
Signature of Author

Procedural Reflection
in Programming Languages

Votu ;11(::c-

nnan Cantwell Smith

B.S., Massachusetts Institme of Technology (1974)
M.S., Massachusetts Institute of Technology (1978)

Submitted in partial fulfillment
of the requirements for the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

Febmary 1982

© Massachusetts Institute of Technology 1982

 Certificdby ___ --------------
Peter Szolovits

Thesis St.pcrvisor

Accepted by

Eng.

Arthur C. Smith
Chainnan, Departmental Graduate Committee

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAY 2 0 1982

LIBRARIES

Signature redacted

Signature redacted

Preliminaries Procedural Reflection 2

Abstract

We show how a computational system can be constructed to "reason", effectively
and consequentially, about its own inferential processes. 111c analysis proceeds in two
parts. First, we consider the general question of computational semantics, rejecting
traditional approaches, and arguing that the declaratfre and procedural aspects of
computational symbols (what they stand for. and what behaviour they engender) should be
analysed i11depe11dently, in order that they may be coherently related. Second, we
investigate self referential behaviour in computational processes, and show how to embed an
effective procc<.!ural model of a computati,mal calculus within that calculus (a model not
unlike a r.1eta·circular interpreter, but connected to the fundamental operations of the
machine in such a way as to provide, at any point in a computation, ful1y articulated
descriptions of the state of that computation, for inspection and possible modification). In
tenns of tl1e theories that result from these investigations. we present a general architecture
for procedurally reflective processes, able to shift smoothly between dealing with a given
subject domain, and dealing with their own reasoning processes over that domain.

An instance of the general solution is worked out in the context of an applicative
language. Specifically, we present three successive dialects of LISP: 1-usP, a distillation of
current practice, for comparison purposes; 2-LISP, a dialect constructed in terms of our
rationalised semantics, in which the concept of evaluation is rejected in favour of
independent notions of simplification and reference, and in which i.hc respective categories
of notation, structure, semantics, and behaviour are strictly aligned; and 3-LISP, an
extension of 2-usP endowed with reflective powers.

This research was supported (in part) by the National Institutes of Health Gram No. 1 POl
LM 03374 from the National Library of Medicine.

Preliminaries Procedural Reflection 3

Extended Abstract

We show how a computational system can be constructed to "reason" effectively and
consequentially about its own inference processes. Our approach is to analyse self
referential behc:viour in computational systems, and to prnpose a theory of procedural
reflection that enables any programming language to be extended in such a way as to
support programs able to access and manipulate structur31 descriptions of their own
operations and structures. In particular, one must encode an explicit theory of such a
system within the structures of the system, and then connect that theory to the fundamental
operations of the system in such a way as to support three primitive behaviours. First, at
any point in the course of a computation fully articulated descriptions of the state of the
ri::asoning process must be available for inspection and modification. Second, it must be
possible at any point to resume an arbitrary computation in accord with such (possibly
modified) theory-relative descriptions. Third, procedures that reason with descriptions of
the processor state must themselves be subject to description .:.nd review, to arbitrary depth.
Such reflective abilities allow a process to shift smoothly between dealing with a given
subject domain, and dealing with its own reasoning processes over that domain.

Crucial in the development of this theory is a comparison of the respective semantics
of programming languages (such as LISP and ALGOL} and declarative languages (such as
logic and the A-calculus); we argue that unifying these traditionally separate disciplines
clarifies both, and suggests a simple and natural approach to the question of procedural
reflection. More specifically, the semantical analysis of computational systems shoulct
comprise independ~nt fotmulations of declarative import (what symbols stand for) and
procedural conseque11ce (what effects and results arc engendered by processing them},
although the two semantical treatments may, because of side-effect interactions, have to be
fonnulated in conjunction. When this approach is applied to a functional language it is
shown that the traditional notion of evaluation is confusing and conn.1sed, and must be
rejected in favour of independent notions of reference and simplification. In addition, we
defend a standard of category alignmelll: there should be a systematic correspondence
between the respective categories of notation, abstract structure, declarative semantics, and
procedural consequence (a mandate satisified by no extant procedural formalism}. It is
shown how a clarification of these p1ior semantical and aesthetic issues enables a
procedurally reflective dialect to be clearly defined and readily constructed.

An instance of the general solution is worked out in the context of an applicative
language, where the question reduces to one of defining an interpreted calculus able to
inspect and affect its own interpretation. In particular, we consider three succes,;ive dialects
of LISP: 1-LISP, a distillation of current practice for comparison purposes, 2-LISP, a dialect
categorically and semantically ratio11alised with respect to an explicit theory of declarative
semantics for s-expressions, and 3-1.ISP, a derivative of 2-LISP endowed with full reflective
powers. 1-LISP, like a11 LISP dialects in current use, is at heart a first-order language,
employing meta-syntactic facilities and dynamic variable scoping protocols to partially
mimic higher-order functionality. 2-LISP, like SCHEME and the A-calculus, is higher-order: it
supports arbitrary function designators in argument position, is lexically scoped, and treats

Preliminaries Procedural Reflection 4

the function position of an application in a standard extensional manner. Unlike SCHEME,

however, the 2-LJSP processor is based on a regimen of nomralisation, taking each
expression into a normal-form co-designator of its referent, where the notion of normal·
fonn is in part defined with respect to that referent's semantic type, not (as in the case of
the A·calculus) solely in terms of the further non-applicability of a set of syntactic reduction
rules. 2-LISP normal-form designators are environment-independent and side-effect free;
thus the concept of a closure can be reconstructed as a normal-fonn function designator. In
addition, sine~ normalisation is a form of simplification, and is therefore designation
preserving, meta-structural expressions are not de-referenced upon normalisation, as they are
when evaluated. Thus we say that the 2-LISP processor is semantically flat. since it stays at
a semantically fixed level (although explicit referencing and de-referencing primitives arc
also provided, to facilitate explicit level shifts). Finally, because of its category alignment,
argument objectification (the ability to apply functions to a sequence of arguments
designated collectively by a single term) can be treated in the 2-LISP base-level language,
without requiring resort to meta-structural machinery.

3-LISP is straightforwardly defined as an extension of 2-LISP, with respect to an
explicitly articulated procedural theory of 3-LISP embedded in 3-LISP structures. TI1is
embedded theory, called the reflective model, though superficially resembling a meta-circular
interpreter, is causally connected to the workings of the underlying calculus :n crucial and
primitive ways. Specifically, reflective procedures are supported that bind as arguments
(designators of) the continuation and environment structure of the processor that would
have been in effect at the moment the reflective procedure was called, had the machine
been running all along in virtue of the explicit processing of that reflective model. Because
reflection may recurse arbitrarily, 3-LISP is most simply defined as an infinite tower of 3-

LISP processes, each engendering the process immediately below it. Under such an
account, the use of reflective procedures amounts to running programs at arbitrary levels in
this reflective hierarchy. Both a straightforward implementation and a conceptual analysis
are provided to demonstrate that such a machine is nevertheless finite.

The 3-LISP reflective model unifies three programming language concepts that have
formerly been viewed as independent: meta-circular interpreters, explicit names for the
primitive intcrpr<'tivc procedures (EVAL and APPLY in standard LISP dialects), and procedures
that access the state of the implementation (typically provided, as part of a programming
environment, for debugging purposes). We show how all such behaviours can be defined
within a pure version of 3-LISP (i.e., independent of implementation), since all aspects of
the state of any 3-LISP process arc available, with sufficient reflection, as objectified entities
within the 3-LISP structural field.

Prelimina1ies

Abstract
Extended Abstract
Summary Contents
Contents
Preface and Acknowledgements

Prologue

1. Introduction

2. 1-LISP: A Basis Dialect

3. Semantic Rationalisation

Summary Contents

4. 2-LISP: A Rationalised Dialect

5. Procedural Reflection and 3-LISP

6. Conclusion

Appendix: A MACLISP Implementation of3-LISP

Notes and References

Procedural Reflection

Page 2
3
s
6

10

13

26

103

122

253

571

700

707
752

s

Preliminaries Procedural Reflection

Contents

Preliminaries

Abstract

Extended Abstract

Summary Contents

Contents

Preface and Acknowledgments

Prologue

Chapter 1. Introduction

Introduction

1.a. General Overview

l.b. The Concept of Reflection

l.b.i. The Reflection and Representation Hypotheses
l.b.ii. Reflection in Computational Formalisms
Lb.iii. Six General Properties of Reflection
l.b.iv. Reflection and Self-Reference

1.c. A Process Reduction Model of Computation

l.d. The Rationalisation of Computational Semantics

1.d.i. Pre-Theoretic Assumptions
1.d.ii. Semantics in a Computational Setting
l.d.iii. Recursive and Compositional Formulations
l.d.iv. The Rob of a Declarative Semantics

1.e. Procedural Reflection

l.e.i. A First Sketch
Le.ii. Meta-Circular Processors
Le.iii. Procedural Reflection Models
Le.iv. Two Views of Reflection
l.e.v. Some General Comments

l.f. The Use of LI SP as an Explanatory Vehicle

1.f.i. t-LISP as a Distillation of Current Practice
1.f.ii. The Design of 2-LISP

l.f.iii. 1bc Procedurally Reflective 3-LISP

1.f.iv. Reconstruction Rather TI1an Design

Page

6

2

2

3
5
6

10

13

26

26
27
35
35
38
42
47
50
59
59
61
67
69
70
70
72
75
78
80

82
83
86
91
93

Preliminaries

l.g. Remarks
l.g.i. Comparison with Other Work
1.g.ii. The Mathematical Meta-Language
1.g.iii. Examples and Implementation

Chapter 2. 1-LISP: A Basis Dialect

Chapter 3. Semantic Rationalisation

Introduction

Procedural Reflection 7

95
95

101
102

103

122

122

3 .a. The Semantics of Traditional Systems 124
3.a.i. Logic 124
3.a.ii. The A -Calculus 127
3.a.iii. PROLOG 129
3.a.iv. Commm.alities 130

3.b. The Semantics of Computational Calculi 134
3.b.i. Standard Programming Language Semantics 134
3.b.ii. Dcc1arative Semantics in LISP 143
3.b.iii. Summary 148

3.c. Preparations for 1-LISP and 1.7-LISP Semantics 150

3.c.i. Local and Full Procedural Consequence 150
3.c.ii. Declarative Semantics for Data Structures 153
3.c.iii. Recursive Compositionality, Extensionatity, and Accessibility 155
3.c.iv. Structure vs. Notation 158
3.c. v. Context Relativity 160
3.c.vi. 'I erminology and Standard Models 166
3.c. vii. Declarative Semantics and Assertional Force 168

3.d. The Semantics of 1-LISP: First Attempt 170
3.d.i. Declarative Semantics (ti)) 171
3.d.ii. Local Procedural Semantics (,i,) 190
3.d.iii. Full Procecurnl Semantics (r) 199

3.c. 1l1e Semantics of 1-usr: Second Attempt 205
3.e.i. The Pervasive Influence of Evaluation 205
3.e.ii. The Temporal Context of Designation 207
3.e.iii. Full Computational Significance (l:) 211
3.e.iv. An Example 218
3.e.v. The Evaluation Theorem 225

3.f. Towards a Rationalised Design 228

3.f.i. Evaluation Considered Harmfi1l 230
3.f.ii. Normal Form Designators 237
3.f.iii. Lessons and Observations 243
3.f.iv. Declarative Import, Implementation, and Data Abstraction 246

Preliminaries Procedural Reflection 8

Chapter 4. 2-LISP: A Rationalised Dialect 253

Introduction
4.a. The 2-LISP Structural Field

4.a.i. Numerals and Numbers
4.a.ii Booleans and Truth-values
4.a.iii Atoms
4.a.iv. Pairs and Reductions
4.a.v. Rails and Sequences
4.a. vi. Handles
4.a. vii. Category Summary
4.a. viii. Normal-form Designators
4.a.ix. Accessibility
4.a.x. Graphical Notation

4.b. Simple 2-LISP Primitives
4.b.i. Arithmetic Primitives
4.b.ii. Selectors on Pairs
4.b.iii. Typing and Identity
4.b.iv. Selectors on Rails and Sequences
4.b.v. The Creation of New Structure
4.b. vi. Vector Generalisations
4.b.vii. Structural Field Side Effects
4.b.viii. Input/Output
4.b.ix. Control

4.c. Methods of Composition and Abstraction
4.c.i. Lambda Abstraction and Procedural Intension
4.c.ii. Closures: Normal Fmm Function Designators
4.c.iii. Patterns and Parameter Binding
4.c.iv. The Semantics of LAMBDA, EXPR, and IMPR

4.c.v. Recursion
4.c.vi. Environments and the Setting of Variables

4.d. Meta-Structural Capabilities

4.d.i. NAME and REFERENT

4.d.ii. NORMALISE and REDUCE

4.d.iii. Intensional Procedures
4.d.iv. The "Up-Down" Theorem
4.d.v. Macros and Dackquote
4.d.vi. The Normalisation ("Flat") and Type Theorems
4.d.vii. The 2-LISP Meta-Circular Processor

4.e. Conclusion

253
257
257
259
260
261
265
286
291
292
297
298
301
302
314
321
330
335
342
350
356
360
377
377
393
401
412
427
461
481
481
493
505
512
522
544
550
565

Preliminaries Procedural Reflection 9

Chapter 5. Procedural Reflection and 3-LISP 571
Introduction
5.a. The Architecture of Reflection

5.b.

5.c.

5.d.

5.e.

Chapter 6.

Appendix.

5.a.i. The Limitations of2-LISP

5.a.il. Some Untenable Proposals
5.a.iii. Reflective Code in the Processor
5.a.iv. Four Grades of Reflective Involvement

An Introduction to 3-LISP

5.b.i. Reflective Procedures and Reflective Levels
5.b.ii. Some Elementary Examples
5.b.iii. LAMBDA, and Simple and Reflective Closures
5.b.iv. The Structure of Environments
5.b.v. Simple Debugging
5.b.vi. REFERENT

5.b.vii. The Conditional
5.b.viii. Review and Comparision with 2-LISP

The Reflective Processor
5.c.i. The Integration of Reflective Procedures
5.c.ii. The Treatment of Primitives
5.c.iii. Levels of READ-NORMALISE-PRINT

5.c.iv. Control Flow in the Reflective Processor
5.c.v. The Implementation of a Reflective Dialect
Reflection in Practice
5.d.i. Continuations with a Variable Number of Arguments
S.d.ii. Macros
S.d.iii. Pointers to Further Examples
The Mathematica] Characterisation of Reflection

Conclusion

A MACLISP Implementation of 3-LISP

Notes
References

571
576
516
583
595
600

606
608
614
621
626
633
638
641
645
648
649
652
656
661
671

679
679
688
695
699

700

707

752
756

Preliminaries Procedural Reflection

Preface and Acknowledgements

The possibility of constructing a reflective calculus first struck me in June 1976, at

the Xerox Palo Alto Research Center, where I was spending a summer working with the

KRL representation lar,guage of Bobrow and Winograd.1 As an exercise to learn thP,

language, I had embarked on the project cf representing KRL in KRL; i~ seemed to me that

this "double-barrelled" approach, in which I would have both to use and to mention the

language, would be a particularly efficient way to unravel its intricacies. Though that

exercise was ultimately abanrloned, I stayed with it long enough to become intrigued by the

th.Jught that one might build a system that · was self-descriptive in an important way

(certainly in a way in which my KRL project was not). More specifically, I could dimly

envisage a computational system in which what happened took effect in virtue of

declarative descriptions of what was l:o happen, and in which the internal structural

conditions were represented in declarative descriptions of those internal structural

conditions. In such a system a program could with equal ease access all the basic

operations and structures either directly or in tenns of completely (and automatically)

articulated descriptions of them. The idea seemed to me rather simple (as it still does);

furthermore, for a variety of reasons I thought that sue!:. a reflective calculus could itself be

rather simple - in some important ways simpler than a non-reflective fonnalism (this too I

still believe). Designing such a fonnalism, however, no longer seems as straightforward as I

thought at the time; this dissertation should be viewed as the first report emerging from the

research project that ensued.

Most of the five years since 1976 have been devoted to initial versions of my

specification of such a language, called MANTIQ, based on these original hunches. As

mentioned in the first paragraph of chapter l, there are various non-trivial goals that must

be met by the designer of any such formalism, including at least a tentative solution to the

knowledge representation problem. Furthennore, in the course of its development, MANT IQ

has come to rest on some additional hypotheses above and beyond those mentioned above

(including, for example, a sense that it will be possible within a computational s~tting to

construct a fonnalism in which syntactic identity and intensional identity can be identified,

given some appropriate, but independently specified, theory of intensionality). Probably

Preliminaries Procedural Reflection 11

the major portion of my attention to date has focused on these intensional aspects of the

MANT IQ architecture.

It was clear from the outset that no dialect of LISP (or of any other purely

procedural calculus) could serve as a full reflective formalism; purely declarative languages

like logic or the A.-calculus were dismissed for similar reasons. In February of 1981,

however. I decided that it would be worth focusing on LISP, by way of an example, in

order to work out the details of a specific subset of the issues with which MANTIQ would

have to contend. In particular, I recognised that many of the questions of reflection could

be profitably studied in a (limited) procedural dialect, in ways that would ultimately

illuminate the larger programme. Furthermore, to the extent that LISP could serve as a

theoretical vehicle, it seemed a good project; it would be much easier to develop, and even

more so to communicate, sotutious in a formalism at least partially understood.

The time from the original decision to look at procedural reflection (and its

concomitant emphasis on semantics - I realised from investigations of MANTIQ that

semantics would come to the fore in all aspects of the overall enterprise), to a working

implementation of 3-LISP, was only a few weeks. Articulating why 3-LISP was the way it

was, however - formulating in plain English the concepts and categories on which the

design was founded - required quite intensive work for the remainder of the year. A first

draft of the dissertation was completed at the end of December 1981: the implementation

remained essentially unchanged during the course of this writing (the only substantive

alteration was the idea of treating recursion in terms of explicit Y operators). Thus (and I

suspect there is nothing unusual in this experience) formulating an idea required

approximately ten times more work than embodying it in a machine; perhaps more

surprisingly, all of that effort in formulation occurred after the implementation was

complete. We sometimes hear that writing computer programs is intellectually hygenic

because it requires that we make our ideas completely explicit 1 have come to disagree

rather fundamentally with this view. Certainly writing a program does not force one to one

make one's ideas articulate, although it is a useful first step. More seriously, however, it is

often the case that the organising principles and fundamental insights contributing to the

coherence o" a program are not explicitly encoded within the stmcturcs comprising that

program. The theory of declarative semantics embodied in a-LISP, for example, was

initially tacit - a fact perhaps to be expected, since only procedural consequence is

Preliminaries Procedural Reflection 12

explicitly encoded in an implementation. Curiously, this is one of the reasons that building

a fully reflective formalism (as opposed to the limited procedurally reflective languages

considered here) is difficult: in order to build a general reflective calculus, one must embed

within it a fully articulated theory of one's understanding of it This will take some time.

An itinerant graduate student career has made me indelibly indebted to more people

than can possibly be named here. It is often pointed out that any ideas or contributions

that a person makes arise not from the individual, but from the embedding context and

community within which he or she works; this is doubly true when the project - as is the

case here - is one of rational reconstruction. It is the explicit intent of this dissertation to

articulate the tacit conception of programming that we all share; thus I want first to

acknowledge the support and contributions of all those attempting to develop and to deploy

the overarching computational metaphor.

Particular thanks are due to my committee members: Peter Szolovits, Terry

Winograd, and Jon Allen, not only for the time and judgment they gave to this particular

dissertation, but also for their sustaining support over many years, through periods when it

was clear to none of us how (or perhaps even whether) I would be able to delineate and

concentrate on any finite part of the encompassing enterprise. I am grateful as well to

Terry Winograd and Danny Bobrow for inviting me to participate in the KRL project where

this research began, and to them and to my fellow students in that research group (David

Levy, Paul Martin, Mitch Model, and Henry Thompson) for their original and continued

support

Finally, in the years between that seminal summer and the present, any number of

people have contributed to my understanding and commitment, in ways that they alone

know best Let me appreciatively just mention my family, and Bob Berwick, Ron

Brachman, John Brown, Chip Bruce, Dedre Gentner, Barbara Grosz, Austin Henderson,

David Israel, Marcia Lind, Mitch Marcus, Marilyn Matz, Ray Perrault, Susan Porter, Bruce

Roberts, Arnold Smith, Al Stevens, Hector LcVesque, Sylvia Weir, and again Terry

Winograd.

Prologue Procedural Reflection 13

Prologue

It is a striking fact about human cognition that we can think not only about the

world around us, but also about our ideas, our actions, our feelings, our past experience.

This ability to reflect lies behind much of the subtlety and flexibility with which we deal

with the world; it is an essential part of mastering new skills, of reacting to unexpected

circumstances, of short-range and long-range planning, of recovering from mistakes, of

extrapolating from past experience, and so on and so forth. Reflective thinking

characterises mundane practical matters and delicate theoretical distinctions. We have all

paused to review past circumstances, such as conversations with guests or strangers, to

consider the appropriateness of our behaviour. We can remember times when we stopped

and consciously decided to consider a set of options, say when confronted with a fire or

other emergency. We understand when someone tells us to believe everything a friend tells

us, unless we know otherwise. In the course of philosophical discussion we can agree to

distinguish views we believe to be true from those we have no reason to believe are false.

In all these cases the subject matter of our contemplation at the moment of reflection

includes our remembered experience, our private thoughts, and our reasoning patterns.

The power and universality of reflective thinking has caught the attention of the

cognitive science community - inJeed, once alerted to this aspect of human behaviour,

theorists find evidence of it almost everywhere. Though no one can yet say just what it

comes to, crudal ingredients would seem to be the ability to recall memories of a world

experienced in the past and of one's own participation in that world, the ability to thjnk

about a phenomenal world, hypothetical or actual, that is not currently being experieoced

(an ability presumably mediated by our knowledge and belief), and a certain kind of true

self-reference: the ability to consider both one's actions and the workings of one's own

mind. This last aspect - the self-referential aspect of reflective thought - has sparked

particular interest for cognitive theorists, both in psychology (under the label meta

cognition), and in artificial intelligence (in the design of computational systems possessing

inchoate reflective powers, particularly as evidenced in a co1tcction of ideas loosely allied in

their use of the term "meta": meta-level rules, meta-descriptions, and so forth).

Prologue Procedural Reflection 14

In artificial intelligence, the focus on computational forms of self-referential

reflective reasoning has become particnlarly central. Although the task of endowing

computational systems with subtlety and flexibility has proved difticult, we have had some

success in developing systems with a moderate grasp of certain domains: electronics,

bacteremia, simple mei:hanical systems, etc. One of the most recalcitrant problems,

however, has been that of develo,,;1ing flexibility and modularity (in some cases even simple

effectiveness) in the reasoning processes that use this world knowledge. Though it has been

possible to construct programs that perform a specific kind of reasoning task (say, checking

an circuit or parsing a subset of natural language syntax), there has been less success in

simulating "common sense", or in developing programs able to figure out what to do, and

how to do it, in either general or novel situations. If the course of reasoning - if the

problem solving strategies and the hypothesis formation behaviour - could itself be treated

as a valid subject domain in its own right, then (at least so the idea goes) it might be

possible to construct systems that manifested the same modularity about their own thought

processes that they manifest about their primary subject domains. A simple example might

be an electronics "expert" able to choose an appropriate method of tackling a particular

circuit, depending on a variety of questions about the relationship between its own

capacities and the probi~m at hand: whether the task was primarily one of design or

analysis or repair, what strategies and skills it knew it had in such area::;, how confident it

was in the relevance of specific approaches based on, say. the complexity of the circuit, or

on how similar it looked compared with circuits its already knew. Expert human problem

solvers clearly demonstrate such reflective abilities, and it appears more and more certain

that powerful computational problem solve~ will have to possess then, as well.

No one would expect potent skills to arise automatically in a reflective system; the

mere ability to reason about the reasoning process will not magically yield systems able to

reflect in powerful and flexible ways. On the other hand, the demonstration of such an

ability is clearly a pre-requisite to its effective utilisation. Furthermore, many reasons are

advanced in support of reflection, as well as the primary one (the hope of building a system

able to decide how to structure the pattern of its own reasoning). It has been argued, for

example, that it would be easier to construct powerful systems in the first place (it would

seem you could almost tell them how to think), to interact with them when they fail. to

trust them if they could report on how they arrive at their tlecisions, to give them "advice"

Prologue Procedural Reflection 15

about how to improve or discriminate, as well as to provide them with their own strategies

for reacting to their history and experience.

There is even, as part of the general excitement, a tentative suggestion on how such

a self-referential reflective process might be constructed. · 1 .is suggestion - nowhere

argued but clearly in evidence in several recent proposals - is a particular instance of a

general hypothesis, adopted by most A.I. researchers, that we will call the knowledge

representation hypothesis. It is widely held in computational circles that any process

cap~ble of reasoning intelligently about the world must consist in part of a field of

structures, of a roughly linguistic sort, which in some fashion represent whatever knowledge

and beliefs the process may be said to possess. For example, according to this view, since I

know that the sun sets each evening, my "mind" must contain (among other things) a

language-like or symbolic structure that represents this fact, inscribed in some kind of

internal code. Thf\re are various assumptions that go along with this view: there is for one

thing presur,1ed to be an internal process that "runs over" or "computes with" these

representational structures, in such a way that the inte11igent behaviour of the whole results

from the interaction of parts. In addition, this ingredient process is required to react only

to the "form" or "shape" of these mental representations, without regard to what they

mean or represent - this is the substance of the claim that computation involves Jonna/

symbol manipulation. Thus my thought that, for exan1ple, the sun will soon set, would be

taken to emerge from an interaction in my rnind between an ingredient process and the

shape or "spelling" of various internal stmctures representing my knowledge that the sun

docs regularly set each evening, that it is currently tea time, and so forth.

The knowledge representation hypothesis may be summarised as follows:

Any mechanically embodied intelligent process will be comprised of structural
ingrediellls that a) we a.s external observers naturally take to represent a
propositional accoullt of the knowledge that the overall process exhibits, and b)
independelll of sud1 external semantical allribulion, play a formal but causal
and essential role in engendering the behaviour that manifests that knowledge.

Thus for example if we felt disposed to say that some process knew that dinosaurs were

warm-blooded, then we would find (according, presumably, to the best explanation of how

that process worked} that a certain computational ingredient in that process was understood

as represellling the (propositional) fact that dinosaurs were warm-blooded, ann. rurtherml,,·c

Prologue Procedural Reflection 16

tl,at this very ingredient played a role, independent of our understanding of it as

representational, in leading the process to behave in whatever way inspired us to say that it

knew that fact. Presumably we would convinced by the manner in which the process

answ,'red certain questions about their likely habitat, by assumptions it made about other

aspects of their existence, by postures it adopted on suggestions as to why they may have

become extinct, etc.

A careful analysis will show that, to the extent that we can make sense of it, this

view that knowing is representational is far less evident - and perhaps, therefore, far more

interesting - than is commonly believed. To do it jus·dce requires considerable care:

accounts in cognitive psychology and the philosophy of mind tend to founder on simplistic

models of computation, and artificial intelligence treatments often lack the theoretical rigour

necessary to bring the essence of the idea into plain view. Nonetheless, conclusion or

hypothesis, it pe1meates current theories of mind, and has in particular led researchers in

artificial intelligence to propose a spate of computational languages and calculi designed to

underwrite such representation. The common goal is of course not so much to speculate on

what is actually represented in any particular situation as to uncover the general and

categorical form of such representation. Thus no one would suggest how anyone actually

represents facts about tea and sunsets: rather, they might posit the general form in which

such beliefs would be "written" (along with other beliefs, such as that Lasa is in Tibet, and

that II is an irrational number). Constraining all plausible suggestions, however, is the

requirement that they must be able to demonstrate how a particular thought could emerge

from such representations - this is a cmcial meta-theoretic characteristic of artificial

intelligence research. lt is traditionally considered insufficient merely to propose tme

theories that do not enable some causally effective mechanical embodiment The standard

against which such theories must ultimately judged, in other words, is whether they will

serve to underwrite the construction of demonstrable, behaving artefacts. Under this

general rubric knowledge representation efforts differ markedly in scope, in approach, and

in detail; they differ on such cmcial questions as whether or not the mental structure are

modality specific (one for visual memory, another for verbal, for example). In spite of such

differences, however, they manifest the shared hope that an attainable first step towards a

full theory of mind will be the discovery of something like the structure of the "mechanical

mentalcsc" in which our beliefs arc inscribed.

Prologue Procedural Reflection 17

It is natural to ask whether the knowledge representation hypothesis deserves our

endorsement, but this is not the place to pursue that difficult question. Before it can fairly

be asked, we would have to distinguish a strong version claiming that knowing is necessarily

representational from a weaker version claiming merely that it is possible to build a

representational knower. We would run straight into all the much-discussed but virtually

intractable questions about what would be required to convince us that an artificially

constructed process exhibited intelligent behaviour. We would certainly need a definition

of the word "represent", about which we will subsequently have a good deal to say. Given

the current (minimal) state of our understanding, I myself see 1.0 reason to subscribe to the

strong view, and remain skeptical of the weak version as well. But one of the most difficult

questions is merely to ascertain what the hypothesis is actually saying - thus my interest in

representation is more .a concern to make it clear than to def end or deny it The entire

present investigation, therefore, will be pursued under this hypothesis, not because we grant

it our allegiance, but merely because · it deserves our attention.

Given the represention hypothesis, the suggestion as to how to build self-reflective

systems - a suggestion we will call the reflection hyPothesis - can be summarised as

follows:

In as much as a computational process can be constructed to reason about an
external world in virtue of comprising an ingredient process {interpreter)
fonnally manipulating representations of that world. so too a computational
process could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) fonnally manipulating representations of its own
operations and structures.

Thus the task of building a computationalty reflective system is thought to reduce to, or at

any rate to include, the task of providing a system with fonnal representations of its own

constitution and behaviour. Hence a system able to imagine a world where unicorns have

wings would have to construct fonnal representations of that fact; a system considering the

adoption of a hypothesis-and-test style of investigation would have to construct fonnat

structures representing such a inference regime.

Whatever its merit, there is ample evidence that researchers arc taken with this view.

Systems such as Weyrauch's FOL, Doyle's TMS, McCarthy's ADVICE-TAKER, Hayes' GOLUM, and

Davis' TERESIUS arc particularly explicit exemplars of just such an approach.2 In

Prologue Procedural Reflection 18

Weyhrauch's system, for example, sentences in first-order logic arc constructed that

axiomatize the behaviour of the LISP procedures use in the course of the computation (FOL

is a prime example of the dual-calculus approach mentioned earlier). In Doyle's systems,

explicit representations of the dependencies between beliefs, and of the "reasons" the

system accepts a conclusion, play a causal role in the inferential process. Similar remarks

hold for the other projects mentioned, as well as for a variety of other current research. In

addition, it turns out on scrutiny that a great deal of current computational practice can be

seen as dealing, in one way or another, with reflective abilities, particularly as exemplified

by computational structures representing other computational structures. We constantly

encounter examples: the wide-spread use of macros in LISP, the use of meta-level structures

in representation languages, the use of explicit non-monotonic inference rules, the

popularity of meta-level rules in planning systems.3 Such a list can be extended

indefinitely; in a recent symposium Brachman reported that the love affair with "meta-level

reasoning" was the most important theme of knowledge representation research in the last

decade.4

The Relationship Between Reflection and Representation

The manner in which this discussion has been presented so far would seem to imply

that the interest in reflection and the adoption of a representational stance are theoretically

independent positions. I have argued in this way for a reason: to make clear that the two

subjects are not the same. There is no a priori reason to believe that even a fully

representational system should in any way be reflective or able to make anything

approximating a reference to itself; similarly, there is no proof that a powerfully self

referential system need be constructed of representations. However - and this is the crux

of the matter - the reason to raise both issues together is that they are surely, in some

sense, related. If nothing else, the word "representation" comes from "re" plus "present",

and the ability to re-present a world to itself is undeniably a crucial, if not the crucial,

ingredient in reflective thought. If I reflect on my childhood, I re-present to myself my

school and the rooms of my house; if I reflect on what I will do tomorrow, I bring into th~

view of my mind's eye the self I imagine !hat tomorrow I will be. If we take

"representation" to describe an actMty, rather than a stmcture, reflection surely involves

representation (although - and this should be kept clearly in mind - the "representation"

Prologue Procedural Reflection 19

of the knowledge representation hypothesis refers to ingredient structures, not to an

activity).

It is helpful to look at the historical association between these ideas, as well to search

for commonalities in content. In the early days of artificial intelligence, a search for the

general patterns of intelligent reasoning led to the development of such general systems as

Newell and Simon's GPS, predicate logic theorem provers, and so forth.6 'The descriptions

of the subject domains were minimal but were nonetheless primarily declarative,

particularly in the case of the systems based on logic. However it proved difficult to make

such general systems effective in particular cases: so much of the "expertise" involved in

problem solving seems domain and task specific. In reaction against such generality,

therefore, a procedural approach emerged in which the primary focus was on the

manipulation and reasoning about specific problems in simple worlds. 6 Though the

procedural approach in many ways solved the problem of undirected inferential

meandering, it too had problems: it proved difficult to endow systems with much generality

or modularity when they were simply constituted of procedures designed to manifest certain

particular skills. In reaction to such brittle and parochial behaviour, researchers turned

instead to the development of processes designed to work over general representations of

the objects and categories of the world in which the process was designed to be embedded.

Thus the representation hypothesis emerged in the attempt to endow systems with generality,

modularity, flexibility, and so forth with respect to the embedding world, but to retain a

procedural effectiveness in the control component 7 In other words, in tcnns of our main

discussion, representation as a method emerged as a solution to the problem of providing

general and flexible ways of reflecting (not self-referentially) about the world.

Systems based on the representational approach - and it is fair to say that most of

the current "expert systems" are in this tradition - have been relatively successful in

certain respects, but a major lingering problem has been a narrowness and inflexibility

regarding the style of reasoning these systems employ in using these representational

structures. This inflexibility .a reasoning is strikingly parallel to the inflexibility in

knowledge that led to the first round of representational systems: researchers have therefore

suggested that we need reflective systems able to deal with their own constitutions as well

as with the worlds they inhabit. In other words, since the style of the problem is so parallel

to that just sketched, it has seemed that another application of the same medicine might be

Prologue Procedural Reflection 20

appropriate. If we could inscribe general knowledge about how to reason in a variety of

circumstances in the "mentalese" of these systems, it might be possible to design a

relatively simpler inferential regime over this "meta-knowledge about reasoning", thereby

engendering a flexibility and modularity regarding reasoning, just as the first

representational work engendered a flexibility and modularity about the process's

embedding world

There are problems, however, in too quick an association between the two ideas, not

the ieast of which is the question of to whom these various forms of re-presentation are

being directed. In the normal case - that is to say, in the typical computational process

built under the aegis of tbe knowledge representation hypothesis - a process is constituted

from symbols that we as external theorists take to be representational structures; they are

visible only to the ingredient interpretive process of the whole, and they are visible to that

constituent process only fonnally (this is the basic claim of computation). Thus the

interpreter can see them, though it is btfnd to the fact of their being representations. (In

fact it is almost a great joke that the blindly formal ingredient process should be called an

interpreter. when the LISP interpreter evalutes the expression (+ 2 3) and returns the result

5, the last thing it knows is that the numeral 2 denotes the number two.)

Whatever is the case with the ingredient process, there is no reason to suppose that

the representational structures are visible to the whole constituted process at all, fonnally or

informally. That process is made out of them; there is no more a priori reason to suppose

that they are accessible to its inspection than to suppose that a camera could take a picture

of its own shutter - no more reason to suppose it is even a coherent possibility than to say

that France is near Marseilles. Current practice should overwhelmingly convince us of this

point: what is as tacit - what is as thoroughly lacking in self-knowledge - as the typical

modern computer system?

The point of the argument here is not to prove that one cannot make such structures

accessible - that one cannot make a representational reflective system - but to make clear

that two ideas arc involved. Furthermore, they are different in kind: one (representation) is

a possibly powerful method for the construction of systems; the other (reflection) is a kind

of behaviour we are asking our systems to exhibit It remains a question whether the

representational method will prove useful in the pursuit of the goal of reflective behaviour.

Prologue

That, in a nutshell. is our overall projecL

The Theoretical Backdrop

Procedural Reflection 21

It takes only a moment's consideration of such questions as the relationship between

representation and reflection to recognise that the current state of our understanding of

such subjects is terribly inadequate. In spite of the general excitement about reflection,

self-reference, and computational representation, no one has presented an underlying theory

of any of these issues. The reason is simple: we are so lacking in adequate theories of the

surrounding territory that. without considerable preliminary work, cogent definitions cannot

even be attempted. Consider for example the case regarding self-referential reflection,

where just a few examples will make this clear. First, from the fact that a reflective system

A is implemented in system B, it docs not follow that system e is thereby rendered reflective

(for example, in this dissertation I will present a partially-reflective dialect of LISP U1at I

have implemented on a PDP-10, but the PDP-10 is not itself reflective). Hence even a

definition of reflection wilt have to be backed by theor~tical apparatus capable of

distinguishing between one abstract machine and another in which the first is implemented

- something we are not yet able to do. Second, the notion seems to require of a

computational process, and (if we subscribe to the representational hypothesis) of its

interpreter, that in reflecting it "back ofr' one level of reference, and we lack theories botll

of interpreters in general, and of computational reference in particular. Theories of

computational interpretation will be required to clarify the confusion mentioned above

regarding the relationship between reflection and representation: for a system to reflect it

must re-present for itself its mental states; it is not sufficient for it to comprise a set of

fonnal representations inspected by its interpreter. This is a distinction we encounter again

and again; a failure to make it is tlle most common error in discussions of tlle plausibility

of artificial intelligence from those outside the computational community, derailing the

arguments of such thinkers as Searle and Fodor. 8 Theories of reference will be required in

order to make sense of the question of what a computational process is "thinking" about at

all, whether reflective or not (for example, it may be easy to claim that when a program is

manipulating data structures representing women's vote that the process as a whole is

"thinking about suffrage", but what is the process thinking about when the interpreter is

expanding a macro definition?). Finally, if the search for reflection is taken up too

Prologue Procedural Reflection 22

enthusiastically, one is in danger of interpreting everything as evidence of reflective

iliinking, since what may not be reflective explicitly can usually be treated as implicitly

reflective (especially given a little imagination on the part of the theorist). However we

lack general guidelines on how to distinguish explicit from implicit aspects of computational

structures.

Nor is our grasp of the representational question any clearer; a serious difficulty,

especially since the representational endeavour has received much more attention than has

reflection. Evidence of this lack can be seen in the fact that, in spite of an approximate

consensus regarding the general fonn of the task, and substantial effort on its behalf, no

representation scheme yet proposed has won substantial acceptance in the field. Again, this

is due at least in part to the simple absence of adequate theoretical foundations in tenns of

which to formulate either enterprise or solution. We do not have theories of either

representation or computation in terms of which to define the terms of art currently

employed in their pursuit (representation, implementation, interpretation, control structure,

data structure, inheritance, and so forth), and are consequently without any well-specified

account of what it would be to succeed, let alone of what to investigate, or of how to

proceed. Numerous related theories have been developed (model theories for logic,

theories of semantics for programming languages, and so forth}, but they don't address the

issues of knowledge representation directly, and it is surprisingly difficult to weave their

various insights into a single coherent whole.

The representational consensus alluded to above, in other words, is widespread but

vague; disagreements emerge on every conceivable technical point, as was demonstrated in

a recent survey of the field.9 To begin with, the central notion of "representation" remains

notoriously unspecified: in spite of the intuitions mentioned above, there is remarkably

little agreement on whether a representation must "re-present" in any constrained way (like

an image or copy}, or whether the word is synonymous with such general terms as "sign"

or "symbol". A further confusion is shown by an inconsistency in usage as to what

representation is a relationship between. 111c sub-discipline is known as the representation

of knowledge, but in the survey just mentioned by far the majority of the respondents {to

the surprise of this author} claimed to use the word, albeit in a wide variety of ways, as

between formal symbols and the world about which Lhe process is designed to reason. 'Illus a

KLONE struclurc might be said to represent Don Quixote tilting at a windmill; it would not

Prologue Procedural Reflection 23

taken as representing the fact or proposition of this activity. In other words the majority

opinion is not that we are representing knowledge at all, but rather, as we put it above, that

knowing is representalionai.10

In addition, we have only a dim understanding of the relationship that holds

between the purported representational structures and the ingredient process that interprets

them. This relates to the crucial distinction between that interpreting process and the

whole process of which it is an ingredient (whereas it is / who thinks of sunsets, it is at best

a constituent of my mind that inspects a mental representation). Furthenuore, there are

terminological confusions: the word "semantics" is applied to a variety of concerns. ranging

froin how natural language is translated into the representational structures, to what those

structures represent, to how they impinge on the rational policies of the "mind" of which

they arc a part, to what functions are computed by the interpreting process, etc. 'lbe term

"interpretation" (to take another example) has two relatively well-specified but quite

independent meanings, one of computational origin, the other more philosophical; how the

two relate remains so far unexplicatcd, although, as was just mentioned, they are strikingly

distinct.

Unfortunately, such general terminological problems are just the tip of an iceberg.

When we consider our specific representational proposals, we are faced with a plethora of

apparently incomparable technical words and phrases. Node, frame, unit, concept, schema,

script, pattern, class, and plan, for example, are all popular tenns with similar connotations

and ill-defined meaning.11 The theoretical situation (this may not be so hannful in tenns

of more practical goals) is further hindered by the tendency for representational research to

be reported in a rather demonstrative fashion: researchers typically exhibit particular fonnal

systems that (often quite impressively) embody their insights, but that are defined using

fonnal terms peculiar to the system at hand. We arc left on our own to induce the relevant

generalities and to locate them in our evolving conception of the representation enterprise

as a whole. Furthermore, such practice makes comparison and discussion of technical

details always problematic and often impossible, defeating attempts to build on previous

work.

This lack of grounding and focus has not passed unnoticed: in various quarters one

hears tl1e suggestion that, unless severely constrained, the entire representation enterprise

Prologue Procedural Reflection 24

may be ill-conceived - that we should tum instead to considerations of particular

epistemological issues (such as how we ieason about, say, liquids or actions), and should

use as our technical base the traditional fonnal systems (logic, LISP, and so forth) that

representation schemes were originally designed to replace.12 In defense of this view two

kinds of argument are often advanced. The first is that questions about the central

cognitive faculty are at the very least premature, and more seriously may for principled

reasons never succomb to the kind of rigourous scientific analysis that characterizes recent

studies of the peripheral aspects of mind: vision, audition, grammar, manipulation, and so

forth.13 The other argument is that logic as developed by the logicians is in itself

sufficient; that all we need is a set of ideas about what axioms and inference protocols are

best to adopt 14 But such doubts cannot be said to have deterred the whole of the

community: the survey just mentioned lists more than thirty new representation systems

under active development.

The strength of this persistence is worth noting, especially in connection with th~

theoretical difficulties just sketched. 111ere can be no doubt that there are scores of

difficult problems: we have just barely touched on some of the most striking. But it would

be a mistake to conclude in discouragement that the enterprise is doomed, or to retreat to

the meta-theoretic stability of adjacent fields (like proof theory, model theory, programming

language semantics, and so forth). The moml is at once more difficult and yet more

hopeful. What is demanded is that we stay true to these undeniably powerful ideas, and

attempt to develop adequate theoretical structures on this home ground. It is true that any

satisfactory theory of computational reflection must ultimately rest, more or less explicitly,

on theories of computation, of intcnsionality, of objectification, of semantics and reference,

of implicitness, of formality, of computation interpretation, of representation, and so forth.

On the other hand as a community we have a great deal of practice that often embodies

intuitions that we are unable to fonnulate coherently. The wealth of programs and systems

we have built often betray - sometimes in surprising ways - patterns and insights that

eluded our conscious thought~ in the course of their development. What is mandated is a

rational reconstruction of those intuitions and of that p~actice.

In the case of designing reflective systems, such a reconstruction is curiously urgent.

In fact thi:, long introductory story ends with ao odd twist - one that "ups the ante" in the

search for a carefutly formulated theory, and suggests that practical progress will be

Prologue Procedural Reflection 25

impeded until we take up the theoretical task. In general, it is of course possible (some

would even advocate this approach) to build an instance of a class of artefact before

formulating a theory of it The era of sail boats, it has often been pointed out, was already

drawing to a close just as the theory of airfoils and lift was being formulated - the theory

that, at least at the present time, best explains how those sailboats worked. However there

are a number of reasons why such an approach may be ruled out in the present case. For

one thing, in constructing a reflective calculus one must support arbitrary levels of meta

knowledge and self-modelling, and it is self-evident that confusion and complexity will

multiply unckecked when one adds such faciJiti ~ an only partially understood fonnalism.

It is simply likely to be unmanageably compHcated to attempt to build a self-reterential

system unaided by the clarifying structure of a prior theory. The complexities surrounding

the use of APPL v in LISP (and the caution with which it has consequently come to be

treated) bear witness to this fact However there is a more serious ,:,robler.i. If one

subscribes to the knowledge repr~sentation hypothesis, it becomes an integral part of

developing self-descriptive systems to provide, encoded within the representational medium,

an account of (roughly) the syntltx, semaP.tics, and reasoning behaviour of that formalism.

In other words. if we arc to build a process that "knows" about itself, and if we subscribe to

the view that knowing is representational, then we are committed to providing that sytem

with a representation of the self-knowledge that we aim to endow it with. That is, we must

have an adequate theories of computational representation and reflection explicitly

formulated, since an encoding of that theory is mandated to play a causal role as an actual

ingredient in the reflective device.

Knowledge of any sort - and self-knowledge is no exception - is always theory

relative. The representation hypothesis implies that our theories of reasoning and reflection

must be explicit. We have argued that this is a substantial, if widely accepted, hypothesis.

One reason to find it plausible comes from viewing the entire enterprise as an attempt to

communicate our thought patterns and cognitive styles - including our reflective abilities

- to these emergent machines. It may at some point be possible for understanding to be

tacitly communicated between humans and system they have constructed. In the

meantime, however, while we humans might make do with a rich but unarticulated

understanding of computation, representation, and reflection, we must not forget that

computers do not share with us our tacit understanding of what they are.

1. Introduction Procedural Reflection 26

Chapter 1. Introduction

The successful development of a general reflective calculus based on the knowledge

representation hypothesis will depend on the prior solution of three problems:

1. The provision of a computationally tractable and epistemologically adequate
dexriptive language.

2 . The fommlation of a unified theory of computation and representation, and

3. The demonstration of how a computational system can reason effectively and
consequentially about its own inference processes.

The first of these issues is the collective goal of present knowledge representation research;

though much studied, -it has met with only partial success. The problems involved are

enormous. covedng such diverse issues as adequate theories of intensionality. methods of

indexing and grouping representational structures. and support for variations in assertional

force. In spite of its centrality, however, it wilt not be pursued here, in part because it is so

ill-constrained. The second, though it is occasionally acknowledged to be important, is a

much less well publicised issue, having received (so far as this author knows) abnost no

direct attention. As a consequence. every representation system proposed to date

exemplifies what we may call a dual-calculus approach: a procedural calculus (usually LISP)

is conjoined with a declarative formalism (an encoding of predicate logic, frames, etc.).

Even such purpCJnedly unified system~ as PROLOG 1 can be shown to manifest this structure.

We will in passing suggest that this dual-calculus style is unnecessary and indicative of

serious shortcomings in our conception of the representational endeavour. However this

issue too will be largely ignored. The focus instead will be on the third problem: the

question of making the inferential or interpretive aspects of a computational process

themselves accessible as a valid domain of reasoning. We will show how to construct a

computational system whose active interpretation is controJled by structures themselves

available for inspection, modification, and manipulation, in ways that allow a process to

shift smoothly between dealing with a given subject domain, and dea1ing with its own

reasoning processes over that domain. In computational terms, the question is one of how

to construct a program able to reason about and affect its own interpretation - of how to

define a calculus with a reflectively accessible control structure.

1. Introduction Procedural Reflection 27

1.a. General Overvi~w

The term "reflection" does not name a previously we!l-defined question to which we

propose a particular solution (although the reflection principles of logic are not unrelated);

before what can present a theory of what reflection comes to. therefore. we will have to

give an account of what reflection is. In the next section, by way of introduction, we will

identify six distinguishing characteristics of all reflective behaviour. Then, since we will be

primarily concerned with computational reflection, we will sketch the model of computation

on which our analysis will be based, and will set our general approach to reflection into a

computational context In addition, once we have developed a working vocabulary of

computational concepts, we will be able to define what we mean by procedural reflection -

an even smaUer and more circumscribed notion than computational reflection in general.

All of these preliminaries are necessary in order to give us an attainable set of goals.

Thus prepared. we will set forth on the analysis itself. As a technical device, we will

in the course of the dissertation develop three successive dialects of LISP, to serve as

illustrations, and to provide a technical ground in which to work out our theories in detail.

We should say at the outset, however, that this focus on LISP should not mislead the reader

into thinking that the basic reflective architecture we wilt adopt - or the principles

endorsed in its design - are in any important sense LISP specific. LISP was chosen

because it is simple, powerful, and uniquely suited for reflection in two ways: it already

embodies protocols whereby programs arc represented in first·class accessible structures,

and it is a convenient fom1alism in which to express its own meta-theory, given that we will

use a variant of lhe)-calculus as our mathematical meta-language (this convenience holds

especially in a statically scoped dialect of the sort we will ultimately adopt). Nevertheless,

as we will discuss in the concluding chapter, it would be possible to construct a reflective

dialect of FORTRAN, SMALLTALK, or any other procedural calculus, by pursuing essentially the

same approach as we have followed here for LISP.

The first LISP dialect (called 1-LISP) wiIJ be an example intended to summarise

current practice, primarily for comparison and pedagogical purposes. The second (2-LISP)

differs rather substantially from 1-LISP, in that it is modified with reference to a theory of

declarative denotational semantics {i.e., a theory of the denotational significance of s

expressions) formulated i11depe11dent of the behaviour of the interpreter. 111c interpreter is

1. Introduction Procedural Reflection 28

then subsequently defined with respect to this theory of attributed semanti~s. so that the

result of processing of an expression - i.e., the the value of the function computed by the

basic interpretation process - is a nonnal-fonn codesignator of the input expression. We

will call 2-LISP a semantically rationalised dicle.:i, and will argue that it makes explicit

much of the understanding of LISP that tacitly organises most programmers· understanding

of LISP but that has never been made an arrticulated part of ..ISP theories. Finally. a

procedurally reflective LISP called 3-LISP will be developed, semantically and structurally

based on 2-LISP, but modified so that reflective procedures are supported, as a vehicle with

which to engender the sorts of procedural reflection we will by then have set as our goal.

3-LISP differs from 2-LISP in a variety of ways, of which the most important is the

provision. at any point in the course of the computation, for a program to reflect and

thereby obtain fully articulated "d\!Seriptions", formulated with respect to a primitively

endorsed and encoded theory, of the state of the interpretation process that was in effect at

the moment of reflection. In our particular case, this will mean that a 3-LISP program will

be able to access, inspect, and modify standard 3-t.ISP normal-form designators of both the

environment and continuation structures that were in effect a moment before.

More specifically, 1-LISP, like LISP t.5 and all LISP dialects in current use, is at

heart a first-order language, employing meta-syntactic facilities and dynamic variable

scoping protocols to partially mimic higt1cr-ordcr functionality. Because of its meta

syntactic powers (paradigmatically exemplified by the primitive QUOTE), 1-LISP contains a

variety of inchoate reflective features, all of which we will examine in some detail: support

for meta-circular interpreters, explicit names for the primitive processor functions (EVAL and

APPLY), the ability to mention program fragments, protocols for expanding macros, and so

on and so forth. Though we will ultimately criticise much of 1-LISP's structure (and its

underlying theory), we will document its properties in part to serve as a contrast for the

subsequent dialects. and in part because, being familiar, 1-LISP can serve as a base in

which to ground our analysis.

After introducing 1-LISP, but before attempting to constmct a reflective dialect, we

will subject 1-LISP to a rather thorough semantical scrutiny. This project, and Ute

reconstruction that results, will occupy well over half of the dissertation. The reason is that

our analysis will require a reconstruction not only of LISP but of computational semantics

in general. We will argue that it is crucial, in order to develop a comprehensible reflective

1. Introduction Procedural Reflection 29

calculus, to have a semantical anal~sis of that calculus that makes explicit ~,e tacit

attribution of significance that we will claim characterises every computational system. This

attribution of semantical import to computational expressions is prior to an account of what

happens to those expressions: thus we will argue for an analysis of computational

formalisms in which declarative import and procedural consequence are independently

formulated. We claim, in other words, that programming languages are better understood

in terms of two semantical treatments (one declarative, one procedural), rather than in tcnns

of a single one, as exemplified by current approaches (although interactions between them

may require that these two semantical accounts be formulattj in conjunction).

This semantical reconstruction ii; at heart a comparison and combination of the

standard semantics of programming languages on the one hand, and the semantics of

natural human languages and of descriptive and declarative languages such as predicate

logic, the >.·calculus, and mathen,atics, on the othe:. Neither will survive intact: the

approach we will ultimately adopt is not strictly compositional in the standard sense

(although it is recursively specifiable), nor are the declarative and procedural facets entirely

'.'ieparate (in particular, the. procedural ccnsequence of a given expression may affect the

subsequent context of use that determines what another expression designates). Nor are its

consequences minor: we will we able to show, for example, that L'1e traditional notion of

evaluation is both confusing and confused, and must be separated into independent notions

of reference and simplification. We will be able to show, in particular, that 1-LISP's

evaluator de-references some expressions (such meta-syntactic terms as (QUOTE x), for

example), and docs not de·reforence others (such as the numerals and T and NIL). We will

argue instead for what we will call a semafllically rationalised dialect, in which simplification

and reference p1imitives are kept strictly distinct.

It is our view that semantical cleanliness is by far the most important pre-requisite to

any conceivable treatment of reflection. However, as well as advocating semantically

raLiona/ised computational calculi, wc will also espouse an aesthetic we call category

alignmeni 'by which wc mean t.'1at there should be a strict category-category correspondence

across the four major axes in terms of which a computation calculus is analysed: notation,

,.bstract structure, declarative semantics, and procedural consequence (a mandate satisfied

hy no extant dialect~). In particn)ar, we will insist in th~ dialects we design that each

notational class be parsed into a distinct structural class, that each structural class be treated

1. Introduction Procedural Reflection 30

in a unifonn way by the primitive processor. that each structural class serve as the nonnal·

fonn designator of each semantical cl?ss, and so forth. This is an aesthetic with

consequence: we will be able to show that the 1-LISP programmer must in certain

situations resort to meta-syntactic machinery merely because 1-LISP fails to satisfy this mild

requirement (in particular, 1-LISP lists, which are themselves a derivative class formed from

some pairs and one atom, serve semantically to encode both function applications and

enumerations). Though it does not have the same status as semantical hygiene, categorical

elegance will also prove almost indispensible, especially from a practical point of view, in

the drive towards reflection.

Once we have formulated these theoretical positions, we wilJ be in a position to

design 2-LISP. Like SCHEME and the A-calculus, 2-LISP is a higher-order formalism:

consequently, it is statically scoped, and treats the function position of an application as a

standard extensional position. It is of course formulated in terms of our rationalised

semantics, implying that a declarative semantics is formulated for all expressions prior to,

and independent of, the specification of how they are treated by the primitive processor.

Consequently, and unlike SCHEME, the 2-LISP processor is based on a regimen of

nonnalisation, taking each expression into a normal-form designator of its referent, where

the notion of nonna/-fonn is defined in part with reference to the semantic type of the

symbol's designation, rather than (~ in the case of the A-calculus) in terms of the further

(non-) applicability of a set of syntactic reduction rules. 2-LISP's nom1al-form designators

are environment-independent and side-effect free; thus the concept of a closure can be

reconstructed as a nom1al-fonn Junclion designator. Since normalisation is a fonn of

simplification, and is therefore designation-preserving, meta-structural expressions (terms that

designate other terms in the language) are not de-referenced upon normalisation, as they

are when evaluated. We will say that the 2-LISP processor is semantically flat, since it stays

at a semantically fixed level (although explicit referencing and de-referencing primitives are

also provided, to facilitate explicit shifts in level of designation).

a-LISP is straightforwardly defined as an extension of 2-LISP, with respect to an

explicitly articulated procedural theory of 3-LISP en . Jded in a-LISP structures. This

embedded theory, called the reflective model, though superficially resembling a meta-circular

interpreter (as a glance at the code, listed in S5-201, shows), is causally connected to the

workings of the underlying calculus in critical and primitive ways. The reflective model is

1. Introduction Procedural Reflection 31

similar in structure to the procedural fragment of the meta-theoretic characterisation of 2-

LISP that we encoded in the ~-calculus: it is this incorporation into a system of a theory of

its own operations that makes 3-LISP, like any possible reflertive system, inherently theory

relative. For example, whereas environments and continuations will up until this point have

b,.en theoretical posits, mentioned only in the meta-language. as a way of explaining L ISP's

brhaviot.1r. in 3-l.1s0 such entities move from the semantical domain of the meta-language

into the se.11ant:ca1 domain of the object language, and environment and continuation

designators t!r.erge as part of the primitive behaviour of 3-LISP protocols.

More specifically, arbitrary 3-LISP reflective procedures can bind as arguments

(designators ot) the continuation and environment structure of the interpreter that would

have been in effect at the moment the reflective procedure was called, had the machine

been running all along in virtue of the explicit interpretation of the prior program,

mediated by the reflective model. Furthermore, by constructing or modifying these

designators, and resuming the process below, such a reflective procedure may arbitrarily

control the processing of programs at the level beneath it Because reflection may recurse

arbitrarily, 3-LISP is most simply defined as an infinite tower of 3-LISP processes. each

engendering the process immediately below, in virtue of running a copy of the reflective

model. Under such an account, the use of reflective procedures amounts to running simple

procedures at arbitrary levels in this reflective hierarchy. Both a straightforward

implementation and a conceptual analysis are provided to demonstrate that such a machine

is nevertheless finite.

The 3-LISP reflective levels are not unlike the levels in a typed logic or set theory.

although of course each reflective level contains an omega-order untyped computational

calculus cssentiaUy isomorphic to (the extensional portion of) 2-LISP. Reflective levels, in

other words, are at once stronger and more encompassing than are the order levels of

traditional systems. The locus of agency in each 3-LISP level, on the other hand, that

distinguishes one computaional level from the next, is a notion without precedent in logical

or mathematical traditions.

The architecture of 3-LISP allows us to unify three concepts of traditional

programming languages that are typically independent (three concepts we wiU have

explored separately in 1-LISP): a) the ability to support meta-circular interpreters, b) the

1. Introduction Procedural Reflection 32

provision of explicit names for the primitive interpretive procedures (EVAL and APPL v in

standard LISP dialects). and c) the inclusion of procedures that access the state of the

implementation (usually provided. as part of a programming environment. for debugging

purposes). We will show how all such behaviours can be defined within a pure version of

3-LISP (i.e., independent of implementation). since all aspects of the state of the 3-LISP

interpretation process are available. with sufficient reflection, as objectified entities within

the 3-LISP structural field.

The dissertation concludes by drawing back from the details of LISP development.

and showing how the techniques employed in one particular case could be used in the

construction of other reflective languages - reflective dialects of current fonnalisms, or

other new systems built from the ground up. We will show, in particular, how our

approach to reflection · may be integrated with notions of data abstraction and message

passing - two (related) concepts commanding considerable current attention. that might

seem on the surface incompatible with the notion of a system-wide declarative semantics.

Fortunately, we wilt be able to show that this early impression is false - that procedurally

reflective and semantically rationalised variants on these types of languages could be readily

constructed as well.

Besides the basic results on reflection, there are a variety of other lessons to be taken

from our investigation, of which the integration of declarative import and procedural

consequence in a unified and rationalised semantics is undoubtedly the most important.

The rejection of evaluation, in favour of separate simplification and de-referencing

protocols, is the major. but not the only, consequence of this revised semantical approach.

11lc matter of category alignment. and the constant question of the proper use of meta4

structural machinery, while of course not fonnal results, arc nonetheless important

penneating themes. FinaJly, the unification of a variety of practices that until now have be

treated independently: macros. meta4 circutar interpreters, EVAL and APPLY, quotation,

implementation-dependent debugging routines, and so forth, should convince the reader of

one of our most important claims: procedural refl~tion is not a radicatty new idea;

tentative steps in this direction have been taken in many areas of current practice. The

present contribution - fully in the traditional spirit of rational reconstruction - is merely

one of making explicit what we all already knew.

1. Introduction Procedural Reflection 33

We conclude this brief introduction with three footnotes. First. given the flavour of

the discussion so far, the reader may be tempted to conclude that the primary emphasis of

this report is on procedural, rather than on representational, concerns (an impression that

will only be reinforced by a quick glance through later chapters). This impression is in part

illusory; as we will explain at a number of points, these topics are pursued in a procedural

context because it is simpler than attempting to do so in a poorly understood

representational or descriptive system. All of the substantive issues, however, have their

immediate counterparts in the declarative aspects of reflection. especially when such

declarative structures are integrated into a computational framework. Our investigation will

always be carried on with the parallel declarative issues kept firmly in mind; the attribution

of a declarative semantics to LISP !;-expressions will also reveal our representational bias.

As was mentioned in the preface, the decision to first explore reflection in a procedural

context should be taken as methodological, rather than as substantive. Furthermore, it is

towards a unified system that we are aiming; one of the morals under our present

reconstruction is that the boundaries between these two types of calculus should ultimately

be dismantled.

Secondly, as this last comment suggests, and as the unified treatment of semantics

betrays, we consider it important to unify the theoretical vocabularies of the declarative

tradition (logic, philosophy, and to a certain extent mathematics) with the procedural

tradition {primarily computer science). The semantical approach we will adopt here is but a

first step in that direction: as was mentioned in the first paragraph, a fully unified

treatment remains an unattained goal. Nonetheless, considerable effort has been expended

in the dissertation to present a single semantical and conceptual position that draws on the

insights and techniques of both of these disciplines.

Third and finally, as the very first paragraph of this chapter suggests, the dissertation

is offered as the first step in a general investigation into the construction of generally

reflective computational calculi, to be based on more fully integrated theories of

representation and computation. In spite of its reflective powers, nnd in spite of its

declarative semantics, 3-LISP cannot property be called fully reflective, since 3-LISP

structures do not form a descriptive language (nor would any other procedurally reflective

programming language that might be developed in the future, based on techniques set forth

here, have any claim to the more general tcnn). This is not because the 3-LISP structures

I. Introduction Procedural Reflection 34

lack expressive power (although 3-LISP has no quantificational operators, implying that

even if it were viewed as a descriptive language it would remain algebraic), but rather

because all 3-L ISP expressions are devoid of assertional force. There is, in brief, no way to

say anything in such a fonnalism: we can set x to a; we can test whether x is a; but we

cannot say that x is 3. Nevertheless. we contend that the insights won on the behalf of a

LISP will ultimately prove useful in the development of more radical, generally reflective

systems. In sum, we hope to convince the reader that. although it will be of some interest

on its own, 3-L I SP is only a corollary of the major theses adopted in its development.

1. Introduction Procedural Reflection 35

l.b. The Concept or Reflection

In the present section we will look more carefully at what we mean by the tenn

"reflection". in general and in the computational case; we will also specify what we would

consider an acceptable theory of such a phenomenon. The structure of the solution we wilt

eventually adopt wilt be presented only in section l.e, after discussing in section 1.c the

attendent model of computation on which it is based. and in section 1.d our conception of

computational semantics. Before presenting any of that preparatory material, however, we

do well to know where we are headed.

J.b.i. The Reflection and Representation Hypotheses

In the prologue· we sketched with broad strokes some of the roles that reflection

plays in general mental life. In order to focus the discussion, we will consider in more

detail what we mean by the more restricted phrase "computational reflection". On one

reading this term might refer to a successful computational model of general reflective

thinking. For example, if you were able to formulate what human reflection comes to

(presumably more precisely than we have been able to do), and were then able to construct

a computational model embodying or exhibiting such behaviour, you would have some

reason to claim that you had demonstrated computational reflection, in the sense of a

computational process that exhibited authentic reflective activity.

Though we will work with this larger goal in mind, our use of the term will be more

modest. In particular. we take no position on whether computational processes are able to

"think" or "reason" at all; certainty it would seem that most of what we take computational

systems to do is attributed, in a way that is radically different from the situation regarding

our interpretations of the actions of other people. In particular, humans arc first-class

bearecs of what we might call semantic originality: they themselves are able to mean,

without some observer having to attribute meaning to them. Computational processes, on

the other hand, arc at least not yet semantically original; to the extent they can be said to

mean or refer at all, they do so derivatively, in virtue of some human finding that a

convenient description (we duck the question as to whether it is a convenient truth or a

convenient flction}.2 For example, if, as you read this, you rationally and intentionally say

1. Introduction Procedural Reflection 36

"I am now reading section l.b.r. you succeed in referring to this section. without the aid of

attendant observers. You do so because we define the words that way,: reference and

meaning and so on are paradigmatically and definitionally what people do. In other words

your actions are the definitional locus of reference; the rest is hypothesi!I and falsifiable

theory. On the other hand. if I inquire of my home computer as to the address of a

friend•s fann. and it tells me that it is on the west coast of Scotland. the computer has not

referred to Scotland in any full-blooded sense: it hasn•t a clue as to what or where Scotland

is. Rather. it has typed out an address that it probably stored in an ASCII code. and /

supply the reference relationship between that spelled word and the country in the British

Isles.

The reflection hypothesis spelled out in the prologue. about how computational

models of reflection might be constructed. embodied this cautionary stance: we said there

that in as much as a computational process can be constructed to reason at all. it could be

made to reason reflectively in a certain fashion. Thus our topic of computational reflection

wilt be restricted to those computational processes that, for similar purposes. we find it

convenient to describe as reasoning reflectively. In sum, we avoid completely the question of

whether the "reflectiveness" embodied in our computational models is authentically borne,

or derivately ascribed.

This is one major reduction in scope; we immediately adopt another. Again, in the

prologue, we spoke of reflection as if it encompassed contemplative consideration both of

one's world and of one's self. We will discuss the relationship between reflection and self·

reference in more detail below. but we should admit at the outset that the focus of our

investigation will be almost entirely on the "selfish" part of reflection: on what it is to

construct computational systems able to deal with their own ingredient structures and

operations as explicit subject matters. TI1c reasons for this constraint on our investigation

are worth spelling out It might seem as if this restriction arises for simple reasons, such as

that this is an easier and better-constrained subject matter (since after all we are in no

position to postulate models of thinking about external worlds). However in fact this

restriction in scope arises for deeper reasons, again having to do with the reflection

hypothesis. First, we wilt consider internal or interior processes able to reflect on interior

structures, which is the only world that those internal processes conceivably can have any

access to. For example. we will construct a particular kind of LISP processor (interpreter),

1. Introduction Procedural Reflection 37

and LISP processors have no access to anything except fields of LISP s-expressions. On the

other hand LISP processors are crucially interior processes (in a sense that will be made

clear in the next section): they do not interact with the world directly. but rather. in virtue

of running programs, engender more complex processes that interact with the world.

This "interior" sense of language processors interacts crucially with the reflection

hypothesis. especially in conjunction with the representation hypothesis. Not only can we

restrict to our attention to ingredient processes "reasoning about" (computing over,

whatever) internal computational structures, we can restrict our attention to processes that

shift their (extensional) attention to meta-structural terms. For consider: if it turns out that

I am a computational system, consisting of an ingredient process P manipulating formal

representations of my knowledge of the world. then when I think, say, about Virginia Falls

in northern Canada, my ingredient processor P is manipulating representations that are

about Virginia Falls. Suppose, then, that I back off a step and comment to myself that

whenever I should be writing another sentence I have a tendency iastead to think about

Virginia Falls. What do we suppose that my processor P is doing now? Presnmably

{"presumably", at least. according to the knowledge representation hypothesis, which, it is

important to reiterate, we are under no compulsion to believe) my processor 11 is now

manipulating representations of my representations of Virginia Falls. In other words,

because we are focussed on the behaviour of interior processes, not on compositionally

constituted processes, our exclusive focus on self referential aspects of those processes is all

we can do (given our two governing hypotheses) to uncover the structure of constituted.

genuine reflective thought.

We can put this same point another way. The reflection hypothesis docs not state

that, in the circumstance just described, P will reflect on the knowledge structures

representing Virginia Falls (in some weird and wondrous way) - this would be an

unhappy proposal, since it would not offer any hope of an explanation of reflection.

Reflective behaviour - the subject matter to be explained - should presumably not occur

as a phenomenon in the explanation. Rather, the reflection hypothesis is at once much

stronger and more tractable (although perhaps for that very reason less plausible): it posits,

as an explanation of the mechanism of reflection, that t.'1e interior process compute over a

different kind of symbol. The most important feature of the reflection hypothesis, in other

words, is its tacit assumption that the computation engendering reflective reasoning,

l. Introduction Procedural Reflection 38

although it may be over a different kind of structure. is nonetheless similar in kind to the

sorts of computation that regu!:rly proceed over normal structures.

In sum. it is our methodological allegience to the knowledge representation

hypothesis that underwrites our self-referential stance. 'Though we will not mention this

meta-theoretic position further, it is crucial that it be understood, for it is only because of it

that we have any right to call our inquiry a study of rejlection. rather than a (presumably

less interesting) study of computational self-reference.

J.b.ii. Reflection in Computational Fonnalisms

With these preliminaries set straight. we may tum, then, to the question of what it

would be to make a computational process reflective in this sense.

At its heart. the problem derives from the fact that in traditional computational

formalisms the behaviour and state of the interpretation p~ocess are not accessible to the

reasoning procedures: the interpreter fonns part of the tacit background in tenns of which

the reasoning processes work. 'Thus, in the majority of programming languages, and in all

representation languages, only the un-interpretcd data structures are within the reach of a

program. A few languages, such as LISP and SNOBOL, extend this basic provision by

allowing program structures to be examined, constructed, and manipulated as first class

entities. What has never been provided Is a high level language in which lhe process that

interprets those programs is also visible and subject to modification and scrutiny. Therefore

such matters as whether the interpreter is using a depth-first control strategy, or whether

free variables ,ire dynamica11y scoped, or how long the current problem has been under

investigation, or what caused the interpreter to start up the current procedure, remain by

and large outside the realm of reference of the standard representational stmcturcs. One

way in which this limitation is partially overcome in some programming languages is to

allow procedures access to the structures of the implementation (examples: MDL, INTERLISP,

etc.3), although such a solution is inelegant in the extreme, defeats portability and

coherence, lacks generality, and in general exhibits a variety of mis-features we will examine

in due course. In more representational or declarative contexts no such mechanism has

been demonstrated, although a need for some sort of reflective power has appeared in a

vancty of contexts (such as for over-riding defaults, gracefully handling contradictions, etc.).

