
Protecting Externally Sup,plied Software
in Small Computers

by

Stt:phen Thomas Kent

September 1980

© Stephen Thomas Kent 1980

This research was supported. by IBM through discretionary funding made·
available to the M.I.T. Laboratory for Comparer Science~

Massachusetts Institute offedmoJogy
Laboratory for Computer Science

Cambridge, Massachusetts
02139

Acknowledgments

A number of individuals have contributed in one way or another to the production
of this thesis and/or to my enjoyable, extended stay at the Laboratory for Computer
Science. In this small space I can acknowledge only some of those who have aided
me in this endeavor. To those who are not included in this brief list I offer my
sincere thanks and an apology.

Dr. David Clark has been extremely helpful throughout this ordeal. Through our
weekly discussions he provided critical review, encouragement and numerous
suggestions that have imrroved the readability of the final prod:JCt. Despite his
many responsibilities, he always strived to read drafts of chapt.::rs quickly and,
ofttimes, he succeeded. My readers, Pro[Liba Svobodova and Prof. Fernando
Corbato, contributed many helpful suggestions for improving the thesis and I thank
them for their perseverance in reading and commenting upon the manuscript.

ln the six years l have spent at LCS I have learned much from casual conversations
with my fellow students and the lunchtime sub-committee. While working on this
thesis I benefited immensely from such conversations, especially those involving
Allen Luniewski, Karen Sollins and Dave Recd. I also must thank Wayne Gramlich
for his assistance in resolving text formatting problems and Eliot Moss for his help
with file transfer problems.

Of course, no list of acknowledgments is complete without mention of the two
women in my life: my mother and my wife. Although she has not been involved in
production of this thesis, my mother has provided support, counsel and love for
almost 30 years and I have benefited immensely from her numerous and varied
contributions to my life. I gratefully acknowledge the many important contributions
of my wife, Rachel. She has endured my protracted graduate career while pursuing
a doctorate of her own, an impressive task in its own right. Even when her own
research has not proceeded smoothly, she has encouraged me and commiserated
with me. Her meticulous proofreading of this and other documents has been
excellent. I could not have written this thesis without her love and understanding.

Finally, l wish to acknowledge the suppo,t provided by I BM through discretionary
funds made available to the M.I.T. Laboratory for Computer Science.

2

Protecting Externally Supplied Software
_ in Small Computers

by
Stephen T. Kent

Submitted to the

~~---------

Department of Electrical Engim·ering and Computer Science on 22 September 1980
in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Abstract

The increasing decentra1ization of computing resources and the proliferation of
personal and small business computers create new problems in computer security.
One such problem is the protection of externally supplied software, i.e., software
supplied by other than the users/owners of these small computers. In the case of
personal and small business computers, proprietary software serves as the primary
example. In distributed systems comprised of autonomously managed nodes,
members of the user community may act as vendors of external software in a less
formal context. In these contexts dual security requirements arise: vendors require
encapsulation of their software to prevent release and to detect modification of
information, whereas users require confinement of external software in order to
control its access to computer resources. The protection mechanisms developed to
support mutually suspicious subsystems in centralized systems are not directly
applicable here because of differences in the computing environment, e.g., the need
to protect external subsystems from physical attacks mounted by owners of these
small computers.

This thesis employs two tools to achieve the security requirements of vendors of
external software: tamper-resistant modules (TRMs) and cryptographic techniques.
The former provide physical security, i.e., while the TRM is intact it prevents the
release or modification of information contained w.ithin and breaking into a TRM
results in destruction (erasure) of the sensitive. inform~~on.inside. _,Packaging all of
the sensitive components of a computer system (processor and stqrage) in a single
TRM is often impractical, but selected portions of a system can be· protected
effectively in this fashion. Cryptographic techniques are employed in two ways in

3

this application: to secure com1mnication among TRMs and to protect information
held in physically unprotected storage oµ~ide a TRM.

These tools addresf. the problem of encap.sylati~i; external software but do not
provide lhe COil ti nement required by' users. Ex{ernar software can. be con fined in
two ways: through the use of a secure operating system in conjunction with a TRM
supplied by a third-party or by providing separate processors for ,.,endors and users
and employing some simple hardware· to: implement· access con xol for the user.
Designing small computer systems incorporating these security features requires
careful analysis of a number of options in making tradeofTs among performance,
cost, flexibility and security.

Keywords: computer security, protected subsy~cins, · proprietary software,
cryptography, personal computers, distributed systems. Data Encryption Standard,
public-key ,cryptography

Table of Contents

Acknowledgments· 2

Abstract 3

Table of Contents 5

Table of Figures 9

Table of Tables 11

Chapter One: Introduction 12

1.1 Motivation 12
1.1.1 Protection Problems That are Mitigated by Decentra1ization 12
1.1.2 Protecting Proprietary Software in Centralized Systems 14
1.1.3 Effects of Decentralization on Pretection of External Software 17

1.2 Problem Definition and Solution Criteria 21
1.2.1 Protected Subsystems as a Paradigm for Externally Supplied 21

Software
1.2.2 Solution Evaluation Criteria 24

1.3 A Solution Approach · 25
1.3.1 A System Model and Tamper-Resistant Modules 26
1.3.2 Two Approaches to Protecting External Software 28
1.3.3 Two Approaches to Meeting Clients' Security Requirements 33

1.4 Related Work · 36
1.5 Thesis Outline 39
1.6 How to Read This Thesis 41

Chapter Two: The System Model, TRMs and Cryptography 43

2.1 The System Model Revisited 43
2.1.1 Variations on the Basic Model 46
2.1.2 Processor and Storage System Parameters 49
2.1.3 Other Peripherals 55
2.1.4 Basic Bus Characteristics 56
2.1.5 Graphic Conventions for Bus Transactions 59
2.1.6 Standafd Bus Transactions\ · 61

5

2.1.7 Bus Utilization 66
2.2 Tamper-Resistant Modules 67

2.2.1 TRM Characteristics 68
2.2.2 A Monolithic TRM Approach 71

2.3 Cryptographic Terminology, Concepts and Techniques 76
2.3.1 Terminology and Basic Concepts 77
2.3.2 Block Cipher Techniques 81
2.3.3 Stream Cipher Techniques 88
2J.4 An Application Example: Secure Network-based Distribution of 93

External Software
2.3.5 Parameters for Actual Ciphers 97

2.4 Conclusions 99

Chapter Three: An Encrypted Bus Approach to Protecting 101
External Software

3.1 Configurations and Overview 102
3.2 Security Requirements for the Encrypted Bus Approach 106
3.3 Securing Simple Transactions 109

3.3.1 Securing simple readTransactions 111
3.3.2 Securing simple write Transactions 122
3.3.3 Securing interrupt Transactions 129

3.4 Securing Aggregate Transactions 132
3.4.1 A Transfer Protocol for Data Aggregates 133
3.4.2 Securing aggregate read and aggregate write Transactions 135

3.5 Additional CBI Design Considerations 140
3.6 System Integration Issues 144

3.6.1 Interfacing Non-Secure Devices on the 1/0 Bus 144
3.6.2 System Initialization 146
3.6.3 Response to Potential Security Violations 148
3.6.4 Distributing TRMs and External Software 151
3.6.5 Secure Archival Storage Reloading Constraints 152

3. 7 Conclusions 154

Chapter Four: An Encrypted Storage Approach to Protecting 156
External Software

4.1 Security Requirements in the Encrypted Storage Approach 159
4.2 Basic Techniques for the Encrypted Storage Approach 164
4.3 Techniques for Encrypted Transfer and Archival Storage 168

4.3.1 Version Differentiated Names and the Archival Unit VlT 168

6

4.3.2 Format of Transfer and ArcbivatUnits
4.3.3 1/0 Operations on T&A Storage
4.3.4 Robustness of the Archival Storage Protection Measures
4.3.5 Effects on Performance, Storage Utilization and the Q11erating

System
4.4 Techniques for Secondary Storage

4.4.1 The VTT Hierarchy
4.4.2 1/0 Operations on Secondary Storage
4.4.3 Performance, Robustness and Storage Utilization Issues
4.4.4 A Note on the Size of Secondary Storage Vfs

4.5 Techniques for Encrypted Primary Memory
4.5.1 Downsizing and Storage of EDCs
4.5.2 Downsizing of VTs: The Cryptographic Refresh Process
4.5.3 A VTT Hierarchy and VTf Cache Management
4.5.4 Encryption and EDC Calculation for Cache Lines

4.6 Conclusions

Chapter Five: Multi-Vendor Systems and Client Security
Require men ts

169
171
173
175

177
177
181
183
187
188
190
191
194
199
208

212

5.1 Confining External Software 213
5.1.1 Preventing Jnformation Leakage in Simple Applications 214
5.1.2 Preventing Leakage in Distributed Applications 215
5.1.3 Controlling Access to Shared Resources 217

5.2 Computer Systems Supplied by a Third-Party 218
5.2.1 Options for Software-Enforced Encapsulation 219
5.2.2 Distributing External Software in the Third-Party Design 221
5.2.3 Distributing User-Written External Software in Distributed 223

Systems
5.3 Multi-TRM Computer Systems 226

5.3.1 Configuration Options for the Multi-TRM approach 227
5.3.2 A Hybrid Scheme for Distributed Systems 234

5.4 Conclusions 234

Chapter Six: Conclusions and Topics for Further Research 237

6.1 Review 237 ·
6.2 Comparative Evaluation of the Encrypted Bus and Encrypted Storage 240

Approaches
6.3 Applicability and Limitations 243
6.4 Topics for Further Research 245

7

•

Appendix: Expansions of Acronyms Used in the Thesis

References

Biographical Note

8

248

250

253

Table of Figures
'

Figure 1· l: A Simpfo Model of the Systems of Jnterest 27
Figure 1-2: An Encrypted Bus Approach System Configuration 29
Figure 1-3: An Encrypted Storage Approach Systeni (Jonftguration 31
Figure 1·4: A Multi-TRM System Conf1gt.1mtion',, 35
Figure 2· I: The Basic Modet for the Computer Systems of Interest 44
Figure 2-2: A DuatHmrSystem Model 47 ·
Figure 2· 3: Event Graphs and Timing DiagraMs for Standard road and 63

write Transactions
Figure 2-4: Event Graph and Timing Diagram for-a Standard intcmipt 64

Transaction
Figure 2-5: Event Graphs and Timing Diagr,ams for Extended Standard 65

Transactions
Figure 2·6: Using a Single TRM to Protect a:System 72
Figure 2·7: Conventional and)l\rblw,,l<tfCipherCooogu,ations- 77
Figure 2·8: Providing Secrecy, Authenticity and rntegrity with Public-Key 79

Ciphers
Figure 2·9: Electronic Code Book Mode for Block Ciphers 82
Figure 2· JO: In-block and Additive Initialization Vector Techniques 84
Figure 2· 11: Plaintext-Ciphertext Block C'haining (PCBC) 86
Figure 2· 12: Autokey Stream Cipher Example 89
Figure 2· 13: Cipher Feedback Mode Stream Cipher 92
Figure 2· 14: Message Format for Secure Connection Application 95
Figure 3-1: Two System Configurations Employing TRMs with CBis 103
Figure 3·2: Two More System Configurations Employing TRMs with CBis 104
Figure 3· 3: Event Graph and Timing Diagram for an ECB Mode Secure 113

Read
Figure 3-4: Event Graph for a simple secure read 118
Figure 3-5: Timing Diagram for a simple secure read 120
Figure 3-6: Timing Diagram for Successive simple secure read Transactions 123
Figure 3-7: Event Graph for a simple secure write 124
Figure 3·8: Timing Diagram for a simple secure write 126
Figure 3·9: Timing Diagram for Successive simple secure write 128

Transactions
Figure 3- JO: Event Graph for a secure interrupt 130
Figure 3· 11: Timing Diagram for a secure interrupt 131

9

Figure .1-12: Event Graph for an aggregate secure read 136
Figure 3-JJ: Timing Diagram for an aggregate secure read 137
Figure J-14: Fvent C1rc.1ph llir an aggregate secure write 138
Figure 3-15: I ,ming Diugram fur an aggregate secure write 139
Figure 4-1: Two System Configurations Employing a TRM and an SSI 157
Figure 4-2: Two More System Configurations Employing a TRM and an 158

SSI
Figure 4-3: A Simple Model for Encrypted Storage Operations 161
Figure 4-4: format of Sernrc T&A Storage Media 170
Figure 4-5: 1-1 ierarchic Organization of Secondary Storage VTT 178
Figure 4-6: Event Graph for a Read of an Encrypted Cache Line 201
Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line 203
Figure 4-8: bent Crnph for a Cache Line Write 204
figure 4-9: Timing Diagram for a Write of an Encrypted Cache Line 206
Figure 4- IO: Timing Diagram for a Combined Read-Write Operation 207
Figure 5-J: Secure Installation ofa User-Written, Distributed Subsystem 225
Figure 5-2: A Single Bus Multi-TRM System Configuration 228
Figure 5-3: A Dual Bus Multi-TRM System Configuration 229
Figure 5-4: Another Dual Bus Multi-TRM System Configuration 230

10

Table of Tables

Table 2· I: Characteristics or the Computer Systems of r nterest
Table 2-2: Bus Lines for the System Models
Table 2-3: Symbols Used in Event Graphs and Timing Diagrams

11

54
57
60

Chapter One

Introduction

1 . 1 Motivation

'fl1e past several years have witnessed a marked growth m decentralization of

computing facilities. Evidence of this trend appears in the proliferation of personal

and small business computers and development of distributed computer systems

composed of autonomously managed computers. (This last class of computers is the

focus of much research and is described in more detail later in this section.) This

trend is the result of a number of factors including decreasing hardware costs and a

desire to tailor computing resources to individual and organizational needs [7].

Improved protection1 of information is often listed among the advantages accruing

from decentralization of computing resources [33]. In many cases decentralization

does make protection easier but at least one security problem that has proven

tractable in centralized computers becomes more complex as a result of

decentralization. The characterization and solution of this problem is the subject of

this thesis.

1.1.1 Protection Problems That are Mitigated by Decentralization

The simplest security mechanisms implemented in centralized computers provide

complete isolation of users, perhaps allowing total sharing of some files [29].

1Thc terms protection and security arc used throughout this thesis to describe techniques for
controlling who may access a computer and the information stored within it; they arc not interpreted
to encompass threats such as natural disasters.

12

Decentralized computers implicitly provide isolation since each user is supplied with

his own computer. (In fact. some of these,computers may support multiple users,

but the assumption is that these users are equivalent for -protection purposes.)

M<:)feover, the user neeGi not rely on personnel at acentratfacility to protect his data.

Thus simple isolation is better achieved using, '.de€entntlized ·computers. More

sophisticated protection · mechanisms ih centralized computers permit users to

e,<plicitly control which users may access speciftc files and what type· of access is

permitt~cl. e.g., reading or wJiting. C.OntroHed· sharing :in decentralized systems is

reaqily accomplished: through message transmi,sion;over a communication network.

Such sharing ·may. simply involve transmitting fifes between, users or may be based

on sophisticated schemes for managing distributed databases.

When a network is used to selectively share information, communication security

measures are required to protect the transmitted· dailf from disclosure and

undetected modification in transit and to ~rely _i~ntify µ~rs to one another [16)
,

(providing the basis for access control .dee~}.. These:.communication security

measures may be provided in whole or p8:ft by Jhe n~tWA~,pr may be exdusively

the responsibility of toe user,. depending on the .size and geogr{lphic range of the

user community, network character~,. ~d .user security requjrements.

Nonetheless. it is often argued that coRtr~lle<J, sharing is bett« ~hieved in

decentralized systems since such sha,ing .tak.~: p~ only through, m~e

exchanges via a nt!twqr)f 1ather than. tbJ:qugh ~har~ mefllQfY iµter~ns involving

an operating system .and PfOir~m,s ,of other ll&ffl$ PJi ..

Some· security problems asSociated with borrowed programs also may be

mitigated in decentralized systems. The security concern· here is· that borrowed·

software may contain ·a 'trojan Horse5[j), i.e., the·softw°ate .. not only performs its

advertised function but a1so engages in malicious activities: ine 'asstimption in this

case is that the tender of the software im~pose$ no C6tistraihts on its use but that the

Introduction

borrower wants to control access of the software to his data and he wants to prevent

the software from disclosing his data tu other users. Tne protection mechanisms

rcq uired to control access of borrowed software to user data are the same for both

centralized and decentralized systems. Preventing borrowed software from

disclosing data to other users is di flicult or impossible in centralized systems [29] but

may be feasible in decentralized computers, since essentially the only means of

!et1king information to the outside world is via a network. Thus if a borrowed

program has no legitimate need for network access, or a very restricted requirement

for such access, this problem is easily solved. (Borrowed programs that make

significant use of a network as part of their normal function arc not more easily

confined in decentralized systems.)

1.1.2 Protecting Proprietary Software in Centralized Systems

The preceding discussion indicates that decentralization of computing simplifies

the problem of protecting information in many cases. Ho\vever, the problem of

protecting externally supplied software, i.e., software supplied by one party (the

vendor) for restricted use by another party (the client), becomes more di flicult as a

result of decentralization. Proprietary software, sold or rented/leased by a vendor to

clients, is the primary example of external software but some distributed systems

provide other examples, as described later. Vendors want to restrict clients' access to

proprietary software, permitting execution but preventing disclosure of the software.

The concern here is that clients may illicitly re-distribute the software or may study

the software to extract proprietary algorithms. Vendors also may require a secure

accounting capability, including the ability to revoke a client's access to proprietary

software (prevent him from executing the software), in supp011 of usage-based and

time-based billing policies. In centralized computers proprietary software usually is

offered (sold, rented or leased) for execution directJy on a client's computer.

14

Introduction

However. ,sometimes proprietary software is: made available for a fee through a

service bureau (a computer facility that sells computer time and services). The

protection measures available to a vendor •pend on which way the software is

offered.

If proprietary software is executed on a client's computer, a number of ad hoc

technological protection measures ·are available to the vendor along with various

legal measures (trade-secret licensing, contracts containing _non-disclosure clauses,
; , _ , ' '>1- f-:;

4
~ ., - ~ i i' -' : ' ·

copyrights and patents) (21]. Some vendors do not explicitly attempt to protect their

software, believing that various: ,.vemloesuppfied ,suppo,t. services are critical to

marketing of the software and that simple theRof-the-softwands not a problem. In

many cases only object rode is provided, iB ,an:tetlort· to conceal the algorithms

employed and to preclude maintenance by Qthet)than the vendor. Vendors may

even include . extraneous . code -or engage in circoitous coding -practices· to deter a

client from extracting the u-nderlying;stNCture of the ,program: or; to demonstrate the

origin of code in disputes ov_er,authol'Ship {i) .. •Sollle1 vendor,s:einploy a simple fban

of cryptographic coding, in which a. ''bootstfap~ ;program ckcodes the proprietary

software prior .to;execution;. .These technok>gidat~usmtty,are· not employed

to protect databases aml the only amm revocatiriiua.9£hanism ~aitable to vendors

is the withhQldingof enhancements and hug fixeslor-thesoftware.

If proprietary software is made avai1a6Te to ciients' through a service bureau, the
, ' .a; (; , .:: ~i) ,· '.·.- ,.;· .-.i ! i-)i_.: ·. :·; '':.-, ;,,~ ~ • ·

vendor may take advantage of operating system protection mechanisms_ that allow

clients .• to e~ecute but . ~ot read'. (~~py) ~r ~~ff; tlld ~ft~~r~ •. e.g:, the • ;ing
" : , . ,_ ,- . _ : .. ~c: ,, ~ : ·•, ··~\--: . -. .,. . -:..:~i! f~~-, •• :<;:J,,- ... ~ ·,;,-': :.- r, · · : •

protection mechanisms of Multics (30f. These protection mechanisms may be quite
;. :, ·~ ~ ':: ';•: ' -~ :· ,· ;~~- :,' >.:, ?fl;il!!t>: ... ::~ ;:, ,~.; if:: ,t:~"< _.· . ,·t,_•·

sophisticated, al1owing the vendor to charge on a per~use or time basis. providing
·: :.,,,. •. ··:; ·_., ._' , _ ·~ 1,,,. T ;i!, iL,dPt;'; ~:i .::'j} i.: 4.,-~·'•;_;~: -· . • . ;':··

quick revocation or access if a client fails to pay and protecting not only programs
•.-;,:,-;,<.i.· //; .:,.,r:~101ri !HH2t, \t, ;,,,, _: ·. ·,i •,; ,c,;_;-

but also databases associated with the proprietary· software. However, clients using

proprietary software at a service bureau facility must trust the facility to safeguard

lnb'olktioa

their information. a problem that usually does not arise if the software is executed

on· the client's computer. The· vendor also must trust the.service bureau to act as his

agent. protecting his software and properly charging for its use. The clientalso must

pay for computing resources at the service bureau, an unnecessary expense for a

client with his own computer facilities. Moreover, clients with their own computer

facilities may be further penalized by having to maintain and further process

proprietary software input or output at the service bureau or by transporting this

data between their facilities and the service bureau.

There is substantial disagreement among. vendors as to the effectiveness of either

legal or ad hoc technological measures for protecting proprietary software. Yet

vendors of proprietary software do not seem to be deterred by this situation. ln the

case of proprietary software executing on client aptipmtmt. the client is usually a

business or other institution for which there is insuJTcient financial incentive to

attempt to subvert the ad hoc technological ·mm&tres or to risk the possible
.

repercus.5ions of violating the legal protection. measures. 1lnts the lack of sound

technological protection mechanisms has not been·a serious problem in this context

Proprietary software, made available through service bureaus;can be protected from

clients and it is to the advantage of the service bureaus to provide such protection as

they gain financially by forcing users to procur:e time from the bureaus. to ·run this

software. The use of service bureaus ~ agents for proprietary software also has the

advantage that a large number of users can gain ace~ to the software but only a
' :,·, < •

small number of facility personnel need be trusted by the vendor to protect the

software. In some instances the vendor of proprietary software may also operate the
, . . ' .

service bureau, eliminating questions of vendor-service bureau mistrust Finally,
, ., ' _'.'. '

some service bureau users cannot afford their own facilities and thus have no·

alternative to this way of using proprietary software.

16

httroducaon

1.1.3 Effects of De<)entralization oe ,Protection-of Exte:rnat Software

The same types of approaches to protectinf~x'tbrna11y ·supplied software are

available in. the decentralized systems of interest~ \But the problerri may 'bt/ much

tnore severe in this context. ·1f'proprietary soft¼lre'isoffered fdt direcfexecution on

client machines the availabt~technologicat and legal pfbtection measures may' prov~

inadequate in this marketplace. Sbrtte' evidetice already ~xists llii~ current owners of

p~rsonal computers en~e in ~tensh:e, informal tradjng1o(pfQP!ie~ry software, in

violation of contractual agreements and copyrigut law,~,t;}ne Sltpplier.of prqprietary

software for personal computers e$timates that-~ ~W as ,?Q%,o(, the copies of his

software in use were not purchased from him ~~}... ,lt ,may, be ar~ed that this

alarming statistic is not representative of the 1m~~~ as ~;wh(),le,.9r tl:iat it is not

indicative of the fate of sales of such softwarejn the futu£e.: In particular, it is
. • . . .• . - , t ~ : .- • ' ,f '". . ' > •

probably true that many of the cur~ent owp~,Qf pe~nit coQli)Uters are themselves

employed in the computer field and are thus tpQre ij~ely. tQ delve into their system

hardware and, software and engage in th~ ~tiv~ t\}an would the .average naiW!

user.

However, it is difficult to predict the moral· climate that will characterize users of

such systems and there are other reasons to fear that legal means wilt be insufficient

to protect proprietary software in the personal cdthputer marketplace. The very size

of the projected personal computer marketplace ~nd · the poksibility that a small

number of manufacturers may dominate this rriarketpface{resulting in a large body

of software compatible processors) make the ;emeigence'' of ''bootleg" copies of

propri~tary software . a likelr event . Even , in :the case of relatisvely inexpensive

software, violations pf copyrighi. ~m inevitab~e if aq :~alegy, 1D -phonograph

records and home stereo systems can be made. Moreover, the growth of

communication networks makes distribution of both legitimate and purloined

copies of so,ftware easiery further co~plicating the situation. Vendors could offer

proprietary &>ftware. through service bu,eaus~ · to protect their interests. but this

negates many oftl:te features brought about by.decl;!Dtrali~on, in~luding:improved
~ ; .,. ' - . "

protection for user data. ,Owners of persoqal comP,uters ;may balk at buying time
'. ~ . ' . - ' - .

from a service bureau and paying for com.lJllJnicatioos to access these centrali,zed

facilities. Thus service bureaus ar~ Jm inappropria~2 fiOQc perhaps an unacceptable

means of offering prQPrietary software for perso,0af computers.
. , : . . . ·' ,,.

The preceding comments were directed primarily at personal computers but it

seems likely that many of these observations apply' to the· small business computer

market as well. Although the size of this marltet (in numbers of machines) may not

approach that of personal computers, smaH busin6-s computers may proliferate

more quickly because their tttility is. presumably, readily demonstrable. Small

businesses generally have greater purchasing power than individuals and thus more

sophisticated (and more costly) proprietary software may appear, increasing the

profit potential for vendor and pirate alike. · It is hard to project the moral and

financial climate that will develop and thin; diffreutt to detennine how severe a

problem informal trading or sales of bootleged proprietary software may become.

Nonetheless, it seems prudent to ~ume that protectjon of proprietary software will

be as important for small business computers as for personal computers. Again,

providing proprietary software through service bureaus is contrary to the

decentralization trend and is probably unacceptable in this context Thus there is a

great need for an improved means. of protecting proprietary software executed in

personal and small business computers.

A slightly different requirement for protection of external software arises in the

context of distributed systems comprised of autonomously 'managed nodes. In these'

20nly proprietary software that makes use of special facilities not available at the clicnt"s computer,
e.g.. a flatbed plotter or array processing hardware. is best offered through a service bureau.

18

lntrochld:ion

distributed systems eactb node (computer),, operates under the drtection of an

independent user, but the users co~operate to provide some servites, e.g., distributed

databases. Systems of this sort .are a topic: ·of cturrent msc:arth and there ave no

extant examples nor experience to draw upon. · Nonetheless,, one can project

protection requirements aswciated with a form,of extemaUy SQppl:ied software in

this environment. i.e., software produced by a user/vendor at one node: for

execution at nodes throughout the ;System. · As an example, consider a distributed

database that is fully replicated at eacb node for robustness and.for ease of access.

The database may contain some inrormation that 'Should, not be accessible to some

users, even though every node maintains a copy of the database.· ::J'bus each user

must rely on the database management software to enforce some advertised access

control policy at all the nodes.

ln the case of a distributed database. the software at each node should prevent

unauthorized reading or updating (via messages) by· other nodes. It also should

prevent unauthorized reading and detect unauthorired updnte attempts b-y the node

owner. Although it might be possible to prevent a· node, owner .from attempting

unauthorized updates to the database, such update attempts, if detected, will not

affect the integrity of the distributed . database··$ a whole. This is because

distributed systems must be prepared to cope with local outages, e.g., a dislc:crash at •

a node. without compromising the integrity of the ~ntire .database. Thus, if the

software at a.node determines thataportion of.its.copy of the,datab.ase is modified

as a result of an attempted unauthcilfiz.ed update·by the node qwner, ttie software

will treat that portion as damaged.· and not affea 01her nodes. · ·

ln general, in these distrib~ted systems, it seeins desirable to be able to install ·
. -r. ' ; ' ; ' ~ } i' j . ' ~.

software at a node (with the permission of the node owner) which can be protected
°'~ ;- ,.• ? C < ~1, .,, ; :.., • ; ~ ~ '' , ' -

from unauthorized disclosure and undetected modification. The availability of

mechanisms that provide such protection for external software enhances

Introduction

significantly the flexibility of distributed systems composed of autonomous nodes.

For example, distributed instances of extended type managers [33] could be created

at one node and made available throughout the system in a secure fashion. Objects

could be created at one node and transmitted to other nodes with the assurance that

only the type manager for the objects would be able to examine and "appropriately"

modify the representation of the objects. Although a number of other mechanisms

are required to support this sort of object migration, the ability to protect copies of a

distributed type manager at each node (from attacks by the node owner) is central to

the concept. These security requirements cannot be met by the use of a centralized

computing facility without seriously compromising the distributed nature of these

systems.

ll1e preceding discussion has shown how the need for protection of externally

supplied software in the decentralized systems of interest differs, in some respects,

from the need for such protection in centralized systems. First, the legal and ad hoc

technical measures employed to protect proprietary software executing on client

computers may be inadequate in the case of decentralized systems. Second, use of

proprietary software offered through service bureaus negates many of the

advantages of decentralization and thus may be unacceptable to users of personal

and small business computers. Finally, distributed systems composed of

autonomous nodes present new examples of externally supplied software which, if

they can be adequately protected, could significantly enhance the flexibility of such

systems. ll1is suggests that improved technological measures for protecting

externally supplied software for execution on client computers are required for the

decentralized computer systems described in this section. The next section provides

a more precise statement of the problem and establishes criteria by which proposed

solutions will be evaluated.

20

Introduction

1.2 Problem Definition and Solution Criteria

The preceding section identified two examples of externally supplied software

that require protection in the decentralized systems environment: proprietary

programs for personal or small business computers and distributed applications

software for certain types of distributed systems. 171is section examines in greater

detail the security requirements associated with these examples and abstracts from

them a general statement of the problem to be solved. The concept of protec!ed

sufoystems in centralized systems is introduced and modified for use in the

decentralized systems context. Protected subsystems serve as the model for

discussing protection of external software. Some criteria for acceptable solutions are

presented and some solution approaches arc evaluated with respect to those criteria.

1.2.1 Protected Subsystems as a Paradigm for Externally Supplied

Software

As noted in the preceding section, vendors require that proprietary software

(programs and attendant databases) be protected from disclosure and re

distribution. In the extreme, disclosure may result in the complete exposure of the

inner workings of the program, enabling the attacker not only to make copies of this

software but also to understand the algorithms well enough to produce his own,

equivalent software. Less severe disclosure may occur if only portions of the

software arc exposed or if only hints as to the algorithms employed in the program

can be extracted, requiring significantly more effort by an attacker to generate

equivalent software. On the other hand, it may be possible to re-distribute

programs without knowing their content, e.g., if the programs were encrypted but

the necessary cryptographic variables were not unique to a single client. For

proprietary software that is rented or leased, a vendor may require a secure

accounting capability, including a revocation mechanism, in support of usage- or

21

Introduction

time-based billing policies. Finally, clients may wish to protect themselves from

proprietary software, treating it as a potential Trojan Horse.

1 n the distributed systems context described above, users acting as vendors of

external software have analogous security requirements. Here there may not always

be a need to prevent disclosure of the programs (the algorithms used may not be

considered proprietary) but databases associated with this software probably require

concealment, as explained earlier. There is also a need to detect attacks that violate

the integrity of the software, to prevent spurious information from being propagated

throughout a distributed system application. For example. a query directed to a

nod'-'. maintaining a copy of a replicated database should either elicit a "correct"

response or should go unacknowledged, rather than returning a response based on

data that has been modified as a result of tampering. Although it might be

suggested that externally supplied software should be protected from modification,

it was noted above that merely detecting such attacks provides adequate security and

is in keeping with the autonomous nature of the nodes. In particular, it is usually

assumed th<1t a user may "unplug" his node from the communication network,

making all locally resident software and databases inaccessible to the remainder of

the distributed system.

A general statement of security requirements for external software, from the

standpoint of vendors, can be abstracted from the preceding discussion. The

requirements arc quite similar to those usually associated with protected subsystems

in centralized systems, although some slight modifications are necessary to account

for the scope of attacks to be considered. Schroeder [31] defines a protected

subsystem as "a collection of programs and data bases that is encapsulated so that

other executing programs can invoke only certain component programs within the

protected subsystem, but are prevented from reading or writing component

programs or data bases, and are prevented from disrupting the intended operation

22

Introduction

of the ·component programs." From the standpoint of vendors, external software

should be treated as protected subsystems with the caveat that modification

(writing) and disruption by physical attacks need not be prevented, only detected.

Note that detecting modification of code is often critical to- pr-eventing disclosure,

e.g., if an attacker can undetectably modify code,,: he might ,effect disclosure by

changing an address used in an, output-operation ,so that the progra,n; outputs itself!

The protected subsystem concept also models closely the security requirements of

clients (users) with respect to external software. Restricting software so that it is

granted appropriate access privileges to the minimlll ~ot,Ccl1ottor data and p~gnims

required to perform its advertised .fijnctiof\ arid.~~ it,~,llot release that data

to others is referred to a.5 co.efinement (19). ;<Jie~t& requ~re confinement of

externally supplied software to prevent release oqpodi-fic4"jQllOftheir own software
and other externally supplied software. Clients also can employ . con,finement

measures to restrict.~cess of exter11al softwar~- tq v~~i~:~~m resources. Thus
, • 1' .;' < ' -. ' ' ' ',

interactions between external software. t,rovided · 9Y' ditf~t vendors or between
:1';· ,j, 't;:;-1 ,'. -" '

externalJy and locally supplied software should be characterized by mutual suspicion
'! •

and protection from program-based attacks should be symmetric Jor both classes of
. : ' . '

software.

This discussion points. out that vendors and • clients, -have dual security

requirements. Vendors require external software to be protec~d,.ain~ program

based or physical attacks that result in telease: ffl'' :uftdetected modification of
:,

information or inv"6cation at other than ~p~J.(red, ~,c.t~rnal interfaces. They also

require that this software oot, be re~distributable.. Cfients require· external software

to be cottfined. i.e .•. they require protecpon fr-0m-pr~atni,ase<i-attacks launched by

external software that · would result in unituthon2ed' · release, modification or

invocation o(o~her externally &upplied or)PGal1y, ~ro4lJcersoftware. Clients also

require the ability to control the use of computer resources by external software.

23

Introduction

Although these requirements can be combined into a fairly uniform statement about

supporting mutually suspicious subsystems and con6nement,· the above-noted

dichotomy between vendor and client requirements is important since it suggests an

appropriate division of responsibility for achieving . these- requirements. The

primary g~ of this thesis is the design of computers that meet vendor security

requirements,altoough systems that meet both sets of reGJUirements are described in

Chapter 5.

1.2.2 Solution Evaluation Criteria

In addition to meeting the security requiretnents · noted above, protection

mechanisms for use w1th externally suppl_ied softwate in decentralized computers

should meet some additional criteria.

Decentralization The protection mechanisms must' themselves be decentralized.
The ,rationale here rs· that centralized approaches to 'pfoviding
prot~tion tend .. t.o Jli!&ate the , ad\iantages , , ·gained · from
decentralization.

Effectiveness The mechanisms should provide a upifi~d ,apprpa~b ~ meeting
the security ·requirements over a broad spectrum of attacks. To
provide a given level of security, based on an anticipated threat
environment. only parameters of the mechanisms should be
changed, not the mechanisms themselves.:,

Generality /FJexibility

Low Cost

The protection mechanisms should be applicable to a wide range
of applications executing on a VJtriety of ~YSleJn configurations
and equipment The mechanisms should' not be dependent on a
particular technology or equipmenttype.

The cost of equipment req11ired to implement the protection
mechanisms must not be prohibitiv,e. The "l>ottomJine" is that
the use of the protection mechanisms should Te4uce ~ by
more than the cost of the mechanisms themselves.

24

Introduction

Good Performance

Transparency

The addition of protection mechanisms, to a computer often
degrades performance. However, one must strive to minimize
the severity of any performance(legradation.

Protection mechanistns should be unobtrusive, so that writers of
external software need not be very much aware of them. These
mechanisms should have little or no effect on the design of
external software.

This collection of criteria tends to rule out most measures currently employed to

protect proprietary software. For example, ase-ofservke bnreaUS' to offer external

software is ruled out because it negates the advantages gained from decentralization.

The ad hoc measutes described in section 1.1.2 ;do not,· meet· the effectiveness

criterion. These measures also do not provide a uriifie(J-appTOach to·protection nor

are they parameterizable to provide different levels df· security for different

enwironments. The protection measures described in the next section attempt to

meet these criteria. •

1 .3 A Solution Approach

In order to meet the security requirententiand evaluation criteria established in

Section 1.2, a combination of physical, ctyptogrltphic · atid software protection

measures are employed. , Information stored or processeltin computer system
'.

components is protected from physical attacks resulting in
1

cUsclosure or undetected

modification in one of two ways: by providing physlcal protection for a component

or by using cryptographic techniques to conceal and error check information stored

in or transmitted by the component These basic .technigue-5 meet the security

requirements of ven~ of external software and are suffi~tJn situ.ations wher,e

all of the external software executed on a computer is provided by a single vendor.

In more elaborate systems, where extern~l ,softwqre)s sµppli~ hy several vendors or

Introduction

where external software interacts with client-supplied software, more conventional

hardware and software security measures arc employed in conjunction with the

preceding techniques to provide the security required by mutually suspicious

su bsystcrns. This section bricny describes the proposed solution approach.

1.3.1 A System Model and Tamper-Resistant Modules

Before discussing the proposed solution approach, it is necessary to introduce a

simple model of the computer systems of interest. ll1e model, shown in Figure 1-1,

consists of a processor (CPU), three levels of storage: primary memory (P-MEM),

secondary memory (S-MEM) and transfer and archival storage (T&A), and various

1/0 peripherals, e.g., terminals or network interfaces. The only unusual component

in this model is the transfer and archival (T&A) storage. This level of storage is used

in two ways: vendors may transfer (distribute) copies of external software to clients

using this level and external software may use it for secure archival storage, hence

the name. (Vendors also may distribute external software via communication

networks.) Storage media used at this level must be demountable and the files

contained therein are usually viewed as outside of the file system proper. These two

characteristics distinguish T&A storage from secondary memory, i.e., secondary

memory need not be demountable and it contains the file system. The system

components arc connected by a bus used for addressing and data transfer, like the

DEC UN !BUS [9] or the IEEE S-100 bus [11]. This architecture is typical of current

personal and small business computers and serves as the model for the computer

systems of interest

If no precautions were taken, it is apparent that external software executing on

this hardware could be attacked in a number of ways that would violate the security

requirements of vendors. Physical attacks launched against the processor, bus or

any of the storage devices could result in disclosure or undetected modification of

Introduction

CPU

P-MEM S-MEM T&A other peripherals

Figure 1-1: A Simple Model of the Systems of Interest

information. (Other peripheral devices included in the model are not security

relevant since they do not store or process sensitive infom1ation.) It is obvious that

some form of physical protection is required, at least for the processor if not other

components. To evaluate the results of physically protecting portions of the system,

the concept of a tamper-resistant module (TRM) is introduced. All infonnation

contained within a TRM is protected from disclosure and undetected modification

in the following sense. As long as the TRM is intact, data inside the module cannot

be discerned or modified by an attacker and if the TRM is breached the sensitive

data within is destroyed (erased). The implementation of TRMs will vary

considerably depending on the value of the external software being protected and

the perceived sophistication of potential attackers. For example, packaging

components on a single VLSI chip may provide adequate protection in some cases

whereas permanently scaled, seamless metal containers may be required in other

environments.

This thesis does not address the detailed problems of engineering tamper

resistant modules, but rather assumes that TRMs can be constructed to provide

whatever level of physical security is required to protect external software in the

27

systems of interest However, some observations can be made about characteristics

of TRM-packaging. For example, TRM-packaging usually is not free and the c.-ost

increases with the volume of the TRM. Maintenance of components in a TRr..frn~
be difficult or impossible (if the T~M is permanently sealed). TRM-packagingmay

impose constraints on system growth and may limit equipment selection. Since

sensitive data within a TRM mi1stbe~d~troyed. iLthe.]~RM ~- opened, it may be

difficult to paclcage large quantities ·of np~volatife ! storage:· :,Encapsulating
j ..

demountable storage media in TRMs also may pose problems. These and other

considerations suggest that packaging an entire computer within a single TRM,
. - _, ' ; . ~ ' . .: '

supplied by a vendor, is not an idea) way to protect external software provided by

that vendor. Many of the shortcomings of TRM packaging can be avoided or at

least mitigated by using TRM packaging ''li{ 'cotijunction with· cryptographic

techniques.

1.3.2 Two Approaches to Protecting External Softwa_re
, • '.; ' \ < '

There are two basic ways w use ccypwgraphy . in eottjunrtion with TRM

packaging: the encryp1ed bus11ppr,(JQ(h,andtheencryp1ed Slorageapproach. In the

encrypted bus approach, the COOJput¢r, syst® :is:_divide.d ioto :several pieces, each

contaim:d in a TRM. Communication betweeo the. TRM-packaged :pieces is

provided by a physic~Uy unprotected bus. Here cryptographic, fcohniqu~ arc used

to secure inter--TRM communication over the::tmproteded .. bus. .. ·ln the. encrypted

storage approach, the pr~ and some memory are packaged in a single TRM

and all other storage is physiqllly wipf()tected. , ,J~e~ cf)'J)loaraphic: techniques are

used to protect data held in physically unprotected storage and transmitted over the

unprotected portions of the bus. Both approaches offer an effective, decentralized
. : ~ ;

means of protecting external software but they differ in how ·well each meets other

criteria.

28

Introduction

-
CPU

C
B
I -

,, -'',;
,.., ,· ,,

P-MEM
I CBI 1 I CBI I

other peripherals
, .. "

l ,,

5-MEM T&,\
,,

' 1'-'.
,,

, ,,

Figure 1-2: An Encrypted Bus Approach System Configurntion

Figure 1-2 illustrates one of several system conflgurations .. based on the encrypted

bus approach. In this configuration the processor and primary memory reside in

one TRM whereas secondary and T&A storage devices art:.packaged ,in separate

TRMs. (fhe,bold boxes about these components represent the TRM packaging.)

Communication among the TRMs is encrypted 011 the phymcafty unprotected ·bus.

Partitioning the system in this fashion redtJCeSitsome of the TRM packaging

problems, e.g., this design results in smaftet, Tl.Ms and 'it supports expansion

through adding or changing TRMs. It may even be possible to provide TRM

packaged demountable media in th~ ,design .for !f&A storage, although secure

network communication offers a more practical means of distributing external

software. Since all of the security relevant system ·components· are· proWcted" by

TRMs only the bus can be attacked .. To oounter these ,attacks~ :each TRM is

equipped with a cryptographic.bus inteeface (CBI). ·The1 CB ls emptoy cryptographic

techniques to conceal .and error-cheolc data),and.,adttr~ :transmitted on the bus,

thus preventing disclosure and detecting modifictaaon,attacb.

29

Introduction

In many respects the bus functions as a miniature communication network in

which bus l)perations correspond to messages. The attacks to which bus operations

may be subjected are the same as those encountered in general purpose

communication networks, e.g., release of message contents and message stream

modification [16]. Thus communication security techniques can be applied to

secure bus operations. However, bus communication is very special and many

standard communication security measures arc not directly applicable here. For

example, bus transactions take place at very high speeds with low delay and involve

very small quantities of data. Protection mechanisms must be able to sustain

maximum transaction rates, introduce little or no delay on transactions and

minimize the number of additional bits transmitted for security purposes. Yet the

data and addresses in bus operations must be concealed and checked to verify that

they are properly ordered and not modified in transmission.

However, some of the special characteristics of bus communication simplify the

task of securing bus operations. Most bus communication is very stylized in nature

and this can be used to advantage in designing the encrypted bus protection

measures. For example, one can take advantage of the fact that data transfers

between primary memory and secondary or T&A storage involve data aggregates

(e.g., disk sectors) that can be protected as a whole, rather than on a per-bus

operation basis. The high reliability and overall simplicity of bus communication

simplifies bus protection measures, avoiding the need to provide efficient error

recovery and/or to handle out-of-order message arrival. The cryptographic

techniques developed for the encrypted bus approach are specially engineered to

take advantage of the eccentricities of bus communication while keeping up with

high transaction rates and minimizing overhead (delay and extra bits transmitted).

These techniques also cope with the problems posed by having TRM-packaged and

standard devices connected to the same bus.

30

latroduction

Computer system designs based on the encrypted bus approach satisfy the criteria

for decentralization, effectiveness. good perfonnance a11d ,transparency and they are

fairly general. Although this approach solves many of the problems encountered in

trying to .package ,@fl entire computer as a TRM ,"some· problems sttlt remain. For

ex.ample, in partitioning the system, the .pieces ,must ,not berome too small or· the

cost ofTRM-packaging:and COis will-becomeexcesswe lt probably is not practical

to TRM..,package demountable media. yet such mediamay berequi-red for archival

storage even if external software is distributed via networks. Problems in erasing

large quanti.ties of non-volatile storage and the need fbriptriod'ic maintenance may

preclude packaging some storage devices asTRMs.i-'111e fleed,toenck>se all security

relevant components in TRMs also may limit equipment choices. Thus this

approach is not as flexible as might be desired and the cost of TRM packaging may

be a problem .

. ' i -
CPU

s .
s .
I -
.. ,

P-MEM S-MEM* T&A,• .9tbe r periphe raJs
; . -·

Figure 1-3: An Encrypted Storage Approach Syst¢m Configuration

Figure 1-3 shows an encrypted storage approa& system configuration

comparable to the encrypted bus approach design, in Figure 1-2. In this. desi~n the

processor and primary memory are contained in a single. TRM but ~ndary. and

--~----------------------- -~---

Introduction

T&A storage devices and the bus connecting these devices to the TRM are all

physically unprotected. (The asterisks in the figure indicate storage containing

encrypted data.) The TRJ\,t is equipped with a secure storage intetface (SSI) that

employs cryptographic techniques to conceal and error-check data stored in these

devices, to prevent disclosure and detect modification. This design provides

excellent flexibility, generality and low cost. For example, the problem of building a

TRM capable of erasing large quantities of non-volatile storage is avoided in the

illustrated design since secondary and T&A storage is outside the TRM. All

equipment outside the TRM is "off-the-shelf," allowing the clients great flexibility

in selecting components and reducing costs. The fact that this design requires only

one special device, an SSI, also contributes to its low cost and simplicity.

In the encrypted storage approach, data is aggregated into storage units that are

read/written as an entity, e.g., groups of files that are archived and reloaded

together (at the T&A storage level) or disk sectors (at the secondary storage level).

Each storage unit is encrypted independently, in a fashion that is a function of both

its address (or name) and a version tag, and an error detection code is associated

with each unit. A table is maintained recording the current version tag associated

with each storage unit. (This table is either contained wholly inside the TRM or it is

stored outside the TRM and is protected using these measures recursively.) These

techniques not only conceal the contents of storage very effectively, but allow the

SSJ to determine if a storage unit returned as the result of a read operation is from

the correct location and if it is the most recent data stored at that location. The

constraint that only th~ most recent copy of a storage unit be returned must be

tempered in some circumstances for archival storage and it is not applicable to

transfer storage (since such storage is read-only).

Except for designs in which primary memory is encrypted, i.e., located outside

the TRM, the cryptographic techniques employed in the encrypted storage

32

lntrodaction

approach do not encounter stringent perfonnance constraints. The space required

for error detection codes and for version tags is.a very 'Slll&JI fraction of that devoted

to "real" data storage. except in the case of encryptedf)rimary memory; If primary

memory is encrypted, it is.essential that -the,processot be·eql:liJ)ped with a cache

memory, to reduce the fraction of space devoted to ovemead and to minimize the

impact of delays imp~ by encryption. Hierarchic structuring of the version tag

tables for secondary storage and primary memory avoids the need to devote large

amounts of space to VITs and appropriate cachi,ng of pmtipns of the hierarchy
., . . : .,,-: ' ' -1,:, j ' , -

minimizes the performance impact of this structuring.. Cqmpu,ter system designs
: • • ' • .f ~ ~ ' . • .' ,' • ; :,r • l.; \

based on the encrypted storage approach satisfy the criteria fpr qecentralization.
, . ; . ~)_' .: ' . . ;

effectiveness, flexibility, low cost and are fairly general. .These, designs are npt as
. '. ' r;; .

transparent as those developed under the encrypted bus approach, Jarg~ly due to the
. . • . : i .·-· !" .) !" ·i . •• - •.• ' • "'. •

need to maintain VITs. Their performance i~,generally good, except for those
• ,I • ' • ~ ~ • ' • • ' ! , .

configurations in which primary memory is encrypte~.

1.3.3 Two Approaches to Meeting.Clients' Security: Requirements

The preceding section briefly 1destribed two" app.-oadies to meeting the security

requirements of vendors.· These approaches protect'extemaf software supplied by a

single vendor but they do not address the problems of meeting client security

requirements or of executing external software from multiptJ vendors on a single

computer: systemi , These two problems· ·are qtiite similar in ·that both require

protection mechanisms that allow software ffoin .v,eudo~.;an4 from the client to
, r' ' • , . . . ~-· ~ • - . .

interact as mutually su_spicious subsyste~~- This ~.be:accompli~hed in two ways.

A trusted third party ~an supply a TRM-packageg co.QIP~r. based,on one.of the·

two approaches described in the preceding se;ctiQn.. wi,th a sec~re pperating system.
. .. - . . : . ,,• ,,

Both the client and the vendors i:nust trust.tllis wrnp~tei:to ex~ute th.eir software

while meeting one another's security req,,uire~~nts. . Vendors ca(} tnmsfer .external
. ' - ~. . ' . . - . .,, .. ; ~- .

