
INTERACTIVE DEBUGGING

IN A DISTRIBUTED

COMPUTATIONAL ENVIRONMENT

ROBERT DAVID SCHIFFENBAUER

September, 1981

@Robert David Schiffenbauer 1981

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or
in part.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

This empty page was substih,ted for a
blank page in the original document.

2

ACKNOWLEDGE?m'TS

I wish to thank my thesis advisor, Professor David Reed,

for reading and commenting on early drafts of this thesis,

as well as for a number of suggestions and ideas that improved

the final. product.

I wish to thank Bob Baldwin for contributing so much

time and effort towards improving this research at a time

when he was bua,U:, involved in his own thesis work. Our

conversations were always informative and enl.ightening and

his enthusiasm for the project never faltered. His help

improved this work in many, many ways.

I would also like to thank Brad Myers and Andy Mendelsohn

for their aid in dissecting various portions of the Alto/Mesa

system, as well as for various illuminating discussions. I

thank Dan Theriault for his Mesa implementation of a 1illked

list data abstraction, of which my debugging facility made

extensive use. Thanks to officemates Karen Sollins and

Stephen Kent for all their help. Thanks to Professor Jerry

Saltzer and Dr. David Clark for initially introducing me to

the Computer Systems Research Group at M.I.T.

Finally, I would like to thank my parents and my

brother, Joel, for all their help and encouragement.

This empty page was substih,ted for a
blank page in the original document.

3

INTERACTIVE DEBUGGING

IN A. DISTRIBUTED CO!-ll>UTATIOUAL ENVIRONMENT

by

ROBERT DAVID SCHIFFENBAUER

Submitted to the Department of Electrical Engineering
and Computer Science on August 7, 1981 in partial fulf11lment

of the requirements for the Degree of Master of Science
in Electrical Engineering and Computer Science

ABSTRACT

This thesis describes an implementation of a facility
for interactively debugging distributed programs. These
distributed programs consist of groups of c.ooperating
processes concurrently executing on an arbitrarily extensive
network of processors. The facility all.ova the user to
monitor and control, at his leisure, the interprocess
communications that occur through message passing while
execution of the distributed program proceeds. It presents
the user with the ability to simulate transmission errors
and delays, to alter and create packets, and to precisely
control the pattern of such co!IUIUnications. The facility
serves as a tool for the detection of lu:[iipg bugs. those
errors, peculiar to parallel processing, which may or may
not appear during the course of any particular execution.

The facility possesses a high degree of transparency
towards the program being debugged. That is, it has a
minimal effect on the events that define the execution of
that program. Transparency is a desirable property for any
debugger to possess. To achieve aucb tranaparency, the
processes of the distributed program are made to execute in
a logical time environment, reading logical, rather than
physical, clocks.

We show tha~ the facility obeys a clock condition, with
which any logical time system must comply in order to be
correct. We also show that the facilit1 actually simulates
the program it is being used to debug. ~1nally, we show
that the facility simulates a particular computation cf the
program that is likely to occur. The notion of probable
simu1ation is defined, and our debugging facility is shown
to achieve it.

Key Words: distributed systems, debugging, monitoring,
reproducibility, lurking bugs

This empty page was substih,ted for a
blank page in the original document.

4

CONTENTS

Acknowledgem~nts • • . . . • • • • 2

Abstract . 3

Table of Contents...................................... 4

Chapter One. Introduction............................. 6

1.1
1 .2
1.3
1 • 4
1.5
1.6
1.7
1.8
1 • 9

Distributed Systems •.•••••••••••••••••••••••••••
Distributed Programs ••.•••••..••..•..•••••••••••
Debugging, Monitoring and Transparency ••••••••••
Previous Work•
Hardware Environment for this Project •••••••••••
Software Environment for this Project •••••••••••
The Internet Protocol •••••.•••••••••••••••••••••
Plan of The sis•.........
Some Definitions

7
10
13
18
22
24
28
32
33

Chapter Two. Issues in the Design of a Debugging
Fae ili ty•.••••.••••....•.••.....•••.

2. 1
2.2

2.3

2.4

Use of the Debugging Facility ••••••.•••••.••••••
Practical Considerations: Transparency and
Artificially Induced Communication Delays •••••••
Theoretical Basis: Causality and Systems of
Logical Clocks
The Uncertainty Principle of Program Debugging ••

34

36

45

57
69

Chapter Three. Implementation of the Debugging
Fae ili ty. 70

3.1 Overview of the Facility ••.•••..•••.••....•••••• 71
3.1 .1 The Central Site •••.•••••.•••••••...•.•• 73
3 . 1 • 2 The Nub • • • • • • . • . • • • . . • • • • • • • • • • • • • • • • • • • 7 5

3.2 Routing and Timestamping of Application Packets. 78
3.3 Nub - Central Site Interactions •.•••••••.••••••• 87

3.3.1 Initialization Packets ••••••••...••••••• 87
3.3.2 Handler-Creation Packets ••••••.•••••.••• 87
3.3.3 Receive-Request and Maybe-Receive-

3.3.4
3.3.5
3.3.6
3.3.7

Request Packets
Conditional-Execute Packets ••••••..•••.•
Give-He-Now Packets •••••..•.•••..•••..••
Cannot-Be-Satisfied Packets •••.•••••••.•
Clock-Update Packets •••.••••.•••••••••.•

89
90
90
91
92

5

3.3.8 Package-Destroyed Packets •••••••••••••••
3.3.9 Enter-Debugger Packets ••••••••••••••••••
3. 3. 10 Ack Packets •••••••••••••••••.••.•••••••••

Low Level Mechanisms ••••••••••••••••••••••••••••
3 .4 .1
3.4.2
3.4.3

3.4.4

In1 t ializa t ion ••••••••••••••••••••••••••
Application Packet Selection ilgor1thm ••
Node Suspension and Logical Clock
Mllintenall.ce • ••••••••••••••••••••••••••••
Deadlocks •.••. •.•••••.•••••••••••..•.•.•

3.4.5 Termina.tion ••.•.•.....•.......•.........
User Interface •••••••••..••.••••.•.••••••••••.••
3. 5. 1 Moni tori.rig • •..••.••......••..•..••...••.
3.5.2 Debugging (User Commands) •••••••••••••••

3.5.2.1 The Send CollllDand ••••••••••••••
3.5.2.2 The W1thho1d'Command •..•••••••
3.5.2.3 The Replace and Ret~ieve

Commands ••••••••••••••••••••••
The Delay Commatld • ••••••••••••
The Display 0MdDJn6 •••••••••••
!:b.e Create .. Qt-•"4 ••.••..•..•.
TM Call Dt b'{.tA62" COIDQland •••••
The· Quit O o~4 ••••••••••••••

Correctness and Usetulnees ot the

93
94
95
96
96

101

109
114
118
120
120
121
122
122

123
124
125
126
126
126

Chapter Four.
Debugging Facility •••••••••••••••••••••• 127

4.1 Maintenance o! the Clock Condition •••••••••••••• 129
4.2 Proof of Simulation ••••••••••••••••••••••••••••• 133
4. 3 Probable Simulation. • • • • 146
4.4 Probable S1111Ulat1o~ vs. Transparency •••.•••.••.• 157

Chapter Five. Related Ideas and Suggestions tor
Further Research ••••••••••••••..••••.••• 158

Fra.gm.entation • ••.•••...•.•••••••..••....•..•••••
Bottleneclting •••••••••••••••••••••••••••••••••••
Order of hent Reporting ••••••••••••••••••••••••
The Multi-.a\pplication Problem •••••••••••••••••••
Controlling Monitor Entries •••••••••••••••••••••
Future ue·er Interface •••••••••••••••••••••••••••

5.6.1 Xultistepping and Slow steppiJll •••••••••
5.6.2 Graphical and Analogical. Diap~y Qt Data
5. 6. 3 Dytiamic Display . ot., Jv•At• •.•••• ,• •...•.••

Towards an Integrated,DebViC1n&·Syate•for
Distributed Computat1onal Etrvit'onment•~··~······

159
161
163
165
169
175
175
177
1s1·

184

References •••.•.•.•.•.••••••••••••••••••••••••.•••••••• 186

6

Chapter One

,;, ,; ;.;r~&!Piz•rj~•tfi!,:Bll\ldo~ H~~!r) (J~
1~;~,~~~~~o~.t~~~o~ 'QB,l~t.r:l1M
:1t1!•atll~,~~~-~~ ~"~RPs--.;~:1 .c~;.;)·~~,:.

debuaiDC .i&!t8tt!1li:,t'8'"tfflW-,.~l-l1 eil!.-nll:~\PI~.,-.··~;~
!hi• n~fiLJ~t~""',....af3?1LtfflMl!mJih
de•:1p1Dt •""'. ~· - .•. .,,. mAl. :tm: .. imurm o~,lln'~.n:n•-u. · . .. < u.r~q- t.J.J.lLC,x,::rTq

execn~ \~-•---ildllk0
"~lr~omoaoJr.rs,

7

1.1 Distributed Systems

Distributed computing occurs when two or more computer

processors join 1n a cooperative venture to get a particular

job done. It has been characterized (Metcalfe76) as including

an entire range of computational. organizations: multiprocessing,

loca1 networking, and remote networking~ The properties of

these systems dit'ter in degree, rather-than in kind.

In multiprocessing, processors are usually amaJ.1, 1n

proximity physically, and lack an ability to function

autonomous1y. Programs are executed in a highl.y parallel

fashion by meting out independent tasks to each processor for

concurrent handling. Interproceaaor communication is svift

and frequent since, in general., all processors share the same

memory.

In remote networking, processors are. often large, powerful,

central.ized, high1y autonomous computers in their own right.

They may be designed and buil.t independently, and connected

together in a network a11 an afterthought. Remote netvork11

may extend over ID8ll3' mil.es (for example, the Arpanet is

nationwide) • In these systems, interprocessor requests are

usua11y for certain kinds of services that cannot be performed

by the·requesting node ;or for bullt information transfer. The

notion of' high1y parallel task execution is not indigenous

to this arrangement.

Loca1 networking lies somewhere in between multiprocessing

and remote networking, a1though it is much closer to the

8

latter. Local networks may extend anywhere from several yards

to a few milee. Often, too, the processing power of local

network processors is intermediate to those of multiprocessing

or remote networking systems. Loca1 network processors may,

at times, be highly autonomous and, at other times, be highly

cooperative.

In general, there are no strict dividing lines separating

remote networking, local. networking, and multiprocessing.

Systems are often assigned to one category or another, as

discussed above, on the baeia of illprec1·ee properties such as

distance between proceaeora (Ketcalte76) er degree ot autonOlly

(SYobodo..-a79 - this report, incidentally, ,provides an excellent

introduction to many ot the issuee and problems involved in

distributed computing). Thus, we say that a system is a remote

network when its processors are eeparated,by about ten

kilometers or more, or we say that a system is not of the

multiprocessing type because its procesaora are high1y

autonomous.

For our purposes, it is useful to classify these three

systems by another method (which is no less hazy than those

mentioned above). To us, the key characteristic of a

distributed system is that it is impossible to appraise

eimultaneouslr all processors (hence, the different segments

of program code executing on these various processors) of the

occurrence of some particular system event. We distinguish

the three system types by a value, 4 t, representing the average

time interval between the int'orming of the first processor and

9

the informipg of the last processor of the occurrence of the

event. In multiprocessing systems this value is quite small.

In remote networks, this value 1a often quite large. In local

networks, of .course, the value of At ia intermediate to these

two.

We are interested in those systems for which At is

significant in comparison to the tiJlle it takes.to execute

instructions on 11n.7 prooesaor {a sy,tea may oon':tain proceasore

which operate at VarJing speeds) • Another ve.y ot N,.Ying this

ia that ve will ~ concerned with -,:etas vheJ"e At. ie

a1gn1ticant wbea OOlllpa.red to the tiaa 1.ntft"'l'al between

aucceaaive fYIAH on &n7 proce•aor. Multiprocessor organiza­

ti.ons typi.caJJ7 do not poaMae tbia charao~eristic. Loc-1 and

remote networks do. Thus, in this ~hesi.a, veare interested

mainly in the latter two types.
' The utility ot this particular ov.tlook,tovards distributed

systems wil1 be made cl.ear presently.

10

1 .2 Distributed Programs

Many problems suitable for solution by computer are

capable of being broken down into a number of smaller subtasks

which can be processed independently. These types of problems

lend themselves to handling by some distributed system

organization. The programmer codes his solution as a set of

processes, assigning each one of these to some processor in

the system. A process is, "a set of events with an a priori

total ordering." (Lamport78). That is, a process is a

chronological sequence of events. (An event may be, for

example, the execution of a singl.e machine instruction.) A

distributed system can execute a set of independent processes

in parallel. Thus, distributed programming implies parallel

processing.

However, the converse is not necessarily true. Parallel

processing may be simulated on a single processor through some

kind of interleaving.mechanism whereby the processor now

executes in the context of process A, now changes state to

execute in the context of process B, now process C, and later,

perhaps, back to process A again.

Our model of a distributed program is one which combines

both genuine and pseudo parallel processing. A distributed

program is considered to consist of a set of processes,

partitioned into non-intersecting subsets with varying

cardinality. Each such subset 1s assigned to a single

processor in the distributed system. That processor performs

11

pseufo parallel processing on this subset of processes via an

interleaving mechanism. Genuine parallel processing occurs

between the processes residing at distinct processors (see

figure 1.1). Usually, some mechanism exists to allow the

various processes to communicate in a cooperative fashion.

In light of the classification discussed in the previous

section, we say that all processes at the same processor can

simultaneously be appraised of the. occurrence of some system

event. Processes residing at distinct processors, however,

cannot be so appraised. In this theed.a, we are interested in

those systems in which 6t is not insignificant in comparison

to the time needed to perform any two consecutive events

within any process belonging to the distributed program being

executed.

'

,. other
processors

process
B2

process process
B4 :s.,

Proceesor B

•

12

Processor A

•

•

Figure 1.1

communications
medi.WD

Processor c·

13

1.3 Debugging, Monitoring and Transparency

We will be concerned with one particuJ.ar aspect of

programming in a distributed system. We will examine the

problem of debuggj ng d.istributed programs. More precisely, we

analyze the difficu1tiea behind int,ractiyflJ debugging (that

1s, debugging while ex~cution is in progress) such distributed

programs as discussed above, and will propoaa a practical

facility to accomplish this.

Related to interactive debugging ie the concept of

mqnitoring. A user of a debugger bas no basis on which to

perform his debuggtng if he cannot monitor the behavior of

his program. The faoil.1 ty to be introduced in tbie- thesis

allows user monitoring of certain specific c1aaaea of program

events aa well as debugging of thoae events. These events are

those having to do with interprocess co111111U11ica,1ona. This

will be diacuaaed more fullJ' in chapter two.

The interactive debugging of diatributtld programs requires

a different set of tools from those employ:ed 1n currentl.7

existing debuggera or debugg1 ng ayatema. We' now see why thia

is so.

Interactive debugging almost universally depend.a heavily

upon the concept of breakpoinyjpg- It is-a ao•what

fortunate characteristic of computers that they are able to

perform their various functions at speeds far in excess of the

speeds at which humans can keep track of what they are doizl8.

'When interactively debugging, the human user must be aware

14

of what has already been accomplished in order to make

decisions about what is to happen next. This is done by

allowing the computer to execute for a period of time and then

suspending execution at a designated point in the program (the

breakpoint) to allow the user to "catch up". The breakpoint

concludes when the user has examined the state of the ?Dacb.ine,

has, perhaps, made various alterations in this state, and has

allowed execution to recommence. Theoretically, it is the job

of the debugger to insure that the state observed by the

program being debugged upon execution restart is identical to

the state observed at the breakpoiJi't (with the exception, of

course, of changes caused by .the user). ·· Then the fact that a

breakpoint occ~ed will be invisible to the executing program..

The debugger has made the breakpoint traps:event.
Transparency is an ext:remely desirable property for a

debugger to possess. We define trapgparepcx as being achieved

by a debugger just when the events that constitute the program

being debugged are identical in the presence or in the absence

of the debugger (aside from user initiated. alterations

performed when the debugger is preae11t?. This' means that the

debugger, itself, does not affect the program being debugged.

A lack of transpax-ency implies that the program being debugged

is not quite the one that the program writer had in mind. A

lack ot debugger transparency atfects the"behavior of the

program being debugged. The lees transparent the debugger,

the more this behavior is affected.

Total transparency is a theor~~ical concept. In practice,

15

no debugger is completely transparent to the program it is

being used to debug. A debugger only possesses a higher or

lower degree of transparency towards that program.

Now,in a non-distributed system. it is relatively easy

for a debugger to maintain a high degree of transparency (i.e.

to accomplish highly transparent breakpointing) towards a

non-distributed program. One reason tor this is that it is

easy to suspend simultaneously all processes making up that

program.

Simultaneous suspension of all proceeaea means that the

entire program is halted at a definite inetant 1n time, when

the machine is in a definite state. It is no~ difficult to

save this state and to restore it v:hen all proceaeee recommence

execution simultaneously at some lat~r instant in time. Then

the processes making up this non-distributed progam are

unaware that any debugger induced execution break has occurred.

In a distributed system, however, such simultaneous

suspension is not possible. This is because all processes

cannot be appraised simultaneously of the occurrence of any­

system event. For example, suppose the user stipuJ.ates that

a breakpoint 1s to occur just before the execution of

statement X in process Y residing at processor z. When this

occurs, processor Z sends messages to all other processes

commanding them to suspend execution. It is not possible for

all processors to simultaneously receive such commands. At is

always greater than zero.

It is also not possible !or the user to inform all

16

processors before execution begins that they must a1l suspend

themselves at some future time V (even 1! this capability were

possible, it is not clear that it would be at all useful).

Completely accurate synchronization of the tia of day clocks

existing at each processor can never be achieved (Lamport78).

Thus, each processor will read time Vat a sl;1&htJ.y different

real. time than any other processor. Agajn, At will be greater

than zero.

In those s7stems where At is significa:it, the fact that

simultaneous breakpointing is impossible to achieve means that

it is very difficult to maintain a high degree of debugger

transparency. The greater the 4t value, the harder it is to

maintain such transparency.

To see this, consider the prognun consisting of two

processes, A and B, residing at distinct prooessors. Consider

the interval, .6t, between the time that A recej.ves a command to

suspend and the time that B receives a command to suspend.

This .6t value is considered to be larger than the time it takes

to execute two consecutive instructions in process B. In this

1nterva1, A is suspended while B continues·to execute. If B

was to receive some kind of communication from A during this

interval had A not been suspended, transparency would be lost.

The suspension of A by the debugger would prevent B from

receiving its communication. Obviously, the greater At is, the

greater the probability that B was to receive a communication

from A during the interval, hence, the greater the probability

that the debugger would prevent this communication from taking

17

place leading to a loss of debugger transparency. Notice that

if At was not at all significant, then B would not have a

chance to execute any inetructions during the interval.. In

distributed systems with such a bt (higbl.y in~egrated

multiprocessing organizations), completel7 simultaneous

breakpointing is nearly achievable. Ae,a result, little

transparency is lost because of this problem.

Currently existing debuggers have not been able to provide

interactive service via breakpointing for distributed systems

in which 4t ia e'ignificant, becauae they have not been able

to solTe this traneparency problea. FO?' theae eyateme, a

method is needed Vhich does not depend -on the ainmltaneoua

appraisal. of events, the concept on which breakpointj_ng is

based. In this th9'ais, we present an interaotb'e debugging

facility tor such aystems. Thia facility mai!l'bains a lUgh

degree of transparet)CJ' towards the dist%-ibuted program being

debugged. It in no way depends upon the ooncept of

simultaneous appraisal.

18

1 .4 Previous Work

A good introduct1oQ to IIIBDY of the ieaues involTed in

program debugging and mom.tor.ing can be found-:.tn Model

(Model79). Brief descriptions ot so• de~r implementations

may be found in Myers (l,fyer980). flle• Nader is ret'erred to the

bibliographies of tho·se two works for in depth• information on

particular subjects in this field.

The earliest debuggers were Sllited for sing.le process

programs. Aa progranmr:tng languapa nth pual:l.el prooeaal.ng

capabil..tties haTe come into vogue• uut a.a. oaapatational.

systems have grown in complenty, tools for,llOl'Jitor~ and

debugging conour.rentiy executUIS'• prc,ae', haft arisen.

COPILOT (Sv1Aehart74) vas capabl.e ~ d~ iaformation

about many processes silllul.taneously while permitting the user

to interactively issue debugging commanda. DLISP (hit&lman77)

is a graphics package which uaea mu.l.'l$plAf<lf:b.liows (designated

display screen areaa) to faoili:ta'te -she '8'Sau1taneoua reporting

of information about various concurrent processes. Model's

system possesaea themul.t:1pl.& «li.11play ~ilitaa of DLISP

and COPILOT as welJ. as the .,abilit-y .,"to·oreate •a history tape

of the program's execution, which may be played back later at

the uaer'a leisure. It should 'tat noted 'tha'v.'tl:lese three

facilities are tailored to UDiproceaaoror mal.ilproceasor

syste'1s, or, in. general, to syatema 1.n which At is insigni­

ficant.

An attempt to extend a debugging.tool to a local network,

19

the Ethernet (Metcal.:fe76), where At 11 significant, may be

found in the Metric system. Metric consists of three portions.

"There 18 a probe in the uaer'e obiect, v,m, &11 accountant
that coUecta i.n!ormaticm from the probe, and an tPtllU that

processes the in!ormatiC>l'l. and pre.eenta it in an intelligible

format. Meaaurement mn;a are tAON data tbat the probe

'tranemi ta to the -.ooowitant, ancl , .. vhidl •era subsequently

processed by the analyst.• ,11c el.77) The obj•ct system

probe exists at each prooeaeor oa which the procraa to be

debugced ia executing. '?he aoQOQJLtaat.,.aml _,,.trt reside on

proceaaora dini.Do't from any of theae. Itet:rio J.:a itael.t a

distributed program.

There are three anaagemente of. Jleffio (aN figure 1.2).

We mention the• briefly 1D. order of increaaizlg complexity.

The Line - Thia consists of a aiDgle probe and a single
aCCO\mtant.

'!he !ree - fbie cQDll1sta of u arbi.va&7 .number o-! probes
simultaneously tranamitting event data to a a1Dgle

~~:=~•tJ: ·:!:i:8!.~!.: ~~~~•~}1
!{r!:ture.

The Network - Thia consists of an •arbitrary number of
probes silml.~ ,.,,., __ .ena, d&'ia 'to an
arbitrary number of accountants, the latter perhaps
operat1llg in a QC)QJNlra.si..,. 'i'allht •• <We V1J.a. have reason to
refer back to this structure in chapter five.

We must emphasize that Metru: ia 1121 an iltteractive

debugging facility. Thus, the· :fact that it opea:tea in a

system with a $1gnlflcant At val.us 1a not'. reaJly of an:, great

import. Metric, like Model's facility, collects event reports

on a history log. The wser •xand n"s this log after the program

20

accountant accountant

object system {o.a.) o.a. o.a. o.s.

The Line !he Tree

accountant accountant

o.s. o.a. o.e. o.a. o.s.

The Network

Figure 1.2
(from (McDanie177), fig. 3)

21

to be debugged has ceased execution. The user does not

debug while execution proceeds.

However, Metric is important to us because it does

represent an attempt at debugging programs that do not execute

in uni- or multiprocessor environments. Furthermore, Metric

provides a primitive facility for the detection of lurking

bugs (to be discussed in chapter two) in distributed programs.

Other work related to ours, which are not strictly

debugging tools, include the Virtual Machine Emu1ator (Canon80)

and research by Bryant (llryant77). The BIN.lator adopted the

~xpedient of having prograu execute in a yµ:t:,11] time

enviropmep.t, reading virtual clocks which do not "tick" in

real time. Our debugging facility also makes use of a virtual

time enTiroDlllent. We point out that our use of this concept

is dilferent :from that used in the Emulator. However, we

received some inspiration trom that projec• approach.

Fin•Jly, Bryaat treats the subject of stmulation in a

clistributed system. A number of the teclmiquea he employed

(timestamp;ng. tor ezam.ple) are 1111m11ar to 'lechniques used in

our debugging facility. Bryant, howffer, does not attempt to

extend his work in simulation to the realm of interactive

debugging of distributed programs.

22

1.5 Hardware Environment for this Project

Our debugging facility is implemented on the Ethernet

network, a local network with a significant At val.ue. There

is no reason why the same facility could not be implemented

on a remote network. In other words, there is no m&%imum bt

value beyond which the facility will cease to operate.

However, as we move from networks with small 6t values to those

with large 6t val.ues, we often find a decrease in the·number

and importance of truly distributed applications implemented

upon them. Therefore, the need for our debugging facility

on many large 4t networks may not be very great.

"• •• Ethernet uses tapped coaxial cables to carry

variable length digital data packets among, for example,

personal minicomputers, printing facilities, large file

storage devices, magnetic tape backup stations, larger central

computers, and longer-haul communication equipment."

(Metcal.fe76) Interprocess·oommunication between processes

residing at distinct processors occurs through explicit

message passing. The Ethernet hardware does not guarantee

the errorless delivery of such messages. Messages arrive at

their destinations only with high probability. If the program

requires a probability greater than the Ethernet can provide,

it must implement, in software, some packet transmission

protocol to mask hard.ware packet loss. See Pou.zin and

Zimmermann (Pouzin78) for an introduction to packet trans­

mission protocols.

23

Each processor on the network is an Al.to desktop persona1

computer (Xerox79a). This is a minicomputer contajnjng 64K

16-bit memory words, one or two 2.5 Mbyte removable cartridge

disks, a sophisticated 875 line display screen, and an inter­

face to the Ethernet. Each Alto is oapable of operating in a

stand alone mode, or in cooperation with vario~s other

machines on the network.