1. Introduction Procedural Reflection 39

A striking example comes up in problem-solving: the issue is one of enabling simple

declarative statements to be made about how the deduction operation should proceed. For

example, it is sometimes suggested that a default should be implemented by a deductive

regime that accepts inferences of the following non-monotonic variety:

-, I- -,p
p

(S1-1)

Though it isn't difficult to build a problem solver that embodies soml! such behaviour (at

least on some computable reading of "not provable"), one typically doesn't want such a

rule to be obeyed indiscriminately, independent of context or domain. There are, in other

words, usually constraints on when such inferences are appropriate, having to do with, say,

how crucially the problem needs a reliable answer, or with whether other less heuristic

approaches have been tried first What we are after is a way to write down specific

instances of something like s1-1 that refer explicitly both to the subject domain and to the

state of the deductive apparatus, and that, in virtue of being written down, lead that

inference mechanism to behave in the way described.

Particular examples are easy to imagine. Consider, for instance, a computational

process designed to repair electronic circuits. One can imagine that it would be useful to

have inference rules of the following sort: "unless you have been told that the power supply

is broken. you should assume that if works", or, "you should make checking capacitors your

first priority, since they are more likely to break down than are resistors". Furthermore. we

would like ensure that such rules could be modularly and flexibly added and removed from

the system, without each time requiring surgery on the inner constitution of the inference

engine. rfllough we are skirting close to the edge of an infinite regress. it is clear that

something like this kind of protocol is a natural part of normal human conversation. From

an intuitive point of view it doesn't seem unreasonable to say, "By the way, if you ever want

to assume P, it would be sufficient to establish that you cannot prove its negation."; the

question is whether we can make fonnal sense out of this intuition.

It is clear that the problem is not so much one of what to say. but of how to say it

(say, to some kind of theorem-prover) in a way that doesn't lead to an infinite regress, and

that genuinely affects its behaviour. All sorts of technical questions arise. It is not obvious,

for example, what language to use. or even to whom such a statement should be directed.

Suppose, for example, that we were given a monotonic natural-deduction based theorem

1. Introduction Procedural Reflection 40

prover for first order logic. Could we give it s1-1 as an implication? Certainly not; s1-1,

at least in the form given above. is not even a well-fonned sentence. There are various

ways we could encode it as a sentence - one way would be to use set theory. and to talk

explicitly about the set of sentences derivable from other sentences, and then to say that if

the sentence "-,p" is not in a certain set, then "p" is. However, although such a sentence

might contribute to a model of the kind of inference procedure we desire, it wouldn't make

the current inference mechanism behQ\11! non-monotonically. To do this would not be to

construct a non-monotonic reasoning system, but rather to build a monotonic one prepared

to reason about a non-monotonic one. While such a fonnulation might be of interest in

the specification of the constraints a reasoning system must honour (a kind of "competence

theory" for non-monotonic reasoning4), it doesn't help us, at least on the face of it, with

the question of how a system using defaults might actually be deployed. Another option

would be to build a non-monotonic inference engine from scratch, using expressions like

s1-1 to constrain its behaviour, like the abstract specifications of a program. But this would

solve the problem by avoiding it - the whole question was how to use such comments on

the reasoning procedure coherently within the structures of the problem-specific application.

Yet another possibility - and one we wi11 focus on for a moment - would be to

design a more complex inference mechanism to react appropriately not only to sentences in

the standard object language, but to meta-theoretic expressions of the fonn s1-1. Although

no system claiming to be of just this sort has been demonstrated, such a program is readily

imagineabte. and various dialects of PROLOG - perhaps most clearly the IC-PROLOG of

Imperial College6 - are best viewed in this light The problem with such solutions,

however, is their excessive rigidity and inelegance, coupled with the fact that they don't

really solve the problem in any case. What a PROLOG user is given is not a unified or

reflective system, but a pair of two largely independent fonnal systems: a basic declarative

language in which facts about the world are expressed, and a procedural language, in which

the behaviour of the inference process is controlled. Although the elements of the two

languages are mixed in a PROLOG program, they are best understood as separate aspects.

One set (the clause and implication and predicate structure, the identity of the variables,

and so forth) constitutes the declarative language, with the standard semantics of first-order

logic. Another (the sequential ordering of the sentences and of the predicates in the

premise, the "consumer" and "producer" annotations on the variables, the "cut" operator,

1. Introduction Procedural Reflection 41

and so forth) constitute the procedural language. Of course the flow of control is affected

by the declarative aspects, but this is just like saying that the flow of control of an ALGOL

program is affected by the data structures. Thus the claim that to use PROLOG is to

"program in logic" is rather misleading: instead one essentially writes programs in a new

(and. as it happens, rather limited) control language, using an encoding of first-order logic

as the declarative representation language. Of course this is a dual system with a striking

fact about its 9rocedural component: all conclusions that can be reached are &11aranteed to

be valid implications of prior structures in the representational field. However, as was

mentioned above, this kind of dual-calculus approach seems ultimately rather baroque, and

is certainly not conducive to tlle kind of reflective abilities we are after. It would surely be

far more elegant to be able to say, in the same language as the target world is described.

whatever it was salient to say about how the inference process was to proceed For

example, to continue with the PROLOG example, one would like to say both

FATHER(BENJAMIN,CHARLES) andCUT(CLAUSE-13) or DATA-CONSUMER(VARIABLE-4), in the same

language and subject to the same semantical treatment. The increase in elegance,

expressive power, and clarity of semantics that would result are too obvious to belabour:

just a moment's thought leads to one realise that one a single semantical analysis would be

necessary (rather than two); the reflective capabilities could recurse without limit (in PROLOG

and other dual-calculus sytcms there is only one level); a meta-theoretic description of the

system would have to describe only one formal language, not two; descriptions of the

inference mechanism would be immediately available, rather than having to be extracted

from procedural code; and so forth.

The ability to pass coherently between two situations: in the reflective case to have

the structures that normally control the interpretation process be fully and explicitly visible

to (and manipulable by) the reasoning process, and in the other to allow the reasoning

process to sink into them, so that they may take their natural effect as part of the tacit

background in which the reasoning process works - this ability is a particular form of

reflection we will call procedural reflection ("procedural" because we are not yet requiring

that those structures at the same time describe the reasoning behaviours they engender: that

is a larger task). 1bough ultimately limited, in the sense that a procedurally reflective

calculus is by no means a fully reflective one, even this more modest notion is on its own a

considerable subject of inquiry.

1. Introduction Procedural Reflection 42

J.b.iii. Six General Properties of Reflection

Given the foregoing sketch of what our task is, it is appropriate to ask, before

plunging into details, whether we have any sense in advance of what fonn our solution

might tai.e. Six properties of reflective systems can be identified straight away - features

that we will expect our ultimate solutions to exhibit, however they end up being structured

or explained.

First, the n~tion is one of self-reference, of a causally-connecied kind, stronger t'1an

the notions explored by mathematicians and philosophers over much of the last century.

What we need is a theory of the causal powers required in order that a system's possession

of self-descriptive and $elf-modelling abilities will actually matl~r to it - a requirement of

substance since full-blooded, actual I?ehaviour is our ultimate subject matter, not simply the

mathematical characterisation of fonnal relationships. In dealing with computational

processes, we are dealing with artefacts behaviourally defined, unlike systems of logic which

are functionally defined abstractions that in no way behave or participate with us in the

temporal dimension. Although any abstract machine of Turing power can provably model

any other - including itself - there can be no sense in which such self-modelting is even

noticed by the underlying machine (even if we could posit an animus ex maclzina to do the

noticing). If, on the other hand, we aim to build a computational system of substantial

reflective powers, we will have to build something that if, affected by its ability to "think

about itself". This holds no matter how accurate the· self-descriptive model may be; you

simply cannot afford simply to reason about yourself as disinterestedly and

inconsequentially as if you were someone else.

Similar requirements of causal connection hold of human reflection. Suppose, for

example, that after taking a spill into a river I analyse my canoeing skills and develop an

account of how I would do better to lean downstream when exiting an eddy. Coming to

this realisation is useful just in so far as it enables me to improve; if I merely smile in

vacant pleasure at an image of an improved me, but then repeat my ignominious

performance - if, in other words, my reflective contemplations have no effect on my

subsequent behaviour - then my reflection will have been worthless. The move has to be

made, in other words, from description to reality. In addition, just as the result of

reflecting has to affect future non-reflective behaviour, so does prior non-reflective

1. Introduction Procedural Reflection 43

beha¥iour have to be accessible to reflective contemplation; one must also be able to move

from reality to description. It would have been equally futile if, when I paused initially to

reflect on the cause of my d:mking, I had been unable to remember what I had been doing

just before I capsized.

In sum. the relationship between reflective and non-reflective behaviour must be of a

fonn such that both information and effect can pass back and forth betwee!l them. These

requirements will impinge on the technical details of reflective calculi: we will have to

strive to provide sufficient connection between reflective and non-reflective behaviour so

that the right causal powers can be transferred across the boundary. without falling into the

opposite difficulty of making them so interconnected that confusion results. (An example is

the issue of providing continuation structures to encode control flow: we will provide

separate continuation structures for each reflective ltvel, to avoid unwanted interactions, but

we will also have to provide a way in which a designator of the lower level continuation

can be bound in the environment of the higher one, so that a reflective program can

straightforwardly refer to the continuation of the process below it) Furthermore, the

interactions can become rather complex. Suppose, to take another example, that you decide

at some point in your life that whenever some type of situation arises (say, when you start

behaving inappropriately in some fashion), that you will pause to calm yourself down, and

to review what has happened in the past when you have let your basic tendencies proceed

unchrcked. The disp2ssionate fellow that ynu must now become is one that t:!mbodies a

decision at some future point to reflect. Somehow, without acting in a self-conscious way

from now until such a circumstance arises, you have to make it true that when the situation

does arise, you will have left yourself in a state that will cause the appropriate reflection to

happen. Similarly, in our technical fonm~lisms, we will have to provide the atility to drop

down from a reflected state to a non-reflected one, having left the base level -system in such

a state that when certain situations occur the system will automatically reflect, and thereby

obtain access to the reasons that were marshalled in support of the original decision.

Second, reflection has something - although just what remains to be seen - to do

with self-knowledge, as well as with selfreference, and knowledge, as has often been

remarked, is inherentlf theory-rdalive. Just as one cannot interpret the worid except by

using the concepts and categories of a theory, one cannot reflect on one's self except with

refr;rence to a theory of oneself. Furthennore, as is the case in any theoretical endeavour,

1. Introduction Procedural Reflection 44

the phenomena under consideration under-determine the theory that accounts for them,

even when all the data are to be accounted for. In the more common case, when only

parts of the phenomenal field are to be treated by the theory, an even wider set of

alternative theories emerge as possibilities. In other words, when you reflect on your own

behaviour, you must inevitably do so in a somewhat arbitrary theory-relative way.

One of the mandates we will set for any reflective calculus is that it be provided.

represented in its own internal language, with a complete (in some appropriate sense)

theory of how it is formed and of how it works. TI1eoretical entities may be posited by this

account that facilitate an explanation of behaviour, even though those entities cannot be

claimed to have a theory-independent ontological existence in the behaviour being

explained. For example, 3-LISP will be provided with a "theory", in 3-LISP, of 3-LISP

(reminiscent of the meta-circular interprcter3 demonstrated in McCarthy's original report6

and in the reports of Sussman and Steefo,; but causal1y connected in novel ways). In

providing this primitively supported reflective model, WC will adopt a standard account, in

which many common notions of LISP (such as the notion of an environment just

mentioned, and a p:1..allet notion of a continuation) play a central role, even though they

are not first-dass objects of the language in any direct sense. It is impossible in a non·

reJ1er,:ive LISP to define a predicate true only of environments, since environments as such

don't exist in non-reflective LISP's. However, once we endow our particular dialect with

reflective powers, the notion of an environment will be crucial, and environments will be

oassed around as first-class objects.

There are other possible LISP theories, some of which differ radically from the one

we have chosen. It is possible, for example, to replace the notion of environment

altogether (note that the A-calculus is explained without any such device). But the point is

that in building a reflective model based on this alternative theory, other objects would

prob&bly be posited instead: in order to reflect you have to use some theory and its

associated theoretical entities.

The third general point about reflection regards its name: we deliberately use the

term "reflective", as opposed to "reflexive", since there arc various senses (other recent

research reports not withstanding8) in which no computational process, in any sense that

this author can understand, can !.ucceed narcissistically in thinking about the fact that it is

1. Introduction Procedural Reflection 4S

at that very instant thinking about itself thinking about itself thinking ... - and so on and so

on, like a transparent eye in a room full of mirrors. The kind of reflecting we will consider

- the kind that we will be able technically to define, implement, and control - requires

that in the act of reflecting the process "take a step back", in order to allow the interpreted

process to consider what it was just up to: to bring into view fonnal symbols which

describe its state "just a moment earlier". From the fact of having a name for itself it does

not automatically acquire the ability to focus on its cu"ent instantaneous self. for in the

process of "stepping back" or reflecting, the "mind's eye" moves out of its own view, being

replaced by an (albeit possibly complete) account of itself. ('Though this description is

surely more suggestive than incisive, much of the technical work to be presented will allow

us to make it precise.)

The fourth comment is that, in virtue of reflecting. a process can always obtain a

finer-grained control over its behaviour than would otherwise be possible. What was

previously an inexorable stepping from one state to the next is opened up so that each

move can be analysed, countered, and so forth. In other words we will see in great detail

how reflective powers in fact provide for a more subtle and more catholic - if less efficient

- way of reacting to a world. The requirement here is as usual for what was previously

implicit to be made explicit, albeit in a controlled and useful way, without violating the

ultimate truth that not everything can be made explicit in a finite mechanism. This ability

enables a system designer to satisfy what might be taken as incompatible demands: the

provision of a small and elegant kernel calculus, with crisp definition and strict behaviour,

and at the same time provide (through reflection) the user with the ability to modify or

adjust the behaviour of this kernel in peculiar or extenuating circumstances. Thus

simplicity and flexibility can be achieved together.

1bis leads us to the fifth general comment, which is that the ability to reflect never

provides a complete separation, or an utterly objective vantage point from which to view

either oneself or the world. No matter now reflective any given person may be, it is a

truism that there is ultimately no escape from being the person in question. 1bough we

will genera11y downplay any connection between our formal work and human abilities, we

can perhaps allow that the kind of reflection we arc modelling is closer to what is known as

detachment or awareness than to a strict kind of self-objectivity (this is why we are

systematically and intentionally imprecise about whether reflection is focused on the self or

1. Introduction Procedural Reflection 46

on the world). The environment example just mentioned provides an illustration of th.is in

a computational setting. As we will see in detail, the environment in which are bound the

symbols that a program is using is. at any level, merely part of the embedding background

in which the program is running. The program operates within that background,

dependent on it but - in the normal (non-reflective) course of events - unable to access it

explicitly. The operation of reflecting makes explicit what was just implicit: it renders

visible what was tacit In dojng so, however, a new background fills in to support the

reflection. Again, the same is true of human reflLction: you and I can interrupt om·

conversation in order to sort out the definition of a contentious term, but - as has often

been remarked - we do so using other terms. Since language is our inherent medium, we

cannot step out of it to view it from a completely independent vantage point Similarly,

while the systems we build will at any point be able to back up and mention what was

previously used, in doing so more structures will come into implicit use. This lesson, of

course, has been a major one in philosophy at least since Peirce; certainly Quine's lesson of

Ncurath's boat holds as true for the systems we design as it does for us designers.9

Sixth and finally, the ability to reflect is something that must be built into the heart

or kernel of a calculus. There are theoretically demonstrable reasons why it is not

something which can be "pro6rammed up" as an addition to a calculus (although one of

course can implement a reflective machine in a non-reflective one: the difference between

these two must always be kept in mind). The reason for this claim is that, as discussed in

the first comment, being reflective is a stronger requirement 011 a calculus than simply being

able to model the calculus in the calculus. something any machine of Turing power is

capable of doing (this is the "making it matter" that was alJudcd to above). This will be

demonstrated in detail; the crucial difference, as suggested above, comes in connecting the

self-model to the basic interpretation functions in a causal way, so that (for example and

very roughly) when a process "decides to assume something", it in fact assumes it, rather

than simply constructing a model or self-description or hypothesis that says that it is in fact

assuming it. As well as "backing up" in order to reflect on its thoughts, in other words, the

process needs to be able to "drop back down again", to consider the world directly, in

accord with the consequences of those rrflections. Both parts of t.'1is involve a causal

connection between the explicit programs and the basic workings of the abstract machine,

and such connections cannot be "programmed into" a calculus that does not support them

1. Introduction Procedural Reflection 47

primitively.

1.b.iv. Reflection and Self-Reference

At the beginning of this section we said that our investigation of reflection in general

would primarily concern itself, because of the knowledge representation hypothesis, with

the self referential aspects of reflective behaviour. There has been in the last century no

lack of investigation into self-referential expressions in formal systems, especially since it

has been exactly in these areas where the major results on paradox, incompleteness.

undecidability, and so forth, have arisen. We should therefore compare our enterprise with

these theoretical precursors.

Two facets of the computational situation show how very different our concerns will

be from these more traditional studies. First, although we do not formalise this, there is no

doubt in our work that we consider the locus of refe"ing to be an entire process, not a

particular expression or structure. Even though we will posit declarative semantics for

individual expressions. we will also make evident the fact that the designation of any given

expression is a function not only of the expression itself, but also of the state of the

processor at the point of use of that expression. And of course it is the processor that uses

the symbol; the symbol does not use itself. To the extent that we want our system to be

self-referential, then, we want the process as a whole to be able to refer, to first

approximation, to its whole self, although in fact this usually reduces to a question of it

refering to some of its own ingredient structure.

We do not typically want specific structures themselves to be self-designating, exactly

to avoid many of the intractable (if not inscrutable) problems that arise in such cases. It

will be perfectly possible to construct apparently self-designating expressions (at least up to

type-equivalence: token self-reference is more difficult). But by and large the system of

levels we will adopt will exclude such local self-reference, practically if not formally, from

our consideration. Truly self-referential expressions, such as This sentence is six words long,

are unarguably odd, and certain instances of them, such as the cliched This sentence is false,

are undeniably problematic (strictly, of course, the sentence "This sentence is six words

long" contains a self-reference, but is not itself self-referential; however we could use

instead the composite term "This five word noun phrase"). None of these truths impinge

particularly on our quite different concerns.

1. Introduction Procedural Reflection 48

The second major comment is this: in traditional fonnal systems. the actual reference

relationship between any given expression and its referent {be that referent itself or a distal

object) is mediated by the externally attributed semantical interpretation function. The

sentence "This sentence is six words long" doesn't actually refer, in any causal full-blooded

sense, to anything; rather, we English speakers take it to refer to itself. The causal

reference relationship between that sentence as sign, and that sentence as significant, flows

through us.

. As we said in the previous section about causal connection, in constructing reflective

computational systems it is crucial that we not defer causal mediation through an external

observer. Reflection in a computational system has to be causally connected, even if the

semantical understanding cf that causal connection is externally attributed For example, in

a-LISP there is a primitive relationship that holds between a certain kind of symbol, called

a handle (a canonical fonn of meta-descriptive rigid designator) and another symbol that,

infonnally, each handle designates. Suppose that H1 is some handle, and that s 1 is some

structure that H1 refers to; strictly speaking the relationship between H1 and s1 is an internal

relationship. that we, as external semantical attributors, take to be a reference relationship.

Until we can construct computational systems that arc what we called semantically original,

the semantical import of that relationship remains external. But the causal relationship

between H1 and s1 must be internal: otherwise there would be no way for the internal

computational processes to treat tl1at relationship in any way that mattered.

We can put this a little more formally, which may make it clearer. Suppose that tP is

the externally attributed semantical interpretation function, and U1at z is the primitive

function that relates handles to the structures we call their referents. Thus we have, to use

the prior example, [<Ii{H1) = Si], as well as [Z{Hi) = Si]. More generally, we know that:

VH,S ([HANDLE(H)] A [Z(H) = S)1 ::, [cf>(H) " S]l (S1-2)

However this equation, though in some sense strictly true, in no way reveals the stmcture of

the relationship between cI> and z; it merely states their extensional equivalence. More

revealing of the fact that we take the relationship between handles and referents to be a

reference relationship, if we arc allowed to reify relationships, is the following:

(S1-3)

1. Introduction Procedural Reflection 49

or. rather. since not all symbols are handles, as:

(Sl-4)

The requirement that reflection mailer, to summarise. is a crucial facet of

computational reflection - one without precedent in pre-computational formal syst.ems.

What is striking is that the mattering cannot be derived from the semantics, since it would

appear that mattering - real causal connections - are a precursor to semantical originality.

not something that can follow the semantical relationships. Put another way. in the

inchoately semantical computational systems we are presently able to build. the reference

relationships between internal meta·level symbols and their internal referents (these are the

semantical relationships that are crucial in reflective considerations) may have to be causal

in two distinct ways: once mediated by us who attribute semantics to those symbols in the

first place, and once internally so that the appropriate causal behaviour, to which we

attribute semantics. can be engendered. On that day when we succeed in constructing

semantically original mechanisms, those two presently independent causal connections may

merge; until then we will have to content ourselves with causally on"glnal but semantically

derivative systems. The reflective dialects we will examine will all be of this form.

1. Introduction Procedural Reflection so

1.c. A Process Reduction Model or Computation

We need to sketch the model of computation on which our analysis will depend.

We take processes as our fundamental subject matter; though we will not define the

concept precisely, we may assume that a process consists approximately of a connected or

coherent set of events through time. The reification of processes as objects in their own

right - composite and causally engendered - is a distinctive, although not distinguishing,

mark of computer science. Processes are inherently temporal, but not otherwise physical:

they do not have spatial extent, although they must have temporal extent Whether there

are· more abstract dimensions in which in is appropriate to locate a process is a question we

will sideMstep; since this entire characterisation is by way of background for another

discussion, we will rely· more on example, and on the uses to which we put these objects,

than on explicit formulation.

We will often depict processes as rough-edged circles or balls, as in the following

diagram. The icon is intended to signify what we will call the boundary or surface of the

process, which is the interface between the process and the world in which it exists (we

presume that in virtue of objectifying processes we carve them out of a world in which they

can then be said to be embedded). Thus the set of events that collectively form a coherent

process in a given world will alt be events on the surface of this abstract object. In any

given circumstance this set of event~ could presumably be more or less specifically

described: we might simply say that the process had certain gross input/output behaviour

('°input" and "output" would have to be defined as surface perturbations of a certain class:

this is an interesting but non-trivial problem), or we might account in fine detail for every

nuance of the process's behaviour, including the exact temporal relationships between one

event and the next, and so forth.

0
(S1-6)

PROCESS P

It is crucial to distinguish more and less fine-grained accounts of the surface of a

process, on the one hand, from compositional accounts of its interior. on the other. 'Ibat a

process has an interior is again a striking assumption throughout computer science: the role

1. Introduction Procedural Reflection Sl

of interpreters (what we will call processors) is a striking example. Suppose for instance

that you interact with a so-called LISP-based editor. It is standard to assume that the LISP

interpreter is an ingredient process within the process with which you interact: it in fact is

the locus of anima or agency inside your editor process that supplies the temporal action in

Lite editor. On the other hand that process never appears as the surface of the editor: no

editor interaction is directly an interaction with the LISP processor. Rather, the LISP

processor, in conjunction with some appropriate LISP program. together engender the

behavioural surface with which you interact.

There are a variety of architectures - or classes of architecture - that computer

science has studied; we will briefly mention just two. but will focus throughout the

dissertation on just one of these. Every computational process (we will examine in a

moment which processes we are disposed to call computational) has within it at least one

other process: this supplies the animate agency of the overall constituted process. It is for

this reason that we call this model a "process reduction" model of computation, since at

each stage of computational reduction a given process is reduced in terms of constituent

symbols and other processes. There may be more than one internal process (in what are

known as parallel or conconcurrent processes), or there may be just a single one (known as

serial processes). Reductions of processes which do not posit an interior process as the

source of the agency we will consider outside the proper realm of computer science,

although of course some such reduction must at some point be .:ccounted for if the

engendered process is ever to be realised. However this kind of reduction from process to,

say, behaviour of physical mechanism, is more the role of physics or electronics than

computer science per se. What is critical is that at some stage in a series of computational

reductions this leap from the domain or processes to the doma~n of mechanisms be taken,

as for example in the explaining how the behaviour of a set of logic circuits constitutes a

processor (interpreter) for the micro-code of a given computer. Given this one account of

what we may call the realisation of a computational process, then an entire hierarchy of

processes above it may obtain indirect realisation. If, for example, that micro-code

processor interprets a set of instructions that arc the program for a macro-machine, then a

macro-proce:;sor may thereby exist. Similarly, that macro-machine may interpret a machine

language program that implements SNOBOL: thus by two stages of composition (the inverse of

reduction) a SNOBOL processor is also realised.

,, .

1. Introduction Procedural Reflection 52

In order to make this talk of processors and so forth a little clearer, we show in the

following diagrams two quite different fonns of computational reduction: what we will call

a communicative reduction and an interpretive reduction. The arrow is intended to mean

"reduces to"; thus in st-6 we imply that process P reduces to a set of flve interior

processes. What it is for processes to communicate we will not say: the assumption is

merely that these five ingredient processes interact in some fashion, so that taken as a

composite unity their tota~ behaviour is (i.e., can be interpreted as) the behaviour of the

constituted process. Responsibility for the surface of the total process P is presumably

shared in some way amongst the five ingredients. Examples of this sort of reduction may

be found at any level of the computational spectrum, from metaphors of disk-controllers

communicating with bus mediators communicating with central processors, to the message

passing metaphors in such AI languages as ACTl and SMALLTALK, and so forth.10

(S1-6)

Communicative reductions will receive only passing mention in this dissertation; we

discuss them here only in order to admit that the model of reflection that we will propose

is not (at at least at present) sufficiently general to encompass them. We will focus instead

on the far more common model that we call an interpretive reductioll, pictured in the

following diagram. In such cases the overall pi'ocess is composed of what we will call a

processor and a structural field. The first ingredient is the locus of active agency: it is what

is typically called an "interpreter", although we avoid that tenn because of its confusion

with notions of interpretation from the declarative tradition (we will have much more to say

about this confusion in chapter 3). The second is the program or data structures (or both):

it is often c.allcd a set of symbols, although that tenn is so semantically loaded that we will

avoid it for the time being.

,

1. Introduction Procedural Reflection S3

(S1-7)

All of the standard interpreted languages are rxamples of this second kind of reduction, of

which LISP is as good an instance as any. The structural field of LISP consists of what are

known as s-expressions: a combination of pairs (binary graph elements c;f a certain form).

atoms, numerals, and so forth.

We intend the . interpretive model to underwrite both language design and the

construction of particular programs. For example. we can characterise FORTRAN in these

terms: we will posit a FORTRAN processor that computes over (examines. manipulates,

constructs, reacts to, and so forth) elements of the FORTRAN structural field, which includes

primarily an ordered sequence of FORTRAN instructions, FORMAT statements, etc. Suppose that

you set out to build a FORTRAN program to manage your financial affairs: what you would

do is specify a set of FORTRAN data structures and a process to interact with them. We

might call those data structures - the tables that list current balance. recent deposits,

interest rate, and so on - the structural field of process CHEQUERS that you arc building.

The program that you want to interact with this data base we will simply call P. Thus the

first reduction of CHEQUERS would be pictured in our model as follows:

(S1-8)

CHEQUERS
Structural Field

We have said, however, that P is specified by a FORTRAN program (P is not itself a program,

because P is a process, and programs arc static, requiring interpretation by a processor in

order to engender behaviour). Thus P can itself be understood in terms of a reduction in

1. Introduction Procedural Reflection S4

terms of the program c ("c" for "code"), which when processed by the FORTRAN processor

yields process P. Thus we have a double reduction of the following sort:

(St-9)

FORTRAN PROCESSOR

CHEQUERS

There are a host of questions that would have to be answered before we could make

this precise (before, for example, we could construct an adequate mathematical treatment of

these intuitions). For example, the data structures in the foregoing example are themselves

have to be IDlJJH.:mented in FORTRAN as well However to fill out the model just a little, we

can suggest how we might, in these terms, define a variety of commonplace terms of art of

computer science.

First, by the computer science term interpreter (again, we use instead "proces.'iior")

we refer to a process that is the interior process in an interpretive reduction of another

interior process. For example, the process P in the check-book example was not an

interpreter, because it was the ingredient process only singly: the process thereby

constituted, which we called CHEQUERS, was not itself an interior process. Hence P fails to

be an interpreter. The reason that we call the process that interprets LISP programs an

interpreter is because USP programs are structural field arrangements that engender other

interior processes that work over data structures so as to yield yet other processes.

Second, by a compilation we refer to the transfonnation or translation of a structural

field arrangement S1 to another structural field arrangement s2, so that the surface of the

process that would be yielded by the processing of s1 by some processor Pt is equivalent

(modulo some appropriate equivalence metric) to the processing of S2 by some processor P2•

For example, we spoke .above about a FO!tTRAN processor, but of course such a processor is

rarely if ever realised; rather, FORTRAN programs arc typically compiled into some machine

language. Suppose we consider the compiler that compiles FORTRAN into the machine

language of the IBM 360. 'Then the compilation of some FORTRAN program Ci= into an IBM

1. Introduction Procedural Reflection ss

360 machine language porgram c360 would be correct just in case the surface of the process

that would result from the processing of CF by the (hypothetical) FORTRAN processor would

be equivalent to the process that will actually result by the processing of c360 by the basic

IBM 360 machine language processor. Thus compilation is relative to two reductions, and is

mandated only to ensure surface-surface equivalence.

Third, by implementation we typically refer to two kinds of construction. To

implement a process simply means to construct a structural field arrangement s for some

processor P so that the surface of the process that results from the interpretation of s by P

yields the desired behaviour. More interesting is to implement a language (by a

computational language we mean an architectu~e of a structural field and a behaviourally

specified processor that interprets arrangements of such a field). In its most general form;

one implements a language by providing a process P that can be reduced to the structural

field and interior processor of the language being implemented. In other words if I

implement LISP, all I am required to do is to provide a process that behaviourally appears

to be a constituted process consisting of the LISP structural field and the interior LISP

processor. Thus I am completely free of any actual commitment as to the reality, if any, of

the implemented field.

Typically, one language is implemented in another by constructing some

arrangement or set of protocols on the data structures of the implementing language to

encode the structural field of the implemented language, and by constructing a program in

the implementing language that, when processed by the implementing language's processor,

will yield a process whose surface can be taken as a processor for the interpreted language,

with respect to that encoding of the implemented language's structural field. (By a program

we refer to a structural field arrangement within an illlerior processor - i.e., to the inner

structural field of a double reduction - since programs are structures that are interpreted

to yield processes that in turn interact with another structural field (the data structures) so

as to engender a whole constituted behaviour.)

Finally, we can imagine how this model could be used in cognitive theorising. A

weak computational model of some mental phenomenon would be a computational process

that was claimed to be superficially equivalent to some mentai behaviour. Note that

surface equiva1cnce of this sort can be arbitrarily fine-grained; just because a given

computational model predicts the most minute temporal nuances revealed by click-stop

1. Introduction Procedural Reflection S6

experiments and so forth does not imply that anything other than surface equivalence has

been achieved. In contrast., a strong computational model would posit not only surface but

interior architectural structure. Thus for exainple Fodor's recent claim of mental

modularity11 is a coarse-grained but strong claim: he suggests that the dominant or

overarching computational reduction of the mental is closer to a communicative than to an

interpretive reduction.

This has been the briefest of sketches of a substantial subject Ultimately, it should

be formalised into a generally applicable and mathematically rigourous account. but in this

dissertation we will merely use its basic structure to organise our particular analyses. .

However there are three properties of all structural fields that are important for us to make

clear, for the present investigation. First, over every structural field there must be defined

a locality metric or measure, since the interaction of a processor with a structural field is

always constrained to' be locally continuous. Informally, we can think of the processor
/

looking at the structural field with a pencil-beam flashligh~ able to see and react only to

what is currently illuminated (more formally, the behaviour of the processor must always be

a function only of its internal state plus the current single structural field element under

investigation). Why it is that the well-known joke about a COME-FROM statement in FORTRAN

is funny, for example, can be explained only because this local accessibility constraint is

violated (otherwise it would be a perfectly well-defined construct) .. Note as well that in

logic, the >.-calculus, and so forth, no such locality considerations come into play. In

addition, the measure space yielded by this locality metric need not be uniform, as LISP

demonstra:es: from the fact that A is accessible from a it does not follow that n is accessible

from A.

Second - and this is a major point, with which we witt grapple considerably in our

considerations of semantics - structural field elements are taken to be significant - it is

for this reason that we tend to call them symbols. We count as computational, in particular,

only those processes consisting of ingredient structures and events to which we, as external

observers, attribute semantical import

The reason that I do not consider a car to be a computer, although I am tempted to

think of its electronic fuel injection module computationally, arises exactly from this

question of the attribution of significance. The main constituents of a car I understand in

1. Introduction Procedural Reflection 57

tenns of mechanics - forces and torques and pla5ticity and geometry and heat and

combustion and so on. These are not interpreted notions: the best explanation of a car does

not posit an externally attributed semantical intepretation function in order to make senc;e

of the car's internal interactions. With respect to any computer, however, - whether it is

an abacus, a calculuator, an electmnic fuel injection system, or a full-scaie digital computer

- the best explanation is exactly in terms of the interpretation of the ingredients, even

t.liough the machine itself is not allowed access to that interpretation (for fear of violating

the doctrine of mechanism). Thus I ma:; know that the ALU in my machine works in such

and such a way, but I understand its workings in terms of addition, logical operations, and

so forth. all of which are interpretations of how it works. In other words the proper use of

the term "computational" is as a predicate on explanations, not on artefacts.

The third constraint follows directly on the second: in spite of this semantical

attribution, the interior processes of a computational process must intP.ract with these

structures and symbols and other processes in complete ignorance and disregard of any

externally attributed semantical weight. This is the substance of the claim that computation

is fomzal symbol manipulation - that computation has to do with the interaction with

symbols solely in virtue of their shape or spelling. We within computer science are so used

to this formality condition - this requirement that computation proceed syntactically -

that we are liable to forget that it is a major claim, and are in danger of thinking that the

simpler phrase "symbol manipulation" means format symbol manipu]ati(ln. But in spite of

its familiarity, part of our semantical reconstruction will argue that we have not taken this

attribution seriously enough.

A book should be written on an these matters; we mention them here only because

they will play an important role in our reconstruction of LISP. There are obvious parallels

and connections to be c;cplorcd, for e::ample, between this external attribution of

significance to the ingredients of a computational process, and the question of what would

be required for a computational system to be semantically original in the sense discussed at

the beginning of the previous section. This is not the place for such investigations,

although we will make explicit this attril:,ution of significance to LISP structures in our

pre~entation of a full declarative semantics for LISP, as section l.d and chapter 3 will make

clear. The µresent moral is merely that this attribution is neither something new, nor

something specific to usr·s circumstances. The external attribution of significance is a

1. Introduction Procedural Reflection S8

foundational part of computer science.

1. Introduction Procedural Reflection S9

1.d. The Ratioualisatioo of Computational Semantics

From even the few introductory sections that have been presented so far, it is clear

that semantical vocabulary will permeate our analysis. In discussing the knowledge

representaticn and reflection hypotheses, we talked of symbols that represented knowledge

about the world, and of structures that designated other structures. In the model of

computation just presented. we said that the attribution of semantic significance to the

ingredients of a process was a distinguishing mark of computer science. Informally, no one

could possibly understand LISP without knowing that the atom T stands for truth and NIL

for· falsity. From the fact that computer science is thought to involve Jonna/ symbol

manipuation we admit not only that the subject matter inc!udes symbols, but also that the

computations over them occur in explicit ignorance of their semantical weight (you cannot

treat a non-semantical object, such as an eggplant or a waterfall, fonnally, simply by using

the term fonnal you admit that you attribute significance to it on the side). Even at the

very highest levels, when say that a process - human or computational - is reasoning

about a given subject, or reasoning about its own thought processes, we implicate semantics,

for the term "semantics" can in viewed, at least in part, as a fancy word for aboutness. It is

necessary, therefore, to set straight our semantical assumptions and techniques, and to make

clear what we mean when we say that we wiU subject our computational dialects to

semantical scrutiny.

I.di. Pre-Theoretic Assumptions

In engaging in semantical analysis, our goal is not simply to provide a

mathematically adequate specification of the behaviour of one or more procedural calcali -

one that would enable us, for example, to prove programs correct, given some specification

of what they were designed to do. In particular, by "semantics" we do not simply mean a

mathematical formulation of the properties of a system, formulated from a meta-theoretic

vantage point (unfortunately it seems that the term may be acquiring this rather weak

connotation with some writers). Rather, we take semantics to have fundamentally to do

with meaning and reference and so forth - whatever they come to - emerging from the

paradigmatic human use of language (as we mentioned in section 1.b.i). We are interested

in semantics for two reasons: first, because, as we said at the end of the last section, all

1. Introduction Procedural Reflection 60

computational systems are marked by external semantical attribution, and second, because

semantics is the study that will reveal what a computational system is reasoning about, and

a theory of what a computational process is reasoning about is a pre-requisite to a proper

characterisation of reflection.

Given this agenda, we will approach the semantical study of computational systems

with a rather precise set of guidelines. Specifically, we will require that our semantical

analyses answer to the following two requirements, emerging from the two facts about

processes and structural fields laid out at the end of section 1.c:

1. They shouid manifest the fact that we understand computational structures in
virtue of attributing to them semantical import;

2. They should make evident that. in spite of such attribution, computational
processes are formal, in that they must be defined over structures independent
of their semantical weight;

Strikingly, from just these two principles we will be able to defend our requirement of a

double semantics. since the attributed semantics mentioned in the first premise includes not

only a pre-theoretic understanding of what happens to computational symbols, but also a

pre-computational intuition as to what those symbols stand for. We will therefore have to

make clear the declarative semantics of the elements of (in our case) the LISP structural

field, as well as establishing their procedural import

We will explor~ these results in more detail b~low, but in its barest outlines, the

form of the argument is quite simple. Most of the results are consequences of the

following basic tenet (we have relativised the discussion to LISP, for perspicuity, but the

same would hold for any other calculus):

What LISP !:tructures mean is not a function of how they are treated by the
LISP proce~sor; rather, how they are treated is a function of what they mean.

For example, the expression " (+ 2 3)" in LISP evaluates to 5; the undeniable reason is that

"(+ 2 3)" is understood as a complex name of the number that is the successor of 4. We

arrange things - we defined LISP in the way that we did - so that the numeral 6 is the

value because we know what (+ 2 3) stands for. To borrow a phrase from Barwise and

Perry, our rccor.struction is an attempt to regain our semantic innocence - an innocence

that still permeates traditional fo1mal systems (logic, the >.-calculus, and so forth), but that

has been lost in the attempt to characterise the so-called "semantics" of computer

1. Introduction Procedural Reflection 61

programming languages.

That " (+ 2 3)" designates the number five is self-evident, as Me many other

examples on which we will begin to erect our denotational account. For example, we have

already mentioned the unarguable fact that (at least in certain contexts) T and NIL designate

Truth and Falsity. Similarly, it is commonplace use the term "CAR" as a descriptive junction

to designate the first element of a pair, as for example in the English sentence "did you

notice that the CAR of that list is the atom LAMBDA". From such practice we have

incontrovertible evidence that a term such as { CAR x) designates the CAR of the list or pair

designated by x. Finally. it is hard to imagine an argument against our assumption that

{QUOTE X} designates x (in spite of often-heard claims that QUOTE is a function that holds off

the evaluator, rather than that it is a naming primitive). In sum. formulating the declarative

semantics of a computational formalism is not difficult, once one recognises that it is an

important thing to do.

I.dil Sematllics in a Computational Setting

In the most general form that we will use the term semantics.12 a semantical

investigation aims to characterise the relationship between a syntaclic domain and a

semantic domain - a relationship that is typically studied as a mathematical function

mapping elements of the first doir.ain into elements of the second. We will call such a

function an interpretation function (to be sharply distinguished from what in computer

science is called an interpreter, which we are calling a processor). Schematically, as shown

in the following diagram, the function ii, is an interpretation function from s to o:

I Syntactic Domain S i-1 ---~--)j_,. Semantic Domain D ! (Sl-!O)

In a computational setting, this simple situation is made more complex because we are

studying a variety of interacting interpretation functions. In particular, the diagram below

identifies the relationships between the three main semantical functions that permeate our

analysis. e is the interpretation function mapping notations into clements of the structural

field, r,l) is the interpretation function making explicit our attributed semantics to structural

field clements, and i' is the function fonnally computed by the language processor. o will

be explained below; it is intended to indicate a IP-semantic characterisation of the

1. Introduction Procedural Reflection 62

relationship between s1 and s2. whereas ,r, indicates the formally computed relationship -

a distinction similar, as we will soon argue, to that between the logical relationships of

derivability (1-) and eniailment (ta).

(Sl-11)
Notation NI Notation N2

8 8

Structure S1

0

For mnemonic convenience, we use the name "it" by analogy with psychology. since a

study of v is a study of the internal relationships between symbols, all of which are within

the machine (,r, is meant to signify psychology na"owly construed, in the sense of Fodor,

Putnam, and others13). The label "ii,", on the oL"aer hand, chosen to suggest philosophy,

signifies the relationship between a set of symbols and the world

As an example to illustrate s1-11, suppose we accept the hypothesis that people

represent English sentences in an internal mental language we will call mentalcse (suppose,

in other words, that we accept the hypothesis that our minds are computational processes).

If you say to me the phrase "a composer who died in 1750" and I respond with the name

"J. S. Bach", then, in terms of the figure, the first phrase, qua sentence of English, would

be N1; the mentalese representation of it would be s1, and the person who lived in the 17th

and 18th century would be the referent 01. Similarly, my reply would be N2, and the

mcntalcse fragment that I presumably accessed in order to formulate that reply would be

s.:.. Finally, 02 would again be the long-dead composer; thus 01 and 02, in this c&se, would

be the same fellow.

Nt, N2, s1, s2. 01, and 02, in other words, need not necessarily all be distinct: in a

variety of different circumstances two or more of them may be the same entity. We will

examine cases, for example, of self-referential designators, where st and 01 are the same

object Similarly, if, on hearing the phrase "the pseudonym of Samuel Clemens", I reply

"Mark Twain", then 01 and N2 arc identical. By far the most common situation, however,

will be as in the Ilach example, where 01 and 02 are the same entity - a circumstance

where we say that the function + is designation-preserving. As we will see in the next

1. Introduction Procedural Reflection 63

section. the ,rreduction and p-reduction of the A-calculus, and the derivability relationship

(I-) of logic, are both designation-preserving relationships. Similarly, the 2- and 3-LISP

processors will be designation-preserving. whereas 1-LISP's and SCHEME'S evaluation

processors, as we have already indicated, are not.

In the terms of this diagram, the argument we will present in chapter 3 will proceed

roughly as follows. First we will review logical systems and the ;\·calculus, to show the

general properties of the ~s aud vs employed in those formalisms, for comparison. Next

we ~ shift towards computational systems, beginning with PR0L0G, since it has evident

connections to both declarative and procedural traditions. Finally we will take up LISP.

We will argue that it is not only coherent, but in fact natural, to define a declarative~ for

LISP, as well as a procedural v. We will also sketch some of the mathematical

characterisation of these two interpretation functions. It will be clear that though similar in

certain ways, they are nonetheless crucially distinct In particular, we will be able to show

that 1-LISP's v (EVAL) obeys the following equation. We will say that any system that

satisfies this equation has the evaluation property, and the statement that, for example, the

equation holds of 1-LISP the evaluation theorem. (The formulation used here is simplified

for perspicuity, ignoring contextual relativisation; s is the set of structural field elements.)

VS € S [if 4'(S) € S then i'{S) = 4>(S) (S1-12)
else 4'(v(S)) = ()(S)]

1-LISP's evaluator, in other words, de-references just those temzs whose referents lie within

the structural field. and is designation-preserving otherwise. Where it can, in other words,

1-LISP's v implements ,i,; where it is not, i' is +-preserving, although what it does do with

its argument in this case has yet to be explained (saying that it preserves 4t is too easy: the

identity function preserves designation was weU, but EVAL is not the identity function).

The behaviour described by s1-12 is unfortunate, in part because the question of

whether cfl(s) E s is not in general decidable, and therefore even if one knows of two

expressions s 1 and s 2 that s 1 is i'(S2), one still does not necessarily know the relationships

between «P(Si) and 4'(S2). More seriously, it makes the explicit use of meta-structural

facilities extraordinarily awkward, thus defeating attempts to engender reflection. We will

argue instead for a dialect described by the following alternative (again in skeletal form):

1. Introduction Procedural Reflection 64

VS € S [(l)(S} = <lt(i'(S)}] A NORMAL-FORM(\[l'(S))] (S1-13)

When we prove it for 2-LISP, we will call this equation the normalisation theorem; any

system satisfying we will say has the normalisation property. Diagrammatically, the

circumstance it describes is pictured as follows:

(S1-14)

Such a i', in other words, is always ,t,-preserving. It relies, in addition, on a notion of

nonnal fonn, which we will have to define.

In the A-calculus, \[l'(S) would definitionally be in nonnat-fonn, since the concept of

that name is defined in tenns of the non-applicabi1ity of any further p-reductions. As we

will argue in more detail in chapter 3, this makes the notion less than ideally useful; in

designing 2-LISP and 3-LISP, therefore, we will in contrast define normal-formcdness in

tenns of the following three (provably independent) properties:

1. They must be context-independent, in the sense of having the same declarative
and procedural import independent of their context of use;

2 • They must be side-effect free, implying that their procedural treatment will
have no affect on the structural field or state of the processor;

3. They must be stable, by which we me,,n that they must nonnatise to
themselves in all contexts.

It will then require a proof that all 2-LISP and 3-LISP results (all expressions 'l'(S)) are in

nonnal-fonn. In addition, from the third property, plus this proof that the range of i'

includes only nonnal-form expressions, we will be able to show that i' is idempotent, as was

suggested earlier ('I' = '1' 0 \(1', or equivalently, vs \[l'(S) " 'lt'(\[l'(S))) - a property of 2-LISP

and 3-LISP that will ultimately be shown to have substantial practical benefits.

'There is another property of normat-fonn designators in z-LISP and a-LISP, beyond

the three requirements just listed, that will follow from our category alignment mandate. In

designing those dialects we will insist that the stnictural category of ear.h normal fonn

designator be determinable from the type of object designated, independent of the structural

1. Introduction Procedural Reflection 6S

type of the original designator, and independent as well of any of the machinery involved

in implementing v (this is in distinction to the received notion of normal form employed in

the >.-calculus, as will be examined in a moment). For example, we will be able to

demonstrate that any term that designates a number will be taken by '1' into a numeral,

since numerals will be defined as the normal-form d,!Signators of numbers. In other words,

from just the designation of a term x the structural category of i'(X) will be predictable,

independent of the form of x itself (although the token identity of i'(X} cannot be predicted

on such information alone, since normal-form designators are not necessarily unique or

canonical). This category result, however, will have to be proved: we call it the semantical

zype theorem.

That normal form designators cannot be canonical arises, of course, from

computability considerations: one cannot decide in general whether two expressions

designate the same function, and therefore if normal-form function designators were

required to be unique it would follow that expressions that designated fl.me.ions could not

necessarily be normalised. Instead of pursuing that sort of unhelpful approach, we will

instead adopt a non-unique notion of normal-form function designator, still satisfying the

three requirements specified above: such a designator will by definition be called a closure.

All well-defined function-designating expressions, on this scheme, will succumb to a

standard normalisation procedure.

Some 2-LISP (and 3-LISP) examples will illustrate all of these points. We include

the numbers in our semantical domain, and have a syntactic class of numerals, which are

taken to be normal form number designators. The numerals arc canonical (one per

number), and as usual they are side-effect free and context independent; thus they satisfy

the requirements on normal-fonnedness. The semantical type theorem says that any tenn

that designates a number will normalise to a numeral: thus if x designates five and Y

designates six, and if+ designates the addition function, then we know (can prove) that (+ x
v), since it designates eleven, will normalise to the numeral 11. Similarly, there are two

boolean constants ST and SF that arc normal-form designators of Truth and Falsity, and a

canonical set of rigid structure designators called handles that arc normal-form designators

of all s~expressions (including themselves). And so on: closures are normal-fonn function

designators, as mentioned in the last paragraph; we wiJl also have to specify nonnal-fonn

designators for sequences and other types of mathematical objects included in the

1. Introduction Procedural Reflection 66

semantical domain.

We have diverted our discussion away from general semantics, onto the particulars

of 2-LISP and 3-LISP, in order to illustrate how the semantical reconstruction we endorse

would impinge on a language design. However it is important to recognise that the

behaviour mandated by s1-13 is not new: this is how all standard semantical treatments of

the A-calculus proceed, and the designation·preserving aspect of it is approximately true of

the inference procedures for logical systems as well, as we will see in detail in chapter 3.

Neither the >.·calculus reduction protocols, in other words, nor any of the typical inference

rules one encounters in mathematical or philosophical logics, de-reference the expressions

over which they are defined. In fact it is hard to imagine defending s1-12. What may have

happened, we can speculate, is that because LISP includes its syntactic domain within the

semantic domain - because LISP has QUOTE as a primitive operator, in other words - a

semantic inelegance was inadvertantly introduced in the design of the language that has

never been corrected. Thus our rationalisation of LISP is an attempt to regain the

semantical clarity of predicate logic and the >.-calculus. in part by connecting the language

of our computational calculi with the language in which those prior linguistic systems have

been studied.

It is this regained coherence that, we claim, is a necessary prerequisite to a coherent

treatment of reflection.

A final comment The consonance of s1-13 with standard semantical treatments of

the A·calculus. and the comments just made about LISP'S inclusion of QUOTE, suggest that

one way to view our project is as a semantical analysis of a variant of the A-calculus with

quotation. In the LISP dialects we consider, we will retain sufficient machinery to handle

side effects, but it is of course always possible to remove such facilities from a calculus.

Similarly, we could remove the numerals and atomic function designators (i.e. the ability to

name composite expressions as unities). What would emerge would be a semantics for a

deviant A·calculus with some operator like QUOTE included as a primitive syntactic construct

- a semantics for a meta-structural extension of the already higher-order A-calculus. We

will not pursue this line of attack in this dissertation, but, once the mathematical analysis of

2-LISP is in place, such an analysis should emerge as a straightforward corrollary.

L Introduction Procedural Reflection 67

1.d iii Recursive and Compositional Fonnulations

Toe previous sections have suggested briefly the work that we would like our

semantics to do; they do not reveal how this is to be accomplished. In chapter 3, where

the reconstruction of semantics is laid out, we of course pursue this latter question in detail,

but we can summarise some of its results here. Beginning very simply. standard approaches

suffice. F,,r example. we begin with declarative import (()), and initially posit the

designation of each primitive object type (saying for instance that the numerals designate

the numbers. and that the primitively recognised closures designate a certain set of

functions, and so forth). and then specify recursive rules that show how the designation of

each composite expression emerges from the designation of its ingredients. Similarly. in a

rather parallel fashion we can specify the procedural consequence (v) of each primitive type

(saying in particular t.11.at the numerals and booleans are selfevalualing. that atoms evaluate

to their bindings. and so forth). and then once again specify recursive rules showing how

the l'alue or result of a composite expression is formed from the results of processing its

constituents.

If we were considering only purely extensional, side-effect free. functional languages.

the story might end there. However there are a variety of complications that will demand

resolution, of which two may be mentioned here. First, none of the LISP's that we will

consider are purely extensional: there are intensional constructs of various sorts (Quon. for

example, and even LAMBDA, which we will view as a standard intensional procedure, rather

than as a syntactic mark). Toe hyper-intensional QUOTE operator is not in itself difficult to

deal with, although we will also consider questions about less-fine grained intensionality of

the sort that (a statically scoped) LAMBDA manifests. As in any system, the ability to deal

with intensional constructs wilt cause a reformulation of the entire semantics, with

extensional procedures recast in appropriate ways. This is a minor complexity, but no

particular difficulty emerges.

The second difficulty has to do with side-effects and contexts. All standard model

theoretic techrnques of course allow for the general fact that the semantical import of a

term may depend in part of on the context in which it is used (variables arc the classic

simple example). However the question of side-effects - which are part of the total

procedural consequence of an expression, impinges on the appropriate context for declarative

1. Introduction Procedural Reflection 68

purposes as well as well as for procedural For example, in a context in which x is bound

to the numeral 3 and v is bound to the numeral 4, it is straightforward to say that the term

(+ x Y} designates the number seven, and returns the numeral 7. However consider the

more semantics of the more complex (this is standard LISP):

(+ 3 (PROG (SETQ Y 14) Y}) (St-16}

It would be hopeless (to say nothing of false} to have the formulation of declarative import

ignore procedural consequence, and claim that s1-15 designates seven, even though it

patently returns the numeral 11 (although note that we are under no pre-theoretic

obligation to make the declarative and procedural stories cohere - in fact we will reject 1-

LISP exactly because they do nol cohere in any way that we can accept). On the other

hand, to include the procedural effect of the SETQ within the specification of • would seem

to violate the ground lntuition which argued that the designation of this term, and the

structure to which it evaluates, are different

The approach we will ultimately adopt is one in which we define what we call a

general significance function };, which embodies both declarative import (designation), local

procedural consequence (what an expression evaluates to, to use LISP jargon), and full

procedural consequence (the complete contextual effects of an expression, including side

effects to the environment, modifications to the field, and so forth). Only the total

significance of our dialects will be strictly compositional; the components of that total

:;ignificance, such as the designation, will be recursively specified in terms of the designation

of the consitucnts, relativiscd to the total context of use specified by the encompassing

function. In this way we will be able to formulate precisely the intuition that st-16

designates seventeen, as well as returning the corresponding numeral 11.

Lest it seem that by handling L1esc complexities we have lost any incisive power in

our approach, we should note that it is not always the case that the processing of a term

results in the obvious (i.e., normal-form) designator of its referent For example, we will

prove that the expression

(CAR '(A B C)) (S1-16)

both designates and returns the atom A. Just from the contrast between these two examples

(st-15 and st-16) it is clear that LISP processing and LISP designation do not track each

other in any trivially systematic way.

1. Introduction Procedural Reflection 69

Although our approach will prove successful, we will ultimately abandon the strategy

of characterising the full semantics of standard LISP (as exemplified in our 1-LISP dialect).

since the confusion about the semantic import of evaluatiou will in the end make it

virtually impossible to say anything coherent about designation. This, after all, is our goal:

to judge 1-LISP, not merely to characterise it By the time our semantical analysis is

concluded, we will not only know that LISP is confusing, we will also have seen in detail

why it is confusing, and we will be adequatel; prepared to design a dialect that corrects its

errors.

J.div. The Role of a Declarative Semantics

One brief final point about this double semantics must be broug.'lt out It shculd be

clear that it is impossible to specify a normalising processor without a pre-computational

theory of semantics. If you do not have an account of what structures mean, independent of

how they are treated by the processor, there is no way to say anything substantial about the

semantical import of the function that the processor computes. On the standard approach,

for example, it is impossible to say that the processor is correct, or semantically coherent, or

semantically incoherent, or anything: it is merely what it is. Given some account of what it

does, one can compare this to other accounts: thus it is possible for example to prove that a

specification of it is correct, or that an implemenlation of it is correct, or that it has certain

other independently definable properties (such as that .it always terminates, or uses certain

resources in certain ways). In addition, giveri such an account, one can prove properties of

programs written in the language - thus, from a mathematical specification of the

. processor of ALGOL, plus the listing of an ALGOL program, it might be possible to prove that

that program met some specifications {such as that it sorted its input, or whatever).

However none of these questions arc the question we are trying to answer; namely: what is

the semantical character of the processor itself/

In our particular case, we will be able to specify the semantical import of the

function computed by LISP'S EVAL {this is content of the evaluation U1eorem), but only by

first laying out both declarative and procedural theories of LISP. Again, we will be able to

design 2-LISP only with reference to this pre-computational theory of declarative semantics.

It is a simple point, but it is important to make clear how our semantical reconstruction is a

prerequisite to the design of 2-LISP and 3-LISP, not a post-facto method of analysing them.

1. Introduction Procedural Reflection 70

1.e. Procedural Reflection

Now that we have · assembled a minimal -:'lCabulary with whie;h to talk about

computational processes and matters of semantics, we can sketch the architecture of

reflection mat we will present in the final chapter of the dissertation. We will start rather

abstractly, with the general sense of reflection sketched in section 1.b; we will then make

use of both the knowledge representation hypothesis and the reflection hypothesis to define

a much more restricted goal. Next, we will employ our characterisations of interpretively

reduced computational processes and of computational seumntics to narrow this goal even

further. As this progremve focussing proceeds, it will become more and more clear what

would be be involvt.d in actually constructing an authentically reflective computational

language. By the end of this section we will be able to suggest the particular structure that,

in chapter 5, we will embody in 3-LISP.

1.e.l A First Sketch

We begin very simply. At the outset, we characterised reflection in tenns of a

process shifting between a pattern of reasoning about some world, to reasoning reflectively

about its thoughts and actions in that world. We said in tte knowledge representation

hypothesis that the only current candidate architecture for a process that reasons at all

(even derivatively) is one constituted in tenns of an interior process manipulating

representations of the appropriate knowledge of that world. We can see in terms of the

process reduction model of computation a little more clearly what this means: for the

process we called CHEQUERS to reason about the world of finance, we suggested that it be

interpretively composed of an ingredient process P manipulating a structural field s

consisting of representation~ of check-books, credit aud debit entires. and so forth. Thm:

we were led to the following picture:

(St-17)

CHEQUERS

1. Introduction Procedural Reflection 71

Next, we said {in the reflection hypothesis) that the only suggestion we have as to how to

make CHEQUERS reflective was this: as weil as constructing proc{;ss P to deal with these

various financial records, we could also construct process Q to l,eal with P and the structural

field ii manipulates. Thus Q might specify what to do when P failed or encountered an

unexp\!Cted situation, based on what parts of P had worked correctly and what state I was

in when the failure occurel. Alternatively, Q might describe or generate parts of P that

hadn't been fully specified Finally. Q might effect a more complex interprntation process

for P, or one particularized to suit specific circumstances. In general, whereas the world of

P - the domain that P models, simulates, reasons about - is the world of finance, the

world of Q is the world of the process P and the structural field it computes over.

We have 3poken as if Q were a different process from P, but whether it is really

different from P. or whether it is P in a different guise, or P at a different time, is a

question we will defor for a while (in part because we have said nothing about the

individuation criteria on pmcesses). All that matters for the moment is that there be some

process that does what w~ have said that Q must do.

What do we require in order for Q to reason about P? Because Q, like all the

procz;,;ses we are considering, is assumed to be interpretively composed, we need what we

always need: structm·al representations of the facts about P. What would such

representations be like? First, they must be expressions (statements), formulat~d with

respect to some theory, of the state of process P (we begin to see how the theory relative

mandate on re1lcction from section Lb is making itself evident). Second, in order to

actually describe P, iliey must be causally connected to P in some appropriate way (another

of our general requirements). ,ius we are considering a situation such as that depicted in

the foilowing diagram, where the field (or field fragment) SP contains these causalty

conn<;etcd structural descriptions:

0
REFLECTIVE
CHEQUERS

(S1-18)

1. Introduction Procedural Reflection 72

This diagram is of course incomplete, in that it does not suggest how SP should relate to P

(an answer to this question is our current quest). Note however that reflection must be

able to recurse, implying as well something of the following variety:

0 ~
REFLECTIVE ==Jo- L_ ~7

(S1-19)

CHEQUERS ~ S7

Where then might an encodable procedural theory come from? We have two

possible sourc~: in our reconstruction of a semantical analysis we will have presented a full

theory of the dialects we will study; this is one candidate for an appropriate theory. Note,

however, since we are considering only procedural reflection, that although in the general

case we would have to encode the full theory of computational significance, in the present

circumstance the simpler procedural component will suffice.

The second source of a theoretical account, which is actually quite similar in

structure, but even closer to the one we will adopt, i~ what we wiJI call the meta-circular

processor, which we will briefly examine.

l.e.ii. Meta-Circular Processors

In any computational formalism iri which programs arc accessible as first c!ass

structural fragments, it is possible to construct what arc commonly known as meta-circular

interpreters: "meta" because they operate on (and therefore tem1s within them designate)

other formal structures, and "circular" because they do not constitute a definition of the

processor, for two reasons: they have to be run by that processor in order to yield any sort

of behaviour (since they arc programs, not processors, strictly), and the behaviour they

would thereby engenticr can be known only if one knows beforehand what the processor

does. Nonetheless, such processors arc often pedagogically illuminating, and they will play

a critical role in our development of the reflective model. In line with our general strategy

1. Introduction Procedural Reflection 73

of reserving the word "interpret" for the semantical interpretation function, we will call

S'Jch processors meta-circular processors.

In our presentation oft-LISP and 2-LISP we will construct meta·cireular processors

(or MCP"s, for short): the 2-LISP version is presented here (all the details of what this

means will be explained in chapter 4; at the moment we mean only to illustrate the general

structure of this code):

(DEFINE NO~MALISE (S1-20)
(LAMBDA EXPR [EXP ENV CONT]

(COND [(NORMAL EXP) {CONT EXP)]
((ATOM EXP) {CONT (BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) £NV CONT)])))

(DEFINE REDUCE (S1-21)
{LAMBDA EXPR [PROC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA EXPP. [PROCI]

(SELECTQ (PROCEDURE-T~PE PROCI)
[IMPR (IF (PRIMITIVE PROCI)

(REDUCE-IMPR PROCI ARGS ENV CONT)
(EXPAND-CLOSURE PROC! ARGS CONT})]

[EXPR (NORMALISE ARGS ENV
(LAMBDA EXPR [ARGSI]

(IF (PRIMITIVE PROCI)
(REDUCE-EXPR PROCI ARGSI ENV CONT)
(EXPAND-CLOSURE PROCl ARGS! CONT))})]

[MACRO (EXPAND-CLOSURE PROCI ARGS
{LAMBDA EXPR (RESULT]

(NORMALISE RESULT ENV CONT}))])))))

(DEFINE EXPAND-CLOSURE (S1~22)
(LAMBDA EXPR [CLOSURE ARGS CONT]

{NORMALISE (BODY CLOSURE)
(BIND (PATTERN CLOSURE) ARGS (ENV CLOSURE)}
CONT}))

The basic idea is that if this code were processed by the primitive 2-LISP processor, the

process that would thereby be engendered would be behaviourally equivalent to that. of the

primitive processor itself. If, in other words, we were to assume mathematically that

processes are functions from structure onto behaviour, and if we called the processor

presented as s1-20 through s1-22 above by the name MCP2L, and called the primit,ve 2-LISP

processor P2L, then we would presumably be able to prove the following result, where by

"~" we mean behaviourally equivalelll, in some appropriate sense (this is the sort of proof

of correctness one finds in for example Gordon: 14

1. Introduction Procedural Reflection 74

(S1-23)

It should be recognised that the equivalence of which we speak here is a global

equivalence; by and large the primitive processor. and the processor resulting from the

explicit running of the MCP. cannot be arbitrarily mixed (as a detailed discussion in

chapter S will make clear). For example, if a variable is bound by the underlying processor

PZL, it will not be able to be looked up by the meta-circular code. Similarly. if the meta·

circular processor encounters a control structure primitive. such as a THROW or a QUIT, it will

not cause the meta-circular processor itself to exit prematurely, or !o terminate. The point,

rather, is that if an entire computation is mediated by the explicit processing of the MCP,

then the results will be the same as if that entire computation had been carried out directly.

We can merge these results about MCPs with the diagram in s1-11, as follows: if we

replaced P in s 1-11 with a process that resulted from P processing the meta-circular

processor, we would still correctly engender the behaviour of CHEQUERS:

(S1-24)

CHEQUERS

Furthermore, this replacement could also recurse:

1. Introduction Procedural Reflection 75

(Shl6)

CHEQUERS

Admittedly, un<ler the standard interpretation, each such replacement would involve a

dramatic increase in inefficiency, but the important point for the time being is that the

resulting behaviour would in some sense still be correct.

J.e.iv. Procedural Reflective Models

We can now unify the suggestion made a! the end of section Le.ii on having Q

reflect upwards, with the insights embodied in the MCP's of the previous section, and

thereby define what we will call the procedural reflective model The fundamental insight

arises from the eminent similarity between diagrams s1-1s and S1-19, on the one hand,

compared with S1-24 and st-26, on the other. These diagrams do not represent exactly the

same situation, of course, but the approach will be to converge on a unification of the two.

We said earlier that in order to satisfy the requirements on the Q of section Le.ii we

would need to provide a causally connected structural cncodfng of a procedural theory of

our dialect (we will use LISP) within the accessible structural field. In the immediately

preceding section we have s~en something that is appoxbnately such an encoding: the meta

circular processor. However (and here we refer back to the six properties of reflection

given in section Lb) in the normal course of events the MCP lacks the appropriate causal

access to the state of P: whereas any possible state of o could be procedurally encoded in

terms of the meta-circular pr01.,css (i.e., given any account of the state of P we could

retroactively construct appropriate arguments for the various procedures in the meta-circular

processor so that if that meta·circu]ar processor were run with those arguments it would

mimic P in the given state), in the normal course of events the state of P will 1101 be so

1. Introduction Procedural Reflection 76

encoded.

This similarity, however. does suggest the form of our solution. Suppose first that P

were never run directly, but were always run in virtue of the explicit mediation of the

meta-circular processor - as, for example, in the series of pictures given in s1-24 and s1-

25. Then at any point in the course of the computation, if that running of one levt~l of the

MCP were interrupted, and the arguments being p~ around were used by some other

procedures, they would be given just the information we need: causally connected and

correct representations of the state of the process P prior to the point of reflection (of

course the MCP would have to be modified slightly in order to support such a protocol of

interruption).

The problem with this approach, however. is the following: if we always run P

mediated by the meta-circular ;,rocessor, it would seem that P would be unnecessarily

inefficient Also, this proposal would seem to deal with only one level of reflection; what if

the code that was looking at these structural encodings of p's state were themselves to

reflect? This query suggests that we have an infinite regress: not only should the MCP be

used to run the base level Q programs, but the MCP should be used to run the MCP. In

fact all of an infinite number of MCP's should be run by yet further MCPs, ad infinitum.

Leaving aside for a moment the obvious vicious regress in this suggestion, this is not

a bad approach. The potentially infinite set of reflecting procC$CS Q arc almost

indistinguishable in basic strncturc frcm the infinite tower of MCP's that would result

Furthermore the MCP's would contain just the correct structurally encoded descriptions of

processor state. We would still need the modification so U1at somt:: sort of interruption or

reflective act could make usc of this tower of processes, but it is clear that to a first

approximation this solution ha-; the proper character.

Furthermore, it will tum out that we can simply posit, esscmialty, that the primitive

processor is engendered by an infinite number of recursive instances of the MCP, each

running a version one level below. 'The implied infinite regress is after all not problematic,

since only a finite amount of information is encoded in it (all but a finite number of the

bottom levels each MCP is merely running a copy of the MCP). Because we (the language

des!gners) know exactly how the tangcage runs, and know as well what the MCP is like, we

can provide this infinite number of levels, to use the current jargon, only virtually. As

1. Introduction Procedural Reflection 77

chapter 5 will explain in detail, such a virtual simulation is in fact perfectly well·definoo. It

is no longer reasonable to call the processor a meta-circular processor, of course, since it

becomes inextricably woven into the fundamental architecture of the langliage (as will be

explained in detail in chapter 5). It is for this reason that we will call it the reflective

processor, as suggested above. Nonetheless its historical roots in the meta·circular processor

should be clear.

In order to ground this suggestion in a little more detail, we will explain just briefly

the alteration that allows this architecture to be used More specifically, we will in 3-LISP

support what we will call reflective procedures - procedures that, when invoked, are run

not at the level at which the invocation occured, but one level higher, being given as

arguments those expressions that would have been passed around in the reflective

processor, had it always been running explicitly. We present the code for the 3-LISP

reflective processor here, to be contrasted only very approximately with st-20 through st-

22 (the important line is underlined for emphasis):

(DEFINE NORMALISE {S1-26)
(LAMBDA SIMPLE [EXP ENV CONT]

(COND [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) {CONT {BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

{DEFINE REDUCE (St-27)
(LAMBDA SIMPLE [PROC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROCI]

(SELECTQ (PROCEDURE-TYPE PROCI)
(REFLECT ((SIMPLE . +(CDR PROC!)) ARGS ENV CONT)]
[SIMPLE {NOHMALISE ARGS ENV (MAKE-Ct PROCI CONT))])))))

(DEFINE MAKE-Ct {St-28)
(LAMBDA SIMPLE (PROC! CONT]

(LAMBDA SIMPLE (ARGS!]
(COND [(= PROCI tREFERENT)

(NORMALISE +(tST ARGS!) +(2NO ARGSI) CONT)]
[{PRIMITIVE PROC!) (CONT t(+PROCI . +ARGSI))]
[ST (NORMALISE (BODY PROCI)

(BIND (PATTERN PR~CI) ARGSI (ENV PROCI))
CONT)]))))

What is important about the underlined line is this: when a redcx (application) is

encountered whose CAR nonnalises to a reflective procedure, as opposed to a standard

procedure (the standard ones are called SIMPLE in this dialect), the corresponding function

1. Introduction Procedural Reflection 78

(designated by the abstruse tenn (SIMPLE • ,&.(CDR PROCI)), but no matter) is run at the level

of the reflective processor. rather than by the processor. In other words tbs single

underlined line in s1-21 on its own unleashes the full infinite reflective hierarchy.

Coping with that hierarchy will occupy part of chapter 5, where we explain all of

this in more depth. Just this much of an introduction, however, should convey to the

reader at least a glimpse of how reflection is possible.

J.e.iv. Two ViewsofReflection

1be reader will note a certain tension between two ways in which we have

characterised this fonn of reflection. On the one hand we sometimes speak as if there were

a primitive and noticeable; reflective act, which causes the processor to shift levels rather

markedly (this is the explanation that best coheres with some of the pre-theoretic intuitions

about reflective thinking in the sense of contemplation). On the other hand, we have also

just spoken of an infinite number of levels of re1ective processors, each essentially

implementing the one below, so that it is not coherent eithe .. · to ask at which level Q is

running, or to ask how many reflective levels are running: in some sense they are all

running at once, in exactly the same sense that both the LISP processor inside your editor,

and your editor, are both running when you use that editor. In the editor case it is not, of

course, as if LISP and editor were both running together, in the sense of side-by-side or

independently, rather, the one, being interior to the other, in fact supplies the anima or

agency of the outer ore. It is just this sense in which the higher levels in our reflective

hierarchy are always nmning: each of them is in some sense within the processor at the

level below, so that it can thereby engender it

We will not take a principled view on which account - a single locus of agency

stepping between lercls, or an infinite hierarchy of simultaneous processors - is correct:

they turn 0 11t, rather curiously, to be behaviourally equivalent. For certain purposes one is

simpler, for others the other.

To illustrate the "shifting levels" account (which is more complex than the infinite

nµmber of levels story), we present the following account of what is involved in

constnicting a reflective dialect, in part by way of review, and in part in order to suggest to

the reader how it is that a reflective dialect could in fact be finitely constructed. In

1. Introduction Procedural Reflection 79

particular. you have to provide a complete theory of the given calculus expr~d within its

own language (the reflective processor - this is required on both accounts. obviously).

