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ABSTRACT 

This thesis describes an implementation of a facility 
for interactively debugging distributed programs. These 
distributed programs consist of groups of c.ooperating 
processes concurrently executing on an arbitrarily extensive 
network of processors. The facility all.ova the user to 
monitor and control, at his leisure, the interprocess 
communications that occur through message passing while 
execution of the distributed program proceeds. It presents 
the user with the ability to simulate transmission errors 
and delays, to alter and create packets, and to precisely 
control the pattern of such co!IUIUnications. The facility 
serves as a tool for the detection of lu:[iipg bugs. those 
errors, peculiar to parallel processing, which may or may 
not appear during the course of any particular execution. 

The facility possesses a high degree of transparency 
towards the program being debugged. That is, it has a 
minimal effect on the events that define the execution of 
that program. Transparency is a desirable property for any 
debugger to possess. To achieve aucb tranaparency, the 
processes of the distributed program are made to execute in 
a logical time environment, reading logical, rather than 
physical, clocks. 

We show tha~ the facility obeys a clock condition, with 
which any logical time system must comply in order to be 
correct. We also show that the facilit1 actually simulates 
the program it is being used to debug. ~1nally, we show 
that the facility simulates a particular computation cf the 
program that is likely to occur. The notion of probable 
simu1ation is defined, and our debugging facility is shown 
to achieve it. 

Key Words: distributed systems, debugging, monitoring, 
reproducibility, lurking bugs 
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1.1 Distributed Systems 

Distributed computing occurs when two or more computer 

processors join 1n a cooperative venture to get a particular 

job done. It has been characterized (Metcalfe76) as including 

an entire range of computational. organizations: multiprocessing, 

loca1 networking, and remote networking~ The properties of 

these systems dit'ter in degree, rather-than in kind. 

In multiprocessing, processors are usually amaJ.1, 1n 

proximity physically, and lack an ability to function 

autonomous1y. Programs are executed in a highl.y parallel 

fashion by meting out independent tasks to each processor for 

concurrent handling. Interproceaaor communication is svift 

and frequent since, in general., all processors share the same 

memory. 

In remote networking, processors are. often large, powerful, 

central.ized, high1y autonomous computers in their own right. 

They may be designed and buil.t independently, and connected 

together in a network a11 an afterthought. Remote netvork11 

may extend over ID8ll3' mil.es (for example, the Arpanet is 

nationwide) • In these systems, interprocessor requests are 

usua11y for certain kinds of services that cannot be performed 

by the·requesting node ;or for bullt information transfer. The 

notion of' high1y parallel task execution is not indigenous 

to this arrangement. 

Loca1 networking lies somewhere in between multiprocessing 

and remote networking, a1though it is much closer to the 
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latter. Local networks may extend anywhere from several yards 

to a few milee. Often, too, the processing power of local 

network processors is intermediate to those of multiprocessing 

or remote networking systems. Loca1 network processors may, 

at times, be highly autonomous and, at other times, be highly 

cooperative. 

In general, there are no strict dividing lines separating 

remote networking, local. networking, and multiprocessing. 

Systems are often assigned to one category or another, as 

discussed above, on the baeia of illprec1·ee properties such as 

distance between proceaeora (Ketcalte76) er degree ot autonOlly 

( SYobodo..-a79 - this report, incidentally, ,provides an excellent 

introduction to many ot the issuee and problems involved in 

distributed computing). Thus, we say that a system is a remote 

network when its processors are eeparated,by about ten 

kilometers or more, or we say that a system is not of the 

multiprocessing type because its procesaora are high1y 

autonomous. 

For our purposes, it is useful to classify these three 

systems by another method (which is no less hazy than those 

mentioned above). To us, the key characteristic of a 

distributed system is that it is impossible to appraise 

eimultaneouslr all processors (hence, the different segments 

of program code executing on these various processors) of the 

occurrence of some particular system event. We distinguish 

the three system types by a value, 4 t, representing the average 

time interval between the int'orming of the first processor and 



9 

the informipg of the last processor of the occurrence of the 

event. In multiprocessing systems this value is quite small. 

In remote networks, this value 1a often quite large. In local 

networks, of .course, the value of At ia intermediate to these 

two. 

We are interested in those systems for which At is 

significant in comparison to the tiJlle it takes.to execute 

instructions on 11n.7 prooesaor {a sy,tea may oon':tain proceasore 

which operate at VarJing speeds) • Another ve.y ot N,.Ying this 

ia that ve will ~ concerned with -,:etas vheJ"e At. ie 

a1gn1ticant wbea OOlllpa.red to the tiaa 1.ntft"'l'al between 

aucceaaive fYIAH on &n7 proce•aor. Multiprocessor organiza­

ti.ons typi.caJJ7 do not poaMae tbia charao~eristic. Loc-1 and 

remote networks do. Thus, in this ~hesi.a, veare interested 

mainly in the latter two types. 
' The utility ot this particular ov.tlook,tovards distributed 

systems wil1 be made cl.ear presently. 
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1 .2 Distributed Programs 

Many problems suitable for solution by computer are 

capable of being broken down into a number of smaller subtasks 

which can be processed independently. These types of problems 

lend themselves to handling by some distributed system 

organization. The programmer codes his solution as a set of 

processes, assigning each one of these to some processor in 

the system. A process is, "a set of events with an a priori 

total ordering." (Lamport78). That is, a process is a 

chronological sequence of events. (An event may be, for 

example, the execution of a singl.e machine instruction.) A 

distributed system can execute a set of independent processes 

in parallel. Thus, distributed programming implies parallel 

processing. 

However, the converse is not necessarily true. Parallel 

processing may be simulated on a single processor through some 

kind of interleaving.mechanism whereby the processor now 

executes in the context of process A, now changes state to 

execute in the context of process B, now process C, and later, 

perhaps, back to process A again. 

Our model of a distributed program is one which combines 

both genuine and pseudo parallel processing. A distributed 

program is considered to consist of a set of processes, 

partitioned into non-intersecting subsets with varying 

cardinality. Each such subset 1s assigned to a single 

processor in the distributed system. That processor performs 
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pseufo parallel processing on this subset of processes via an 

interleaving mechanism. Genuine parallel processing occurs 

between the processes residing at distinct processors (see 

figure 1.1). Usually, some mechanism exists to allow the 

various processes to communicate in a cooperative fashion. 

In light of the classification discussed in the previous 

section, we say that all processes at the same processor can 

simultaneously be appraised of the. occurrence of some system 

event. Processes residing at distinct processors, however, 

cannot be so appraised. In this theed.a, we are interested in 

those systems in which 6t is not insignificant in comparison 

to the time needed to perform any two consecutive events 

within any process belonging to the distributed program being 

executed. 

' 
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1.3 Debugging, Monitoring and Transparency 

We will be concerned with one particuJ.ar aspect of 

programming in a distributed system. We will examine the 

problem of debuggj ng d.istributed programs. More precisely, we 

analyze the difficu1tiea behind int,ractiyflJ debugging (that 

1s, debugging while ex~cution is in progress) such distributed 

programs as discussed above, and will propoaa a practical 

facility to accomplish this. 

Related to interactive debugging ie the concept of 

mqnitoring. A user of a debugger bas no basis on which to 

perform his debuggtng if he cannot monitor the behavior of 

his program. The faoil.1 ty to be introduced in tbie- thesis 

allows user monitoring of certain specific c1aaaea of program 

events aa well as debugging of thoae events. These events are 

those having to do with interprocess co111111U11ica,1ona. This 

will be diacuaaed more fullJ' in chapter two. 

The interactive debugging of diatributtld programs requires 

a different set of tools from those employ:ed 1n currentl.7 

existing debuggera or debugg1 ng ayatema. We' now see why thia 

is so. 

Interactive debugging almost universally depend.a heavily 

upon the concept of breakpoinyjpg- It is-a ao•what 

fortunate characteristic of computers that they are able to 

perform their various functions at speeds far in excess of the 

speeds at which humans can keep track of what they are doizl8. 

'When interactively debugging, the human user must be aware 
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of what has already been accomplished in order to make 

decisions about what is to happen next. This is done by 

allowing the computer to execute for a period of time and then 

suspending execution at a designated point in the program (the 

breakpoint) to allow the user to "catch up". The breakpoint 

concludes when the user has examined the state of the ?Dacb.ine, 

has, perhaps, made various alterations in this state, and has 

allowed execution to recommence. Theoretically, it is the job 

of the debugger to insure that the state observed by the 

program being debugged upon execution restart is identical to 

the state observed at the breakpoiJi't (with the exception, of 

course, of changes caused by .the user). ·· Then the fact that a 

breakpoint occ~ed will be invisible to the executing program.. 

The debugger has made the breakpoint traps:event. 
Transparency is an ext:remely desirable property for a 

debugger to possess. We define trapgparepcx as being achieved 

by a debugger just when the events that constitute the program 

being debugged are identical in the presence or in the absence 

of the debugger (aside from user initiated. alterations 

performed when the debugger is preae11t?. This' means that the 

debugger, itself, does not affect the program being debugged. 

A lack of transpax-ency implies that the program being debugged 

is not quite the one that the program writer had in mind. A 

lack ot debugger transparency atfects the"behavior of the 

program being debugged. The lees transparent the debugger, 

the more this behavior is affected. 

Total transparency is a theor~~ical concept. In practice, 



15 

no debugger is completely transparent to the program it is 

being used to debug. A debugger only possesses a higher or 

lower degree of transparency towards that program. 

Now,in a non-distributed system. it is relatively easy 

for a debugger to maintain a high degree of transparency (i.e. 

to accomplish highly transparent breakpointing) towards a 

non-distributed program. One reason tor this is that it is 

easy to suspend simultaneously all processes making up that 

program. 

Simultaneous suspension of all proceeaea means that the 

entire program is halted at a definite inetant 1n time, when 

the machine is in a definite state. It is no~ difficult to 

save this state and to restore it v:hen all proceaeee recommence 

execution simultaneously at some lat~r instant in time. Then 

the processes making up this non-distributed progam are 

unaware that any debugger induced execution break has occurred. 

In a distributed system, however, such simultaneous 

suspension is not possible. This is because all processes 

cannot be appraised simultaneously of the occurrence of any­

system event. For example, suppose the user stipuJ.ates that 

a breakpoint 1s to occur just before the execution of 

statement X in process Y residing at processor z. When this 

occurs, processor Z sends messages to all other processes 

commanding them to suspend execution. It is not possible for 

all processors to simultaneously receive such commands. At is 

always greater than zero. 

It is also not possible !or the user to inform all 
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processors before execution begins that they must a1l suspend 

themselves at some future time V (even 1! this capability were 

possible, it is not clear that it would be at all useful). 

Completely accurate synchronization of the tia of day clocks 

existing at each processor can never be achieved (Lamport78). 

Thus, each processor will read time Vat a sl;1&htJ.y different 

real. time than any other processor. Agajn, At will be greater 

than zero. 

In those s7stems where At is significa:it, the fact that 

simultaneous breakpointing is impossible to achieve means that 

it is very difficult to maintain a high degree of debugger 

transparency. The greater the 4t value, the harder it is to 

maintain such transparency. 

To see this, consider the prognun consisting of two 

processes, A and B, residing at distinct prooessors. Consider 

the interval, .6t, between the time that A recej.ves a command to 

suspend and the time that B receives a command to suspend. 

This .6t value is considered to be larger than the time it takes 

to execute two consecutive instructions in process B. In this 

1nterva1, A is suspended while B continues·to execute. If B 

was to receive some kind of communication from A during this 

interval had A not been suspended, transparency would be lost. 

The suspension of A by the debugger would prevent B from 

receiving its communication. Obviously, the greater At is, the 

greater the probability that B was to receive a communication 

from A during the interval, hence, the greater the probability 

that the debugger would prevent this communication from taking 
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place leading to a loss of debugger transparency. Notice that 

if At was not at all significant, then B would not have a 

chance to execute any inetructions during the interval.. In 

distributed systems with such a bt (higbl.y in~egrated 

multiprocessing organizations), completel7 simultaneous 

breakpointing is nearly achievable. Ae,a result, little 

transparency is lost because of this problem. 

Currently existing debuggers have not been able to provide 

interactive service via breakpointing for distributed systems 

in which 4t ia e'ignificant, becauae they have not been able 

to solTe this traneparency problea. FO?' theae eyateme, a 

method is needed Vhich does not depend -on the ainmltaneoua 

appraisal. of events, the concept on which breakpointj_ng is 

based. In this th9'ais, we present an interaotb'e debugging 

facility tor such aystems. Thia facility mai!l'bains a lUgh 

degree of transparet)CJ' towards the dist%-ibuted program being 

debugged. It in no way depends upon the ooncept of 

simultaneous appraisal. 



18 

1 .4 Previous Work 

A good introduct1oQ to IIIBDY of the ieaues involTed in 

program debugging and mom.tor.ing can be found-:.tn Model 

(Model79). Brief descriptions ot so• de~r implementations 

may be found in Myers (l,fyer980). flle• Nader is ret'erred to the 

bibliographies of tho·se two works for in depth• information on 

particular subjects in this field. 

The earliest debuggers were Sllited for sing.le process 

programs. Aa progranmr:tng languapa nth pual:l.el prooeaal.ng 

capabil..tties haTe come into vogue• uut a.a. oaapatational. 

systems have grown in complenty, tools for,llOl'Jitor~ and 

debugging conour.rentiy executUIS'• prc,ae' ... ., haft arisen. 

COPILOT (Sv1Aehart74) vas capabl.e ~ d~ iaformation 

about many processes silllul.taneously while permitting the user 

to interactively issue debugging commanda. DLISP (hit&lman77) 

is a graphics package which uaea mu.l.'l$plAf<lf:b.liows (designated 

display screen areaa) to faoili:ta'te -she '8'Sau1taneoua reporting 

of information about various concurrent processes. Model's 

system possesaea themul.t:1pl.& «li.11play ~ilitaa of DLISP 

and COPILOT as welJ. as the .,abilit-y .,"to·oreate •a history tape 

of the program's execution, which may be played back later at 

the uaer'a leisure. It should 'tat noted 'tha'v.'tl:lese three 

facilities are tailored to UDiproceaaoror mal.ilproceasor 

syste'1s, or, in. general, to syatema 1.n which At is insigni­

ficant. 

An attempt to extend a debugging.tool to a local network, 
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the Ethernet (Metcal.:fe76), where At 11 significant, may be 

found in the Metric system. Metric consists of three portions. 

"There 18 a probe in the uaer'e obiect, v,m, &11 accountant 
that coUecta i.n!ormaticm from the probe, and an tPtllU that 

processes the in!ormatiC>l'l. and pre.eenta it in an intelligible 

format. Meaaurement mn;a are tAON data tbat the probe 

'tranemi ta to the -.ooowitant, ancl , .. vhidl •era subsequently 

processed by the analyst.• ,11c el.77) The obj•ct system 

probe exists at each prooeaeor oa which the procraa to be 

debugced ia executing. '?he aoQOQJLtaat.,.aml _,,.trt reside on 

proceaaora dini.Do't from any of theae. Itet:rio J.:a itael.t a 

distributed program. 

There are three anaagemente of. Jleffio (aN figure 1.2). 

We mention the• briefly 1D. order of increaaizlg complexity. 

The Line - Thia consists of a aiDgle probe and a single 
aCCO\mtant. 

'!he !ree - fbie cQDll1sta of u arbi.va&7 .number o-! probes 
simultaneously tranamitting event data to a a1Dgle 

~~:=~•tJ: ·:!:i:8!.~!.: ~~~~•~}1
!{r!:ture. 

The Network - Thia consists of an •arbitrary number of 
probes silml.~ ,.,,., __ .ena, d&'ia 'to an 
arbitrary number of accountants, the latter perhaps 
operat1llg in a QC)QJNlra.si..,. 'i'allht •• <We V1J.a. have reason to 
refer back to this structure in chapter five. 

We must emphasize that Metru: ia 1121 an iltteractive 

debugging facility. Thus, the· :fact that it opea:tea in a 

system with a $1gnlflcant At val.us 1a not'. reaJly of an:, great 

import. Metric, like Model's facility, collects event reports 

on a history log. The wser •xand n"s this log after the program 
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accountant accountant 

object system {o.a.) o.a. o.a. o.s. 

The Line !he Tree 

accountant accountant 

o.s. o.a. o.e. o.a. o.s. 

The Network 

Figure 1.2 
(from (McDanie177), fig. 3) 
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to be debugged has ceased execution. The user does not 

debug while execution proceeds. 

However, Metric is important to us because it does 

represent an attempt at debugging programs that do not execute 

in uni- or multiprocessor environments. Furthermore, Metric 

provides a primitive facility for the detection of lurking 

bugs (to be discussed in chapter two) in distributed programs. 

Other work related to ours, which are not strictly 

debugging tools, include the Virtual Machine Emu1ator (Canon80) 

and research by Bryant (llryant77). The BIN.lator adopted the 

~xpedient of having prograu execute in a yµ:t:,11] time 

enviropmep.t, reading virtual clocks which do not "tick" in 

real time. Our debugging facility also makes use of a virtual 

time enTiroDlllent. We point out that our use of this concept 

is dilferent :from that used in the Emulator. However, we 

received some inspiration trom that projec• approach. 

Fin•Jly, Bryaat treats the subject of stmulation in a 

clistributed system. A number of the teclmiquea he employed 

(timestamp;ng. tor ezam.ple) are 1111m11ar to 'lechniques used in 

our debugging facility. Bryant, howffer, does not attempt to 

extend his work in simulation to the realm of interactive 

debugging of distributed programs. 
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1.5 Hardware Environment for this Project 

Our debugging facility is implemented on the Ethernet 

network, a local network with a significant At val.ue. There 

is no reason why the same facility could not be implemented 

on a remote network. In other words, there is no m&%imum bt 

value beyond which the facility will cease to operate. 

However, as we move from networks with small 6t values to those 

with large 6t val.ues, we often find a decrease in the·number 

and importance of truly distributed applications implemented 

upon them. Therefore, the need for our debugging facility 

on many large 4t networks may not be very great. 

"• •• Ethernet uses tapped coaxial cables to carry 

variable length digital data packets among, for example, 

personal minicomputers, printing facilities, large file 

storage devices, magnetic tape backup stations, larger central 

computers, and longer-haul communication equipment." 

(Metcal.fe76) Interprocess·oommunication between processes 

residing at distinct processors occurs through explicit 

message passing. The Ethernet hardware does not guarantee 

the errorless delivery of such messages. Messages arrive at 

their destinations only with high probability. If the program 

requires a probability greater than the Ethernet can provide, 

it must implement, in software, some packet transmission 

protocol to mask hard.ware packet loss. See Pou.zin and 

Zimmermann (Pouzin78) for an introduction to packet trans­

mission protocols. 
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Each processor on the network is an Al.to desktop persona1 

computer (Xerox79a). This is a minicomputer contajnjng 64K 

16-bit memory words, one or two 2.5 Mbyte removable cartridge 

disks, a sophisticated 875 line display screen, and an inter­

face to the Ethernet. Each Alto is oapable of operating in a 

stand alone mode, or in cooperation with vario~s other 

machines on the network. 
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1 .6 Software Environment !er this Project 

The software environment for our debugging facility is 

provided by the il tC)/Mesa system (l'.eror7-9b) • !he programming 

language used in thia system, .. *•·, is a Pasca1-like language 

which permite concurrent exec~tion of multiple processes 

(Mitchel.179). Our facility baa been implemented in Meaa; In 

this section, we discuaa·some of the importartt concurrency 

features of Mesa and the ilto/Jlta ey,nem· (see Lampson and Redell 

(Lampson80) for more detail}. We ·'do this in order for the reader 

to be able to appreoiate some of tblt impleantation details in 

later chapters. 

Mesa allows the creation o'f a 11ev proceaa to be accomplished 

via the POU call. A prff'ioual.J":•~atqtproceaa ma7 fork: any 

number of new proc.eaes to execwt:e m piara:Llel via the inter­

leaving mechani• of the Al'to pnoe8eor. !-ork:ed proceaees are 

deleted via a JOnr statement. ~. JOilr ·e1Jatement perm. ts the 

joining process w retneTe wha1"Wtt- reftlta ha1re been coaputed 

by the joined prooeaa. !he system ·theb deriroya the joined 

process. Forked prooeaaea vhioh dc),not oOlllpU'te explicit results 

may be detached. De11ached proc .. eee' e.re'"never joil'led. 

Thus a uaual. paradigm is '!or aome· 'l'l"oceae to :t ork another, 

execute aome code itldependent1y ·of the- forked process, and · 

attempt to ·re-join the forked prc>oeff a't aome later ti.me to 

retrieve its reaults. 

· This mechanism may at times be too restrictive. Proceeses 

often need to interact in a more'highly eophisticated manner 
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than the fork-join apparatus aUowa •. i~.M•sa possesses a 

monitor mechanism (Hoare74) which allows processes to have 

synchronized acceaa to shared data_1J1 me110ry through explicit 

procedure calla. Syncbrcmization is ~•ved tlu:"o~ mut\Ul.l 

excl.uaion by the uae of a 99P+;tor 1Qsi whioh must be acquired 
' 

before the proceaa may enter ~t,Jl,IQJUjtor and acoesa its 

protected data. When a procesa acqu:Lrea the; JQOnitor lock it 

effectivel.y shuts out aJ.J. other prooe ... • .:trom that 11Gnitor. 

The process may then aooeu the data llithou.t worrying about 

concurrent acceaa by aoae other proo&u. ~ interproceN 

t1rn1J16 d~fi.cultiea are aoJ.ved 1Jl thia.taab.ion. When the 

proceae is finished vi.th the lionitor data it ~J.eaae• the 

monitor lock, and arq otber p~ .-,: th4Nl ~uire it. It 

1s obvio\1.8 that only ~• reai41~ at the:.. .... prooeaaor 

(Alto) may 1.Dteract through~ IIOA1to~ ~• a:Lnoe auch 

interaction 1s ach:Leved ~ ~ •IIOrJ'• 

Implicit in the monitor •cbaniM 1a tlle iiotion of a 

m.orµ,tqr MF:fl:£1fQt. Tl'.la 1nvar1q.t 1a "an -~Oil de:t1ninC 

what constitutes a '10Q4 state' of the cl.at&. toi- tb&t particular 

monitor." (Mitohell79,). ~hie uwa,ri,ant .__.t ~ true wlumever 

a process acquires the monitor l~ ·-4 .ia about to aoceaa the 

state of the monitor data. .A. prooeaa :Lqa:lde e. aonitor can 

make the invariant,:tal.ae, 1:t 1, p1.e,a..-,. l>ut muat r♦atore the 

invariant before it relinquiahea the look. 'rhua, when a process 

acquires a monitor J.ock it may see any of a ra,::J.Be of states, 

all of which aatiaty the monitor in"VN"iant. 

At times, a process may ente:r a ~nd:tor -,id find that, 
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a1though the invariant is satisfied, the state is such that 

it cannot proceed. It must WAIT for s:ome other process to 

enter the monitor and satisfy whatever condition it requires. 

The process waits on a condition yariable and re1eaaes the 

monitor lock (after, of course, reato:ring the invariant) until 

some later time when the condition ia•sat±afied. Eventually, 

perhaps, another process vil1 come al.orig ta satisfy the 

condition being awaited. This uw prooeaa. vil1 NOO!Il'Y the 

waiting procesa that the condition baa been satisfied. The 

latter may attempt to reacquire the 11om:tor 1ock at some 

future time and continue execution. from the point where it 

left off. If a notify occurs on a condition on which no 

process is current1y waiting, that notil7 is aimpl.y discarded. 

OccasionalJy, it happens that a prooesa decides it bas 

been waiting too 1ong to receive a noti.ty. A :,1meout value 

is assigned to each condition variable specifying the maximum 

amount of time that a process shouJ.d wait on it before it 

"wakes up" of its own accord. Proceaaea may time out when 

some failure occur.a 1n the communications mechanism or a 1mp1Y 

when no other process has been ab1e to satisfy the condition 

in a reasonable amount of time. ~imeouta may be disab1ed for 

a particular condition variab1e. In that case, a process 

waiting on that condition w111 never wake up by 1tse1f. To 

resume execution, it mw, be notified by some other prooess. 

Processes acquire the processor for execution by first 

joining a feadY ),1st (this "join", o:f course, has nothing at 

all to do with the "join" discussed above) • The ready 1ist is 
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a linked list of process state blocks (PSBs) which represent 

various important information al)out each process. When a PSB 

reaches the front of the ready 11st, the proceaa it represents 

is eligible for execution by the p:-ocessor. Generally, PSBa 

join and exit the ready list in a first in - first out order. 