33 .

lntrodllstion

software to such computers either -by forwarding~it through the third-party or by

using cryptographic techniques based-on, pubJic-key ciphers (26). This -approach

requires some standardization efforts so .that external software from multiple

vendors can be executed orr third-party equipment -- under the secure operating

system provided. The major problem,here is that both vendors:and clients must rely

on the third-party to produce a secure:operating system and a secure TRM•based

computer.

An alternative to this approach is to al1ow each vendor to supply his own TRM

packagcd processor and memory and to connect these modules together under the

control of a client processor. Figure 1-4 · iltustrates one way this could be

accomplished. In this example two vendors h~ve suppiied TRMs, each containing a

processor and primary memory. Secondary anci T&A st9rage are,shared among the
•• ' r

TRMs and the client processor. 'The client pr<>CeSSOr controls access to these and
,. ' i ·' ~ l

other shared system resources through an access control bus ~oupler (ACBC). The
.

access control mechanisms used here are similar to those employed in centralized

systems bnt ar~ -somewhat simpler to 1ntplemeiif here clue to the ·hattdware · isolation

provided by the design. This approach, has ,the ~vantage that l)O -mutual ~ is

required since each vemior supplies h~ own TRM, . This approach allows vendOfS to

select their own processor base but SOllU!; s.t.anda(di~~ of, TR~. interfaces and

operating system interfices isstill requir~.Jt.als9 r~maintio ~ seen if the cest-of

TRMs can be reduced to a point at which thi~1,eron~es ~nom,ically, feasible.

In distributed systems members of the usef community need to 'act both as clients

and as vendors in writing and using external software. In fact, a user may act as both

client and vendor for the same software. A combination· of the preceding two

approaches can be employed to meet this complex security requirement Each node

in the dtstributed system can consist ofa client procemr and a TRM supplied by a

third-party, configured as in Figure 1~. The third-party TR.Mis used to execute

34

.--
s

CPU 1------'------I s --
1 ---

P-MEM

P-MEM S-MEM*

Introduction

-
s CPU J.----'------ISII-------~

I ._

P-MEM

ACBC

T&A* other peripherals

Figure 1-4: A Multi-TRM System Configuration

external software supplied by other members of the user community, treating each

user as a separate vend6r. To solve the problem of vendors being their own clients,

another third-party TRM is used to distribute the locally produced external

software. In this fashion a would-be vendor submits his software (source code) to an

installation server TRM which compiles code and distributes it securely to the

TRMs at the user nodes. Since this software is not proprietary, the client-users can

35

Introduction

be allowed to review the source code and decide if they want to use the software. In

this fashion users can decide for themselves if some distributed application

implements an advertised security policy that achieves their requirements for

confinement.

1.4 Related Work

The central topic of this thesis, the development of protection measures for use

with externally supplied software in decentralized computing facilities, has received

little attention in the open literature. The general problem of protecting

information stored in centralized computer systems has been the subject of much

research. (See [29] for an excellent bibliography.) Most of this research deals with

protection of information from program-based attack or with controlling physical

access to central computer facilities. Although the concepts developed in such

research are applicable to the problem of protecting external software in

decentralized systems, most of the detailed mechanisms developed for centralized

systems are not relevant to this "physically hostile" environment. The major

exception is the use of a secure operating system to provide protected subsystems in

third-pm1y, multi-vendor computer system designs. Multi-vendor systems in which

each vendor supplies his own TRM also may make use of some conventional access

control mechanisms in managing shared resources.

There has been relatively little published research dealing with protection

problems in distributed systems. Much of this research assumes that the nodes that

make up the system arc under the control of a single authority, e.g., see [5], as

opposed to the autonomous nodes considered in this thesis. In designing distributed

systems composed of autonomous nodes, usually the tacit assumption is made that

soflwarc executing at remote sites cannot be protected from physical or program-

36

Introduction

based ·attack by the user at the node if the concept of, nooal autonomy is to be

supported. Thus the protection measures developed for such systems tend to be

limited in scope [33). One report [20) proposed. using ct,yptographic ·methods to

protect data objects in distributed systeJnS. allowing me objects to be transmitted to

nod~ for examination while being able to detect mttXlifteation. of the objects upon

return to their "owner." However this is a very limited facility that does not address

the full range of protection problems described and solved in this thesis.

A substantial body of literature deals with legal protection for proprietary
. '

software (see [21]). but not with the development of technological measures to

protect such software. A notable exception is a.patent [11; issued in September 1979,

which proposes cryptographic mechanisms for protecting proprietary software for

use with personal computers. The patent describes a:microprocessor designed to

execute enciphered programs. This design is superficially·'sirhilar to the encrypted

storage approach configuration illustrated in Figure 1~3 but itcdiffers itt a number of
-

ways. For example. the protection provided by this patented design applies only to

object code and read~nly databases, not to modifiable, databases. · (The inventor

claims that the mechanisms could be used to protect •such databases but significant

cryptographic weaknesses would become apparent in . such applications.) This

restriction precludes a number of applications,both for proprietary software and for

distributed systems software.

The same cryptographic limitations that preclude use of this design for

modifiable databases also restricts the design to executing only one program per

microprocessor chip. This is in marked contrast to the system designs proposed in

this thesis each of which is capable of executing an essentially .. tfolimifod number of

program products from vendors. In fact, the cryptographic.techniques presented in

the patent are capable of concealing no more. than one primary memory image

worth of code/d&ta, so secondary and T&A storage .mechanisms are inapplicable

37 '

Introduction

here. More importantly, this patented microprocessor design includes no facilities

for detecting modification of code or data. As noted earlier, the lack of such

measures permits some attacks that could result in disclosure of the code or data, so

this design does not even provide complete protection against disclosure. The lack

of modification detection mechanisms also severely limits the range of applications

which can be protected by this design, e.g., the design is incapable of providing

secure accounting or revocation facilities or of supporting distributed systems

suftwarc as described above. Thus this patented design differs in many respects

from those presented in this thesis.

The areas which are most directly related to this thesis are cryptography and

communication security research. This thesis does not develop cryptographic

algorithms but it does rely on an understanding of basic cryptographic techniques

and of characteristics of modern ciphers, e.g., the Data Encryption Standard [23] and

the RSA public-key algorithm [26], in developing the encrypted bus and encrypted

storage approach of protection mechanisms. The problems of protecting

information transmitted on a bus in the computer systems of interest differ

somewhat from those encountered in protecting information in general purpose

communication networks, but communication security research does offer some

help. For example, research in this area provides a taxonomy of threats that are

applicable to the thesis problem and offers techniques for dealing with these threats

in general purpose communication environments. Some of these techniques are

directly applicable to the problems encountered in this thesis and others can be

modified to meet the specialized requirements encountered in this context.

Some research has been carried out on the use of cryptography to protect files in

centralized systems. Commercially available software developed at I BM [12]

provides key management facilities and encryption/decryption primitives that can

be used with files on secondary storage, .but these mechanisms must be explicitly

38

Introduction

invoked by the user and no higher-level, encryption-based protection mechanisms

are provided, i.e., there is no specific support for mechanisms to detect modification

of data. Moreover, the elaborate key management· facilities. provided by this

software is designed . for multi-aser centralized systems, not the· single-user,

decentralized systems which are the topic of this thesis. Thus this work has very

little relationship to the topic of this thesis. · Other researchers {18, 2?) have

suggested using cryptographic techniques to protect information stored (arid

executed) at centnilized,systems, but these suggestions: have not been accompanied ·

by detailed proposals or even thorough analyses of the security requirements. It is
'.

easy to postulate encryption as a means of protecting information in this context but,

as this tl1esis illustrates, there are a number of difficult problems that must be solved

in implementing such mechanisms.

In summary, the problem of designing protection mechanisms for use with

externally supplied soft.ware in decentralized computing environments has received

little attention. The only work that parallels this thesis is that of a patented

microprocessor design which, as noted above, does not address the full range of

problems described and solved in this thesis. Reseatdl in pr~ection of information

in centralized systems. communication .security,. cnyptograptric file security and

distributed system protection mechanisms al1 CC?ntribute in some fashion to the work

described in this thesis but this work studi~ and solves. problems that have not been

addressed previously.

1 .5 Thesis Outline

Chapter 2 explores in detai1 .the system moqel in;tt.qdm;~d in. this chapter. The
. . -. . ; _,_ . ' - :, ·.

chapter projects values of various parameters for processo~. busses.and storage and
. ' ' , - ~ - •. (; ' .

peripheral devices that might be used in_ the systems of interest qver the next 3-5
f"'.•, ' {',; ..

Introduction

years. This chapter also examines the concept of tamper-resistant modules in

greater depth, noting some of the problems that may arise in engineering such

modules. "n1e simplest approach to protecting external software based on the use of

a TRM is described and evaluated. The chapter concludes with a brief discussion of

cryptography and a simple application example, secure network-based distribution

of external software. The protection mechanisms developed in Chapters 3 and 4

employ cryptographic techniques, so this discussion is intended as background for

the reader who may be unfamiliar with fundamental cryptographic techniques.

Chapter 3 develops designs for protecting external software based on an

encrypted bus approach. It contrasts security requirements for this approach to

those usually associated with communication systems. The chapter develops

cryptographic-based protection mechanisms to secure transactions on a physically

unprotected bus connection TRM-packaged devices that form a computer system.

In developing these mechanisms, special attention is paid to minimizing the impact

of protection measures on the performance and overall cost of the computer system.

System initialization procedures, error response and recovery measures and

procedures for adding new TRMs to a system are presented. This chapter describes

ways of interfacing non-secure devices to these encrypted bus systems .

Chapter 4 develops system designs based on an encrypted storage approach. The

security requirements in this approach differ somewhat from those in the encrypted

bus design. These differences are examined through the use of an abstract model

that captures the essential features of this approach independent of the system

configuration employed. Cryptographic-based protection mechanisms are

developed to secure data held in physically unprotected storage. The protection

mechanisms employed here differ noticeably from those developed in Chapter 3.

Again, special attention is paid to minimizing the impact of these protection

mechanisms on system performance and cost.

40

Introduction

Chapter 5 explores the problems of developing computer systems that execute

software supplied by multiple vendors and of meeting user security requirements in

the context of systems executing external software. This chapter uses the system

designs of chapters 3 and 4 to achieve these dual requirements. These requirements

can be met in two ways, either through the use of third-party supplied TR Ms with

trusted operating systems or through the use of separate TRMs (one per vendor)

combined into a single computer system. Both of these approaches are described

and evaluated in terms of cost, effectiveness and acceptance by users and vendors.

Chapter 6 summarizes the results of the thesis, ex~mines the applicability and

limitations of the proposed mechanisms and suggests possible directions for fmther

research in this area.

1 .6 How to Read This Thesis

Theses can be read at a number of levels, ranging from cursory perusal to critical,

in-depth analysis. Those who wish only an overview of the research described in

this thesis probably should read only this introductory chapter and the concluding

chapter. Such readers are already more than half-way through if they have not

cheated (by skipping material before this section). Brave souls who desire a detailed

understanding of all the protection mechanisms developed in the thesis will have to

wade through each chapter, section and subsection. However, individuals with

some understanding of cryptography may skim the discussion of this topic presented

in section 2.3. Special provisions have been made for readers seeking a thorough

understanding of this research but not wanting to examine all of the proposed

mechanisms in detail. At one or more points in Chapters 3, 4 and 5, instructions

have been included to direct the reader around detailed discussions of specific

protection mechanisms. One can gain a fairly good understanding of this research

41

Introduction

by following these directions, even if all of the dctailtcl discussions arc avoided. As

a fu11her aid to the reader, a list of acronyms used in this thesis is provided as an

appendix (page 248).

42

Chapter Two

The System Model, TRM,s and Cryptog.raphy

This chapter begins by describing in greater detail the comp~ter system model

introduced in section 1.3.1. Variations on the basic model are introduced and

projected characteristics of devices in these systems are extrapolated from current

device specifications. This model provides an engineering context for the design

and evaluation of the protection mechanisms explored in the thesis. Next, the

chapter explores the use of tamper-resistant modules (fRMs) to physically protect

security-relevant system components and thus pro~ct external software, meeting_ the

requirements of vendors. A simple system design employing a single TRM can

meet vendor security requirements,. but there are a number of limitations associated

with this simple design. To overcome these limitations, more. elabor.ate designs

combining TRMs and cryptographic techniques are dey:eloped in Chapters 3 and 4.

This chapter concludes by introducing the reader to some cryptographic concepts

and examining cryptographic techniques for use in the latter chapters.

2.1 The System Model Revisited

A simple model for the computer systems of interest was introduced in Section

1.3.1. This model. reproduced in Figure 2-1, and variations on it are ·described in

greater detail in this section. The model provides a framework in which detailed

designs of protection mechanisms are developed and evaluated and it includes only

those details that affect these mechanisms. For example, most details of bus

arbitration are ignored as they are largely irrelevant to the proposed protection

mechanisms, whereas timing characteristics of devices in the system are presented

43

The System Model, TRMs and Cryptography

since they arc necessary in evaluating the performance impact of such mechanisms.

This model attempts to embody the high level architecture of personal and small

business computers that will be constructed in the next 3-5 years. However,

differences between this model and computers actually produced need not preclude

the adoption of the protection mechanisms developed in the thesis. In fact, the

protection mechanism designs that arc most likely to prove feasible are largely

independent of details of processor and primary memory operation. Thus, although

the system model attempts to capture salient features of real computers, deviations

from this model do not affect all the protection mechanisms proposed in this thesis.

CPU

P-MEM S-MEM T&A other pe rip he rals

Figure 2-1: The Basic Mode! for the Computer Systems of Interest

Before proceeding to a discussion of variations on this basic model, some

additional comments arc in order. In Figure 2-1 and other system configuration

diagrams each storage system component is depicted as a single box. This is not

meant to imply that in every case there is but one of each of these devices nor that

multiple instances of a device are packaged together. ln the basic system model

there is only one processor (CPU) but there may be multiple, independently

packaged instances of the storage devices. In particular, when storage devices

containing sensitive data are TRM-packaged, additional, non-TRM-packagcd

44

The System Model, TRMs and Cryptography

devices may be used to hold client data since vendors are not trying to protect this

data from physical attack. This device replication is not required for vendor security

but may be preferred by clients since it gives them fuU access to their data. (This

dual packaging strategy is not applicable to transfer storage since it is used

exclusively by vendors.) Thus, these configuration diagrams illustrate minimal

implementations.

In section 1.3.1 there was a brief discussion of how secondary storage (S-MEM)

differs from transfer and archival storage (f &A). It was noted that transfer and

archival storage is always demountable whereas secondary storage may be non

demountable. Thus these two types of storage are not necessarily distinguishable

based on the devices used to implement them, i.e., a demountabte disk mightserve

as either transfer and archival or secondary storage. A second distinguishing feature

is that files on T &A storage are viewed as being outside of the file system maintained

on secondary storage. The. assumption here is that program files are transferred into

primary memory for execution from the file system (via swapping or demand

paging). Portions of data files are read ~ written by transfers between primary

memory and secondaf}' storage, e.g., disk sectors may be the object of such transfers.

Externally supplied software distributed to a client on tnmsfer storage media is

moved to a permanent home on secondary storage before use. A sensitive file on

secondary storage may be recorded on secure archival storage media and later tan

be reloaded, i.e., copied to the file system undedb original name.

There are three possible reloading constraints associated with files maintained on
""

secure secondary storage: unconstrained, non-reloadable and most recent only. Some

files have no constraints on reloading, i.e., the client is free to reload any archived

copy of the file. An object code file produced ,by a pr~rretary-cmripifer might falf

into this class since, the vendor has no concern over which version of the file is

executed by !}le client Other files a{e non-reloadable, i.e., under no ~ircumstances.

45

The System Model, TRMs and Cryptography

should these files be archived and .later reloaded. Accounting files used by

proprietary software may fall into this category sinee iftney,:were reloaded the client

could "turn back the clock" on the billing function they provide. Special

precautions must be taken ·to ensure the reliability· of these files and these

precautions may significantly increase the space ocaupied by the file. Vendors also

may require some files to be archived and reloaded together by the opetating·~stem

(to enforce some consistency constraints) and these can be group~d. into archival
. . ' .

units on archival storage. The same concept can be applied to files that make up
. ~ : . . ' ~ - -

external software packages, yielding transfer. unils on transf~r storage. Ways in
·;_,_: ' .. '' " ,.

which these groupings can be implemented securely are exami11ed later .
• ••, I , 1-; ',;, '.

In between these two extremes are tiles that may be reloaded-only from the most

receut archived copy of the -files .. For example, ·m,da&abase· may :be -periodically

qheckpointed (archived) and .. a,small transaction~log-may tJep,tract ofthe•updates

thijt take place between chec:ipoints.;. The .. databastMnoutd be :reloaded' only from

the most recent a.-ehived copy, and;the small tramildliooJJlog.~ 1be,tton-relo;tdabie.

These reloading constraints appfymot only to:incliv.iduaJ; fia .. hlJt ~ to groops.of

fiJes. that must be ardtived aDd reloaded mgethel\; to, .epsure wrtsistenc:t acros., file -

boundaries ... (Such• comistency also may• be achieved explicitly by including some·

i»formation in eaeh file· that ibin~ it to the: other files an:hived 'at the same time;)

Even if there are no oo•raints with ,respect to tinaelin~-associated with reJoactmg a

file (unconstrained)~ itmayi;be.required·that:other files arcflrved;•at the same time

must be reloaded along with this file. Thus even unconstrained files may have sqme
• : __ : - , _,, 0 -·, J- - • 7 - , · - /1 ; -· -

constraints on reloading.

2.1 . 1 Variations on the Basic Model
' -- . ' ·.-

The computer system pictured in:Ftgttre 2~1 employs a: single~ general purpose ·

bug to interconnect all of the system· devm 'Figure 2 .. ?iffustraies it ianhfion· on

46

The System Model, TRMs and Cryptography

this model, a dual-bus system in which primary memory is attached via a dedicated

memory bus whereas other devices are attached to an VO bus and the two busses are

connected via a bus coupler at tllt: processor. (fhe bus coupler provides functions

necessary to mate the two busses, e.g .. buffering and,inteM>us arbitration.) A dual

bus system offers several advantages over a single bus system. The memory bus.

since it is quite short and since it is specialized in function,:can be made faster than a

general purpose or 1/0 bus, thus reducing effe.ctive acce~timeto primary memory;

The 1/0 bus is used to interconnect <levices wita less. stringent performance

requirements and thus can be slower than a general puq>OSe bus. In this way more

expensive, high speed bus inte1faces are. employed only on , the memory bus •(2

interfaces) and less expensive bus interfaces are: used oo the .1/0 bus where many

more interfaces are required. This configuration also reduces contention on both

bu~. further improving perfonnance.

X ·'

CPU . '

..

P-MEM S-MEM T&A other p~ riph~nals
'' ···'

. ,:- . ' " . ' ..

Figure 2· 2: A Dual Bus System Model

Dual bus systems provide improved perfonnance at the cost of a bus coupler and

two high speed bus interfaces. This performance gain entails some cost and since

high perfonnance is not a major design parameter for the systems of interest, one

expects to see both single and dual bus systems in practice. Another way to improve

47

The System Model, TRMs and Cryptography

system perfonnance is to add a cache memory-to the processor. (System model

diagrams do not explicitly illustrate the presence of a cache at the proc~r.) The

major motivation for using cache memory,1is that itftduces the effective access time

of primary memory. As processors -·in the systems of interest become faster,

inclusion of cache memory will probably become appropriate. Moreover, use of

cache memory allows somewhat sl<:1wer, cheaper primary·mernory to be emploYed

with only a minimal effect on effective ac~titbe., This is·an)itnportant feature as

processor costs :will be small relative· to· primary memory costs in mmty of these -

cQmputersystems. Finally~,use of cache.metrlory 'retluces'bus-ttihtention and may

etim,oate ilie need for.a very high-speed bus, 1~.·one capable of keeping up :with

processor-generated refertnt'CS toprimary memory.-·

Again, the perfonnanc~ gain achieved here is not without cost The addition of
r l • ~ ' ; ;• ~ ' • ~ • \ 1 •

cache memory to a processor is a non-trivial engineering -task and the cost of the

resulting system is correspondingly increased. Thus one expects to encounter both

cache-equipped and cacheless systems in practice. A cache can be added to a

processor in either a single or dual b_us _S)'.~t!_m-1 yi~ld_in_g_ fQurJb~~{; syst~ _

configur;tion~: sin~e bu$ ~a~heless, ~ing)e bus cache-equipped, duat 16~=ciichdess;
and dual bus cache-dquipped. In general, system perfonnance improves with

' : : . : ; ; ~

successive configuration choices Q'1--this-Jist~-if,, a ~1ms;qachel~~em ~ the
~ . . . '\. ·J. --_ ~- ~ 1-:l; :~! {i -~ l : ,r: ; :-:;; · J ·

slowest ithd ~; dtiaf 6tis; cacbe-eqp_ip~~lf-~y.m ~t~L-Rn illustrating S).f;tem

configurations, if the choice between single and dual bus designs or the inclusion or

omission of a cache is ~rele~nt ~. :PfQ~Q 1 ~~::i~anisms, the generic

model of Figure 2-1 wiH be used. Otherwise, specific bus configurations will be

shown and the inclusion or omission of a cache will be noted in the text

48

. The System Model, T&Ms and Cryptography

2.1.2 Processor and Storage System Parameters

Most details of processor operation are irrelevant to the model but a few

parameters are critical. to the formulation and evaluation of design options. One of

the most important parameters is the processor word size, i.e., the number of bits of

data normally fetched and transformed by the processor. A word size of 32 bits is

projected for the systems of interest. This is a larger word size than most personal

computers employ. at this time, but already there are single chip processors with 32-

bit registers, e.g., the MC68000 [22], and full 32-bit microprocessors will probably be

announced before the end of 1980. The processor should be capable of directly

addressing about 16M-32M bytes of primary memory, to take advantage of the

continuing improvements in memory technology. · Bus addresses should be a little

less than 32 bits, to support byte addressing of primary memory (24 to 25 bits) and

for control of peripheral devices. The size of these addresses and the word size

suggests that one set of bus lines should be used alternately for addresses and data,

to reduce the cost of bus interfaces. This is especially important for the general

purpose and 1/0 b~ since a number of devices·will be connected to these busses.

If the processor is equipped with a cache memory, several additional parameters

come into play: cache size, line width and update scheme.3 A survey of existing 32-

bit, cache-equipped processors turns up cache sizes ranging from 8-32 Kbytes and

line width of 8-32 bytes. As noted earlier, the systems of interest are not intended

for extremely high throughput, so the projected cache size for these systems is 8

Kbytes. For most systems a line width of 8 or 16 bytes (2 or 4 words) will be

appropriate but a 32-byte line width will be required in support of some encrypted

storage protection mechanisms. Since the systems of interest generally support only

a single user, the hit rate for a cache of this size may be in the range df95-98% [6].

3 A cache line is the group of words treated as a unit for addressing and replacement purposes.
Within the cache. there are a number of cache line frames, each capable of holding one line.

49

The System Model, TR Ms and Cryptography

Cache memory control logic wtll employ one of two sch'etnes for updating the

contents of primary memory: writ~thra"'h or write-baek. In.a write·through cache,

a wrile to a word in the cache is propagated to primary memory immemately, so that

primary memory ·and the cache remain "in sync." .(In fact. the update of primary

memory normaJly is buffered by the cache so that the processor does not have to

wait for the primary memory access to complete, so there is a short time window

when the two are not in sync.) If the target of a wrile is not in the.cache, -then the

update takes place only in primary memory, i.e.~ the cache is not affected. In a

write-back cache, writes are effected onl;r in the cache, i.e., an attempt to modify a

word not in the cache results in a fetch of the approprial'e cache: line from primary

memory. Updates arc propagated to pri1J1ary m~mory <>IMY when, modified cache

lines are evicted as part of the cache replaceme1't .strategy •. (Note 1that an entire

modified cache line is copied into primary memory; tliere is· no a•empt to keep

track of w}Jich words in the line were modified.) hLa write•back cache anywhere

from 20-60% of the misses .r~uJt in eviction. of modified lin~· i.t!., the evicted line is
;, .. - . . ' .

written into primary memory. Unless otherw~ s_tat~ .. cadtes, in this thesis are

assumed to be write-through.

To estimate the performance char~t~risticsofthe.proceSSOf and various levels of

storage, one must adopt some lllles of thumb . . , &eceat trends in semi-ronductor

te<::~~ology provide several such :rules for projecting the performance and cost of the

systems of interest (21. These projections are useful in that they provide a basis for

evaluating proposed designs i~ ~rms of technological(and economic) feasibility.

For example, one rul~ of thumb notes that the romponent· count per IC chip

approximately doubles every year and memory chip capacity ,quadruples every two

to three years. At the same- time, raw speed of IC chip.5 doubles every five years. As

production techniques are refined the cost of producing chips with constant

performance characteristics drops by about 20% per year. Using these rules of

thumb, one:ean extrapolate fro'm current product specifications to project·some of

the characteristics of systems that will come into existence over the next 3-5 years.
50:

The System Model, TRMs and Cryptography

Based on these trends, the minimum instruction execution time for processors in

the systems of interest should range from about lOOns (10 MIPS maximum) for a

high performance multi-chip CPU (the "top of the line" iR· this class of systems) to

about 600ns (1.6 MIPS maximum)" for ·a slow, single chip,_processor (a "low end"

entry in this dass). It is assumed that the fastest instructions are_ register-to-register

operations, no memory references are involved, so this time is also taken as the
, , '

minimum time between processor-generated memory references. The mean time

between processor-generated memory references is assumed to be about a factor of ·

3 or 4 greater than this minimum, accounting for longerinst~uction execution times

and references for instruction operands. This yields processc>rs with average speeds

ranging from 0.4 to 3.3 MIPS (assuming matched prim,ary memory access times as

described below). For the storage components of the system, there are a number of
,,

relevant device characteristics: access time and transfer rate, mean time between
,,

references, storage capacity of the device, size of data aggregates transferred to and
< C ~ 4 • - •

from the device and the mean time between failure (MTBF) of the device. In
, . ' ~

general, going from the lowest level in the storage hierarchy (cache memory) to the
' ' .\ ' . :_1,' ,

highest (f &A storage) the access time, mean time between references, capacity and
' :· '

data aggregate size all increase whereas the MTBF and transfer rate decrease.

The volatility and demountabiltty of storage devices are also relevant to the

system model. Cache and primary memory are constructed from solid state

components and are volatile whereas secondary memory and T&A storage are noni,,

volatile. Only T&A storage is required to be demountable but secon~ry storage

may also be demountable, depending on the technology emJ?_loy~d. Note that ev~n

though magnetic bubble memories may see increased applicatjo~ in this time frame,

such memories are not expected to be price competitive with removable magnetic
'. . . ' . . . ; ' .' .·,

media for many applications. and thus will not ~gnificantly displace such media. In
, '· , ~ i ' . , { ' .

fact, the recent improvements jn non-demountable <fists, e.g., Winchester
- ' . • .. . ·. ~ ..)' :"'.'. ~ ,·; ;· l ~ :z. ; : .- ' - • _; . ; I '

technology disk driv~ make it likely that magnetic bubble memories will not

Sl

The System Model, TRMs and Cryptography

significantly displace disks for some time. Thus the predominant form of secondary

storage employed in these systems is likely to be magnetic disks. Also, not all system

configurations will provide separate devices for secondary and T&A storage, thus

demountable media may serve a dual role in some systems.

Now consider projected values of some these parameters for devices at various

levels in the storage hierarchy. In high performance systems employing a cache, the

effective access time will be about the same as the minimum instruction execution

time. (The memory chips used in caches are static RAMs so the cycle time and

access time are the same.) This access time includes checking to see if the requested

word is in the cache and the transport delay between the cache and processor. Thus

a processor with some instruction lookahead facilities can maintain a continuous

stream of references to the cache for minimum time instructions. This suggests an

effective cache access/cycle time of about lO0ns, which yields a transfer rate of 320

Mbits/s. Access time for primary memory (using 64-256 Kbit chips) should range

from about lO0ns to 200ns, exclusive of bus transpo11 time, with cycle time about

twice access time. Bus time will add some 200ns to 300ns to this access time (for

transport), yielding an effective primary memory access time of about 300-600ns, so

the maximum primary memory transfer rate ranges from about 106-213 Mbits/s.

(This transfer rate assumes a non-interleaved memory; cache-equipped systems will

require at least two-way interleaving for quick transfer of cache lines, increasing the

transfer rate.)

In a cache-equipped system, the effective memory access time seen by the

processor is determined by the access times of the cache and primary memory, by

bus transport time and by the hit rate. A cache-equipped system using fast (l0Ons

access time) primary memory and a fast (lO0ns transport time) bus can achieve an

effective average access time of 104-1 lOns, based on a 95-98% hit rate. For a cache

equipped system using slower primary memory (200ns access time) and a slower bus

52

The System Model, TRMs and Cryptography

(200ns transpmt time), the effective average access time is 110-125ns, based on this

hit rate range.4 This illustrates the enormous improvements that ca~ b~ obtained by

inclusion of a cache memory. Even if performance is not a critic·a1 concern,

economics may dictate,use of a cache since it allows .use of slower, cheaper memory

chips for primary memory. At this time, the location of the "break even" point,

based on the cost of equipping·a processor with a cache versus the cost of memory

chips and the anticipated size of primary memory, is11ot obvious.

For secondary storage the access times ,and transfer rotes vary considerably

depending on the technology employed. For example, magnetic bub.hie IJlemories
~ ; ' . : . ,, ,

may provide average access times of 10-15ms and transfer rates of 0.1-1.5 Mbits/s

whereas fixed disks may exhibit average access times of about 70ms and transfer

rates of 10-15 Mbits/s. Bubble memories, using 4,-J6·Mbitchips, may be configured

as small capacity storage devices (4-16 Mbytes) whe~. l)~rd disks may contain up
', • F-• ... ~ ;, - ' ,

to 100 Mbytes. Devices used for T&A storage tend to be relatively slow, at the low

end of the range for secondary storage devices. For example, floppy disks may

exhibit access times on the order of 100-400ms and t:r:.amfer rates of 0.5-LO Mbits/s.

Capacity for floppies may grow to 5-10 Mbytes using double sided, double density

recording technology. For all of these secondary :and T&A storage devices the

(usable) record size is expected to be about 511byms.: These chatacteristics of the

computer systems of interest are collected in Table 2-,1.

4rhis effective average access time ca1cutation ~umes that on a ·~ache miss the first word fetched
is the one which ~\ISCd the mi~. ~~d ~~~ .sul>sw,~nt ,~~fC9C~ k> YIQJ:~. ~P the; fetc_hod fne occur at
cache speed. This' second· .mi.nnptioil may not'lfold for long"cacne lfncs (>4 words) or if a slow bus
and slow primary memory are used.

53

The System Model, TRMs and Cryptography

System Characteristics

- Processor and Bus

•word length: 32 bits

•minimum instruction time: 100-600ns (1.6-10 MIPS)

•average instruction time: 300-1800ns (.4-3.3 MI.PS)

*bus cycle time: 100-2000s

•multiplexed-data/address bus-lines: 32 ·

- Cache (optional)·

*access/cycle time: lOOns

*line width: 8; 16 or 32·bytes

*capacity: 8 or 16 Kbytes

- Primary Memocy

•access time: 100-200ns

*cycle time: 200-400ns

*capacity: 64K-16M words

- Secondary and T&A Storage

•access time: 10-400ms

*transfer rate: .1-10 Mbits/s

*capacity: 5-300 Mbytes

*record size: 512 bytes
. .

Tithle 2· t:. tbaracte~iciof th~ ~~u.,er SYswmsJ>(lp~
• • ~· < ~ ' - ' ' ·, - - • • ' • • • ~ ~ ' • - • •

54
, ,

. The System Model, TRMs and Cryptography

2.1.3 Other Peripherals

In Figure 2-1 peripherals other than storage,devices are lumped together at the

end of the bus under the heading "other peripherals." This heading: includes

terminals, bullc l/O devices and communioation facilities, e.g., network interfaces.

Tbese devices are not d~ribed in detail since their operation is not critical: to· the

security of external software. For example, external software that interacts with a

user via a terminal _must be preparoo to accept any illput~from the user and thus no

tampering with the terminal should affect the secure operation of the software. The

same argument holqs • tor hatdcopy; output devices, and even· for network interfaces.

(If external software requires secure communication facilities, these facilities will be

provided within the TRM containing the processor~) In designiflg mechaAisms to

protect external software, provisions ,must be made',to aocornmodate 1/0 devices,

i.e., these devices must still function properly in conjunction with protection

mechanisms.

Only two 1/0 devices exhibit high enou~ transfer rates to warrant further

discussion: network interfaces and bit-map displays. For most personal and ~mall

business computers the network interface will be telephone based and thus is .

restricted to relatively)ow bandwidth, e.g., less that 10 ~bjts/s. However, in

distributed systems, high speed local ar~ networks will pro~ably be employed and

the bandwidth could be in the neighborhood of 10-20 Mbits/s. This transfer rate is ... , ',
. . ,' -

equal or greater than that of many _secondary storage devices ~nd thus constitutes a

significant contribution to bus· utilization. Many systems ~a}' be equipped with bit

map displays in the future. These displays ~iate with every pixel on the screen

one bit in a display memory, typi~lly on the o;der of
0

128 ibyt~. (Color. bit~map
. .

displays associate several bits with each pixel.) The data transfers required to
. - . .

manipulate the display may be limited p;imarily by m~mof)' access time, so these

displays are capable of very high transfer ~tes and ·they. ca~ become dominant users
' 1 ~ . . ~

' ' . .
of a general purpose or 1/0 bus.

ss

The System Model, TRMs and Cryptography

2.1.4 Basic Bus Characteristics

The busses (general purpose, 1/0 and memory) employed in the model are

abstracted from conventional designs such as the DEC UNIBUS and the IEEE S-

100 bus. Only those characteristics of bus operation that directly affect the design of

protection mechanisms are included in the model. ll1e bus consists of a collection

of bidirectional lines for transmitting addresses, data and control information, as

detailed in Table 2-2. (Additional lines are provided for timing, arbitration, power,

etc. but are not included the model.) The general purpose and 1/0 bus are

asynchronous or pseudo-synchronous whereas the memory bus is assumed to be

synchronous. A bus cycle is the time interval required to perform a bus operation.

There arc four bus operations: PRESENT-ADDRESS, PRESENT-DATA,

ACKNOWLEDGE and ERROR. The first is used to place an address on the bus,

the second does the same for data (or an interrupt vector) and the third

acknowledges receipt of data. The last operation, ERROR is described below.

Bus cycles are well defined for synchronous and pseudo-synchronous busses; for

asynchronous busses the minimum time required for a bus operation as described

above will be ref erred to as the bus cycle time. For the systems of interest the bus

cycle time will range from about lO0ns for a memory bus to about 200ns for general

purpose or 1/0 busses. An arbitration mechanism, which may proceed in parallel

with data transfers, is used to select the next device to use the bus, i.e., the bus

master. (Although arbitration is an important aspect of bus design, all of the

commonly used bus arbitration schemes are essentially equivalent from the

standpoint of security and thus no specific arbitration scheme is included in the

model.) Once granted the bus, the bus master uses two or more operations to

complete a bus transaction, e.g., a data transfer, with another device, the slave. {In

asynchronous and pseudo-synchronous busses a handshaking protocol usually is

employed to allow both slave and master to control the duration of the transaction.)

56

The Syste,n-Mt>del, TRMs and Qypt{)graphy

BUS LINE DF.SCRIPTION

A/00-31 used to transmit addresses and data

PARITY•J · used to parity ched: lines A/00-Jl

ADDR asserted when an addr~ is on Imes A/00-31

DATA asserted when data isoa lines A/DO-JI

. INT asserted when interrupt vector is on lines A/DO-31

READ asserted during read• transactions

WRITE asserted during write transactions

EXT asserted during extended transactions

ACK asserted by a slave to acknowledge a write ~ interrupt

ERROR asserted by a slave to i;ndicate a bus operation error

RE.SET asserted to reset the device selected by lines A/00-31

Table 2·2: Bus Lines for the Systertr Models

The ERROR operation noted earlier is i$ued by a slave jf a transaction cannot be
' - ' ,._ ~ . ' ., ' ; . ~" ' , ' - . .

su~fully ~rqple~d. even though the master uses .. ~ ti{l),eout to detect me .. failure
' .: ~- '1 , , ,.'·" ! t , ;' , . ,. . , ; ~ : . • ; - ., . ; ~ j -- . < "

of a slave to respond

The System Model, TRMs and Cryptography

Associated with each device on the bus are one or more addressable cells from or

to which data is read or written (or both). A device examines addresses placed on

the bus to determine if one of its cells is the target of an operation. Jn the case of

primary memory these addresses correspond to storage cells whereas for other

devices they represent control and status registers. The processor writes into a

control register to initiate an operation and reads from a status register to determine

the outcome of the operation. For example, the processor initiates a direct memory

access (OMA) transfer of data from a disk to primary memory by writing the (disk)

source address, the (primary memory) target address and the number of words to

transfer into appropriate disk control registers. The disk then transfers data to

primary memory, one word at a time, indicating completion of the transfer by

setting an appropriate value in its status register and by generating an interrupt.

Devices that transfer very small quantities of data, e.g., character-at-a-time 1/0

devices, often use device registers to hold the data rather than employing the OMA

technique described above. In such cases the device generates an interrupt and the

processor transfers data between primary memory and the device register.

In systems employing a dedicated memory bus, this bus is assumed to be quite

similar to the general purpose and 1/0 busses described above. There will be no

arbitration mechanism because there is only one bus master, the bus coupler

(processor), and there is no need for interrupts. The memory bus will be

synchronous with transfers taking a known period of time, since the memory

provides a uniform access time. Thus a memory bus is somewhat simplier than a

general purpose l/0 bus. The functions provided by a bus coupler used to interface

these two busscs will vary depending on the system design. For example, the

coupler may provide some buffering for speed matching, to account for differences

in the number of bus cycles required for operations on the two busses and to

manage arbitration across the two busses. On a store into primary memory by a

device on the J/0 bus, the bus coupler can generate an ACKNOWLEDGE

58

The System Model, TRMs and Cryptography

immediately and carry out the transaction on the memory bus asynchronously. On

primary memory fetches initiated by devices on the 1/0 bus, the bus coupler can

prefetch data in anticipation of subsequent requests from these devices. In this

fashion the 1/0 and memory busses can operate largely independently and most

transactions on the general purpose bus will not suffer long delays in accessing

pnmary memory.

2.1.5 Graphic Conventions for Bus Transactions

Two graphic techniques are employed in this thesis to describe bus transactions,

especially the secure forms of these transactions developed in later chapters. The

first, an event graph, shows the flow of data among the processing steps in the

transaction and provides symbolic timing information. Event graphs indicate points

in a transaction where there is potential for parallelism without making any

assumptions about the performance or configuration of devices. The second, a

timing diagram, shows the utilization of various devices· during a transaction,

illustrating the parallelism achieved by using a specified number of devices under

stated timing assumptions. Timing diagrams are useful for determining the

transaction time and cycle time of transactions for various equipment

configurations.

In event graphs, processing steps are represented as labelled circles. TI1e labels

consist of a symbol to indicate the type of step and a number to distinguish among

multiple instances of the same step type. Narrative descriptions of transactions refer

to the steps using these labels. Table 2-3 lists the symbols used to label processing

steps. (Some of these symbols refer to operations that are described later in the

thesis; they can be ignored for the moment.) The flow of data (and time) is from

left to right and is indicated by arcs joining process-step circles. The inputs and

outputs of a transaction, as seen by the bus master, are indicated by bold dots and

59

SYMBOL

C

T

A

E

p

X

The System Model, TRMs andCryptography

PROCFSSJNG STEP DF:SCRIPTION

encryption/ decryption of a 64-bil data block

transmisgon of <32 bits on the-bus

access to read or write a memory cell

calculation of a 64-bit cryptographic error detection code

processor interrupt handling ·

XOR (modulo 2 sum)' ofitwo <32-bit quantities

comparison of two <32-bit bit strinp

Ta•le 2-3: Symbols Used fo Event Graphs and 'Hmmg: Diagrams

are accompanied by explanatory labels. The steps that comprise a bus transaction
!

occur at three sites in the system, the current bus master, the bus and.the ·addr~d

slave. To illustratf! tbeiparallelism inherent it1 this:dis~d environment, •Pf~

steps are grouped along three, horizontal, a,tes cc,r~ to the, m8$ler, · bus and

slav~

In timing diagrams each independent device instance, e.g., a cryptographic device

or ·bus lines, is represented by a separate, labelled~, tine :'bori~ntal line. These
devices. are grouped (vertically) corresponding !to. ilie' event ~ph,. i.e., b~s: master

devices are at the top,' follow~d by the' bu~ and 'by slave devkes.: . 'tune. is divid~

'll1e System Model, TR.Ms and Cryptography

into bus-cycle duration quanta, indicated by fine vertical lines, and these lines are

numbered at the bottom of the diagram. The actual duration of a bus cycle is not

indicated since only relative times are needed to perform the required calculations.

Cycles during which a device is busy are indicated by a bold horizontal line, labelled

as in the corresponding event graph. Some events, e.g., bit string comparisons or

modulo 2 addition, are not noted since they are quite fast and thus are effectively

absorbed by adjacent event times. Figure 2-3 illustrates the conventions used in

event graphs and timing diagrams as it describes two simple bus transactions.

Minimum transaction time (assuming maximal parallelism) is determined by the

longest path in an event graph, i.e., the sum of the process-step times along that

path. This time is represented as an expression in which lower case versions of

process-step labels are used to subscript a time symbol (7). Thus the time to

transmit 32 bits on the bus is T and the time for an encryption/decryption
l

operation is T . Again, only major operations (those which appear in timing
C

diagrams) are included in timing expressions. Some slight confusion arises in

dealing with memory accesses in event graphs, timing diagrams and timing

expressions. In timing diagrams the symbol A represents the activity of accessing

memory and its duration is the cycle time of the memory access, but in timing

expressions T represents the access time of memory. [n reading a memory cell, the
a

value is available in time T after the address is received even though memory is
a

busy (unavailable) for the full cycle time. On writing a memory cell, the cycle time

may begin when the address arrives, even though the data may not yet be available.

1l1e event graphs use the symbol A for both read and write accesses.

2.1.6 Standard Bus Transactions

Figures 2-3 and 2-4 provide the evcn_t graphs and timing diagrams for the three

standard transactions: read, write and interrupt. (These transactions are referred to

61

The System Model, TRMs and Cryptography

as standard to differentiate them from the secure transactions developed later in the

thesis.) The event graphs and timing diagrams for these transactions are fairly

simple but they illustrate the basic features of both methods of graphically

po,traying transactions. In the timing diagrams in these figures the assumption is

made that memory access time is equal to bus cycle time, i.e., fast memory is paired

with a fast bus and slow memory with a slow bus. Although other combinations are

possible, this convention is adopted throughout this thesis, simplifying timing

calculations. However, using the event graphs and narrative descriptions provided

throughout the thesis, the interested reader can construct timing diagrams for

transactions under other (less convenient) relative performance characteristics.

A standard read begins when the bus master asserts the address of the location to

be read using a PRESENT-ADDRESS (Tl). The slave accesses the indicated

location (A) and responds with the requested data using a PRESENT-DATA (T2).

A write begins when the bus master asserts the address of the location to be

modified, using a PRESENT-ADDRESS (Tl), then the data is transmitted using a

PRESENT· DA TA (T2) and the slave responds immediately with an

ACKNOWLEDGE (T3). An interrupt is signalled by transmitting the interrupt

vector using a PRESENT-DATA (Tl) and the processor responds with an

ACKNOWLEDGE (T2). Processing of the interrupt (P) begins as soons as the

vector arrives. The transaction time for a read is 2T + T, for a write it is 3T and
l a I

for an interrupt it is 2T. The derivation of these timing expressions from the event
l

graphs is straightforward and is verified by the corresponding timing diagrams.

Under the relative timing assumptions noted above, read and write transactions both

require 3 bus cycles and an interrupt requires 2 cycles. Since only one data word is

transmitted every three bus cycles, the effective transfer rate of the bus is one third

of its maximum potential. For busses with cycle times over the range of 100-200ns,

the maximum attainable transfer rate is about 53-106 Mbits/s for these transactions.

62

Master

Bus

Slave

Master

Bus

Slave

The System Model, TRMs and Cryptography

Standa«:d R.ead:

address data

Standard Write

address data ack

Master

Bus

Slave

Master

Bus

Slave

A D

D A

D T

R A

In rr2
~ '--

A

0 1 2 3

A D

0 A A
0 T C

R A K

T1 T2 T3

A

0 1 2 3

Figure 2-3: Event Graphs and Timing Diagrams for Standard read and
write Transactions

For cache-equipped systems there are one or two additional transactions. Both

write-through and write-back caches require extended read transactions but only

write-back caches require extended write transactions. These transactions transfer

an entire cache line (2, 4 or 8 words) between primary memory and the cache in one

63

Master

Bus

Stave··

The System Model. TRMs and Cryptography

intefrupl

vector

Standaftf filteYiUpt

Master

\~ Slave

N A

T C

V K

i
,

T1 rr2

p ..

0 1 2 3

Figure 2-4: Event Graph and Timing Diagram for a Standard interruptTransaction

transaction. Figure 2-5 provides the event graphs and timing diagrams for both

transactions U§ing two-word cache linM·Qe ft~~.iJJ]emory interleaving. An

extended' read begins by asserting the address _of the word which caused the cache

miss, using a PRESENT-ADDRESS (Tl). This word is fetched first from primary

memory (Al) and transmitt~d using ·ir PRESENT·DATA_'tf2). ..,The retJt~ining
.'~. "i• . .--',i-:·'' _.,.,._ ,,_.:;;:,. -,-• ~ ~.:·,

words in t.b~ ~ntaining cache line are fetcb,,eJ! (A2),,,.ag,d tny)SIJ}rtted (T3) without
'., , • ! ~ .• - -. I '. ~. \ :

issuing fdfthef PRESENT-ADDRESS opeta(iQ!ts._, . .Aii:~t~dlied'write begins with a

PRESEN.1'•..WDRESS (fl) followed by Pl~-DATA (f3.T4) ~ons
' ,,,,:

confirmed by tn •ACKNOWLEDGE (T5). Two-word cache Jines yield transaction

times of 2T + 2T for an extended read and 4T for an extended write. Under the
I a t .

relative timing assumptions ooted· above, ~lransedions tequire 4 bus cycles to

transfer two words. a bus transfer rate of so~ 160 Mbits/s.

The higher bus transfer rate achieved in extended transactions comes about by.

eliminating explicit PRESENT·ADDRFSS operations ~iated with subsequent

words in the cache line. As the cache. line width grows this yields even greater

transfer rates. For example, a 4-word cache line can be transferred using 7 bus

64

Master

Bus

P-Mem

Master

Bus

P-Mem

The System Model, TRMs and Cryptography

Extended Standard Read

address data data

Extended Standard Write

address data data < ack

Master

Bus

P-Mem1

P-Mem2

Master

Bus

P-Mem1

P-Mem2

A D D
D A A
D T T

R A A

1T1 1T2 IT3

A1

A2

I
0 1 2 3 4

A O'D

D A A A

D T T C

R A A K

1T1 T2 T3 T4

A1

A2

0 1 2 3 4

Figure 2-5: Event Graphs an~ Timing Diterams for
Extended Stand~rd Tran~ons

The System Model, TRMs and Cryptography

cycles, a bus transfer rate of 91-183 Mbits/s. This approach to implementing

extended transactions requires increased sophistication on the patt of the memory

controller, to generate the appropriate addresses to fetch or store each word in the

cache line after the first. It is also necessary to interleave memory so that

subsequent accesses can proceed without waiting for a memory access cycle to

complete. Since cycle time is assumed to be about twice access time, two-way

interleaving of memory is adequate for all cache line widths under this scheme. An

alternative approach to implementing cache/memory transfers uses memory

interleaving and additional bus lines to fetch or store multi-word units. However,

the scheme adopted here should provide adequate bandwidth for the processors in

the systems of interest without incurring the expense of extra bus lines.

2.1. 7 Bus Utilization

Anned with the perfonnance characteristics of various devices on the bus, one

can make some rough estimates of bus utilization in the systems of interest. Precise

bus utilization figures are application and equipment dependent, but even rough

estimates are useful in evaluating the performance impact of the protection

mechanisms proposed in subsequent chapters. (These mechanisms often increase

bus utilization by "protected" devices.) In general, bus utilization in single bus,

cacheless systems will be very high but can be moderated by the addition of a cache.

In dual bus systems, 1/0 bus utilization is likely to be low but the memory bus will

be very busy unless a cache is employed. In support of these statements consider

the following estimates. A secondary storage device may demand up to 10-30% of

the bus cycles during a transfer operation, depending on the bus speed and device

transfer rate. T&A storage devices contribute somewhat less to bus demand and are

used less frequently, but they can generate transient loads of 5-10%. The bus

utilization of a network interface depends on network bandwidth but 10-35%

66

The System Model, TRMs and Cryptography

transient utilization is possible. Manipulation of images on a bit-map display can

absorb essentially all of the bus cycles for shot1 periods. Other l/0 devices place

only minor demands on the bus, e.g., <10% aggregate.