Secondly, you have to arrange it so that, when the process reflects, all of the structures used

by the reflective processor (the formal structures designating the theoretical entities posited

by the theory) are available for inspection and manipulation, and correctly encode the state

that the interpreter was in prior to the reflective jump. Third, you have to make sure that

when the process decides to "drop down again", the original base-level interpretation

process is resumed in accordance with the facts encoded in those structures. In the minimal

case, upon reflection the processor would merely interpret the reflective processor explicitly,

then at some further point would drop down and resume running non-reflectively. Such a

situation, in fact, is so simple that it could not be distinguished (except perhaps in terms of

elapsed time) from pure non-reflective interpretation.

The situation. however, would get more complex as soon as the user is given any

power. Two provisions in particular are crucial. First, the entire purpose of a reflective

dialect is to allow the user to have his or her own programs mn along with, or in place of,

or between the steps of. the reflective processor. We need in other words to provide an

abstract machine with the ability for the programmer to insert code - in convenient ways

and at convenient times - at any level of the reflective hierarchy. For example, suppose

that we wish to have a kexpression closed only in the dynamic environment of its use.

rather than in the lexical environment of its definition. The reflective model will of course

contain code that performs the default lexical closure. The programmer can assume that

the reflective code is being explicitly interpreted, and can provide, for the lambda

expression in question, an alternate piece of code in which different action is taken. Jly

simply inserting this code into the correct level, (s)he can use variables bound by the

reflective model in order to fit gracefully into the ove!"all regime. Appropriate hooks and

protocols for such insertion. of course, have to be provided, but they have to be provided

only once. Furthermore, the reflective model will contain code showing how this hook is

nonnally treated.

As well as providing for the arbitrary interpretation of special programs, at the

reflective level, we need in addition to enable the user to modify the explicitly available

structures that were provided by the reflective model. Though this ability is easier to

design than the fom1er, its correct implementation is considt!rably trickier. An example will

1. Introduction Procedural Reflection 80

make this clear. In the LISP reflective model we will exhibit, the interpreter will be shown

to deal explicitly with both environment and continuation structures. Upon reflecting,

programs can at will access these structures that, at the base level, are purely implicit

Suppose that the user's reflective code actualIJ modifies the environment structure (say to

change the binding of a variable in some procedure somewhere up the stack, in the way

tbat a debugging package might support), and also changes the continuation structure

(designator of the continuation function) so as to cause some function return to bypass its

caller. When this reflective code "returns", so to speak. and drops back down, the

interpretation process that must then take effect must be the one mruidated by these

modified structures, not the one that would have been resumed prior to the reflection.

These modifications, in other words, must be noticed. This is the causal connection aspect

of self-referenr,e that .is so crucial to true reflection.

I.e. v. Some General Comments

The details of this architecture emerged from detailed considerations; it is interesting

to draw back and see to what extent its global properties match our pre-theoretic intuitions

about reflection. First, we can s~e very simply that it honours all sir. requirements laid out

in section l.b.iii:

t . It is causally connected and theory-relative;

2. It is theory-relative;

3. It involves an incremental "stepping back" rather than a true (and potentially
vicious) instantaneou:; self-reference;

4. Finer-grained control is provided over the processing of lower level structures;

5. It is only partially detached (3-LISP reflective procedures are still in 3-LI~P.

they arc still animated by the same fundamental agency, since if one level
stops processing the reflective model (or some analogue of it), all the
processors "below" it cease to exist); and

6. The reflective powers of 3-L ISP are primitively provided.

1bus in this sense we can count our architecture a success.

Regarding other intuitions, such as the locus of self, the concern as to whether ihc

potential to reflect requires that one always participate in the world indirectly rather than

directly, and so forth, turn out to be about as difficult to answer for 3-LISP as they arc to

answer in the case of human reflection. In particular, our solution docs not answer the

1. Introduction Procedural Retfoction 81

question we posed earlier about the identity of the reflected proces.sor: is it P that reflects,

or is it another process Q that reflects on P? The "reflected process" is neither quite the

same process, nor quite a different process; it is in some ways as different as an interior

process, except that since it shares the same structural field it is not as different as an

implementing process. No answer is forthcoming until we define much more precisely

what the criteria of individuation on processes are. and, perhaps more strikingly, there

seems no particular reason to answer the question one way or another. It is tempting (if

dangerous) to speculate that the reason for these difficulties in the human case is exactly

why they do not have answers in the case of 3-LISP: they are not, in some sense, "real ..

questions. But it is premature to draw this kind of parallel; our present task is merely to

clarify the structure of proposed solution.

1. Introduction Procedural Reflection 82

1.f. The Use of LISP as an Explanato11 Vehicle

There are any number of reasons why it is important to work with a specific

programming language, rather than abstractly and in general (for pedagogical accessibility,

as a repository for emergent results, as an example to test proposed technical solutions, and

so forth). Furthermore, commonsense considerations suggest that a familiar dialect, rather

than a totally new for&118.lism, would better suit our purposes. On the other hand, there are

no current languages which are categorically and semantically rationalised in the way that

our theories of reflection demand; therefore it is not an option to endow any extant system

with reflective capabilities, without first subjecting it to substantial modification. It would

be possible simply to present some system embodying all the necessary modifications and

features, but it would be difficult for the reader to sort out which architectural features

were due to what concern. In this dissertation, therefore. we have adopted the strategy of

presenting a reflective calculus in two steps: first, by modifying an existing language to

conform to our semantical mandates, and second, by extending the resulting rationalised

language with reflective capabilities.

Once we have settled on this overall plan, the question arises as to what language

should be used as a basis for this two8 stage development Since our concern is with

procedural rather than with general reflt>Ction, the class of languages that are relevant

includes essentially all programming languages, but excludes exemplars of the declarative

tradition: logic, the A-calculus, specification and representation languages, and so forth (it is

important to recognise that the suggestion of constructing a reflective variant of the A

calculus represents a category error). Furthermore, we need a programming language - a

procedural calculus - with at least the following properties:

t . The language should be simple; reflection by itself is complicated enough that,
especially for the first time, we should introduce it into a formalism of
minimal internal complexity.

z. It mast be possible to access program structures as first-class elements of the
structural field.

3. Meta-structural primitives (the ability to mention structural field elements. such
as data structures and variables, as well as to use them) mmit be provided.

1. Introduction Procedural Reflection 83

4. The underlying architecture should facilitate the embedding. within the
calculus, of the procedurd components of its own meta-theory.

The second property could be added to a language: we could devise a variant on ALGOL, for

example, in which ALGOL programs were an extended data type, but LISP akeady pos.scsses

this feature. In addition. since we will use an extended A-calculus as our meta-language, it

is natural to use a procedural calculus that is functionally oriented. Finall,, although full

scale modem LISPS are as complex as any other languages, both LISP t.6 and SCHEME· have

the requisite simplicity.

LISP has other recomendations as well: because of its support of accesssible program

structures, it provides considerable evidence of exactly the sort of inchoate reflective

behaviour that we will want to reconstruct The explicit use of EVAL and APPL v, for

example, will provide considerable fodder for subsequent <liscussion, both in terms of what

they do well and how they are confused. In chapter 2, for example, we will describe a half
. .

dozen types of situation in which a standard LISP programmer would be tempted to use

these meta-structural primitives, only two of whicb in the deepest sense have to do with the

explicit manipulation of expressions; the other four, we will argue, ought to be treated

directly in the object language. Finally, of course, LISP is the lingua franca of the AI

community; this fact alone makes it an eminent candidate.

J.f.i. 1-LISP asa Distillation o/Current Practice

1be decision to use LISP as a base doesn't solve all of cur problems, since the name

"LISP" still refers to rather a wide range of languages. It has seemed simplest to define a

simple kernel, not unlike LISP 1.6, as a basis for further development, in part to have a

fixed and well-defined target to set up and criticise, and in part so that we could collect

into one dialect the features that will be most important for our subsequent analysis. We

will mke LISP 1.6 as our primary source, all.hough some facilities we will ultimately want to

examine as examples of reflective behaviour - such as CATCH a:id rnnow and QUIT - will

be added to the repertoire of behaviours manifested in McCarthy's originai design.

Similarly, we will include macros as a primitive procedure type, as well as intensional and

extensional procedures of the standard variety ("call-by-value" and "call-by-name", in

standard computer science parlance, although we wilt avoid these terms, since we will reject

the notion of "value" entirely).

1. Introduction Procedural R'!flcction 84

It will not be entirely simple to present 1~usP, given our theoretical biases, since so

much of what we will ultimately reject auout it comes so quickly to the surface in

explaining it However it is important for us to present this formalism without modifying

it. because of the role it is to play in the structure of our overall argument We ask of the

dialect not that it be clean or coherent. but rather that it serve as a vehicle in which to

examine a body of practice suitable for subsequent reconstruction. To the extent that we

make empirical claims about our semantic reconstructions, we will point to 1 · LISP practice

(our model for all standard LISP practice) as evidence. Therefore. for theoretical reasons, ii

is crucial that we leave that practice intact and free of our own biases. Thus, we will

uncritically adopt, in 1-LISP, the received notions of evaluation, lists, free and global

variables. ano so forth, although we will of course be at considerable pains to document all

of these features rather carefully.

As an example of the style of analy&is we will engage in. we present here a diagram

of the category structure of 1-LISP that we will formulate iii preparation for the category

alignment mandate dominating 2-LISP:

Lexical Structural Der. Str.

Numerals Numerals Numerals
labels Atoms Atoms 1,

Dotted P. / Pairs Pairs

~
-......_,

""" lists
"list."

Procedural

T or NIL / Numerals
V Atoms

(lambda .. l
~ (quote ..)
I~ Lists

Appl'ns

~

u

(S1-29)

Declarative

T.Values
Numbers

Functions
$8)(prs

Saquencas

The intent of Lhe diagram is to show that in 1-LISP (as in any computational calculus) Lhere

are a variety of ways in which structures or s-exprcssions may be categorised; the point we

are attempting to demonstrate is the (unnecessary) i.:omplexity of interaction between these

various categorical decompositions.

In particular, we may just brief!.y consider each of Lhese various t-LISP

categorisations. The first (notational) ~ i. terms of I.he lexical catcgo~cs that arc accepted

by the reader (including strings that are parsed into notations for numerals, lexical atoms,

and "list" and "dott1~d-pair" notations for p:1irs). Another (structural) is in terms of the

primitive types of s-expression (numerals, atoms, and pairs); this is the categorisation that is

typically revealed by the primitive structure typing predicates (we will call tl~is procedure

1. Introduction Procedural Reflection 85

TYPE in 1-LISP, but it is traditionally encoded in an amalgam of ATOM and MUMBERP). A

third traditional categorisation (derived structur11l) includes not only the primitive s

expression types but also the d~rived notion of a list - a category built up from some pairs

(those whose CDRS are, recursively, lists) and the atom NIL. A fourth taxonomy (procedural

consequence) is embodied by the primitive processor: thus 1-LISP's EVAL sorts structures

into various catego1ies, each handled differently. This is the "dispatch" that one typically

finds at the top of the meta-circular definition of EVAL and APPLY. There are usually six

ciiscriminated categories: i) the self-evaluating atoms r and NIL, ii) the numerals, iii) the

other atoms, used a.c; variables or global function designators, depending on context, iv) Hsts

whose first clement is the atom LAMBDA, which are ~sed to encode applicable functions, v)

lists whose first clement is the atom QUOTE, and vi) other lists, which in evaluable positions

represent function application. Final,:;, the fifth taxonomy (declarative import) has to do

with declarative semantics - what categories of stmcture signify oifferent sorts of

semantical entities. Once again a different category structure emerges: applications and

var.ables can signify semantical entities of arbitrary type except that they cannot designate

junctions (since 1-LI!>P is first-order): the atoms l and NIL signify Truth a!ld Falsity;

general lists (including the atom NIL) · n signify enumerations (sequences); the numerals

sig: :fy numbers; and so on and. so forth.

Any ;:cflective program in t-LISP would have tn know aboui. all of these various

different. categorisations, and about the relationships between them (as presuoably aU

human LISI' programmers do). We need not dwell on the obvious fact that confusion is a

likdy outcome of this categorical disarray.

(Jne other example of I-LISP behaviour will be illustrative. We mentioned above

f"at. 1-USP requires the explicit use of APPL\' in a varic:t.y of circumstances; thest inch,d~

the fo!low!11g:

1. When a11 argument expression designates a function name, rather than a
function (as for example in (APPLY (CAR ' (+ - ..)) • (2 3))).

2. When th<' arguments to a multi-argument procedure arc designated by a single
term, rnthcr than individua!ly (thus if x evaluates to the list (3 4), one must
USC (APPLY '+ X) ratt,f'r than (+ X) or {+ . X)).

3. When the fucction is dcr,,gnatcd by a variable rather than by a global const1nt
(thus one must us~ (LET (c FUN '+)) (APPLY rnN • (1 2)}) rather than (LET
l(fUN '+)} (FUW 1 2)) }.

1. Introduction Procedural Reflection

4. When the arguments to a function are "already evaluated", since APPLY,

although itself extensional (is an EXPR), docs not re-evaluate the arguments
even if the procedure being applied is an EXPR {thus one uses (APPLY '+ (LIST

X Y}), rather than (EVAL (CONS '+ {LIST X Y)))).

S6

As we will sef: below, in 2-LISP {and 3-LISP) only the first of these wilt require explicitly

m~ntioning the processor function by name, because it deals inherently with the designation

of expressions, rather than with the designation of their referents. The other three will be

adequately treated in the object language

I.Jii. The Design o/2-LISP

Thcugh it meets our criterion of simplicity, 1-LISP wm provide more than ample

material for further development, as the previous two examples will suggest. Once we have

introduced it, we will, as mentioned earlier, subject it to a semantical analysis that will lead

us into an examination of computational. semantics in general, as described in the previous

sectioa. 'The search for semantical rationalisation, arn.1 the exposition of the z -LI SP that

results, will occupy a substantial part of the dissertation, even though the resulting calculus

will still fail to meet the requirements of a procedurally reflective diafoct. We discussed

what semantic rationalisation comes to in the previous section; here will sketch how its

mandates are embodied in tl,c- design of 2-LISP.

The most striking difference between 1-LISP and 2-LISP is that the latter rejects

evaluation in favour of independent notions of simplificalion and reference. Thus, 2-1.ISP's

processor is not called EVAL, but NORMALISE, where by nonr.a/isalion we refer to a particul.tr

form of expression simplification that takes each stmcturc into what we call a normal-form

designator of that expression's referent (normalisation is thus designation preserving). The

details will emerge in chapter 4, bul a sense of the resulting architecture can be given here.

Simple object level computations in 2-LISP (those that do not involve meta-structural

terms designating other clements of the LISP field) are treated in a manner that looks very

similar to 1-LISP. The expression(+ 2 3), for example, normalises to 6, and the cxprcshion

(= 2 3) to SF (the primitive 2-l.ISP boolean constant <fesignating falsity). On the other

hand an obvious superficial difference is that meta-structural tenns arc not automatically

de-referenced. Thus the quoted term 'x, which ir, 1-LI!iP would evaluate to x, in 2-LISP

normalises to itselc Similarly, whereas (CAR • (A • 1.1)) would evaluate in 1-LI~P to A, in 2-

1. Introduction Procedural Refl•!Ction 87

LISP it would nonnalise to 'A; (CONS 'A 'B) would ev&luate in 1-LISP to {I\ . B); in 2-LISP

the corresponding expression would return • (A . B).

From these trivial exampies, an ill-advised way to think of the 2-LISP processor

emerges: as if it were just like the t-LISP processor except that it puts a quote back on

before returning the result In fact, however, the differences are much more substantial, in

tenns of both structure, procedural protocols, and semantics. For one thing 2-LISP is

statically scoped (like SCHEME) and higher-order (function-designating expressions may be

passed as regular arguments). Structurally 2-LISP is also rather different from 1-LISP:

there is no derived notion of list, but rather a primitive data structure called a rail that

serves the function of designating a sequence of entities (pairs are still used to encode

function applications). So called "quoted expressions" are primitive, not applications in

tenns of a QUOTE procedure, and they are canonical (one per structure der.ignated). The

notation 'x, in particular, is not an abbreviation for (QUOTE x), but rather the primitive

notation for a handle that is the unique normal-form designator of the atom x. There are

other notational differences as well: rails arc written with square brackets (thus the

C){pression "[t 2 3]". notates a rail of three numerals that designates a sequence of three

nu:nbers), and expressions of the form " (F A1 A2 ... At)" exp.-nd not into " (F • (A1 • (A2 •

(... . (Ak . NIL) ...))))" but into "(F • [A1 A2 ... At])".

The category structure of 2-LISP is St..l1marised in the following diagram:

Lexical Structural Procedural
(S1-30)

Declarative

Numerals Numerals Numbers
Atoms Atoms

Booleans Booleans T.Values
Rails Hails Sequences
Pairs Pairs Fu net ions

Handles Handles Structures

Closures, which have historically been treated as rather curiously somewhere between

functions and expressions, emerge in 2-LJSP as standard expressions; in fact we define the

term "closure" to refer to a normal-fonn function designator. Closures are pairs, and all

normal-fonn pairs are closures, illustrating once again the category alignment that

permeates the design.

,,

1. Introduction Procedural Reflection 88

All 2-LISP normal-form designators are not only stable (self-normalising), but are

also side-effect free and context-independent. A variety of facts emerge from this resull

First, the primitive processor (NORMALISE) can be proved to be idempotent, in terms of both

result and total effect:

VS [(NORMALISES) = (NORMALISE (NORMALISES))] (S1-31)

Consequently, as in the >.-calculus, the result of normalising a constituent (in an extensional

context) in a composite expression can be substituted back into the original expression. in

place of the un-normalised expression, yielding a partially simplified expression that will

have the same designation and same normal-form as the original. In addition, in code

generating code such as macros and debuggers and so forth there is no need to worry about

whether an expression has already been processed, since second and subsequent proccssings

will never cause any harm (nor, as it happens, will they take substantial time).

Much of the complexity in defining 2-LISP will emerge only when we consider

forms that designate other semantically significant forms. The intricacies of just such

"level-crossing" expressions form the stock-in-trade of a reflective system designer, and only

~>· setting such issues straight before we consider reflection proper will we face the latter

task adequately p1,.;parcd. Primitive procedures called NAME and REFERENT (abbreviated as

"t" and ",1. ") are provided to mediate betweecn sign and significant {they must be primitive

because otherwise the processor remains semanticaJly flat); thus (NAME 3) normaJises to '3,

and {Rl:FERENT • 'A) to 'A.

The issue of the explicit use of "APPi v", which we mentioned 'briefly in discussing 1-

LISP above, is instructive to examine in 2-LISP, since it manifests both the stru~turat and

the semantic differences between 2-LISP and its precursor dialect. In t-LISP, the two

functions EVAL and APPL v mesh in a well-known mutually-recursive fashion. Evaluation is

uncritically thought to be defined over expressions, but it 1s much less clear what

application is defined over. On one view, "apply" is a functional that maps 'functions and

(sequences of) arguments onto the value of the function at that argument position - thus

making it a second (or higher) order function. On another, "apply" takes two expressions

as arguments, and has as a value n third expression that designates the value of the function

designated by the first argument at the argument position designated by the second. In 2-

LISP w-e will call the first of these application and the second reduction (the latter in part

1. Introduction Procedural Reflection 89

because the word suggests an operation over expressions, and in part by analogy with the p

reduction of Church16). Current LISP systems are less than lucid regarding this distinction

(in MACLISP, for example, the function argument is an expression, whereas the arguments

argument is not, and the value is not). The position we will adopt is depicted in the

following diagram (which we will explain more fully in chapter 3):

(S1-32)
Reduction

FD: Fune.

F: Function Argument V: Value

Application

The procedure REDUCE, together with NORMALISE will of course play a major role in our

characterisation of 2-LISP, and in our construction of the reflective 3-LISP. However it will

turn out that there is no reason to define a designator of the APPLY function, since any term

of the form

(APPLY FUN ARGS)

would be entirely equivalent in effect to

(FUN. ARGS)

(S1-33)

(S1-34)

REDUCE, in contrast, since it is a meta-structural function, is neither 11: ·.1 ial to define (as

APPL v is) nor recursively empty.

A summary of the most salient differences between 2-LISP and 1-LISP is provided in

the following list:

1. 2-LISP is lcxicelly scoped, in the sense that variables free in the body of a
LAMBDA form take on the bindings in force in their statically enclosing context,
rather than from thr dynamically enclosing context at the time of function
application.

2. Functions arc first-class semantical objects, and may be designated by standard
variables and arguments. As a consequence, the function position in an
application (the CAR of a pair) is normalised just as other positions are.

1. Introduction Procedural Reflection

3. Evaluation is rejected in favour of independent notions of simp/ifeation and
reference. The primitive processor is a particular kind of simplifier, rather than
being an evaluator. In particular, it nonnalises expressions, returning for each
input expression a normal-form co-designator.

4. A complete theory of declarative semantics is postulated for all s-exprcssions,
prior to and independent of the specification of how they are treated by the
processor function (this is a pre-requisite to any claim that the processor is
designation-preserving).

5. Closures - normal-form function designators - are valid ar "l inspectable s
expressions.

6. Though not all normal-form expressions arc canonical (functions, in particular,
may have arbitrarily many distinct nonnal-form designators), nevertheless they
are all stable (self-normalising), side-effect free, and context independent.

7. The primitive processor (NORMALISE) is semantically flat; in order to shift level
of designation one of the explicit semantical primitives NAME or REFERENT must
be applied.

a. 2-LISP is category-aligned (as indicated in s1-30 above): there are two distinct
structural types, pairs and rails, that respectively encode ftmction applications
and sequence enumerations. 1l1ere is in addition a special two-clement
structural class of boolean constants. There is no distinguished atom NIL.

9. Variable binding is co-designative, r"ther that designative, in the sense that a
variable nonnalises to what it is boL..,.d to, and therefore designates th, .. referent
of the expression to which it is bound. Though we will speak of the binding
of a variab1c, and of the referent of a variable, we wit! not speak of a variable's
value, since that term is ambiguous between these two.

10. Identity considerations on normal-form designators arc as follows: the normal
form designators of truth-values, numbers, and s-expressions (i.e., the booleans,
numerals, and handles) arc unique; nomtal-form designators of sequences (i.e.,
the rails) and of functions (the pairs) are not. No atoms are normal-form
designators; therefore the question docs not arise in their case.

11. The use of LAMBDA is purely an issue of abstraction and naming, and is
completely divorced from procedural type (extensional, intensional, macro, and
so forth).

90

As soon as we have settled on the definition of 2-LISP, however, we will begin to

cliticise it In pari.kular, we will provide an analysis of how 2-LISP fails to be reflective, in

spite of its semantical cleanliness. A number of problems in particular emerge as

trou·Jtesome. First, it will turn out that the clean semantical separation between meta-levels

is not yet matched with a clean procedural separation. For example, too strong a separation

between environment'i, with the result th.-t intensional proccdqres become extremely

1. Introduction Procedural Reflection 91

difficult t:.> u!ie, shows that, in one respect, 2-LISP's inchoate reflective facilities suffer from

insufficient causal connection. On the other hand, awkward interactioi1s between the

control stacks of inter-level programs will show how, in other respects, there is too much

cmmection. In addition, we will demonstrate a meta-circular implementation of 2-LISP in

2-LISP, an::l we will provide 2-lISP with explicit names for its basic interpreter functions

(NORMALISE and REDUCE). However these two facilities will remain uf/er/y unconnected - an

instance of a general problem we will have discussed in chapter 3 on reflection in general.

J.f.Ui. The Procedurally Reflective 3-LISP

From this last analysis will emerge the design of 3-LISP, a procedurally reflective

LISP and the last of the dialects we will consider. 3-LISP, presented in chapter 5, differs

from 2-LISP in a variety of ways. First. the fundamental reflective act is identified and

accorded tlie centrality it deserves in the underlying definition. Each reflective level is

granted its own environment and continuation structure, with the environments and

continuations of the levels below it accessible as first-class objects (meriting a Quincan

stamp of ontological approval, since they can be the values of bound variables). 1bcse

environments and c,Jntinuations, as mentioned in the discussion earlier, arc theory relative:

the (procedural) theory in question is the 3-LISP reflective mode], a causally connected

variant on the meta-circular interpreter of 2-LISP, discussed in section I.e. Surprisingly, the

integration of refle~tivc power into the meta-circular (now reflective) mcxtcl is itself

extremely simple (altilough to implement the resulting machine is not trivial).

Once all these moves have been taken it will be possible to merge the explicit

reflective version of SIMPLIFY and REDUCE, and the similarly named primitive functions. In

other words the 3-LISP reflective model unifies what in 2-LISP were separate: primitive

names for the t:nderlying processor, anci explicit meta-circular progrnms demonstrating the

procedural structure of that processor.

It was a consequence of defining 2-LISP in terms of SIMPLIFY that the 2-LISP

interpreter "stays semantically stable": the.: semantical level of an input expression is always

the same as that of the expression to which it simplifies. An even stronger claim holds for

function application: except in the case of tJ1e functions NAME and REFERENT, the semantical

level !>f tl1e result is also the same as ti1at of all of the argt,ments. This is all evidence of

the attempt to drive a wedge between simplification and de-referencing that we mentioned

1. Introduction Procedural Reflection 92

earlier. 3-LISP inherits this se1nantical characterisation (it even remains true, surprisingly,

in the case of reflective functions}. A fixed-level interpreter like this - and of course this

is one of the reasons we made 2-LISP this way - enables us to make an important move:

we can approximately identify declarative meta levels with procedural reflective levels. This

does not quite have the status of a claim, because it is virtually ma.'ldatcd by the knowledge

representation hypothesis (furthemiore, the correspondence is in fact asymetric: declarative

levels can be crossed within a given reflective level, but reflective shifts always involve

shifts of designation). But it is instructive to realise that we have been able to identify the

reflective act (that makes available the structures encoding the intrrpretive state and so

forth) with the shift from objects to their names. Thus what was used prior to reflection is

mentioned upon reflecting; what was tacit prior to reflection is used upon reflection. When

this behaviour is combined with the ability for reflection to recurse, we are able to lift

structures that arc nonnally tacit into explicit view in one simple reflective step; we can

then obtain access to designators of those structures ih another.

1,oth the 3-LISP reflective model, and a MACLISP implementation of it, will be

provided by way of definition. In addition, some hints will be presented of the style of

semantical equations that a traditional denotational-semantics account of 3-LISP would need

to satisfy, although a full semantical treatment of such a calculus has yet to be worked out.

In a more prngmatic vein, however, and in part to show how 3-LISP satisfies many of the

desiderata that motivated the original definition of the concept of reflection, we will present

a number of examples of pwgrams defined in it: a variety of standard functions that make

use c,. explicit evaluation, access to the implementation (debuggers, '"single-steppers", and

so forth), and non-standard evaluation protocols. The suggestion will be made that the case

with which these power;; can be cmbc<!drd in "pure" programs recommends 3-LISP as a

plausible dialect in its own right. Nor is this simply a matter of using 3-dSP as a

theore~i..:al vehicle to model these various constmcts, or of showing that such models fit

naturally and simply into the a-usr dialect (as a simple condnu1lion-passing sty!e can for

example be shown to be adapted in SCHEME). ll1e claim is stronger: that they can be

naturnl1y embedded in a manner that aUows them to be congcniaJly mixed (wilhout pre

compilation) with the simpler, more standard practice. Although the user need not use an

explicit continuation-passing style, nonetheless, at any point in the course of the

computation, the continuation is explicitly available (upon reflection) for those programs

1. Introduction Procedural Reflection 93

that wish to deal with it directly. Similar remarks hold for other aspects of the contro~

structure and environment.

One final comment on the architecture of 3-LISP will relate it to the "two views on

reflection" that were mentioned at the end of section 1.e. Interpretation mediated by the

3-LISP reflective model is guaranteed to yield indistinguishable behaviour (at least from a

non-reflective point of view - there are subtleties here) from basic, non-reflected

interpretation. This fact allows us to posit that 3-LISP runs in virtue of an infinite number

of levels of reflective model all running at once. by at' (infinitely fleet) oven:eeing

processor. The resulting infinite abstract machine is well defined, for it is of course

behaviourally indistinguishable from the perfectly finite 3-LISP we will already have laid

out (and implemented). For some purposes this is the simplest way to describe 3-LISP.

Since the user can write programs to be interpreted at any of these reflective levels, and

cannot tell that all infinitude of levels are not being run (the implementation surreptitiously

constructs them and places thtm in view each time the user's program steps back to view

them), such a characterisatiou is sometimes more iUuminating than talk of the processor

"swi!Ching back and forth from one level to another". It is the goals of modelling

psychologically intuitive re:flection - based on a vague desire to locate the self of the

machine at some l.:!vel or other - that will lead us usually to use the language of explicit

shifts (this also more closely mimics the implementation we will have built), although if 3-

LISP were to be treated as a pur Jy fonnal object, the ir.iinitc characterisation is probably to

be preferred.

I.f.iv. Reconstruction Rather Than Design

2-LISP and 3-LISP can claim to b:! dialects of LISP only on a generous

interpretation. 111e two dialects are unarguably more different from 1he origitzal LISP 1.li

than are any other dialec:ts that have been proposed, including for example SCHEME, MDL, NIL,

SEUS, MACLISP, INTERLISP, and COMMON LISP. 16

In spite of this difference, however, it is important to our enterprise to call these

languages LISP. We do not simply propose t.,em as new variants in a grand ~radition,

perhaps better suited for a certain class of pro~lems than those that have gone before.

Rather - and tric; is one of the reasons that the dissertation is as long as it is - we claim

that the architecture of these new dialects, in spite of its difference from that of standard

1. Introduction Procedural Reflection 94

LISPS, is a more accurate reconstruction of the underlying coherence that organises our

communal understanding of what LISP is. We are making a claim, in other words - a

claim that should ultimately be judged as right or wrong. Whether z-LISP or a-LISP is

better than previous LISPS is of course a matter of some interest on its own, but it is not the

thesis that this dissertation has set ov t to argue.

1. Introduction Procedural Reflection 9S

1.g. Remarks

l.g.i. Comparision with Other Work

Although we know of no previous attempts to construct either a semantically

rationalised or a reflective computational calculus. th~ research presented here is of course

dependent on, and related to, a large body of prior work. There are in particular four

general areas of study with which our project is best compared:

1. Investigations into the meta-cognitive and intensional aspects of problem
solving (this includes much of current research in artificial intelligence);

2. The design of logical and procedural languages (including virtually all of
programming language research, as well as the study of logics and other
declarative calculi);

3. General studies of semantics (including both natural language and logical
theories of semantics. and semantical studies of programming languages); and

4. Studies of self-reference, of the sort that have characterised much of meta
mathematics and thco: of computability throughout this century particularly
since Russell, and including the formal study of the parado.<cs, the
incompleteness results of Godel, and so forth.

We will make detailed comments about our conn~tions with such work throughout the

discussion (for example in chapter 5 we will compare our notion of self-reference with the

traditional notion -:.;.,ed in logic and mathematics), but some general comments should be

made here.

Consider first the meta-cognitive aspects of problem-solving, of which the

dependency-directed deduction protocols pres<mted by Stallman and Sussmcu1, Doyle,

McAHester, and others are an illustrative cxample.17 This work depends on explicit

encodings, in some form of mcta·languag, , of information about object-level structures,

used to guide a deduction process. Similany, the meta-level rules of Davis in his TEIRESIUS

system.18 and the use of meta-levels rules as an aid in planning, 19 can be viewed as

examples of inchoate reflective problem solvers. Some of these expressions are primarily

procedural in intent, 20 although declarative statements (for example about dependencies)

are perhaps more common, with respect to which particular procedural protocols are

defined.

1. Introduction Procedural Reflection 96

The relationship of our project to this type of work is more accurately described as

one of support, rather than of direct contribution. We do not present (or even hint at)

problem solving strategics involving reflective manipulation, although the fact that others

arc working in this area is a motivation for our research. Rather. we attempt to provide a

rigorous account of the particular issues that have to do simply with providing such

reflective abilities, independent of what such facilities are then used for. An analogy might

be drawn to the development of the kcalcu!us. recursive equations, and LISP, in

relationship to tl,e use of these formalisms in mathematics, symbolic computation, and so

fort.Ji: the former projects provide a language and architecture, to be used reliably and

perhaps without much conscious thought. as the basis for a wide variety of applications.

The present di::;sertation will be successful not so much if it forces everyone working in

meta-cognitive areas to think about the architecture of reflective formalisms, but rnther if it

allows them to forget that the technical details of reflection were ever consi'1crcd

problematic. Church's a-reduction was a successful manoeuvre precisely because it means

that one Cc'.'n treat the }I. ·calculus in the natural way; we hope that our treatment of

rdlective pr0t;edurea will enable those who use 3-LISP or any subsequent reflective dialect

to treat "backing-off' in the natural way.

The "reflective problem-solver" reported by Doyle21 deserves a special comment:

again, we provide an underlying architecture which might facilitate his project, without

actually contributing solutions to any of his particular problems about how reflection should

be effectively used, or when its deployment is appropriate. Doyle's envisaged machine is a

full-scale problem solver; it is also (at least so he argues) presumed to be large, to embody

comr,lcx theories of the world, and so forth. In contrast, our 3-LISP is not a problem

solver at all (it is a language very much in need of programming}; it embodies only a small

procedural theory of itself, nnd it is really quite small. As well as these differences in goals

there arc differences in content (we for example endorse a set of reflective levels, rather

than any kind of true instantanl'!ous self-referen~iat reflexive reasoning); it is difficult,

however, to determine with very much detail what his proposal comes to, since his report is

more suggP.stivc than final.

Given that 3-LISP is not a problem soiver of the sort Doyle proposes, it is 11atural to

ask whether it would be a suitable language for Doyle to use to implement his system.

There arc two different kinds of answer tQ this question, depending on how he takes his

1. Introduction Procedural Reflection 91

project If he is proposing a design of a complete computational architecture (i.e .• a process

reduced in terms of an ingredient processor and a structural field), and wishes to implement

it in some convenient underlying language, then 3-LISP's reflective powers will not in

themselves immediately engender corresponding reflective powers in the virtual machine

that he implements. Reflection, as we are at considerable pains to demonstrate, is first and

foremost a semantical phenomenon. and semantical properties - designation and

normalisation protocols and reflection and the rest - do not cross implementation

boundaries (this is one of the great powers of implernentation). 3-LISP would be useful in

such a project tc the extent that it is generally a useful and powerful language, but it is

important to recognise that its reflective powers cannot be used direc~y to provide refle

reflective capabilities in other architectures implemented on top of il

Of course Doyle would have an alternative strategy open to him, by which he could

use 3-LISt>'s reflective powers more directly. If, r<1ther than defending a generic reflective

architectoJre, he more simply intended to ·show how a p:uticu!ar kind of reflective reasoning

was useful, he could perhaps construct such behaviour in 3-LISP, and thus use the reflective

capabilities of that dialect rather directly. There are, however, consequences of this

approach: he would have to accept 3-LISP structures and semantics, including the fact that

it is purely a procedural formalism. It would not be possible, in other words, to encode a

full descriptive language on top of 3-LISP, and then use 3-LISP's reflective powers to reflect

in J general sense with these descriptive structures. If one aims to construct a general or

purely descriptive formalism, one must make that architecture reflective on its own.

None of these conclusions stand as criticisms of 3-LISP; they are entailments of

fundamental facts of computation and semantics, not limitations of our particular theory or

dialect (i.e., they would be equally tme of any other proposed architecture). Furthermore,

it is nc! at this level that our contribution is primarily aimed. What would presumably be

useful to Doyle (or to anyone else in a parallel circumstance) is the detailed structure of a

reflective system that we explicate here - an architecture and a concomitant set of

theoretical terms to help him analyse and structure whatever architecture he adopts. Thus we

might expect him to make use of the ,q,/ip. distinction, the relationship between semantical

levels and reflective ievels, the encoding of the reflective model within the calculus, the

strale:gy of using a virtually infinite processor in a finite manner, the uniformity of a

normalising processor, the elegance ot a category-aligned language, anct so forth. It is in

1. Introduccon Procedural Reflection 98

this sense that the theory and understanding that 3-LISP embodies would (we hope)

contribute to this variety of research, rather than the particular fonnalism we have

demonstrated by way of illustration.

The second type of research with which our project has strong ties is the general

tradition of providing formalisms to be used as languages and vehicfos for a variety of other

projects - from the formal statement of theories, the construction of computational

processes, the analysis of human language, and so forth. We include here such a large

trad_ition (including logic and the >.-calculus and virtually all of programming language

research) that it might seem difficult to say anything specific, but a variety of comments can

be made. First, we of course owe a tremendcus debt to the LISP traditiOI, in general, 22

and also to the recent work of Steele and Sussman.23 Particularly important is their SCHEME

dialect - in many ways the most direct precursor of 2-LISP (in an early version of the

dissertation I called SCHEME "1.7-LISP", since it takes what I see as half the step from LISP

1.6 to our semantically rationalised 2-LISP). Second, our explicit attempt to unify the

declarative and procedural aspects cf this tradition has already been mentioned -- a project

that is (as far as we know) without precedent. The PROLOG calculus, 24 as we mentioned in

the introduction, must be discounted as a candidate, since it provides two calculi together,

rather than presenting a given calculus under a unified theory. Finally, as documemec

throughout the text. inchoate reflective behaviour can be found in virtually all corners of

computational practice; the SMALLTALK language,25 to mention just one example, includes a

meta-level debugging system that allows for the inspection and incremental modification of

code in the midst of a computation.

The third and fourth classes of previous work list•~d above have to do with general

semantics and with self reference. The first of these is considered explicitly in chapter 3,

where we compare our approach to this subject with model theories in logic, semantics of

the >.-calculus, and the tradition of programming language semantics; no additional

comment is r<'quired here. Similarly, the relationship between our notions of reflection and

traditional concepts of self-reference are taken up in more detail in chapter 5; here we

merely comment that our concerns are, perhaps surprisingly, c:-:onstrained nlmost entirely to

computational formalisms. Unless a fonnal system embodies a locus of active agency - an

internal processor of some sort - the cndrc question of causal relationship between an

encoding of self-referential theory and what we consider a genuine reflective model cannot

1. Introd·1ction Procedural Reflection 99

even be asked. We often infonnalty think, for example, of a natural deduction "process" or

some other kind of deductive apparatus making inferences over first-order sentences - this

he1_ffistic makes sense of the fonnal notion of derivability. Strictly speaking, however, in

the purely declarative tradition derivabiuty is a simple fonnal relationship that holds

between certain sentence types; no activity is involved. There are no notions of next or of

when a certain deduction is made. If one were to specify an active deductive precess over

such first-order senter..ces, then it is imaginable that one could include sentences (relative to

some axiomatisation of that deductive process) in such a way that the operations of the

deductive process were appropriately controlled by those sentences (this is the suggestion

we explored briefly in section Lb.ii). The resulting machine, however - not merely in its

reflective incarnation, but even prior to that. by including an attive agency - cannot fairly

be considered simply a logic, but rather a full computational formalism of some sort.

Of course we believe that a reflective version of a descriptive system like this could

be build (in fact we intend to construct just such a machine). Our position with respect to

such an image rests on two observations: a} it would be an inherently computational

artefact, in virtue of the addition of independent agency, and b} 3-LISP, although reflective,

is not yet such a formalism, since .it is purely procedural.

We conclude with one final comparison. 'Ibe ;:1rmalism closest in spirit to 3-LISP is

Richard Weyhrauch's FOL system, 26 although our project differs in several important

technical ways from his. First. FOL, like Doyle's system, is a problem solver: it embodies a

theorem-prover, although it is possible (through the use of FOL's meta-levels} to give it

guidance about the deduction process. Nevertheless FOL is not a program111i11g language.

Furthermore, FOL adopts ·- in fact explicitly endorses - the distinction between declarative

and procedural languages (first order logic and LISP, in particular). using the procedural

calculus as a sim11latiJ11 structure rather than as a descriptive or designational language.

Weyhrauch claims that the power that emerges from combining (although maintaining as

distinct} these L-S pairs ("langauge-simulation-structure" pairs) at each level in his meta

hic1,'rchy as one of his primary contributions; it is our claim that the greatest power will

arise from dismantling the difference between procedural and declarative calculi. There are

other differences as wen: the interpretation function that maps terms onto objcclS in the

world outside the computational system (<t>) is crncid to us; it would appear in Wcyhrauch's

systems as if that particular semantical relationship is abandoned in favour of internal

1. Introduction Procedural Reflection 100

relationships between one fonnat system and another. A more crucial distinction is hard to

imagine, although there is some evidence2 7 that this apparent difference may have to do

with our respective uses of terminology, rather than with deep ontological or

epi~temological beliefs.

In sum, FOL and 3-LISP are technically quite distinct. and the theoretical analyses on

which they are based are aimcst unrelated. Nevertheless at a more abstract level they are

clearly based on similar and perhaps parallel, if not identical, intuitions. Furthermore, it is

our explicit position that 3-LISP represents merely a first step in the development of a fully

reflective calculus based on a fully integrated theory of computation and representation;

how such a system would differ from FOL remains to be seen. It seems likely that the

resulting unified calculus, rather than the dual-calculus nature, would be the most obvious

technical distinction, although the actual structure of the descriptive language, semantical

meta-theories, and so forth, may also differ both in substance and in detail.

There is however one remaining difference which is worth exploring in part because

it reveals a deep but possibly distinctive character to our treatment of LISP. It is clear from

Weyhrauch's system that he considers the procedural fom1alism to represent a kind of

model of the world - in the sense of an (abstract) artefact whose structure or behaviour

mimics that of some other world of interest. Uzider this approach the computational

behaviour can be taken in lieu of or in place of the real behaviour in the world being

studied. Consider for example the numeral ac!Jition that is the best approximation a

computer can make to actually adding numbers (whatever that might be). When we type

" (+ 1 2)" to a LISP processor and it returns "3" we are Hable to take U1osc numerals not so

much as designators of the respective numbers, but instead as models. There is no doubt

that the input expression " (+ 1 2)" is a linguistic artefact; on the view we will adopt in this

dissertation there is no doubt that the resultant numeral "3" is also a linguistic artefact. but

we want to admit here a not unnatural tendency to think of it .as standing in place of the

actual number, in a different sense from standard designation. It is U1is sense of simulation

rather than description that underlies Weyhrauch's use of LISP.

It is our bdief that this is a limited view, and we go to considerable trouble to

maintain an approach in which all computational structures arc semantical in something like

a linguistic sense, rather than serving as models. 111cre arc many issues, having to do wiU1

1. Introduction Procedural Reflection 101

such issues as truth, completeness, and so forth, that a simulation stance cannot deal with;

at worst it leads to a view of computational models in danger of being either radically

solipsistic or even nihilist It is exactly the connection between a computational system and

the world that motivates our entire approach; a connection that can be ignored only at

considerable peril. We in no way rule out computations that in different respects mimic

the behaviour of the world they are about: it is clear that certain fonns of human anlysis

involve just this kind of thinking ("stepping through" the transitions of some mechanism,

for examlpe). Our point is mere!y that such simulation is a kind of thinking about lhe

world; it is not the world being thought about

l.g.ii. The Mathematical Meta-Language

Throughout the dissertation we will employ an informal meta-language, built up

from a rather eclectic combination of devices from quantificational logic, the lambda

calculus, and lattice theory, extended with some straightforward conventions (such as

expressions of the fonn "if P then A else B" as an abbreviation for "[P :J A] A (·P ::J

BJ"). Notationally we wi11 use set-theoretic devices (union, membership, etc.), but these

should be understood as defined over domains in the Scott-theoretic sense, rather than over

unstructured sets. The notations should by and large be self-explanatory: a few standard

conventions worth noting are these:

1. By "C A - B J" we refer to the domain of continuous functions from A to s;

2 • By "F : C A - a J" we mean that F is a function whose de.main is A and
whose range is e;

3. By "<S1,S2, ... ,sk>" we designate the mathematical sequence consisting of the
designata of "s1", "sz'', ... , and "st;

4. By "s1
" we refer to the i • th element of s, assuming that s is a sequence (thus

2 •) <A,B,C> 1S B ;

5. By "C s x R J" we designate the (potentially infinite) set of all tuples whose
first member is an clement of s and whose second member is an clement of n;

6. By "A•" we refer to the power domain of A: [A u (A x A] u (A x A x A] u
...].

1. Parentheses and brackets arc used interchangeably to indicate scope and
function applications in the standard way.

a. We employ standard currying to deal with functions of several arguments.
11ms, by "AA1 ,A2 , ... ,At . E" and by "A<A1 ,A2 , ... ,At> . E" we mean
"M1,[M2,[, .. . [Mt . E] ...]]". Similarly, by "F(B1,B2, ... ,B1t:.)'' we mean

1. Introduction Procedural Reflection 102

" ((••• ((f (8 1))82) ...)Bt)"

If we were attempting to be more precise, we should use domains rather than sets, in order

that function continuity be maintained, and so forth. It is not our intent here to make the

mathematics rigourous, but it would presumably be straightforward, given the accounts we

will set down, to take this extra step towards formal adequacy.

l.g.iii. Examples and lmplementaticns

There are a considerable number of examples throughout the dissertation, which can

be approximately divided into two groups: formal statements about LISP and about

semantics expressed in the meta-language, and illustrative programs and structures

expressed in LISP itself (most of the latter are in one of the three LISP dialects, though

there are a few in stand&rd dialects as well). The meta-linguistic characterisations, as the

preceding discussion will suggest, have not been checked by formal means for consistency

or accuracy; the proofs and derivations were generated by the author using paper and

pencil. The programming examples, on the other hand, were all tested on computer

implementations of 1-LISP, 2-LISP, and 3-LISP developed in the MACLISP and LISP MACHINE

LISP dialects of LISP at M.I.T. (a listing of the third of these is given in the appendix).

Thus, although the examples in the text were typed in by the author as text - Le. the lines

of characters in this document arc not actual photocopies of computer interaction -

nevertheless each was verified by these implementations (furthcnnore, the implementation

presented in the appendix is an actual computer listing). Any residual errors (it is hard to

imagine every one has been eliminated) must have arisen either from typing errors or from

mistakes in the implementation itself.

2. 1-LISP: A Basis Dialect Procedural Reflection 103

Chapter 2. 1-LISP: A Basi') Dialect

We will base the technical analysis of subsequent chapters on a "standard" LISP,

with which to contrast the reconstructed and reflective dialects we will subsequently design.

There are ovtions open regarding such a definition; as has often been remarked. there is

some ambiguity as to exactly what the term "LISP" denotes.1 Though we will initially be

unconcerned with issues of programming environments and input/output, and will focus on

the basic primitives, we will ultimately want to look at user interaction, since much of how

we understand LISP is most clearly revealed there. The most plausible extant candidates

are McCarthy's LISP 1. 6 and Steele and SufjSffian's SCHEME. Although LISP 1. 5 has history

and explicitly formulated semantics on its side,2 the lexical scoping and "fu11-funarg"3

properties of SCHEME recommend it both in terms of theoretical cleanHness and in

faithfulness to the >.-calculus. On the other hand SCHEME'S partial avoidance of such

features as an explicitly available EVAL or APPLY weaken it for our purposes, since such

"level-crossing" capabilities are close to our primary subject matter. In addition SCHEME,

like LISP, is not a fixed target; various versions have been reported.4

There is however a more serious difficulty with SCHEME, relating to our concern with

semantics and reflection. As mentioned in the introduction, LISP 1.6 (and t11crcfore all

LISPS in current use, since they are all based on it) .are essentially first-order languages,

employing meta-structural machinery to handle what is at heart higher order functionality.

In LISP 1.5, for example, expressions that we take to designate functions (like "coNs" and

" (LAMBDA ...) ") cannot be used in regular argument position, and those functions that

would most naturally seem to be defined as higher order functions, like MAP and APPLY, are

in fact defined over expressions, not over junctions as such; thus for example in LISP t.5 we

would use

(MAPCAR '(LAMBDA (X) (+ X 1)) '(2 3 4))

rather than

(MAPCAR (LAMBDA (X) (+ X 1)) '(2 3 4))

(S2-1)

(S2-2)

as a way of producing ' (3 4 5), since the first argument to MAPCAR must evatuace to an

expression (and designate an expression, although we have no way of saying d1at yet).

2. 1-LISP: A Basis Dialect Procedural Reflection 104

SCHEME, by according functional arguments first class status (s2-.i is a valid SCHEI.ti:

expression), is, like the >.-calculus, an untyped higher order formalism; unlike the A

calculus, however, it contains primitive operators (QUOTE, in particular) that make the

structural field (the syntactic domain) part of the standard model. LISP 1.5, in other words,

is meta-structural but first-order, whereas the 7'.-calculus, in symmetric contrast, is not meta·

structural, but is higher order. SCHEME takes a different stand in this space: it is both meta

structural and higher order; this is one of the reasons that it is important, in that it

represents a first step towards including both of these functionalities, while maintaining

them as distinct In fact it is plausibly because; SCHEME embraces a higher-order base

language that it originally omitted the e),_plicit functions EVAL and APPL v, since it is those

two functions that enable the LISP 1.5 programmer to mimic higher-order functionality by

manipulating expressions in their place (current implementations of SCHEME support EVAL

and APPL v, but as "magic forms" like LAMBDA, rather than as first-class procedures, in spite

of their being extensional). LISP 1.5, the 11.-calculus, and SCHEME, in other words, occupy

three points in the four-way classification of programming languages generated by these two

binary distinctions; traditional programming languages. of course, are found in the fourth

class, since they arc typically neither meta-structural nor higher-order. 2- and 3-LISP, like

SCHEME, will be meta-structural and higher order. These categorisations are summarised in

the following diagram.

First Order

Higher Order

Meta-Structural

LISP 1. 5

SCHEME, 2-LISP,
3-LISP

(S2-3)
Not Meta-Structural

Standard Programming
Languages {ALGOL etc.}

Tha Lambda Cal~ulus

In spite of a certain cleanliness, we wilt argue that the most natural separation

becween Mghcr-order functionality and meta-structural powers is not maintained in SCHEME'S

evaluation process - that this cnu.:ial distinction, in other words, is only partially embraced

in that dialect. In particular, the separation of function application from expression de

referencing that arises naturally once one adopts the distinction is not reflected in SCHEME: as

we will make clear in chapter 3, SCHEME still de-references meta-stmctural expressions upon

e\•aluation (the 11.-calculus has no meta-structural expressions, so the issue does not arise in

its case). Since automatic de-referencing is a practice we will argue against, it would be

2. 1-LISP: A Basis Dialect Procedural Reflection 105

confusing to base our analysis on a SCHEME-like dialect located half-way between the first

order (meta-structural) position taken by LISP 1. 6, and the position that on our view

represents that natural semantical position once higher-order functions are admitted. It will,

in other words, be easier to show that the SCHEME position is an intermediate one, if that is

not where we ourselves begin.

There is another aspect of SCHEME against which we wilt argue: although it

successfully deals with higher-order functionality in the base language - without, that is to

say, requiring meta-structural powers - it still requires the use of meta-structural

machinery to deal with certain types of objectification and compositionality. For example,

in order to apply a function to a sequence of arguments when that sequence is designated

by a single expression, rather than by a sequence of expressions, one must resort to the

explicit use of APPLY and EVAL - in this respect SCHEME is like traditional LISPS. For

example, whereas in LISP 1.5 one would use:

{LET ((X '(3 4)))
(APPLY '+ X})

This is LISP 1.5 (S2-4)

in SCHEME, because of its higher-order orientation, you would not have to quote the function

desigator, but you would still have to use APPL v:

(LET ((X '(3 4)))
(APPLY + X)}

: This is SCHEME (S2-5)

We will be able to show how this property results from the lack of category correspondence

shared by all these dialects, and will ultimately (in 2-LISP) show how all standard

objectifications can be adequately treated without requiring meta-structural designation.

There is yet another advantage of starting with a first-order language. There is a

natural connection between the free vaiablc scoping protocols of a dialect and its functional

"order". Thus we find dynamic variable scoping protocols used in first-order languages

that admit the meta-structural treatment of fi.mctions, in contrast with, a parallel connection

between lexical scoping and the adoption of a higher-order object language. For example,

consider the following LISP 1.5 (first-order) definition of a procedure of two arguments - a

number and a list - designed to return a list constructed from the second argument, but

with each clement incremented by the first argument:

2. 1-LISP: A Basis Dialect

{DEFINE INCREASE
(LAMBDA {NUM LIST)

(MAPCAR '(LAMBDA (EL)(+ El NUM)) LIST))}

Procedural Reflection 106

(S2-6)

Since MAPCAR requires an expression rather than a junction as its argument, the only way in

which this natural use of the bound variable NUM could work is for the dialect to be

dynamically scoped If it were statically (lexically) scoped, the expression passed to MAPCAR

would be sep~ted completely from the context in which NUM was bound. and the

computation would fail.

. In contrast, a higher order dialect such as SCHEME would support the foltowing

definition:

(DEFINE INCREASE
(LAMBDA {NUM LIST)

{MAPCAR (LAMBDA (El) (+ El NUM)) LIST)})

(S2-7),

In this case, if the dialect were dynamically scoped, the binding of NUM would be found so

long as MAPCAR did not itself use that variable name, and as long as the function designator

(LAMBDA (EL) (+ EL NUM)) was only passed downwards, and so forth.5 In a statically scoped

dialect. however, presumably correct (intended) function is designed in all cases.

It is by no means accidental, in other words, that SCHEME and the ~-calculus are

lexically scoped and higher order, whereas all other L ISPs are dynamically scoped and tirst

order. There is no theoretical difficulty in defining, say, a lexically-scoped first-order

language, but such a calculus would be extremely awkward to use. These issues relate as

well to the question of whether the "function position" in an application ("F" in "(F A B

c) ") is evaluated'. lexically scoped higher-order languages typically evaluate that position just

as they do argument positons; first order languages naturally do not In addition, the

dynamic/lexical distinction relates to the question of what a calculus takes the intension of a

function to be: dynamic scoping is closely associated with taking it to be an expression

(againt consonant with a generally meta-structural stance), whereas lexical scoping associates

with taking it to be something more abstract (consonant with a higher-order approach).

(Functional intensions are discussed more fuJly in chapter 4.)

For all of these reasons we will base our progression of LISPS on a simple

dynamically-scoped, first-order LISP dialect, called t-LISP. 1-LISP supports what in

MACLISP are called HXPRS and MACROS, as well as standard EXPRs. We assume, as usual, that

the dialect is defined over numbers and truth-values as well as s·cxpressions (i.e. tnat

2. 1-LISP: A Basis Dialect ProceduralRcflection 107

numerals and the boolean constants T and NIL are elements of the 1-LISP structural field).

We will adopt the standard LISP practice of representing "applications" (what we will want

to define an application to be will be taken up shortly) as lists, the first element of which

will be taken as signifying (in an as-yet unspecified way) a function, and the remaining

elements as signifying arguments to that function. This syntactic form will be used in

addition for what are called special fonns6 such as lambda expressions, quotations, etc., as

well as for general enumerations.

In a fuller version of this dissertation it would be appropriate to define 1- LISP

completely, introducing function applications, recursion, meta-structural facilities, scoping

protocols, and so forth. We will not take up this task here, however, deferring the reader

to the literature for most of these preparations. We will in particular assume the

discussions of LISP in McCarthy, Allen, Winston, and Weizman, and also the investigations

of Sussman and Steele. 7 We will depend particularly on the discussions of meta-circular

interpreters and tail-recursion given by Steele and Sussman.8 What we will do, however, is

to characterise the 1-LISP structural field, in order to introduce the way that we wilt talk

about fields in general, and because it will be easiest to describe the 2-LISP au.d 3-LISP

fields with respect to this basis one. 'This task is taken up below.

As well as using 1-LISP as a base, we will from time-to-time refer to SCHEME - a

dialect that supports higher-order functionality, and a concomitant partial separation of

meta-structural machinery - in part because the continuation-passing versions of the

SCHEME meta-circular interpreter cannot be straightforwardly encoded in a first-order dialect

In order to have a specific and structurally comparable dialect we will use the name "1.1-

LISP" for our dialect of SCHEME - structurally identical to 1-usr, but staticaJly scoped and

supporting functional arguments in the SCHEME manner. Thus our trio of dialects is in fact

a quartet, with 1.7-LISP/SCHEME sitting slightly to the side, between 1-LISP and 2-LISP.

The overall mandate under which all of this is pursued, of course, is one of freeing up the

meta-structural capabilities of the calculus for use in reflection, unimpeded by intruding

consequences of higher-order functionality and simple objectification. We will show, in

other words, that higher-order functionality is not inherently a subject requiring meta

structural treatment: it is not in any foundational way an issue of the manipulation of

structures or expressions (as the existence of sound models for the untyped A-calculus of

course has shown). The fact that SCHEME only partially separates the lwo notions, in other

2. 1-LISP: A Basis Dialect Procedural Reflection 108

words. will be shown to be an unnecessary aspect of its design. Reflection, on the other

hand, is inherently concerned with expressions and their interpretation, and thus will

necessarily involve the use of meta-structural machinery.

We will also depend on a variety of computational concepts and practices that will

emerge in subsequent examples. Included will be notions of THROW and CATCH (and other

non-local control jumps), the use of continuations, meta-circular interpreters, tail·recursion,

orogramrning environment constructs that enable a user to manipulate the stack and

environment, and so forth. Most of these are part of the accepted lore infhe LISP

community; discussions can again be found in the reports of Sussman and Steele.

One final remark. In characterising t-LISP. we must distinguish two kinds of

understandings, one a non-computational but powerful conception formulated in terms of

junction application; the other a computational and complete but less convivial account in

terms of formal expression manipulation. in terms of a depth-first recursive tree walk. It is
. .

to LISP'S credit that these two kinds of understanding can by and large be allied, but to

confuse them can lead to misconceptions later in the anlaysis. We will look at these two

kinds of understanding in turn.

First, the basic intuition underlying how we understand the 1-LISP processor is that it

applies functions to arguments, returning their values - this is why LISP is the

paradigmatic example of what are called applicative languages. For example, the fact that

{ CAR ' (A B)) evaluates to A is typically explained in tenns of CAR being a function from

pairs to their CARS. Similarly, the expression (+ 2 3) returns 5, because we understand it as

representing the application of the addition function tu the numbers two and three. Both

CAR and + are primitive functions; as well as being provided with this primitive set the

programmer is provided with a variety of naming conventions and compositional

construction techniques, enabling him to build up what seem to be complex function

definitions from simpler ones. For example, the expression

{DEFINE INCREMENT (LAMBDA {X) (+ X 1))) {S2-8)

defines a new function cal1ed INCREMENT in terms of the primitive addition function. After

this definitio:n has taken effect, the expression { INCREMENT 16) can be viewed as

representing th~ application of this new function to the number 16. In other words, the

syntactic methods of defining composite procedures facilitate the user thinking that he or

2. 1-LISP: A Basis Dialect Procedural Reflection 109

she is able to describe complex junctions that, like the primitive ones, can be applied to

arguments. That this is how we understand LISP procedures is reflected as well in the

naturalness of the view reflected in traditional semantics on which s-expressions like CAR

and { LAHBDA { x} { + x 1) } are taken to designate functions.

Like all semantical attribution, however, this taking of expressions to represent the

application of functions to arguments is something we external observers do; the LISP

processor itself doesn't have any access - nor does it need any access - to that

significance. Rather, it is defined to perform certain operations in a systematic manner

depending on the form of the expression under "interpretation". It is the expression, not

the mathematical function signified, that drives the interpretation process. In simple cases

we can substitute one understanding for another, although, when we get to details,

subtleties, or complexities, we often tum to our understanding of how the interpreter works,

since in in complex r.ases our basic attributed intuition may fail. The reason is that the

underlying intuition of function application, although it permeates our language and

practice, is nonetheless not a computational intuition - a fact whose importance cannot be

overestimated. Function application is not a concept built up out of notions of formal

"symbol" manipulation, but rather of designalion of functional terms and application and so

forth: all Platonic and mathematical abstractions. Typically, it is only when it fails (as with

side effects, or when dealing with temporal considerations and so forth), or when we need

to examine a particular implementation, that we make recourse to a tmly computational

account

In sum, function application is not what the LISP processor actually does; rather, it is

what we sema11tical/y take the LISP processor to do.

What the 1-LISP processor actually docs is of course Jonna/, roughly summarisable

as follows: a single-locus active agent - a serial processor - perfonns a depth-first

recursive tree-walk down "expressions", using non-primitive names that it encounters as

standing in place of procedure definitions or values, in various context-dependent ways,

ultimately e.··ecuting the primitive "instructions" or "procedures" whose primitively

recognised names arc found at the leaves of the resulting tree. The processor merely

embodies a controlled set of state-changing operations guided by this recursive-descent

control pattern. For example, when the name of a "user-defined function" is encountered

2. 1-LISP: A Basis Dialect ProceduralReflection 110

(like the INCREMENT of s2-s). the processor does not figure out what function is signified;

rather, it merely looks up the lambda expression associated with that name, and uses that

expression ((+ x 1), in our example) to continue its tree walk (subject to certain

environmer.t modifications - modifications to its own internal state - which we will

presently examine).

As we introduce and explain each of our LISP dialects, we will discuss both the

attributed kind of understanding and the fonnal way in which the 1-LISP processor works.

This double viewpoint, however, should not be confused with the more substantive claim,

to be examined chapter 3, that there are two natural kinds of attributed understanding. The

present claim that there are two different ways to explain 1-LISP, in other words, is not yet

the phenomenon mentioned in chapter 1 requiring a double semantics. Rather, our current

task is merely to make manifest the primary fact that we understand LISP programs

semantically, much in the way in which we understand logical deductions systems

semantically, in terms of entailment (1=), as well as formally, in terms of derivability (I-).

The arguments for double semantics, and a clarification of the relationship between the

formal LISP processor and these semantical treatments. depend on the prior acceptance of

the fact that computational systems are quintessentially semantical.

Two additional distinctions, of a very different kind from that between fonnal and

attributed understanding, will organise our presentation of each of the LISPS. The first is

the infonnal separation between programs and data structures - infonnal, as mentioned

above. because we are not yet able to avail ourselves of the theoretical machinery to make

the distinction precise. The second is a three way distinction among the following three

kinds of facilities: primitive facilities provided by the basic calculus, methods of composition

enabling the user to construct complex structures and behaviours out of simpler ones, and

methods of abstraction than enable these composite constructions to be used and refered to

as cohesive wholes (mechanisms that make them, tn Maturana·s phrnse,9 composite unities),

For example, as well as demonstrating a dozen simply named procedures provided

primitively in 2-LISP, we will show how >.-abstraction and recursion can be used to

generate more complex procedures (like the { LftMBDA (x} (+ x 1)) of our example), and will

show how a variety of naming conventions can be used to allow these complex procedures

to be invoked merely by using an atomic name (such as INCREMENT), just as in the case of

the primitive ones. Our focus will be on programs, rather than on data structures, but a

2. 1-LISP: A Basis Dialect Procedural Reflection 111

parallel development for data structures is possible: we can demonstrate the primitive data

structures, show how arrangements of these primitive structures can be welded together into

complex composite structures, and show how naming conventions r.an be used so that these

data abstractions can be treated as functional units, again in tl1e same way that primitive

data types are utilised as if they were indivisible wholes.

With these preparatory remarks, there remains only the task of characterising the 1-

LISP field.

In the sense sketched in section 1.c, to specify a computational calculus is to specify

a process functionally analysed in terms of a structural field and the surface behaviour of

an interpretive process defined over that field. To review, a structural field is a set of

abstract objects, formally defined, standing in some specified set of relationships with one

another, over which a locality metric is defined, and with respect to which a set of

mutability constraints are specified.

A t-LISP system consists of a structural field of s-expressions and a (behaviourally

defined) 1-LISP processor(our tenninology for what is always called the 1-LISP interpreter).

S-expressions are of three disjoint kinds: atoms (atomic elements typically used as names or

identifiers), numerale (also atomic, signifying numbers), and pairs. There are three first

order relationships defined on this field: the CAR-relationship and the CDR·relatio,iship (each

of which holds between a pair and an arbitrary s-expression), and · the property-list

relationship (which holds between an atom and an instance of the derived category of list,

which we will define below). All three of these relationships are total junctions: each and

every pair has exactly one CAR and one CDR, and each and every atom has one property list.

There is a temptation to view pairs as composite objects, but that is strictly false, since the

identity of the pair is not itself a function of the identity of what would be called its

constituents (distinguishable pairs can have the same CAR and the same CDR, and you can

change both CAR and CDR without changing the pair).

Two of the three first-order relationships (the CAR and CDR) are mutable, in the sense

that the relationship between a pair and its CAR can be changed, as can the relationship

between a pair and its CDR. The third (the property-list relationship), however, is fixed: one

cannot associate a different list with an atom. These two mutable relationships arc the only

mutable aspects of the field - there is no other way in which the field can be changed.

2. 1-usP: A Basis Dialect Procedurnl Reflection 112

Thus the set of structural field objects (the atoms, numerals, and pairs) is constant, and

there is no way in which elements can be added or removed (we will deal with CONS in

terms of accessibility, not actual creation). The field as a whole, which consists of these

objects and of the three relationships (with appropriate constraints on mutability and

locality), is subject to change over the course of the computation, in virtue of the

interaction of the 1-LISP processor.

The third requirement on specifying a field, after identifying the objects and

relationships, and the mutability properties, is to identify the salient locality constraints.

Locality is always defined over relationships (not objects}, of which in 1-LISP we have

identified three binary first-order types. 1-LISP has no individual-specific relationships at

all, and therefore no individual-specific locality constraints either, which greatly simplifies

the analysis. In addition. each of the category-specific locality metrics is assymetric: from a

pair both its CAR and CDR are locally accessible, and from an atom its property list is locally

accessible, but no one of these relationships is local in the opposite direction. We will be

restricted, in defining the surface of the interpretation process, to specify as atomic

operations only those that obey these locality considerations.

We cannot (and need not) present a lexical grammar for this field structure, because

to do so would associate a notation with the structural iield elements, and imply some

structure for pairs to indicate their parts, all of which would be misleading.

The foregoing describes only what we will ca11 ·the category structu:e of the 1-LISP

field; the individual structure is as follows: there are twenty-one distinguished (and of

course distinct) atoms, called CAR, CDR, CONS, COND, EQ, NUMBERP, QUOTE, ATOM, LAMBDA, READ,

PRINT, SET, DEFINE, EVAL, APPLY, +, -. •, /, T, and NIL. These names are for the present

simply names we will use to identify them in the text - i.e., names in our theoretical meta

language, which at the present happens to be English; if we were presenting a complete

characterisation of 1-LISP we would define them as part of the token structure of 1-LISP

notation. Even when we intr.:duce labels for them in the notation, however, we will not

make those labels (often known as p·names for "print names") themselves elements of the

structural field, since strings arc not (in the present account) a primitively supported data

type.

• I

2. 1-LISP: A Basis Dialect Procedural Reflection 113

By the category/individual distinction we refer implicitly on the one hand to sets of

entities taken as a whole, and on the other i1and to their individual elements. However we

use the term "category" to refer not to a set of entities, but rather to a concept in our theory

of 1-LISP, of which the set is the extension. Thus all the 1-LISP atoms taken together are

the extension of the C<itegory atom; each particular 1-LISP atom is an .individual atom of

t.liis category. The category atom is a theoretical abstraction. part not of the 1-LISP

structural field but of the theory of t-LISP we are adopting to describe that field

~is distinction between the concepts of category and individual is different from

that bt:fween the notions of type and token, as those terms are used in theories of language.

There is no immediate notion of type and token in the 1-LISP field, although these notions

wi11 impinge on the discussion of notation below (and we will shortly define a derived

notion of type over pairs, as an extension). In other words. wf: do not have a notion of an

atom type, of which there are many tokens, the way that we otlen speak of a word type

(such as the type o"erry), and of instances of that type (such as v~~ one in the previous

parenthetical fragment of this sentence). If we speak of some atom A, in other words, we

refer simply to a single atom: there is no sense to be made of such terminology as an

occu"ence of that atom.

Similarly, all the 1-LISP pairs - all of the elements of the extension of the category

pair - are distinct individuals, over which it is meaningless to speak of an occu"ence or

token. However in the case of pairs (as opposed to atoms and numerals) there is a

temptation to define a different notion of type or category, because of the natura1 tendency,

mentioned above, ic think of pairs as approximately composite objects, constituted of two

"ingredients": their CAR and their CDR (a temptation re-inforced by the fact that procedural

consequence is most naturally defined over such types). On the face of it, this naive

intuition could lead to a whale range of degrees of type-identity, since two pairs could have

the same elements, or could have elements that, recursively, were of the same type. We

could define a hierarchy of "type-ness" in which distinct pairs whose c:ements were type

identical of some degree would in turn be type-identical of greater degree. However even

this suggcstlon would need further complication: even if a pair's CAR and CDR were typc

identical, they would in general be identical to a different- degree, and thus a simple

numerical ordering would be insufficiently structured. One would have to define the degree

of type-identity of two pairs to be the ordered pair of type-identity Gf their CARS and CDRS.

2. 1-LISP: A Basis Dialect Procedural Reflection 114

We wi11 not pursue this fine-grained measure of type-equivalence. However there is

a coarser variety of type-identity on pairs that is useful in characterising the t-LISP

procedural component: a notion that is approximately embodied in the standard definition

of a LISP identity predicate called EQUAL (in contrast with EO - the primitive identity

predicate over objects in the field). The intuition on which it is based is to say of two pairs

that they are type identical just in case the non-pair tenninals in the tree fanned by a pair

and its elements are the same. This intuiton suggests the folowing recursive definition of

the notion type over structural field elements:

1. All objects are type-identical with themselves: (S2-9)

2. Distinct pairs are type-identical if and only if their CARs and CDRs are
(recursively) type-identical;

3. No other distin~t s-expressions are type-identical;

A problem with sz-9, however, is that it leaves undefined the question of whether certain

circular structures are type-identical. The problem is that a· the CAR and CUR relationship on

any given pair may yield an arbitrary graph, not a tree. In particular. the second clause in

definition s2-9 is ill-defined where each of two distinct pairs P
1

and P
2

is its own CAR and

CDR (many other simple examples are possible). A better characterisation is the following

(by type-distinct we mean not type-identical), which maintains the intuition that distinct

leaves indicate distinct types:

1. All objects are type-identical with themselves; (S2-10)

z. No atom or numeral is type-identical with any object other than itself:

3. Two pairs are type-distinct if either their CARS or their cons are type-distinct.

4. Any two pairs which are not shown to be type-distinct by rules 1 - 3 are type-
identical:

This definition will play a roie in the definition of type-identical lists in the following

section. It is slightly coarser in grain than one might at first suspect, in that it sets the P 1 of

the previous paragraph as type-identical with a structure consisting of two dinstinct pairs P3

and P
4

, each of which is the other's CAR and CDR. Revisions of s2-1 o are possible that

establish finer-grained equivalence classes of structures, so as to distinguish the example just

given. However s2-10 will serve our purposes.

In spite of this definition of a structural (as opposed to a notational) notion of type,

we will remark explicitly when we arc using the te1m "type" with respect to structural field

2. 1-LISP: A Basis Dialect Procedural Reflection 115

objects; its primary meaning will remain a notion defined over lexical notations.

As well as the primitive notions of numeral, atom, and pair, there is a derived notion

of list - over which prQl;edural consequence is most naturally defined. In actual use lists,

rather than pairs, are by far the more commonly used structural abstraction. A simple

notion of a list can be inductively defined as follows: a list is either:

t. the distinguished atom NIL, or
z . a pair whose CDR is a lisL

(SZ-11}

Toe·~ of a list L is said to be O if L is NIL, or else 1 greater than the length of its cdr.