However, certain.processes may be assigned a higher priority 

than others. ~h priority processes bave their PSBs pJ.aoed 

on the ready list ahead of the PSBs ot all low priority 

proceaaea. In fact, a high priority pz-oceaa wUJ. preempt a 

low priority proceu that is currentl.y 1n execution. J.tter 

the high priority process has relinquiehed the processor, the 

preempted process is able to reacqtire it right away without 

having to go back to the end of the ready liat. 

Each PSB contaans a priorit::y: field indicating the priority 

of the process it represents. It also contain.a a timeout field 

indicating the time at which the p:rooesa it represent• w1l1 

timeout (baaed on a hardware timeout clock) if it is currently 

waiting on a condition variable. If this field is zero, and the 

process is curren'tly waiting on a condition variable, then that 

condition vari.able has had its timeout diaab1ed. 

Processes control the processor until they conclude their 

execution, until they are forced to wait, until they attempt to 

enter a looked monitor, or until they are interrupted. There 

is no attempt by 'the processor to implement a fair scheduling 

policy among the various processes. Occasionally, a process 

that has been executing too long will volun~arily Yield the 

processor to other processes of equal priority. 

--- ---------
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1.7 The Internet Protocol 

Our debugging facility is implemented on top of the 

Internet Protocol (ISI80). Thi.s protocol allows interprocess 

communication to take place via explicit paeket transmission. 

These packets, or datMTIPPs, may be l"eeeind by the Internet 

Protocol from higher level protocols (!CP, for example) and 

are, in turn, handed down to the hardvare for actual trans­

mission over the Ethernet. !he Internet Protocol merely 

provides for datagram transmission across the network. "!here 

are no mechani.SDU!I to promote data reliability, now control, 

sequencing, or other servicee commonly found 1n hoet-to-hoat 

protocols." (ISIBO) 

A datagram receives an internet header in order to 

!his header includes a number of 

fields worth men1:1oning here: 

Source Address - The ,2 bit internet address of the processor 
at which the datagram was CNated. Some process at that site 
was responsible for creating thi.a datagram. 

Destination Address - The 32 bit internet address of the 
processor to which the datagram ia to be aem:. Some process 
at that site will accept this datagram. 

Identifi.cation - A 16 bit val.ue as~igned by the aendiDg 
process that distinguishes thi.& 4atagra111· from any other 
created at that site. 

Protocol - An 8 bit value indicatip& . the. "type" of the 
datagram. This field is used to·a~ what process the 
datagram should be routed to at the destination pz,oceasor. 

The particular implementation of the Internet Protocol 

which we have used was implemented by Robert W. Baldwin at MIT. 
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We briefly discuss how this implementation is used by processes 

to transmit and receive packets over the Ethernet. We describe 

this here because these ideas will prove ne~saary for a ful1 

understanding of the impl.em.entation of the ~bUMing facility 

to be described in chapter three. 

In order for any proceaa at a procaaaor to make uae of 

the Internet Protocol, some process reaici.ins there had to have 

issued. a create ... iJlternet-package ocnnmend. 'lh1a initiali.ze■ 

vario~ parameters necesaary for CC\llllQSm1caUon. After this, 

any proceaa ma7 aaaembl.e a packet for tr.aQDie,sion by inter­

facing with various internet poceduru. Whan the packet ia 

to actual1y bet tted, the prooea caJJa the internet 

~ procedure. At this point, the packet a made ready for 

Ethernet tranam.ieaion and the Intemet Protocol hand.a it off 

to the hardware for this purpose. ArJ,y proo-• '1111&1 aend a 

packet of any protocol type at arq .tim.a attar :the internet 

package has been 1n1t1al.ized at the processor where it resides. 

Prooe.aaea, are aomewbat more l~~e4 in t!wair abUi ty to 

receive packets. A particular process may only receive 

packets of one particular protocol type at a time. It 

specifies the protocol value of packets it is willing to 

receive by creatine a 't!IIWW for that protocol._ Bandl~r 

creation simply means th&.t the internet package has been· 

informed that this process is llOW vill:fn& to accept packets of 

the specified protocol type (and no other). A process that is 

done accepting packeta iaeues a deatroy~handl•r co11PD&nd. A 

process that desires to receive packets of a different 
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protocol type from the one it is currently receiving must 

issue a destroy-handler c~rnmand first, and then may issue a 

create-handler command for the new protocol val.ue. At any 

time, only a single process at a particular processor may 

accept packets with a given protocol type. 

Packets arriving at their destination processor are 

handed by hardware mechanisms to the Ethernet Driver existing 

there. This is a high priority process. The Ethernet Driver, 

in turn, hands control of the packet to the Main Dispatcher, 

yet another high priority process. The Main Dispatcher 

interacts with the internet package to notify the appropriate 

program process (based on the packet's protocol field) of the 

arrival of the packet. 

The process that desires the packet must issue a special 

req~est in order to obtain it. There are two possible ways to 

issue this request. The process can cal.la ma:vbe-repeive 

procedure, which attempts to acquire a valid packet and 

immediately returns if none is present. The process can also 

call a receive procedure, which attempts to acquire a valid 

packet and will wait on a condition variable if none is 

present. Shoul.d a packet arrive before ~he process times out, 

it will be so notified by the Main Dispatcher and it will be 

able to acquire a packet. If a timeout occurs before a 

packet arrives, then the process may simply reissue its 

receive command and recommence waiting on the same condition. 

Thus, we see that a call of maybe-receive is satisfied by 

any packet that arrives strictly before the call. However, a 
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cal.l of receive may be satisfied by any packet arriving before 

the call 2.£ by any packet arriving in the interval between the 

time the process begins to wait on the condition variable and 

the time it times out. This is a crucial point, and one which 

must be understood in order to appreciate the implementation 

described in chapter three. 

We add that if the condition variable had a timeout of 

zero (no waiting is done - this is di!ferent from having a 

zero value in the timeout field of the PSB, which would imply 

that the condition has been disabled) then the rece~ve and 

maybe-receive calls are identical. 

The efficiency of our debugging facilitf heavily depends 

on the length of the timeout interval of this condition 

variable (see section 3.4.2). As this interval is increased, 

the facility will function more slowl7. Indeed, if the interval 

goes to infinity (i.e. the timeout is disabled) the facility 
'. 

will cease to function at all. The timeout of this particular 
' 

condition variable must under p.o cifma,•-tuqes. be disabled 1! 

use of the debugging facility is intended. Since this co?ldition 

variable is embedded in the internet code, there 1s usually no 

reason for the programmer to tamper with this value. 

When no further interprocess communications need to be 

performed by any of the processes residing at a processor, 

some process there is free to cal.la destroy-internet-package 

procedure. 
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1.8 Plan of Thesis 

Chapter two discusses how and why our debugging facility 

will be used. It introduces the notion of a lurk1pg-bug and 

how the facility may be employed to detect these. It discusses 

the issue of transparency introduced in this chapter and shows 

both theoretically and practically how debugger transparency 

may be maintained while interactive debugging of distributed 

programs proceeds. 

Chapter three provides a detailed description of the 

debugging facllity we have im.p1emeuted. !hose who have read 

this far may skip to it directly, 1:f' they rlsh, as, for.the 

most part, it may be understood independently from the rest of 

the thesis. 

Chapter fo\U' proves that the debugging facility is correct 

and useful. That is, it proves that the debusging facility may 

be validly used to debue; a distributed program and that the 

program being debugged is the intended one. However, we see 

that the facility is not quite totally transparent towards the 

latter. 

Chapter five discusses some ideas that we have not 

implemente.d for various reasons. We suggest a number of 

topics for future research and thought. 
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1.9 Some Definitions 

We have repeatedl.y used a few terms in this thesis that 

we felt were naturally understood. However, this may not be 

the case. Thus, we define them here; 

node - A .Q.2.ll is a processor connected 1n a network. 
Since we wish to •mplw.eiae tha,t ~program.to be debugged 
resides on s.everal. Jini erq9e'ct9t pro .. ceaao. re, we refer to 
them as nodes t~ui t rff . ot,. this, tl:le.a-i,a. 

application - '?he application is the prosra,m. to be deb-ugged. 
Both it and the debugger are distributed across the network. 

user - The JiU,£ is the per. son who empl. cy·•· the. debugging 
facility to de:oug an app.li.cation~., . ~ .. u,aer may or m,.y not 
be identical to the person who act,Mtl l y programed the 
appllcati.on (tlle progumer). · , . 
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Chapter Two 

Issues in the Design of a Debugging Facility 

This chapter provides a detailed introduction to the 

problems involved in debugging an application that is distri­

buted across a computer network. The concept of transparency, 

alluded to in the :tirst chapter, has been important in guiding 

our research. We motivate the design presented in chapter 

three by explaining how it helps achiev~ a high degree of 

transparency during interactive debugging of distributed 

applications. 

Related to transparency is the notion of providing the 

user with precise control over events occurring during the 

debugging session. In the following discussion, we indicate 

how transparency implies that interprocess communications (the 

"events" with which we will be concerned) are controlled solely 

by .. the user an~ are ,maffected by the existence of the debugging 

facility. In chapter three, we delve more fully into the 

mechanisms provided by the facility for such precise control 

(i.e. the ability to duplicate communications, to delay 

communications for specified lengths of time, to prevent 

communications from ta.king place, and, most importantly, to 

create any pattern of interprocess communications that may be 

desired). 

This chapter deals with the theoretical as well as the 

practical. It is our desire to describe not merely a particu­

lar scheme that works only for the Alto/Mesa/Internet 
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environment, but to present these idear- as a theoretically 

reasonable model for future designers of debugging facilities 

for any distributed system. 
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2.1 Use of the Debugging Facility 

We stated in chapter one that the facility herein 

described has use both as a monitor and as a debugger of 

distributed applications. We now assert that, as a debugger, 

by far the most interesting use is in the detection of 1nrk1pg 

~ (Van Horn66), defined below, in programs consisting of sets 

of processes executing in parallel. It is generally acknow­

ledged (Myers8O) that the detection and elimination of lurkii'lg 

bugs is one of the most difficult and frustrat1ng of all 

debugging related tasks. Yet, ut, to·:now, the tools available 

to aid the programmer 1n this have been sbant. OUr debugging 

.facility does not guarantee detection Of a1l lurking bugs.' It 

does, however, proVide a tool for the skillful user, which tran­

scends p?"evious debuggers in providing help in this important 

area. The concept of a lurkingbug·wllJ. now be made precise • 

.an important feature of·parailel processing is that o:f 

nondeterminacy of computation. It is unu.saal for even a 

moderately sized program consisting of two or more processes 

executing in parallel to proceed in the same way during 

distinct executions. This is because such executions are 

performed 1n an arbitrarilY timed (Van Horn66) manner. :By 

arbitrarily timed, we mean that the order in which processes 

acquire the processor for execution is not well defined. In a 

distributed environment, furthermore, the timing relationships 

between processes executing on separate processors (e.g. which 

processes execute before or after others, which processes 
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execute in parall.el) are also not well defined. Stochastic 

events are constantly at work in a ayatem mak1ng it impossible 

to predict, a priori, the timing relatiolUlhipa among the 

various processes. For example, the reaulta o! a particular 

execution might be a:t!ected "because o! sl.1-ght variations in 

the speeds of autonomous proceaaing unite, because of replace­

ment of one system component b7 another o! ditterent speed, 

because of variations in the clurat1on of i/o .,ctivity, or, 

perhaps most 111p1ficantl7, becauee ot the acheduling atratea 

ot a multiprogramMd qatem." (Van Horn66) . 

that it ia im.pouible to predict the 

next computation etate of the machine ba•d OA the current 

atate, as ia poaaible when analJciDC a •1ngl• proceaa ooapu­

tation. Since it oazmot be toreto1d which prooeaa (or group 

ot processes in a distributed system) will be the next to 

begin execution from the c,urrent state, it ca:onot, 1n conae.; 

quence, be fore told how the state will __ ; what memory 

and register locations will be affected. an'11n what way. 

Hondete 7 is a given, however. !p.e very nature of 

parallel processing implies that interproceaa t1m1ng relation­

ships may be very loose and may var, from execution to 

execution. It is the burden of the programmer to insure that 

his application is robust (functions "correct~•) tor &n1' 

possible sequence 1n which the processes may be.executed. 

Bow it is possible that not onl7 will certain machine 

states arise during a particular co~putation that may or may 

not be seen again during the lifetime of the program (i.e. until 
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it 1s scrapped or replaced), but certain errors ot thia 

fleeting type may be detected too. !hoM errors that arise 

during particul.ar ooaputationa, for which it ia 111.poaaible to 

predict their recurrence 1n eUUiJ:lg ooaputatiou, am which 

may never have MDif,estad tMllNlTes before. and may nrter 

maniferi thewl.vea again, but wlu.oa v,,,;thfr,, are called 

lurking bugs. Lurking b'ufra become apparent •·ctur1D8 a partioul.ar 

eomputation becauae the order in whioh proceaaes have executed 

has shown up a logi.oal nav 1D the program. A different 

execution orderiDg duriq another -OOIIIPUta1:1oa, JDa7 be 

au:t:1'1cient to mau: th.ta f1av. 

We preaen't aa eD11ple (Yan liorn66). Coa.aicler an 

applioation conaia'ting of three prooeaaea. Proceae A vritea a 

value to a 1181lory NU which is 'lheA read aD4 output to a fil.e 

by proceaa B. Prooeae C oontaina an err• in ita coding. It 

accidently puts an incorrect value into tbe - oell that 

proceae .A. ia writing and prooesa JI 1• rea4ing (:1-t waa, eay, 

suppoaed to at~eot an ent:i.reJ.y difi'erent cell). Bow conaider 

the follovi.Dg two prooeu execution. aequ.Daea (-em a wu.prooeaaor 

machine) tor two poaai'ble computa't:101111: 

A B Q A B C A B C • • • 
ACBACBACB ••• 

In computation 1), process C never affects the memory cell 

in question until process B has already read it and written it 

to the file. Thus the affect ot process C is invisible in the 

final. output. In computation 11), however, process C always 

changes the value in the cell before process Bis abl.e to read 

------···--
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it. In this case all Tal.uea,vritten to tbe file are 

incorrect. The lurking bug, an error in the coding of process 

C, baa become man1feet due to the partiOlllar ordering of 

proceaa eucuttona_in coaputaticm 11). (flut ,reader •r easily 

imagine certain execution aequaoee iateJPMCi.iate to the 

compl.etely correct c011pUtaticm in 1) ad tu :c.apl.etel.y 

incorrect coaputaticm in il); ~ •--pl-e, uecuticma that 

yield eome correct ft.luea in the·o11-q,ut:tile·aDtl aome"i.ncorrect 

values. !he read.er 111Q' also ce?'t&ia:,quaati.onabl.e 

computaticma. Ia, tor p1e, .A. B J C .A. B ll C •••. •correct" 

or not? We return to thia proble■ J.n cl:lap'tu :tour. ) . 

!hi.a ia a aiapl.e ezaaple, 1m:t 11' ·~ be ••111 to see 

how in larp pro,rw ooaeitrtiall fd· .-.ay.•do- of ooopentug 

proc••-• J.t 18 .dUf.1.oult, if not J.apo.-i.'bl.•• to :t•l aaaured 

that all lurld.Dg oup baTe been •11■1a+.4 m·a pro,ram that 

appears to work cornctl;r. 

Ve c:U.&re••, for a DlOJIIIDt, to ·· peiat -out that even uaera o'! 

l.anpapa without parallel. procesaq oa.pabiUt:tae (suoh as 

1ortran., Algol.60 • .rio.) are not tww,ne 'to ·ttJa probl.w of 

nondete 7 and lurking \Nga. In•~'-• eomputatiomil. 

environments, no proceaa is an island. j;zJ,y application must 

ceexist vith various operating a1at• •·•~cie ... e;: llbliedu1ers, 

i/o routines, other user appl.icationa, and the like. Yet the 

Fortran programmer who bel.ievea his application to be 

determinate, becauae,for a given set of inputs, he can trace 

step by step through his listing predicting subsequent states 

from earlier states until the !1nal reeul.ta have been determined, 
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is s1fe in his naivete. This is because the designers and 

ioplementors of the system being used have taken the burden of 

worrying about lurking bugs on themselves. They have caused 

user-system and user-user process interactions to be of the 

simplest type so that the order in which system and user 

programs execute is of minor consequenc,. All programmers, 

however, should be aware of these problems. As networking 

grows and as languages which directly incorporate paraJ.1el 

processing become more prevalent, the onus of ensuring correct­

ness in the face no .longer solely on the 

shou1ders of the systems programmer. Tools for the detection 

and analysis of lurking bugs will become increasingly important 

to both systems and applications programmers. 

We have been careful so far to refer to the system 

herein described as a "facility" or a "too1" for debugging, 

not actua.J.J.y as a debugger itself. It all.ova the user to 

monitor and influence directl.v only the interprocess 

communications during a particular computation, not the 

sequential instructions that define process nents (as discussed 

in the first chapter) • By use of thi.a facility, bugs can be 

detected, be they lurking or otherwise, in an indirect fashion, 

based on how these bugs manifest ,themselves as errors in the 

communication streams. In conjunction with conventional 

debuggers, which can be used to monitor and in:t'luence process 

events themselves, this facility provides a powerful debugging 

system for distributed computations. 

It is assumed that the debugging facility will be used in 



41 

a number of ways. We don•t wish to overstate its use as a 

detector of lurking bugs. Most users will employ it simply 

to check whether interprocess communications proceed in a 

reasonable fashion. They will execute a handful of compu­

tations, permuting the order in which packets are sent and 

received, varying transmission times for particular packets, 

losing packets, etc, until they are reasonably certain that 

their application !unctions correctly under .19.111 conditions. 

A second, slightly more sophisticated, mode of use would 

be to monitor and influence communications up through a certain 

point in the computation. The user might then choose to 

monitor or debug directly any one of the nodes involved in 

the computation. He may employ a remote debugging facility 

to examine another node directly from the node at which he is 

situated. (In the Alto/Ethernet enYironment there exists a 

remote debugger called Telepat (Xerox79c) which allows any 

node on the network to attempt to debug any other, with the 

consent of the latter. 

between the two sites.) 

This is achieYed by passing messages 

He may also physically go to the 

site he wishes to examine and make use .of a conTentional 

debugger existing there. Debugging (by either means) can 

proceed up through the next internode interaction involving 

that site. Thia can be done for all nodes inTolYed in the 

computation. The user may alternate between using the 

debugging facility to monitor communications and debugging 

sites individually, remotely or otherwise. 

Finally, the facility may be used to detect lurking bugs. 



42 

No claim is made that a11 J.urkingbugs will, or even can, be 

detected since it is usually impossible to test a1l pesa1b1e 

process execution sequences for correctness. For any untested 

execution sequence there may exist undetected lurking bugs. 

However, we hypothesize (with fairly strong feelings of 

justification) tbat it is often the case that the user has a 

general. "feeling" for his program that tells him which particu­

lar execution sequences are more likely to houae lurking bugs 

than others. The facility provides a tool to allow the 

re-creation of those execution aequencea.wllich are of 

particular interest, via manipulation of tbe communication 

streams. The user chooses for exam:tnati.on a amall subset of 

the myriad of poaaible computatiens. 

As an example, the user may formul.ate a set of computations 

that causes al.l the code in every procesa·to be executed at 

least once. In ooamnmi.oations software, a great deal of code 

is often written to hand.le unusual conditions (for example, 

extremely long packet transmission delays due to hardware 

prob1ems). Since these conditions a:arel.y occur, this software 

is left untested. The debugging :tacUity allows th.ese 

conditions to be simulated, creating a set of teat cases 1n 

which a11 program code is executed. If these ylf..e1d satis­

factory resul.ts, the user may presume (perhaps justifiably, 

perhaps not) that hie code is free of lurking bugs. 

This example hints at how the debugging facility is used 

to create different execution sequences. By de1ayi.ng a packet, 

for instance~ the user may delay the execution of the receiving 
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process, thereby changing the order of processor acquisition 

by processes at the receiving node. The user then determines 

whether his program functions co?Tectly for this particul.ar 

execution sequence which he has just produced. 

Debugging in this fashion may be likened to a chess game. 

During any move, the player has dozens of a-venues to explore, 

and the deeper he searches the more rapidly the number of 

alternatives increases. However, the vaat majority of such 

moves are tacticall.y silly or meaiiingl.ess. The player does 

not get bogged down in analysis becau.ae he ie able to 

immediately dismiss these poasibilities and concentrate on the 

handful. of interesting IIOTea. Like the cheae player, the user 

of this debugging facility ia able to ttl1m5na'te al.l those 

possible computations that he teela are not necessary to 

explore. He is given a tool which al1owa him to concentrate 

only on the meaningful alternative•~ Be poeaeaaes precise 
contro1 over the interprocess coanmioatione occurring during 

the execution of the program. 

To continue the analogy, moreover, a single session with 

the debugging facility can be likened to the ohese pl.ayer's 

top-down exploration of a particular avenue of attack. By a 

session. we mean-the interactive uae of the facility to monitor 

and inn.uence the application through the course of a a1ng1e 

computation. Juat as the cheaa player mentally decides on a 

move to bring the game to a particular (usually more 

advantageous) state, and then extrapolates his nert move based 

on this state and his 9pponent 1 a rep1y, and so on, so the user 
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employs the facility to create various execution sequences to 

bring his program to a particular state, and then decides on 

his next "move" based on that state. This pattern continues 

until the computation concludes. 

We don't wish to carry this analogy too far, however. The 

chess player possesses the lUX\1.l'Y of backtracking when his 

extrapolations lead to a poor position; the user does not. 

Backtracking would require the inclusion of state recovery 

mechanisms which are well beyond the scope of this thesis. 

The addition of these mechanisms wouJ.d, however, make for an 

extremely powertul debugging facility, and this is a worthwhile 

avenue for future exploration. 1 Currently, the effects of 

backtracking are achieved by the clumsy method of restarting 

the computation from the beg:1nn1ng, bringing it back up to 

the last state that the user was satisfied with, and proceeding 

on new paths from that point. The ability to accomplish 

this implies that the user possesses the precise control 

mentioned at the outset of this chapter. However, we shall 

see in chapter tour that stochastic processes may work to 

prevent precise control by destroying the complete transparency 

of the debugging facility. Stochastic processes can reduce 

a completely transparent debugging tool to one that is only 

more or less transparent. 

1 This is currently being investigated as a Ph.D. thesis 
topic at M.I.T. by Wayne Gramlich. 
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2.2 Practical Considerations: Transparency and Artificially 
Induced Communication Delays 

The debugging facility is a program that enables 

the user to be aware of any messfl,ge packet transmitted 

by any process within the application being debugged. 

The facility possesses code that inte~cepts any such 

packet before it is sent to its desti.D.ation process and 

reroutes it to a central debugging facility receiving 

area. 

This central area is responsible for reporting the 

existence of the packet, as well as v~ious other per­

tinent information, to the user of the facility. The 

user, then, is free to make decisions about whether this 

packet is to actually be transmitted to its original 

destination process, whether its transmission is to be 

delayed for a specified amount of tiule, whether another 

packet is to be transmitted in place of the one in 

question, etc. The implementation of the debugging facil­

ity is described in much greater detail in the following 

chapter. 

Thus, the facility provides the user with the 

capability to exam1ne and make decisions about packets 

after they are transmitted from the source process and 

before they are received by the destination process. The 

destination process does not receive its packet until 
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the user has given explicit permission for it to do so. 

It is therefore obvious that interprocess communications 

will be slowed down by many orders of magnitude. The 

central problem to be addressed, then, is how to maintain 

the execution of processes at computer ap,eda in the 

face of interprocess communications that proceed at 

severely retarded, and quite arbitrary, speeds. The 

user should be able to make decisions about packets at 

his leisui·e, yet the computation. of the appiication must 

remain coherent. 

More than mere "coherence" is required, however. 

What 1s desired is the complete transparencv of the 

debugging facility towards the application program. It 

makes no sense to attempt to debug a program when its 

behavior bas·· been rendered unrecognisable b7 . "the 

debugger itself. Jwst as a thermoaeter.,ough'i not to 

affect the tempe:nture of a liq~d;vlµ.ch.is being 

measured, so the debugging facility ought not to &!feet 

the application which is being debugged. 

How is execution affec"teci by arbitrary communica­

tion delays? Let us prej~~d that we have aa applica­

tion in the midst of execution with.process I on the 

ready list of one of the partieipatiJa8 JlOdes at 

time t. At time t + 1, a comam.nicat1on packet arrives 
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for process Q, which is duJ.y placed on the ready list at time 

t + 2. At time t +:,,process J gets pl.aced on the ready list. 