Bus utilization by the processor varies greatly between cache-equipped and

cacheless systems. In a cacheless system, the assumption is made that the bus cycle

time and primary memory access time are chosen to yield an effective memory

access time equal to the minimum instruction execution time, producing a well

balanced system. For example, a 100ns cycle time bus paired with a 100ns access

time memory yields a system capable of suppot1ing a processor with a minimum

instruction time of 300ns (3.3 MIPS maximum). If the average time between

processor-generated memory references is about 3-4 times the minimum instruction

time, the processor will require about 25-33% of the bus cycles on the average with

peak utilization near 100%. Using a cache with a IOOns access time, the same

processor requires an average of 5%-15% of the cycles using a fast bus and memory

and 10%-30% for a slow bus and memory. Of course cache misses generate transient

bus utilization of 100%.

2.2 Tamper-Resistant Modules

As noted in Chapter 1, the vendors of external software have two major security

requirements: preventing disclosure or redistribution and detecting modification of

external software. Using the system model described in section 2.1, a number of

specific attacks that violate these requirements are readily identified. The

assumption is that the system components identified in Figure 2-1 are unprotected

and that an attacker can examine or modify data in these unprotected components

using appropriate equipment. For example, demountable media used for secondary

or T&A storage can be removed from the system and the data contained therein can

67

The System Model, TRMs and Cryptography

be read or modified. A more sophisticated attacker might attach probes to the bus

to ~ively or actively wiretap bus transaction8' e.g., to record transmitted data or to

generate spurious transactions that modify dnta in the system.

2.2.1 TRM Characteristics

These simple examples illustrate the need to provide some fonn of protection

against physictd tampering for those portions of the·system which are critical to the

secure operation of external software. · At a minimum, the processor will be

contained in a tamper-resistant module (TRM) since- the software and databases

otherwise cannot be-protected during·execution. · ATRM halthe characteristic that

it prevents release ot tnodification of the data ·contained therein ·as long as the

module is intact. If a T-RM is (physically) breachedit is ~umed that any sensitive

information inside the modme is destroyed (erased)'.' If exterriaJ software (including

any databases critical to secure operation) is stored, executed· and transferred wholly

within a·TRM, thesecurity requiretnents ofvehdors·cart·bemet since disclosure and

undetected modification of the software can be prevented

The difficulty associated with engineering a TRM that performs as noted above

depends on several factors. The guiding principle isJhar!tbtiaJSt'Gfsubverting the:.

TRM should be greater than the expected gain resulting frpm. the subversion. Thus
< , • \ : > • • ' ; • - • ~. : ~--- - : • ~.. • - ~ _- ~ ; • • '

TRM design is influenced by the value of the softw~re being protected. The cost of

subverting a TRM: includes not only the pri~e of acquiring the module and the .- ' - - . . .

effort involved in breaching it, but also any penalties resulting ff()lll detection of
. ' ~ . ·.:.' .

tampering. For example, if a client were to rent a TRM from a vendor and the
.. •: ,.-

vendor were to inspect the module and discover evidence of tampering. the vendor
. . , . .' - :

might refuse to furnish any other software to the client and might institute legal
~ ; . •· _, t ,·: I''... ' .• :

action against the client. Thus the cost of, subverting a TRM, must reflect the
. . , • ·, . r , . : ~ -· 1 : · _,-,: :1-• · : :_ · ; ·,

likelihood of detection and consequent institution of punitive measures by a vendor.

68

ll1e System Model, TRMs and Cryptography

This suggests that engineering a TRM may be much easier if the TRM is not owned

by the client/attacker but rather is rented from a vendor who retains the right to

inspect the module and who can institute appropriate (legal) measures if evidence of

tampering is discovered.

Although the details of engineering TRMs are beyond the scope of this thesis,

one can make some general observations about characteristics of TRM packaging.

First, it should be noted that some commercial cryptographic devices available

today incorporate fundamental TRM design criteria. For example, these devices

may be housed in seamless metal cases with access controlled by a pair of high

security locks. These devices ure designed to erase the cryptographic keys contained

within whenever the device is opened, to prevent the leakage of information via

electromagnetic radiation, to withstand external electromagnetic interference, etc.

Although these devices are not designed to withstand a prolonged attack by a

sophisticated tamperer, they do suggest that TRMs can be engineered for the level

of security appropriate for commercial applications.

One of the most impo11ant characteristics of a TRM is its ability to destroy

sensitive data contained within should it detect any evidence of tampering. This

destruction of data must be carried out quickly to prevent a would-be tamperer

from accessing the information after breaching the TRM. Rapid erasure of a large

quantity of non-volatile memory, e.g., in secondary or T&A storage devices, may

prove difficult or impossible depending on the storage technology employed. Thus

magnetic bubble memories might provide an attractive form of secondary storage

for TRM packaging while media such as disks may be less well suited to this

application.

Another aspect of TRMs that must be noted is their impact on flexibility of

system configuration. In configuring a computer system composed of one or more

TRMs, the user will probably be restricted in the selection of components. In part

69

The System Model, TRMs and Cryptography

this restriction arises because not all devices or combinations of devices are

amenable to TRM packaging. Moreover, all devices in a TRM (or a collection of

co-operating TR Ms) must be packaged by the vendor of the system since all of these

devices must perform correctly to maintain the security of the external software.

TI1is requirement may result in some combinations of devices being unavailable as a

TRM-packaged system. TI1e ability to expand a system may be hampered by lack of

space within a TRM to incorporate more components. Maintenance of TRM

packagcd devices is hampered since only the TRM vendor is in a position to provide

service while maintaining system integrity.

An important consequence of TRM packaging is the cost incurred. Packaging

one or more devices as a TRM is more expensive than standard (non-secure)

packaging. Although the differential in cost between standard and TRM packaging

varies based on the perceived threat environment, experience in packaging

commercial cryptographic devices indicates that this cost can be quite substantial.

For example, the difference in price between one conventionally packaged (rack

mount) link encryption device and the same device packaged for use in unsecure

areas (desk top box) is approximately $900, roughly 45% of the total price of the

latter unit. It appears that the majority of this cost arises not from additional

electronic components but from mechanical engineering considerations. Over and

above some base, the cost of building a TRM probably increases with the size of the

TRM, for a fixed level of security. Thus very large TRMs may be impractical

because the cost of packaging would be great and very small TRMs may be

infeasible because the cost of packaging would be significantly greater than the cost

of the protected components. Only over some middle range is TRM packaging

likely to be practical.

It may be cheaper to build a TRM that is permanently sealed, as opposed to one

that includes provisions for controlled access, and the resulting device may be more

70

The System Model, TRMs and Cryptography

secure. The assumption here is that provisions for controlled entry into the module

introduce weak points that must be buttressed by sophisticated and costly security

mechanisms. It may also be easier to detect tampering in permanently sealed

modules. TRMs sealed at the time of manufacture would include no provision for

controlled access for maintenance, thus eliminating the need for trusted field service

personnel. If a component within a sealed TRM fails, the,entire TRM would be

replaced and the failed TRM would require "factory" servicing and re-packaging

(the contents would be erased during servicing). This approach to TRM ,packaging

would probably work well with devices 'that are highly reliable, e.g., solid state

devices, but not with electromechanical idevices that require periodic servicing.

Sealing a TRM eliminates the option for field upgrades or expansion. Finally, the

number of components that can be packaged in,asealed TRM is limtted by the fact

that the failure of any component may require replacement of the entire TRM.

2.2.2 A Monolithic TRM Approach

As a first approximation to protecting· external software, · one could imagine

enclosing all of the devices that are critical to the secure operation of the external

software in a monolithic TRM, as illustrated in Figure c-6; ('The specific system

configuration used within the TRM is not important here since all of the security

relevant components are entirely within the TRM.) The security requirements of a

vendor can be met by this sort of system since the process0r, all storage required by

externaJ software and the bus connecting these devices are all contained within the

TRM. Note that not all of the system compcments are enclosed in the TRM.

Terminals and other peripheral devices that do not effect 'the secure operation of

external software can be attached to the bus outside of'the TRM. Even storage

devices for data not e$Ciltial to the secure operation of'extemal software could be

attached to this bus extension, e.g., secondaty, storage -exclusively for Client data

71

. . -

The System Model, TR Ms and Cryptography

could be provided outside the TRM. In order to attach other devices to the bus

without violating the security,provided by the TRM, the bus exte~ion requires a

special secure buscoup/er(SBC).

-
CPU. s

B
J1 '.

P'.'MEM S-MEM T&A F .' other. pe ri.pheral s

' -~. ..

Figure 2-6: Using a Single TRM to Protect a System

The SBC acts as a filter to prev~nt .u~dl.uri~d disckmire or ~dtfication of

data within the TRM. To this end,'.the SBC ensures that.bus traffic among· devices

within the TRM is not repeated onto the bus,r4tension (to prevent disclosure) and it

controls ac~ to. primary m.emory by. I>MA deJ.bls ootside the TRM '.~to. prevent

disclosure and modifi~tion). Th~ tasks .are made easier by: partitioning the bus

address space so that a single addr~ line: indicates whetbef; "1,Jl(ldressed device is

inside or outside the TRM. It then. becomes triYialJor t.he SBC to avoid repeating

intra-TR M. bus traffic onto tpe bus ~eosion, by inspection Gfthis addr(S tine. To

control ace~ by :OMA, 4evice;s to primary ;IJlefOOl'Y, the,~ ·must:inform the

SBC of the locatiops that,sh9t.dd . .be:oc~ibffl tu DMA.-dev.iceswtside·1he TRM, ·

aJong with the mode of ~cessalloW4d, i.e., read or write. , The .SBC can be equipped

wit~ a small number of regi~rsJo,establ•the bQundt,-4.;a£CCS&modes'forthese

The System Model, TRMs and Cryptography

locations. These registers are managed by the processor as pait of controlling

"unsecure" OMA devices5 and are scanned on transactions initiated outside the

TRM.

1l1is approach to securing external software has several advantages. Little in the

way of special hardware is required, only the SBC is unique to the design, the

remaining devices can be "off the shelf." The SBC appears relatively easy to

construct and should be capable of operation at bus speeds, given the existence of

analogous devices such the the UNIBUS adaptor employed on the VAX 111780

[IO]. The only impact on software is the requirement to co-ordinate management of

the SBC with control of DMA devices on the bus extension, a function easily

assumed by the operating system as part of device management. "n,c design also

provides some flexibility in system configuration. For example, secondary storage

for client files might be provided on devices attached to the bus extension whereas

secondary storage for external software is provided by devices within the TRM.

Despite the advantages noted above, this design also has a number of drawbacks.

Perhaps the most obvious problem with this design is that it does not provide for

demountable secure storage. Thus no secure T&A storage can be provided, as noted

by its absence from the TRM in Figure 2-6, and secondary storage contained in the

TRM cannot employ demountable media. The lack of secure transfer storage could

be a major problem if the only alternative were the use of erasable PROM

(EPROM) or factory-recorded secondary storage within the TRM. Note that ROM

is not acceptable for recording external software because of the need to be able to

erase the sensitive information contained in the TRM in case of tampering.

5For the SRC to be completely transparent, it would have to be aware of the addresses and
semantics of the control registers for all of the devices on the bus extension. Th is would significantly
complicate the SBC and would limit the choices for devices on the bus extension to those with which
the SBC was familiar. for these reasons a transparent SBC design was rejected.

73

The System Model, TR:Ms and Cryptography

Similarly, only readily erased devices such as bubble memories are suitable for

inclusion as pre-recorded secondary storage. Factory,recordingofedernal software

is not very appealing as it does not support distribution of new releases, either for

bug fixes or new products.

However, secure distribution of external •bsystems can be provided using

communication facilities and employing c~phic techniques as described in

the next section. Using such techniquesrthe·vendor-Qln securely transmit copies of

or updates to external. soflwaFe to appropriately equipped, TRM-packaged

computer systems .. Thus the lack ofsecure0 transfer'StQrage can be overcome, at the

cost of requiring some .communication facilities /and ctyptographk enpabilities:

within the :TRM. Whether the inability: to: previde: demoUJttable secure btorage for

non-:transfer purposes iis a serious deficiency depends on the appliciitions 1nvolved.

For, example, an external subsystem. that. managed client dautbases using data

structures and access tedtniques: that were viewed as proprietary · might require

secure demountable media for secondary or. aKhival storage. The<inability to

provide secure demountable media for secondary or archival st~rage is a serious

limitation in some appJications.

Aoother.difficulty withthis.design is that it•ftJ8Y endoonter the erasure problem

alluded to earlier. because of,the presence df seaimlary aorage within the TRM.

Again, the seriousn~ of this problem- will ,depesd-on·tbe volume of non-volatile

memory contained in :the TRM and the .technolo!Y-used to implement it. Although

this design exhibits some flexibility in allowing. a user to configure a-system with

non-security releYant devices outside the TRM~:in other ways the design allows little

flexibility. As noted earlier, the users may be quite limited in their choice of

configurations for devices within a TRM, and in this design most of the -system is

within the TRM. Since secure secondary stotag¢ is available on~y 'within the TltM,
- ' ' ;, ..

some types of storage dev~ may be precluded ,because:,of size constraints·. or

74

The System Model, TRMs and Cryptography

because of the need for periodic adjustment. The number of devices contained in

the TRM probably rules out use of the sealed TRM packaging technique described

earlier and for some systems the size of the TRM required would pose a significant

expense.

Tne impact of these characteristics on system design are illustrated in the

following examples. One so11 of system that might be amenable to the monolithic

TRM design is a very simple personal computer designed exclusively for running a

language system such as BASIC or APL. The TRM could contain the language

system in EPROM or bubble memory and an amount of primary memory suitable

for simple applications could be provided. Secondary memory within the TRM

might not be required, making a small, sealed TRM a real possibility. User

programs and data could be kept in a secondary storage device attached to the bus

extension, along with a terminal and other input/output devices. If the only

external software to be protected were the language facilities, and if these facilities

did not require distribution of new releases to fix bugs or to add enhancements, this

design might prove adequate. To accommodate a more flexible update strategy, a

cryptographic device, a facility for re-writing the EPROM or bubble memory and

some communication capability could be included to suppo11 remote updating.

One can imagine a number of variations on this simple scenario that highlight the

deficiencies of the monolithic TRM design. For example, if the vendor of the

personal computer wanted to sell proprietary application software to his clients,

secure secondary storage within the TRM would be required and the problems of

providing such storage within the design have been pointed out above. These

problems also arise if the vendor requires the object code produced by the language

system to be protected from disclosure, in order to hide the code generation

techniques employed. Similar problems arise in the context of nodes in a

distributed system. For example, a secure database residing at a node would have to

75

The System Model, TR Ms and Cryptography

be contained m secondary storage within the TRM and here the lack: of

demountable storage and the problems of large quantities of non-volatile memory

within a TRM ~ntiajly preclude use of-this design. Thus,tflis design is inadequate

for many classes of applications.

2.3 Cryptographic Terminology, Co'neept_s and:!echniques

Cryptog111ph_ic techniques. are used in, four d~nct con~ts in this thesis.

Network-based distribution .of extern;d softw~r~ .. requi,res.Jie~ure -communication

between a vendor and his TR Ms. This method of software distribution is critical to
. ?;! ·• . .

the monolithic TRM approach, since that approach. dqes not support ~cure T&A
•• ;, •, • • __ </ •e

storage, and it may be the preferred distribution ~e.thQd for the otller:.design
. _: . • ,; 1:, ," . , ;; _. .

approaches as well. . Thi& ~tjpn. p,.-esen~ the b~c: ~n;ununicatiQn security
• • • ~ ' { ' ' • : • - ~ < • • - •

techniques nec~ry for secure, network-b~d distribu~op of ~xt~mal software.
' : : . ': ~ - , .. • '

The encrypted bus approach ex~ined in Cl1aRt~r} .relies pn ~w-e.coaµmun~oq . . -_),.,,..,, __

among TR Ms connected via a physically. µoprQt~tcd mis-. /Q1ai._.chAJ>Wf presents
• . • - • • . • ' .• -· ' ' : ~ • __ , !. ·• - - .• . ., ' -, •

modified communication secu,rity techniques for , · thi$ highly specialized
, . . ' .- ~ . . ~ ~ .

communication environment (the bus) .. The en~rypted ~rage approach,of piapter
' . . ' ~ . ,. ' - . - , .. ' ' ' . -

4 develops special cryptographic techniques to protect data stored outside a TRM.

Anally, 11,:0tapter 5, cryptographic techniques and protorots are used to distribute

external software to TRMs provided'by:third--phlt~ ~pp1f~'rs.· This chapter is nof: a'

general tutorial on cryptography; it merely attem~ts Ui provide some background

nec~ry to understand. the cryptographfc . t~hniques. emptoyed in subsequent

chapters.

The System Model, TRMs and Cryptography

2.3.1 Terminology and Basic Concepts

A cryptographic algorithm or cipher is an algorithmic transformation performed

on data on a symbol"'by-symbol basis. In enciphering or encrypting data, the
~

plaintext input is transformed into unintelligible ciphertext output. The inverse of

this operation is referred to as decryption or deciphering and it transforms ciphertext

into the plaintext from which it was derived (32). These transformations are carried

out under the control of a key. In conventional ciphers (CCs) such as the NBS Data

Encryption Standard (DES) (23], the same key is used for enciphering and

deciphering a collection of data. On the other hand, public-key ciphers (PK Cs) such

as the RSA algorithm [26) use different, but mathematically related, keys for

encryption and decryption. These terms are illustrated in Figure 2-7.

plaintext

plain text

key

cc ciphertext

ENCRYPTION

key
e

key

cc

DECRYPTION

key
d

plaintext

ciphe rtext . plaintext
·PKC ________, PKC --------

Figure 2-7: Conventional and Public-Key Cipher Configurations

77

The System Model, TRMs and Cryptography

For both conventional and public-key ciphers the assumption is made that the

algorithm is known not only to the users of the cipher but also _to any attackers. The

secrecy, authenticily and integrity guarantees6 accorded data transformed by these

ciphers derive from their mathematical structure and from the ~recy of keys used

to parameterize the ciphers. In conventional ciphers, an attacker cannot decipher

ciphertext nor can he generate ciphertext that will decipher into predictable
.

plaintext without knowledge of the key. used to generate the ciphertext. Thus, in

these ciphers, the secrecy of the key provides co~ce~ment and the basis for

detennining the authenticity and integrity ofciphertext In p_ublic-key ciphers, ~e

key used to encipher data (key) need not be kept . secret in order to effect e .

concealment integrity checking_. !his is ~ause ~ ~ifTerenl key {kc1, d). related to the

encryption key in a complex fashion, is used for decryption. Because of the

mathematical structure of public-key ciphers, knowledge of key does not allow a
e

cryptanalyst to detennine key cf

This property of publie-key ciphers ~ecouples secrecy (rof!) authenticity and

integrity. Data trarisfotmed :un~ PK.c~--~y:r·car ... ~; 'g~~antee of
i · l C

authenticity since this key is usually publidy avai1ablJ·and1htis anyone can encipher

data using it. Moreover, only the holder of the matching decryption key (key d) can

decipher data encrypte<t under key , so this scheimf prow:les:.secrecy. Conversely,
e

data transformed under key can be deciphered by everyone, since key is public,
d e

but such data can be veriied as authentic and its integ~ ,can be checked because

only the holder of key d ~n generate ciphertext th,t ~, J!ft!dictably decipherable

under key . (Despite .designations as·tinci},ftmng antLd«!J,h~ringiceys,"both PKC e ·, , ·- " ,s;, -·· . • . ····-· .. ··" .• - ' -· r., ;•· ·-· ··•·.•·•

keys transform plain~t~ ciphertext and invert th~ tr~n1(ortnation perfonned · by

the complementary key.) Thus transformation under a public key provides secrecy

61n this context. data is considered authentic if it was enciphered by an authorized party and its
integrity has not been violated if the ciphertext has not be modified.

.The System Model, TRMs and Cryptography

whereas transformation under a secret PKC key provides a basis for authenticity

and integrity checking.

In communication contexts, a P~C key pair is associated with each user. Secret,

authentic, integrity-checked communication between two users can be achieved by

transforming each message twice at the transmitter and at the receiver, as illustrated

in Figure 2-8. TI1e transmitter first transforq1s the message under his secret key (T·

key d), for authenticity, and then under the public key of the intended receiver (R·

key), for secrecy. (Both transformations contribute to the integrity guarantee.)
e

Upon receipt of the me~age, the receiver transforms the message under his secret

key (R·key), then under the public key of the transmitter (T-key), to reveal the
d e

original plaintext Of course, the secrecy, authenticity and integrity guarantees

provided by these transformations are valid only if both transmitter and receiver are

correctly informed as to each other's public keys.

TRAt'SMITTER RECEIVER

R-key
e

R-keyd T-key
e

plaintext ciphertext platntext
PKC....,___ ... PKC 1------.. PKC-- PKC.,__ ___ ,..

Figure 2-8: Providing Secrecy, Authenticity and Integrity with Public-Key Ciphers

Even though public-key ciphers provide some features not available in

conventional ciphers, the former are not well suited to most of the applications in

this thesis. For example, public-key ciphers offer some potential advantages over

conventional ciphers in distributin~, cryptographic keys. The first three applications

79

The System Model, TRMs and Cryptography

of cryptography in this thesis, as noted at the beginning of section 2.3, do not

encounter complicated key distribution problems and would not benefit from the

use of public-key ciphers. Thus almost all of the techniques employed in this thesis

are based on conventional ciphers and public-key ciphers are employed only in

some applications in Chapter 5. In fact, public-key ciphers arc immediately

eliminated from consideration for most of these applications because of the

relatively low throughput achieved by their implementations, as described in section

2.3.5.

Good ciphers, both conventional and public-key, exhibit high resistance to a

variety of cryptanalytic attacks. Obviously ciphers must resist attempts by attackers

to determine the key required to decrypt a quantity of ciphertext or to discover the

plaintext from which the ciphertext is derived through examination of the ciphertext

(ciphertext only attack). Moreover, an attacker should not be able to deduce the key

used to decipher data even if he is given matching plaintext and ciphertext (known

p!aintext allack). The same holds true if the attacker is given the opp01tunity to

select the pla}ntext for which matching ciphertext is made available (chosen

plaintext auack). These requirements are motivated by the fact that an attacker will

often be able to know or to choose some plaintext that will be encrypted and

become available to him as ciphertext. For example, in the context of protecting

external software, one might encounter enciphered relocatable program files,

po1tions of which are likely to contain easily predicted values. In the same context,

an attacker might be able to choose values that would become part of an encrypted

database, providing a chosen plaintext attack.

The ciphers selected for use in this thesis, the DES and the RSA algorithm are

designed to resist the cryptanalytic attacks described above. Nonetheless, one must

exercise care in using these ciphers or subtle weaknesses may arise. For example,

not all cryptographic techniques automatically compensate for plaintext that varies

80

The System Model, TR Ms and Cryptography

over a · very small range of possible values or plain text that contains recurring

patterns. Unless suitable precautions are taken, these plaintext characteristics may

be visible in the ciphertext, resuttiti&Jri-if)fqfmation disclosure. Techniques for
. -·

verifying the authenticity and integrity oftencrypted data in the face of attacks often

rely on the presence of predictable· 1nforfuation in plaintext and on error

propagation characteristics of ciphei:s.J
1Sihce th~ plain text encountered in this thesis

may admit to a wide range of values, predictable information must be supplied

explicitly for security purposes. Differentl1'ways-0fusing ciphers yield different error
•,

propagation characteristics and this must be considered in designing mechanisms for

checking authenticity and integrity of data. The following sections describe specific
·•t""

techniques for preventing disclosure'and detecting modification.

2.3.2 Block Cipher Techniques

Most modem cryptographic algorithms (conventional and public~key) are block

ciphers, i.e., they operate on fixed"'.size bloc;ks_ of plai.ntext.and dphertext For

example, the block size of the OES is 64 bits and for the RSA algorithm a block size

of about 320 bits yields comparable security. The simplest way of using a block

cipher is sometimes referred to as the electronic code'· bouk (ECB) mode [16),

indicating the analogy to manual cryptographic procedures,· and is illustrated in

Figure 2-9. (This and subsequent illustrationsomitte:rs·tm-darity.) However, this

mode, exhibits several shortcomings. If data to be enciphered is· smaner than the

block size of the cipher, the ·data must be·padded to produce a full size block.·

Similarly,the entire resulting ciphertexttilock ttttist be presented fot decryption,·i.e.',

it is not possible to decipher a partial block. "If the data to be encrypted is longer·

than a block it must 'be broken into block-size pieces amt each piece enciphered

separately. This mismatch between the gra:mdarity~ of 'Cricryption arid the size of

plaintext results in waste, e.g., on·average halfiofeach·bibet may be wasted due to

this mismatch.

81

The System Model, TRMs and Cryptography

aintext

enciphe

Ci

deciphe

Figure 2-9: Electronic Code Book Mode for Block Ciphers

With respect to concealment, ECB mode has an obvioµs deficiency, i.e., identical

pJaintext blocks are transfonned into identical ciphertext blocks. Thus plaintext

patterns that occur aligned pn block boundaries are visible in , the resulting

ciphertexl In the case of the DF.S, if plaintext, when divided into_ 8-byte blocks.

exhibits block-size patterns, then these patterns will oe visil>le in the resuking

ciphertext Moreover. if the bit pattern used to pad sbott blocks is constant. an

attacker might be able to perform frequency analysis on the ciphertext blocks to

discover the plaintext For example, if 32-bit words are enciphered individually and·

each is padded with the same bit string. the resulting cipherte,x.t :blocks will vary only ·

over the range of values cmumed by the-32-bit words, and this may be small enough

82

The System :Model~ ,TR,Ms and Cryptography

to a11ow effective frequency analysis by an attacker. Because of these deficiencies,

ECB mode is usually employed only for tasks such as distribution of cryptographic

keys, where" ti)~ d$ is random and weU matched to the blotk sJZe ..
. ~
I

These concealment problefJl~eatl:~"SOlved by induding in each plaintext block a
,_··~ :-:-<~ . .,.•~ . ~ _ :- r -- ,.• .• i.: , ~

non-secret, un1ijue bit siring, a q-uantity designated as an (in-bfpck) inilialization
:t, , . -· .

vector (IV), illustrated in Figure 2-10. (fhe tenn initializatiol).. ve1;1or is Qften used in
:- I•, ,.;' •<, • • ' t I ~ ' •. i' 1 • I 0

- ,_ ~

a more restricted sense in cryptography but it serves essentially thq same function as
' '
'. '

the quantity de.fribed here.) The inclusion of this bit strjJ)J males. each plain text
. , . ··. ~-: . ,,·. . . " ~ .. l$} ·j: ~:, : .

block diffe't:ent :and.thus each resulting ciphertext b!ock~ is··difTerent, effectively

concealing patterns and compensating for limited range plaintext, e.g., short blocks.

This technique works,since, in the DES, twtfplaiMexfblotks·that differ by as little

as one bit yield ciphertext blocks that differ in approximately 50% of the bit

locations. This tecnnjq~e. suffers frona the drawback t!Jclt a: pq!1ioo of ,each block

must 1?~ reserved for this unique bit strillJt (t\~$ rt;du~g -av~iJabJe bandwidth in

communic~tion appJjcations. o.r ;wast~ space in st~~ge,. applications. However. if

an application already, requires inclusioQ of .a uniqu~,l>it :string as part of each

plaintext block, e.g., sequence qumbe{S i11 .. ~ COffll!l~~OO ijpplication, this bit

string can serve as an JV so no addition3:i sp,Fe is w~ed.

An alternative technique for eotnbattingtfte 'same 'problem involves combining

each plain text black with a (block,~~) jnitiaijuuion v.ectQf, vk,qnodulo 2 addition,

before enciphering the. block. This addilive technique, is· not quite so ~ure as ,the
' - • I • • . • - .

inclusion of an i.n-bloc~ IV sinc,e duplicate cjp))ef4;~t !)~ks ,way resvlt. provi4ing .. ~ ~ '. . ' ' : . . : - .. ~ . ' .. , '

cryptan~ytic opportunities Jpr an attack~. f9fJ!i.aJJJple,: if: two qphertext blocks

are identical under this scheme. an attaok~ .glµ wQU': ~k.w~ds from :a k.nowledge
• , . .• • . ' r , ; C l ,.';_..,t •• _,. _,. •< •. • •, • -{

of the IVs to ,determine the sum ,qf the, pJai~.t;.,blQGks. ,If~ has, kn0wledge of
'..,} .c· ~ ,• • • : ' , • '-~ • ' ' .. ' I ' '. •- : , • • • ,_. ' " -~- . ~J, • ._., -• .

some of the. plain text ~n on~ .9.(, the ,bl~ ,~ qp,, qe~nn~ the value of
~ r > • , , ' ', - • • •

correspo11ding bits in the otpe,r.block. I~Ul~ ~,pftA\e IVsjs suitably large (say 64
C ~-·' \ ; , ~ • ' , ' - - • ,

The System Model. TRMs and Cryptography

IV plaintext ·pta,ntex

·· lni vector

ncipher ncijpher
C ~ • ' ~

ciphertext · cii,he rt ext

Figure 2· 10: In~block and Additive Initialization V.ectorTechniques

bits), and the IVs are chosen pseudo-randomly, this method' otrers adequate security

since· the titt4ihood of duplicate ciphertext blocks is qtiite sma1t' The advantilge 'or
this approach is that the '1\l's late up ho space· m 'the ofocks, b'tit ids nttes.wy to

know the IV a,sociated wittnfblock. fdr decryption.' Thtvalues oft.he IVs must be

implicitly derived from ~',contextual irrforn!iation· i(there is. to be any space
. . .

saving. For example, in a 'tommurticati6tf~ppfication llie 'sequence number

implicitly associated with.~ach trru,ism,itted l)lp4 ~14 ~¥;an IV ..

The inclusion of a predictable quantity m' ettch·brbck. provides ~ b~is for .checking

the:authenticicy and·integrity ofthe block. The·obj~t here·~ tbverify. that the block

was encrypted by an authorized' ittdividual' and thatit1Has ·Aot beein, :modified 'fu,~y
way after being ;encrypted: For a bfock cipbet such' ·as the:1)FS~ niodification of as

little as one bitfa a ciphertelt btbck results ~if changes 'to l\ppro;iimateiy 50% :of the
plaintext upon ~on. ·'fhe'same '&t6r ptbplitatidb eirect'o£1i~1r·a; cipli~rt~xt
block is decipflered:undera tey th~ttfiffe~ fif~1litthfas 8ne:bitfrom th,e;key used

to encipher the'btoctc~ Thus, the.indtisibrl:or a Jlredftta1iit-;lfbit fieldin.~plailite:it

The System Model, TR Ms and Cryptography

block provides a check on the authenticity and integrity of the block which an

attacker can subvert with a probability of i-n. This is the probability that the n-bit

field is unchanged if the ciphertext block was modified orffl jtwas·encrypted under

a key other than the key used to decipher it. Such a quantifi;Y will be referred to as

an authenticity/integrity checkjleld(AlCF).

Any predictable quantity emf.be included in each block as an AICF, e.g., a
'1.~: y

constant bit string. .However, tht;}.functions of an AICF and a,n IV can be combined

into ~ .sin&ie' field, reducing the -~aµ;. overhead that w~·-k~Jf an in-block IV
' , . ~

and a separate AICF were employed. Since a combinecflVTAICF field must be

large enough to uniquely identify each block aljd large enou~ to -~ect spurious or
. t

modified blocks this.may ~tbe themoS.t,space~ffkteitte.ciltlilU\f Ibr example, if
.. -- ~,..,....,_-- _..._ . '', -,;,_-~

the size ofth~ IV required to uniquelyidentify,each. bloct;.~)~~~than the size of

the AJCF required to detect modafication. then an irnptidt 1Yian<1'a-dedicated AICF

cot;tld waae Jess space. Despite ,this ability to•combintJ~-~~ns in a single
,. - ' ' . ' ' ; '

field, ttre percentage of each block devoted lto such :a · fief<J .. cal\ be significant,
.,

especially if the block size is small. For example, in many apptications a 16-bit

AICF may be adeql{ate. i.e., an attacker is allowed a 2-16 ~-»of-~y
_; ·. ~--•~~::c-'1 '<,., .. ~~- .:

violating the authenticity and integrity guarantee.~ the AICF: But in a

64-bit DES block this 16-bit fiel<J. represents 25% overhead. Pne could reduce the
...... ~ •- ~-

percentage overhead by using.acipherwith a larger block siit.~bm:if the application

normally generates plaintext smaller than this block size, waste will result from the

occurrence ofpartiaUy filled blocks.

One can reduce the percentage of space devoted to security measures through

block chaining encryption techniques. Block dtainmg techMfues encrypt pJaintext

of variable lengths (integral multiples of the' 'bloct ~~ using :'SOme fonn of

feedback to cryptographically relate the ·resulting · cipherrext · bfocks~; There are a

number of options for feedback mechaniSt't'ls;:iffte lfietboo•described below (and·

8S

The System Model~ TRMs and Cryptography

plaintext-1 plaintead-

init vector

encipher ncipher ncipher

ciphertext-1_. ciphertext-3

cipher ecipher

init vector

plaintext-1 plainte~~-3

Figure 2· 11: Plaintext-Ciphertext Block Chaining (PCBC)

later employed in Chapter 4) uses both plain.textand ciphe~xt feedback and is

designated as.p/ainlexl-ciphertext block chaining (PCBC) (U). In this method, the

first block in the ploinlexl chain is added (modulo 2) to a block-size IV and the

result is encrypted. Each subsequent bk>ct in the ,plainte&t dlain is added to the

86

The System Model, TRMs and Cryptography

employed since the error propagation required by an AICF 1s not present.

However, CBC mode is somewhat simpler than PCBC mode and when used with an

EDC it provides adequate authenticity and integrity guarantees. (The EDC is

udequate in this case since an attacker cannot predictably modify the enciphered

plaintcxt or the EDC.) This mode is often proposed for communication applications

[16]. Block chaining based on plaintext feedback alone is generally unacceptable,

since plaintext patterns may not be effectively masked, even though this mode does

prm ide forward error propagation.

2.3.3 Stream Cipher Techniques

The cryptographic modes described above do not accommodate plaintext that is

not an integral multiple of the cipher block size without waste. The 64-bit block size

of the DES is well suited to most of the applications in this thesis since two 32-bit

words fit into a DES block. Much of the plaintext to be encrypted is an even

number of words long and for large data structures or long messages wasting half a

block (32 bits) is usually not a serious problem. However, when plaintcxt is sub

block size, e.g., a 32-bit word, this level of waste poses a serious concern. To solve

this problem, block ciphers can be used as stream ciphers that encrypt plaintext

strings of any size. The central concept is to use the block cipher to generate blocks

of pseudo-random bits, referred to as a cryptographic bU stream, po11ions of which

arc added to the plain text to conceal it. (Because the cryptographic strength of this

technique is based on the secrecy of this bit stream, PKCs cannot be applied here

directly unless they are used as CCs, i.e., with no public knowledge of the key used

to generate the cryptographic bit stream.)

There are a number of ways to generate a cryptographic bit stream using a block

cipher, just as there arc several choices for feedback in the block chaining modes

described in the preceding section. For example, in what is often viewed as the

The System Model, TRMs and Cryptography

simplest fonn of stream cipher, an autokey cipher (32), bit stream generation begins

by enciphering an IV. The resulting crypto bit stream is added to plaintext, to

encipher it, and is fed back as input to the cipher to generate further crypto bit

stream, as illustrated in Figure 2-12. Decryption is identical to encryption, i.e., the

same crypto bit stream is added to the ciphertext to yield plaintext. Plaintext of any

size can be accommodated by this cipher, e.g., by selecting a fixed port-ion (a bit or a

byte) of each crypto bit stream block to combine with the plaintext and discarding

the remainder. Of course, discarding a portion of the bit stream causes the·

performance of the cipher to suffer, e.g., ·Figure 2-12 shows only one-fourth of each

block being used so the cipher runs at one-fourth of its maximum rate.

shift register shift register-

enciphe enciphe

discard

plaintext ciphertext plaintext.

ENCIPHER DECIPHER

Figure 2-12: Autokey Stream Cipher Example

89'

The System Model, TRMs and Cryptography

Depending on the application, the crypto bit stream· may be generated

continuously or it can be "re-initialized" periodicaJly with a unique IV. Fof

example, in some communication applications a continuous bit stream is transmitted

to conceal all m~ge traffic (or the lack thereof) whereas in other applications a

new JV is used for each message. Note that the IVs must be unique since they

determine the crypto bit stream, and if two messages were enciphered using the

same IV (bit stream). an attacker could add:the ~ges on- a bit-by-bit basis to

yield the sum of the plaintext A striking feature -of this stream cipher is that it

provides no error propagation, i.e .• if a bit of dphertext is complemented, the

corresponding plaintext bit is complemented. but no other plaintext bits are

affected. (However, if a bit of ciphertext is lost. the decrypted plaintext will be

garbled due to shifting over of the crypto bit stream before addition.) Thus neither

an AJCF nor a conventional EDC can be used with· this stream cipher for

authentirity ·and·· integrity checking due to this lac;k of error propagation. (An
- -... ; . , "-·~

attacker, kno~ing what kind of EDC is employed, can modify. the plaintext in a

fashion that is invariant under that EDC algorithm.) .
However, a cryptographic error detection code (CEOC), a cryptographic function

calculated on the plaintext, can be employed to detect modification. (A CEDC used

to authenticate data which is not: encrypted is sometimes_refemd t0 as cryQJographic

check digits [4].) Since a CEOC is a complex function of the plain text on which it is
-·· -- ~--

calculated and on the secret key used in the calc,ulation, an attacker cannot modify

the plaintext in a fashion which is invariant under the CEDC. (An n-bit CEDC. like

an n-bit AICF. ·~lows an attacker a i-n chance of unde.tecJably .modifying the
. . ., ~ ' .; . . . ' -.

covered plaintext) A CEDC can be calculated in a number of ways. For example, a

block chaining mode. Ji~e PCBC or CBC ,can ~ used ,,to ~g~fYPt the plaintext.
' l,, '

(padded if necessary to be an integral number of blocks Jong) and a portion of the .

last ciphertext block generated in this fashion can serve as a CEDC (since it is a

cryptographic function of all the preceding plaintext). The other stream cipher

The System Model, TRMs and Cryptography

mode described below also may be used to generate a CEDC. Thus the lack of error

propagation in an autokey stream cipher does not preclude its use where

authenticity. and integrity guarantees are required. Howev~r. providing these
;

gu~antees requirtt ~ditional operations which may · translate into reduced

throughput or additional hardware. .

Another stream cipher. cipher feedback mode (CFB) [Hi)._ is ill11strated in Figure

2-13. To begin, a block-size IV is input to the cipher and encrypted to generate a

cryptographic bit stream block. The plaintext is ad<ied.to thi~bit stream and the

resulting ciphertext is shifted into the cipher input an~· ericrypfoff to generate the

next crypto bit stream block. lf.plaintext is supplied .in sub-block size qua,ua, e.g.,

bytes or bits, then a corresponding portion ,of the crypto bit stream is used and the

remainder of each block is discarded, as in the autokey cipher described above. This

process is ~ted uIHtf no more plain text remains to' be en2ifptbd. Decryption is

accomplished by a symmetric, but not identical, procedure, i.e., generating the same

crypto bit stream•and adding it'tothe cipherted to;produce tbe:ptaintext. Figure 2-

13 illustrates CFB mode encryption and deczyption ,applied w plaintext quanta that

are one-fourth block size.

In CFB mode, as in· autokey mode, it is essential that each plaintext chain be

enciphered using a diffetent IV. , Since the cfypth bit stream is a futiction of both the

IV and the plaintext in CFB mode. using the same IV on two plaintext chains results

in duplicate crypto bit stream only as long as the plaintext chains · ate identical.

Nonetheless, to avoid exposing any data, the ·1vs shou1d be unique for each

independently encrypted chain.- As before~ tlw IV, µiay pe Aln.Pli~itly d~rived or may

be carried with ew;h chain. This mo® proviq~ ~l~t,~l,iie.Qt of plaintext

patterns but tee error propagation is limited .. This •re~ .~r, m~ exhibits

error prop~tioo anal9gous to CBC m<>de. If a Qit.of.tjp~~rt#~t)s,p@t1Jplemenwd,

the coq,espon,ding pJa,intext bit i~ ~plfi!fnent~g l)ut sub~eg1:tent,quanta of,plai~

91

The System Model, TR Ms and Cryptography

shift register shift register

enciphe enciphe

discard discard

plainte~t ciphertext plaintext

ENCRYPTION

Figure 2· 13: Ciphe~ Feedback Mode.Str,eam Cip,her,

are unpredictably garbied until the input shift' register ·is- cleared of erroneous

ciphertext. For the DES, the shift register is 64 bits long and'thus,error propagation

affects §4 bits. of plaintext followin.~ ~e quant;a con~injµg,the error, This error
.,. ' , . . . ' : -· . -, '.- .

propagation cha~acteristic m~ans tha~ tlw final encjphe,red ~Jlpi_ of plaintext in a

chain exhibits no error propagation at all. Some pther $tr.eaw cipher modes can
. . . ; ;, .

offer forward error propagation, but aH suffer fron1 the de,fecttbat ~e final plaintext

qµanta in a chain exhibits no error propagation.

Since the last quanta in a chain can be modified with predictable effects, one

cannot place an EOcorAleF and· datii it is protetting:in this:quanta. · (An attacker

might be able to modify tbe data in a fashion that is-invariant under tfle EDC or he

could rnodiff the :dafit and not ·affect the AICFJ · One ·can atibid this problem by

isolating the EDC or AICF in the last granule,,adjustingtheqtmntamze or padding

. The System Model, rRMs and Cryptography

the data if neces.sary to accomplish this .. (An AICF can be used only with a stream

cipher mode that exhibits forward error propagation, not with the CFB mode

illustrated here.) However • .this need to segregate the EOC or AICF imposes a

thrC>ughput penalty and may. introduce some complexity. when plaintext chains are

sub-block size. For e'(~pk. to encipher 32 bits;of data and.a 16-bit-EDC, the DES

must _either adopt a 16-.bit .quanta for enciphering every.thing or it must change

quanta size from 32 bits far the data to 16,bitsfor the EDC. The first·approam is

simpler but requires three DES operations per 48-bitdata--EDC chain, whereas the

second, more complex approach requires only two DES op~ratio11~ lf thi_sJack of

error propagation were not a concern, all 48 bits could be enciphered using the

output from one DES operation. A CEOC, as d~ribed·'abov,e for autok_ey mode,
• .. : J ,, • . .

aJso can be used to provide an autllenticity and integrity checkmg capability.

2.3.4 An Application Example: Secure Network-based Distribution of

External Software

The monoJithic TRM design presented in. section 2.2.,2. suffers from a dearth of
• ·; - - : ! \' • , • ' ~

secure T&A storage. In order to distribute external software using this design, the

vendor reqUires a secor-e communication pHth bet-ween: -himself-and each TRM.

Even in .system designs where secure T&A ·storage 'is avdilaHle, network-based

distribotion of external 'software may be preferred. Secure commu·nicittion facilities

also may be used to transmit accounting or debugging informatiori 'to a vendor, so'

these facilities are' important; in all system designs. The· fo1rowiri'g discussion

describes how to provide secure communiciltion using the cryptographic'techriiques

developed in· this chapter. This example introduces the security requirements
: t.- .

usually associated with connection--oriented cotririmrlicatioir and "presents· some

common techniques employed to achieve these requirements. Chapters J aBd 4

show how these requirements and techniques ·are applicable f.o; the· problem of

computer system design tpprotect external software.

93

The System Model, TRMs and Cryptography

First it is nee~ to define what is meant by secure TRM-vendor

communication. Communication between the TRM and the vendor is effected by

exchanging messages on a fuH duplex connection (virtual circuit) using some

communication facility, e.g., a public packet switched network [IS) or the dialup

phone network. Assume that some standard • tranSl)C)rflevel communication

protocol [25) is employed, providing a connection that is reliable in the face of (non

malicious) errors. The security requirements for this application have been studied

extensively and are readily stated.

l. The text of m~ges must be concealed.

2. Characteristics of the connectio11s should be l)idden, e.~ the length of
messages and the identities of the ends of the, connection. Observation
of characteristics such as these, is teWned' rm.1}1t' ana[Ji$1s. ·

3. The authenticity and integrity of each message must be guaranteed

4. Each message must be ordered with respect to . other , m~es
•• • l c-,i:~- ~ • • ~- , • / • •

transmitted on the connection.

5. Thetimefiness (currentness)ofthe connection must be ensured

To achieve these rt:~w,rtments an a#jtiqpal bf,y~r~fpwwoo~a securit)tprotocol,

is introduced. This, ,protocol Ii~ af?ove the tra~rt ~~7 and below the

application protocols used to distribute new rele~ 9f ~ :SQfiware, to report

usage statistics from the TRM, etc. Figure 2-:14:illum,ates.tli~formatofmessages in

the security protocol. In steady state operation; the :security- protocol accepts each

messase, .. gene~ated by_~ application, prefixes it .with a sequence number and a

control fiel~ and appends an FDC or_AICF. The resulting message.is encrypted in

its entirety and deliverecJ. to the transport protocol.

7 A pro~rly designed transport. layer protocol can provide the facilities required fur · secure
communication with the addition of encryption. ·ttoweyer most existing, tra~rt protocols do '1()l
provide these facilities and thus a separate protocol layer is introduced here. · · · · ·

The System Model, TRMs and Cryptography

sequence_# control application data EDC/ACF
'.

Figure 2· 14: Message Format for Secure Connection Application

To provide concealment and a basis for authenticity and integrity verification, the

entire message is encrypted using a block chainirrg technique such as PCBC or CBC

mode. (The control field can be used to indkate if padding was needed and, if so,

how many padding characters were inserted.) These modes are simple,· convenient

and well suited to this application. The sequence number is targe enough; say 32-

bits, so that it does not cycle during a connection! To prevent duplicate sequence

numbers from being generated by the ends of the connection, the sequence number

space is divided in half and each end numbers messages using· its 'half of the Space.

For example, one end could count using odd sequence m.imbers and the other end

could use even sequence numbers. By piacing the sequence number ar the head of

the plaintext chain it serves as an in-block IV. The sequence number also orders all

messages on a connection, fulfilling the fourth requiremeQt. The EDC or AICF at

the end of the message is checked to determine.the ~uthenticity ~d integrity of each

message in accordance with the third requirement

The second requirement, preventing traffic analysis, can be met in part by

padding messages and transmitting dummy messages to hide length· and frequency

of transmission characteristics. However, ·this technique: wastes romrnunications

bandwidth and may be too expensive to be feasible. Concealing origin/destination

patterns is even harder and cannot be accomplished·oo at/ eitd-to-end basis in most

communication networks. Through origin/ destination analysis· an attacker could

95 ·

The System Model, TRMs and Cryptography

learn the identities of clients of various vendors, and by examining the volume of

text transmitted he could learn which programs were being distributed. Some

vendors may be concemed about these threats posed by· traffic a:nalysls and will
-~

have to institut~ ~ppr9priate _couQterme~tJres (see (161) but: in .most cases vendors

will probably ignore such threats.

The final requirement catls for appropriate key distribution techniques and a

connection initiation procedure utilizing a challenge-response protocol. To i11ustrate

th~ m~asures consicl~r, the following scenario :€91; ~ ~ure conlleotion between a

TRM and a vendor .. Key distributioQ in this.ap.pticat~- js qu,te simple. (For more

complex key d~ribution e~vironments. '()Ile might use a_put,lic-key cipher in ECB

mode to distribute a DES ~ion key, as descriJ,ed.ifl Qtaptt;r 5.) •A.t the, Ji.me of·

m.anuf~cture, or thereabouts. a secret mo.s1er /(.fy is1 generated anA loaded into each

T~M by the vendqr. This;mast~r key is ;(\~(f erent:for eacb TR.M and_ is known only

to the vendor. To enable ~cure communication, theTRM ~ijshes a-connection

to a vendor_ copiputer usini .the. transpoJt protoc~. (The .~UJTIPUOfl ~e is th~t the

TRM initiates the .. connection since the. venaor .is ~peeled to be availa\lle via a
'- . - . . .

network .at all tim~ but the TRM may be attached 4> ~ networ~ only when

required.)

The TRM identifies itself to the vendor by transmitting its (unique) serial number

unencrypted. -The vendor uses that 'serial number to 'look~p the ·master key for the

TRM and generates a random session key, to be used only for this connection. The

vendor then enciphers the sessioJt key under the TRM master key and transmits it to

the TRM where it is deciphered and used for further ~ure. comamnication. The

use of a distinct session key for each co~nectipn offers several. advantages since the

same plaintext enciphered under different keys y~. :di-ffer~at cipherrext Thus. .

the IVs used here qeed be unique only on a per.pconnection- basis to provide

adeqL,Jate concealment Also. mes&1ges fro~ ,previous, connections between the

96

The System Model, TRMs and Cryptography

vendor ·and this client or connections between the vendor and other clients cannot

be replayed or misrouted to confuse either end of the connection (the AICF or EDC

would almost certainly be invalid when enciphered under a,difkrentkey).