A list has as many elements as its length: we will say that its first element is its CAR, and its

Nth element is the <N-t>th element of the list that is its CDR.

A number of properties of lists follows from this characterisation. First, it is not

necessary that the elements of a list be atoms, numerals, or lists: they may be non-list pairs.

Second, there is a non-isomorphism between pairs and lists: all lists but one (the empty list

NIL) are pairs, but not all pairs are lists. Third, although the definition as given does not

admit lists of infinite length, nothing excludes a list from being one of its own elem~nts,

just as a pair can be its own CAR.

There are two problems with sz-11 which need attention. First, on this account a

list is not a composite object containing its eJements, unless "containing" is defined to

include the transitive closure of the CDR relationship. I~ follows that on this view one could

change an element of a list without changing the list itself, since the list is identified with a

single "head" pair, which by our prior account of identity and mutability is not thereby

changed. TI1is is a mildly unhappy terminological consequence. An obvioi1s way to revise

the definition would be to define a list to be an abstract sequence of pairs, each of which

was the con of the previous pair: in this way if one changed some element of a list

(changed the CAR-relationship of one of the p.iirs in the chain) one would on the theoretical

account have a different list (we can't absorb the notion of change directly in a

mathematical account, since mathematical entities are not subject to modification).

Howe·:er arguing against this revision is the consequence that a list would then no longer

be an element of the structural field: a list could not, for example, be the CAR of some

other pair.

• I .

2. 1-LISP: A Basis Dialect Procedural Reflection 116

What we are up against. of course, is the fact that lists are in essence an abstract data

structure implemented as chains of pairs in the 1-LISP field. Characterising them in tenns

of their implementation is too detailed to be aestheticly satisfactory, even though this is

virtually the only implementation widely utilised (although others - particularly ones with

different temporal properties - are occasionally explored). Furthennore, it seems to lead

to the awkward use of prior tenninology. On the other hand, characterising them abstractly

seems to take us out of the LISP field in ways that our present conceptual vocabulary is not

equipped to handle. At the end of chapter 3 we will examine data abstraction explicitly;

until that time we will accept the identification of a list with its head pair (or NIL), since

that introduces fewer fonnal difficulties.

The other problem with s2-11 is that it excludes certain arrangements of pairs that

we will want to consider circular lists. As opposed to the foregoing difficulty, this trouble

can be accomodated in a revjc;ed definition. Infonnally, we would prefer to define a list as

either NIL or as a pair whose transitive closure of CDR's included no numerals or atoms

(other than NIL). As was the case with type-identical pairs, the solution is to explicitly

exclude all non-lists, and then to define the lists to be the complement of this set This

approach can be effected as follows:

1. The atom NIL is a list: (S2-12)

2. No other atom or numeral is a list:

3. If the CDR of a pair is not a list, the pair is not a list;

4. All other pairs are lists.

The definition of length given above can be retained for finite lists; if the transitive closure

of the coR relationship of a list pair does not tenninate with NIL in a finite numLer of steps,

we will simply posit that the length of the list is infinite. Thus two sorts of structural

arrangements might be lists of infinite length: those consisting of an infinite number of

pairs, and those comprising a finite number of pairs where one of those pairs is the coR of

a pair in the transitive closure of its own CDR relationship (such as the P
1

mentioned earlier).

Since we have continued to identify lists with pairs, the definition of type-identical

given in s2-10 applies directly to lists, with the consequence that all infinite-length lists

with the same elements are type-identical, even though, as mentioned above, there is a

natural sense in which some of them can be distinguished. For example, suppose that pair

2. 1-LISP: A Basis Dialect ProceduralReflection 117

P 1 has the atom A as its CAR and is its own CDR, and that pairs P 2 and P
3

each have the atom

A as their CAR and are each other's CDR. Using the graphical notation to be introduced in

the next section, these structures would be notated as follows:

P2 P3
{S2-13)

l,........,A i~->,........,I A 1.--,11

1 .
On the account we have adopted P1 and P2' though distinct, are type-identical (and both are

type-identical to P
3
), and are of equal (infinite) length. As we mentioned above, it is

po~sible to adopt a finer-grained type-identicality predicate to distinguish such cases, but we

will not need to do that here.

It is with reference to lists, and not to pairs, that many aspects of both interpretive

consequence and declarative import will be defined, in part because the lexical notation is a

more natural notation for lists than for arbitary pairs, as we will sh~w in the next section.

As we have time and again remarked, such categorical ambiguity will make it very difficult

to align the double semantical accounts we will in the end adopt For present purposes,

however, since we are dealing only with a behavioural specification of interpretive

consequence, this notion of list will serve.

This completes the account of 1-LISP's structural field. We have of course dealt

with it purely as an abstract collection of formal structure: neither notation, procedural

consequence, nor semantical import have yet been mentioned (and thus we are not yet in a

position to raise any semantical queries). In addition, we have so far discussed primarily

categorical structure: the only individual to play a rote in describing 1-LISP's field is the

distinguished atom NIL, ~·<;ed to define the derived notion of a list. In addition, we are

accepting the notion of an abstract virtual machine: the definition of the 1- LISP field makes

no comment on how 1-LISP is implemented. Thus no notion of pointer will intrude on our

discussion, nor will the creation of atoms, or garbage collection.

From these definitions it folJows that a number of typically-available features are

missing in 1-LISP, such any access to all atoms (the LISP oblist), etc. In addition, as we wilt

describe in subsequent sections, atoms are used in 1-LISP programs as identifiers and

variables, and an association between them and their values (which are always clements of

the field) is maintained. This association, however, is part of the state of the processor, and

2. 1-LISP: A Basis Dialect Procedural Reflection 118

as such is not encoded within the field itself. Thus we have not identified a "value"

mapping over the atoms, nor will we store atom values under a "value" property of an

atom's property list When we design a-LISP we will have to have environment designators

(structures that designate such assocations) available as full-fledged structural objects. but

until that time the information about atoms and their values is considered to remain a part

of the internal state of the processor, not a manifest aspect of the structural field

The basic character of the 1-LISP structural field just outlined will be mainly

pre~rved in subsequent dialects - atoms, numerals, and pairs, in particular, will remain

unchanged. In 2- and 3-LISP we will introduce a primitive syntactic type called a rail to

serve in place of 1-LISP's derived notion of list, we will introduce two separate boolean

constants that are not atoms, and we will deal with quoted forms specially. But the locality

considerations outlined above will remain the same for the categories tl1at are preserved,

and similar metrics will be introduced on the new types (rails, for example, will receive the

asymmetric accessibility relations of lists). The notational interpretation function e6 (see

chapter 3) will be modified, and of course both declarative and procedural semantics will

be adjusted. However all these modifications will be defined as changes with respect to this

1-LISP field; characteristics that are not again mentioned should be assumed to carry

through intact

We can model the 1-LISP structural field as follows. First, we define three sets

PAIRS, ATOMS, and NUNERALS of pairs, atoms, and numerals, and three relationships to model

CAR, CDR, and PROP. In the earlier discussion we said that the PROP relationship took atoms

to pairs, but here we have corrected that so that it maps atoms onto lists. Note as well that

whereas s is a fixed set, the set FIELDS is a set of fields, intended to include all possible

states of the 1-LISP field; thus any given state of the field is modelled as an element of

FIELDS. The reason is that we define CARS to be the full set of CAR relationships, intended

to model changing CAR relationship, and so forth. This approach is an instance of a

standard meta-theoretical manoeuvre to compensate for the fact that change cannot be

absorbed into mathematics.

PAIRS = { P I P is a pair } - the set of pairs (S2-14)

ATOMS = { A I A is an atom } - the set of atoms
NUHERALS e { N I N is a numeral } - the set of numerals

2. 1-LISP: A Basis Dialect Procedural Reflection 119

s e PAIRS U ATONS U NU#ERALS - the structural field elements

PROPS a CATOIIS-+ LlSTSJ - the "property-list" relationship
CARS a [PAIRS-+ SJ - the "CAR" relationship
CDRS 5! {PAIRS-+ SJ - the "coR" relationship

FIELDS e S X PROPS X CARS X CDRS - the set of structural fields

Furthermore, we will define three meta-theoretic functions CAR, coR, and PROP, that take an

element of s and a field, and yield that corresponding element of s in that field:

CAR : Cf F X PAIRS J -+ SJ (S2-15)
a AF ,AP . F:(P)

CDR : CC F X PAIRS J ➔ S j (S2-16)
a AF ,AP . F4(P)

PROP : [[F X ATOIIS J -+ LISTS J (S2-17)
= AF ,AA . F2{A)

We will let variables P, P
1

, P
2

, P ·, et.c .• range over PAIRS, A, A
1

, A
2

, A•. etc., range over ATOIIS,

s, s
1

, s
2
, s •, et.c., range ovet all elements of s, and so forth, both for expliicit quantification

and for lambda abstraction.

There are some identity inter~ctions between our English characterisations of the 1-

LI SP field and these mathematical constructs, deriving from the fact that a structural field is

of course not actually an ordered pair of sets and functions; it can merely be modelled, at

any given moment, with such a mathematical abstraction. Modelling is itself a semantical

operation, and yet another intepretation function relates the domain being modelled with

the model; one of the questions that an account of such a mapping would have to answer is

that of how object identity in the source domain is modelled in the target model. We have

spoken of the 1-LISP field changing from time to time; in our mathematics, since no

mathematical entity can change, we model each change with a new mathematical object

Thus the set FIELDS models the set of all possible states of a field; each individual state is

modelled with an element of that set In the mathematical characterisation of an operation

(like RPLACA) that changes the field, we will describe the state of the field with a new

elements of FIELDS.

With respect to these definitions we can define the set LISTS of lists (given a field),

as suggested earlier. Our first attempt, in which lists were those pairs whose CDR's were lists

2. 1-LISP: A Basis Dialect Procedural Reflection 120

or the atom NIL would be recursively defined as follows:

LISTS a AF E FIELDS [{NIL} U {P € PAIRS I CDR(P,F) E LISTS{F)}] (S2-18)

This characterisation, as we noted, was unacceptable in ignoring non-tree lists. The second

suggestion, in which we identified lists with sequences of their elements, would be modelled

as follows:

LISTS a AF E FlEI.DS (S2-19)
[{<>} u
{<s1 s2 ... s,?

I[V1 1 S 1 S k
[CDR(S1,F)=S1+iJ A
[ICDR(St,f) = NIL] V (t;DR(Sk,F) = S1, 1 S 1 S kTI)}

As menctoned in the discussion, however, this too had a number of unacceptable

consequences, including the fact that it removed lists from the structural field. The

definition we settled on, sketched in s2_-12, can be math:matically modelled as follows:

is:

NON-LISTS a AF E FIELDS [ATOMS U NUMERALS - {NIL} (S2-20)
U {P E PAIRS I CDR(P,F) E NON-LISTS(F)}]

LISTS = AF E FIELDS [S - NON-LISTS(F)]

We can also define the type-identity predicate outlined in s2-10. A first suggestion

TYPE-EQUAL : [{F X S X SJ _. {TRUE, FALSE}]

S Af E FIELDS, s1. s2 € $

[tr [s
1

= s
2

]

then TRUE
e1se1f [(s1 ¢ PAIRS] V [s2 ¢ PAIRS]]

then FALSE
e7se[[TYPE-EQUAL(F,CDR(Sl,F),CDR(S2,F))] V

[TYPE-EQUAL(F,CAR(s1.r),CAR(s2 .r))]ll

(S2-21)

However this is too computational an attempt to avoid infinite regress, and is undefined on

just those cases we took pains to include: circular structures. A better approach is, for each

element, to identify those structures to which it is type-distinct, and then to define type-

identity with reference to this set:

DISTINCTS : CC F X SJ _. s"J
= M E FIELDS, S E S

u £ s E ATOMS v s e NUMERALS 1 then s - {s}
e1se ATOtJS U NUNERALS U

(S2-22)

2. 1-LISP: A Basis Dialect Procedural Reflection 121

{P € PAIRS j CDR(P,F) € DISTINCTS(F,CDR(S,F))} U
{P € PAIRS I CAR(P,F) E DISTINCTS(F,CAR(S,F))}

TYPE-EQUAL : {CF X S X SJ ... {TRUE, FALSE}J

a AS1, s2 [s1 (DISTINCTS(f, s2)]

From this definition the appropriate symmetry relationship can be proved:

VF € FIEI.DS, s1, s2 € S
[TYPE-EQUAL(F,S

1
,S2) a TYPE-EQUAL(F,S

2
,S

1
)]

{SZ-Z3)

(SZ-Z4)

It is clear that the strucrural field as defined is approximately a graph, consisting of

three node types (atom, numeral, and pair) and three asymmetric labelled arcs (CAR, CDR,

and property-list), with certain restrictions on the types of arcs. In addition there are a

handful of distinguished nodes. This characterisation will be of some use in subsequent

proofs. However we also have defined a locality or accessibility relationship over the

elements (nodes) of s, which fonns a different but related graph: the accessibility

relationship is a directed arc between nodes as well, but it is a different arc from the other

three - it is different in kind, rather than being a fourth variety. If FIELDS were defined

to be a graph of the first sort, then one could define a related graph FIELDS• consisting of

the same nodes, with the accessibility relationship as the directed arc, rather than the three

primary binary relationships. Of course FIELDS• would be highly dependend on FIELDS,

since the accessibility relationship must correspond topologically to a subset of the primary

relationships. A general definition of a structural field .could be found in this direction, but

such general goals are not our present task. We will talk more simply and infonnatly in

tenns of the particular structural fields we will define.

3. Semantic Rationalisation Procedural Reflection 122

Chapter 3. Semantic Rationalisation

Our next task is to subject 1-LISP to semantical scrutiny, with the hope of clarifying

the assumptions and principles that underlie its design. A general introduction to our

approach was given in section l.d; we will repeat here for reference four diagrams that

summarise our main terminology. First, we said that in general we take a semantical

interpretation Junction to relate elements of a syntactic domain "ith corresponding elements

of a semantic domain, as follows (here 4' is the interpretation function from syntactic

domain s to semantic domain D):

I Syntactic Domain sl t------')l~ ~emantic Domain D
(S3-1)

We then presented the following more complex version of this diagram, intended to cover

the general computational circumstance, where e is the interpretation function mapping

notations into elements of the structural field, 4> is the interpretation function making

explicit our attributed semantics to structural field elements, and ,i, is the function formally

computed by t.'te language processor.

(S3-2)
Notation Nl No tat ion N2

0 0

Structure S1 Structure S2

Designation 02

With respect to this diagram, we said that we would prove the following evaluation theorem

for 1-LISP (and therefore by implication for all standard LISPS, including SCHEME):

VS E S [1f [c)(S) E S] then ['l'(S) = 4>(S)] (S3-3)
else (4>('1'(S)) = ~(S)] J

In contrast, we are committed to the construction of a dialect satisfying the following

equation (the nonnalisation property) - much more similar to the procedural regimens

defined over classical calculi (logic, the >i. -calculus, and so forth, as we will show in this

3. Semantic Rationalisation Procedural Reflection 123

chapter):

VS € S ([cit($) = clt('i'(S))) A NORMAL-FORM('l'(S})]

The procedural regime that it describes can be pictured as follows:
nonnal fonn

✓

{S3-4)

{S3-6)

In this present chapter we will investigate these semantical issues in detail, beginning with

an analysis of the semantical analysis of traditional systems, turning then to a consideration

of semantics in a computational setting, and then taking up the task of setting uut a full

account of the semantics, both declarative and procedural, of our basis 1-LISP dialect.

3. Semantic Rationalisation Procedural Reflection 124

3.a. The Semantics of Traditional Formal Systems

Diagram S3-2 is sufficiently general that we can characterise a variety of traditional

formal systems in its terms, beginning with logic and standard model theory.

3.a.l Logic

When formalising the (declarative) semantics of, say, a first-order language, one Jays

out assumptions about the denotational import of the various predicate letters and terms,

and then identifies (usually making use of the recursive compositionality of the grammar)

the semantical import of composite expressions as a function of the ingredients. Thus we

might say that the letter Q, R, and s designate one-place predicates, the atomic terms A, B,

and c designate objects· in the domain, that sentences of the form P(X) are true (designate

Truth, to be Fregean) just in case the predicate designated _by the predicate letter P is true

of the object designated by the term x, and so forth. Similarly we might add that sentences

of the form P A Q are true just in case P is true and Q is true, that sentences of the form P

:::> Q are true just in case P is false or Q is true, and so on.

Independent of this semantical account one defines an inferential regime that maps

sentences or sets of sentences onto other sentences. Such an inferential regime is defined to

obey what are called inference rules that state whi.ch transformations are legal. Modus

ponens, for example, is a rule that, given sentences P and P :J Q, would yield Q. Crucially,

the inference rules are defined over the Jbnn of the expressions involved - not with

reference to the sematical weight they are taken to bear. What one then attempts to prove,

typically - and this is the point - is that this inference rule is sound, which is to say, that

in all cases the sentence that it yields will be true in those cases in which the sentences it

uses are true. If the conclusion (which we may call v) semantically follows from the

assumptions (x), we write x 1= v; if the inference regime will produce v given x we write x

1- v. To say of an inference regime that it is sound is to say that x I- v only if x 1= v. To

say that it is complete is to say that if x 1= v. then x I- v. Only after one has established

consistency and completeness (possible only in some languages, and of course proved

impossible for all logics with the power of arithmetic) can one treat the entailment

relationship "1=" and the derivabi/ity relationship "1-" as equivalent, in an extensional sense:

3. Semantic Rationalisation Procedural Reflection 125

they relate the same sentences. They are of course different in meaning: saying that s 1 1-

s2 is different from saying that S1 I= s 2 ; it is in fact exactly because they are different that

it }s powerful to show that they arc extensionally the same. In particular. it is crucial to

realise that entailment is fundamentally semantical; derivability fJndamentally formal.

These few points are illustrated in the following diagram. By 4'' (what in the

philosophy of language is called a satisfaction relationship} we refer to a relationship

between sentences and models in which that sentence is true; this is the standard way in

which entailment is defined. Thus s 1 I= sz just in case '1> • (s 1) c 4l • (s2) - that is, just in

case s2 is true in all models in which s1 is true. For example, if s1 is the sentence [vx

MONTH(X) ::, DAYS-IN(X, 30) 1 A [MONTH(FEBRUARY)] and S2 is the sentence DAYS

IN(FEBRUARY, 30). then sz is entailed by s1 because in all models in which Febmary is a

month and all months have 30 days, February is of 30 days duration as well.

Sentences S1 I- Sentence S2 (S3-6)

I=

Entailment (1=} is not a relationship between models; like derivability (1-) it is a

relationship betwen sentences. Being semantical. however, I= in a sense "reaches down

through the semantics" of the sentences involved. In contrast, 1- is a purely fom1al

relationship that h~lds between sentences solely in virtue of their JJrammatical structure.

What is crucial about 1=, is that it be definable purely in terms of s1, s2, and <I> alone; the

definition of I= must not rest on the definition of 1-, or on any of the machinery defined to

implement it.

The satisfaction relationship ti>, in other words, and the derivability relationship 1-,

must be i11depende11tly definable.

All this is of course well-known - we have reviewed it to set our understanding of

LISP up against it for comparison. With respect to such a comparison the following points

are relevant: there are lhree relationships of interest mentioned in the preceding discussion.

The first is the relationship between symbols and their designations (analogous to what we

will call 4>); the second is a formally-definable relationship between expressions (1-}; the

third is a semantical relationship between sentences (I=) that depends on their designations.

3. Semantic Rationalisation Procedural Reflection 126

The proof of correctness of the format relationship I- is that it correctly mimics I=. 1- does

not co"ectly mimic 4>. 4' is necessary in order to define I=, but 4t is not itself I=. Our

criticism of standard programming language semantics, at least for languages like LISP

perfused with pre-computational semantical attribution, will be that the LISP analogues of 4t

and 1= are unhelpfully conflated.

The comparison between S3-6 and S3-2 is clear: in logic, there is no distinction

made between notation and abstract structure; the inference rules and the semantics are

defined with respect to sentences (sentence types, to be precise, but s in S3-2 is not simply

the type of N), not with respect to an abstract structure or field into which sentences are

translated. Thus the Nl and s1 of figure S3-2 are coalesced into s1 in S3-6. The

relationships between the other elements of the figure, however are these: satisfaction is

logic's «1>; derivability (1-) is logic's ,i,, and entailm~nt (1=) is logic's o.

Two further points are notable regarding logic's ,i, and o - the derivability and

entailment relationships. First, they are not functions: from any given sentence or set of

sentences there are an infinite number of other sentences that can be derived; there are an

infinite number of other sentences that are entailed. In our deterministic computational

formalisms, in contrast, we will of course have to define a more narrowly constrained ,i, that

is at least approximately a function.

Second, as mentioned above, the entailment relationship is defined without reference

to the derivability relationship. Since entailment is not a function, however, we do not

have a situation in which, for any given sentence, entailment takes it to a particular

sentence, and derivability takes it to a particular sentence, and then the proofs of soundness

and completeness show that this is the same sentence. We do not, to put this m\Jre

formally, have the following equation saying that two expressions are the same (i.e. the

following equation is semantically ill-formed, because o and 'Ir are not functions):

; False for logic (S3-7)

Instead, in a sound and complete logic one instead proves the following, which says that

two sets of expressions are the same:

VS [{ X I s O X } = { X I s 'Ir X } 1 (S3-8)

3. Semantic Rationalisation Procedural Reflection 127

Using the more familiar labels peculiar to logic, this latter equation can be rewritten as (in

fact there are subtleties: the statement [s t== x = s 1- x) is stronger than [t== x e 1- x),

for example if s is infinite, implying that { x I s t== x } may be larger tl1an { x I s 1- x },

but the intent is clear):

vs [c x I s 1== x l ;I c x I s 1- x l 1 (S3-9)

In designing 2- and 3-LISP we will i1ave the stronger equation S:>;- 7 as our goal, although

we too will fail to reach it - will fail to attain a computable version of o tl1at is a function.

3.a.il The A-Calculus

In the A-calculus, as in logic, standard denotational methods arc used to describe

possible models of A-calculus expressions. The reduction regimes defined over such

expressions (a· and p-reduction, typically) arc then shown to be sound and complete, in the

following sense: every expression B to which an expression A reduces can be shown to have

the same designation as A. The A-calculus's 'I', iil other words. is always designation

preserving. For example, suppo~ we have the expression

[AZ. ((AY. (AZ.YZ)) Z)] (AG.G} (S3-10)

Then by a series of reductions we would be given the following derivation:

[AZ. ((>.'I. (>.Z.YZ}} Z)] {M.G)
[AZ. ((AY. (>,W.YW)) Z)] (AG.G)
[AZ. (>,W.ZW)] (AG.G)
(AW. (AG.G)w)
AW.W

: a-reduct ion
; /J- reduct ion
; p-reduction
; p-reduct ion

(S3-11)

The last line designates the identity function in the standard mode], which is to say, is

mapped by the standard interpretation function c\> onto the identity function. What is true,

therefore, is that each of the Jines of sa-11 designates the same function, since neither a·

reduction nor p-rcduction changes designation. In addition, the last line is in nom1a/ fonn,

which is defined in the ;\·calculus as being an expres.c;ion to which no further p-reduction

rule applies.

In the A-calculus, in other words, 4t is the interpretation function, and 'I' is the

transitive closure of a· and p-rcduction. That 'fr is approximately a function, up to ,r

interconvertabitity, is proved in the Church-Rosser theorem: although at any given stage in

the reduction of a lambda-calculus expression there may be more than one option of how

3. Semantic Rationalisation Procedural Reflection 128

to apply an a or fJ reduction rule, if an expression s reduces to normal form via one path

of reduction steps, it will reduce to that normal form expression, or one convertible to it via

a-reductions alone, via any other path of reduction steps. There arc subtleties, such as that

some well-formed expressions do not reduce to a normal form, but the permeating

character of the A ·calculus's reduction scheme is that expressions are taken by ii' towards a

co-designating expressions that are not further reducible.

There are various options open in defining an interpretation function cz, for the A·

calculus: although in what we will call standard models each lambda term designates a

function, other possibilities are sometimes chosen. Various proofs of consistency, for

example, select as the designation of a term E the class of all sentences of the lambda

calculus interconvertible with E by a· and {J·reduction (it is thus immediate that a· and p

reduction are designation preserving: this is one of this model's great conveniences).

Nonetheless we will assume the standard model, where A ·terms designate standard

(continuous) functions, throughout our discussion. (Certainly no LISP aficianado can easily

see AX. x as designating anything but the identity function.)

The >.-calculus differs from logic in two important ways: there is a much stronger

sense that its it takes expressions towards a definite goal (a non-reducible term) than is the

case in logic, where it (1-) leads to an infinite set In a certain sense, in other words, the A·

calculus's it is stronger than is logic's v. On the other hand, the >.·calculus does not have a

particularly well-specified n: the concept of normal-form is defined with respect to the lack

of further applicability of the inferential protocols, not independently to any salient degree.

One could argue that this u is no weaker than logic's n (entailment), but what is different is

that in logic 'fr and o (1- and t=) arc equivalent in restrictiveness: in the >.·calculus 'fr is

much more finely specified than is the o that makes no reference to the reduction scheme

(it merely says that designation is preserved).

In contrast, we will require of 2-LISP that the definition of o be complete - at least

up to the identification of category, and, for all but function designators, up to type

equivalence - prior to the definition of v. Our notion of normal form, in addition, will be

different from that used in the A·calculus: we will define normal-form primarily in terms of

the type of the referent (01, and equivalently 02, in S3-2), and partially in terms of the

form of the original designator (s1 in S3-2): no reference will be allowed to the mechanisms

3. Semantic Rationalisation Procedural Reflection 129

that transform that original expression.

A comment in passing. The reader will note that we are defining for our own

purposes a variety of traditional technical terms, of which "nonnal form" is a good

example. Every writer faces the question of whether familiar or new terms will best convey

a new understanding, frequently adopting some mixture. We too will introduce some new

terminology, but will also stretch some familiar terms to fit our circumstances, particularly

when the essence or fundamental insight on which the original notion was based seems also

to lie at the heart our new idea. Thus by "normal form", for example, we signify a concept

related, but not identical, to the notion of the same name used in the A-calculus; it is our

sense, however, that the essential qualities of a A-calculus normal fonn expression - being

stable under processing, context independent, and in some informal sense minimal - arc

preserved in our extended notion. In aid of the reader, however, we will make every effort

to note explicitly any circumstance in which we use a traditional term with other than it~

received meaning.

3.a. iii PROLOG

It is instmctive to look next at PR0L0G, 1 as our first example of a computational

formalism, since PR0L0G is widely advertised as semantically strict, and derivative from logic.

PR0L0G, as mentioned in the introduction, is at heart a dual-calculus formalism, in that the

procedural consequence and declarative import are signified by what amount to different

languages super-imposed one upon the other. One of these languages - the one over

which declarative semantics is defined - is a subset (Hom clauses) of the first order

quantificational logic: the declarative interpretation function is then inherited from logic

directly. 4> for PR0L0G, in other words, is 4> from first-order logic, without modification.

It follows, then, that PR0L0G's !fl is not based on computational considerations, since

logic is not a computational system. PR0L0G also has a formally-defined relationship among

sentences (among processor and field states, properly, but we arc being informal for the

time being) computed by the PR0L0G processor: this is PROLOG'S v. Because it inherits 4>

from logic, standard notions of entailment (1=) are defined; one can then prove that

PROLOG'S v implements a subset of logic's 1=. Since entailment is not a function, one does

not prove that 'I' correctly embodies 1=; rather, the PR0L0G designers have proved that q,

3. Semantic Rationalisation Procedural Reflection 130

embodies a subset of 1=z (by showing that it implements a subset of a provably sound 1-).

Thus PROLOG has a cleanliness that LISP lacks: ~ and ,i, are independently defined.

This allows a proof that the PRO LOG processor is correct (it embodies a subset of 1=z) -

something that cannot be done for LISP. For we have no prior notion of what LISP should

do: we can therefore prove correct only implementations of LISP, or programs that designate

the LISP evaluator, or meta-linguistic characterisations of evaluation, and so forth. In

Gordon, 2 for example, we find a proof that the meta-circular definition of EVAL as given in

the LISP 1.5 manual is correct: by this is meant that. given a meta-theoretic definition of

LISP evaluation, the evaluation of the definition of EVAL will yield behaviour equivalent to

that of direct evaluation. But this is not a proof that LISP evaluation is itself correct, in any

sense, because there is no pre-computational intuition as to what LISP evaluation should be.

By analogy, if I asked ·you whether a device that I built in my backyard was correct, you

would have to ask me what it was supposed to do, before my question would make sense.
' '

If my reply was only that it is designed to manifest its own behaviour, then my original

question is rendered circular.

In contrast to LISP, PROLOG is defined in terms of a pre-computational

characterisation of what its processor is trying to do: it is trying to maintain truth, in terms

of an independently specified truth theory (model theory for first logic). Thus, in this

limited sense - limited because it does not deal with what subset of entailment the PROLOG

processor computes, or about side effects and so forth - it is meaningful to ask whether

PROLOG'S V is correct

After spelling out the declarative semantics naturally attributed to LISP structures,

and sketching the architecture of a rationalised design, we too, like the PROLOG designers,

will be able to ask whether a proposed LISP processor is correct. In chapters 4 and 5 it will

be required of us to demonstrate that this question, for 2-LISP and a-LISP, can be

affirmatively answered.

3.a.iv. Commonalities

The crucial facts that permeate the discussions of the foregoing three systems (logic,

the A-calculus, and PROLOG) are three:

3. Semantic Rationalisation Procedural Reflection 131

t. Semantical import was attributed to the expressions or structures of each
fonnalism prior to the definition of a procedural regime over those expressions
or structures.

2. The procedural treatment was defined independently of the semantic
attribution. Th.is is the direct manifestation of the fact that logic. the A·
ca1culus, and PR0L0G are Jonna/ systems: how things go is defined in terms of
formal structure, not semantical weight.

3. 1be procedural function it was related to the attributed semantical
interpretation function 4t in a particular way: 'I" was <P·preserving, mapping
expressions onto other expressions with the same designation (or, in logic's
case, onto expression with more inclusive designations).

Points 1 and 2 establish that semantical weight and procedural treatment are independently

specified. It is only because of this independently attributed semantics that the procedural

protocols could be semantically characterised: if it were not for the prior existence of •I>, the

relationship ,r, would simply be any relationship at all, and n would not exist.

In contrast with such similarities among these three systems, we have noted that USP

systems are not traditionally analysed in this manner. Evaluation is the procedural

treatment: the import of LISP constructs is characterised in tenns of the procedural

consequence (the common wisdom that LISP'S QUOTE is an operator that defers one level of

evaluation is a classic example). 11ms no true semantical analysis of evaluation is possible

under the standard analysis.

In constrast with tradition, we have said that 2-LISP's and 3-LISP's procedural

regimes will be based on a normalising processor: that the it of those dialects will take

structures into normal-form codesignators. It should by this point be evident that to define

a nom1alising dialect presupposes what we are calling a double semantics: that the notion of

normalisation and co-designation makes sense only when a declarative semantics is

formulated prior to and independent of the procedural treatment. It is for this reason that

laying out the natural declarative semantics of LISP is a prerequisite to defining 2-LISP.

Defining a normalising or simplifying dialect of LISP, in other words, is not straightforward:

it requires the explicit formulation of an entire theory of semantics for LISP stmctures that

is prior to and independent of any account of how the LISP processor is to function. This

is the bottom line of this entire sketch of semantics as traditionally construed.

One final comment deserves to be made regarding traditional procedural treatments,

stated in the third point listed above. We have pointed out that reduction in the X-calculus

3. Semantic Rationalisation Procedural Reflection 132

and derivability and proof procedures in logical systems are cI»-preserving. So too are

mathematical simplification rules over algebraic and arithmetic expressions. It is not

unnatural to ask, especially if one is primarily familiar with LISP, why cI»-prescrvation is so

common a semantical trait of procedural regimens. Nothing in points t or 2 above requires

that i' bear this particular relationship to 4': an that they require is that cI» and ,i, be

independent Furthermore, aesthetic considerations merely imply that some coherent

relationship between the two be honoured: cft-preservation is presumably just one of any

number of alternatives (that v and 4t be identical would be even simpler. for example).

There are two parts to this answer to this query. First, the great bulk of language

speaks about the world, rather than about other language. We communicate, primarily,

about sorr.~ subject matter: the shift into talking about our communication is a less natural,

and considerably more problematic, matter than simple linguistic behaviour that "stays at a

given semantical level". Level crossing behaviours of all kinds - from simple use/mention

shifts to full reflection - is, as this dissertation is of course at pains to make clear, a valid

and coherent subject matter of independent interest. Our concern with it, however, must

not mislead us into thinking that anything other than simple, constant-level symbolic

behaviour constitutes the vast majority of linguistic and fonnal practice.

Secondly, "about-ness" is exactly what the fonnally-defincd notion of designation is

intended to capture. As we have constantly said, designation cannot be defined in arbitrary

ways precisely because of this point, and our fonnal attempts to define the notion succeed

just to the extent that they rationally reconstruct lay intuitions. In addition, about-ness

must be faced if we are to construct a reflective architecture, because the defining quality of

reflection is that one's thoughts are about one's own thought processes. 11ms in order to

show that, when it reflects, the programs that 3-USP runs arc about its own operations and

structures, we will have to make reference to the designation of 3-LISP terms.

tl>-preserving behaviour, in other words, is by far the most natural kind, and it is

straightforward that artificial fonnal systems should be defined in this way. It must be

admitted in addition, however, that there is no great temptation to define the three systems

we have just considered in any other way, since anything other than tl>·preservation would

be impossible. For example, on the standard interpretation, ~-calculus expressions

designate infinite functions, not other expressions, and there is simply no possibility of

3. Semantic Rationalisation Procedural Reflection 133

having the syntactic transformation function be a de-referencing function. In programming

languages, however, when we concentrate on that portion of the structural field embedded

in programs, we deal a]most exclusively with terms whose referents arc other syntactic

expressions. This is not merely the case with such complex facilities as LISP'S macros,

FEXPRs, and the like - those deal with terms whose referents are other pieces of program

structure. But virtually all terms in programs other than function and mathematical

designators deal with data structures. which are themselves syntactic. It is the introduction

of such terms - and the concomitant embedding of the syntactic domain within the

semantic domain - that has apparently led to a temptation on the part of the fonnatism

designers to make the formally defined expression processor ("1) de-reference those

expressions for which de-referencing is possible (remains with the syntactic domain s), as is

indicated in S3-3 above. It is our mandate to admit and welcome these meta-structural

leveJs of designation, while preserving the basic co-designation processing that characterises

these simpler systems. We adopt this mandate in part because of our recognition that

explicit level-crossing and reflective behaviours are by far and away most easily introduced

into a system that by default preserves designation - into a system, we will say, that by

default remains semantically flat.

3. Semantic Rationalisation Procedural Reflection 134

3.b. The Semantics or Computational Calculi

Showing that the evaluation theorem holds for 1-LISP. and arguing for the increased

clarity of a rationalised dialect, are straightforward tasks. once the interpretation functions f)

and it have been made clear for LISP'S circumstances. The difficult task is to demonstrate

the coherence of defining these two functions independently, especially in what is so widely

taken to be a purely procedural formalism. In section 3.a we applied the terms of diagram

S3-2 to traditional systems; we next need to examine their applicability to computational

calculi in general. It might seem that programming language semantics would provide the

formulation of !JI and/or ,i, in the computational case. But this, we will argue, is not so.

To show this, we will for a moment set that diagram aside, and wilt look instead at what

traditional programming language semantics is concerned with. 1bis analysis will be

undertaken with some care, since the differences between standard denotational semantics

and the semantics we will ultimately adopt are crucially important. but nonetheless rather

subtle.

3.b.i. Standard Programming Language Semantics

Discussions that defend the utility of formal semantical treatments of programming

languages typically cite a number of benefits of this kind of analysis, of which intellectual

hygiene is often an underlying theme. It is suggested, for example, that a mathematical

account of the semantics of a programming language can provide a rigorous test of how

well that language is understood, may enable theorists to prove that implementations of it

are correct, can provide a basis on which proofs about the properties of programs may be

constructed, and so forth. It is convincingly argued that only a clear semantical fom1ulation

can render explicit what the formal structures in a computational system are intended to

mean, where by "meaning" is implied a general account of the total role that they play as

ingredients in a functioning system.

'Ibere can be no quarrel with intellectual hygiene, and we do not want to argue with

what traditional semantical treatments formalise. In our study of the semantics of LISP,

however, we are concerned with a rather different matter: it is our claim that what LISP is

arises from our attribution of declarative semantics to its structures - that the

3. Semantic Rationalisation Prc,.;'!dural Reflection 135

programming language, as it has been formalised, represents an attempt to embed in a

formal system a variety of intuitions and understandings about symbols and functions

already possessed by the typical programmer. that the programmer is expected to attribute

to the LISP structures and programs he or she writes. We are attempting. in other words,

to make explicit not only what computational structures "mean", in the sense of articulating

their complete behavioural or computational consequence, but why they are intended to

mean what they mean. We are trying to get hold of and explicate the understanding that

led to the definitions that would be characterised in a semantics of the standard variety.

We will not be satisfied, for example, with a crystal clear statement that the atom NIL

evaluates to itself in all environments with no side effects: we want to be able to say such

things as that NIL evaluates to itself because it is taken to designate falsity in all contexts,

and because it is accepted as the standard designator of that abstract truth value, and

because any expression that designates a truth value evaluates to the standard designator of

that true value.

This prior attribution is not explicitly reconstructed in typical semantical accounts,

although it permeates those formulated in what is called the denotational style. Even there,

however, what we will call the designation of symbols is mixed in with a total account of

their computational significance, in such a way that what a structure is taken to designate is

lost in a much larger account of the complete effects a structure may have on tl1e course of

an arbitrary computation. All side effects to environment, field, processor, and so forth, are

manifested in the single notion of denotation, which is far too broad and inclusive a notion

to satisfy our particular requirements. Similarly, the difference, even in an applicative

language like LISP, between what is designated and what is returned is not maintained: the

entire analysis is carried out in a mathematical domain where those two entities arc

typically identified.

In order to make clear how our approach will differ from this tradition, it is well to

make some comments on the received understanding of "semantics" in the computational

community. As the term is typically used, the semantics of an expression refers to the

complete computational consequences that the expression will have for arbitrary

computations. Thus computer science is by and large behaviourist and solipsistic, in the

sense that very little attention is paid to the question of the relationship between symbols

and the external world in which the processes are embedded. Thus the main semantical

3. Semantic Rationalisation Procedural Reflection 136

function is typically of a type that takes complete r,:achine states into complete machine

states. This tendency is illustrated by so-called semantic illlerpretation rules for compilers.

which deal not with what we take computational structures to designate. but rather with

what behaviour they engender (a compilation is clearly judged correct on operational

grounds, not in terms of semantic attribution).

We may note in pas.5ing that this is not the way semantics is construed for natural

language. For an English expression the analogous cognitive significance of an expression

- the complete account of the effects on my head - is by no means the same as the

designation or reference of that term. The two subjects are related: a considerable literature,

for· example, is devoted to the question of whether cognitive significance will in general

have to be accounted for expressly in terms of such designation, or whether it will be

pos.5ible to account for the internal cognitive consequences without knowing the

designation. Thus people argue as to whether an account of the psychological significance
. .

of the term "water" will have anything to do with water. However, certainly no one

as.5umes the two subjects can be identified. For example, the sentence "Fire!" may have all

kinds of consequences on my mental machinery, causing me to abort any other

ratiocination I am in the midst of, to send emergency signals to my leg muscles, and so

forth. However the word "fire" designates nothing whatsoever about my cognitive

apparatus: rather, it designates high-intensity oxidation. Furthermore, the fact that it

designates fire for me cannot, as many have argued, be explained solely in terms of

behaviour, certainly not mine, and not of the world either.

In contrast, if one asks of a programmer what the semantics are of some primitive,

he or she will typically respond with an account of how such expressions arc trentcd by the

primitive language processor. The meaning of QUOTE in LISP is a telling example: the near

universal claim as to its "meaning" is that it is a primitive function that defers one level of

evaluation. 11lis is quite evidently an account framed in terms of internal computational

consequence.

In fairness, there are two subtleties here, which must be brought out It will turn

out, if we analyse programs in terms of their attributed designation (i.e. if we recast

computational semantics on our own terms), that many of the tenns (object designating

expres.5ions) of a program will tum out to be designators of ele~ents of the structural field

3. Semantic Rutionalisation Procedural Reflection 137

of another computational process (i.e. they are in some sense meta-structural). In a simple

case, for example, the variables and identifiers of, say, a FORTRAN program designate the

dara structures that form the field of structures over which the FORTRAN program computes.

The embedding world of a program, in other words, is another set of computational

structures - this was the import of the process model of computation sketched in section

l.c. From this fact it is easy to see why, if we are not careful, it is apparently consonant

with our intuitions to assume that all natural semantics remains within the boundaries of

computational systems. In addition, most programming languages are typically used in a

first-order fashion; thus the explicit designation of terms designating functions can be side·

stepped in a semantical account that treats procedure applications as a whole. What

remains, typically, are the boolean constants and the numerals, which can be approximately

identified with their referents (the truth-values and the numbers); although this last is a

little embarassing, it seems the easiest move to make an apparently successful story

complete. Equally cmbarassing are such constructs as closures, which are not quite

functions and not quite expressions; they are posited as the "semantics" of procedures, but

without a crisp analysis of whether they arc designators or designated.

Once one moves to higher order languages and mcta-structurr.: facilities, however,

the fundamental contradictions and inadequacies of such an approach emerge. Once one

attempts, also, to integrate a representational or descriptive formalism with a procedural

one, the same problems come to the surface, for an internal model of semantics for the

base level structural field is simply impossible. A purely "internal" semantics, in other

words, is simply inadequate as a way of explicating attributed understanding. It is

incapable, for example, of explaining that (+ 2 3) has to do with addition, or that >.x. x

designates the identity function.

Not all computational semantical accounts are internal, of course; denotational

semantics in the Scott-Strachey tradition (as explicated, for example, by Tennent, Gordon,

Stoy, and others3) deal explicitly with abstract designations - functions and numbers and

truth values and so forth. In this respect standard denotational semantics is close in style to

the sort of semantics we are in search of. However there is an odd sense in which, for our

purposes, it goes too far, making abstract everything about the machine, to the point of

losing the original intuitions. Consider for example the numbers, which are typically

implemented in terms of binary numerals of a certain precision. On our account.

3. Semantic Rationalisauon Procedural Reflection 138

expressions like (+ 2 3) will designate five; the computational consequence of such a term

may be that a co-designating numeral is returned. A standard programming language

account (except for context rclativisation) would also map such an expression flnto the real

number five; thus in this instance they would be allied. Consider however a case of round

off error, or a situation in which integer numerals of only a certain size were supported.

We might for example have a LISP dialect in which (+ 1s,ooo,ooo 19,000,000) returned

the numeral -21, rather than 37,000,000, because of overflow, or where (" 1.0 (/ 3.0

3.0)) might evaluate to NIL, rather than r, because of the imprecision of the underlying

implementation. In such a circumstance, the kind of semantics we are looking for would

make explicit the fact that what was returned did not exactly match what was designated.

On a standard denotational programming language account, however, the full designation

would be so constituted - if that semantics were precise - to ensure that (+ 1s,ooo,ooo

19,000,000) designated the application of a modified kind of addition to the numbers 18

million and 19 million - a modified additior. function that yielded the answer -27 on such

arguments. Thus the semantics is formulated in service of behaviour, because its goal is to

explain behaviour; our goal, in contrast, is to make behaviour subservient to semantics, so

that we can decide whether the behaviour is appropriate. Thus we want to know that (+

1a,ooo,ooo 19,000,000) designates 37 million, so that we can decide whether the numeral -

2 7 is an appropriate thing to return. If a particular architecture is not constmcted so that

co-designating numerals are always returned, we are happy to allow that to be said, but not

at the expense of formulating the pre-computational intuition that enables us to ask

whether the result is co-designating or not.

The problem with denotational accounts, in other words, is that they don't identify

attribution independent of all the other aspects of an expression's computational

significance, and they do not identify that aspect of it that is independent of a procedural

or computational processing of the structures. That this is true is evidenced in the fact (and

this is perhaps the clearest way to understand our complaint) that there is no way, even

when one is given a ccmplete denotational semantics of a language, to ask whether the

language processor is designation preserving - no way, in fact, to ask about the semantic

character of the processing regimen at all. We too will erect an edifice of the standard

denotational variety, but we will not use the word designation to refer to the abstract

functions that this mathematical structures maps expressions onto. Rather, we will say that

3. Semantic Rationalisation Procedural Reflection 139

such a theory mathematically manifests the foll computational significance of a symbol. We

reserve the word "designation" because we will formulate an account of that as well; we

will then be able to ask how the computational significance accords with the prior

attribution of meaning formulated in terms of the independent notion of designation.

Denotational semantics, in sum, as cu"ently practiced in computer science is
denotational in style. but it is the semantics of what happens to structures, 1101

of what those str:"1,.lures are pre-computationally taken to signi/Y. Because it is
essentially operatfonal in character, it does 1101 deal with what programs are
abouL

A reader may object that this is too strong a statement: that surely denotational

semantics deals tautologically with what computational structures denote, and that any

attempt to discriminate between designation and denotation is surely splitting hairs. Such

an objection, however, would misunderstand our criticism. The point is that "designation"

is an English word having to do with what things stand for - a term that arises from the

unexplained but unarguable human use of symbols. Denotational semantics would indeed

study the proper designation of computational symbols if it took that designation as

olllological[y prior to its reconstruction. In point of fact, however, the accepted technique

appears to be this: we are allowed to make the denotation of a computational structure be

whatever is required to enable us to characterise mathematically whatever it is we are

studying. Consider for example this quote from a recent introductory text:

"It will not be satisfactory to take the denotation oj a function construct to be
the mathematical function defined by its input/output behaviour. To handle
side-effects, jumps out of the function's body, etc., we will need more
complicated denotations. "4

As we have said before, we have no complaint with formulating sufficiently complex

mathematical entities to facilitate the behavioural consequences of code that engenders side

effects and jumps. We too will rest on this work, and will use such techniques. However,

if our mathematics makes the numeral 5 denote an infinite function from tuples of

input/output-streams, processor states, and so forth, onto a function from continuations to

outputted answers, we have surely wandered far from any natural notion of what anything

stands for. It should take considerable argument to convince any of us that the numeral 5

stands for anything other than the number that is the successor of four.

3. Semantic Rationalisation Procedural R~flection 140

Note in addition, in the quote just presented, the phrase the mathematical function

defined by its input/output behaviour. Again, this betrays a loss of innocence, this time of a

methodological flavour. Surely the input/output behaviour is defined to honour the

mapping appropriate for whatever function the construct signifies. Surely, that is, if we are

within computer science, where we talk of formal symbol manipulation. We lose that

innocence at the expense of the natural boundaries of the field, admitting car mechanics on

an equal footing with echt computational practices.

The trouble takes a particular form: the apparent causal relationships - the

dependences between theory and practice - are unnaturally inverted. In present practice

behaviour rules, and semantics follows. The structure we argue for is the reverse:

semantics, we claim, is foundational; behaviour should be designed to honour it What we

understand symbolic structures to signify is primary: we then arrange their procedural

treatment to honour this attribution. The input/output behaviour is "what we intended"

just in case it honours it correctly; it should be subservient to semantics (as proof theory

and derivability and inference rules and so forth are subservient to truth-preservation and

entailment and so forth), rather than the other way around.

Although these problems infect our theoretical J.Ccounts, lay practicioncrs have not

lost the clarity of semantic innocence. Everyone knows that the numeral 6 stands for the

number five; everyone knows that T stands for tmth. It is not, in ot.~er words. so much

that folk pratice is problematic, as that our mathematical meta-theory has lost contact with

that native understanding. The reconstruction of lay understanding is thus our task: a goal

once again subsumed under our aesthetic of category alignment. Our theoretical account

should cohere - should correspond in the boundaries it draws and the patterns it finds -

with that of the attributed if tacit understanding that defines the subject matter.

Since the power of our argument will emerge from the increased power of

reconstructed systems (not, in spite of these pages, from rhetoric or invective), it is fair to

ask what the consequences will be of accepting our view. First, we have denied that

standard semantical practice reconstructs what we are calling designation. Note, however,

that we have used two words with approximately equivalent meaning: "denotation" and

"designation". It is the latter on which we are staking our claims; with the former,

therefore, it is only reasonable to be generous. Therefore, in deference to current practice,

3. Semantic Rationalisation Procedural Reflection 141

we will use the term denotational semantics to characterise a style of mathematical

treatment. in which structures are assigned an interpretation in a mathematical meta·

language, and in which the formal relationships between such structures are explicitly

treated in terms of such interpretations. By denotational semantics, in other words, we

refer to a mathematical treatment of the situation pictured in diagram S3-1. What is left

unspecified is what kind of illterpretation is thereby analysed - whether. in other words,

the analysed notion of denotation has anything to do with the at!ribution of significance or

designation.

In our own analysis we will present a variety of denotational accounts, of which two

figure predominantly: one of declamrive import (cl>) and one of proceduml consequence ('1').

It is the first that must, we submit, formulate the designation of all expressions. We will

argue that denotational semantics of the standard programming language sort is

denotational 3emantics of full procedural consequence mixed with some amount of

declarative import, that operational accounts are denotational accounts of procedural

consequence, that Tarski-like model theories ;'or logical languages (such as for the first

order predicate calculus)5 are denotational semantics of declarative ir,1port, and that a

proper reconstruction of LISP requires both such treatments. In order to demonstrate that

wt have satisfied the third mandate listed at the beginning of this chapter, in particular, we

will have to have both semantical treatments exp1icitly available.

It may seem odd to the reader, especially one famiiiar with the logical traditions, to

call the relationship ,i, a semantical one. More particularly, it might appear that what •;.,c

arc calling declarative semantics is merely what in logic is called model theory, ~r.i.i what wc

arc calling procedural semantics is what in that tradition is called proof theory. Model

theory, after all, deals with the declarative interpretation function and with satisfaction and

designation and all the rest; proof theory deals with the relationship between sentences

provided by the inference processes. However this comparison is too facile, and fails to

recognise a crucial point Perhaps in part because derivability is not a function, there is no

tendency to treat the procedural relationship in logic in tenns of attributed understanding:

rather, one formulates and understands it purely in terms of the mechanisms that

implement it. TI1e entailment relationship is in contrast semantically characterised, but it is

so simple, easily stated, and so purely a corollary of the main declarative semantical

treatments - i.e. of the model theory - that it is not given a name on its own. In our

3. Semantic Rationalisation Procedural Reflection 142

computational fonnalisms, however, we do understand procedural consequence in tenns of

attributed understanding: as we made clear at the outset, we understand LISP in terms of

junction application, and function application is an essentially non-computational, and

therefore attributed, understanding, deserving of its own semantical analysis. There is an

entirely non-attributed understanding of how the procedural treatment works, and the

correspondence between the two constitutes the proofs of soundness and completeness and

the rest for the relationship 'It.

An example will make this clear. Consider the expression (• (+ 4 2) (- 4 2)). The

declarative semantics will tel1 us that this structure designates the number twelve. The

procedural semantic characterisation in, say, a depth-first left-to-right designation-preserving

computational systf:'m like 2-LISP, would say that this generates the application of the

numeral-adrlition function to the the numerals 4 and 2, followed by the application of the

num~i-al·subtraction function to the same two numerals, followed by the numeral

multiplication of the resulting numerals, ·yielding in the end the numeral 12. This last is

not the designation function (even though analogous function applications are used in the

meta-theory to specify the designation - an entirely different affair), since it talks of

operations and results and temporal ordering and so forth. Neither, however, is it the

Jonna/ symbol manipulation account that is the true computational story of what happens,

which has to do, as we have said so often, with structure and environments and processor

states and intermediate results, none of which makes reference to the notions of functions

and application at all. Rather, it is a semantical account. probably compositional and so

forth, of what happens.

It is 4>, in other words, that would map (• (+ 4 2) (- 4 2)) onto the number twelve;

it is 'I' that would characterise the relationship between (• (+ 4 2) (- 4 2}) and the

resultant co-designating numeral 12, in terms of normal-fonn codcsignators and function

applicatior... Finally, it is the computational account of the implementation that would

specify in fact what happens when (• (+ 4 2) (- 4 2)} is processed: an account,

presumably, provably equivalent to that semantically specified in the formulation of v.
These three related but independent stories - of designation, of procedural consequence,

and of implementalion - will permeate the discussions throughout the entire dissertation.

3. Semantic Rationalisation Procedural Reflection 143

It will tum out, as the reader will see in the first parts of chapter 4. that making

constant reference to both of «) and q, quickly becomes cumbersome in dealing with a real

&ystem - even one as limited as the pure LISP dialects we will develop. More importantly,

it becomes unnecessary if fl» and q, are sufficiently closely allied that talk of one can always

be simply converted to talk of the other - it is made unnecessary, in other words, exactly

when one succeeds in developing a semantically rationalised system. For example, in 2-

LISP, because of the semantical type theorem, and because of the category alignment

between i' and «), it is always natural to talk only of the designation (.i,) of fonnal

expressions; their procedural import it is so readily obtainable from their declarative import

that intricate discussions of the fonner are happily dispensed with. From this fact,

however, it should not be concluded that ,i, is irrelevant: the very point is to make v - a

function that one necessarily must contend with - so consonant with «) that it can be safely

ignored. Our ability to ignore v in most of our thinking about 2-LISP, in other words, will

be our great success, just as the ability to prove that I- and I= are equivalent in complete

logical systems allows one to think in terms of just one. In dialects in which procedural

treatment docs not parallel the declarative treatment in systematic ways, the luxury of using

just one cannot be achieved

3.b.ii. Declarative Semantics in LISP

It might seem to take some care to show that programmers bring a pre

computational attribution of significance to LISP, but in fact it is straightforward, once it is

clear what the endeavour is. Some simple LISP examples will illustrate. The USP atom T,

for example, is taken to signify tmth, and the numeral 6 to signify the number five.

Similarly, the expression (CAR X) signifies the first element of whatever list x signifies.

TI1ese claims do not rest on the fact that the atom T evaluates to itself, or that the

expression (EQUAL • A • A) evaluates to that atom; rather, the situation is just the reverse.

We make the atom T evaluate to itself, and (EQUAL 'A 'A) evaluate to T, because r stands

for troth. Similarly, the numeral 5 docs not signify the number five because of how it is

treated by the LISP "addition" function. Nothing but confusion would result if the

expression (+ 5 e) were treated by the LISP interpreter in a way that bore no relationship

with our understanding of that expression as a tem1 designating the sum of five and six.

There is nothing saying that LISP has to be defined this way, but the fact remains that it is

3. Semantic Rationalisation Procedural Reflection 144

designed in this way. and for good reason. Even though the LISP interpreter does not

know that the numeral 5 designates five, it is enonnously useful that we define its

behaviour so that we can make use of our externally attributed understanding that 6 stands

for five. We live happily with the fact that LISP deals with numerals {and not with

numbers) because we can satisfy ourselves that things have been arranged so that no

differences in behaviour arise. But to be able to say "it is just the same either way" implies

that we know the difference, and that we understand one as standing for the other.

Imagine instructing a novice in the use of LISP - a useful gedanken experiment

because it provides a natural setting in which one's pre-theoretic intuitions need

articulation. One would clearly mention the fact, if the student did not realise it straight

away, that the atom T stood for "true", and NIL for "false", before attempting to explain

why the expression (EQUAL 3 4) evaluates to NIL. Similarly, one might say that the LISP

field of data structures included linked structures called "cons-cells". and that the first half

of such a cell is called its "CAR"; the second half, its "coR". By using such tenninology in

English - the paradigmatically referential language {and not, at least so far as anyone has

shown, a computational language) - one legitimates the use of such descriptive phrases as

"the CDR of CELL-20", and so forth. Thus we might say to him or her, "If the CAR of this

/isl is the atom LAMBDA. then we know that the list represents a function ... ". This is an

entirely natural way to speak, which again betrays the fact that in our use of the terms

"CAR" and "coR", we think of them as concepts under which to fonn descriptions, not as the

name of procedures. And, at the risk of being repetitious, we need to remember that

descriptlons and functions are different categories of object The phrase "the largest integer

N such that N is its own square" is a description, but invokes no procedure.

A striking piece of evidence that we understand (CAR x) to signify the first element

of a list, prior to our understanding that the LISP interpreter will return the first element of

that list when it evaluates the expression, is provided by the SETF procedure {recently

introduced in MACLISP6). A generalised assignment operator is defined such that the

expression (SETF (CAR X) <EXP>) is equivalent to (RPLACA X <EXP>) (similarly (SETF X 4) is

equivalent to (SETQ X 4), (SETF (CADR Y) Z) is equivalent to (RPLACA {CDfi Y) Z), and so

forth). SETF doesn't evaluate its arguments - rather, it is a complex macro that unwinds its

first argument, so to speak, constructing a modified compositional structure that will effect

the change on the proper structure.

3. Semantic Rationalisation Procedural Reflection 14S

The code for SETF could be used as a way of explaining what SETF means. but this

doesn't answer the question of how SETF is understood, or why it was defined, or what was

in the mind of the person who defio.ed it One sometimes hears the explanation that SETF

is a procedure such that after evaluating (SETF A B) then evaluating A will return ll, but this

is far too non-specific to capture its meaning. By this account (SETF (CAR X) 4) could

expand into either of (DEFINE CAR (LAMBDA (X) 4)) or (SETO X ' (4 5 6)). In response to

such criticisms, partisans sometimes offer the reply that SETF effect the minimal change

necessary to make the first argument evaluate to the second, but of course the notion of

minimality would have to be discharged, and is probably inadequate no matter how it is

construed. In sum, alt of this kind of talk is an inadequate reconstruction of the intuitive

feeling that SETF should change the structure that the first argument points to, in some sense

other than what it evaluates to.

Another way in which such constructs are sometimes explained is in tenns of how
. .

they work. One sometimes hears of left-hand side values and right-hand side values, since

the the non-evaluative situation typically occurs on the left hand side of the grammatical

expression used for such assignment. Such a characterisation, of course, is inelegant in the

extreme. A better account. but one still tied unnecessarily and unhelpfully to the

mechanics of implementation, uses a notion of a locative: thus x in the expression {SETF x

' (4 6 6)) would be used as a locative to identify a location to be set to the quoted list.

This too, however, is an admission of defeat: the name of a mechanism used to implement

a simple intuition is used as the theoretical vocabulary in tenns of which it is defined, for

lack of a better alternative. We did not need any notion of location in defining LISP in the

previous chapter; it would be odd to introduce one at such a point. Furthermore, the

concept of locations would seem to arise from Von Neuman architectures, and LISP is

powerful for, among other reasons, the fact that its abstract virtual machine is in no way

dependent on notions derivative from this class of computational device. Furthermore, the

actual code that implements SETF docs not make reference to the fact that LISP is

implemented in tenns of locations on such a Von Neuman machine; it would be odd,

therefore, to think that the natural explanation of SETF would need to depend on this

inaccessible underlying architecture.

There is a much simpler explanation of SETF than its code, that again betrays the fact

that we use our understanding of language to understand fonnal systems. SETF works in

3. Semantic Rationalisation Procedural Reflection 146

the way that it does because it treats its first argument as an intensional description. in what

Donellan has called an attributed sense. 7 It is just like the use of the phrase "the

President" in one reading of the sentence "Lower the President's salary 10 $30,000", where

we mean to decrease the compensation of whoever holds the office, not of the person who is

currently President independent of occupation. The phrase "the President", in this

construction, is not used purely extensionally; if Mr. Glasscock were President when the

phrase was uttered, it would not (at least on the reading we are considering) mean that we

specifically meant to lower that fellow's salary. Rather, we mean to refer to something like

whoever satisfies the description "the President". Similarly, (CAR X) is not used in a purely

denotational sense in (SETF (CAR X) 3); we mean something like, gi•,en some value of x,

make the minimal change such that the intensional descriptioll (CAR X) will designate the

numeral 3.

If {CAR X) was meaningful only in tem1s of its behaviour under EVAL, this would be a

difficult protocol to defend or explain. But it is easily comprehensible to a human, because

of the fact that we understand { CAR x) to be a composite term - a description of the first

element of the list x. We don't, of course, know what it is to use a description

intensionally: the answer awaits the millenial epistemologist. But it is undeniable that we

do use language this way, and it therefore becomes perfectly natural to invent

computational constructs (like SETF) that use other computational descriptions in an

analogous fashion. But to accept this means we accept the fact that (CAR x} is a designative

term, not simply a procedurally defined foml that returns the first element of a list. By

accepting SETF, in other words, we are admitting the pre-computational (and language

derived) attribution of meaning to computational structures.

This dissertation constantly skirts the crucial - but yet to be understood - issue of

intcnsionality, which pe1TI1eates this example. The term (CAR X) is being used intensionally

in the SETF context. There are other such examples throughout computat!on. The

construct, for example, whereby one variable is hooked in some manner to another (such as

assigning v to "always" be x + 1, where that is intended to mean that v should be

constrained to be one greater than x, no matter what x subsequently becomes - i.e. that Y

should track x, remaining exactly 1 greater than it), similarly uses computational structures

as descriptions, in intensional contexts. Similarly, the recently emergent constraint

languages8 are rife with designative expressions. All of these are practices lifted from the

..,

)
,f

3. Semantic Rationalisation Procedural Reflection 147

lay use of language. As we understand how to embed them coherently into computation

systems. we do so, thereby making our programming languages more like natural languages,

and therefore making computational systems easier to use. Our present claim is merely that

this practice should be admitted, and then to use the best understanding - the best

theories and conceptual analyses - of linguistic and epistemological phenomena in

understanding that computational practice.

The moral of these few examples is that we have an understanding of what LISP

expressions signify that is prior to our understanding of how they are evaluated, and

furthermore, that the study of human language will play a role in uncovering that prior

ascription. The evaluation process is elegant to the extent that it does something that

coheres with that prior understanding - and as we will see in this chapter, 1-LISP's does a

reasonable but not excellent job, failing particularly in meta-structural circumstances. Our

primary task. therefore, is, so far as it is possible, to make explicit that prior understanding,

without making reference to EVAL or to how the interpreter works in establishing this

semantical attribution. We cannot. in other words, answer a student's question of the form

"What does the expression (LAMBDA (X) (+ x Y)) mean, given the occurrence of the free

variable r?" with the response "Well. if we look at the definition of £VAL we can see that it

notices that the first element is the atom LAMBDA and constructs a closure". Rather, the point

is that we have to establish the semantical import separately, in order then to be able to

characterise the evaluation process in terms of it Unless we can do this we will have no

principled reply to our student's next question: "Why does £VAL work in this way?".

Sometimes this search for a purely declarative reading of LISP exprssions will fail.

It is difficult to say, for example, what. if anything, the construct (GO LOOP) or (THROW • Ex IT

NIL) or (QUIT) designates. Nonetheless, we will attempt to do as thorough a declarative

treatmr.mt as seems part of our natural understanding. Even in the three expressions just

given, for example, the arguments are clearly first and foremost designators, rather than

structures with natural procedural consequence. The more important lesson is that. to the

maximum extent possible, a calculus in its very design should facilitate such declarative

attribution, since it is apparently part of our natural way of comprehending formal systems,

even those that are computationally oriented.

3. Semantic Rationalisation Procedural Reflection 148

(In order to avoid confusion. we should remark here that the foregoing argument

does not imply that whereas statically scoped free variables witl succumb to a declarative

treatment, dynamicalty scoped variables will not Admittedly, a pre-procedural treatment of

designation is possible for the >.-calculus, and this is why the >.-calculus is lexically scoped

- it is the only obvious protocol in a formalism with declaratively specified function

designators. Nonetheless, declarative import and statically (pre-computationally) specifiable

semantics are independent notions, as discussed in more detail in section 3.c.v.)

A final comment. There can be no argument that our focus on an applicative

calculus - and on designational attribution - betrays the fact that we are allying

computational constructs with pre-computational notions of noun phrases. We are, in

particular, taking expressions to be tenns, and functions are playing the kind of role that

descriptive concepts do in English. Thus we have little to say of interest about side-effect

operators in LISP, like SET and so forth - constructs unarguably closer in intended

interpretation to verb phrases in natural language. Our basic moral is that computational

concepts should be related to natural language constructs, since, on our view, it is in their

tacit correlation with natural language that much of their coherence lies. It is clear,

however, that this correlation includes natural language formations of a wider diversity than

simple designating nominal phrases. The obvious extension of the approach we have

followed here, therefore, would extend the style of analysis that we have given to nominal

designation, to include other aspects of the natural structure of human language. This

author has long felt that a Gricean9 speech act analysis of ALGOL would uncover much of

the tacit structure of computational practice; the present investigation can be viewed as a

tentative step towards such a full reconstruction.

3.b.iii. Summary

In LISP's case, the function computed by EVAL is clearly +; the semantical function

fmmalised by standard mathematical semantics is a mixture of ci, and o; the pure

designation function cJl is not normally formulated. Our strategy will first be to articulate a

defensible account of 1-LISP's cl>, then to explicate 1-LISP's + with reference to the

operational style of account given in the previous chapter, and then finaUy to inquire as to

what semantically-definable function o the procedural function i' might be the correct

embodiment of. It will be at this point in the analysis that the form of the evalutaion

3. Semantic Rationalisation Procedural Reflection 149

theorem will be articulated and shown to hold of traditional LISPS. It is the inelegance of

1-LISP's o that will lead to the suggested design for a clean prior definition of an

appropriate o, and then a rationalised 'l' that provably implements it, satisfying the

normalisation theorem.

The following table, by way of review, summarises the characterisations we have

made about a variety of systems. Note in particuar that 1-LISP and SCHEME (and by

implication all extant LISP dialects) are without well-specified versions of~ and o; 2- and

3-LISP are not so much new as they are traditional, in postulating interpretation functions

of the classic sort.

A Semantical Characterisation ofa Variety of Formal Systems (S3-12)

System ti, 'I' 0

>..-calculus: Declarative a· and p- reduction Nonnal-form (preserves 4',
interpretation function no further reductions apply)

Logic: Decl:J'ative I- F=
interprel.ation function

1-LISP, SCHEME: ? Evaluation 1

2-, 3-LISP: Declarative Nonnalisation Normal-form(preserves ct>, form
interpretation function determined by semantic type)

3. Semantic Rationalisation Procedural Reflection 150

3.c Preparations for 1-LISP Semantics

There are still a few preparations to be made before we can sketch appropriate

declarative and procedural semantics for LISP. Some of these have to do with general

issues; some with the relationship between 4' and •; some with LISP'S particular

circumstances. Though it is unfortunate to spend an entire section constructing machinery.

it will make the subsequent technical manoeuvring much more straightforward.

3.c.i Local and Full Procedural Consequence

We have presented the function it as if it were the function that made manifest the

full procedural consequence of each symbolic structure, but that is an over·simpUfication.

v is the function computed by the language processor that takes each expression or formal

structure into the expression returned as its "value" or whatever - this is at the crux of

LISP being an applicative language. In point of tcnninology, we will call v(X} the result of

x, and will say that x returns v(X), and that v defines the local (proced111u/) consequence of

an expression. Durinr the course of the processing, however, there may in ac!dition be

what are known as side-effects on the state of the machine. Two kinds of side effect, in

particular, need to be handled, as intimated in chapter 1: alterations to the structural field

F, and alterations to the pr<'cessor, as expressed in the environment E and the continuation

c. A mathematical treatment of the full procedural consequence of an expression,

therefore. will have to reflect not only what result is returned when the expression is

processed, but also any effects it may have had on these other component-; of the abstract

machine.

In a standard semantics of a programming language, such effects are dealt with by

making the main semantical function be a function not only of the formal structure, but

also of "the rest of the machine": usually a memory, an environment, and a continuation

(input/output effects, in addition, can be treated by including some appropriate abstract

object - such as streams - but we wilt ignore peripheral behaviour at present). Given

our reconstruction of computational processes as consisting of a structural field and a

processor, and our claim that the two theoretical entities of an environment and a

continution adequately characterise the state of a processor, we can see how this standard

3. Semantic Rationalisation Procedural Reflection 151

treatment effectively makes the main semantical function take complete machine states into

complete machine states. In other words, if our field and processor model of computation

is adequate, such a semantical function will necessarily be sufficiently powerful to allow

arbitrary computational consequences to emerge from the processing of expressions or

structures.

We too will have to fonnulate such a complete state-transfonning function in order

to characterise the full procedural consequence of 1-LISP processing. We will call such a

function r; our initial version will be of type [CS X ENVS X FIELDS X CONTSJ ➔ cs X ENVS

x FIELDSJJ. Certain types of expressions, such as non-local control operators (THROW and

CATCH and FRETURN), structure modifiers (RPLACA and RPLACD), and so forth, will be

comprehensible only in tenns of their full r-characterisation. However we will try to focus

primarily on the simpler function 'I' in analysing 1-LISP evaluation, since it is with respect

to this simpler function that our criticisms of 1-LISP will be formulated. We have no

complaint, in other words, with the fact that the processing of the 1-LISP expression

(RPLACA ' (A e) • c) alters the structural field in such a way that CAR of the first argument is

changed from the atom A to the atom c, and it is unarguable that this fact can only be

made explicit when looking at f(RPLACA). Our only comment is that it is important to

retain the function •1' as a valid subject of study, since it is the coherence of v with ~ that

we wish to scrutinise. In addition, we will attempt to formulate r in such a way that the

function v will play a self-evident role as an ingredient

The complete state-to-state transfonnation function, in other words, yields for our

purposes too coarse an analysis; our complaints with LISP, and our models for

reconstruction, emerge only from a finer grained decomposition of a computational

symbol's full significance. In addition, as of course may reasonably be expected, it will turn

out that our attempts to define If> and 'I' independently of r will founder over the questions

of side-effects; in our second pass (section 3.e) we will define a more complex function l!

- a variant on r - with ~ and v integrated more fully into it. On our initial attempt,

however, in the general case, r will be given an expression, an environment, a field, and a

continuation (continuations are of type [CS X ENVS X FIELDS] {S X ENVS X FIELDS]]):

VS E S, VF E FIELDS, VE E ENVS, C E CONTS
[3S' ES, E' E ENVS, F' E FIELDS

[res. r, E, C) = <S', E', r•>])

(S3-13)

3. Semantic Rationalisation Procedural Reflection 152

Given this general characterisation, we r,;an make precise some of the ingredient concepts

we wilt ultimately use in defining an adequate notion of normal-form. In particular, an

expression s will be called side-effect free just in case its r-characterisation is as follows (we

often write i'EF(<exp>) and 4>EF(<exp>} for ((i'E)F)(<exp>) and ((i'E}F)(<exp>),

respectively):

VF E FIELDS, E E ENVS, C E CONTS {S3-14)
[res. F, E, C) = C(i'EF(S), E, F)]

There are two ways in which an expression s can fail to be side-effect free: it can affect the

field and it can affect the processor. In the first case we say that an expression has a field

side--e/fect. its fu11 procedural consequence would . have the following structure:

VF E FIELDS, E E ENVS, C € CONT$ (S3-15)
[r(S, F, E., C) = C(i'EF(S), E, f'} for some F' ¢ F)

Processor side-effects are of two types: those that affect the environment. and those that do

not invoke the regular continuation. More precisely, if an expression has a environment

side-effect then the environment yielded up as a result of processing will be different from

that in which it was processed:

VF € FIELDS, E € ENVS, C € CONTS (S3-16)
(qs, F, E, C) = C(+'EF(S), E'. f)for some E' ¢ E]

Similarly, if an expression s has a control side-effect, then U1c continuation c would not be

the function given the result Infonnally, we would characterise this as follows:

VF € FIELDS, E E ENVS, C E CONTS (S3-17)
[r(S, F, E, C) = C'(+'EF(S), E, F) for soma C' ¢ C)

This does not. however, capture the intuition; it is too liberal, since too many functions c •

can be found for side-effect free expressions. We need instead the following:

VF E FIELDS, EE ENVS (S3-18)
,[3F' E FIELDS, E' € ENVS

[vc € CONTS [res. F, E, C) = C(+'EF(S), E', f')]]]

At various points we will hint at the appropriate mathematical characterisation of the

full procedural consequence of side-effect expressions (non side-effect ones need be

characterised only in tenns of + since S3-14 supplies the remaining information). Our

main interest in r, however, in so far as we are able to avoid complexities, will be in

showing that all normal-form designators are side-effect free.