Finally, when process Q executes it noti!iea a process L (time 

t + 4) and when process J executes it notifies a process M 

( time t + 5) • '?hua the order 1D. which the processes acquire 

the processor is: I, Q, J, L, M. 

Bow suppose that the packet that should have arrived at 

time t + 1 is, 1n tact, delaJ'ed until time t + 10 (becauae the 

user has been f'Um1n1ng it). !hen not onl.y will process I 

execute ahead O't prooeaa Q, but ao will proceee J. !his 

reordering of the execution sequence has no ettec, un1eas 

processes Q and J directly eomanm.ioate, eay,throqh a monitor, 

during their exec11tiona. (Strictly' apeald.D4h this is not quite 

correct: 1! prooeaaea Q and J cou.wu.aate eTen jpfirectb 

during their e:&ecutiona, then there ~''be an effect. Indirect 

communication betvNn Q and J iap11ea tbe,exill'ience ot aoae 

process X au.ch that there are co111111nicaticm patu troa 'both 

Q to X and J to x • .A. 29P9Piest1oa ati •zut• troa prooeaaes 

Mm to ~, deno'ied -_ •'> ~ 1 -> x...2 •> • • • -) ~, it tor 

every q, m<.q<n, a packet atreaa,1• open.between Xq ud llq+1 , 

or a monitor en.ate that is acceaai'ble to both llq and l\+1 • 

This definition 1a-a1mlar to the a1a ooaoept foUDd. 1D. 

Bryant77. ) Suppose that the7 do. ~baa, 1D. the · first case, 

process Q enters the monitor before proceae J. In the second 

case, the entry order ia rneraed. !he cenaequence-of thia is 

that both Q and J see different states ot the monitor data than 

they would have had the packet'• arrival not been delayed by 

------ ------------------------
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the user. It is then possible that the actions performed by 

both Q and J will be different from what would have been had 

the packet not been d•layed. 

The !act that the processes .will see different monitor 

states than thay would haTe is a coaeequence ot the semantics 

of the.monitor construct. Upon entry to a unitor, a process 

may aee, not a particular state, but.any one of a range of 

states that satisfy the monitor invariant. As far as program 

correctness goee, as long'"•• each entering process aeea some 

state that aat1~1es the invariant, the order of process 

entries makee no difference. Monitors, then, are deaigned to 

take into account the inherent nond.ete:rm1nacy of parallel 

processizl&. 

Yet we.villh to draw a 41stinctionbetwffn program 

correctness and the maiD.tenance of 4ebucger transparency. !he 

reader must realize that the acenario described above vio1ates 

the principle of transparency ot the debugger facility. '?he 

facill.ty has made its presence lmovn to the application by 

causing various. states to arise that •ould not have arisen had 

it not been preaent. 

Thus one effect of delaying the meaaage lies in the 

states that processes Q and J will see and the actions they 

wil1 take baaed,on these states. !for 1a this ettect limited to 

only proce ases Q and J. The. order 1n which Q and J execute 

will determine the order 1n which Land R, the processes Q and 

J notify, execute. It L and M communicate via a monitor, then 

the same problems apply to them as apply to Q and J. Thus it 
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is not difficu1t to see that a singl.e debugger facility 

induced change in the execution may proJ)&Cate rapidJ.y, 

perhaps vastly altering events rigb.t tbrouch"to tu ooncluaion 

of the execution. 

Bor are these effects lill1ted aiaply "to di.t:!erencee in 

the values of data seen by ;prooeaes. ·Su.ppoee that process I, 

above, is in charge ot making nre tut the oomann1t:atioa 

stream between proceaa Q aDd the prooeea eeJl41q the packet is 

functioning correctly ud ierminatinc "the oomaection if it is 

not. It 1D1Q' 'be that I ud Quan a aollitor whereby Q, v.pon 

receiving ita packet "1eue■ word• tor I tut the etr•- is 

:tunctiollinc normaJJy. I periodically wa.ite, wakea up, and 

checks this monitor. If I makes z consecutive checks without 

finding thai. Q baa received ita packet., it aborts the entire 

connection, destroyinc any re1atecl 'tablee 1t may have eet •P 

for bookkeeping purpoees. When paoketa arrive on time, I and 

Q a1ternate in execution (ienori.Dg .G'i.ber proceasea at the node): 

IQ IQ IQ ••• When packets babiilull7 arrive late 4ue to 

. the aff ecta of the debugger faoiliiy • the e.ncutt.on 11.ight be 

I I I ••• IQ I I I ••• QI ••• !he r1ak of I destroying 

a connection that o\lght not be dea-troyed. ie apparent. 

!his, than, is the rea1 danger :.Lntrociu.o-4 by lack of 

transparency on the part of the de\nlger faoUitoy, the destruc­

tion of communicatio.u etreaae (an4 consequently the disintegra­

tion of the computation) by prooeeaes vaich presume oo1111llUli.ca­

tion failures becauae their real-tille expectations (that is, 

their insistence that certain eTente must take place within 

x seconds) have not been met. 
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How do we combat a1l of these problema? One way to mask 

arbitrary communication delays due to the debugger facility is 

to s1ov down the executions of the processes themselves to 

maintain synchronization with the alovecl down communications. 

This is achieved by process auapenaion, that is, artifio:lally 

del.aying a process which is ready to execute from acqu.iring 

the processor. Purthermore, when a proceaa that is supposed 

to receive a packet bas its execution del.ayed because the 

packet baa been delayed, ve prevent the execution of processes 

that should not execute until after this one, by auapending 

thea. In the .. example diacuesed earlier, if the packet for 

process Q ia del.ayed, in turn delaying the .execution of that 

proceaa, then process J should be artifict•Jly delayed, or 

suspended, until such time as proceaa Q receives its packet 

and executes. Then the problem of J entering a monitor before 

process Q and aee1n« a state it vou1d not have seen, and the 

problem of J notitying M before Q can notifJ' L thus altering 

the sequence 1n which X and L execute, become nonenatent. 

We state that for a given node, the prc,blem of maintaining 

transparency is solved by ensuring that the order in which 

processes are p1aced on the ready list, hence the order in 

which proceasea execute, is the same vi th the deb'Q8ging 

facility present as it would haft been had the application 

been ezecuting without it. So far transparency has been 

discuseed onl.7 in an intuitive manner, and we aak the reader 

to accept this above assertion intuiti'Yely, for the moment. 

We postpone a more concrete discussion of transparency and a 
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more deta11ed explanation of this statement until the nert 

section. 

At any rate, in our examp1e, when prqoeaa Q cannot 

execute because ita pac~et hae been del.ayed.,"ve auat make sure 

that no other prooeaaes execute in the 1.nteria. This is e-..111 

accomplished by having a debugging~facility~reated prooesa 

seize the processor and 1oop until Q'a packet arrives,at which 

time the processor can be re1in.quiahed ud Q can execute. 

This mecbaniem is referred to as ng4e fMIRJlfiop, since its 

effect is to prevent UJ activity from ~.,ting place while Q'a 

packet is being awaited. A.t the tillle of reliDqw.abment, it is 

the job of the looping proceaa to. restore the .a tat• eno,nmtered 

when the proceaaor was eeized. Thua, node 11111Jpenaion is 

rendered inTiaib1e to the processes of the application bei.Dg 

debugged. 

Of course, there is nothiDc new about •this procedure. 

Conventional debuaB9ra bave al.ways 11Sed it to allow break­

pointing. The user bas always beea able to apeoify an 

instruction at which he w ishea his applioation to be .a..i.uspended, 

to exam1n'9 and alter the state of the computation at his leisure, 

and to recommence execution when he 4eair••• Theore1:1oaJJy, a 

debugger guarantee,a tbat brealcpointj.ng ia tranapare~t by 

restoring the state at the ti.lie the breakpoj.nt ooourred when 

execution restarts. 

But now we are dealin& with distributecl systems, where it 

is impossibl.e to suspeJld the computation by seizing the 

processor, because there is more than one processor. If we 
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suspend processes at one node and al.low other nodes to 

continue executing, then communications may break down 

because the delay time of packets origi:na:ting 1'rom the 

suspended node will prove intolerab1e, and will appear to the 

unsuspended processes as stream ta11ures. · These processes 

would close the streams and the computation would disintegrate. 

Suspending one of the nodes involved in the computation 

for x seconds causes this node to execute x seconds "behind" 

all o:1' the other nodes in the computation. This means that 

other nodes will see (through the coJIIIILUJUcations strealll8) all 

events at this node occurring x seconds later than they would 

have bad the node not been suapended. The transparency o! the 

debugger tacilit:,would again be lost. Just as transparency 

was lost when packets were delayed ~or user examination, it is 

now lost because packets from this node have been delayed due 

to node suspension. 

One might attempt to solve thia by auspending all nodes 

simultaneoualy whenever any o! the nodes needs to be suspended 

creating a kind of internode breakpoint. Then, relatively 

speak1ng, no node Will be percei•ed as having 1ost x seconds 

because all nodes w 111 have lost the identical amount of time. 

Conventional debtJB89rS achieve breakpointing by stopping all 

processes at the same point in time~- Thia is easy to do when 

onl:, one processor is present. It 1s, however, impossible to 

achieve in a distributed system siD:ce one cannot guarantee 

(due to unpredictable loss or delay) the simultaneous receipt 

by al1 nodes of "suspension command" packets. Nor would it 
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do, as an escape from the necessity of esimU:.taneous receipt, 

to incl.ude in each packet the time at which the node should 

suspend itsel.f (so that each node will suepeDd at some time, 

x, in the future). Thia is because it 1a impossible to 

maintain the perfect synchronizatio.t:1 of the clocks at each 

node, and, more importantl.y, it is ilDpoeaibl.e to gU11,r&11tee 

that transparency vill not already be,l.ost before time xis 

reached. Thus, ve cast about for a solution 1'Q.1Ch is 

independent of the concept ot aimult~•o~ events; independent 

of the notion that suapenaion ot all. ~ocles ll!Nft occur at a 

singl.e point in time. 

We jW!lt now stated that a nocle.,r1.JJ. ~ot notice that 

another baa been auepended until it. t1xam1Dte. its colPD1l~1cation 

ports. Herein lies our salvation, tor ae lcmg as there is no 

communication between the a uapended,. and urJ.111.µJpttnded nodes, the 

latter cannot possibly notice a l.oae of truepareno7. 

Suspension need not be done until .euco. ti.lie•• one ot the 

processes at the unaW!lpended node nqueeta.J packet. Then this 

node is suapended until it can receive its packet from the 

orig1nal, suspended node, which, in tun?-, proceeds when the 

user is through examining the orig1.pa.1 delayed packet and 

allows it to be sent. Thus, to ren4e~ deb~ facility 

induced communication del.ays inviaiblf, the execution proceeds 

with various nodes al.ternately in states ot execution and 

suspension. Node suspension occurs wl:l.e~ever a process on that 

node requests a packet. It may l.ast for .an arbitrary interval 

of real. time. It concludes either when th,e requested packet 
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arrives or when it 1s finally determined that no packet is 

availab1e to satisfy the request. 

How the processes of the application are,no longer 

executing in real time. Bode suspension baa oauaed execution 

to alov down the•- amount of time for each process on the 

same node, but, suice the length of suspeaai.on of one node ia 

unrelated to that of another, different amounts of time for 

processes residing on separate nodes. Baoh -D.Ode now ia 

executing in a logical. tye, reading ita own l.od.aal, cl.ock that 

is unrelated to the logical cl.oak of any other.node. 

!he consequence oft~• 1a that the •1m:lng relationships 

that would have exiated between proceaa exeouti.cma on different 

nodes are obanpd. !he7 are not the _, aa they would baTe 

been had all nodes been- executing in real ti.me. Hence, there 

ia.,again a danger that tranaparency vil.l be lost. Por example, 

su.ppoae process A at node arr01PUD1aatea· Yd.th proceaa Bat node 

b and process O at node c. '.Purthel!IIOre, euppose that, due to 

node auspension, node c i.a executing behind node bin logical 

time. !hen it is poanble that -•age ~• from process B, will 

reach process .A. before message lfc, from prooeseC, when, bad 

execution been proceeding normall.y inreal. time (Without the 

debugger facili.ty) the order of receipt would have been 

reversed. !his is one possible eft-ect whim a node baa been 

caused to execute more slovl.y than it would ban. 

Furthermore-, the tact that a node executes behind 

another in logical time implies that the latter is executing 

ahead of the tirat ( ot course) • '!hie lead.a to yet another set 
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of problems. Suppose process C, above, is exnecting a packet 

from process B. It is possible that process C will receive 

the packet too early, earJ.ier than it woul.d ha-ve had execution 

been proceeding normal.J.y in real tiJne. It is interesting to 

note that a solution which takes into account the effects of 

packets arriving too late must al.so consider the eff~cts of 

packets arriving too earJ.y. 

All of these probJ.ems, which are due to the alteration o'f 

internode timing relationships by the debuagin8 facility, are 

solved by a mechanism which causes~ process to see al1 ex­

ternal e-vents ( those due to other processes) in the same rela­

tive time and order as it would have. seen. them bad the debugging 

facility not been preaent. This ±a aocompl.ialMtd by assigning a 

timestamp to all external. events of whi.oh a proce,ea is aware 

(in other word.a, assigning a timestamp to each ·packet in the 

communication stream; .a process cannot be aware of an external 

event unl.eas that event ill reported to. it via the aomm.unioation 

stream). Timestamping was first used (Johnson75) to order a 

set of events when the danger of a different, incorrect, 

ordering being perceived arose. However, the mechanism was 

used to soJ.ve an entirely dilferent 

here. We def er until chapter three a description of the 

method by which timestamps are formulated and assigned. 

To summarize this section, then, we have stated a need to 

maintain transparency in the face o~ artificially induced 

communication deJ.ays. We suspend the process which is 

expecting the delayed packet in order to render the deJ.ay invisible. 
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Then, to make sure that other processes at the same node do 

not notice monitor states that they should not because of this 

suspension, we suspend the entire node. This ensures that the 

ordering of events at the node is unaffected by the debugging 

facility, hence transparency is maintained at tbat node. 

Finally, to keep the order in which all external events are 

perceived invariant, we assign timestamps to these external 

events. This preserves each proces·s' perception of internode 

tjmjng relationships. ~reserving the order 1n which events 

occur at a specific node, and maintaining the order and tim:ing 

/ of external events as seen by each node is, we postulated, 

both necessary and sufficient to maintain transparency towards 

the application. The debugging facility, as a result, only 

affects the application in ways dictated by the user. The 

user possesses pre<lise control over the events in the system. 

The measuring tool, itself, does not affect that which it was 

assigned to measure. 
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2.3 Theoretical Basis: Causality and Systems of Logical Clocks 

We now wish to axamin~ the issues discussed in the last 

section from a more theoretical perspective. Our reason for 

doing this is to show how a debugging facility ought to work 

for any process system, not just tor the ilto/Meaa environment 

in which it has been implemented. Before ve can do this, 

however, ve need to precisely define a term. we have used 

somewhat loosely thus tar. 

A computat:J,op. c, (Van Horn66) is defined to be a single 

execution of the proceaaes making up an application. It is 

represented by a ,rs, R, (Van Horn66) which is, in turn, 

defined as the ordered pair <5a, !a'> where 5R 1a an initial. 

computation state (the state of the machine when the 

computation commences) and Ta ia a (poaaib;l.7 empty) trspitiop 
'\ 

' 

fequepce To, T1, T2, ••• , T.ll where each f'i ia the eet of 

processes in execution during the time interval Ci, 1 + 1). The 

_number of ele•nta in each set, T1 , is l.imited by the number 

of processors involved 1n the execution. The transition 

•equence, TR, is a generalization of the turna-histon concept 

(Jafte79). A turns history 1a merely a sequence of prooeaa 

names, indicating the order in which processes execute on a 

eiy\e processor. 

Because of nondeterminacy of execution, the run of a 

computation performed at time t may differ from the run of a 

computation performed at time t' even though the executing 

application is the same 1n both cases. ilao, a run specifies 
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a11 the interprocess t1rn1ng relationships among the processes 

of the application. That ~s, by looking at the run, one may 

determine which processes executed before or a.tter others, and 

which processes executed in parallel. For any time, t, the 

identity of processes executing at that time may be d etermined. 

Lamport (Lamport78) has devised a ~eful. way to repreeent 

sets of computations pictorially (see figure 2.1). In this 

diagram, each vertical line represents the execu"tion of a 

distinct process involved in ~he application. The dota on each 

vertical line represent the sequence ot events that define that 

process. !he wavy arrows represent any form of interprocess 

communication. Lamport defines these as representing the 

tranamission of a packet by a process (the tail of each wavy 

arrow) and the receipt of that packet by another process (the 

head of each wavy arrow). Since, in our system, interprocess 

communication is achieved either by the explicit tranaaission 

of packets or through monitor interaction•• we extend this 

definition. The wavy arrows will also represent the release 

of a monitor lock by one process (the tail of each wavy arrow) 

and the acquisition by the next process of that same monitor 

-lock (the head of each wavy arrow). The vertical. direction 

represents the passage of physical time. That is, the events 

at the lower part of the diagrant occur ( in real time) before 

those that are higher. The intersection of a dotted line and 

a process arrow represents the instant when the clock for that 

process reads time t. Since all proce_ss clocks run in real 

time (asanm~ng they are well synchronized) it is reasonable 
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that these dotted lines are horizonta1. 

Lam.port defines what it means for an event to "happen 

before" another in this system. 

De1'1nition. The relation"-)" on the set of events of a 
ayatea.ia the aall11st re1ation Ntiafyq the folloWing 
three condition■: (1) It a and bare events in the same 
proceaa, and a com.ea before br ··~ a->- b. (2) If a ia 
the send.ill& of a message by one process and b is ·,he 
receipt o:1' the, ... :meaaqe by:anoiher P'Oc•••• then 
a-> b. (3) If a-> band b -> c then a-> c. Two 
distinct events a and bare aaid to be OflCVT•n:t 11' 
a~> band b ~> a • 

• • • It ia easy to aee that a-> b -• tbat one 
can go from a to bin the diagram by moving forward in 
tille along proo••• and me.age J.inea. Jtor ·example, we 
ha-ve :p1 -> r 4 in P1gure C2.1J • 

.&llotber way of newi.Jlg the. • 4e:f1Di t"i.011 ia to say 
that a-> b means that it is possible fore-vent a to 
oauall.y affecrt eTent. 1>. !wo·evenw &N oollOUl"!'ent 11' 
neither can caueaJJy affect the other. For emple, 
even.ta i,, and Cl:, ot figure C2~,1~ ·aw concurrent. {Lamport78) 

Thus we see that a diagram such as this can be used to 

show both "happened before" and "concurrent" relationships, 

ensting among the events in the system. It represents a .w, 
of computationa,,rather than a particular computation, in that 

there may be more than one run that yields the "happened before" 

and "concurrent" relations depicted. That is, it is possible 

that there are many sets of interprocess t1m1ng relationships 

that yield the same causal dependences as shown 1n the diagram. 

For example, if arrow m1 represents a monitor entry, then 

any computation with a run which has procees Q entering the 

monitor immediately followed by process R may be included 1n 

the set of computations depicted by the diagram. The other 

timing relationships in the diagram may serve to narrow down 

the set of represented computations somewhat further. 
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Suppose we decided to see what woul.d happen if one of 

the communication arrows 1n the ftgure (arrow m2) was 

lengthened (as in figure 2.2) so that the head of the arrow 

intersected with the process line at a higher point, later in 

real time. It ought to. be clear that the caueal relationships 

defined by the original diagram have been lost. Whereas before 

it was pessible for q5 to causally affect p4 (q5 -> p4), now it 

is true that q5 am p4 are concurrent. Therefore, the new 

diagraai represents a new set of causal relationships distinct 

from that of figure 2.1. {In fact, we point out tbat the 

lengthening of the arrow may mean that event p4 will not occur 

at all, or will be replaced by event z1, as 111 figure 2.:,. 

Then,certainly, the relations represented ill the original 

figure have been lost.) 

We would like, however, to maintain the same causal 
" 

relationships as shown in the original dia,sram. We do not 

mind changing the run (changing the interprocess timing 

relationships to create a new set of computations) as long as 

it is possible to retain the or1ginal "happened before• and 

"concurrent" event relations. That this is possible we 

already know, because it was stated above that more than one 

computation may define the same set of causal relations. We 

search for a new computation to maintain these in the face of 

the lengthening of one of the communication arrows. 

It is clear that in order to compensate for the stretching 

of the arrow, the vertical process line, P, must also be 

stretched so that q5 can once again be seen as "happening before" 
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p4 (see fig-.1.re 2.4). Notice, however, that this will cause 

the dashed line representing physical time to be bent away 

from the horizontal. This implies that processes Q and P will 

read the value x (the time represented by that dashed line) on 

their respective clocks at totally different real times. This 

is not possible in a system of w~ll synchronized physical time 

clocks. Here is the crux of the matter. A new set of 

computations can be found to restore the original causal 

relationships, however none of these computations are 

executable in rea1, physical time. That is, an abstract 

mechanism, a lo·gical time clock (as oppcsed to a physical time 

clock) mu.st be introduced into the system. Furthermore, there 

must be a private logical clock for each process, since 

various alterations of the communication arrows may rapidly 

cause all processes to be executing in their own unique logical 

times. The new set of "logical time" computations may be 

depicted as in figure 2.5. These logical.time computations 

and the original set of real time computations 1n figure 2.1 

both yield the identical set of causal relationships. 

Now we state the central point of this thesis. As 

Lamport bas pointed out, "• •• sbtil is no way to decide 
which of these picuures Cfigures 21 1 and 215J is a better 

representation, I ," of the particuJ.ar set of causal 

rel.ationships. Practically, thi"smeans that it is possible 

to simulate the effects of the real time computations 

using one of the logiaal time computations. Causality 

can be maintained in the face of alterations in the 
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lengths of the 0O1DD11mieationa arrows. 

The use of logical time is an attempt to have each 

process "believe" that it is executing in real time. That is, 

the process perceives that all events, both internal aml 

external., are occurring at the same time whether real or 

logical time is bei.ng used. !his occurs because processes, 

under the simulation, are mad.e to read logical rather than 

physical cl.oclts. 

!he relationship between this discuaaiOJ;l and that of the 

previous aection oupt to be clear. the extension of a 

co111111U11ication arrow correepom•.to a debugger facility induced 

packet tranim1.aaion delay. The lengthening o'l .the ..-ertical 

line of the recei'ri,ng _procaaa correaponda to the artificial 

auapenaion of a proceaa for a period of time by the debugger 

facility. 'limeatuaping 1a achieTed through the use of 

logical clocks, refleotiDg the paaaap of logical time. 

Furthermore, we now see 1:hlJ't the concept of transparency 

has been made more precise. Mainta:l a:hiag :th• order in which 

processes execute at a node, &114 maint•1n1ng the correct 

sequence and timing relationships of all external nents 

perceived by any process is another way of stating that the 

causaJ. relationships between events of the application have 

been maintained. Transparency, then, is achieved by 

maintaining these relationships in the face of artificial 

communication delays caused by the presence of the debugging 

facility. 

We conclude this section by pointing out that the 
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identical solution to the transparency problem, discussed 

in the previous section on a practical level, has now been 

motivated on a theoretical plane. 
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2.4 The Uncertainty Principle of Program Debugging 

It is the job of a debugger to maintain causality 

relations while providing the user with the tools ,necessary 

to detect bugs, lurking or otherwise, in his computation. 

Only if the debugging tool is reasonably transparent is it 

useful. We have shown, both in a theoretical and practical 

fashion, how such transparency might be maintained. After 

describing a Mesa implementation of a debugging facility, we 

return to the problem of transparency in chapter four. An 

important question which we have not yet answered precisely 

is, "What computations are we maintaining the causal 

relationships of?" In other words, if we are maintaining 

transparency, what are we mainta1n1og transparency towards? 

An analysis of this will show that, as previously stated, 

complete transparency is an unattainable ideal. Stochastic 

processes reduce our debugging facility to possessing merely 

a high degree of transparency towards the application being 

debugged. The tool must affect that which it is measuring. 
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Chapter Three 

Imp1ementation of the Debugging Facility 

This chapter describes, 1n detail, the 1mp1ementat1on of 

a debugging facility tor distributed applications. The 

hard.ware environment for this project was the Ethernet network 

of ilto minicomputers, as described 1n chapter one. The 

software environment was provided by the llto/Mesa programming 

system, a1ao diacuaaed 1n the first chapter. 
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3 • 1 Overview of the Facility 

The code for the debugging facility consists of two 

physically separate units. These will be referred to as the 

central debwvmr ,it, cod9 and the depugpf pub ;gae. The 

central debugger site code executes on a particular node 

designated the central. d;!b\\Uftr sii•• UeueJJy, we will use 

the shorter term, 99ptt1J, sitt, to refer either to the central 

debugger site or the centra1 debugger site code. Context 

should make the intended me&P1Dg c1ear. ilao, the debugger nub 

code Will usually be referred to simply as them,. 