24

1 .6 Software Environment !er this Project

The software environment for our debugging facility is

provided by the il tC)/Mesa system (l'.eror7-9b) • !he programming

language used in thia system, .. *•·, is a Pasca1-like language

which permite concurrent exec~tion of multiple processes

(Mitchel.179). Our facility baa been implemented in Meaa; In

this section, we discuaa·some of the importartt concurrency

features of Mesa and the ilto/Jlta ey,nem· (see Lampson and Redell

(Lampson80) for more detail}. We ·'do this in order for the reader

to be able to appreoiate some of tblt impleantation details in

later chapters.

Mesa allows the creation o'f a 11ev proceaa to be accomplished

via the POU call. A prff'ioual.J":•~atqtproceaa ma7 fork: any

number of new proc.eaes to execwt:e m piara:Llel via the inter­

leaving mechani• of the Al'to pnoe8eor. !-ork:ed proceaees are

deleted via a JOnr statement. ~. JOilr ·e1Jatement perm. ts the

joining process w retneTe wha1"Wtt- reftlta ha1re been coaputed

by the joined prooeaa. !he system ·theb deriroya the joined

process. Forked prooeaaea vhioh dc),not oOlllpU'te explicit results

may be detached. De11ached proc .. eee' e.re'"never joil'led.

Thus a uaual. paradigm is '!or aome· 'l'l"oceae to :t ork another,

execute aome code itldependent1y ·of the- forked process, and ·

attempt to ·re-join the forked prc>oeff a't aome later ti.me to

retrieve its reaults.

· This mechanism may at times be too restrictive. Proceeses

often need to interact in a more'highly eophisticated manner

25

than the fork-join apparatus aUowa •. i~.M•sa possesses a

monitor mechanism (Hoare74) which allows processes to have

synchronized acceaa to shared data_1J1 me110ry through explicit

procedure calla. Syncbrcmization is ~•ved tlu:"o~ mut\Ul.l

excl.uaion by the uae of a 99P+;tor 1Qsi whioh must be acquired
'

before the proceaa may enter ~t,Jl,IQJUjtor and acoesa its

protected data. When a procesa acqu:Lrea the; JQOnitor lock it

effectivel.y shuts out aJ.J. other prooe ... • .:trom that 11Gnitor.

The process may then aooeu the data llithou.t worrying about

concurrent acceaa by aoae other proo&u. ~ interproceN

t1rn1J16 d~fi.cultiea are aoJ.ved 1Jl thia.taab.ion. When the

proceae is finished vi.th the lionitor data it ~J.eaae• the

monitor lock, and arq otber p~ .-,: th4Nl ~uire it. It

1s obvio\1.8 that only ~• reai41~ at the:.. prooeaaor

(Alto) may 1.Dteract through~ IIOA1to~ ~• a:Lnoe auch

interaction 1s ach:Leved ~ ~ •IIOrJ'•

Implicit in the monitor •cbaniM 1a tlle iiotion of a

m.orµ,tqr MF:fl:£1fQt. Tl'.la 1nvar1q.t 1a "an -~Oil de:t1ninC

what constitutes a '10Q4 state' of the cl.at&. toi- tb&t particular

monitor." (Mitohell79,). ~hie uwa,ri,ant .__.t ~ true wlumever

a process acquires the monitor l~ ·-4 .ia about to aoceaa the

state of the monitor data. .A. prooeaa :Lqa:lde e. aonitor can

make the invariant,:tal.ae, 1:t 1, p1.e,a..-,. l>ut muat r♦atore the

invariant before it relinquiahea the look. 'rhua, when a process

acquires a monitor J.ock it may see any of a ra,::J.Be of states,

all of which aatiaty the monitor in"VN"iant.

At times, a process may ente:r a ~nd:tor -,id find that,

26

a1though the invariant is satisfied, the state is such that

it cannot proceed. It must WAIT for s:ome other process to

enter the monitor and satisfy whatever condition it requires.

The process waits on a condition yariable and re1eaaes the

monitor lock (after, of course, reato:ring the invariant) until

some later time when the condition ia•sat±afied. Eventually,

perhaps, another process vil1 come al.orig ta satisfy the

condition being awaited. This uw prooeaa. vil1 NOO!Il'Y the

waiting procesa that the condition baa been satisfied. The

latter may attempt to reacquire the 11om:tor 1ock at some

future time and continue execution. from the point where it

left off. If a notify occurs on a condition on which no

process is current1y waiting, that notil7 is aimpl.y discarded.

OccasionalJy, it happens that a prooesa decides it bas

been waiting too 1ong to receive a noti.ty. A :,1meout value

is assigned to each condition variable specifying the maximum

amount of time that a process shouJ.d wait on it before it

"wakes up" of its own accord. Proceaaea may time out when

some failure occur.a 1n the communications mechanism or a 1mp1Y

when no other process has been ab1e to satisfy the condition

in a reasonable amount of time. ~imeouta may be disab1ed for

a particular condition variab1e. In that case, a process

waiting on that condition w111 never wake up by 1tse1f. To

resume execution, it mw, be notified by some other prooess.

Processes acquire the processor for execution by first

joining a feadY),1st (this "join", o:f course, has nothing at

all to do with the "join" discussed above) • The ready 1ist is

27

a linked list of process state blocks (PSBs) which represent

various important information al)out each process. When a PSB

reaches the front of the ready 11st, the proceaa it represents

is eligible for execution by the p:-ocessor. Generally, PSBa

join and exit the ready list in a first in - first out order.

However, certain.processes may be assigned a higher priority

than others. ~h priority processes bave their PSBs pJ.aoed

on the ready list ahead of the PSBs ot all low priority

proceaaea. In fact, a high priority pz-oceaa wUJ. preempt a

low priority proceu that is currentl.y 1n execution. J.tter

the high priority process has relinquiehed the processor, the

preempted process is able to reacqtire it right away without

having to go back to the end of the ready liat.

Each PSB contaans a priorit::y: field indicating the priority

of the process it represents. It also contain.a a timeout field

indicating the time at which the p:rooesa it represent• w1l1

timeout (baaed on a hardware timeout clock) if it is currently

waiting on a condition variable. If this field is zero, and the

process is curren'tly waiting on a condition variable, then that

condition vari.able has had its timeout diaab1ed.

Processes control the processor until they conclude their

execution, until they are forced to wait, until they attempt to

enter a looked monitor, or until they are interrupted. There

is no attempt by 'the processor to implement a fair scheduling

policy among the various processes. Occasionally, a process

that has been executing too long will volun~arily Yield the

processor to other processes of equal priority.

--- ---------

28

1.7 The Internet Protocol

Our debugging facility is implemented on top of the

Internet Protocol (ISI80). Thi.s protocol allows interprocess

communication to take place via explicit paeket transmission.

These packets, or datMTIPPs, may be l"eeeind by the Internet

Protocol from higher level protocols (!CP, for example) and

are, in turn, handed down to the hardvare for actual trans­

mission over the Ethernet. !he Internet Protocol merely

provides for datagram transmission across the network. "!here

are no mechani.SDU!I to promote data reliability, now control,

sequencing, or other servicee commonly found 1n hoet-to-hoat

protocols." (ISIBO)

A datagram receives an internet header in order to

!his header includes a number of

fields worth men1:1oning here:

Source Address - The ,2 bit internet address of the processor
at which the datagram was CNated. Some process at that site
was responsible for creating thi.a datagram.

Destination Address - The 32 bit internet address of the
processor to which the datagram ia to be aem:. Some process
at that site will accept this datagram.

Identifi.cation - A 16 bit val.ue as~igned by the aendiDg
process that distinguishes thi.& 4atagra111· from any other
created at that site.

Protocol - An 8 bit value indicatip& . the. "type" of the
datagram. This field is used to·a~ what process the
datagram should be routed to at the destination pz,oceasor.

The particular implementation of the Internet Protocol

which we have used was implemented by Robert W. Baldwin at MIT.

29

We briefly discuss how this implementation is used by processes

to transmit and receive packets over the Ethernet. We describe

this here because these ideas will prove ne~saary for a ful1

understanding of the impl.em.entation of the ~bUMing facility

to be described in chapter three.

In order for any proceaa at a procaaaor to make uae of

the Internet Protocol, some process reaici.ins there had to have

issued. a create ... iJlternet-package ocnnmend. 'lh1a initiali.ze■

vario~ parameters necesaary for CC\llllQSm1caUon. After this,

any proceaa ma7 aaaembl.e a packet for tr.aQDie,sion by inter­

facing with various internet poceduru. Whan the packet ia

to actual1y bet tted, the prooea caJJa the internet

~ procedure. At this point, the packet a made ready for

Ethernet tranam.ieaion and the Intemet Protocol hand.a it off

to the hardware for this purpose. ArJ,y proo-• '1111&1 aend a

packet of any protocol type at arq .tim.a attar :the internet

package has been 1n1t1al.ized at the processor where it resides.

Prooe.aaea, are aomewbat more l~~e4 in t!wair abUi ty to

receive packets. A particular process may only receive

packets of one particular protocol type at a time. It

specifies the protocol value of packets it is willing to

receive by creatine a 't!IIWW for that protocol._ Bandl~r

creation simply means th&.t the internet package has been·

informed that this process is llOW vill:fn& to accept packets of

the specified protocol type (and no other). A process that is

done accepting packeta iaeues a deatroy~handl•r co11PD&nd. A

process that desires to receive packets of a different

30

protocol type from the one it is currently receiving must

issue a destroy-handler c~rnmand first, and then may issue a

create-handler command for the new protocol val.ue. At any

time, only a single process at a particular processor may

accept packets with a given protocol type.

Packets arriving at their destination processor are

handed by hardware mechanisms to the Ethernet Driver existing

there. This is a high priority process. The Ethernet Driver,

in turn, hands control of the packet to the Main Dispatcher,

yet another high priority process. The Main Dispatcher

interacts with the internet package to notify the appropriate

program process (based on the packet's protocol field) of the

arrival of the packet.

The process that desires the packet must issue a special

req~est in order to obtain it. There are two possible ways to

issue this request. The process can cal.la ma:vbe-repeive

procedure, which attempts to acquire a valid packet and

immediately returns if none is present. The process can also

call a receive procedure, which attempts to acquire a valid

packet and will wait on a condition variable if none is

present. Shoul.d a packet arrive before ~he process times out,

it will be so notified by the Main Dispatcher and it will be

able to acquire a packet. If a timeout occurs before a

packet arrives, then the process may simply reissue its

receive command and recommence waiting on the same condition.

Thus, we see that a call of maybe-receive is satisfied by

any packet that arrives strictly before the call. However, a

31

cal.l of receive may be satisfied by any packet arriving before

the call 2.£ by any packet arriving in the interval between the

time the process begins to wait on the condition variable and

the time it times out. This is a crucial point, and one which

must be understood in order to appreciate the implementation

described in chapter three.

We add that if the condition variable had a timeout of

zero (no waiting is done - this is di!ferent from having a

zero value in the timeout field of the PSB, which would imply

that the condition has been disabled) then the rece~ve and

maybe-receive calls are identical.

The efficiency of our debugging facilitf heavily depends

on the length of the timeout interval of this condition

variable (see section 3.4.2). As this interval is increased,

the facility will function more slowl7. Indeed, if the interval

goes to infinity (i.e. the timeout is disabled) the facility
'.

will cease to function at all. The timeout of this particular
'

condition variable must under p.o cifma,•-tuqes. be disabled 1!

use of the debugging facility is intended. Since this co?ldition

variable is embedded in the internet code, there 1s usually no

reason for the programmer to tamper with this value.

When no further interprocess communications need to be

performed by any of the processes residing at a processor,

some process there is free to cal.la destroy-internet-package

procedure.

32

1.8 Plan of Thesis

Chapter two discusses how and why our debugging facility

will be used. It introduces the notion of a lurk1pg-bug and

how the facility may be employed to detect these. It discusses

the issue of transparency introduced in this chapter and shows

both theoretically and practically how debugger transparency

may be maintained while interactive debugging of distributed

programs proceeds.

Chapter three provides a detailed description of the

debugging facllity we have im.p1emeuted. !hose who have read

this far may skip to it directly, 1:f' they rlsh, as, for.the

most part, it may be understood independently from the rest of

the thesis.

Chapter fo\U' proves that the debugging facility is correct

and useful. That is, it proves that the debusging facility may

be validly used to debue; a distributed program and that the

program being debugged is the intended one. However, we see

that the facility is not quite totally transparent towards the

latter.

Chapter five discusses some ideas that we have not

implemente.d for various reasons. We suggest a number of

topics for future research and thought.

33

1.9 Some Definitions

We have repeatedl.y used a few terms in this thesis that

we felt were naturally understood. However, this may not be

the case. Thus, we define them here;

node - A .Q.2.ll is a processor connected 1n a network.
Since we wish to •mplw.eiae tha,t ~program.to be debugged
resides on s.everal. Jini erq9e'ct9t pro .. ceaao. re, we refer to
them as nodes t~ui t rff . ot,. this, tl:le.a-i,a.

application - '?he application is the prosra,m. to be deb-ugged.
Both it and the debugger are distributed across the network.

user - The JiU,£ is the per. son who empl. cy·•· the. debugging
facility to de:oug an app.li.cation~., . ~ .. u,aer may or m,.y not
be identical to the person who act,Mtl l y programed the
appllcati.on (tlle progumer). · , .

34

Chapter Two

Issues in the Design of a Debugging Facility

This chapter provides a detailed introduction to the

problems involved in debugging an application that is distri­

buted across a computer network. The concept of transparency,

alluded to in the :tirst chapter, has been important in guiding

our research. We motivate the design presented in chapter

three by explaining how it helps achiev~ a high degree of

transparency during interactive debugging of distributed

applications.

Related to transparency is the notion of providing the

user with precise control over events occurring during the

debugging session. In the following discussion, we indicate

how transparency implies that interprocess communications (the

"events" with which we will be concerned) are controlled solely

by .. the user an~ are ,maffected by the existence of the debugging

facility. In chapter three, we delve more fully into the

mechanisms provided by the facility for such precise control

(i.e. the ability to duplicate communications, to delay

communications for specified lengths of time, to prevent

communications from ta.king place, and, most importantly, to

create any pattern of interprocess communications that may be

desired).

This chapter deals with the theoretical as well as the

practical. It is our desire to describe not merely a particu­

lar scheme that works only for the Alto/Mesa/Internet

35

environment, but to present these idear- as a theoretically

reasonable model for future designers of debugging facilities

for any distributed system.

36

2.1 Use of the Debugging Facility

We stated in chapter one that the facility herein

described has use both as a monitor and as a debugger of

distributed applications. We now assert that, as a debugger,

by far the most interesting use is in the detection of 1nrk1pg

~ (Van Horn66), defined below, in programs consisting of sets

of processes executing in parallel. It is generally acknow­

ledged (Myers8O) that the detection and elimination of lurkii'lg

bugs is one of the most difficult and frustrat1ng of all

debugging related tasks. Yet, ut, to·:now, the tools available

to aid the programmer 1n this have been sbant. OUr debugging

.facility does not guarantee detection Of a1l lurking bugs.' It

does, however, proVide a tool for the skillful user, which tran­

scends p?"evious debuggers in providing help in this important

area. The concept of a lurkingbug·wllJ. now be made precise •

.an important feature of·parailel processing is that o:f

nondeterminacy of computation. It is unu.saal for even a

moderately sized program consisting of two or more processes

executing in parallel to proceed in the same way during

distinct executions. This is because such executions are

performed 1n an arbitrarilY timed (Van Horn66) manner. :By

arbitrarily timed, we mean that the order in which processes

acquire the processor for execution is not well defined. In a

distributed environment, furthermore, the timing relationships

between processes executing on separate processors (e.g. which

processes execute before or after others, which processes

37

execute in parall.el) are also not well defined. Stochastic

events are constantly at work in a ayatem mak1ng it impossible

to predict, a priori, the timing relatiolUlhipa among the

various processes. For example, the reaulta o! a particular

execution might be a:t!ected "because o! sl.1-ght variations in

the speeds of autonomous proceaaing unite, because of replace­

ment of one system component b7 another o! ditterent speed,

because of variations in the clurat1on of i/o .,ctivity, or,

perhaps most 111p1ficantl7, becauee ot the acheduling atratea

ot a multiprogramMd qatem." (Van Horn66) .

that it ia im.pouible to predict the

next computation etate of the machine ba•d OA the current

atate, as ia poaaible when analJciDC a •1ngl• proceaa ooapu­

tation. Since it oazmot be toreto1d which prooeaa (or group

ot processes in a distributed system) will be the next to

begin execution from the c,urrent state, it ca:onot, 1n conae.;

quence, be fore told how the state will __ ; what memory

and register locations will be affected. an'11n what way.

Hondete 7 is a given, however. !p.e very nature of

parallel processing implies that interproceaa t1m1ng relation­

ships may be very loose and may var, from execution to

execution. It is the burden of the programmer to insure that

his application is robust (functions "correct~•) tor &n1'

possible sequence 1n which the processes may be.executed.

Bow it is possible that not onl7 will certain machine

states arise during a particular co~putation that may or may

not be seen again during the lifetime of the program (i.e. until

38

it 1s scrapped or replaced), but certain errors ot thia

fleeting type may be detected too. !hoM errors that arise

during particul.ar ooaputationa, for which it ia 111.poaaible to

predict their recurrence 1n eUUiJ:lg ooaputatiou, am which

may never have MDif,estad tMllNlTes before. and may nrter

maniferi thewl.vea again, but wlu.oa v,,,;thfr,, are called

lurking bugs. Lurking b'ufra become apparent •·ctur1D8 a partioul.ar

eomputation becauae the order in whioh proceaaes have executed

has shown up a logi.oal nav 1D the program. A different

execution orderiDg duriq another -OOIIIPUta1:1oa, JDa7 be

au:t:1'1cient to mau: th.ta f1av.

We preaen't aa eD11ple (Yan liorn66). Coa.aicler an

applioation conaia'ting of three prooeaaea. Proceae A vritea a

value to a 1181lory NU which is 'lheA read aD4 output to a fil.e

by proceaa B. Prooeae C oontaina an err• in ita coding. It

accidently puts an incorrect value into tbe - oell that

proceae .A. ia writing and prooesa JI 1• rea4ing (:1-t waa, eay,

suppoaed to at~eot an ent:i.reJ.y difi'erent cell). Bow conaider

the follovi.Dg two prooeu execution. aequ.Daea (-em a wu.prooeaaor

machine) tor two poaai'ble computa't:101111:

A B Q A B C A B C • • •
ACBACBACB •••

In computation 1), process C never affects the memory cell

in question until process B has already read it and written it

to the file. Thus the affect ot process C is invisible in the

final. output. In computation 11), however, process C always

changes the value in the cell before process Bis abl.e to read

------···--

39

it. In this case all Tal.uea,vritten to tbe file are

incorrect. The lurking bug, an error in the coding of process

C, baa become man1feet due to the partiOlllar ordering of

proceaa eucuttona_in coaputaticm 11). (flut ,reader •r easily

imagine certain execution aequaoee iateJPMCi.iate to the

compl.etely correct c011pUtaticm in 1) ad tu :c.apl.etel.y

incorrect coaputaticm in il); ~ •--pl-e, uecuticma that

yield eome correct ft.luea in the·o11-q,ut:tile·aDtl aome"i.ncorrect

values. !he read.er 111Q' also ce?'t&ia:,quaati.onabl.e

computaticma. Ia, tor p1e, .A. B J C .A. B ll C •••. •correct"

or not? We return to thia proble■ J.n cl:lap'tu :tour.) .

!hi.a ia a aiapl.e ezaaple, 1m:t 11' ·~ be ••111 to see

how in larp pro,rw ooaeitrtiall fd· .-.ay.•do- of ooopentug

proc••-• J.t 18 .dUf.1.oult, if not J.apo.-i.'bl.•• to :t•l aaaured

that all lurld.Dg oup baTe been •11■1a+.4 m·a pro,ram that

appears to work cornctl;r.

Ve c:U.&re••, for a DlOJIIIDt, to ·· peiat -out that even uaera o'!

l.anpapa without parallel. procesaq oa.pabiUt:tae (suoh as

1ortran., Algol.60 • .rio.) are not tww,ne 'to ·ttJa probl.w of

nondete 7 and lurking \Nga. In•~'-• eomputatiomil.

environments, no proceaa is an island. j;zJ,y application must

ceexist vith various operating a1at• •·•~cie ... e;: llbliedu1ers,

i/o routines, other user appl.icationa, and the like. Yet the

Fortran programmer who bel.ievea his application to be

determinate, becauae,for a given set of inputs, he can trace

step by step through his listing predicting subsequent states

from earlier states until the !1nal reeul.ta have been determined,

40

is s1fe in his naivete. This is because the designers and

ioplementors of the system being used have taken the burden of

worrying about lurking bugs on themselves. They have caused

user-system and user-user process interactions to be of the

simplest type so that the order in which system and user

programs execute is of minor consequenc,. All programmers,

however, should be aware of these problems. As networking

grows and as languages which directly incorporate paraJ.1el

processing become more prevalent, the onus of ensuring correct­

ness in the face no .longer solely on the

shou1ders of the systems programmer. Tools for the detection

and analysis of lurking bugs will become increasingly important

to both systems and applications programmers.

We have been careful so far to refer to the system

herein described as a "facility" or a "too1" for debugging,

not actua.J.J.y as a debugger itself. It all.ova the user to

monitor and influence directl.v only the interprocess

communications during a particular computation, not the

sequential instructions that define process nents (as discussed

in the first chapter) • By use of thi.a facility, bugs can be

detected, be they lurking or otherwise, in an indirect fashion,

based on how these bugs manifest ,themselves as errors in the

communication streams. In conjunction with conventional

debuggers, which can be used to monitor and in:t'luence process

events themselves, this facility provides a powerful debugging

system for distributed computations.

It is assumed that the debugging facility will be used in

41

a number of ways. We don•t wish to overstate its use as a

detector of lurking bugs. Most users will employ it simply

to check whether interprocess communications proceed in a

reasonable fashion. They will execute a handful of compu­

tations, permuting the order in which packets are sent and

received, varying transmission times for particular packets,

losing packets, etc, until they are reasonably certain that

their application !unctions correctly under .19.111 conditions.

A second, slightly more sophisticated, mode of use would

be to monitor and influence communications up through a certain

point in the computation. The user might then choose to

monitor or debug directly any one of the nodes involved in

the computation. He may employ a remote debugging facility

to examine another node directly from the node at which he is

situated. (In the Alto/Ethernet enYironment there exists a

remote debugger called Telepat (Xerox79c) which allows any

node on the network to attempt to debug any other, with the

consent of the latter.

between the two sites.)

This is achieYed by passing messages

He may also physically go to the

site he wishes to examine and make use .of a conTentional

debugger existing there. Debugging (by either means) can

proceed up through the next internode interaction involving

that site. Thia can be done for all nodes inTolYed in the

computation. The user may alternate between using the

debugging facility to monitor communications and debugging

sites individually, remotely or otherwise.

Finally, the facility may be used to detect lurking bugs.

42

No claim is made that a11 J.urkingbugs will, or even can, be

detected since it is usually impossible to test a1l pesa1b1e

process execution sequences for correctness. For any untested

execution sequence there may exist undetected lurking bugs.

However, we hypothesize (with fairly strong feelings of

justification) tbat it is often the case that the user has a

general. "feeling" for his program that tells him which particu­

lar execution sequences are more likely to houae lurking bugs

than others. The facility provides a tool to allow the

re-creation of those execution aequencea.wllich are of

particular interest, via manipulation of tbe communication

streams. The user chooses for exam:tnati.on a amall subset of

the myriad of poaaible computatiens.

As an example, the user may formul.ate a set of computations

that causes al.l the code in every procesa·to be executed at

least once. In ooamnmi.oations software, a great deal of code

is often written to hand.le unusual conditions (for example,

extremely long packet transmission delays due to hardware

prob1ems). Since these conditions a:arel.y occur, this software

is left untested. The debugging :tacUity allows th.ese

conditions to be simulated, creating a set of teat cases 1n

which a11 program code is executed. If these ylf..e1d satis­

factory resul.ts, the user may presume (perhaps justifiably,

perhaps not) that hie code is free of lurking bugs.

This example hints at how the debugging facility is used

to create different execution sequences. By de1ayi.ng a packet,

for instance~ the user may delay the execution of the receiving

43

process, thereby changing the order of processor acquisition

by processes at the receiving node. The user then determines

whether his program functions co?Tectly for this particul.ar

execution sequence which he has just produced.

Debugging in this fashion may be likened to a chess game.

During any move, the player has dozens of a-venues to explore,

and the deeper he searches the more rapidly the number of

alternatives increases. However, the vaat majority of such

moves are tacticall.y silly or meaiiingl.ess. The player does

not get bogged down in analysis becau.ae he ie able to

immediately dismiss these poasibilities and concentrate on the

handful. of interesting IIOTea. Like the cheae player, the user

of this debugging facility ia able to ttl1m5na'te al.l those

possible computations that he teela are not necessary to

explore. He is given a tool which al1owa him to concentrate

only on the meaningful alternative•~ Be poeaeaaes precise
contro1 over the interprocess coanmioatione occurring during

the execution of the program.

To continue the analogy, moreover, a single session with

the debugging facility can be likened to the ohese pl.ayer's

top-down exploration of a particular avenue of attack. By a

session. we mean-the interactive uae of the facility to monitor

and inn.uence the application through the course of a a1ng1e

computation. Juat as the cheaa player mentally decides on a

move to bring the game to a particular (usually more

advantageous) state, and then extrapolates his nert move based

on this state and his 9pponent 1 a rep1y, and so on, so the user

44

employs the facility to create various execution sequences to

bring his program to a particular state, and then decides on

his next "move" based on that state. This pattern continues

until the computation concludes.