3. Semantic Rationalisation Procedural Reflection 153

It will tum out, however, that the ultimate definition of «I> will have to refer to r,

because of interactions between the declarative import of composite expressions and the

potential side effects engendered by the procedural treattnent of their consituents. The

following expression, for example, will have to be admitted as designating the number five,

rather than the number three:

(LET ({A 1)) {S3-19)
(+ 2 (PROG (SETO A 3) A)))

The_ only way in which this can be made explicit, it is clear, is in terms of r. For the time

being, however, we will ignore these potential interactions; they will surface in section 3.e.

3.c.ii. Declarative Semantics for Data Structures

In most programming languages, the set of expressions that are programs and the set

that are data structures are kept distinct. LISP, of course, is distinguished partly because it

does not make this distinction, and consequently gives a program the ability to manipulate

program structures directly. Such a capability is clearly a prerequisite to the construction of

a reflective dialect - it is not incidental, in other words, that we are studying a language

with such a property. What this does, however, is to raise a question as to whether a

subsidiary distinction between program and data structure can be raised in parlicular. Can

we, in other words, distinguish a particular structural field fragment that is intended to be a

"program" from one intended to be "data"?

A considerable literature documents the fa{;t that making such a distinction is

problematic at best, and possibly ill-founded.10 No worthy account of the distinction

between the two concepts program and data, if indeed they are coherent and exclusive, has

been formulated. It is of some interest, therefore, to note that the present endeavour of

making explicit the attributed semantics to all computational structures may in fact serve to

reconstruct this notion as well. In particular, it is tempting to define as a program any

section of structural field with two prope1ties: procedural consequence ,i, is defined over the

fragment, and the declarative import cf) of all terms within the fragment maps tenns onto

other structural field elements. We have in other words the following claim:

All terms in programs are meta-structural desig11ators.

3. Semantic Rationalisation Procedural Reflection 154

Such speculation, however, - as to whether such a definition adequately captures the

persistent lay notion - is beyond the scope of this thesis. For present purposes, we will

not make any such distinction.

Although this undifferentiated position is in some ways simple, a problem thereby

arises in our formulation of semantical interpretation functions, as to whether they should

apply to all structural field elements, or merely to those "considered to be programs" or

"considered to be data structures". It seems particularly troublesome regarding the

procedural functions it. The simplest approach is to posit a function defined over all

structures, but to use it in our analysis only over such structures as are intended to have

procedural consequence, and to ignore whether or not it is defined over data &tructures, or,

if it happens to be def:.ned, to ignore what it maps them into. This is in fact the tack we

will adopt, regarding •.

The situation with respect to ~ is more complex. While it is clear that

straightforward, i:,u.radigmatic data structures do not bear procedural consequence, there is a

question as to whether we want the theory of declarative import we use to explain terms in

program to hold of all data structures as well. In other words, if we say that the structure

(CAR A) designates the va!ue of the function designated by the atom CAR applied to the

referent of the term A, are we committed to saying of any data structure { F G) that it

designates the value of the function designated by F applied to the referent of G. Suppose,

for example, that a user of the language sets up a list of students and grade point averages,

of the following format: the whole list consists of a list of two-clement lists, of which the

first element is the student's social security number, and the second element is grade. Thus

we might have ((234-23-2344 3.95} (021-99-8276 4.0) ...). It would seem, if we adopt

the view that our declarative interpretation function applies uniformly to all structures, that

it would claim that, semantically, each element of this list designated the value of the

function designated by the social security number applied to the grade point average, which

is of course nonsense.

However there are two reasons this need not bother us as much as it might seem.

First is the standard confusion between lists being used to designate sequences or

enumerations, and lists used to encode function applications. Once we have made this into

a structural distinction, the foregoing example would be expressed using the enumerative

3. Semantic Rationalisation Procedural Reflection 155

type of data structure; in 2-LISP it would be expressed as the structure ((234-23-2344

3.96] [021-99-8276 4.0] •••]. The standard semantics (for 2-LISP) will say of each doublet

in this structure that it designates the abstract sequence consisting of the referent of the

symbol encoding the social sccuriiy number and the referent of the numeral encoding the

grade point average, which is just what one would like.

The second reason suggesting that it is indeed appropriate to posit the declarative

semantics over all data structures comes from our general endeavour to unify procedural

am.1 representational systems into a coherent single framework. As discussed in section

3.c.v, below, subjecting data structures to a declarative semantics is still far removed from

making the data structures an adequate declarative language, but it ls nonetheless a valid

first step in that direction. It is much clearer in the case of data structures than in the case

of programs that we always understand them by attributing declarative import to them: it is

inconceivable that there could be a useful data structure for which one could claim to

understand it, but c~uld say nothing about what it stood for or represented.

There are some consequences of this approach deserving notice. First, we are

implicitly admitting that the class of structures falling in the natural domain of <Ii is wider

than that falling under v. Secondly, whereas the range of the function ,i, is the set of

structural field elements s (since 'I' is of type cs - SJ), the range of the declarative

intepn~tation fi.mc..~1.m cti wilt be much larger (since tP is of type cs - DJ). Already we have

assumed that the semantical domain o includes numbers, sets, and functions, as well as .ill

the elements of s; this last move of including all user data structures under its purview

means that we will have to allow it to include the user's world of objects and relationshipr,.

This, however, poses no particular problem.

3.c.iii. Recursive Compositionality, Extensicnality, and Accessibility

The third comment has to do with what is known as recursive compositiunality.

Typically, in fonnulating the semantics of a base level language, the mode! theorist has no

idea and no interest in what particular predicates and objects the user of the Janguagc will

employ. The mathematical semantics merely assumes that each predicate Jetter is taken to

sienify some predicate, and each constant to signify some object in the semantical domain.

The task of the model theorist is generally taken to be one of showing how the significance

.,f composite expressions arises from the significance of those expressions' constituents.

3. Semantic Rationalisation Procedural Reflection 1S6

There is no guarantee for all meaningful languages. of course. that the meaning of the

whole is in any systematic way determinable from the meani!lgs of the parts, but there is

certainly some sense in which this kind of compositionality at least roughly holds in natural

language, and it is made to be true in all fonnal languages.

In addition, recursive compositionality semantics of this sort is a powerful way of

fonnalising meaning. and there are various devices (passing environments and continuations

explicitly in programming language semantics is a good example) by which a great deal of

context-relativity of the meaning of an expression can be captured within the basic

compositional framework. We too will adopt a recursively compositional stance, in

formulating all of ti», 'I', and r. in the traditional fashion. The bulk of the emphasis,

pruticularly in this chapter, as we attempt to formulate the style of semantics we want to

adopt in the remainder of t.'1e dissertation, will be on the various different semantical

relationships. H<,wever the reader can expect that, unless otherwise noted, ,i, of a composite

expression will be defined in terms of lfl of its constitutents, and similarly wiui v and r.

Recursive compositionality should not be confused with what is known as an

extensional semantics. If x is a composite expression comprising three ingreedient

expressions A, a, and c, then if 4»(X) is a function only of tl»(A), «I>(B), and «I>(C), then each

of A, e, and c are said to occur within x in an extensional context. It follows that if some

further expression o had the same ,i,-semantics as A, then an expression x • formed from x

by replacing A with o would have the same interpretation under «I>. For example, (+ 2 a)

and (+ 2 (- 4 1}) signfiy the same number 5, since arguments to the addition function are

extensional, and (- 4 t) signifies the same number as docs the numeral a.

It is different to say of a composite expression x, however, that its interpretation

under some semantical function is a function of itc, ingredients, since that means, to use the

previous example, that 'l>(X} could be a function not only of cl>(A), 4>(8), and cJ>(C), but also

of A, B, and c themselves. We will say that in this case the semantics of x are still

recursively compositional, but that x is not extensional (more precisely: that the constituents

A, B, and c do not occur in extensional contexts). For example, the single argument

position in the LI SP expression (QUOTE x) is not extensional; nonetheless, the semantics of

(QUOTE X} is still compositional. In order for x to fail to be recursively compositional cJ>{X)

would have to depend on some quite other factors, such as on the time of day or on x's

3. Semantic Rationalisation Procedural Reflection 157

position in a data base - facts that are not part of its own constitution.

In lexical systems, where these notions have been developed, the notion of an

"ingredient" is clear - given for example by the derivation tree of the lexical grammar.

However it is not immediately obvious that the notion of ingredient or constituent is in

general defined over arbitrary structural field fragments (and, as we have several times

pointed out, it is the structural field, rather than the notation used to signify it, that is the

source domain of both v and If>). Without it both concepts of compositionality and of

extensional contexts are ill-formed. Thus, although we will want to say of LISP that its

semantics are compositional, we need to show that such a claim is meaningful.

It happens that in the LISP case we have a relatively straightforwru-d answer to this

issue. In the previous chapter we discussed the accessibility relationship on tlle field: we

can say of expression s that its constituenls are those structural field clements accessible

from it (except for the property lists accessible from atoms):

CONSTITUENT : CC S X SJ -+ {Truth, Falsity}] (S3-20)
= AS 1 , S2 E S([S1 E ACCESSIBLE{S2)] A [S1 ¢ PROP{S2) fl

Sur.h an accessibility relationship, however, does not include the accessibility derived from

the environment: thus in a recursive definition the binding of the recursive name within the

body does not yield a circular constituent structure. It is possible, however, for a structure

to be accessible from itself - many examples were given in the last chapter. The recursive

definition of a multiplier given in s2-111, for example, is by this definition one of its own

constituents. Thus the notion of compositional semantics is at best partially defined in the

LISP case.

Note as well that we cannot ask of a particu1ar token structural field fragment

whether it occurs in an extensional context or an intensional context, as if a single answer

were always forthcoming. A given expression may occur in more than one context, since it

may be accessible from mOie than one other structure. Even in as simple a structure as

(CONS x (QUOTE X)) (the expansion of (C(INS x 'X)}, for example, there is only a single atom

x; one cannot ask whether x occurs extensionally or intensionally. Nor is this restricted to

atoms; in the structure which would be printed as:

(CONS {CAR '(AB)} '(CAR '(A 8))) (S3-21)

3. Semantic Rationalisation Procedural Reflection 158

where the two lists beginning with CAR are the same - i.e. where there are shared tails, as

diagrammed in sa-22 below - the very same token s-expression is both extensionally and

intensionally used

(S3-22)
CON

..___.~_-----t-+1.... a 1Z1

3.c.iv. Structure vs. Notatlon

The fourth comment has to do with the source domains of cf> and +. <I>, being a

semantical function, maps formal structures onto a signified world. The source domain in

this case will be the structural field s, not the notational domain L, as is more commonly

the case in logic and traditional programming language semantics. Furthermore, this

distinction is not simply one of treating the notational structures abstractly (i.e., as lexical

types), rather than as concrete lexical items: s is not merely the abstract syntax of L. The

elements of s. as we have already seen in detail for 1-LISP, are not even type-identical with

derivation trees for the grammar of the lexical notation. As we suggested in that chapter,

and as was pictured in S3-2, there is an entire independent semantical account o relating

notational expressions to clements of the structural field. Similarly, 'I' maps elements of s
into elements of s, not elements of L into clements of L.

There is a minor difficulty arising from the fact that it is the strnctural field over

which our semantical functions should range. having to do with the form of our meta

language. It is traditional to have the meta-language include the object language, or at least

to enable meta-linguistic expressions to contain quoted fragments of the object language. It

is straightforward to say .\S. vs where s is to range over s·cxpressions, but we cannot quote

s-exprcssions in lambda-calculus notation, since s-expressions are not 11otalio11al objects. The

temptation is to use 1-LISP lexical notation, as for example in AF.F("(CONS 'A '8)"). where

the quoted fragment is 1-LISP notation. However if we were to proceed in this way we

3. Semantic Rationalisation Procedural Reflection 159

would have to embed the entire theory of notational semantics eL within the accounts of i'

and 4l. which would complicate matters tremendously.

Our solution - albeit a partial one - will be to use a single occurence of a double

quote mark (by analogy with LISP'S own single occurence of a single quote mark to notate

LISP internal quotation) in the meta-language, followed by italicised t-LISP notation, as a

structural device intended to express a designator of the 1-LISP s-expressions for which tlzal

notation is the lexical notation. The meta·linguistic phrase "x, in other words, will be taken

as ~ meta·tinguistic abbreviation for eL('x'). We will note where this convention is

insufficient. such as in cases where the lexical notation is ambiguous or incomplete.

In addition, we will use Quinean "comer-quotes"11 to quote those expressions in the

meta-language with schematic variables; occurrences of the variables in question within the

scope of the quasi-quotation will be underlined. Thus for example, the expression

VX [(X E {A, B}] ::J [F(rG(!)1}])

is extensionally equivalent to

[F('G(A)')] A [F('G(B)')]

(S3-23)

(SJ-24)

In addition, we will use a combination of the corner quotes and the double quote mark

convention just established in an obvious way. Thus

t/X [(X E {"A, "B}] ::> [F(f" (G !J1)]) {S3-26}

is extensionally equivalent to

[F("(G A})] A [F("(G 8))] (S3-26)

It foUows that the previous convention would more properly be stated as follows: meta·

linguistic expressions of the form f" !1 will be taken as abbreviatory for expressions of the

form f0d'!')1. 111c similarity between this meta-linguistic protocol and the backquote

mechanisms in the LISPS we consider is striking: in both cases a quasi-quotational style is

used, with those elements that are tenns from the meta-language, not from the quoted

expression, especially marked.

There are structural field elements for which no lexical notation exists; it follows that

the protocol just adopted is not fulJy general. Although in our brief sketches in the present

document we will not require systematic meta-linguistic reference to non-notatable

3. Semantic Rationalisation Procedural Reflection 160

structures, a more cumbersome but fully general device is always available, using explicit

CARS and coRs. Since those functions are encoded in the meta-language as the first and

second coordinates of fields (neither CAR nor CDR is a valid meta-linguistic function), [r•{ k (G

A B)}] could equivalently be expressed, given an appropriate F, as:

3S ([P(S)] A [F1(S) = "G] A [F1(F2{S)) 11 "A) A
[F 1(F2 (F2(S))) = "8] A [F2(F2(F2(S))),. "NIL])

(S3-27)

This is also relevant if there are side effects to the code itself. If, for example, x is bound

in E1 to (RPLACO X '(Y (3))) and Y to (1 2), then after processing X, X will be (RPLACD Y

(3)), but v will still be (1 2), not (1 3). After a second processing of x, Y would be

changed to the latter value. All of this will fail out of the semantics; to illustrate such an

example, however, we would have to use the notational style of S3-27, rather than using the

pseudo-quotation operator just introduced.

3.c. v. Context Relativity

A fundamental fact about the use of language is that the semantical bearing of an

expression is by and large a function of the context of its use. Since Frege's work in

188412 we have been exhorted to study lhc meaning of individual linguistic structures with

this contextual relativity in mind. If the compositional style of semantics just discussed can

be viewed as a kind of "bottom up" style of semantics - a regimen whereby the

ingredients contribute to the meaning of the whole that embeds them - it is equally true

that the structure of a composite whole affects the particular meanings of the ingredients.

Thus pronouns in natural languages, and variables in fonnal systems, paradigmaticatly

acquire what meaning they carry from the environment in which they arc used.

The compositional bent of st.-m<lard semantical accounts is aimed at least in part at

making clear this pervasive contextual relativity. Tarski's introduction of the satisfaction

relationship, for example,13 and the ensuing ability to deal with compositional semantics of

sentences formed of open as well as closed constituents, was a landmark step in formulating

an explicit account of how an essentially compositional treatment could accomodatc and

explain the interactions among ingredients - bctwcn wholes and parts - that made up a

particular fonnal system. 'lbe advent of computational fonnalisms has made the potential

contextual dependence of particular structures more powcrfu1 and more complex: much of

the debate among various proposed variable scoping protocols, and arguments for and

3. Semantic Rationalisation Procedural Reflection 161

against side effects and global identifiers, can best be seen as having to do with the proper

protocols for establishing powerful yet controlable contextualisation mechanisms.

There are a variety of techniques available for treating this contextual relativity in a

formal mcdel theory. Under one strategy - exemplified by the standard substitutional

semantics for the x-calculus, and by substitutional semantical accounts of quantification in

logic - the meta-linguistic operators re·arrange the ingredients of the formal symbols so as

to reduce their contextual relativity, often at the expense of a potentially infinite number of

virtual expressions. In a substitutional semantical account of universal quantification, for

example, a sentence "VX(P(X)]" is taken to be true just in case all sentences of the form

r"P(!) "1 are true, where one expect-; A to range over designators of all possible objects in

the semantical domain. A itself, therefore, is intended to range over syntactic entities.

Similarly, in the A·calculus, the term AX. F (x) is described in terms of possible substitutions

into the "x" position of the body expression of all possible argument expressions. Actual

applications are described in terms or" particular substitutions; thus (('l\X. F (x)) P], for

example, is taken to signify F (P).

Another strategy is to make the context of use into an explicit, reified entity, referred

to by terms in the meta-language; the meaning of a contextually relative expression is then

described not in terms of another possible sentence, but by making explicit reference to this

theoretical posit It is under this approach that the notion of an environment emerges. In

such an approach to the '}..-calculus example just given, for example, the body expression of

the kterm would not serve as a template for an indefinite number of substitution instances;

instead, F(X) wo'Jld designate the value of the function designated by the binding of F ;,.,,

the environment of .Jse applied to the referent of x again as detem1ined by the binding in the

environmelll of use. Thus [('l\X.F(X)}P] would signify F(X) in an environment in which x

was b11und to whatever P designated in the environment in which the whole was being

examined.

As the reader will expect, it is the latter strategy that we will adopt, both in our

meta-theoretic characterisations, and in the meta-circular processors and reflective models

we embed in the dialects we study. In discussing the declarative semantics of atoms, for

example, we will refer to their bindings in the contextual environments; in discussing A·

abstraction and procedure bodies, we will again refer to the environments in place at the

3. Semantic Rationalisation Procedural Reflection 162

point of use.

There are three possible confusions we need to attend to regarding the use of this

notion of environment A failure to recognise these distinctions can lead to substantial

confusion later in the midst of technical details.

First. there are two different ways in which a LISP expression can depend on the

context of its use: it may depend on the state of the processor, and it may depend on the

state of the structural field in which it is embedded. The former we model with the notion

of an environment, for although a processor state consists of both an environment and a

continuation, the latter theoretical posit affects what expressions are procedurally treated,

but does not itself directly influence the significance of a given expression. However the

field (as manifested in the behaviour of CAR and coR) can equally exert an effect as crucial

as that of the environment (the binding of identifiers). We will by the term context refer

to both the processor environment and the field that obtain at the point of use; the more

discriminating terms will be employed when we want to refer to one or the other

independently.

Second, there is a natural tendency to think that the declarative import of an

expression would depend, to the extent that it is contextually relative. only on an

environment defined by the static structure ~.urrounding it as an expression. The procedural

consequence. however. - at least so it seem at first blush - might well depend not only

on the static linguistic structures surrounding it, but on the course of the computation up

until the point of use.

This apparent correlation between two ctistinctions - procedural/ declarative

semantics, and static/dynamic context - is, however, ill-founded, for a variety of reasons.

First, it turns out !hat the very notion of static environment is not without its problems: the

w1.1ctural field, after all. can itself be modified in the course of a computation, and only the

structural field is available as a possible ground against which to define the notion of static

context Certainly our constant insistence on a discrimination betweP.n lexical notation and

structural field implies that no dependence on lexically enclosing notation can possibly

serve as criteria} in determining the semantical import of an expression (thus we avoid the

term "lexical scoping" entirely). A reflective process, clearly, can itself generate program

structures which have never been notated; it can as well alter the structural field, including

3. Semantic Rationalisation Procedural Reflection 163

the embedding structure of a program fragment There is no way in which the context of

any structural field element is irremediably frozen, immune to subsequent modification by

sufficiently reflective manipuation. By static environment, in other words, it is not even

completely clear to what we refer.

The consequences of this insight are several. First, we will define as static those

scoping protocols that depend only on the state of lhe structural field, whereas dynamic

protocols will depend by definition on the state of the processor (once again the

processor/field distinction bears the weight of subsequent theoretical cuts). Nothing,

however, will prevent us from taking the declarative import of symbols to depend on the

dynamic state of the computation. Suppose I say to you that for the next five minutes we

will mutually agree that each numeral will designate the number one less than that which

we have always assumed. Thus during that five minute time interval we could both agree

to the sentence "3 times 3 equals 5". In this way we have dynamically agreed to alter the

undeniably declarative import we attribute to static expressions.

In 2-LISP and 3-LISP we will adopt a static variable scoping protocol: not because it

is nect1ssary in order to make sense of the notions of declarative designation, but because it

facilitates the use of a base language for higher order functionality, without resort to meta

structural facilities. It is unarguably true that an additional benefit of this design choice is

that the semantical import of a structural field fragment is less dependent on the course of

the computation; as a consequence, for most expressions - providing no subsequent

reflection alters the program structure itself - the semantical type of various variables will

be readily detcm1inable without having to determine control flow. If we were to make the

other choice, however, and have declarative import determined by dynamic context, we

would merely be in the familiar situation of 1-LISP, where knowledge of the state of the

processor at time of use is required in order to know the semantical import of any given

fragment There is no incoherence in a position requiring us to know the ctynamic state of

the processor before being able to determine the declarative import of a structure; it is no

Jess happy than having to know the surrounding conversation in order to determine the

truth of the Perry sentence "He's just wrongt0,

Related to this move of separating the distinction between declarative and procedural

semantics from the question of the context of use, we have the question ef whether ?. single

3. Semantic Rationalisation Procedural Reflection 164

environment can be used for both the declarative and procedural semantics. Consider the

following example 1-LISP fragment:

(LET ((VAR 6))
(BLOCK (SETQ VAR 7)

VAR)}

(S3-28)

The question is whether this code designates the number six or the number seven. At first

blush, it might ceem that since the first form in the scope of the BLOCK operator is entirely

procedural in nature, VAR in the last line will still have a declarative designation of six. This

is, however, counter to our purposes, as the foregoing discussions imply: there is nothing

co~ceptually incoherent about allowing SETQ to have a dynamic effect on the declarative

import of subsequently interpreted structures.

Another way to put the same point is this: the context of use for all expressions

includes both their structural and their temporal location. Declarative and procedural

semantics differ on what they describe- about the expression with respect to that full

context: whether they describe the designation of the expression in the context, or whether

they describe what will happen to the symbol in virtue of being processed in that context. In

consequence, although we have a double semantics, we will maintain only a single

environment structure in our meta-theory. Not only is this by far the simplest approach

(any other protocol would require two different objects, a procedural environment and a

declarative environment, to be handled independently throughout the meta-language

characterisations), it is also the only one that coheres with intuitive practice. The natural

understanding of S3-28 above is that (SETQ VAR 7) fonn changes VAR so that it henceforth

(within the scope in which it is bound) designates 7. It is this intuition that our approach is

designed to handle.

Thus our semantics is not an attempt to mitigate against practices which actually

alter the meaning of extant structure: indeed, one of the demands of reflection will be to

effect just such modifications to internal expressions, in a controllable way. It should be

observed, however, that while it is only procedural import that affects the temporal aspect of

a fragment's context, both procedural and declarative significance are thereby affected.

A third and final preparatory comment needs to be made regarding these

environments. There arc a variety of ways in which we as external theorists can treat

context-relativity, even if we accept an objectified environment as part of our ontological

3. Semantic Rationalisation Procedural Reflection 165

repertoire. The basic insight throughout the semantical treatment of LISP atoms is that an

atom's designation depends on the context of evaluation. There are two ways in which we

can put this precisely. We could say that an atom has a value, but that that value changes

in dif)erent contexts. This way of speaking similar to how one might speak of the value

cell of an identifier in an implementation: i.e., there is a value cell, and its contents change

over the course of the computation. This, however, is an unnecessary objectification - of

the space of all possible values abstracted over all possible contexts. Happier for our

purposes is to make the entire notion of having a value itself dependent on environment,

and to say that in a given environment an atom has a particular value.

We are using the function v to relate expressions to their values: the claim,

therefore, is that ,i, is environment-relative. In a traditional programming language

semantics, the interpretation function (we will call it r} is always kept over-arching, so that

the meaning (we will use the terms "meaning" and "significance" to refer to what such

accounts specify of an expression, to be distinguished from what we are calling desig11ation,

value, and procedural consequence} of an atom (in general, of an identifier) would be said to

be a function from environments to values. This technique of taking the meaning of an

expression to be a complex function that incorporates the environment and state of the

machine in such a way as to enable the complete articulation of the context-relativity and

potential side-effects of an expression is extremely powerful, and mathematically compact,

as we have pointed out before. Wi1at it should not lead us to think, however, is that the

primary notions of value (and later, of reference and of simplification), are similarly outside

the contexts of their use. An analogous situation holds regarding pronouns in natural

language: in the sentence "Bob said he would bring the ice-cream" the pronoun "he" refers

to Bob - it docs not ref er to a function from pragmatic and structural contexts onto

objects. Rather, that function (if it could be formalised}, applied in a given pragmatic and

structural context, would tell you to what object, in that pragmatic and strnctural context,

the pronoun refers. Though its formal embodiment would seem no more serious than to

affect the order of arguments to a multi-argument function, the cost in ontological

commitment is substantive.

This distinction is maintained by the mathematical vocabulary, if carefully used. The

meaning of a variable x is taken to be a function from environments to values; thus the

value is not the function itself - rather, the function takes the atom to different values,

3. Semantic Rationalisation Procedural Reflection 166

depending on environment. The confusion arises from casual use of the natural English

idiom in saying that the referent of an identifier is a "function of the envirmunent": a

phrase that is ambiguous. On one reading, it means that an identifier has a referent that is

a function whose source domain is the environment; on the other, what the referent of an

identifier is, is environment-relative. In order to avoid the ambiguity, since we want to take

the latter reading, we will avoid the use of this apparently hannlcss phrase.

Our semantical functions, therefore, will be of the foUowing type:

<I> : [[ENVS X FIELDS 1 -+ [S - D 11 {S3-29)
+ : [[ENVS X FIELDS J -+ [S -+ S 11

The field component, it is clear, will be used only by the CAR and CDR and PROP procedures;

the environment component will be used by identifiers (atoms).

3.c. vi. Tenninology and Standard Models

While we are on the subject of the careful use of tenninology, a few additional

comments should be made. First, we have been lax in our use of the terms "evaluation"

and "value". In section 3.e.i we will examine this vocabulary with some care; until then we

will avoid the former term, and will use "value" only with reference to a mathematical

function, to refer to the element of its range ~or a given argument Furthermore, it is

notable that our initial analysis is of applicative calculi in general: we will want to talk, for

example, about how bound variables arc treated in U1e >.-calculus, in quantificational logic,

in standard mathematics, in LISP 1. 5, etc. We therefore cannot afford to define our

analytic tenns (like binding or application) with respect to any single calculus (such as for

example the x-calculus), especially since we would like these terms to support the design of

new calculi satisfying some new mandates.

We will also reserve the tenn "function" for the mathematical abstraction, assumed

to comprise an infinite set of ordered pairs in the usual fashion. By procedure we will refer

to a fragment of the structural field, that we take to designate a function, and th.i,t

succumbs to formal, computational treatment. (By such usage, however, we do not intend

to convey the impression that a language-free - and tl1crcfore processor independent -

notion of procedure should not be devised, adequate to capture what we intuitively take to

be the notion of "method" or "algorithm". This is yet another point, like many in this

3. Semantic Rationalisation Procedural Reflection 167

dissertation. where the question of the identity of a function in intension is 1Harginally

skirted.)

There is another apparently terminological issut ir. this vein, that hides some

substantive issues regarding causal theories of reference. We have used the terms

"designation" and "denotation", interchangeably. to refer to the object that a sign is taken

to point to or name. We have said. for example, that the numeral 5 designates the number

five, and that the symbol "it" denotes the procedural processing function. All such

significance is attributed, in t.11.e sense that the relationship between sign and signified

inheres not in the sign or in the object signified. but rather in the interpreter that

understands the significance relationship. This fact is recognised in standard semantics, and

it is effectively admitted by the analysis that an interpreter may establish one or more of a

variety of basic models for the signs in question. The model theory typically makes explicit

what the designation of composite expressions is, given a basic interpretation function that

talces the atomic wrms onto their dcsignata, as explained in the previous section.

It is crucial to realise that the model theory cannot itself specify the interpretation of

a formalism, because the model theory is merely a linguistic artefact. itself in need of

interpretation. Model theories are not causally grounded; they are not first-class bearers of

semantic weight Furthermore (by referring, for example, to such results as the

Lowenheim-Skolcm theorem) it is possible to show that any given model theoretic

characterisation of a domain will admit of an infinite number of different models, all

satisfying the specified constraints.

Typically, there is a standard model - one of a possibly infinite set of objects that

everyone agrees to be the standard or default mapping of the atomic terms onto clements

of an accepted semantic domain. Thus for elementary arithmetic, for example, the standard

model for the signs 1, 2, and so forth (or, more literally, for o, S(O), S(S(O)), and so forth)

is the numbers as we know them, although other possible models are often explored.

There is a curious point to be made here, however, about possible models for meta

linguistic expressions. In particular, the standard model for meta-structural expressions is in

fact specifiable by the model theory - there are not, in other words, indefinitely many

other interpretations for meta-structural terms. This fact arises from the fact that if the

model theory is admitted to be a model theory for a given set of syntactic expressions, then

3. Semantic Rationalisation ProceduralReflection 168

it is perforce admitted to contain a m•mbef of terms that designate those syntactic

expressions. Suppose in particular that some term x in the meta-language is taken to

denote syntactic expression s 1 in the object language, and that some term v denotes

syntactic expression s 2• Suppose further than the meta-language posits that s1 designates s 2,

by asserting ct>(X) = v. Then it follows that s1 must in fact designate s2; no other

interpretation is possible, since ex hypothesi v is a term that refers to s2• The freedom of

interpretation inherent in the model theory, in ott1ter words. applies only to those terms not

accorded meta-syntactic status by that model theory.

3.c. vii. Declarative Semantics and Assertional Force

There is a slight tendency to suppose that the suggestion that we accord LISP

structures declarative semantics amounts to a suggestion that LISP be viewed as a full

declarative, descriptive language. This, however, is far from ihe case. There are a variety

of minor issues, such as that the language we are describing has · variables but no

quantification: such a LISP would lack, that is to say, certain kinds of expressive power (it

would be what is called algebraic). But there is a much more serious matter that

distinguishes a fuH fledged descriptive langua~e from LISP: that of assertio11.1/ force. Even

with a full declarative s~mantics erected on the LIS? field, of the sort we will depend on in

2-LISP and 3-LISP, there is still no way to say anything! No LISP expression can be written

down with any conviction - in any way that embodies a claim. They remain detached

expressions, with potentially attributed designation, but without any force of saying

anything.

Suppose, for t:xample, that variable x designates some atom A, and that we wish to

say of atom A that it is an atom. The single argument in the rcdex (ATOH AJ, of course,

docs not even refer to the correct entity: it refers to whatever A designates. Rather, we

would have to use (ATOM 'A). But adding this expression to the field doesn't say that A is

an atom; rather, such a fragment could be either true or false. (ATOM • (A B C)), for

example, is false, and (ATOM • A) is true, bul that fact must be determined from the outside.

Nor can that fact about the truth of (ATOM • A) itself be stated, since the problem recurses.

(EQUAL T (A·.oM 'A)) is as uncouvincing as (ATOM 'A); it too could be tru,i or false (we could

equally well havP. (EQUAL T {ATOM '(A B C))). In sum, there is no mechanism - no

assumption by users, and no room in the semantics - for LISI' structures carrying

3. Semantic Rationalisation Procedural ReflectiQn 169

assertional force.

A full reflective calculus - one based on au integrated descriptive ?an~oage -

would have to differ in this crucial respect Nor can one imagine this change as an

addition to LISP; there is no sense in \~·hich any resultant formalism could imaginably merit

the na."lle LISP any longer, for this is a radical change. To add assertional force to LISP-like

structures would be to design a fundamentally new architecture: uur claim that LISP

structures are best understood in terms of a declarative semar.tics is, rather, a reconstruction

of what we claim to be present practice.

3. Semantic Rationalisation Procedural Reflection 170

3.d. The Semantics of 1-LISP.: First Attempt

The previous sections have examined what the fonnutation of 111 nnd i" involves in

general; the discussion was not particularised to a particular dialect. In the present section

we will begin to sketch those semantical functions for 1-LISP. We will at times like this dip

into mathematical characterisations in order to convey a feel for how they would go, and to

illustrate r.ertain particular points. In addition, it is instructive to demonstrate the formal

structure of If>, in contrast with '1', since the latter function is more familiar in computational

contexts (the latter, for example, is the function computed by the meta-circular processor).

Nonetheless we will not present a full mathematical semantics for t-LISP, for several

reasons. First, to do so is a substantial task, well beyond the scope of this dissertation: this

entire semantical analys:s, it must be kept i.1 mind, is by way of preparation for our

primary investigation of reflection. Second. 1-usr, is semantically rather inelegant, and a

full characterisation of it in our declarative terms would be messy, to no particular point.

We will show, in particular, how an accurate account of t-LISP's semantics would require

over-riding a great many natural assumptions, in order to encode the semantically

anomolous behaviour of 1-LISP's EVAL within the cI>·'l' framework. Our goals instead arc to

convince the reader that such a project is at least approximately possible, to show what

would be involved in doing the mathematics, and to make self-evident the truth of our

main semantical result: that evaluation conflates expression simplification with term de

referencing.

Such fonnalisation as we do take up, will be presented in two passes. In the first,

occupying the pr.!scnc section, we will took rather independently at the natural declarative

and procedural semantics for 1-LISP; in section 3.e we will show how this approached is

doomed for a variety of reasons, some stemming from peculiarities of 1-LISP's design, and

some for deep reasons about the temporal aspects of any structure's context of use. In that

section we will present a more complex, but more adequate, revision of the two semantical

functions, with suggestions as to how complete proofs of the main results could be based on

such a fonnulation.

3. Semantic Rationalisation Procedural Reflection 171

3.di. Declarative Semantics(«.)

We start simply, with the numerals, which designate numbers - of this there can

hardly be any doubt In addition, the two atoms T and NIL clearly signify truth and falsity.

NIL is used for other purposes, of course: it is among other things an un-interpreted

syntactic marker used as part of the encoding of lists within pairs, although it inherits no

designation from that role. NIL is also the empty sequence designator, which we will take

up presently.

As mentioned above, 4> is a function not only of expressions but of fields and

environments; for these two simple cases, however, such context-relativisation is ignored:

VN E NUMERALS, E E ENV, F € FIELDS (cI>EF(N) = M(N)]

VB E BOOLEANS, E E ENV, F E FIELDS [4>EF(B) = T(B)]

(S3-30)

(S3-31)

It follows from these equations that neither r nor NIL are available in 1-LISP for use as

regular atoms - for binding, property lists, and so forth. This is false by the definition

given in the last chapter, but it is true in the meta-circular processors we demonstrated in

chapter 2, and it is true of most standard LISP implementations. In other words, while our

structural characterisation made T and NIL atoms (NIL ,s both an atom and a list), our

procedural taxonomies exclude it from the set of identifiers. In 2- and 3-LISP we will

correct this discrepancy, having a syntactic class of two boolean constants separate from the

class of atoms.

The next simplest class of structural entities are the rest of the atoms, which, from an

informal point of view, are used as context-relative names. The basic intuition governing

names and bound variables is this: they designate the same referent as was designated by

some other expression in another environment - typicaHy called an argument. Examples

of thif. co-designative protocol can b~ found in both formal systems and in natural

language. For example, in the sentence "After John capsized he swam to shore." the

pronoun "he" refers to the same entity as the antececient noun phrase "John". If another

noun phrase was substituted for "John", the pronoun "he" would similarly designate that

new tei"m's referent lbus in the sentence "After the ragamuffin capsized he swam to

shore." "he" designatP.s the referent of the phrase "the ragamuffin".

3. Semantic Rationalisation Procedural Reflection 172

Similarly in the lambda calculus: in an expression of the fonn ((AX.<body>)E), free

occurences of x in <body> are assumed, after reduction (by substitution or environment

relative analysis) to designate the referent of E.

Thus the ground intuition is that the use of i:ontext-relative naming schemes

provides a mechanism for establishing co-designation. in contextually dependent ways,

between bound occurenccs of a fonnal name and some external expression taken up from

the context. How this intuition is embodied in the formal treatment is open to a variety of

alternatives: in the >.-calculus. for example. as we discussed in section 3.c.v, no notion of

environment is required: instead a full substitutional protocol is adopted in which the

contextual tenn is substituted for the appropriate occurrences of the variable within the

expression in question. For compatibility with our theoretical reconstructions of dynamic

scoping protocols. however, and in order to establish close alignment between our meta·

theoretical accounts and our subsequent reflective models, we will adopt the theoretical

posit of an environment as an explanatory mechanism with which to explain this contextual

relativisal101. ~f variable designations.

We will not, however, adopt a notion of value with respect to variables, because of

the use/menti'}n confusions that attend common use of that tenn (see section 3.f.i). 1110

problem, in a word, is whether the value of a variable or fonnat parameter is taken to be

the argument expression itself, or the referent of the argument expression (by argument we

refer to the contextually determined expression with which the variable is assumed to be

co-designative). For example, in the following two expressions, there can be no doubt, in

the contexts in which (+ x 1) has its intended meaning, that the variable x is intended in

each case to designate the number four.

((LAMBDA (X) (+ X 1)) 4)
((LAMBDA (X) (+ X 1)) (+ 2 2))

(S3-32)

We will, however, need to decide what sort of entity the environment establishes as the

binding of a variable. 1l1e question is whether, in the environments established by the

applications just illustrated, the varia!Jle x is bound to the actual number four, or to a

designator of that number. This question is indepcPdent of the clear fact (this is tmc in

mathemaLics and logic as well, giving us some confidence) that, semantically, variable

binding is co-referential in the sense that the variable, in virtue of being bound to an

argument expression, acquires the designation of that argument.

3. Semantic Rationalisation ProccduralReflection 173

If we are to write down ci, for atoms - LISP's variables - we have to make one

decision or the other. The two candidate equations are ttcse (assuming, as we will

throughout, that environments arc functions from atoms to bindings - i.e., that E : C ATOMS

-+ D J in S3-33 and that E : [ATOMS -. S] in S3-34):

VA E ATOHS, E € ENV, F € FIELDS [cl>EF(A} " E(A)]

VA € ATOMS, E E £NV, F E FIELDS [iil>Ef(A) = iil>EF{E{A))]

(S3-33)

(S3-34)

An apparent argument for the first option (S3-33 - that bindings are designations) is the

fact that variable binding as normally conceived is extensional, and furthermore, that the

expression to which variable is bound is not itself normally thought to be preserved in the

binding. It would seem, if the second proposal were adopted, that the only natural

expression to which the variable should be bound is the one occuring in context when the

binding takes place (i.e., 4 or (+ 2 2) in the examples in S3-32 above), and this is certainly

not how binding is presumed to work. In fact S3-34 has the odd consequence that in any

environment the designation of the binding of a variable {not what the variable is bound to,

but what entity is the referent of the expression that the variable is bound to) is potentially

a function of the environment in which the variable is it:;elf used or looked up {this is

because the outer term of S3-34 is t)Ef(•••)). This would seem wildJy co•F:tcr-intuitive.

On the other hand, arguing for the second alternative {S3-34 - that bindings are

expressions) is the fact that under the first alternative the bindings oft-LISP variab]es will

not in general be s-cxpressions. This is exactly the extensional point just made: if we adopt

S3-33, we would say that x was bound to the number four, not to the numeral "4". This is

not a problem in the meta-language, but it makes for odd consequences for the meta

circular processor (and later for reflective machinations). No environment, in other words,

can be a LISP object, and (EVAL x) will not be able to return x's binding.

A possfotc reply to this last objection is that we would not expect environments

themselves to consist of pairs of s-expressions: rather, the only LISP structure we would

likely want is a structural designator of an environment. Thus if x were bound to the

number four, then a sequence of two designators, one designating x and tl1e other

designating four, would serve as the environment structure. The only difficulty with this

counter suggestion is that those designators might themselves be environment relative: if x

were bound to four, the environment designator might consist of the tuple · x (• x, as we

3. Semantic Rationalisation Procedural Reflection 174

will see, is a natural designator of the atom x) and the expression {+ Y Y), if Y designates

two. This would seem an unhappy pratice. It seems not unreasonable to require that

environments encode the full context-relativity of a variable's binding, rather than simply

deferring it onto another context.

Furthermore, against the objection that (EVAL x) cannot return x's binding we have

the following rejoinder: there is a mistake in the intuition that { EVAL x) should return x's

binding, if binding is taken to be designational. EVAL is usfs v: even if EVAL is

declaratively extensional, we would expect (EVAL x) to designate the procedural consequence

of the referent of x, not the declarative import of the referent of x. ct>EF("(EVAL X)), in

other words, should be -+EF(cl>EF{"X)), not <IiEF(tl>EF("X)).

W¥! find ourselves in the thick of issue discussed in section 3.c.v, in which the

context relativity of both declarative and procedural import come into tension. This last

discussion of the proper designation (EVAL x} brings to the fore the question of whether the

declarative and procedural environments can be considered to be the same. It is clear -

since 'I' maps structures onto structures - that from a procedural point of view the

environment cannot be the first, designational, alternative. If there is any hope of letting a

single theoretical entity serve a double role as both procedural and declarative context,

then, we would have to choose the second of the two alternatives.

In sum, the first option, by which bindings are designative, is coherent, although it is

affected by two complications:

1. LISP encodings of environments may use context-relative designators of the
bindings;

2. Bindings so construed cannot be taken to be the procedural consequence of
variables. 'I' of a variable, in other words, cannot be its binding, on this
reading.

The second alternative, by which bindings arc co-designative, has in contrast the following

apparent difficulty:

1. It is unclear what expression the binding should be: the contextually relative
argument expression means that the semantics of the binding is potentially a
function cf the environment at the point where the variable was bound.

It might seem U1at the environment could "record" the context in which the binding took

place, so that instead of the designation of a variable being IMF(E(A)), it would be

i

3. Semantic Rationalisation Procedural Reflection 175

cI>E"F°(E(A)), where E• is the environment at the point of binding, and r· the state of the

field. This, however, is an empty proposal: it is effectively indistinguishable in effect from

the first, except more complexly formulated.

In fact there is a third option: variables could be taken to be bound to co

designative expressions, but not to the expression occuring in the binding context. In

standard LISPS no such expression presents itself, but in 2-LISP we will posit that variables

are bound instead to a nonnal-fonn expression having the same referent as that of the

primary argument This avoids the trouble just discussed, because in those dialects all

normal-form designators are context-independent (in terms of declarative designation); hence

the additional context arguments to cI> in S3-34 are provably ignored (being required only to

satisfy the category requriements of the meta-theoretic characterisation). Thus in those

dialects we will adopt the second equation without difficulty. However it would be

premature to adopt this suggestion yet: we haven't yet defined normal-form designators.

and to make this suggestion work we have to prove that they arc environment independent,

and so forth.

Nonetheless, the mandate adopted in 3.c. v requires that a single theoretical posit

serve as both declarative and procedural environment; this requirement alone rejects the

first, designational, alternative. What we will adopt is the following rather mixed protocol:

we will assume that 1-LISP variables are bound to some expression, and we will merely

assert, in the axiomatisation of the declarative semantics, the declarative import of the

binding. Any choice of binding satisfying the equations will be accepted as valid, from the

point of view of the declarative semantics; thus for example a regimen that identified a

particular special symbol, one per object in the semantical domain, would suffice. When

we get to the 1-LISP procedural semantics we will make plain what object is in fact bound

to each variable; when we tum to 2-LISP we will defend that dialcct's choice of such an

object on semantical grounds.

We will therefore proceed under the second equation, by which environments are

taken in the meta-language to be functions from variables to expressions co-designative with

the argument expressions. Thus we arc adopting:

VA E ATOMS, E E ENV, F E FIELDS [<l>EF(A) = •MF(E(A})] (S3-35)

3. Semantic Rationalisation Procedural Reflection 176

We have discussed the booleans T and NIL, the numerals, and the atoms in general.

There are two further categories of symbol to look at, before turning to compositional

questions: the bindings of the primitive atoms in the initial environment, and the

designation of pairs. Since all primitive atoms are bound to procedures (i.e., all twenty-nine

atoms that have bindings in the initial context are bound to procedurP.s), and since the

semantical import of procedures is best revealed in terms of their participation in the

encoding of "function applications", we will tum to pairs next

There is a choice here: as noted in the previous chapter, 1-LISP differs substantially

from t.7-LISP; the latter evaluating the first position in a function application designator in

the standard sense. Because 1. 7·LISP is closer in spirit to the later dialects we wilt deal

with, and because it is more general than 1-LISP, we will consider it

Pairs, of course; are not quite the right category to examine: we want instead to

focus on lists. The simplest suggestion for the designation oi· a Jist (those, at least, used to
. .

signify function applications, rather than those used as enumerators), is this: a list will be

taken to designate the value of the function designated by its first element applied to the

arguments designated by its remaining elements:

VS E S, E E £NV, F E FIELDS
[<l>E,=(s) = c.l>EF(Si) (<.PEF(Sz), .PEF(S3), .•• 4'EF(Si.)>)]

if S = f" (S1 Sz $3 ... S1r.)1

where by s " f" (S1 Sz SJ ••• S1r.)l we will in general mean:

[[CAR(S) = S1] /\ [CAR(COR(S)) = Sz] /\ •••
I\ [CAR(COR(CDR ••• (COR(S)) •••))) S1r.]]

(S3-36)

(S3-37)

or more preciaety, since CAR is not a function in the meta-language {reca!l that by r1 we in

general mean the i • th element of sequence r; thus, since fields arc of type {CARS x CORS x
PROPS}, r1 is the CAR relationship of field F):

[[F1(S) = S1] /\ [F1(F 2 (S}) = S2] /\ ... (S3-38)
/\ [F1(F2{F 2

... (F2(S)) ...))) = sk]]

1nis is just the sort of semantical equation for applications one would cxpc:::t in any

semantical treatment; an example will illustrate. Suppose we inquire about the designation

of the expression (+ 3 Y) in an environment E0 in which v is bound to a designator of the

number four, and + is bound to a designator of the addition function. We would have the

following {as discussed in section 3.c.iv, we use a single double quote mark and an. italic

3. Semantic Rationalisation Procedural Reflection 177

font to mention object-level structures; all non-italicised items. such as "+" and "1", are

terms in the meta-language):

IJ,Eofo("(+ 3 Y)) (S3-39)
= [(AE.AF .AS il»EF(S1) [cllEF(S2), tl>H{S3), ••• tl>EF{St)])E0F0][" (+ 3 Y)]
= [(AF.AS 4>E0F(S1} [cllE0F(S2), 1M 0F(S3), ••• 4>E0F(St)])F0)["(+ 3 Y)]
" (AS 4tE0 F0(Si) [4>E0F0(S2), cllE0F0 (S3), ... cllE0F0(SiJJ) ["(+ 3 Y)]
= cllE0F0 ("+} [cl>E0F0 ("3), cI»E 0F0{"Y)]
= 4>E0 F0(E0("+)) [cJIE0 F0("3), 4JE0F0("Y)]
= +(N("3), 4>Eofo(Eo("Y))]
= +[3,4]
:r 7

The importance of S3-39 is, in line with our general conception of «I>, to indicate that the

express.ion {+ 3 Y) designates seven in an environment in which v is bound to four, still

apart from any notion of how it is to be treated by the processor. It is to be noted, for

example, that the expression designates an abstract number, not the numeral 1, which has

not once been mentioned in this analysis. Only when we describe the procedural treatment

v of (+ 3 4) will the numeral 7 enter into the analysis.

Two comments in passing. The first is tenninological: the tenn (+ 3 v) designates

seven; therefore we cannot strictly say that it designates an application of the addition

function to 3 and Y. Lists, in other words, cannot be said to designate function applications.

On the other hand, pai:s are not themselves function applications either, since the CAR of

the list, for example, is a function designator, not a function. We will explore the language

of functions and applications more fully in section 3.f.i; for the time being we will call lists

of this variety (i.e., lists whose significance is explained in terms of the application of the

dedgnation of their first element to the arguments encoded in the rest of the list) procedure

applications., although after the discussion ii~ section 3.f.i we will replace the tcnn

"application" with "reduction". Although we are not dealing in this dissertation with

notions of intension, what we would ultimately like to say is that the intension of a

procedure application is a function application; the extension is the value of the function

applied to the arguments. In deference to such a wish, and in what must for now remain a

rather infonnal usage, we will sometimes say that lists signify function applications.

The second comment is this: As is clear from the examples, we are using an

extended version of the lambda calculus with identifiers as our meta-language. Note that in

S3-39 we expanded the composite term in the first line under a "substitution semantics"

3. Semantic Rationalisation Procedural Reflection 178

regime: occurences of the bound variable E w~re replaced by the tenn E0• The resulting

expression is of course still extensional in that position into which E0 was substituted. 1-

LISP of course would evaluate - whatever that means - the term E0 before evaluating the

body of the procedure. It should be clear from the fact that our meta-language is well

formed that there is no need for an evaluation process to de-reference the argument, as

LISP'S EVAL is sometimes thought to do, in order for compos.i.tc appliications to be

extensional. There may be other reasons for "evaluating" the arguments to a procedure -

in fact there are several, as we will see - but a need to de-reference, as this example shows,

is not one of them.

To return to the main discussion, we must acknowledge an inconsistency in the

account we have given: we have said that the designation of lists is the value of the

function designated by the first element applied to the designations of the remaining

elements. But tails of lists in 1-LISP are themselves lists; a strict reading of our analysis

would imply not only that fflEF (" (PLUS 3 4)) = 1, but also that MF (" (3 4)) designated the

value of the function designated by the numeral 3 applied to the number four. However

there is no such value: the numeral 3 designates (by sa-ao) the number three, which is not

a function at all. We coulJ define I.I• to take (3 4) into J., or into an error, but to do so

would be to begin to let ffl drift away from our lay understanding. The expression (3 4) is

not a functional term to us, and therefore we should not let our semantical characterisation

treat it as one. In point of fact, of course, it designates a sequence of integers, a semantic

import conveyed by the followirig semantical equation:

VS E S, E € ENV, F € FifLDS
[<PEF(S) " <«l>EF(Si}, lf>Ef(S2}, «l>EF{S3), ... «MF(Sk}>]

if S = f"(S1 S2 S3 ... S1c)1

(S3-40)

In order to know when a list is intended to designate a sequence, however, we need to

know the context it appears in - or the contexts, since a given s-cxprcssion can occur as

the ingredient in more than one larger expression. Such a move, however. entails violating

recursive compositionality of the semantics, which is highly inelegant in a formal system.

1bese troubles are merely evidence of the lack of type-type correspo:1dencc, made

explicit in section l.f.i, between the syntactic categorization of the structural field s and its

semantical interpretation. We could try to complicate our definition of tJ, so as to restrict

its application to lists which really were intended to signify function applications, but this is

3. Semantic Rationalisation Procedural Reflection 179

of course impossible: intention is not something a formally defined procedure can unravel.

The consequence is not minor: for i-LISP it is in general impossible to tell syntactically

what the semantic type of an s·expression is (or even whether it bears semantic weight).

We can never require that it be possible to tell syntactically what every expression's

semantical import is: for all formalisms of any substantial power such a question is

intractable. However requiring that structures wear their semantic category - not the

category of the referent, but rather the category into which the semantical function 4> sorts

syntactic entities - m their sleeve is neither an impossible nor an unreasonable

requirement. Again, this is an inelegance we will correct in 2- and 3-LISP.

The foregoing extensional readin!~ of procedure applications will fail when we get to

LISP's so·called special forms; before revising it in order to handle them, however, we can

look at some of the standard LISP extensional primitives.

There are twenty-three distinguished atoms in 1-LISP; of these we have already
. .

given the semantics of T and NIL. Three others (QUOTE, LAMBDA, and COND) will be dealt with

separately in a moment, and four more (SET, DEFINE, READ, and PRINT} are significant

primarily procedurally, so will be discussed later. Finally, EVAL and APPLY - of particularly

importance in our overall drive for reflection, which is motivating all of this semantical

analysis - will receive special attention later. Of the remaining twelve, ten would have the

following designations in the initial environment E0 and the initial field F0 • {Note that we

use <I>E 0F0("X) rather than the equivalent but more cumbersome cI>E 0F0(E 0{"X)).)

'PE0F0("CAR)
4>E 0F 0{ "CDH}
.PE 0F0 ("PROP)
4>E0F0 ("EQ}
4>E0 Fo("+)
cf>EoF o(" -)
«l>Eofo{" •)
«l>EoF o("/)
4>EoF o(It NUMB ERP)
4'E0 F o("A TOM)

:: fot since F = <CAR 0 ,

= Fa2 similarly
= f o3 similarly
:: A<S1 ,S2> [S1 = S2]
" +
=
:: .
= I
= AS . [S E INTEGERS]
= >.S . [S E ATOMS]

CDR0 , PROP0> (S3-41)

Five of these functions are effectively absorbed in our meta-langauge, in the sense that the

same concept is used in the meta-language as is being explained in the object language;

thus these semantical characterisations are not illuminating. (Though the tcnn is ours, the

practice is not: conjunction, for example, is typically absorbed in a first-order semantics,

since r.e_ /\ g1 is said to be true just is case P is true and Q is true. This is analogous to the

3. Semantic Rationalisation Procedural Reflection 180

use of the term "reflection" in iogic's reflection principles. although we of course must avoid

that term in this context.) Axioms constraining them cou~d of course be formulated, but

since our goal is to indicate a style of semantical analysis, not to actually lay out a valid t

i.ISP semantics, we will simply assume that these functions are clearly defined. Two others

are simply simple type predicates designating truth or falsity depending on the designations

of their arguments. Finally, three (CAR, CDR, and PROP) are simply the relationships

extracted from the FIELD argument to «i>; these in fact are the only procedures that access

that crucial constituent in describing the field. Note that none of these procedures need to

"de-reference'' their arguments. as that task is performed in general by the semantics of

applications, as stated in S3-36, and as illustrated in the example in S3-39.

3. Semantic Rationalisation Procedural Reflection 181

We look next at what in the community are sometimes called special forms-. lists

whose first element designates something other than an extensional function. There are a

variety of such forms, and two ways in which we could proceed to analyse them. The first,

represented by the first meta-circular 1-LISP interpreter we demonstrated in chapter 2, is to

consider a certain number of atoms as specially marked, and to make explicit what

applications formed in terms of them designate. The serond, which we adopted in our

second meta-circular interpreter, is to identify a special class of procedures (called FEXPRS in

MACLISP and NLAMBDAS in INTERLISP - in 3-LISP they will be subsumed by the general class

of reflective procedures; for the present we will call them intensional procedures). Since

this is both cleaner and will put us in a better position to handle subsequent developments.

we will adopt this latter stance, and first lay out a protocol for dealing with intensional

procedures in general, and then subsequently define the particular semantics of the three

primitive intensional procedures QUOTE, .. AMBDA, and COND.

TI1c problem with intension:il procedures is of course that applications formed in

tem1s of them, such as (QUOTE IIELLO) or (LAMBDA (X) (+ x 1)), do not satisfy the mandate

laid down in S3-36 claiming that their designation is the value of the function designated

by the first element of the list applied to the designations of the remaining element'3 (i.e., to

use HITERLISP terminology, LAMBDA is an NLAMBDA). In particular:

[4>E0F0("(QUOTE HELLO))] (S3-42)
* [{4>E0 F0 (''QUOTE}) [<M0 F0 ("HELLO)]]

[cI>Eofo("(LAMBDA (X) (+ X 1)})] (S3-43)
* [(cI>E0 F0 ("LAMBDA)) [tl>E0 F0 ("(XJ) ,4>f0F0("{+ X 1))]]

A candidate solution would be to rework S3-36 so as not to de-reference its arguments, and

then to redefine the functions designated by the atoms CAR, CDR, and so forth, to make this

move explicitly. Then applications in general wil! not be extensional; only those we

explicitly indicate as extensional will be so. We would also have to redefine these functions

to accept the environments as an explicit argument, so that they themselves can de

reference their arguments when appropriate. Thus we would have (we wi1l cease explicitly

idcntif ying the category restrictions on s, E, and r):

VS E S, E E ENVS, F E FIELDS
[fl>EF(S) = [(ll>EF(Si))EF] <Sz, S3, ... Sk>]

if S = f" (51 S2 Sa ... S1t)1

(S3-44)

3. Semantic Rationalisation Procedural Reflection 182

Our primitive functions would have to t-e redefined appropriately. As an ex&"!l.ple, the

atom +, under this approach, would have the following designation in the initial

environment:

4'E0F0(E0("+)) = i\E.i\F .AX, Y +[4'EF(X), 4'Ef(Y)]

That this would be correct is shown by redoing the example of S3-39:

4'E0 F0{"(+ 3 Y)) = [(41Eofo("+))Eofo] ("3, "Y})
= [lllE0 F0(E 0{"+))E0F0) ("3, "Y)
= [0,E.AF.>.x,Y +{tfiEF(X}, 4'EF(Y)))E0 i 0] ("3, "Y)
,. [(>,F.i\X,Y +(4'E0 F{X}, 4'E0F(Y)}}F0] {"3, "Y)
= [i\X,Y +(4'E0F0{X), 4'E0 F0(Y))] {"3, "Y}
= +(4'fofo("3), 4'E 0 F0 ("Y))
= +(3, 4'E0 F0 (E0 (''Y)))
= +(3, 4)
= 7

In an analogous fashion we could rc!define the other primitives of S3-41:

4'Eofo("CAR) = i\E.,\f .i\X . [F 1(1f1Ef(X))]
4>Eofo("CDR) = i\E.Af .i\X • [F2(4'EF(X))]
<l>E 0 F0("PROP) = i\E.i\F.i\X • [f3(4'EF(X)}]
4>E0 F0("EQ) = AE.AF.i\X,Y [ol>EF(X) = cf>H(Y}]
cI>E 0 F0{"-) = i\E.AF.i\X,Y. [-(«MF(X), 4>EF(Y))J

cf>Eofo("•) = 11.E.i\f.i\X,Y. [•(«JIEF(X). «l>EF(Y))]
4'E0 F0("/) = i\E.i\F.i\X,Y. [/(tf>Ef(X), «PEF(Y))]
4'E0 F0("NUM8ERP) = i\E.AF .i\X . [tf>EF(X) E IfJTEGERS]
'PE0f 0("ATOM) = i\E.i\F .i\X • [«l>EF(X) E ATOMS]

(S3-46)

(S3-46)

(S3-47)

Given this change in approach, we could beg~11 to define some intensional procedures.

First we take the atom QUOTE, which clearly designates the name of its argumcr.t. In other

words, for aU expressions x we will rtquire that <MF ("(QUOTE X)} = "x:

«l>E0F 0("QUOTE) = AE. AF. AX. X (S3-48)

Given this equation, we can show how the structure (QUOTE (THIS IS A LIST)} designates

the list (THIS IS A LIST), it, .,11 envirnnmcnts in which QUOTE has this meaning:

VE E ENVS, F € FIELDS (S3-49)
[lct>EF("QUOTE) = AE.i\F.i\X.X]:)

(I $EF("(QUOTE (THIS I'5 A LIST)})]
= [<IiEF("QUOTE)EF] ("(THIS lS A USf))
= [(i\E.i\F.i\X.X}EF] ("(THIS IS A LIST))
= [(i\F.i\X.X}F] ("(THIS IS A LIST))
= [i\X.X] ("(THIS IS A LIST)) ; The context is thrown away
= "(THIS IS A LIST) 1)

3. Semantic Rationalisation Procedural Reflection 183

Since mis derivation makes no claim upon the structure of its argument, it can be

generalised to the following theorem:

VS € J, VE € ENV, F € FIELDS (S3-60)
U«1>EF("QUOTE) = 1'E.>..F.Ax.x]:, [iI,EF(f"(QuorE ~)1) = s1]

Note that we have quite reasonably assumed that the LISP operator "QllOTE"

designates the hyper*int\!nsional identity function. It should be absolutely clear that this

definition of "QUOTE" makes no reference at all to any concept of evaluation, an issue we

have not yet considered. It will be a matter of some interest to see, once we have

characterized usp's notio~ of evaluation in t~nns of the semantical framework we are

currently erecting, whcthc.r the manner in whic!l "QUOTE" is :1andl~d by the interpreter is

consonant with the definition just arti.:ulatcd.

During alt of this cl.iscucr1.on we have used the sut>junctive; ~e problem is that in

spite of its increased power there is somethiilg inelegant abour this move of having all

function dcsigr.ators designate intensional functions. Note that we have now said that the

atom "+" docs not designate the addition function: rather, it designates a function from

contc-tts to a function from structures to numbers - i.e., it is of type [[ENVS x FIELDS J

... cs ... INTEGERSJJ. A certain amount of "semantic innocence•· has been lost in making

the simple procedures complex, in order to make more complex procedures simple.

Furthennorc, this approach is too general: it allows us tl' posit, as the designation of

t-LISP procrdures, functions with arbitrary "de-rcfcrenci11g" power, whereas in fact 1-LISP

procedures must be of only two varieties: those that arc extensional in their arguments

(EXPRs}, and these that arc nol (IMPRs); there is no way lo define a t-L ISP procedure of

intennediate cxtensionality (one thac de-references just une of it~ two arguments, for

example).

A cleaner strat• 'Y, it would seem, would be to define a mcta·linguistic predicate,

called, say, EXT?, whkh was true of extensional functions and false of imcnslonal ones. If

we could do th ,c, we could recast the i.lcdarativc semantics of lists as follows. without

givin~ chc i111e11sional functions the environment as an argument, thus preventing Lhcm

fr_,m de·rcfcr~ncing any of their arguments:

·JS E S, E E ENVS, F E FIELDS
•~Ef(5) = 1f [l<T?(cflEF(S))

than <l>E~(Sd ['flEF(S2 i, <l>EF(S3), ... IJ>EF(5t,.)1

(S3·61)

3. Semantic Rauonalisation Procedural Reflection 184

else lfiEF(S1) [S2, S3, ... St)
if S " f"(St S2 !! ... ~)1

The problem, however, i~ that such a predicate (EXT?) is impossible. The difficulty is

illustrated by the following:

(DEFINE F1 (LAMBDA EXPR (A) (CAR~)))
(DEFINE F2 (LAMBDA IMPR (A) (CAR A)))

For example, we would have the following behaviour:

(f 1 (CONS 3 4)}
(F 2 (CONS 3 4))

3
CONS

(S3-62)

(S3-63)

Under the treatment suggested in S3-61 above, both F1 and F2 would be required to have

the same denotation; in particular, tliEF (Fi) and «l>EF (F 2) would both have to be the CAR

function. Since they are identical, th-:.,e is therefore no way in which (EXT? F1) can be

true and (EXT? F 2 } be false. Another way to sec this is to realise that, in spite of our use of

what is common terminology, it is :1ot f:mclions that are intensional or extensional; rather ft

is only to procedures (or to some other more intensional object) that we can properly apply

these terms.

For these rc&sons we will adopt a third possibility - one that in the meta-theoretic

language maintains the clarity of our first suggesth:m, that adequately treats INPRs, and that

docs not provide as much generality as the option just explored. The approach is to

mediate between the two previous proposals, as follows. First we define the following two

meta-linguistic functions, which we call the extensionalisation and inlensioualisation

functions {these can be understood as the designational analogues of the procedural EVLIS

in McCarthy's original report14):

EXT = M.>..E .AF .AS . G[<IiEF(Si), cf>EF(S2), ... 1'JEf(Sit)}
where S = f" (S1 S2 S3 ... Sk)l

INT a AG.AE.Af.AS. G[S1, Sz, ... Sk)
where S :z f"(S1 S2 $3 ••• Sk)l

(S3-64)

{S3-66)

EXT is a functional: a function define~ 1.JVer other fun~tions, that transfom1s them into

functions that pick up an environment and de-refcrc" 1'.I! the arguments first, and then apply

the original function to the resulting referents. INT, by contrast, tran: ~mns a function into

functions that pick up an environment but iguore it, applying the original function to the

arguments as is. We can now say that in E0 the atom "+" dcsignat<.:s EXT(i-), where+ in the

3. $(.;mantic Rationalisatit>n Procedural Reflection 185

latter tenn is the meta-linguistic name for the real addition function. QUOTE, on the other

hand, designates INT(AV. Y). We will then require, as a meta-linguistic convention, that all

function designators be restricted to those built from EXT or INT. These are both

straightforward and perspicuous, as is the new (recursive) definition of t1> (we show just the

fragment for pairs):

«1' s AE.M .>.S. [(li)Ef(Si))EF] {S2)

wheres= r"(S1 . Szj1

That this works is shown by the following two examples:

(S3-56)

4'E 1F1("(+ 3 Y)) ; where V designates 4 1n E1 (S3-57)

and:

= [(4)E1F1("+))E1F1] "(3 Y)
= [(EXT(+))E1F 1] "(3 Y)
= [((AG.>.E.>.F.>.S G[cI>Ef(S1), cl>EF(Sz), ... cl>EF(Sk}])+)E1F1] "(3 Y)
= [(>.E.>.F.>.S +[cf>EF(Si), 4>EF(S2)])E 1F1] "(3 Y)
= [(>.F.>..S +[4>E 1F(Si), cl>E 1F(S2)])F 1] "(3 Y)
= [AS +[cflE1F1(Si), cflE1F1(S2)]j "(3 Y)
= +[4'E 1 F 1 ("3) , <l>E 1 F 1 (" Y)]
= +[3. 4>E1F 1(E1(" Y))]
= +(3, 4]
= 7

<'PEtf1{"(QUOTE (HELLO THERE)))
= [('M1F 1("QUOTE))E1F 1] "((HELLO THERE))
= ((INT(?.X.X))E 1F1] "((HELLO TilERE))
= [((>.G.>.E.AF.1'.S G(S1 , S2 , ••• Sd)AX.X)E 1F1] "((HELLO THERE))
= [(XE.AF.AS (AX.X)[Si])E 1F1] "((HELLO THERE))
" [(M.AS {il,X.X)[Si])F1] "((HELLO fHERE))
= [(XS (AX.X)(S 1})] "((HELLO THERE))
= (AX. X) "(HELl.0 TIIERE)
= "(HELLO THERE)

(S3-58)

Note how in the third from last line the environment E., which has been carefully passed in

to the function, is ignored by the "intcnsionalised" function.

In other words, the new <t> of S3-66 is adequate for both extensional and intensional

procedures, which is whac we wantect of it. It is alsc, meta-malhematically perspicuous, and

it is of just the right power. AcL:ordingly, we can now set down the equations that must be

satisfied by the initial environment E0 for the primitive procedures we have looked at so far.

(Note that CAR and con cannot be defined in tenns of EXT, even though they arc

extensional, because they need access to the : E xr (F 1) is ill-fonncd since r is not bound.)

We will not consider this a violation of our convention, however, since they arc in fact still

3. Semantic Rationalisation Procedural Reflection 186

extensional in the sense that they designate functions of the extensions of their arguments.)

4lE0F 0 ("CAR)
cl>Eof o(.. COR)
cllEof o("PROF)
tl)E 0F0("+)
tllEof o("-)
4'E0F0(" •)

41Eofo("/)
4>E 0F0("EQ)
<l>EoF o("NUHBERP)
l{IE 0F0("ATOM)
«l>Eofo("COND)

«l>Eofo("QUOTE)

= AE.AF .AX
= AE.AF .AX
= AE . AF . AX
= EXT(+)
= EXT(-)
,. EXT(•)
= EXT(/)
= EXT(•)

[F 1(4>EF(X))]
[F 2(tl>EF(X))]
[F3(41EF(X))

= EXT(AS.S E INTEGERS)
= EXT(AS. S E ATOMS}
= EXT(AX. tf X1.1 then X1,2

eJsetf X2 , 1 then X2 , 2 ••• etc.
where X "" f" ((X1,1 X1,2J (X2,1 X2,2) •.• Jl

= INT(AS.S)

(S3-69)

There are several comments to be made about this list. First, note that COND is

described as an t!Xlensiona/ procedure, dcclarativel!·: this is correct - COND will be shown to

be procdural/y intensional, because it evaluates its arguments in normal, rather than

applicative, order. From a declarative point of view, however, the designation of a CONO

application is a fi.mction only of the referents of its arguments (as of course are " tr ... then

e 1 se •.• " and the material conditional in the meta-language).

Two procedures that are important, but simply described, arc EVAL and APPLY. As

one might expect, the natural reading of the designation of an application formed in tenns

of EVAL is that it designates the procedural consequence of the referent of its argument.

Thus for example we expect (EVAL • (+ 2 3)) to designate the numeral 5, since that numer«I

is the (local) procedu:al consequence of the application (+ 2 3). EVAL is extensional, as

well. 111esc lead to the following characterisation:

= EXT ('l'EF} (S3-60)

Unfortunately, however, this is ill-formed; the context arguments must be picked up

explicitly. Thus we have:

cf>Eof o(" EVAL) = AE.Af.AS [i'Ef(cf,Ef(CAR(S)))] (S3-61)

For example, suppose in some environment E1 the variable x is bound to 100 and Lhe

variable Y to a pair P5, and in field F2 that pair has CAR of 1. We then have:

cf>E 1F2("(fVilL '(+ X (CAR Y))))
= [(cf>E1f2("EVAl))E1fd ["('(+ X (CAR Y)))]
= ((>.E.M.XS ('l'EF(4>EF(CAR(S)))])E 1F2] ["('(+ X (CARY)))]
= [XS ['1'E 1F2(•1•E 1Fz(CAR(S}})]] ["('(+ X (CARY)))]

(S3-62)

3. Semantic Rationalisation

11 [i'E1F2(cllE1F2(CAR("('(+ X (CARY))))))]
= ['l'E1F2(4'E1F2(" '(+ X (CAR Y))})]
"' 'l'E1F2("(+ X (CAR Y)))

Procedural Reflection 187

Since we have not yet spelled out i', we are not yet in a position to continue this

derivation, but the intent is clear. The correct context has been passed through, and what

remains is merely to inquire as to the procedural consequence of the original argument in

the context of use. Note that the original expression c EVAL • (+ x (CAR Y)}) designates this

result (namely, the value of the 'I' function of these arguments): that is also evaluates to this

result will emerge only when we consider 'l'EF(EVAL) in the next section.