There is but a sing1e central debugger site (hence a 

s1ng1e version of the central debugger site code). However, 

there exists an identica1 version of the nub for each app1ica­

tion node participating in the deb~ session (aee figure 

3.1). The nub processes execute alongside the app1ication 

processes residing at each application node via the 1nter-

1eaving mechanism of the ilto processor. In the sense that 

the central site and nubs each execute on physica11y distinct 

nodes and in fulJ. cooperation, the debUBging facility described 

herein is, 1n itse1f, a truly distributed program. 

The arrangement of the facility is quite similar to the 

tree structure of Metric referred to in chapter one. Each nub 

can be 1ikened to one of Metric's object system probes. The 

central site is akin to Metric's accountant and ana1yst 

executing on the same node. Just as each probe sends packets 

to the accountant describing events on the node it represents, 
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so each nub sends certain information reports to the central 

site. However, the comparison ends at this point. The 

centra1 site is no "passive engine" as Metric's accountant 

has been described to be. We sha11 see that, •a.well as 

merely collecting information, the central site acts on the 

information by isauing ,c~JDIDRnds or replies to the nubs. The 

central site act1velY controls, to a large extent, the events 

which take place at any node participating in the debugging 

session. 

3.1.1 The Central Site 

Before the debugging session. oommencea, the user 

designates a node, distinct from any node on v!uch application 

processes are executing, from which to monitor and debug his 

application. Thia node ia the central debugger site, and the 

user causes the central debugger site code to begin executiDg 

here. (The stipulation that the central site must be 

physically distinct from any node on which application processes 

are executing is partially a consequence of the ,smell memory 

size of each Alto. The central debugger site code uses up much 

of this memory, leaTing little room for any application 

processes to reside. Furthermore, the central site makes 

extensive use of the Alto screen for reporting information and 

receiving user commande. An,y application process also 

requiring use of the screen would interfere with user monitoring 

and debugging.) 
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The central site provides four eaaential functions. 

First, it provides aenicing for a1l. nub' initiated requests 

and handl1ng for all nub initiated reporte. · These nub requests, 

reports, and .central aite .reepoaaea are tansmitted in the 

form of overhead packets of which the uae-r and the application 

program are never made aware.· Overhead packets are diatinct 

from the packets that are spawned by app1ioation proceeaes 

during the course of their executions. flHI latter are termed 

application packeta. 

Second, the central site may issue commands to each nub 

on its own initiative. The nub is required to obey each 

command so iasued. In 'this relattonlthl.p, the central site is 

clearly master" the nub ia clearly lfl.Jffe. 

Third, the oentraJ.•aiteacts aa a tellpOrary repository-

for application packets. In this 1mp1ementa'tion, the secondary 

storage of the ilto, a disk (or, oceaa~ oaaJ ·17, a pair ot dieka) , 

is used to cache theae packets. Packet• that are so cached 

may take up disk apace imlefinitel.y, or 11a7 be released by the 

central site on.order of the ueer 1.11 an effort to create more 

free apace. We add that overhead'packeta are uver cached in 

this faahion. {Thia is another reaaon why the central site 

code must execute at a phyeica117 cU . .tiJlc't node. In order for 

the debugging facility to fWl.Ction reaeonably veil, there must 

be a certain minimum amount of 41.ak apace for caching arbitrary 

size application packets for arbitrary lengths of time. The 

presence of such disk space at an appliea$ion node cannot be 

guaranteed. Thua a separate node ia required.) 
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Final.J.y, the ce.ntral site provides the user with an 

interface to the system with which .be ie able to .monitor and 

contro1 the proceedings. The intormation now is bidirectional.. 

The centra1 site reports to the uaer:varioua·e'Nnta occurring 

in the system and various data values. Thi~ all.owe the user 

to mqp1,tor his application. The ceAtral .site .aggeuta from 
the user various C<>IIIDaDdB which mut be obepd. TMs al.love 

the user to debug his application. 

'3.1.2 The Bub 

Before the de ae:saion. ooaencea, the user mu.st 

bind in a version of the nub vi.th ·.al.J. ~1.on code to 

reside at a partiow.ar :node. An iuritj.oal. mlb vars.ion must be 

bound, in this taahion, at each noae partacipattng in the 

sessiou. !his binding is done at the time tbll application 

code is configured {that is, at the tiae,tlle·var:J.ous appl.j.cation 

modu1es at a particular node are linked topther to fora an 

executabl.e program - this ie doneaf~e~ each imividual JllOCluJ.;e 

has been compUed). fhu the exec.ting program at each nocie 

is a combination of app1ica.t1on procae•ses and nub.· processes. 

The nub performe a number of daties. It acta on.. behal.f 

of the app1ication proceeaes executing at the node on which it 

resides, forming a kind of liaison between these and the 

centra1 site. A8 mentioned, it issues re11.ueeta to the central. 

site whenever some application procesa requires it and iaeuea 

status reports to the centra1 site as necessary. Furthermore, 
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it processes the replies to these requests and reports. 

The nub is also responsible for the correct maintenance 

of a designated memory location which is incremented at 

periodic intervals by the Alto hardware. This counter 

constitutes a iogical clock, of the type discussed in chapter 

two. We note that there is only one such logical clock at 

each node, regardless of the number of application processes 

residing there. 

Related to this is the concept of timeetampjpg~ as 

introduced in chapter two. This function ia also performed by 

the nub. All app1ication packets are timestamped based on 

values read off logical c1ocks. Actually, the timestamping 

mechanism involves the cooperation of two separate nub versions, 

the one residing at the node from which the packet emanated, 

and the one residing at the node where the packet is received. 

Also related to this is the mechanism of node suspension. 
The need for node suspension was motivated in the preceding 

chapter. It is the job of the nub to make sure that node 

suspension is performed correctly whenever it is required. 

There are a number of coordination problems that arise here 

which must be handled in a reasonable fashion. 

Fina1ly, the nub is responsible for intercepting 

application packets and rerouting them to the central site 

where they are cached for a period of time, as previously 

discussed. 

In conclusion, the nub is responsible for the coordination 

and correct functioning of the node at which it resides. The 
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central site is responsible for the coordination a~d correct 

functioning of the application as a whole. 
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3.2 Routing and Timeetamping of Application Packets 

We now follow the course of a packet spawned by some 

application process as it makes its way through the debugging 

facility system (see figure 3.2). We proviae the reader with 

an understanding of the distinct roles played by the central 

site and the nub and how they interrelate 'to :torm the larger 

system. We also introduce the timestamping mechanism. 

When an application process desire• 'to -send a packet to 

some other application process it call• the internet package's 

§!D4 procedure. This, in turn, makes use of a Sep.@Jtfer 

procedure which eventually hands the packet o:tf to hard-ware 

mechanisms that actually do the sending. The nub possesses a 

hook into this SendBuf!er procedure. It causes the following 

extra information to be appended to the app11cation packet: 

1 ) T:Lme of Day - obtained by rea4iz18 the sending node's 
time of day clock, implemt~tad. 1J1, hardware at each node. 
All time of day cloc:p are ~ably well synchronized 
and reasonably dependable. · 

2) Logical Time - obtained by Nading the sending node's 
logical clock, as discussed pre-riowil.y. 

Al.so, the identification field o~ the packet is replaced by a 

unique debugging facility assigned identifier. The original 

identifier is appended to the end ot the packet body so it will 

not be lost. The reason for asa!gn1ng a special identifier in 

this fashion is that the debugging facility must be guaranteed 

that all packets emanating from a particular node are disting­

uishable (for purposes of acknowledgement). No two such 
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packets may possess the same identifier. Now it is probable 

that application processes will. have already made sure that 

this is indeed the case. However, the facility cannot depend 

on these processes to f"Lll.till this function. The facility 

Jll\lSt be robust 1n the face of errors or oversights in the 

implementation of communication protocols for the application 

program. Thus it takes this burden on itself. 

The ability to add extra word.a of information to the end 

of each packet implies that the maximum packet size allowed to 

the programmer must be a few words leas than the real, hardware 

al.lowed maxim1.1m packet size. In the internet implementation, 

a number of. words at the end of each packet are made invisible 

to the application writer. Thus, the required extra informa­

tion can be added regard1ess of packet size. 

We obtain the two time values (real and logical) at the 

very latest moment possible, just before the packet is handed 

off to the hardware. Thia is done in order to avoid the 

possibility that the times will be obta~ned and then the 

sending process will be forced to wait on aom.e monitor lock 

for an arbitrary 1ength of time, thus nullifying the appended 

clock values. In the scheme presented here, any delays that 

occur after the times have been obtained may be attributed to 

hardware functionality, and are considered as part of 

transmission delay time. 

With this extra information, then, the packet is sent 

across the Ethernet, arriving at its destination node at some 

later time. (It is posa1b1e that the source and destination 
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processes reside on the same node, in which case the packet 

does not physically pass over the Ethernet. However. this is 

unimportant for our purpo~es.) For simplicity, we assume that 

the packet is not lost or discarded, and arrives intact. At 

the destination node, the packet is ro-q.ted through the Ethe.met 

Driver and Main Dispatcher (recall c~pter one). ~he latter 

hands processing off to an laetlnput procedure. The nub at 

the destination node posaeseea a hook into this procedure. 

Its first job is to determine that the packet ie indeed an 

application packet that has been aent from ao• other ap~lica­

tion node (it is possible that the application packet has come 

from the central aite - we come to this later). 

If this is the case, the packet tiaestalllp is now obtained. 

This is done by reading the tillle of day clock at the destina­

tion node and then performing the following operation: 

t • L + (R - S) where 

t • packet tilllestamp 
L • logical time ~ket was aent by source node (from 

source node ' a li:tgi.dal. c1ock) · 
R • time of dq packet vae re.oeived at deatination node 

(appronmawly' ... .... be1cnt) 
S • time of da~ packet was sent by s9uroe node .{from 

source node•• -ttme· of day c1oek) · 

Land S were appended to the packet by the nub at the source 

node. 

Thus the timestamp is equal to the loSical time on the 

sender's clock plus the delay time of packet transmission. R 

is actually obtained just when the internet mecllan1am would 

inform the receiving application process that a.packet has 
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arrived. t, then, represents the precise logical time that 

the presence of the packet is made known to applieation 

processes executin4i on the dest1nation node. The value tis 

appended to the end of the packet. 

It is interesting to note that the lQgical clock at the 

destination node does not figure in the.tpeatamping mechanism 

in any way. Furthermore, it is clear that obt•iJling a correct 

timestamp is a cooperative venture be~ween the nub at the 

source node and the nub at the destination node. 

Upon obte.1n1ng the timestaap, the nub 1ubetitutea the 

address of the central site in the paoket'a 4estina1io11 field, 

after first appending its own add~••• to the end of the packet 

(exactly how the nub is appraised of the oeniral site address 

will be discussed later}. Now the.packet is in a auitable 

condition for forwarding to the central.site. 

Notice how the nub at the destination node grabs control 

of the packet away from the internet code almost as soon as it 

arrives and does not rel1'Jqu1ah this control at any time. 

Timestamping and al1 other procesailig is done privately by the 

nub. At this time, no application process ia aware of the 

packet's existence. Its arrival and departure. are rendered 

invisible to the application. 

The packet now is again sent over the Ethernet, this time 

to the central site. We assume that it arrives intact. Notice 

that the packet has been routed to the central site by the 

destination node, but maintains the address of the source node 

in its source field (this field was untouched by the nub of 
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the destination node). Then, the first action taken by the 

central. site is to determine that the packet is indeed from 

one of the nodes participating in the current debugging 

session. If this is the case, then the central. site causes an 

acknowledgement packet to be sent to the aoK9e node (see 

figure 3.3). !he destination node of the packet need not 

receive any aclmowle4pment, although that 1a the node that 

routed the packet to the central 11ite. If an acknowledgement 

is not received by the source node in a reuonable amount of 

time, it retranaaita the packet to the des-tinatioa node. The 

central aite, then, requires a mechallisa to check for dupli­

cates of packets tbat u-.e arrived due to loan acknowledge­

ments. (It the aouroenode JllU8t·ntranmd.t tae packet, it 

first obtains a new time of day, which replaces tae old time 

of day previously appended. Thia ia so that the delay tille, 

which will be recalculated at the destination node in an effort 

to compute a new timestamp for this packet, does not become 

arbitrarily large. A ·new logical tiae is w, obtained when 

the packet 1a retransaitted.) The destination node nee4 not 

concern itsel.f with any of this, however, It blindly reroutes 

an:, application packet it receives, whether original or 

duplicate. 

Having acknowledged the packet, the central site proceeds 

to restore the origJ.nal. destination no4e address in the packet 

destination field and to restore the original packet identifi­

cation number in the ID field (both of these values ha.Ting 

been appended to the packet body). It then caches the packet 
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(discarding the extra information that had been tacked on to 

the packet, ~ter saving it elsewhere) on a disk file 

containing all packets bound for the node indicated in that 

packet's destination field. 

Here the packet remains until such time aa it is determined 

that the packet is to be returned to the receiving process on 

the original destination node {we will soon speak in detail 

about how it is decided when, or, indeed, if, a packet so 

cached is to be sent back to i ta destination node) • When the 

packet is to be returned, the central site retn,evea it from 

the disk. It proceeds to again append tbe packet identifier 

to.the packet body and to replace it with a Ullique centi-el. site 

identifier for that particular destination node. Bach node 

participating in the session must see uniqwr identifiers for 

each packet emanating from the central site {tor acknowledgement 

purposes). No particular correlation need enst, however, for 

identifiers of packets destined for separate nodes. ilao, the 

central site replaces the original aourae address field with 

the address of the node on which it ia executing, having 

previously appended the original source address to the end of 

the packet. Thia done, the central site semia the packet over 

the Ethernet back to the destination node, periodically 

retransmitting until it receives an ao)Ql()wledgement 1n return. 

Thus, the destination node now receives the packet for the 

second time. Whereas the first time it received the packet it 

only needed to blindly reroute it to the central site, now it 

must be able to handle duplicates arriving due to lost 
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acknowledgements. 

Back at the destination node, the nub determines, by 

inspecting the source address tie1d, that this packet has 

returned from the central site (it is not arri'Virlg for the 

firat tiDle )_. The nub reato~a the original packet identifier, 

and the original source addrees. -J'in•lly, it causes the 

packet to be handed off to the appliea,ian. process at that 

node that ia to receive it. It is wt thie point that the 

application prooeaaea become aware of this packet's existence. 
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3.3 Nub - Central. Site Interactions 

We stated that the central site and each nub communicate 

through overhead packets, those which are ape.lfl'led by the 

deb~ facilJ.ty for ooordination pl&l"poees and which are 

invisibl.e to the appl.ication bein4l debuccecl. Bach overhead 

packet receives a special. deb\lgger protocol. Talue in ita 

protocol field (recall chapter one). mua value ia not uaed 

in any applicatio.n packet typee. It all••• 'ibe receiver 

(either the central site or a nub) to determine that this is 

indeed an overhead packet, and not an appl.ication packet. We 

nov diacuaa each overhead packet type in turn, cOllllllenting on 

the function of each. 

3.3.1 Initialization Packets 

A number of packet types are tranemitted back and forth 

in an effort to 1.nit1ally establish colllllNl11oation links between 

the central site and each nub version. These packet types 

include the greetjpge packet, the greetiy-response packet, and 

the unconditiopal-execute packet. The roles of these packets 

wil.1 be described fulJ.y in the section on initialization 

mechanisms. 

3.3.2 Handl.er-Creation Packets 

Handler-creation packets are transmitted by the nub to 
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the central site. Each must contain a unique value in its 

identification field for acknowledgement purposes. 

A handler-creation packet is uaed to inform the central 

site that aome application process at the sending nub's node 

has created a new handler for receiving pa.akete (recall c~pter 

one). It contains tvo words of information; a protocol number 

and a timestamp. The protocol number indicates that the 

application procesa will only receive packets with that number 

in their protocol field. The tiJDeatamp (obtained by reading 

the node's logical clock) repreaenta the logical time at which 

the hand1er waa created. 

Upon receiving a handler-creatton packet, the central site 

will acknowledge it and set up tablea'to indicate that a nev 

packet protocol type is open tor receiving at the node :trom 

which this packet arrived. ~hel'lllOre, all packets already 

cached at the central site possessing destination fields 

identical to the source field of tM&pa.oket and protocol 

numbers identical. ;o the protocol value s}upped by this packet 

are examined. m such packets with tillleatampa less than the 

handler-creation timestamp are fiuehed'from the disk and 

destroyed (on permission of the user),, thereby opening up space 

for new packets. This is becauae all. packets arriving before 

the handlerwaa created (aocordil1g ,to their timestamps) would 

never be received by the application proceea (eee chapter one). 
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3.3.3 Receive-Request and Maybe-Receive-Request Packets 

Receive-request and maybf-receive-regueat packets are 

transmitted by the nub to the oentral ai te. Each packet must 

contain a un:1.que value in its identifiqation fi•ld for 

acknowle4Bement purposes. 

4 receive-request or maybe-receive-request packet is 

used to inform the central site that aome application process 

at the sending nub's node has attempted to ~~ive a packet on 

its input port via a receive or a maybe-receive, respectively 

(recal1 chapter one). Each such packet oon•ina two words of 

information, a protocol number and a timeetallp. The protocol 

number indicates that the requestins application proceea 

receives only packets with that number in their protocol. field. 

The timestamp represents the logical time at which a packet 

was requested. 

Upon receiving a receive-req•at or a •ybe-receive­

requeet packet, the central. site wiU acJmovl.edge it and fork 

a new process with a fw.nction of detend:aing the correct 

application packet to be returnecl in reply,_ it indeed such a 

packet ensts. The algorithm by which this is aoccmpl.iahed 

wil.l be discussed in detail l.ater. The con-ect packet to be 

returned will have a destination fiel.d iden~ical to the source 

field of the request packet and a protocol number identical to 

the protocGl value shipped by this packet. 

The central site responds to a receive-request packet with 

an appropriate application packet, or with a conditional-
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execute packet. It responds to a maybe-receive-request 

packet with an appropri.ate application packet, or with a 

cannot-be-eatisfied packet. Conditional-execute and cannot­

be-satisfied packets are overhead packet types yet to be 

discussed. 

3.3.4 Conditional-Execute Packets 

Conditional.-execute packets are transmitted by the central 

site to the nub. Each must contau a unique value in its 

identification field for acknowledgement purposes. 

A conditional-execute packet is sent 1n response to a 
receive-request packet (it is nner sent in response to a 

maybe-receive-request packet) to the nub that isned the 

request. It contains one word of tnrorma:tion, a timestamp. 

Thia packet is used to inform. the nub that it mu.st execute up 

through the logical time indicated by the enclosed timestamp. 

Upon receiving a conditional-execute packet, the nub will 

acknowledge it and save the timestamp. It will then allow the 

application proceaaea at that node to execute until the 

logical cl.ock at that node reads the saved timestamp val.ue. 

At this point, the nub will. suspend the node and tranSJDit a 

give-me-now packet to the central site, indicating that it 

has performed the action requested of it. 

3.3.5 Give-Me-Now Packets 

Give-me-now packets are transmitted by the nub to the 
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central site. Each must contain a unique value in its 

identification field for acknowledgement purposes. 

A give-me-now packet is used to indicate that the nub has 

al.ready requested a packet from the central site, received a 

conditional-execute packet in response, has executed up to 

the appropriate logical time, and now expects the central site 

to forward an application packet to aati~y the origjnal 

request. It contains one word of 1.ntor.mation, a protocol 

number. The receive-request packet that is being followed up 

by this give-me-now packet is the la.at one aent with the given 

protocol number. 

Upon receivillg a give-me-now p~cket, the central site will 

acknowledge it and prepare to send, back,to the reqQsting z:t.0de 

either an application packet vi th the ,;iven proto.col number, 

another conditional-execute packet, or a cam1tot-b--satisfied 

packet. We discuss this in greater detail later. 

3.3.6 Can.not-Be-Satisfied Packets 

Cfppnt-be-e&ti;fied packets are tranemitted by the central 

site to the nub. Bach must contain a uniqllf val.ue in its 

identification field for aclm,ovledg•~nt purposes. 

A cannot-be-satisfied packet.may be sent in response to a 

maybe-receive-request packet or a give-me-now packet whenever 

the central site cannot find an application packet to satisfy 

the request. It contains no extra words of iaformation. 

Upon receiving a cannot-be-satisfied packet, the nub will 
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acknowledge it and inform the application process on behal.f of 

which the last maybe-receive-request or give-me-now was made 

that no application packet exists to satisfy the request. The 

application processes resume execution without further 

interference from the nub. 

3.;.7 Clock-Update Packets 

Clock-update packets are transmjtted by the nub to the 

central site. !hey need not be acknowledged. 

A clock-update packet is sent to keep the central site 

informed of the logical time at the node of the sending nub. 

It contains one word of information, a timestamp, signifying 

the logical time at which the packet was sent. These packets 

are transmitted periodically by the nub of each node 

participating in the debugging session. In this way, the 

central site is kept as up to date as possible regarding the 

logical time of each node. Clock-update packets need not be 

transmitted by the nub during node suapension (see section 3.4.3). 

A tradeoff between efficiency and the number of clock­

update packets transmitted exists here. If these packets are 

transmitted frequently, the logical times can be kept more 

up to date at the central site and decisions about which 

application packet to send 1n response to any receive-request 

or maybe-receive-request packet can be made more swiftly (see 

section ;.4.2). However, if packets are transmitted too 

frequently, they may bottle up the communications medium 
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causing hardware failures. We have attempted to find a 

reasonable median here. 

3.3.a Package-Destroyed Packets 

Package-destroyed packets are transmitted by the nub to 

the central site. Each must contain a unique value in its 

identification field for acknowledgement purpoeea. 

A package-destroyed packet is sent when some application 

process decides to close the internet comm'Wlications package 
. 

at the node on which it resides. It contains no extra words 

of information. 

Upon receiving a package-destroyed packet, the central 

site will acknowledge it and prepare to dismantle all internal 

tables and data structures perta.in;tng to that node. ill 

packets currently cached at the central site with that node's 

address in their destination field are flushed from the disk 

and destroyed (on permission of the uaer). The net effect is 

that the central site no longer considers that node to be 

involved in the debugging session. 

Upon receiving the acknowledgement from the central site, 

and not before, the application is free to destroy the internet 

package at that node. The nub ceases to execute there, and 

further application execution takes place independently of the 

debugging facility. 

There is one caveat concerning all this. Subsequent to 

destroying the internet package, no application process may 
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attempt to re-create it in order to rejoin the debugging 

session. This is because it is impossible to tell whether the 

central. site has already destroyed some packets that should 

have been received by the node when tbe debugging session 

recommences (e.g. those packets that are destroyed which 

contain timestamps that are greater than the logical time at 

which debugging recommences are posaibl-e candidates for such 

reception). If this capability is desired, the centra1 site 

must be altered so as not to destroy these packets vb.en a 

package-destroyed packet arrives. 

3.3.9 Enter-Debugger Packets 

Enter-debugger packets are transmitted by the central. site 

to the nub. Each must contain a unique value in its identi-

fication field for acknowledgement purposes. 

An enter-debugger packet puts the destination node into 

the Mesa debugger while under the control of tbe debugging 

facility. The user is then able to physically go to the site 

of this node and debug events occurring there up until the 

next internode interaction at that site. This ability has not 

been fully developed, however, as the nub is not coded to 

correctly handle the logical clock mechanism in the presence of 

the Mesa debugger. 

Upon receiving an enter-debugger packet, the nub will 

acknowledge it and cal.l the Mesa debugger into execution. 
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3.3.10 Ack Packets 

~ packets are tranamit*ed in either direction, nub to 

central. a.ite, or central site to nub. -Ack paaile'ts are used to 

acknowledge the recep1;j,on ot varioua o1dier O"lWhead or 

application packets. !hey contain on.e word of 1D1orma:tion, 

the unique, de. tacil.ity a.es~ itlent.ifiaa•j.Qn t'ield 

of the packet that is beiag ackmwl..edged. ;&ck packet• -need 

not, theDUSelvea, be aolmovl.edged. 