We don't wish to carry this analogy too far, however. The

chess player possesses the lUX\1.l'Y of backtracking when his

extrapolations lead to a poor position; the user does not.

Backtracking would require the inclusion of state recovery

mechanisms which are well beyond the scope of this thesis.

The addition of these mechanisms wouJ.d, however, make for an

extremely powertul debugging facility, and this is a worthwhile

avenue for future exploration. 1 Currently, the effects of

backtracking are achieved by the clumsy method of restarting

the computation from the beg:1nn1ng, bringing it back up to

the last state that the user was satisfied with, and proceeding

on new paths from that point. The ability to accomplish

this implies that the user possesses the precise control

mentioned at the outset of this chapter. However, we shall

see in chapter tour that stochastic processes may work to

prevent precise control by destroying the complete transparency

of the debugging facility. Stochastic processes can reduce

a completely transparent debugging tool to one that is only

more or less transparent.

1 This is currently being investigated as a Ph.D. thesis
topic at M.I.T. by Wayne Gramlich.

45

2.2 Practical Considerations: Transparency and Artificially
Induced Communication Delays

The debugging facility is a program that enables

the user to be aware of any messfl,ge packet transmitted

by any process within the application being debugged.

The facility possesses code that inte~cepts any such

packet before it is sent to its desti.D.ation process and

reroutes it to a central debugging facility receiving

area.

This central area is responsible for reporting the

existence of the packet, as well as v~ious other per­

tinent information, to the user of the facility. The

user, then, is free to make decisions about whether this

packet is to actually be transmitted to its original

destination process, whether its transmission is to be

delayed for a specified amount of tiule, whether another

packet is to be transmitted in place of the one in

question, etc. The implementation of the debugging facil­

ity is described in much greater detail in the following

chapter.

Thus, the facility provides the user with the

capability to exam1ne and make decisions about packets

after they are transmitted from the source process and

before they are received by the destination process. The

destination process does not receive its packet until

46

the user has given explicit permission for it to do so.

It is therefore obvious that interprocess communications

will be slowed down by many orders of magnitude. The

central problem to be addressed, then, is how to maintain

the execution of processes at computer ap,eda in the

face of interprocess communications that proceed at

severely retarded, and quite arbitrary, speeds. The

user should be able to make decisions about packets at

his leisui·e, yet the computation. of the appiication must

remain coherent.

More than mere "coherence" is required, however.

What 1s desired is the complete transparencv of the

debugging facility towards the application program. It

makes no sense to attempt to debug a program when its

behavior bas·· been rendered unrecognisable b7 . "the

debugger itself. Jwst as a thermoaeter.,ough'i not to

affect the tempe:nture of a liq~d;vlµ.ch.is being

measured, so the debugging facility ought not to &!feet

the application which is being debugged.

How is execution affec"teci by arbitrary communica­

tion delays? Let us prej~~d that we have aa applica­

tion in the midst of execution with.process I on the

ready list of one of the partieipatiJa8 JlOdes at

time t. At time t + 1, a comam.nicat1on packet arrives

47

for process Q, which is duJ.y placed on the ready list at time

t + 2. At time t +:,,process J gets pl.aced on the ready list.

Finally, when process Q executes it noti!iea a process L (time

t + 4) and when process J executes it notifies a process M

(time t + 5) • '?hua the order 1D. which the processes acquire

the processor is: I, Q, J, L, M.

Bow suppose that the packet that should have arrived at

time t + 1 is, 1n tact, delaJ'ed until time t + 10 (becauae the

user has been f'Um1n1ng it). !hen not onl.y will process I

execute ahead O't prooeaa Q, but ao will proceee J. !his

reordering of the execution sequence has no ettec, un1eas

processes Q and J directly eomanm.ioate, eay,throqh a monitor,

during their exec11tiona. (Strictly' apeald.D4h this is not quite

correct: 1! prooeaaea Q and J cou.wu.aate eTen jpfirectb

during their e:&ecutiona, then there ~''be an effect. Indirect

communication betvNn Q and J iap11ea tbe,exill'ience ot aoae

process X au.ch that there are co111111nicaticm patu troa 'both

Q to X and J to x • .A. 29P9Piest1oa ati •zut• troa prooeaaes

Mm to ~, deno'ied -_ •'> ~ 1 -> x...2 •> • • • -) ~, it tor

every q, m<.q<n, a packet atreaa,1• open.between Xq ud llq+1 ,

or a monitor en.ate that is acceaai'ble to both llq and l\+1 •

This definition 1a-a1mlar to the a1a ooaoept foUDd. 1D.

Bryant77.) Suppose that the7 do. ~baa, 1D. the · first case,

process Q enters the monitor before proceae J. In the second

case, the entry order ia rneraed. !he cenaequence-of thia is

that both Q and J see different states ot the monitor data than

they would have had the packet'• arrival not been delayed by

------ ------------------------

48

the user. It is then possible that the actions performed by

both Q and J will be different from what would have been had

the packet not been d•layed.

The !act that the processes .will see different monitor

states than thay would haTe is a coaeequence ot the semantics

of the.monitor construct. Upon entry to a unitor, a process

may aee, not a particular state, but.any one of a range of

states that satisfy the monitor invariant. As far as program

correctness goee, as long'"•• each entering process aeea some

state that aat1~1es the invariant, the order of process

entries makee no difference. Monitors, then, are deaigned to

take into account the inherent nond.ete:rm1nacy of parallel

processizl&.

Yet we.villh to draw a 41stinctionbetwffn program

correctness and the maiD.tenance of 4ebucger transparency. !he

reader must realize that the acenario described above vio1ates

the principle of transparency ot the debugger facility. '?he

facill.ty has made its presence lmovn to the application by

causing various. states to arise that •ould not have arisen had

it not been preaent.

Thus one effect of delaying the meaaage lies in the

states that processes Q and J will see and the actions they

wil1 take baaed,on these states. !for 1a this ettect limited to

only proce ases Q and J. The. order 1n which Q and J execute

will determine the order 1n which Land R, the processes Q and

J notify, execute. It L and M communicate via a monitor, then

the same problems apply to them as apply to Q and J. Thus it

49

is not difficu1t to see that a singl.e debugger facility

induced change in the execution may proJ)&Cate rapidJ.y,

perhaps vastly altering events rigb.t tbrouch"to tu ooncluaion

of the execution.

Bor are these effects lill1ted aiaply "to di.t:!erencee in

the values of data seen by ;prooeaes. ·Su.ppoee that process I,

above, is in charge ot making nre tut the oomann1t:atioa

stream between proceaa Q aDd the prooeea eeJl41q the packet is

functioning correctly ud ierminatinc "the oomaection if it is

not. It 1D1Q' 'be that I ud Quan a aollitor whereby Q, v.pon

receiving ita packet "1eue■ word• tor I tut the etr•- is

:tunctiollinc normaJJy. I periodically wa.ite, wakea up, and

checks this monitor. If I makes z consecutive checks without

finding thai. Q baa received ita packet., it aborts the entire

connection, destroyinc any re1atecl 'tablee 1t may have eet •P

for bookkeeping purpoees. When paoketa arrive on time, I and

Q a1ternate in execution (ienori.Dg .G'i.ber proceasea at the node):

IQ IQ IQ ••• When packets babiilull7 arrive late 4ue to

. the aff ecta of the debugger faoiliiy • the e.ncutt.on 11.ight be

I I I ••• IQ I I I ••• QI ••• !he r1ak of I destroying

a connection that o\lght not be dea-troyed. ie apparent.

!his, than, is the rea1 danger :.Lntrociu.o-4 by lack of

transparency on the part of the de\nlger faoUitoy, the destruc­

tion of communicatio.u etreaae (an4 consequently the disintegra­

tion of the computation) by prooeeaes vaich presume oo1111llUli.ca­

tion failures becauae their real-tille expectations (that is,

their insistence that certain eTente must take place within

x seconds) have not been met.

50

How do we combat a1l of these problema? One way to mask

arbitrary communication delays due to the debugger facility is

to s1ov down the executions of the processes themselves to

maintain synchronization with the alovecl down communications.

This is achieved by process auapenaion, that is, artifio:lally

del.aying a process which is ready to execute from acqu.iring

the processor. Purthermore, when a proceaa that is supposed

to receive a packet bas its execution del.ayed because the

packet baa been delayed, ve prevent the execution of processes

that should not execute until after this one, by auapending

thea. In the .. example diacuesed earlier, if the packet for

process Q ia del.ayed, in turn delaying the .execution of that

proceaa, then process J should be artifict•Jly delayed, or

suspended, until such time as proceaa Q receives its packet

and executes. Then the problem of J entering a monitor before

process Q and aee1n« a state it vou1d not have seen, and the

problem of J notitying M before Q can notifJ' L thus altering

the sequence 1n which X and L execute, become nonenatent.

We state that for a given node, the prc,blem of maintaining

transparency is solved by ensuring that the order in which

processes are p1aced on the ready list, hence the order in

which proceasea execute, is the same vi th the deb'Q8ging

facility present as it would haft been had the application

been ezecuting without it. So far transparency has been

discuseed onl.7 in an intuitive manner, and we aak the reader

to accept this above assertion intuiti'Yely, for the moment.

We postpone a more concrete discussion of transparency and a

51

more deta11ed explanation of this statement until the nert

section.

At any rate, in our examp1e, when prqoeaa Q cannot

execute because ita pac~et hae been del.ayed.,"ve auat make sure

that no other prooeaaes execute in the 1.nteria. This is e-..111

accomplished by having a debugging~facility~reated prooesa

seize the processor and 1oop until Q'a packet arrives,at which

time the processor can be re1in.quiahed ud Q can execute.

This mecbaniem is referred to as ng4e fMIRJlfiop, since its

effect is to prevent UJ activity from ~.,ting place while Q'a

packet is being awaited. A.t the tillle of reliDqw.abment, it is

the job of the looping proceaa to. restore the .a tat• eno,nmtered

when the proceaaor was eeized. Thua, node 11111Jpenaion is

rendered inTiaib1e to the processes of the application bei.Dg

debugged.

Of course, there is nothiDc new about •this procedure.

Conventional debuaB9ra bave al.ways 11Sed it to allow break­

pointing. The user bas always beea able to apeoify an

instruction at which he w ishea his applioation to be .a..i.uspended,

to exam1n'9 and alter the state of the computation at his leisure,

and to recommence execution when he 4eair••• Theore1:1oaJJy, a

debugger guarantee,a tbat brealcpointj.ng ia tranapare~t by

restoring the state at the ti.lie the breakpoj.nt ooourred when

execution restarts.

But now we are dealin& with distributecl systems, where it

is impossibl.e to suspeJld the computation by seizing the

processor, because there is more than one processor. If we

52

suspend processes at one node and al.low other nodes to

continue executing, then communications may break down

because the delay time of packets origi:na:ting 1'rom the

suspended node will prove intolerab1e, and will appear to the

unsuspended processes as stream ta11ures. · These processes

would close the streams and the computation would disintegrate.

Suspending one of the nodes involved in the computation

for x seconds causes this node to execute x seconds "behind"

all o:1' the other nodes in the computation. This means that

other nodes will see (through the coJIIIILUJUcations strealll8) all

events at this node occurring x seconds later than they would

have bad the node not been suapended. The transparency o! the

debugger tacilit:,would again be lost. Just as transparency

was lost when packets were delayed ~or user examination, it is

now lost because packets from this node have been delayed due

to node suspension.

One might attempt to solve thia by auspending all nodes

simultaneoualy whenever any o! the nodes needs to be suspended

creating a kind of internode breakpoint. Then, relatively

speak1ng, no node Will be percei•ed as having 1ost x seconds

because all nodes w 111 have lost the identical amount of time.

Conventional debtJB89rS achieve breakpointing by stopping all

processes at the same point in time~- Thia is easy to do when

onl:, one processor is present. It 1s, however, impossible to

achieve in a distributed system siD:ce one cannot guarantee

(due to unpredictable loss or delay) the simultaneous receipt

by al1 nodes of "suspension command" packets. Nor would it

53

do, as an escape from the necessity of esimU:.taneous receipt,

to incl.ude in each packet the time at which the node should

suspend itsel.f (so that each node will suepeDd at some time,

x, in the future). Thia is because it 1a impossible to

maintain the perfect synchronizatio.t:1 of the clocks at each

node, and, more importantl.y, it is ilDpoeaibl.e to gU11,r&11tee

that transparency vill not already be,l.ost before time xis

reached. Thus, ve cast about for a solution 1'Q.1Ch is

independent of the concept ot aimult~•o~ events; independent

of the notion that suapenaion ot all. ~ocles ll!Nft occur at a

singl.e point in time.

We jW!lt now stated that a nocle.,r1.JJ. ~ot notice that

another baa been auepended until it. t1xam1Dte. its colPD1l~1cation

ports. Herein lies our salvation, tor ae lcmg as there is no

communication between the a uapended,. and urJ.111.µJpttnded nodes, the

latter cannot possibly notice a l.oae of truepareno7.

Suspension need not be done until .euco. ti.lie•• one ot the

processes at the unaW!lpended node nqueeta.J packet. Then this

node is suapended until it can receive its packet from the

orig1nal, suspended node, which, in tun?-, proceeds when the

user is through examining the orig1.pa.1 delayed packet and

allows it to be sent. Thus, to ren4e~ deb~ facility

induced communication del.ays inviaiblf, the execution proceeds

with various nodes al.ternately in states ot execution and

suspension. Node suspension occurs wl:l.e~ever a process on that

node requests a packet. It may l.ast for .an arbitrary interval

of real. time. It concludes either when th,e requested packet

,/

54

arrives or when it 1s finally determined that no packet is

availab1e to satisfy the request.

How the processes of the application are,no longer

executing in real time. Bode suspension baa oauaed execution

to alov down the•- amount of time for each process on the

same node, but, suice the length of suspeaai.on of one node ia

unrelated to that of another, different amounts of time for

processes residing on separate nodes. Baoh -D.Ode now ia

executing in a logical. tye, reading ita own l.od.aal, cl.ock that

is unrelated to the logical cl.oak of any other.node.

!he consequence oft~• 1a that the •1m:lng relationships

that would have exiated between proceaa exeouti.cma on different

nodes are obanpd. !he7 are not the _, aa they would baTe

been had all nodes been- executing in real ti.me. Hence, there

ia.,again a danger that tranaparency vil.l be lost. Por example,

su.ppoae process A at node arr01PUD1aatea· Yd.th proceaa Bat node

b and process O at node c. '.Purthel!IIOre, euppose that, due to

node auspension, node c i.a executing behind node bin logical

time. !hen it is poanble that -•age ~• from process B, will

reach process .A. before message lfc, from prooeseC, when, bad

execution been proceeding normall.y inreal. time (Without the

debugger facili.ty) the order of receipt would have been

reversed. !his is one possible eft-ect whim a node baa been

caused to execute more slovl.y than it would ban.

Furthermore-, the tact that a node executes behind

another in logical time implies that the latter is executing

ahead of the tirat (ot course) • '!hie lead.a to yet another set

55

of problems. Suppose process C, above, is exnecting a packet

from process B. It is possible that process C will receive

the packet too early, earJ.ier than it woul.d ha-ve had execution

been proceeding normal.J.y in real tiJne. It is interesting to

note that a solution which takes into account the effects of

packets arriving too late must al.so consider the eff~cts of

packets arriving too earJ.y.

All of these probJ.ems, which are due to the alteration o'f

internode timing relationships by the debuagin8 facility, are

solved by a mechanism which causes~ process to see al1 ex­

ternal e-vents (those due to other processes) in the same rela­

tive time and order as it would have. seen. them bad the debugging

facility not been preaent. This ±a aocompl.ialMtd by assigning a

timestamp to all external. events of whi.oh a proce,ea is aware

(in other word.a, assigning a timestamp to each ·packet in the

communication stream; .a process cannot be aware of an external

event unl.eas that event ill reported to. it via the aomm.unioation

stream). Timestamping was first used (Johnson75) to order a

set of events when the danger of a different, incorrect,

ordering being perceived arose. However, the mechanism was

used to soJ.ve an entirely dilferent

here. We def er until chapter three a description of the

method by which timestamps are formulated and assigned.

To summarize this section, then, we have stated a need to

maintain transparency in the face o~ artificially induced

communication deJ.ays. We suspend the process which is

expecting the delayed packet in order to render the deJ.ay invisible.

56

Then, to make sure that other processes at the same node do

not notice monitor states that they should not because of this

suspension, we suspend the entire node. This ensures that the

ordering of events at the node is unaffected by the debugging

facility, hence transparency is maintained at tbat node.

Finally, to keep the order in which all external events are

perceived invariant, we assign timestamps to these external

events. This preserves each proces·s' perception of internode

tjmjng relationships. ~reserving the order 1n which events

occur at a specific node, and maintaining the order and tim:ing

/ of external events as seen by each node is, we postulated,

both necessary and sufficient to maintain transparency towards

the application. The debugging facility, as a result, only

affects the application in ways dictated by the user. The

user possesses pre<lise control over the events in the system.

The measuring tool, itself, does not affect that which it was

assigned to measure.

57

2.3 Theoretical Basis: Causality and Systems of Logical Clocks

We now wish to axamin~ the issues discussed in the last

section from a more theoretical perspective. Our reason for

doing this is to show how a debugging facility ought to work

for any process system, not just tor the ilto/Meaa environment

in which it has been implemented. Before ve can do this,

however, ve need to precisely define a term. we have used

somewhat loosely thus tar.

A computat:J,op. c, (Van Horn66) is defined to be a single

execution of the proceaaes making up an application. It is

represented by a ,rs, R, (Van Horn66) which is, in turn,

defined as the ordered pair <5a, !a'> where 5R 1a an initial.

computation state (the state of the machine when the

computation commences) and Ta ia a (poaaib;l.7 empty) trspitiop
'\

'

fequepce To, T1, T2, ••• , T.ll where each f'i ia the eet of

processes in execution during the time interval Ci, 1 + 1). The

_number of ele•nta in each set, T1 , is l.imited by the number

of processors involved 1n the execution. The transition

•equence, TR, is a generalization of the turna-histon concept

(Jafte79). A turns history 1a merely a sequence of prooeaa

names, indicating the order in which processes execute on a

eiy\e processor.

Because of nondeterminacy of execution, the run of a

computation performed at time t may differ from the run of a

computation performed at time t' even though the executing

application is the same 1n both cases. ilao, a run specifies

58

a11 the interprocess t1rn1ng relationships among the processes

of the application. That ~s, by looking at the run, one may

determine which processes executed before or a.tter others, and

which processes executed in parallel. For any time, t, the

identity of processes executing at that time may be d etermined.

Lamport (Lamport78) has devised a ~eful. way to repreeent

sets of computations pictorially (see figure 2.1). In this

diagram, each vertical line represents the execu"tion of a

distinct process involved in ~he application. The dota on each

vertical line represent the sequence ot events that define that

process. !he wavy arrows represent any form of interprocess

communication. Lamport defines these as representing the

tranamission of a packet by a process (the tail of each wavy

arrow) and the receipt of that packet by another process (the

head of each wavy arrow). Since, in our system, interprocess

communication is achieved either by the explicit tranaaission

of packets or through monitor interaction•• we extend this

definition. The wavy arrows will also represent the release

of a monitor lock by one process (the tail of each wavy arrow)

and the acquisition by the next process of that same monitor

-lock (the head of each wavy arrow). The vertical. direction

represents the passage of physical time. That is, the events

at the lower part of the diagrant occur (in real time) before

those that are higher. The intersection of a dotted line and

a process arrow represents the instant when the clock for that

process reads time t. Since all proce_ss clocks run in real

time (asanm~ng they are well synchronized) it is reasonable

59

r4 - - - -
P4 Illa - -

- .
r:,

~ - --
- - - -
- --- -

process P process Q process R

:PigUre 2.1

(fromCLamport78), fig. 3)

60

that these dotted lines are horizonta1.

Lam.port defines what it means for an event to "happen

before" another in this system.

De1'1nition. The relation"-)" on the set of events of a
ayatea.ia the aall11st re1ation Ntiafyq the folloWing
three condition■: (1) It a and bare events in the same
proceaa, and a com.ea before br ··~ a->- b. (2) If a ia
the send.ill& of a message by one process and b is ·,he
receipt o:1' the, ... :meaaqe by:anoiher P'Oc•••• then
a-> b. (3) If a-> band b -> c then a-> c. Two
distinct events a and bare aaid to be OflCVT•n:t 11'
a~> band b ~> a •

• • • It ia easy to aee that a-> b -• tbat one
can go from a to bin the diagram by moving forward in
tille along proo••• and me.age J.inea. Jtor ·example, we
ha-ve :p1 -> r 4 in P1gure C2.1J •

.&llotber way of newi.Jlg the. • 4e:f1Di t"i.011 ia to say
that a-> b means that it is possible fore-vent a to
oauall.y affecrt eTent. 1>. !wo·evenw &N oollOUl"!'ent 11'
neither can caueaJJy affect the other. For emple,
even.ta i,, and Cl:, ot figure C2~,1~ ·aw concurrent. {Lamport78)

Thus we see that a diagram such as this can be used to

show both "happened before" and "concurrent" relationships,

ensting among the events in the system. It represents a .w,
of computationa,,rather than a particular computation, in that

there may be more than one run that yields the "happened before"

and "concurrent" relations depicted. That is, it is possible

that there are many sets of interprocess t1m1ng relationships

that yield the same causal dependences as shown 1n the diagram.

For example, if arrow m1 represents a monitor entry, then

any computation with a run which has procees Q entering the

monitor immediately followed by process R may be included 1n

the set of computations depicted by the diagram. The other

timing relationships in the diagram may serve to narrow down

the set of represented computations somewhat further.

61

Suppose we decided to see what woul.d happen if one of

the communication arrows 1n the ftgure (arrow m2) was

lengthened (as in figure 2.2) so that the head of the arrow

intersected with the process line at a higher point, later in

real time. It ought to. be clear that the caueal relationships

defined by the original diagram have been lost. Whereas before

it was pessible for q5 to causally affect p4 (q5 -> p4), now it

is true that q5 am p4 are concurrent. Therefore, the new

diagraai represents a new set of causal relationships distinct

from that of figure 2.1. {In fact, we point out tbat the

lengthening of the arrow may mean that event p4 will not occur

at all, or will be replaced by event z1, as 111 figure 2.:,.

Then,certainly, the relations represented ill the original

figure have been lost.)

We would like, however, to maintain the same causal
"

relationships as shown in the original dia,sram. We do not

mind changing the run (changing the interprocess timing

relationships to create a new set of computations) as long as

it is possible to retain the or1ginal "happened before• and

"concurrent" event relations. That this is possible we

already know, because it was stated above that more than one

computation may define the same set of causal relations. We

search for a new computation to maintain these in the face of

the lengthening of one of the communication arrows.

It is clear that in order to compensate for the stretching

of the arrow, the vertical process line, P, must also be

stretched so that q5 can once again be seen as "happening before"

62

- -
- -
- - -
- - -

P3 r2
- - - - - -

P2 - -
- -

P1 r1

prooeaa P proceaa Q process R

Figure 2.2

(based on (Lamport78), fig. 3)

63

r4

- - -
z1 - - . r3 - - - -

44 - - - -
43 - - - -

r2 - - - - - - '

- -
- -- -

P1 . r1

proceea P procesa Q process R

Figure 2.:,

(based on (Lamport78), fig. 3)

64

p4 (see fig-.1.re 2.4). Notice, however, that this will cause

the dashed line representing physical time to be bent away

from the horizontal. This implies that processes Q and P will

read the value x (the time represented by that dashed line) on

their respective clocks at totally different real times. This

is not possible in a system of w~ll synchronized physical time

clocks. Here is the crux of the matter. A new set of

computations can be found to restore the original causal

relationships, however none of these computations are

executable in rea1, physical time. That is, an abstract

mechanism, a lo·gical time clock (as oppcsed to a physical time

clock) mu.st be introduced into the system. Furthermore, there

must be a private logical clock for each process, since

various alterations of the communication arrows may rapidly

cause all processes to be executing in their own unique logical

times. The new set of "logical time" computations may be

depicted as in figure 2.5. These logical.time computations

and the original set of real time computations 1n figure 2.1

both yield the identical set of causal relationships.

Now we state the central point of this thesis. As

Lamport bas pointed out, "• •• sbtil is no way to decide
which of these picuures Cfigures 21 1 and 215J is a better

representation, I ," of the particuJ.ar set of causal

rel.ationships. Practically, thi"smeans that it is possible

to simulate the effects of the real time computations

using one of the logiaal time computations. Causality

can be maintained in the face of alterations in the

65

- -
- - -- - -
- - - - q:5 - - ~ - -

~ r2 - - - - - - '
P2 - - -- - -
P1 q1 r1

prooese P process Q process R

Figure 2.4

(based on (Lamport78), fig. 3)

66

......
......

-- --- , __

process P process Q process R

:Figure 2.5

(from (Lamport78), fig. 2)

67

lengths of the 0O1DD11mieationa arrows.

The use of logical time is an attempt to have each

process "believe" that it is executing in real time. That is,

the process perceives that all events, both internal aml

external., are occurring at the same time whether real or

logical time is bei.ng used. !his occurs because processes,

under the simulation, are mad.e to read logical rather than

physical cl.oclts.

!he relationship between this discuaaiOJ;l and that of the

previous aection oupt to be clear. the extension of a

co111111U11ication arrow correepom•.to a debugger facility induced

packet tranim1.aaion delay. The lengthening o'l .the ..-ertical

line of the recei'ri,ng _procaaa correaponda to the artificial

auapenaion of a proceaa for a period of time by the debugger

facility. 'limeatuaping 1a achieTed through the use of

logical clocks, refleotiDg the paaaap of logical time.