The only other primitive we will consider is LAMBDA, and, rather than writing out the

full meta-syntactic translation functions that construct an appropriate lambda calculus

function designator from the arguments to the LAMBDA, we will instead simply describe in

plain English what its declarative import comes to. The reason that we are beginning to

case up on mathem.,tical rigour is that we already have plenty of ammunition to show how

our present approach is doomc<l: after looking at LAMBDA we will show how, if we are to

keep analysing 1-LISP, we will have to give up on ever using the cxtcnsionalisation

function. Thus premature formalisation would be of no point.

As described in the last chapter, LAMBDA forms take a type argument to distinguish

EXPRS from IMPRS. As we would expect, the declarative significance of expressions of the

fonn (LAMBDA EXPR <vars> <body>) is that they designate functions, closed in the defining

environment (this is 1.7-LISP), consisting of the lambda abstraction of <vars> over <body>.

Such function designators arc extensional - this is the crucial point. Thus, we wilt assume

for the time being that we have a meta-linguistic translator function TRANS that takes four

arguments: an environment and a field, and a variable list and a body (the first two meta

language objects, the second two syntactic objects of LISP), that designates the appropriate

function. I.e. TRANS(E0 ,F0 ,"(XJ,"(+ x 1)) would designate the increment function

(providing the atom + was bound as usual in Eo to a designator of the extcnsionalisation of

the addition function). Then in tc1ms of this function the declarative import of LAMBDA can

be described as follows:

ll>Eufo("LAMBDA)
= AE.>..F.}..S [If [S1 = "EXPR]

then [EXT(fRANS(E,F,S2 ,S3))]

elseif [S1 = "IMPR]
then [INT(TRANS(E,F,S2 ,S3))]]

(S3-63)

3. Semantic Rationalisation Procedural Reflection 188

wheres• r•(s1. S2. S3)1

The crucial fact to notice about this characterisation is that the designation of all user

defined procedures are expressed in tenns of EXT or INT. We have ourselves violated our

original claim that we would always use one of these two; CAR, CDR. and LAMBDA have all

had their own characterisations, because they needed explicit access to some aspect of the

context of use above and beyond that provided by the extensionalisation and

intensionatisation functions. What we have demonstrated, however, is that the exceptions to

our convention are small in number and constrained: no others can be generated, because

of this definition of LAMBDA.

1bat this characterisatiun is plausibly correct is manifested by two examples. o,1e

using the extensional and one using the intensional version. In particular, we will look at

examples like those we used to show that a predicate EXT? was not definable. In that

circumstance we had the fotlowi, ,g definitions:

(DEFINE F1 {LAMBDA EXPR (A) (CAR A)))
(DEFINE Fz {LAMBDA IMPR (A) (CAR A)))

and two examples of their use:

(F 1 (CONS 3 4))
(F 2 (CONS 3 4})

-+
-+

3
CONS

(S3-64)

{S3-65)

In order to avoid making use of DEFINE, which we have not yet analysed, and in order to

avoid the CAR function, which needs explicit access to the field, we will instead consider the

following two expressions:

((LAMBDA EXPR (A) A) (CONS 3 4))
((LAMBDA If◄PR (A) A) (CONS 3 4))

... ... (3 . 4)
(CONS 3 4)

(S3-66)

TI1e semantical analysis is as follows. First we look at the designation of the two

procedures:

4tEoFo("{LAMBDA EXPR (A) A))
= [(«l>E0F0("LAM80A))E0F0] ["{EXPR (A) A))
= [(AE.>.F .M [1f S1 = "EXPR ...]}E0 F0] [" (EXPR {A) A))
= (AS [if S1 = "EXPR •••]] [" {EXPR {A) A)}
= [1f "EXPR = "EXPR then EXf(TRANS(E0 ,F0 ,"(A),"A))

elseif S1 = "IHPR then INT(TRANS(E 0 ,F0 ,S2 ,S3))]

= EXT(TRANS(E 0 ,F0 ,"(A),"A))
= EXT(AX. X)

(S3-67)

3. Semantic Rationalisation Procedural Reflection 189

By an entirely similar proof we have as well:

4>E0F0("(LAMBDA IMPR (A) A))
,. INT(AX. X)

Thus we can look at the two fuller applications:

4>Eofo("((LAMBDA EXPR (A) A) (CONS 3 4)))
= [(4'E0 F0("(LAHBDA EXPR (A) A)))E 0F0] ["((CONS 3 4)))
11 [(EXT{AX . X))E0F0] ["((CONS 3 4)) J
,. (AX . X) [4>E 0F0("(CONS 3 4))]
,. (AX X) ["(3 . 4)]
,. "(3. 4)

Analogously:

t1>E 0F0("((LAMBDA IMPR (A) A) (CONS 3 4)))
= [(4>E 0 f 0 ("(LAMBDA IMPR (A) AJ))E0F0] ["((CONS 3 4)))
= [(INT(AX . X))E0F0] ["((CONS 3 4))]
= { AX . X) [" (CONS 3 4))
= "(CONS 3 4)

(S3-68)

(S3-69)

(S3-70)

This is as much cf an account, at least formulated in these simple tcnns, of the

declarative semantics of LISP as we wilt examine for the present. We could go on: it would

be possible to provide an foller analysis of TRANS, for example, and we have not yet looked

at APPLY (which would be the extcnsionalisation of a function of type CC s x s J _.. "J for

1-LISP and CC FUNCTIONS X SJ - DJ for 1.7-LISP). And we could look at lambda-binding

of formal parameters, although the substantive question here has already been decided: we

use environments a~ theoretical posits in the mua-language, and arrange for binding to

preserve designation. Howe·ver we have ama~sed ample evi !enc~ to be abk to show much

more serious problems with this approach than such incompleteness. One issue clearly has

to do with side effects: we have modelled CAR and CDil, for example, but not CONS, because

we have exhibited no mechanism by which the field can be affected; similarly, we have not

examined SETO or DHINE, since the same point holds for the environment. Therefore we

will turn, albeit briefly, to the procedural impmt of 1-LISP sttuctures.

3. Semantic Rationalisation Procedural Reflection 190

3.dii. Local Procedural Semantics (1')

We turn next to the local procedural semantics (1') of 1-LISP and 1.7-LISP: a

characterisation of what, in those dialects• tenninology, each type of s-expression evaluates

to. i'EF (i.e., i' rclativised to context) is a function of type cs -+ SJ; nonetheless, since we

are stili talking semantically, we are supposedly going to speak in tenns of function

application and so forth. An immediate and natural question is this: if both domain and

range of i' are s·cxpressions, where will we find any functions to apply? Some of these s·

expressions will designate functions, but that is of course of no help, because we have to

characterise 'I' independent of the designation function tll. Fonnulating a coher~nt reply to

this concern will be the main emphasis in this brief sketch.

We could start to lay out i' mathematically, beginning with the obvious fact that in

all contexts E. F, numerals return themselves:

VN € NUNERALS, E E ENV, F € FIELDS ['l'EF(N) " N] (S3-71)

Before proceding in this fashion, however, we will instead look at a meta-circular

interpreter, presented below (once again we ..::oncentrate on our "t.7-LISP" version of

SCHEME, since it is more general than 1-i.ISP). 1bis code for MC-EVAL is of interest for a

variety of reasons. First, we can almost use this code directly to generate a mathematical

account of it. for the following reason:

It is the p.•ocedural consequence fu11ctio11 that the meta-circular processor
designates.

Thus, at !east approximately, we can almost assume that 4tEF("MC-EVAL) = EXT(i'EF) (this

fact will be crucial when we turn to the design of a rt:~1ectivc dialect). We as much as

suggested this in the last section, albeit with reference to EVAL railicr than ~o MC-EVAL. Of

course in specifying that tllEF{"EVAL) = EXT(•flEF) we were defining the semantics of EVAL,

rather than defining 'I'. In the present insta'tce, however, because we have defined MC-EVAL

in tenns of primitive procedures other than EVAL, the expression [tl•EF ("MC-EVAL) =

El'T('l'EF)] (strictly, [ct>EF("MC-EVAL) = >.E.AF.>.S. ['1'EF(tliEF(fl(S)))]]} could in fact almost

be used as a definition of v.

3. Semantic Rationalisation Procedural Reflection 191

A Meta-Circular 1. 7-LISP Processor:

(DEFINE MC-EVAL (S3-72)
(LAMBDA EXPR (EXP ENV)

(COND ((MEMQ EXP '(T NIL)) EXP)
((MUMBERP EXP) EXP)
((ATOM EXP) {LOOKUP EXP ENV))
(T (LET {(PROC (MC-EVAL (1ST EXP) ENV)))

(CASEQ (1ST PROC)
(P-IMPR (MC-APPLY-PI (2ND PROC) (REST EXP) ENV))
(P-EXPR (MC-APPLY-PE (2ND PROC)

(MC-EVLIS (REST EXP) '() ENV)
ENV))

(IMPR (MC-EVAL (4TH PROC)
(BIND (3RD PROC) {REST EXP) (2ND PROC))))

(EXPR (MC-EVAL (4TH PROC)

(DEFINE MC-APPLY-PI .
(LAMBDA EXPR (FUN ARGS ENV)

(CASEQ PROC
(QUOTE (1ST ARGS))

(BIND (3RD PROC)
(MC-EVLIS (REST EXP) '() ENV)
{2ND PROC)}})))))))

(IF (IF (NULL (MC-EVAL (1ST ARGS) l:N1/))

{MC-EVAL (SRO ARGS) ENV)
(MC-EVAL (2ND ARGS) ENV)))

(LAMBDA (CONS (1ST ARGS) (CONS rnv (RE:n ARGS))))
(DEFINE {SET-BIi\' 1 {1ST ARGS} (f.!C-EVAL i2NO ARGS) ENV) ENV}})))

(S3-73)

(DEFINE MC-APPLY-PE (S3-74)
(LAMBDA EXPR {FUN ARGS ENV)

(CASEQ FUN
(CAR
(CDR
{CONS
(EQ
(NUMOERP
(ATOM
(READ
(PRHJT
(SET
(+
(-
c·
(I
(EVAL
(APPLY

(CAR (1ST ARGS)))
{CDR (1ST ARGS)))
(CONS (1ST ARGS) (2ND ARGS)))
(EQ {1ST ARGS) (2NP ARGS)))
(NUMBERP {1ST ARGS)))
(ATOM (1ST ARGS)))
{READ)}
{PRINT (1ST AP.GS)})
(SET-BIND (1ST AR~S) (2ND ARGS} ENV))
(+ (1ST ARGS) (2ND ARGS)))
{- (1ST ARGS) (2ND ARGS)))
(• (1ST ARGS) (2ND ARGS)))
(/ (1ST ARGS) (2ND AR5S)))
{MC-EVAL {1ST ARGS) ENV))
{CASEQ {1ST (1ST ARGS))

(P-IMPR {ERROR 'YOU-CAN-ONLY-APPLY-EXPRS))
{IMPR (ERROR 'YOU-CAN-ONLY-APPLY-EXPRS))
(P-EXPR (MC-APPLY-PE (2ND (1ST ARGS)) (2ND ARGS)
{EXPR (MC-EVAL (4TH (1ST ARGS))

(BIND (3RD (1ST ARGS))
{2ND ARGS)
(2ND (1ST ARGS))))))))))

ENV))

3. Semantic Rationalisation

(DEFINE MC-EVLIS
(LAMBDA EXPR (ARGS ARGS• ENV)

(IF (NULL ARGS)
(REVERSE ARGS•)
(MC-EVLIS (REST ARGS)

(CONS (MC-EVAL {1ST ARGS) ENV) ARGS•)
ENV))))

Procedural Reflection 192

(S3-75)

(MAPCAR (LAMBDA EXPR (FUN) (SET-FUNCTION FUN (LIST 'P-IMPR FUN))) (S3-76)
'(QUOTE IF LAMBDA DEFINE))

(MAPCAR (LAMBDA EXPR (FUN) (SET-FUNCTION FUN (LIST 'P-EXPR FUN))} (S3-77)
• (CAR CDR cm,s EO NUMBERP ATOM READ PiUNT SET EVAL APPLY + - • /))

There are, however, a variety of reasons why we cannot adopt this St!ggestion

literally. The first is relatively minor: it has to do with the fact thrt, as will be explained at

the beginning of section 3.f, the present characterisation of .z, is wrong - it presumes that

evaluation and interpretation can be identified, which we arc of course at pains to show

they cannot. In some cases our analysis is correct: for example, it would predict that in

some context E.F tl1e expression (MC-EVAL • '3) would designate the local procedural

consequence of the designation of · '3. We know that • • 3 designates the quoted expression

'3, and we know that the expression • 3 dcsig;;;ates the numeral 3. Because · 3 designates

a numeral, and because a numeral is within the structural field, the evaluation theorem tells

us that the local procedural consequence of • 3 will be its referent: the numeral 3. Thus

(MC-EVAL • • 3} is supposed to designate that numeral. Hence, again, since numerals arc part

of the structural fic.11, (MC-EVAL • • 3) should evaluate to that numeral. We would correctly

predict, in other worcis, the following:

(MC-EVAL ' '3) - 3 (S3-78)

Similarly, we have:

(MC-EVAL '3) 3 (S3··79)

This is predicted because · 3 designates the numeral 3, and that numeral's procedun~l

conseq11ence is itself, and (MC-EVAL '3) should return that numeral. On the other hand, we

also have:

(f,)C-EVAL 3) 3 (S3-80)

This, on our accoum, should generate an error, since the numeral 3 designates a number,

and numbers do not have procedural consequences at :di, not being expressions.

3. Semantic Rationalisation Procedural Reflection 193

This kind of confusion will of course be repaired in 2-LISP. There is another reason

that MC-EVAL is not the extensionalisation of "1, however, which {s that whereas i' on our

mcta·linguistic account is a function of a two-part context - of an environment and a field

- MC-EVAL takes only a single context argument: the environment. The reason is clear: tlle

stmctural field is simply there, so to speak, accessible to examination and modification

without further ado, because the meta-circular processor is internal to the c011i~11tational

process as a whole, whereas our meta-linguistic characterisation is of course entirely

external. MC-EVAL stiH computes the field-relative procedural impon; it obtains the field

aspect of the context directly, however, without need of theoretically posited formal

arguments.

11tis distinction between reified context arguments and directly accessible context

fields will play a role · , the characterisation not only of the full procedural consequence

function r in the next section, but also in defining the 3-LISP prxessor in chapt~r 5.

There is anuthcr rather more serious reason why MC-EVAL does not quite represent

what we are calling 'I'. In spite of being constructed in terms of procedures bearing the

name "APPLY", MC-EVAL makes explicit the Jonna/ cut on procedural consequence: rather

than actua!:y applying the procedure (in an ..ipplication) to the arguments, it performs the

standard computational formal expression analogue of function application - a behaviour

we will ultimately call reduction. It does not, therefore, clarify the question about closures

and functions that we want to focus on.

Finatty, MC-EVAL as just given is, as a declarative analysis of the code would make

apparent, defined in terms of an envi onment as a structure, rather than as a function or list

of pairs. In our mathematics we have defined 'I' as of type [[ENVS x FIELDS J _,. f s ➔ s

JJ: MC-EVAL is of type CC s x s J ➔ s]}. We will make further comments on why it is

reasonable to have .i, defined in te1ms of abstract context, rather than in terms of structural

context designators, in our review in section 3.f.iii; for the present we may simply observe

that once again the use of an evaluative reduction scheme confuses use/mention issues

almost irretrievably.

For all of these rea~ons, we will begin to erect our own characterisation of •It,

therefore, by stepping through the definition of MC-EVAL line by line. As usual, we will

begin with the numerals. Numerals evaluate to themselves in all environments:

3. Semantic Rationalisation Procedural Reflection 194

VN € NUIIERALS, E € ENV, F € FIELDS [i'EF(N) = N] {S3-81)

Similarly, the atoms T and NIL are self-evaluative; other atoms evaluate to their (procedural)

bindings (not, of course, to what those bindings designate or return - we see here how the

one notion of envfronment is used across both procedural and declarative significance):

VA € ATOIIS, E € ENV, F € FIELDS
[1f (A E {"T, "NIL}l tllen ('ltH(A) = A)

else [i'EF{A) = E(A)) 1

(S3-82)

These two equations mimic the first three COND clauses in S3-72 reproduced above.

'The only other category are the pairs, encoding procedure application~. It is not

immediately apparent how these should lie treated: if we were to continue in a rn&nner

entirely parallel tu our treatment of 4>, then we might expect something of the following

sort for extensional procedures:

VS E PAIRS, E E ENV, F E FIELDS
[i'EF(S) " (,J,Ef(Si)]<'l'EF(S;), 'l'EF(S3), ... , ,J,Ef(Sk}>]

where S = f"(S1 S2 S3 ... Sk)l

(S3-83)

or, generalised to handle IMPRS as welt as EXPRS (and assuming a definition of EXPR and IMPR

as functions in the meta-language analogous to EXT and INT in the declarative case):

VS E PAIRS, E E ENV, F E FIELDS
['l'EF(S) = [('l'EF(S

1
))EF] <S2, S3, ... , Sk>]

where S = r"(S1 Sz S3 ••• Sir.)1

and with such definitions of primitive procedures as this:

E0F0 ("CAR) = EXPR(CAR)
Eofo("+) = EXPR(+)
Epfo("QUOTE) = IMPR{AX.X)

·me definition of EXPR would be the following:

EXPR = AG.>..LH .>..S [G<'l'EF(S 1 }, 'l'EF(S2 }, ••• , 'l'EF(S1r.)>]
where S " r"(S1 S2 ... Sk)l

(S3-84)

(S3-85)

(S3-86)

The intuition behind these equations is this: just as extensional procedures de-referenced

their arguments, so EJr.PRS should evaluate their arguments, and then apply their own

"v.:llue" to those evaluated arguments.

There is however a serious problem with this approach, which brings to bring to

light the fundamental problems that penn1..ate these LISP dialects and the vocabulary

3. Semantic Rationalisation Procedural Reflection J 95

traditionally used to describe them. We said above that i'EF was of type cs-+ SJ; EXPR, on

the other hand, i~. a function that takes its arguments onto functions, which are not clements

of the structural field. Thus S3-86 cannot be correct. It might seem that we could change

E0 to return an s·expression, but then equation S3-84 would have to fail, since s-expressions

are not functions, and therefore cannot be used as such in the meta-linguistic

characterisation.

We cannot, in other words, have the following two incompatible things: have '1' take

structures onto structures, and also have it take structures onto the functions that we

attribute to them, even the junctions that represent their procedural import. There are other

problems of the same variety in the equations we just wrote down: S3-85 in conjunction

with S3-84 would attempt to apply the real addition function (defined over numbers) to

numerals, which represents a type-error in the meta-linguistic account. In sum, we will

have to delineate a rational policy on use/mention issues before we can proceed with the

definition of 'Ir.

It is instructive to look at two places it might seem we could turn for help. Standard

programming language semantics deals with functions, but they - as we made clear at the

outset - deal with designation, and with context modification, not with structure-to

structure mappings of tile program. Thus they would take "+" onto the addition function,

which is not open to us. The meta-circular interpreter, of course, does remain with the

structural domain, but it does not deal with fi.mctions. For primitive procedures like

addition, it simply executes them in a non-inspectable fashion; for non-primitives, it would

recursively decompose the structure encoding the definition. Thus for example if we were

dealing with { F 3) where F had been defined in terms of (LAMBDA (Y) (+ Y 1)), the meta

circular processor would bind Y to the numeral 3 in an environment, and recursively

process the expression c + Y 1). At some point in this proc~ss the primitive procedure +

would be encountered, and the "addition" of the numeral 3 to the numeral 1 would be

effected without explanation.

Thus neither of :11esc two traditions affords any help. Note as well that there are

tr· reasons we cannot appeal t1
~ the declarative interpretation function in order to turn the

,;•ructure in procedure poc;hion into a function - cannot, that is, posit an equation of the

following sort (where the underlined part is changed from S3-84):

3. Semantic Rationalisation

'f'S E PAIRS, E E ENV, F € FIELDS
[VEF{S) = [(4'EF(Si))EF] <S2 , S3, ••• , St>]

where S = f"(S1 ~ S3 ... St)1

Procedural Reflection 196

(S3-87)

Not only is 4' not available to us in defining 'I', but this would not even be correct For+

designates the real addition function. and vE ("l) is a numeral. not a number.

The only tenable solution - and, as mcntione J in the introduction to this chapter,

in fact a reasor.able solution - is to define yet another interpretation function, from

structures (since 'l'EF ("+) must be a struct.ure) onto a differelll junction than its designation.

In the case of + the function we want is clearly what we may call the numeral addition

junction. defined as follows:

(S3-88)

Such a function, in other words. given two numerals as arguments, yields that numeral that

designates the zum of the integers designated by the two arguments.

That, of course, is exactly what one would expect the internal so-called "addition

routines" to do. It is exactly what the "arithmetic" component of a CPU does.

Furthermore, this is just the place where the idiosyncracies of representation would be

taken care of. For example, in a particular version of LISP with fixed length integers (the

LISPS we have defined, being abstract and infinite, do not have such limitations, and are

therefore not quite physically realisable), the numeral addition function would not be

described quite as simply as that given in S3-88 above, but rather shown to have limitations

of one sort and another.

We will define a function, to be spelled "A.", which maps a certain class of structures

onto what we will call internal functions. We will call A. the internaliser (to be

distinguished from the intensionalising function of the preceding section). The internaliser

is a function that takes closures, which are expressions, into ftmctions from structures to

stmctures; we will say that these functions arc engendered by the closures. If we were to

ignore its contextual relativisativn, the internaliser would have the following type:

A. : C s _,. C s - s 11 (S3-90)

In fact, however, contexts enter in; our initial version (we will have more complex versions

subsequently) will take stmctures independent of context (since closures are comext

indcpendent) onto functions that arc context-relative:

3. Semantic Rationalisation Procedural Reflection 197

A : { S -+ C[ENVS X FIELDS] ➔ { S -+ S]JJ

Then we have the following internal version of addition:

A[E 0F0("+)] = A["(EXPR Eo (AB) (+ A 8))]
= i\E.M . [i\<A,B> . W 1(+(M('l'EF(A)) ,M('l'EF(B))))]

(S3-91)

{S3-92)

Similarly, we will simply posit the value of A of all primiuvely recognised procedures. We

will then enforce t:i. to obey strict compositional rules for all non-primitive EXPR closures by

defining it as follows. Note that the bound environment E is used to determine the

significance of the arguments, but is not passed to the body s; instead, the fotmal

parameters A1 through Ak are bound on top of the closure environment Ee. This reflects the

fact that t.7-LISP is statically scoped.

VS E S, A1,A2, ... Ak E ATOMS, Ee E ENVS
[~.r"(EXPR Ee (A1,A2, ••• Ak) S)l

= i\E.i\F.Mi;:S2,:: S,.> 'l'E1f(S}]
where E1 = Ee except that for tsisk E1(A¾}='l'EF(Si}.

(S3-93)

We can then set out the following equation for the local procedural consequence of pairs:

VS E PAIRS. E E ENV. F E FIELDS
['l'EF(S) = [(A'l'EF(Si)}EF] <S2, S3, ... , Sk>)

where S = f"(S1 S2 S3 •.• Sk)l

(S3-94}

As an example, consider 'l'E1F 1("(+ 2 3) > (the atom + is assumed to have its standard

binding in E 1):

VE1 F1("{+ 2 3)) (S3-96)
= [i\E.Af.((A'l'EF("+)}EF] <"2, "3>] E1f1
= [(Ai'EF("+))E1Ftl <"2, "3>
= [(i\E.Af . [i\<A,B> . W1(+(M(VEF(A}),M('l'EF(B))))]}E 1Fi] ("2, "3>
= [\<A,B> . W 1(+(M('l'E 1F1 (A)),M(VE 1F1{B))))] <"2, "3>
= W1{+{M('l'E1F1{"2)) ,M(VE1F1("3})})
= W1 (+(M("2),M("3)))
"' w1(+(2 ,3))
= w1(6)
= "5

As a second example we look ac CAR. In t-LISP's initial environment, that atom CAR

is bound to a closure that engenders the actual CAR function:

A'i'Ef("CAR) = A"(EXPR Eo (A) (CAR A)) (S3-96)
= XE.AF . [A<A> . fl('l'EF(A))]

To illustrate, consider '1'E 1F0 ("(CAR X)) where x in E1 is bound to the pair (HHLO .

GOODBYE):

3. Semantic Rationalisation

'l'E1Fo("(CAR X))
= [(&i'H("CAR))E1 Fo] <"X>
= [(AE.AF • [A<A> . F1('1'EF{A))])E 1F0] <"X>
= [A<A> . fo 1 ('1'E1 Fo(A))] <"X>
= Fo1(i'E1Fo("X))
= fo1{E1("X))
= F0

1("(HELLO • GOODBYE))
= "HELLO

This is course what it designates as well.

Procedural Reflection 198

{S3-97)

As a third and final example, we can look at QUOTE. Since QUOTE is primitive, its

internal function has to be posited explicitly; we have:

&vEf{"QUOTE) = d"(IMPR Eo (A) A)
= AE.Af . [MA> . A]

(S3-98)

Consider, for example, 'l'E 1 F0 ("(QUOTE X)) for the same E1 as in the previous example:

'l'E1Fo("(QUOTE X))
= [(d'l'EF{"QUOTE))E1Fo] <"X>
= [(AE.AF . [A<A> . A])E1Fo] <"X>
= [A<A> . A] <"X>
= "X

(S3-99)

Like the CAR example, we have shown that VEF{"(QUOTE X)) = cJ>EF("(QUOTE X)).

It is well to ask what is going on. In brief, what we arc saying is that what we take

the pdmitive procedures to designate has to be posited from the outside: this is what the

lists of E0F0 (<primitive-procedure>) were for. We have to posit as well, and independently,

the functions that are computed by the primitive processing of those procedures. In

specifying an applicative architecture, in other words, we have to do two things: we have to

specify how we are to inter.TJret the functions, and we have to specify how the primitive

junctions are treated (strictly, how procedure applications formed in terms of it are treated).

Thus where we had the atom + designating the addition function, we also have now said

that that atom engenders what we have called numeral addition, when processed by the

primitive processor.

Given these two facts, we have just demonstrated a way in which the functions

engendered by composite expressions can be detennined from the functions engendered by

the primitives. These functions - a class wc arc caning internal functions - arc not the

local procedural consequence of the primitive function designators, since by definition the

local procedural consequence of any symbol must be a symbol. In addition, they are not

what we take those primitive function designators to designate, because they cannot work

3. Semantic Rationalisation Procedural Reflection 199

with abstract entities. Rather, they occupy a middle ground: they are presumably

computed by the underlying implementation, and they additionally (one hopes) cohere in

well-defined ways with the attributed functions they stand in an internal/external

relationship to.

From this perspective, the internaliser "!J." is neither odd nor awkward. In fact it

brings to the. fore a point about computation that underlies our entire account. We have

assumed throughout that a computational device is a mechanism, the most natural

explanation of which is formulated in terms of attributing semantics to its ingredients and

operations. A computer, in other words, is a device whose behaviour is semantically

coherent. Titus a pocket calculator or an abacus is computationally potent under

interpretation. In spite of this, however, the behaviour is not itself the interpretation - to

say that would involve a category error. These facts are exactly what our analysis makes

plain: for primitive procedures, cl> tells us what our interpretation is; !J. tells us the function

computed by the behaving mechanism.

In spite of this claimed naturalness, it is fortunate that in a rationalised dialect, once

some global semantic properties can be proved, one rarely needs to traffic in these internal

functions. If each of the primitives can be proved to cohere with the designated external

functions, and if composition and so forth can be shown to work correctly, all predictions

as to the consequence of structures can be mediated by the external attributed semantics.

For us in our role as language, designers, however, these internal functions arc for the

meantime necessary.

This is as much of an exploration of local procedural consequence as we will take

up, since it is limited to those procedures with no side effects. In order to handle more

general circumstances, we will turn to the full consequence, described by the meta-Ji!lguistic

function r.

3.diii. Full Procedural Consequence (r)

By the fuH procedural consequence we refer not only to what a given expression

returns, 1'ut also to the full effect it has on both the stmctural field and the processor. We

arc modelling the field with a single theoretical posit; the processor by a pair of an

environment and a continuation; thus our function r is of type CC s x ENVS x FIELDS x

3. Semantic Rationalisation Procedural Reflection 200

CONTS J - [s x ENVS x FIELDS JJ. That a continuation need not be part of the range of r
is due to the way in which continuations work in an applicative setting, as the discussion in

chapter 2 explained.

The meta-circular processor presented in the previous section (3.d.ii} dealt explicitly

with environments as well as with structures; as we commented there, the field was not

made an explicit argument, but was instead simply affected directly. Thus it was presumed

that if (MC-EVAL '(RPLACA x 'A)} was processed. and if x designated a structure accessible

from outside, then that structure would be affected in a way in which the outside world

would see. MC-EVAL, and the programs it processes, share the same field.

There is also a sense in which MC-EVAL and its processor share the same continuation

structures. As the depth-first processing embodied in MC-EVAL causes levels of interpretation

to nest, the partial result and so forth are maintained on the stack (an implementation of

simple continuation strucutre) of the processor mnning MC-EVAL; no explicit continuation

structure is maintained by MC-EVAL itself.

As we said in chapter 2, it is possible, using a higher-order dialect such as t.7-LISP,

to model more explicitly the continuation structure involved in processing LISP. 'Inus we

were led to what we called a "continuation-passing" meta-circular processor of the sort

summarised below. As we can by now expect, this code is more similar to the

characterisation of the full procedural consequence we arc currently in search of.

3. Semantic Rationalisation Procedural Reflection 201

A Tail-Recursive Continuation-Passing Meta-Circular 1. 7-LISP Processor

(DEFINE MC-EVAL (S3-100)
(LAMBDA EXPR (EXP ENV CONT)

(COND ((MEMQ EXP '(T NIL)) (CONT EXP))
((NUMBERP EXP) (CONT EXP))
((ATOM EXP) (CONT (LOOKU.P EXP ENV}))
(T (MC-EVAL (1ST EXP) EN\'

(LAMBDA EXPR (PROC)
(CASEQ {1ST PROC)

(P-IMPR (MC-APPLY-Pl (2ND PROC) (REST EXP) ENV CONT)
(P-EXPR (MC-EVLIS (REST EXP} '() ENV

(LAMBDA EXPR (ARGS•)
{MC-APPLY-PE (2ND PROC) ARGS• ENV CONT))))

(IMPR (MC-EVAL (4TH PROC)
(BIND {3RD PROC) (REST EXP) (2ND PROC))
CONT))

(EXPR (MC-EVLIS (REST EXP) '() ENV
(LAMBDA EXPR (~RGS•)

(MC-EVAL (4TH PROC)
(BIND (3RD PROC) ARGS• (2ND PROC}}
CONT)))))))))))

{DEFINE MC-EVLIS (S3-101)
{LAMBDA EXPR {ARGS ARGS• ENV CONT)

(IF (NULL ARGS)
(CONT (REVERSE ARGS•))
(MC-EVAL (CAR ARGS)

ENV
(LAMBDA fXPR (ARG•)

{MC-EVLIS (CDR ARGS) (CONS ARG• ARGS•) ENV CONT)))))

(DEFINE MC-APPLY-Pl (S3-102)
(LAMBDA EXPR (PROC ARGS ENV CONT)

(CASEQ PROC
{QUOTE (CONT (1ST ARGS)))
(IF (MC-EVAL (1ST ARGS) ENV

(LAMBDA EXPR (RESULT)
(IF (NULL RESULT)

(MC-EVAL (3RD ARGS} ENV CONT)
(MC-EVAL (2ND ARGS} ENV CONT)))))

(LAMBDA (CONT (CONS (1ST ARGS) (CONS ENV (REST ARGS)))))
{DEFINE (MC-EVAL (2ND ARGS) ENV

{LAMBDA EXPR (PROC)
(CONT (SET-BIND (1ST ARGS) PROC ENV))))))))

(DEFINE MC-APPLY-PE (S3-103)
(LAMBDA EXPR (PROC ARGS ENV CONT)

(CASEQ PROC
(£VAL (MC-EVAL (1ST ARGS) ENV CONT))
(APPLY (CASEQ (1ST (1ST ARGS))

(P-IMPR {ERROR 'YOU-CAN-ONLY-APPLY-EXPRS))
(IMPR (ERROR 'YOU-CAN-ONLY-APPLY-EXPRS))
(P-EXPR (MC-APPLY-PE (2ND (1ST ARGS)) {2ND ARGS) ENV CONT))
(EXPR {MC-EVAL (4TH (1ST ARGS))

(BIND {3RD (1ST ARGS)) (2ND ARGS) (2ND (1ST ARGS)))
CONT))))

3. Semantic Rationalisation Procedural Reflection 202

(T (CONT (CASEQ PROC
{CAR {CAR (1ST ARGS)))
(CDR (CDR (1ST ARGS)))
(CONS (CONS (1ST ARGS) (2ND ARGS)))
(EQ (EQ (1ST ARGS) (2ND ARGS)))
(NUMBERP (NUMBERP (1ST ARGS))}
(ATOM (ATOM (1ST ARGS)))
(READ (READ))
(PRINT (PRINT (1ST ARGS))}
(+ (+ (1ST ARGS) (2ND ARGS}))
(- (- (1ST ARGS) (2ND ARGS}))
(• (• (1ST ARGS} {2ND ARGS)))
(/ (/ {1ST ARGS) (2ND ARGS)))
(SET (SET-BIND {1ST ARGS) (2ND ARGS) ENV))))))))

(MAPCAR (LAMBDA EXPR (NAME) (SET-BIND NAME {LIST 'P-IMPR NAME) GLOBAL)) (S3-104)
'(QUOTE IF LAMRDA DEFINE))

(MAPCAR (LAMBDA EXPR (NAME) (SET-BIND NAME (LIST 'P-EXPR NAME) GLOBAL)) (S3-105)
'(CAR CDR CONS EQ NUMBERP ATOM READ PRINT SET EVAL APPLY+ - • /))

As with the local case, we cannot simply take this to literally encode the full

procedural consequence, for a number of reasons: the field is not explicitly mentioned, the

environment is encoded as a structure, not as an abstract function, and 1-LISP's evaluation

protocol wreaks its usual havoc. In 2-LISP it would be more possible to define the full

consequence in terms of the full continuation-passing processor, but the field problem

would remain. A solution to this, of course, is to pass the field as an explicit argument:

this violates, however, the code's claim to being meta·circu/ar, we would then be dealing

with a full implementation of LISP in LISP. However the general claim that the denotation

of an implementation of a computational process should be the full procedural consequence

of the implemellled language remains true.

It will turn out, however, as the next section will make plain, that ii> cannot

ultimately be defined except in terms of r; thus we cannot define r by using ii> (although

such a boot-strapping technique would be possible if a non-side-effect version of r were

implemented, by using the ii> of 3.d.i, but we will not pursue such an approach). As

mentioned in the introduction, we will not concentrate on r, but it is instmctive to set out a

few of it'l simple constraining equations.

The numerals are always straightforward:

VS E NUMNERALS, E E ENVS, F E FIELDS, C € CONT$
[f(S,E ,F ,C) = C{S,E, F)]

(S3-108)

..

3. Semantic Rationalisation Procedural Reflection 203

Similarly the atoms:

VS E ATOMS, E € ENV, F E FIELDS, C E CONTS
[f(S,E,F,C) = 1f [S € {"T, "NIL}] then [C(S,E,F)]

else [C(E(S),E,F)]}

(S3-109)

Of more interest is the characterisation of the full significance of pairs. In order to allow

for side-effects, the idea is to allow the environment and field to percolate through the

establishing of the significance of the constituent parts, so as to mirror the temporal flow of

the processing:

VS € PAIRS, E E ENV, F E FIELDS, C E CONTS
[f(S,E,F,C) = ,

(S3-110)

[f(fl(S) ,E,F ,[A<S1,E1,F1> . [AS1(F12(S) ,E1,F1,C)]]]]

This version of A is a full context-passing version of the internaliser shown previously. A

for addition, for example, is:

AE 0F0("+)
= i\S. ;\E. i\f. i\C

[f(fl(S),E,F,
[A<A,E1,F1> .

[fCF11(F12(S)) ,Et,F1,
[A<B,E2,F2> . C([M"1(+(M(A),M(B)})],Ez,F2)]]]]

Similarly, the full internalisation of CAR is:

M 0F0 ("CAR)
E i\S.;\E.i\f .i\C •

[f(fl{S),E,F,
[i\<A,E1,F1> . C([F 1(A}],E1,F1}]]

Finally, we posit the internalisation of QUOTE:

AE0F0("QUOTE} = i\S.i\E.;\F.i\C . C(fl(S),E,F)

(S3-111}

(S3·112)

(S3-113)

As we did in the previous section, we can define the fuH internalisation A of composite

(non-primitive) closures as follows:

VS E S, A1,A2 , ... Ak € ATOHS, E € ENVS
[Ar"(EXPR !_ (A1,A2, ... Ak) ~)l

= i\S0 • AEo. Af o. AC
[l'(fl(S) ,Eo, Fo,

[A<V1,E1,F1> •
[f(F11(F12(S)),E1,F1,

[A<V2,E2,f2> •

[i\<Vk,Ek,Fk> ·

(S3-114)

f(S,E•,F1,:,[A<Sc,Ec,fc> • C(Sc,Et,Fc)l)] ...]]]]]
where E• 1s 11/<e E except that for 1::51::5k E•(Ai)=V1•

3. Semantic Rationalisation Procedural Reflection 204

Each of the arguments, in other words, is processed in the environment of the call, with

side effects passed from one to the next. When the body is fir.ally processed, however, the

environment given it is not the one which has sustained the processing of the arguments.

but rather the closure environment extended to include bindings of the fonnal parameters

to the new bindings. Note on return, however, that the environment passed to the

continuation is E" (which may have been modified in the course of processing the

arguments), not the (possibly modified) version of E• returned ~s a result of processing the

body of the procedure. This arrangement is quite different from the case of the field,

which is passed through the arguments to the body and thence directly to the continuation.

3. Semantic Rationalisation Procedural Reflection 205

3.e. The Semantics of 1-LISP: a Second Attempt

It is time to take a step back from details for a spell, to reflect on what we have

accomplished. On the face of it. we laid out a tentative declarative semantics for all of the

1-LISP structural types, and for all of its primitive procedures; similarly for both the local

procedural semantics, and for the full procedural consequence. There would remain, of

course, a tremendous amount of work before a complete semantics would be in place: the

entire subject of functional composition, recursion, lambda abstraction (i.e., what TRANS

comes to), variable binding, and so forth. would require treatment Some of these subjects

will arise in subsequent discussion of the dialects we build: the semantics of recursion, for

example, will come into the foregoround when we discuss the 2-LISP implementation of

recursive procedures in tenns of an explicit Y-opcrator. However, as suggested earlier, we

will not proceed with such considerations here, for a rather serious reason: our current

approach is in trouble. There are a variety of problems that mean not only that our current

results cannot be adopted intact, but more seriously that our approach cannot even be

maintained. It will be instructive to show just how seriously what we have done so far is in

error.

There are two sources of difficulty: one having to do with the semantical inelegance

of evaluation, and one with temporal considerations and side effects. It is important to

separate them, because the first set of problems are 1-LISP specific: in a rationalised dialect

they could be corrected. The second, however, would confront any possible dialect of LISP;

furthermore, they would appear to challenge the coherence of our maintaining that 11> and ,i,

are distinct. Though we will show that this challenge can in fact be met - and our

original intuitions preserved - to do so will lead us into some complexities.

3.e.i. The Pervasive Influence of Evaluation

The first concern is this: we have arranged it so that applications in terms of

extensional procedures are defined with respect to the designation of the arguments -

indeed, this is what it is to be an extensional procedure. However we have also assumed

that all procedures defined as EXPRs are extensional: that procedures that procedurally arc

treated with EXPR can declaratively be treated with EXT. In t-LISP, of course, this is not so.

3. Semantic Rationalisation Procedural Reflection 206

Alternatively, to put the same point another way, if we assume this correspondence, we will

never be able to describe how t11e procedural consequence and the declarative import of a

given expression relate. Toe problem is that EXPRs evaluate their arguments, and evaluation,

as we have time and again said, bears a strange relationship to designation. To show an

example, we only have to show how, on the readings we have assumed, the expression (EQ

3 • 3) designates falsity, but evaluates to T - presumably an unwelcome result.

The source of this particular problem was our too-hasty assumption that the

primitive procedure EQ designates an extensional equality predicate. There is of course no

doubt that from a procedural point of view it is an equality predicate: 'ltE0 F0("EQ) =

EXPR(=). Declaratively, however, we cannot get away with what seemed only natural: our

claim that «I>E 0F0 ("EQ) = EXT{=). For consider the following:

cf>Eofo{"(EQ 3 '3))
= [(<M 0 F0{"EQ))E0F0] ("(3 '3))
= [(4>E0 F0(E0 ("EQ))E0F0] ("(.3 '3))
= [(EXT(=))E0 F0] (" (3 '3))
= [((AG.AE.Af.AS G(«I>E(S1}, «I>E(S2))) =)E 0F0] ("(3 '3))
= [(hE.Af.hS ={<l>EF(S1), «I>EF(S2))} E0F0] ("(3 '3))
= [AS =(ct>E0Fo(S1), <I>E 0 F0(S2))] ("(3 '3))
= [=(4>E 0F0 ("3), <llE 0F0 (" '3)}]
=[=(3, "3)]
= False

(S3-121)

This in spite of the fact that (EQ 3 • 3) unarguably evaluates to T. The problem, of course,

is that the expression · 3 designates the numeral 3, whereas 3 designates the number 3. We

have known this all along. Because of the evaluation theorem, however, these two sub

expressions evaluate to the same entity (the numeral). To make a proper definition of the

designation of EQ, then, we would have to re-define it along roughly the following lines:

(S3-122)

except of course this (like all attempts to use INT when we want the meta-linguistic function

itself to do some de-referencing or processing) is ill-formed - E and F aren't bound. Thus

we are led to:

{S3-123)

EQ is just an example: we would have to recast every extensional procedure, making the

function EXT of no use whatsoever. We would have to give up the intuition that any

procedure was defined over the referents of its arguments, and recast them alt as defined

3. Semantic Rationalisation Procedural Reflection 207

over the values of their args. And this in order to establish the designation of the whole:

we would claim that (EQ 3 • 3) designates truth because 3 and · 3 evaluate i:o the same

numeral. We could generalise this approach, and define a meta-theoretic function EXPR that

cast the designation in terms of the values of the arguments, but this would be absurd. For

one thing, the designation of an expression would never be used: although you could use

the meta-theoretic machinery to ask of a given expression what its designation was, the

answer would be formulated in terms of the local procedural consequence of the

ingredients, not in terms of the designation of anything! Looked at from the other side, we

can see that from me fact that, for some expressions x and v, the expression (EQ x Y)

evaluates to T, one cannot say whether x and Y are co-designative - all one can say is that

they are co-evaluative. So much the worse for 1-LISP.

The repair suggested in S3-123, in other words, attempts to solve the problem by

dismissing it It says that we have to abandon any notion of pre-theoretic attribution of

semantics, in order to formulate an explicit account of that pre-theoretic attribution, which

is nonsensical. To follow such an approach is to get lost in fcrmalism and lose touch with

our goals. It was our original aim to demonstrate the natural declarative attribution of

significance to expressions formed in terms of EQ, which is undeniably that its arguments

arc the same. This last maneouver is an attempt to correct the declarative semantics so that

the equations work out: a better strategy, we claim, is to correct LISP so that the natural

intuitions are tme of it.

3.e.ii. The Temporal Context of Designation

The second problem with the approach of the last section, in contrast, must squarely

be faced. It is this: we have assumed, throughout our analysis, that the context in which an

expression is used is always passed down through the tree being interpreted: thus, the

environment in which each of the clements of a procedure application are interpreted is the

same. In actual t-LISP, however, the story is not so simple, because of side effects.

Consider for example:

(LET ((A '(2 3)))
(+ 1 (BLOCK (RPLACA A 6)

(CAR A))))

(SJ-124}

3. Semantic Rationalisation Procedural Reflection 208

It is clear that this will evaluate to the numeral 6 (this would be reflected by looking at r);

although we have not spelled out the declarative import of BLOCK, i.t should be evident that

it will designate whatever is designated by the last form in its scope. By our discu:;sion in

section 3.c. v, where we admitted that the context of use of an expression, for declarative as

well as for procedural purposes, was temporally as welt as structurally located, we are forced

to admit that (CAR A) in the form given must designate the number five; thus the whole

must designate six. The equations we have set down, however, would not reflect the

changed field in establishing the designation of (CAR A); thus they would predict that the

designation of the whole was the number three.

It is for reasons like this, of course, that standard programming langauge semantics

turned to continuation~passing style to encode the potential temporal interactions between

the evaluation of one fragment of the code and another. We too took this approach, but

only for procedural purposes. The present example would seem to suggest that we will

have to do this as well for the declarative semantics, but such a suggestion looks, at first

blush, as if it would violate our overall conception of procedural and declarative semantics

as distinct.

111is concern, however, is shallow. The answer :s this: what differentiates full

procedural consequence from local procedural consequence is that the former makes

explicit all of the potential causal interactions between the processing of one part of a

composite expression and another. The declarative semantics, by our own admission, is

equally vulnerable to such causal effects. A full theory, therefore, el'en of the declarative

semantics, should be, like r, formulated with full continuations, explicit field and

environment arguments, and the rest. In other words, early in the chapter we argued that

'I' and <I> must be separated, but in the formal analysis that resulted we separated them too

much: what we must now do is let them come back closer together, without losing grip on

our claim that they describe different matters.

It is worth examining a variety of possible solutions to this problem of relating side

effects and other non-local procedural consequences with the declarative reading, for they

illuminate several aspects of our approach. First, it would be possible to define the dialect

simply without side effects. This is not quite as limiting as it might seem, given our overall

interest in reflection. It is of course our long-range goal to define 3-LisP: in that dialect.

3. Semantic Rationalisation Procedural Reflection 209

the ability to reflect is sufficiently powerful that one can obtain, in virtue of the very

architecture, explicitly articulated meta-theoretic accounts of the procedural semantics of the

underlying machine. It should be noted, as well, that side-effects and. non-local control

operators can obviously be described perfectly adequately in a language without side effects.

Throughout our meta-theoretic analysis, for example, we have formulated r, which makes

side-effects explicit, in the untyped >.-calculus - which is certainly a side-effect-free

fonnalism. From these two points we can see how a reflective dialect of the pure non-side

effect >.-calculus would be sufficiently powerful so that procedures with "side-effects" (i.e.,

procedures behaviourally indistinguishable from those we say have side-effects in t-LISP)

could be defined. The strategy would be to define such procedures - SETQ and RPLACA

and so forth - as reflective procedures that explicitly call the continuation with arguments

designating the modified field and environment functions. For example a definition of

SETQ might look something like the following. (To handle field side-effects would require

passing the structural field as an explicit argument, which we do not do in 3-LISP, as

discussed in section 5.a. Also, this code assumes an environment protocol like that shown

later in S3-137; since in 3-LISP we in fact support environment side-effects primitively,

environments are dealt with differently. But the following code would work if that scheme

were adopted.)

{DEFINE SETQ (S3-125)
(LAMBDA RFFLECT ((VAR VAL] ENV CONT]

(NORMALISE VAL ENV This is 3-LISP
(LAMBDA SIMPLE (N-VAL]

(CONT [N-VAL] (PREP [VARN-VAL] ENV))))))

The syntax and meaning of this will of course be explained only in chapter 5, but the

intent is this: a call to SETQ (say, (SETQ x 4)) would reflect upwards one level, binding VAR

and VAL to designators of x and 4, and binding ENV and CONT to the environment and

continuation in effect at the time of the call. After normalising the value (the variable

doesn't need to be normalised, because this is SETQ, the continuation is called with the

normalised value not only as the result, but with an environment in which the binding of

the variable to the normalised "value" tacked on the front.

RPLACA and CONS and so forth could be similarly constructed. However to do this

would be an empty victory, for all that would have happened would be that the semantical

account of side-effects would be buried inside the definition of SETQ, rather than made

3. Semantic Rationalisation Procedural Reflection 210

explicit in the semantical account of SETQ; the fall significance of SETQ would be identical

either way. From the fact that side-effect:.; can be described nothing of particular note

follows; our problem was how they were to interact with designation. If we adopted the

approach just given we would have to say that the designation of any expression depends

on the designation of any reflective procedures in its arguments, which is merely a recasting

of the same problem - a recasting, it should be noted, into a much more difficult subject

matter. At the present time the author has no suggestions as to how the semantics of 3-

LISP can be finitely described (although there seems no doubt that they could be - we

merely lack te..:hniques). This is one reason that 2-LISP merits development on its own,

where semantical characterisation is still tractable.

A second possible approach to the problem of procedural dependencies would be to

give up, when faced with side-effects: to say, in a case where the arguments to a procedure

involve side-effects, that we have no principled way of saying what the designation of the

whole form is. We would simply decline to specify the designation of (BLOCK (SETQ A 3)

3), for example. This, however, is an admission of defeat - and, we will be at pa.ins to

argue, an unnecessary defeat What it amounts to is a claim that the temporal aspects of

the context of use of an expression not only affect the dc·,ignation of that expression. but

that they affect it in ways which we cannot describe. But of course we can describe the

temporal aspects of the context - .the full procedural semantics function r was developed

exactly in order to make them explicit. Therefore it seems !lnlikely that we cannot describe

their declarative effect. Thus this second option should also be ;ejected - particularly

because it is not so much an option as a suggestion that we abandon the effort.

The only approach still open, then, is this: we should allow that procedural

consequence can affect designation, aud try to lay out the ways in which «I> will depend on

the contextual modification made explicit bv r. At first blush this would seem to connect

the declarative and procedural notions so closely that we lose the ability to prove the

evaluation theorem, for the whole argument at the beginning of the chapter focused on

how it was essential to have declarative and procedural readings specified independently in

order to prove anything about how they relate. However we will not, as it happens, be in

such deep water as all that, as the next pages should make clear.

3. Semantic Rationalisation Procedural Reflection 211

3.e.iil Full Computational Significance (I)

The approach is simply to identify very carefully our assumptions - including the

admission that the declarative import of a symbol may be a function of its temporal as well

as its structural context - and proceed once again to erect the mathematical machinery to

honour them. The examples in the last few paragraphs have indicated that only the fall

computational account of the processing of symbols will enable us to determine the

declarative import of an expression. Docs this mean that that full computational eccount is

the declarative import? Of course not Does it mean that the local procedural consequence

and the declarative import merge~! No, there is no need for that It is helpful to remember

that the oliginal intuition in ~e case of numerals - that numerals designate numbers but

return themselves - is simple and pcrf cctly coherent. No matter how complex other

circumstances force our analysis to be, we should never feel the need to give up the ground

cases.

One possibility would be to formulate a full declarative semantical function - called

n, say - that woe1d stand in the same relationship to 1> that r stands to it. However this

is wrong-headed: as we mentioned earlier, although the declarative import of an expression

is affected by procedural consequence, it does not itself affect context. Thus the situation is

not symmetric, and defining such a TI would duplicate much of r. What we want, instead,

is to show how 4> depends on the contextual modifications that arc already adequately

manifested by r.

The approach we will follow is to adopt a new, fully general, computational

semantical function - a kind of "grand interpreter" - which is fonnulated not purely in

aid of the loc:11 procedural consequt:n:::e, but which instead makes clear how that procedural

consequence affects the full context of each expression, for both declarative and procedural

purposes. The natural suggestion is to h~ve the new semantical interpretation function

convey both the procedural and declarative import, as well as the context infonnation.

Thus, whereas r mapped structures and contexts onto structures and contexts, we will

examine a function that maps structures and contexts onto structures, designations, and

contexts. More precisely, we will have a new full computational sig11i/icance function

(which we will call l: for alliterative reasons), of type:

3. Semantic Rationalisation Procedural Reflection 212

cc s x c::n x FIELDS x CONTS J - C s x o x ENVS x FIELDS 11 (S3-126)

'i'hus in a given context we will say that a computational expression signifies a four-tuple of

a result, a designation, and a two-part resultant context

The intent, in a case where there are no side effects, will be roughly the following

(this is ill-defined, but is intended to convey the overall flavour):

VS, E, F, C [~{S,E,F,C) = C(i'EF(S), cJiEF(S), E, F)] (S3-127)

It is to be noted, however, that we wilt define v and <I> in terms of ~. so the above equation

is for the moment strictly content-free.

In order to convey a sense of this new ~. we can characterise in its terms the

corresponding new formulation of the evaluation theorem:

VS1 , S2 E $, e1·, E2 E ENV, F1 , F2 E ENV, D E D
[I I(S1,E1,F1,ID) = <S2, D, E2, F2>] ::J
['if [D E S] then [S2 = D] else [i?IE 1F1(S2) ". D]])

Similarly, we would have a new statement of the normalisation theorem:

\'S1, S2 E S, E1, E2 E ENV, F1, F2 E ENV, D E D
([I(S1,E1,f1,ID) = <S2, D, E2, Fz>] ::J
([4'E 1F1 (S2) = D] A [NORMAL-FORM(S2))11

(S3-128)

(S3-129)

Note that in both cases the retationsh~p betwen s2 and o is expressed using <fl; we still need

to discharge this reference (although this use of If> is relativised to E1F1, since s 2 is in

normal-form, E2F2 or any other context would serve as we11). What we will do is to define

<I> and v in terms of the new }:, so that they can be used as they were before. In particular,

we make them selectors on the sequence of entities returned by :E:

v = J\E.]\F.J\S[}:(S,E,F,J\X.[Xl])]
~ a J\E.AF.M[:E(S,E,F,J\X.[X2])]

(S3-130)

Thus if we inquire as to <MF of a given expression v, we are by these definitions taken to

be asking about the first coordinate of the four-tuple designated by IEF of v, given an

essentially empty continuation. These not only make equations S3-128 and S3-129

meaningful; they enable us to sho1tcn those formulations as well. In particular, we get the

following restatements of our main theorems (evaluation and normalisation, respectively):

VS E S, E E ENVS, F E FIELDS
[if [•JIEF(S) E S]

then [<PEF(S) = VEF(S)]

(S3-131)

3. Semantic Rationalisation Procedural Reflection 213

else ff tflEF(S) = 4lEF(+EF{S)}] A [NORMAL-FORM(cllEF(S))])]

VS E S, E E ENVS, F E FIELDS
IT <I>EF(S) = tllU('l'EF{S)) 1 " [NORMAL-FORM(<I>EF(S)) D

(S3-132)

Except for the increased complexity for dealing with environments and fields, these

equations closely resemble the initial versions we presented in the chapter's introduction.

The use of the identity continuation in S3-130 is intentional, and deserves some

comment. I must be formulated in tenns of continuations, in order properly to handle

side~effects of all kinds. 'Thus the full procedural consequence of a form such as {RETURN

10) is describable only in such terms. Note, however, what would happen if we asked what

(RETURN 10) designated, or what (RETURN 10) resulted in. By S3-130, we would inquire as to

the first or second element of the four-tuple signified by (RETURN 10) - i.e., designated by

I("(RETURN 10),E,F,AX.X). In all liklihood this would be ill-formed, since AX.Xis not a

continuation structured in the way that (RETURN 10) would require. But this is perfectly

reasonable: (RETURN 10) does not really have a designation on its own. If, on the other

hand, we ask for the designation or local procedural consequence of:

(PROG (I)
(SETQ I 0)

A {SETQ I(+ I 1))
(IF{= I 4) (RETURN I))
(GO A))

(S3-133)

Then the answer will be the number four (or the n~merat 4), and this will have been

determined in virtue of examining the fall computational significance of the embedded term

(RETURN I), rather than examining only that term's local import. This careful trading

between full signficance and local designation is just what we want: it is too broad to say

that the designation is the full significance (that is what standard programming language

semantics approximately docs), but it is too narrow to say that the designation is formed

only of the designation of the consituents (that was the error of the previous section). In

this new formulation we retain the abiJity to talk about the local aspects - designation and

result - of the full significance, but can still compose those local aspects out of the full

significance of the ingredients. This is the point towards which we have been working this

long while.

'The easiest way to sec what this refonnulation amounts to is to begin laying out the

characterisation, under this new protocol, of the semantics of the basic structural types and

3. Semantic Rationalisation Procedural Reflection 214

the primitive procedures. The first three structural types are straightforward:

~ a AS.AE.AF.AC (S3-134)
(case TYPE(S)

NUMERAL ➔ C(S, N(S), E, F}
ATON ➔ 1f (S E {"T, "NIL}] then C(S, T(S), E, F}

else C(E(S), il>EF(E(S)), E, F)]

First we consider the numerals and boofoans. In both cases what is returned is the numeral

or boolean; what is designated is the integer or truth-value associated with the constant

symbol. Neither environment nor field are affected, and the provided continuation is

applied; thus both are context-independent and side-effect free. All is straightforward.

Atoms too are side-effect free, but they of course depend crucially on the

environment. What is returned is the binding; what is designated is the designation, in the

context of use, of that binding. It is, as we have noted before, only the fact that bindings

are context-independent that legitimises this ostensibly odd characterisation of their

designation.

The use of the continuation in S3-134 should be noted. It would seem that the full

computational significance of a numeral should, rather thanf(S, N(S). E, F), be <S, N(S),

E, F>. c, after all, might be some continuation mapping that result onto some other

unknown entity. However to ask w.hat the computational significance of an expression is,

we have to do so in a context If we ask only with respect to a field and an environment,

we use the identity function ID (ID is in this case [A<X1 ,X2 ,x3 ,X4> . <X1 ,X2 ,X3 ,X4>], since

continuations are applied to four-tuples); thus, in some E1 and Fk, the full computational

significance of the numeral 3 is l:("3, E1, Fk, ID), which is the sequence <S, N(S), E, F>.

In a more complex case, however, we might ask for the designation of an expression that

involves a control side-effect; in an appropriate context, the fonn (THROW • TOP-LEVEL a)

might designate the number three; this could not be detcnnined if continuation-passing

semantics were not employed.

More revealing than the three atomic types is the full significance of pairs:

VS E PAIRS (S3-136)
~(S) = AE.AF .AC

[l:(f1(S), E, F,
(A<S1,D1,E1,F1>

(451(Ft2(S) ,E1, Fi,
[A<S2,E2,F2>. C(S2,D1(Ft2(S),E1,F1),E2,F2)])]]]

3. Semantic Rationalisation Procedural Reflection 215

In order to understand this, consider the various ingredients we have to deal with. First, in

any pair the CAR - f1(S) in the equation - will presumably designate a function. Since

the term l!(fl(s), E. F. [MS1 • D1 , E1 • F 1>]) will designate its fourth argu.nent applied

to the full significance of that CAR, we can presume (assuming that the CAR engenders no

control side-effects) that D1 will designate that function, and s1 will designate the expression

to which the CAR evaluates (a closure of some sort, presumably). For example, ifs was the

expression (+ t 2), 01 will designate (the extcnsionalisation of) the addition function, and s1

will designate the +-closure (E XPR ll (A B) { + A e)).

There are then, as we have pointed out before, three ways in which we expect to

combine these various ingredients (those ingredients being the closure, the addition

function, and the arguments). Under one, the cxtensionalised function will be applied to

the arguments: this is _D1(Ft2(S) ,E1 ,F 1) (since D1 is the extensionalisation of the addition

function, this will apply the real addition function to the designations of the arguments, as

expected). Under tl1e second, the internalised version of that function wilt be applied to the

arguments: this is M 1(F12(S),E 1 ,F 1 ,C). Under the third (the Jonna/ account}, the closure

will be reduced with the arguments by a computational process - this is what the meta

circular processor makes clear, but is not something that we try to manifest in the

scmanti,;s.

The first two are represented in this code by making the internalised function take as

an explicit continuation a function that receives the full procedural consequence of the

application of that internalised function, but then puts this together with the declarative

import of the application, which is calcu1uatcd independently in the meta-language. It

should be evident that this technique, which essentially branches the meta-linguistic

characterisation of the significance of :-airs, calculating the procedural and declarative

import separately, bears the bmnt of the claim that the two are to be independently

specified. From a computational point of view this meta-linguistic characterisation is

inefficient, because both D1(F 1
2(S),E1 ,F 1) and AS 1(F 1

2(S),E 1 ,F1 ,C) recursively decompose

in terms of l: of their consituents, but it is exactly the difference between them that

captures our foundational intuition that declarative and procedural imp011, although both

dependent on the same computational contextualisation, arc nonetheless distinct

In order to illustrate the use of this reconstituted l:, we will show the significance of

several primitives. First we take CAR:

3. Semantic Rationalisation Procedural Reflection 216

l:(E0F0{"CAR)} = AE.AF .AC . (S3-136)
[C("(EXPR EO (X) (CAR X)),

[A<A,E1,F1> .
I(f11(A), E1, ft, [A<S2, D2,E2, f2> f21(02)]])]

E. F)

This can be described in English as follows. First, CAR is a procedure whose signficance is

that, in a context (E and F), it straightforwardly signifies (calls c) with a tuple of four things,

as usual: its nonnal-fonn, its designation, and the context unchanged (E and F, again).

Thus right away we see that in this environment CAR is side-effect free. The normal-fonn

(the s-expression "(EXPR EO (X) (CAR X))) is the closure of the CAR procedure, which is

described separately, below. The function that it designates is the crucial thing to look at

It is a function of three things (all designated functions are called with three arguments: an

argument to the application and a two-part context - this is unchanged from before); it

first obtains the significance of its single argument F1
1(A), in that context {E 1 and F1). Then

the crucial part comes: F2
1(D2), which is of course the CAR of s2 in field F2• Thus

applications in tenns of CAR designate the first element of the pair designated by their

arguments. This is entirely to be expected.

There are various things to be noted. First, that the CAR-closure (EXPR EO (X) (CAR

X)) dest'gnates the second argument would have to be proved - this presumably can be

done. Second, it is only the designation 02 of the full significance of A1 that is given to the

CAR function (F2
1). Otherwise the context returned by as E2, F2 is ignored. The full :E

characterisation of CAR will pick those up explicitly, so there is no ltann in ignoring them

here.

The full internaliser /J. has to be mildly redefined so as to deal with a :E that yields

four-tuples, .although it consistently ignores the denotations. We give first its new general

definition on non-primitive closures. Note that c• is not a full continuation, in the s~nsc

that it is a function of three arguments, not four (an example of such a c• appeared in S3-

136):

VS € S, A1 ,A2, ... Ak € ATOMS, E € ENVS
[.Af"(EXPR f {A1,A2, .. ,Ak) §)1

= ASo.AEo.Afo.XC•
[I(F1(S),Eo,fo,

[A<V1,D1,E1,F1> .
[I(ft 1{ F 12(S)), Et, ft,

[A<V2 ,D2 ,E2 ,F2> •

(S3-137)

3. Semantic Rationalisation Procedural Reflection 217

l:(S, E*, fk• [A<Sc;,Dc;, Ee;, F c> • C*(Sc;, Ek, f c;)])] •••]]]])
where E* 1s 11ke E except that for 1~1~k E*(A1)=V1 •

As before, we have to provide the internalisation of all primitives; for illustration we first

present it for CAR:

t\EoF 0("CAR)
s AS.AE.AF .AC

(l:(f1(S),E,F,
[A<A,D1,E1,F1> . C([f11{A)],E1,f1)]]

(S3-138)

We also give the full significance, and the internalisation, of + and QUOTE:

l'!(E0 F0 ("+)) '"
>.E.AF.AC .

[C("(EXPR ~ (8 C) (+DC)),
(>,<A,E1,F1> •

l':(F1
1(A), E1, f1,

[A<A2,D2,E2,F2> •
I(f 21 (f 12 (A)) , E2 , F 2,

[A<Aa,Da,Ea,Fa> . +(D2,Da)])])]
E, F)

{S3-139)

t\E0F0{"+) (S3-140)
s >.S. >.E • M.).C •

[l:(fl(S),E, F,
[A<A,D1 ,E1 ,F1> •

[Z(F11 (f2(S)), Et, f1,

~(Eofo("QUOTf)) =
>.E.>.F.AC •

[>.<B,D2,E2,f2> C((M-1(+(M(A),M(8)))],E2,F2)]]]]

[C("(IMPR EO (X) X),
[>.<A,E 1 ,F1> • f 1 l(A)]
E, F)

t\E0 F0{"QUOTE) = >.S.>.E.>.F.AC • C{f1(S),E,F)

(S3-141)

(S3-142)

3. Semantic Rationalisation Procedural Reflection 218

3.e.iv. An Example

To step through a particular example will be instructive (if a little tedious). We will

look at the full significance of (CAR • (A B C)) in 1-LISP under this new approach:

l:("(CAR '(ABC)), Eo, fo, ID} (S3-143)
= [l:(F0

1("(CAR '(A 8 C))),
Eo,
fo,
[A<S1,D1,E1,F1>.

[AS1(f12 ("(CAR '(A 8 C))),E1,f1,
[A<S2,E2,F2> .

(ID)<S2,D1(f12 ("(CAR '(AB C))),E1,fi),E2,F2>])]]]

This is merely equation S3-136 with our particular arguments filled in - this is legitimate

because (CAR '{A e C)) is a pair. First we perform the CAR operations out of F0:

= [l:("CAR, E0 , F0 , (S3-144)
[A<S1 ,D1 ,E1 ,F1> .

[AS1(F12 ("(CAR '(A 8 C)J),E1,F1,
[A<Sz,E2,F2> .

(ID)<S2,D1(f12("(CAR '(A 8 CJ)),E1,F1),E2,F2>])]]]

Now equation S3-136 applies, since E0F0 ("CAR} is primitive:

= ([A<S1 ,D1,E1,F1> • (S3-145)
[AS1(F 1

2 ("(CAR '(A 8 C)J),E1 ,F1,
[A<S2 , E2 , F2> .

(ID)<S2,D1(Ft2("(CAR '(A 8 CJ)),E1,F1),E2,Fz>])]]
<"(EXPR EO (X) (CAR X)), .

[A<A,E1,F1> . l:(F11(A),E1,F1,(AS2,D2,E2,F2 . F21(D2)])]
Eo, Fo>)

We perform the first reduction, allowing the significance of CAR to bind in a context and an

argument structure. D1 will bind to the extensionalisation of the CAR function; s 1 will bind

to the closure that the internaliser will subsequently also take onto the CAR function, as we

will see (thus preparing the way for the declarative and procedural consequence being the

same).

= ([11("(EXPR EO (X) (CAR X)))] (S3-146)
<F0

2 (" (CAR '(A 8 CJ)),
Eo,
Fo,
[A<S2,E2,F2> •

(ID)<Sz,
([A<A,E1,F1> . I{F11(A),E1,F1,[AS2,D2,E2,F2 . F21(D2}])]

<Fo2(" (CAR '(A 8 C))), Eo,Fo>),
Ez,
F2>]>)

3. Semantic Rationalisation Procedural Reflection 219

We can remove the identity function, and perform the two CDRS on F0:

= ([A("(EXPR EO (X) (CAR X)))] (S3-147)
<"('(ABC)).

Eo,
Fo,
[A<S2, E2, F2> .

<S2,
([A<A,E1,F1> . :Z(F11(A),E1,F1,[AS2,D2,E2,F2 , Fz1{Dz)])]
<"('(A 8 CJJ,Eo,Fo>),

E2,F2>]>)

Then we can proceed to calculate the deciarative import. Note that we have not yet

expanded the term representing the internalisation of the CAR closure; we are instead in the

midst of calculating, from the semantical characterisation of the ingredients, what the whole

expression designates. We will turn to the calculation of what it returns presently.

= ([A("(EXPR EO (X) (CAR X)))]
<"('(A 8 C)J,Eo,Fo,

[A<S2 ,E2,F2> .
<S2,

[:Z(F11{"('(A 8 C))),E0,Fo,[AS2,D2,E2,F2. F2 1(D2)])],
Ez,F2>]>)

(S3-148)

Once again performing a CAR off F1 (and expanding the "• (A B C) to its full representation

as "(QUOTE (A B C))):

= ([A("(EXPR EO (X) (CAR X)))] (S3-149)
<"('(AB C)),Eo,Fo,

[A<S2,E2,F2> .
<S2,

[:Z("(QUOTE (AB CJ),Eo,Fo,[A<S2,D2,E2,F2> . Fz 1(Dz)])],
E2,F2>]>)

This subsidiary call to :z by the declarative significance of CAR is necessary in case there are

side effects, of course, which our example will not illustrate. Nonetheless it affords a good

example of the full significance of the paradigmitic IMPR. First we apply :z in the general

case for pairs (the internal continuation from above has been renamed, in an a-conversion,

to use "3" subscripts, rather than "2", to avoid confusion):

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB C)J,Eo,Fo,

[A<S2,E2,F2> .
<S2,
[l:(fo1("(QUOTE (A 8 C))),

Eo,
Fo,
[A<S1,D1,E1,F1> .

[AS1(F1 2("(QUOTE (ABC))),

(S3-150)

3. Semantic Rationalisation Procedural Reflection 220

E1,
f1•
[A<S2 • Ez, f2>

([A<S3,D3,E3,F3> • F31(D3)]
<S2,

[D1(F12("(QUOTE (AB C))),E1,f1)],
E2,F2>)])]j)],

Doing the CAR on r O extracts the QUOTE function explicitly:

= ([A("(EXPR EO (X) (CAR X)))] {S3-161)
<"('(AB CJJ,E0 ,F0 ,

[i\<S2,E2,F2> •
<S2,
[l:("QUOTE. Eo, fo,

[A<S1 ,D1, E1, F1>
[AS1(F1

2("(0UOTE (A 8 C))),E1,f1,
[i\<S2 • E2 • Fz> •

E2,F2>]>)

([i\<S3,D3,E3,F3> . F31(D3)]
<S2,

[D1(F12("(QUOTE (AB C))),E1,F1)].
E2,F2>)]}]])],

Now equation S3-141 defining the procedural consequence of QUOTE applies:

= ([A("(EXPR EO (X) (CAR X)))]
<"('(A B C)).Eo,Fo,

[A<S2,E2,f2> •
<S2, .

