility is committed,

this reference will be set to nil, regardless of whether the object has a token. Then a token can be

created only if: the commit record reference in the object header is either nil or is the same as the

commit record reference specified in the create-token request, and the object does not already have

a version for the specified pseudo-time.

In addition to the external operations listed above, operations copy-cv (copy current version) and

copy-token are needed for OVS management, but these are only internal operations, available solely

to the object manager. Both the external and the internal operations must start at the object header.

Objects in the repository have identifiers that are unique both in space and time; all requests to

perform operations on existing objects must include the uid of the desired object. The repository

must map the object uid into a physical address of the object header. The most straightforward way

is to have an object directory; this issue will be discussed in Section 4.3.

Since the object headers play such an important role, they should be stored in stable storage.

However, the object header is updated twice for each update of the object (create-token and

commit/abort token), and may be updated when the current version or token is read (extend the

end time). Finally, the object header is updated when the version image of the current version is

copied. The additional disk write for each update would represent a large overhead. Further, object

headers should be updated in place, otherwise it would be also necessary to change the map that

43

associates the object uid with the object header address. Thus read-write atomic stable storage

would be needed, which is more difficult and expensive to implement than the append-only atomic

stable storage used for VS. In particular, the two writes must be done sequentially. Thus the

decision is not to reflect all changes in the object header in stable storage; Section 4.1 discusses how

the object headers will be stored. Finally, Section 4.2 looks at the problem of synchronizing

concurrent accesses to objects on the level of object representation.

4.1 Object headers

The object headers are stored on a nonvolatile storage device that allows unlimited writes (e.g.,

magnetic disk). This device provides Online Header Storage, or OHS. Object headers are brought

into main memory as needed, and the changes made to an object header do not have to be

propagated into the copy in OHS until the main memory used by the object header is to be

reassigned. Since the current object headers might not be in stable storage at the time of a

processor crash or a device crash, they must be reconstructable from the information that is in stable

storage, in particular, the information contained in the version images. Consequently, the object

headers themselves become hints: they are not necessary to guarantee correct operation, but of

course are very important for good performance.

The object header as presented in Section 1.2 does not contain all control information that must be

associated with an object. In particular, for accountability and protection, it is necessary to associate

with each object the owner's id and access control specification. The access control information has

to be checked for every remote request. It should be as easy to reach as the information contained

in the object header; the simplest strategy is to include it in the object header. However, this

additional information must be maintained in stable storage. The approach used so far, that is,

inclusion of all such information in version images, is rejected for two reasons: first, it represents

additional (and possibly substantial) storage overhead. Second, it is illogical to keep write permit

information in read-only versions. To make it stable without having to maintain the entire object

header in stable storage, the following strategy is proposed.

The object headers are maintainej in OHS, but OHS is not stable (i.e., it is not duplicated). In the

terminology of Lampson and Sturgis, OHS is careful storage. The object header consists of two parts, stable

information and a hint, as shown in Figure 16a. When an object is created, and every time the

stable information changes, the object header is created (updated) in OHS after a new image of the

entire object header (that is, including the hint information) is written into VS. Finally, the object

header should be written into VS when an object is deleted. The information that the object has

been deleted has to be included in the object header; the access control specification field could Qe

44

-

HINT

STABLE
INFORMATION

token reference

token end time

comm, recor r erence

owner id

access control
specification

a) Structure of an object header

object uid

~

t ..
commit record reference

object uid

current version reference

current version end time

token reference

token end time

commit record rererence

owner id

access control
specification

~

size

type=3

objectuid

~

t ..
commit record reference

object uid

current version reference

current version end time

token reference

token end time

commtt record rererence

owner id

access control
specification_,

Flgu re 1 e: Qbfeet header Md lie IMage tn ¥8.

45

used also for this purpose. Thus in addition to guaranteeing that this information will not be lost,

the repository keeps a complete history of the changes of the access rights, which may be useful for

auditing purposes.

To create an image of an object header, the object header is simply treated as data, and the same

fields (envelope) are added as for version images (Figure 16b). The CR reference in an object

header image refers to the commit record of the possibility under which the object was created,

deleted, or the stable information changed. Thus treating object headers in this way solves not only

the stability problem but extends the mechanism for committing tokens to the rest of the operations

that modify the state of an object. In addition, the object may have a token, which has its own

commit record.

The object header images in VS have to be distinguishable from the version images and data

images: it must be possible to determine from the stored image itself that the data field represents

an object header. Thus object header images represent yet another tagged type of entity that can be

stored in VS, as shown in Figure 16c.

The hint information is guaranteed to be current only in the main memory. Once in a while, it is

written into OHS, and it is also possible to create periodically new images of object headers in VS

as checkpoints. Note that the images of the object headers will not be continuously copied in VS,

since in the normal situation the object headers will be read from OHS; the VS images will be used

only during recovery.

4.2 Synchronization

The repository must be able to handle several requests concurrently, since most requests will require

one or more disk accesses. Also, the demon process of the OVS manager runs concurrently with the

processes that execute the requests. In some cases, it is also possible to process concurrently several

requests that pertain to the same object.

All accesses to individual object histories have to be negotiated at the object header; a single lock or

monitor is needed per object. The most natural place for the tock is the object header. However,

the tocks must be "soft", that is, must be automaticatly released by a crash, otherwise if the

operation that set the lock was aborted by a crash, the object could remain locked out This can be

achieved by allowing locks to be set only on the copies of the object headers in main memory, but

this approach has a serious shortcoming. For easier memory management, objects should be packed

in pages. Since it is not possible to "expand" the object header to add the lock when the object

header is mapped into main memory, the object header must have a permanent "lock field". If

46

locked object headers are not allowed to appear in OHS, the pages of object headers in main

memory have to be handled carefully: they must not be "write-through", and they cannot be

automatically paged out by the virtual memory manager, at least not while some of the object

headers on the page have their locks set. Further, it is not possible to force a modified object header

into OHS while some other object header on the same page is locked. Alternatively, the locks for

each page of OHS could be kept in a special data structure (a bit vector) in main memory. Since

all object headers are of the same size, finding the appropriate lock given the OHS address of an

object header is not difficult

The "automatic release of locks" after a crash can be accomplished in yet another way: the

recovery process can simply ignore the locks set on the surviving object headers in OHS, and clear

the locks as part of reconstructing the object headers. This assumes that no normal processing is

allowed on any object until the object header has been inspected by the recovery process; actually,

as will be seen in Section 6, a read request that refers to a portion of the object history that is

accessible from the surviving object header can be· allowed to proceed, in spite of the object header

being still locked from the epoch before the last crash.