With a session key in place, the vendor and the TRM are in a position to

challenge one another to verify the time integrity of the connection. Since the

vendor generated the ~ion key, he knows the connectio~ is current if the TRM

can send messages that pass the usual integrity. and authenticity checks (since the

messages are enciphered under the sessio_n key). Thus there is no explicit challenge

carried out by the vendor. However, the TRM; ,must cari-y out a challenge protocol

to establish · that the session key just received is current , ,':Jlie ·TRM effects· t!his

challenge by generating a ·random bit pattern; encrypting it ming the session key

and transmitting it to the·.vendor. The vendor decrypts therbit-ipattem, transforms it

in some predetermined, fashion, e.g., complementing half••the·bits in .• the pattern,

encrypts this response to the challenge and• tr~c:it- to. lite TRrM. The TR:M

decrypts and checks this response and if it is correct-the ~eliness.oftheconnection

is verified. This prevents either end from being;trictoo by a recording of a prior

connection initiation sequence; Once this,proa:eaure is completed, regular message

transmission can begin~ ('The messages exchanged, dutmg secure connection

initiation are distinguished from later traffic through: :appi:optiate values in the

message control field)

2.3.5 Parameters for Actual Ciphers
• fl, ··, - • •

To complete this discussion of cryptographic techniques; it is necessary to project

appropriate valu~ · · fot '.cipher . pai'am.etets, · based· ori: 1distihg · : ciphers and

implementations, just as' processor capabinties were· projected' in sectim12:l:2. · The
DFS serves as our paradigm for convcntion:al ciphers since 1t is: the most ·thoroughly

studied, modern conventional cipher destritied· irt the 6peri ·fiteraturt and since there'

CJ1

The S.) stem Model, TR Ms and Cryptography

arc a number of hardware realizations on which projections can be based. The DES

operates on 64-bit blocks of text and it employs a 56-bit key. The algorithm

performs an initial permutation on the input block and divides it into two 32-bit

half-blocks. A round of the cipher involves expanding the half-block, adding in

selected key bits, performing a substitution and a permutation and then adding in

the other half-block and exchanging the half-blocks. Sixteen of these rounds are

performed and the half-blocks are concatenated and permuted again to complete

the encryption/decryption process.

The fastest current DES implementation (a 4-chip set developed by Fairchild)

transfonns a 64-bit block in about 3.2µs and requires another 1.6µs to load or

unload the data (8 bits at a time), for maximum throughput of about 13 Mbits/s

[14]. This chip set, like many other implementations, allows loading of input while

the algorithm is executing. Discussions with the designer of this DES chip-set

indicate that much faster, single-chip implementations could be produced over the

next 3-5 years if suitable demand develops. The projected implementations will be

capable of transforming a 64-bit block in 500- lO00ns, corresponding to a bandwidth

of 64-128 Mbits/s. (The data paths for loading and unloading are likely to be 16 or

32 bits wide for the intended applications.) Even if the next generation of DES

chips do not quite achieve this speed, many of the protection mechanisms proposed

in this thesis, most notably encrypted storage designs in which primary memory is

packaged with the processor, can be implemented without significant performance

problems.

The algorithm developed by Rivest et al. (the RSA algorithm) serves as the

paradigm for public-key ciphers for several reasons. l11e RSA algorithm is the most

widely known and carefully studied public-key cipher, one for which a hardware

prototype has been constructed and tested, and the only public-key cipher that

suppo1ts the double transformation technique for authenticity and integrity

98

The System Model, TRMs and Cryptography

verification described in section 2.3. l. The algorithm encrypts and decrypts blocks

of data by exponentiation with respect to a modulus that is the product of two large

pnmes. The encryption and decryption keys arc the exponents. Since this

algorithm is not a standard no specific block size has been mandated, but to provide

security comparable to that of the DES, blocks (and keys) should be about 320 bits

in length [17]. (Public-key cipher block and key sizes are generally much larger than

those for conventional ciphers because an attacker can carry out only an exhaustive

search for a conventional cipher key, but he can search for a secret PKC key using

the mathematical structure of the public-key cipher.) This block size could be

changed lo better fit application requirements, however decreasing the size weakens

the cipher and increasing it reduces the encryption/decryption rate. As noted

earlier, the prototype RSA single-chip implementation exhibits a projected

throughput of about 5 Kbits/s [28].

2.4 Conclusions

The first p01tion of this chapter described in greater detail the computer system

model used throughout the remainder of this thesis. This model describes a fairly

conventional, bus-oriented 32-bit computer that is characteristic of many current

mini- and microprocessor designs. The model details introduced in this chapter are

those required to design the protection mechanisms developed in Chapters 3 and 4.

However, not all of the protection mechanisms depend on all of the system

characteristics described here. Thus, some of the protection mechanisms are

independent of many system details.

The second portion of this chapter examined tamper-resistant modules (TRM) in

detail and described how external software could be protected in a computer system

based on a monolithic TRM design. The TRM concept is important since it

99

The System Model, TRMs and Cryptography

embodies al) of the physical protection characteristics that depend on the level of

security required in a particular env,ironment. In this .fashion none of the other

protection mechanisms developed throughout the thesis: need, deal with physical

protection issues .. The monolithic TRM design :presented-in this chapter might be

adequate for. some applications but it exhibits a number of limitationsf e.g., it cannot

support demountable storage media. Tms motivates the· use of crjptographic

techniques to overcome these limitations; Thelast.portion·ofthe chapter introduced

some terminology, .concepts and techniques from modern. cryptography. This

material is included to provide background ror readers who ;an? not familiar with

this. area. The explanations provided here are not intended as a general primer on.

cryptography. but rather are directed toward -_ the specif IC· ,application · areas

encountered in. the thesis.

IOI

An Encrypted Bus Approach to

Protecting External Software

The arsenal of cryptographic techniques presented in sectJon 2.3 suggests several

ways to protect external software in computer sy~tems w,ithout enclosing all of the

security relevant components in a single TRM. This chqpter explores in detail an

arproach based on viewing a computer system as a miniature communication

network. In this approach, each security reliyvant c<;mwone.nt (or collection of
, "' ·, " .

components) is enclosed in a TRM and communicates with other components over a

physically unprotected bus. Each TRM is equipped with a special cryptographic bus

interface (CBI) that provides secure communication among the TRMs. The major
'', - ,.

advantage of this approach over the monolithic TRM design is that it permits

distribution of the secure components among several TRMs. Thus it becomes

possible to incrementally change a system through selective replacement or addition

ofTRM-packaged components (for maintenance or expansion) and many problems

associated with TRM sizing become more manageable. One might even provide a

form of demountable storage in this type of system, by packaging the media and its

access hardware in a demountable TRM, although such storage would not be

competitive with conventional, demountable media in terms of cost or convenience.

101

An Encrypted Bus Approach

3.1 Configurations and Overview_,

The system configurations pictured in Figures 3-1 and 3-2 ~ara~terize the ways
•· ·, ,, , _ • ;, a __ 1 _

• ~ ' -lo " ; -

in which TRM pa~kaging can ·be employed in this communication security design

approach. SYST(::M 4 rep1esents t\le~so1eU,est ~gt; from ~ monolithic TRM
- • • - • a - • ~ ,, '<, , _,..
,• . ·. ~-

design, providing a separate TRM only for the transfer and archival (f &A) storage

device. SYSTEM B provides greater flexibility by employing separate TRMs for

secondary as well .as T&A storage devices. In both of these configurations. the

organization of the processor anli primary memory~ i.c.,-the presence or.absence of

cache or a dedicated memory bus, is irrelevant since they are contained wholly

within a single TRM. ln these configurations. the cryptographic bus interface (CBI)

for the main TRM (the TRM containing the processor) also operates"Tilce the secure

bus coupler (SBC) described in section 2.2.2,' i.e .• ft 'keeps urientrypted t;affic in the
. .- .• , , . - , i •I

main TRM from appearing on the bus outside this TRM and it restricts access to

primary memory locations by DMA devices outside the main TRM. In SYSTEM C

and SYSTEM D the maximum degr~e of flexibility· avaafable in this design

approach is attained as each device 'is packaged in a separate TRM. Here the choice

between single and dual bus configurations has a: signiticanfiinpact on.the'design, as

detailed in the following sections.

The techniques described in section 2.3.4 could be applied directly to this desi~

but the characteristics of bus communication differ en~gh from those usually .

encountered in general communication envif9nmen~ to warrfi~. modifying those ,, ' ., .·

techniques. For example, since bus operatijons involve very few bits.(about 32 bits

of data or address plus some control bits), the additional information required for

security (e.g., EDCs and sequence numbers) represents a significant percentage

increase in the amount of data transmitted. Transporting this extra information

requires either additional bus lines, increasing the cost of bus interfaces. or

additional bus cycles, increasing transaction time and reducing bus avai1ability. In a

101.

An Encrypted Bus Approach

,......

CPU
C
8
I --- ,.

·-
:

i
'

P-MEM S-MEM
I CBI f otrre r~pe rip he rals "' ··--··

--, T&~ '
-- .

-
CPU

C
B
I

" - ·.
,.":"'-

' ;. ,;
~-, --- "",-.. ,..

<_ I cat I I °' I f•MEM ~ f ~ -- , other peripherals
S-MIII ; 1TUf-t t:

;.,,,...

·- ~ ;
-- ,

SYSTEM B

Figure 3·1: Two System Configurations Employing TRMs with CBis

An Encrypted Bus Approach

C
CPU BJ-jl----.-------------------,.------.---'-r--r---,--r--

1

I CBI I
;

P-MEM

I ap ,,-:-;_,
'

CBI

i ~MUlr .,_ ____ ,_
I

'

P-MEM

SYSTEMD

Fagure 3-2: Two More System Configurations Employing TRMs with CBls

104•;

An Encrypted Bus Approach

similar vein, the high speed, low delay nature of bus transmission means that any

bandwidth limitations and delays introduced by cryptographic and protocol

techniques could dramatically slow down the system. Thus, in adapting

communication security measures to the bus environment, special care must be

taken to minimize delays, maximize bandwidth and reduce the amount of additional

information transprnied with each operation. Moreover, the additional hardware

required for secure bus communication must not significantly increase the cost of

the computer system.

The cryptographic techniques developed in this chapter are carefully tailored to

the bus environment. taking advantage of the highly structured nature of

transactions and the high reliability of bus communication to minimize overhead on

bus transactions. Special cipher modes and error detection techniques are employed

to minimize the number of additional bits transmitted and the delay associated with

securing bus transactions. In engineering protection mechanisms for the encrypted

bus approach, three classes of transactions involving TRM-packaged system

components arc distinguished:

1. Processor-generated references to primary memory

2. Transfers between primary memory and DMA peripherals

3. Transactions used by the processor to control OMA peripherals and
used by these peripherals to interrupt the processor

The first and third transaction types arc referred to as simple in contrast to the

aggregate transactions used to effect OMA transfers. Transactions of the first type

constitute the bulk of bus traffic. Any reduction in bandwidth or increase in delay

experienced by these transactions significantly affects system performance.

Transactions used for OMA transfers constitute a much smaller percentage of all

bus traffic and they are qualitatively different in that they deal with aggregates of

105

An Encrypted' Bus Approaeh

data. This latter characteristic makes it possible to reduce ~r-transaction overhead

by validating a data aggregate as a whole rather than checking each word of the

aggregate as it is transferred. The last type of transactions. those employed in the

control of OMA 8 peripherals. are very infrequent compared to the other types of

transactions. and thus system perfomiance 1s affected only slightly if these

transactions become somewhat "slower ...

3.2 Security Requirements for the Encrypted Bus Approach

As noted in Chapter 1, vendors have two major requirements for protecting

external software in this context: preventing release of and detecting modification of

infonnation. In computer systems based on tile encrypted bus approach, the bus . . .

constitutes the only vulnerable, security relevant portiqn of the system and thus bus

transactions are the principal target for an intruder. Even though the bus is a

broadcast transmission medium, the flow of data amoQg devices is actually

connection-like in nature, not broadcast oriented. The flow of data among TRM

packaged devices corresponds to the three types of transactions described in the

preceding section, i.e., data flows between the· processor and primary memory,

between primary m~ and DtdA peripherals and · between the processor and

these peripherals. The data flow is thus implicitly segregated into distinct (duplex)

connections, one between each pair of devices as described above. Hence the

requirements for secure bus operation are, at a high level. the same as those for

general purpose, connection~oriented tommunicaiion environments as described in

section 2.3.4: preventil'lg disclosure of 'messag~ text and traffic analysis, ensuring

mes.5age ai1thenticity. integrity and ordering, and ensuring the timeliri~ of the

connection.

8 AH of the TRM-packagcd peripherals arc assumed to be DMA devices. If non-DMA peripherals
were employed, this same elm of transactions would be used for control purposes.

106,

An lincrypted Bus Approach

These r~uirements are easily translated to the context of bus communication

among TRM:-p~kaged devices. Here. disclosure of message text refers to exposure

of the. data in PRESENT-DATA operations. Traffic analysis,intbis context involves

exposure of the addr~ in PRESENT-ADDRESS operations, identification of the

TRMs engaged in. each transaction, determin'ation · .of operation types · and

observation of patterns of data transfer. The authemicit~, 4ntegrity and ordering

requirements are directly applied to the bit pattems represcmtMg each operat1on on

the bus. Thus each received .bit pattern ,must• .fJe checlted to verify that it was

generated by a CBI-equipped TRM in the system, that it was,not tnodified·en route

and that it arrived in proper order with respect to o\her op~rations bc~ween this

device and its partner in this transaction. The CBls must be initialized to a known
. '" i -

state and must verify the timeliness of connections before data transmission may

begin.

Jn this context traflk analysis may be a more serious• threat than in the client·

vendor communreatiofl scenario described· in section ll4 .. · :for example, .by

observing the pattern of references to .memory made by a p~r. noting the

locations accessed and whether the proceswr reads or ;Wfites these locations, an

attacker may be able to deduce quite a bit about the natur.e of the procedure being

executed. Similar observations of data transfers between primary memory and

cache or between secondary or T&A storage and primary memory provide clues as

to the nature of the procedure. How much information can be gained in th,is fashion
. ' ' '

depends to a great extent on the system configuration. For ~xample, SYSTEM C
,. " ..

and SYSTEM D provide more opportunities for traffic analysis thaQ SYS,TEM B
- . ~ . , •. , ' ' . . -

which in turn provides more opportunities than SYSTEM A. Note that adding_ a
. . .

cache to the processor in SYSTEM C or SYSTE~ D redpfeS the op,portunities for

traffic analysis since 'most references to primary memory are satisfied by the cache
~ I I ; ·-; ,: ' ; ' f

and thus do not result in transactions outside the processor TRM-

107

_An Encrypted Bus Approooh

·The amount of inrormation gained through. trnlfte analysis also depends on the

extent to which characteristics of traffic are \'isible; In-the worst case an attacker can

discern the addresses .in PRESENT-ADDRESS opetatrons>·as ·well"as identify the

operation types. _In a less severe scenario an . attatker coufd identify the TRMs

involved in a;transaction and determine the transaotion type but would not be ·able

to discover the specific Jocations invohed ,in the transfer. Although it· would be

preferable if ml traffac. analysis .were prevented~ as·. in: the monof:ithic TR M design,

this is prohibitively costly to achie¥e bocause·of bus characteristics-and ~ some

compromise is required.

While it is possible and practical to conceal the addresses in PRESENT·

ADDRESS operations, it is not feasible to hide origin-desfination patterns at the

TRM level. · An intruder can passively wiretap the bus between each TRM and

discover which TRM is transmitting, but not which is receiving. However, bus

transactions follow a very simple . pattern of a· requdSt!, 'Optration followed -by a
,

response, so the intrnder can. easily determine which TR,Ms • are -involved in a

transaction. Since the id~ntity of the TRMs involved in a transaction cannot-be

conc~aled. the only way.,to obscure origin .. destif'tatioo patterns 'is for ·TRMs to

generate dummy transactions. at random intervals. · , Yet 'if the: dummy transactions

interfere with genuine pus traffic severe performance degradation may result

If buses were multiplexed in a time division fashion, with each TRM assigned a

time slot to carry out a transaction, the dummy t~nsaction technique could be
:; ,, • 1 • •

employed. But the demand access nature of buses and the arbitration schemes
. , . ; • ; • •. ; , • ~ '. • . • . . , I .• , ! : : , j • . , • ':: .

commonly employed make this technique infeasiflle for two reasons. First. a device
•• • t

cannot know in advance whether a dummy . ~an~ction would conflict with a_
, . - • ; '. • • '· I- -·. __. • ~; • ; ~ ?_· ' : : ··< . ' .

genuine· transaction· in bidding for the bus during an arbitration procedure. Second,
. -

even 'if a dum'my transaction were initiated only when there were no gemJine

demands, the bus wri~~ be busy for an 1ni~rvai durinij~hi~h·~·gen~ui~e d~inand

An Encrypted Bus Approach

might· arise. In a system with , a priority structure for bus · arbitration the fiIBt

1>roblem could be ovenmme by having the lowest priority device (usually the

processor) be the only generator of dummy transactions, ·but the second problem

. would remain. Only ~ a dedicated: memory bus with transaction interleaving could

the processor/bus coupler inject dummy tr-ansactions without degrading bus

performance.

The preceding analysis suggests thpt preventing origin--dcstination analysis and

masking general patterns of bus traffic· at ·the .'fRM levd is infeasible except in

limited contexts. Hiding the types of transaction~ i.e., pteventing an intruder from

distinguishing among read. write and:•_ interrupt transactions or their extended

counterparts, also is infeasible in most contexts because the patterns of bus

utilization and/or the duration of the transaction are different for each type of

transaction. Thus signals on bus control,lines. :i.e . ., tines other than A/D0-31, need

not be concealed. Only in the context of a dedicated memory bus with transaction

interleaving could these transaction characteristics be hidden. (This type of bus

arrangement is highly analogous to a simple, fult duplex communication link and

thus is amenable to link encryption techniques, unlike a general purpose or 1/0

bus.) Thus, if tratTte analysis threats such as these are a major concern,

configurations such as SYSTEM A orSYSTEMB should be considered.

3.3 Securing Simple Transactions -

This section develops techniques for securing simple transactions. These are the

transactions used in the control peripherals in all four system configurations and in

processor-memory transfers in SYSTEM C and.SYSTE\\'f D. The same protection

mechanisms are applied to both types of .tnmsactio_ns. Processor-memory

transactions wiU be processed more quickly than control transactions only because
. w

An Encrypted Bus A,proath

-. the CBls at the bus coupler and primary· memory- WJII incorporate multiple

cryptographic devices and extra bus lines to achi~ve greatei: ,,arntletism; (fhe need

to employ addili_onal bus. lines to transport;error detection information for this type

of transaction stro_ngly motivates -adoption. of. the dual bus oonliguration, SYSTEM

D. to minimize the cost of the .extra lines.) Otherwise, tbe. two transnction types are

treated identically, simplifying CBI system design.

For simple transactions. encryption is required both for secrecy and to enforce

authenticity, integrity and orderi-ng-,requirements tor transactiomt Of course the

data in PRESENT-DATA operations must he conc;eatcd, and iftraftk analysis is a

concern, the addresses in,PRES~T-ADDltESS operations also must be concealed.

In the case of a sin1ple read .transaction,. -the bus master must verify that the data

returned in a PRESENT-DATA is from the· location specified in the immediately

preceding PRESENT·ADDRFSS, =that the returned data has not been modified in

transmission and that it is. timely (not.a copy of data from a ·previous busopemtion).

In the case of a simple •ite transaction the slave most vetify- the authenticity,

integrity and ordering of each PRFSENT~ADDRES.S.and PRESENT-DATA and

the master must do the same for each ,ACKNOWLEDGE:, On -an intem,pt, the

master must verify the authenticity, integrity and ordering;of the wctor in the

PRESENT-DATA and the slave must do the same for~the ACKNOWLEDGE it

receives.

Note that the ordering requirements set forth here are .striqly per"'.connection. i.e .•
~ . . - 1 . ~- .,.

transactions between the processor and primary memory are explicitly ordered

among themselves but are not explicitly ordered witll respect to transfers between

DMA devices and primary memory. Thus the requirements explicitly impose local

ordering (on each connection) but not an explicit global ordering. Yet global

ordering is important For example, clat;s may be written into primary memory by

the processor and then transferred to secondary' storage. . These two transfers take

118

An Encrypted Bus Approach

place over two distinct connections and thus do not fall under the explicit, per

connection ordering requirements set forth above. However, the processor initiates

all data transfers, either directly or through control ofDMA device activities, and

thus it imposes a. globa_l ordering of these transfers· even though the transactions are

not e)(plicitly, globaHy ordered. For example, in the example noted above, the

processor.wHI llOt initiate the OMA transfer to secondary storage until it has written

the data into primary memory. Thus global ordering>is1mposed implicitly by the

processor, relying on explicit, per-cormectmn ordering of transactions.

Readers who do not wish to delve into the details of how simple transactions are

secured should skip to section 3.4 (page 132), to the discussion of how aggregate

transactions are secured.

3.3.1 Securing simple readTfansactions

The security requirements stated above for a simple read constitute a relaxation of

those stated in section 3.2 in that the slave does not carry out any authenticity,

integrity or ordering checks on a PRESENT·ADDRF.SS. These relaxed

requirements allow an intruder to submit a spurious PRE.SENT-ADDRESS to the

slave and receive an encrypted PRESENT-DATA response. A spurious PRESENT·

ADDRESS will not adversely affect system security so long as the resulting

PRESENT-DATA cannot be used to spoof the master, i.e .• the master must be able

to verify that a PRESENT-DATA is an authentic response to the PRESENT·

ADDRESS just issued by the master. (Of cou~s the concealment mechanisms also

must not be affected by this relaxation.) If the checks noted above are carried out

on each PRESENT-DATA, then the master cannot be spoofed in this fashion. Thus

this relaxation of requirements does not introduce any new vulnerabilities and it

avoids the adverse performance effects ~sociated with calculating and transmitting

an error detection code as part of each PRFBENT·ADDRESS in a simple secure

read.

111

An Encrypted Bus Approach

For processor-mcmm:, trnns.ictions, the cryptographic facilities must exhibit a

throughput sufficient to keep pace with bus operation and must introduce minimal

delay. Since both addresses and data arc to be concealed on the bus, cryptographic

devices must exhibit a bandwidth of about 106-213 Mbits/s at peak bus utilization.

(These figures arc for a cachclcss processor; for a cache-equipped processor an even

higher bandwidth is required.) Since the maximum bandwidth projected for single

chip DES devices ranges from about 64-128 Mbits/s, these devices arc not capable

of meeting peak bus traffic requirements in comparably scaled systems. (The

assumption here is that one will employ fost DES chips in conjunction with a fast

bus and fast primary memory, and slow DES chips wiih a slow bus and memory.)

Moreover, these DES devices require about .5-1.0µs to transform a 64-bit block, a

processing delay equivalent to five bus cycles, and this delay may be a serious

problem even if the bandwidth is adequate. In SYSTEM C and SYSTEM D the

memory and the bus coupler CBls must keep up with processor-memory

transactions and th is is a di fficu It task.

A stream cipher mode of operation, rather than a block mode, is essential here

because of the need to maximize throughput and to minimize delay. Only about 32-

bits are encrypted in each bus operation, creating an immediate granularity

mismatch between the plaintext and a block mode of operation. A block mode also

imposes a delay (T) to encrypt and decrypt the data since the algorithm cannot be
C

executed until the text is available. To better understand why block mode was

rejected, consider the processing steps involved in a simple secure read based on

ECB mode encryption. l11e event graph and timing diagram in Figure 3-3

illustrates these steps. The address in the PRESENT-ADDRESS and a unique

IV/ AICF are encrypted using ECB mode (Cl), transmitted (T1,T2) and deciphered

at primary memory (C2). (The IV/ AICF used here is just a sequence number.) The

data is retrieved (A), enciphered along with the incremented IV I AICF (C3), and

transmitted to the processor (T3,T4) where it is deciphered (C4) and the AICF is

checked (=).
112

address

Master

Bus

stave

Master

M-crypto

Bus·

S-crypto

Stave

A

0

D

R

C1

An EncryptedJlus Approach

T1- T2

C2 C3

A
•.

data confirm

C4

T3 T4

D

A

T

A

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Figure 3-3: Event Graph and Timing Diagram for atl ECB Mode Secure Read

The total transaction time ror this EC B mode simpie secure read is 4T + 4T +
C I

T (25 bus cycles), as corripared to a standard' tead time of three bus cycles. The
a

timing expression is easy to derive since there are no parallel processing steps in the

113

An Encrypted Bus Approach

event graph, and that is the root of the performance problem. To suppmt the

maximum transaction rate as a standard system, one would have to employ

additional cryptographic units, interleave transactions and add another 32 bus lines

(since t wicc as many bits arc transmitted here as in a standard read). These changes

would significantly increase the cost of CB ls. Even with these added facilities, this

design exhibits an inherent delay that translates into over a 730% increase in

effective memory access time for a cacheless processor. For cache-equipped systems

a standard extended read could be secured in an analogous fashion, but the effective

memory access time would still increase by about 48-120%. These delays are so

great as to preclude the use of this mode even with the CBI enhancements noted

above.

A stream cipher mode of operation provides opportunities for parallelism and for

precomputation of the crypto bit stream, so that a high throughput rate can be

maintained with minimal delay. Since encryption and decryption are accomplished

by adding (modulo 2) cryptographic bit stream to text, if the bit stream can be

computed in advance, almost no delay is introduced for encryption and decryption.

However there are two problems if a stream cipher mode such as CFB is used. First,

in order to take advantage of the error propagation characteristics of CFB, the

quanta size must be adjusted so that data and EDC are covered by different crypto

bit stream quanta. In this c1pplication the data is usually 32-bit words or addresses,

so the quanta size would probably be 32 bits. This quanta size halves the bandwidth

provided by the cipher, a serious problem given the timing of DES calculations and

bus cycle times for the systems of interest. Second, there is a delay (T) in providing
C

the crypto bit stream for the EDC, since this bit stream cannot be generated until

the data being protected has been encrypted. (Remember, the ciphe11ext must be

fed back into the algorithm to generate the next quanta of crypto bit stream.)

114

An Encrypted Bus Approach

To avoid these problems of reduced bandwidth from cryptographic devices and

substantial delays for transmission and checking of EDCs, a degenerate form of

autokey cipher mode is used. This stream mode employs no feedback from

cleartext, ciphertext or- the crypto bit stream. Instead, each block of crypto bit

stream is generated using a unique IV. Each IV is formed by concatenating a bit

stream ID and a counter that is incremented each time the algorithm is executed.

The bit stream ID distinguishes "cryptographic bit streams generated under the same

key. This stream cipher mode exhibits several very important properties. For
' . , .

example, n cryptographic devices can be used in parall~l tq generate ~ single bit

stream by initializing the counters to the values J through n and incrementing_ by n

each time (using the same bit stream ID for alt). This m~es the output ap_peai: as

though it came from a single, fast cryptographic device .!llld ~lows using different

crypto device config4rations at each end of a connection,, e.g. units of differing

speeds or different numbers of units to generate the same bit stream. Moreover.

since no feedback is employed, crypto bit stream blocks can be generated at the

maximum rate for crypto de~ices that allow 'loading the next input while the

algorithm is being executed (a common design feature in many DES chips).

For securing bus transactions, each· TRM generates two distinct bit streams for

each device with which it communicates: a Jransmission bit stremn and a reception

bit stream. Thus, for each connection. one crypt,o bit stream-is used to encipher bus

operations transmitted by the TRM and another bit stream is used to decipher bus

operations that the TRM receives. (Of course these terms are relative since a

transmission bit stream at one TRM is a reception bit stream at the TRM that is the

target of the bus operation.) In communicatiOD.5 par~, a different crypto bit

stream is associated with each mdependent simple~ channeL The endpoints of each

connection generate the two bit streatJ}s for that connection in synchrony so that IVs

need not be transmitted and so Uiat the receiver of an, operation can ,precompute the

us

An Encrypted Bus Approach

bit stream needed to decipher the incoming operation. The use of a different bit

stream for each channel is important. If the same bit stream were employed for

more than one simrlex channel, it would be necessary to impose additional

consLraints to prevent two TRMs from transmitting data enciphered under the same

bit stream.

This stream cipher mode permits encryption and decryption of bus operations

with almost no delay, assuming a su fficicnt number of cryptographic chips are

employed in parallel. However, this stream mode docs not provide any error

propagation for authenticity and integrity checks and thus a cryptographic error

detection code (CFDC) must be employed frff that purpose. Using a CEDC, the

generation of crypto bit stream for encrypting and decrypting data is independent of

the CEDC calculation. Thus one DES chip can be dedicated to calculating the

CEDC and crypto bit stream generation can proceed in parallel using other DES

chips.

Since stream mode encryption and decryption can take place with no appreciable

delay and can keep pace with any transmission rate (using multiple units in parallel),

the transaction time for a simple secure read based on this design exceeds the time

for a standard read only by the amount of time devoted to the CEDC generation and

checking. The simplest way to calculate a CEDC in this application is to encrypt the

data to be protected using ECB mode, and to transmit a portion of the resulting

ciphertext block. (It is not necessary to transmit the entire CEDC block since the

receiver of the data can perform the same calculation on the data and compare the

appropriate portion of the result to the received CEDC bits.) If a full, 16-round

DES encryption is performed to calculate the CEDC, the delay introduced by this

operation is T, no better than the delay provided by CFB mode. However this
C

delay can be reduced by operating on the plaintext for less than the full 16 rounds

and by transmitting a prntion of the result encrypted using stream mode.

116

An Encrypted Bus Approach

The idea is to reduce the time required for CEDC calculation but to maintain

security by using enough rounds and by stream encrypting the resulting CEDC.

After five rounds of the DES, every bit of the output is a complex, non-linear

function of every bit of the input and of every bit of the key. The error propagation

provided by five rounds of the DES makes it impossible to change data in a fashion

that is invariant under this CEDC. Also, if the CEDC is stream mode encrypted

before transmission, the intruder cannot discover the value of a CEDC except

through cryptanalysis of the full 16-round DES. In order to tamper with data

covered by the CEDC (and not be dctectccl), the intruder must either be able to

predict the CEDC generated on a known input or be able to predict the changes in a

CFDC resulting from complementing a bit in a known or unknown input. Because

all of the key bits are involved in determining the value of each output bit, each of

these tasks is probably equivalent to breaking a five-round DES, i.e., discovering the

key. As there is no indication that a five round DES can be broken by other than a

brute force attack, and since the matching ciphe11ext required for such an attack is

itself encrypted under a full strength DES, there is good reason to believe than an

intruder cannot subvert this CEDC scheme.

Figure 3-4 illustrates the steps involved in a simple secure read employing the

stream mode enciphering/deciphering and the CEDC scheme described above.

The master begins by generating its transmission crypto bit stream (Cl) using the

stream cipher procedure described above. The address in a PRESENT-ADDRESS

is enciphered using 32 bits of that bit stream (Xl) and the result is transmitted (Tl).

The address is deciphered at the slave (X2) using the corresponding portion of the

slave reception bit stream (C2). The address is used to retrieve a word from memory

(A). The slave generates its transmission crypto bit stream (CJ), enciphers the

retrieved data (X3) using 32 bits of this bit stream and transmits the result in a

PRESENT-DATA (T2). The master deciphers this operation (X4) using the

corresponding portion of its reception bit stream (C4).

117

An Encrypted Bus Approach

address data confirm

Master

Bus

Stave

Figure 3-4: Event Graph for a simple semre read

While steps XJ, T2 and X4 are taking place, the slave can calculate the CEDC

(El), using both the address and data as input. Once the CEOC is available, a
. .

portion of it is encrypted (XS), using more of its transmi~on bit stream from CJ,

and the result is transmitted to the master (f3). At the master, once the data is

decrypted (X4) using corresponding master reception bit stream from C4, it is

concatenated with the address to calculate the CEDC (E2). When the CEDC

calculated at the slave arrives and is decrypted (~6), it is ~om pared (=) with the

corresponding portion of the CEDC calculated at the master to verify the

authenticity, integrity and ordering of the transaction. The decryption of the slave

CEDC (X6) and the comparison (=) can be re-ordered and re-associated (the
,

master CEDC can be added to the appropriate crypto bit st.ream and the result
'

11&

An Encrypted Bus:Approach

compared to the incoming, encrypted slave CEDC) if performance is improved by

this alternative ordering of steps.

Since master and slave generate different transmission bit streams, neither will
,,,,.i. ·*

transmit data enciphered tµider th~ same bit stream that the other is using to

encipher data, regardl~s of attacks, and; th~1s cooccialment i~ epsured. If the data in
., ... I ~ .• , ·--·~:,0\1 ! -~• .,. ·•~ '':]}-:_:~~~.,(

the PRESENT· DAT A ,is modified or i f!the data is 'not from the requested location,

this will be detected sific¢ tfie CEDC is a furic~on of both. 'Th~ timeliness of the

transaction also is assured ~• -~ .@&,different cryptoJ~it;stream for each bus

operation and by the ,CEDC. An ~-l-~L~~~!!!5!.L8Jl will,
1
~'-J!11pfoperly decrypted

because of the unique~ of the crypto bit st•eatn $nd this will result in a mismatch

in the CEDC check. nfe 1n1rude~"canntjt ~inpensate ruf1the differences in the

crypto bit stream unless he caa c~-GBQCs, a feat1~e :impractical by the

scheme used here. Thus this design achieves all of tl)e security requirements
• • ~ --,,,_.,.\"-..<"!!;:~~----- _,-, 41'\ <'.,' J!Q",'"';:-' /'

established for simple read transactions at title beginning of this section.
'

The minimum transaction. time for this simple secure read is 2T + T + T (5
. .• . . : .• I a e

bus cycles) as derived from the timing diagram in Figure :f s'.· However, the data is

available at the master after 2T + T, the ·samti as for a standard read. Thus
t a

unverified data is available at the master with no additional delay from the

beginning of the transaction, but :total tr~on ,tinte :increases by 66%. A

processor employing pipelining might be able to "backup., if data is discovered to

be invalid within two bus cycles after its delivery, but most systems will have to

abort and shut down under these circumstances. In many cases, it will not be

acceptable to deliver unverified data and the master will incur a 66% increase in

effective access time. This is clearly unacceptable for processor-memory

transactions. However, in a cache-equipped system, a secure extended read can be

implemented in a similar fashion and the effective average memory access time for

verified data increases by only 4-9% in.this case. This increase is small enough to be

acceptable in most applications ..

119

An Encrypted Bus Approach

Master

M-crypto3

M-crypto2

M-crypto1

Bus

C2

Ct

t'

A D C

0 .,. 0

D T N

R A F

E2

. '

S-Cl')1'.)to1 .. · '. · t-ti.....-..,.-..,,.....1orr-+-+-

S-crypto2

S-crypto3

Slave
A ·:

· 0 1·234561 8 t 0-

Figure 3-5: Timing Diagram fot·a simple secure read

Delay in delivery of data is not the only concern here~ For processor-memory

transactions the. maximum standard transaction rate should be attainable and bus

utilization should not increase significantly. The effective memory acce~ time

calculations performed above ~urne that successive simple secure read tran_sactions

can be issued at the same maximum rate as stal)d~ard read transactions. Unless the
' .: .

next transaction is allowed to begin before the CEDC of the 1>,receding transaction is

transmitted. this maximum rate cannot be achieved. Thus. for processor-memory
.. ·, /_,.·!

An .Encrypted Bus Approach

trnnsactions •. CEDC transmission must be interleaved with address· and data

transmission. One might attempt to transmit the CEOC OR the A/D0-31 lines

during the idle cycle in the middle of simple setare read and, simple secure write

transactions(see Figutes,Y.5 and· 3,8) .. • However;,thisid4e cycle wiUnot always occur

at the time when the CEOC should be'transmitted: MoF.eover, the secure versions

of extended transactions do not provide'stich'idle cycles.
•' .' ' ' ; ,,• I i :

This analysis suggests that a separate· set of b~s lines is required to support

interleaving of CEDC · transmissi~ns for p~ocessor-m~mory transactions. Si~te~n
. ' ' ," '·:... ', ' ; ; ',: ' ' .. , ,, '

additional lines (CEDC0-15 should suffice for most applications since, if 16 CEDC

bits are transmitted for each transaction, an. attacker. has a r 16 chaRCe of

undetectably tampering with a transaction. rhese bus enhancements (extra lines for

CEOC transmission and interleaving of this:transmissiol\) are required only for

processor-memory transactions, so they affect (1)ftiy S\'STEM • C and SYSTEM D,

where the bus segment between the processor and·primary memory·is unprotected.

These enhancements are most easily and econornkalJy iMplemented in a dual bus

system configuration. where the existence. of only a, single bus master makes

interleaving feasible and equipment costis,minunized.sil\ce;onty two bus interfaces

are involved. Thus. SYSTEM D is strongly .preferred, over, 'SYSTEM C. In

SYSTEM A and S\!ST.EM B the simple transactions ow:the exposed bus segment

are strictly control transactions and the increased· delay due to •CEDC transmission

on the A/00·31 li11¢6 on this segmentshoalo-. }Jose a.stgnificant·performance

problem.

For processor-memo'ry transactions, the CBis at primary memory and on the

memory bus connection to the bus coupler each require four cryptographic devices

to maintain the maximum transactmtt rttbf :;pfglJreJ-6 ·~ow1dhe utilization c;f the

cryptograp.hic devices. memory af!d . bus Imes; for a- Sftfies of six successive simple

secure _read transactions_ In each three~cyl::le,~ansaction, 32. bits of addr~ss ~~~ be

121

An Encrypted Bus Approach

concealed by the master so a single de:Vice (cryplol) can supply the needed 64·bits

every six cycles. The slave must conceal 32 bitsofdata and·16 bitsofCEOCevery

.transaction, for a total of 48 bits every three cycles (at max,ifllum rate). Two

cryptographic devices (cry_pto2 and crypto3) me usecEfor this:•task·since a· single

device can generate oob 64 bits every . .five cycles: FmaHy,' one crypt<:> device

(cryptof) is required to generate the CEOCs.· using two bus,cycles in each three

cycle transaction to perform five of the 16 rounds of the DES. Since this string of . ' -: ' ~ .

transactions represents a series of processor-memory transactions. the extra bus lines

(CEIX'0-15) are employed for CEDC transmissiQQ. ,,

r f the traffic analysis threat is ignored, addresses need not be encrypted and 32

fewer bits would have to be concealed on each. transaction. t11: this aise only three

crypto units are required at the processor and primary memory, i.e., c,yptol can be

eliminated. Even if addre$CS in p~-memory transactions are concealed, it is

quite likely that addr~ concealment may be omitted for control transactions (those

involving the processor and OMA peripherals) since the device register addresses in

these transactions provide very little information to an attacker~ Unlilce proas;or

memory transactions, the frequency of,control transactions is fairly low and -there

should be enough time between these transactions to'allow if'siogte crypto device to

precompute crypto bit stream between· uses (whether dt not adtltesses are concealed

in these t{an~tions). This would free this. devire -for CEOC calculation during

these transa(:tio.ns. Thus TRM-packaged peripherals, probabl;· require only one

crypto unit (changing bit stream IDs as required) for simple secure read control

transactions.

3.3.2 Securing simple write Transactions

· The detailed security requirements for simple write transactions provide no

opportunities for relaxation~ unlike· shnple read transactio~ • 'The contents of the

Master

tv1-crypto4

M-crypto3

~~-crypto2

M-crypto1

1\/D0-31

CEDC0-15

S-crypto1

S-crypto2

S-crypto3

S-crypto4

Slave

I
I-

C4

C1

--

C2

C3

An Encrypted Bus Approach

A

D

D

R

t

T1

C3

~-

C4

A

DJ\ CDA CDA CDA CDA CD

AD OAD OAD OAD OAD O A

TD NTD NTD NTD NTD N r
AR FAR FAR FAR FAR FA

I
---j r.--i t-~H

E2 E::' E? E2 E2 E2
i-r•

C4 C4

C4 C4 -
C1

-- -·-~-

T2 T1 12 T1 T2 T1 12 T1 12 T1 12

T3 T3 T3 T3 T3

C2

C3 C3

C3 C3

El E1 E1 El E1 E1

A A A I ,I), A
-·-"

I

C

0

N

F

-·-

,- -

T3

•--
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Figure 3-6: Timing Diagram for Successive simple secure read Transactions

123

An Encrypted Bus Approach

PUESENT·ADDRESS and PRESENT-DATA must be concealed. The slave must

verify that these operations are ordered with respect to other transactions on the

connection, and that the address and data are authentic and unmodified. 'The slave

must provide the master with a secure ACKNqWLEDGE verifying the successful

completion of the simple secure write. These requirements oon be achieved using . ~ . .

many of the same techniques developed for secure reads. Stream mode encryption

and decryption are employed for concealrnenf and the same CEDC technique is

applicable here to ensure .the llllthenticity, i.Dtegri~~ ordering .for each operation

in the transaction. Figure 3-7 shows the event graph for the simple secure write

resulting from an application oftnese techniques.

address data

Master

Bus

Slave

Figure 3-7: Event Graph for a simple secure write

124

An Encrypted Bus Approach

The master begins by generating 64 bits of transmission bit stream (C1) for

concealing address and data. The address is encrypted (X1) using half uf these bits

and the result is transmitted (T1) using a PRESENT-ADDRESS. The slave receives

this encrypted address and decrypts it (X3) using the corresponding portion of the

slave reception bit stream generated in C2. Back at the master, the data is encrypted

(X2) using the remaining 32 bits from the transmission bit stream generated in step

CJ. The result is transmitted (T2) using a PRESENT-DATA and deciphered at the

slave (X4). At the master, the address and data are used to calculate a 64-bit CEDC

(El), a portion of which (say 16 bits) is encrypted (XS) using a matching amount of

additional transmission bit stream generated in CJ. This CEDC is transmitted to the

slave (T3) where it is deciphered (X6) using the corresponding reception bit stream

generated in C4.

The slave computes a 64-bit CEDC using the received address and data, and the

corresponding bits of this CEDC are compared with the CEDC bits from the master

(= 1). If these bits match, the write, which was begun earlier when both the address

and data became available, 1s completed and acknowledged. The

ACKNOWLEDGE is secured by encrypting (X7) and transmitting (T4) a different

po1tion of CEDC generated in step £2. rn1is CEDC is encrypted using slave

transmission bit stream generated in C5. The master verifies the completion of the

transaction by decrypting (X8) this portion of the CEDC, using the master reception

bit stream from C6, and comparing (= 2) it with the corresponding, locally

generated CEDC bits from step El. As in the secure read transaction, the steps

involved in an CEDC comparison can be re-ordered and re-associated, if necessary,

to provide faster operation. This re-ordering and re-association may be especially

critical at the slave if the CEDC is to be checked and a secure ACKNOWLEDGE

transmitted on the next bus cycle. This transaction offers a number of oppo1tunities

for parallelism, as illustrated in Figure 3-8.

125

An F~rypted Bus: Approach

Master

M-crypto4

M-crypto3

M~crypto2

. M-crypto1

Bus

S-crypto1

S-crypto2

S-crypto3

S-crypto4

Slave

C3

c,11

C2

cs
' ,

A D

D A

D T

R A

E1.

A

.c
I(

·,

T1 T2 T3 T4

A

0 1 2 3 4 5 6 7 tf 9 0,

Figure 3-8: Timing Dit!gram for a si-,te •ure lfrite

Total time for this simple secure write is 3T + T (5 bi1s cycles), based in the
, ,• . I 'e, · ··' ' .

timing diagram in Figure 3-~. tbe same as fQr ~ simple secure n:ad. (An examination
·, ·' : . , . --

of the event graph yields a complex sym.l>91ic timing, fqrmula. involying nested
, ' _-:; . . •-~- .~ . . .

minimum functions, which simplifies to this exp~ion using the relative timing

126

An Encrypted Bus Approach

assumptions adopted earlier.) The address and data are available at the sh1\ c ,it the

same points in time as in a standard write, but confirmation of their validity is

delayed by two bus cycles, causing an equal delay in acknowlcclgmelll of the

transaction. Again the secure version of this transaction takes 66% longer than the

standard version. As an increase in effective memory access time, this delay is not

quite so serious as in the case of a simple secure read since write transactions

typically constitute only about 20%-25% of all processor references to memory.

Moreover, in systems equipped with a write-through cache, processor-generated

write transactions may be buffered to reduce the delay associated with access to

primary memory. (lfa write-back cache is employed, buffering of modilkd, evicted

lines reduces delay on extended write transactions. [6])

Since a simple secure write takes 66% longer than a standard write, a proportional

increase in buffering at the cache will maintain existing performance levels in the

face of this additional delay. (A secure extended write exhibits the same relative

increase in delay.) For cacheless systems, single or double buffering of writes will

absorb this delay in most cases. Although additional buffering can reduce the effect

of the longer transaction time on effective memory access time for the processor, the

transmission of CEDCs during two bus cycles increases bus utilization and thus may

delay other transactions. As with simple secure read transactions, the problem can

be solved by overlapping transmission of CEDCs with address and data

transmission (using additional bus lines for this purpose). Use of the extra bus lines

and this limited transaction interleaving enables simple secure write transactions to

proceed at the same maximum rate as standard write transactions. Again these bus

enhancements arc required only for processor-memory transactions and thus affect

only SYSTEM C and SYSTF:M D. Using the same reasoning applied to simple

secure read transactions, it is apparent that SYSTEM D is preferred here.

127

M:ister

M-crvpto4

M crypto3

M-crypto2

M-crypto1

/\/D0-01

CEDC0-15

S-crypto1

S-crypto2

S-crypto3

S-crypto4

Slave

An Fncryptccl Bus Approach

A D

D A

D T

n A

i r I I --

-~=11"' r=: 1

Cl

C1

C1 C1 ·-
Tl r2

C2

C2
--- -

C4

A

C2

E2

A D A D A D A D A D

D A A D A A D A A D A A D A A

D T C D T C D T C D T C D T C

R A K R A K R A K R A K R A K

l - ·◄ I>-

El El E1 El El

C6 C3

Cl C1

Cf

"" -----

I
T1 f2 T1 12 Tl T2 I T1 r2 T1 T2

L - ,_

T3 T4 T3 T4 f3 T4 T3 T4 T3 T4

C.2

C2 C2

C5 C4

E2 E2 E2 E2 E2

i\ A A A A

-

T3

A

C

K

>-->--

T4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Figure 3-9: Timing Diagram for Successive simple secure write Transactions

128

An Encrypted Bus Approach

For processor-memory transactions, the CBls at primary memory and the

memory bus connection to the bus coupler each require four cryptographic devices

to maintain the maximum transaction rate, the same number as for a simple secure

read transaction. Figure 3-9 shows the utilization of memory, bus lines and

cryptographic devices for six successive simple secure write transactions. The master

must conceal 64 bits of address and data and 16 bits of CEDC for each transaction,

whereas the slave must conceal only 16 bil~ of CEDC. Three crypto devices

(cryptol, crypto2 and oypto3) are devoted to generating bit stream here, with

oypto3 alternating between transmission and reception bit stream generation. (One

could make the assignment of crypto devices to bit stream generation tasks simpler

by devoting a device exclusively to the slave transmission bit stream, but this would

leave two devices idle much of the time.) Again, one cryptographic device (etypto4)

is required to calculate CEDCs and these CEDCs are transmitted on the extra bus

lines EDC0-15.

As was the case with simple secure read transactions, if. addresses need not be

concealed then one crypto device can be eliminated. Again, even if addresses are

concealed on processor-memory transactions, it seems likely that addresses in

control transactions need not be encrypted. Here too, the frequency of simple

secure write transactions used to control OMA devices should be low enough to

allow a single crypto device to generate the transmission and reception bit streams

between these transactions, freeing the device to generate the CEDC during the

transaction. Thus TRM-packaged peripherals probably require only a single crypto

device to keep pace with simple secure write control transactions.

3.3.3 Securing interrupt Transactions

Only one type of simple transaction has yet to be discussed: an interrupt. The

security requirements for an interrupt arc much like those of a simple write, offering

129

An EnctypttdBus Approach

no opportunity for relaxation. The interrupt ·vector in the 1he PRE.SENT-DATA

must be concealed. and the processor must verify that this,operation is properly

ordered, authentic and unmodified. · 111c peripheral .generating the interrupt must

verify that the ACKNOWLEDGE it feceives corresponds to the PRISENT·DA:J'A

jusLtrnnsmitted. These· requirements are readily. achieved 'Using the:techniques

developed above for simple ·read and simple wiite transactiOOS;: Figute -J~10 shows

the-evcntgraph for a secure intel'l'llpt.