Furthermore, we now see 1:hlJ't the concept of transparency

has been made more precise. Mainta:l a:hiag :th• order in which

processes execute at a node, &114 maint•1n1ng the correct

sequence and timing relationships of all external nents

perceived by any process is another way of stating that the

causaJ. relationships between events of the application have

been maintained. Transparency, then, is achieved by

maintaining these relationships in the face of artificial

communication delays caused by the presence of the debugging

facility.

We conclude this section by pointing out that the

68

identical solution to the transparency problem, discussed

in the previous section on a practical level, has now been

motivated on a theoretical plane.

69

2.4 The Uncertainty Principle of Program Debugging

It is the job of a debugger to maintain causality

relations while providing the user with the tools ,necessary

to detect bugs, lurking or otherwise, in his computation.

Only if the debugging tool is reasonably transparent is it

useful. We have shown, both in a theoretical and practical

fashion, how such transparency might be maintained. After

describing a Mesa implementation of a debugging facility, we

return to the problem of transparency in chapter four. An

important question which we have not yet answered precisely

is, "What computations are we maintaining the causal

relationships of?" In other words, if we are maintaining

transparency, what are we mainta1n1og transparency towards?

An analysis of this will show that, as previously stated,

complete transparency is an unattainable ideal. Stochastic

processes reduce our debugging facility to possessing merely

a high degree of transparency towards the application being

debugged. The tool must affect that which it is measuring.

70

Chapter Three

Imp1ementation of the Debugging Facility

This chapter describes, 1n detail, the 1mp1ementat1on of

a debugging facility tor distributed applications. The

hard.ware environment for this project was the Ethernet network

of ilto minicomputers, as described 1n chapter one. The

software environment was provided by the llto/Mesa programming

system, a1ao diacuaaed 1n the first chapter.

71

3 • 1 Overview of the Facility

The code for the debugging facility consists of two

physically separate units. These will be referred to as the

central debwvmr ,it, cod9 and the depugpf pub ;gae. The

central debugger site code executes on a particular node

designated the central. d;!b\\Uftr sii•• UeueJJy, we will use

the shorter term, 99ptt1J, sitt, to refer either to the central

debugger site or the centra1 debugger site code. Context

should make the intended me&P1Dg c1ear. ilao, the debugger nub

code Will usually be referred to simply as them,.

There is but a sing1e central debugger site (hence a

s1ng1e version of the central debugger site code). However,

there exists an identica1 version of the nub for each app1ica­

tion node participating in the deb~ session (aee figure

3.1). The nub processes execute alongside the app1ication

processes residing at each application node via the 1nter-

1eaving mechanism of the ilto processor. In the sense that

the central site and nubs each execute on physica11y distinct

nodes and in fulJ. cooperation, the debUBging facility described

herein is, 1n itse1f, a truly distributed program.

The arrangement of the facility is quite similar to the

tree structure of Metric referred to in chapter one. Each nub

can be 1ikened to one of Metric's object system probes. The

central site is akin to Metric's accountant and ana1yst

executing on the same node. Just as each probe sends packets

to the accountant describing events on the node it represents,

application node

application node

72

central
site

Figure 3.1

application node

communications
medium

application node

73

so each nub sends certain information reports to the central

site. However, the comparison ends at this point. The

centra1 site is no "passive engine" as Metric's accountant

has been described to be. We sha11 see that, •a.well as

merely collecting information, the central site acts on the

information by isauing ,c~JDIDRnds or replies to the nubs. The

central site act1velY controls, to a large extent, the events

which take place at any node participating in the debugging

session.

3.1.1 The Central Site

Before the debugging session. oommencea, the user

designates a node, distinct from any node on v!uch application

processes are executing, from which to monitor and debug his

application. Thia node ia the central debugger site, and the

user causes the central debugger site code to begin executiDg

here. (The stipulation that the central site must be

physically distinct from any node on which application processes

are executing is partially a consequence of the ,smell memory

size of each Alto. The central debugger site code uses up much

of this memory, leaTing little room for any application

processes to reside. Furthermore, the central site makes

extensive use of the Alto screen for reporting information and

receiving user commande. An,y application process also

requiring use of the screen would interfere with user monitoring

and debugging.)

74

The central site provides four eaaential functions.

First, it provides aenicing for a1l. nub' initiated requests

and handl1ng for all nub initiated reporte. · These nub requests,

reports, and .central aite .reepoaaea are tansmitted in the

form of overhead packets of which the uae-r and the application

program are never made aware.· Overhead packets are diatinct

from the packets that are spawned by app1ioation proceeaes

during the course of their executions. flHI latter are termed

application packeta.

Second, the central site may issue commands to each nub

on its own initiative. The nub is required to obey each

command so iasued. In 'this relattonlthl.p, the central site is

clearly master" the nub ia clearly lfl.Jffe.

Third, the oentraJ.•aiteacts aa a tellpOrary repository-

for application packets. In this 1mp1ementa'tion, the secondary

storage of the ilto, a disk (or, oceaa~ oaaJ ·17, a pair ot dieka) ,

is used to cache theae packets. Packet• that are so cached

may take up disk apace imlefinitel.y, or 11a7 be released by the

central site on.order of the ueer 1.11 an effort to create more

free apace. We add that overhead'packeta are uver cached in

this faahion. {Thia is another reaaon why the central site

code must execute at a phyeica117 cU . .tiJlc't node. In order for

the debugging facility to fWl.Ction reaeonably veil, there must

be a certain minimum amount of 41.ak apace for caching arbitrary

size application packets for arbitrary lengths of time. The

presence of such disk space at an appliea$ion node cannot be

guaranteed. Thua a separate node ia required.)

75

Final.J.y, the ce.ntral site provides the user with an

interface to the system with which .be ie able to .monitor and

contro1 the proceedings. The intormation now is bidirectional..

The centra1 site reports to the uaer:varioua·e'Nnta occurring

in the system and various data values. Thi~ all.owe the user

to mqp1,tor his application. The ceAtral .site .aggeuta from
the user various C<>IIIDaDdB which mut be obepd. TMs al.love

the user to debug his application.

'3.1.2 The Bub

Before the de ae:saion. ooaencea, the user mu.st

bind in a version of the nub vi.th ·.al.J. ~1.on code to

reside at a partiow.ar :node. An iuritj.oal. mlb vars.ion must be

bound, in this taahion, at each noae partacipattng in the

sessiou. !his binding is done at the time tbll application

code is configured {that is, at the tiae,tlle·var:J.ous appl.j.cation

modu1es at a particular node are linked topther to fora an

executabl.e program - this ie doneaf~e~ each imividual JllOCluJ.;e

has been compUed). fhu the exec.ting program at each nocie

is a combination of app1ica.t1on procae•ses and nub.· processes.

The nub performe a number of daties. It acta on.. behal.f

of the app1ication proceeaes executing at the node on which it

resides, forming a kind of liaison between these and the

centra1 site. A8 mentioned, it issues re11.ueeta to the central.

site whenever some application procesa requires it and iaeuea

status reports to the centra1 site as necessary. Furthermore,

76

it processes the replies to these requests and reports.

The nub is also responsible for the correct maintenance

of a designated memory location which is incremented at

periodic intervals by the Alto hardware. This counter

constitutes a iogical clock, of the type discussed in chapter

two. We note that there is only one such logical clock at

each node, regardless of the number of application processes

residing there.

Related to this is the concept of timeetampjpg~ as

introduced in chapter two. This function ia also performed by

the nub. All app1ication packets are timestamped based on

values read off logical c1ocks. Actually, the timestamping

mechanism involves the cooperation of two separate nub versions,

the one residing at the node from which the packet emanated,

and the one residing at the node where the packet is received.

Also related to this is the mechanism of node suspension.
The need for node suspension was motivated in the preceding

chapter. It is the job of the nub to make sure that node

suspension is performed correctly whenever it is required.

There are a number of coordination problems that arise here

which must be handled in a reasonable fashion.

Fina1ly, the nub is responsible for intercepting

application packets and rerouting them to the central site

where they are cached for a period of time, as previously

discussed.

In conclusion, the nub is responsible for the coordination

and correct functioning of the node at which it resides. The

77

central site is responsible for the coordination a~d correct

functioning of the application as a whole.

78

3.2 Routing and Timeetamping of Application Packets

We now follow the course of a packet spawned by some

application process as it makes its way through the debugging

facility system (see figure 3.2). We proviae the reader with

an understanding of the distinct roles played by the central

site and the nub and how they interrelate 'to :torm the larger

system. We also introduce the timestamping mechanism.

When an application process desire• 'to -send a packet to

some other application process it call• the internet package's

§!D4 procedure. This, in turn, makes use of a Sep.@Jtfer

procedure which eventually hands the packet o:tf to hard-ware

mechanisms that actually do the sending. The nub possesses a

hook into this SendBuf!er procedure. It causes the following

extra information to be appended to the app11cation packet:

1) T:Lme of Day - obtained by rea4iz18 the sending node's
time of day clock, implemt~tad. 1J1, hardware at each node.
All time of day cloc:p are ~ably well synchronized
and reasonably dependable. ·

2) Logical Time - obtained by Nading the sending node's
logical clock, as discussed pre-riowil.y.

Al.so, the identification field o~ the packet is replaced by a

unique debugging facility assigned identifier. The original

identifier is appended to the end ot the packet body so it will

not be lost. The reason for asa!gn1ng a special identifier in

this fashion is that the debugging facility must be guaranteed

that all packets emanating from a particular node are disting­

uishable (for purposes of acknowledgement). No two such

destination node

I
receivi.zJB
app11cat1on
process

79

central.
aite

Figure 3.2

source node sending
app11cation

process
I

80

packets may possess the same identifier. Now it is probable

that application processes will. have already made sure that

this is indeed the case. However, the facility cannot depend

on these processes to f"Lll.till this function. The facility

Jll\lSt be robust 1n the face of errors or oversights in the

implementation of communication protocols for the application

program. Thus it takes this burden on itself.

The ability to add extra word.a of information to the end

of each packet implies that the maximum packet size allowed to

the programmer must be a few words leas than the real, hardware

al.lowed maxim1.1m packet size. In the internet implementation,

a number of. words at the end of each packet are made invisible

to the application writer. Thus, the required extra informa­

tion can be added regard1ess of packet size.

We obtain the two time values (real and logical) at the

very latest moment possible, just before the packet is handed

off to the hardware. Thia is done in order to avoid the

possibility that the times will be obta~ned and then the

sending process will be forced to wait on aom.e monitor lock

for an arbitrary 1ength of time, thus nullifying the appended

clock values. In the scheme presented here, any delays that

occur after the times have been obtained may be attributed to

hardware functionality, and are considered as part of

transmission delay time.

With this extra information, then, the packet is sent

across the Ethernet, arriving at its destination node at some

later time. (It is posa1b1e that the source and destination

81

processes reside on the same node, in which case the packet

does not physically pass over the Ethernet. However. this is

unimportant for our purpo~es.) For simplicity, we assume that

the packet is not lost or discarded, and arrives intact. At

the destination node, the packet is ro-q.ted through the Ethe.met

Driver and Main Dispatcher (recall c~pter one). ~he latter

hands processing off to an laetlnput procedure. The nub at

the destination node posaeseea a hook into this procedure.

Its first job is to determine that the packet ie indeed an

application packet that has been aent from ao• other ap~lica­

tion node (it is possible that the application packet has come

from the central aite - we come to this later).

If this is the case, the packet tiaestalllp is now obtained.

This is done by reading the tillle of day clock at the destina­

tion node and then performing the following operation:

t • L + (R - S) where

t • packet tilllestamp
L • logical time ~ket was aent by source node (from

source node ' a li:tgi.dal. c1ock) ·
R • time of dq packet vae re.oeived at deatination node

(appronmawly' be1cnt)
S • time of da~ packet was sent by s9uroe node .{from

source node•• -ttme· of day c1oek) ·

Land S were appended to the packet by the nub at the source

node.

Thus the timestamp is equal to the loSical time on the

sender's clock plus the delay time of packet transmission. R

is actually obtained just when the internet mecllan1am would

inform the receiving application process that a.packet has

82

arrived. t, then, represents the precise logical time that

the presence of the packet is made known to applieation

processes executin4i on the dest1nation node. The value tis

appended to the end of the packet.

It is interesting to note that the lQgical clock at the

destination node does not figure in the.tpeatamping mechanism

in any way. Furthermore, it is clear that obt•iJling a correct

timestamp is a cooperative venture be~ween the nub at the

source node and the nub at the destination node.

Upon obte.1n1ng the timestaap, the nub 1ubetitutea the

address of the central site in the paoket'a 4estina1io11 field,

after first appending its own add~••• to the end of the packet

(exactly how the nub is appraised of the oeniral site address

will be discussed later}. Now the.packet is in a auitable

condition for forwarding to the central.site.

Notice how the nub at the destination node grabs control

of the packet away from the internet code almost as soon as it

arrives and does not rel1'Jqu1ah this control at any time.

Timestamping and al1 other procesailig is done privately by the

nub. At this time, no application process ia aware of the

packet's existence. Its arrival and departure. are rendered

invisible to the application.

The packet now is again sent over the Ethernet, this time

to the central site. We assume that it arrives intact. Notice

that the packet has been routed to the central site by the

destination node, but maintains the address of the source node

in its source field (this field was untouched by the nub of

83

the destination node). Then, the first action taken by the

central. site is to determine that the packet is indeed from

one of the nodes participating in the current debugging

session. If this is the case, then the central. site causes an

acknowledgement packet to be sent to the aoK9e node (see

figure 3.3). !he destination node of the packet need not

receive any aclmowle4pment, although that 1a the node that

routed the packet to the central 11ite. If an acknowledgement

is not received by the source node in a reuonable amount of

time, it retranaaita the packet to the des-tinatioa node. The

central aite, then, requires a mechallisa to check for dupli­

cates of packets tbat u-.e arrived due to loan acknowledge­

ments. (It the aouroenode JllU8t·ntranmd.t tae packet, it

first obtains a new time of day, which replaces tae old time

of day previously appended. Thia ia so that the delay tille,

which will be recalculated at the destination node in an effort

to compute a new timestamp for this packet, does not become

arbitrarily large. A ·new logical tiae is w, obtained when

the packet 1a retransaitted.) The destination node nee4 not

concern itsel.f with any of this, however, It blindly reroutes

an:, application packet it receives, whether original or

duplicate.

Having acknowledged the packet, the central site proceeds

to restore the origJ.nal. destination no4e address in the packet

destination field and to restore the original packet identifi­

cation number in the ID field (both of these values ha.Ting

been appended to the packet body). It then caches the packet

destination

node

rerouted
to central.

site

84

tranemitted

packet

central

aite

Figure 3.3

source

node

acknowledgement

85

(discarding the extra information that had been tacked on to

the packet, ~ter saving it elsewhere) on a disk file

containing all packets bound for the node indicated in that

packet's destination field.

Here the packet remains until such time aa it is determined

that the packet is to be returned to the receiving process on

the original destination node {we will soon speak in detail

about how it is decided when, or, indeed, if, a packet so

cached is to be sent back to i ta destination node) • When the

packet is to be returned, the central site retn,evea it from

the disk. It proceeds to again append tbe packet identifier

to.the packet body and to replace it with a Ullique centi-el. site

identifier for that particular destination node. Bach node

participating in the session must see uniqwr identifiers for

each packet emanating from the central site {tor acknowledgement

purposes). No particular correlation need enst, however, for

identifiers of packets destined for separate nodes. ilao, the

central site replaces the original aourae address field with

the address of the node on which it ia executing, having

previously appended the original source address to the end of

the packet. Thia done, the central site semia the packet over

the Ethernet back to the destination node, periodically

retransmitting until it receives an ao)Ql()wledgement 1n return.

Thus, the destination node now receives the packet for the

second time. Whereas the first time it received the packet it

only needed to blindly reroute it to the central site, now it

must be able to handle duplicates arriving due to lost

86

acknowledgements.

Back at the destination node, the nub determines, by

inspecting the source address tie1d, that this packet has

returned from the central site (it is not arri'Virlg for the

firat tiDle)_. The nub reato~a the original packet identifier,

and the original source addrees. -J'in•lly, it causes the

packet to be handed off to the appliea,ian. process at that

node that ia to receive it. It is wt thie point that the

application prooeaaea become aware of this packet's existence.

87

3.3 Nub - Central. Site Interactions

We stated that the central site and each nub communicate

through overhead packets, those which are ape.lfl'led by the

deb~ facilJ.ty for ooordination pl&l"poees and which are

invisibl.e to the appl.ication bein4l debuccecl. Bach overhead

packet receives a special. deb\lgger protocol. Talue in ita

protocol field (recall chapter one). mua value ia not uaed

in any applicatio.n packet typee. It all••• 'ibe receiver

(either the central site or a nub) to determine that this is

indeed an overhead packet, and not an appl.ication packet. We

nov diacuaa each overhead packet type in turn, cOllllllenting on

the function of each.

3.3.1 Initialization Packets

A number of packet types are tranemitted back and forth

in an effort to 1.nit1ally establish colllllNl11oation links between

the central site and each nub version. These packet types

include the greetjpge packet, the greetiy-response packet, and

the unconditiopal-execute packet. The roles of these packets

wil.1 be described fulJ.y in the section on initialization

mechanisms.

3.3.2 Handl.er-Creation Packets

Handler-creation packets are transmitted by the nub to

88

the central site. Each must contain a unique value in its

identification field for acknowledgement purposes.

A handler-creation packet is uaed to inform the central

site that aome application process at the sending nub's node

has created a new handler for receiving pa.akete (recall c~pter

one). It contains tvo words of information; a protocol number

and a timestamp. The protocol number indicates that the

application procesa will only receive packets with that number

in their protocol field. The tiJDeatamp (obtained by reading

the node's logical clock) repreaenta the logical time at which

the hand1er waa created.

Upon receiving a handler-creatton packet, the central site

will acknowledge it and set up tablea'to indicate that a nev

packet protocol type is open tor receiving at the node :trom

which this packet arrived. ~hel'lllOre, all packets already

cached at the central site possessing destination fields

identical to the source field of tM&pa.oket and protocol

numbers identical. ;o the protocol value s}upped by this packet

are examined. m such packets with tillleatampa less than the

handler-creation timestamp are fiuehed'from the disk and

destroyed (on permission of the user),, thereby opening up space

for new packets. This is becauae all. packets arriving before

the handlerwaa created (aocordil1g ,to their timestamps) would

never be received by the application proceea (eee chapter one).

89

3.3.3 Receive-Request and Maybe-Receive-Request Packets

Receive-request and maybf-receive-regueat packets are

transmitted by the nub to the oentral ai te. Each packet must

contain a un:1.que value in its identifiqation fi•ld for

acknowle4Bement purposes.

4 receive-request or maybe-receive-request packet is

used to inform the central site that aome application process

at the sending nub's node has attempted to ~~ive a packet on

its input port via a receive or a maybe-receive, respectively

(recal1 chapter one). Each such packet oon•ina two words of

information, a protocol number and a timeetallp. The protocol

number indicates that the requestins application proceea

receives only packets with that number in their protocol. field.

The timestamp represents the logical time at which a packet

was requested.

Upon receiving a receive-req•at or a •ybe-receive­

requeet packet, the central. site wiU acJmovl.edge it and fork

a new process with a fw.nction of detend:aing the correct

application packet to be returnecl in reply,_ it indeed such a

packet ensts. The algorithm by which this is aoccmpl.iahed

wil.l be discussed in detail l.ater. The con-ect packet to be

returned will have a destination fiel.d iden~ical to the source

field of the request packet and a protocol number identical to

the protocGl value shipped by this packet.

The central site responds to a receive-request packet with

an appropriate application packet, or with a conditional-

90

execute packet. It responds to a maybe-receive-request

packet with an appropri.ate application packet, or with a

cannot-be-eatisfied packet. Conditional-execute and cannot­

be-satisfied packets are overhead packet types yet to be

discussed.

3.3.4 Conditional-Execute Packets

Conditional.-execute packets are transmitted by the central

site to the nub. Each must contau a unique value in its

identification field for acknowledgement purposes.

A conditional-execute packet is sent 1n response to a
receive-request packet (it is nner sent in response to a

maybe-receive-request packet) to the nub that isned the

request. It contains one word of tnrorma:tion, a timestamp.

Thia packet is used to inform. the nub that it mu.st execute up

through the logical time indicated by the enclosed timestamp.

Upon receiving a conditional-execute packet, the nub will

acknowledge it and save the timestamp. It will then allow the

application proceaaea at that node to execute until the

logical cl.ock at that node reads the saved timestamp val.ue.

At this point, the nub will. suspend the node and tranSJDit a

give-me-now packet to the central site, indicating that it

has performed the action requested of it.

3.3.5 Give-Me-Now Packets

Give-me-now packets are transmitted by the nub to the

91

central site. Each must contain a unique value in its

identification field for acknowledgement purposes.

A give-me-now packet is used to indicate that the nub has

al.ready requested a packet from the central site, received a

conditional-execute packet in response, has executed up to

the appropriate logical time, and now expects the central site

to forward an application packet to aati~y the origjnal

request. It contains one word of 1.ntor.mation, a protocol

number. The receive-request packet that is being followed up

by this give-me-now packet is the la.at one aent with the given

protocol number.

Upon receivillg a give-me-now p~cket, the central site will

acknowledge it and prepare to send, back,to the reqQsting z:t.0de

either an application packet vi th the ,;iven proto.col number,

another conditional-execute packet, or a cam1tot-b--satisfied

packet. We discuss this in greater detail later.

3.3.6 Can.not-Be-Satisfied Packets

Cfppnt-be-e&ti;fied packets are tranemitted by the central

site to the nub. Bach must contain a uniqllf val.ue in its

identification field for aclm,ovledg•~nt purposes.

A cannot-be-satisfied packet.may be sent in response to a

maybe-receive-request packet or a give-me-now packet whenever

the central site cannot find an application packet to satisfy

the request. It contains no extra words of iaformation.

Upon receiving a cannot-be-satisfied packet, the nub will

92

acknowledge it and inform the application process on behal.f of

which the last maybe-receive-request or give-me-now was made

that no application packet exists to satisfy the request. The

application processes resume execution without further

interference from the nub.

3.;.7 Clock-Update Packets

Clock-update packets are transmjtted by the nub to the

central site. !hey need not be acknowledged.

A clock-update packet is sent to keep the central site

informed of the logical time at the node of the sending nub.

It contains one word of information, a timestamp, signifying

the logical time at which the packet was sent. These packets

are transmitted periodically by the nub of each node

participating in the debugging session. In this way, the

central site is kept as up to date as possible regarding the

logical time of each node. Clock-update packets need not be

transmitted by the nub during node suapension (see section 3.4.3).

A tradeoff between efficiency and the number of clock­

update packets transmitted exists here. If these packets are

transmitted frequently, the logical times can be kept more

up to date at the central site and decisions about which

application packet to send 1n response to any receive-request

or maybe-receive-request packet can be made more swiftly (see

section ;.4.2). However, if packets are transmitted too

frequently, they may bottle up the communications medium

93

causing hardware failures. We have attempted to find a

reasonable median here.

3.3.a Package-Destroyed Packets

Package-destroyed packets are transmitted by the nub to

the central site. Each must contain a unique value in its

identification field for acknowledgement purpoeea.

A package-destroyed packet is sent when some application

process decides to close the internet comm'Wlications package
.

at the node on which it resides. It contains no extra words

of information.

Upon receiving a package-destroyed packet, the central

site will acknowledge it and prepare to dismantle all internal

tables and data structures perta.in;tng to that node. ill

packets currently cached at the central site with that node's

address in their destination field are flushed from the disk

and destroyed (on permission of the uaer). The net effect is

that the central site no longer considers that node to be

involved in the debugging session.

Upon receiving the acknowledgement from the central site,

and not before, the application is free to destroy the internet

package at that node. The nub ceases to execute there, and

further application execution takes place independently of the

debugging facility.

There is one caveat concerning all this. Subsequent to

destroying the internet package, no application process may

'

94

attempt to re-create it in order to rejoin the debugging

session. This is because it is impossible to tell whether the

central. site has already destroyed some packets that should

have been received by the node when tbe debugging session

recommences (e.g. those packets that are destroyed which

contain timestamps that are greater than the logical time at

which debugging recommences are posaibl-e candidates for such

reception). If this capability is desired, the centra1 site

must be altered so as not to destroy these packets vb.en a

package-destroyed packet arrives.

3.3.9 Enter-Debugger Packets

Enter-debugger packets are transmitted by the central. site

to the nub. Each must contain a unique value in its identi-

fication field for acknowledgement purposes.

An enter-debugger packet puts the destination node into

the Mesa debugger while under the control of tbe debugging

facility. The user is then able to physically go to the site

of this node and debug events occurring there up until the

next internode interaction at that site. This ability has not

been fully developed, however, as the nub is not coded to

correctly handle the logical clock mechanism in the presence of

the Mesa debugger.

Upon receiving an enter-debugger packet, the nub will

acknowledge it and cal.l the Mesa debugger into execution.

95

3.3.10 Ack Packets

~ packets are tranamit*ed in either direction, nub to

central. a.ite, or central site to nub. -Ack paaile'ts are used to

acknowledge the recep1;j,on ot varioua o1dier O"lWhead or

application packets. !hey contain on.e word of 1D1orma:tion,

the unique, de. tacil.ity a.es~ itlent.ifiaa•j.Qn t'ield

of the packet that is beiag ackmwl..edged. ;&ck packet• -need

not, theDUSelvea, be aolmovl.edged.

Upon receiving an ack packe't, 'the reoei'ri.Jlg si:be (nub or

central site) will cease retra aaion ot the acknowledged

packet.