The simplest locking policy is to lock the object header for the duration of each of the operations

listed in the beginning of Section 4, but for maximum concurrency, object headers should be locked

only for the shortest possible time. This corresponds to operations on the object representation that

must be atomic. Locking guarantees only indivisibility in the absence of failures. Recoverability is provided by the

underlying vs system. The individual operations on objects must lock the object header as follows:

create: locking is not necessary since the object does not become known until the

create operation terminates (returns object-id)

read:

create-token:

find the appropriate version; if it is still a token, test if it can be read;

change the end time if needed

i. test if this token can be created; if yes, modify the object header to indicate

that the object now has a token (note: the VS address of the token is not

yet known)

ii. set the token reference after the version image of the token has been

written into VS

commit-token: i. change the current version reference and the current version end time

ii. clear the token reference and the related fields (the token end time and the

commit record reference)

abort-token: clear the token reference and the related fields

copy-vs: change the current version reference

47

copy-token: change the token reference

The copying of version images, however, could cause problems when interleaved with execution of

the external operations, in particular, commit-token or abort-token:

i. If commit-token is executed while the current version is being copied, the OVS

demon could change the current version reference after it has been changed to point to the

new committed token.

ii. If commit-token or abort-token is executed while the token is being copied, the OVS

demon could change the token reference after it has been cleared to indicate that the object

no longer has a token.

The latter is a lesser problem (on the first attempt to read such a copied token, it would be

discovered that the token was committed and the object header would be properly reset), but it is

still annoying. An additional problem arises if the "copy when read" policy is adopted (Section

3.2). When a version image of the current version or token is read and found to be past the copy

mark, the OVS manager will initiate a copy operation. Now, if between the test for Avi < Ac and

the completion of the copy operation the same image is read again, it would be copied again! In

case of such a read and copy it is particularly undesirable to lock the object until the copy operation

is completed, since the requested version image may have to be read from the offiine VS. To solve

this problem, two flags should be added to the object header: cv.copy and token.copy, to indicate

that a copy operation on the current version or the token is in progress. Subsequent read requests

can then proceed, but if the flag is set, the positive outcome of the Avi < Ac test will not start

another copy operation.

The copy flags are also useful in commit-token and abort-token operations. Before changing the

current version reference or the token reference field, these operations should check the appropriate

copy flag. If the flag is set, the conflict can be resolved in two ways:

i. Wait until the copy operation completes.

ii. Abort the copy operation; that is, prevent the OVS demon from changing the current

version or token reference. Note that the particular version image (copy) may have already been

written into VS or will inevitably be written if it is already in some VS buffer when the copy operation

is aborted. However, writing it into VS will not do any harm, not even with respect to object header

reconstruction after a crash.

Note that the create-token operation does not have to be concerned with simultaneous copying. It

48

is impossible to copy the token before create-token terminates, and it does not matter whether the

token refers to the old or the new version image of the current version.

4.3 Object directory

The object directory in a repository serves two purposes: it locates objects actually stored in the

repository, and it serves as a forwarder if an object created in that repository is moved into another

repository. For local objects, the directory contains the OHS address of the object header. For

objects that were moved, it contains just the id of the new repository.

If the directory of some repository is lost or damaged, an exhaustive search of all repositories may

have to be conducted to find an object known to have been created in that repository. Thus it is

desirable to keep the directory in stable storage. The simplest way to accomplish this is to represent

the directory as an object, with a reserved OHS address. Since the directory will be large, it will

have to be represented as a structured object

The OHS addresses do not have to change during the objects' lifetimes: thus the directory must be

changed only when an object is created, moved to another repository, or deleted. Still, even with

relatively infrequent changes, creating a new version of the entire directory would be very

expensive. However, it should be possible to take advantage of the implementation of structured

objects: for each change to the directory, it is only necessary to create a new data image of the

affected piece a~d a new structured version image that differs from the previous one only in the

reference to the modified piece. Since the size of individual pieces can change, the necessary

modifications can be kept pretty localized, even if the directory is represented as a sorted list or a

tree. If an entry is added and the size of the affected piece exceeds one page, it is simply split into

two pieces.

Requests received by the repository must contain the uid of the desired object The OHS address

of the object header is obtained from the directory. To improve performance it is possible to return

to the brokers also the OHS addresses. These addresses can then be included in future requests, in

addition to the object uid. However, they are merely hints, that is, it is not guaranteed that the

particular object can still be found at that address when the request is received. Prior to accessing

an object, the object manager would have to check the validity of the hint by testing it against the

object uid in the object header. If the hint as received is invalid, a new hint can be sent back as

part of the response to that request This kind of hint could be included also in the directory for

those objects that were moved into another directory.

49

5. Management of commit records

Repositories must implement another abstract entity -- the commit record. A commit record

includes the state of the possibility it represents, a timeout, and a list of tokens (references to

tokens) created under that possibility. Commit records are mutable entities: both the possibility

state and the list of tokens must be modifiable. While a commit record is still in an unknown state,

tokens can be added to (and possibly deleted from) the list in the commit record. Once the

possibility is completed, the state of a commit record is set to committed or aborted and tokens can

only be removed from the list.

The list of tokens associated with each commit record is only an optimization; it is not needed to

preserve consistency as required by the atomic action that created. the possibility. Each token refers

to its commit record; thus whether or not a token can be converted into a version can be

determined by inquiring about the state of the commit record specified in this reference. This

process can be sped up with the help of the token list: when the possibility is committed or aborted,

all local tokens can be committed or aborted immediately. Another optimization is that it is

possible to delete the commit record once all of the tokens on the list have been processed. If the

token list cannot be guaranteed to include all tokens created under that possibility, then the commit

record must never be deleted, because there is no other mechanism to insure that all tokens are

infonned about the final state of the possibility.

In Reed's original model (REED 78], the commit record of a committed possibility is assumed to be

stored in atomic stable storage until all tokens on the list have been reliably changed to versions.