Master

Bus

Slave

interrupt

WlC1or'

Figure 3-JO:·Event 'Graph.for a secure iittetnipt

The master begins by generating transmission crypto bit stream to conceal the

interruJ)t vector and CEOC (Cl). The interrupt vector;is ericipheted (Xl)"and

transmitted in aPRESENT.;DATA. This vector is-mputctt>'the'CEOC'Ca1culation

130

An Encrypted Bus Approach

Master

M-crypto3

M-crypto2

M-crypto1

Bus

S-crypto1

S-crypto2

S-crypto3

Slave

C1

C2

C3

I

N

T

V

E1

°'

T1 T2

E2

'

T3

p

A

C

K

0 1 2 3 4 5 6 7 8 9 0

Figure 3· 1 I: Timing Diagram for a secure interrupt

(El) and 16 bits of the resu]t are enciphered (X3) and transmi~d (T2). At the slave

(processor) the interrupt vector and the CEDC are deciphered (X2 and X4) using

the corresponding slave reception bit stream from C2. A C~DC is calculated locally

on the vector (E2) and the corresponding 16 bits are _col1'lparcd with the transmitted·

CEDC (= 1). If the . two values match, tbF .. jn~~H,U,P! is pr~essed (P) and

acknowledged. The acknowledgment is.effected by enciphering another 16 bits of

the CEDC (X5) using slave transmission bit stream (C3), and transmitting the result

131

An Encrypted Bus Approach

as an ACKNOWLEDGE (T3). The master decirhers the CEDC (X6) using

correspunding master reception bit stream from C4, and compares it with me
corresponding bits of the CEDC generated locally (= 2).

The minimum total time for this transaction is 2T + T (4 bus cycles), based on
I e

the timing diagram in Figure 3-11. This is twice as long as a standard interrupt, but

since these transactions occur so infrequently (they are strictly control transactions),

the added delay and extra bus utilization should not significantly affect system

performance. 'll1e relative infrequency of i111errup1 transactions, like other control

transactions, means that a single crypto probably suffices to generate both crypto bit

streams and to perform the CEDC culculation. Thus the CB ls for peripheral devices

need only one crypto device to handle secure control transactions.

3.4 Securing Aggregate Transactions

This section deals with the problem of securing aggregate transfers. If the simple

secure transactions developed in the preceding section were employed for aggregate

transfers without interleaving CEDC transmissions (including additional bus lines),

utilization of the general purpose or 1/0 bus for these transfers would increase by

66%. If utilization of this bus is very low, this may be acceptable, but in most cases

this increase will noticeably degrade system performance. Adopting interleaving

and adding extra bus lines to carry CEDCs, as was done for simple secure

transactions, is an expensive proposition in this context. This is due to the number

of devices attached to this bus and to the fact that this bus is not synchronous,

making interleaving more complex. The transactions developed in this section avoid

this problem, i.e., they do not significantly increase bus utilization, yet they provide

for secure transfers of aggregates between OMA devices and primary memory.

132

An Encrypted Bus Approach

3.4 .. 1 A Transfer Protocol for Data Aggregates

The transfer protocol developed here takes advantage of the fact that transfers

between primary memory· and these 'storage devices involve data aggregates larger

than a word, e~g., a disk block or a tape record. Rather than checking the validity of

each word as it is transferred, the authenticity, integrity and ordering of the

aggregate transfer as a whole is checked after the transfer is complete. In this

fashion the data arid address in each · read or write transaction in an aggregate

transfer is encrypted, but the transaction carries no CEDC and thus bus utilization is

not affected. Only when the transfer is complete is a cumulative CEDC, covering all

of the transferred data and addresses, transmitted for verification. TI1is CEDC

transmission is effected using a simp1e secure read as developed in the preceding

section.

It might seem that this approach would result in reduced security but a careful

· examination of the protocol indicates that it presents an intruder with no new

opportunities for attacks. When a data ?ggregate is transferred to primary memory

from a storage device, the processor does not access any portion of the aggregate

until the storage device signals that the transfer is•complete and verified. As long as

the unverified data is stored on1y in the locations 'thnt ate; destined to be overwritten

anyway, no real harm results from transferring data, aggre·gates in this fashion.

Address filtering of these unverified writes at the slave, restricting them to the

region(s) of primary memory which are current targets of st1ch transfers, provides

the necessary control. Note that the tenn slave is -used h'ere (rattier than primary

memory) since the filtering and other security functions can be perfonned at various

points depending on systefi'r configuration. In 'SYSTEM" A ·and''SYSTEl\l B these

functions are provided by the CBI in the main TRM and in SYSTEM D either ·the

primary memQry Cijl or the bus _coµpJer CBI (at the .,1/0 bus interface) could
. ' ' . t . . ' - . - ~ •

perform these tasks.

133

An Encrypted Bus Approach

In transferring data aggrL'gatcs from primary memory to storage devices a similar

argument applies. S(1mc storage devices buffer the 3ggregate until the transfer is

complete, since the rate of arrival of words varies depending on bus traffic and may

not be synchronized to the device transfer rate. In this case the aggregate can be

checked before it is written on the non-volatile media. Even if the data is written on

the media before the transfer is complete (as in a non-buffered device), no harm will

result so long as it is possible to identify unverified aggregates on the media.

Incomplete transfers to these devices sometimes occur under normal (non

malicious) circumstances due to transmission timing problems. Storage devices

(buffered and non-buffered) record an EDC with each aggregate to detect these and

other errors. If an incomplete transfer occurs or an error is detected by the

cumulative CEDC, the EDC on the media can be set to an error value as a positive

indication of unverified data. Since storage devices act as bus masters, there is no

need for address filtering here, unlike primary memory.

Thus aggregate trnnsfers to and from primary memory are efficiently and securely

implemented using two types of transactions: simple secure transactions to control

the transfer, and aggregate secure transactions to transfer the data. The general

procedure, for transfers in both directions, is as follows. First, if the transfer is

directed to primary memory, the processor identifies the range of the transfer at the

slave, i.e., establishes the upper and lower bounds for primary memory references,

and resets the slave cumulative CEDC register. Next, the processor establishes the

transfer parameters at the storage device, e.g., the starting addresses at source and

destination and the amount of data to be transferred, using simple secure control

transactions. The storage device then carries out the transfer using aggregate secure

transactions.

As each word is transferred, the cumulative CEDC is accumulated at both the

storage device and at the slave. When the transfer is complete, the storage device

134

An Encrypted_ Bus Approach

reads the slave control register containing the accumulated CEDC (using a simple

secure read). In the case of a transfer to memory, this control transaction must set a

flag at the slave to prevent further data transfers on this.connection \)ntil the CEDC

register is reset for the next transfer. _ This value is compared to the CEDC

accumulated at the storage device, and.the st~tus register at the ~orage device is set

accordingly. (fhe EDC on the non-volatile media is ·voided iftbe comparison fails

or if an incomplete transfer error occurs.) The storage .device sends a secure

interrupt to the processof,_when this procedure is complete and the processor

retrieves the contents of the de.vice status register using a simple secure read.

Readers who are not interested in. tlfe · detai~ of securing aggregate transfers

should now skip to section 3.7- (page 154) for a summary of the highlights and a

review of the conclusions reach~d in this chapter.

3.4.2 Securing aggregate read and as:,gre91Jte iwrite Transactions

The event graphs and timil)g diagrams for an aggregate secure read and an

aggregate secure write are shown ·in Figures l-12, 3-13, 3-14, and 3-:15. The

encryption/ decryption mode and cryptographic error . detection techniques

employed here are essentially the same as those,used in simple secure transactions~

The CEDC calculatjoQ must be made cumulative in a fashion that not only detects

modification of individual words but alSQ dete~ PQSitiqnttl changef) (r'®r~~g) of
' - · r ,, • · " - • -

words in the data aggregate. The method ad.qp.ted ,here-~s: to _chain tbe CFDC

calculations by adding the output of the ;th CEQC calcutation to the input of the

i+ 1st CEDC calculation. This is essentially c.ac .flil~e encryption (using a

shortened DES) applied to the CEDCs.

In an aggregate secure read, the master . begi.ns by . generating transtllission

cryptographic bit streaQl (Cl) in the usual fashio~ The;add~ ~.the· PRFSE~·
' ; ' . • ' , ' . '... .c. ,. • ~,

llS

An Encrypted Bus Approoch

address data

Master

Bus

Slave

Figure 3· l?: Event Graph for an aggregate secure read

ADDRESS is enciphered using 32 bits of that bit stream (Xl) and transmitted (Tl).

The slave deciphers the address (X2) using a corresponding portion of the slave

reception bit stream generated in C2. The ·appropriate word 1s retrieved (A),

enciphered (X2) using 32 bits of slave transmissi()n' bit stream' (C3), and transmitted

(f2) in a PRFSENT·DATA. The data is also added to the corriufati've CEDC (X4)

and a new running CEDC is calcufated on the result (El). ·Afthernaster, the data is

deciphered (XS) using corresponding bits from the master reception bit stream (C4),

and is made available both for storage and for calculatiofi of a ·new: cumulative

CEDC value (X6 and E2). Figure 3-12 illustrates these processing steps.

An aggregate secure write proceeds in much the same faShi6n. ·11fe addr~ in the

PRESENT· ADDRESS· and· the data in the PRESENT·IYATk 11te' enciphered (XI

An Encrypted Bus Approach

·A D

D A

D T.

R A

Master

E2
M-crypto3

C4
M-crypto2

ct.
M-crypto1

r1 T2

Bus

C2
S-crypto1

C3
S-crypto2

E1
S-crypto3

' ' A
Slave

0 1 234567890

Figure 3-13: Timing Diagrnm for an aggregate secure read

and X2), using 64 bits from the master transmission bit stream (Cl), and transmitted

(fl and Ti): The data a1so is fed into the curimJaiive CEDC calcL1lation (X4 and

El). The slave deciphers.the address'and daia {X3 and X5):using the slave reception
, - ,": ~ H; ~1. ,f • . . ; ' .. - ;

bit stream (C2), and transmits an unencrypted ACKNOWLtDG[(r3). Tu·e slave

checks the address against the range registers_(<)) ~nd. if it is·within the prescribed

bounds, the data is stored and fed into-~ cumulatiYe CEDC calculation (X' and

Fl). Figure 3-14 illustrates tllese processing~·

131

--------- ____ ,, __ --------------------------

An Encrypted Bus Approach

address data

Master

Bus

Slave

Figure 3-W: Event Graph for nn ~ggrepJe ,secur~, write
. , ,,, .. _ - --"'l'"'~-: . ..1i,<i-J;\- - ., ·"'· .•! ~ - "~. - ! ':,_-_ •. · ' , r'

The minimum tim~ fdr both ~nsactions is 2T + T (three bus cycles), the same
, . ,_,, •, , .. -- ·,- , . - . l a:>n k::

as for comparable standard transactions, as indicated in Figures3-13 and 3-15. Note

that the CEDC calculation as pertbrmed 6h 64-bitinputs, so it is executed only once

for every two transactions. Since the maximum transfer rate for secondary and T&A

storage devices faJlP)•f~ ,about:ihlS .M~.,1ai'Siiigle 'ctypto.,unit probably

suffices to generate both the crypto bit stream and to calculate the cumulative

CEDC. As it was .. noted, it,1 ,,secti~n }~~ th~t ';-Ji:tslt fl}'~19-:,9CrV.\C~js probably
.l" • , • ·' •• • " - -- • -.-

suffi½ieAt .to .~ure CC?,t1trol transactj~ns,, t}lis, .~isi~ ~, tTT~ ti}~ :GBis for.
_ ~· '; , ' ' ~ 'j " . ' ' · _; • : • ! , ;' ,-, \ , ,• _ 11.)' ; ; .> f_ L" _:, , I • ,

~R:~~pa~k,~ged ~conda~ and T, &!;/~to~e ~~iffr~H:t•~l'~J?~lP ~eyi~ to, Aan!k
botll typ~ of transactio~ ..

- '. .· ', ',· - ' ~ - - -~ . - .

This. aggregate secure transfer ;protocol requiM· an additional two to four control

transactions1, oae to.transfer' the ,cumulati¥e· CEDC; one :to'teset the· CEOC register

at the slave and, in the case of ~'lib-~ mem«y,·two ~s; to

IJlf

An Encrypted Bus Approach

A D

D A A
0 T C
R A K

Master
} · ;

E1
M.crypto2

C1 ; :j- ; ';

M-crypto1 '.· '

ef1 T2 l:r3
{.

Bus

C2
S-crypto1

E2.
s~crypto2

A . ,

Slave

0 1 2 3 4 5 6 7 8 9 0
' ·-, -

Figure 3-15: Timing Diagram for an aggreg3te secure write
, ' ' . ., " ~ : ,, , .

establish the boun,ds of the transfer. An aggregate transfer in a standard system

requil:es one transacti9n for every word tranwerretl.,plu~Jiveoot$ol transactions (as.

detailed earlier). Thus, in a typical 512-byte transfff, , tbe a<dtlitional bus cycles

required by extra control. transactiqns to secure the transfer «>nstitttte a ,negligible

(1.5-3%) increase in bus utilization. for DM~:transfers .. Mpreover, the total time tor

such transfers is not; notice,ably jnq:~ (<1%) si~~; tb~,extrarontrol transactions

require only a few miptll,Se,~nd,s whereas,., 5l2:"bJte. lr~sftlr;takes <>ll the order of

500p.s at 8 Mbits/s.

139

An Encrypted Bus Approach

3.5 Additional CBI Design Considerations

171e cryptographic techniques employed for aggregate secure and simple secure

transactions employ a different bit stream ID for each simplex channel, ensuring

that the generated· bit streams are distinct. In a computer system consisting of n

TRM-packaged (DMA) storage devices, there arc logically 2n connections: one

between each of these devices and the processor (for control purposes) and one

between each of these devices and primary memory (for data transfer). This yields

4n bit streams, two for each connection! However, it is possible to combine the

control connection and the data transfer connection for each OMA peripheral

device into a single connection if both connections are managed by a single CBI at

each end (to synchronize use of the bit streams). Combining these connection pairs

halves the number of distinct bit streams that must be generated, making the CBis at

these devices somewhat simpler and less costly.

Combining the control and transfer connections for each device fits naturally in

SYSTEM A and SYSTEM B where the CBI on the main TRM provides the only

path to both processor and primary memory for storage devices. In SYSTEM C this

simplification cannot be effected since the CBls for primary memory and the

processor are distinct in this configuration. However, SYSTEM C effectively was

eliminated from consideration earlier because of the cost of interleaving CEDC

transmission for processor-memory transactions. In SYSTEM D, the CBI at the

interface to the 1/0 bus can act as the secure interface to both processor and

primary memory for these storage devices in support of combined control/transfer

connections. This approach yields single-connection CBis for secure storage

devices, primary memory and the bus coupler interface to the memory bus. Only

one multi-connection CBI is needed in these designs, the CBl at the bus coupler

interface to the 1/0 bus.

140

An Encrypted Bus Approach

Irrespective of the choice of combined or separate control and data connections,

the above-noted design for SYSTEM D is preferred over one in which the primary

memory CBI is the termination point for the storage device data transfer

connections. The reasoning here is that the primary memory CBI is fairly complex

due to the high transaction rate which it must support. If this CBI had to deal with

aggregate transactions from several storage devices and simple transactions from the

processor, the bus interface would become even more complex. Thus the preferred

design for SYSTEM D involves tcnninating each storage device data transfer

connection at the main TRM. Adopting this design, the bus coupler CBI at the 1/0

bus interface becomes the s!al'e CB I in aggregate transfers, and thus it contains the

CEDC accumulation register and a pair of bounds registers to restrict access on

aggregate secure write transactions. Note that these registers are associated with

only one transfer at a time so several sets of registers are required to support

multiple, simultaneous aggregate transfers.

This is a convenient arrangement since the processor control transactions that

manipulate the bounds registers (to establish the range of transfers) do not actually

go out on the bus and thus need not be encrypted. Under this arrangement,

aggregate transactions are managed at the bus coupler and transformed into simple

secure transactions on the memory bus, thus simplifying the primary memory CBI.

(In cache-equipped systems configured as SYSTEM D, aggregate transfers may

store into or fetch from the cache, so these transactions must be decrypted and

processed at the bus coupler anyway.) Since the cumulative CEDC detects

modification only between the master CBI and the slave CBI, i.e., only on the f/0

bus in this design, it is essential that simple secure transactions are used to transport

this data on the memory bus.

Using this design, the transfer of a data aggregate between a secure storage device

and primary memory involves three distinct phases: transfer on the 1/0 bus using

aggregate secure transactions, buffering in the bus coupler and transfer on the

141

An Encrypted Bus Approach

memory bus using simple secure transactions. On transfers to memory from the 1/0

bus, a small (two or three word) buffer is :usuaHy pr<>'Wided to account for the

asynchronous operation of the two blisses. If such- a buffer were not 'provided, the

time for a store tb memory from a de.vice on the · J/0 ·bos could double or triple

waiting for the memory bus to become available -and, for an actnowled'gmtnt from

memory. In the context of an aggrepte Stti'ltt wrile to memory, if-this buffer ·is

expanded by one word, the (non-secure) ACKNOWLEOOE<ln·the 1/0 bus can be

i~ued before the simple secure write 'is oompletoo on the memory bus~- i.e., the

transactions on the two busses can be overlapped •

.
On transfers from memory to devices on the 1/0 bus, data is usually pre-fetched , . ! . . . :

from memory into small (one or two word) buffers, one per DMA device. If this
• ·, < _· ' •

pre-fetching were not provided, the time for a fetch from memory by a device on
-~ • •' • • • • .-: ,r • • • • • • • •) • • •

the 1/0 bus could double or triple, just as for stores by these devices~ In the case of
< • , • ,"; .,_ '

an aggregate secure read, the size of these buffers need not be increased, .even
' ;;, " ' .: 4 • • •

though a simple secure read encounters a two-cycle delay before the, authenticity,

integrity and timeliness of the transmitted_ data i,s verified. !nstead, the_ pr~fetch can
_, --,:.. :\.·! :., . , "'.,: i ·, ' ' . . , ; ·

begin two cycles earlier than in a standard syste~ so that, t~~ re_q~ested word is

available and checked before the a~~~at~ tr;m~cti~n tales place. If the same
, • - • : ' ~' -. ·, • ·: '. ! . ,. . ; • ! •• .,. '·) • - : ; • - - • • • ;

pref etch time were employed, the data from primary memory might not be checked
. . . ·_.. . _,;·· .c, __ ,- : .. b·_,, , "· , .

before it was transmitted on the 1/0 bus and thus the entire transfer would have to
' • ' ' 1 _,. '., ' : ~ . , • ' i ~ ·· i O ~ ~ • ' .

be aborted if the check on the word failed. Earlier prefetc'.hing is readily

accomplished by the bus coupler given the relatively low transfer. rates of storage
·' ~ '

devices on the J/0 bus. To avoid pre-fetching past the end of the data to be
. - . , . , : ''.)," .:-,,_·; . ~

transferred, one can use the bounds registers provided for aaggregate secure write
' t •• ·, ,: i (~;; '~- - ; .

transactions to delimit the range of the transfer on aggregate secure read

transactions.

An Encrypted Bus Approach

One final design requirement that arises in ali system configurations is the need

for CBls on the general purpose or 1/0 bus to be able to determine when

transactions are directed toward them. 'n1is is a problem here because all aclclresses

in secure transactions are encrypted and can only be decrypted using the proper

crypto bit stream. (Of course, if the system designer elects not to encrypt addresses

this problem vanishes.) It is conceivable that a CBI attempting to decrypt an

address using the wrong crypto bit stream will yield a value that matches an address

at the CBL The multi-connection CBI at the bus coupler would be further

complicated if it had to check the address in each transaction to determine the

connection with which it was associated. There arc dual problems here: secure

storage device CBls need to know whether they arc the target of a transaction

whereas, the main TRM CBI (on the 1/0 or general purpose bus) needs to know the

source of a transaction. Note that the problem is symmetric but not identical for the

main TRM and for storage devices. Based on the data flow patterns encountered in

these systems, if the main TRM is not the source of a transaction it must be the

target, and if a device is the target, then the main TRM must be the source.

lf the arbitration procedure on the 1/0 or general purpose bus explicitly

identifies the next transmitter (the next source), then the second problem is solved,

i.e., the source of each transaction is identified for the main TRM CBI. Moreover,

using this info1mation, the storage device CBJs know they are not the target of a

transaction if the source is not the main TRM. The only remaining problem is

identifying the target of control transactions issued by the TRM. If the addresses in

these control transactions are not encrypted, the target is clearly identified and no

confusion results. In most applications, this will not be regarded as a serious breach

of security, as noted earlier, since only the addresses of control registers are involved

and these provide little traffic analysis information. If the arbitration procedure

does not identify the next transmitter, the CBls on the l/0 bus can generate this

information and transmit it using some additional bus lines. About two or three

additional bus lines should suffice for this purpose.

143

An Encrypted Bus Approach

3~6 System Integration Issues

The preceding sections dealt with the problems of securing communication

involving the processor, primary memory and secondary and T&A storage devices.

Although these problems are central to the design of computer systems that achieve
.~?- • : l .

the security requirements outlined in section 3.2, some additional problems must be
. , ,(

be addressed to complete the design. For example, there also has been no

discussion of how to interface non-secure devices to the 1/0 bus so that they can

communicate with the processor and, in the case of OMA devices, with primary
. , . -, -

/ 0 •.,cl

memory. System initialization procedu'res, responses t~ possible security violations

and enforcing reloading constraints as.c;ociated with archiv~lstpmge are all topics

requiring further attention·. The remainder of this chapte; d.eal~ .w.ith each of th~
. - . ~: .

topics in tum.

3 .. 6.1 Interfacing ~n-Secure DeviG~ o~ ~'.t/9,:,~~ : :

The non-secure devices :attached ID the geoota1 J>tU~16r l/O bus fall into two

dasses: interrupt driven and DMA.: lnrerrul}t dtivet'l devffliirtterface only with ;the

proces.c;or,, generating,interrupt transactions- and1actmg as t:he!target·ofread and write

transactions to device conttol•;registeJS. DMA devites exffibitthe S2tme processor

interface.requirements and fllrther require a means'of transferring data aggregates

to and from primary memory. Secure·and·hGn-secure:devices must-co-exist on the

geeeral purpose or 1/0 bus without riffier being: 'd»f/iised by the · add~

transmitted by the other. In solving th~·inrerface problems itis most desirable to

avoid approaches· that entail -modifying the bug int'elfaces- for non-secure devices.

This is an1mport:ant consideration since thete may be a-number of these devices on
,

the 1/0 bus. and system cost might increase significandy • if ofF-th~elf versions of

these devices cannot be employed.

An Encrypted Bus Approach

First consider the problem of transmitting both encrypted and clear addresses on

the general purpose or 1/0 bus. Since the bit pattern that results from encrypting

an address is unpredictable, it is conceivable that some encrypted addresses will

match the bus addresses of non-secure devices and, conversely, that clear addresses

could be decrypted by secure devices to yield spurious bus addresses. In section 3.5,

two solutions were presented for resolving an analogous problem resulting from the

ambiguities presented by encrypted addresses used on different connections. One

solution, the use of extra 1/0 bus lines to identify the transmitter and destination of

bus transactions would solve the current problem as well, but this would violate the

goal of not modifying the bus interfaces of non-secure devices. ll1e other solution,

based on using clear addresses in control transactions and an arbitration scheme that

identifies the transmitter, also requires that bus interfaces (other than the processor)

know not to perform address recognition except when the processor is the

transmitter.

To avoid any modi ft cation of non-secure bus interfaces, the strategy proposed for

bus address assignments in the monolithic TRM design is adopted here. The high

order bit of addresses will be used to distinguish between secure and non-secure

device addresses and this bit will not be encrypted in any operations on the general

purpose or 1/0 bus. This bit partitions the bus address space between secure and

non-secure devices, so neither type of device will be confused and no modifications

to non-secure device bus interfaces are required. Since this address bit merely

identifies which type of device is being addressed, any traffic analysis information

gleaned from examination of this bit would be readily available in any case. Note

that this bus address assignment strategy docs not interfere with use of either of the

previously mentioned solutions to the encrypted address ambiguity problem as it

exists among secure devices.

145

An Encrypted Bus Approach

U'iing this address assignment scheme, interfacing non-secure interrupt driven

devices becomes fairly simple. These devices · generate standard interrupt

transactions and the processor controls the devices using stdllanl'. read and standard

write transactions: The fuct that the high order bus · add~ bit distinguishes

between non-secure and secure devices means thatthe processor\implidtly indicates

to its CBt whether or not a transaction ~ould be encrypted.· ln:the case of stores by

oon-securc DMA elev~ there is a•ooed·for ~:'flttetiirg.t<rrestrict'~to

designated memory locations. · This is 8<?complished(t1,~ t,~ t)f btiunds ·ttgisfers,

as proposed earlier fbr tbe secure bus·roupk,r;(SBqth the''tnOhotYthic'TRM:dtsigh.

The proc~r must establimi-the mnge of memory 1ocatkms ttfbe rtccessed by rton
securc DMA devices and indieattfthe aflowed:mo1es•of~{fdch 1tindlht1store)
before transfers can-. proceed. · '1f "flri iaroitmtion' rtrehhdttistti1:·ii. en1~oy~: ~that

identifies, the trall5ttlitter: ·-the ·appropriate-· pair 1'fi 100lintlsi•kgateri is,i'tri,ltdfy

selected, otherwise an associative search (based on the address in the tn\rt~)

. may be required.

~.6.2 Systet:n Initialization

ln the preceding sections, secuie operatibn of tlie conipui~r system has been

described in a· steady-state context Wtfon -the "toffi~fiter isyktem' is 'powered up 'or
•) . ' , ' • ·,() , 1 - ':. -• ; !: : : : -.' :,

otherwise 'periodically' initialized, it' is necessary td estaotish. the context for secure,

steady-state ·operation. The po~; of '~iliis''·inrt,alitiition procedure is the

establishment.of secure connectiohs betWeerf ·IBJ main TRM and the· other (slave)

TRMs in the system. The requirements 'ror seciire connection'itiitiatiori here are the

same as in gehera1 purpose commutticatibtl envir6nmertts>i.e., the authenticity and

the time-integrity of each' 'conhection must be estabfiffi&:t 1f1e methods for

achieving these requirements are somewhat simpler' here" due to the· fixed

connectivity patterns of the TRMs and due to the fact that there is no mutual

An Encrypted Bus Approach

suspicion among the TRMs. The initialization procedure involves distribution of a

working key by the main TRM followed by a challenge-response protocol to verify

the authenticity and time-integrity of the connection.

Each slave TRM contains three non-volatile control registers for security

purposes: one contains the master key of the TRM, one holds a bit pattern used in

the challenge-response protocol and one records the bit stream ID pair used by the

TRM in communicating with the main TRM. One volatile register, to hold a

working key, is also included in each slave TRM. The registers containing the

master key and the challenge-response value are both loaded at the time of

rna1111facture, and the master-key register is never changed. However, the registers

containing the challenge value and the bit stream IDs arc modified each time the

TRM is reset (using the bus RESET line). The main TRM contains a collection of

non-volatile registers, including one for its master key, a counter for generating

working keys and a set of registers to hold the master keys and bit stream IDs for the

slave TRMs configured in the system. lhe master keys of slave TRMs are loaded

into the main TRM using a procedure described in section 3.6.4. The main TRM

generates new working keys by incrementing its non-volatile counter and encrypting

(using ECB mode) the result under its master key, generating a distinct,

unpredictable working key each time. System initialization proceeds as follows.

First, the main TRM generates a new working key as described above. Next, for

each slave TRM in turn, the main TRM raises the RESET line while asserting the

bus address of the TRM being initialized, clearing all volatile registers in that slave

TRM. The main TRM then enciphers the working key under the slave TRM master

key (using ECB mode) and transmits the result to slave TRM control registers using

two standard write transactions. The slave TRM receives the working key, deciphers

it (using the slave TRM master key) and loads the result into its (volatile) working

key register. Next, the master TRM uses a standard write to store the assigned bit

147

An Encrypted Bus Approach

stream ID pair to lhc slave TRM. The master TRM chooses these IDs so that each

slave TRM uses a different pair to communicate with the main TRM .. The master

TR M also stores these values (working key and ·bit stream IDs) into the CBI

registers it associated with the slave TRM being initialized

Using its master key. the slave encrypts the contents of its challenge-value

register. yielding a new challenge value. The counter(s) used to generate crypto bit

stream are initialized appropriately, i.e;, the counter for a single crypto device CBI is

set to /, and if n crypto devices are used, their cooot-crs are set to the values 1

through n. The slave TRM then generates a secure.mtemapt, using the new working

key and the assigned bit stream ll)s, indicating that, it is prepared to carry out the

challenge-response protocol. The main TRM ·responds by reading the challenge

value register and then writing back the value. using simple seeure transactions. The

ability of the slave to gen.erate a valid secure interrupt using the new working key

verifies the authenticity and time-integrity of the cormection to the main TRM,

whereas the SUCCC$ful reading and writing ofthe challenge,.value register does-the

same for the slave TRM. When this .prooedute has been carried out for aH slave

TRMs. the system is initialized for Sl.>cure inter-. TRM communication.

3.6.3 Response to Potential Security Violations

The CBls and the TRM operating symem detect potential security violations in

two ways: through mismatches between · calculated · and received CEDCs and

through timeouts. F.ach time a violation is,detected·atthe main TRM. a non-volatile

violation counter is incremented·to record' the occutreilct!.' This type of threat

monitoring is used to detect attemp1S by an- 1nttacter :to subvert the protection

mechanisms by repeated trials. A threfflbkl is established by the vendor and, if that

threshold is exceeded, the processor· wifl 1~t !-06"1f·(refuSt to execute external

software for the client) until the1 vendor intervt11&.f ~ ihttrventi6n may. involve

148

An Fncrypled Bus Approach

an inspection of the system by a representative of the vendor, or it may simply

require network communication so that the vendor is appraised of the repeated

errors. The main TRM may be reset by engaging some form of dialogue with the

vendor, analogous to the system initiali1ation procedure described above.

Violations arc detected at the bus master and ut the slave, dcprnding on the type

of transaction and the type of violation. The violations may resu It from transmission

errors on the bus (accidental or malicious), loss of cryptographic bit stream

synchrony belwcen communicating CBls or because of a transient or "hard" device

malfunction. A simple parity check is used to detect non-malicious errors in data,

addresses or interrupt vectors on bus opcratiuns (bus lines PAIHTYO·J), and it is

expected that this code will rntch most such errors. If a bus operation fails this non

secure error detection code test, the operntion is retransmitted nutomatically nncl the

violation counter is not incremented. (This 011cration retransmission uses a buffered

value of the operation ancl should not be confused wilh the tmnsaclion retry

described below.) Only those "errors" detected by the CEDC or by a timeout are

treated as attempted security violations. The appropriate response to a violation

depends on the type of \'iolation, the type of transaction and whether the slave of

master detects the violation.

First consider CEDC mismatches. r n the case of a simple secure read, this type of

violaLion is detected at the master CBI and the response is to attempt the transaction

again, treating it as a new transaction from the standpoint of the security measures.

Thus new cryptographic bit stream is generated for the retried transaction. f n the

case of a sim1>le secure write or a secure interrupt, the violation is detected at the

slave and the response is to ignore the Lransaction, allowing the master to timeout

waiting for the ACKNO\VLEDGE. For aggrcgale secure transfers (stores and

fetches), the OMA storage device determines if the cumulative CEDC check fails,

and the operating system discovers the violation when it fetches the control register

149

An Encrypted Bus Approach

from this device. The operating system, upon detecting this condition, increments

the violation counter and may retry the aggregate-transfer.

Next consider the response to timeouts. In the case of a simple secure read, a

timeout occurs at the master CBI when either the data or the CEDC fails to arrive.

1l1e response is to discard any cryptographic · hit stream generated for this

transaction and retry the transaction, treating it as a new transaction/ lff the case of a

simple secure write or a secure interrupt, a timeout can occnr at either master or

slave CBI, e.g., while waiting for the CEOC or the ACKNOWLEDGK · ff the slave

experiences the timeout, it ignores the transaction and discards any cryptographic

bit stream for the transaction. If no ACKNOWLEDGE is received, the master will

timeout, so all timeouts on these transactions are translated into timeottts at the

master. The master discard~ the cryptographic bit stream ~iated with this

transaction and retries it. In the case of aggregate ,transactions (fetches or stores).

timeouts are handled as above, noting that the cumulative CEOC is not updated on

the retry.

If the retry fails in any of these cases, it is nec~ry for the operating system to

handle the situation. In the case of simple secure transactions, the processor is the

master and will detect the problem when the retry fails.·· The processor readily

detects failed secure intermpt transactions as weH. 'Jn,-the ,case of aggregate secure

transactions, the secure storage device wiU send a secure intettu,t to the processor to

signal the error. Either way the operating system 6·easily notified of the problem.

The only recourse for the processor is to reset and reinitialize the device

(establishing a new bit stream ID for theCBI) to rectify'f)OSSible cryptographic bit

stream synchrony problems or to detect an inoperative device (identified by its Jack ·

of response to the initialization procedure). If this procedure succeeds it may be

pos.5ible to recover from the point at which the failure -occurred. (An· aggregate

transfer would have to be retried in its entirety.) If the procedure fails it is time to

call the vendor.

150

An Encrypted Bus Approach

3.6.4 Distributing TRMs and External Software

TRM distribution arises in two contexts: distribution of external software by

TRM-packaged transfer storage and additions ofTRM-packaged devices to systems.

The same hardware distribution procedure is employed in both contexts. The

vendor maintains a database that contains the serial number, master key, and initial

challenge-response value for each TRM he has manufactured. Given the serial

number of a slave TRM to be added to a system and the serial number of the main

TRM for that system, the vendor can use this database to generate a bit string that is

entered into the main TRM of the system in question (via a terminal). This bit

string consists or the initial challenge-response value and the master key for the

slave TRM being sold, both encrypted under the master key of the main TRM

(using PCBC mode). When a client purchases a TRM-packaged device to add to his

system, the local vendor representative contacts the vendor computer that maintains

the database described above, transmits the requisite serial numbers and receives

this bit string in response. In this fashion a main TRM acquires master keys for

slave TRMs. This method does not impose long delays as the factory customizes

TRMs for specific systems nor does it require trust in the local vendor

representative!

Physical transfer storage may not be implemented in the encrypted bus approach

because of the high cost or TRM packaging for demountable storage media.

Instead, external software will most likely be distributed via a communication

network as described in section 2.3.4. However, one can develop mechanisms for

distributing external software via transfer storage media. These mechanisms are not

directly related to the encrypted bus techniques developed in this chapter but rather

are based largely on operating system conventions. For transfer storage, there is a

requirement that related files (transfer units) on this media be loaded into the file

system on secondary storage together and that the operating system be able to

151

An Encrypted Bus Approach

distinguish between vendor-supplied (external) software and client-written software.

Moreover, since the client may use transfer media as archival storage for external

software, any reloading constraints associated with files in transfer units must be

checked when loading these units into the file system.

l11c following operating system mechanisms achieve these requirements. All

TRM-packaged, demountable storage media must contain a header (not accessible

by client 1/0 operations) that identifies the type of storage on the media (secondary,

transfer or archival). 171e operating system checks this header when the media is

mounted, preventing any confusion as to what type of files are contained on the

media. Each transfer unit is recorded as a file consisting of a table of contents and a

list of any non-reloadable files contained in the unit followed by the files that make

up the transfer unit. ll1e operating system loads all of the component files of a

transfer unit into the file system together, deleting any existing copies of these files.

(Existing copies of these files arc deleted to ensure the consistency of the transfer

unit in the file system, i.e., to prevent mixing of files from old and new releases of

external software.) The only exception is that any non-reloadable files in the unit

arc not loaded if they exist or if they have existed previously (as explained in the

next section). These mechanisms are quite similar to those employed in the

encrypted storage approach for securing transfer storage (see section 4.3).

3.6.5 Secure Archival Storage Reloading Constraints

In section 2.1 three classes of tiles were distinguished with respect to the

constraints placed on reloading these files from secure archival storage into the file

system on secure secondary storage. A client may be free to reload any copy of a file

(unconstrained), he may be allowed to reload only the most recent archived copy of

the file (most-recent-only) or the file may be declared non-reloadable. There also

may be a requirement that reloadable files be grouped into archival units, so that all

152

An Encrypted Bus Approach

of these files are reloaded together. Archival storage 1s presumed to be

demountable and, as with transfer storage, it is not clear if demountable media can

be TRM-packaged in an economically feasible fashion. Thus the problem of

enforcing reloading constraints may never arise in systems based on the encrypted

bus approach. However, one can outline a method of enforcing these constraints in

the context of such systems. The method proposed here, like the one described

above for transfer storage, is based on operating system conventions for saving and

reloading files from archival storage. These conventions depend on the

maintenance of a table that identifies non-reloadable files and that lists the name

and the time and date of the most recent copy of files archived with that reloading

constraint.

All files on archival storage are represented as archival units using the same type

of format as transfer units, i.e., a table of contents of the files contained in the unit,

the reloading constraint associated with these files and the time and date the unit

was written. (All of the files in an archival unit share the same reloading constraint.)

The operating system provides a mechanism by which external software can direct

(automatically or in response to a client request) one or more files to be saved as an

archival unit along with the reloading constraint for the unit. The operating system

also maintains a directory on each archival storage volume for locating files in

archival units on that volume. A request to reload a file causes all of the files in the

unit to be reloaded, subject to the reloading constraint associated with the unit.

Non-reloadable files are so marked on secondary storage by the operating system

and thus are not subject to archiving.

The operating system maintains a table on (non-demountable) secondary storage

identifying all non-reloadable files and listing the time and date when the last

archival unit containing each file with the most-recent-only reloading attribute was

written. This table is consulted when a unit with the most-recent-only constraint is

153

An Encrypted Bus Approach

reloaded, when transfer units containing non-reloadable files are loaded or when

external software requests creation of a non-reloadable file. If this table is

destroyed, no files with the most-recent-only reloading constraint can be reloaded

and no non-reloadable file can be created or loaded from transfer units. Thus this

table must be maintained in a highly reliable fashion. Section 4.3.4 describes

techniques for ensuring the robustness of an equivalent table used for the same

purpose in the encrypted storage approach and these techniques are applicable here.

The interested reader is referred to that section for further details.

3.7 Conclusions

The techniques developed in this chapter enable a computer system constructed

from two or more TRM-packaged pieces to protect external software from

disclosure and undetected modification. Several important techniques were

introduced in this chapter. 'TI1e stream cipher mode employed here is specia1ly

designed to minimize delay and maximize throughput. In particular, this mode

permits multiple crypto devices to be used in parallel to generate crypto bit stream

at very high rates. The shortened DES calculation employed for CEDCs enables

simple secure transactions to proceed at relatively high rates. Use of a distinct crypto

bit stream for each simplex channel supports asynchrony in secure transaction

scenarios. This is critical to the elimination of authentication checks at the slave

during simple secure read transactions (enhancing throughput) and it allows control

and data transfer connections to be combined. Finally, aggregate secure transactions

reduce overhead on data transfers between primary memory and TRM-packaged

storage devices by transmitting a cumulative CEDC at the completion of the

transfer, rather than transmitting a CEDC with each transaction.

154

An Encrypted Bus Approach

The only weakness of the designs presented in this chapter arises from the limited

traffic analysis that can be carried out on exposed portions of the bus. The amount

of information that is released in this fashion depends on the choice of

configuration, but it is very small in most cases anyway. In SYSTEM A and

SYSTEM Il the impact of the protection measures on system performance is

negligible and the cost of the required CBI s should be acceptably small. For

systems in which primary memory is independently packaged, the performance

impact of these measures is greater, but this impact can be minimized through

appropriate configuration choices, e.g., a cache-equipped, dual-bus design. Thus

SYSTEM D is preferred over SYSTEM C since the dual-bus design minimizes the

cost of proposed bus enhancements and yields simplier CBls. However, the

processor and memory CBis in both systems may be expensive, due largely to the

number of cryptographic devices required.

Demountable media could be developed for these designs, but it is not clear if

such media would be economically feasible to produce, since both the media and its

access hardware must be packaged together. Thus distribution of external software

is best accomplished through secure communication techniques as described in

section 2.3.4 and demountable secondary or archival storage options may be limited

or non-existent. The encrypted bus designs offer greater flexibility than the

monolithic TRM design, but the cost of TRM packaging, including CBfs, may

preclude the configurations that offer the greatest flexibility, e.g., SYSTEM D. The

encrypted bus approach is highly transparent, i.e., there is little or no impact on

most external software and very little software is devoted to managing the protection

mechanisms. By adopting appropriate conventions for assignment of bus addresses,

CBis can determine if a transaction should be repeated outside the TRM and, if it is

repeated, whether it must be encrypted.

155

. Chapter Four

An Encrypted Storage Approach
. ·,

to Protecting ~.xter:.oaJ.Software
. ' ' . ..:. .

This chapter explores in detail an approach to securing external software based on

the use of cryptographic and :protocol techniques tc1'J>roreci 0data' stored outside a

TRM (using physically unprotected· meElia and /devices) •. · In this approach, a

processor and some of the lower levels of' the: storage :hititardty are ·enclosed in a

single· TRM and aH data : in higher levels, of storagt ,~outside· of the· TRM) are

protected by being encrypted and by the use of approt,riatei~ot:ocots; This design

approach allows signiftcant use of off-the--sl\etf equipment :sinee the ·storage and

transmismon of encrypted data is generally 1rtnisparent to the :devices· and the

bus(es). Special equipment is required only at the point where data must be

cryptographically transformed, i.e., at the T'RM-boundary. · These transformations

are etkcted by a secure st9Tage in1erface (SSl) that prOl/idts enctyptiion, 'decryption

and error d1eding servica. ·

• : ' ! .

The boundary between the TRM and physically unprotected storage occurs at

one of three points, as illustrated in .Figures; 4~r(~d-4-2~ '.'i~ SYSTEM E o~ly
· · . , :r. · ,· · , :i; ,· ·· ... · ._ . .

transfer and archival storage is outside the TRM, whereas in SYSTEM F scc~mdary

memory is also physically unp~otected and in SYSTiM. G; ~n·d SYSTEM ·i:1· .ev~n

data in 'primary memory· is subje~ to,. i~t;~:der atbl~k~· . · These ·fou~· ~ystem

configurationscorrespond directly to: tho~ :~re~~t~·d(at ;h~: beginning :pf Chqpte~ 3..
' .· : ·.] ·1 • • . . : ! :··. -~: - . . i' ;

Here too the organization of the processor and primary memory (dual or single bus

system, cache or cacheJess processor) are irrelevant in the first two systems (E and

156

An Encrypted Storage Approach

F). In the latter two systems (G and H) the choice of a single or dual bus

arrangement and a cache or cacheless processor is critical.

~-.

,..._

CPU
s
s
I - . '

P-MEM 5-MEM T&A* other peripherals
','IC .. . · .

SystemE

~ -
CPU

s
s
I -- '

...

P-MEM S-MEM* T&A* other per~ph.erals
.. ,

System F

Figure 4-1: Two System Configurations Employing a TRM and an SSI

157

An Encrypted Storage Approach

s
CPU s

I
•·

, > ~.
. \, -... ~. ·.,- ..

iP-MEM* S-MEM* ~ T&A• other peripherals
i'

Systerri~--

CPU X ; t--ll-----"T------r-------.....-~,.......,.-.-,.-.. _-__ - __ ,--

SSI

S-MEM* T&A* ot~er peripherals

System H

Figure 4-2: Two More System Configurations Employing a TRM and an SSI

158 ..

An Encrypted Storage Approach

As in Chapter 3, successive configurations decrease the number of devices

contained within a TRM, increasing nexibility by allowing more options in

equipment selection and greater opportunity for system change both for growth and

maintenance. Here, since only one TRM is employed, these con figurations allow

for even greater flexibility since devices outside the TRM arc off-the-shelf These

designs make practical the use of conventional media for T&A storage and

demountable secondary storage, overcoming a serious limitation of the encrypted

bus designs. Moreover, these designs use fewer TRMs and encryption chips, thus

reducing overall system cost as compared with the encrypted bus approach. These

improvements are not without attendant costs. The encrypted storage approach

requires explicit software control by external software or operating systems to

manage databases that are patt of the protection mechanisms. These databases

decrease available storage at each level in the hierarchy and require maintenance

activities that involve additional transfers among levels in the storage hierarchies

(resulting in processing delays and decreased bus availability).

4.1 Security Requirements in the Encrypted Storage

Approach

The two major aspects of protecting external software, preventing release of and

detecting modification of information, translate into several specific requirements in

the context of encrypted storage designs. In this context storage devices and bus

segments outside the TRM are subject to physical attack by an intruder and the

semantics of secure operation are somewhat different from those encountered in the

encrypted bus environment. Thus, instead of defining secure system operation in

terms of individual bus transactions, here system security is defined in terms of

reading and writing of storage units, encrypted collections of data that are

independently protected. This higher level specification of security requirements

encompasses attacks launched against vulnerable bus segments and storage devices.

159

An Encrypted Storage Approach

Figure 4-3 shows the simple model · used to discu~ intruder attacks and security

requirements for encrypted storage designs~ , Tbis model applies to all four

configurations shown in Figures 4-land 4-2. Only two operations. R~ad and Write,

are included in this model.. These .operations transfer storage units acl"OS5 the

boundary between protected storage in the TRM and unprotected storage outside

the TRM. Note that several bus transactions are usually :required to etTcct these

higher level operations. e.g., transfer of a disk:sector between primary and secondary

memm;y involves control transactions and a number of read or write transactions to

effect a storage unit Read or Write~ Each operation involves·two values: the storage

unil being transferred and an idenlifier (ID) that designates the storage unit (lbe

size.of the storage unit is either implicit or derivable,from the representation of the

unit.) Different storage units and corresponding IDs areianployed. for each l~I in

the memory hieraJChy.

; ' . ' . . .

In transfer and archival storage the units are collections of (one or more) logically
,, !-, . 'j. .··:

inter-related files that are distdbuted or archived and rel<?a.ded together (see section

2.1). In this context IDs are often character string file names, perhaps qualified by

the date and ~eat which the storag~,ijni.t was cr~d., ,~-secondary memory the
, .; I. - - °'" . - I). - l ' •· ; - .• • . • e,- I • - - ~- • •

storage units are generally disk sectors and the IDs are sector addresses .qualified by
'.... ' - - --·; •·'.

disk identifiers. Files do not fit the definition for storage units at this level in the

memory hierarchy since· individual sectors may be read or written and proc~d

independently of other portions of the file arid since non-file data structures, e.g.,

directories and file maps, also must be be protected. In primary memory there are

two choices for storage units, words and cache lines, depending on procesoor

configuration. Because of the space overhead associated· with each storage unit for

security purposes (described in the follow1ng' sections), cache lines offer the only
. '

practical option for storage units in primary memory. In this context, IDs are

primary memory addr~ truncated to reflecfthe size of cache1ines.

l60

An Encry}'lcd Storage·Approach

TRM Physically.Unprotected Storage

identifier

Read
storage unit ·

identifier
...

Write
storage unit

Boundary

Figure 4-3: A Simple Model for Encrypted Storage Oper"tions

Using the model pictured in Figure 4-3, the vulnerabilities and corresponding

security requirements for Read and Write operations are readily stated. In a Write

operation both the storage unit and its ID are transmitted by the TRM across the

boundary. Unless suitable precautions are taken. the data in the storage unit will be

exposed to an intruder. Hence concealment of data in the storage unit, including

hiding of patterns within and across storage units, is an obvious requirement9 An

9Note that a Write to a secondary or T &A storage device is effected through read bus operations
(directed to primary memory) by that storage device. 'lnus there is an additional requirement that
these read operations be restricted to appropri'ate primary memory locations. · ·

161

An Encrypted Storage Approach

intruder also can effect information release by engaging in traffic analysis, i.e., by

examining patterns of access to physically unprotected storage. The ID associated

with each operation cannot be concealed; it must be available so that devices can

correctly store and fetch the storage units. Therefore some level of traffic analysis is

always possible using this approach. As in the encrypted bus approach, the amount

of information available through traffic analysis is configuration- and application

dcpcndcnt. In general, SYSTEM E provides fewer opportunities for traffic analysis

than SYSTEI\I F which in turn provides fewer than SYSTEM G or SYSTEM II.

Each of these configurations provides more detailed traffic analysis information

than the corresponding encrypted-bus con figuration.

In a Read operation, an ID is transmitted by the TRM across the boundary and

the physically unprotected storage system returns a storage unit. Thus Read

operations release in formation only through traffic analysis. 10 171e remaining

security requirements for Read operations deal with detecting modification of

information and are simply explicit statements of the assumptions usually associated

with normal system operation. Thus the requirements associated with a Read are

simply stated: The storage unit returned in response to the Read must be the most

recent unit written by the TRM using the same ID specified in this Read, and the

unit must not have been modified while outside the TRM. 111is concise statement

embodies the authenticity, integrity and timeliness assumptions implicit in normal

operation.

The timeliness assumption is imprn1ant since it is the foundation upon which

various application-specific consistency algorithms are constructed, especially at the

primary and secondary storage levels. If software executing in the TRM could not

10Notr that a Read from a secondary or T&/\ storage device is actually effected through bus write
operations (directed to primary memory) by that storage device. ·nrns there is also a requirement to
restrict those write operations to appropriate primary memory locations.

162

An Encrypted Storage Approach

be certain that the disk record or cache line just read was the last one written with

the same ID, secure operation would be impossible! However the timeliness

guarantee is not so well suited to transfer and archival storage. For transfer storage,

the guarantee is not applicable since this storage is, by definition, externally

supplied and not modified by the TRM. (The assumption here is that these storage

units consist of programs and associated static, immutable databases.) Here

consistency is expressed by grouping files into transfer units (see sections 2.1 and

3.6.4). For archival storage, consistency is expressed by grouping files into archival

units and by the reloading constraints associated with files. For archival storage, a

timeliness guarantee is required in some cases (most-recent-only and non-reloadable

files) and may be ignored in others (unconstrained reloading).