((i\<S1,D1,E1,F1>.
[AS1(F12("(0UOTE (AB CJJ>,E1,F1,

[A<S2,E2,F2> •
((i\<S3,D3,E3,F3> . F31(03)]

<S2,
[D1(f12("(QUOTE (A 8 C))),E1 ,Fi)],
E2,F2>)])]]

<"(IMPR EO (X) X),[i\<A,E1,f1> , f1 1(A)],Eo,Fo>}.
E2,F2>]>)

We can bind the context and arguments into this full significance:

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB CJJ,Eo,Fo,

(i\<S2, Ez, F2> •
<S2.
([A("(IMPR EO (X) X))]
<f02("(QUOTE (AB C)J),E0,f0 ,

[i\<S2. E2, F2> •
([i\<S3,D3,E3,F3> . F31(D3)]
<Sz,

([i\<A,E1,F1> • F11(A)]
<fo2("(QUOTE (AB C))),Eo,Fo>),

E2,f2>}]>),
Ez • Fz>]>)

(S3-162)

(S3-163)

3. Semantic Rationalisation Procedural Reflection 221

And perform the two CDRS off F0 to pick up the arguments to QUOTE:

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB C)),Eo,Fo,

[A<S2,E2,F2> .
<S2,
([A("(IMPR EO (X) X))]
<"((A 8 C)),Eo,Fo,
[MS2,E2,F2> •

{[.\<S3,D3,E3,F3) . F31{D3)]
<S2,

{[A<A,E1,F1> • F11(A}]<"((A 8 C)J,Eo,Fo>),
E2,F2>)]>),

E2,F2>]>}

Next we need the internalised version of QUOTE from equation S3-142:

= ([A("(EXPR EO (X) (CAR X))}]
<"('(AB C)),E0 ,Fo,

P,<S2, ~2, F2> ,
<S2,
([,\S,,\E.,\f,,\C. C(F 1(S),E,F)]
<"((A B C)J,Eo,Fo.,

[.MS2 , Ez, F2> •
([MS3,D3,E3,F3> , F31(D3)]

<S2,
([MA,E1,F1> , F11{A)]<"((A 8 C)),Eo,Fo>),
Ez,Fz>)]>),

Ez,Fz>]>)

Which we can then reduce:

(S3-164)

(S3-165)

= ([A("(EXPR EO (X) (CAR X)))] (S3-156)
<"('(AB C)J,Eo,Fo,

[A<Sz,E2,F2> ,
<S2,

([A<S2,E2,f2>
([,\<S3,D3,E3,F3> . F3 1(03)]

<S2 ,([A<A,E 1 ,F 1> . F1 1{A)]<"((A 8 CJ),Eo,Fo>),Ez,Fz>)]
<Fo1("((A B CJJ),Eo,Fo>),

Ez,Fz>]>)

It is now straightforward to take the F0 CAR: thus indicating that QUOTE returns its first

argument. However, since we arc aiming for the designation of (QUOTE (A a C) }, this fact is

ignored. What proves of interest is the designation of QUOTE, which is now applied to the

original arguments:

= ([A{"(EXPR EO (X) (CAR X}))]
<"('(AB C)),E0 ,Fo,

[.\<S2 • E2 , F2> •
<S2,

([A<S3,03,E3,F3> • F31(03}]
<"(A 8 C),

(S3-167)

3. Semantic Rationalisation Procedural Reflection 222

([A<A.E1 ,F1> . F11(A)]<"((A 8 CJ),E0 .F0>),
E0 , F 0>}.

Ez,Fz>]>)

We can now apply the designation of QUOTE as indicated. Note that s3 and E3, which have

been brought along to establish the correct context, are at this point dropped; F 3 is used to

do the CAR (in case an intervening RPLACA had actually modified the fonn under

processing):

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB C)),Eo,Fo,

[A<S2,E2,F2> .

Another reduction:

<S2,
[Fo1([A<A,E1,F1> . F11(A)]<"((A 8 C)J,Eo,Fo>)].
Ez,F2>]>)

= ([A("(EXPR EO (X) (CAR X)))]
<"('(A 8 C)),Eo,Fo,
[MS2,f2,F2> •

<S2 ,(F0
1(f0

1("((A 8 C))))],E2,F2>]>)

Now we perform the inner of the two indicated CARS off F0:

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB C)),E0 ,Fo,

[A<S2,E2,F2> •
<S2 ,[fol("(A 8 C))],E2,F2>]>)

(S3-158}

(S3-159)

(S3-160)

Thus we have shown that (QUOTE (A n C)) designates (A B C). The outer CAR (off F0) is the

explicit CAR from (CAR (QUOTE { A B C)) ; that WC. can do now:

= ([A("(EXPR EO (X) (CAR X)))]
<"('(AB C)J),Eo,fo,

[A-<Sz,Ez,Fz>. <S2,"A,E1,F2>]>}

(S3-161)

Finally, we have proved that, independent of what (CAR • (A B c)) returns, it designates the

atom A (indicated in the meta-language by "A). We have not yet spelled out how the

internaliser in this reformulation works, but its intent is clear, and the details can now be

spelled out. This half of the derivation, however, wiH be quite brief, because some of the

intermediate results are the same as ones we have already calculated. The internalisation of

the primitive CAR closure we obtain from equation S3-138:

= ([AS.AE.AF.AC .
[I(Fl(S) ,E,F,

[A<A,D1,E1,F1> . C([F11(A)],E1,F1}])]]
<"('(AB C)),E0 ,F0 ,[A<S2 ,E2 ,F2>. <S2 ,"A,E 2 ,F2>]>)

(S3-162)

3. Semantic Rationalisation Procedural Reflection 223

Proceding with the reduction:

And:

= [l:(fo1("('(A 8 C))),Eo,fo,
(A<A,D1,E1,F1> .

([A<S2,E2,F2>. <S2,"A,E2,F2>] <[F11(A)],E1,F1>)]}]

= [~("(QUOTE (AB C)J),Eo,Fo,
[A<A,D1,E1,F1> .

([A<S2 ,E2 ,F2>. <S2 ,"A,E2 ,F2>] <[F1
1(A)],E 1 ,F1>)])]

(S3-163)

(S3-164)

But of course we have already gone through the determination of the full significance of

(QUOTE (A e C)) in S3-151 through S3-159, above. Admittedly we have a different

continuation this time, but the computation is the same. Thus we can step immediately to

the result:

= ([A<A,D1.E1,F1> .
([A<S2,E2,F2>. <S2,"A,E2,F2>] <[F11(A)],E1,F1>)]

<"(ABC),
((A<A,E1 ,F1> . F1

1(A)]<"((A 8 CJ),E0 ,F0>),
E0 ,F0>)

(S3-166)

This time when we substitute we ignore the designation, and concentrate on what was

returned:

= ([A<S2 ,E2 ,F2>. <S2 , "A,E2,F2>] <[F0
1{"(A 8 C))],E0 ,F0>)

There is one final CAR to be performed in F 0 :

And finally we can apply the final continuation:

= <"A, "A,Eo,fo>

(S3-166)

(53-167)

(S3-168)

We are done. We have proved that the expression (CAR • (A B C)) both designates and

returns the atom A, without side effects. As expected.

We will not trouble with more examples; alt that remains to reconstruct our previous

machinery in this new formuiation is to define new versions of EXT and INT, and show how

they would be used. In particular, we noted that ~ of the primitive addition procedure was

as follows:

I(E0F0("+)) "
AE.Af .>.c .

[C("(EXPR EO (BC)(+ 8 C)),
[MA,E1,F1> .

(S3-169)

3. Semantic Rationalisation Procedural Reflection 224

I(F11(A) ,E1,F1,
[A<A2,D2,E2,F2> .

I{ f21(F12(A)), E2, F2,
[A<A3,03,E3,Fa> . +(02,Da)])])]

E, F)

It is the second argument to the continuation that is in question: it would be easier if we

could have said:

I(E0F0 ("+)) = AE.AF.AC.
[C("(EXPR EO (BC)(+ BC)),

EXT(+)
E, F)]

(S3-170)

These considerations suggest the following definition of EXT. It differs from the previous

one in just the way we would expect: rather than simply referring to the designation of the

arguments in the context of use of the whole, it iteratively steps through the full

significance of each argument, so as to deal effectively with side effects, but in the end

applies the original function to the set of designation~ returned

EXT = AG.[A<A,E,F> .
I(fl(A), E, F,

[A<B1 ,D1 ,E1,F1).
I(f 11 (F2{A)), E1, f 1,

[A<Bz ,D2, E2, Fz).
I(f 21(F12(f2(A))), E2, F2,

[I(F1r.-11(F k-z2(... (f 12(f 2 (A))) ...)), Ez, f2,

(S3-171)

[A<Bt,Dk,Et.,ft.). G(D1,D2, ... ,Dk)])] ...)])])]

Note the use of different fields in each of the CDRS, as each argument is extracted, reflecting

the fact that the processor steps down the argument list, in such a way that side-effects to

that list before (i.e., closer to the head than) the current argument position do not affect the

processor's access to subsequent arguments.

The corresponding definition of INT is far simpler, of course, because the arguments

arc not processed:

INT a AG. [~<A,E,F> . G<f1(A) ,fl(f2(A)) , ... ,fl(f2(... (f2(A)) ...))>]

Thus for example we have the following full significance of QUOTE:

~(E0 F0{"QUOTE)) = AE.AF.AC .
[C("(IMPR EO (X) X), INT{AX.X), E, F)]

(S3-172)

(S3-173)

3. Semantic Rationalisation Procedural Reflection 22S

It would be convenient if we could similarly define an EXPR and IMPR as meta

theoretic fiJnctions that would generate the internalisations automaticatly. In 2-LISP we will

be able to do this, because we will have a notion of normal-form available in which to cast

the answer. For tl,e present, however, lacking such apparatus, we would have to define the

internalisations individually.

3.e. v. The Evaluatio11 Theorem

In spite of the extent of the explorations of section 3.e.ii, we are far from done.·

Nonetheless, we have spent as much time on semantic characterisation as we can afford,

given our :()ng-range goal of reflection (and v:e have probably a~~ed as much patience of

the reader as can reasonably be expected). It should be clear, however, that we have, io

outline at least, accomplished our main task: we have provided a mechanism whereby the

full significance of the primitives can be defined, and we have shown how the significance

of composite structures derives from the significance of the parts. We have indicated as

well how both declarative and procedural import are carried by this full significance, in a

partially related, but not identifiable, fashion. Sufficient distinction between them remains

so that we can examine, for any given expression, the relationship between its resuit and its

referent

'tf we were to proceed in this fashion, sei.ting out the primitive significance (and

internalisation) of all the primitive procedures (v;;:; have already done this for the structure

types), we would of course see that EVAL - the projection of L 1sr's ~ onto its first

coordinate - in some cases dereferences its argument, and in some cases does not. It is

r1atural to ask. when one first encounters this fact, whether there is "method to EVAL's

madness": whether there is any lurking fact that determines when EVAL dereferences and

when it does not. The answer - obvious given our long exposition, but not when one first

considers the situation - is a clear "yes": evaluation in LISP is de-referencing just i11 case

the referent is in the strucJura/ field: usr's evaluator dereferences if it can, and simplifies

otherwise. This is the observation we have called the evaluation theorem, which by rights

we now should prove.

If we were to set out on that project, we would adopt the following strategy. First,

we would define as standard any 1-LISP procedure with the following property: all

3. Semantic Rationalisation P!-ocedural Reflection 226

applications in terms of it satisfy the theorem. The intent is carried by the following

infonnal characterisation:

STANDARD(S) a for (S, ,. r•,i ...)1]
1f [~EF(S1) E S]

then [+'EF(S1) • '11EF(S1)]
else [tltEF(+'EF(S1)) • '11EF(S 1)]

This can more properly be put as:

STANDARD : (S - {Truth, Falsity} J
El AS € s .

[VP € PAIRS, E ~ ENVS, F € FIELDS
[[f1(P) " SJ :> [ff ('11EF(P) E SJ

then [+'EF(P) • '11EF(P)]
else [cI>EF(i'EF(P)) = 4'Ef(P)]] 1]

(S3-174)

(S3-176)

For example, any procedure that designated a function whose range was entirely within the

structural field, and whose computational significance was such that any application in

tenns of it would return its referent, would be called standard. In addition, any procedure

that designated a function whose range was outside the structural field, whose significance

was correspondingly such that any application in tenns of it would return a designator of its

referent. would also be standard. CAR and QUOTE, for example, are (bound in the initial

environment to) standard procedures for the first reason; + is similarly standard, for the

second reason. However a procedure can be standard even if its designated range cannot be

classified as either in or outside of s. The conditional IF, for example, returns the result of

one of its second or third arguments, depending on the first: (r r r 1 •A) designates the

number one and returns a co-designative numeral; (IF F 1 •A} designates the atom A and

returns that atom, for example. Thus the range of IF includes all of D, not just s or its

complement Nonetheless, IF is standard in the sense just defined.

The proof would proceed first by showing that the atomic structure types obey the

evaluation theorem - thi8 we have essentially shown already. Then we would show that

all the primitive procedures are standard. This is not quite as simple as it might seem; it is

immediate that CAR, for example, returns an object within the field, and designates an

object within the field, but it is not so immediately clear that it will always be the same

object. We would have, for example, to examine the primitively provided internalisation of

CAR, since that is implicated in detennining the local procedural consequence of CAR

applications. In other words we would have to show the compatibility of the fol1owing two

3. Semantic Rationalisation Procedural Reflection 227

equations defining CAR:

and:

I(E0F0("CAR)} • AE.AF.).C. (S3-176)
[C("(EXPR EO (X) (CAR X)),

4E0F0("CAR)
s AS.).E.).F.).C .

[I(fl(S) ,E, f,

P,<A,E1,F1> .
I(f 11(A), Ei, f 1, [A<Sz, Dz, Ez. Fz> Fi1(Dz)]])]

E, F)

($3-177)

[A<A,D1,E1,F1>. C([f11(A)],E1,f1)]]

It is not immediate that these imply that 'l'EF("{CAR ...)) • ~EF{ "(CAR ...)). One strategy

that might be of help would be to define a function STANDARD-PRIMITIVE that would simply

assert the above two ch~racterisations, given two inputs: it could then be used to define the

primitive import of various of the provided procedures.

Though involved, this could presumably be done. · Once the primitives had been

proved standard, we would then demonstrate (using recursion induction) that all

compositions and all abstractions definable in terms of the primitives were also standard (by

looking at the full significance of arbitrary closures, and showing that procedural import.

designation, and internalisation all worked in step so as to preserve "evaluation" properties).

It would then be immediate that the dialect as a whole satisfied the theorem, because a

proof that pairs satisfied it would follow directly from the fact that the term in procedure

position must be standard.

We will, however, not do this here; we leave it - to employ the standard dodge -

as an excercise for the reader. Note, however, that the approach is not specific to this

particular theorem; the same technique could be used to show that 2-L ISP satisfies the

normalisation theorem - i.e., that designation is always preserved - given a different

notion of what counts as being standard. It is with this strategy in mind that 2-LISP will be

presented in the next chapter.

3. Semantic Rationalisation Procedural Reflection 228

3.r. Towards a Rationallsed Deslgn

What then have we learned from this analysis of t-LISP? First. we have seen that

the lack of category alignment between the typology of the structural field and the

categories of semantic consequence is bothersome. Furthcnnore, the inelegance that

resulted did not simply make programs more complex: it mandated certain uses of meta

structural machinery that were not strictly necessary (that is why a matter of aesthetics is of

such concern to us). This can readily be repaired in a new design. We have suggested as

well that the de-referencing behaviour implied in the received notion of evaluation is

problematic, that a revised dialect should be based on a computable function it that is

designation-preserving. and that that declarative interpretation function should be defined

without recourse, explicit or implicit. to the mechanism used to compute '4'. From this

suggestion emerged the suggestion that ,i, take expressions into nonnal fonn.

There are two questions that still deserve attention, before moving to the design of

2-LISP. The first has more to do with the relationship between evaluation and reference.

It might seem, by this point in the analysis. that our stand against evaluation would long

since have been taken. We seem to have shown, as summarised in the theorem bearing its

name, that evaluation conflates issues of expression simplification and tcnn de·referencing.

Indeed, this is our position, but we have not yet defended it: all that we have demonstrated

is that there is a particular co"elation between evaluation and reference (providing you

accept our account of the referential import of LISP expressions). But so far the analysis

has been symmetric: one could equally well conclude, if we did not examine the issue

further, that simpliflcalion and de-referencing were two somewhat related, and rather partial

notions, each ineffectually covering a piece of the far more natural concept of evaluation.

The notion of evaluation is by all accounts a natural notion of computer science; the

concepts of simplification and reference we have used here are borrowed without apology

from logic, mathematics, and philosophy. Another way to make the point of the last

paragraph, therefore, is to say that we have shown only how the theoretical categories of

two disciplines relate, in a particular instance. We have not, in other words, provided

sufficient ammunition to enable us to choose one as better. In section 3.f.i, therefore. we

will focus on the concept of evaluation in its own right. in an attempt to lay to rest any

3. Semantic Rationalisation Procedural Reflection 229

lingering feelings that we are treating it unfairly. It is one goal of this dissertation to

convince the reader that the very concept should be struck from our theoretical vocabulary;

we will therefore make plain our final position.

Secondly, we have not yet said very much about what the concept of normal fonn

should come to. except to remark that the definition of this notion used in the A-calculus -

based. essentially, on the concept of not being further p-reducible - fails to meet our

standard of category identifiability. We mentioned at the outset that there were various

properties that should be associated with any normal-form designator - that of being

context independent. side-effect free. and stable - but we have said nothing about how a

computable notion of nonnat form is to be defined. It wilt thus be appropriate to examine

this notion further in section 3.f.ii. since once we have an appropriate definition in hand we

will be sufficiently equipped to set out on the design of 2-LISP.

In chapter 2 we embedded a simple theory of LISP within LISP. by constructing a

meta-circular processor. As became much clearer in the more detailed analysis of the

present chapter. that theory was of the procedural import of LISP s-expressions. In the

current chapter we constructed another theory of LISP, this time encoded in a A-calculus

meta-language, of both the declarative and procedural import of the clements of the

structural field. In chapter 5 we will erect our third meta-theoretic characterisation of LISP,

this time within the code of the 3-LISP reflective processor. That third characterisation will

in some ways be like the t-LISP meta-circular processor, and in some ways like the meta

linguistic accounts presented here in chapter 3. In section 3.f.iii we will review a variety of

the features of our meta-theoretic account that, although they did not merit mention while

we were in the midst of describing 1-LISP, will tum out to be important when we take up

the reflective goals.

Finally, the chapter will end in section 3.f.iv with a short discussion - included by

way of a footnote - on data abstraction. It wm have occurred to the reader that our

considerable emphasis on the .declarative import of atomic and composite structures would

seem to fly in the face of the received wisdom that one should define data structures

behaviourally, without regard to the structures in terms of which they arc implemented.

Indeed, the tension between our declarative stance and the behavioural (instrumental) cast

of the procedural tradition is strong. and deserves at least some comment. Although we

3. Semantic Rationalisation Procedural Reflection 230

will argue that the two positions are not fundamentally opposed, the apparent conflict

between them wilJ have to be explicitly defused.

3.f.L Evaluation Considered Hannful

The evaluation theorem simply states a tbnnal relationship: it does not, and cannot,

itself bear nonnative weight. The critique of evaluation requires further argument In

particular, we will reason as follows: if we had an independently definable notion of

evaluation - a pre-theoretic or lay intuition that this fonnat concept was intended to

capture, or a concept playing such a cornerstone rote in some theoretical structure that its

utility could not lightly be challenged - then we might be able to argue from first

principles for what the value of any given expression should be. Subsequently, if a fonnal

mechanism were proposed that was claimed to effect an evaluation mechanism, then we

could perhaps prove that this mechanism indeed embodied the independently formulable

notion of evaluation.

The problem, however, is that we have no such independent notion of evaluation.

At least we have no Jonna/ notion: to the extent that there seem to be pieces of a natural

concept, they are not fonnal notions, and therefore evaluation cannot be something that any

formal processor can itself effect. The stmcn1re of the argument should be clear. First is

the recognition that computation is based foundationally on semantical attribution. Second

is the claim that, because of this, it is important to establish that attribution independently

of the procedural treatment of fonnal structures. Third is an aesthetic cJaim that, once this

attribution is set forth, the procedural treatment should emerge as semantically coherent, in

terms of the prior account. Given this structure, we challenge evaluation in a double

manner. We are not claiming that it is incoherent as a procedural regime - in fact it is

self-evidently tractable. LISP, after all, has survived unchallenged for two decades: in

addition, we expended considerable effort in the previous sections to characterise it

precisely. Rather, the claim is that if evaluation is taken as a procedural regime, it fails to

cohere with the prior attribution of significance. Alternatively, if it is claimed to be a11

independent notion, then the received understanding of it fails to be evaluation. We will

look at these two options in turn.

3. Semantic Rationalisation Procedural Reflection 231

The basic problem - common both to evaluation and to application, which we will

subject to the same scrutiny - is one of distinguishing use from mention: in employing

these tcnns, do we refer to abstract mathematical entities, or to structures that signify those

entities? For example, do we want to say that we apply the mathematical addition function

to two numbers, or do we want to say that we apply an expression that designates that

function to two expressions that designate numbers? Both ways of speaking are coherent.

but we cannot use the same term to refer to such crucially distinct circumstances.

Historically, there seem to be three standard uses of the tenns "value" and

"evaluation", stemming from mathematical and logical traditions. One has to do with

functions, and is involved with the use of the tcnn application: a paradigmatic use of the

term "value" is with regards to a function: the value of a function applied to an argument is

the element of the range of the function at that argument position. Thus the value of the

addition function, applied to the numbers 2 and 3, is the number 5. Similarly, the value of

the square-root function applied to the number 169 is the number 13. The usage is a tittle

strange, since it is not quite clear whether it is the function that has an argument-relative

value, or whether there is an abstract application consisting of a function and arguments,

that possesses the value. From an infonnal standpoint. however, such tenninology is clear

enough, and we will continue to use the tenn - with caution - in such a circumstance.

A second, only partly related use of the term "value", and one that engenders far

more confusion, has to do with variables. If any particular variety of object has an

unchallengeable claim to having a value, it would seem to be a variable. Thus we may ask

what (+ x Y) is, if the value of x is three, and if the value of Y is four. Finally, a third

notion of value, perhaps an extension of the foregoing usage, has to do not with particular

variables but with whole l!Xpressions. In mathematics, for example, it seems uncontroversial

to evaluate an expression, like x + (Y • Z/3). This expression, if x is 2, vis 10, and xis 15,

would be said to have a value of 52. Similarly in first order logic, a sentence like 3X

[MORTAL(X) A SAD(X)] might be said in a particular world to have a value. In fact the very

use of the term "truth-value" betrays this assumption.

In both of these last two cases it is clear that the value of the variable or expression

is the referent or designation: the value, in other words, refers to what the tenn denotes. In

the mathematical examples, the value of the variable x was assumed to be the real

3. Semantic Rationalisation Procedural Reflection 232

(Platonic. whatever) number two. not the numeral 2. This is incontestable: if the value

were the numeral, it would make sense, on being asked what the value of x + v is when x is

2 and v is 3. to reply that the answer depends on whether one is using Arabic or Roman

numerals. This is crazy: the value is 5 independent of symbology precisely because the

value is the number, not a sign designating that number. Similarly, if we said that the open

sentence [MORTAL (x) A SAD(x)] was satisfied by Socrates, then the value of the existential

variable is the philosopher himself. not a designator or name.

This referential or designational sense of "value" is reflected in the use of the phrase

"valuation functions" for what we are calling interpretation functions: the main semantical

functions that map signs onto significants. The same referential sense is reflected in

Quine's dictum that "to be is to be the value of a bound variable"15 (a maxim that accords

well with our definition of an object as the referent of a noun phrase). In sum, to say that

Y is the value of x is to imply not only that x is a sign but that it is a temt, and that Y is the

object designated by that term.

This conclusion immediately raises trouble about the proper use of the term

"evaluation" in a computational context It seems established that evaluation must be a

process defined over signs, but if evaluation is a junction it would seem that it should

return the value of its argument, implying that evaluation must dereference its argument.

This can be put more strongly: to evaluate is to dereference, on the standard reading. It is

of course possible that the value of a sign may itself be a sign (since signs can be part of a

semantical domain}, but it nonetheless follows that no expression in a formal system can

properly be said to be evaluated that designates an abstract entity such as a number or

function, or an external object like a person or table.

No computer, in other words, can evaluate the expression "(+ 2 3)".

Some readers may object to this claim. A possibly reply to it that might be offered to

counter our objections - one we might expect to hear in compt1tational circles - is that

there is no problem having a computer evaluate " (+ 2 a)" if we take numerals to be self

referential in just the sense that we saw numerals to be "self-evaluating" in 1-LISP.

Certainly this is mathematically tractable: no special problems are raised in the

mathematical model theory by having certain objects be their own referents, as any number

of semantical accounts have shown. The problem is much simpler: as we have said before,

3. Semantic Rationalisation Procedural Reflection 233

to say that numerals refer to themselves is false. As we have held all the while. we are not

simply attempting to erect some mathematically coherent structure: we are attempting to

make sense of our attribution of reference to Jonna/ symbols. There is simply no possible

doubt that every computationalist takes the numerals 1, 2, 3, and so forth to designate

numbers - it is almost impossible to overcome the natural tendency to do so. This is

made self·evident by the fact that the operations we define over them we call addition,

multiplication. etc. Anyone who attempts to hold the view that numerals are their own

referents must suffer the em harassment of admitting that the expression (+ 2 3) has nothing

to do with addition, since addition is defined over numbers, not over numerals. Such a

person would then have to claim that he or she is using the word "addition", as well as

"reference", in other than their normal sense. Such a person, in other words, is forced

gradually to sever any connection between what we claim the machine is doing and how we

understand what the machine was doing. The only possible result of such an approach is

the kind of confusion we are trying · to rectify: a dissonance between our natural

understanding of computation and our formal analysis of computational systems. In sum,

there is simply no tenable retreat to be found in this direction.

One would have in addition to reject all the claims of the standard denotational

semantics accounts saying that LISP procedures naturalJy designate functions, since the

notions of value and evaluation in the meta-languages employed in those semantical

endeavours arc the notions we have just endorsed - the extensional, referential ones - not

the computational ones.

Nor is there solace to be found in a position that says that computers can access

actual Platonic numbers (whatever they might be) as well as numerals, since that violates

the fundamental notion of computation.

In passing. note that nothing is being said about whether people can evaluate an

expression such as (+ 2 3): it is by no means clear what it is to say of a person that he or

she evaluates an expression, since it is not clear whether to do this is to compute a function

in any sense, or whether there is any salient notion of output or result of such a process.

Fortunately, such questions do not need to be answered in this context. What we arc left

with, however, is the conclusion that we must be more careful in describing what 1-LISP

does. We will not have to change its behaviour: what is under attack, it should be clear, is

3. Semantic Rationalisation Procedural Reflection 234

our account of that behaviour. We are not saying, in other words, that there is any

problem in typing "(+ 2 3)" to the 1-LISP interpreter and having it type "6" in response:

rather. we are saying that in doing that 1-LISP cannot be said to be returning the value of

the input expression.

The situation regarding function application is only slightly more complex than

evaluation. because it relates three, rather than two, objects of some variety. The trouble

arises over whether application is a function defined over abstract functions, or over

exp~essions. Infonnally. the idea is that a function is applied to its arguments to determine

a value: from this application would seem to be a relationship between functions.

arguments, and values. This is the usage we just agreed to maintain regarding values, so it

is naniral to use application in the same way. The consequence, however. is that

application is not what APPLY in 1-LISP does, since that function is defined over

expressions, not over abstract functions.

The situation will be made clear by considering the fotlowing diagram:

(S3-178)
Reduction

FD: Fune. Desi .

F: Function Argument V: Value

Application

In the terms of the figure, we are asking whether one applies F to A to yield v, or whether

one applies FD to AD to yield vo. Consider an expression such as " (PLUS 3 4) ". The

question we need to resolve is whether the expression "PLUS" is applied to the expression

"(3 4)", yielding the expression "1", or whether the addition function is applied to the two

numbers 3 and 4, yicJding the number 1.

Both concepts, of course, are coherent: we have agreed to use application for the

latter, implying that we need a term for the former - a tcnn to take the place of the APPLY

of 1-LISP. What we will strictly want to avoid, however, in an effort to maintain at least a

modicum of clarity on this subject, is using terms that cross semantical levels, such as

3. Semantic Rationalisation Procedural Reflection 23S

among F, AD, and VD. It should be clear that in 1-LISP the function APPLY designates a

relationship among FD, AD, and v; in SCHEME, the same name is used to designate a

relationship among F, AD, and v.

In the remainder of this dissertation we will adopt the following definitions.

ApPlication will be taken to be a three-place relationship among an abstract function, an

argument (or arguments), and what is called the value of that function at that argument.

For example, we will say that the addition function applied to the numbers 2 and 3 will

yield the number 5. By "application". in other words, we refer to the relationship in the

lower part of S3-178, among F. A, and v.

The other relationship - among FD, AD, and VD, we witl call reductio11, in part

because of its relationship to the p-reduction of Church, and also because the term connotes

a relationship among expressions or linguistic objects, rather than between arbitrary objects

in the world (even its use in philosophy of science as between one theory and another is

compatible in spirit). Of the two "reductions" in the A-calculus, it is p-reduction that

actually "reduces" the complexity of a lambda term; a-reduction is not particularly a

"reduction" in any natural sense of that term. It is not always the case that reduction in

the LISPS we will examine reduce complexity, because names are looked up, which can

increase the apparent complexity. If, however, one takes the complexity of an expression to

include the complexity of the bindings of all the variables occuring within it, reduction in

this new sense is in point of fact reductive of complexity in the general case.

Thus we will say that the function designator "+" and the argument designator "(2

3)" reduce in t-LISP to the numeral "5", although it should be straight away admitted that

we have so far not uniquely defined reduction, since we have said nothing about what

expression a composite expression should reduce to, except that it should designate the

value of the function at that argument position. In other words, by the characterisation just

given + and { 2 3) might reduce to (+ 2 3), since the latter term designates, tautologicalty,

the value of the addition function applied to the numbers two and three. However we will

of course use the term "reduction" to relate a function designator, an argument designator,

and a nom1al-fo1111 designator of the value of that function applied to those arguments.

The reduction function, which will in 2- and 3-LISP be designated in the initial

environment by the term REDUCE, will play a considerable rote in our considerations of

3. Semantic Rationalisation Procedural Reflection 236

reflection. We will not. however, make use of functions called APPLY or EVALUATE, for the

simple reason that. on the readings we have just given to those terms, they are entirely

unnecessary. In carticular. anv exoi-ession of the form (this i~ 1-1 TSP !;yo.tax):

(APPLY FA} (S3-179)

is entirely equivalent to a simple use of the terms, in the following :ype of expression:

(F . A) (S3-180)

Thus we could define APPLY in 2-LISP as follows (for lists of formal parameters. 2-LISP

brackets are like 1-LISP parentheses):

(DEFINE APPLY (S3-181)
(LAMBDA EXPR [FUN ARGS] (FUN. ARGS)})

It would follow, in ac!qition. since application is a higher-order function, that any number

of applications of APPLY would :tll be empty. The following, in particular, would all be

declaratively and procedurally equivalent (here the brackets should be treated as

enumerators -- thus l-LISP's (Pnoc A (B Cl) is syntactically not unlike t-LISP's (PROC A

(LIST B C))):

(FUN. ARGS)
(APPLY FUN ARGS)
{APPLY APPtY [FUN ARGS])
(APPLY APPLY [APPLY [FUN ARGS]])

(APPLY APPLY [APPLY [APPLY [-·[APPLY [FUN ARGS]].-]]])

(S3-182)

REDUCE, on the other hand, since it is a meta-structural function, is neither trivial to define,

nor recursively empty. In particular, whereas

(+ 2 3)

would simplify to the numeral 6, the expression

(REDUCE'+ '[2 3])

(S3-183)

{S3-184)

would simplify to the numeral designator '5. Similarly, a double application of reduction,

of the following sort:

(REDUCE 'REDUCE '['REDUCE '[2 3)]) (S3-185)

would simplify to the double designator • • 5. Furthennore, such meta-structural designation

is necessary in order to avoid semantical type errors: the fo1lowing expressioo would

3. Semantic Rationalisation Procedural Reflection 237

generate an error:

(REDUCE '+ [2 3])

since reduction is defined over expressions, and the second argument in this case designates

an abstract sequence of numbers.

All of these issues will become clearer once 2-LISP is introduced

3./.ii. Nonna/ Fonn Designators

Our aesthetic mandate required that the category of a nonnal-form designator

depend solely on 4'(S} - this was what we called the semantical type theorem. We noted

at the outset that, if functions are to be first class objects in the semantical domain, we

cannot hope to achieve a notion of canonical normal form, since that would require that we

be able to inter-convert all expressions designating the same mathematical function, which

is evidently non-computable. Hence we must expect that, whatever notion of normal form

we adopt, functions on the standard interpretation wiU possibly have multiple normal form

designators. There is no hann in this - it does not weaken the LISP that results in any

way - it is merely worth admitting straight away.

Our approach to defining a generally adequate notion of normal form will be to look

at the various kinds of clement in our domain o. For the number and truth-values the

obvious normal form designators are the numerals an~ the two boolean constants. These

are canonical, and are what '1' for 1-LISP took designators into, so they are highly

recommended. For s-expressions we also have an obvious suggestion: their quoted fonn.

There is a minor problem here, regarding uniqueness: in 1-LISP, as we noted earlier, a

given s-expression can have distinct quotations:

VS1 E S, S2 E S [[S1 = S2 J "/J [f" (QUOTE S1)1 = f" (QUOTE S2)1 D (S3-187)

However we have a solution to this already mandated by the category alignment aesthetic.

The requirement that the structural types correspond to semantic types in as clear a fashion

as possible has been satisfied for the numbers and truth-values, providing we make the two

boolean constants distinct from regular atoms. Thus if we make s-expression designators a

unique structural type - we will call them handles - we can simply establish by fiat that

all handles that designate the same s-cxpression are themselves the same handle. ·nius two

problems are solved with one solution.

3. Semantic Rationalisation Procedural Reflection 238

There are two other segments of the semantical domain to be treated: the user's

world of objects and relationships, and the set of continuous functions. About the first -

to be designated only by base-level structures and not (tautologically) by any terms in

programs - we have little to say here, except what is laid out in the following section on

data abstraction. The other semantical entities are the functions.

Before considering them, note that all suggestions for normal-form designators made

so far, in terms of the i' of the preceding sections, satisfy the three constraints we

mentioned earlier regarding such normal forms: they arc environment-independent, side

effect free, and stable. Formally, this can be stated as follows, if we define the notion of

nonnaljonn in terms of these three properties:

CONTEXT-IND = AS [VE 1 , E2 E ENVS, Fi, F2 E FIELDS (S3-188)
[(fflE1F1(S) = cl>E2F2(S)] A [i'E1f1(S) = 'l'E2F2(S)]1)

SE-FREE = AS [VF E FIELDS, C E CONTS, E E ENVS (S3-189)
[Z(S,F,E,C) = C('l'EF(S),cf>EF(S),E,F)Il

STABLE = AS [vf E FIELDS, E E ENVS [S = '}rEF(S)]] (S3-190)

NORMAL-FORM= AS [CONTEXT-tND(S) A SE-FREE(S) A STABLE(S)] (S3-191)

The result we have already is this:

VS E S [[S E NUMERALS U BOOLEANS U HANDLES] ::J NORMAL-FORM(S}] (S3-192)

What will remain, of course, is to prove the normalisation theorem in the general case:

VS E S, E E ENVS, F E FIELDS (S3-193)
[(4>EF{S) = fllEF{i'EF{S))] A [NORMAL-fORM(S) 1)

As mentioned earlier, the compositional aspects of such a proof can be handled by

straightforward techniques; the present question is how we deal with functions.

It is at this point where the notion of a closure suggests itself as the reasonable

candidate for a normal-form function designator. We commented in chapter 2 that it was

unclear whether a closure was an s·expression or not: it was clearly a finite object - not, in

other words, a real junction in the sense we are using that term - and, since it embeds its

defining environment with in it, it is an environment-independent object (if applied in any

environment it will yield the same function). We commented that one reason it may not be

considered to be a valid expression is that it doesn't have any obvious value, but of course

3. Semantic Rationalisation ProceduralReflection 239

this is a criticism that has by this point evaporated.

1-LISP closures, as we remarked in chapter 2. are distinguished combinations having

special atoms - EXPR and IMPR - in "function position". We can thus posit the following:

a combination fo11J1ed of the atom EXPR or IMPR followed by normal form designators of an

environment, a variabl~ list, and a "body" expression will be defined to be nonnal-fonn

designators of functions. Thus for example:

VF E ENVS, F E FIELDS
(I['l'EF(" (LAMBDA EXPR (X) (+ X 1)))]

= [r"(EXPR '(XJ ENCCEl '(+ x 1n1D A
[NORMAL-FORM(ENC(E))]1

(S3-194)

Two questions are raised by this example: what it is to be a normal-fonn designator of an

environment (and whether environments will constitute an addition to the semantical

domain), and what functions the tenns EXPR and IMPR designate, since we are using them in

the function position of a procedure application.

Regarding the first question, we have treated environments as functions in our

mathematics: there is no immediate reason to do so differently within the calculus. From

this st."nd it follows that the normal-fonn environment designator is recursively defined by

the above equation. However there is something odd about this: since all closures contain

environment designators within them, it would seem that environment designators would be

circularly 1efined. It is also true, however, that environments do not need access to an

enclosing environment designator; thus we could for example posit that environment

designators contain themselves as tlteir own enclosing environment (i.e., the second element

of an environment closure would he the closure itselt).

In fact, however, we will adopt a different strategy, in part to make it easier for

environment designators to be modified in a reflective dialect. Note that the 2-LISP

enumerating structure (called a rail} designates a sequence; it follows that a rail of two

element rails will designate an ordered set of two-element tuples. Functions, on the other

hand. are unordered sets of two-element tuples. The referents of this particular kind of rail,

in other words, and of closures, are very close in stmcture. Since procedure application is

defined as extensional in first position - that of the function designator - we are

committed to allowing tht: function to be designated by any type of syntactic expression;

thus if braces were legal 2 - LISP notation used to notate a new data type designating sets -

3. Semantic Rationalisation Procedural Reflection 240

a data type called, say, a sack - they too could be used in function position in a procedure

application. In other words, suppose that the expression {t 2 T} designated the three

element set consisting of two numbers and a truth value. Then equation S3-135 would

seem to require that

({[2 20] [4 60]} (+ 1 3)) (S3-195)

designate fifty, and return the numeral 50. This is mandated because, although S?.cks and

closures are intensionally distinct, extensionally they are equivalent We would have a

proLlem in our meta-theory, to deal witll this case, because the h1ternaliser A is currently

defined only over closures, not over sacks (assuming we posit sacks as normal-form

designators of sets). On the other hand, we would have other problems as well: sacks and

closures would come into conflict as normal-form designators for sets of a certain structure,

thus violating the semantical type theorem.

We do not have to :;olve this problem, because we do not have such a structural

type, but it does leJ<l to the following suggestion. We can extend the definitim1 of the

behaviour of sequences of a certain structure so that they can be applied, as if they were

func:tions, with the additional constraint that if more than one tuple has the argument as its

first clement, then the tuple closer to the front ~f the sequence is used to determine the

value of the application. Sequences, then, can be applied directly to obtain a kind of

"association-list" behaviour that is often primitively provided in LISPS. For example, the

expression

([(2 20] [(• 2 2) 50] [4 'HELLO]](+ 1 3)) (S3-196)

would designate fifty, and return 50.

Given such a protocol, we can define an en.,Jronment to be an ordered sequence of

tuples of atoms and bindings. Our meta-theoretic characterisation still holds, since these

can still be applied, and since rails are the normal-form designator of sequences, we are

given an answer as to what fonn a nomial-form designator of an environment will take. In

the reflective code we can use such applications as (ENV VAR) to designate the binding of

the atom designated by VAR in the environment designated by ENV. In addition, since

environments will not be nonnally designated with closures, the circularity probltm just

adduced does not arise. Finally, rails are eminently suitable ground for side-effects,

facilitating the requirements of reflection. 'Thus a variety of concerns can be dispensed with

3. Semantic Rationalisation Procedural Reflection 241

rather easily.

The closure, then, of, for example, the designator (LAMBDA EXPR (X) (+ x t)}, would

have the following form:

(EXPR [[~ BINDINGt] [VAR2 BINDINGz] ... [~ BINDINGt]]
'[X]
'(-> X 1))

(S3-197)

There is however one final problem with this solution. This closure is a pair; by standard

assumption it must designate the value of the function designated by the CAR applied to the

arguments designed by the CDR. The arguments are all nonnal form designators, but the

procedure is named by the atom EXPR; we need to ask what function it designates, and how

its name can be normal-form.

As to what function it designates, that is straightforward: it can signify an extensional

procedure (even though LAMBDA is intensional) that takes environments, sequences of

variables, and a body expression, onto the function designated. EXPR, in other words,

designates the TRANS function of section 3.d. I.e., we have (in the initial context E0 and F 0):

4'Eofo("EXPR) = EXT(TRANS) (S3-198)

The question about EXPR's name appearing in the procedure position of closures is,

however, trickier. Closures must be· stable; on the other hand we must support such code

as:

(LET [[EXPR +]] (EXPR 2 3}} (S3-199)

This clearly must designate five and return the numeral 5. Thus we simply cannot have

EXPR appear as an atom in function position. No atoms arc in nonnat form; thus no atom

can appear in the procedure position of a closure. Hence we must reject S3-197.

The obvious suggestion is that the nonnal-fonn of the procedure signified by EXPR

should appear as the CAR of each extensional closure. This would seem to be a circular

requirement, since the question re-appears in asking what appears in the CAR position of the

EXPR closure. However it is not a circular accounl, which would be vicious, but rather a

requirement for a circular structure, which has a simple answer: the EXPR closure should be

its own CAR. Thus the structure of the EXPR closure, though it is not lexically printable, is

notated as follows (in fact this is 1-LISP graphical notation for 1-LISP structure; we will

eventually adopt a 2-LISP analogue of this structure):

3. Semantic Rationalisation Procedural Reflection 242

(S3-200)

EXPR closure
ENV VARS BODY

Since EXPR is primitive, this raises no particular problems.

This much of a discussion should indicate that a semantically rationalised LISP is a

possible formalism. The design of such a calculus will be taken up in the next chapter.

3. Semantic Rationalisation Procedural Reflection 243

3.f. iii. Lessons and Observations

Before leaving the subject of these semantical formulations, as mentioned in the

introduction to this section, there are two additional comments to be made that will tum

out to be important when we design 3-LISP. The first has to do with passing the structural

field as an explicit argument among the meta-(1eoretic interpretation functions. This field

argument is referenced, of course, by applications formed in terms of seven primitive

pro;:edures: CAR, CDR, PROP, CONS, RPLACA, RPLACO, and PUT-PROP •. The first three use the

argument to determine CAR, CDR, and property-list relationships; the last four modify the

field in ways that subsequent computations can see.

We can make a very strong claim about the use of the field as an argument: there is

no structure, beyond simple sequencing. to the interactions among calls to these functions.

Though the field itself has structure, the terms in the meta-linguistic characterisations of the

semantics of 1-LISP procedures always pass the field to their arguments that they receive

from their caller, with the exception of modifications (for example by RPLACA) that then

hold for the indefinite future. No reference is ever made by a meta-theoretic variable to a

field other than the one currently passed around. This is very different from the

environment and continuations: continuations often embed other continuations within them,

and after processing a procedural reduction { our new term for a procedure application) the

environment in force before the reduction is again used, whereas during the reduction a

different environment {the one in force when the closure was created) is used to process the

procedural body.

This fact is of course predictable, if one thinks just a moment about what the

stmctural field is. The meta-theoretic mathematical entity is merely designed to model an

actual structural field, which is a single graph of symbolic structures examined and

manipulated during the course of a computation, as sketched in what we called a process

reduction model of computation in chapter 1. The structural field is not itself part of the

semantic domain o - this was what we meant in chapter 2 when we said that the primitive

relationships that constitute it are not objectifiablc within LISP. Therefore there is no way

in which past states of that field can be retained in structures, or designated by symbols in

the field. The field is the world in which the processor lives, a world from which that

3. Semantic Rationalisation Procedural Reflection 244

processor cannot escape, and a world it cannot in one glance see.

The mathematical consequence of this fact is this: a single so-called global variable

could be used, rather than an explicit argument passed around between functions.

However there is a deeper way of making the same point The field of structures is the

world over which the programs run: they can affect it, but they cannot create or store

whole fields. It is this realisation !hat led us to a characterisation of computation as the

interaction between a processor with state and a field with state; the two are independent

exactly because there is no sense in which the state of the field is part of the state of the

proceswr.

So long as we are using the >.-calculus as our meta-language, we cannot make formal

use of this fact, since we have no such mechanism as global variables. However when we

embed the meta-theoretic characterisation of LISP into the 3-LISP reflective processor, we

will not need to have a structural field argument for any of the meta-theoretic procedures:

the field is simply there, accessible to and modifiable by any program that wants to touch

it It is the blackboard on which the processor reads and writes: there is no need - no

sense in the suggestion - that the blackboard itself needs to be encoded on the blackboard.

The environme:;t, however, will be designated by a particular structure, and passed around

as an argument. because each reflective level will operate in a distinct environment It is

for this reason that throughout our analysis we have maintained these two parts of the

context in different theoretical objects.

The second comment about our approach has to do with the context arguments to 'I'

and r. 1bose functions - the semantical functions explicating procedural consequence -

are in some sense odd, since they do not deal with what symbols designate, and yet at the

same time they do not tell the fonnal story of how the computation is effected.

Nonetheless we were able to formalise them, and show how they made sense of a variety of

phenomena in need of explanation. One role of particular relevance to us was that they are

the functions designated by the meta-circular processor.

We commented in this regard that 'I' was crucially a function from s to s - from

structures onto structures. Its context arguments, however - environments and

continuations - were abstract functions; they were not encoded as structural field

fragments. 1bus, although 'I' and r deal with internal procedural consequence, they are

3. Semantic Rationalisation Procedural Reflection 24S

formulated in terms of abstract theoretical posits, not in tenns of structurally encoded

representations of computational state.

This is both correct and important It is correct because, as we have maintained all

along, the context is borne by these entities only as functional theoretical posits: they do not

have a reality in the phenomenal world being explained prior to the articulation of the

theory explaining it Rather, they are reified in service of consi'.ructing an adequate and

finite theory of the wide potential behaviour that forms the subject matter of the theory.

More fonnally, terms in the theory of LISP mention LISP s-expressions, and mention the

functions and numbers that they designate. Terms signifying continuations and

environments, however, are used in formulating these explanations. For example, in a

meta-theoretic expression like

VS€ S, E € ENVS, F € FIELDS [G(S,E,F)] (S3·201)

the term s designates an s-expression, and the term E designates an environment No s

expression designating or encoding an environment is needed, nor is any mentioned. It is

for this reason that. although the notion of an environment plays a crucial role in

explaining how LISP works, no ENVIRONMENT-P predicate can be defined within LISP:

Environments and continuations are not part of 1-us:i"s semantical domain o.
They exist only in the semantical domain of the meta-language used to
characterise 1-LISP.

This issue is important because it arises in the design of 3-LISP, when we reify

abstract descriptions of processors with structural field expressions. The question we will

have to face is this: when a process reflects. and binds formal parameters (ENV and CONT,

say) to the environment and continuation in force at the point in the computation prior to

reflection, should ENV and CONT designate environments and continuations. or should they

designate structures encoding environments and continuations. The foregoing argument

shows how the only correct answer is the former. It takes another intensional act to access

environment and continuation designating terms.

The point is perhaps best stated as follows. At the object level, s·expressions are

explicitly used; environments and continuations arc tacit - part of the background in

which those s-cxpressions are used. One level of reflection moves the s-expressions that

were used into a position whereby they are now mentioned; ii simultaneously moves what

3. Semantic Rationalisation Procedural Reflection 246

was tacit into terms that are used Thus at the first reflective level we use vocabulary to

refer to what was tacit at the object level; we mention the terms that were used at the object

level. Only at the second level do the terms, introduced at the first level to refer to the

tacit structure of the object level, become available themselves to be mentioned.

This identification of the reflective hierarchy with an increasingly reified accoun.t of

the tacit structure of non-reflective behaviour is one of the most striking aspects of our

design of 3-LISP, and it will receive much more treatment in chapter 5. What is notable at

this. point is how some of those properties have already been embodied in decisions we

have made in our mathematical characterisation of our simple initial dialect.

3.f.iv. Declarative Import. Implementation, and Data Abstraction

One postscript remains. The reader will have noticed that we place great emphasis

on the apparently static structure of the entities in the structural field - what might seem

an odd emphasis in light of the current interest in data abstraction. In particular, it may

seem as if we are putting theoretical weight on what is normally considered part of the

implementation, where only the resultant behaviour is what counts.

There are several replies to be made to this apparent criticism. First, we have taken

some pains to define the structural field abstractly, and not to let our characterisation of ii

be influenced by matters of implementation - by considerations. in particular, of how it

might be encoded in the structural field of an implementing process. For example, in

defining the LISP field we did not mention the notion of a pointer, a type of object almost

universally used to implement the LISP field in the memory of a Von Neuman underlying

architecture. Thus we are focusing on the structural field of an abstract or virtual machine;

there is no limit to how abstract a structural field one could examine in this way. So the

question reduces to one, not of implementatio11, but of the legitimacy of focusing on a

structural field at all.

With respect to this question, it was our claim, in sketching the process reduction

model of computation in the first chapter, that the notion of a field of structure in fact

permeates a great many calculi, because of the fact that we attribute declarative import to

computational structures. Furthermore, we include (in LISP'S case) all programs in the

structural field, and all programming languages, even if the programs engender behaviour of

3. Semantic Rationalisation Procedural Reflection 247

one sort or another, are nonetheless static structural objects qua programs.

In addition, the knowledge representation hypothesis, under whose influence the

present project is pursued, makes a strong claim about the form and organisation of the

elements of the structural field. It is exactly the substance of this hypothesis that the most

compelling functional decomposition of an intelligent process witl posit, as theoretically

substantive ingredients in a process, a set of structures on which declarative import can be

laid. No mention is made of how abstractly defined these structures will have to be, and it

is in order to facilitate very abstract machines that we have defined the notion of a

structural field, and distinguished it completely from issues of notation. In other words. if

one abanct.ons completely any notion of "static" symbols. and concentrates purely on

behaviour, it is indeed possible to deny the utility of the notion of a structural field. The

price will be that one would have to deny any representational claims in addition. It is

probable as well that one would have to give up any notion of symbol, any notion of

language, and probably any recognisable notion of processing.

(There is no doubt, in other words, that viewing computational processes purely

behaviourally - and ignoring any semantical claims on their ingredients - is a more

general approach. The problem is that it is far too general to be of any interest: it may

even be too general to count as· computational.)

In spite of these rejoinders. however. an extremely important issue remains. One of

the most compelling aspects of computational systems is the ease with which they allow

programmers to define abstract data types out of more primitive ones, in a manner

analogous to the way in which procedures are defined in terms of more primitive ones. A

standard example is the notion of a complex number, which can be easily represented

either in terms of its rectangular or polar coordinates. For some purposes one

representation is more convenient; for others, the other makes calculations simpler.

Suppose for example we choose the first option, representing a complex number as a iist of

its real and imaginary rectangular components. Thus we might define a complex number

as a list; the real and imaginary coordinates being the first and second elements. Thus, if

c1 is a complex number, (CAR C1) would designate the real component, and (CADR C1)

would designate the imaginary component (notice we say designate, not return - this by

way of preparation for 2-usP). In order to obtain the radius, one would use the

expression:

3. SemanticRationalisation Procedural Reflection 248

{SQRT(+(• (CAR C) (CAR C)} (S3-202)
(0 {CADR C) {CADR C))})

Similarly the angle could be computed by talcing the appropriate arctangent:

(ARCTANGENT (CAR C) (CADR C)) (S3-203)

No one, of course, would use copies of such implementation-dependent code

scattered throughout a body of code. It is widely considered more modular, rather than

deciding once and for all between these two options, to define what is called an abstract

data type of "complex number". on which a number of operations are defined. Suppose

for example we require that for any complex number c we be able to use the fonns c REAL

C), (rnAGINARY C), (RADIUS C), and (ANGLE C) to refer, respectively, to the two rectangular

components. and to the two polar components. We would define some way of storing the

infonnation within this· module. and would define the procedures appropriately. Of course

to make the example realistic we have to provide a way tc construct imaginary numbers;

we will assume two additional functions: COMPLEX-FROM-RECTANGULAR and COMPLEX-FROM

POLAR that, given two coordinates in the respective system, would construct one instance of

the abstract data type. appropriately constrained. For example, the following module yields

this behaviour, implementing complex numbers in terms of their rectangular coordinates:

(DEFINE REAL
(LAMBDA EXPR (C) (CAR C))

(DEFINE IMAGINARY
{LAMBDA EXPR (C) (CADR C))

(DEFINE RADIUS
(LAMBDA EXPR (C)

(SQRT(+(• (CAR C) (CAR C}}
(* (CADR C) (CADR C)))))

(DEFINE ANGLE
(LAMBDA EXPR (C) (ARCTANGENT(/ (CADR C) (CAR C)))))

(DEFINE COMPLEX-FROM-RECTANGULAR
(LAMBDA EXPR (REAL IMAG) (LIST REAL IMAG}))

(DEFINE COMPLEX-FROM-POLAR
(LAMBDA EXPR (RAD ANG)

(LIST{* RAD (COSINE ANG))
(• RAD (SINE ANG)))))

(S3-204)

Analogously, we could have the dual implementation, in tcnns of polar coordinates:

3. Semantic Rationalisation

(DEFINE REAL
(LAMBDA EXPR (C) (• (CAR C) (COSINE (CADR C)))))

(DEFINE IMAGINARY
(LAMBDA EXPR {C) (• {CAR C) (SINE {CADR C)))))

(DEFINE RADIUS
(LAMBDA EXPR (C) (CAR C))

(DEFINE ANGLE
(LAMBDA EXPR (C) (CADR C))

(DEFINE COMPLEX-FROM-RECTANGULAR
(LAMBDA EXPR {REAL IMAG)

(LIST (SQRT(+(• REAL REAL)(• IMAG IMAG))}
(ARCTANGENT(/ IMAG REAL)))))

{DEFINE COMPLEX-FROM-POLAR
(LAMBDA EXPR (RAD ANG) {LIST RAD ANG)))

Procedural Reflection 249

(S3-206)

Outside of these modules only the six procedures names would be used; since the

behaviour (modulo efficiency considerations) of the two is the same. external programs

need not know which implementation strategy has been used.

It is clear that arbitrary types of object in the user's world can be handled in a like

manner: our example is extraordinarily simple, but it is not uncommon to define. in this

same style. abstract types· to represent objects as complex as files, display-oriented

input/output devices. and so on. The question for us - the reason that these

considerations matter in our investigation - has to do with how to characterise such

computational structures semantically. From a procedural point of view the standard

techniques will suffice, although it requires some effort to make these abstractions clear in

the semantical treatment - to make their borders, in other words, come to the fore in the

mathematical characterisations that emerge. But what is much less clear is how to make the

declarative import of such a computational module explicit How do we say, for instance,

with respect to the example we gave above, that it represents a complex 11umber? How

would we say of a far more complex artifact that it (or instances of it) designate graphical

terminals? To what extent, in other words. are the notions of declarative import and data

abstraction related?

There arc a variety of hints that may be taken from a close examination both of

what we actually did in the example above, and from a consideration of the tenninology

that is typica11y used to describe such abstractions. First, in spite of the received maxim

3. Semantic Rationalisation Procedural Reflection 250

that behaviour is what is crucial. in writing down the code in S3-204 and sa-205 - the

code that is intended to generate that behaviour - we did not in some magic fashion build

it out of behaviour; as we always do, we wrote down static symbols, the processing of

which is intended to yield the behaviour we had in mind to implement It follows.

therefore, that the code we used itself must succumb to a declarative treatment, based on

whatever interpretation function was in effect prior to the definition of complex numbers.

It is entirely likely that this characterisation will be at odds with the one we are headed for

- there is no likelihood whatsoever that ,i, of ilie structures given above will have anything

to do with instances of comr1~x numbers - but it is not too much to ask that we establish

some sort of relationship between the semantical account that emerges from the code we

have written, and the semantical account, in terms of complex numbers, that we wish to

explicate.

Furthermore, as wen as this code having determinable semantical import, any given

instance of the abstract data type will necessarily have some implementation in terms of

elements of the structural field of the implementing machine. That structural field

fragment will itself have declarative import, as described by the standard semantics. We

can in fact readily determine the declarative import of such instances in our simple

example. First, however, we need to clarify our terminology. Our new data type is not

really that of a complex number. rather, we will caU the data type a complex numeral, since

really what we have done is implement an abstract fonnal object to which we intend to

attribute the following semantical import: a complex numeral will <lesignate a complex

number.

Then, since all expressions of the form (LIST x Y) designate the two-clement

sequence of the referents of x and Y, it is clear that on either implementation, a complex

numeral c will be taken by our semantics onto a sequence of two numbers. Actual

complex numbers, of course, are precisely not a sequence of two real numbers. Rather, and

this is what we know when we accept the implementation, the info1mation about a

particular complex number can be deduced from the following two things: a general claim

about a bijection between complex numbers and two real numbers, and two particular real

numbers that represent the given complex number.

3. Semantic Rationalisation Procedural Reflection 251

Suppose we define a relationship II that encodes the appropriate mapping between

sequences of real numbers and complex numbers (we will focus on the rectangular

implementation, although the form of the argument is identical in either case). Thus for

example 11(2,3) = 2 + Ji. The crucial fact about II is that it be formulated in terms of

the designation, in the standard semantical treatment, of the implementation of complex

numerals. In other words, if c1 is a complex numeral - a two-element list of real

numerals - returned by COMPLEX-FROM-POLAR, then II(cltEF(C1)) is the complex number that

c designates in what we are beginning to think of as an extended Calculus.

Once we had defined II, we would have to specify the consequences, in its terms, of

the· significance of the abstract operators defined over the data type. For example, we

would want to prove that the function designated by REAL was (the extensionatisation ot) a

ftmction from complex numbers to their real coordinates. Suppose that REAL-OF and

IMAGINARY-OF are two functions in out meta-language that project complex numbers onto

their real and imaginary coordinates. · In other words · we are assuming that:

Il(C) = REAL-OF{C) + [IMAGINARY-OF(C)]1 (S3-206)

Then what we would want to prove would be something like the following:

cltEF("REAL) = EXT(AX. REAL-OF(Il(X))) (S3-207)

Similarly for all of the various other functions comprising the behaviour defined over

complex numbers.

Now if this is done, some remarkable properties emerge. First, suppose we define

an extended semantical interpretation function «I>•, which is intuitively just like 4' except it

is extended to include TI. In other words, if cf> of a term is in the domain of II, then 4>' (X)

= II(cI>(X)); otherwise 4>' {X) = <l>(X) (this would of course be contextually relativised as

usual). Then what is true is that 2-LISP (or whatever rationalised dialect one uses) would

be cJJ •-preserving as well as 'P·preseriing. For if the primitive language processor preserves

cit-designation, and if the implementation relationship is defined over referents, not over

structures, then it is obvious that a regime that maps one term into another with the same

referent will not change any properties that depend only on reference.

Furthermore, if function application is redefined to use 4> instead of 4', then such

equations as s3-201 could be written as follows:

3. Semantic Rationalisation Procedural Reflection 252

4t'EF("RfAL) • EXT(AX . REAL-OF{X)) (S3-208)

In other words a systematic way emerges in which the interpretation functions can be

extended along with the introduction of new abstract data types, so that rt!e fundamental

semantical characteristics of the underlying system are preserved.

In other words, if a user simply posits the designation of code implementing abstract

data - simply asserts, for example. that REAL designates the real coordinate of a complex

number, without proving it or relating it to the semantics of the implementing language -

then nothing about the semantical properties of the processing of this instances of this data

type can be said. and not surprisingly. If, however. such abstract data type extensions can

be proved as sound and consistent, in terms of the designations of the implementing

programs, then the semantical soundness - and, for example, the semantical flatness of the

underlying processor - carry OV\!i. from the implementing language onto the language

extended with the abstract data type. The moral, in other words. is that if the abstract data

type is soundly defined and implemented in tem1s of the semantical import of a semantically

rationalised dialect, then the resultant extended dialect will be semantically rationalised as

well. This is quite considerable a result, for it means if we define 2-LISP correctly. even if

it is a simple kernel calculus. nonetheless we (or any other user) will be able to build it up

in standard powerful ways. If that extension is done with care, then its underlyjng

semantical cleanliness will perfuse · the abstract structures implemented on top of it

4. 2-LISP: A Rationalised Dialect Procedural Reflection 253

Chapter 4. 2-LISP: A Rationalised Dialect

We tum next to the design of 2-LISP, a dialect semantically and categorlca/ly

rationalised in terms of the analysis set tbrth in the previous chapter. The most striking

property of 2-LISP that differentiates it from 1-LISP is of course the fact that its procedural

regimen is based on a concept of nonnalisation rather than of evaluation - with the

concomitaot commitment to a declarative semantics defined prior to, and independently of.

procedural consequence. We will attempt to show, in keeping with this approach, that a

clear separation between the simplification and reference of expressions can workably

underwrite the design of a complete and practicable system (something that no amount of

abstn:-;t argument can demonstrate}. In addition, there are two further points that 2-LISP is

intended to demonstrate, emerging from our drive to free the meta-structural powers of a

computational calculus for reflective purpc'-es. In particular. we observed in chapter 2 thac

the 1-LISP meta-structural facilities were employed for the following reasons (among

others):

t. To partially compensate for the lack of higher-order functionality in a first·
order system.

2. To deal with certain forms of objectification and compositionatity of program
structure in the structuml · field.

The Sf.HEME language has shown us that a LISP need not use meta-structural capabilities to

deal with higher-order functionality, but even in that dialect certain types of objectifications

required meta-structural trcatmcr.t (the explicit use cf EVAL and APPL v}. We saw as well

that the objectification issue was not treated in the A·calculus; currying, the standard way in

which multiple ~rgumcnts arc handled, provides no soiution. We will show ia 2-USP that

both facilities -· higher-order functionality and the ability to objectify multiple arguments

- can be conveniently and compatibly provided in a semantically-rationalised base

language. Meta-structural primitives, in other words, arc necessary for neither capability.

It does not follow that 2-LISP will have no meta-structural primitives: on the

contrary, simple naming and de-referencing primitives will be introduced and rather

thoroughly examined. In addition, we will initiatly provide primitive access to 2-L IS P's

main processor functions (under the names NORMALISE and REDUCE). Strikingly, however, we

4. 2-LISP: A Rationalised Dialect Procedural Reflection 254

will be able to prove that there is no reason one would ever need to use them - or, to put

the same point another way, we will show that they need not be primitive, but could be

defined in tenns of other junctions (this is a claim called the up-down theorem, proved in

section 4.d.iv). This is a much stronger result than we were able to reach in 1-LISP or

SC:IEME, and it is just the right preparation for 3-LISP, where these functions will be re

introduced, as part of the reflective capability, and used in defining programs that are

simply not possible in 2-usP (those that objectify the state of the processor in the midst of

a computation). The point is that NORMALISE and REDUCE will be required only when the

processor state (in terms of an environment and continuation) must be objectified: in other

cases, less powerful primitives will always suffice.

In the course of our pursuit of these goals, we are also committed to two aesthetic

principles:

1. In all aspects of the design the category (as opposed to individual) identity of a
form should determine its significance (i.e., there should be no distinguished
individuals that receive special treatment).

2. To the maximum extent possible, there should be category alignment across
the entire system: among lexical notation, structural field, declarative import,
and procedural consequence.

There are several properties of 2-LISP that should be made clear at the outset. First,

2-LISP is an extremely powerful calculus in varioas fmmal senses: it will handle functions

of arbitrary order; it contains primitive intensional operators, both functional (LAMDDA) and

hyper-intensional (QUOTE and primitive support for arbitrary IMPRs); it contains powerful

meta-structural facilities; and it provides primitive access to the main processor function. It

is our claim that these facilities can all be provided in a clean manner, but there are of

course consequences to this power, such as that it will in general be undecidable what

function a given 2-LISP program computes, and so forth.

In spite of this power, however, there is an odd sense in which 2-LISP is not very

well self-contained - it does not provide a very natural closure of capabilities over the

concepts in terms of which it is defined. In particular, various facilities of 2-LISP lead the

programmer into odd behaviours and curious problems, some of which have no obvious

solution. For example, we will show how IMPRs (intensional procedures that do not

nom1alise their arguments) have no way of nonnalising those arguments after the fact, since

the appropriate context of use has been lost by the time the body of the intensional

4. 2-LISP: A Rationalised Dialect Procedural Reflection 255

procedure is processed. Thus for example if we were to write

(LET ((X 3]] (TEST X)) {S4-1)

in 2-LISP, and if TEST signified an intensional procedure. there would be no way within the

body of TEST to ascertain that x was bound to a at the point of call. The problem - which

we will explore in greater detail in section 4.d - arises from the interaction between the

meta-structural naturP of IMPRS and the static scoping protocols the govern 2-LISP variable

binding.

Similarly, in setting out the structure of 2-LISP closures (nonnal form function

designators). we will be forced to accept encodings of environments as structural

constituents. It was part of our stated goal in designing 2-LISP, however, to avoid the

introduction of structural encodings of theory-relative meta-theoretic posits. Environments

were to be entities in the semantic domain of the meta-theory that facilitated our explanation

of how 2-LISP worked; we intended to postpone introducing enviro~ents itllo LISP itself

until we took up reflection as an explicit concern. That pristine goat. however, will elude

us, because (as we will show) we still lack an appropriate theory of (finitely representable)

functions-in-intension. As a consequence we will be forced to use environment encodings

as a stop-gap measure to cover for this Jack.

Many other examples could be cited, but they will arise in due course: this is not the

place to pursue details. The general character of these problems, however, worth noting at

the outset, is that we will find no solutions, nor even any hint that solutions are possible.

Nor do other systems provide any clues: since the >.·calculus has no meta-structural

facilities, the questions do not arise in its case, and it is striking that SCHEME does not

provide EVAL and APPLY as primitive procedures, perhaps for some of these very reasons.

At heart. the problem - with IMPRS and closures and all the rest - is that they

inevitably force us to take parl of a step towards full reflection, without taking the whole

step. In 3-LISP, & rejleclive procedurf! (a category that will subsume IMPRs) will enable us at

will to bind not only designators of arbitrary argument expressions, but also fully

infonnative designators of arbitrary contexts. 'The ability to objectify the environment in

this way doesn't so much require reflection - it would be more accurate to say that it is

reflection. The present moral is that the full complement of natural 2-LISP facilities cannot

be developed without such a capability: that, in a word, 2-L ISP is inherently incomplete.

4. 2-LISP: A Rationalised Dialect ProceduralReflcction 256

One could of course argue that these results suggest that 2-LISP is already too powerful -

that we should restrict it so as not provide any meta-structural powers. This makes a little

sense, since the fact that 2-LISP can handle objectification and higher-order functionality at

the base level means that many of the standard LISP reasons for wanting meta-structural

powers are obviated. On the other hand, there remain cases - programs that write

programs are an obvious example - where such powers are essential. One could argue

instead that although meta-structural powers over e~::e:;.tially uninterpreted expres!;ions may

be useful, we could perhaps avoid mentioning structures that were actual parts of 2-LISP

programs. But the closure question (the encoding of environments in closures) arose simply

in providing an adequate treatment of higher-order functionality.

We will leave meta-structural facilities in 2-LISP, but we will not attempt to find a

natural boundary for them, since this author, at least, does not believe any such suitable

limits can be found. Rather, we consider 2-LISP a step on the way towards the yet more

powerful 3-LISP, which does provide a natural closure of meta-structural powers. 111e

intents of this chapter, in other words, are two: first, to demonstrate the power and

effectiveness of our dm1blc semantics viewpoint; and second, to make evident the fact that

a procedurally reflective dialect is not an esoteric dream, but merely the natural

reconstruction of current practice. A good hard look at 2-LISP, in fact, not only pushes us

irretrievably towards 3-LISP; it al~ost dictates the structure of that further dialect 2-LISP,

in sum, is a stepping stone; 3-LISP will be the final product.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 151

4.a. The 2-LISP Structural Field

In this first section we will present the 2-LISP structural field - and, as it happens,

the 3-LISP field, since the latter dialect is structurally identical to the fonner, differing only

in having a processor with extended power. We will work primarily with six categories, in

both syntactic and semantic domains; z-LISP will be approximately constituted as follows

(the notational BNF is a little informal: a more accurate version would introtluce breaks

between identifiers, and so forth, but the intent should be clear):

SF Category
Numerals
Booleans
Rails
Pairs
Handles
Atoms

Designation (<I>)
Numbers
Truth-values
Sequences {of cI>'s of elements)
Functions. and values of applications
S-expressions
ct> of bindings, and user's world

Notation (0L) (54-2)

["+"I"·"]° digit (digit].
["ST" I "Sf"]
"(" [formuia]• "]"
"("formula"." formula")"
"'" <notation of referent>
non-digit [character]•

The first four semantic types (numbers, truth-values, sequences, and functions) are

mathematical and abstract, the fifth is the structural field itself, and the sixth is whatever

extension is required in a particular use of a 2-LISP program. It is not coincidental that

ti.ere are six primary structural categories and six primary semantical categories - we will

be able to set these two taxonomies into approximate correspondence, as discussed in the

previous chapter, and as is suggested in the table just presented. The pairing cannot be

exact, however, in part because pairs - encodings of functior) applications - can of course

designate any element in the semantical domain, as can atoms (names).

4.a.i. Numerals and Numbers

As in 1-LISP, the 2-LISP field contains an infinite number of distinct numerals

corresponding one-to-one with the integers. Each numeral is atomic, in the sense that no

first-order relationships are defined as functions over them; in addition, no other elements

of the field are accessible from the numerals (other than their handles: see section 4.a.vi.).

They are notated in the standard fashion, as explained in chapter 2. Furthermore, each

numeral will designate its corresponding integer in all contexts. Using the machinery of the

last chapter, we can summarise these points (the function M in S4-7 is the standard

interpretation function from numerals to numbers; s is the set of structural field clements):

4. 2-LISP: A Rationalised Dialect Procedural Reflection 258

INTEGERS a { I I I 1s an integer}

NUNERALS a { N I N € S A N 1s a numeral}

L-numeral : :• ["+"_I"-"_]° d1g1t_(d1g1t]*

0L(L IL is an L-numeral) E NUMERALS in the standard fashion

VE € EHVS, F E FIELDS, N € NUMERALS [4>EF(N) • M(N}]

(S4-3)

(S4-4)

(S4·6)

(S4-6)

(S4-7)

Equation S4-7 implies that each numeral designates an integer; that this designation is one

to-one is implicit in S4-5 and S4-6; thus the following is provable:

'II E INTEGERS 3N E NUMERALS
[VE E ENVS, F E FIELDS

([~EF (N) = I] A
l VM e NUIIERALS [[4>EF(M) = 11 => [M = N nm

(S4-8)

Numerals will be taken as canonical nonnal-form designators of numbers: thus any 2-LISP

structure s that designates a number (and that nonnalises at all) must normalise to the

numeral that designates that number. Thus we have our first constraint on 2-LISP's it (it

should be clear that so far this behaviour is no different from that of I-LISP):

VE E ENVS, F E FIELDS, S1 , S2 E S
{[[•llEF (S1) E INTEGERS] A [Sz = 'l'EF (S1) fl ::>
[S2 ,. M" 1(4'EF(S1)) D

(S4-9)

It should be clear. however, that S4-9 is a desideratum that we will want to prove: we

cannot simple postulate it, since it does not yield an algorithmic method by which it may

be rendered true. Rather, we will start simply, with the fact that numerals normalise to

themselves:

VE € ENVS, F E FIELDS, N € NUMERALS [i'EF(N) " (N)) (S4-10)

Finally, the normalisation of numerals involves no side effects, as is indicated by the

following characterisation in tcnns of total procedural consequence.