96

3.4 Low Level Mechanisms

3.4.1 Initialization

One goal of the debugging facility is to allow the user

to station himael.t at any node on the network in order to debug

an application that may be executj,ng at any other set of nodes

on the same network. Thus, when the debugging aesaion

commences, the locations of the nub ·copies are unknown to the

central site, and the location ot the central site is unknown

to any ot the nubs. Some •thod is needttd to l.inlt up the

various parts of the facility, malcilsg sure that no app11cati.on

packets are being loet while the)i·JIJal.p ia accomplished. Onl.y

after linkage has been performed can the debugging session

proper get under way.
'
First we state that the debuggi:Dg facility places no

restriction on the order in which the'Vari1>uanodea involTed

begin execution. !hat is, the ceutrai nte and application

nodes may be brought up in any order and no application packets

will be lost. The facility will function cot+ectly regardless

of this order.

When the central site begins execution (before or after

some or all of the appl.ication nodes), thttwser ia immediately

asked to enter the internet addressee of all nodes participating

in the session. As each address is entered, the central site

transmits greetings packets to that node. These packets will

be sent periodically until acknowledged. Since the node to

97

which this greetings packet has been sent may not even be

executing yet, the centra1 site bas no way of knowing when a

reply might be received. Therefore it is w~JJ1ng to retransmit

greetings packets for a very long time. EventneJJy, however,

1:f no response 1s received the central site vil1 a1ert the user

tbat contact has not been able to be eatabliahed with that node.

The nub at an application node is not illJ.tializl)d until

some application process at that node creataa the internet

package. Since no packets may be. aent or received until this

1• done, it 1a obvi.oua tbat there 1e np need tor the nub to

exist until this time. !hus the applioatio~ FOC848•• at that node

execute 1ndepen4entl.1' until the internet _ . 1• created.

At that time, the delnigg;tng :facilit7 aa..-e oon:tro1 over

their execution.

The nub poaseaaea a hook into the internet creation

procedure. Ita first action is to cau,ae a node auape.uaion

until such time u a greetirJga packet ia reoe4,ved fJ;'-OID. the

central site. At this point.. it does not know the address of

the central site, but is able to detenine t~:t a greetings

packet has qri ved by 1 ts special. debus p,l'Otpool number. When

the greeting~ packet arrives for the first time (.J.at• arriving

duplicates are ipored), the addreaa of the central. site is

recorded and a greet~-rea.ponse pa~et ie sent back in

acknowledgement. Thia greeting-response packet c~taine a

time value which will be described shortly.

After the nub sends a greeting-reapon$e packet it is .D.21

free to al.1ow application processes to..recommence execution.

98

Node suspension is still in effect. The central site will

acknowledge the greeti.ng~response packet as soon as it is

received. However, this is merely so the nub can cease

tran8Jllitting it. It is not an indication that execution may

recommence.

The final stage of the initialization mechanism occurs

when the central site receives this greeting-response packet

from the node (late arriving duplicates are ignored). It

records the fact that this aode is aware of the existence and

location of the centra:L site and is currently under its control.

When such a greeting-response paok:et i's received from eyea:
node address entered by the uaer, then the central site knows

that all participating nodes are aware of its existence and

location and that they are all under the control of the

debugging facility. At this point, unconditional-execute
' packets are transmitted by the central site to each of these,

nodes, indicating the fact that they are all free to recommence

execution of their application processes.

With the receipt and acknowledgement of·the unconditional­

execute packets by each node, the initialization mechanisms

are concluded and application execution proceeds.

An important procedure 1s the initiali&iltion of logical

clocks. The user is given the ability to specify initial

values for each logical clock involved in the debugging

session. This, however, is an all or nothing proposition. He

must either specify initial values for all logical clocks,

or he cannot specify them for any. Logical clock assignment

99

is accomplished by some application process call.ing a special

logical. clock assignment procedure bounq in Wi1ih the .application

modules, but not really a part ot the nub proper. The user has

the opportunity to specify either the logical. time at which

execution of the application shoul.d commence at that node, or

the logical time at which the internet package is created at

that node.

If the user has specified a time at which the internet

package is created (this must be 4one befoN the packa&e is

actnsJly created), this value is sillply sav~ for futu,re use.

If he has specified a time at which .. executiOJl should commence

(this must be done before execution begins; hence, it.must be

the first statement executed at that node), this value is

1mmed1ate1y placed into the 1ogical. c1ock counter, which wi11

tick uninterrupted until the internet package is created.

When the internet package is ore.ated, the nub, as previously

mentioned, comes into being. It immed,iateJ.y records two values:

the real time ot day (from the time of day c,J.Qck) and whatever

value is current1y in the logica1 clock counter. · If the user

has specified a 1ogical time at which the internet package is

to be created, both of these value.a are discarded and the user

specified value is sent to the centra1 site inside the

greeting-response packet. Uthe us~r. has specified a logical

time at which execution cDmmences. the value read ·oft the

logical clock is converted to a value representing this

initial. time pl.us the number of seconds elapsed between the

commencement of execution and the creation of the package.

100

This final. value is sent to the central site inside of the

greeting-response packet. If no initial clock vaJ.ue has been

specified by the user, the time of day is sent to the central

site inside o! the greeting-response packet.

Thus the central site 1s in:t'ormed of the initial value

to be assigned to each logical clock.

User assignment of logical clocks is useful 1n re-creating

computations and machine states of interest. It allows each

node to begin execution at a specified time relative to al1

other nodes. It nullifies changes in computations caused by

changes 1n the relative time or order in which execution

begins at each node. Thus, the user can bring up each node at

his leisure without worrying about how this w111 affect the

computation.

101

3.4.2 Application Packet Selection Algorithm

When the central site receives a receive-request or a

_maybe-receive-request packet, how doe• it decide which is the

correct application pack•t, if any, to reapQJMi with? We now

e:ram1ne the algorithm that de-t;erminea this.

Upon receiving the request packet, the central site

records the address of the node from which it o-.me, the packet

protocol number desired, and the timeatQp representing the

logical time at which the request was issued by the application

process. A new central site process is detached v~th a function

of deterw1n1ng the correct reepcm,se to the request. When this

is f1n•lly accOJ1pliahed, that proceae ia destroyed.

Recall, from chapter one, that a maybe-receive-request

can only be satisfied by an application packet which arrives

before the request is made. However, a receive-request may

be satisfied by an application packet arriving either before

the request is made ~ in the interval between the time the

requesting process begins to wait on a condition variable and

the ti.me this condition variable times out. In the enauing

discussion, the length of this timeo~t interval is called t.

The process that is forked by the central site searches

through all currently cached packets vith a protocol number

identical to that found 1n the request packet and a destination

address equal to the source address of that packet.

Let us first A:ram1ne how a maybe-receive-request is

handled (see figure 3.4).

102

Ji..aybe-Reeeive Request

Application packet p cached_vith:
1 • coneot protoeol ·
2. correct destination
:, • tillleatami, t!lat ia--t

a) (request tilJleatamp
b))last hanciler-ohation

timestaap fo~ j~s
protocol·'& 4est1nation

c) (tj,,meataap of &.QY other
nch ci:at?· ··••

2
Any otller logical. cl.eek
(request t~~?

report to
w,er

4

obey user
Ct"lfflJDBDd

send cannot~be­
aatief1ed pack~

Figure 3.4

9

wait for
' · 11n atatws

14

103

The application packet with correct protocol and

destination fields that posseaaea a timestamp which ia less

than that of the request, greater than that of the last

handler-creation timeatemp for that protocol and. destination,

and less than the timestaap of a,l.1othar s•ch packets, is

selected by the central aita (box 1). Call this packet p.

Suppose such a packet ia not currently cached (box 1 , arrow F).

Then it muat be deteraiaed whether any logical clock, aside

from the logical clock.of the requesting node, read.a lees than
·(

the tilleatamp of tbe 11a7be-receive-'.N\ueat (box 2). If none

do (box 2, arrow J), ·· then. no applic~~;• packet . can poeaibly be
' . .

found with a timeataap atrictl.y.i.a.. taaa 'tbe t-iaee'Mllp of the

requ• which also -qontain.8 tp.e c~Q.'.t protopo:l IL04 dest1na­

tion fielde. In tJ:da ca••• a coneot 1'98ponff to the request­

ing node ia a c&m1ot-be-sat1afie4.,packet (box 3). The central

site will report itliintention to a6nd a cannot-be-satisfied

packet to the requ.ting aode (be%. 4). The. uer u giTea,a

chance to re,fl)Oad to thia intention (boxea 5, .. 6 &114 7 - aee

section 3.5).

If aome l.ogical oJ.ock exists which ~ad.• less than the

time stamp of the request . (box 2, arrow . '?) . t:ben 1 ~ ia possible

that some process at this node villJ"•'t.apava a pacllet to

satisfy the requirements in box 1. The central site does not

yet know whether this will occur. Thua the process that is

attempting to find a correct response to the maybe-receive­

request must wait for some new status to arise which will

al1ow it to make a decision (box 8).

104

At any given time, there are various processes at the

central site in states of suspension, waiting for conditions

to change so that they may determine the correct response to

the request' they were created to serve. The central site

wakes up allot these processes whenever an updated logical

time value is received for some logical clock or whenever a

new application packet arrives. Each process will recommence

its search for a reply. Perhaps now the correct response can

be determined. If not, a process will return to the suspended

state awaiting further application packets or logical clock

updates. Tb.is algorithm is continued until a correct response

can be found.

Nov, auppose that packet p is found (box 1 , arrow T) • We

ask if any logical clock, aside from the c1ock at the node of

the requesting process, reads lesa than the timestamp ot p

(box 9). If not, then p must bet-he earliest packet capable

of satisfying the request (box 9, arrow!'; box 10). The

central site informs the user of its intention to return p to

the requesting node (box 11). !he user responds to this

intention (boxes 12, 13 and 14).

Finally, suppose that p 1s found and there does exist a

logical clock reading a time less than this packet's timestamp

(box 9, arrow T); Then it is possible that some process at

this node will spawn a packet which can satisfy the request

possessing a timeetamp less than the timestamp of p. Since

the central site cannot determine at this time whether such a

packet will be created, the servicing process must wait for a

105

new status to arise (box 15'.

The aJ.gorithm for a receive-request is some~hat more

complicated (see figure 3.5).

The application packet with correct protocol and destina­

tion fields that possesses a timestamp less than that of the

request pl.us t, greater than tbat of the last h,andler-creation

timestamp for that protocol and destination, and less than the

time stamp of all other such packets, is s elected by the central
1

site (box 1). Call this packet p. If not prthlent (box 1,

arrow F), we ask if any other logical clocks read le~a than

the request timestamp plus t (box 2). If not (box 2, arrow F),

the only processes capable of creating a packet to satisfy the

request are those yet to execute betve,n the request time and

the request time plus t at the requesting node (box 3). A

conditional-execute packet ~ith timestl\lllp equ,u to the request

time p1us t (the time the requesting .J>rocee,s will time out) is

therefore sent by the central s1 te in reply . {box 4) • This will

be responded to With a give-me-now packet when the requesting

node reaches the logical time specitied by the conditional­

execute. However, if before this, some application packet

possessing correct protocol and destination ia indeed spawned

by one of the processes at that node (box 5, arrow T), then

this is the packet to satisfy the request (box 11). This is

reported to the user (boxes 12, 13, 14 and 15). If no such

application packet arrives before the give-me-n9w (box 5,

arrow F; box 6), then the request cannot be satisfied (box 7).

This is reported to the user (boxes 8, 9 and 10).

106

Receive Request

1

Application~pa,.cket p cached 1Pta,.
1. correct protocol
2. correct destination,
,. tures--p that its:

a) ~ request timestamp + t
b) ') .. latst bsndler-cre~tion..

time stamp tor, tUa ·
protocol and 4eltui&t1on

c) C timestamp of ~ Q~het
. . euoli paoltetf "' ·

Any other logical clock
C request timeetamp + t?

request cannot be
satisfied by any
process at any
other node

4

ataap (p)
timll

17 .

,1
tor

new
status

end conditional­
xecute packet with
imestam.p • request
imestamp + t

5

send conditional­
exacute packet
with timestamp

: = timest :~ (p)
Any arr1v1ngappl1cation
packet r with:
1 • correct protocol ·
2. correct destination
3. source iden-tical. to

destination
timeata.mp C' request
timestamp + t?

Figure 3.5

'

p

6
give-me-now packe

arrives

repor
8(lU8St

satisfied

8

user perm1ea1on
to NIMl?

T

107

Any arrtrtllg cpplicationr p&c!i,ttt JI W1 th:
1. coneo~ protoeef
2. correct deetination1,
3. s<>Qt'Ce identical to

deattn,.tion
4. ti,llftttt9.'1> (timeatqp Cp)?

give-me-now ·t,actt"t 26
arrivee

report to user

32
,-..

q aa.t~atiea request .

user permission to
send?

user permission to

31

108

If there is a logical clock reading less than the request

timestamp plus t (box 2, arrow T), then a reply cannot yet be

determined. A. new status must be awaited (box 16).

If p does indeed exist (box 1, ·. arrow T), then it is

determined whether some other logical clock possesses a time­

stamp less than the timestamp of this packet (box 17). If not

(box 17, arrow F), we ask if' the timestamp of pis greater

than the timestamp of the request (box 18). I:f not (box 18,

arrow F), p bas been determined to satisfy the request (box 19).

This is reported to the U8er (boxes 20, 21, 22 and 23). If so

(box 18, arrow T), a conditicmal.-execute packet ia sent to the

requesting node indicating that it must execute up to the

logical time given by·. the timeatamp of packet p (box 24) • If

some satisfying application packet arrives from that node

before the ensuing give-me-now (box 25, arrow T), this is the

packet to sati~7 the request {box '.52}. This 18 reported to

the user (boxes,,, 34, 35 and 36). If the give-me-now

packet arrives first (box 26), packet p satisfies the request

(box 27). This is reported to the user {boxes 28, 29, 30 and

31) •

J111nalJ7, if p exists and there ia a logical clock reading

leas than the timestamp of this packet (box 17, arrow T), then

a new status must be awaited (box 37).

Notice that no reporting to the user is done until such

time as the central site has determined the correct reply to

the request.

Also notice that whenever a node executes conditionall.y

~- -----

109

up through a specified logical time, it is possible that the

application processes at that node will spawn packet requests

(for differing protocol types, as only one protocol type can

be requested at a time) , rather than packets. This serves to

complicate th~ central site request handling nu,cbanism.

However, it presents no new conaeptuai difficulties, and we

will not discuss this further.

3.4.3 Node Suspension and Logical Clock Maintenance

In chapter two we mo~ivated the need for node suspension

and logical clocks. We now discuss how both a.re implemented

1n our debugging :tacility.

A node's logical clock advances 1n real time whenever

application processes at that node are execut~. A logical

clock ceases to advance whenever the nub cauaes a node suspen­

sion to occur. Node auapen.sion prevents the egecution of

application processes because, in effect, the nub seizes

complete control of the processor.

Node suspension occurs at a node whenever the nub needs

to communicate with the central site and some acknowledgement

of this communication is required. Node suspension terminates

upon receipt of a valid reply from the central site.

We now list those occasions upon which node suspension

commences and terminates:

110

1 • Commences: Upon internet package creation.

terminates: Upon :receiving aA uaoonditional-exeoute
packet from the centra1 site (see section
:,.4.1 for mort d•"ialla}.

2. Commences: Upon sending an application : packet •~wned
at that node to ita destination node (from
vhioh it is res-011-t-1-'to•t»••Centnl. site).

Terminates: Upon receiVW ~ i,.c)Qiowleq&eMnt of .
receipt ot that packet·froni the centra1
site.

:,. Commences: Upon traoamitt~ a reoeiye ... request or
maybe-receive~riquest packet on behalf of
SOM .&ppli~~Ql;i P~••

Terminates: Upon receiving from the central site in
Zfeply, an· app.U.G&;Uida 'JlillCJ)let, a condit,ional­
execute packet, or a camlot-be-eatiafied
p&Gket (•• ·u~o* ,.4;2 • ft~ mre detail■) •

4. OoJDmencea: Upon reaob1q tbe l.ogioal tc1.me- value
indicated in a conditional-execute packet
and'.:~~• •.gi.ve ·• :IIOV ·w ta oentral
site.

Terminates: Upon receivins from the central site 1n
reply, .an •»~c:,at~ ,~~1r.at. a c;ann()t-be:
satisfied packet·, ox• ~;r• ·cohdi tional.-
axecut• ~•-~-<••e. ~ :,.4.a and

5. Commence■:

!erminate■ :

6. Commences:
Terminates:

':5.4.4 for further 'deta a). .
Upon sending a handle:r-creation packet.
Upon aiclmOW3'adge1Nb.t; 'Ge··-oed.pt of tile
handler-creation packet by the central site.

t. · • ·1' '

Upon aendillg a package-destroyed packet.
Upon acknowledgement '·Ji ·receipt of the ,
paclcaP~••~;t"C>T'A-.P,a~t by .. the central .
site \vhenupon·tne nub at the node ceases
to exist).

Bow we exam1ne how node suspension is accomplished.

The nub poeaesses a hook into each·internet procedure

which, upon being invoked by some application process, requires

some kind of interact1011 with the cehtral site. The first

action per:formed by the nub in every case is to save the

111

current value on the node's logical clock. Then the nub

searches all PSB's (recall chapter one) to find all processes

at priority one (low priority) that are waiting on a (not

disabled) condition variable._ ·The timeout field in each such

PSB is saved and then set to z•ro. ln other words, the time-,

out is disabled. !he net efi'ect of this is ·that all priority

one processes waiting on some condition will not wake up while

the node is suspended. The nub accomp].1ah.es all this in a way

that guarantees it will no1i be 1n1ien-u.pted by any other process

(regardless of ~iority) euating at tbat node.

Now the 1111b causes tbe 1nvok1,ng -,plication process to

wait until a respon.ee 1s recei'Ved troa the central eite. The

nub wakes up the mME• a special &1gh priority process which

possesses no function except to execute u WiJlite loop to

prevent any application proceeses (at l~w priority)from

acquiring the processor. The looper pertodically yields the

processor to other processes at the same prior~ty and can be

preempted. by prooeaaea ,a1; a bigae.r pr1ority. !hi.a allows other

high priority nub processes to execute (as well as processes

handling packet rece,Ption) but eft~ctively locks out all appli­

cation processes. By this means, node 8128pension 1s achieved.

We point out that the implementation guarantees that the

looper is indeed waiting on its condition v~;1Able when it is

notified to begin execution. If th,is :were npt the case, the

notifying signal would be lost and the loope~ wo~d not grab

immediate control, perhaps allow:1,,ng the exec11tion of application

processes while a node suspension was supposed to be in effect.

112

The looper continues to loop (hence, node suspension is

in effect) until such time as the nub receives a val.id reply

from the central site. When this occurs, the looping process

is notified. It will determine the amount of time node

suspension was in effect by subtracting the current time on

the logical clock from the logical clock value saved by the

nub at the start of this suspension. It will then restore the

timeout field in the PSB of each priority one process that was

disabled by adding the node suspension time (adjusted to the

units of the hardware timeout clock) to the original saved

timeout value. It w111 then restore to the logical clock, the

saved logical time that was first read when node suspension

commenced. Finally, it will cause the original interrupted

application process to regain the processor.

The net effect of all this is that node suspension is

rendered invisible to the application processes. Logical time

has not advanced. ill application processes waiting on

condition variables have not noticed any passage of real time.

The interrupted application process is handed back control of

the processor at the point of interruption. The ordering of

processes on the ready list has not been altered. No user

data has been touched. In short, upon relinguishment of the

processor, the looper leaves the state of the application in

the exact same state it found it when node suspension commenced.

Incidentally, we stated that only priority one processes

are locked out by the looper and that only priority one

processes have their timeout fields adjusted. Processes with

113

priority higher than one (e.g. the processes controlling the

keyboard and disk) are not affected. This may alter the

relative order of processor acquisition between high and low

priority processes, causing the node suspension to be not

quite transparent to the applicatio~.

This cannot be helped, however. We take the position

that a high priority process bas received that priority because

of a desire to insure that it will execute a particular

minimum number of times in some time intenal, regardless of

how long a particular application proo,sa atte~pts to control

the processor (this ie why, 1n the Meaa aystem, app1icat1on

processes are expected,for the moat part, to execute at

priority one). Furthermore, any system prooese at priority

one is not guaranteed te execute any miD.imum naber of tillles

1n some interval because program correctness mu.et 1n no way

depend upon a process yielding the proce~sor within a certain

length of time. Thus we feel that (1) we may suspend priority

one processes indefinitely and expect no adverse effect on the

application program, and (2) ve may not auapend processes with

priorities greate·r than one at all, since these processes

evidently must execute with a certain minimwn frequency. These

two statements may not always be true, but they are reasonable

1n most cases. They imply, then, that when using this

debugging facility, all application processes must be· at

priority one. This requirement is not particularly difficult

to satisfy.

114

3.4.4 Dead1ocks

Two kinds of dead1ocks may arise in the use of the

debugging facility, causing a premature abortion of the

debugging session. One kind arises due to problems with the

app1ication program. These are dead1oclm that would haye

arisen regard1ess of the presence of the debugg:Lng facility.

They ought to be seen when the debugging .facility is 1n use,

and need not concern ws at all.

The second kind is somewhat more troublesome.

may arise due to the debugging facility mechaniam.

Deadlocks

If they are

not taken care of, they will prevent the debugg1ng of that part

of the application yet to execute when the deadlock occurs.

Deadlocks arise when all participating application nodes

are in states of suspension because so.me application process

at each node~• performed a receive-request or a maybe-receive­

request. As long aa at least one application node is not

suspended, then the application execution~• mak1ng progress,

and there is no deadlock. Deadlocks arise because the debugging

facility suspends the entire node whenever a single application

process at that node requests a packet. Obviousl.y, this doea

not occur when the application is executing by itseU.

We present two simple examples of deadlock. The first

(see figure 3.6) occurs when some appl.ication process at each

node requests a packet that will be sent at a 1ater time by

some other application process at the same node. Since each

node is suspended when the request is done, the subsequent

send
after
request

app1ication node A

application node C

send
~ter
requeet

115

application node B

application node D

Figure 3.6

116

send at each node will never have a chance to be performed.

This deadlock is called the send-to-eel! problem.

A more general form of this problem (see figure 3.7)

arises when each node expects to receive a packet from some

other node, forming a circul.ar request chain, and each node

will not send a packet until it bas received one. Each node

says to the other, "After you!" and nothing ever gets done.

This is called the circular-eepd p;:oblem.

When the central site perceives a deadlock, it attempts

to "unwind" it in the following fashion. It sends a

cond.itional.-execute packet to. the node possessing the logical

clock at the earliest logical time. The timestamp sent in

this packet is the time of the next earliest node's logical

clock. The receiving node is then free to execute up to this

logical time. During this execution, it is possible that some

application packet will be spawned to satisfy some requesting

node, or that logical time will advance to enable the central

site to perceive a correct response to some outstanding

request. In either case, the deadlock is broken.

If neither of these possib-ilit~ea comes to pass, however,

the situation becomes ju.st a bit more sticky. Now two logical

clocks read the same minimum time. The central site chooses

one of these, and sends a conditional-execute packet to that

node indicating that it may execute for one logical tick. If

the deadlock is still not broken, the central site transmits

an identical packet to the other node. This alternation

continues until either the deadlock is broken or until both

application
node

A

aend
message

application
node

C

117

send

send
-•sage

Figure 3.7

application
node

B

send..
message

application
node

D

118

logical clocks have reached the time on the third minimum

logical clock. At this point alternation continues among all

three nodes. The pattern continues until the·deadlock is

broken.

If the deadlock is not broken no matter how long this

algorithm continues, then it is possible that the deadlock has

been caused by the appl.ication prooeaa itael.:f'. However, the

centra1 site never decides this conclusively, and it is up to

the user to abort the session when he runs out of patience.

Incidentally, we point out that when a node executes

conditionally, it may, rather then break the deadl.ock, simpl.y

spawn another request for packet! Thia further complicates

the deadlock handling mechanism at the central. site. However,

it adds no new conceptual difficulties, and we do not discuss

it further.

3.4.5 Termination

From the description of the deadlock handler, it is clear

that the debugging facility will always cause progress to be

made 1n the execution of the application. Thus, if the

application itsel.f terminates, so will the debugging session,

provided the user has enough patience. The central site wil1

conclude the session upon receiving package-destroyed packets

from all participat~ appl.ication nodes.

The only probl.em that may arise here 1s caused by listener

processes (see chapter five) that never destroy the internet

119

package but unceasingiy monitor the comnu.mications lines for

packets. If the application to be debugged contains a listener,

then the central. site can never det•rm:Lne tbat the session has

indeed come to a close (unl.ess, of course, it could somehow be

appraised that all other appllcationpr~,seea have been

deetroyed). In this caae, it is up to the ueer to terminate

the session when he 1a through.

120

3.5 User Interface

The debugging facility provides a fairly simple interface

to the user to permit both monitoring and debugging of the

application to take place. We discuss both of these

possibilities in this section.

3. 5. 1 Monitoring

When the central site is about to eend an application

packet back to a node in response to a nceive-request packet,

a maybe-receive-request packet, or a follow up give-me-now

packet (or as soon as it has decided that.the request or give­

me-now is unsatiai'iable), it reports thia to the user via the

Alto screen. These are the only events which the facility is

' capable of reporting.

Each time an application packe1; ia about to be sent by

the central site to the requesting nub, the following

information is reported to the uaer:

1. A special identifier assigned to that packet by the
central site to which the user may refer at any time
until this packet· is discarded. This interface
identifier is in no. way :re.lated to :tibe real identifier
of the packet as assigned by the application process
which spawned it.

2. The real identifier of the packet.

3. The internet address. (in octal) of· the packet's source
node.

4. The internet address (in octal) of the packet's
destination node.

5.

6.

121

The protocol number of the packet.

The number of requests by the ap~lication process
which has requested this packet {e.g. this is the nth
packet request from that proceea).

Whether this requaat vaa through a receive-request
packet or a maybe-receive-request packet.