Commit records of uncommitted possibilities (aborted, or possibilities the state of which is still

unknown) do not have to be kept in stable storage: if the commit record cannot be found, the

possibility can be assumed to have been aborted. Unfortunately, when the recovery of the

repositories is considered, the list of tokens in a commit record is not sufficient to determine when a

commit record can be deleted. In the present model, the conversion of tokens into versions is done

merely by changing the references in the object header, and, as discussed in Section 4, the object

headers are not stable. As it will be seen in Section 6, for recovery purposes, it is necessary to be

able to detennine the state of a possibility for a long time after all the tokens have been converted

into versions. This means that committed commit records must never completely disappear from the

repository; Section 5.1 presents a scheme that accomplishes this by representing commit records as

objects. A consequence of the chosen representation is that the token lists need never be stored in

stable storage. The fact that the token list docs not have to be stable simplifies also the

implementation of distributed possibilities as discussed in Section 5.2.

50

5.1 Representing commit records as objects

For stability, commit records can be mapped into VS. Since nothing ever disappears from VS, a

commit record can be reconstructed even after it has been deleted at the level of abstraction

implemented by the commit record manager. Commit records could be represented by yet another

type of stable entity (similar to the object header image), or, they could be represented as objects.

Implementing commit records as objects has the advantage that all externally accessible entities in

the repository can be located and access to them controlled by the same mechanisms. On the other

hand, the object abstraction needs to be extended to facilitate implementation of commit records, as

will be seen later.

There are several possible ways to implement commit records as objects. The following approach

was chosen because it utilizes best the mechanisms already present in the object model. When the

repository receives a request to create a commit record, it creates an object. The objects and tokens

created under this possibility will use, as their commit record reference, the uid of this object. Since

creation of objects also must happen under some possibility, it is necessary to supply a commit

record reference for the object that will represent a commit record. Recall that this commit record

reference appears in both the OHS image and the VS image of the object header when an object is created. Creation

of a commit record can be committed immediately. Thus a simple solution is to set the commit

record reference for a commit record object to nil, to indicate that such an object is implicitly

committed.

Each stable image of a commit record contains the state of the possibility. The commit record

reference in the version image of an object representing a commit record is again nil. In this case,

however, nil commit record reference does not mean that the version image is implicitly committed.

Rather, such a version image refers indirectly to itself: the actual state of the possibility, and

consequently of the representing version image, is embedded in the data field of that version image.

It might be more suggestive to let the commit record reference in version images of a commit record refer to the commit

record itself, but it is easier to test for a nil reference than to detect such a circular reference.

As will be seen in Section 6, the \st of tokens associated with a commit record does not have to be

stored in stable storage, since it is only a hint; it is not needed for recovery. If the repository

crashes, all objects will be recovered individually by locating their latest version images in VS. In

this process, the object manager will determine whether a version image represents a version or a

token by inspecting the appropriate commit record; this must be done even for those version images

that have earlier been determined to represent committed versions. Thus if the repository crashes

after a possibility was committed but before all of the tokens have been converted into versions, it is

51

not necessary to resume or restart the conversion process since it will be finished automatically as

part of recovery of the individual objects. The only reason for including the token list in a stable

image of a commit record is to aid in error detection: prior to converting a token, the token list can

be used to verify that this token is indeed part of that possibility.

The representation of a commit record is shown in Figure 17. In addition to creating an object as

the commit record representation, the create-commit-record operation creates also a token for that

object. Then the waiting for the outcome of a possibility can be accomplished through the already

existing mechanism: a process attempting to read the commit record object will find a token, and

consequently the read operation will be delayed until the token is either committed or aborted. To

commit a possibility, the commit record manager creates the last version image for the commit

record object that has the possibility state in the data field set to committed; this is a committed

version which also commits all the preceding tokens. Now, if the possibility is aborted, it should be

sufficient to abort the tokens of the commit record. For easier recovery from crashes, however, the

commit record manager should, after aborting the existing tokens of the commit record, create a

stable version with the possibility state set to aborted (Figure 17c). Finally, although deletion of an

object is merely a deletion of the object header, it is still important to be able to delete commit

records, since OHS is limited. With the chosen representation, commit records have to be explicitly

deleted even if a possibility is aborted internally, by a repository crash or because of a timeout

The commit record manager should delete a commit record after it has processed the associated list

of tokens. Such a deletion is again implicitly committed. Thus the VS image of the object header

created by the delete operation will have the commit record reference set to nil. If the repository

crashes before the commit record could be deleted, the commit record object will be recovered; it

should be deleted as part of the recovery.

The present object model does not permit creation of another token and its commitment if the

object already has a token. Since a token of a commit record cannot be turned into a version with

the existing mechanisms, it is not possible to create the final version of a commit record as

described above. It would be possible to add another operation, create-version, that would ignore

the token, but a more general solution is to extend the object model such that it allows creation of

more than one token for the same object within the same possibility. As presented in the beginning

of Section 4, the object model already allows, within the same possibility, creation of a token for a

newly created and uncommitted object; the extension needed to support multiple tokens is very

simple. To create another token, a version image is created as for the first token, but the "previous

version" field in this verion image must refer now to the preceding token (Figure 18). The token

reference in the object header is changed to point to the version image of the new token. The

commit record reference is unchanged since the new token is created under the same possibility.

52

object uid = xx

-
~ ~ - object uid = xx .--

nil
t1 +

CR ref= nil t 1

repository id
CR ref= nil

access control possibility state =

specification unknown

a) Creation of a commit record

object uid = xx

~ .--
t 2 +

ot,jecl uid ~ ol>jecl uKI • ""
token ref = nil

nil "r-. -
CR ref= nil t 1 t2

repository id . CRref = nil CR ref = nil

access control possibility state = possibility state =
specification unknown committed

1tc...a....,t1a11 • •• ea.,

Figure 17: Representatfon of a comml NCallt • • ol,feol.

53

object uid : xx
~ ~ - -

t 2 +
~ ~ object uid = xx object uid : xx

token ref = nil
nil

.
CR ref = nil t 1 t2

repository id
CR ref= nil CR ref = nil

access control possibility state = possibility state =
specification unknown aborted

c) Commit record of an aborted possibility

Figure 1 7: Representation of a commit record as an object. (Cont.)

54

xx

xx

CR2
CR2

xx

CR1

a) Creation of the first token

xx

xx

t +
CR2

CR2 CR2

xx

CR1

.............