This perspective of intruder attacks and corresponding security requirements

views \Vrite operations as subject to attacks that release information (directly or via

traffic analysis) whereas Read operations are subject to traffic analysis and to various

modification attacks. More precisely, modification attacks during Write or Read

operations or while data is held in storage are detected only at the time when the

modified storage units are transferred (by a Read) across the boundary into the

TRM. The model does not distinguish when or where a modification attack occurs,

e.g., on the bus during a Write or Read or in the interim when the data is in storage.

This level of abstraction in discussing attacks and defining requirements is

appropriate since the protection mechanisms developed in this section counter these

attacks independent of the fashion in which they are effected. In addition to these

requirements for operations on encrypted data, there is the need to restrict access to

locations within the TRM (primary memory and device control registers) by non

secure DMA devices, a requirement that also arose in the encrypted bus approach.

The next section refines this description of security requirements and presents

techniques selected for meeting these requirements.

163

A fl Encrypted Storage Approoch

4.2 Basic Techniques for the Enc,rypted Storage Approach

A combination of cryptographic and protocol techniques are employed to achieve

the requirements established in the preceding section. Although these techniques

vary slightly depending on system configuration, the basic'concepts involved are the

same in each case. One type of attack, traffic analysis, is ~ntially· identical in both

encrypted bus and encrypted storage envfronments and· is, treated in essentially the

same fashion in both. In both environments the orily way 'to counter such attacks_ is

through 'the generation of suffidenL spurious;'110 operations to con~al real traffic

patterns. Such countetmeasures are readily implemented but the performance
' '

impact of these countcrmea~L;rcs m'- 'mos(coniiguratio~~ 'is so great as t~ effectively
.: ' . ; .· ! l .

preclude their adoption. Thus the. only option is to select a 'configuration which

exhibits an acceptable _level of susceptibility to-traffic analysis. This.shortcoming

, with. respect to ,traffic. analysis is: aftA)ogous to that presented· by the encrypted bus

approach~ but here the, ~vel ,of tr.aflic aftll)'Sis,·~'lil. atailable to an intruder is

greater than ,in .oorresppncjing encryP(ed bus·coafaguratiohs, i.~~ specifte·addresses

are visible. This su~ tllat ,if traffic analysis is viewed as a serious problem,

encrypted bus systems may be preferred over _ comparahle encrypted &tOrage

configu ratiOO,s.

The encryption techniques employed for storage protection inust conceal the data

in the storage unit, provide ~ m~ns for ~iating an, ID with the unit. support
' • : . f

detection of modification of'the unit and 'disti~giiish atriong' ~ccessive versions of

the unit 1l1is last point is very important and d~rves ~rther expl~nation. The
' '

IDs associated with storage units are 'generally reused, referring to different data
1 j •

over time. This. is certainly' true of th~ add~~-· ~sed (o~ primary and ~ondary
' ' - . c ; • ' < f • C . ' .·• _., ,

memory IDs, except· iii the case of write-once media such as video-disks. For
. . . ' . .

' ~ · r ~ • .' ~ \ : · .. , . . ' l . ~

archival storage the problem arises if file naines ·are used as I~. uni~ the names

are further qualified in some way, e.g~. ~~rtte<J\yttlf th~- ti~e a~d date o,f archival

164

An Encrypted Storage Approach

unit creation. Most software is written under the (implicit) assumption that no

malevolent entity will attempt to violate system integrity by taking advantage of [0

reuse. To avoid this problem, IDs will be augmented, where necessary, with a

version tag (YT) to provide version differentiated IDs that uniquely identify each

distinct storage unit over time.

In order to fulfill the security requirements set fo11h in the preceding section, the

following techniques are employed. First, each storage unit is encrypted using a

cipher method employing an initialization vector formed from the unit's ID and VT.

Encryption with an appropriate cipher method conceals patterns within a storage

unit. The use of an IV based on the ID and the YT conceals patterns across unit

boundaries and across versions of a unit. Second, associated with each storage unit

is an error detection code (EDC) 11 calculated on the ID and YT as well as the data

in the unit. This EDC detects modification of the data and, because it covers the ID

and YT, it detects attempts to return other than the requested unit, i.e., a unit with

the wrong ID or YT. Finally, a version tag table (VTT), keyed by storage unit ID, is

maintained inside the TRM. This table provides a reference point for the timeliness

guarantee by establishing the current VT associated with each storage unit. On each

Read, the [V formed using the fD and the VT from the version tag table is employed

to decipher the storage unit. Jf the storage unit is from the wrong location or is not

the most recent one stored at the proper location, the storage unit will be improperly

deciphered and the EDC check will fail.

Using these techniques, Read and Write operations arc extended in the following

fashion. On a Write, the vr for the storage unit is fetched from the VTT, updated

and, with the JD, used as an IV in encrypting the unit before storing it outside the

11This EDC may be a conventional error detection code or it may be a cryptographic EDC
(CEDC) or an authenticity/integrity check field (AICF) depending on the encryption mode
employed.

165

An Encrypted Storage Approach

TRM. 'll1e EDC is calcuhikd on the ID, updated VT and the data, and it is

encrypted and stored along with the unit. The updated VT is stored in the VTT,

completing the operation. On a Read. the VT for the unit is fetched from the VTI

and used with the ID as an IV for decrypting the unit as it is transferred into the

TRM. The EDC is calculated on the ID, VT and the data as the transfer progresses

and, when the transfer (data and EDC) is complete, the retrieved EDC is compared

to the calculated EDC. If the EDC comparison succeeds, the storage unit is the one

requested and it is intact, so processing can proceed securely in the TRM. If the

comparison foils, either the unit was modified or the wrong unit was returned

(incorrect ID or VT) and the unit is invalid, e.g., it may be viewed as having an

unrecoverable error.

Just as the simple model of security requirements in section 4.1 does not fully

capture the vagaries of T&A storage, this simple model of secure operation must be

modified slightly to encompass Read operations for encrypted T&A storage. There

is no need for a VTf for transfer units since these units are not created by the TRM

and are not modified by the TRM. Instead, a version differentiated name is

recorded with the transfer unit for use in decryption. Thus a Read of a transfer unit

involves no fetch of a vn, entry. A VTT is required for archival storage to track the

archival unit containing the most recent copy of each file with the most-recent-only

reloading constraint. A table containing the IDs of all non-reloadable files also must

be maintained. These tables perfonn the same functions as those described for the

encrypted bus approach designs in sections 3.6.4 and 3.6.5. Since some files may be

reloaded from other than the most recent archival unit copy (unconstrained

reloading), the version differentiated name is recorded with each archival unit.

Finally, it is necessary to control OMA access to storage locations within the main

TRM in the case of SYSTEM E and SYSTEM F. The individual (write) bus

transactions that implement Read operations must be restricted to appropriate

166

An Encryrtcd Storage Approach

primary memory locations, otherwise data in primary memory may be destroyed.

This same problem arises in the encrypted bus approach and in the monolithic

TRM design in the context of aggregate transfers by non-secure DMA devices and

the same solution is applied here. The secure storage interface (SST) must act as a

filter to restrict access to locations within the TRM. This applies not only to

encrypted data transfers but also to accesses by non-secure DMA devices, just as in

the encryrted bus approach. For each memory region that is accessible from

outside the TRM, the SSl must be aware of the bounds of the region, whether read

or write (or both) transactions arc allowed and whether the transactions involve

encrypted or clcartext data. Fu1thermore, the SSI must contain intra-TRM bus

traffic, not repeating it onto the bus segment outside the TRM. This restriction is

readily imrlcmcntcd by adopting the convention of assigning bus addresses that use

a bit or two to distinguish between devices inside and outside of the TRM as

described earlier.

The preceding discussion outlines the general techniques employed for securing

encrypted storage at each level, but it does not describe all of the details involved.

For example, it docs not specify pai1icular encryption techniques nor EDC

computation strategics. Reliability measures and recovery strategies have not been

discussed nor have the problems of storing large VTTs inside small TRMs.

Tradeoffs in performance versus security related to the size of VTs and EDCs also

must be addressed. The following sections deal with these problems, specifying the

details of encrypted storage management for T&A storage, secondary storage and

primary memory. Readers who do not wish to delve into these details should

proceed to section 4.6 (page 208) for a summary of the highlights and the

conclusions of this chapter.

167

An Encrypted Storage Approach

4.3 Techniques for Encrypted Transfer and Archival

Storage

The first issue to be resolved 111 filling in the details of secure T&A storage

management is the selection of an encryption mode and an EDC calculation

strategy. Transfer of an archival or a transfer unit between T&A storage and

primary memory takes place at the speed of the T&A storage device, so the cipher

method employed need not exhibit especially low delay, i.e., an extra cryptographic

cycle or two on each unit transfer is acceptable. To avoid the need for additional

hardware in the TRM for EDC or CEDC calculation (an EDC chip or an extra

crypto chip) a cipher method with forward error propagation is employed. Since

storage units at this level are relatively large (one or more files) and space is not at a

premium, precise matching of encryption granularity and storage unit length is not a

requirement. These observations suggest that block chaining with

plaintcxt/ciphertext feedback (PCBC) is an appropriate cipher method for this

application (see section 2.3). A predictable bit pattern embedded in the string at a

known point serves as an authenticity/integrity check field (AICF) protecting all of

the text preceding it. A version differentiated name employed as an IV is implicitly

included in such an AICF.

4.3.1 Version Differentiated Names and the Archival Unit VTT

The next issue to be resolved is the form of version differentiated names for T&A

storage and the related topic of a VTT for archival units. Clients and subsystem

writers often think ofT&A storage in terms of the names of the files recorded on the

media. However, transfer and archival units may contain several files grouped to

reflect logical dependencies among them, so individual file names are not always

appropriate as IDs for these storage units. Moreover character string file names

must be qualified in some way to distinguish successive archival units of the same

168

An Encrypted Storage Approach

file (or groups of files). To avoid these problems, a unique bit-string identifier (a

UID) is assigned as a version differentiated ID for each transfer or archival unit.
; . ,; ' - ' . ! : ' ~

Media used. for trans.f~ or archival storage usually contain a catalog that maps file

names to their Iocation(s) on the media and this catalog is easily expanded to
..
provide a file-name-to-UlD mapping. For archival units with the most-recent-only

reloading constraint; a ·second map1s4teeded: an archival VIT that asspciates with a
_ _ -. , , , : < : ; ~, ·:,_·,: t-~ E : ._ .1'.

file the UID of the .most.recent-archival unit containing •tw~;{Non-re1oadable

fi1es also are inclL(ded in this table, using a distinguished UID to differentiate them.)

The archival VCT is.maintained on,.seconJ;~;~ ~~e:;:;,~abl~~~{;Ak nam~-~~d
Uf Ds for files exitlibilmffthis reloading consfrainf. -...

4.3~.2 Focmat of. TransleJ:-andArchhial Units

Figure 4-4 illustrates a sa(!lple format fo~ an •ten~d media calatog (cootaining

storage unit UIDs) and for transfer ~nd aichival units (the two are; quite ~imilar).

Note that the media catalog is unencrypted ~nd i; non~tanda;d only [in the addition
l ~ 5 ,

of the UID field to each entry. How«:ver, Jciclf.storage~unit{fransfetorarcfiival) is

~twrypted. JheJJniLbegins_with.a header describing the unit and the files contained

therein. The exactJields contained in jthe header will be system- and media-specific
,

,. b.LJl should jncJude..tb.e unit type,-(transfer or archival). header and total unit length,
i

, etc. TypicaJ.·file:,enttles-cWould conta~n the file name, length, reloading constraint
,,

and other attributes included as an aid in (re)constructing secondary storage catalog

entries. An AJCF is ,~pe~_dt!g to,,$! qe~~ec, .Rtqvidirit.l\.~k on it, and the files
, 1 '. , , t I J • :.. .' ' • • ' ~ ' • • • '· _. • ' ••

follow this AICF directly. The entire unit, from header through final AICF. is

encrypted as a continuous bit string usin~ tile PCBC ciph,er method n9te~ abqve. In
• t - / .. • 1' , ~ < ~ ''t (f , j ~. , , • _,. f • C , ,

principle, only this final AJCF is· required b~J., 'since the· -h~ad~~ is· used to control

reloading, the header AICF is in~l~ded .tr> d~l~;/~rrri~\hat\nightresult in ftl~
' ,. ~ • : • • , - , • ', . ; • ' .; ; ~ .t ; -~' ;, ; ; •' ... '

system damage before the final AICF is encountered.
' , '

169

An Encrypted Storage Approach

Media Catalog
·(cleartext)

,,

Storage UnH
(e~rypted)

overaH unit description
• 'f.'•

file name attributes

• • e,; • • •
media descriptive informatidn

'
,. , , ,he$jer AICF

file name location UID

file 1

• • ; ... ') ... --

:

• • • •
• • • •

•
:

;

file n ·
.. ,-:

. ; oWtfall uAit AICF

Figure 4-4: Format of Secure T&A Stor~~- Medi~

Although the format of encrypted T&A media i~- similar for both transfer and

archival purposes, there may be a difference in the· key used to e~cipher the media
• • • • : • -· ' : ~ '- • : > •

If transfer units are enciphered using the master: ~ey ~iated with a TRM, the

units cannot be recorded until the target TRM is known. Demand recording of

170

An Encrypted Storage Approach

transfer units is quite feasible for mail-order sales of proprietary software and could

be carried out at local stores using high speed communication facilities to transmit

the units for local recording. (Network-based distribution of external software is

carried out in this approach just as it was described initially in section 2.3.4.)

Alternatively, transfer units can be pre-recorded under randomly selected keys,

which are then enciphered under the master key of the target TRM. This is

essentially the same technique employed in the encrypted bus approach (for

distribution of TRM components) and it requires only low speed communication

between a local store and the vendor. In this approach the encrypted key can be

recorded, at the local store, in a reserved location in the media catalog, making life

somewhat more convenient for the client. The former distribution method is

preferred since it means that the TRM need deal with only a single key for all

encrypted storage, but the latter method can be employed if necessary.

4.3.3 1/0 Operations on T&A Storage

lt is now appropriate to examine the details of Read and \Vrite operations on

transfer and archival storage unit,;;. Remember that these storage units may consist

of as little as a single file or may be a collection of a number of files. First, consider

operations on transfer units. These units arc Head by TR.Ms to initially load

external software but TRMs are not allowed to Write these units. (The TRM

operating system controls all encrypted 1/0 so it is capable of enforcing this

prohibition.) To Head a transfer unit, the media containing the unit is mounted, the

(cleartext) media catalog is scanned to determine the location and UID of the unit of

interest (or of any file contained therein). This UID is loaded as an IV in an SSI

crypto device in preparation for decrypting the transfer unit. (If transfer units on

the T&A media are encrypted under a key other than the TRM master, then the

encrypted form of this key is retrieved from the media catalog and loaded along

with the UID.)

171

An Encrypted Storage Approach

Next, the unit header is decrypted and transferred to primary memory where it is

checked (using the embedded A ICF and the header length constraint) and uscu to

establish entries in the file system catalog for the files in the unit. Note that transfer

units may serve as archival units for the programs and databases that constitute a

protected subsystem, since the files on these units are non-modifiable, so file system

entries may already exist for some of the file in the unit. lf so, these entries are

deleted when encountered in this phase of the unit Reatl operation, to ensure that

the lile system entries are consistent. However, any non-reloadable files contained

in the transfer unit arc not deleted if encountered. Rather a check is made against

the archival VlT to ensure that any non-reloadable files in the transfer unit do not

currently exist and have not existed previously (and were later destroyed). Non

reloadable files being loaded for the first time are recorded in the archival V1T to

preclude any violation of this constraint. Each file in the unit is decrypted and

transferred to primary memory and entered into the file system in secondary

storage. When the last file has been transferred, the AICF covering the unit is

checked. r f this check succeeds, an OK flag in each file system entry just loaded is

set to TRUE, indicating that the entire unit has been loaded successfully.

For archival units, both Read and Write operations arc supported. An archival

unit is created (a Write) by a call on the TRM operating system specifying the

collection of files that are collected together to form the unit. External software

invokes this operation on its mutable databases (or on the software itself) either

periodically or when requested by the client. The operation begins with the

mounting of archival media. ll1e (unencrypted) media catalog is transferred to

primary memory and modified to contain an entry for the new archival unit (virgin

media is initialized with a null catalog). 111e unit header is constructed, gathering

information from tile system entries for each member of the unit, encrypted and

transferred to the media. Then each file is encrypted as part of a continuous

cryptographic chain and transferred to the media with an AICF appended to the

end, and the updated media catalog is re-written.
172

An Encrypted Slorage Approach

Reloading an archival unit (a Read) is very similar to loading a transfer unit but

the impetus is generally different. Usually the operation is triggered by damage to

data in secondary memory, but it also may result from a program error or a client's

decision to "roll-back the clock" with respect to some processing. A request to

reload any file in an archival unit results in reloading all of the files in the unit (to

ensure consistency). When reloading an archival unit, reloading constraints

associated with the files in the unit must be checked. ll1ese constraints will be

uniform for all files in the unit, i.e., all will either be most-recent-only or

unconstrained. Only if the unit consists of most-recent-only files docs the Read

operation check the UID specified in the media catalog against the UID from the

archival VIT ~rnd require that the two must match. Like the Read of a transfer unit,

any files in the archival unit which already exist in the file system are deleted to

ensure consistency. Thus a Read operation on an archival unit is almost identical to

a Read operation perfom1ed on a transfer unit.

4.3.4 Robustness of the Archival Storage Protection Measures

If the archival vrr is damaged, files with the most-recent-only reloading

constraint cannot be reloaded (since there is no way to determine which archival

unit contains the most recent copy of the files). This type of damage need not

preclude reloading of files that do not possess this constraint since the archival units

for such files can be examined to determine their (lack of) reloading constraints. To

enhance system robustness, the archival VTI' should itself be archived (as a most

recent-only file), but this poses a problem. J f the archival VIT is damaged and its

most recent archival copy is reloaded, the entries for most-recent-only files archived

since the archival VTT copy was created are lost, violating the most-recent-only

constraint! To avoid this problem, updates to the archival VTT must be recorded in

a non-reloadable file, the archival VTT update file, which is erased every time the

173

An Encrypted Storage Approach

archival VIT is archived,. The UID of the current archival copy of the archival

\ITT must be maintained in some highly reliable fashion within the TRM, e.g., in

non-volatile memory.

These measures allow recovery from a wide range of secondary storage failures

affecting files and catalogs. Even file system catalogs can be archived (with the

most-recent-only attribute) and reloaded to facilitate recovery from failures that

damage these catalogs. In fact, these measures arc so effective in promoting system

robustness that they might create an opportunity to violate security provisions

relating to non-reloadable files. A problem would arise if a non-reloadable file

could be created, used and destroyed along with any record of its existence. To

avoid this problem, when a file with the non-reloadable attribute is created, its file

name is recorded in the archival VTT and is marked as a non-reloadable rather than

a most-recent-only file (by using a distinguished value for a UID). Since updates to

the archival VTT arc protected by being recorded in the archival VTT update file

until the archival YTf is archived, this solves the problem of lost non-reloadable

files. When a subsystem attempts to create a non-reloadable file (or when a transfer

unit containing a non-reloadable file is loaded), the file name is checked against the

archival V1T to prevent violation of the timeliness guarantee, and an entry is

created only if this is a new non-reloadable file.

This existence of the archival VTI does not enhance system robustness with

respect to non-reloadable files (If such a file is damaged it is lost.), and it might even

diminish robustness. Jf both the archival VTT and its update file are lost, no new

non-reloadable files can be created or loaded from transfer storage and no most

recent-only file can be reloaded. However the loss of both of these files can be

made very unlikely. The loss of any non-reloaclablc file is a very serious matter

since it precludes use of the external software that employs the file. This suggests

that non-reloadable files, including the archival VTT update file, should receive

174

An Encrypted Storage Approach

special consideration from the file system. For example, such files can be recorded

at two physical locations in secondary storage and have similarly redundant catalog

entries to reduce the likelihood of their loss. Note that non-reloadable files are

expected to constitute a relatively small fraction of all files, and may not occur at all

in many systems, so these extraordinary robustness measures should not have a

significant impact on the system.

4.3.5 Effects on Performance, Storage Utilization and the Operating

System

Now that the description of protection measures for T&A storage is complete, it is

appropriate to consider the effects of these measures on TRM operating system

structure, system perfonnance and storage utilization. The TRM operating system

provides three new (or enhanced) functions: the Head operation for transfer units

and the Read and Write operations for archival units. These operations have been

described in some detail and are fairly simple. The operating system must make

special provisions for creation and management of non-reloadable files, but some of

these provisions would be required even in standard systems. System performance

should not be significantly affected by the proposed measures; operations involving

T&A storage are relatively infrequent, and the cryptographic transformations should

not prove a bottleneck but only add a small delay to DMA transfers involving this

storage. Delays will result from checking the archival VTT during reloading of

most-recent-only files and creation or initial loading of non-reloadable files, but

these are infrequent operations and thus the effect is not severe.

With respect to storage utilization, the protection measures increase the sizes of

media catalogs and T&A storage units, and require two new files: the archival VIT

and its update file. Catalogs for T&A media grow to accommodate storage unit

UIDs whereas storage units grow to include reloading constraints and ArCFs (and

175

An Encrypted Storage Approach

niay require padding for encryption). A 32-bit AICF should provide adequate

protection for these storage units. especially since two sueh ftelds are contained in

each unit lbe UID associated with each unit should be large enough to identify

every archival unit ever, produced by a given TRM and to distinguish every

distribution unit provided for a given TRM. A 32-bit- UtD pennits a vendor to

provide over 4 billion distribution units to a single TRM and supports archival unit

creation at the rate of one per second for over 120 years. The JV used for

encrypting/decrypting storage units should be a full 64 bi~. -SO the 32.-bit UID is
• • ~ • ' ' < • C • • •• • • > •

augmented with 32 additional bits. Two of these additional 32 bits are used to

distinguish among UIDs employed for archival, transfer and secondary storage units

whereas the remaining 30 bits are unique per TRM. (This last set of bits may be

viewed.as an extension o'fthe TRM master-key.)

The increases in space on T&A media due to AICFs and UIDs are negligible

(probably<< 1%) since the;storage units a,r:e files Of&{OUPS of f .. es. Some secondary

storage space is devoted to the archival VIT and its upd~y. file, and the media

containing these tables must be mounted for creation of-non-reloadable files and

reloading of most-recent-only files. Files with these rel~ding constraints are not

expected to be the norm, so the archival VTT and its update file will not be too

large. Thus the effects on storage utilization brougbt about by the measures are not

expecteq to be significant The impact on overall system ro~ess also should .be

minimal. The two new types of se<;ondary storage data. introduced to suppoi:t

encrypted archival storage, the archival VTT and its update file, are critical to

system operation. However. the archival VIT is archiv~ble and its update file is

expected to be replicated in storage and catalog entries, like other non-reloadable

files. Thus. only ff both of these files are destroye·d ~imultant..~sly will the system

suffer irreparable damage.

176

An Encrypted Storage Approach

4.4 Techniques for Secondary Storage

The protection measures presented in this section follow very closely the basic

concepts presented in section 4.2. In this context, storage unit IDs are sector

addresses qualified by the ID of the media containing the unit. The VlT, implicitly

indexed by sector address, contains the VT associated with each sector for every

encrypted secondary storage volume registered with the system. The integrity,

authenticity and timeliness requirements are exactly as stated in section 4.1, with no

exceptions. Thus Read and Write operations (sector transfers) proceed just as

described in section 4.2. Even though performance clcgrndation in storage unit

transfers is more critical at this level than at the T&A level, the same cryptographic

method is employed. Throughput with this method is more than adequate (even

using a single crypto chip) and the added delay is still a negligible fraction(<< 1%)

of total sector transfer time. A 32-bit AICF is appended to each sector, increasing

sector size by about .75%.

4.4.1 The VTT Hierarchy

The major problem with this obvious approach is that it is impractical to maintain

a secondary storage VIT within the TRM boundary. For example, a typical 30M

byte (unformatted) disk contains about 50,000 512-byte sectors. If each VTT entry

consists of a 32-bit VT (assume the address of the sector being protected is implied

by index of the VT in the VlT), the resulting V'IT occupies 200,000 bytes and this

covers only a single volume! The amount of secondary storage devoted to the

secondary storage VTr is not a concern, but it is generally impractical to maintain

this YTT inside a TRM. This space problem suggests that the secondary storage

VlT should be hierarchically organized, with only the root maintained within the

TRM. Figure 4-5 illustrates a 4-levcl hierarchy for the secondary storage YTI.

177

t

RVTT
(level O)

TAM
registers

I
I
I

An Encrypted Storage.·Approoch

MWTT
(level 1)

EDC

• •
•

EDC

I
I
I

non-demountabie .•·
. vorume :

VVTT
~yef 2)

SGVTT
(level3)

.. EDC

•

EDC

•
•

t)er-feQi~H~ed volume·
t' ~ ; ' '

Figure 4-5: Hierarchic Organization ofSecond~ry S!9rage VIT.

I

data
sectors

EDC

•EDC

EDC

In this figure, the arrows.indicate which sectors are oov..ered hy VIT entries in a

given level qf the VIT hierarcky. .Below ;the toot VYf (RYTf) (levtl 0) is the

master volume VIT (MVVTf). (level 1) .which contains one entry for each

encrypt~ volume registered with the system. Eactt vohmJe,tontains a volume Vii

(VVIT) (lev~l, 2) and below it is the·sector group V1T (SOV:IT) (letel 3). Areach

level of the hierarchy a VlT protects the sectors at the next level with the bottom

178

----------·- -

An Encrypted Storage Approach

level (sector group) VTT protecting data sectors. This recursive structure protects

every sector in secondary storage in the same fashion by using the associated AICF

and the corresponding VT recorded in the preceding level of the hierarchy; hence

there is no difference in the protection afforded a data sector versus a VTT sector at

any level.

The root VTI contains the volume ID and addresses of each sector occupied by

the master volume VTT as well as a VT for each of these sectors, all maintained in

non-volatile storage within the TRM. Each master volume VTI entry contains the

ID of the volume represented, the addresses and YTs for the sectors that make up

the volume VTT and other supporting information. At the volume VTI and sector

group VfT level the addresses of the sectors being protected need not be explicitly

stored along with the VTs, but can be implicitly derivable from the index of the Vrs

in the VTTs. Implicit addressing in the volume VTT entries requires the sector

group VTI sectors to be contiguous or to be dispersed about the volume in some

fixed pattern (to optimize seek time). The sector group VTT always employs

implicit addressing since it is usually trivial to arrange for the sectors covered by

these entries to be contiguous. 'Throughout this chapter the assumption is made that

the sector group Vf'T sectors are contiguous in order to reduce the amount of space

devoted to volume VTT entries. (This assumption does not affect the security of the

design.)

This hierarchic structure avoids the need to store the entire V1T inside the TRM,

but it transforms each reference to secondary storage into a chain of references

through the levels of the hierarchy, as shown in Figure 4-5. Consider a reference to

a sector with ID (fully qualified address) vx, where v is the volume JD, and x is a

sector address. The reference chain begins at the root V'JT with the volume JD and

addresses of the master volume Vf'T and the VTs for each master volume VTT

sector. Using this information from the root VTf, the master volume VTf sector

179

An Encrypted Storage Approach

containing the entry for volume vis fetched. (It may be necessary to serially search

this table if volume IDs arc sparse or if entries in the master volume VlT are of

variable size.) ·111c VT and the address of the appropriate sector of the volume VTI

is selected from this master volume VTI entry by examining the target address x.

This volume VTT sector is fetched and the VT and address of the appropriate sector

uf the sector group VTT is selected in the same fashion. Finally this sector group

VlT sector is fetched and the VT for the target sector is selected.

Following this chain of references results in at least 4 sector fetches (perhaps

more depending on the master volume VTf organization) as compared to the single

fetch required in a strndard system. This srn1 of problem commonly arises in

hierarchic address translation and it is usually solved by encaching portions of the

translation tables to shOJ1 circuit the reference chain. In this context encaching

means keeping portions of the master volume vrr, volume Vn' and sector group

VTT in primary memory to reduce extra sector fetches. From the master volume

V'l7', entries that correspond to currently mounted volumes should be cached. Since

the systems of interest are small and master volume VTT entries are small (about 64-

256 bytes depending on the capacity of the volume), these entries (perhaps 2-5)

occupy a negligible percentage («1%) of primary memory. At the volume VTI

level the amount of information to be cached depends on the size and number of

mounted volumes and the size of primary memory. For example, small and

medium size volumes, e.g., 4M-byte floppy disks through 30M-byte fixed disks,

have volume VTfs that occupy about 1-4 sectors, so it is probably feasible to cache

the entire volume VTT for such volumes. However, for large volumes, e.g., 300M

byte demountable disks, the volume vrr is very large, about 36 sectors, making it

likely that only po11ions of this table will be cached at any point in time.

Proceeding to the bottom of the hierarchy, sector group VITs will range in size

from about 64 sectors for a small disk to about 500 for a medium size disk and up to

180

An Encrypted Storage Approach

4000 for a large disk. Thus it is usually infeasible to cache the entire sector group

V1T of a volume in primary memory. In fact, it is often inappropriate to cache

whole sector group VTT sectors since, in the worst case (if each sector in primary

memory comes from a location not covered by any other sector group VTT sector in

the cache), there must be one sector group VTT cache entry for each sector in

primary memory. This worst case behavior could result in the sector group VTI

cache occupying 50% of primary memory and thus motivates caching only po1tions

of sector group VTT sectors, e.g., 8 word pieces instead of full 128-word sectors. In

this fashion only about 8% of primary memory is required to cope with even the

worst case scenario frn the sector group VTT cache. Overall, the caches for the

master volume VTI', volume V1T and sector group VTT may occupy about 10% of

primary memory if organized in this fashion.

4.4.2 1/0 Operations on Secondary Storage

Using this VTT hierarchy, Read and Write operations proceed as follows. On a

Read, the volume ID and sector address are combined with the sector VT to form an

IV for decrypting the target sector. When the sector has been decrypted, the AICF

following it is checked against the computed value and the operation is aborted only

if the check fails. On a Write, the VT for the sector is fetched from its cache,

updated and used as above to form an IV for encrypting the sector and the trailing

AICF. When the Write completes, the VT cache entry is updated and, at some later

time, the VTI in secondary storage is updated. These descriptions apply to

operations on all sectors and the V1T updates propagate up through the hierarchy.

When a volume is mou1:ted, the master volume \TI is Read and searched for the

entry for the mounted volume, then this entry is stored in the master volume VTI

cache. If the entire volume VTI of the volume is cached, it is Read, otherwise

sectors (or sub-sector portions) of the volume V1T are Read as needed.

181

An Encrypted Storage Approach

Rcfcrc11ccs to data sectors proceed as noted above if there is a hit on the sector

group vrr cache. A miss on this cache results in !lushing a cache entry, if none are

available, and the appropriate sector group VTr sector is Read, using the volume

Vn' cache for the Read of the sector group VTf. If a modified sector group VTT

cache entry is flushed, it must be written back. 'This entails a Read of the containing

sector group VlT sector, an update of the sector (which is noted in the VOLUME

\'TT cache), and a \\'rite of the sector. A miss on the volume VTT cache is handled

,malogously, but will be simpler if volume VTf cache entries arc whole sectors

rather than sub-sector pieces. Periodically, or when requested by the client or

external software, all modified entries in the VTT caches can be flushed, starting at

level 4 and proceeding through an update of the root in the TRM, producing a non

volatile, consistent version of the VTr hierarchy in secondary storage. Until this

flushing operation takes place, changes to files (in particular, modifications to non

reloadable files), are not permanently recorded in the VTTs and thus may be

undetectably undone by an intruder.

This VTT hierarchy is organized solely around the physical media without regard

to file system structure, thus demonstrating that these techniques can be employed

independently of such structure. However, it may be advantageous to integrate the

hierarchy with the file system structure. For example, the sector group VTT VTs

can be integrated with the tables used to map sectors of a file to their secondary

storage locations, and the volume VTT can be extended to cover these integrated file

maps/VTTs. The file maps will grow by about 200% (due to the presence of VTs)

but since the cache space devoted to such maps is often on the order of 1.5-2.5% of

primary memory, the cached level 3 VTs will require only 3-5% instead of the 8% of

primary memory noted above. Integrating the sector group VTT and file map

caches takes advantage of the logical locality of reference implicit in file structure.

In this way, whenever a sector can be directly referenced, by vi1tue of its file map

being in the cache, its VT also is present, improving the sector group VTT cache hit

182

An Encrypted Storage Approach

rate and simplifying the lookup procedure for sector group VTT entries! 1l1e only

drawback to this approach is that the volume YTf becomes larger (about 50%) since

it covers more data (file maps as well as level 3 VTs), and thus the volume VIT

cache grows or its percentage coverage decreases.

4.4.3 Performance, Robustness and Storage Utilization Issues

It is now appropriate to evaluate the impact of these secondary storage protection

measures on robustness, storage utilization and performance. In secondary storage

five types of sectors arc distinguishable with respect to their impact on system

robustness: reloadable files and catalogs, non-reloadable files (including the archival

YTT update file) and their catalog entries, sector group VTrs, volume VTTs and the

master volume VTf. The first type is present in all systems, the next arises from

encrypted archival storage security measures and the last three suppo11 encrypted

secondary storage. llrns the question is how damage to the last three type of sectors

affects the other sector types, in particular how it affects non-reloadable files. A

reasonable goal is to prevent the loss of any single sector from causing an

irrecoverable loss of data, i.e., loss of a non-reloadable file or its catalog entries.

Damage to a sector group VTT sector results in loss of the 128 sectors covered by it.

This may include ordinary files, catalogs and non-reloadable files. To reduce the

likelihood of losing a non-reloadable file, the replicated non-reloadable file sectors

and catalog entries should be covered by different sector group VTT sectors.

Integration of the level 3 YTs with file maps makes this easier because of the

relationship between files and level 3 VT sectors.

Damage to a volume VTT sector results in the loss of 128 sectors of sector group

VTT, or of file maps and level 3 vrs, and, transitively, of 16,384 file and catalog

sectors. This is a significant loss of information and makes it difficult to guarantee

that the replicated copies of a non-reloadable file and its catalog entries are not

183

An Encrypted Storage Approach

covered by a single volume VTT sector. Since only a few sectors (1-64) are devoted

to a volume YTr on each volume and since 1/0 on these sectors is re]atively

infrequent, it is feasible to replicate these sectors on each volume. A similar

argument applies to the master volume Yn', which is both smaller and more

important in its coverage. This replication requires slightly larger master volume

VTT entries (to contain the addresses of both volume Vn's on each volume) and

more non-volatile memory in the TRM (for the dual master volume VTT'

addresses), but these arc very small increases in storage utilization. These added

precautions yield a secondary storage system in which no single sector failure can

result in an irrecoverable loss of data.

These protection measures have only a very slight effect on secondary storage

utilization. Together, the space occupied by each sector group VTT (or its

integrated file map alternative), volume VTT (including backup copy) and the per

sector AICFs amounts to about 2% of a formatted volume. The space devoted to the

master volume VTT and its backup copy should constitute a negligible fraction

(<<1%) of the storage on a permanently mounted volume. The caches for level 3

VTs require about 3-5% of primary memory if the VTs arc integrated with file maps.

TI1e percentage of primary memory devoted to the volume Vn' cache depends on

the size of memory, the capacity and number of mounted secondary storage

volumes and the fraction of each volume VlT required in the cache for acceptable

performance. For example, the volume ¥n's for two 30M-byte disks occupy about

2% of a 256K-byte primary memory. Thus a total of about 4-7% of primary memory

may be dedicated to VTI caches. (The master volume VTT cache is a negligible

contributor to this total.)

System performance is affected in several ways by the secondary storage

protection measures. On each Read of a file or catalog, there is a delay resulting

from the transactions required to control the secure storage interface (SSI), to fetch

184

An Encrypted Storage Approach

the AICF word and to decrypt the last two data words in the sector. Controlling the

SSI involves loading the sector address, volume ID and VT to form the IV, and

loading the primary memory sector frame address and access mode (read or write)

to restrict DMA access. The bus transactions required to control the SSJ can be

carried out during the accessing of the secondary storage device before the data

arrives, given the average access time of secondary storage devices. Thus these

transactions do not contribute to delay, they only increase bus utilization slightly.

Moreover, the decryption of the last two data words can be overlapped with the

fetch of the AICF word so the total delay experienced is the maximum of these two

operations. For unbuffered secondary storage devices, the AICF transfer requires

greater time, but it is only about 3µs for a 10 M-bit/second transfer rate, a negligible

(<<1%) increase in total Read time.

If level 3 VTs arc not integrated with file maps, misses can occur on the sector

group VTT cache, resulting in significant delays. Such a miss requires locating a

cache entry to nush, updating the secondary storage sector group VTT sector if this

cache entry has been modified (this requires a Read and a Write on the relevant

sector group VlT sector) and performing a Read on the sector group vrr sector

containing the required VT. Thus either 1 or 3 extra secondary storage operations

are required on a miss and this could noticeably degrade performance if the cache

did not achieve a high hit rate. For example, a 90% hit rate might result in a 20%

delay on secondary storage 1/0 and a 95% hit rate yields a 10% delay. This strongly

motivates the integration of level 3 VTs and file maps, since such integration

eliminates VT cache misses at this level. (The only way a file can be referenced is if

its map is in primary memory.)

Employing this integration strategy, cache misses at the volume VTr level occur

at the point when file maps are Head. For many small and medium capacity

volumes, the entire volume VIT can be cached, completely avoiding misses at this

185

An Encrypted Storage Approach

level. Even if caching of whole volume VITs is impractical, the volume VIT cache

should accommodate a very large percentage of the volume VIT, achieving a very

high hit rate and minimizing the delays due to mi~. Only in the case of large

volumes is there likely to be any significant delay.due to volume VIT cache misses.

This suggests that very large volumes may best be handled by dividing them into

multiple virtual volumes like the mini-disks employed by VM/370. The time

required to fetch the master volume VIT entry for a ,volume when it is mounted is

easily absorbed in the manual mounting process. It is very di:ffieult to estimate the

performance impact of the additional secondary :storage 1/0 required when a VIT

flush operation is undertaken, especially since. dtt frequency of ·such operations is

appJication- dependent However it ,seems r~able · to assume that such

operations are not so frequent as to significantly affect ~nee . .

In the interest of improved performance and ent,anced robusmess, some bubble

memory storage can .be included within,the,'fRM;. The;entire mastet volume vrr
and the archival VIT update file .can Te$ide .in• this.stomge, elilninadng the-need' for

a--permanently mounted vDkllh!e! a:mtamin1r thescj tables: c:JM~ver~· 'the' complete

volume;VTTsand soctor,group,,VFfs!for sewmF..,..nted V~ctm lie~~d in

Sitt.Cb: st~,ag,e. :_ This wowd .-~limioote :seaondU"J ,stdt!age; tra11sfers related· to VIT

management~ ,\\then ai vohlme risf initially fflffllhte(f afWt ,befijre:it 1is demounted:

Dttbbk ,n1emory 8¢CeSS,.time is- fast enough to tekh letel:3 VTu:.ftoil'fthis cache

instead oLt-om, prtmary- memocy;.'.(for non-bubble· memory secondary storage

elev~ .. : · This c:onfisuratiom;option: is in• ao way ·.esserttiaf, fol tilt! design presented
above. but the-availabilitfof high density (4 ~bit~le.ltff!iR~chips rnales:Jta::

feasible means of enhancing system performance and rtNaMll)t: · ., · · ·; ·

An Encrypted Storage Approach

4.4.4 A Note on the Size of Secondary Storage VTs

Throughout this section the VTs have been described as 32-bit quantities. This

distinguishes about 4.3 billion versions of a sector. For a data or catalog sector, a

maximum rate for write-backs is probably on the order of l every 10 ms for a disk

(assuming a transfer rate of about lOM bits/s, an average latency of about 9 ms and

some system overhead). At this rate the VT of a single sector could be exhausted

(wrnp around) in about 1.36 years of continuous write-backs of that one sector. ll1is

rate of use is obviously much greater than would be expected in normal operation,

perhaps by an order or magnitude, yet it is difficult to estimate a reasonable write

back rate. Thus some provision should be mack to accommodate the possibility that

a VT will be exhausted in the lifetime of a secondary storage volume. The method

should provide for an orderly transition that allows the data recorded on the volume

to be used as though nothing special had happened.

The proposed method involves two additions to master volume V1T entries and a

new value to be held in non-volatile memory in the TRM. The master volume VTT

additions consist of a field to track the maximum value attained by any (data sector)

VT on the volume and another field to provide a volume UlD used only for

cryptographic purposes. The new value held in the TRM is a global counter used to

generate these volume UIDs. The UIDs are used in forming the IVs employed in

cryptographically transforming sectors on the volume, instead of simply using the

logical volume ID described earlier. When a new volume is registered with the

system the global counter noted above is incremented to generate a UI D for that

volume. When a threshold is reached on the per-volume, maximum VT value

(indicating that a VT on the volume may soon be exhausted), the global counter is

again incremented and the client is noli lied that the volume must be copied to a new

volume. This new volume will be assigned the same logical volume ID used for

addressing, but it will have a different volume UID. (The old volume later can be

recycled into a new volume using this procedure.)

187

An Encrypted Storage Approach

· In copying the old volume to the new volume,·each sector is re-encrypted using

the IV formed from the new volume UID, the sectofi ~ddr~ and a re·in,it,ialized

sector VT. The volume UID field in the master. volume VJT. entry for the new

volume is updated after the copy operation is oo.mpleteJilld,tias been checked. The

64-bit lV used throughout this.chapter is divided intofour q~Jds here. Two bits are

used to distinguish among the Jour storage lff:lit Jypes: transfer.:units, archival tmits,

sectors and ~m;hc lines (see section 4.3.5),. Tw.enty_~cafe. devoted ,to, the se.ctor
' . ' ' . ·. . .

address (nllowing_ up to)M sectors on. a sj1J8le. volume) :and 32 bits ·are devoted to
"< •• • • • >. ' .• , . • ., . I

the sector version tag. n,is_ leav~s, l2 bj~. for.the,)!O~J~IO, ~pJX)fting·over 2K

volume versions qveJ .the lifetime of the s~~- ,!!~WC!!, ~l .wa~ ,1'Qte9, ai,ove that it

would take about a year to exhaust ~e sector VT~ f~ .a.single ·v-9~u~at a fJlaximum

rate, this sho~_ld prove to be an ?degµ~~ ~HIJ\~i9~,vHIUnt~J~~

4.5 Techniques for EacryptedPr.imary.,Memory

The proi~tion 'measures -d~VeJoped for encrypted primary ~emory are similar, in

many respects, to those described in section 4.4 f6r ~nd~ry ,storage. The integrity,

authenticity and tirneliniess con'st~riints for enc~pt~ prima~ m;~ory ;re exactly

those stated in section ·4j a~d ,imposed at the secondary storage '1ev~l. In primary
' ·" ,·•

memory the storage u~its are cache lines and tile IDs ·a~ th~' primary' memory

addresses of these lines. · (It will become ·d~r iii tlii~ :~ctio~ why ind.ivid~al words
"! ·, ; • • l . ·, ,· . . . •' , .' • .. :•,f'/ t _,: '.; .;·: >· •.I":,_ . ./'.-; .. ~' { ; ; I ; • :

are too small to be treated as storage units at this level.) Using the model developed

in section 4.2, modifications to a storage unit are efT~ted by a Write of, the entire

unit. Thus orily write-back caches are applicahtthere, sin~e w'rite-~llrough caches
, •. • ; • '. 0 • ~. ; ; ; • • •• - ' ~ ; ~-; ; __ ·1 .• ~ :: . , : . . . ' .

effect modifications through partial updates ~f cache Jines .. When. a storage unit is
. . • I - ,, .. ' ~ ' ' . I • • • + ; I '. < • • ; ' ,:)

transferredfrdm T&A storage to secondary storage, it'is transformed from the T&A
~ ' • C •• , '-·. i'· :i' ;,_ 11. ,.i~~ \~~ ·('_;!':Ii. ·5:'!; ;.. ! ...

representation to the secondary storage representation. The transfer or archival

storage units is decrypted, its AJCF: is ~becked, il~'-divid~ i~
7
~rs a~d re-

;. . ~ ; i ; ; T : • ,--; , , /

188-

An Encrypted Stor:age Approach

encrypted wiUI an AICF for each sector, and the relevant s~ondary storage VIT

entries are up<iiltt!d .. The._,iµ;verse;of th,~;tHHl:•rmatioa,1~ place :when files are

archived.

Analogous procedures take place when an encrypted sector from secondary

storage is transferred to primary memory and transformed into encrypted cache

lines or vice versa. Con figurations suclta:[5Y6i'tD1 ff1}itWide 1i\:IU1tt1r&l\poit\t,' -~

bus c;ouJ>le_r, (or: Pfftor~ini ·!h~s~ ~an~fpW}a~\~•; ~~~, ~9nfiguratioos su~ as

SYST:E,~~._9, a_r~ uryf~~~bl,~,,S\flC,~ tl)e~iPH},yldt;iUn~qi~g,~~_'1?~(<.PMA dcvi+es)

to, rrima,ry memory .. ,:1J¥?J?t,inS,)~e fQ~weri c91lfi,1;+r~t~ ~~e ar~!. tw,o .~ure

storage iri_terfaces (SSI~) jn th~.!~¥;Rn~ ~n~erf~~&tf) JbF}/Q,l;m~ &nfi~the ptller to

the me~ory bus. llle ,,o .bus ~SI ~oqtrqls ~
1
an4-'Wr,~ 9,P~rations qn T &A and

seco11dary storage_ units ~d _re.st~ic~;~C~S& to p,riJPf,rf -~f;!ITlQJfY b)i p;v~es Qll lh~t
bus, wp~~ea~ ,th~ Il)emo(y bµs S_SI rpanages ~ w~)iJl\iPTl§Jo/,:W.:illlaFY ,memory.

, I ~ ¥- _ • • •• • ~, • , , ' • ·' , ' - ' " • • I _.,, .

Fo~ reasons of d~fign ;~~mpJi<;ity, ~,\ da~1\nJ1rt111:~:,W~~,~ ~5~. inpuding

data stor~d and. fetched by: non-secure OMA devices under the. oontwl .of the 1/0 . . - ' \ .-: ,: . . ' . ·... •, . - . ' .

bus SSL

The VIT ·for encrypted primary tnemory is· iniplicitty: add~ed by IO and 1t

contains one entry foreach cache 1ine i1fprirtfary'tnemoi-y. ;Since,-in configurations

such as SYSTEM H/tftere is essentially no stotage1withi111aTRM; a hierarchic VIT

structure and VIT caching may be approprnfttf here, fut>~ ·Despite these many

similatities to encrypted secondary stonige;' tliere are ·sevetaf'aspects of.encrypted·

primary memory that distinguish· it and 'wMch ·warrant special consideration. For

example, storage units· (cache Ii~) art' so smruJ:iliaH.ne 'spate'tlevoted to Vfs and

AICFs constitutes a significant fraction of the st~ iifethis lever Special efforts

are required to red~t~ this overhead 1to .a~cep~~le,,\e~ls •. ,i.Alsc? transfers of cache
.- . . . - . ~

lines across the TRM boundary (through the .memory bµs SSI) must take place at
' - . . '. ; '··· -

very high speeds and deliver fue reque~ecl 4ata, with minimal addjtional delay. To
,• I '. ; ._ 0, - . ' . ' '. - '". •

189

An Encrypted Storage Approach

meet these stringent performance constraints, special care is required in the selection

of cryptographic techniques for concealment and detection of modification. The

following sections address these problems in describing encrypted primary memory

techniques in detail.

4.5.1 Downsizing and Storage of EDCs

ll1e EDCs (AICFs) and vrs employed for T&A and secondary storage are 32-bit

fields. (Throughout this section and the next the term £DC will be used generically,

encompassing AICFs and CEDCs as well as conventional EDCs.) The space

devoted to EDCs, VTs and various auxiliary data structures, e.g., T&A storage unit

headers, amount to less than 2% of the space occupied by the storage units being

protected (even less for most T&A units). Cache lines for the systems of interest are

only 16 or 32 bytes long, so 32-bit EDCs and YTs would require primary memory to

grow by 25-50% to accommodate these fields! Although the per-bit cost of memory

is declining rapidly, the storage overhead for VTs and EDCs would unacceptably

increase system cost in most cases. This overhead can be reduced only through the

use of smaller fields for the EDC and VT, e.g., cutting these fields in half. (The

alternative of larger cache lines is rejected since the proposed 32-byte cache lines are

already quite large for these small systems.) In the encrypted bus context it was

suggested that a 16-bit EDC might be adequate for most applications and the same

argument can be applied here. With such a small EDC, it is necessary to limit

automatic retries when an error is encountered and to establish an error threshold

which, if reached, causes the system to shut down and requires intervention by the

vendor, as proposed in section 3.6.3.