Upon receiving an ack packe't, 'the reoei'ri.Jlg si:be (nub or 

central site) will cease retra aaion ot the acknowledged 

packet. 
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3.4 Low Level Mechanisms 

3.4.1 Initialization 

One goal of the debugging facility is to allow the user 

to station himael.t at any node on the network in order to debug 

an application that may be executj,ng at any other set of nodes 

on the same network. Thus, when the debugging aesaion 

commences, the locations of the nub ·copies are unknown to the 

central site, and the location ot the central site is unknown 

to any ot the nubs. Some •thod is needttd to l.inlt up the 

various parts of the facility, malcilsg sure that no app11cati.on 

packets are being loet while the )i·JIJal.p ia accomplished. Onl.y 

after linkage has been performed can the debugging session 

proper get under way. 
' 
First we state that the debuggi:Dg facility places no 

restriction on the order in which the'Vari1>uanodea involTed 

begin execution. !hat is, the ceutrai nte and application 

nodes may be brought up in any order and no application packets 

will be lost. The facility will function cot+ectly regardless 

of this order. 

When the central site begins execution (before or after 

some or all of the appl.ication nodes), thttwser ia immediately 

asked to enter the internet addressee of all nodes participating 

in the session. As each address is entered, the central site 

transmits greetings packets to that node. These packets will 

be sent periodically until acknowledged. Since the node to 
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which this greetings packet has been sent may not even be 

executing yet, the centra1 site bas no way of knowing when a 

reply might be received. Therefore it is w~JJ1ng to retransmit 

greetings packets for a very long time. EventneJJy, however, 

1:f no response 1s received the central site vil1 a1ert the user 

tbat contact has not been able to be eatabliahed with that node. 

The nub at an application node is not illJ.tializl)d until 

some application process at that node creataa the internet 

package. Since no packets may be. aent or received until this 

1• done, it 1a obvi.oua tbat there 1e np need tor the nub to 

exist until this time. !hus the applioatio~ FOC848•• at that node 

execute 1ndepen4entl.1' until the internet _ . 1• created. 

At that time, the delnigg;tng :facilit7 aa..-e oon:tro1 over 

their execution. 

The nub poaseaaea a hook into the internet creation 

procedure. Ita first action is to cau,ae a node auape.uaion 

until such time u a greetirJga packet ia reoe4,ved fJ;'-OID. the 

central site. At this point.. it does not know the address of 

the central site, but is able to detenine t~:t a greetings 

packet has qri ved by 1 ts special. debus p,l'Otpool number. When 

the greeting~ packet arrives for the first time (.J.at• arriving 

duplicates are ipored), the addreaa of the central. site is 

recorded and a greet~-rea.ponse pa~et ie sent back in 

acknowledgement. Thia greeting-response packet c~taine a 

time value which will be described shortly. 

After the nub sends a greeting-reapon$e packet it is .D.21 

free to al.1ow application processes to..recommence execution. 
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Node suspension is still in effect. The central site will 

acknowledge the greeti.ng~response packet as soon as it is 

received. However, this is merely so the nub can cease 

tran8Jllitting it. It is not an indication that execution may 

recommence. 

The final stage of the initialization mechanism occurs 

when the central site receives this greeting-response packet 

from the node (late arriving duplicates are ignored). It 

records the fact that this aode is aware of the existence and 

location of the centra:L site and is currently under its control. 

When such a greeting-response paok:et i's received from eyea: 
node address entered by the uaer, then the central site knows 

that all participating nodes are aware of its existence and 

location and that they are all under the control of the 

debugging facility. At this point, unconditional-execute 
' packets are transmitted by the central site to each of these, 

nodes, indicating the fact that they are all free to recommence 

execution of their application processes. 

With the receipt and acknowledgement of·the unconditional­

execute packets by each node, the initialization mechanisms 

are concluded and application execution proceeds. 

An important procedure 1s the initiali&iltion of logical 

clocks. The user is given the ability to specify initial 

values for each logical clock involved in the debugging 

session. This, however, is an all or nothing proposition. He 

must either specify initial values for all logical clocks, 

or he cannot specify them for any. Logical clock assignment 
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is accomplished by some application process call.ing a special 

logical. clock assignment procedure bounq in Wi1ih the .application 

modules, but not really a part ot the nub proper. The user has 

the opportunity to specify either the logical. time at which 

execution of the application shoul.d commence at that node, or 

the logical time at which the internet package is created at 

that node. 

If the user has specified a time at which the internet 

package is created (this must be 4one befoN the packa&e is 

actnsJly created), this value is sillply sav~ for futu,re use. 

If he has specified a time at which .. executiOJl should commence 

(this must be done before execution begins; hence, it.must be 

the first statement executed at that node), this value is 

1mmed1ate1y placed into the 1ogical. c1ock counter, which wi11 

tick uninterrupted until the internet package is created. 

When the internet package is ore.ated, the nub, as previously 

mentioned, comes into being. It immed,iateJ.y records two values: 

the real time ot day (from the time of day c,J.Qck) and whatever 

value is current1y in the logica1 clock counter. · If the user 

has specified a 1ogical time at which the internet package is 

to be created, both of these value.a are discarded and the user 

specified value is sent to the centra1 site inside the 

greeting-response packet. Uthe us~r. has specified a logical 

time at which execution cDmmences. the value read ·oft the 

logical clock is converted to a value representing this 

initial. time pl.us the number of seconds elapsed between the 

commencement of execution and the creation of the package. 



100 

This final. value is sent to the central site inside of the 

greeting-response packet. If no initial clock vaJ.ue has been 

specified by the user, the time of day is sent to the central 

site inside o! the greeting-response packet. 

Thus the central site 1s in:t'ormed of the initial value 

to be assigned to each logical clock. 

User assignment of logical clocks is useful 1n re-creating 

computations and machine states of interest. It allows each 

node to begin execution at a specified time relative to al1 

other nodes. It nullifies changes in computations caused by 

changes 1n the relative time or order in which execution 

begins at each node. Thus, the user can bring up each node at 

his leisure without worrying about how this w111 affect the 

computation. 
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3.4.2 Application Packet Selection Algorithm 

When the central site receives a receive-request or a 

_maybe-receive-request packet, how doe• it decide which is the 

correct application pack•t, if any, to reapQJMi with? We now 

e:ram1ne the algorithm that de-t;erminea this. 

Upon receiving the request packet, the central site 

records the address of the node from which it o-.me, the packet 

protocol number desired, and the timeatQp representing the 

logical time at which the request was issued by the application 

process. A new central site process is detached v~th a function 

of deterw1n1ng the correct reepcm,se to the request. When this 

is f1n•lly accOJ1pliahed, that proceae ia destroyed. 

Recall, from chapter one, that a maybe-receive-request 

can only be satisfied by an application packet which arrives 

before the request is made. However, a receive-request may 

be satisfied by an application packet arriving either before 

the request is made ~ in the interval between the time the 

requesting process begins to wait on a condition variable and 

the ti.me this condition variable times out. In the enauing 

discussion, the length of this timeo~t interval is called t. 

The process that is forked by the central site searches 

through all currently cached packets vith a protocol number 

identical to that found 1n the request packet and a destination 

address equal to the source address of that packet. 

Let us first A:ram1ne how a maybe-receive-request is 

handled (see figure 3.4). 
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The application packet with correct protocol and 

destination fields that posseaaea a timestamp which ia less 

than that of the request, greater than that of the last 

handler-creation timeatemp for that protocol and. destination, 

and less than the timestaap of a,l.1othar s•ch packets, is 

selected by the central aita (box 1). Call this packet p. 

Suppose such a packet ia not currently cached (box 1 , arrow F). 

Then it muat be deteraiaed whether any logical clock, aside 

from the logical clock.of the requesting node, read.a lees than 
·( 

the tilleatamp of tbe 11a7be-receive-'.N\ueat (box 2). If none 

do ( box 2, arrow J), ·· then. no applic~~;• packet . can poeaibly be 
' . . 

found with a timeataap atrictl.y.i.a.. taaa 'tbe t-iaee'Mllp of the 

requ• which also -qontain.8 tp.e c~Q.'.t protopo:l IL04 dest1na­

tion fielde. In tJ:da ca••• a coneot 1'98ponff to the request­

ing node ia a c&m1ot-be-sat1afie4.,packet (box 3). The central 

site will report itliintention to a6nd a cannot-be-satisfied 

packet to the requ.ting aode (be%. 4). The. uer u giTea,a 

chance to re,fl)Oad to thia intention (boxea 5, .. 6 &114 7 - aee 

section 3.5). 

If aome l.ogical oJ.ock exists which ~ad.• less than the 

time stamp of the request . ( box 2, arrow . '?) . t:ben 1 ~ ia possible 

that some process at this node villJ"•'t.apava a pacllet to 

satisfy the requirements in box 1. The central site does not 

yet know whether this will occur. Thua the process that is 

attempting to find a correct response to the maybe-receive­

request must wait for some new status to arise which will 

al1ow it to make a decision (box 8). 
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At any given time, there are various processes at the 

central site in states of suspension, waiting for conditions 

to change so that they may determine the correct response to 

the request' they were created to serve. The central site 

wakes up allot these processes whenever an updated logical 

time value is received for some logical clock or whenever a 

new application packet arrives. Each process will recommence 

its search for a reply. Perhaps now the correct response can 

be determined. If not, a process will return to the suspended 

state awaiting further application packets or logical clock 

updates. Tb.is algorithm is continued until a correct response 

can be found. 

Nov, auppose that packet p is found ( box 1 , arrow T) • We 

ask if any logical clock, aside from the c1ock at the node of 

the requesting process, reads lesa than the timestamp ot p 

(box 9). If not, then p must bet-he earliest packet capable 

of satisfying the request (box 9, arrow!'; box 10). The 

central site informs the user of its intention to return p to 

the requesting node (box 11). !he user responds to this 

intention (boxes 12, 13 and 14). 

Finally, suppose that p 1s found and there does exist a 

logical clock reading a time less than this packet's timestamp 

(box 9, arrow T); Then it is possible that some process at 

this node will spawn a packet which can satisfy the request 

possessing a timeetamp less than the timestamp of p. Since 

the central site cannot determine at this time whether such a 

packet will be created, the servicing process must wait for a 
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new status to arise (box 15'. 

The aJ.gorithm for a receive-request is some~hat more 

complicated (see figure 3.5). 

The application packet with correct protocol and destina­

tion fields that possesses a timestamp less than that of the 

request pl.us t, greater than tbat of the last h,andler-creation 

timestamp for that protocol and destination, and less than the 

time stamp of all other such packets, is s elected by the central 
1 

site (box 1). Call this packet p. If not prthlent (box 1, 

arrow F), we ask if any other logical clocks read le~a than 

the request timestamp plus t (box 2). If not (box 2, arrow F), 

the only processes capable of creating a packet to satisfy the 

request are those yet to execute betve,n the request time and 

the request time plus t at the requesting node (box 3). A 

conditional-execute packet ~ith timestl\lllp equ,u to the request 

time p1us t (the time the requesting .J>rocee,s will time out) is 

therefore sent by the central s1 te in reply . {box 4) • This will 

be responded to With a give-me-now packet when the requesting 

node reaches the logical time specitied by the conditional­

execute. However, if before this, some application packet 

possessing correct protocol and destination ia indeed spawned 

by one of the processes at that node (box 5, arrow T), then 

this is the packet to satisfy the request (box 11). This is 

reported to the user (boxes 12, 13, 14 and 15). If no such 

application packet arrives before the give-me-n9w (box 5, 

arrow F; box 6), then the request cannot be satisfied (box 7). 

This is reported to the user (boxes 8, 9 and 10). 
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If there is a logical clock reading less than the request 

timestamp plus t (box 2, arrow T), then a reply cannot yet be 

determined. A. new status must be awaited (box 16). 

If p does indeed exist (box 1, ·. arrow T), then it is 

determined whether some other logical clock possesses a time­

stamp less than the timestamp of this packet (box 17). If not 

(box 17, arrow F), we ask if' the timestamp of pis greater 

than the timestamp of the request (box 18). I:f not (box 18, 

arrow F), p bas been determined to satisfy the request (box 19). 

This is reported to the U8er (boxes 20, 21, 22 and 23). If so 

(box 18, arrow T), a conditicmal.-execute packet ia sent to the 

requesting node indicating that it must execute up to the 

logical time given by·. the timeatamp of packet p (box 24) • If 

some satisfying application packet arrives from that node 

before the ensuing give-me-now (box 25, arrow T), this is the 

packet to sati~7 the request {box '.52}. This 18 reported to 

the user (boxes,,, 34, 35 and 36). If the give-me-now 

packet arrives first (box 26), packet p satisfies the request 

(box 27). This is reported to the user {boxes 28, 29, 30 and 

31 ) • 

J111nalJ7, if p exists and there ia a logical clock reading 

leas than the timestamp of this packet (box 17, arrow T), then 

a new status must be awaited (box 37). 

Notice that no reporting to the user is done until such 

time as the central site has determined the correct reply to 

the request. 

Also notice that whenever a node executes conditionall.y 

~- -----
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up through a specified logical time, it is possible that the 

application processes at that node will spawn packet requests 

(for differing protocol types, as only one protocol type can 

be requested at a time) , rather than packets. This serves to 

complicate th~ central site request handling nu,cbanism. 

However, it presents no new conaeptuai difficulties, and we 

will not discuss this further. 

3.4.3 Node Suspension and Logical Clock Maintenance 

In chapter two we mo~ivated the need for node suspension 

and logical clocks. We now discuss how both a.re implemented 

1n our debugging :tacility. 

A node's logical clock advances 1n real time whenever 

application processes at that node are execut~. A logical 

clock ceases to advance whenever the nub cauaes a node suspen­

sion to occur. Node auapen.sion prevents the egecution of 

application processes because, in effect, the nub seizes 

complete control of the processor. 

Node suspension occurs at a node whenever the nub needs 

to communicate with the central site and some acknowledgement 

of this communication is required. Node suspension terminates 

upon receipt of a valid reply from the central site. 

We now list those occasions upon which node suspension 

commences and terminates: 
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1 • Commences: Upon internet package creation. 

terminates: Upon :receiving aA uaoonditional-exeoute 
packet from the centra1 site (see section 
:,.4.1 for mort d•"ialla}. 

2. Commences: Upon sending an application : packet •~wned 
at that node to ita destination node (from 
vhioh it is res-011-t-1-'to•t»••Centnl. site). 

Terminates: Upon receiVW ~ i,.c)Qiowleq&eMnt of . 
receipt ot that packet·froni the centra1 
site. 

:,. Commences: Upon traoamitt~ a reoeiye ... request or 
maybe-receive~riquest packet on behalf of 
SOM .&ppli~~Ql;i P~•• 

Terminates: Upon receiving from the central site in 
Zfeply, an· app.U.G&;Uida 'JlillCJ)let, a condit,ional­
execute packet, or a camlot-be-eatiafied 
p&Gket ( •• ·u~o* ,.4;2 • ft~ mre detail■) • 

4. OoJDmencea: Upon reaob1q tbe l.ogioal tc1.me- value 
indicated in a conditional-execute packet 
and'.:~~• •.gi.ve ·• :IIOV ·w ta oentral 
site. 

Terminates: Upon receivins from the central site 1n 
reply, .an •»~c:,at~ ,~~1r.at. a c;ann()t-be: 
satisfied packet·, ox• ~;r• ·cohdi tional.-
axecut• ~•-~-<••e. ~ :,.4.a and 

5. Commence■: 

!erminate■ : 

6. Commences: 
Terminates: 

':5.4.4 for further 'deta a). . 
Upon sending a handle:r-creation packet. 
Upon aiclmOW3'adge1Nb.t; 'Ge··-oed.pt of tile 
handler-creation packet by the central site. 

t. · • ·1' ' 

Upon aendillg a package-destroyed packet. 
Upon acknowledgement '·Ji ·receipt of the , 
paclcaP~••~;t"C>T'A-.P,a~t by .. the central . 
site \vhenupon·tne nub at the node ceases 
to exist). 

Bow we exam1ne how node suspension is accomplished. 

The nub poeaesses a hook into each·internet procedure 

which, upon being invoked by some application process, requires 

some kind of interact1011 with the cehtral site. The first 

action per:formed by the nub in every case is to save the 
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current value on the node's logical clock. Then the nub 

searches all PSB's (recall chapter one) to find all processes 

at priority one (low priority) that are waiting on a (not 

disabled) condition variable._ ·The timeout field in each such 

PSB is saved and then set to z•ro. ln other words, the time-, 

out is disabled. !he net efi'ect of this is ·that all priority 

one processes waiting on some condition will not wake up while 

the node is suspended. The nub accomp].1ah.es all this in a way 

that guarantees it will no1i be 1n1ien-u.pted by any other process 

(regardless of ~iority) euating at tbat node. 

Now the 1111b causes tbe 1nvok1,ng -,plication process to 

wait until a respon.ee 1s recei'Ved troa the central eite. The 

nub wakes up the mME• a special &1gh priority process which 

possesses no function except to execute u WiJlite loop to 

prevent any application proceeses (at l~w priority)from 

acquiring the processor. The looper pertodically yields the 

processor to other processes at the same prior~ty and can be 

preempted. by prooeaaea ,a1; a bigae.r pr1ority. !hi.a allows other 

high priority nub processes to execute (as well as processes 

handling packet rece,Ption) but eft~ctively locks out all appli­

cation processes. By this means, node 8128pension 1s achieved. 

We point out that the implementation guarantees that the 

looper is indeed waiting on its condition v~;1Able when it is 

notified to begin execution. If th,is :were npt the case, the 

notifying signal would be lost and the loope~ wo~d not grab 

immediate control, perhaps allow:1,,ng the exec11tion of application 

processes while a node suspension was supposed to be in effect. 
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The looper continues to loop (hence, node suspension is 

in effect) until such time as the nub receives a val.id reply 

from the central site. When this occurs, the looping process 

is notified. It will determine the amount of time node 

suspension was in effect by subtracting the current time on 

the logical clock from the logical clock value saved by the 

nub at the start of this suspension. It will then restore the 

timeout field in the PSB of each priority one process that was 

disabled by adding the node suspension time (adjusted to the 

units of the hardware timeout clock) to the original saved 

timeout value. It w111 then restore to the logical clock, the 

saved logical time that was first read when node suspension 

commenced. Finally, it will cause the original interrupted 

application process to regain the processor. 

The net effect of all this is that node suspension is 

rendered invisible to the application processes. Logical time 

has not advanced. ill application processes waiting on 

condition variables have not noticed any passage of real time. 

The interrupted application process is handed back control of 

the processor at the point of interruption. The ordering of 

processes on the ready list has not been altered. No user 

data has been touched. In short, upon relinguishment of the 

processor, the looper leaves the state of the application in 

the exact same state it found it when node suspension commenced. 

Incidentally, we stated that only priority one processes 

are locked out by the looper and that only priority one 

processes have their timeout fields adjusted. Processes with 
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priority higher than one (e.g. the processes controlling the 

keyboard and disk) are not affected. This may alter the 

relative order of processor acquisition between high and low 

priority processes, causing the node suspension to be not 

quite transparent to the applicatio~. 

This cannot be helped, however. We take the position 

that a high priority process bas received that priority because 

of a desire to insure that it will execute a particular 

minimum number of times in some time intenal, regardless of 

how long a particular application proo,sa atte~pts to control 

the processor ( this ie why, 1n the Meaa aystem, app1icat1on 

processes are expected,for the moat part, to execute at 

priority one). Furthermore, any system prooese at priority 

one is not guaranteed te execute any miD.imum naber of tillles 

1n some interval because program correctness mu.et 1n no way 

depend upon a process yielding the proce~sor within a certain 

length of time. Thus we feel that (1) we may suspend priority 

one processes indefinitely and expect no adverse effect on the 

application program, and (2) ve may not auapend processes with 

priorities greate·r than one at all, since these processes 

evidently must execute with a certain minimwn frequency. These 

two statements may not always be true, but they are reasonable 

1n most cases. They imply, then, that when using this 

debugging facility, all application processes must be· at 

priority one. This requirement is not particularly difficult 

to satisfy. 
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3.4.4 Dead1ocks 

Two kinds of dead1ocks may arise in the use of the 

debugging facility, causing a premature abortion of the 

debugging session. One kind arises due to problems with the 

app1ication program. These are dead1oclm that would haye 

arisen regard1ess of the presence of the debugg:Lng facility. 

They ought to be seen when the debugging .facility is 1n use, 

and need not concern ws at all. 

The second kind is somewhat more troublesome. 

may arise due to the debugging facility mechaniam. 

Deadlocks 

If they are 

not taken care of, they will prevent the debugg1ng of that part 

of the application yet to execute when the deadlock occurs. 

Deadlocks arise when all participating application nodes 

are in states of suspension because so.me application process 

at each node~• performed a receive-request or a maybe-receive­

request. As long aa at least one application node is not 

suspended, then the application execution~• mak1ng progress, 

and there is no deadlock. Deadlocks arise because the debugging 

facility suspends the entire node whenever a single application 

process at that node requests a packet. Obviousl.y, this doea 

not occur when the application is executing by itseU. 

We present two simple examples of deadlock. The first 

(see figure 3.6) occurs when some appl.ication process at each 

node requests a packet that will be sent at a 1ater time by 

some other application process at the same node. Since each 

node is suspended when the request is done, the subsequent 
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send at each node will never have a chance to be performed. 

This deadlock is called the send-to-eel! problem. 

A more general form of this problem (see figure 3.7) 

arises when each node expects to receive a packet from some 

other node, forming a circul.ar request chain, and each node 

will not send a packet until it bas received one. Each node 

says to the other, "After you!" and nothing ever gets done. 

This is called the circular-eepd p;:oblem. 

When the central site perceives a deadlock, it attempts 

to "unwind" it in the following fashion. It sends a 

cond.itional.-execute packet to. the node possessing the logical 

clock at the earliest logical time. The timestamp sent in 

this packet is the time of the next earliest node's logical 

clock. The receiving node is then free to execute up to this 

logical time. During this execution, it is possible that some 

application packet will be spawned to satisfy some requesting 

node, or that logical time will advance to enable the central 

site to perceive a correct response to some outstanding 

request. In either case, the deadlock is broken. 

If neither of these possib-ilit~ea comes to pass, however, 

the situation becomes ju.st a bit more sticky. Now two logical 

clocks read the same minimum time. The central site chooses 

one of these, and sends a conditional-execute packet to that 

node indicating that it may execute for one logical tick. If 

the deadlock is still not broken, the central site transmits 

an identical packet to the other node. This alternation 

continues until either the deadlock is broken or until both 
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logical clocks have reached the time on the third minimum 

logical clock. At this point alternation continues among all 

three nodes. The pattern continues until the·deadlock is 

broken. 

If the deadlock is not broken no matter how long this 

algorithm continues, then it is possible that the deadlock has 

been caused by the appl.ication prooeaa itael.:f'. However, the 

centra1 site never decides this conclusively, and it is up to 

the user to abort the session when he runs out of patience. 

Incidentally, we point out that when a node executes 

conditionally, it may, rather then break the deadl.ock, simpl.y 

spawn another request for packet! Thia further complicates 

the deadlock handling mechanism at the central. site. However, 

it adds no new conceptual difficulties, and we do not discuss 

it further. 

3.4.5 Termination 

From the description of the deadlock handler, it is clear 

that the debugging facility will always cause progress to be 

made 1n the execution of the application. Thus, if the 

application itsel.f terminates, so will the debugging session, 

provided the user has enough patience. The central site wil1 

conclude the session upon receiving package-destroyed packets 

from all participat~ appl.ication nodes. 

The only probl.em that may arise here 1s caused by listener 

processes (see chapter five) that never destroy the internet 
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package but unceasingiy monitor the comnu.mications lines for 

packets. If the application to be debugged contains a listener, 

then the central. site can never det•rm:Lne tbat the session has 

indeed come to a close (unl.ess, of course, it could somehow be 

appraised that all other appllcationpr~,seea have been 

deetroyed). In this caae, it is up to the ueer to terminate 

the session when he 1a through. 
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3.5 User Interface 

The debugging facility provides a fairly simple interface 

to the user to permit both monitoring and debugging of the 

application to take place. We discuss both of these 

possibilities in this section. 

3. 5. 1 Monitoring 

When the central site is about to eend an application 

packet back to a node in response to a nceive-request packet, 

a maybe-receive-request packet, or a follow up give-me-now 

packet (or as soon as it has decided that.the request or give­

me-now is unsatiai'iable), it reports thia to the user via the 

Alto screen. These are the only events which the facility is 

' capable of reporting. 