Figure 18: Creation of multiple tokens for an object within the same possibility.

55

xx

nil

nil
CR2 CR2 CR2

xx

CR1

c) Possibility committed

Figure 18: Creation of multiple tokens for an object within the same possibility.

(Cont.)

56

When the possibility is committed, this entire chain of tokens is committed at once. This does not

require any changes: the current version reference becomes the reference to the last token, and the

token reference is set to nil. Similarly, when the possibility is aborted, the entire chain of tokens is

aborted. This extension to the object model facilitates checkpointing of commit records and data

objects in general; as an extreme, commit records can be made stable throughout their lifetime. To

achieve the latter, every time a token reference is added, a new version image (token) including the

current list of tokens would have to be created for the commit record. However, special care must

be taken when a token is copied by the OVS manager. First, only the latest token (which, if

committed, wilt become the current version) should be subject to copying. Second, if a copy-token

operation is in progress, it should be completed before an additional token can be created.

Commit records represent yet another problem. Once the possibility state is set to committed or

aborted, it must not change in the future. If commit records are represented as objects, this means

that it must not be possible to create another version of the representing object. This restriction

must be enforced by the commit record manager, but it is aided on the object level by the access

specification field, which can be set to restrict the right to update the representing object to the

owner, that is, the repository.

5.2 Distributed possibilities

For a distributed possibility, that is, a possibility that includes objects in more than one repository, a

primary commit record is created in one repository, and commit record representatives are created in

each other repository that contains a token for this possibility (Figure 19). When a possibility is

committed or aborted, this state is encached in the commit record representatives in all involved

nodes, and the committment or deletion of tokens is done locally.

The introduction of commit record representatives complicates the protocol for commiting a

possibility. To be able to rely on the token lists in deciding when to delete a commit record, all

representatives with their lists of tokens must be first forced to stable storage before a decision can

be made whether the possibility can be committed: a two-phase commit protocol is needed. An

alternative solution is to treat the token lists in the representatives only as hints, and rely on the

dual mechanism, that is, the commit record references embedded in the individual tokens. A

protocol of this kind is outlined below.

Commit record representatives can be implemented in the following way. To create a commit

record representative, the repository creates again an object with nil as the commit record reference

(implicitly committed). In addition, it creates a token for this object, with the uid of the primary

commit record as its commit record reference. All local tokens for this possibility will refer to the

57

primary
commit record

tokens

REPOSITORY A

commit record
representative

state

timeout

tokens

REPOSITORY B

timeout

REP086TORV C

Figure 19: Implementation of a distributed possibility with commit record

representatives.

58

object which is the local representative. When the final state of the possibility is known, the token

of the commit record representative is either committed or aborted. If nothing else is done, then

during crash recovery, it would be necessary to inquire again about the state of the primary commit

record, and primary commit records would have to be maintained (be easily accessible) forever.

Thus it is desirable to encache the state of the possibility locally in such a way that crash recovery

can be confined to the failed repository. Again, it is only necessary to create a committed version

of the commit record representative with the final state of the possibility (committed or aborted)

embedded in it; the commit record reference in this version is now nil.

The actual protocol for distributed possibilities is summarized below:

Token accumulation phase: A repository receives a request to create a token for object x and

examines the commit record id contained in the request; this is always the id of the primary commit

record. If the respective object does not already have a committed version for the specified pseudo·

time, or another token that was created under a different possibility, the repository proceeds to

create the token. The create-token operation still can fail, if the repository finds out that the possibility specified in

the request has already been committed or aborted. If this repository does not contain the primary commit

record, it checks whether it already has a representative for this commit record. If not, it sends a

request to the primary commit record for a permit to create a local representative. If approved, it

creates the representative. Once the local commit record representative is located or created, the

repository creates the token for object x and sets its commit record reference to the id of the object

that represents the commit record.

When the request to create a commit record representative is approved by the primary commit

record, a reference to that commit record representative, or, more precisely, a reference to the token

of the representing object, is added to the list of tokens of the primary commit record. Note that

obtaining an approval from the primary commit record is again only an optimization.

If a repository fails during the token accumulation phase, the list of tokens, if it existed only in the

main memory, is lost This does not mean, however, that the entire atomic action must be aborted,

since the representing object is guaranteed to survive the crash. The onl) complication is that the

tokens (including the tokens of the representatives in other repositories) will have to be converted

individually, as other atomic actions attempt to access those objects.

Commit point: Requests to commit or abort a possibility must be sent to the primary commit

record. When the repository that contains the primary commit record receives such a request, it

creates a version image of the primary commit record, with the possibility state being either

committed or aborted. This version image may contain also the list of local tokens and the

59

references to the tokens of the representatives in other repositories.

Conversion of tokens: After the commit point, the tokens at the same repository as the primary

commit record are removed from the list and converted into versions or aborted. A message

specifying the final state of the possibility is sent to each repository that contains a representative for

this commit record. Each such repository, when it receives such a message, creates a version image

of its local representative; the possibility state in this version image is set to the same value as the

state in the version of the primary commit record. The repository then replies with a commit-ack

message to the primary and starts converting the local tokens and removing them from the list of

the local representative.

Deletion of commit record representative: When all local tokens in the list of a commit record

representative are removed, the commit record is deleted, and consequently the representing object

is deleted. This approach should be followed even if the posssibility has been aborted.

Deletion of the primary commit record: When the primary record representative receives a commit

ack message from a representative, it removes the token reference for this representative from its

list lbe primary commit record can be deleted when its token list is empty.

Detemzining the state of a token during normal operation: To determine the real state of a token,

the commit record reference in the token is used to find the local commit record representative. If

the local object representing the commit record still has a token, then if the commit record

reference in this token is nil, this object represents the primary commit record and the state of the

possibility is still unknown. Otherwise, it is necessary to inquire at the primary commit record,

which is specified by the commit record reference. If the commit record has a committed version,

the state of the possibility is known locally, and is embedded in that version.

A repository should maintain a map from the primary commit record ids to the ids of the local

commit record representatives. This map does not have to be stable. According to the protocol

above, if a local commit record representative is not found through this map, the repository must

send a request to the primary commit record to approve a creation of a representative. If the

primary commit record contains a reference to a representative at that repository, its id (the uid of

the representing object) will be returned. If the repository containing the primary commit record

failed also and lost the token list but the atomic action continues, the requesting repository may

· receive an approval to create a new local record representative. This means that a repository may

have more than one local representative for the same possibility, but the mechanisms of the object

model and the particular implementation of the commit record representatives still guarantee

consistency.