It may appear that the adoption of a 16-bit (halfword) EDC for cache lines

engenders a drastic response to errors but this response is justifiable. Note that this

FDC does not replace the error detection and correction code usually employed

190

An Encrypted Storage Approach

with solid-state memories, so only errors that -evade that code will be dealt with by

this security mechanism. This suggests that errors detected by this security are likely

to be the result of tampering attempts and thus warrant a.severe response.· With an

appropriate choice of error th.reshold it is unlikely that a non-malicious client wiH

ever encounter this response. Since encrypted. primary memory, like an encrypted

bus. provides only a temporary repository for data, halting and restarting the system

in the event of an error should not result in a significant loSs,of data.

One other aspect of EDC management for encrypted primary memory deserves

mention: the location of'EOCs. 111e mapping of cache,.lines to primary memory

locations is very simple because the length of lines is normally an integral power of

two. Any effort to append halfword EDCs to lines would require either a much

more complex mapping or some form of :noo'.'Strmdard ,primary ·memory interface,

e.g., one in which the EDCs were·implicitly addressed(a~ do notoccupy a portion

of the "normal" primary memory address space). SiDCe one of the motivations for

configuring systems of tbis sort is the ability to use "off .. thC"'.!shdf'·primary memory.

this seems like a bad approach. The alternative is to group .all the 'E0Cs into a

contiguous table in primary memory and to fetch the appropriate EDC using a

separate bus transaction. This approach.generates somewhat more•bus.traffte and

delays delivery of the E[)C, but in a cache-equipped system: the additional bus

traffic is not a major concem and thejncreased .ddar is,notjmportant due to other

timing constraints (see section 4.S.4). Thus EDCs will, be,coJl~d. together· in a

table in primary memory.

4.5.2 Downsizing of VTs: The Cryptogr,apbi~ Reb.-sh Process

Reducing the size of Vfs is a more 'C6mplex task. The vr must not be allowed to

wraparound under a single key lest security weatcrt~ result (see section 2.3). The

VT for a cache'iine· is: updated wbenettr a '~cite miss octaits ·that results in the

191

An Encrypted Storage Approach

eviction of a modified instance of that line (a dirty miss). The worst case scenario for

YT updates proceeds as follows. A modified cache line is evicted (a dirty miss);

then a clean miss occurs (no write-back) on the line just evicted and, finally, a dirty

miss occurs that evicts the line in question. This series of activities provides the

minimum time between updates to the VT associated with a single cache line. A 32-

bit VT would wraparound in several hours under this worst case scenario and for a

16-bit VT the time to cycle would be less than half a second, based on the operation

timing figures developed in section 4.5.4. Of course this worst case scenario

generates di11y misses on a single line much more frequently than one would expect

to encounter in practice, but the very short wraparound time for a 16-bit VT poses a

serious problem even for normal operational environments.

To avoid this problem, it is necessary to change the key used to encipher cache

lines, before a VT can wrap around, since no weakness results if the duplicate VTs

arise under different keys. Since there are 256 distinct keys for the DES, there is no

concern over running out of keys based on any practically attainable rate of key

change. Thus one key, the TRM master key, is used to protect secondary storage

units and, in some systems, T&A storage units, but a succession of random keys will

be used to protect cache lines. The transition from one cache line key to the next

must be carried out in a fashion that does not disrupt system operation nor degrade

performance. The mechanism developed for this task can be thought of as a

continuous cryptographic refresh of primary memory.

Cryptographic refresh is an activity (independent from the calculations taking

place at the processor) directed by some control logic included in the memory bus

SSI. It uses the crypto chips in this SSI along with some additional registers and a

cache line buffer. Two working keys are identified in this SSI: WK and WK .
I 2

Before the cryptographic refresh process stai1s, all cache lines in primary memory

are encrypted under WK/ The process begins with the generation of a (pseudo)

192

An Encrypted Storage Approach

random value for WK . A register, which tracks the progress of the process, is set to
2

the address of the highest numbered cache line in primary memory. The Vf for this

line is rettieved from the VIT, the line is fetched from primary memory and

decrypti!d and its EOC is, fetched, decrypted and' thecked: Assuming no error is

detected, the line is encrypted under the. next working 'key (using a VT of l) and

stored in primary memery, the EOC is encrypted and· sto,ed, 'and the VlT is

updated to reflect the reset Vf. This pr~ continues, through ·,an of primary

memory until every.· cache line b~s been transtonne<i; comptetlng a pass of the

refresh. Then WK is set to WK and theprocess,begins again:
I 2

At any time during this process, it is possible to determine which of the two keys
,, ..

A;• ; ;-

held in the crypto chips should be used to encipher/decipher a cache line by

referring to the register that tracks the progress of the refresh pass. If the requested
• ti:

cache line is the one currently being processed, it is already buffered in the SSI (in

the clear), so it is immediately available and the qu~ion of which key to use is

avoided. This refresh process operates at the lowest priority with respect to use of

the crypto chips and the memory bus, pre~empted by memory requests from the

processor or from the l/O bus, thus it should not perceptibly affect system

performance. The critical timm~ requirement for this process is that a refresh pass

must complete before vr. wraparound occurs,.. Equation 4.,.1, expr~ the

relationship between the mean time between cache write·backs (MTBWB) for a

single line. the time required to refresh a cache line (7) and th~ amount of primary

memory (P),, expressed in cache. lines, that. can be refreshed before a 16·bit Vf

wraparound occurs. {nte .9 factor arises from the ~vatiqn that the memor:y bus

and its SSI are idle. and thus available to the 1;eftesh. process, about 90% of the time

in systems configured in this fashion.)

Prf < .9 • 216 • MTBWB (4-1)

193

An Encrypted Storage Approach

The refresh of a cache line involves a Read of the line followed by a Write of the

rcf'reshed line, 1n1uiring about the same Lime as a diny cache miss. In the worst case

VT update scenario, the VT of a single line can be updated in about 1.5 times the

dirty miss time (T = 1.5 * MTBWB) due to the inclusion of the clean miss between

the two dirty misses. At this rate the maximum primary memory size would be a

little over 2.3 Mbytes for 32-byte cache lines. However, as noted earlier, this

especially abusive pattern of memory references is not likely to arise in practice and

larger primary memory configurations can be supported if a mechanism is provided

to prevent wraparound in the case of an attack based on maximum rate VT

updating. To prevent a security breach, the memory bus SSI will refuse to write

back a cache line if its VT would wrap around (simple overflow detection), halting

the system instead. Hence, in practice, very large primary memory configurations

will be supported comfortably since the NITBWB is likely to be much longer than

the worst case figure projected above. Thus the cryptographic refresh technique

rermits the use of small (16-bit) Vfs without sacrificing security or degrading

pcrfonnance.

4.5.3 A VTT Hierarchy and VTT Cache Management

Employing 16-bit VTs, the cache line VTT requires 6.25% of the space devoted to

cache lines, e.g., a IM-byte primary memory needs a 65538-byte V1T. This VIT

either can be contained wholly within the TRM or it can be hierarchically organized

and stored in primary memory with only a portion of it cached within the TRM.

Although this choice is analogous to that presented at the level of encrypted

secondary storage, there are some important differences. For example, if the VIT is

TRM-resident, it probably will be stored using primary memory chips since high

speed (cache) memory chips offer only a slight overa11 performance advantage. But

if a VlT cache is employed, the higher speed chips may be required in the TRM to

194

An Encrypted Storage Approach

offset the added delays imposed by the cache lookup procedure. Moreover, the

quantity of primary memory that is attached to a system is often more tightly

bounded than the number of secondary storage volumes that may be registered with

a system, making it feasible to construct a TRM with a VIT large enough to cover a

likely range of primary memory configurations. Finally, the complexity of the

control logic and the size of the auxiliary storage needed for the management of the

VTT cache also motivate incorporation of the whole VTT in the TRM. To

understand the tradeoffs involved, it is necessary to examine the details of managing

a hierarchic V1T and its cache versus a TRM-resident V1T.

171c organization and management of a TRM-resident VTT is trivial. Storage is

provided so that each cache line in primary memory has a corresponding 16-bit VT,

indexed imrlicitly by the cache line address. A lookup of a VT is accomplished in

one access to this table and should require about two cycles: one cycle for memory

access and one cycle for (round-trip) transport within the TRM. A store into the

VTT of an updated VT is nccomplished similarly and in the same amount of time.

111e cryptographic refresh process interacts smoothly with this arrangement. The

disadvantages of this scheme are the increase in TRM size and complexity due to

the inclusion of the memory chips for the VTT and the constraint placed on main

memory configurations by the size of this VTT. If 64K-bit memory chips are

employed, then a set of 9 (parity included) will support up to a IM-byte primary

memory. rf 256K-bit chips are employed then a similar chip set will support up to a

4M-byte primary memory configuration.

Jf the VTT is not wholly TRM-resident, a simple, two-level hierarchy will be

employed as part of a VTT cncachemcnt scheme. ll1e bottom level of the hierarchy

consists of the VTT divided into cache line-sized pieces and the top level (root)

consists of VTs for these VTT lines. The VTT root table is permanently resident in

the TRM along with the VTT cache and the V7T cache lookup !able. This Jast table

195

An Encrypted Storage Approach

is used to determine if the VT for a requested cache line is in the Vn' cache and, if

so, to locate that VT. Each VT in the VlT root table covers a cache line of VTs

which in turn covers 16 data cache lines, so the VJ7' root occupies space equal to

.2% of primary memory. The VTT cache contains one line for every line in the data

cache, to accommodate a worst case situation in which each line in the data cache is

covered by a different vrr cache line, plus a couple of additional entries for reasons

explained later. (Note that entries in the VIT cache do not correspond directly to

lines in the data cache since one YTr cache entry could cover up to 16 lines in the

data cache.) Entries in the VTr cache are 32-byte lines, plus a modified bU, an in-use

bit and a reference count for use by the replacement algorithm. This the VTT cache

is roughly the same size as the data cache (about 3% larger).

The Vn' cache lookup table contains one entry for each block of 16 data cache

lines in primary memory, i.c, the set of data lines covered by a VTT line. If the VT

for a data cache line is in the VTT cache, the corresponding lookup table entry

contains the index of the containing VTr cache line, otherwise the entry is marked

as empty. This table is about half the size of the VlT root table since the unit of

coverage is the same and the VTT cache indices arc about half the size of VTs. A

likely size for the data cache is 8 Kbytes. Using 32-byte lines, a total of 256 lines fit

in this cache, yielding a cache index size (for VTT cache lookup table entries) of 8

bits and a reference count (for VIT cache entries) of 8 bits. Thus, in total, the tables

employed in the VTT caching scheme amount to about .4% of primary memory for

the VIT root table and the V1T cache lookup table, and about 103% of the data

cache for the V1T cache. For example, a lM-byte primary memory system requires

a total of about 12 Kbytes of additional storage within the TRM to hold the various

tables and the VTT cache, compared to the 64-Kbyte Vn' that would migrate into

the TRM if caching were not employed. For a 2-Mbyte system, the figures are

about 16K bytes versus 128 Kbytes.

196

An Encrypted Storage Approach

1l1e VTT cache operates as follows. When a (clean) data cache miss occurs, the

VT for the requested cache line must be retrieved in order to decrypt this line. The

VTT cache lookup table is checked to see if the required VT is present in the vrr
cache. If the VT is present, the lookup table entry and the low order bits of the

address of the requested cache line are used to index into the VlT cache. There the

required VT is retrieved and the reference count for that VTI cache line is

incremented. If the data cache miss was dirty (implying a write-back), the same

procedure is followed so that the requested data line can be Read first, then the VT

for the evicted line is retrieved as above, the reference count of the containing VTT

cache line is decremented and the modified bit is set. (The VT for the evicted line is

always present in the VT cache.) If the VT for the requested data line is not present,

a VTT cache miss occurs. This miss must be processed before the data cache miss.

Processing of a VTT cache miss is the same as for a data cache miss with the

exception of the replacement mechanism.

lhe reference count associated with each VTT cache line retlects the number of

data cache lines covered by it, and the in-use bit indicates if the entry is empty or

occupied. Scanning of the VTT cache to free lines can take place either on a

demand basis (when a VTT cache miss occurs) or as a background activity like

cryptographic refresh. Lines in the VTT cache with a reference count of zero are

eligible for replacement and, if unmodified, are marked as empty and ready for

immediate reuse. Modified lines with a zero reference count are evicted, updating

the VT entry in the root table, and then marked as empty. The two extra lines in the

VTI cache noted earlier are included to guarantee the availability of at least one

empty VTT cache line even in the worst case VTT occupancy scenario (since these

lines can have no counterpa1ts in the data cache). One of these lines is used by the

cryptographic refresh process to hold the VTT line covering data lines currently

being processed. Using this arrangement the refresh process accesses the VTT in the

same way as the data cache. Even the VTT is refreshed in the usual way, resetting

the root table entries as each line of the VTT is refreshed.

197

An Encrypted Storage Approach

Thus a data cache miss that generates a VIT cache miss experiences an added

delay that includes the time it takes to locate a free or frccable VTr cache entry plu:-

a Read or a Read and a Write, for a clean or dirty \TT cache miss respectively. This

added delay could easily increase the time required to satisfy a data cache miss by a

factor of 3 or more. Hence differences in performance between a TRM-resident

VTT design and a VTT cache design spring from two sources: the extra lookup

associated with each data cache miss (to determine if the required VT is in the VTT

cache and to ascertain its location if present) and the added delays resulting from

\TI cache misses. The extra lookup step results in an increase of about 11-27% in

effective memory access on a Read, versus 8-18% for a TRM-resident VlT,

assuming primary memory chips are used for the VTT cache and tables or the

resident VTT. Use of cache memory chips for the VTr cache and tables would

equalize this difference between the two designs, based on a twofold access time

improvement as a result of using the faster memory chips.

Since the VIT cache represents a relatively large percentage of the VTT for most

systems (from 50% for a 256K-byte system to 12.5% for a lM-byte system), its hit

rate should be very high (on the order of 98% or more) and the added delays on

VlT cache misses should constitute a negligible increase in effective memory access

time. Thus the TRM-resident VTT offers design simplicity and good performance

at the expense of a larger TRM, whereas the VTT cache engenders a complex design

and reduced performance but a more compact TRM. Considering the complexity

of the control logic for the VIT cache, it is not clear where above the 128K-byte

primary memory size the breakeven point in TRM size lies between the two designs,

especially if less dense high speed memory chips arc used to improve performance

of the VTT cache design. llrns the choice between a TRM-resident or encached

VIT is not clear. The following descriptions of encrypted primary memory I/0

assume the existence of a TRM-resident V1T to simplify the discussion. However,

the differences that would result if the encached VTf design were adopted are

noted and timing for the encached VlT design are provided in parentheses.
198

An Encrypted Storage Approach

4.5.4 Encryption and EDC Calculation for Cache Lines

ll1e cryptographic methods employed for T&A and secondary storage are not

suitable for encrypted primary memory. In most computer systems the fetch of a

cache line begins with the requested word (doubleword), which may not be the

"first" word of the line, in order to minimize the delay associated with a cache miss.

Any cryptographic method employing chaining imposes an ordering on the

decryption of data and this is incompatible with the mode of cache operation cited

above. Moreover, the minimum 5-cycle delay imposed by block mode decryption is

at odds with this low-delay approach to satisfying cache misses. This suggests that

the stream cryptographic method employed in the encrypted bus approach may be

appropriate here. For encrypted primary memory, the cryptographic bit stream will

be based on the IV formed from the cache line VT and the primary memory

address, rather than on a counter and bit stream ID used in the encrypted bus

approach. (Combined, the VT and address contribute about 36 bits to the 64-bit IV

with the remaining 28 bits supplied by a fixed, per-TRM constant, just as in

secondary and T&A storage.) ll1is choice of IV limits pre-computation lead time

since the bit stream cannot be calculated until the address and VT of the cache line

are known, but the resulting delay is still better than that available through block

modes.

This stream cryptographic method provides no propagation as an aid in detecting

modification, so a separate EDC must be calculated. fn the encrypted bus approach,

a shortened (5 round) DES calculation was performed on the data and its address

and the resulting CEDC was concealed for transmission under stream encryption.

In the encrypted primary memory context, the doublewords that comprise a cache

line arc processed using the shmtcned DES calculation to yield four, 64-bit,

preliminary CEDCs. These preliminary CEDCs must be combined to yield a 16-bit

final CEDC that detects not only modification of individual doublewords but also

199

An Encrypted Storage Approach

positional modification on doubleword boundaries, i.e., permutations of the

doublewords in the line. This requirement is met by selecting 16 bits from each

preliminary CEDC, concatenating them in an order based on positions of the

doublcwords in the cache line and processing this 64-bit quantity through a

shortened DES. The final CEDC consists of 16 bits selected from this last

processing step. ll1is CEDC is concealed in the CEDC table in primary memory

under stream encryption using the address of the CEDC and the cache line VT as an

IV.

It is instructive to note why this pai1icular method was chosen to calculate

CEDCs for cache lines. The final CEDC could have been formed by chaining

together the CEDC values from the cache lines, as was done in the aggregate secure

transactions described in section 3.4.1. That method involves one (shortened) crypto

operation per doubleword, four for the eight-word lines used here, and thus one

might expect improved performance since the method proposed here requires five

(shortened) crypto operations. However, on a Read of a cache line, the words in

that line are fetched in an order ddermined by which word caused the miss. If the

CEDC calculation was based on the chaining method used earlier, the calculation

could not even begin until the first word of the cache line arrived. The CEDC

calculation method adopted here is independent of the order of arrival of the words

in the line and thus does not encounter delays of this so11. These considerations

guided the choice of CEDC calculation methods.

The preceding descriptions of encryption and CEDC calculation are utilized in

Read and \Vrite operations in the following fashion. First consider a Read

operation, i.e., the response to a cache miss or the first step in the refresh of a cache

line, as depicted in Figure 4-6. "Jl1e operation begins with transmission of the

address for the doubleword containing the requested data (Tl) and the lookup of

the VT associated with the cache line containing that doubleword (Al). In an

200

An Encrypted Storage Approach

address data data data data

Crypto

Bus

P-Mem

Figure 4-6: Event Graph for a Read of an Encrypted Cache Line

encached VTI design two lookups take place and, to minimize delay, the operation

proceeds under the assumption that the required VT is in the cache. If a VTT cache

miss occurs (detected after the first lookup), the request to primary memory for the

data line is aborted and the VTT miss is processed. The fetching and transfer of the

cache line begins with the doublcword containing the requested data and proceeds

through increasing addresses, modulo the cache line length (A2-A9,T2-T9).

Cryptographic bit streams for deciphering the cache line are generated using the

201

cont

An Encrypted Storage Approach

cache line vr and the addresses of the doublewords in the line (Cl-C4). These bit

streams are combined (via modulo 2 addition) with the doublewords transferred

from primary memory to effect decryption (Xl-X4).

Each decrypted doubleword is delivered to the cache and ~cliv.ered for the

prcliminaey CEDC calculations._(El-E4) and the result-~1>t~ toyiel~.theJinal

CEDC (E5).as described above. \The st0fed.CEOC is.retfie~ed .using a normal (qot
_ - - \ :··- ..,._ .~-- __ ..,., .. ,,.· '

extended) bus transaction direct~ .'at the, •~pJ)topriate CEDC table location

(T10,A1Q;TI1)., 1be !,}it$:ream for the CEOC\is generated using .the VT and the
, ·- ' I .

word addr~ of tilt ClIDC_(e5,Jand is~~ witi the halfWord coritaining the

CEDC (X.5). ·this decryp~~ qllftr!tity. is eorljp~d against.--~he calculated final
• , \ ,_ C ' •, • • ~ , • •~,,,_-, ' .. !r '

CEDC to verify the uuthenticitY., int~rlty and tjtnelio~ o~1he retrieved cache fine.
- . ~ • r " " . . - ,.'

Figure 4-7 present$ the tinringddiagram .for a ReatLo(artencrypted cache line.

Crypto devices 1-4 c1"k.Litai~ the .. <:~>l>it· stream-and the preliminary
- -~ . ',. - .,,.

. _, -. . ' ...

CEDC for-•the cache<doubiewords and device' 5 -calc01ates the:-final CEDC .and
. -: , , '

generates-the bit st~earh tomnceal this.,cEOC. 'i:ti.e 'staggeii"8 .of·these pr~ing
\ . \,, ' ';. • ,_ "I -. .,.. ,. • -- • ~ ~--.,

steps may be used to reduce sitnijltaneous\QemhQd Otl inte_mal busses; it is
• ~ - _-_.. ·• ,'"f:.•...-. ~ \

esthetically appealing and is consistent-with th~ prece~ graph. In this diagram
~ -~ -' • ,r • ~,,_ ••" \.~,,...»""••· '!,,.-.~~-• --.

the fetch of the vr is accorded two cycles but, if a vrr cache is employed, the Vf

fetch time would increase to fovr cycles, e~en on ~ VJT ~~e h,i_t,.12 The requested
_. • " i : , ; • _. ·; , :, ~ : r' : __ : i ~- ~ : : 1 } ·t 1 ... (, ~- •' . · ·

data is available 7 (9) cycles after the operation begins, the CEDC is available after

14 (16) cycles and the bus is busy for 13 cycles. l)le_defay Qn .. da~ delivery is 4 (6)
. : . ~ ' . ~! ·. . ' -> ·: i .-· . ' ' !

cycles greater than in a standard system, or a comparable encrypted bus

configuration and the CEDC delivery_ delay is 9 (11) cycl~.ireater than in such an
- . . . : . ' ~ , . . . - '

encrypted bus design. Bus utilizatjon ,~ncreases by 3(1f, {3 ~y~I~) iover ~ comparably
- ' - ~ ' •' . ' . . .

11ne parenthesized figures throughout the remainder of this scctl!>n _ind~te the timing for
S)'Slems with a VTf cache. assuming a flit on tfmt adle~ · · · · •:/.: · ·

202

Cache

Crypto5

Crypto4

Crypto3

Crypto2

Crypto1

VTT

Bus

P-Mem1

P-Mem2

An Encrypted Storage Approach

{DOU8LEWORDS)
..

A D 0 D D C
D ;.; A A A 0
D T T T T M
R A A A· A F

ts ES

C4f

C3

C2

.
A1

, , . T T
n 1'3 Tt- Ts 'QI· n Tt T9 1() · .11

ii

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

Figure 4-7: Timing Diagram for a Read of an Encrypted Cache Line

·1 ' , ,4

configured standard system but, since utilization is very low in these systems, this

increase is significant only· if it delays the initiatio~ of another ·~eact:' Since the me~n
, •'-• • :, ' .' ~ , : • .•: C • ' • • • :• ; J > ,' • • ' ; '. ~ ,•

time between misses is expected to be on the order of 50-125 cycles (95-98% hit rate

and a~erage instruction len~th of 2.5 cycl~). this· de.lay p;ob~biy has 'a negligible

impact on system perfomiance.

203

An Encrypted Storage Approach

edc

address data data data data ack ack

Crypto

Bus

P-Mem

Figure 4·8: Event Graph for a Cache Line Write
- .

Now consider a Write operation, i.e., the eviction of a modified cache line or part
, ._ - ,: ' ", .;· ·• ' •~ i •: •·\ , ': : _;•· : r;' :/ I ·.:<·•· /';; : ' •

of a cache line re.fresh, as depicted in figure 4-8 .. \Yhep a ,cache mi~ results in the
~ ... -" ·:·- --~~; ._--~!;:i_; !i~1i,.!l I,:.!=::n._p~.! ·

eviction of a modiJied line the evicted line is bu~red~ the requested line is Read
• • . . • { - I~ !~.-•·: . • -~ · -,- ', • · f

and then the Write of the evict~d li~~ ta\es place~- This 'strategy results in all cache
! ' . / . ' - ' - :\ : ' . "; ' 'i : '~ ,\ {·. ~-~ 1 J.\ ·: J1. '1j ; __ • ' •. : : ' ;_ :·

mi~ delivering· the requested data after the same delay, even if a write-back is
. , .. _. r;-1 : • ·i ~, • -.·,

204

----------------------- - -------

An Encrypted Storage Approach

required, unless buffer space for evicted lines is exhausted [6]. The operation begins

with the lookup and update of the VT for the evicted cache line (A 1). This VT is

combined with the doubleword addresses of the line and used to generate

cryptographic bit streams (Cl-CS) for concealing the data and the CEDC. The

doublewords (in increasing order) are combined with the bit streams (X 1-X4),

transmitted and stored in the appropriate memory locations (Tl-T9, A2-A9) and

acknowledged (TlO). The preliminary CEDCs arc calculated on these doublewords

(E1-E4) and the results are used to calculate the final CEDC (ES) as described

above. The final CEDC is concealed by combining it with 16-bits from C5, and the

resulting halfword is transmitted and stored in the CEDC table (T11-T12,A 10).13

Figure 4-9 presents the timing diagram for a Write of an encrypted cache line.

The crypto unit utilization is the same as for Read operations. This operation

requires 19 (21) cycles to complete and the bus is busy during the last 13 of those

cycles. This operation is 9 (11) cycles longer than a cache line write in a standard

system and 6 (8) longer than in a comparable encrypted bus system. Bus utilization

is 30% greater than for a standard system and about 8% greater than for an

encrypted bus system. (These figures assume the encrypted bus system incorporates

separate bus lines for CEDC transmission, whereas the encrypted storage design

employs a standard system bus.) As long as Write operations are adequately

buffered, the added delay should not adversely affect performance. Again, given

the very low bus utilization characteristics of these systems and the large mean time

between misses, the additional bus cycles consumed for these operations should not

signi licantly affect performance. Since most Write operations result from evictions

triggered by Read operations, Figure 4-10 shows how the two operations mesh when

13Thcrc is a potential problem here in that only the halfword containing the CEDC for the
affected cache line should be modified. If the primary memory docs not support this form of partial
word modification, then the whole word must be fetched, the relevant halfword modified and the
whole word stored, increasing bus utilization and the effective cycle time for tile Write operation.

205

Cache

Crypto5

Crypto4

Crypto3

Crypt92

Crypto1

VTT

Bus

P-~1

' P.:Mmn2

A

·o
D

R

A1

An Encrypted Storage Approach

C3

C2

C1

(~~)

0 D D D ,. A 'A ,.
T T T T

A A A A

E3

E1

E5

• 1

'

A

C

K

1 ! ~ ,., , .. t f ; ~ · ;'. , '. ~ , A,
A2 M Al3 f,1$ 10

(EOC)

A

C

K

Figu~,4-9: Timing Diagram Joi: a w,~qf ~ :~rypted ~he line

combined. Note that the total time for the combined operations is Jess than the sum
of the independent opetations'due ro;ovetfnp in.p~g •. ·

206

Cache

Crypto5

Crypto4

Crypto3

. Crypto2

Crypto1

VTT

Bus

P-Mem1

P-Mem2

A

D

0

R

A1

Ct

C3

C2

. An EncryptcdStomge Approach

C4

(DOUBLEWOROS)

D O D 0
A A A A

T T T T
A A A A

'
C5

(~WORDS)

C D D D 0
0 A A A A
N T T T T
F A A A A

E5 ~

E4. 04

.'. ... ;;
E3 C3 E3

E2 ca,

€1. Ct

A1

E5

A

C

K

(EOC)

A

C

K

T ·y . T. T T T

T1 T2 T3 T4. T5 T6 17 T~ T9 10 1}. . T1 ~ J3 ;1"4, ITj T6 Tf T8 T9 10 11 12 13

A2 ·A4. M ;A8

A3 A5 A7 A9

.A
10

A3 A5 A7 A9

A
10

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

Figure 4-10: Timing Diagram for a Combined Read•Wnte Operation

207

An Encrypted Stpmge Approach

· As in the encrypted bus approach. there is a choice between delivering requested

data immediately or deferring delivery until the CEDC is checked. However, in this

case the CEOC is associated with the entire ·cache line. not individual words, and

thus cannot be checked until the entire line, Q.nd the CEDC, have been transferred

and decrypted. The increase in apparent memory access time associated with

deferred delivery amounts to only 4-9% (for cache hit ratios of 98% and 95%

respectively) for tfte encrypted bus approach/but here-it would be anywhere from

20-50%. Jmmediate .deliveri in tbe".enc~ storage approach results in an·

effective memory access time increase in the range of 8-18% (11-27% for a V1T

cache design using · primary memory chips). These figures strongly motivate

adoption of the 'ffi1Itegy oft1efivcring dandtt·frficcfiarely and checking the CEDC on

a delayed basis. If a pokntiaJ $ec.urity,vi~.(aC.EOCmismatch}~s detected on'.a

fetched cache Jine, the system halts, the violation counter is: '.incrementecf ar-d tbe
_ -•-~.._..;:;.,C.'>• ;..,. -~:;~s .. ~ ;-r.:: ,_· -.:r,.i:::··~· ,~_.,.,, :::,c.<.•-:·."'."" -,-,~ : ':;

system must be re·inltialized. (Because the, ~,elay before the CEDC check is much

longer here, it would be much harder foFif pfocessor to "back oul"' in response to

the vjplatipn.LJ'lus -~A.drastic reipO~ appea& lwailied as only deliberate

attempts to violate the protection mechanisms are likely to trigger it
~- .::, -?"' ·"-~ '.,, - • -~- - -

4.6 Conclusions

The techniques developed in this chapter enable a computer system constructed

using.a single, TR.M,~d off-tlle,shelf ~~~ dJvjces;QUtsi* tbat 'fRM to protect
J "' ; • • • • - ~ '. r • • • •• / > • •

externally supplied software from disclosure and undetected modification. Several

important concepts were introduced in this chapter to achieve this goal. Two

concepts are fundamental to the protection mechanisms employed at all levels of

storage. The first is the use of version tags (VTs) to form version-differentiated

names for cryptographically transfonning storage units. The second is the use of a

protected version tag table to provide a basis for verifying the timeliness of storage

208

An Encrypted Storage Approach

units on Read operations. For transfer and archival storage, the archival VTT and

its associated update table provide a robust mechanism for enforcing reloading

constraints for most-recent-only and non-reloadable files. The four-level hierarchic

decomposition of the secondary storage VTT and appropriate caching of portions of

this hierarchy makes the use of encrypted secondary storage feasible. Finally,

cryptographic refresh for encrypted primary memory permits the use of small VTs

with cache lines, significantly reducing the amount of memory devoted to security

overhead.

171e encrypted storage approach offers a number of advantages over the

encrypted bus approach, especially in configurations such as SYSTEM E and

SYSTEM F. Only with the adoption of encrypted storage techniques does secure

T &A storage and demountable secondary storage become really practical. Off-the

shclf, demountable magnetic media are suppo1ted directly in this approach for these

levels of storage. The only special requirement for these media arises in the

secondary storage context where sector size must be increased slightly. However,

most media arc readily fom1atted to accommodate the larger sector size, so this is

not a problem in most cases. The storage overhead for EDCs and VTs is small for

both T&A and secondary storage, so this penalty should be quite acceptable.

Management of the archival VTT is simple and should not perceptibly affect

performance. The secondary storage VTT hierarchy requires more sophisticated

management but still should not degrade system performance noticeably if primary

memory is expanded to accommodate the VTr caches.

These security measures for T&A and secondary storage provide reduced cost

and increased flexibility with only minor storage and performance overhead

compared to comparable encrypted bus measures. The only significant potential

drawback associated with these encrypted storage techniques is the loss of

transparency, i.e., these techniques do require significant paiticipation by the TRM

209

An Encrypted Storage Approach

operating system. However, this disadvantage seems smaU compared to · the

advantages offered by this approooh. At the encrypted primary memory level the

storage overhead and performance degradation are more severe and'the complexity

of ~ TRM increa.5es significantly. The am ,of S\'STEM H in the encrypted

primary memory approach may be comparable to •that of SYSTEM D in the

encrypted bus desjgn due to this stonge overhead .and increased con, plexity. so the

choice in this case is not so clear. Of coune\.S.YS11EM ll does offer greater

flexibility in primary memory configuration and maintenance, but the comparison

between the two configurations is complex. Perhaps a more impprtant question is

whether either SYSTEM Dor SYSTEM Fis p~efera61'.~·to SYSTEM.ff.
. . . ·,, . ·,· .·

A major motivation for the adoption of S~STEM M cwer SYSTEM' F is the

reduced, size. ,nd cost. and presu~y increased- reliability •. of the TRM in the

fonner system. Of course there are othe,,reasons tbr employing ehcrypted primary

memory, e.g,, increased flexil>ility in configuring and maintainihg primary memory;•

but these are secondary in many applications.. Howevtp, moving primary memory

outofthe T:RM requires,the addition ofianotherSSl involvingifive cryptod1ips and

control logic to.si,pportcryptographit refresh.,• It requi.res,stofage withili1he TRM

either for the whole encrypted primary memory •VTT or mr the vrr cache arul

auxiliary tables and not inconsiderable control logic to manage the cache. Finally,

this configuration. requires the inclusion 'of a data cache. and control logic which

might not otherwise be required to achieve acceptable perfonriance.

Since the crypto chips are very farge compared to memory chips and the control

logic chips also take up consid~rabJe sp~.the·lRM space;.savings achieve<f by

removing primary memory nmst be carefuHy arv.rlyaed. ·For-many applications very

large primary memories are not required and the ability to exw.nd ,primary :memory

while retaining .the same processor is aot critical. For these applications a TRM

configured with internal primary memory: and encrypted seooRdary. storage may be

210

An Encrypted Storage Approach

preferable as the TRM would not be any larger and would probably be more

reliable than a TRM for an encrypted primary memory configuration as described

in section 4.5. 'Ilic amount of primary memory that can be accommodated in the

void left by the security hardware and data cache depends on the level or integration

employee! for the control logic and crypto chips mid the density of primary memory

chips. Using 256-Kbit primary memory chips and custom VLSI for the control logic

and crypto chips, one could probably lit 256-512 Kbytes of primary memory in this

void.

Finally, one can 1mag1nc hybrid designs employing a combination of the

encrypted bus and encrypted storage approaches. Due to the clirticuly or TRM

packaging of demountable media, T&A and secondary storage arc probably better

implemented using encrypted storage techniques. Yet, one might wish to conceal

addresses on processor-generated relercnccs to primary memory (to minimize traffic

analysis) and that is available only through the use 0f encrypted bus techniques.

Thus, one might design a dual bus system in which primary memory is TRM

packaged and encrypted bus techniques arc employed to protect traffic on the

memory bus while encrypted storage techniques are used to protect data in

secondary and T&A storage elev ices on the 1/0 bus. 1-lowcvcr, the cost of providing

separate, TRM-packagccl primary memory (as in SYSTEl\1 D) is probably even

greater than providing encrypted primary memory (as in SYSTEM II), since about

twice as many crypto chips are required in the hybrid system. Tiius, as in the

preceding analysis, it is probably more feasible to incorporate primary memory into

the main TRM (as in SYSTEl\1 F) to achieve the required protection.

211

Chapter Five

Multi-Vendor Systen1s and

Client Security Requirements

Chapters 3 and 4 de\'elopcd sc\'eral designs that meet the security requirements

of the vendors of external software, i.e., cncapsulation of external software to protect

it from attacks resulting in the release or undetected modification of information.

These designs assume that all external software executing on the TRM-packaged

computer was supplied by a single vendor, i.e., the designs do not address the

problem uf multi-vendor computer systems. Moreover, these designs do not address

the security requirements of the clients of external software, i.e., confinement of

external software to prevent disclosure of client-supplied information to the

"outside world" and to control access of external software to computer resources not

devoted exclusively to the vendor of that software. These two problems can be

unified by viewing the client as a vendm possessing ce1tain extra privileges, e.g.,

control over access to shared system resources. This chapter explores the problem

of designing systems that support client security requirements and external software

supplied by multiple vendors. It examines two approaches to solving this problem:

use of third-party supplied TRMs equipped with secure operating systems and

multi-TRM systems.

212

Multi-Vendor Systems and Client Security Requirements

5.1 Confining External Software

Since the computer systems of interest arc under the direct physical control of the

clients, leakage of client-supplied information outside of the client-controlled

environment takes place only through communication with the outside world. The

primary channel for such leakage is the communication network interface. Other

channels may exist as well, e.g., hardcopy output circulated outside the client

environment and maintenance by external vendor personnel, but these are dealt

with by procedural rather than technical security controls. Some personal and small

business computers will not have a network interface, effectively eliminating this

leakage problem. However, distributed systems and many personal and small

business computers will have network interfaces and the problem of leakage will

anse.

The level of difficulty associated with preventing leakage of client-supplied

infonnation depends on the configuration of the computer system and what use

external software makes of network communication facilities. In order to restrict

access by external sollware to a network, the client must have direct control over the

network interface. If a client's only means of controlling this interface is through a

processor and/or software provided by an untrusted vendor, e.g., the vendor

supplying software that is to be confined, then confinement cannot be achieved.

However, a client exercising direct control over this interface can prevent or at least

minimize leakage of his data in many circumstances. If external software does not

use the network as pa1t of its normal operation, then client-controlled security

mechanisms can prevent the software from accessing the network at all. If external

software uses the network only in a very restricted fashion, then security controls

can mediate access to the network to prevent or severely restrict leakage.

213

Multi-Vendor Systems and Client Security Requirements

5.1.1 Preventing Information Leakage in Simpfe A-ppl1cations

Consider. for example, external software that establishes a connection to a service

that provides current stock quotations or other. mfonnation based on a tightly

constrained query set This type qf external .$Qfiware _can be confined reasonably

well since the flow of information is_essentially one-way (from ,the service to the

external software). Oespi_te the one-way nature -of this sort of communication.

external software might try to leak information by signalling.over rover/ channels.

e.g .• manipulation of connection flow control paramt.'tel:S, since network protocols

do involve some reverse flow of information even for pne-way data transmission.

The rate at which information can be leaked in thisJashioo-can be made arbitrarily

low if the communication protocol is not ,implemented by ,external software but
,

rather is under client control. A connection-oriented data transport protocol (see

section 2.3.4) supplied and controlled by the client would be an appropri~te

interface for much external software and would provide the client with control over

many covert channels (for suitably constrained network usage).

Even the task of e"temal software re-authoril$00. i.e"',uotifying the software

that the client has paid tije "rent" and thus the software should oontinue to operate,

can be tightly constra~ so~ to minimize ,lea,kege, JX>'enuaJ.,(thus achieving a high

degree of confinement). Simple re--autho~ procedt;res .do not require. any

transmission of data from the external software to tht ~dor. The .~ftware can

maintain a counter of the number of times it is iP:Yoked,at1d:•nother counteribat

tracks rc-:-au'1lorizal ion, notices •. Depending ~, diet dllfQtioP of the•rentaJ period and

the nature of the subsystelll, a limit is e.stal,lished;as the malimum number of

invocations allowed before re-authorization.14 .The:vendor.,Yl)On receipt·ofperiodic

14tr a clock with battery backup could be included in the main TRM. reauthorization could be
based on time (e.g., months) rather than on the number of times external software was invoked by the
client

214

Multi-Vendor Systems and Client Security Requirements

payment, issues a re-authorization notice (incorporating an encrypted form of the

re-authorization counter) to the client. who forwards it to the external software. The

subsystem verifies the re-authorization notice, resets the invocation counter and

increments the re-authorization counter. More elaborate re-authorization

procedures might involve transmission of usage statistics b-y the external software,

e.g., for billing,purposes. The integ_rity, authenticity and timeliness of these statistics

can be ensured by covering them and the re-authorization counter with a CEOC.

This procedure minimizes leakage potential and thus should prove acceptable to

clients.

5.1.2 Preventing Leakage in Distributed Applications

Security measures of this sort are sufficient for many of the proprietary software

applications that use network facilities. However, in the context of distributed

systems, one may encounter external software that engages in substantial, complex

two-way communication among copies of itself implementing distributed

applications at the nodes in the system. Automated mediation of this sort of

communication to prevent leakage of client data is not feasible, both because of the

complexity of the message exchanges and because the transmitted data may be

encrypted by the external software copies to meet the security requirements of

subsystem vendors. In the simplest case. clients may, wish to confine external

software to preclude leakage of information outside of the distributed system user

community. This is readily accomplished since clients can superimpose their own

inter-node communication security measures (using keys available Only to members

of the user community), on top of any communication security measures employed

by external software.

However, as indicated above, if clients require a more sophisticated sort of

confinement of external software, problems may arise. Consider, for example,

215

Multi-Vendor Systems and Client Security Requirements

external software managing a distributed (but not replicated) database containing

information supplied by various members of the distributed system user

community. Each client may place constraints en how information supplied by him

is made available to other clients, e.g .• dam private touch dient may be maintained

at his node and database access controls wilf allfflr him to:mtrict ~ to this data.

Either the client can rely on the external softwart--to enllrce these controls or he tail

attempt to mediate inter-node communication involving the database management

subsystem. In this situation automatic mediation is ditrttuft at best and is

impossible if external software uses encryption to conceal inter~OO(le

communication. Even if inter-node communication is not cryptographically

concealed by the ~ern~ software. e.& •• ~ sot\~ empJoys cryewgraphic

methods only for authenticity and integrity checks. strict mediation of inter-node

communication would require duplicating the operation of the database subsystem.

Yet such duplication by the client is in direct conflict with the acquisition of external

software!
'

This problem worsens if clients must rely on a distributed. subsystem_ t.o enforce

access control policies i>r data dispened throughout the system~ .e.g.. fully replicated

distributed· databases mntaining_sen.,itive client _d;u.. la . .tbis ase.. CDmD1Unication

mno,ng ~ of the subsystent may be enaypted. by the,~ (to oooceal the

client data- transmitted :between die.~). thus. denyiAg tlae client any opportmlity

of monitoring to prevent or even detect leakage! Clients might be able to trust

external software to enforce an advertised aceess control policy if they, or a trusted

third party, coold inspect tile sou'" code 8Pd establilh .iUl __ conespondence to the

executable subsystem installed at each JK>de. Client in$PCdioa of proprietary

software is not likely to be acceptable to vendors, but in the disttibuted system

context. such inspection may be viable whe~ external software is supplied by

members of the user comm unity. In the latter case. disclosure of the software within
·• l,. . • . . ,, -.·

the user community is not a major concern but protection of the data managed by

216

Multi-Vendor Systems and Client Security Requirements

the software must be ensured. What is required, however, is some means of

establishing correspondence between the inspected and installed subsystem copies

without compromising subsystem integrity and while providing for secure

communication among subsystem copies. These requirements can be met using

procedures described in the next section.

5.1 .3 Cont rolling Access to Sha red Resources

The other aspect of confinement is controlling access of external software to

computer system resources not exclusively devoted to the vendor of that software,

This security requirement is applicable only in computer systems which support

secure execution of software from multiple independent vendors, possibly including

the client himself. (In a single-vendor system all facilities are available exclusively

for the use of software provided by that vendor and any sort of confinement beyond

disconnection of the system from the network is meaningless.) Resources to which

access may be controlled include portions of the storage hi6archy, the terminal and

other 1/0 devices, e.g., the network interface. The guideline here is the principle of

least privilege employed in secure system design, i.e., a subsystem should have access

only to those resources required to carry out its designated function [29].

Access restriction of external software is impmtant for several reasons. For

example, access controls applied to external software often simplify the information

leakage aspect of confinement since software can disclose only that information to

which it has access. External software that has no access to sensitive client

information poses no leakage threat and thus does not require the sort of network

access mediation accorded external software that does have access to such

information. If the latter software docs not use the network and the former does,

the leakage problem is significantly simplified. When secondary storage is shared,

for example, software of one vendor must be prevented from damaging software of

217

Multi-Vendor Systems and ClientSecurity Requirements

another vendor (or of the client) and the quantity of storage consumed by external

software should be controlled. With respect to,the term-in~ the ctient must be able

to select and identify the software with which he is. communicating · in order to

prevent confusion that could result in violations of client access controls.· Finally,

control of access to the network interface, as noted ab'ove, is the,fundamental means

by which the infonnation leakage problem is managed. Thus, controlling access of

external software to shared system r.esQurc~ r~ly encompasses an ~ts of

confinement

5.2 Computer Systems Supplied by a Third .. Party

One way to accommodate software Slip~Jied by multiple vendors in a sit)gle

computer system is to use one of the designs presented in Chapter 3 or 4 in
• J • .

conjunction with a secure operating system, with all seclJrity relevant hardware and

software supplied by a trusted third party. The secure operating system perfonns
•· ' ·, - ! - . . ~ - :

two functions: it protects external softw~re from attac~. by other software (the
' ' ; . - ' ... ',.: ' . . . '

security mechanisms of Chapters 3 and 4 protect agai!)~ physical attacks) and it

confines software to control information leakage. IQ single~yenctor,s~ems., the level
. •-,,:• ,,. -_, .

of security required of the operating system depends to a great extent on the nature

of the application software provided by the vendor. For example, external software

implementing financial applications or_ games require Jess sophisticated protection

mechanisms than external software controlling execution of dient;.written code on

the vendor-supplied processor. In multi-vendor systems, the operating system must

withstand programmed attacks mounted by vendor or client software in ordef to

provide encapsulation and confi11ement of external software. Thus the level or
operating system security required in multi-vendor computers is relatively high.

218

Multi-Vendor Systems and Client Security Requirements

5.2.1 Options for Software-Enforced Encapsulation

In the extreme case, the operating system for a multi-vendor computer might

provide a fine-grained protection domain structure that supports mutually suspicious

subsystems while providing an invocation mechanism essentially equivalent to

normal procedure calls (see [29]). Although several operating systems and machine

architectures that implement this form of sophisticated protection have been

described in the literature, few have been constructed and none are commercially

available at this time. This type of operating system and its associated hardware

support facilities are generally quite complex, in contrast to the simplicity that tends

to characterize the computer systems of interest. Although it is conceivable that

such sophisticated hardware and software could be provided in small, multi-vendor

systems, it may not be necessary. For many applications, it is not critical that

invocation of external software be as flexible and as fast as normal procedure

invocation. For example, compilers, editors, games or financial application

packages are not invoked with very high frequency; they execute for some time

before completion and are unlikely to make extensive use of other subsystems.

Thus a facility that supprn1s mutually suspicious subsystems but provides a

somewhat less convenient interface than normal procedure invocation might be

appropriate in many circumstances.

A secure virtual machine monitor (VMM) [13] is much simpler to construct than a

fully general protection domain system, yet it can provide the necessary

encapsulation and confinement, albeit with less convenient invocation of external

software. A multi-vendor system can be implemented by using a VMM in which

each vendor is represented by a separate vi11ual machine implementing a very

simple environment for external software development and operation. The VMM

maps the system resources used by the virtual machines into physical resources. For

example, the VMM paititions physical memory among virtual machines and may

219

Multi-Vendor Systems and Client Security Requirements

map a selected portion of virtual machine memory to provide data transmi~ion

between the virtual machine ~nd the V~M •. Se.;Q~ "6toff18e. lll,Y .be proyided :hY

partitioQing physical disks 4ito mil,i-djsks that.~.: priv*. to.-¥i~.-t~biJJes (as io.

VM/370). The VMM. interceplS VO ~fllGtions an~. ~aslateS, :them so that .

acces.ses to a mini-disk are ,Jir~ to.,~,4tQP~C-,~ of~ real disk..
Invocation of external softw.are C,sl1': ~, e(fecte~f; tfil'QUgh.jawr-virtual macnine

communication. The VMM caq pi:oyide ~IJWll~n;~ vjrtual ,nachines--in

a variety of ways, e.g •• , by simul9~ng ~~~Q~ ~Jle<:~ ~ween .. ~ _virtual

machines.

To a great extent. encapsulation and confinement of' external software are

achieved by the implicit isolation· ofvirtfutl tnocflines'provided by the VMM. The

client, interacting with the VMM directf§-'via his· tennmal~ can act as' a sort of limited

system administrator as wen as the•ownJt of a virtuai rtiaclline. ThlS provides him.

with the tools nec~ty to oottttol ~- to sha;red, system reS'OUrces,. e.g., stdnige ..

and 1/0 devices, but :fie is not granted the · ability to . examine unencrypted -data
internal to vendor virtuaf machines. Th'e·VMM ~ mai1es~if espedally easy for

the client to control secondary and T&:A. sthtage usage and;~ to penph~

since all physical devices are availatile to the 'vitmat· macllines on1y throOgh the

explicit mediation of the VMM. For example • .,the vw= may interpret and

translate control. transactions involv.iqg, OMA· 9,vice$, _.d ... Qlha:. ~s • .a
_;\ .. - .

matter of course. and ~ess control ch~~ .. is -~ i~Jnto dl*

activities. This design e:ven all9ws tJie ~\ ,to,~ppli1.~, fi>r-,,au~

mediation of network~ in a.fashion.·.-- ~,.~llt,~•~,JVeqdor ~

machines, since the VMM mediates such acCCSli IAYWAY•·
·, .

The third-party design requires clients add 'vendors to trust the supplier · of

security relevant hardware (TRMs) and·softwaretoprovide aprodoctthatmeetsthe

security requirements of both parties. lt' is likely that both ·parties win want~

220

--------- - -- -- -·.--- ------------------------

Multi-Vendor Systems and Client Security Requirements

inspect the software to satisfy themselves that it properly implements the

encapsulation and confinement security policies described above. The simplicity

and relatively small size of a VMM makes it more amenable to visual inspection and

automatic verification, and that makes its acceptance by clients and vendors more

likely. (The assumption here is that the third party will accept disclosure of the

VMM design and code as a necessary pa11 of his business.) Similarly, the hardware

design and the TRMs must be available for examination. Assuming that these

criteria can be met to the satisfaction of both pa11ies, the major remaining question

is how to distribute external software to these computers in a fashion that meets the

security requirements of both clients and vendors.