Each time a cannot-be-satisfied packet ia about to be

sent by the central site to the requesting nub, the following

information is reported to the user:

1. The internet address (in octal) of the node at which
the requesting appJ.icaUoa process raaidea.

2. !he protocol. aamber of packets which the requeartii3g
process is w1l.J.1ng to accept.

3. !he number of requests by that application process
(e.g. th:la ia 'tbe nsa packn request from tha.1; proceaa).

4. Whether this request vaa thmugll a receJ:n-requeat
packet or a maybe-receive-request packet.

The reporting of this information all.ova the uaer to

monitor al1 interprooeea connmm1 cattona Tia mesaage paaeing

that occurs during the execution o~ the app11cat1on.

3.5.2 Debugging (User C~nunands)

The user is given the opportunity to respond whenever an

event ia reported in the manner described above. He has a

number of commands at his disposal for auoh response. We wish

to emphasize that events are reported to theuaer by the

central site before they actually occur. Thus, the user is

able to debug his application because he decides whether these

~J. }, .('
.. A.,,, '"'"

C (r.u~~-...~-M~•• --t - --~vs
nabea . .__.t .. _.. .,..._..,..__, ?IP<t

ofO--fJO itolllt.... ftllll J .d]l] - -•~ -·· q .,.,.,.owt Mlllad:'¢~· .~ 11•111J'lt-lf:, 16 ~ 111tat"-r

p1~11,IJl;\-,Hril"•lldr:# ~~ M ••• ·• 17111 t....,o.a.r:wo a
/

d~. IIR•\-ePIII dUl):t.ll .Jtl t•J--r t Ut1,_ Jrttur.•'J

;~-~ 4'~# ,,1.·,11••· $?1]11>--r

VUlta tlMt ,,_, • •UtdW 1111•• to .__.,,Et111r..al11.tsaa.u

\1111!1• . .. •• -➔ belr, ~-· .• q ••

U'tt ... M~Jl1■Ult •••.t.lt~f a :se4w •boo ett;J :tru,;t ct 'IO

:·).! :e~ -:#ft.\ Ill 1Ml1'1tail■ J.b-lll.,,..,...,
' • ~J.: d2.t:r.~.! 't !!ia:'W

~1~twi~Jt&Ull'-~•,antJ1t11•--t,_ .. ._ __ cl ...

not ~tWlla1 --ell--ftlt'k-.Ctl •·Iii-.,.,. ••••&lw
Y!ttt:clf ~;; • ••• ••JJlluJflt ~c,wrdt:111 Didi,

,..,..~ all•t.Mlll.■lflll ¥--.t. etH - ~ . ·.

ffl:\iW"WliAM.W 111\16; J-aatQ ltl lll~,..•lf"9 '1•:s.at--elf;u;q

P~tt!~lh&Jlt ... W _......, ~ .. ,..,d
~-,..-~~,rMs,-.'le..1et....._.• .-.,r•• eJJJt; _,_.dto

be ~..,.4tM'1t- _W•t.11•13e &d

123

packet or a cannot-be-satisfied ind.ioation.

There is no direct way for the user to specify that the

application packet shoul.d be repJ.acea by a cmmet-be-satiafied

packet. This is because it is desirable for the user to be

aware of all poaai'bl.e application ,-e:te1:1a·tut can satisfy a

request. It ia better for ~he ·uaeJ:" .1:14 re-jeot all such

packets one by one,~ to aIJ.owa ti:n«J.e' lfithhold c<.'mmend to

reject al.l of them. !hu, repla<dag an applioa'tion packet by

a cannot•be-sa-.1afu«1 paoket may,oaiy lie acM:"'9Cl 1n41rec-tly

b7 the user ias11:lu«-the 1iiittaao1d·ea,..,.,,,,~ 'time the same

requeet comea up. »......u.y, the '~•ri ·JllU8't oo• back aa

unsat1~iable.

n.e nthhol.d coeen.d canoe uaed 'So •~te packet loaa

or to test the code when a partio~ packet ·i•·never seat.

There is no nthhoJ.d coanand when the reported: ?'9ilueat is

unsatisfiable.

Uthe reported Nquest is sat'2.dSabl.e, but·theuaer

wishes to replace the ·appl.ioation.pack•~to:t.e.aent with a

different appllca ti.on packet.. be 1sauea- the F!;l-l;aee ccmmand.

He is asked to enter the interlace··H:entit'ler-· ·or the replacing

packet (there°fore, the replacing pa,Cltet 111a9t·· be one that has

been reported to the user ptvYi.ously in oomiec't1on with some

other event, and. the user must ·have i-etJ,ueeted that this packet

be saved -ror future·· transmission, Ol' he imet, !un'e replaced

124

this packet using this same replace command, or he must have

deJ.ayed this packet - see the next section - or he must have

created it - see section 3.5.2.6). If the packet with the

indicated interface identifier carmot be found, the user is so

intormed and no replacement is made. If it can be found, the

repJ.aced packet 1a reoached on the duk tor·~ture use. If

the repl.acing packet's destination or protocol number is

different from the packet being replaced, these will be

aJ.tered to make the values identical. TM \UNtr Will be

intormed of thia cbang$.

If the user ia disaatiaf:1.ed Vita his new packet, he may

reissue the replace command to obtain yet another oa. When

he is done iaau.in& replace OOIP!JSDci:a, he 1111&7 iaaue a send, a

withhold, or a delay (or perhaps .;&Ten a display or create)

COJDJDADd.

If the reported request is unsatisfiable, the user may

replace the cannot-be-satisfied packet which would be

transmitted by the central. site with any application paoltet of

which he is currentJ.y aware. Since no appJ.ication packet is

actually being rep].aced, the user ieawaa tu r,triffl cnmmand

instead. SUbaequent to this, the replaoe .oniwwnd may be

issued as many times as desired.

3.5.2.4 The DeJ.ay Command

If the reported request is satisfiabJ.e, but the W1Jer

wishes to delay the requesting application node's receipt of

'

125

the packet, he issues the delay cnmmand. He is then asked to

enter a del.ay interval value. This del.ay value (after

suitabl.e units conversion) is added to the timestamp of the

application packet. The packet is then reoached on the diak

for future use. The central site will fork a new process with

a function of finding a new packet to aatisfy the request. If

the delay time ia amall, the very eame pacat may be found.

If the delay is large, some other packet may be found or it may

be determined that the request is now Ull88.tisf1abl.e. Thus, at

some later time, the same event may be reported again, with the

same or dilferent application packet or a C&D.DOt•be-aatisfied

indication..

The delay command may be uaed to eimulate packet trans­

mission de1ays due to bardware mal.function.a.

There is no delay c~mmand when the reported request is

unsatisfiable.

3.5.2.5 The Display Command

The user may at any time displav the contents of the

applioation packet that is to be aent in reaponee to the

current reported request. He may display any header field or

the packet body. The display command is issuable whenever

such a packet is present (e.g. even after a re.p1ace or retrieve

command has been given). The display is in octal.

There is, of course, no display c~mrnand when the request

is unsatisfiable (unl.ess a retrieve command has been issued).

126

3.5.2.6 The Create.Command

The user may at any time create a new application packet.

He is asked to enter all necessary header fields as well as

the packet body. This is a1l done in octal. The central site

will make the packet, report the interface identifier assigned

to that packet, and cache it on disk for~uture use. The user

may then employ this packet 1n a subsequent replace or

retrieve command.

3.5.2.7 The Call Debugger Command

The user posseaees a rudimentary ability to cause some

application node to be placed into the Mesa debugger. Upon

entry of a ga11 debugger command and the internet addreaa of

the desired node, the central site will spawn an enter­

debugger packet to be sent to that node. The user may then

physically go to that node and debug events occurring there

via the Mesa debugger.

3.5.2.8 The Quit Command

The user may at any time enter the·~ command,

terminating the debugging session.

This empty page was substih,ted for a
blank page in the original document.

127

Chapter Four

Correctness and Useful.ness of the Debugging Facility

We expect that many of the issues discussed 1n chapter

two and some of the implementation aspects of chapter three

are familiar to those with knowledge of simulation techniques.

Our debugging facility is merely a simulator of distributed

applications which also allows interactive ~ebugging to take

place during the simulation. More tban this, however, the

debugging facility cause~ a p[9bable s.m,ul,ition to take place.
• J ~ • '

This is a term which will be defined later. Probable

simulation, we will find, is closely related to the concept of

transparency. However, it is a much weaker condition. As

stated in the concluding paragraph of chapter two, complete

transparency is an ideal which is unattainable by the debugging

facility. Therefore, the next best goal has been opted for,

that of probable simulation.

Now that we have presented a detailed description of the

design and implementation of our debugging facility, we wish

to argue for its correctness and usefulness. This chapter

presents the basic ideas of such an argument. At times we

proceed somewhat informaJ.J.y, as a strictly rigorous. discussion

is beyond the scope of this work.

The argument can be broken down into three steps. Lamport

(Lamport78) points out that for any system of clocks to be

correct, a single condition, termed the clock condition, must

hold for that system. Thus, the first question to be asked is,

128

"Does our debugging facility maintain the clock condition?"

Now a system may obey the clock condition without doing

anything particularly useful. For our purposes, the useful

goal is that we be able to interactively deb\18 an application,

P. The first step tow~de such usefulness is that the facility

simulates that system, P. Our second question, then, is, "Does

our debugging facility simulate P?"

However, we will find (in discussing simulation in a

later section) that the mere simulation of P may not always be

useful. We will show that the debugging facility is useful

only when it perto1"1111!S a probable simulation. Therefore, the

final question to be posed is, "Does our debugging facility

perform a probable eimul.ation of P?"

Question one determines the correctness of the debugging

facility. Questions two and three determine its usefulness.

A positive answer to all three questions will be motivated in

what follows.

129

4. 1 Mainte~ce of the Clock Condition

Lamport {Laaport78) defi.Dea aloeioal clock, c1 , for each

process, P1 , 1n a syatea. For•:aa ey:e•t, •• in process P1 ,· c1 (b)

is the tiae of the .event aa de~ .bf NadiaB -.ae lc,cioal

clock, c1 • XQNOTer, C ta a &1ob1W,.:tunct~Qll."~ all Ci •1¥1h

that C (b) • C 1 (b) if 'b i• an eve:a;t 1n P'OCJff• P 1 • The olook

condition is as follows:

Clock Condition. !or azq events a, b:
U ~l> :tlMA C(-.) (C{b).

All this means is that if one event •bappena ''before" another,

then the logical clock ayatea should renect this bf recording

the former aa occurring earlier in logical time than the latter.

Thia would appear to be the aoat reasonable condition to aet on

a system that is divorced from real time.
·-

Prom the definition of the-> re1ation (aa discussed 1n

chapter two), Lamport states two more conditions that, if true,

imply the clock condition:

a, . If a and b are _.,enta 1n ~• P , and a ooaea
before b, then 01(a) < c1(b). i

C2. If a is the sending ot a message by process P1 and b
1a the reoej.pt of that ~•9'P •~ pi-poeaa P j,
then a-1 (a) < C j (b). ·

To these we add a third condition, becauae processes 1n our

system may OOIIDDmicate th.rough monitors. u well as through

explicit tranamiaaion of paaketsi

130

C:3. If a is the relinguishment of a monitor lock by
process P1 and b 1• the nen-aequiaiticmo:t tut lock,
by process Pj' then o 1 (a) <cj(b).

It should be easy to aee that in a syn• vhioh al1ows

prooeas oODIIINDioation thrOugh botJl meeaap paeaing and

aoni.to:r in:teraotiona, oonditiona oJ, 02 and 03 togetur imply

the c1ock condition. We now · ahov ·taat the 11lp2eaentation

deac:ribed in the p:Nrrioua chapter ••iafi•• tileee three

conditions.

lirst, remember that, in our system, the" does not

en.st a one-to-one relationehip between proceaaes, Plt' and.

clocka, Ok. Our 1Jllpl••ntation allow-. an arbitrary number

of processes to read the s- clock. !his, .however doea not

make any difference towards the u.tiafaction of the three

conditions.

C1 is the· moat straightforward. Each process cl.oclt, o1 ,

is illpJ&e•nted by a counter that iDc~ases aonotonio•Jly. Thus,

in a single prooeaa, later events will alvaya occur at greater

logical. times than earlier events. Of course, it is aaaumed

that the counter •ticks" faat enoQCh 110 that no tvo events see

the same logical clock value. thie "_,. ot be pJitsically

real.izable, but the impl.ications of this ap~ar unimportant.

02 is the moat interesting oaae. Laapol't nggnta the

fol.loving impl.ementation rul.e to guarantee that 02 holds:

IR2. If event a is the sending of a meaaase m by process
P 1 , then 'the ••aase m ~me a tiJneetbamp Tm • e1 (a) •

Upon receiving a aee~ 111, P.rooe~• Pj
sets Oj greater than or ett,al'to ite present
value and greater than'••

131

We have not followed Lamport's suggestion. Instead, we achieve

C2 in a slightly different fashion. Instead of updating Cj to

conform to the timestamp Tm, we allow Cj to tick, withholding

m from Pj until Cj > Tm. This is more in keeping with the

spirit of transparency in that the process will not be able to

detect whether it is executing 1n physica1 or logical time.

Using Lamport's method, a process coul.d notice unexplainable

jumps of its elock, thereby inferring tbat it is not executing

in real time.

The difference in approach ia actually a very interesting

point. It arises because the problem Lamport ia trying to

solve is only one part of the problem we are trying to solve.

Lamport is attempting to produce oorreo~ timing belaavior in the

execution of any s79-tem of distributed prooesaes. We are

attempting to reproduce the oauaal relationships between events

that would have occurred had the debugging facility not been

present while simultaneously maintajning this correct timing

behavior. The transparency issue has modified our approach.

Finally, condition C3 is satisfied by the simple expedient

of having all processes that can interact ~1th a monitor M

read the same logical clock Ci. This 1s easy to do since the

processes residin& at a particular node form a natural subset

for this purpose. That is, all processes at a node may

interact with any monitor module at that node, but may not

interact with any monitor modules at any foreign nodes.

Furthermore, all processes with access to a particular monitor

share the same memory and, hence, are able to read the same

132

logical clock.

Then, by the semantics of the monitor lock construct, and

by virtue of the fact that each logical clock is impl.emented

as a monotonically illcreaaing counter, condition c, 1a found

to hold-.

It is adaitted that the aseigl,,aent of a ej,ngle clock to

all prooeaaee residing at an.ode 1a IIOJHVbat artificial. For

the diaaatie:f'ied reader, we will d190WNI, 1D cb.lt.pt~r five, a

possible alternative debugging facility design that aaeips a

unique logical clock 'to each proceaa in 1he 8Jlll'Mtl. tbis waa

not impl.emented beoaue of tbe di.tfioul.'Q in·-1n"tlt-1n1n1 the

correct logi.cal tille on Mall l.egio.l cJ.ook.

In concJ.uaion, baT1ng ahowa that coJ¥U;t1on.a 01, C2, and

C3 are all satiaf:l.ed, we may ata1;e tut :b-• deb~ facility

imple•ntation. obeys the Qlock cond.J;tioa.

133

4.2 Proof of Simul.a.tion

The first step in determining whether the debugging

facility simulates the process system Pis to come to a clear

definition of simulation. In order to do this, however, we

must first introduce the notion of a history array. Our

conception of a history array is a slight modification of the

history arrays discussed in Van Horn's thesi-s {Van Horn66).

During the course of the execution of a particular

computation, information is constantly being written to the

various objects (variables and data struc'eUrea) inTOlved in

the application. Imagine an array (see figure 4.1), to be

called the history array, in which there exists a unique row

for each object and the 1th eleaient ot each row eontains the

information writteL by the 1th write to that row's object.

The oth element of each row is considered to house the initial

state of the row's object. (For the sake.of ~ons1stency, we

draw a distinction between the creation of an object and the

first write to that object. The value assigned to an object

at its crea!:ion is entered into the eth column of the proper

row. The value of the next write to that object, if any, is

entered into the first column of the same row. Certain objects

may a1ready exist at the commencement of the computation; hence

they are not created during the computation. An object of this

class is handled by placing its initial value into the oth

column of the proper row and the value of the first write, if

any, to the object into the first col.umn o! the same row.) As

object
p

object
Q

objec't
R

object
s

object
T

•

•

•

co1umn
0

134

HISTORY ARRAY

co1umn
1

•

, .

co1umn
2

Figure 4.1

co1umn
:,

(based on (Van Horn66), fig. 4.1(c))

co.lumn
4

• • •

. 135

execution proceeds the array .enlarges since new va1ues are

added to the end of each row as new writes occur to that row's

object during the computation. :Furthermore, at any time the

array may possess a jagged right eclge (in other words, the

number of elements in each row is not necessarily the same)

since the number of writes to each object may be independent of

the number of writes to any other object. E.ach rowrepr«sents

the complete history of aJ?, object du.rinc the computation. (A

row of this array is similar in concept to the gbject history

of Reed (Reed79).) The array, aa a whole, specifies the

complete be.bartor of the executed computation.

Thie definition of a history array differs from that

proposed by Van Horn in two respects. First, a row exists

only for each oblect inTolved in the.· computation. In Van

Horn's scheme, a row exists !or each "cell" in the machine.

Without going into detail about exactly what a cell is, we

simply note that cells incl.ude all memory words in the machin@,

as well as other, more esoteric constructs. We,. however, are

not interested in the val.ues of all the J14JDOry oells in the

machine. Many of them will possess histories having no

importance to the computation in question. u a computation

progresses, an observer is interested in detArm1ning the··.;va1uee

of only, say, x items. To us this .imp11ea that there are

exactly x objects involved in the c~11puiation. Thus, there are

exactly x rows 1n that computation's history array.

Second, the oth co1umn of the history array as defined by

Van Horn is identica1 to 5a, where 5a is the initial state of

136

the run R = (Sa, TR) tJrresponding to the computation that is

about to commence. In our scheme, it is obvious that the oth

column may contain va:Lues that arise after the computation has

started executing, as new objects are created.

Now we present a definition of simulation.

Definition: The behavior of a set of processes Pia
sYIDH,ftef by a set of processes Q just when an execution of
.m-t poss ble aomputation o'f Q (that ia, an execution of any
possible run Ro~ the system Q - recall chapter two) produces
a history array that 18 either 1hntical to or contains the
history array produced by the execution of some possible
computation c of P.

By "con'taina" we mean that the history array produced by R
possesses all of the rows of ~h• hiato17 ~ produced by
c (with, of course, the identicd. n'mlber ofelmaenta in each
row and the .idEtntical val~a for each •l~1"nt) ~ other
rowa denoting the !wftorin of objects abNDt :tro111 the
history array produced by c.

One may speak of the !$RN~i~~ J9:e Qffltatir C by Q
when the execution of a, p io compu • ·on o Q
produces a history ai-rau- w~cl; either contains, or is
identical to, the history·. array. produ.cid by P during the
computation c.

One consequence of this defilu.tion of simulation ia that

the process system Q may be substituted for the process system

P and this Y1ll be inViaible to an observer who is unaware

that the substitution has occurred. An observer who is aware

that a simulation is tak1ng place is interested in, and can

determine, the histories of the set Z of z Objects involved in

the simulation. This set possesses a (possibly proper} subset

X with cardinality x (x <= z) containing a1l objects involved

in the simulated computation. An observer who believes himself

to be witnessing the execution of his system, and not a

simulation thereof, will be interested in, and able to determine,

137

on1y the histories of objects in the set I. To him, the

histories of the objects in the set Z - X are meaningless

state values for which he has no use or concern. Furthermore,

this uninformed observer will be able to construct some

computation c of P which could have produced the resultiDg

history array of the objects in set x. Thus, he is made to

believe that he has, in fact, observed the computation c of

his system of processes P.

Notice that this definition ot simulation does not at all

imply that the probability of Q aimulatinc a particular

computation c is 1n any way related to the probability of c

occurring when the system P runs by itsel!. Thus, the unaware

observer may perceive highly unlikely behavior when a simulation

is taking place, but he will be unable to state conclusively

that he is indeed watching a simulation. This is an isaue we

will discuss at some length in the next section.

Now it will be proven that a simple condition pJ.aced on

the set of processes Q is sufficient (although not necessary)

to guarantee that an execution of any computation of Q will

yield a simulation ot some computation c of P. Hence, the

condition implies that Q simulates P.

Simulation Condition: A process system Q containing q
processes will always simulate a process system P containing
p processes if:

1) q)= p

2) p processes can be chosen from Q such that each process
has the same functiopa] ity: as some distinct process in
P (that is, a one-to-one functionality correspondence
exists between the processes of F and the p processes
chosen from Q). Call this set of processes with

138

cardinality p, set A.

3) the remaiJling q - p processes of Q never write any
object read or written by the p processes chosen in
condition two. Call this set_ of prooeas,a with cardinality
q - p, set B.

Thus, a U B equa1s the process system Q and An Bis the
nul1 set.

The, term "functionality", as used above, requires defini­

tion. The functionality ot a process signifies what that

process will "do" when presented with a system state, 8, upon

acquiring the processor. In other words, given a history array

(representing the history of the computation up to a point),

the func~ionality of a process determines how that history

array will be a1tered (enlarged) during the course of the

execution of that process and how ·tne history array will appear

upon relinquishment of the processor by that process.

It is possible to speak of the functionality of a process,

because processes, consisting of a single sequence of events,

execute in a deterministic manner. Systems of processes, as

discussed in chapter two, do not execute deterministically,

hence it is meaningless to refer to their "functionality".

-------- ■------------------~----.,,'!,--.--....,-__.__ •-411----------
Theorem: If a system of processes Q obeys the simulation
condition towards a system o! processes P, then Q
simulates P.

~-------------- ---- ------------------------~-------------
Once the above assertion has been proven, it will be

shown that the debue;gitlg facility is a system of proc.esses Q

which obeys the simulation .condition toward• a system o!

139

processes P where Pis the application being debugged. This

implies that the debugging facility does indeed simu1ate the

application P.

Before the proof can be presented, however, we must

provide three more definitions, two of them notational.

For convenience, we define the function H(R) to represent

the history array resulting from the execution of a run R

defining, some c~tation c.

We al.so introduce the concept of a prefix run. Given a

run R = <5:t, TR) where the transition sequence TR contains n

elements (each element being a set of process names), a prefix

run of R, ds defined to be any run of the form P = (Sp, Ti'

where Sp= 5:t and the transition sequence Tp contains m elements

such that O <= m<= n and these m elements are identical to the

first m elements of the transition sequence TR. In other words,

run Pis either identical to run R or is an aborted version

of run R.

F:.tnelJy, the notation Rm is defined to be the prefix run

of run R with transition sequence of length m (0 <= m (= n, n

being the number of elements 1n the transition sequence of R).

Now for the proof, which proceeds by induction on the

transition sequence of the run of an arbitrary computation of

Q.

140

--------~-- -·-------~---------------------- ----- .
Proof: Let V be the run of !al possible computation of Q

such that V = (5v, Ty). Ty, of course, consists of the

(possibl.y empty) sequence T0 , T1 , ••• , Tn where each T1

(0 <= 1 <= n) is the set ot all. processes in acquisition of

the processors during the time interval. [i, 1 + 1) (recal1

chapter two).

The induction 1s performed over 1. In otur words, it

proceeds over the aucceaaive1y longer pretu runs of run V

of the arbitrary cODlpUtation.

Initially: i = 0

H(V0) represents the state ot a1l objects (in z, not 1n

X - the sets Zand I have been previously det1ned) already in

existence at the time of commencement of the.computation with

run v0 • No row 1n the array possesses more t~ one element.

It is easy to aee that the computation with run v0

simulates a computation of P with run w• • <-5w,, Tw) auch

that 5w, • 5v and Ty, is an empty transition sequence. This

is because H(V0) is either ident1ca1 to or contains H(W').

Thus, the simulated computation c of Pis that computation

with run W'. The computation of Q with run v0 simulatu c.

· (In fact, the computation of Q with run v0 may simulate other

possible computations of P, those where S,., ~ 8v but the

objects 1n X possess the same values in 5w, as they do 1n 5v.
However, we are concerned with the existence of only one

computation c and do not worry about these others.)

141

Inductive Hypothesis: 1 = m, 0 <= m < n

Assume the computation of Q with run Vm simulates some

computation c of P with run vi''. That is, H(Vm) either

contains or is identical to H(V'').

Given this, it must now be shown that the computation of

Q with run vm+1 simuJ.ates some computation c of P with run

w'' ' ' • That is, H(V m+1) must be proven to contain or be

identical to H('W'''). Thus:

Prove for i = m + 1, O < m + 1 (= n

Tm+1 (the last element in the 'iransition sequence of the

run vm+1 and the only e-lement of that transition sequence not

to appear in the transition sequence of Vm) 1s a aet containing

j processes (0 <• j <= the number of proceae&rs involved 1n

the execution of the system Q). Of these, k be1ong to set A

(defined in part two of the simulation condition) and j - k

belong to set B (defined in part three of the simulation

condition). Since A and Bare disjoint, these two groups are

also disjoint.

Accordingly, the next section of the proof is divided into

two parts:

a) Consideration of the effects on H(V) by the execution of
m . -

the j - k processes in Tm+1 belonging to the set B of the

simulation condition.

b) Consideration of the effects on H(V) by the execution of
m -

the k processes in Tm+1 belonging to the set A of the simulation

condition.

---- --------------------------

142

a) The j - k processes de not write any of the objects read

or written by the processes in set A. Furthermore, the

processes of set A possess a one-to-on, functional.ity

correspondence with the p prooesaes of the system .P. Thus, it

is clear that the j - k processes do not write any of the

objects read or written by the processes of P. There.fore,

only objects which are never reaa or written by the processes

of Pare written by the j - k proceeees. -Objects which are

never read or written by any process in Pare, it stands to

reason, absent from H(W 11). Thus, the only effect these j - k

processes can possibly have on H(Vm) ia to add values to those

rows which are abaent from H(W,' ') • Th\MI~ tb4 history array

resultina aubaeqwmt to the executionot tbe•• j - k proceaeee

wil1 contain, or be identical. to ... H(W' '') where :W''' • W' '.