60

6. Recovery

At the core of the reliability measures adopted for the repository is the distinction between stable

information and hints. A hint is information that is not essential for correct functioning of a

system, but is important or even essential for good performance. In the SW ALLOW repositories,

all information in main memory and in OHS is considered to be hints reconstructable from the

information in VS. The integrity of information stored in VS and OHS is assumed to be testable:

this is accomplished by associating a checksum with each page.

Since during normal operation, the repository relics primarily on the hints, it is also important to be

able to check the integrity of the hints. A checksum could be used also on each page in main

memory, but since most hints (the object headers) change frequently, it is not feasible to recompute

the checksum for each such change. In most cases, however, the validity of hints can be tested

against the information in VS. For example, the current version and token reference fields of the

object header must contain a VS address Avi · which is:

i. valid in VS address space,

ii. Avi < AE-

iii. the object uid contained in the first word of the version image represented by this

VS image matches the uid in the object header.

Only the last test is necessary to ensure that the accessed entity is indeed a version of the given

object, but the first two tests can save time, since they can catch some errors without having to

access VS.

The bulk of this section concentrates on the problem of recovering objects from system crashes and

storage device decays. It is assumed that a system crash invalidates the entire content of the main

memory. The major part of a crash recovery is reconstruction of object headers, since the current

state of the recently active objects may have existed only in the main memory.

If the latest version image (the current version or a token) of an object is known, all older versions

can be found by following the chain of references embedded in the individual version images. If

this information is lost (when the current state of the object header is lost or damaged), it is

necessary to find this version image by searching VS. This is why each version image must include

the uid of the object of which it is a part. If each object is guaranteed to have at least the version

images of the current version and the token in OVS, a backward search of OVS will find the

beginning of all object histories. Otherwise the search must be extended to the offiine portion of

vs.

61

The recovery process must examine every VS image, starting from the end of VS. The issues of

how to find the end of VS and how to isolate individual VS images on a VS page are discussed in

Section 6.1. Section 6.2 presents an algorithm for reconstructing the object headers from the

information in VS. Section 6.3 describes how recovery of individual objects can be distributed over

time, triggered by an access to an object Section 6.4 discusses the effect of a failure of a repository

on the communication protocol between the repository and the brokers.

6.1 Retrieval of VS images

Before recovery of object headers can begin, it is necessary to find the current end of the version

storage, that is, the address of the latest page written into OVS; the mark ME can be viewed as

pointing to the end of this page. This address could be found by searching from the low end of

OVS · or from the copy mark, in the direction of increasing VS addresses. In some of the OVS

management schemes, these other marks are implicit, and thus no additional precautions must be

taken. To remember the end of VS reliably, the mark ME would have to be kept in stable storage.

Otherwise, Me can be found by searching for the first "free page." On an optical disk, this means

the beginning of the area that has not yet been written. On a magnetic disk, each page, as released

by the OVS demon, could be marked as "free." Such information provides a useful check in

general: before the version buffer in main memory is written into VS, the specified OVS page

should be checked if it is free.

The failure might have occurred between the two physical writes in the duplicated implementation

of stable VS. If the latest page as written to one of the devices is found correct, the VS write can

be completed, that is, that page is written also to the other device; otherwise that page should be

marked as bad, and the end of VS set to the end of the preceding page (the latest page on the other

device). No external request (that is, a request from a broker or another repository) for which some

information has to be written into VS is acknowledged until both writes complete; thus if a (dual)

VS page is declared bad because the second write did not complete correctly, no harm is done.

However, if the write is completed during recovery, the create-token requests that caused creation of

VS images on that page cannot be acknowledged, since the repository lost all information about

these requests. The original requestors may retry their requests, in which case the recovered

repository will send back an acknowledgement, as discussed in Section 6.4. Otherwise, the

individual tokens on that page eventually will be aborted because of a timeout Copies of version

images made by the OVS manager will be found and incorporated into the chains representing the

object histories by the main recovery process.

The next problem is to isolate the individual VS images. The scan of VS should proceed from its

62

high end towards the low end; for individual pages, this means from the end of a page towards its

beginning. This means that the size field should be at higher-address end of a VS image. Since for

normal use, the position of the size field must be computable from the VS address contained in a

version or token reference, this implies that VS images should be stored so that their first word, that

is, the word specified by those references, has the highest VS address. Finally, if a page is not

completely filled when written into VS, a dummy data image should be created in the unused space.

This dummy data image will be discovered only during recovery, but it will be automatically

ignored since all data images are ignored during recovery: only the size field of the representing

VS image is used to get to the beginning of the preceding VS image.

6.2 Reconstruction of object headers

Since most repository crashes will not damage OHS, the recovery process can use OHS image as the

starting point. As stated earlier, il is assumed that a checksum is associated with eadt OHS page, and that it is

sufficient to test the integrity of the object headers on the page. The value of the field that specifies the end

validity time of the current version in the object header in OHS provides a logical delimitation for

recovery: only if some version (token) was created after this time (this would mean that the OHS

image was not updated), the hint in the object header must be updated (reconstructed) from the

information in VS. Unfortunately, because of the copying of version images in VS, there is no

simple unique mapping from time to a physical location in VS. Thus only the current version

reference Acv and the token reference, At, in the surviving object header are useful: VS must be

searched only as far as the higher of these two addresses.

If the object header in OHS is damaged, VS must be searched until all of the following is found:

1) a version image of the current version

2) a version image of the token (if any)

3) an image of the object header.

If the OHS image is not damaged but is merely obsolete, it is only necessary to find the first two

items. If the found image of the object header precedes the version images of both the current

version and the token (i.e., it is the latest entity in VS pertaining to this object), the object header is

recovered without any further search. If a version image of a token is found first, it is not necessary

to search for a version image of the current version, since a reference to it is contained in the token.

However, if a version image of the committed version is found first, it could be a copy, and thus it

is still necessary to search for a token. Moreover, this version image does not necessarily represent

the current version! This can happen if the current version had been copied while the object had

had a token, such as in Figure 8b, after which the token was committed but not copied.