5.2.2 Distributing External Software in the Third-Party Design

The simplest solution to the problem of distributing external software is to make

the third-party supplier the distributor as well. Vendors could provide the third

party supplier with their software and he could securely distribute it to clients,

possibly acting as a collection agent for the vendors as well. The distribution could

be carried out using any of the methods described previously using conventional

ciphers, e.g., encrypted transfer storage or secure down-line loading. This requires a

high level of trust on the part of the vendors since their software is directly available

to the third par1y, and the clients may be wary of this close relationship between

vendors and the presumably impm1ial third party. Instead, an approach based on

the use of public-key ciphers (PKCs) for external software distribution may prove

more acceptable to clients and vendors. Using public-key ciphers, it is possible to

eliminate the TRM supplier from the distribution procedure, so that only the

vendor and the TRM-based computer have access to external software.

221

Multi-Vendor Systems and Client Security Requirements

The public-key cipher distribution procedure operates in the following fashion.

The third-party supplier provides a public-key cipher facility in a secure portion of

each TRM-packaged computer system. This facility implements public-key cipher

transformations and generates a PKC key pair for use in the secure software

distribution procedure. After the computer is purchased, this key pair generation is

carried out in the presence of the client and some independent agent that serves as a

registrar of public keys for these third-pa11y computers. (The third-party supplier

might serve this function and additional witnesses may be present.) The client and

the registrar both supply random inputs to the TRM for key generation, providing

unbiased key selection, then they initiate the process. When the key pair is

generated, the secret key is held in (erasable) non-volatile storage, never to be

known outside the TRM, and the public key is output by the TRM. This public-key

is recorded by the registrar, establishing the correspondence between it, the TRM

based computer and the client.

To distribute external software to this computer, a vendor checks with the

registrar to establish the association between the public key and the computer in

question. Using this public key, the vendor encrypts a (secret) conventional cipher

key and an identifier, generated by the vendor, for use in secure down-line loading

or for encrypted storage distribution. Once this initial contact has occurred, a

vendor can identify himself to the third-party supplied computer in subsequent

distribution procedures by using the same secret conventional key and identifier.

The client interacts with the computer to establish his own subsystems in a more

direct fashion based on his direct physical control of the system, e.g., through

console interaction. Since the secret key of the PKC pair is known only to the

TRM-based VMM, only the vendor and the TRM have access to software

distributed in this fashion. Of course, this procedure is meaningful only if TRM

packaged system components are permanently sealed at the factory, i.e., not subject

to subsequent invasive maintenance procedures. This strongly suggests the use of

222

Multi-Vendor Systems and Client Security Requirements

an encrypted-storage design, e.g., SYSTEM G or SYSTEM H from Chapter 4, to

minimize the number of TRM-packaged components.

This software distribution procedure based on public-key ciphers meets the needs

of vendors of proprietary software for many applications. In distributed systems

employing this procedure, members of the user community can act as vendors to

exchange software in a fashion that protects the lender. However, this procedure

does not address the special problem of distributed software that must be trusted to

implement access control policies, e.g., the distributed, replicated database

subsystem described above. If such subsystems are provided as proprietary software

by a vendor, it is unlikely that inspection of the subsystem source code by the clients

will be acceptable, so at best an independent patty might be brought in to ce,tify the

correctness of such subsystems. Jf this certification procedure is acceptable to both

clients and vendors, the subsystems can be distributed using the procedure

described above. A vendor would associate a secret key with the subsystem copies

destined for a given distributed system, providing them with ·a basis for secure inter

node communication. (The subsystem copies are identified to one another by the

hardware UID associated with each computer.) If mode nodes are added to the

distributed system, the vendor can supply additional copies of the subsystem with

the same key.

5.2.3 Distributing User-Written External Software in Distributed

Systems

If the subsystem is supplied by a member of the distributed system user

community, the problem is somewhat different. The assumptions here are that the

members of the user community will co-operate in this process and there is no

requirement to conceal the subsystem code, but the users are largely autonomous

and thus harbor some degree of mutual suspicion. Thus perspective clients

223

Multi-Vendor Systems and Oient Security Requirements

(niembersofthe usercommun_ity) may inspect the code to verify that-it implements

an advertised security policy. However, the 'user/vendor who wrote the subsystem

cannot directly distribute the subsystem since he·cannot. be a,Howed to know a secret

key embedded in the subsystem copies for secure i~ter-node __ ~mµnication., This

problem can be solved by using a third-part.y .~omputer with ~ppropriate software as
' ' -· ..

an installation server for the distributed system. This comp~ter ~s a shar~d resoutce

of the distributed system user community and ~operated.by_ the_m ,co~operatively.

The installation server acts as a surrogate for u~·vendors in carrying out the

subsystem distribution process in a fashion that meets the security requirements of
. ,.r • ' ~ " ..

the user community. Readers not interested in the d~tails of how this pr~ is

implemented should skip to section 5.3 ~ge 226), for a disc~ioµ of the other

approach to realizing multi"'.vendor computer syslCDl$.

Figure 5.-1 illustrata the flow of messages in this procodure; using an example

distributed system compmed of 4 user nodes (A-•D) aod an in~ation' server node

(E). The gibsystem creator, in this,example. ,user node D,:mitiates the procedure by

transmitting a copy of the subsystem souree mde ·to the-installation server node (stq

/). This transmisoon ~ secured using the secret key of-tie- lhird·party computer

along with an EDC or AICF to ensure autheaticity·and,integrity. ·The installation

server records this subsystem, assigning it a UID. and compiles the -subsystem,

producing the executable object module version. Included in the object module is a

secret key, generated by the server. which. ~.,JUbsy~ c,opies .can _use to
• • '. ,, -,.. < • - ~

communicate securely with one another. The server distributes a copy.Q!tbe IOU~
• •"'. ; I ~ • •· •

and object module versions of the subsystem to each user node (step 2); the source

code is provided for the inspection and approval of the user and the object module

is made available for immediate installation and activation of the subsystem~

(Distribution of the subsystem can be restricted 'to a 'subset of the user community

by informing the installation server of this subset at the time the subsystem is

delivered by its writer.)

224

Multi-Ven9or Systems and Client Sf.}curity Requirements

Node.A NodeB

NodeE

NodeC NodeD

Figure 5-1: Secure Installation of a User-Written, Distributed Subsystem

Each transmitted copy of the source and object modules is transformed under the

secret key of the installation server to ensure authenticity,' then under the public key

of the target user node for secrecy, and an EDC is included for integrity checking.

In order to effect these transformations, the installation server must be provided (in

a reliable fashion) with the public keys of all the user nodes. The public key of the

installation server must be made available to the. user nodes.·t<> allow verification of

this transmission. (Jf a user-node is. provided ,with,.a puolic key that does not

correspond to the installation server, the security of the procedure is not violated,

but the node in question will not be able to decipher and load subsystems!) F.ach

user node VMM, upon receipt, transformation and verification of this transmission,

225

Multi-Vendor Systems and Client Security R.equirements

makes available the subsystem source code for user inspection. If, after examining

the source code, a user approves it, he authorizes his node VMM to install (and thus

activate) the subsystem. Users not wishing to participa1' in-the.subsystem merely
~ .~ -

instruct the node VMM na, to install the subsystem. · '·

This procedure guarantees-that the installed subsystem copies are identical~ that

they have been approved by the·us,ers (clients) on_.ft'hose computers the copies are

executing, that they can communicate secure1y with one another and that the

subsystem writer cannot circumvent t-his · 1)1'0<l!dure, i.e., he is bound by the

advertised access control policy embedded in tbe su~ystem! This is a simple

procedure and, although it requires the users to exercise some care in operation of

the installation subsy,tem, the procedure meets the stri,gent security requirements

established for distributed systems composed of autono1p~sl)' ~~aged nodes;15
- • \.(;:· <.;

Moreover, the installation procedure can be effected incrementally, i.~ .• members of

the distributed system can participate in the installation and use of subsystems at

their convenience. The introduction of a new nod~ into the <li$.ril?ute~ system
,·, - ,, . -

requires registering the node with the installation server, i.e., establishing the

correspondence between the node UID and its public key. before subsystem copies

can be ·installed at the new node. (fhis .simple task requires mpervision·.by the users
to ensure that the proper public key is mstalletl)

5.3 Multi-TAM ~omputer S.ystems

Although the third-party computer approach meets the security requirements

established for.multi-vendor systems,- it. does:reql.Jire the vtndotl and tfients to trust

the third-party supplier. Moreover,• it may require the· 9.tpplier to disclose his

15.rrojan Horse programs could still be a problem here, but at least the user can examine ~
source code (perhaps using program verification tools) in an attempt to locate any Trojan Horses.

226

Multi-Vendor Systems and Client Security Requirements

hardware and software designs and make his system available for inspection in order

to satisfy the concerns of the vendors and clients. The problems related to trusting a

third-party supplier can be avoided if each vendor supplies his own security relevant

hardware and software. This vendor-supplied hardware and software can be

organized into a computer system that operates much like a distributed system in

microcosm. Each vendor is represented by his own TRM (acting as a node) and the

client controls interactions among these nodes and access to shared system

resources. In this fashion each vendor is responsible for meeting his own security

requirements through the hardware and software encapsulation mechanisms he

provides, and the client confines the external software through the use of hardware

and software that is completely controlled by him. This approach retains the

simplicity of single-vendor systems yet provides the functionality of multi-vendor

systems as achieved in the third-pa1ty VM M design.

5.3.1 Configuration Options for the Multi-TAM approach

The primary drawback associated with this approach is the cost of providing

duplicate TRM-packaged hardware, one system per vendor. However, if the cost of

these systems can be made sufficiently small relative to the anticipated revenues

from sales or rental of proprietary software, this approach may be economically

feasible and acceptable to both vendors and clients. The need to minimize costs

strongly suggests the use of encrypted storage designs since they involve only one

TRM and can share storage outside the TRM. The TRM designs of SYSTEM G

and SYSTEM H are the most promising candidates as they yield the smallest, least

expensive TRMs and offer the greatest opportunity for storage sharing. Using

either design, the (vendor-supplied) TR.Ms share secondary and T&A storage and

l/O devices (terminal, net interface, etc.) under client control. Using the design of

SYSTEM G, primary memory is shared only as a medium for parameter

227

Multi-Vendor Systems and CJient Security ReqUitcments

- "'!'""'
s

CP\J1-----,---ts--. .. ci>u 1-----,----t ~ --------t
I -.,' .. .J,.

P-MEM
,,

CPU -------.----..---...--.-..._.....----x

S-MEM* T&A•

System1

F1gure 5-2: A Single Bus Multi-TRM ·System Configuration -
.-

transmission between processors, Le., physicaRy u·nprotected primary memory is

provided primarily for use by the client-supplied processor since each TRM

contains built-in primary memory. A multi-TRM system based on the design of

SYSTEM H could share all primary memory among all the processors (client and

vendor). Figures 5-2, 5-3 and 5-4 show three multi-TRM system configurations.

228

Multi-Vendor Systems and Client Security Requirements

- -s ;_. s
CPU 'S CPU s

I I -
,.

P-MEM P-MEM

ACBC

CPU X

S-MEM• - •·A•. ·, other peripherals
P-MEM

System J

Figure 5-3:. A Dual Bus Multi-TRM System Configuration

The first two configurations, SYSTEM I and SYSTEM J, illustrate TRMs with

built-in primary memory connected to single and dual bus systems, whereas the

third configuration, SYSTEM K, shows TR.Ms sharing primary memory with the

client processor in a dual bus system. AH three configurations require essentially the

229

Multi-V cndor Systems and Client-Security Requirements

CPU [X ;,...___,, qpu- [X l-... , ___--------.
SSI SSI

ACBC ACBC

CPU [X-----------.--------.-.........-....-........ :-.-"----t. [X

S-MEM* T&A • :, other peripherals

P-MEM•

System K

Figure 5-4: Another Dual Bus Multi-TRM System Configuration

same access control mechanisms to enforce confinement of external software.

(Remember, encapsulation is provided by the TRM-packaging and encrypted
. , '' - - .. :

storage security mechanisms described in Chapter 4, both of which are vendor-

Multi-Vendor Systems and Client Security Requirements

supplied). The access control requirements here are generally the same as in the

VMM design and the mechanisms used to achieve them may be quite similar; only

the implementation of the mechanisms is different here. In order to maximize the

use of off-the-shelf system components, e.g., disks and J/0 devices, an access control

bus coupler (ACBC) is employed to connect TRM bus(ses) to the main system

bus(ses). The alternatives, enforcing access control at the bus interface to each

shared resource or at each TRM-bus interface, would require additional specialized

hardware. Moreover, access control hardware may introduce some delay in bus

transactions and the ACBC design imposes this delay only on accesses to shared

resources by TR Ms, i.e., it need not affect performance of the client processor.

An ACBC is the dual of a secure bus coupler (SBC), i.e., the ACBC protects client

equipment from attacks by vendor TRMs in much the same fashion that an SBC

protects TRM-packaged vendor equipment from client attacks. An ACBC filters

traffic on the bus(ses) connecting shared resources and the client-supplied processor,

so transactions local to those components are not repeated on the TRM bus(ses).

'Il1e ACBC also controls TRM access to primary memory, secondary and T&A

storage devices and various 1/0 devices, e.g., the terminal and the network interface,

as directed by the client. To properly enforce access control, each TRM must be

reliably identified to the ACBC and confinement requires that transactions

involving one TRM must not be passively or actively wiretapped by other TRMs.

One cannot simply connect multiple TRMs to a single, conventional bus since such

a bus does not preclude passive and active wiretapping attacks by other TRMs on

that bus. Thus each TRM has its own short bus segment(s) connecting it to the

ACBC(s) to prevent these attacks by other TRMs.

Since access control details for some devices may be quite complex, the ACBC

can be simplified by off-loading some tasks onto the client processor, i.e., letting the

client processor assume the more complex functions provided by a VMM. To

231

Multi-Vendor Systems and a.ient Security Requirements

facilitate communication wiJ,h the client processor/VMM. the ACBC can map a

portion of the address space of each TRM iftto ,a distioa :regi(m of the shared

primary memory (even if the TRM~ are 001lfagured with built.,in primary memory).

Secondary storage may be divided eoog the TR.Ms and-die dient by adopting the

mini-disk concept described earlier. TIie diem. .processor. can· 1JJai11tmn the

alJocation infonnation ·needed to simulate:the llrinirdisks aed it can:load regisrets in

the ACBC to reflect th~ em&datioo :w~ a 'FRM .~ lbOUnting of .a mini".Clisk.

The client processor caa translate req~ ~. load appmpriate.,registers in. ·the

ACl3C to achieve the~ access ~tJQl,pplicy. •~lnthisfiisbioll the ACBC design

is kept sim~ and itscb~ingQfaddrtlS$i9,bus~ions-Oul:bcaca,mplished

quickly, yet a wide range of complex access control functions~, be provided This
' ' . , . . - ~; : ~, '. ~ ·: .: '. ~ .~· \ ; . . : , .. : .1 .. ':? ,- ,; ·, ! ': -. < ' • : '

same technique can be applied to the mediation of network communication. If
. . _ , • _, -.•. - ; ;i_·. • ~·f·_/ }f~ ;-·rL. : .,;r! r" ~·-- : :;_)t: ,: ··. ·

there is no need to monitor the ace~ of a given TRM to the ~work, the ACBC

cari be directed to aliow' unlimited~ anti;if~ ~ik>ri~g ~.,~ledfo~. the
- ; .• ;· . r, ;;~ ::,7 L.. .!,,: ! ~u· •• ,·". :1;; ~- }t:·r~:····;i·:~·-. ii .. ~f .,~-:~:. . -

ACBC can require the TRM to forward m~ges throu~ ~ client pr~
' '. . . '. .i~ jc .<_!f;:(_--. ·_;··' :~~_;_ ... • '.' ,.,

where they can be inspected and appropriately constrained.
, - • . . • • -. ~. _· t~ ~ .

Acee~ to.other shared,-r~ .e.g.. the tenauttl llld other lotatl/0 devia;s is

generally provided on an al/-or-noll,j,rg _.. aad,,ifl ~ly ~by• regiacrs, in

the ACBC .. To control ~~ w,~ oriffl¥Y . DltJbOfY.,-a:>me iHffi, of•mapping

must be appjied,to T~M ~ teferences. ClleorhlOipamulf,1-se-.d l,ounds

registers can be provided in th1' .ACBC ·for-~, ...wve• lRMr,tn ~!mappitag

and aooess contr.oL (la SYSTEM &. there are two ~aaej~_m.dlt
~ system VO ~.aqd the-Other•• thtHlleaBOl')':bw:(.lM-r;!JIDd .oess OOlllnll·

responsibilities are divided among t:betn,~i) ~,For •••~J'esolll'a:$ o&ber

than primary memory, the delay imposed by an ACBC should .not significantly
, . ' .,!- J

degrade system performance due to the -inherent delay in ~ thO$C resourees.
' ··. ' .

In SYSTEM I and SYSTEM J the TRMs use shared primary memory only tor

inter-lRM ~munication and· 'ror service requests k> the
1

client proceswr, !Kl the

delay imposed by the ACBC should not seriously affect performance.
232

Multi-Vendor Systems and Client Security Requirements

In a configuration such as SYSTEM K, the delay introduced by this mapping

could become a problem. Moreover, the encrypted storage TRM design employed

in that configuration requires cryptographic refresh of primary memory by one of

the TRM SSls. The cryptographic refresh process generates an enormous amount

of bus traffic, which precludes single bus configurations for either the TRM or the

main system. Even using a dual bus configuration for both the TRMs and the main

system, it may be impractical to carry out the cryptographic refresh for more than

one TRM simultaneously. Moreover, the refresh may effectively preclude any

significant activities by the client processor due to the demands on primary memory

bandwidth. Thus, in SYSTEM K, a TRM probably cannot execute software in a

"background" mode while the client processor performs other processing. Even if a

separate, shared primary memory were established solely for the use of TRMs,

software in two TRMs probably could not interact for the same reason. This

severely Jim its the utility of systems configured in this fashion.

The cost analysis discussion presented at the end of Chapter 4 suggested that one

could provide 64-256 Kbytes of primary memory in the TRM (using 64 and 256-

Kbit memory chips respectively) for less than the cost of hardware needed to

support encrypted primary memory. Thus economic considerations also may argue

for adoption of private memory TRMs in applications where primary memory size

restrictions are not a problem. Private memory TRMs require only one ACBC, as

opposed to the two in SYSTEM K, reducing system cost and fmther maximizing the

use of off-the-shelf components. Since the single ACBC in these systems only

controls access to peripherals and the shared primary memory used for inter-TRM

and client processor communication, it need not exhibit extremely low delay,

making it sim pier and cheaper to construct. Moreover, primary memory size

limitations in these TRMs may be ameliorated by use of low access time secondary

storage, e.g., bubble memories, as paging/swapping devices. Thus, even though

TRMs using encrypted primary memory offer greater growth potential since the

233

Multi-Vendor Systems and Client security" Requirements

shared primary memory is readily expanded, TRMs:with built-in primary memory

may prove more appropriate for multi .. TRM'systems.

5.3.2 A Hybrid Scheme for Distributed Systems

The multi-TRM design seems especially well suited to use with proprietary

software since it avoids problems of .trust .that arise; in .the third-party supplier
' ~ n e

approach. However, in the context of disµ-ibuted.systems,,extern~,software written

by members of the user community probably canpot.take ad\'.aritage of th~ multi

TRM scheme in its pure form. First of all, it is im~ ~ provide at each user

node a separate TRM for the external software suppl~ by each other. user.

Moreover, this scheme would not provide a basis for a di~buted subsystem that . . -•. • ~ ~ •, '

includes its writer as a client! Rather. the multi-TRM ,approach can be used in

conjunction with the third-party approach in tqe followin.g fash,ion., F.ach user node

can employ a multi-TRM configuration in which one of the TRMs is provided by a

third-party supplier and is devoted to execution of subsystems 9'ritten by :members

of the user community. The installa~on server technique "described in the.preceding

section is employed for distribution of these subsystems. ... ·· In this fashion the

advantages of multi-TRM designs are available to the users but the special

functionality required for secure distribution and operation· of user-written

subsystems is retained.

5.4 Conclusions

This chapter explored the problem of ronfming external software (to meet the

client security requirement of preventing · 1eakage of·. client ~formation) and the

related problem of supporting external software from multiple· vendors in a single

computer system. In developing protection mechanisms to solve these problems,

234

Multi-Vendor Systems and Client Security Requirements

several important concepts and techniques were introduced. The two problems

noted above can be unified by viewing the client as a vendor with some extra

privileges that allow him to control access to shared computer system resources.

Controlling access to shared resources is a major part of con fining external software

since network access provides the primary means of leaking client information. Two

approaches to implementing multi-vendor computer systems were developed: use

of a third party to supply a TRM and controlling software and use of multi-TRM

computer systems.

The third-party supplier approach requires no new hardware technology; it is

applicable to all of the designs developed in Chapters 3 and 4, but it does require

both clients and vendors to trust third-party suppliers. A virtual machine monitor

(VMM) can be used to encapsulate external software provided by various vendors

(and the client) and to provide the client with a means of controlling access to

system resources. The performance degradation resulting from use of a VMM

should be acceptable in most application environments. A protocol based on

public-key ciphers can be employed so that the third-party supplier does not have

access to the external software distributed to the systems he supplies. This protocol

can be enhanced so that users can acts as vendors of their own subsystems in the

distributed system context.

The multi-TRM approach to confining external software supplied by one or more

vendors essentially realizes a VMM design using separate processors (and, perhaps,

private primary memories) for each vendor and the client. This approach minimizes

the need for trusted third parties at the expense of some additional hardware: one or

two access control bus couplers (ACBCs). The ACBCs filter bus transactions

between the busses for the vendor TRMs and the bus(ses) of the client's processor.

To keep the ACBCs simple, access control policy decisions are made by the client's

processor, which loads appropriate registers in the ACI3C(s) to enforce these

235

Multi-Vendor Systems and Oient Security Requirements

decisions. If the cost of the TRM-pack.aged components is suitably small, this

approach may prove more acceptable to clients and · vendors, because of the

increased autonomy provided. Perfonnance degradation associated with

configurations implementing this design also should' be acceptable for most

applications. Moreover, such performance degradatron can be restricted largely to

vendor &>ftware; it should not ~pprednbly- ·aflect> clietit progmms, due to the

existence of a separate dient processor and' Ute positiofting of access control

hardware in the system configuration.

236

Chapter Six

Conclusions and Topics for Further Research

This thesis has developed and analyzed protection mechanisms for encapsulating

and confining externally supplied software in personal and small business

computers and ce1iain types of distributed systems. This chapter summarizes the

results of this thesis, reviewing the key concepts and techniques lkveloped herein,

evaluates the encrypted bus and encrypted storage approaches with respect to the

criteria established in Chapter 1 and discusses the applicability and limitations of

these approaches. The chapter concludes by suggesting some topics lor futiher

research.

6.1 Review

Chapter 1 established vendor and client security requirements associated with

external software. These requirements are derived from those developed for

protected subsystems in centralized computers and thus are more stringent than

those that one might propose if only proprietary software were to be protected, as

indicated in the review of related work. For example, other authors have not

addressed the problem of detecting modification of external software (including

sensitive databases constructed by the software during execution) or the problem of

confining such software. The data integrity guarantee supports features such as

sophisticated billing and revocation procedures for proprietary programs and is

essential for many distributed system applications (see Chapter 5). These extensive,

stringent security requirements yield protection mechanism designs that set this

thesis apa,t from previous work.

237

Conclusions and Topics for Further Research

· In Chapter 2 the concept of tamper-resistant modules (TRMs) was explored in

detail. The TRM concept is important since it etnb?dies an of the physical

protection characteristics that are a function of the level of security required in a

particular environment In this fashion none of the other protection mechanisms

developed throughout the thesis need deal with physical protection issues. The

monolithic-TRM design introduced in Chaf)tct 2'illustrated seme·ofthc Hmitations

of TRM packaging. motivating the use of cry~ic :ted\niques to overcome

these deficiencies.. This design also served to introduce; the secure bus coupler

(SBC) in its rote as ,a, filter of transactions.at the .bus mterface·to the n,ain TRM. The·

basic features of the SBC appear later in the: cryf)t0gmf}hic-bus ·interfitce (CBI) and ·

the secure storage interface ~t) Oft the-main TRM.
. .

The encrypted bus approach developed in Chapter 3 introduces several importtlnt

techniques in treatment of bus communication between TRMs as a special problem

in communication security. The stream cipher mode developed in that chapter Im

been carefully designed to minimize delay and maximize throughput. "~-'~~ '

this mode permits multiple crypto devices to be used in parallel to generate crypto

bit stream at very high rates.· The shortenec.f t>ES ~lcula~ eti.ployed for cEDCs
enables simple secure transactions . to procee,f ;t relative!~ high rates. Use of a

. '

distinct crypto bit stream for each simplex channel supports asynchrony in secure

transaction scenarios. This is critical to the elimination of authentication checks at

the slave during simple see11te read transactions (enhancing through,put) and it
• . . ' <; '

allows control and data transfer connections to.be combined. Finally, aggregate

secure transactions redQce overhead on data transfers between' primary memory and

TRM-packaged storage devices by transblitting a cumu~ve CEOC at the

completion of the transfer, rather than transmitting a CEOC with each transaction.

Chapter 4 employs cryptographic techniques iiJ a .tashion quite different &om

Chapter 3, and the encrypted storage. approach i~ several im~

238

Conclusions and Topics for Fu1ther Research

concepts and techniques. Version tags (VTs) are employed to form version

differentiated names for cryptographically transforming storage units, and a

protected version tag table (VTT) provides a basis for verifying the timeliness of

storage units fetched by Read operations. For transfer and archival storage, the

archival VTI and its associated update table provide a robust mechanism for

enforcing reloading constraints for most-recent-only and non-reloadable files. lhe

four-level hierarchic decomposition of the secondary storage VTT' and appropriate

caching of p01tions of this hierarchy make the use of encrypted secondary storage

feasible. Finally, cryptographic refresh for encrypted primary memory permits the

use of small VTs with cache lines, significantly reducing the amount of memory

devoted security overhead.

Although Chapter 5 is sho1t in comparison to Chapters 3 and 4, it includes several

important designs (at a high level). The problems of confining external software

and supp01ting such software from multiple vendors in a single computer system are

unified by viewing the client as a vendor with some extra privileges in a multi

vendor system. The use of a TRM-based system running a third-party supplied

virtual machine monitor (VMM) achieves the necessary confinement and

encapsulation while minimizing the amount of trusted software. The public-key

cipher protocol used in distributing external software to these computers (and in

installing secure distributed subsystems) is critical to the client acceptance of the

third-party approach. The multi-TRM system approach avoids the need for trusted

third parties and, if economically feasible, it is probably the preferred approach.

Both approaches allow the user to mediate access to the network interface, the

primary means by which infonnation can be "leaked" outside the computer.

239

Conclusions and Topics for Further Research

6~2 Comparative Evaluation of the-Encrypted Bus and

Encrypted Storage Approaches

The primary goal of this thesis has been the design of mechanisms to protect

externalJy supplied software in small com~uters. Chapter I established several

criteria for evaluating mechanisms proposed to achieve this goal: decentralization,

effectiveness, generality, flexibility, low equipment cost. minimal performance

impact and transparency .. The protection mechanisms developed in. Chapters 3 and

4 achieve this goal in different ways and meet these criteria with varying degrees of

success. Both encrypted bus and encrypted storage· d~igns ar~ decentralized

approaches to the external software protection,· problem. These designs ~mploy

smaJI computers installed at user sites and do not require any "central" computers in

executing the external application ~ftware. The onfy time a:.central system mitbt
be involved is in the distribution of external soltware or: for:periodic accounting of

rented/leased proprietary software.

With respect to preventing unintended exposure of information, the techniques

developed in the thesis are fairly effective. i.e .• if TR.Ms perfonn as specified, then
- .

only cryptanalysis or trafftc analysis will yield information about the data being
• $ • • • •

protected. If a suitably strong cipher is employed. then only tratlk analysis remains.

Neither the encrypted bus nor encrypted stoi'age app~ provides complete

protection against traffic analysis. but one can limit opport~nities for traffic analysis

by selecting configurations that package most of the security relevant parts of the

system in a single TRM. Encrypted bus designs provide greater protection against

traffic analysis than corresponding encrypted storage designs since add~ in bus

transactions are concealed in the fonner but not in the latter. For most applications.

however. traffic analysis will not be viewed as a serious threat. especially at the level

of T &A and secondary storage transfers. With respect to detecting malicious

modification of infonnation, the mechanisms proposed in Chapters 3 and 4 are

240

Conclusions and Topics for Further Research

quite effective. An attacker has only a very small probability of circumventing these

mechanisms without being detected (depending on the size of the

EDC/CEDC/ AICF employed).

The designs proposed in this thesis exhibit a fair degree of generality and

flexibility. ll1e protection mechanisms meet the security requirements for a wide

variety of applications. Although these mechanisms have been described in the

context of small computers based on a simple architecture, the general techniques

developed here are applicable to a wide range of system architectures,

configurations and equipment speeds. This is especially true of the encrypted

storage designs for secondary and T&A storage as they are independent of most

configuration and architectural details. Encrypted storage designs also offer

substantial flexibility in equipment selection since they employ off-the-shelf

equipment almost exclusively. Some flexibility is lost in encrypted bus designs due

to possible limitations imposed by TRM packaging of non-volatile (and

demountable) storage media.

Encrypted storage designs involve only one TRM and one or two SSls whereas

encrypted bus designs involve several TRMs and CB ls in most configurations. Even

though encrypted storage designs waste a cer1ain percentage of storage (that devoted

to VTTs), this overhead is not likely to offset the added TRM packaging costs

encountered by comparable encrypted bus designs. This is almost certainly true for

systems in which secondary and T&A storage are not contained in the main TRM

and is probably true when primary memory is also outside the main TRM. (This

assumes TRM packaging analogous to the packaging employed for commercial

cryptographic equipment.) With respect to performance, both designs introduce

only a negligible delay in OMA transfers involving secondary or T&A storage not

contained within the main TRM. The encrypted bus designs do hold an edge over

encrypted storage designs in systems where primary memory is outside the main

241

Conclusi-Ons and Topics for FurtherResearolr

TRM. (The expected increase in effective average primary access time is 0-9% for

the fonner versus 9-18% for the latter.)

The encrypted bus approach also exhibits greater transparency than the

encrypted storage appr~h. Aside from imtialization· pn,ceduf,es and ,recovery

from some errors. most of the pmtection mechanisms are managecLexclusively by

the CBls in the encrypted bus designs. In encrypted storage· designs, the TRM

operating system must manage VTfs fOf secondary and T&A-st0rage, thus affonfmg

diminished . transparency. For both approaches. ~icms must· distmguish

between files.that must·be protected versus tha,e which·mayibe storsC<l unprotected~·

and the reloading constraints associated with protected, files, must be explicitty

indicated. However, t~ ftle characteristics are ebviotls at the time, the applialtion

is written and are easily specified ~ part of an openating system file creation

operation ..

Thus, in comparing the two approaches to protecting external software. the

encrypted bus approach offers some advantages wit.Ii respect. to , transparency,

performance and susceptibility to traffic analym. wheR&S,the encrypted ~e

approach provides greater generality, Jkxibility and reduced oost Wfthiw a speciflC

approach, . system configufation choices. offer . a mtdeoff of flexibility versus

susceptibility to traffic analysis. Although the selection ufa system design depends

on requirements specifK to an application envi~·one can make fl)Olt general

observations. In both approaches. the cost of pmviding primary . memory outside

the main TRM is probably too high considering the slightgain·in ftexibiity afforded

by such configurations. When primary memory is~contained in the main TRM.

there is little perfonnance difference between the two approaches. · For most

applications. the preferred configuration is probably ·an encrypted stt>mge· system

with secondary and T &A storage outside the TRM: The rost. flexibility and

generality advantages of this configuration probably: outweigh the traffic· analysis

242

Conclusions and Topics for Fu1ther Research

susceptibility and the reduced transparency afforded by this con figuration. This

configuration is also well suited to multi-vendor, multi-TRM designs.

6.3 Applicability and Limitations

The protection mechanisms developed in this thesis have been designed for the

express purpose of meeting vendor and client security requirements associated with

external software in the context of personal and small business computers and

certain distributed systems. The characteristics of these computer systems were

established in Chapter 2. One can ask whether the protection mechanisms

developed in this thesis are especially sensitive to the assumptions embodied in the

system model and whether these protection mechanisms are relevant to other

applications. The answers to these questions are no and yes, respectively.

The protection mechanisms developed in Chapters 3 and 4 are applicable to

computer systems that do not precisely match the system model. For example, in

the encrypted bus approach, the system word size and the number of bus lines

employed do not critically influence the protection mechanism designs. Such

differences are accommodated by changes in the amount of cryptographic bit stream

generated by CBis, but this does not significantly in0uence the designs, only some

implementation parameters. Variations in the relative timing of the system

components, including the cryptographic devices, do not seriously affect these

designs although they may require minor changes, e.g. more or fewer crypto devices

may be required. Substantial differences in the structure of bus transactions may

require some re-engineering, but the design principles developed in Chapter 3

should still be relevant.

Most of the encrypted storage designs are even less influenced by changes in

system characteristics such as word size or device timing, and these designs are

243

Conclusions and Topics tor Further, Research

generally insensitive to details of bus operation. For secondary storage, the ,most

critical parameter is the sector sjze. Changes in this parameter influence the

percentage of space devoted to VTis and EDCs but, uni~ the sector size changes

drastically, the impact on design features such $ the VIT should be negligible.
·-·' ' '.. - .. _ .. ,_ . - .. ; _-, n ;- .

Only in the case of encrypted primary metfldty configurations are word ·size, cache
operation and timing details critical; -pari{llet«;~ .: ~. :Pll; mQdiflcaqc>ns . to

accommodate changes in these par~c:~:~d be_possiq~,w.ithin:.th~ -€Qllte,t of

the desi~ .principles elucidatefi in the chapter. Moroov~r. sine~ there is,only one

TRM in these designs, the impact of chasges ~- the P~Wn ~Jlani.5m details

influences few components. The bottom Une ~e ~~at tt,e ~-pa:omising.desip._

SYSTEl\l F. is relatively insensitive to most SNSt~~~ ln fact,isince the

transfer rate of many current T&A and sec:o&¥J81'.Y -·~ qevices is less than 10

Mbits/s and the Fairchild DES chip s,;t is caf)4ble of O\ler 13,,Wb~s throughput,

computer systems based on the SYSTEM F design could be constructed with
. . .

current technology!

Finally .. the ptotection:mechanisms,develQpe,q here can~ em,pJoyed tor several

pu~ oth~r than ~ descr.i~ . .in. ~~r 1~;; Foor t:.x.a'1ple. ,Qlle might .u,9e

these mechanisms to ~enfor~_pJiy~I, ~~~ atMi~i).-n. ~ cannot

prevent destn,iction of information stP~ in a_~tecbµt: thcf can .prev~uit

disclosure and undetected JTIOdjfu;ation oC .~1.info~,; .. Th~ one ~

purchase a TRM-packaged oompu~r to ~ ~JIJTeats jn enviroo~

where controlling physical~ totqe,~ f;lciJf~-"'~iJI'lq.lJtor expeasi~

to achieve. &>me disttjbuted sy•ms eQ\ploy ,Ate Je~JJ1~ p~-basic file
-

storage faciJjties that users can .tCCesS fmn1 ~ i11Qdes.,. ~ -tv)Cl}'~ ~

approach mechanisms for secondary and T&A storage can be~ \))'\the user

nodes to protect infonnation stored at these file servers. Even some of the

specialized cryptographic techniques dev~loped iri Chapter lmay be applicable to . -

future communications systems that exhibit ~cry high\h~ughput ~d very low

244

Conclusions and Topics for Fu1ther Research

delay and which deal in very small messages. The imaginative reader may discover

even more applications for these protection mechanisms.

6.4 Topics for Further Research

Several topics discussed in this thesis merit further investigation. First, the

engineering of TRM packaging should be explored in depth. Details of this

packaging will vary depending on the level of protection required, i.e., based on the

anticipated threat environment, and there are a number of problems lurking in this

area. The technology employed in existing devices such as commercial

cryptographic equipment is probably appropriate for some threat environments, but

both more and less elaborate packaging must be developed. An intriguing problem

is the engineering of TRM packaging for a VLSI implementation of a processor,

primary memory and SSI in an encrypted storage design for low to moderate

security environments. Very low cost TRM packaging of this equipment might be

possible if it were reduced to a just a few silicon wafers combined in a single

package. (One might store keys in charge-coupled devices and rely on the inability

of an attacker to disassemble the package without losing the charge on the CCD.)

At the other extreme, in very high security applications, TRM packaging may have

to include devices that destroy the TRM, and perhaps the would-be attacker, if

tampering is detected. This type of packaging is probably unacceptable to the

Consumer Products Safety Commission for home personal computers, but it may be

appropriate in some military applications.

Additional work also is required in providing detailed designs for the hardware

that implements the protection mechanisms developed in the thesis. For example,

the functions of secure bus couplers (SBCs), cryptographic bus interfaces (CBis),

secure storage interfaces (SSls) and access control bus couplers (ACBCs) were

245

Conclusions and Topics for Further-Research

described, but additional engineering design is required before a TRM-based

system can be constructed usin! --these ·devices. In large part these -details are a

function of bus characteristics, so a specific bus design must first be adopted, but

other engineering_questions must be resolved~ well. For example, design details of

bus couplers with integrated CBls or SSls and th~ AC8C m~st be exa~i'ned with

respect to buffering require1Dents aad.inter&1ion:ofthe cont.roUogic,associated with

each bus attached to the coupler. Similar design m'inemenls are required for

version tag table (VlT) management at secondary atld ;primary storage -levels. For

example, the secondary storage VIT hierafeh:,,.,..lfi-be tatlored tn the ,flle-systein.

For multi-vendor computer systems there "are severaf problems that require

additional research. If a secure virtual machine monitor (VMM) is used to isolate

software from different vendors and the user, then additional research is nee~ in

the area of provably secure VMM design. Specifications of monitor calls, including

those employed in inter-VM communication, must be dev.eloped if the secure VMM

approach is adopted. These caUs must be standardized so that vendors can produce

software for execution in this virtual machine environment If multi-vendor

computer systems are constructed using multiple TRMs, vendors are relatively

ul)constrained in their choice of processor and memory design. However, similar

standardization requirements arise with respect to communication between TRMs

and the user processor operating system since that OS performs many VMM-lite

functions for the TR Ms. Moreover, if the ACBC design is to be kept simple, it is

probably necessary for TR.Ms to employ some standard bus interface. Thus, if

multi-vendor systems are to become a reality, some ~dardization is required for

both the VMM ,and multi-TRM designs.

Finally, if the protection mechanisms developed in -this thesis are applied to _
. .

computer systems that differ radically from those described, herein,' -additional

research will be required to work out the implementation details for these systems.

246

Conclusiuns and Topics for Further Research

Similarly, adaptation of the protection mechanisms to applications such as the

protection of information stored at distributed system file servers will require

further investigation.

247

Appendix

Expansions of Acronyms Used in the Thesis

The following table provides expansions for acronyms used extensively in this

thesis.

ACBC access control bus coupler

AICF authenticity /integrity check field

CBC ciphertext block chaining

CBI cryptographic bus interface

cc conventional cipher

CEOC cryptographic error detection code

CFB cipher feedback

DES Data Encryption Standard

ECB electronic code book

EDC error detection code

IV initialization vector

PCBC plaintext-ciphertext block chaining

PKC public-key cipher

SBC secure bus coupler

SSI secure storage interface

248

T&A transfer and archival

TRM tamper-resistant module

UID unique identifier

VMM virtual machine monitor

VT version tag

VTf version tag table

249

References

1. Best, R. Microprocessor for ·Executing,Enciphered Programs. U.S. Patent
4,168,396. Issued September 18, 1979.

2. Bhandarkar, D. and Juliussen, J~ Semiconductor Technology: Trends and
Implications. Compu1er Archilecture Ne~ 7. 1 (August 1978), 4-1~

3. Branstad, D.K. Privacy and protec~on in operating systems. Computer 6, 1
(January 1973), 43-46.

4. Campbe11, C. Design and Specification of Cryptographic Capabilities.
Computer Security and the Data Encryption Standard, National Bureau of
Standards, 1978, pp. 54-66. NBS Special Publication 500-27

5. Casey, L. and N. Shelness. A Domain Structure for Distributed Computer
Systems. Proceedings Sixth Symposium on Operating Systems Principles, ACM,
November, 1977, pp. 101-108.

6. Clark, D., Lampson, B. and Pier, K. The Memory System of a High
Performance Personal Computer. Xerox PARC, Palo Alto, CA.

7. d'Oliveira, C.R. An Analysis of Computer Decentralization. Technical Memo
MIT/LCS/fM-90, M.I.T. Laboratory for O>mputer Science, October~ 1977.

8. DeMillo, R., Lipton, R. and McNeil, L. Proprietary Software Protection.
Foundations of Secure Computation, 1978, pp. 115-U9.

9. pdpl 1 Peripherals Handbook. Digital F.quipment Corporation, 1976.

JO. VAX 11/780 Hardware Handbook. Digital Equipment Corporation, 1978.

J 1. Elmquist, K. el al. Standard Specification for S-100 Bus Interface Devices.
Compuler 12, 1 (July 1979), 28-52.

12. Ehrsam. W.F .. S.M. Matyas, C.H. Meyer and W.L. Tuchman. A cryptographic
key management scheme for implementing the Data Encryption Standard. / BM
Systems Journal 17, 2 (1978), 106-125.

250

References

13. Gold, B. et al .. A Security Retrofit of VM/370. Proceedings of the 1979
National Computer Conference, Vol. 48, AFIPS, 1979, pp. 335-344.

14. Hinden, H. Encryption chips sort themselves out. Electronics 53, 11 (June
1980), 96-97.

15. Kelly, P. Public Packet Switched Data Networks, International Plans and
Standards. Proceedings of the IEEE 66, 11 (November 1978), 1539-1549.

16. Kent, S.T. Encryption-Based Protection Protocols for Interactive
User/Computer Communication. Proceedings Fifth Data Communications
Symposium, IEEE, September, 1977, pp. 5-7 - 5-13.

17. Kent, S.T. A Comparison of Some Aspects of Public-Key and Conventional
Cryptosystems. ICC79 Conference Record, I EEF, June, 1979, pp. 4.3.1-4.3.5.

18. Keys, R. and Clemens, E. Security Architecture Using Encryption. Approaches
to Privacy and Security in Computer Systems: Proceedings of a Conference Held at
the National Bureau of Standards, National Bureau of Standards, September, 1974,
pp. 37-41. Available as NBS Special Publication 404.

19. Lampson, B.W. A Note on the Confinement Problem. CACM 19, 5 (May
1976), 251-265.

20. Lindsay. B. and V. Gligor. Migration and Authentication of Protected Objects.
Research Repon RJ-2298, IBM, August, 1978.

21. Miller, R. et al .. Legal Protection of Computer Software: An Industrial Survey.
Harbridge House, Inc., November, 1977. Available through NTIA as PB-283 415.

22. MC68000 16-Bit !vlicroprocessor User's Manual (Preliminary Edition).
Motorola Semiconductor Products Inc., 1979.

23. --. Data Encryption Standard. Federal Information Processing Standards
Publication 46, National Bureau of Standards, January, 1977.

24. Osborne, A. How About Low-Cost Application Software? The Answer Lies in
Books. Digest of Papers COMPCON Spring 78, IEEE, 1978, pp. 46.

25. Pouzin, L. and Zimmermann, H. A Tutorial on Protocols. Proceedings of the
IEEE 66, 11 (November 1978), 1346-1370.

251

References

26. Rivest, R.L.. A. Shamir and L. Adleman. A Method f0r Obtaining Digital
Signatures and Public-Key Cryptosystems. CACM2J~ 2(Febmary 1978), 120,-126.

27. Riv~t. R., Adleman, L. and Dertouwu~ M. On Databanksand'Privacy·
Homomorphisms. Foundations of Secure Computation, 1978, pp. 169-177.

28. Rivest, R.L. performance of a prototype RSA algorithm·,implementation.
personal communication.

29. Saltzer, J.H. and M;O. Schroeder. The Protection oflnfvrmation in Computer
Systems. Proceedings of the IEEE 63, 9 (September 1975) •. 1278-1308.

30. Schroeder, M. and Saltzer. J. A hardware architecture for implementing
protection rings. CACM 15, 3 (March 1972).157-170.

31. Schroeder, M.D. Cooperation of Mutually Suspicious Subsystems in a Computer
Ulilily. Ph.D. 111., Massachusetts Institute ofTechnoiogy. September 1972. Also
available as MAC TR-104.

32. Shannon. C. Communication Theory of:Secrecy Systems. Bell System
Technical Journal 28, 4 (October 1949), 656-715.

33. Svobodova. L., Liskov. B. and Clark, D. Distributed Computer Systems:
Stmcture and Semantics. Technical Report MIT/LCS/TR-215, M.I.T. Laboratory
for Computer Science. March, 1979.

252

Biographical Note

Stephen Thomas Kent \Vas born in New Orleans, Louisiana, on January 25, 1951.
He graduated from Ridgewood Preparatory School, Metairie, Louisiana, in 1969.
He was class valedictorian, editor of the school newspaper and president of the Beta
Club.

From 1969 through 1973 he attended Loyola University of New Orleans as a
National Merit Scholar. As a freshman he was a recipient of an Alpha Sigma Nu
honor kc) and was elected to Dobro Slovo, Pi Mu Epsilon and Delta Epsilon Sigma
honor societies, serving as president of the last two in his senior year. Mr. Kent
earned a 13.S. degree summa cum !audc, majoring in mathematics, and received the
Rev. P.A. Roy Memorial Award. He was also awarded the Gold Medal for
Research by the New Orleans branch of the Scientific Research Society of America
for his contributions to the development of software for physical chemistry research
app I ications.

In 1973 and 1974 Mr. Kent attended graduate school at Tulane University, studying
mathematics, before becoming a graduate student in computer science at the
Massachusetts Institute of Technology from 1974 through 1980. From September
1973 through June 1976 he was supported as a National Science Foundation
Graduate Fellow. rn June 1976 he was awarded the S.M. degree from the
Department of Electrical Engineering and Computer Science and the Electrical
Engineer degree in February 1977. His S.M. and E.E. thesis was entitled
"Encryption-Based Protection Protocols for Secure User-Computer Communication
over Physically Unsecurc Channels."

From September 1977 through August 1980 Mr. Kent served as a research nssistant
in the Computer Systems Research Group of the M.l.T. Laboratory for Computer
Science. In the summer of 1976 he worked for the Rand Corporation in Santa
Monica, California, as a consultant on communication security matters. In the
summers or 1977 and 1978 he worked for Bolt Beranek and Newman Jnc.
performing research in the area of security in computer communication networks.
Since 1977 Mr. Kent has lectured in the United States and Europe on the topic of
security for computer communication networks for The George Washington
University, M.I.T., the University of Southern California and several private firms.

253

Mr. Kent is a member of the Association for Computing Machinery :1:1d its special
interest groups on Operating Systems and Communications. He is alsu a member of
the Sigma Xi scientific honorary society.

In September 1980 Mr. Kent became a member of the technirnl ·,taff at Bolt
Beranek and Newman Inc. He is married to Rachel Raribault Kent.

254

CS-TR Scanning Proiect
Document Control Form

Report# lcs-TR ... 15!

Date : _J_jJ-4 I ~S

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
')g:_ Laboratory for Computer Science (LCS)

Document Type:

)&__ Technical Report (TR) D Technical Memo (TM)

□ Other: ·-----------
Document Information Number of pages: ~q- ,·IY>tJ6"~)

Nat to Include DOD fonna, prw.r lie ... ~ pages frif.
Originals are:

□ Single-sided or

~ Double-sided

Print type:
0 Typewrts O 0ffNt Presa O lM« Pmt

Intended to be printed as :

□ Single-sided or

M. Double-sided

□ InkJet Prints)a._ Unknown □ Other:. ______ _

Check each if included with document:

0 DOOFonn

D Spine

□ Other:

D Funding Agent Fonn

)(_ Printers Notes

Page Data:

D CoverPage

D Photo negatives

Blank PageSOir,: _________ _

Photographs/Tonal Material lll,,: _______ _

Other (1111k ... •• .,,...-.,:

Description : Page Number:

-:tiri"6'E' ml\(f ! (, ·Jill 4:Ntt 'ro T,TJE fllc;r J.., .. d.,lf</ ,
f«ss. m > J<AlN~rX&L fs ,~"Jr.FR s: IVollf s \JR.r;Ts(J)

j J

Scanning Agent Signoff:

Date Received: 3-J]!j_itrS Date Scanned: 5_1J:F I ~ S"' Date Returned: ..B._11 I , CfS

&:aMing Agenl Signature: ~ hJ , GJ , ..,_ _.,,..,, __ ..,

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