Therefore, the aj11D1Jated computation o of Pis tbat computation

with run W' ' ' = W' • •

b) The processes of set A poasesa a one-to-one functionality

correspond·ence with the p processes of the system P. Therefore,

the k processes possess a one-to-one functionaJ.ity correspon­

dence with a subset G of the processes of P, having cardinality

k. Then the execution of the k processes has an effect on

H(Vm) which is identical to the effect on H(W'') produced by

the execution of the subset G. Thus, the history array

resulting sugsequent to the execution of these k processes will.

contain, or be identical to, H(W'' ') where W''' is a run such

that W' ' is the greatest prefix run of W '.' ' not equal to vi' ' ' ,
itself, and the last element of ~vi'', contains the subset G

143

just delineated. Therefore, the simulated computation c of P

is that computation with run W''' as specified.

At first glance it would appear that we are implying that

the f'unctional.ity of both systems of k processes are identical.

This, of course, contradicts what was stated earlier, name.ly

that it is meaningless to talk about tbe f'unctioDSJ.ity of a

system of processes because of stochastic ef1'ects that cause

nondeterminacy. However, we get around this by considering any

T1 to represent the set of processes in execution during an

interval Ci, i + 1) which ie auft-iciently fllQBJ 1 · so that sto­

chastic variables, such as prooeeaor speed, do not have a

chance to affect the computat.ion.

Alternatively, we can say that the simulated computation

c of P 1s that which arises when the stochastle processes

during the interval represented by the last element of Tw,,,,

and the stochastic processes during the interval represented

by Tm+1, affect the causality relationships between events

in the k executing processes (in either P or Q) in identical

ways.

We have shown thus tar that some possible computation c

of Pis simulated when Tm+1 consists of either the j - k

processes of part a) !?!: the k processes of part b). It needs

merely to be shown that Tm+1 may consist ot both sets of

processes simu1taneous1y, sinoe that is what we

hypothesized Tm+1 to be. This is easy to show. But one

further coruscation and we are home.

The requirement that the j - k processes of Q never write

144

any object read or written by the k processes of Q implies

that the existence of the j - k processes ie invisible to the

k processes. Thus, the functionality of the k processe~ is

not affected by the j - k processes. This, in turn, implies

that the j - k proceaeea may coexist in execution time with

the k processes without affecting the-alteration ot H(Vm) by

any ot the latter. '?he resulting R(Vm+1) v11l then stUl be

identica1 to, or contain, H(W'''). Thus, Tm+1 may consist ot

the sum of both the eet of k procesaee and the set of j - k

procesaea. The •i1111Jai;ed computation c of Pis that computa­

tion with run W' •' ae defined in part b), above. The

computation of Q with run vm+1 simulates c.

We have shown that any prefix run of V will simulate some

computation c of P. Since V was a run of· an arbitrary

computation, we have that any computation of Q simulates some

computation of P. Thus, Q simulates P.

QED

---------------,--■ - ----■ ------. ·--------------------·------------

Moreover, given a particular computation of Q, with run V,

it is not difficult to determine what computation c of P has

been simulated. I! the 1th element in the traaeition seq\lence

of V contains d processes from the se-t A, then the simulated

computation c poaseaaes a run R s (5tt, !R) where 5R = Sy, and

the 1th element 1n the transition eequence of R consists of

the d procesees of P having the one-to-one fu.{ictionality

correspondence with those processes. We point out that it is

145

possible that this computation with run V may also simulate

some other computation of P. However, this is not assured,

and is immaterial since we only wish to know that one such

computation c exists.

Now it is quite easy to show that the implementation of

the debugging facility obeys the simulation condition with

regard to the application being debugged. In other words,

the debugging facility is comparable to the system of processes

Q, while the application being debugged is comparable to the

system of processes P. This 1s most easily shown by examining,

in turn, the three parts of the simuJ.ation condition:

1) The implementation of the debugging facUity consists
of processes at the cent~al site and processes at each
debugger .nub along with the. proce~scta of the ._application
being debugged. Thua, q ·)• p (in :tact; q) p) •

2) The processes of the application are not modified in
any way by the presence of the central,.ijite ,µid debugger
nub processes. That is, the e"9'etits d:et1ning·'each application
process and ihe order in which these eve~ts occur are not
altered. It is obvioua, then, that th~se processes possess
a one-to-one functionality ;-ela,.tio~~p_with theUlselves,
hence they form the set A, as·atip,Uated'. 1n the a1mUlat1on
condition.

3) It is the job of the centr$.l site and debugger nub
processes to maintain their invisibility towards the
application processes. It 1s obvi,q~s. ~o~ the implemen­
tation description in chapter three, that they do not write
any objects read or written by tlle,lat~~r.group. In fact,
when they (the nub processes, auyway) ~lmquish a processor,
they attempt to restore th~ exact machu).e state they
observed upon acquiring that p~eor. !hue, these
processes form the set B, as stipulated in the simulation
condition.

1), 2) and 3) taken together imply what we have set out

to prove. Thus, we state that the debugging facility simulates

the application to be debugged.

146

4.3 Probable Simulation

As stated earlier, the knowledge that the debugging

facility simulates an application is not enough to feel assured

of its usefulness as a tool in deb~ that application.

This is because it is possible for the debugging facility to

repeatedly simulate computations that would almost certa~y

never occur in real use of the application. The determination

that lurking bugs are absent from certain improbable computa­

tions alone would not be sufficient to assure qorrectness of

a p2ractical application.

In chapter two, we considered the execution order of a set

of processes at an unsupended node in the face of the suspen­

sion of another node where colDlllUnication streams .were open

between the nodes. We stated tbat du.rill& a normal execution

(that is, without nod• swspension) the execution sequence at

the unsuspended node vas I Q I Q • • • With node auapenaion,

the execution sequence waa along the line• of I I I •••

I Q I I I • • . I Q I I I • . •

In the Alto/Me• environment, one major design goal is

that all processes of the same priority have an equal oppor­

tunity to acquire the proceasor.· n.us, in this environment,

we would cJ.assify the computation correapondin6 to the first

execution sequence IQ IQ ••• as a probable computatig,;.
one which we would not be particul.arly surprised to observe.

Moreover, since the second sequence I I I ••• would appear

to go against the grain of this design goal, we classify the

corresponding computation as an improbable computation.

147

We must point out that this discussion can only be

appreciated on an intuitive basis. We cannot draw a clear

distinction between probable and improbable computations.

There is no definite demarcation between the two. We can,

however, establish a correlation, of a sort, between improbable

computations and the notion of e,:stem failure.
As Lamport hae pointed out, "· •• the entire concept of

failure 1a onJ.y meaningful in the context of physical time.

Without physical time, there is ao way to distinguish a failed

process from one which is just pausing between events."

(Lamport78} We may consider such a "pauail)g between events•

to take place when a process relin~uiahea the processor to

allow the execution of other processes at that node. In

general., improbable computation.a (at least in this system, and

probably in many others) are marked b7 the unwrually swift

"pause between events" of some processes and the unuaually

lengthy "pause between events" of others •. ·.. '?his leads to a

higher than normal failure perception rate by the former set

of processes far two reasons. Fi.rat, the interval between

packet arrivals from the "long pan.a." processes 1s greatly

increased, proportionately inc:reaatng the chances that a "short

pause" process will miatakenl.y perceive a failure when there

ia none. Second, the "short pauee" prooeaaes execute many

times for each sil'lgle execution o~ a "long pause" process. If

the "short pause" processes base their failure perceptions not

simply on elapsed time, but on the nwaber of times a particular

variable is checked for a certain oondition (this, in turn, is

148

actua1ly based on elapsed physical time - so it does not

contradict Lamport's assertion that failure is based solely on

physical time), then it is likely that the number of checks

will be exceeded before the "long pauae" process can make the

condition true. Again, failure peroeption is likely to occur.

To be more concrete, oonaider-agaiJl the example of chapter

two. We said that .process Q had a co•un.ieation stream open

with a process on another node. Prooeaa I, on the aame node

aa process Q, vaa to make sure that tbie atream funciioned

correctly and was to close the connection U it ptreeiyed a
fa1.1ure. If the proceaa with which Q vu co.DVereiq wae of the

"long pause" type, it caused an ia»J!Qbablt computation, with

execution order I.:I I • • • I Q I I I • • • , to ooour at Qt a

node. I made)z checks ot a monitor varia'ble, ud, finding

no effect on thia variable by Q, closed the coQaeetion. The

causal chain of ev8llta vaa thus: use of the deb~ facility

caus:ing a "l.ong pause" proceae to-~iee cauaing an impro'babl.e

computation to occur at Q's node cauj.,ng l to make)fl che:cks on

some data before Q could affect that-d.&ta cauaing I to perceive

failure causing the premat,ure closing O'f the stream.

In sh.orl, to repeat what~ ~1d in chapter two, failures

occur because the •real time expeeta'ii'O-l18" of prooeaaes are

not met during an iaprobable comput-.t-i-on. We state, without

proof, that the more improbable the COIIP~ta~ion, the more likely

the chance of a perception o:f failure.

It should be pointed out that the occurrence of failures.

depends on the semantics of the application in question. In

149

our discussion of lurking bugs, in chapter two, we asked

whether the computation with prcceae exeeutien order

ABB CAB BC ••• was correct? We now know that, in the

absence of bugs, it is meaningless to talk about a computation's

correctness. il1 posaible computation.a are "correct". We

can only talk about a co~putaticn'a probability {or improba­

bility) of occurrence or whether it will produce a failure;

the latter ia determined by seman.tica. · For· example, the

programmer may decide that two consecutive executions of B

ought to be considered a failure a.ad wirte code to print out

an erro~ m••aa«e when thia occurs, ·or write code to abo:irt. the

computation, or write code conta1ntng certain teats to malt•

sure that B will not read the Ya.l.ue tv&oe. ilternatiTely,

he may decide that the results of the execution are not made

incorrect b7 two conNcutive executione of B. It aJ.l depends

on how the programmer attachea:mean:111g to his application.

Finally, we state that there are varying degrees of

failure aeverit7. The premature c1oa1Dg of a cOJlll11Dication

stream.is usually, but not alwa,s, a severe failure. Some

other failure caused action-. not be<aa.aevere (as, tor

example, printing out a message as opposed to aborting a

computation, as discussed above). miua. the set of improbable

computations may be conaidered to houae a ·· subset of computa­

tions, termed undesirable•computationa - those that lead to

severe failures due to the improbability of their corresponding

runs.

In this work, it is the task of the d•bugging facility to

150

produce a simulation of a probable computation to act as the

foundation upon which debugging is performed. The user may

then alter the comnnmication streaais aa he is inclined, to

produce other computations of VU71Ag degrees of probability

1n order to detect l.urking buga. Th.18 would seem to be the

most reasonable approach in de$1gn1ng a debuggi.ng tool for

distributed environments.

The notion of a probabl.e computation 1-a, again, somewhat

intuitive. It ia a computation ene vould not be surprised to

observe in a particul.ar sya'iea. Ita ton depends on many

parameters - hardware charac'ieriatiea. tranaiud.011 mediua,

dia'iance between nod.ea, the partioulu-.· di.apascur, algorithm 1n

use, to-name a fe,r. Jor-•xe•pi~, a dispatcher that favored

certain processes OTer others woul.d-pnenteccom.putat1ona with

certain characteristics. !he set of prooaole·computationa

for this s:,stea would re.fl.act thia. Koreanr, the substitution

of a new dispatcur 1n the same ayetem wou.J.d yield. a different

set of probable computations. qain, the distance between

nodes has an effect on the delay time bet•een .. packet transmission

and reception which, in turn, Q1&7-create coaputationa with

particul.ar charac'ieriatics. These are reneoted 1n that system's

set of probable computations.

We speak of a set of probable computations. For complex

systems with many in.dependent proce1:1aea, the number of probable

computations may be quite large. Thus, the question arise~,

"Which probable computation (of this set) is the debugging

facility attempting to simulate?"

1 51

The goal of the debugging facility, when a debugging

session 1s started up at time t with machine state S, 1s to

attempt to simulate the computation c that would have arisen

beginning at time t with machine state S, if the application

had been executing without the debugging facility.

We must stress the intuitivemeaa (again) of the notion of

a computation which "would have arisen". Given an initial

machine state it ia, of course, impossible to determine what

computation will arise due to the inherent nond,eterminacy of

parallel procesa&tng. Moreover, it the application commences

execution at time t under contro1 of tm·debuging facility,

then one cannot tell which computation wolll.4 have arisen had

execution commenced at time t without the debugging facility.

Thu.a, the computation c, above, 18 only a hypothetical, but·

useful, idea. In short, it is possible to attempt to simulate

a computation without actna]l7 knowing what that computation is.

This particular computation, o, haa been cb.oaen to be

simulated for two reasons. First, the computation c is one

which it is: possible for the debugging facility to simulate.

In the previous section, we proved that the facility will

simulate. at least those compu-tationa with~. possessing initial

states identical to the initial state at Which simulation

commences. Since both the simulation computation and the

hypothetical computation c begin at time t, it is obVious that

the facility is capabl.e of simulating c.

Second, we postulate that the probability ot this

computation, c, being a probabJ..e computation is high. Thus,it

152

is reasonable to expect that the facility is simul.ating a

probable computation. This may not always be true (for

exampl.e, during and after time t the communications medium

may be experiencing unusually heavy traffic leading to

unusually leD,£thy' transmission delays) and may conceivably

lead to problems. However, we feel that it is too much to

ask ot the deb~ facility to create probable computations

under improba'bl.e conditions. The development of a tool to

handle this ought to provide an intriguing area for future

research.

We have stated tbat the goal. of the debugging facility is

to att9mpt to simulate c. Is it acffiJIIJJy abl.e to do this~

'O'nfortunatel.3, the answer ia no. !he mere existence of the

debugging facility will have an effect on the system causing

a different computa:tion, tt' , to be simul.ated rather than c.

The facility affects the appllcati.on both epatia1ly and

temporally. It has a apa.tial ef:teot by al.taring the layout ot

the application code in memory, perhaps ~cin« some code to

disk that would have remai.Ded in main memory. Hence, a

resulting fetch to disk may occur that woul.d not have occurred

had the debugg1 ng faclli. ty not been~ -present. This oan alter

the computation that is performed •. Also, the debugging

facility code requires a finite amount of time to execute.

Hence there is a temporal effect in that any portion of the

application code will execute at time t + x rather than at

time t + y with x > y. Furthermore, as execution continues,

application code will be executing later and later than it

153

woul.d have had the debugging facility not been present. The

consequence of this is that stochastic processes (of the kind

mentioned in chapter two) will be in different states at time

t + x than they woul.d have been at time t + y, having different

effects than they would have and possible oau.aing a different

computation to be performed.

Let us be more concrete about this by again examining

the disk. One stochastic processinvolved in the diek operation

is how long it will take (seek time) to access a particular

disk location. Suppose process A requeated a disk fetch of

that location, waiting to be not~ied by the high priority

disk controlling process, D. Then process B .began to execute,

during the course of which process C was notified (placed on

the ready list). Now, without the debugging facility, the

request by A would have occurred at time t + a, and the disk

head would have been very near the l.ocation to be accessed.

Thu.a, D woul.d have retrieved the contents.of the requested

location and notified A, taking the processor away from B

before B could notify C. Then A would be placed on.the ready

list before c. On the oth•r hand, when the debugging facility

is present, the request by A occurred at time t + b (b) a).

At this time, the disk head was very far from the location to

be accessed. Thu.a, when B began executing it was able to

notify C before being preempted by D. Thua C was placed on

the ready list before A. A new set of causal relationships

ensued, hence a different computation, c', was performed

instead of the original computation c.

154

In light of al.l this, we aan say that the facility

simulates the computation c that woul.d have arisen at time t

up through the point of execution where its first spatial. or

temporal effect is made known to the application. If all

stochastic processes coul.d be controlled throughout the entire

execution, then c could be simulated completel.y. Van Horn

(Van Horn66) discusses this possibility at some length. When

stochastic processes are not controlled completely, the user

loses precise control (as discussed in chapter two) over the

events that occur during the debugging aeeai.on. Interprocess

communications are then governed not·on.).y b7expl:Lcit user

commends, but al.so b7 implicit side effects caused by such

stochastic proceaaea. In our.esmaple. the uaer is able to

control precisely only the events of the computation c',

which are the events of the original. computation c as they

have been altered by stochastic proceaaes.

Having shown that c' is simulated rather than c, we ask

whether c' is a probable computation? If so, then the third

question posed at the beginning of this chapter.is answered

in the af~irmative, and we have pronn all that we set out

to prove.

Remember that we have defined the probability of a

computation in terms of failure, or the lack thereof. ~h:Ls,

in turn, was ehown to be related to the disparity between

"pause intervals between events" among the different processes

in the computation. But a process can only be made aware of

the pause interval of another process by the time it takes to

155

receive successive communications from that process. The

timestamp·mechanism assures that this interval is (for the

system in question) a reasonable one in logical time for

communications that proceed by message passing (we obtain

"reasonable" intervals between successive communications by

ensuring that, if an average transmission delay time between

two nodes is x seconds, then the timestamp of a packet sent

from one of these nodes to the other will. equal the logical

time of the sending node when the packet is actually sent

plus x seconds plus or minus E, where the value of E

depends on stochastic processes within the communications

hardware - see the timestamping mechanism described in

chapter three - and is usually much less than x). We note

that these stochastically dependent timestamps represent

those that would have been assigned in the computation c',

not in the computation c. For communications that proceed by

monitor interactions, reasonable intervals are maintained by

ass a single logical clock to all processes that can

access the same monitor.

Thus, each process has its "real time expectations"

reasonably well fulfilled by every other process. All

communications are seen to proceed reasonably in time.

Therefore, c' is a probable computation (we state again, though,

the.t c' is probable to the extent that all stochastic processes

within the system possess probable values during the course

of the debugging session). Without the timestamping

mechanism, the computation that would be simulated,with

1 56

messages experier.cing transmission delays of minutes or

hours, is of an extremely low probability.

157

4.4 Probable Simulation vs. Transparency

In the previous section, we introduced two computations,

c and c', to make clear the difference between probable

simulation and transparency. If the debugging facility were

able to simulate the computation c, then the goal of complete

transparency would be achieved. To answer the question posed

at the very end of chapter two, then, this computation, c, is

that entity towards WAich we have attempted to maintain

transparency.

We have shown, however, that spatial and temporal effects,

as well as stochastic processes, prevent the realization of

complete transparency. We are able only to simulate c', a

probable computation. Probable simulation is, as stated,

weaker than transparency because c' is not the computation

that would have arisen at time t, c is. Thus, the debugging

facility is simulating the "wrong" probable cocputation. We

feel, however, that the computation c' is sufficiently

"similar" to the computation c (we state this without proof

and ask the reader to accept the notion of "similarity" on an

intuitive basis) so that the facility is still quite worth­

while despite this shortcoming.

This empty page was substih,ted for a
blank page in the original document.

158

Chapter Five

Related Ideas and Suggestions for Further Research

In this fina1 chapter we discuss some of the short­

comings, problems and generally interesting aspects of the

implementation presented in chapter three. We also discuss

some of the possible ways in which the research reported here

can be extended. We touch on certain features that we did

not have time to implement, refused to implement because of

a firm belief that they were incorrect, or a!lmply could not

figure out how to implement. Issues 1n all three areas are,

of course, open to the reade~ for examination. We hope that

this chapter vil.l stimulate interest in further research in

debugging techni~ues for distributed systems. The field, as

we shall see, is by no means exhausted.

159

5.1 Fragmentation

The Internet Protocol definition provides for the passage

of large datagrams through networks that are not equipped to

handl.e such sizes by the method of fragmentation. Fragmenta­

tion consists of the splitting up of a large packet into

several. smaller packets at the gateway entering the network,

and the reconstruction of the originaJ. datagram from these

packets at the gateway exiting the network.

Our debugging facility currently operates at the datagram

rather than the fragment level. That is, the uaer is not made

aware, and has no control. over, the flow of fragments during

interprocess communications. We have considered fragments to

be below the level at which the ueer ought to be concerned.

However, it is conceded that the ability to debug at the
I

fragment l.evel may at times prove useful and a debugging

facil.ity with this extended power might make a reasonable

research pr~ject.

The reason for the datagram rather than f:ragment orienta­

tion lies in the concept behind the timestam.ping :mechanism.

We assign a timestamp only when the entire packet has arrived

and the appl.ication process is about to be so notified by lower

level internet processes. The asaigmnent of a timestamp to

each fragment would necessitate moving "deeper" into the code.

A fragment timestamp would represent the time at which some

internet process was first notified by yet a lower level

mechanism that a fragment had arrived. This is, of course,

160

possible to implement, but it was deemed advisable to m£:...i..ntain

the hook into the debugging facility at as high a level as

possible, rather than deep inside the internet implementation.

161

5.2 Bottlenecking

It would seem rea.aonab1e that a debU&ii,ng ~acility which

aJ.lows the user to simulate all kinds of error conditions such

as losing packets, causing packets to arrive out of order, etc,

would also provide a way to simulate bottlenecking. Bottle­

necking occurs when aome portion of the tranemiasion medium

experiences more traffic than it can handle. Since bottle­

necking is often a real danger, especially in complicated

systems with many concurrently executirJ& applications, a-user

would probably be interested in detenn1n1ng the reaction of

his application to such artific1slly induced conditions.

It ia interesting to point out that our debuggi.%1& facility

does not allow bottlenecking to be simulated. This ia because

a user ia permitted only to determine what packet is to be

received by a particular request for packet from some process.

He is not allowed to send packet• indiacr1■1na,ely when such

requests do not exist. In particular, he baa no means at his

disposal to fiood the network in order to create bottlenecks.

We do not consider this to be a shortcoming of our system.

The realm of the debugging facility extends over the function­

ality of an application, not of the communications hardware.

Insofar as the functionality, or lack thereof, of the hardware

affects the application itself, then bottlenecking ought to be

an issue for us. That is as far as we go. To be more concrete,

bottlenecking, while conceivably affecting the communications

hardware in a number of adverse ways, has the same net effect

162

on the app1ication as losing a group of packets (either through

physical loss by the hardware or by packet bui'fer overflow at

some node). Losing packets is something the user can indeed

simulate via the debuggil:lg facility. Hence, the need to

create bott1enecks is obviated. However, the design of some

kind of too1 to debug hardware, working in tandem with our

debugging facility, might prove useful in certain cases.

163

5.3 Order of Event Reporting

To enable monitoring of the program being debugged,

conventiona1 debU&«ing tools report various events to the user.

These debuggers report items such ae instruction traces or

state transitions of user specified program objects, among,

perhaps, others. Our facility reports events related to inter­

process communications. Specifically, it informs the user of

each request for a packet by any application process in the

system and discloses the result of that request. That is, it

tells whether the request is satisfiable and, 11' so, which

application packet is to be sent in response.

It is implicitly understood in most oases that when

conventional debuggers report events to users in a particular

sequence, that sequence represents the order of occurrence of

those events in real time. For example, an instruction trace

represents the order of execution, 1n real time, of a set of

instructions by the processor.

It ought to be clear, however, that our facility, being

divorced from rea1 time, has some di1'f1cul.ty 1n complying with

this implicit assumption. In particular, the interface

reports an occurrence of a request for packet (an "event" 1n

our system) as soon as the correct response to that request

is determined. This is in no way related to the real time

order in which such requests are rendered. In fact, it is

a1so in no way related to the system logical time order in

which such requests are rendered. (By system logical time, we

164

are referring to Lamport's function C, a global function over

all logical clocks in the system such that C(b) = Ci(b) if b

is an event in process 1 which ~eads logical clock c1.)

One improvement that couJ.d be added to the user interface,

then, is to cause events to be reported to the user chronologi­

cally with respect to this function.C •. The centra1 site

could delay reporting a request UQtil all logical cl.ocks have

exceeded that request's times-tamp. Then the user is sure that

he is made aware of events in the order 1n which they occur in

1og1c11 t1me.

One interesting consequence of this is that 1! event a is

reported to the user before event b (imply~ C(a) < C(b)), it

. is not necessarily true that event a is.capable of causally

affecting event b (a/.) b). In other words, a and b may still

be concurrent • .A.s Lamport has correctly pointed out, the

converse of the clock condition is not ~ecessaril.y true.

That is:

Clock Condition Converse: For any events a, b:
if C(a) < C(b) then a-) b

does not necessarily hold.

A debugging tool which couJ.d make causa1 relationships

clear to the user would involve complicated mechanisms well

beyond the scope of this research. It is debatable whether

the information gained would be worth the time spent 1n

constructing such a too1. This might make an interesting area

for future research.

165

5.4 The Multi-Application Problem

Lauer and Needham (Lauer78) discuss two distinct approaches

in the design and imp.lementation of operating systems. These

tw~ approaches have been termed mes,w::9riented and proeedure­

oriented. Any operating system can be placed into either

category based on how it Tievs the concepts of process and

synchroni~.a.tion. fhese alternate views greatly affect the way

1n which the notion of an application is regartted in that system.

"Process" and. "application• are terms which we ban uaecl

extensively thus far.

Procedure-oriented systems are marked by the sharing of

data between processes, which is controlled by isynchronization

mechanisms such aa monitors. In these syrttems, processes change

contexts for data access through procedure invocations, "• • •
. ,

which can take a process very rap1d1y frail one context to

another ••• A process typical.ly has onl.y one goal or task,

but it wanders all over the system (by means of cal11ng procedures

to enter different contexts) in order to get that thing done.