63

Fortunately, these two anomalies are mutually exclusive. Thus, if the first version image viL (latest

in VS), found for a particular object represents a committed version, it is necessary to continue the

search until a version image vix that represents a different version or a valid (not aborted) token is

found. If an image of the object header is found next after viL, then vix is the version image

pointed to by the token reference, if not nil, the current version reference otherwise. Now viL

represents the current version if:

1) vix represents a token or

2) ts(vix) < ls(viL) where ts is the start validity time of that version.

If ts(vix) > ts(vi0, then vix is the current version and the object does not have a token.

A token representation is indistinguishable from a version representation. If there exists a reference

to version image X in another version image, X must be a committed version. But if a version

image is retrieved without such context, to distinguish between a committed version and a token, it

is necessary to check the commit record, or, more specifically, the local commit record

representative. This is why a version image of a token (and consequently, a version) must contain

the uid of its commit record. Also, when an image of an object header is found, it may have been

written into VS as part of an operation that has not yet been committed. Recall that a VS image of

the object header is made when the object's status is changed: the object is created or deleted, or

its access specification is changed. Again, it is necessary to use the commit record reference in the

object header image to determine the state of the possibility under which the status of the object

was to be changed. Thus an important part of reconstructing the object headers is finding the

appropriate commit records.

Since commit records are represented by objects, they must first be recovered by the same

mechanism as objects representing clients' data. However, at the time of a crash, a large portion of

the commit records that will have to be inspected during recovery have been probably deleted.

This means that their object headers were written into VS, marked as deleted. The repository does

not have to recover deleted objects (given that the deletion was committed), but it must temporarily

recover deleted commit records, ;:,0 that other objects can be recovered. Since VS images of object

headers are easily distinguishable (their commit record reference is nil), the handling of deleted

commit records does not represent a major problem.

The copying of version images by the OVS manager complicates also the reconstruction of the

relevant commit records. Without copying, the commit record of a possibility that reached the

final state would be guaranteed to be recovered prior to all version images and object header images

created under that possibility. When a committed version image is copied, it gets "ahead" of its

64

commit record, that is, the recovery process will find that version image before it recovers the

commit record. This can happen even if the copied version image is still a token: if the copying of

the token occurs just before the state of the possibility is finalized, the copy of the token and the

version image of the commit record may end up in different VS buffers, and be written into VS in

the reverse order. The images of object headers are always ordered correctly in VS, since they are

read from VS only during recovery and therefore are not copied by the OVS manager.

The search process sketched in the beginning of this section must be expanded to take into account

the problem of recovering the commit records. It is assumed that only the final state of a possibility

is recorded in stable storage. Also, if the recovery process docs not find a version representing the

final state of a given possibility, it cannot abort the possibility, since the reconstructed local object

might be just a representative of the commit record.

Again, the exact recovery of individual objects depends on in what order the various relevant

entities are found:

► The first entity found is an image of the object header:

Since the VS images of object headers are not copied in OVS, then if the changes to the object

status as reflected by this object header image were finalized (committed or aborted), the

appropriate commit record version must have been already found by the recovery process. If it

has not been found, the possibility is still in unknown state. In any case, the current version

reference and token reference in this object header image can be used to rebuild the object

header in OHS. If the found object header image is not committed, the version reference in this

image can be used to find the preceding VS image of the object header which contains the

correct stable information for this object.

► The first entity found is a version image; call it again viL:

1. 'Ibe commit record for this version image has already been reconstructed. This can happen

only if:

a. viL is a committed version that has not been copied; since this is the first image found,

the object docs not have a token.

b. viL is an aborted token. Embedded in this token is a reference to the current version;

neither the current version nor the commit record for the current version have to be

searched.

2. The commit record has not been reconstructed yet. This can happen if:

65

a. The final version of the commit record has not been created yet, thus viL represents a

token.

b. viL represents a committed version that was copied by the OVS manager.

c. viL represents an aborted token that got ahead of the final version of the commit record

due to the nonsequential management of the VS buffers.

To resolve this uncertainty, it is necessary to continue the search of VS until one of the

following is found:

i. A version image of the commit record:

- If the embedded possibility state is unknown, viL is a token, and it contains a

reference to the current version.

- If the embedded possibility state is committed, viL is a copy of the current

version; it is still necessary to search for the possible token.

- If the embedded possibility state is aborted, viL is a copy of an aborted token. viL

contains a reference to the current version, and the object does not have a token.

ii. Another version image, vix, created under a different possibility than viL (this

restriction is sufficient to handle correctly situations where vix is just another copy of the same version

image, and also the cases when multiple tokens were created under the same possibility):

- If tg(vix) < tg(viv then viL must be a token. Embedded in viL is a reference to

the current version; this is not necessarily vix, since vix could be an aborted token

or a no longer accessible copy of an earlier version.

- If tg(vix) > tg(viv, then viL must be a copy. If vix is a token or an aborted

token, then viL represents the current version, otherwise it is a copy of the

preceding version. Thus it is necessary to continue the search of VS until the

commit record for vix is reconstructed.

Finally, the object headers contain the end time of the current version and the token; this

information also must be reconstructed somehow. If an object has a token, the end time of the

current version must be one "tick" less than the creation time of the token. The end time of the

token, and if an object does not have a token, then the end time of the current version, ought to be

set to the current time, that is, the time when the object is recovered.

6.3 Real-time recovery

The actual recovery process should be as efficient as possible so that the delays experienced by the

clients will not be noticeable. The repository can limit the extent of crash recovery through special

checkpoints. In addition, rather than recovering all objects in the repository before resuming

normal processing, recovery can be distributed over time. In particular, individual objects can be

66

recovered as they are accessed.

For this, it is necessary to be able to distinguish the epochs between different recoveries. Thus the

repository should maintain, as part of its state, the current recovery epoch number, REN. Every

time the recovery process is started, the repository is assigned a new REN such that these numbers

monotorically increase in time. REN must be included also in each object header. When an object

is created. it is assigned the current REN. When an object is accessed through any of the

operations listed in Section 4, then if its OHS image is not damaged, the REN in the object header

is compared to the current REN of the repository. If they differ, the object header must be

updated to reflect the changes since the time the object header was written into VS during the

recovery epoch as given by its REN. If the object is locked, the lock is simply broken; the locks

must be honored only if the object REN and the current repository REN are the same. If an object

is not used for a long time, several crashes (and recoveries} could have occurred since the object was

created or recovered. However, since such an object has not been recovered earlier, it could not

have been used (read or written} since the recovery epoch given by its REN, and thus to recover

such an object, it is not necessary to search VS from its current end, but only from the point that

corresponds to the end of that epoch.