Each time an application packe1; ia about to be sent by 

the central site to the requesting nub, the following 

information is reported to the uaer: 

1. A special identifier assigned to that packet by the 
central site to which the user may refer at any time 
until this packet· is discarded. This interface 
identifier is in no. way :re.lated to :tibe real identifier 
of the packet as assigned by the application process 
which spawned it. 

2. The real identifier of the packet. 

3. The internet address. (in octal) of· the packet's source 
node. 

4. The internet address (in octal) of the packet's 
destination node. 
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The protocol number of the packet. 

The number of requests by the ap~lication process 
which has requested this packet {e.g. this is the nth 
packet request from that proceea). 

Whether this requaat vaa through a receive-request 
packet or a maybe-receive-request packet. 

Each time a cannot-be-satisfied packet ia about to be 

sent by the central site to the requesting nub, the following 

information is reported to the user: 

1. The internet address (in octal) of the node at which 
the requesting appJ.icaUoa process raaidea. 

2. !he protocol. aamber of packets which the requeartii3g 
process is w1l.J.1ng to accept. 

3. !he number of requests by that application process 
(e.g. th:la ia 'tbe nsa packn request from tha.1; proceaa). 

4. Whether this request vaa thmugll a receJ:n-requeat 
packet or a maybe-receive-request packet. 

The reporting of this information all.ova the uaer to 

monitor al1 interprooeea connmm1 cattona Tia mesaage paaeing 

that occurs during the execution o~ the app11cat1on. 

3.5.2 Debugging (User C~nunands) 

The user is given the opportunity to respond whenever an 

event ia reported in the manner described above. He has a 

number of commands at his disposal for auoh response. We wish 

to emphasize that events are reported to theuaer by the 

central site before they actually occur. Thus, the user is 

able to debug his application because he decides whether these 
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packet or a cannot-be-satisfied ind.ioation. 

There is no direct way for the user to specify that the 

application packet shoul.d be repJ.acea by a cmmet-be-satiafied 

packet. This is because it is desirable for the user to be 

aware of all poaai'bl.e application ,-e:te1:1a·tut can satisfy a 

request. It ia better for ~he ·uaeJ:" .1:14 re-jeot all such 

packets one by one,~ to aIJ.owa ti:n«J.e' lfithhold c<.'mmend to 

reject al.l of them. !hu, repla<dag an applioa'tion packet by 

a cannot•be-sa-.1afu«1 paoket may,oaiy lie acM:"'9Cl 1n41rec-tly 

b7 the user ias11:lu«-the 1iiittaao1d·ea,..,.,,,,~ 'time the same 

requeet comea up. »......u.y, the '~•ri ·JllU8't oo• back aa 

unsat1~iable. 

n.e nthhol.d coeen.d canoe uaed 'So •~te packet loaa 

or to test the code when a partio~ packet ·i•·never seat. 

There is no nthhoJ.d coanand when the reported: ?'9ilueat is 

unsatisfiable. 

Uthe reported Nquest is sat'2.dSabl.e, but·theuaer 

wishes to replace the ·appl.ioation.pack•~to:t.e.aent with a 

different appllca ti.on packet.. be 1sauea- the F!;l-l;aee ccmmand. 

He is asked to enter the interlace··H:entit'ler-· ·or the replacing 

packet ( there°fore, the replacing pa,Cltet 111a9t·· be one that has 

been reported to the user ptvYi.ously in oomiec't1on with some 

other event, and. the user must ·have i-etJ,ueeted that this packet 

be saved -ror future·· transmission, Ol' he imet, !un'e replaced 
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this packet using this same replace command, or he must have 

deJ.ayed this packet - see the next section - or he must have 

created it - see section 3.5.2.6). If the packet with the 

indicated interface identifier carmot be found, the user is so 

intormed and no replacement is made. If it can be found, the 

repJ.aced packet 1a reoached on the duk tor·~ture use. If 

the repl.acing packet's destination or protocol number is 

different from the packet being replaced, these will be 

aJ.tered to make the values identical. TM \UNtr Will be 

intormed of thia cbang$. 

If the user ia disaatiaf:1.ed Vita his new packet, he may 

reissue the replace command to obtain yet another oa. When 

he is done iaau.in& replace OOIP!JSDci:a, he 1111&7 iaaue a send, a 

withhold, or a delay ( or perhaps .;&Ten a display or create) 

COJDJDADd. 

If the reported request is unsatisfiable, the user may 

replace the cannot-be-satisfied packet which would be 

transmitted by the central. site with any application paoltet of 

which he is currentJ.y aware. Since no appJ.ication packet is 

actually being rep].aced, the user ieawaa tu r,triffl cnmmand 

instead. SUbaequent to this, the replaoe .oniwwnd may be 

issued as many times as desired. 

3.5.2.4 The DeJ.ay Command 

If the reported request is satisfiabJ.e, but the W1Jer 

wishes to delay the requesting application node's receipt of 

' 
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the packet, he issues the delay cnmmand. He is then asked to 

enter a del.ay interval value. This del.ay value (after 

suitabl.e units conversion) is added to the timestamp of the 

application packet. The packet is then reoached on the diak 

for future use. The central site will fork a new process with 

a function of finding a new packet to aatisfy the request. If 

the delay time ia amall, the very eame pacat may be found. 

If the delay is large, some other packet may be found or it may 

be determined that the request is now Ull88.tisf1abl.e. Thus, at 

some later time, the same event may be reported again, with the 

same or dilferent application packet or a C&D.DOt•be-aatisfied 

indication.. 

The delay command may be uaed to eimulate packet trans­

mission de1ays due to bardware mal.function.a. 

There is no delay c~mmand when the reported request is 

unsatisfiable. 

3.5.2.5 The Display Command 

The user may at any time displav the contents of the 

applioation packet that is to be aent in reaponee to the 

current reported request. He may display any header field or 

the packet body. The display command is issuable whenever 

such a packet is present (e.g. even after a re.p1ace or retrieve 

command has been given). The display is in octal. 

There is, of course, no display c~mrnand when the request 

is unsatisfiable (unl.ess a retrieve command has been issued). 
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3.5.2.6 The Create.Command 

The user may at any time create a new application packet. 

He is asked to enter all necessary header fields as well as 

the packet body. This is a1l done in octal. The central site 

will make the packet, report the interface identifier assigned 

to that packet, and cache it on disk for~uture use. The user 

may then employ this packet 1n a subsequent replace or 

retrieve command. 

3.5.2.7 The Call Debugger Command 

The user posseaees a rudimentary ability to cause some 

application node to be placed into the Mesa debugger. Upon 

entry of a ga11 debugger command and the internet addreaa of 

the desired node, the central site will spawn an enter­

debugger packet to be sent to that node. The user may then 

physically go to that node and debug events occurring there 

via the Mesa debugger. 

3.5.2.8 The Quit Command 

The user may at any time enter the·~ command, 

terminating the debugging session. 
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Chapter Four 

Correctness and Useful.ness of the Debugging Facility 

We expect that many of the issues discussed 1n chapter 

two and some of the implementation aspects of chapter three 

are familiar to those with knowledge of simulation techniques. 

Our debugging facility is merely a simulator of distributed 

applications which also allows interactive ~ebugging to take 

place during the simulation. More tban this, however, the 

debugging facility cause~ a p[9bable s.m,ul,ition to take place. 
• J ~ • ' 

This is a term which will be defined later. Probable 

simulation, we will find, is closely related to the concept of 

transparency. However, it is a much weaker condition. As 

stated in the concluding paragraph of chapter two, complete 

transparency is an ideal which is unattainable by the debugging 

facility. Therefore, the next best goal has been opted for, 

that of probable simulation. 

Now that we have presented a detailed description of the 

design and implementation of our debugging facility, we wish 

to argue for its correctness and usefulness. This chapter 

presents the basic ideas of such an argument. At times we 

proceed somewhat informaJ.J.y, as a strictly rigorous. discussion 

is beyond the scope of this work. 

The argument can be broken down into three steps. Lamport 

(Lamport78) points out that for any system of clocks to be 

correct, a single condition, termed the clock condition, must 

hold for that system. Thus, the first question to be asked is, 
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"Does our debugging facility maintain the clock condition?" 

Now a system may obey the clock condition without doing 

anything particularly useful. For our purposes, the useful 

goal is that we be able to interactively deb\18 an application, 

P. The first step tow~de such usefulness is that the facility 

simulates that system, P. Our second question, then, is, "Does 

our debugging facility simulate P?" 

However, we will find (in discussing simulation in a 

later section) that the mere simulation of P may not always be 

useful. We will show that the debugging facility is useful 

only when it perto1"1111!S a probable simulation. Therefore, the 

final question to be posed is, "Does our debugging facility 

perform a probable eimul.ation of P?" 

Question one determines the correctness of the debugging 

facility. Questions two and three determine its usefulness. 

A positive answer to all three questions will be motivated in 

what follows. 
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4. 1 Mainte~ce of the Clock Condition 

Lamport {Laaport78) defi.Dea aloeioal clock, c1 , for each 

process, P1 , 1n a syatea. For•:aa ey:e•t, •• in process P1 ,· c1 (b) 

is the tiae of the .event aa de~ .bf NadiaB -.ae lc,cioal 

clock, c1 • XQNOTer, C ta a &1ob1W,.:tunct~Qll."~ all Ci •1¥1h 

that C ( b) • C 1 ( b) if 'b i• an eve:a;t 1n P'OCJff• P 1 • The olook 

condition is as follows: 

Clock Condition. !or azq events a, b: 
U ~l> :tlMA C(-.) ( C{b). 

All this means is that if one event •bappena ''before" another, 

then the logical clock ayatea should renect this bf recording 

the former aa occurring earlier in logical time than the latter. 

Thia would appear to be the aoat reasonable condition to aet on 

a system that is divorced from real time. 
·-

Prom the definition of the-> re1ation (aa discussed 1n 

chapter two), Lamport states two more conditions that, if true, 

imply the clock condition: 

a, . If a and b are _.,enta 1n ~• P , and a ooaea 
before b, then 01(a) < c1(b). i 

C2. If a is the sending ot a message by process P1 and b 
1a the reoej.pt of that ~•9'P •~ pi-poeaa P j, 
then a-1 (a) < C j (b). · 

To these we add a third condition, becauae processes 1n our 

system may OOIIDDmicate th.rough monitors. u well as through 

explicit tranamiaaion of paaketsi 
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C:3. If a is the relinguishment of a monitor lock by 
process P1 and b 1• the nen-aequiaiticmo:t tut lock, 
by process Pj' then o 1 (a) <cj(b). 

It should be easy to aee that in a syn• vhioh al1ows 

prooeas oODIIINDioation thrOugh botJl meeaap paeaing and 

aoni.to:r in:teraotiona, oonditiona oJ, 02 and 03 togetur imply 

the c1ock condition. We now · ahov ·taat the 11lp2eaentation 

deac:ribed in the p:Nrrioua chapter ••iafi•• tileee three 

conditions. 

lirst, remember that, in our system, the" does not 

en.st a one-to-one relationehip between proceaaes, Plt' and. 

clocka, Ok. Our 1Jllpl••ntation allow-. an arbitrary number 

of processes to read the s- clock. !his, .however doea not 

make any difference towards the u.tiafaction of the three 

conditions. 

C1 is the· moat straightforward. Each process cl.oclt, o1 , 

is illpJ&e•nted by a counter that iDc~ases aonotonio•Jly. Thus, 

in a single prooeaa, later events will alvaya occur at greater 

logical. times than earlier events. Of course, it is aaaumed 

that the counter •ticks" faat enoQCh 110 that no tvo events see 

the same logical clock value. thie "_,. ot be pJitsically 

real.izable, but the impl.ications of this ap~ar unimportant. 

02 is the moat interesting oaae. Laapol't nggnta the 

fol.loving impl.ementation rul.e to guarantee that 02 holds: 

IR2. If event a is the sending of a meaaase m by process 
P 1 , then 'the ••aase m ~me a tiJneetbamp Tm • e1 (a) • 

Upon receiving a aee~ 111, P.rooe~• Pj 
sets Oj greater than or ett,al'to ite present 
value and greater than'•• 
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We have not followed Lamport's suggestion. Instead, we achieve 

C2 in a slightly different fashion. Instead of updating Cj to 

conform to the timestamp Tm, we allow Cj to tick, withholding 

m from Pj until Cj > Tm. This is more in keeping with the 

spirit of transparency in that the process will not be able to 

detect whether it is executing 1n physica1 or logical time. 

Using Lamport's method, a process coul.d notice unexplainable 

jumps of its elock, thereby inferring tbat it is not executing 

in real time. 

The difference in approach ia actually a very interesting 

point. It arises because the problem Lamport ia trying to 

solve is only one part of the problem we are trying to solve. 

Lamport is attempting to produce oorreo~ timing belaavior in the 

execution of any s79-tem of distributed prooesaes. We are 

attempting to reproduce the oauaal relationships between events 

that would have occurred had the debugging facility not been 

present while simultaneously maintajning this correct timing 

behavior. The transparency issue has modified our approach. 

Finally, condition C3 is satisfied by the simple expedient 

of having all processes that can interact ~1th a monitor M 

read the same logical clock Ci. This 1s easy to do since the 

processes residin& at a particular node form a natural subset 

for this purpose. That is, all processes at a node may 

interact with any monitor module at that node, but may not 

interact with any monitor modules at any foreign nodes. 

Furthermore, all processes with access to a particular monitor 

share the same memory and, hence, are able to read the same 
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logical clock. 

Then, by the semantics of the monitor lock construct, and 

by virtue of the fact that each logical clock is impl.emented 

as a monotonically illcreaaing counter, condition c, 1a found 

to hold-. 

It is adaitted that the aseigl,,aent of a ej,ngle clock to 

all prooeaaee residing at an.ode 1a IIOJHVbat artificial. For 

the diaaatie:f'ied reader, we will d190WNI, 1D cb.lt.pt~r five, a 

possible alternative debugging facility design that aaeips a 

unique logical clock 'to each proceaa in 1he 8Jlll'Mtl. tbis waa 

not impl.emented beoaue of tbe di.tfioul.'Q in·-1n"tlt-1n1n1 the 

correct logi.cal tille on Mall l.egio.l cJ.ook. 

In concJ.uaion, baT1ng ahowa that coJ¥U;t1on.a 01, C2, and 

C3 are all satiaf:l.ed, we may ata1;e tut :b-• deb~ facility 

imple•ntation. obeys the Qlock cond.J;tioa. 
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4.2 Proof of Simul.a.tion 

The first step in determining whether the debugging 

facility simulates the process system Pis to come to a clear 

definition of simulation. In order to do this, however, we 

must first introduce the notion of a history array. Our 

conception of a history array is a slight modification of the 

history arrays discussed in Van Horn's thesi-s {Van Horn66). 

During the course of the execution of a particular 

computation, information is constantly being written to the 

various objects (variables and data struc'eUrea) inTOlved in 

the application. Imagine an array (see figure 4.1), to be 

called the history array, in which there exists a unique row 

for each object and the 1th eleaient ot each row eontains the 

information writteL by the 1th write to that row's object. 

The oth element of each row is considered to house the initial 

state of the row's object. (For the sake.of ~ons1stency, we 

draw a distinction between the creation of an object and the 

first write to that object. The value assigned to an object 

at its crea!:ion is entered into the eth column of the proper 

row. The value of the next write to that object, if any, is 

entered into the first column of the same row. Certain objects 

may a1ready exist at the commencement of the computation; hence 

they are not created during the computation. An object of this 

class is handled by placing its initial value into the oth 

column of the proper row and the value of the first write, if 

any, to the object into the first col.umn o! the same row.) As 
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execution proceeds the array .enlarges since new va1ues are 

added to the end of each row as new writes occur to that row's 

object during the computation. :Furthermore, at any time the 

array may possess a jagged right eclge (in other words, the 

number of elements in each row is not necessarily the same) 

since the number of writes to each object may be independent of 

the number of writes to any other object. E.ach rowrepr«sents 

the complete history of aJ?, object du.rinc the computation. (A 

row of this array is similar in concept to the gbject history 

of Reed (Reed79).) The array, aa a whole, specifies the 

complete be.bartor of the executed computation. 

Thie definition of a history array differs from that 

proposed by Van Horn in two respects. First, a row exists 

only for each oblect inTolved in the.· computation. In Van 

Horn's scheme, a row exists !or each "cell" in the machine. 

Without going into detail about exactly what a cell is, we 

simply note that cells incl.ude all memory words in the machin@, 

as well as other, more esoteric constructs. We,. however, are 

not interested in the val.ues of all the J14JDOry oells in the 

machine. Many of them will possess histories having no 

importance to the computation in question. u a computation 

progresses, an observer is interested in detArm1ning the··.;va1uee 

of only, say, x items. To us this .imp11ea that there are 

exactly x objects involved in the c~11puiation. Thus, there are 

exactly x rows 1n that computation's history array. 

Second, the oth co1umn of the history array as defined by 

Van Horn is identica1 to 5a, where 5a is the initial state of 
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the run R = (Sa, TR) tJrresponding to the computation that is 

about to commence. In our scheme, it is obvious that the oth 

column may contain va:Lues that arise after the computation has 

started executing, as new objects are created. 

Now we present a definition of simulation. 

Definition: The behavior of a set of processes Pia 
sYIDH,ftef by a set of processes Q just when an execution of 
.m-t poss ble aomputation o'f Q (that ia, an execution of any 
possible run Ro~ the system Q - recall chapter two) produces 
a history array that 18 either 1hntical to or contains the 
history array produced by the execution of some possible 
computation c of P. 

By "con'taina" we mean that the history array produced by R 
possesses all of the rows of ~h• hiato17 ~ produced by 
c (with, of course, the identicd. n'mlber ofelmaenta in each 
row and the .idEtntical val~a for each •l~1"nt) ~ other 
rowa denoting the !wftorin of objects abNDt :tro111 the 
history array produced by c. 

One may speak of the !$RN~i~~ J9:e Qffltatir C by Q 
when the execution of a, p io compu • ·on o Q 
produces a history ai-rau- w~cl; either contains, or is 
identical to, the history·. array. produ.cid by P during the 
computation c. 

One consequence of this defilu.tion of simulation ia that 

the process system Q may be substituted for the process system 

P and this Y1ll be inViaible to an observer who is unaware 

that the substitution has occurred. An observer who is aware 

that a simulation is tak1ng place is interested in, and can 

determine, the histories of the set Z of z Objects involved in 

the simulation. This set possesses a (possibly proper} subset 

X with cardinality x (x <= z) containing a1l objects involved 

in the simulated computation. An observer who believes himself 

to be witnessing the execution of his system, and not a 

simulation thereof, will be interested in, and able to determine, 
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on1y the histories of objects in the set I. To him, the 

histories of the objects in the set Z - X are meaningless 

state values for which he has no use or concern. Furthermore, 

this uninformed observer will be able to construct some 

computation c of P which could have produced the resultiDg 

history array of the objects in set x. Thus, he is made to 

believe that he has, in fact, observed the computation c of 

his system of processes P. 

Notice that this definition ot simulation does not at all 

imply that the probability of Q aimulatinc a particular 

computation c is 1n any way related to the probability of c 

occurring when the system P runs by itsel!. Thus, the unaware 

observer may perceive highly unlikely behavior when a simulation 

is taking place, but he will be unable to state conclusively 

that he is indeed watching a simulation. This is an isaue we 

will discuss at some length in the next section. 

Now it will be proven that a simple condition pJ.aced on 

the set of processes Q is sufficient (although not necessary) 

to guarantee that an execution of any computation of Q will 

yield a simulation ot some computation c of P. Hence, the 

condition implies that Q simulates P. 

Simulation Condition: A process system Q containing q 
processes will always simulate a process system P containing 
p processes if: 

1) q )= p 

2) p processes can be chosen from Q such that each process 
has the same functiopa] ity: as some distinct process in 
P (that is, a one-to-one functionality correspondence 
exists between the processes of F and the p processes 
chosen from Q). Call this set of processes with 
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cardinality p, set A. 

3) the remaiJling q - p processes of Q never write any 
object read or written by the p processes chosen in 
condition two. Call this set_ of prooeas,a with cardinality 
q - p, set B. 

Thus, a U B equa1s the process system Q and An Bis the 
nul1 set. 

The, term "functionality", as used above, requires defini­

tion. The functionality ot a process signifies what that 

process will "do" when presented with a system state, 8, upon 

acquiring the processor. In other words, given a history array 

(representing the history of the computation up to a point), 

the func~ionality of a process determines how that history 

array will be a1tered (enlarged) during the course of the 

execution of that process and how ·tne history array will appear 

upon relinquishment of the processor by that process. 

It is possible to speak of the functionality of a process, 

because processes, consisting of a single sequence of events, 

execute in a deterministic manner. Systems of processes, as 

discussed in chapter two, do not execute deterministically, 

hence it is meaningless to refer to their "functionality". 

-------- ■------------------~----. ..... ..,,'!,--.--....,- ...... ..__.__ •-411----------
Theorem: If a system of processes Q obeys the simulation 
condition towards a system o! processes P, then Q 
simulates P. 

~-------------- ---- ------------------------~-------------
Once the above assertion has been proven, it will be 

shown that the debue;gitlg facility is a system of proc.esses Q 

which obeys the simulation .condition toward• a system o! 
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processes P where Pis the application being debugged. This 

implies that the debugging facility does indeed simu1ate the 

application P. 

Before the proof can be presented, however, we must 

provide three more definitions, two of them notational. 

For convenience, we define the function H(R) to represent 

the history array resulting from the execution of a run R 

defining, some c~tation c. 

We al.so introduce the concept of a prefix run. Given a 

run R = <5:t, TR) where the transition sequence TR contains n 

elements (each element being a set of process names), a prefix 

run of R, ds defined to be any run of the form P = (Sp, Ti' 

where Sp= 5:t and the transition sequence Tp contains m elements 

such that O <= m<= n and these m elements are identical to the 

first m elements of the transition sequence TR. In other words, 

run Pis either identical to run R or is an aborted version 

of run R. 

F:.tnelJy, the notation Rm is defined to be the prefix run 

of run R with transition sequence of length m (0 <= m (= n, n 

being the number of elements 1n the transition sequence of R). 

Now for the proof, which proceeds by induction on the 

transition sequence of the run of an arbitrary computation of 

Q. 
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--------~-- -·-------~---------------------- ----- . 
Proof: Let V be the run of !al possible computation of Q 

such that V = (5v, Ty). Ty, of course, consists of the 

(possibl.y empty) sequence T0 , T1 , ••• , Tn where each T1 

( 0 <= 1 <= n) is the set ot all. processes in acquisition of 

the processors during the time interval. [i, 1 + 1) (recal1 

chapter two). 

The induction 1s performed over 1. In otur words, it 

proceeds over the aucceaaive1y longer pretu runs of run V 

of the arbitrary cODlpUtation. 

Initially: i = 0 

H(V0 ) represents the state ot a1l objects (in z, not 1n 

X - the sets Zand I have been previously det1ned) already in 

existence at the time of commencement of the.computation with 

run v0 • No row 1n the array possesses more t~ one element. 

It is easy to aee that the computation with run v0 

simulates a computation of P with run w• • <-5w,, Tw) auch 

that 5w, • 5v and Ty, is an empty transition sequence. This 

is because H(V0 ) is either ident1ca1 to or contains H(W'). 

Thus, the simulated computation c of Pis that computation 

with run W'. The computation of Q with run v0 simulatu c. 

· (In fact, the computation of Q with run v0 may simulate other 

possible computations of P, those where S,., ~ 8v but the 

objects 1n X possess the same values in 5w, as they do 1n 5v. 
However, we are concerned with the existence of only one 

computation c and do not worry about these others.) 
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Inductive Hypothesis: 1 = m, 0 <= m < n 

Assume the computation of Q with run Vm simulates some 

computation c of P with run vi''. That is, H(Vm) either 

contains or is identical to H(V''). 

Given this, it must now be shown that the computation of 

Q with run vm+1 simuJ.ates some computation c of P with run 

w'' ' ' • That is, H(V m+1 ) must be proven to contain or be 

identical to H('W'''). Thus: 

Prove for i = m + 1, O < m + 1 (= n 

Tm+1 (the last element in the 'iransition sequence of the 

run vm+1 and the only e-lement of that transition sequence not 

to appear in the transition sequence of Vm) 1s a aet containing 

j processes (0 <• j <= the number of proceae&rs involved 1n 

the execution of the system Q). Of these, k be1ong to set A 

(defined in part two of the simulation condition) and j - k 

belong to set B (defined in part three of the simulation 

condition). Since A and Bare disjoint, these two groups are 

also disjoint. 