As a result, the system resources tend to be encoded 1n common

or global data structures and the applications are associated

with processes whose needs are encoded in calls to system.­

provided procedures which access this data." (Lauer78)

Message-oriented systems are characterized by, of course,

message passing for interprocess communication. In these systems,

processes are resource guardians. "Each process tends to opera~e

in a relatively static context. Virtua1 memories or address

spaces are usually placed 1n one-to-one correspondence with

166

processes. Processes rarely cross protection boundaries

(except to briefly enter the executive or kernel), and they

rarely share data in memory. As a result, processes tend to

be associated with system resources, and the needs of applica­

tions which the system exists to serve are encoded into data
I

to be passed around in messages." (Lauer78)

What is important here is the relationship between

processes and applica~iona in the two systems. In procedure­

oriented systems, this relationship is tight in that a process,

or group of cooperating processes, can be clearly seen as

representing a particular application. In message-oriented

systems, however, processes are bound to resources, not

applications. Thus, a single process may concurrently service

the needs of many distinct applications. We show why this

leads to difficulties for our debugging facility.

It ought to be clear that distributed systems are, of

necessity closer to message-oriented than procedure-oriented

environments. This is because it is, in general, impossible

(except for processes having the good fortune to reside at the

same node) for processes to communicate through shared data.

The system on which our debugging facility is implemented is

message-oriented. It contains processes designated ae listeners.

These listeners are, as mentioned above, the processes which

control resources. They are constantly sensing the network

for resource requests from any application and then servicing

those requests (or, at least, handing them down to internal.

processes for servicing). An example of a listener is the

process existing at a file server which handles requests for

167

internode file transfers.

Program writers consider these listeners to be a given

part of the system (almost like the hardware) and write their

code to correctly interface with them. Since they are assumed

to function correctly, the user is not at al1 concerned with

debugging them. It would be nice if the user could simply

install the application (which interacts with some listener)

on some set of nodes and begin debugging right away. Unfortu­

nately, he cannot do this. This is because any process

involved in the application (including the listener) must be

au.spendable by the debugging facility. If the listener is

suspended (made to run slower) then the performance of all

other applications in the system interacting with it will be

degraded significantly, usually intolerably. The net effect is

that all users monitoring their private applications and

unaware that some user is currently debugging his own applica­

tion will notice inexplicable delays due to the a1owdown of

the listener. This is a consequence of the fact that

processes, in a message-oriented facility, may simultaneously

"belong to" (interact with) more than one application. Thus,

we refer to this as the multi-application problem.

CU1Tently, of course, the user is forced to bring up his

own private copy of the listener on some private node. This

is not always possible, as the user may not possess access to

the listener code, may not understand the code even if he does,

and (for example, in the case of the file server) may not be

able to duplicate necessary conditions on his private node for

168

the correct execution of the listener process. This is a

tremendous .liability which, because our implementation is so

heavi1y dependent on the notion of node suspension, we have

not been ab.le to solve. A facility which all.owe the user to

simply uplug in" his application and start debugging right
'

away would make an extremely worthwhile project for future

research.

169

5.5 Controlling Monitor Entries

Our debugging facility all.owe the user to create many

different compu.tationa of hia ap.Pl,ication i.J,. order to test each

of these tor 1urking bugs. Howe~r, 'the set of SUQh computations

is only a proper a\lbaet of the aet o1 ,all. pe>ea~bJ.e computations

of the app1ication. Thus, there are sets of causa1 re1ation­

ships that it is beyond the power of the user to test.

In particu1ar, the user is not given the ability to

specify or a1ter the order in which processes enter monitor

modu1ea. Thia entry order ia decided within the system itael.!,

partia11y by the dispatcher, partially by process priorities,

partial.l.y by the algorithm. 1n use to determine the nert process

to acquire a monitor lock, partially by stocbaatic processes

which affect interprocess timjng relationships, and, perhaps,

partia1ly by yet other indirect causes. The user is able to

infiuence the order of monitor entries on1y indirectiy by

~luencing the order in which the procesaes in question receive

packets prior to acquiring the monitor lock. That is, it two

processes both receive a packet and then attempt to enter the

same monitor, the user can affect the entry order by delaying

the packet to one of the processes. However, this "feature"

is merely a side effect that cannot be counted on. Nor is the

scenario which gives rise to it guaranteed, or even like1y, to

occur.

Yet we have seen the dua1ity between the two communications

methods - message passing and monitor interactions - and it

170

may seem somewhat artilicial to limit the user's ability to

alter the former but not the latter. We regard monitor entry

as being akin to packet reception. Both consist of the

acquisition of an ability by a proc.ess to observe a data state

created and left by another process.• Likewise, exiting a ,
I

mom.tor and packet transmission are dual concepts since both

consist of re11nquisb1ng a data state constructed by a process

for the pm:tpoae of making it ava 1e to another process for

e%am:1nat1on. In fact, there appeare to be no semantic

difference between the two types o~ cOlllllUnication. The o.nJ.y

difference we note ia 1n the method - any process at a node

may exam1 nii:, the state of a newly rel.inquiahed mom. tor while it

is usually the case in message paeaing that communication

channels exist only between specified pairs of processes. Of

course, this difference is easily e1iminated through the use

of a "mailbox",where a process send.a a packet to a particular

node's mailbox (some previously determined memory area) which

can be picked up by any process at that node vjll1ng to accept

it. Mailboxes and monitor modules appear to be identical cone

cepts.

(Incidentally, Lauer and Beedham (Lauer78) attempt to

make a case for the duality of operating systems based on these

two types of communication mecbaniema. They draw paralle1s

between various constructs in the two l!tystems. Much to our

chagrin, however, they do not draw·parallels between monitor

entries and exits and packet -i'9oeptions and transmissions. All

we can say is that, for our pimpoaes, the comparisons we have

171

drawn are much more useful than those presented in that paper.)

It is probably not too difficult to 1mp1ement a mechanism

that would ha1t a process whenever it tried to enter a monitor

(similar to hal.ting a process when it attempted to receive a

packet) and reporting this attempt to the user. Probably,

aince user processes may enter both uaer implemented and syatem

monitor modules, entry in.to the latter would not be reported by

the facility as it would require the user to have ertenaive

knowledge of the underl.ying system. Such information would be

(to use a term coined by Model) •below the grain" of the

environment under inveatigation. In this way, the wser could

control the sequence of~ interproceaa 00111Punications (he ia

given the ability to alter~ of the wavy arrows in Lamport's

diagram, figure 2.1). Re could create any poasibJ.e set of

causal relationships, hence simulate any poaeible computation

of his app1ication. The design and implementation of a tool to

acoompl.ieh this probably represents a wortmrhile·area for

future investigation.

But how such a tool might be implemented is not so clear.

It would imply the ability to au.spend a single process (delay

it from enter1ng a monitor) while al.lw1Dg other processes at

the same node to continue executing. This would appear to

render invalid the use of a single logical clock for all

processes at the node. Each process would need to have its

own private 1ogical clock since the suapenaion of one process

wou1d be independent of the suspension of any other at that

node. Then an algorithm 211m1Jar to that used for packet

172

reception might be employed for monitor entry, namely:

1. recording the logical time at which the process desires
to enter the monitor by reading its logical clock.

2. determining whether all other process clocks at that
node have gone beyond this 1ogical t.ime.

3. it not, suspending the process ·until such "t;ime as this
becomes true • · :

4. if so, determining whether the monitor is currently
locked by some other pr,opeaa (e •. g. the parallel to
determ1n1ng whether there is a packet ready to be
received.)

5. 1! the monitor is not currently loqlted, reporting this
entry attempt to the user and waiting for his reply.

6. whatever the state of the lock at this time, the process
attempts to acquire it w:hil41 ita 1Q81cal clock tick.a
{akin to a receive cal.l with disablia ti.Jlleout).

It must be pointed out, however, that our use of logical

clocks was solel.y for the purpose of mainta1n1ng transparency

towards the application. We wanted to simulate a probable

computation as a basis upon which debugging could be performed.

In the case discussed here, logical clocks would be used for

the same purpose. However, after much thought, we have not

been able to devise a reasonable •thod of assigning to and

advancing logical clocks when there exist multiple clocks at

each node (perhaps the reader would like to try his hand at

this). Thus, we are·not sure whether logical clocks would

prove useful in this case.

We present a simple example to show some of the intricacies

involved in such a scheme. The central difficulty is that the

maintenance of transparency necessitates a view of logical time

such that the logical clock of a process is considered to

173

advance whether or not that process is actually executing (as

long as it has not been artificially suspended by the debugging

facility). This is the method employlfd in our implementation.

Now, suppose that two processes, A and B, are residing at

the same node. A is currently executing; Bis on the ready

1.ist. Logical. time is advancing for both processes. Suppose

process A wishes to enter a monitor. This event is duly

reported to the user who decides to delay A" s entry until after

process B has entered that same monitor. Therefore A is

suspended (at la&ica1 time x) and B starts to execute. Now

the question is, "What time do we assign to B.' 19 logical clock?"

More precisely, since it does not matter (for our pun>oses)

what time B sees until it tries to enter a monitor or receive

a packet, what time is assigned to B's very next attempt to

perform one of theae two actions? In the interest of trans­

parency, B should not be aware that A has been artificia1ly

suspended. Thus, at the outset of B's execution, B's clock

should read x plus however long A would bave executed ha4 it

not been suspended. But, of course, it is impossible at this

time for the facility to know how long that would have been.

Thus, the difficul.ty in assigning a reasonable ~1.me to B's

logical clock is apparent. It is easy to see how more compli­

cated execution patterns would render logical clock maintenance

by the debugger facility virtualJ.y impossible.

An alternative approach would be to abandon logical. time

altogether and let the user be responsible tor· creating

probable computations. Then, ·transparency woul.d no longer be

a goal of 'the implementation and debugging would entail a

174

sequence of decisions about which process ought to enter a

monitor next, or which process ought to receive a packet next.

The user would possess total control in determining which

computation is performed. Total control, ot course, brings

with it a tremendous amonnt of detail for the user to cope

with. The user becomes responsible for deciding all matters

pert~ining to interprocess timing relationships, both at a

single node and among separate nodes. As such, he must be

intimately familiar with the code he is attempting to debug,

if he is to debug intelligently. Coping with detail is a

significant research problem in itself.

175

5.6 Future User Interface

The interface presented to the user by the central. site

is currently of the form of a "gl.ass teletype" and is somewhat

primitive. The facility presents infoI'l!Btion to the user by

printing out lines of text. Likewise, the user controls the

debugging session by typing in lines of text. Since the Alto

possesses powerful I/0 hardware and software facilities, there

is room for a good deal of improvement in this area. We see

this as yet another worthwhile subject for future research.

The interface reports two kinds of entities, events and

data. Events, which are defined to be reqJ1tsts by _any process

to receive a packet, are reported sequentially to the user by

listing various pertinent information such as the node on which

the requesting process resides, whether the request is satis­

fiable and, if so, the identity of the satisfying packet, and

the process from which that.packet originated. Data, which

consist of the contents (header and body) of packets, are

likewise reported in a simple fashion. The display is of the

form of a sequence of octal values representing each wori in

the packet. There are a number of ways by which this interface

can be improved upon.

5. 6. 1 Mul tistepping and Slow Stepping

. Model (Model79) has discussed in detail a number of worth­

while attributes concerning information display for interactive

debugging. As he has pointed out, one failing of many conven­

tional debuggers is that they report too much information to

•)

176

the user. The user is either forced to discard much of it, or

is overwhelmed by it. The former is wasteful., the latter

catastrophic. Our implementation currently is also guilty of

this failing. AJ.l events (as we have d.et1ned events} are

reported to the user. Since many dozens (hundreds, or even

thousands) of packets may be tr-anamitted and reoeived during

fairly simple tranaactions (e.g. a aimp1e file trans:t'er), it

seems clear that the user will not wish to be IQ&de aware of

alJ. of them.

Even more debilitating, not only is the user informed

of each pending event, but he ia asked to make a decision about

each one. This mode of operation is called a;tngle .atepptpg; a

pause occurs between each step (event) and the user 1a given

the opportunity for analysis. This can prove excruciatingly

slow when each individual event accomp11ahee very little.

An enhancement on this ia the concept ot !PP,lt1etepp1pg,

where only selected events are reported for user observation

and analysis. 1'be events to be reported are sel.ected either

by the system or the user. The user might instruct the system

to suppress the reporting of the next x requests from process

y or node z, all requests arising in the next w (iogicaJ.)

seconds, all requests for packets with proto~ol u, etc. In

this way, unimportant events are easily filtered out and

debugging can proceed more sw11'tl.y.

Incidentally, Mode1 states that the entity constituting

a "singl.e step" is not always obvious. For examp1e, 1n Algol,

"• •• should the notion be defined in terms of single lines

177

of code, statements which do not contain other statem~nts, or

individua1 operations in the language, such as f:unction calls

and arithmetical operators?" (Model79) This ambiguity arises

because the concept of an "event" is not well defined. 'We do

not have this problem because of our precise (although not

necessarily optimal) definition of what constitutes an event.

Somewhere in between sillgle and· Jll\1lt1-,tepping lies the

notion of sJ,S>w.4tepp;t,pg. Thia can be employed .when the user

desires to be informed of all. events in a certain class (as in

sill8le stepping) but does not want to make decisions about each

one (as in mu.ltiatepping). fhus,. the emphaa±s is on monitoring.

rather than debQggiDg. The user ought to be able to specify

how swiftly events are to be reported-. ahoul.d be ab.le to

adjust· this rate a.t will. The ideal. in'terf&ee would_ allow

interm~xing of si.ngl.e, multi, and al.ow. ateppinC duriDg different

stages of the aame deb~g session.

5.6.2 Graphical and Analogical Displa.y of Data

One of the central themes espoused b7 Model is that

information ought to be presented, if pou:ible, in a graphical.

or analogical fashion. The. hypothesis is t-bat pictorial

displays are more swiftly and easily understood than sequences

of symbols (such as numbers). Thus a.n iteration variable

ought to be presented as a kind of "percent-done" indicator

(see figure 5.1) representing how much headway has been made

thus far. This is an example of an analogical. display. Data

% done

60%

178

Figure 5.1

(based on (Myers80), fig. 2.1)

'°" done thua tar

179

structures ought to be displayed in the way they are intuitively

understood; the interrelationships between the various values

comprising the structure ought to be clearly marked. Thus, a

Lisp list should be displayed with pointers (see figure 5.2)

rather than as a sequence of octal values which the user must

fathom for himself.

Myers (Myers80) has implemented a system, call.ed Incense,

for displaying graphically and analogically the data structures

of a program during interactive debugging. It possesses the

ability to display both predefined and user defined structures.

We feel that a povert'u1 debugging tool would resu1t from the

combination of an Incense-like facility and the facility

described herein. Incense cou1d probably be modified vitho~

too much effort to disp1ay the data structures 1aad other

information that make up datagrams. One simple approach is

to use the packet protocol number as a convention for deter­

mining how to display the packfJt 1.nfo-i,uation. Since packets

sent sequentially from the same proce.., may z,present different

portions of the .-.me data s-tructure (as in the transfer of a

file) , perbaps a way oould , be d,"~s~ to P-.i>h1cally display

grou.pa of packete 0 'io bu.l.d·more eempl.rie diagrams. Thie

concept cou.ld be used in conjunction with slow or multistepping

where the user could indicete that he wishes to see the

contents of the next x packets to be sent from process y, etc.

In short, since a picture is worth a thousand words (and

probably even more octal digits) and since many of the u.ser'e

debugging decisions will be based on the contents of particular

180

A B

C D

E F

The list (A { C { E F) D) B)

Figure 5.2

181

packets, analogic or graphic display of the contents of these

packets should allow debugging to proceed more swiftly and

easily.

5.6.3 Dynamic Display of Events

Having discussed ~ome possible ways to display data, we

now turn to future methods for displaying events. Since

processes are made up of events, we may consider the totality

of all reportable events 1n eur system to i'tlpresent a kind

of communication "process" (not at all like a Mesa process~- of

course). Model bas stated that 1n order to ful.ly appreciate

the funct~ona1ity of a proceea, one must view it as a flow of

events, a movie as it were, rather than as a series of snap­

shots of states arising from the execution of those events.

As it is currently constituted, our interface only displays

the communications process as an isolated sequence of events.

A more dynamic, movie-like dispJ.ay providing a graphic

representation of the communications process might prove quite

worthwhile. Such a display would have certain fixed areas set

aside on the screen to represent the various nodes involved in

the debugging session. The transmission of a packet could be

indicated by a dot flowing from the sending to the receiving

node. The user could focus his attention by examining

particular parts of the screen containing the nodes in which

he is currently interested. Thus, the interface might,look

not unlike an air-traffic controller's screen (this is not a

182

facetious comparison; just as the air-traffic controller

directs the path of airplanes, so the user directs the path

of packets).

The advantage of such a dynamic approach is that it gives

the user a "feel" for certain aspects of the communications

process which it would be difficult or impossible to derive
~

from a more static, sequential- reporting of isolated events.

In particular, during slow stepping the user could learn where

communications are most extensive, where bottlenecks are most

likely to occur, and which nodes are busiest at what times.

These concepts could be inferred from a more static approach,

but only with great difficulty.

Of necessity, however, a complicated display such as this

would require most of the memory of an Alto, leaving little

room for the central debugger site code. One solution is for

the user to do his monitoring from two Altos placed in close

proximity. One could display the more advanced interface, and

the other could have the simple interface of chapter ·three,

with, perhaps, Incense-like display capabilities. The user

would enter his commands at the latter site. Coordination

between these two monitoring stations would proceed through

message passing. Thus, a user cocmand. issued at one node would

be refiected by the user interface of the other node. This

configuration bears simi1arity to the network concept of

Metric, mentioned in chapter one. We do not speculate on how

easily such an implementation could be rea1ized.

We point out that the network concept is made necessary

183

only by the small size and present performance capabilities

of each Alto. There is no inherent reason why the two

displays could not be handled by a single, more powerful

processor.

Incidentally, such a dynamic display would still suffer

from an inability to make clear the causality relationships

among the events it reported.

184

5.7 Towards an Integrated Debugging System for Distributed
Computationai Environments

The reverse of the problem o! the debugging facility

reporting too much information to the user (aa discuaeed in

section 5.6.1) is the danger that it wlll report too little

information. Requests for packets ara but one ciaas of event,

and a small c1aes at that. It may, prove dif!icw.t for the

user to detect many kinds of luz,ic1ng bugs baaed sol.elyon

knowJ.edge of the cOJ1111lUilications proc1tae. He may need a method

of getting at those system events that occur •between"

communication eTents. We are speaking, ot courae., of

traditional events such as aas1gnment, ari.thm.etic procesaing,

etc, which make up the bulk of most proce•••• and. w aich are

performed private1..T by the process in which tbey occur witho~

the need for any interprocess communication.

We have already spoken (see cbap'te:r two) of how the user

can be made aware of such events under the current impl.e•n­

tation. A.fter moni.toring co11111Nnieat1ons through eome point in

the execution, he ma;y abandon the central stte and•phyaicalJ.y

go to the node at which reside the prooeaaea conta1n1ng the

priv.ate events in which he is interested. At this node he is

able to monitor events using the conventional single node

debugger existing there (however, .that debugger maJ' need to be

modified in order to maintain accurately the logical. clock

existing there by accounting for the correct flow of logical.

time while the debugging takes pl.ace). Debugging can continue

in this fashion at this node until the next attempt at

185

interprocess communication via messa.ge passing. At this

point, in order to maintain transparency, control. must be

rel.inquished to the central. debugger site. The user may then,

if he so chooses, abandon this node and .physi.caJJy go to

another node using the conventiona.1 debugger existing there to

monitor events private to that node. Thia can be repeated for

al.1 nodes in the session.

We al.so aaid that the user may choose. to empl.oy some

remote d@:qgciM or remote mcm1t91j.ng aystea (Tel.eswat, for

exampl.e) • For large networks, the distance between nodes

would make a remote debugger imperative. Sacha debugger

woul.d al.l.ow the user to performal.l. o~ hia debugging directl.y

from the central.- ai te. this would invol.v.e the ability to

interrosate and to issue commands to remote nodes from the

central site.

this area.

Issues of node autonomy:Dltl1' ec;,me into p1ay in

Tailoring a remote debugger to the environment preaented

by the debugging faoili.ty described herein would be a. profitable

pursuit. The resul:ting sy-stem woul.d constitute a total.l.y

integrated facil.ity for debugging distributed appl.ications.

ill pertinent events could be monitored and debugged from a

central area, possessing total control. over the proceedings.

Combined with some of the other ideas J.n, this chapter, it

woul.d make for an extraordinarily powerful. debugging tool..

(Bryant77)

(Canon80)

(Hoare74)

(ISISO)

(Jaffe79)

(Johnson75)

(Lamport78)

(Lampa.on80)

(Lauer78)

(McDa.nieJ.77)

(Metcal!e76)

186

References

Bryant, R.E., "Sim.ul.ation of Packet Communication
Architecture Computer Systems", S.M. thee:te,
M.I.!. Laborator,,:t•r oo.pner Science Technical.
Report TR-188, .JJcNre■ber 1977.

Canon, M.D., Pritz, D.R., Boward, J .H., Howell,
T .D., Mitoma, 11.P ~ ancl :rtoa.rssuez-RoaeJ.l, J.,
" A Virtual. K&Ota:la. Blilllla"tor •.· tor Performance
h&.1:uat1on", eACM2:,, 2,-haruary 1980. •)

Hoare, C.A.R., "Monitor■: An Operating System
Structuring Oonoept•, OACX 17, 10, October 1974.

"DOD Standard Intern.et Proto~ol", Information
Sciences Instituten(un1verait7 of Southern
Ca11fontia) UC #7~0 ID #129,··January 1980.

J~fe, J.A.., •~•1 Ooaputat;on: Synchroni­
sation, SOheduling, am so-., Ph.D. theaia,
M.I.T. Laborato~ for C~uter Science Technical.
Report !R-2l1 , AU4Jll,8t 1 ·· · •...

Johnson, P.R. and !homaa, R.H., "The Main­
tenance of Du.plioat.•Databaaelf", .Arpanet
NWG/RFC #677, January 1975.

Lamport, L., "Tille, CJ.ooka, and the Ordering of
Eventa in a Diatributed Sya'tea", CACM 21, 7,
July 1978.

Lampson, B.W. and Redell., D.D., "ExperiencenWith
Prooeeaea and Monitors 1n Meaa". OJ.OJI 2'3, 2,
:Pebrua.ry t980.

Lauer, H.C. and Needham, R.M., "On the Duality
of Operating System S.tr110twes•, Second
International Sympoaillll on.Operating Systems,
µtIA, Rocquencourt, J'Nnoe, October 1978.

McDaniel, G., "Metric: A Kernel. Instrumentation
System for Dis-n-ibuted Envil"oaments",
ProceediDB• ot the :SUth SJapotlium on Operating
Systems Principles, November 1977.

MetcaJ.~e, R.M. and Boggs, D.R., "Ethernet:
Distribu-ted Packet SWitobin& tor Local Computer
Networks", CA.CM 19, 7, July 1976.

(Mitchell79)

(Model79)

(IversBO)

(Pouzin78)

(Reed79)

(S,,obodova79)

(Svinebart74)

(Teitelman.77)

(Van Horn.66)

(Xerox79a)

(Xerox7-9b)

(Xerox79c)

187

:[\'Iitchell, J .G., Maybury, 'vi. and Sweet, R.,
"Mesa Language Manual", Version 5.0, Xerox
Pal.o Alto Research Center, Report CSL-79-3,
April 1979.

Model, M.L., ">Jonitar~ S:r~•• Behavior in
a Complex OQJ1Jp\l1-&-Sicmal .. ,EnTU-OJUD8nt", Stanford
Ph.D. theue,~•,:•:~ .Palo Alto
Research Center Re~rt CSL-79-1, January 1979.

I

Myere, B • .t\.., ~l>1•pi.Q:uc·Dat& Structures for
I.ateraoji,~ 1-9\IIO"&.!~., M.I.i. S.M. thesis
avella'ble a•_X~ Pale . .u.wria.search Center
Report Cm.-;.a0-7, June 1980.

Pouin, I,. ao4 -·Z:1.-~, B., "A !utorial on
Protocols", Proceedings of the IEEE 66, 11,
Bneaber 1'978 •. ,

Ree4,- J).P., "lapl.ellea'jills 4,oaic Actions on
Decentralized Data•, Preprint• for the Seventh
s~ on •°'":~~•-- .1>r1nc1»1••• ia,o;ltic tl'ffe., :0 · •· 1le11■ber 1979.

Svobo6cml, i.eit. ~ff, ,B. •felark, D.,
"Distributed computer 87at8118: Structure and
Se.at~•!' tl .JI. 1.1 • . lAlro~, ,tor C•JQne.r ·
Soi•• teclm1eal, _a.port .-.a\S, March 1979.

Svinehart, D.C., "COPILO!: A Multiple Process
Approeo.11 .. -to ~--.active ,b-.p1•1ng ~•.
S~ ·a.B. ·-...cl• ~ •• SAIL Memo
ilH-2,0 and OSD Reportr~74-412,
July 1974.

'fej. "tel.an, W. , "A Di.aplay · Oz-ieJlted Programmer' s
Aaaietant", Xerox Palo- A;Lto ~arch Center
Report CSL-77-'3, March 1977.

Vea Bora,. E.C., "Oospu.ter :De.aip for
~laroaoual.J bp~ ~tiprocessing",
Ph.l>. tJ:iem.s, if.:I.·~.: ~tProject Tac Technical·
Report TR-34, November 1966.

"ilto: A Personal eom.pQ.ter·Syatem Hardware
Hanval", X.rox Palo Al.'kl Beeeerch Center,
May 197-9.

"Mesa Syateat Documentatio.nfl, Version 5.0, Xerox
Palo Al.to Researeh.-Cea~er, April 1979.

- .
"Alto Subsystems", Xerox Palo ilto Research
Center, October 1979.