Thus, the recovery process should, at the commencement of a recovery, write a mark into VS that

specifies the beginning of a new recovery epoch. For quick location of these marks, they should be

chained together as are the histories of individual objects. Thus the recovery mark can be

represented by an object: if the object header in OHS survives the crash, the last version is easy to

find, and the new version of the mark can be created with the reference to the last one immediately.

If the object header of the recovery mark is destroyed, it is necessary first to search VS for the last

version version of the recovery mark. The object header of the recovery mark is modified only

during recovery, and it should be forced immediately into OHS. This guarantees that the correct

information is always in OHS and thus should survive most crashes.

When an object is recovered, its REN in the reconstructed object header is set to the current REN.

Also, a VS image of the object header should be created: this will delimit the extent of the next

recovery should the OHS image be damaged. In such a case, the recovery must start from the

current end of VS.

In the process of reconstructing an object, it is again necessary to reconstruct the appropriate

commit record(s}. Since atomic actions survive repository crashes, the fact that the final version of a

commit record is not found in the same recovery epoch as the object in question does not mean

that the state of the possibility has not been resolved. But since a commit record is also an objec;t,

67

an attempt to access it will direct automatically the recovery process into the right recovery epoch.

6.4 Communication with brokers

A failure of a repository can also affect the brokers. It is the resposibility of the brokers to

supervise that requested operations are indeed performed by the repositories. If a broker does not

receive a reply from a repository, then unless the requested operation is not important for correct

completion of the given atomic action, the broker has two options:

i. abort the entire atomic action, or

ii. repeat the request.

Now, of course it is possible that the first request was received and processed by the repository, but

since all operations supported by the repositories are idempotent (if they carry the same pseudo

time}, duplicate requests do not represent any problem. The only complication arises if a message

from a broker containing data for a token is delivered in pieces. Unless the entire structured

version image was already created, if the request is repeated, the previous incomplete message must

be discarded, since the partitioning of the repeated message may be different from the previous one.

68

7. Summary

Figure 20 summarizes the structure of a SW ALLOW repository as a lattice of abstractions. A more

detailed description of the structure is given in the appendix. The entire design of the repository is

centered around the Version Storage, which is the only stable storage in the repository. In a sense,

VS is similar to the transaction log of database management systems [ORA Y 79]. However, there is

an important difference: VS is used not just for recovery, but it is where the actual data are.

VS contains not only the versions of objects, but also the commit records and images of the object

headers. However, the name Version Storage has been retained, since:

i. commit records are represented by ordinary objects (and thus VS contains their

versions), and

ii. the object header images are in fact selected versions of the state of individual

objects.

VS is append-only storage, in accordance with the basic object model. It provides a linear paged

address space with a straightforward mapping from the VS address into a location on the physical

device. VS is duplicated for stability, but since no update in place is possible, the two required

writes can be concurrent.

Since VS may grow very large, it is impossible to maintain the entire VS online. Only the upper 2n

words of VS are kept in the Online Version Storage. OVS would thus contain the current versions

and tokens of the recently updated objects. To make sure that the current versions of most objects

are found in OVS, it is necessary to copy occasionally the images of current versions and tokens to

the high end of VS. The most reasonable policy for managing OVS seems to be to copy a version

image when the repository is processing a read request involving a current version or a token and

the representing VS image is found to have a lower VS address than the copy mark. This policy

preserves locality of reference, and automatically brings back online the current versions of the

objects that have not been used for a long time.

OVS can be implemented with a reusable device, or with write-once devices. The latter form

simplifies the transfer of version images from online to offline storage. The delays due to manual

device replacement can be eliminated through a circular assignment of device drivers to different

functions in the implementation of OVS.

The crash recovery of the repositories is based entirely on the infonnation contained in VS.

Current contents of object headers, although the object headers are the key elements in all

69

SWALL W
Message
Protocol

1'" 11. ...,,
from brokers from other repositories

"'/ request handler

~L ~,~Md
manager manager

T
storage
devices

Figure 20: Structure of the repository.

70

recOMr

I
crash recovery

operations on objects, are treated as hints that are fully reconstructable from the information found

in VS. Since the commit records are implemented as objects, they are reconstructable by the same

process. Finally, the object directory is an object itself and hence reconstructable from the

information in VS.

This report presented only a skeleton for the design of the SW ALLOW repositories. Many issues

were touched on only very lightly, and some important issues have not been addressed at all. In

particular, performance of OVS under the proposed copying policy needs to be evaluated and the

sketched algorithm for reconstruction of the object headers ought to be analyzed more formally for

possible inconsistencies. Some of the additional issues are:

i. Virtual memory. It has been assumed that both VS and OHS are divided into pages,

and that pages from both are brought into main memory on demand. So far, OHS and VS

have been treated as distinct address spaces. This means that to implement virtual memory

their pages would have to be mapped into main memory in different ways. Alternatively,

OHS and VS can be made part of the same address space, e.g., OHS can be the lowest 2k

words of that space.

ii. Communication with brokers and other repositories. Objects can be sent to

repositories in pieces, subject to the constraints imposed by the communication substrate

and communication buffer capacity of the receiver. Although the repository can deal with

pieces of any size (if they are too big, they will be broken up further before being stored as

data images), better performance can be achieved if the communication substrate already

delivers pieces of the right size; the optimal size is the size of a page minus the amount of

storage needed for the size field and the type tag which are added when a data image is

created.

iii. Protection. It is assumed that object versions in the repository will be stored in an

encrypted form, where encryption provides the only kind of protection for read accesses

[REED 80). Some protection against modification is provided by the immutability of object

versions, but it should be possible to control the ability to create and delete objects, create

tokens and change the state (commit or abort) of commit recor1s. Objects and commit

records in the repository were designed to include an access control specification field which

is stable; however, it is not clear what should be in this field and how the rights of the

requcstors should be checked. An interesting question is what the right to read means in

the context of the given object model. In particular, docs a revocation of such right apply

only to the future versions of the object. or also to the current and the past versions?

iv. The repository provides mechanisms that facilitate building of atomic actions;

however, it is the responsibility of the users of SW ALLOW to make sure that these

71

mechanisms arc used properly. The division of responsibility for correct implementation of

atomic actions should be studied in more depth. SWALLOW could assist in enforcing

correct use by supcnising that:

a. a possibility cannot be committed until all outstanding requests to create a

token have been received and processed

b. once a possibility is committed or aborted, no new tokens can be added.