Accordingly, the next section of the proof is divided into 

two parts: 

a) Consideration of the effects on H(V) by the execution of 
m . -

the j - k processes in Tm+1 belonging to the set B of the 

simulation condition. 

b) Consideration of the effects on H(V) by the execution of 
m -

the k processes in Tm+1 belonging to the set A of the simulation 

condition. 

---- --------------------------
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a) The j - k processes de not write any of the objects read 

or written by the processes in set A. Furthermore, the 

processes of set A possess a one-to-on, functional.ity 

correspondence with the p prooesaes of the system .P. Thus, it 

is clear that the j - k processes do not write any of the 

objects read or written by the processes of P. There.fore, 

only objects which are never reaa or written by the processes 

of Pare written by the j - k proceeees. -Objects which are 

never read or written by any process in Pare, it stands to 

reason, absent from H(W 11 ). Thus, the only effect these j - k 

processes can possibly have on H(Vm) ia to add values to those 

rows which are abaent from H(W,' ' ) • Th\MI~ tb4 history array 

resultina aubaeqwmt to the executionot tbe•• j - k proceaeee 

wil1 contain, or be identical. to ... H(W' '') where :W''' • W' '. 

Therefore, the aj11D1Jated computation o of Pis tbat computation 

with run W' ' ' = W' • • 

b) The processes of set A poasesa a one-to-one functionality 

correspond·ence with the p processes of the system P. Therefore, 

the k processes possess a one-to-one functionaJ.ity correspon­

dence with a subset G of the processes of P, having cardinality 

k. Then the execution of the k processes has an effect on 

H(Vm) which is identical to the effect on H(W'') produced by 

the execution of the subset G. Thus, the history array 

resulting sugsequent to the execution of these k processes will. 

contain, or be identical to, H(W'' ') where W''' is a run such 

that W' ' is the greatest prefix run of W '.' ' not equal to vi' ' ' , 
itself, and the last element of ~vi'', contains the subset G 
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just delineated. Therefore, the simulated computation c of P 

is that computation with run W''' as specified. 

At first glance it would appear that we are implying that 

the f'unctional.ity of both systems of k processes are identical. 

This, of course, contradicts what was stated earlier, name.ly 

that it is meaningless to talk about tbe f'unctioDSJ.ity of a 

system of processes because of stochastic ef1'ects that cause 

nondeterminacy. However, we get around this by considering any 

T1 to represent the set of processes in execution during an 

interval Ci, i + 1 ) which ie auft-iciently fllQBJ 1 · so that sto­

chastic variables, such as prooeeaor speed, do not have a 

chance to affect the computat.ion. 

Alternatively, we can say that the simulated computation 

c of P 1s that which arises when the stochastle processes 

during the interval represented by the last element of Tw,,,, 

and the stochastic processes during the interval represented 

by Tm+1, affect the causality relationships between events 

in the k executing processes (in either P or Q) in identical 

ways. 

We have shown thus tar that some possible computation c 

of Pis simulated when Tm+1 consists of either the j - k 

processes of part a) !?!: the k processes of part b). It needs 

merely to be shown that Tm+1 may consist ot both sets of 

processes simu1taneous1y, sinoe that is what we 

hypothesized Tm+1 to be. This is easy to show. But one 

further coruscation and we are home. 

The requirement that the j - k processes of Q never write 
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any object read or written by the k processes of Q implies 

that the existence of the j - k processes ie invisible to the 

k processes. Thus, the functionality of the k processe~ is 

not affected by the j - k processes. This, in turn, implies 

that the j - k proceaeea may coexist in execution time with 

the k processes without affecting the-alteration ot H(Vm) by 

any ot the latter. '?he resulting R(Vm+1) v11l then stUl be 

identica1 to, or contain, H(W'''). Thus, Tm+1 may consist ot 

the sum of both the eet of k procesaee and the set of j - k 

procesaea. The •i1111Jai;ed computation c of Pis that computa­

tion with run W' •' ae defined in part b), above. The 

computation of Q with run vm+1 simulates c. 

We have shown that any prefix run of V will simulate some 

computation c of P. Since V was a run of· an arbitrary 

computation, we have that any computation of Q simulates some 

computation of P. Thus, Q simulates P. 

QED 

---------------,--■ - ----■ ------. ·--------------------·------------

Moreover, given a particular computation of Q, with run V, 

it is not difficult to determine what computation c of P has 

been simulated. I! the 1th element in the traaeition seq\lence 

of V contains d processes from the se-t A, then the simulated 

computation c poaseaaes a run R s (5tt, !R) where 5R = Sy, and 

the 1th element 1n the transition eequence of R consists of 

the d procesees of P having the one-to-one fu.{ictionality 

correspondence with those processes. We point out that it is 
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possible that this computation with run V may also simulate 

some other computation of P. However, this is not assured, 

and is immaterial since we only wish to know that one such 

computation c exists. 

Now it is quite easy to show that the implementation of 

the debugging facility obeys the simulation condition with 

regard to the application being debugged. In other words, 

the debugging facility is comparable to the system of processes 

Q, while the application being debugged is comparable to the 

system of processes P. This 1s most easily shown by examining, 

in turn, the three parts of the simuJ.ation condition: 

1) The implementation of the debugging facUity consists 
of processes at the cent~al site and processes at each 
debugger .nub along with the. proce~scta of the ._application 
being debugged. Thua, q ·)• p ( in :tact; q ) p) • 

2) The processes of the application are not modified in 
any way by the presence of the central,.ijite ,µid debugger 
nub processes. That is, the e"9'etits d:et1ning·'each application 
process and ihe order in which these eve~ts occur are not 
altered. It is obvioua, then, that th~se processes possess 
a one-to-one functionality ;-ela,.tio~~p_with theUlselves, 
hence they form the set A, as·atip,Uated'. 1n the a1mUlat1on 
condition. 

3) It is the job of the centr$.l site and debugger nub 
processes to maintain their invisibility towards the 
application processes. It 1s obvi,q~s. ~o~ the implemen­
tation description in chapter three, that they do not write 
any objects read or written by tlle,lat~~r.group. In fact, 
when they (the nub processes, auyway) ~lmquish a processor, 
they attempt to restore th~ exact machu).e state they 
observed upon acquiring that p~eor. !hue, these 
processes form the set B, as stipulated in the simulation 
condition. 

1), 2) and 3) taken together imply what we have set out 

to prove. Thus, we state that the debugging facility simulates 

the application to be debugged. 
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4.3 Probable Simulation 

As stated earlier, the knowledge that the debugging 

facility simulates an application is not enough to feel assured 

of its usefulness as a tool in deb~ that application. 

This is because it is possible for the debugging facility to 

repeatedly simulate computations that would almost certa~y 

never occur in real use of the application. The determination 

that lurking bugs are absent from certain improbable computa­

tions alone would not be sufficient to assure qorrectness of 

a p2ractical application. 

In chapter two, we considered the execution order of a set 

of processes at an unsupended node in the face of the suspen­

sion of another node where colDlllUnication streams .were open 

between the nodes. We stated tbat du.rill& a normal execution 

(that is, without nod• swspension) the execution sequence at 

the unsuspended node vas I Q I Q • • • With node auapenaion, 

the execution sequence waa along the line• of I I I ••• 

I Q I I I • • . I Q I I I • . • 

In the Alto/Me• environment, one major design goal is 

that all processes of the same priority have an equal oppor­

tunity to acquire the proceasor.· n.us, in this environment, 

we would cJ.assify the computation correapondin6 to the first 

execution sequence IQ IQ ••• as a probable computatig,;. 
one which we would not be particul.arly surprised to observe. 

Moreover, since the second sequence I I I ••• would appear 

to go against the grain of this design goal, we classify the 

corresponding computation as an improbable computation. 
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We must point out that this discussion can only be 

appreciated on an intuitive basis. We cannot draw a clear 

distinction between probable and improbable computations. 

There is no definite demarcation between the two. We can, 

however, establish a correlation, of a sort, between improbable 

computations and the notion of e,:stem failure. 
As Lamport hae pointed out, "· •• the entire concept of 

failure 1a onJ.y meaningful in the context of physical time. 

Without physical time, there is ao way to distinguish a failed 

process from one which is just pausing between events." 

(Lamport78} We may consider such a "pauail)g between events• 

to take place when a process relin~uiahea the processor to 

allow the execution of other processes at that node. In 

general., improbable computation.a (at least in this system, and 

probably in many others) are marked b7 the unwrually swift 

"pause between events" of some processes and the unuaually 

lengthy "pause between events" of others •. ·.. '?his leads to a 

higher than normal failure perception rate by the former set 

of processes far two reasons. Fi.rat, the interval between 

packet arrivals from the "long pan.a." processes 1s greatly 

increased, proportionately inc:reaatng the chances that a "short 

pause" process will miatakenl.y perceive a failure when there 

ia none. Second, the "short pauee" prooeaaes execute many 

times for each sil'lgle execution o~ a "long pause" process. If 

the "short pause" processes base their failure perceptions not 

simply on elapsed time, but on the nwaber of times a particular 

variable is checked for a certain oondition (this, in turn, is 
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actua1ly based on elapsed physical time - so it does not 

contradict Lamport's assertion that failure is based solely on 

physical time), then it is likely that the number of checks 

will be exceeded before the "long pauae" process can make the 

condition true. Again, failure peroeption is likely to occur. 

To be more concrete, oonaider-agaiJl the example of chapter 

two. We said that .process Q had a co•un.ieation stream open 

with a process on another node. Prooeaa I, on the aame node 

aa process Q, vaa to make sure that tbie atream funciioned 

correctly and was to close the connection U it ptreeiyed a 
fa1.1ure. If the proceaa with which Q vu co.DVereiq wae of the 

"long pause" type, it caused an ia»J!Qbablt computation, with 

execution order I.:I I • • • I Q I I I • • • , to ooour at Qt a 

node. I made )z checks ot a monitor varia'ble, ud, finding 

no effect on thia variable by Q, closed the coQaeetion. The 

causal chain of ev8llta vaa thus: use of the deb~ facility 

caus:ing a "l.ong pause" proceae to-~iee cauaing an impro'babl.e 

computation to occur at Q's node cauj.,ng l to make )fl che:cks on 

some data before Q could affect that-d.&ta cauaing I to perceive 

failure causing the premat,ure closing O'f the stream. 

In sh.orl, to repeat what~ ~1d in chapter two, failures 

occur because the •real time expeeta'ii'O-l18" of prooeaaes are 

not met during an iaprobable comput-.t-i-on. We state, without 

proof, that the more improbable the COIIP~ta~ion, the more likely 

the chance of a perception o:f failure. 

It should be pointed out that the occurrence of failures. 

depends on the semantics of the application in question. In 
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our discussion of lurking bugs, in chapter two, we asked 

whether the computation with prcceae exeeutien order 

ABB CAB BC ••• was correct? We now know that, in the 

absence of bugs, it is meaningless to talk about a computation's 

correctness. il1 posaible computation.a are "correct". We 

can only talk about a co~putaticn'a probability {or improba­

bility) of occurrence or whether it will produce a failure; 

the latter ia determined by seman.tica. · For· example, the 

programmer may decide that two consecutive executions of B 

ought to be considered a failure a.ad wirte code to print out 

an erro~ m••aa«e when thia occurs, ·or write code to abo:irt. the 

computation, or write code conta1ntng certain teats to malt• 

sure that B will not read the ..... Ya.l.ue tv&oe. ilternatiTely, 

he may decide that the results of the execution are not made 

incorrect b7 two conNcutive executione of B. It aJ.l depends 

on how the programmer attachea:mean:111g to his application. 

Finally, we state that there are varying degrees of 

failure aeverit7. The premature c1oa1Dg of a cOJlll11Dication 

stream.is usually, but not alwa,s, a severe failure. Some 

other failure caused action-. not be<aa.aevere (as, tor 

example, printing out a message as opposed to aborting a 

computation, as discussed above). miua. the set of improbable 

computations may be conaidered to houae a ·· subset of computa­

tions, termed undesirable•computationa - those that lead to 

severe failures due to the improbability of their corresponding 

runs. 

In this work, it is the task of the d•bugging facility to 



150 

produce a simulation of a probable computation to act as the 

foundation upon which debugging is performed. The user may 

then alter the comnnmication streaais aa he is inclined, to 

produce other computations of VU71Ag degrees of probability 

1n order to detect l.urking buga. Th.18 would seem to be the 

most reasonable approach in de$1gn1ng a debuggi.ng tool for 

distributed environments. 

The notion of a probabl.e computation 1-a, again, somewhat 

intuitive. It ia a computation ene vould not be surprised to 

observe in a particul.ar sya'iea. Ita ton depends on many 

parameters - hardware charac'ieriatiea. tranaiud.011 mediua, 

dia'iance between nod.ea, the partioulu-.· di.apascur, algorithm 1n 

use, to-name a fe,r. Jor-•xe•pi~, a dispatcher that favored 

certain processes OTer others woul.d-pnenteccom.putat1ona with 

certain characteristics. !he set of prooaole·computationa 

for this s:,stea would re.fl.act thia. Koreanr, the substitution 

of a new dispatcur 1n the same ayetem wou.J.d yield. a different 

set of probable computations. qain, the distance between 

nodes has an effect on the delay time bet•een .. packet transmission 

and reception which, in turn, Q1&7-create coaputationa with 

particul.ar charac'ieriatics. These are reneoted 1n that system's 

set of probable computations. 

We speak of a set of probable computations. For complex 

systems with many in.dependent proce1:1aea, the number of probable 

computations may be quite large. Thus, the question arise~, 

"Which probable computation (of this set) is the debugging 

facility attempting to simulate?" 
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The goal of the debugging facility, when a debugging 

session 1s started up at time t with machine state S, 1s to 

attempt to simulate the computation c that would have arisen 

beginning at time t with machine state S, if the application 

had been executing without the debugging facility. 

We must stress the intuitivemeaa (again) of the notion of 

a computation which "would have arisen". Given an initial 

machine state it ia, of course, impossible to determine what 

computation will arise due to the inherent nond,eterminacy of 

parallel procesa&tng. Moreover, it the application commences 

execution at time t under contro1 of tm·debuging facility, 

then one cannot tell which computation wolll.4 have arisen had 

execution commenced at time t without the debugging facility. 

Thu.a, the computation c, above, 18 only a hypothetical, but· 

useful, idea. In short, it is possible to attempt to simulate 

a computation without actna]l7 knowing what that computation is. 

This particular computation, o, haa been cb.oaen to be 

simulated for two reasons. First, the computation c is one 

which it is: possible for the debugging facility to simulate. 

In the previous section, we proved that the facility will 

simulate. at least those compu-tationa with~. possessing initial 

states identical to the initial state at Which simulation 

commences. Since both the simulation computation and the 

hypothetical computation c begin at time t, it is obVious that 

the facility is capabl.e of simulating c. 

Second, we postulate that the probability ot this 

computation, c, being a probabJ..e computation is high. Thus,it 
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is reasonable to expect that the facility is simul.ating a 

probable computation. This may not always be true (for 

exampl.e, during and after time t the communications medium 

may be experiencing unusually heavy traffic leading to 

unusually leD,£thy' transmission delays) and may conceivably 

lead to problems. However, we feel that it is too much to 

ask ot the deb~ facility to create probable computations 

under improba'bl.e conditions. The development of a tool to 

handle this ought to provide an intriguing area for future 

research. 

We have stated tbat the goal. of the debugging facility is 

to att9mpt to simulate c. Is it acffiJIIJJy abl.e to do this~ 

'O'nfortunatel.3, the answer ia no. !he mere existence of the 

debugging facility will have an effect on the system causing 

a different computa:tion, tt' , to be simul.ated rather than c. 

The facility affects the appllcati.on both epatia1ly and 

temporally. It has a apa.tial ef:teot by al.taring the layout ot 

the application code in memory, perhaps ~cin« some code to 

disk that would have remai.Ded in main memory. Hence, a 

resulting fetch to disk may occur that woul.d not have occurred 

had the debugg1 ng faclli. ty not been~ -present. This oan alter 

the computation that is performed •. Also, the debugging 

facility code requires a finite amount of time to execute. 

Hence there is a temporal effect in that any portion of the 

application code will execute at time t + x rather than at 

time t + y with x > y. Furthermore, as execution continues, 

application code will be executing later and later than it 
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woul.d have had the debugging facility not been present. The 

consequence of this is that stochastic processes (of the kind 

mentioned in chapter two) will be in different states at time 

t + x than they woul.d have been at time t + y, having different 

effects than they would have and possible oau.aing a different 

computation to be performed. 

Let us be more concrete about this by again examining 

the disk. One stochastic processinvolved in the diek operation 

is how long it will take (seek time) to access a particular 

disk location. Suppose process A requeated a disk fetch of 

that location, waiting to be not~ied by the high priority 

disk controlling process, D. Then process B .began to execute, 

during the course of which process C was notified (placed on 

the ready list). Now, without the debugging facility, the 

request by A would have occurred at time t + a, and the disk 

head would have been very near the l.ocation to be accessed. 

Thu.a, D woul.d have retrieved the contents.of the requested 

location and notified A, taking the processor away from B 

before B could notify C. Then A would be placed on.the ready 

list before c. On the oth•r hand, when the debugging facility 

is present, the request by A occurred at time t + b (b) a). 

At this time, the disk head was very far from the location to 

be accessed. Thu.a, when B began executing it was able to 

notify C before being preempted by D. Thua C was placed on 

the ready list before A. A new set of causal relationships 

ensued, hence a different computation, c', was performed 

instead of the original computation c. 
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In light of al.l this, we aan say that the facility 

simulates the computation c that woul.d have arisen at time t 

up through the point of execution where its first spatial. or 

temporal effect is made known to the application. If all 

stochastic processes coul.d be controlled throughout the entire 

execution, then c could be simulated completel.y. Van Horn 

(Van Horn66) discusses this possibility at some length. When 

stochastic processes are not controlled completely, the user 

loses precise control (as discussed in chapter two) over the 

events that occur during the debugging aeeai.on. Interprocess 

communications are then governed not·on.).y b7expl:Lcit user 

commends, but al.so b7 implicit side effects caused by such 

stochastic proceaaea. In our.esmaple. the uaer is able to 

control precisely only the events of the computation c', 

which are the events of the original. computation c as they 

have been altered by stochastic proceaaes. 

Having shown that c' is simulated rather than c, we ask 

whether c' is a probable computation? If so, then the third 

question posed at the beginning of this chapter.is answered 

in the af~irmative, and we have pronn all that we set out 

to prove. 

Remember that we have defined the probability of a 

computation in terms of failure, or the lack thereof. ~h:Ls, 

in turn, was ehown to be related to the disparity between 

"pause intervals between events" among the different processes 

in the computation. But a process can only be made aware of 

the pause interval of another process by the time it takes to 
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receive successive communications from that process. The 

timestamp·mechanism assures that this interval is (for the 

system in question) a reasonable one in logical time for 

communications that proceed by message passing (we obtain 

"reasonable" intervals between successive communications by 

ensuring that, if an average transmission delay time between 

two nodes is x seconds, then the timestamp of a packet sent 

from one of these nodes to the other will. equal the logical 

time of the sending node when the packet is actually sent 

plus x seconds plus or minus E, where the value of E 

depends on stochastic processes within the communications 

hardware - see the timestamping mechanism described in 

chapter three - and is usually much less than x). We note 

that these stochastically dependent timestamps represent 

those that would have been assigned in the computation c', 

not in the computation c. For communications that proceed by 

monitor interactions, reasonable intervals are maintained by 

ass a single logical clock to all processes that can 

access the same monitor. 

Thus, each process has its "real time expectations" 

reasonably well fulfilled by every other process. All 

communications are seen to proceed reasonably in time. 

Therefore, c' is a probable computation (we state again, though, 

the.t c' is probable to the extent that all stochastic processes 

within the system possess probable values during the course 

of the debugging session). Without the timestamping 

mechanism, the computation that would be simulated,with 
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messages experier.cing transmission delays of minutes or 

hours, is of an extremely low probability. 
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4.4 Probable Simulation vs. Transparency 

In the previous section, we introduced two computations, 

c and c', to make clear the difference between probable 

simulation and transparency. If the debugging facility were 

able to simulate the computation c, then the goal of complete 

transparency would be achieved. To answer the question posed 

at the very end of chapter two, then, this computation, c, is 

that entity towards WAich we have attempted to maintain 

transparency. 

We have shown, however, that spatial and temporal effects, 

as well as stochastic processes, prevent the realization of 

complete transparency. We are able only to simulate c', a 

probable computation. Probable simulation is, as stated, 

weaker than transparency because c' is not the computation 

that would have arisen at time t, c is. Thus, the debugging 

facility is simulating the "wrong" probable cocputation. We 

feel, however, that the computation c' is sufficiently 

"similar" to the computation c (we state this without proof 

and ask the reader to accept the notion of "similarity" on an 

intuitive basis) so that the facility is still quite worth­

while despite this shortcoming. 
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Chapter Five 

Related Ideas and Suggestions for Further Research 

In this fina1 chapter we discuss some of the short­

comings, problems and generally interesting aspects of the 

implementation presented in chapter three. We also discuss 

some of the possible ways in which the research reported here 

can be extended. We touch on certain features that we did 

not have time to implement, refused to implement because of 

a firm belief that they were incorrect, or a!lmply could not 

figure out how to implement. Issues 1n all three areas are, 

of course, open to the reade~ for examination. We hope that 

this chapter vil.l stimulate interest in further research in 

debugging techni~ues for distributed systems. The field, as 

we shall see, is by no means exhausted. 
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5.1 Fragmentation 

The Internet Protocol definition provides for the passage 

of large datagrams through networks that are not equipped to 

handl.e such sizes by the method of fragmentation. Fragmenta­

tion consists of the splitting up of a large packet into 

several. smaller packets at the gateway entering the network, 

and the reconstruction of the originaJ. datagram from these 

packets at the gateway exiting the network. 

Our debugging facility currently operates at the datagram 

rather than the fragment level. That is, the uaer is not made 

aware, and has no control. over, the flow of fragments during 

interprocess communications. We have considered fragments to 

be below the level at which the ueer ought to be concerned. 

However, it is conceded that the ability to debug at the 
I 

fragment l.evel may at times prove useful and a debugging 

facil.ity with this extended power might make a reasonable 

research pr~ject. 

The reason for the datagram rather than f:ragment orienta­

tion lies in the concept behind the timestam.ping :mechanism. 

We assign a timestamp only when the entire packet has arrived 

and the appl.ication process is about to be so notified by lower 

level internet processes. The asaigmnent of a timestamp to 

each fragment would necessitate moving "deeper" into the code. 

A fragment timestamp would represent the time at which some 

internet process was first notified by yet a lower level 

mechanism that a fragment had arrived. This is, of course, 
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possible to implement, but it was deemed advisable to m£:...i..ntain 

the hook into the debugging facility at as high a level as 

possible, rather than deep inside the internet implementation. 
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5.2 Bottlenecking 

It would seem rea.aonab1e that a debU&ii,ng ~acility which 

aJ.lows the user to simulate all kinds of error conditions such 

as losing packets, causing packets to arrive out of order, etc, 

would also provide a way to simulate bottlenecking. Bottle­

necking occurs when aome portion of the tranemiasion medium 

experiences more traffic than it can handle. Since bottle­

necking is often a real danger, especially in complicated 

systems with many concurrently executirJ& applications, a-user 

would probably be interested in detenn1n1ng the reaction of 

his application to such artific1slly induced conditions. 

It ia interesting to point out that our debuggi.%1& facility 

does not allow bottlenecking to be simulated. This ia because 

a user ia permitted only to determine what packet is to be 

received by a particular request for packet from some process. 

He is not allowed to send packet• indiacr1■1na,ely when such 

requests do not exist. In particular, he baa no means at his 

disposal to fiood the network in order to create bottlenecks. 

We do not consider this to be a shortcoming of our system. 

The realm of the debugging facility extends over the function­

ality of an application, not of the communications hardware. 

Insofar as the functionality, or lack thereof, of the hardware 

affects the application itself, then bottlenecking ought to be 

an issue for us. That is as far as we go. To be more concrete, 

bottlenecking, while conceivably affecting the communications 

hardware in a number of adverse ways, has the same net effect 
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on the app1ication as losing a group of packets (either through 

physical loss by the hardware or by packet bui'fer overflow at 

some node). Losing packets is something the user can indeed 

simulate via the debuggil:lg facility. Hence, the need to 

create bott1enecks is obviated. However, the design of some 

kind of too1 to debug hardware, working in tandem with our 

debugging facility, might prove useful in certain cases. 
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5.3 Order of Event Reporting 

To enable monitoring of the program being debugged, 

conventiona1 debU&«ing tools report various events to the user. 