I lowcvcr. distributed possibilities make such checking difficult.

72

References

COFF 73

GRAY 79

LAMP 79

PAXT 79

REED 78

REED 79

REED 80

SWIN 79

TAKA 79

Coffman, E.G., Jr., Denning, P J., Operating Systems Theory, Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

Gray, J., et. al., "The Recovery Manager of a Data Management System," IBM

Research Laboratory Technical Report RJ2623, August 1979.

Lampson, B.W., Sturgis, H.E., ''Crash Recovery in a Distributed Data Storage

System," Xerox Palo Alto Research Center, Palo Alto, California, April 1979, to be

published in Comm. of ACM.

Paxton, W.H., "A Client-Based Transaction System to Maintain Data Integrity," Proc.

of the ACM/SIGOPS Seventh Symposium on Operating Systems Principles,

Asilomar, California, December 1979, pp. 18-23.

Reed, D.P., Naming and Synchronization in a Decentralized Computer System, MIT

Laboratory for Computer Science Technical Report 205, September, 1978.

Reed, D.P., "Implementing Atomic Actions on Decentralized Data," presented at the

ACM/SIGOPS Seventh Symposium on Operating Systems Principles, Asilomar,

California, December 1979; submitted to Comm of ACM.

Reed, D.P., Svobodova, L., "SWALLOW: A Distributed Data Storage System for a

Local Network," submitted to the International Workshop on Local Networks to be

held in Zurich, Switzerland, August 1980.

Swinehard, D., McDaniel, G., Boggs, D., "WFS: A Simple Shared File System for a

Distributed Environment," Proc. of the ACM/S/GOPS Seventh Symposium on

Operating Systems Principles, Asilomar, California, December 1979, pp. 9-17.

Takagi, A., "Concurrent and Reliable Updates of Distributed Databases," MIT

Laboratory for Computer Science Technical Memo No. 144, Cambridge, Ma.,

November, 1979.

73

Appendix

STRUCTURE OF THE REPOSITORY

This appendix describes in more detail the individual modules of the repository and their logical

interconnection (the "uses" hierarchy presented in Figure 20). Note that some modules support

more than one abstraction developed in this report. External operations are the operations provided

at the module's interface, that is, operations that can be invoked from other modules. Internal ,

operations are available only within the module. Recovery operations are special external operations·

that are invoked only by the recovery process.

Request handler

implements:

uses:

repository interface

object
commit record
SWALLOW Message Protocol

The request handler inspects messages delivered by the SW ALLOW Message Protocol [REED 80)

and invokes the appropriate manager to handle the request, and it constructs reply messages from

the information returned by the manager.

Commit record manager

implements: commit record
commit record representative

uses: object

external operations:

create

add reference
commit

abort

-->

-->
-->

-->

use:

create object
create token
primitives of the implementation language
create token
commit token
delete reference
delete object
create token
commit token
abort token
delete reference
delete object

74

internal operations:

delete reference
delete

recovery operations:

none (recovered only as objects)

Object manager

implements: object

direct01y
object history
uid

uses:

external operations:

create

read

create token

commit token

abort token

set access control

delete

recovery operations:

none

UII) manager

implements:

uses:

uid

object history

-->
-->

-->

-->

--)

-->

-->

-->

-->

use:

primiti,cs of the implementation language
delete object

use:

get new uid
create object history
enter into directory
lookup directory
read object history
lookup directory
create token
lookup directory
commit token
lookup directory
abort token
lookup directory
set access control on object history
lookup directory
delete object history
delete from directory

75

external operations: use:

new --> may have to create new version

recovery operations: use:

reset uid --> reconstruct object history

Directory manager

implements: directory

uses: object history

external operations: use:

create --> create object history
enter --> primitives of the implementation language
lookup --> primitives of the implementation language

recovery operations: use:

recover --> reconstruct object history

Object history manager

implements: object history

uses: version image
OHS image

external operations: use:

create --> create object header
create version image (of object header)
create OHS image

read --> read object header
read version image (returns also Ac)
copy current version
copy token

create token --> read object header
create version image

commit token --> read object header
abort token --> read object header
set access control --> read object header

create version image (of object header)
delete --> read object header

create version image (of object header)
delete OHS image

76

in tern al operations:

create object header
read object header
write object header
copy current version
copy token

recovery operations:

reconstruct

Version image manager

-->
-->
-->
-->
-->

-->

implements: simple version image
slruclured version image
VS image of object header

uses: VS image

external operations:

create version image
read version image
copy version image

recovery operations:

search

VS image manager

implements:

uses:

VS image

vs

external operations:

read
create

-->
-->
-->

-->

-->
-->

use:

primitives of the implementation language
read 01 IS image
write OHS image
copy version image
copy version image

use:

read object header
search version image
create version image (of object header)
write object header

use:

create VS image
read VS image (returns also Ac)
create VS image

use:

next VS image

use:

read VS page (returns also Ac)
append VS

77

recovery operations:

next (iterator)

VS manager

implements:

uses:

vs
main memory page
storage device

external operations:

append
read page

internal operations:

append VS buffer

reset Mc
get Ac
assign device drivers

recovery operations:

find end
next page (iterator)

OHS image manager

implements:

uses:

OHS image

storage device

external operations:

create
read
write
delete

-->

-->
-->

-->

-->
-->
-->

-->
-->

-->
-->
-->
-->

use:

next VS page

use:

append VS buffer
read storage device page (OVS or offiine VS)
get Ac (returned together with the requested page)

use:

allocate main memory page
write storage device page
primitives of the implementation language

primitives of the implementation language

primitives of the implementation language

use:

read storage device page (recover ME>
read storage device page

use:

write storage device page
read storage device page
write storage device page
write storage device page

78

recovery operations:

none

Crash recovery

uses: uid
object history
vs

ex tern al operations:

start recovery

internal operations:

creme recovery mark

-->

-->

use:

use:

find end of VS
create recovery mark

use:

get new uicl (new REN)
create token (for the recmery mark object)
commit token

79