These debuggers report items such ae instruction traces or 

state transitions of user specified program objects, among, 

perhaps, others. Our facility reports events related to inter­

process communications. Specifically, it informs the user of 

each request for a packet by any application process in the 

system and discloses the result of that request. That is, it 

tells whether the request is satisfiable and, 11' so, which 

application packet is to be sent in response. 

It is implicitly understood in most oases that when 

conventional debuggers report events to users in a particular 

sequence, that sequence represents the order of occurrence of 

those events in real time. For example, an instruction trace 

represents the order of execution, 1n real time, of a set of 

instructions by the processor. 

It ought to be clear, however, that our facility, being 

divorced from rea1 time, has some di1'f1cul.ty 1n complying with 

this implicit assumption. In particular, the interface 

reports an occurrence of a request for packet (an "event" 1n 

our system) as soon as the correct response to that request 

is determined. This is in no way related to the real time 

order in which such requests are rendered. In fact, it is 

a1so in no way related to the system logical time order in 

which such requests are rendered. (By system logical time, we 
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are referring to Lamport's function C, a global function over 

all logical clocks in the system such that C(b) = Ci(b) if b 

is an event in process 1 which ~eads logical clock c1.) 

One improvement that couJ.d be added to the user interface, 

then, is to cause events to be reported to the user chronologi­

cally with respect to this function.C •. The centra1 site 

could delay reporting a request UQtil all logical cl.ocks have 

exceeded that request's times-tamp. Then the user is sure that 

he is made aware of events in the order 1n which they occur in 

1og1c11 t1me. 

One interesting consequence of this is that 1! event a is 

reported to the user before event b (imply~ C(a) < C(b)), it 

. is not necessarily true that event a is.capable of causally 

affecting event b (a/.) b). In other words, a and b may still 

be concurrent • .A.s Lamport has correctly pointed out, the 

converse of the clock condition is not ~ecessaril.y true. 

That is: 

Clock Condition Converse: For any events a, b: 
if C(a) < C(b) then a-) b 

does not necessarily hold. 

A debugging tool which couJ.d make causa1 relationships 

clear to the user would involve complicated mechanisms well 

beyond the scope of this research. It is debatable whether 

the information gained would be worth the time spent 1n 

constructing such a too1. This might make an interesting area 

for future research. 
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5.4 The Multi-Application Problem 

Lauer and Needham (Lauer78) discuss two distinct approaches 

in the design and imp.lementation of operating systems. These 

tw~ approaches have been termed mes,w::9riented and proeedure­

oriented. Any operating system can be placed into either 

category based on how it Tievs the concepts of process and 

synchroni~.a.tion. fhese alternate views greatly affect the way 

1n which the notion of an application is regartted in that system. 

"Process" and. "application• are terms which we ban uaecl 

extensively thus far. 

Procedure-oriented systems are marked by the sharing of 

data between processes, which is controlled by isynchronization 

mechanisms such aa monitors. In these syrttems, processes change 

contexts for data access through procedure invocations, "• • • 
. , 

which can take a process very rap1d1y frail one context to 

another ••• A process typical.ly has onl.y one goal or task, 

but it wanders all over the system (by means of cal11ng procedures 

to enter different contexts) in order to get that thing done. 

As a result, the system resources tend to be encoded 1n common 

or global data structures and the applications are associated 

with processes whose needs are encoded in calls to system.­

provided procedures which access this data." (Lauer78) 

Message-oriented systems are characterized by, of course, 

message passing for interprocess communication. In these systems, 

processes are resource guardians. "Each process tends to opera~e 

in a relatively static context. Virtua1 memories or address 

spaces are usually placed 1n one-to-one correspondence with 
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processes. Processes rarely cross protection boundaries 

(except to briefly enter the executive or kernel), and they 

rarely share data in memory. As a result, processes tend to 

be associated with system resources, and the needs of applica­

tions which the system exists to serve are encoded into data 
I 

to be passed around in messages." (Lauer78) 

What is important here is the relationship between 

processes and applica~iona in the two systems. In procedure­

oriented systems, this relationship is tight in that a process, 

or group of cooperating processes, can be clearly seen as 

representing a particular application. In message-oriented 

systems, however, processes are bound to resources, not 

applications. Thus, a single process may concurrently service 

the needs of many distinct applications. We show why this 

leads to difficulties for our debugging facility. 

It ought to be clear that distributed systems are, of 

necessity closer to message-oriented than procedure-oriented 

environments. This is because it is, in general, impossible 

(except for processes having the good fortune to reside at the 

same node) for processes to communicate through shared data. 

The system on which our debugging facility is implemented is 

message-oriented. It contains processes designated ae listeners. 

These listeners are, as mentioned above, the processes which 

control resources. They are constantly sensing the network 

for resource requests from any application and then servicing 

those requests (or, at least, handing them down to internal. 

processes for servicing). An example of a listener is the 

process existing at a file server which handles requests for 
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internode file transfers. 

Program writers consider these listeners to be a given 

part of the system (almost like the hardware) and write their 

code to correctly interface with them. Since they are assumed 

to function correctly, the user is not at al1 concerned with 

debugging them. It would be nice if the user could simply 

install the application (which interacts with some listener) 

on some set of nodes and begin debugging right away. Unfortu­

nately, he cannot do this. This is because any process 

involved in the application (including the listener) must be 

au.spendable by the debugging facility. If the listener is 

suspended (made to run slower) then the performance of all 

other applications in the system interacting with it will be 

degraded significantly, usually intolerably. The net effect is 

that all users monitoring their private applications and 

unaware that some user is currently debugging his own applica­

tion will notice inexplicable delays due to the a1owdown of 

the listener. This is a consequence of the fact that 

processes, in a message-oriented facility, may simultaneously 

"belong to" (interact with) more than one application. Thus, 

we refer to this as the multi-application problem. 

CU1Tently, of course, the user is forced to bring up his 

own private copy of the listener on some private node. This 

is not always possible, as the user may not possess access to 

the listener code, may not understand the code even if he does, 

and (for example, in the case of the file server) may not be 

able to duplicate necessary conditions on his private node for 
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the correct execution of the listener process. This is a 

tremendous .liability which, because our implementation is so 

heavi1y dependent on the notion of node suspension, we have 

not been ab.le to solve. A facility which all.owe the user to 

simply uplug in" his application and start debugging right 
' 

away would make an extremely worthwhile project for future 

research. 
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5.5 Controlling Monitor Entries 

Our debugging facility all.owe the user to create many 

different compu.tationa of hia ap.Pl,ication i.J,. order to test each 

of these tor 1urking bugs. Howe~r, 'the set of SUQh computations 

is only a proper a\lbaet of the aet o1 ,all. pe>ea~bJ.e computations 

of the app1ication. Thus, there are sets of causa1 re1ation­

ships that it is beyond the power of the user to test. 

In particu1ar, the user is not given the ability to 

specify or a1ter the order in which processes enter monitor 

modu1ea. Thia entry order ia decided within the system itael.!, 

partia11y by the dispatcher, partially by process priorities, 

partial.l.y by the algorithm. 1n use to determine the nert process 

to acquire a monitor lock, partially by stocbaatic processes 

which affect interprocess timjng relationships, and, perhaps, 

partia1ly by yet other indirect causes. The user is able to 

infiuence the order of monitor entries on1y indirectiy by 

~luencing the order in which the procesaes in question receive 

packets prior to acquiring the monitor lock. That is, it two 

processes both receive a packet and then attempt to enter the 

same monitor, the user can affect the entry order by delaying 

the packet to one of the processes. However, this "feature" 

is merely a side effect that cannot be counted on. Nor is the 

scenario which gives rise to it guaranteed, or even like1y, to 

occur. 

Yet we have seen the dua1ity between the two communications 

methods - message passing and monitor interactions - and it 
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may seem somewhat artilicial to limit the user's ability to 

alter the former but not the latter. We regard monitor entry 

as being akin to packet reception. Both consist of the 

acquisition of an ability by a proc.ess to observe a data state 

created and left by another process.• Likewise, exiting a , 
I 

mom.tor and packet transmission are dual concepts since both 

consist of re11nquisb1ng a data state constructed by a process 

for the pm:tpoae of making it ava 1e to another process for 

e%am:1nat1on. In fact, there appeare to be no semantic 

difference between the two types o~ cOlllllUnication. The o.nJ.y 

difference we note ia 1n the method - any process at a node 

may exam1 nii:, the state of a newly rel.inquiahed mom. tor while it 

is usually the case in message paeaing that communication 

channels exist only between specified pairs of processes. Of 

course, this difference is easily e1iminated through the use 

of a "mailbox",where a process send.a a packet to a particular 

node's mailbox (some previously determined memory area) which 

can be picked up by any process at that node vjll1ng to accept 

it. Mailboxes and monitor modules appear to be identical cone 

cepts. 

(Incidentally, Lauer and Beedham (Lauer78) attempt to 

make a case for the duality of operating systems based on these 

two types of communication mecbaniema. They draw paralle1s 

between various constructs in the two l!tystems. Much to our 

chagrin, however, they do not draw·parallels between monitor 

entries and exits and packet -i'9oeptions and transmissions. All 

we can say is that, for our pimpoaes, the comparisons we have 
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drawn are much more useful than those presented in that paper. ) 

It is probably not too difficult to 1mp1ement a mechanism 

that would ha1t a process whenever it tried to enter a monitor 

(similar to hal.ting a process when it attempted to receive a 

packet) and reporting this attempt to the user. Probably, 

aince user processes may enter both uaer implemented and syatem 

monitor modules, entry in.to the latter would not be reported by 

the facility as it would require the user to have ertenaive 

knowledge of the underl.ying system. Such information would be 

(to use a term coined by Model) •below the grain" of the 

environment under inveatigation. In this way, the wser could 

control the sequence of~ interproceaa 00111Punications (he ia 

given the ability to alter~ of the wavy arrows in Lamport's 

diagram, figure 2.1). Re could create any poasibJ.e set of 

causal relationships, hence simulate any poaeible computation 

of his app1ication. The design and implementation of a tool to 

acoompl.ieh this probably represents a wortmrhile·area for 

future investigation. 

But how such a tool might be implemented is not so clear. 

It would imply the ability to au.spend a single process (delay 

it from enter1ng a monitor) while al.lw1Dg other processes at 

the same node to continue executing. This would appear to 

render invalid the use of a single logical clock for all 

processes at the node. Each process would need to have its 

own private 1ogical clock since the suapenaion of one process 

wou1d be independent of the suspension of any other at that 

node. Then an algorithm 211m1Jar to that used for packet 
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reception might be employed for monitor entry, namely: 

1. recording the logical time at which the process desires 
to enter the monitor by reading its logical clock. 

2. determining whether all other process clocks at that 
node have gone beyond this 1ogical t.ime. 

3. it not, suspending the process ·until such "t;ime as this 
becomes true • · : 

4. if so, determining whether the monitor is currently 
locked by some other pr,opeaa (e •. g. the parallel to 
determ1n1ng whether there is a packet ready to be 
received.) 

5. 1! the monitor is not currently loqlted, reporting this 
entry attempt to the user and waiting for his reply. 

6. whatever the state of the lock at this time, the process 
attempts to acquire it w:hil41 ita 1Q81cal clock tick.a 
{akin to a receive cal.l with disablia ti.Jlleout). 

It must be pointed out, however, that our use of logical 

clocks was solel.y for the purpose of mainta1n1ng transparency 

towards the application. We wanted to simulate a probable 

computation as a basis upon which debugging could be performed. 

In the case discussed here, logical clocks would be used for 

the same purpose. However, after much thought, we have not 

been able to devise a reasonable •thod of assigning to and 

advancing logical clocks when there exist multiple clocks at 

each node (perhaps the reader would like to try his hand at 

this). Thus, we are·not sure whether logical clocks would 

prove useful in this case. 

We present a simple example to show some of the intricacies 

involved in such a scheme. The central difficulty is that the 

maintenance of transparency necessitates a view of logical time 

such that the logical clock of a process is considered to 
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advance whether or not that process is actually executing (as 

long as it has not been artificially suspended by the debugging 

facility). This is the method employlfd in our implementation. 

Now, suppose that two processes, A and B, are residing at 

the same node. A is currently executing; Bis on the ready 

1.ist. Logical. time is advancing for both processes. Suppose 

process A wishes to enter a monitor. This event is duly 

reported to the user who decides to delay A" s entry until after 

process B has entered that same monitor. Therefore A is 

suspended (at la&ica1 time x) and B starts to execute. Now 

the question is, "What time do we assign to B.' 19 logical clock?" 

More precisely, since it does not matter (for our pun>oses) 

what time B sees until it tries to enter a monitor or receive 

a packet, what time is assigned to B's very next attempt to 

perform one of theae two actions? In the interest of trans­

parency, B should not be aware that A has been artificia1ly 

suspended. Thus, at the outset of B's execution, B's clock 

should read x plus however long A would bave executed ha4 it 

not been suspended. But, of course, it is impossible at this 

time for the facility to know how long that would have been. 

Thus, the difficul.ty in assigning a reasonable ~1.me to B's 

logical clock is apparent. It is easy to see how more compli­

cated execution patterns would render logical clock maintenance 

by the debugger facility virtualJ.y impossible. 

An alternative approach would be to abandon logical. time 

altogether and let the user be responsible tor· creating 

probable computations. Then, ·transparency woul.d no longer be 

a goal of 'the implementation and debugging would entail a 
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sequence of decisions about which process ought to enter a 

monitor next, or which process ought to receive a packet next. 

The user would possess total control in determining which 

computation is performed. Total control, ot course, brings 

with it a tremendous amonnt of detail for the user to cope 

with. The user becomes responsible for deciding all matters 

pert~ining to interprocess timing relationships, both at a 

single node and among separate nodes. As such, he must be 

intimately familiar with the code he is attempting to debug, 

if he is to debug intelligently. Coping with detail is a 

significant research problem in itself. 
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5.6 Future User Interface 

The interface presented to the user by the central. site 

is currently of the form of a "gl.ass teletype" and is somewhat 

primitive. The facility presents infoI'l!Btion to the user by 

printing out lines of text. Likewise, the user controls the 

debugging session by typing in lines of text. Since the Alto 

possesses powerful I/0 hardware and software facilities, there 

is room for a good deal of improvement in this area. We see 

this as yet another worthwhile subject for future research. 

The interface reports two kinds of entities, events and 

data. Events, which are defined to be reqJ1tsts by _any process 

to receive a packet, are reported sequentially to the user by 

listing various pertinent information such as the node on which 

the requesting process resides, whether the request is satis­

fiable and, if so, the identity of the satisfying packet, and 

the process from which that.packet originated. Data, which 

consist of the contents (header and body) of packets, are 

likewise reported in a simple fashion. The display is of the 

form of a sequence of octal values representing each wori in 

the packet. There are a number of ways by which this interface 

can be improved upon. 

5. 6. 1 Mul tistepping and Slow Stepping 

. Model (Model79) has discussed in detail a number of worth­

while attributes concerning information display for interactive 

debugging. As he has pointed out, one failing of many conven­

tional debuggers is that they report too much information to 
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the user. The user is either forced to discard much of it, or 

is overwhelmed by it. The former is wasteful., the latter 

catastrophic. Our implementation currently is also guilty of 

this failing. AJ.l events (as we have d.et1ned events} are 

reported to the user. Since many dozens (hundreds, or even 

thousands) of packets may be tr-anamitted and reoeived during 

fairly simple tranaactions (e.g. a aimp1e file trans:t'er), it 

seems clear that the user will not wish to be IQ&de aware of 

alJ. of them. 

Even more debilitating, not only is the user informed 

of each pending event, but he ia asked to make a decision about 

each one. This mode of operation is called a;tngle .atepptpg; a 

pause occurs between each step (event) and the user 1a given 

the opportunity for analysis. This can prove excruciatingly 

slow when each individual event accomp11ahee very little. 

An enhancement on this ia the concept ot !PP,lt1etepp1pg, 

where only selected events are reported for user observation 

and analysis. 1'be events to be reported are sel.ected either 

by the system or the user. The user might instruct the system 

to suppress the reporting of the next x requests from process 

y or node z, all requests arising in the next w (iogicaJ.) 

seconds, all requests for packets with proto~ol u, etc. In 

this way, unimportant events are easily filtered out and 

debugging can proceed more sw11'tl.y. 

Incidentally, Mode1 states that the entity constituting 

a "singl.e step" is not always obvious. For examp1e, 1n Algol, 

"• •• should the notion be defined in terms of single lines 
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of code, statements which do not contain other statem~nts, or 

individua1 operations in the language, such as f:unction calls 

and arithmetical operators?" (Model79) This ambiguity arises 

because the concept of an "event" is not well defined. 'We do 

not have this problem because of our precise (although not 

necessarily optimal) definition of what constitutes an event. 

Somewhere in between sillgle and· Jll\1lt1-,tepping lies the 

notion of sJ,S>w.4tepp;t,pg. Thia can be employed .when the user 

desires to be informed of all. events in a certain class (as in 

sill8le stepping) but does not want to make decisions about each 

one (as in mu.ltiatepping). fhus,. the emphaa±s is on monitoring. 

rather than debQggiDg. The user ought to be able to specify 

how swiftly events are to be reported-. ahoul.d be ab.le to 

adjust· this rate a.t will. The ideal. in'terf&ee would_ allow 

interm~xing of si.ngl.e, multi, and al.ow. ateppinC duriDg different 

stages of the aame deb~g session. 

5.6.2 Graphical and Analogical Displa.y of Data 

One of the central themes espoused b7 Model is that 

information ought to be presented, if pou:ible, in a graphical. 

or analogical fashion. The. hypothesis is t-bat pictorial 

displays are more swiftly and easily understood than sequences 

of symbols (such as numbers). Thus a.n iteration variable 

ought to be presented as a kind of "percent-done" indicator 

(see figure 5.1) representing how much headway has been made 

thus far. This is an example of an analogical. display. Data 
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Figure 5.1 

(based on (Myers80), fig. 2.1) 

'°" done thua tar 
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structures ought to be displayed in the way they are intuitively 

understood; the interrelationships between the various values 

comprising the structure ought to be clearly marked. Thus, a 

Lisp list should be displayed with pointers (see figure 5.2) 

rather than as a sequence of octal values which the user must 

fathom for himself. 

Myers (Myers80) has implemented a system, call.ed Incense, 

for displaying graphically and analogically the data structures 

of a program during interactive debugging. It possesses the 

ability to display both predefined and user defined structures. 

We feel that a povert'u1 debugging tool would resu1t from the 

combination of an Incense-like facility and the facility 

described herein. Incense cou1d probably be modified vitho~ 

too much effort to disp1ay the data structures 1aad other 

information that make up datagrams. One simple approach is 

to use the packet protocol number as a convention for deter­

mining how to display the packfJt 1.nfo-i,uation. Since packets 

sent sequentially from the same proce.., may z,present different 

portions of the .-.me data s-tructure (as in the transfer of a 

file) , perbaps a way oould , be d,"~s~ to P-.i>h1cally display 

grou.pa of packete 0 'io bu.l.d·more eempl.rie diagrams. Thie 

concept cou.ld be used in conjunction with slow or multistepping 

where the user could indicete that he wishes to see the 

contents of the next x packets to be sent from process y, etc. 

In short, since a picture is worth a thousand words (and 

probably even more octal digits) and since many of the u.ser'e 

debugging decisions will be based on the contents of particular 
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packets, analogic or graphic display of the contents of these 

packets should allow debugging to proceed more swiftly and 

easily. 

5.6.3 Dynamic Display of Events 

Having discussed ~ome possible ways to display data, we 

now turn to future methods for displaying events. Since 

processes are made up of events, we may consider the totality 

of all reportable events 1n eur system to i'tlpresent a kind 

of communication "process" (not at all like a Mesa process~- of 

course). Model bas stated that 1n order to ful.ly appreciate 

the funct~ona1ity of a proceea, one must view it as a flow of 

events, a movie as it were, rather than as a series of snap­

shots of states arising from the execution of those events. 

As it is currently constituted, our interface only displays 

the communications process as an isolated sequence of events. 

A more dynamic, movie-like dispJ.ay providing a graphic 

representation of the communications process might prove quite 

worthwhile. Such a display would have certain fixed areas set 

aside on the screen to represent the various nodes involved in 

the debugging session. The transmission of a packet could be 

indicated by a dot flowing from the sending to the receiving 

node. The user could focus his attention by examining 

particular parts of the screen containing the nodes in which 

he is currently interested. Thus, the interface might,look 

not unlike an air-traffic controller's screen (this is not a 
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facetious comparison; just as the air-traffic controller 

directs the path of airplanes, so the user directs the path 

of packets). 

The advantage of such a dynamic approach is that it gives 

the user a "feel" for certain aspects of the communications 

process which it would be difficult or impossible to derive 
~ 

from a more static, sequential- reporting of isolated events. 

In particular, during slow stepping the user could learn where 

communications are most extensive, where bottlenecks are most 

likely to occur, and which nodes are busiest at what times. 

These concepts could be inferred from a more static approach, 

but only with great difficulty. 

Of necessity, however, a complicated display such as this 

would require most of the memory of an Alto, leaving little 

room for the central debugger site code. One solution is for 

the user to do his monitoring from two Altos placed in close 

proximity. One could display the more advanced interface, and 

the other could have the simple interface of chapter ·three, 

with, perhaps, Incense-like display capabilities. The user 

would enter his commands at the latter site. Coordination 

between these two monitoring stations would proceed through 

message passing. Thus, a user cocmand. issued at one node would 

be refiected by the user interface of the other node. This 

configuration bears simi1arity to the network concept of 

Metric, mentioned in chapter one. We do not speculate on how 

easily such an implementation could be rea1ized. 

We point out that the network concept is made necessary 
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only by the small size and present performance capabilities 

of each Alto. There is no inherent reason why the two 

displays could not be handled by a single, more powerful 

processor. 

Incidentally, such a dynamic display would still suffer 

from an inability to make clear the causality relationships 

among the events it reported. 
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5.7 Towards an Integrated Debugging System for Distributed 
Computationai Environments 

The reverse of the problem o! the debugging facility 

reporting too much information to the user (aa discuaeed in 

section 5.6.1) is the danger that it wlll report too little 

information. Requests for packets ara but one ciaas of event, 

and a small c1aes at that. It may, prove dif!icw.t for the 

user to detect many kinds of luz,ic1ng bugs baaed sol.elyon 

knowJ.edge of the cOJ1111lUilications proc1tae. He may need a method 

of getting at those system events that occur •between" 

communication eTents. We are speaking, ot courae., of 

traditional events such as aas1gnment, ari.thm.etic procesaing, 

etc, which make up the bulk of most proce•••• and. w aich are 

performed private1..T by the process in which tbey occur witho~ 

the need for any interprocess communication. 

We have already spoken (see cbap'te:r two) of how the user 

can be made aware of such events under the current impl.e•n­

tation. A.fter moni.toring co11111Nnieat1ons through eome point in 

the execution, he ma;y abandon the central stte and•phyaicalJ.y 

go to the node at which reside the prooeaaea conta1n1ng the 

priv.ate events in which he is interested. At this node he is 

able to monitor events using the conventional single node 

debugger existing there (however, .that debugger maJ' need to be 

modified in order to maintain accurately the logical. clock 

existing there by accounting for the correct flow of logical. 

time while the debugging takes pl.ace). Debugging can continue 

in this fashion at this node until the next attempt at 
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interprocess communication via messa.ge passing. At this 

point, in order to maintain transparency, control. must be 

rel.inquished to the central. debugger site. The user may then, 

if he so chooses, abandon this node and .physi.caJJy go to 

another node using the conventiona.1 debugger existing there to 

monitor events private to that node. Thia can be repeated for 

al.1 nodes in the session. 

We al.so aaid that the user may choose. to empl.oy some 

remote d@:qgciM or remote mcm1t91j.ng aystea (Tel.eswat, for 

exampl.e) • For large networks, the distance between nodes 

would make a remote debugger imperative. Sacha debugger 

woul.d al.l.ow the user to performal.l. o~ hia debugging directl.y 

from the central.- ai te. this would invol.v.e the ability to 

interrosate and to issue commands to remote nodes from the 

central site. 

this area. 

Issues of node autonomy:Dltl1' ec;,me into p1ay in 

Tailoring a remote debugger to the environment preaented 

by the debugging faoili.ty described herein would be a. profitable 

pursuit. The resul:ting sy-stem woul.d constitute a total.l.y 

integrated facil.ity for debugging distributed appl.ications. 

ill pertinent events could be monitored and debugged from a 

central area, possessing total control. over the proceedings. 

Combined with some of the other ideas J.n, this chapter, it 

woul.d make for an extraordinarily powerful. debugging tool.. 
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