'IE € ENVS, F E FIELDS, N € NUMERALS, C E CONTS
[l"!(N, E, F, C) = C(N, M(N), E, F)]

(S4-11)

From S4-7 and S4-t0 ,t follows that numerals arc context-independent, from S4-10 it

follows as well that they are stable, and from S4-11 it follows that they arc side-effect free.

Thus we straight away have shown the truth of the following:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 259

VN € NU#ERALS [NORMAL-FORM(N)) (S4-12)

We cannot yet show very many examples, since we have introduced so little, but at

least the following follows from what has been said (we use the symbol "=>" to indicate the

lexicalisation of the nonna/isation relationship - i.e., the relationship between two lexical

notations, where the second notates the result of normalising that structure notated by the

first - just as we used " - " to indicate the lexicalisation of evaluation):

4
-26
00000111
-o

=> 4
=> -26
=> 111
=> 0

4.a.il Booleans and Truth-Values

(S4-13)

There are two 2-LISP boolean constants, comprising their own structural field

category, and designating respectively Truth and Falsity. They are Jike the numerals in

several ways: they arc atomic; no other structures (besides their handles) are accessible from

them; and they are the canonical normal-form designators of their referents. We will not

use the name NIL to notate the boolean that designates Falsity, but a distinguished element

used for no other purpose. As hinted in S4-2, we will instead notate them not simply as

"r" and "F", but as "n" and "SF", in order to distinguish the booleans lexically (from the

atoms), as well as structurally and semantically (''$" is otherwise a reserved letter in 2-LISP

notation). The inconvenience in requiring an extra letter is more than compensated for by

the maintenance of the category alignment

The equations constraining th..:- booleans are similar to those describing the numerals.

First we have the equations defining the form and designation of the booleans:

TRUTH-VALUES = { Truth, Falsity}

BOOLEANS a { "$T, "$F}

L-boolean : : = ["ST" I "$F"]

VE E ENVS, F E FIELDS, B E BOOLEANS [<MF(B) = TRUTH-VALUE(B}]

(S4-14)

(S4-15)

(S4-16}

(S4-17)

(S4-18)

'Ibe constraint we will ultimately want to prove is that all expressions that designate truth

or falsity (all sentences, to use a definition from logic) and normalise at a;,, n01malise to

4. 2-LISP: A Rationalised Dialect Procedural Reflection 260

the appropriate boolean constant:

VE € ENVS, F € FIELDS, S1 , S2 € S
ll[[cJIEF(S1) ,. Truth) A [S2 • i'EF{S1)]] ::> [Sz • "$T]] A
UlitiEF(S1) = Falsity) A [S2 "i'EF(Si)Il ::> [S2 = "$F]Il

(S4-19)

Again, we can posit this as true of the booleans themselves, and can also assert that these

two constants are side-effect free:

VE€ ENVS, F € FIEl?S, BE BOOLEANS [i'EF(B) • B]

VE € ENVS, F € FIELDS, B € BODI.EANS, C € CONTS
[:Z(B,E, F ,C) = C(B, TRUTH-VALUE(B) ,E,F)]

(S4-20)

(S4-21)

Thus, as was the case with the numerals. we have shown that the booleans satisfy the

nonnal·form constraint (S4-18, S4-20, and S4-21}:

VB € BOOLEANS [NORMAL - FORM(B)]

Again, only the most simplistic of illustrations are possible:

ST
SF

4.a.iii. Atoms

ST
$F

(S4-22)

{S4-23)

Like the numerals and booleans, 2-LISP atoms are structurally similar to those of 1-

LISP. They are atomic and indivisible, and there are assumed to be an infinite number of

them in the field. Each is notated with a lexical type in the usual way, with distinct lexical

types (except with respect to the case of the constituent characters) notating distinct

individual atoms. Again, in the field only their handles are accessible: we will discuss

environments presently.

ATO#S = { A I A is an atom }

L-atom ::= [character_]* non-digit [_character]*

8L(L IL is an L-atom) = the corresponding atom E ATOMS

(S4-24)

(S4-26)

(S4-26)

For the time being we will not define a property list relation as a function over atoms -

although such an extension would need to be explored for a practical version of tl1e dialect.

Semantically, all atoms will be viewed as context·dependent names, in the sense that

all atoms will designate the referents of their bindings in the appropriate environment. and

4. 2-LISP: A Rationalised Dialect Procedural Reflection 261

they will also normalise to those bindings. No atoms, in other words, will be viewed as

constants, and. correspondingly, no atoms are in nonnal-:form. It follows that no atoms,

including the names of the primitive procedures, will nonnalise to themselves: rather. atoms

must nonnalise to nonnal-fonn designators of the referents of their bindings. Finally, as

will be discussed in section 4.b. the primitive procedures are not deftned in tenns of atoms.

but rather in tenns of primitively recognised closures. The first of these points is easily

stated:

VE € ENVS, F € FIELDS, A E ATOHS [fl»EF(A) = fi!EF(E(A))]

VE € ENVS, F € FIELDS, A E ATOMS [VEF(A) = E(A)]

(S4-27)

(S4-28)

These two equations, however, do not imply that no atoms are in normal-fonn, since we

have yet to identify ho_w environments can be affected. It will tum out to be a theorem

about 2-LISP that all bindings are in nonnal-form, but that will have to be proved, and

follows from the way in which reductions are treated; as shown below.

The normalisation of atoms is also side effect free:

VE € ENVS, F € FIELDS, A € ATONS, C € CONTS
[~(A, E, F, C) = C(E(A), 4-EF(E(A)), E, F)]

(S4-29)

Examples of the nonnalisation of atoms will be given once we have some machinery

for building environments. It should be noted as well that we will use the tenn "atom"

when we refer to these objects from a primarily structural, non-semantic point of view.

Functionally, atoms play a role as context relative names; when we wish to emphasise their

use rather than their stmcture, we will variously call them variables or parameters.

4.a.iv. Pairs and Reductions

Although 2-LISP pairs are identical to t-LISP pairs from a purely structural point of

view, some substantial differences between 2-LISP and 1-LISP will begin to emerge between

the dialects as we look at their semantics, procedural treatment, and notation. In particular,

we assume an infinite number of distinct pairs, over which the standard two first-order

asymetric relationships are defined, called CAR and CDR. 111ese relationships are total

fi.mctions, mapping each pair onto some arbitrary element of the 2-LISP field. 1bc

primitive norntion for pairs is like that of t -LISP (with all its problems): a pair is notated in

terms of !he notations of its CAR and CDR, enclosed within parentheses and separated by a

4. 2-LISP: A Rationalised Dialect Procedural Reflection 262

dot, and every reading of a lexical combination notates a previously inaccessible pair:

PAIRS a { P I P 1 s a pa 1 r }
CARS a [PAIRS - S]
cons 5!! [PAIRS - s]

el(L IL is an L-pair} = a pair€ PAIRS whose CAR is el of the
1st formula and whose CDR is el of the 2nd

(S4-30)

(S4-31)

(S4-32)

It would be possible to define a radically different kind of lexkal notation for pairs, with

fewer ambiguities, less incompleteness, and so forth, but such a move is major change,

especially since it is only through notation that we humans access the LISP field, and

therefore preserving LISP'S notational style is part, if not all, of our claim to still be defining

a dialect within the LISP family. For these reasons, although we do not endorse the

properties mis notation brings with it, we will stay with tradition. We will not, however,

define the usual notational abbreviation for lists (since we are not defining lists at all in 2-

LISP), but will instead reserve that notational style for a combination of pairs and rails, as

shown below.

Semantically, pairs will be taken to designate the value (note our use of the term

"value") of the function designated by the CAR applied to the CDR (not, one may note, to the

object designated by the CDR). Two facts make this different from t-LISP. First, in t-LISP

we defined the declarative import of a pair as follows (ignoring side-effects for a moment):

VEE ENVS, FE FIELDS, PE PAIRS
[tl)EF(P) = [(4>EF{S1))EF] <Sz Sa ••• St>]

where P = r" {St S2 S3 ... Sk)l in f

(S4-33)

It was this characterisation that made reference to the notion of a list. Our characterisation

of declarative semantics for 2-LISP pairs, in contrast, is the following:

VE E ENVS, F E FIELDS, P € PAIRS
(rt,EF(P) = [(«MF(Pi))EF] P2]

where P = r"{Pt . PzJ1 1n F

{S~-34)

According to the meta-language, in other words. all functions designated by 2-LISP

expressions are functions of a single argument. This will prove simpler in a number of

ways, partly because it provides the correct ingredients for our successful treatment of

argument ohjectification within the base language. Note, furthennore, that this is not a

case of currying the LISP, in the way that we have curried the meta-language.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 263

Furthennore. it apparently has no adverse consequences, even from the point of view of

implementation. as we will ultimately demonstrate. Finally, the 2-LISP characterisation is

total, in a certain sense, in that it makes reference only to the CAR and CDR of a pair, and, as

we have just mentioned, all pairs have CARS and CDRS. There is no way, in other words, for

2-LISP pairs to be structurally ill-formed from a declarative point of view (or from a

procedural point of view, as we will show in a moment).

Procedurally (again temporarily ignoring side-effects for pedagogical simplicity), we

have a corresponding characterisation: the normat-fonn of the CAR of a pair is reduced with

the CDR according to the function engendered by the internalisation of the CAR's fonnal

fonn:

VE E ENVS, F E FIELDS, P € PAIRS
['l'EF(P) = [(A['l'EF(Pi)])EF] Pz]

where P = f"(.!2. P2Jl 1n F

(S4-36)

Again, this should be compared with S3-136. Since no induction is required to identify the

arguments, S4-34 and S4-35 can mor'! accurately (in the sense of using F explicitly) be

written as follows:

VE E ENVS, F E FIELDS, P E PAIRS
[[cI>EF(P) = [(<l>EF(F 1(P)))EF] F2(P)] A
['l'EF(P) = [(A['l'EF(F 1(P))])EF] F2(P))1

(S4-36)

It is to be noted that procedural consequence is defined compositionally; it should also be

true (if 2-LISP is correct) that the following equation holds, but this is a statement we will

have to prove, from the defining equations such as S4-34 and S4-35, and from the

definitions (including the internalisations) of all the primitive 2-LISP procedures:

VE E ENVS, F E FIELDS, P E PAIRS (S4-37)
([lf>EF('l'EF(P)) = cl>EF(P)] A NORMAL-FORM('l'EF(P))]

In discussing atoms we distinguished between the purely structural term "atom" and

the functional terms "variable" and "parameter". Regarding pairs we have a similar

distinction: we will use the simple term "pair" again primarily structura1Jy, but will use the

term redex (short for "reducible expression") when more functional or semantic stance is

indicated. (There is actually a slight distinction even in reference between the two terms: a

pair has only two "parts": a CAR and a CDR; by a redex, however, we will refer to the entire

structure involved in a given procedure application - thus the identity conditions arc

4. 2-LISP: A Rationalised Dialect Procedural Reflection 264

somewhat different The details will be spelled out in section 4.a.ix.)

Two things should be noted about how we are proceeding. First, we are simply

assuming that we no longer have the kind of troubles with evaluation that prevented us

from giving a t-LISP characterisation of the sort illustrated in S4-34 and S4-36, which

allowed as to posit, for example, that [~E0F0("+) = EXT(+)]. We will in fact posit just such

a declarative import for the symbol "+" in the initial environment, which will work

correctly with this semantic charactersation of pairs.

Secondly, the equations we have given of course illustrate the default case only; they

do not handle side effects. More properly, therefore, we have to give the fuli };~

characterisation of the semantics of pairs. This is given in S4-38 below; note its similarity

to S3-135:

VE E ENVS, f E FIELDS, C E CONTS, P E PAIRS {S4-38)
~(P,E,f,C) = ~(fl(P),

E,
f,
[A<S1,D1,E1,F1>

[(AS1)(F1
2(P),

E1,
f1,
[A<S2, Ez, f2>

C(S2,[D1(F12(P),E1,F1)],E2,F2)])]])

The importance of this equation, and the rote it will play in establishing Qur main

theorems, will emerge later in the chapter.

A number of preparations are still required before we can give examples of the

normalisation of pairs. We need, for example, to look at the structural type rail, since it is

rails that are usually used to encode the arguments to 2-LISP procedures. We also need to

show how to designate elements of the field. Finally, of course, we need to dP.fine what the

primitive 2-LISP procedures are. We wilt then be in a position to show that, for example,

(CAR (CONS 'A 'B)) designates the atom A, as one would expect. Simple examples like this

will be given in section 4.b.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 26S

4.a. v. Rails and Sequences

In standard LISPS the derived notion of a list, as we remarked. is used both to

encode function applications and enumerations (including enumerations of multiple

arguments for procedurl."S). We lodged two complaints against this practice: first against the

fact that this data structure was not primitive (that fact alone broke the category

correspondence between structures and semantics), and secondly against the use of one

stru~ture type for two semantic purposes. The foregoing discussion of pairs shows how in

2-LISP we have defined applications, both declaratively and procedurally, directly in tenns

of pairs, rather than lists. We still lack, however, a structure with which to enumerate a

sequence of arguments - or, indeed. a sequence of any entities whatsoever.

There are two related problems coalesced here, in need of clarification. First is a

structural lack: as posited above, there is no way in which a procedure can be catted with

more than a single structural argument. The second is a semantical ina~<.!quacy: we have as

yet no accepted way to designate a sequence of referents. These, as we should by now

expect, are by no means the same problem; we will look at them separately.

With regards to the first, it might seem, at least theoretically, that a possible solution

would be to wrap all the arguments to a procedure up into one object before calling it

For example, one could imagine a variant on 1-LISP in which, instead of calling the

addition function + with two arguments, one gave it a: single list of two arguments, as for

example in { + (LIST 3 4)) • But this fails, since the problem recurses: we have no way to

define such a LIST function. This is not for lack of an appropriate primitive LIST

procedure; the problem is rather that, even if such a procedure existed, there would be no

way to call ii with more than one argument And if a method were devised by which LIST

could be called with multiple arguments, then any function could be catted in that way, and

LIST would not be needed. Unless, of course, calls to LIST were structurally distinguished

but that is too inelegant to contemplate.

Another suggestion would be to employ currying, in me style - typically adopted in

the A-calculus - that we have employed throughout in our meta-language. This is of

course possible; the A-calculus loses no power in virtue of being defined with single

arguments. A LISP-like version might encode the addition of 3 and 4 as ((+ 3) 4). This

4. z-LISP: a Rationalised Dialect Fr~dural Reflection 266

currying approach has a variety of advar..tages, and could be made notationally equivalent to

the old by defining the following as a notational abbreviation:

"(" _ formula1 _ formula2 ... _ formulat ")"

could be taken as an abbreviation for

rather than as an abbreviation for the standard

"(" _ formula1 _ •." _ "(" _ formula2 _ "." _

_ ... _ "(" _ formula1:_"." _"Nil"_") ...))"

(S4-41)

{S4-42}

Sim..tarly, in order to make function definition more straightforward, we would allow the

following:

(!.AMBDA (V1 V2 ••• Vt) <BODY>)

to be an abbreviation for

(LAMBDA V1 (LAMBDA Vz (... (l..AMBDA Vt <BODY>))))

(S4-44)

(S4-45)

(Of course S4-44 can't be made to be 5/ructural/y identical to 54-45, dnce that would

contradict S4-42; rnther, what we mean is that S4-44, in the new notation, would designate

a function of the sort that. in the standard notation, S4-45 would designate. This can be

arranged with a suitable definition of LAMBDA.) The structures that resulted would by and

large took superficially - which is to say notationally - familiar. For example, given the

following procedure definition in the new notation:

(DEFINE HYPOTENEUSE
(LAMBDA (X Y)

(SQRT(+(• XX)(• Y Y)))))

We would have the following expected result:

(HYPOTENEUSE 3 4) 6

(S4-46)

(S4-47)

This would work because S4-46 and S4-47 would be notational abbreviations for:

and

(DEFINE HYPOTENEUSE
(LAMBDA (X)

(LAMBDA (Y)
(SQRT . ((+. ((• . X) . X}) . ((* . Y) . Y))))))

(S4-48)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 267

((HYPOTENEU~E . 3) . 4) 6 (S4-49)

{Actually S4-48 would be much more complex: we have expanded only the body of the

procedure being defined; the calls to DEFrNE and LAMBDA would similarly have to be

uncurri:!d, in order to show the ft~ll expansion, but we needn't bother with that !1ere. Note

as well that under the new proposal forms with 110 arg~1ments such as (RANDOM) are

notationally ill-formed: schemes which curry as a method of treating different numbers of

arguments will not permit functions to be cal!ed with no arguments at all.)

This proposal, however, drives us further away from any ability to handle oujectified

arguments, rather than closer. In particular, suppose we wish to add two numbers, and

some term x designates them as a unit Under the current proposal it is less easy than

before to engender their addit:on, rathi!r than more; a special procedure would have to be

devised that element hy element applied the function to the sequence, passing th~ new

derived function along at each step. In addition, if v were a composite tenn encoding ~
. .

function application, and we wished to repiace its multiple arguments with a new set (a task

of the sort that it liable to arise in reflection), this protocol makes it particutarly difficult.

Rather than existing as a single list, they have been spread out one by one in a series of

explicit redexes. For example, suppose that v was (+ A B), al"ld we wished to change

(actually modify) this to be(+ c D). In 1-LISP this could be effected by (we assume that v,
to use 1-LISP tenninology, evaluates to (+ A B)):

(RPLACD Y '(C 0)) (S4-60)

However in the • roposal we are currentJy considering, the fo1m v would ht fact be:

{(+ . A) . B)

Therefore the mcdifications would have to be:

(BLOCK {RPLAf.D Y 'D)
(RPLACD {CAR V) 'C))

(S4-61)

(S4-62)

And if the list (C D) were the value of a single variable, rather than being explicitly

decomposed in this fashion, the change would be even more complex.

In s1.1m, while this currying proposal is eminently feasible, since we are working in a

higher-order language (the intermediate constituents of c1 curded application are functions,

of course, which is straightforward in a higher order formalism; currying would of course

not work in 1-LISP), the currying approach does nothing to answer our original goal.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 268

Furthennore, the currying suggestion doesn't even address the second of our original

concerns. What is true about the suggestions just considered is that they are purely

structural suggestions: they do not deal with the related but distinct question of what it is to

designate an abstract sequence of objects. It follows from our semantics, for example, that

in 2-LISP the expression (CONS 1 2) (independent of whether that is ((CONS • 1) • 2) or

(CONS • (1 • (z . NIL))} or whatever) is semantically ill-fonned, since no pair can contain

a number as its CAR or CDR. There is, however, nothing incoherent or problematic about

including abstract sequences in our mathematical domain - sequences that might consist of

arbitrary entities: s-expressions, mathematical abstractions, or objects from the user's world

(a triple, for example, of Thomas Wolsey, the first inaccessible number, and a red-breasted

finch). No amount of currying or other structural suggestions deal with the question of

how to designate an abstract sequence. Nor can we use quoted pairs, such as (+ ' (3 4)), or

(+ • (. , Y)), since pairs are reserved for applications, and we are mandated by our

aesthetics to avoid category dissonance between structure and semantics.

For all of these reasons, we will define a special structural type, which we will call a

rail, co serve as a stmctural enumerator and normal-fonn designator of abstract sequences.

Rails will in many ways be like the derived lists of 1-LISP, although they are primitive,

rather than being implemented in te1ms of pairs. In particular, as we will illustrate in the

next few pages, rails will be defined to embody what we take to be the essence of the

original LISP concept of a list.

From an informal point of view, a rail consists of a number of elements, each of

which is in turn an s-e:<pression. The clements arc numbered starting with the index 1;

each rail has a !f!ngtl• that is the number of elements in it. Thus if a rail R1 is of length 7.

then its seventh element is its last. From a rail each of its elements arc accessible, although

the reverse accessibiJity relationship does not hold. Rails are notated (in a manner derived

f:-om the old 1-usr notation for lists) by enclosing the sequence of notations for their

elements within square brackets. From the point of view of declarative semantics, a raii

designates the abstract sequence of objects designated by each of the clements of the rail,

respectively. Procedurally, some rnits are normal-form sequence designators; thus rails will

normalise to rails (thi~ will be explained further in a moment). From just these facts t11e 2-

LISP rail looks similar to MDL's lists and NIL's vector, but we will distinguish them in a

moment. 'Ihus we have, as a first approximation to a characterisation (this is rather

4. 2-LISP: a Rationalised Dialect Procedural Reflection 269

imprecise. but we will improve it presently):

SEQUENCES a { Q I Q is a sequence of elements of D }

RAILS s { R I R 1 s a ran }

(S4-63)

(S4-64)

(S4-65)

8L(L IL= "(" _formula1 _formula2 _ ... _formulat_ "]") (S4-60)
" R € RAILS I [Vi l~i~k the i' th element of R is 8L(formula1)]

For example, the rail notated with the string "[t 2 3 4]" designates the abstract sequence of

the first four positive integers.

We will assume tVJo functions in our meta-language: one called LENGTH, which is a

function from rails and sequences onto their lengths (which may be either finite or infinite),

and a selector function called NTH that takes an index and a rail and yields the element at

that position. The types of these new functions are as follows:

LENGTH : ff RAILS U SEQUENCES 1 -+ f INTEGERS U { oo } 11 .(S4-61)
NTH [[INTEGERS X [RAILS U SEQUENCES JJ -+ D J

We can then begin to characterise the declarative semantics of rails as follow~:

VE E EIJVS, F E FIELDS, R € RAILS
U ~EF (R) = Q] :J .

[[Q E ScQUENCES] /\
[LENGTH{Q) = LENGTH(R)] A
[Vi t::;i~LENGTH(Q) [Qi = 4'EF(NTH{i, R))])]]

(S4-62)

This equation is lacking, however, because it does not take up the crucial questions

of identity of rnils. Since identity hinges on discriminable difference, which in turn hinges

on modifiability, we need first to ask in what ways rails can be altered. In the spirit of

pairn, we will posit that any element of a rail may be changed (corresponding, in a sense, to

the use of 1-LISP RPLACA on lists), and also that the tail of a rail may be changed, where hy

the Nth tail of a rail we refe:· to the (sub)rail beginning after I.he Nth element. Th.us if rail R

is notated as [2 4 6 3 tO], then the second tail of R is [6 a 101, and the fifth tail of R is the

empty rail []. Thus we are saying that rails arc piece-wise composite; a rail is formed (as a

1-LISP list was) of an element and a tail. It is this structural technique that will allow us to

preserve the character of standard LISP lists {and will also distinguish our notion from the

more common programming language construct of a vector or one-dimensional array).

4. 2-LISP: a Rationalised Dialect Procedural Reflection 270

In addition. we will say that the zeroeth tail of a rail is itself: thus the zerocth tail of

the R of the previous paragraph is (2 4 6 s 101.

(It should be observed that the convention we have adopted specifies that the Nth tail

begins with the "Nth plus 1" element, rather than with the Nth; thus the third tail of a rail

starts with the fourth element, not with the third, for example. This may initially seem odd,

but it turns out to be the happiest of the available choices. It has the consequence, in

particular, that a rail consists of K clements and the Kth tail; for a rail of length N, the

consituent tails are the zeroth (the rail itself) through the Nth (the empty rail). And so on

and so forth. Further examples will appear in the next pages.)

We will presently define two primitive side-effecting procedures RPLACN and RPLACT

(analogous to 1-LISP's RPLACA and RPLACD for lists), which change, respective!y, arbitrary

clements and arbitrary tails of rails. It is the behaviour of these primitive procedures, and

the consequences of the side effects they effect, that most blatantly reveals the identity of

2-LISP rails. The intuition we will attempt to honour throughout is to rationally reconstruct

the abilities provided in suin -lard LISPS by the derived notion of a list. These identity

considerations will require somewhat complex mathematical modelling; to make them plain,

therefore, we will not at first present the equations they must satisfy, but will rather

introduce them infonnally and by example.

First, it is clear that distinct 1-LISP lists can have identical clements; similarly,

distinct 2-LISP rails will be allowed to have the same elements. It immediately follows that

even if rails are detennincd to be nonnal-fonn designators of sequences (which they will

be), they cannot be canonical normal-form designators, since distinguishable rails can

designate the same abstract mathematical sequence. Secondly, it follows that we cannot in

the mathematical characterisation of the field identify rails as sequences of their elements,

since that would be too coarse-grained a method of individuation. TI1e logical suggestion

would be to posit a special class of rails (RAILS), and then to define a function from rails

and element positions (indices) onto arbitrary s-expressions. However this would be too

simple, as we will see in a moment.

In t-LISP one can use combinations of RPLACA and an arbtirary number of ceRs to

change any clement in a list; in 2-LISP we will, as mentioned, provide a function called

RPLACN, so that the normalisation of expressions of the fonn

4. 2-usP: a Rationalised Dialect Procedural Reflection 271

{RPLACN <N> <RAIL> <NEW-ELEMENT>) (S4-63)

will change the field so that the Nth element of <RAIL> will be <NEW-ELEMENT>. It is also the

case in 1-LISP, however, that one can change an arbitrary tail of (most) lists by using

RPLACD. Corresponding to this facility in 2-LISP we will say that one can change an

arbitrary tail of a rail R by using a primitive procedure called RPLACT. In particular,

normalising expressions of the form

(RPLACT <N> <RAIL> <~EW-TAIL>) (S4-64)

wilf change the field so that the Nth tail of <RAIL> will henceforth be <NEW-TAIL>. This

facility has a number of consequences. First, it means that the length of a given rail may

not be constant over the course of a computation; after processing the expression in S4-64,

for example, the new length of <RAIL> will be <N> + LENGTH(<NEW-TAIL>), regardless of what

it was before. Second, there are considerable consequences to the fact that the <N> in S4-64

can be O - which means that two rails that were different (non·EQ, in 1-LISP terminology)

can be rendered the same (EQ) in virtue of executing a primitive procedure. This facility,

however, cleans up an inelegance in LISP'S lists, in which replacing an arbitrary tail starting

with any element other than the first had different consequences than changing the first.

This difference is indicated in the following two "sessions" with 1-LISP and 2-LISP,

respectively (user input is, as always. italicised}:

> (SETQ X '(A 8 CD))
>(ABC D)
> (SETQ Z '(L H N 0))
> (L MN 0)
> (RPLACD (CDR X) Z)
> (8 L MN 0)
> X
>(AB L MN 0)
> (PROGN (RPLACA Z 'HELLO)

(RPLACA (CDR Z) 'THEllE))
> (THERE N 0)
> X
>(AB HELLO THERE N 0)
> (SETQ Z '(TU V W))
> (T U V W)
> (PROGN (RPLACA X (CAR Z))

(RPLACD X (CDR Z))
>{TU V W)
> X
>(TU V W)
> {PROGN {RPLACA Z 'HELLO)

(RPLACA (CDR Z) 'Tl/ERE))
> (THERE V W)

; Thi$ is 1-LISP (S4-65)

Make 2nd tail of X into Z

Change the 1st and 2nd elements of Z

X sees both changes

Make 0'th tail of X into Z
in the only way 1-LISP allows

X now looks like Z, but its not EQI
Again, change the 1st and 2nd
elements of Z

4. z-LISP: a Rationalised Dialect

> X
> {T THERE V W)

Procedural Reflection 272

: X sees the 2nd change, but not
; the 1st.

There is no way, in other words, to change a 1-LISP list to be identical to another, in such

a way that any subsequent changes on the latter will be seen in the fonncr. In distinction,

the definition we have posited for 2-LISP would engender the following (2-LISP quote

marks have approximately the same meaning as in 1-LISP, but ignore for now the fact that

the replies made by the system are quoted as well):

> (SET X '[ABC DJ)
>'[ABC D]
> (SET Z '[L MN OJ)
> '[L MN O]
> (RPLACT 2 X Z)
> '(L MN O]
> X
> '[AB L MN 0)
> (BLOCK (RPLACN 1 Z 'HELLO)

(RPLACN 2 Z 'THERE))
> 'THERE
> X
> '[AB HELLO THERE N 0)
> (SET Z '[TU V W])
> '[TU V W]
> (RPLACT OX Z)
> '[TU V W]
> X
> '[TU V W]
> (BLOCK (RPLACN 1 Z 'HELLO)

(RPLACN 2 Z 'THERE))
> 'THERE
> X
> '[HELLO THERE V W]

: This 1s 2-LISP (S4-66}
: SET is like 1-LISP's SETQ.

;.Make 2nd tail of X into z

Change the 1st and 2nd elements of Z

: X sees both changes

Make 0'th tail of X into Z

X and Z are now the same rail.
Again, change the 1st and 2nd
elements of Z

X sees both changes again.

2-LISP RPLACT is also defined to be able to add elements, in the following fo1mal sense: the

index to RPLACT must be between O and the lellgth of the rail. This again clears up an

oddity about 1-LISP's RPLACD, as shown in the following parallel sessions:

> (SETQ X '(AB))
> (A B)
> (SETQ Y ' ())
> NIL
> (RPLACD (COR X) '(CD))
>(BCD)
> X
>(ABC D)
> (RPLACD Y '(CD))
> <ERROR>
> y
> NIL

This is 1-LISP
Make X a 2-element list
Make Ya 0-olement list
(} is N!L, of course.
Set the 2nd tail to be (CD)

(S4-67)

A length 2 list can be extended.
A length 0 list, however, cannot
be extended.

Y is still '()

4. 2-LISP: a Rationalised Dialect Procedural Reflection 273

In other words 1-LISP lists of length O are quite different from lists of other lengths (they

are all, in particular, the same atom NIL, whereas there can be arbitrary numbers of distinct

lists of any other length). In 2-LISP, however, we have the following symmetry over rails

of any length:

> (SET X '[A BJ)
> '[AB]
>. (SET Y '[])
> '(]
> (RPLACT 2 X '[C DJ)
> '[CD]
> X
>'[ABC D]
> (RPLACT O Y '[C DJ)
>'[CD]
> y
> '[CD]

This is 2-LISP
Make X a 2-element rail
Make Ya a-element rail

Set the 2nd tail to be [CD]

{S4-68)

A length 2 rail can be extended.

A length O rail can be extended also

4. 2-LISP: a Rationalised Dialect Procedural Reflection 274

As we will see many times in the examples ,hroughout the remainder of the dissertation,

this behaviour simplifies a number of otherwise rather tricky coding situations. Though not

of great importance in and of itself, the increased clarity is a noticeable convenience. As a

final example, to illustrate this, we show a so-called destructive splicing procedure that

inserts a new list or rail fragment into a pre-existing list or rail. In particular, we will

define a procedure called SPLICE, of three arguments: a rail (list) to work on, an clement to

trigger on, and a new rail to splice into the old one at the first position where the trigger

element occurs, if there is one. In addition, we will require that SPLICE return ST or SF

depending on whether the sp!ice was actually performed (i.e., on whether an occurrence of

the trigger element was found). Thus if x designates the rail

[DO YOU MEAN• WHEN YOU SAY•]

then we would expect

(SPLICE '[YOU ARE HAPPY] •• X)

to return ST with x now designating the rail

[DO YOU MEAN YOU ARE HAPPY WHEN Yl)U SAY•]

(S4-71)

(S4-72)

(S4-73)

The 2-LISP definition is as follows {this definition modifies the inserted fragment; if this

were not intended, the line ((NEW :copy NEW)]] could be inserted as a second binding in

the LET on the fifth line; such · a COPY is defined in S4-333, below):

(DEFINE SPLICE
(LAMBDA [NEW TRIGGER OLD]

(COND ({EMPTY OLD} $f]
[(= (NTH 1 01.n) TRIGGER)

(LET ([OLD-TAIL (TAIL 1 OLD}]]
{BLOCK {RPLACT O OLD NEW)

(RPLACT (LENGTH NEW) NEW OLD-TAIL)
ST)) J

[ST (SPLICE NEW TRIGGER (TAIL 1 OLD))])))

(S4-74)

After checking for the appropriate tcmJinating condition. SPLICE checks to see whether the

first element is the trigger, and if so splices in a copy of the new rail. The binding of OLD

T AIL is necessary since otherwise, after processing (RPLACT o OLD NEW), there would he no

way to refer to the tail of the original OLD. If the first element is not the trigger, it iterates

down the rail until ic either finds a copy of the trigger, or exhausts OLD. The techniques are

of course standard.

...

4. 2-LISP: a Rationalised Dialect Procedural Reflection 27S

Because of the (RPLACT o ...). we do not need to retain two "trailing pointers", one

to use for the modifications when tlie other indicates an appropriate element has been

found. Note as well that no special care needs to be taken for an empty NEW; (SPLICE • []

<A>) would remove the first instance of element <A> from . Thus (SPLICE '[] 'NOT

'[I DID NOT NOT ANSWER YOU]) would change the third argument to be '[I DID NOT ANSWER

YOU].

For contrast. we can construct an analogous definition of SPLICE in 1-LISP. A

natural first attempt would be as follows. Because we need to use RPLACD. which operates

on CDRS, we have to break it into two parts; one to test for the first element of OLD being

the trigger, and anc,ther part that allows us to use two trailing pointers:

(DEFINE SPLICE1
(LAMBDA (NEW TRIGGER OLD)

(COND ((NULL OLD) NIL)
((EQ (CAR OLD) TRIGGER)

(BLOCK (RPLACD (NTHCDR (- (LENGTH NEW) 1) NEW)
(COR OLD))

T))
((NULL {CDR OLD)) NIL}
(T (SPLICE-HELPER1 NEW TRIGGER OLD)))})

{DEFINE SPLICE-HELPER1
(LAMBOA,(NEW TRIGGER OLD)

,COND {(EQ (CADR OLD). TRIGGER)
(BLOCK (RPLACO OLD NEW)

(RPLACD (NTHCOR (- (LENGTH NEW) 1) NEW)
(COOR OLD))

T))
((NULL (COOR OLD)) NIL)
(T (SPLICE-HELPER1 NEW TRIGGER (COR OLD)}))))

(S4-76)

(S4-76)

However in spite of its increased complexity, there arc two ways in which this 1-LISP

version of SPLICE is not as general as the 2-LISP version in S4-74. First, SPLICE 1 will fail if

NEW is empty (i.e. is NIL or (>}, since (NTHCDR -1 NIL) will cause an error (we assume

NTHCDR returns its whole second argument if its first argument is 0, the CDR of its second

argument if its first argument is 1, and so forth}. This case could be checked explicitly as

follows:

(DEFINE SPL!CE2
(LAMBDA (NEW TRIGGER OLD)

(COND ({NULL OLD} NIL)
{(EQ {CAR OLD) TRIGGER)
{ IF (NULL NEW)

T
(BL~CK {RPLACD (NTHCDR (- (LENGTH NEW) 1) NEW)

(S4-77)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 276

(CDR OLD))
T)))

((NULL (COR OLD)) NIL)
(T (SPLICE-HELPERz NEW TRIGGER OLD)))))

(DEFINE SPLICE-HELPER2 (S4-78)
(LAMBDA (NEW TRIGGER OLD)

(COND ((EQ (CADR OLD) TRIGGER)
(BLOCK (IF (NULL NEW)

(RPLACD OLD (COOR OLD)))
(BLOCK (RPLACD OLD NEW)

(RPLACD (NTHCDR (- (LENGTH NEW) 1) NEW)
(COOR OLD))))

T))
{{NULL (COOR OLD)) NIL)
(T (SPLICE-HELPER2 NEW TRIGGER (CDR OLD))))))

But even still there is a problem: if the first element of the original OLD is the trigger, then

the explicit check for that in SPLICE2 fails to make the change visible to others who have

pointers to OLD. This 1s particularly obvious where NEW is NIL, where we return T but do

nothing (that alone ought to make us suspicious), but it is ~ problem in any ca~. In order

to compensate for thi~ inability, the practice is typically to have procedures like SPLICE

return the modified list, so that a user can reset variables explicitly. Thus a typical call to

SPLICE might be:

(SETQ SAYING (SPLICE SAYING •• INSERT))

We could modify SPLICE to return the appropriate list:

(OEFrnE SPLICE3
(LAMBDA {NEW TRIGGER OLD)

(CONO ((NULL OLD) OLD)
({EQ (CAR OLD) TRIGGER}
(IF (NULL NEW)

(COR OLD)
(BLOCK (RPLACO (NTHCDR (- (LENGTH ~EW) 1) NEW)

(CDR OLD))
NEW)))

((NULL (COR OLD)} OLD}
(T (BLOCK (SPLICE-HELPER3 NEW TRIGGER OLD)

OLD)))))

(DEFINE SPLICE-HELPER3
(LAMBDA (NEW TRIGGER OLD)

(CONO ((EQ (CADR OLD} TRIGGER)
(IF (NULL NEW)

(RPLACD OLD (COOR OLD))
(BLOCK (RPLACD OLD NEW)

(RPLACD (~THCDR (- (LENGTH NEW) 1) NEW)
(COOR OLD)))))

((NULL (COOR OLD}) NIL)

(S4-79)

(S4-80)

(S4-81)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 277

(T (SPlICE-HELPER3 NEW TRIGGER (CDR OLD))}})}

However now we have lost the bit of infonnation that was originally returned saying

whether or not the trigger was found. Our final version returns a list of two clements; the

first is the flag (r or NIL) saying whether the trigger was found; the second element is the

possibly modified list (instead of a two-element list, a "multiple-value return" mechanism

might be used here, of the sort explored below in section 5.d.i). . Thus one might use

SPLICE4 3S follows:

(LET {(PAIR (SPLICE SAYING •• INSERT)))
(SETQ SAYING (CADR PAIR))
... some use of (CAR PAIR) as flag ...)

(S4-82)

The full definition is as follows. Note that whereas SPLICE4 returns a two-element list as

just agreed, SPLICE-HELPER4 returns only the flag T or NIL depending on whether or not the

insertion was effected; if SPLICE-HELPER4 gets caUed at all, OLD is always the appropriate list

to return.

{DEFINE SPLICE4 (S4-83)
{LAMBDA (NEW TRIGGER OLD)

(COND ((NULL OLD) (LIST NIL OLD))
((EQ (CAR OLD) TRIGGER)

(LIST T
(IF (NULL NEW)

(CDR OLD)
(BLOCK (RPLACD (NTHCDR {- (LENGTH NEW) 1) NEW)

(CDR OLD))
NEW))))

{(NULL (CDR OLD)) (LIST NIL OLD))
{T (LIST (BLOCK {SPLICE-HELPER4 NEW TRIGGER OLD}

OLD)}))}

(DEFINE SPLICE-HELPER4 (S4-84)
(LAMBDA (NEW TRIGGER OLD)

(COND ((EQ (CADR OLD) TRIGGER)
{BLOCK {IF (NULL NEW)

T))

(RPLACD OLD (COOR OLD))
,BLOCK (RPLACD OLD NEW)

(RPLACD (NTHCOR (- {LENGTH NEW) 1) NEW)
(COOR OLD)}))

((NULL (COOR OLD)) NIL)
{T (SPLICE-HELPER4 NEW TRI5GER (COR OLD})})})

Though we won't consider this example further, the lessons are presumably clear.

First, the 1-LISP version was aa order of magnitude more difficult than the 2-LISP version

of S4-74, both in resultant comp:cxity, in difficulty of design, in possibility of error, and so

'.;

4. 2-LISP: a Rationalised Dialect Procedural Reflection 278

forth. It is also more difficult to use, because the list has to be passed back. We may

observe, furthermore, that the complexity was due to a particular kind of circumstance:

boundary conditions and the avoidt.nce of fence-post errors (the general case was handled

in much the same way in both dialects). In particular, what distinguished the 2-LISP

version from the 1-LISP version were the limiting cases - an empty NEW or an instance of

TRIGGER in first position. While they were adequately treated by the general code in 2-

LISP, they had to be handled specially, with some awkwardness, in t··LISP.

Another simple example of the same type involves pushing an element onto the

front of a stack or queue. Whereas a simple PUSH can be defined in 2-LISP using RPLACT o,

so that expressions of the following sort:

(PUSH <NEW-ELEMENT> <STACK>) (S4-85}

will change ST ACK in such a way that anyone who now inquires after its first element will

see NEW-ELEMENT, it is cHfficult to generate this behaviour in 1-LISP. TI1e problem is that if

CONS is used, then the mo<l:fied stack or queue has to be returned and, if necessary, the

main pointer to the stack reset appropriately. It might seem possible to use RPLACA, except

then the stack cannot be allowed to become empty, since a subsequent RPLACA would fail.

It is worth pausing, for a ~~~.:~t, to consider why we care. Some readers may

think it is a waste of time to pursue aesthetic issues in what ought to be an analytic

investigation, but that is not our view. We are in this chapter designing a specific

formalism; a formalism that we will use heavily in the chapters ahead (chapter 3, in

contrast, wa'i analytic and paid no attention to design, except minimally in defining meta

linguistic conventions). We will not explore, in this kind of fine detail, the consequences of

the many small design issues that have been faced in specifying 2-LISP (the requirement

that each s·expression have a single handle, as is set out in the next section, is another

choice much like the present one: seemingly innocent but of tremendous import in

reflective work). Nonetheless, we do well to appreciate their potential impact, particularly

in consort. These con~iderations are particularly germane as we reach towards reflection,

for reflective code is rather subtle, and we must avail ourselves of all the aesthetic help we

can muster along the way (especially the kernel that is our subject matter - user

programming that employs this kernel may well be simpler).

4. 2-usP: a Rationalised Dialect Procedural Reflection 279

But to return to specification. Our mathematical characterisation must support the

behaviour manifested in all these examples, since, as is the case in any design, it is the

desired behaviour that drives the identity conditions, rather than the other way around.

The solution will be to define two mutable first-order asymmetric relationships over rails,

the first mapping a rail onto its first element (if it has one), and the second mapping a rail

onto its first tail (again if it has one). This approach is very like the standard way in which

1-LISP lists are described in tenns of a first and rest, but of course we have the luxury of

defining our meta-theoretic first and rest functions in non-constructive ways.

SEQUENCES = { Q I Q is a sequence of elements of D }

RAILS = { R I R is a rail}

(S4-86)

(S4-87)

We first define two pr~mitive function classes in the meta-language - classes in order to

handle the mutability:

FIRSTS
RESTS

= [RAILS -+ { S U { .L } JJ
= [RAILS -+ [RAILS U { .L } JJ

(S4-88)

These are entirely parallel to the CARS and CDRS function classes we are adopting from 1-

LISP:

CARS
CDRS

= {PAIRS-+ SJ
= [PAIRS-+ SJ

(S4-89)

In addition, this is an appropriate time to add the prc,pcrty·list concept to 2-LISP; we will

assume that all property lists are rails; thus we have:

PROPS = [ATONS -+ RAILS J (S4-90)

Thus we have the following tentative definition of t11e 2-LISP set of possible fields (this is

too broad. as we will show in a moment):

FIELDS n [C.4RS X CDRS X FIRSTS X RESTS X PROPS J (S4-G1)

Because there are five of these. which are harder to remember than the simple 3 we used in

1-LISP, we wilt define five meta-theoretic utility functions:

CAR - AS AF [F 1(S)] (S4-92)
COR = AS AF [F2{S)]
FIRST - AS AF [Fa(S)]
REST 5 AS AF [F4(S)]
PROP = AS AF [F6(S)]

4. z-LISP: a Rationalised Dialect Procedural Reflection 280

Thus these functions in the meta-language take two arguments, whereas the corresponding

embedded procedures within the dialect do not n~ed the field as an explicit argument

The first thing that we must do is to revise our definition of 2-LISP fields, since rails

either do or do not have firsts and rests together. 1n particular, we have the following

constraint:

VR E RAILS, FE FIELDS (S4-93)
ffi 3S1 ES [FIRST(R,f) = s,)] A [3Rr E RAILS [REST(R,f) = R,.1]) V
([FIRST(R,f) = .L] /\ [REST(R,f) = .L]Il

Therefore we will define FIELDS as follows:

FIELDS = { F E f CARS X CDRS X FIRSTS X RESTS X PROPS]
I[VR E RAILS

ll[3Sr E S [FIRST(R,f) = Sr]) A
[3Rr E RAILS [REST(R,f) = Rr 1]) V

([FIRST(R,f) = .L] /\ [REST(R,F) = .L]])]}

(S4-94)

Given all of this machinery, we can define a new length and a selector functicn

(these supercede the initial versions we defined in S4-91) that will ultimately enable us to

define the appropriate behaviours for RPLACN and RPLACT in section 5.h. Note that the

definition supports infinite-length rails (such as circular ones, for example), and the fact

that NTH is defined over such rails as well as over finite ones.

NTH : [[INTEG!RS X RAILS X FIELDS J _. [S U { .L } JJ
= A I, R, f . [t f [f IRST (R, f) = .L]

tllen .L
elseif [I= 1] then FIRST(R,f)

else NTH(l-1,RfST(R,f),f)]

LENGTH : [[RAILS X FIELDS J .- [INTEGERS U { oo } JJ
s AR, f • [if [FIRST(R,F) = 1.]

then 0
e1se1f [3N [NTH(N,R,F) :: .L]]

then [1 ·I- LENGTH(REST(l':,F),F)]
else oo

(S4-96)

(S4-96)

We can use these functions to define the notational interpretation function for rails:

• L-rail : := "["_[formu1a_] "]"

0t(L I L = "(" _ formula 1 _ formula2 _ ... _ formulat _ "]")
= R E RAILS I [[Vi l;Si:5;k NTH(i ,R,F) = 0t(formula1) 1 /\

(NTH(k+l,R,F) = .L)

(S4-97)

(S4-98)

4. ,-LISP: a Rationalised Dialect Procedural Reflection 281

In addition, we can review our claim first that rails des;gnate sequences; then, that rails are

nonnal-form designators; and third that they satisfy the requirements on such nonnal-fonn

designatorn. These last two observations are more complex in the case of rails than with

previous examples, because a rail is in normal-form only if its elements are in nonnal form.

In the next fc"- sets of equations we will express these constraints. Note that we assume a

single-argument LENGTH defined over abstract sequences, as well as our recently introduced

two-argument one defined over structural rails. First we sped~: that rails designate the

sequer.ce of oojt.'Cts designated by their elements:

VE E ENVS, R E RAILS, F E FIELDS
[(<l>EF (R) = Q] :>
([Q E SEQUENCES) /\.
[LENGTH(Q) = LENGTH(R,F)] A
[Vi 1==:;;i;$LENGTH(Q) [QI = lf>EF{NTH(i,R,"))]]ll

(S4-99)

In order to define the proccdaral 1.onseqtiencc C'f rails, it is helpful to define :in auxiliary

fun.:tion NFD (for "normal-form-designator"):

NFD ff S X OJ -+ {Truth, Falsity} J
= XS, D . [(VE E ENV.~. F E FIELDS [tf>EF(S) = D]) /\.

[NORMAL-FORM(S)])

(S4·100)

Thus for e;wmpl~ [NrD("J,3)) is tn1c, whereas (NFD("(r 1 2),3)] and [NFD("$F,3}J are

false.

As is by now l-llr custom, we will firs~ set down the deside.-atum we woul<l ultimately

like to prove regarding rails: that all cxprc;:;sions that designate sequences will (a11d that

normalise at all) norm~lisc t~ a rail:

V::. 1 , S2 E S, E E ENVS, F E FIELDS
[[(<I>H(Si) E SEQUENCES] I\ [S2 = i'EF(S1}]] :>
[(Sz E . 4ILS] /\.
[LENGTH(S 2 ,F) = LEN5TH(1l>H(Si))~ /\.
[Vi, 1_:Sl.:SLEiJGTH(S2,F) r IJFD(NTH(i,S2,F). [<l>EF(Si)J 1

))]]])

(S4-101)

We can now specify in particular L'lc proccd, :11 consequence of rails. First, we show that

rails that are in nurmat fonn arc sclf-nonnalising:

VE E ENVS, R E RAILS, F E Fli.LDS, C E CONTS
1f (Vi 1_:5i5Lt,'JljTH(R) [N0RMAL-FORM(NTH(i, R))])

t~an [:E(R r, E, C} ~ .;iP.,if>H(R),E,F))1

(S4-102)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 282

This last equation is stronger even that the behaviour implied (but not yet proved) by S4-

101. because S4-102 claims that if a rail is in normal-form, it will normalise to itself.

whereas the prior ~quations merely assert that if a rail is in normal-form it will normalise to

some rail also in normal form, possibly different

The general computational significance of rails is more difficult to specify than any

of the special cases treated so far, because of potential side-effects engendered by the

normalising of the mterior elements (we must also make explicit the fact that the

nonnatisation of infinite-length rails will not terminate). It can, however, be recursively

defined, since the first t3il of any non-empty rail is itself a rail. As a first attempt we have:

VR E RAILS, E E ENVS, F E FIELDS, C E CONTS (S4-103)
[l:{R,E,f,C) = 1f [LENGTH(R,F) "00_. then .J..

e1se1f [NTH{l,R,F) = .J..] then C(R,<>,E,F)
else Y.{NTH(l,R,F),E,F,

[A<S1,D1,E1,F1> •
l:(REST(R,F),E:,f1 ,

(A<R2,D2,E2,fz) . C(S,D,E2,f2)])j)]

There arc however seveiai problems. First. we have not specified the s and o in the last

call to c: the idea is that s is the rail whose first clement is s1 and whose first tail is R2•

Similarly, o is intended to be the sequence whose first element :s 0 1 and whose remainder is

02• Finally, rather than F2 being passed back as the final field, a field should be returned

thar encodes these nrw first and rest relationships. It is c<!Sicr to state these relationships as

constraints than to modify the main definition:

VR E RAILS, E E ENVS, F E FIELDS, C E CONTS (S4-104)
[Z(R,E,f,C) = iT' (LENGTH(P.,F) " 00) then .J..

e1seff [NTH(l,R,f) = ..L] than C(R,<>,E,F)
else ~(NTH(l,R,F),E,F,

[X<S1 ,D1 ,E 1 .F1> .
~(REST(R,F),E1,F1,

[X<R2,D2,E2,F2> C(S,D,E2,f3)])])
where SE RAILS and DE SEQUENCES;

HTll(1,S,f3) = S1:
REST(S,F3} ~ Rz;
F3 = F2 otherwise;
01 = 01;

Vi 1:S15LENGTll(Dz) [01
•

1 = D21]

We are all but done; there is, however, one remaining probi~m. S4-104 as nrcscnccd docs

not ensure that normal-form rails, other than empty ones, arc sclf-normalis1ng. Thus we

need one additional clause at the out')ct stating that. In addition, we need to modify the

account so that empty rails arc not returned if they pass the nonnal-fonn filter, since

4. 2-LISP: a Rationalised Dialect Procedural Reflection 283

otherwise (this is explored further in section 4.b.v) modifying the last tail to a normalised

rail would modify the original rail as well.

VR E RAILS, E E ENVS, F E FIELDS, C E CONTS (S4-105)
[I(R, E , F, C) 11

if [Vi l515LENGTH(R, f) [NORMAL-FORM{NlH(1,R,f))]
then C(R,D0 ,E,F)
else'if [LENGTH(R,f) = 00) then .J..
else1f [NTH(l,R,F) = .J..]

tllen C{"[J,<>,E,F} where"[] 1s 1naccess1ble 1n F
else I(NTH(l,R,F),E,F,

[A<S1,D1,E1,F1> •
I(REST(R,F),E1,f1,

[A<R2,D2,E2,F2> . C{S,O,Ez,F3)])])
where S E RAILS and D E SEQUENCES and 00 E SEQUENCES;

NTH(l,S,F3) = S1:
REST(S,F3) = R2:
F3 = F2 otherwise;
LENGTH(R,F) = LENGTH{00) = LEHGTH(D);
01 " D1;

Vi t5i5LENGTH(02) [D1
+t " 02

1];

Vi 15i5LENGTH(D0) [D0
1 = cltEF(UTH(i,R,F))]

It should be noted that all of these issues of identity m;; defined with respect to

rails; sequence identity we derive from mathematics: two sequences are the same just in

case they contain the same elements in the same order.

It would b~ possible to define a notion of type-equivalence over rails, in the spirit of

the type-equivalence we defined in .1-LISP over lists. But we will not do this, because of a

striking fact that emerges from our semantical bent; equality over designated sequences is a

coarser-grained identity than that over sequence designators. One can e,·en speculate that in

t-LISP's type-identity predicate EQUAL there lies an attempt to establish identity of the

order~ngs of objects that the I-LISP lists encode. The 2-LISP identity predicate is spelled

"=" (it will be defined in s~ction 4.b.iii below); over stmctures it is true just in case the

structures are one and the same, whereas over sequences it is true just in case they are the

same mathematical sequence - which is to say, just in case the elements arc (recursively)

the same and in the same order. Since we use rails to designate sequences, we use handles

(notated with a quote mark) to mention rails, and since = is extensional (all of these points

will be more fully illustrated below), the fo11owing nom1alisations would hold in 2-LISP:

(= (1 2 3] [1 2 3])
(= '(1 2 3] '[1 2 3])

ST
SF

(S4-106)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 284

In the remainder of this dissertation this distinction between rail identity and sequence

identity - a distinction between identity of designator and identity of the object designated

- wil! largely serve our purposes; in general no need for a notion of type-identity over

designators will arise (although in the as-yet unsolved area of the identity of function

intension we will look briefly at type-equivalence of rails).

Once again substantive examples of rails will await our definition of procedures

defined over them; for the present we are constrained to such simple illustrations as these:

(1 2 3]
(]
[($T][$F]]

(1 2 3]
[]
[[$T]($F]]

(S4-107)

The final introduction to make regarding rails and sequences has to do with a

notational abbreviation. We $;.lid above that we were not defining the standard list notation

to abbreviate chains of pairs, as in 1-LISP. Instead, we will take lexical expressions of the

form

"{" _ formula 1 _ formula2 _ ••• _ formulak ")" (S4-108)

where t ~ K, as abbreviations for the following:

"(" _ forrnula 1 _ "." _ "[" _ formu1a 2 _ ••• _formula,."]"_")" (S4-109)

In other words, a sequence of notaticnal expressions within parentheses notates a pair,

whose CAR is notated by the first, and whose CDR is a rail of clements notated by the

remainder. For example:

(+ 2 3)
(READ)
(CAR (CONS 'A '8))

abbrev)ates {+ . (2 J])
(HAD . [])
(CAR . [(CONS . ~•A 'BJ)]}

(S4-110}

It foHows that tile expression "()" is notationally ill-formed - in 2-LISP, in other words,

there is no NIL, and "{)" is its name.

From this convention, and from the equation given in S4-38, it follows that from

one point of view, all 2-LISP procedures arc called with a single argument. which, if this

abbreviation is used, will be a rail of zero or more expressions. It is therefore a convention

that all 2-LISP procedures will be defined over sequences; we will mean, b~, the phrase "the

number of arguments" taken by a function, the number of clement,; in the sequence. It is

possible to define procedures that do not honour this convention, but all primitive z-LISP

4. 2-LISP: a Rationalised Dialect Procedural Reflection 285

functions obey the protocol, as will all of the functions we define in our examples.

Note as well that it is impossible to construct an application to a function with no

arguments at all, since it is impossible to have a pair that has no CDR.

It should be kept in mind that the foregoing comment is semamical: it says that the

functions designated by the CAR of a pair are by and large defined over sequences in the

semantical domain. It does not follow from anything that has been said that, from a

structural point of view, all functions must be called with a rail as the argument sequence

designator - that all semantically valid pairs must have f.'lils as their cons. It is in fact this

very separation between sequences and rails that enables 2-LISP to natura!!y solve the

problem of calling functions with a single expression that designates the entire sequence of

arguments. Some simple examples of this flexibility are given in the following (LET is

approximately as in 1-LISP, except that rails rathl,,r than lists are of course used to encode

enumerations - it will be defined below):

(LET [[X [4 :]]] (+. X))

(+. (TAIL 2 (10 20 30 40]))

=> 9

=> 70

More such examples will arise in due course.

(S4-111)

(S4-112)

It is once again approp1iate to pause for a methodological comment. The work we

did in S4-71 ~1rough S4-85, as mentioned earlier, enabled us w obtain a cleaner dialect; the

present concern with rails as multiple-argument designators is also aesthetic, but it impinges

more directly on our goal of reflection. As we commented in chapter 2, the fact that 1-

LISP docs not allow arguments to be conveniently objectified required the explicit use of

APPLY - a situation we are at pains to avoid, particularly because we arc adopting a

statically scoped dialect For example, the expressions given in S4-111 and S4-112, in the

corresponding t-LISP treatment, would have to be written roughly as follows:

(LET ((X (LIST 4 6))) (APPLY '+ X)) ➔ 9

(APPLY'+ (HTIICDR 2 '(10 20 30 40))) ➔ 70

; This is 1-LISP (S4-113)

(S4-114)

However these work only because numerals self-evaluate; if the objectified expressions

contained variables the dialect would have to be dynamically scoped in order for the meta

structural treatment to work. All in all, we arc better off able to avoid these rather

complex manoeuvrings.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 286

4.a. vi. Handles

We have so far introduced five structural categories: numerals, booleans. rails, atoms,

and pairs. The first three of these designate abstract mathematical objects {numbers, truth

values, and sequences, respectively); the last two can designate entities of any type, since

they are general purpose designators, taking their designation from the context {in the case

of atoms) or from the value of a function application {in the case of pairs). The sixth and

final 2-LISP structural category is called a handle, and designates elements of the structural

field. Handles are not unlike quoted expressions in 1-LISP, although they have their own

notation and identity conditions.

A handle is an atomic element of the field, with a variety of special properties.

First, for every element of s there is exactly one handle that is the canonical normal-form

designator of that element {implying an infinite number 1i handles, not only because ther ·

are an infinite num\>er of elements of s of other types, but also because this claim recurses,

implying that every handle has a handle, and so fonh). There !s a total function on s, in

other words, which in our meta-language we wilt call the HANDLE function, that takes each

clement of s onto its handle. Furthermore, from every element of s it'i handle is locally

accessible; in addition, from every handle its referent is also locally accessible. In other

words the HANDLE relationship, like the CAR and CDR relationships, is asymmetric, but in two

other respects it is unlike the CAR and con relationships. First, it is bi-directionally local,

whereas CAR and CDR are uni-directionally local. In addition, the CAR and con relationships

are mutable, whereas the handl".! relationship is not. Thus HANDLE need not be encoded in

the FIELDS part of our meta-theoretic characterisation.

Each handle is notated wii:h a single quote mark (" • ") followed by the notation of its

rcfcr~nt. These various properties arc summarised in the following equations:

HANDLES = { H I H is a handle }

HANDLE : [S ➔ HANDLES J

(S4-120)

(S4-121)

HANDLE is the function from clements of the structural field onto their handfos. ll1e

existence and identity conditions on handles arc expressed in the following two equations;

it follows that HANDLE- 1 is a total fundon on HANDLES.

4. 2-LISP: a Rationalised Dialect Proc(.;dural Reflection '}J,7

'11S € S [3H € IIANDLES (S4-122)
[H = I-IANDLE(S) /\ 'IIJ [J = HANDLE(S) :J J = H]])

"" E HANDLES [3S E S [H = HANDLE(S} Il

As remarked, handles are notated using a lexical form similar to the 1-LISP abbreviation for

quoted forms (although in 2-LISP this is a primitive, not an abbreviatory, form):

L-handle ::= "'"_<notation for referent>

'Ill EL-HANDLES [[L = "•"_L,.] ::> [8L(L) = HANDLE(0L(L,.)))]

(S4-123)

(S4-124)

That handles designate their referents in a context-independent way is implied by:

VE E ENVS, F E FIELDS, H E HANDLES [~EF(H) = HANDLE-1(H)) (S4-126)

Similarly, that handles arc designed to be the normaJ-form designators of s-cxpressions is

captured in:

VE E EHV~. F E FIELDS, S € S (S4-126)
ll <l>E-'.S) E SJ :::> ['l'EF(S) " l:ANDLE($EF(S))]]

Equations S4-120 through S4-125 are independent and posited; S4-126 is a claim we will

have to prove in section 4.h. The following, which expresses the fact that handles

normalise to themselves, is posited as a first step towards its ultimate proof:

VE E ENVS, F E FIELDS. H E HANDLES [,J,Ef(H) = H] (S4-127)

The normalisation of handles will of cm~rse be side-effect free, as w~ll as environment

indcpendent:

VE f ENVS, H E HANDLES, F E FIELDS, C E CONTS
[:E(H, <F, E, C>) = C(H,HANDLE-1(H),E,F)]

(S4-128)

And once again, from these conditions the following summary c;in be shown to follow:

VH E HANDLES [NORMAL-FORM(H)] (S4-129)

We just said that all handles normalise to themselves: the 2-L ISP processor, in other

words, does not "strip the quotes off" of meta-level designators (we shall have to introJuce

a special mechanism to do that presently). We have in consequence the following:

'A
'[1 2 3]
['1 '2 '3]
•'''''ST

~ 'A
=:::::> '[1 2 3]
⇒ ['1 '2 '3]

'•' '• '$T

(S4-130)
designates a rail of numerals
designates a sequenr.e of numerals

4. Z-LISP: a Rationalised Dialect Procedural Reflection 288

The differences between Z-LISP's handles and t11e corresponding meta-structural

designation facility in 1-LISP are several. First, t-LISP contained a primitive function

called QUOTE - an IMPR described in chaper 2 - in terms of which applicatiQns were

constructed that, according to the declarative semantics we adopted in chapter 4, designated

the referent 1-LISP notational forms using the single quote mark were notational

abbreviations for applications in terms of this function. In coatrast, z-LISP is defined with

no such quot..-! function, because the relationship between entit~es and thei; designators is

more inextricably woven into th!! fundamental distinctions made by the category structure

of the dialect itself. It is not c!ifficult to define a QUOTE function in 2-LISP, but, as we

noticed, it is straightforward to define a quote function in 1-LISP as well, since FEXPRS are a

more general mcta-.,tructural capability. The 1-LISP definition is as follows:

(DEFINE QUOTE1 · This is 1-LISP (S4-131)
(LAMBDA IMPR (ARG) ARG)

Note that the body is simply ARG, not (LIST 'QUOTE ARG), because of 1-LISP's de-referencing

evaluator. The corresponding 2-LISP definition of QUOTE fa virtually identical:

(DEFINE l.{UllTE2 ; This is 2-LISP (S4-132)
(LAMBDA IMPR (ARG] ARG))

However the superficial similarity between these two definitions is misleadi11g: they work

for quite different reasons. In S4-131 ARG ~;; bound to the unevaluated argument;

evaluation of the tlody of the definition will look up the binding of ARG, returning as a

result that un-evaluatcd argument - the expression, in other words, thal the application in

tc1ms of QUOTE1 is taken to designate. Thus in the evaluation of (QUOTE 1 (+ 2 3)) the

variable ARG would be bound to the list(+ 2 3), which be returned as the value. Thus we

have:

(QU1JTE1 (F lC)) -+ (F X) ; This is 1-LIS~ (S4·133)

In S4-132, however (as will become plain later in the chapter), ARG is bound to the handle

designating the un·normalised argument; evaluating the body in this case wil! yield that

handle. For example, if (QUOTE 2 (+ z a)) were normalised, AHG would be bound to the

handle • (+ z a), whkh would be returned as the normal-form co-designator of the original

application. Thus we have:

4. 2-usr,; a Rationalised Dialect Procedural Reflection 289

(QUOTE2 (F X)) ~ '(F X) : This is 2-LISP (S4-134)

More illustrative of the difference between the diaiccts are two extensional functions

that take an s-cxpression as an a::-gument and "return" the s-cxpression that designates the

result of processing it (i.e .• the value in the t-LISP case; the normal-jbnn in 2-LISP). In

standard LISP dialects such a nmction has been variously called KWCfE, QUOTIFY, etc., and

has the foliowing definition:

(DC FINE KWOTE : This is 1-LISP {S4-136)
(LAMBDA EXPR (ARG) (LIST 'QUOTE ARG)))

Tne 2-LI~f' version of KWOTE would be exactly the HANDLE function we have used in the

equations above; strikingly, however, it turns out that such a function cannot be defined in

2-LISP. In detail the reasons are messy to set forth, but the reason is quite straightforward:

such a procedure involves semantic level crossing in a way that the primitive 2-LISP

processor by and large avoids. So flat i3 normal 2-LISP processing that there is no way to

obtain a designator at a differcn~ meta-level from that of one's argum:nts. No way, that is,

without primitive help: such a capability, therefore, is provided primitively in. a function

called NAME (rather than HANDLE because, as ' c will see in section '+.e, it is more general

than HANDLE, though that needn't concern us here).

The most salient difference between t-LISP and 2-LI~P quotation, to return to our

original concern, has to do with identity and type. Some examples that use 1-usP's KWOTE

and 2-usp's NAME functions wil! illustrate. t-LISP ·quoted forms arc pairs, subject to

modification like any other. There can be in addition an arbitrary number of such pairs

quoting (designating) the same referent. Though tliat referent is locally accessible from the

pair (eithef by evaluation or by structural decomposition, we may note), none of those pairs

arc accessible from the referent. Finally, as remarked in section 3.f.ii, neither "EQ" nor

"EQUAL" idcntii.y of designator reveals the identity of the referent, as is illustrated in the

following examples (these arc all 1-LISP). First we look at four cases using EQ:

1: (EQ ' '3 ' '3) -+ NIL (S4-136)
2: (EQ"(AB)"(AB)) -+ NIL
3: (LET ((X '(AB))) {EQ (KWOTE X) (KWOTE X))) -+ NIL
4: (LET ((X '(AB)) (Y '{AB)))

(EQ (KWOTE X) (KWOTE Y))} -► Nil

In each case EQ returns NI'-, but all that this shows is that quoted forms are more finely

distinguished than their referents: in 1 and 3 the referents arc indeed the same, whereas in

I ,,

4. 2-LISP: a Rationalised Dialect Procedural R~flection 290

2 and 4 the referents are different EQUAL, however, as the next set of expressions indicates,

returns T in each case, since in all instances the refer~nts arc type-identical. which is the

property EQUAL is defined over. The fact that the arguments to EQUAL are stmcture

designators is immaterial: it happens that ail quotations of a given structure are type

identical, so that while it works out that EQUAL returns T just in case the referents are type

identical, that is in a sense iccidental:

1 : (EQUAL ' '3 ' ' 3) -+ T (S4-137}
2: (EQUAL ' ' (A B} ' ' (A B)) -+ T
3: (LET ((X '(A 8))) (EQUAL (KWOTE X) (KWOTE X))) -+ T
4: (LET ((X '(A 8)) (Y '(AB}))

(EQUAL (KWOTE X) (KWOTE Y)}) -+ T

In 2-LISP, on the other hand, there is a single handle per referent, which is locally

accessible, is not modifiable, is not a pair, and can be used to determine the identity of

referent (2-LISP's "=" is, like 1-usp's EQ, an individual identity ftmction; there is no need

for a 2-LISP type-identity function, as the examples demonstrate):

1: (= ''3 ''3) => 'H (S4-138)
2: (= "(AB) "(AB)) = $F
3: (LET [(X '(AB)]](= (NAME X} (NAME X)}) => $T
4: (LET [[X '(AO}] [Y '(A 8}]]

(= (NAME X) (NAMEY}}) => $F

The 2-LISP NAME function is so often useful in meta-stmctural work that it has its own

lexical abbreviation - one that has ai:,peared from time to time in previous examples:

applications in terms of it can be abbreviated using an up-arrow ("t"). We pronounce this

"up"; thus the expression (= ,x tY) would be read "equal up-x up-Y". Thus example 54-

138 can be re-written as follows:

1: (= "3 "3)
2: (= "(A 8} "(AB))
3: (LET [[X '(AO)]](= tX tX})
4: (LET ([X '(A 8)] [Y '(AO)]](= tX tY))

= $T
=> $F
=> $T
=> $F

(S4-139)

The NAME function, and :.a111ing issues io general, will be further explored in section 4.e on

meta-structural facilit:.::s.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 291

4.a. vii Category Summary

The foregoing six sections completely define the 2-LISP (and 3-LISP) field. We can

summarise the six kinds of structural field clement by defining s:

S = [NUHERALS U BOOLEANS U ATO#S U Pl4IRS U RAILS U HANDLES] (S4-140)

No individual tokens of any of these categories were mentioned, with the exception of ST

and SF, the two boolean constants. which deserved mention only because that category is

finite. From each element of s the handle cfesignating that element is accessible; otherwise,

from the numerals, booleans, and atoms no other structures were accessible, but from a

handle its refercat can be reached, from a pair its CAR_ and its coR, and from a rail all of its

elements and all of its tails.

For completeness, we also reproduce here the definition of the 2-usi> fields:

FIE.LOS = { F E f CARS X CDRS. X FIRSTS X RES1:S X PROPS J
l[VR E RAILS

[[[3Sr E S [FIRST(R,F) = sr]j A
[3R,. E RAILS [REST(R,F) = R,.1]) V
([Prt:ff(R,F} = ..1.] A [REST(R,F) = _t]])]}

(S4-141)

As well as the set s, we define three additional sets of entities which together

comprise the remainder of the semantical domain: the first consisting of non-funct:011al

mathematical abstrat:tions (numbers, sequences, and truth-values), the second ~onsisting of

all of the continuous functions defined over the semantical domain (we wilt break this up

into sub-categories in due course), and the thirc! consisti'" 1; as usual of the user's world of

objects in relationship:

FUNCTIONS = the set of conttnuous funct1ons over D
ABSTRACTIONS = [NUMBERS U TRUTH-V.4WES U SEQUENCES]
USER-WORLD = the user's domain of objects tn ra1attonsh1p

The full semantlcal domain fa the union of these four:

0 = S U FUNCTIONS U ABSTRACTIONS U USER-WORLD

(S4-142)

(S4-143)

Note that this is a recursive definition of o, sir.cc the continuous functions over D are

included in the specification of D (i.e. D c [o x D J).

This 2-u~:P semantic domain is thus typed as follows:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 292

(S4-144)

S-ex ression

Ob act

Fun1.. t ion

Abstraction

User• s worl d11---- - - - - - -

4.a. viil Normal-form D£sig11ators

We promised to define 2-LISP's notion of nonnal-farm from the category structure of

the semantical domain, in contrast with the parallel notion in the >.-calculus, where it is

defined in terms of the deductive machinery. Various comments have been made in

passing, in this chapter, about normal form designators, but we can summarise them here.

First we take the s-expressions: as we said in sxtion 4.a.vi, handles arc normal-form

designators of all s·expressions (including, recursively, the handles themselves); handles,

further-more, are ca11011ical normal-form designators. The following is provable from S4-

120 - S4-125:

VS E S [NFD(!IAIJOLE(S) ,S)] (S4-146)

With respect to the semantical category structure given in S4-144, a sub-class of the s·

express~ons has been used as the nonnal-form designator of all s-exprcssions. This has the

requisite sparseness: the other five structural categories remain available as normal-form

designators of the other semantical types (since all nonnal-form designators, tautologically,

must be clements of s. whereas we will require normal-form designators for all of o).

Each of the sub-categories of the ABSTRACTIONS has its m , structural category as

normal-form designator: the numerals, booleans, and rails, respectively, are normal-form

designators of the numbers, truth-values, and sequences. The first two categories arc

canonical; rails, as discussed above, arc not

4. 2-LISP: a Rationalised Dialect Procedural Reflection 293

Thus so far we have the following normal-fonn correspondences, where on the left

hdnd side of the diagram are given the six available structural categories, and on the right is

the category structure of the full semantical domain.

Designator
(Structural Category)

N11merA 1 ~

B00·1eans
Rails
Pairs

lbnrlles

Atoms

(S4-146)
Designation

(Semantic Category)

~

Numher~ ~

- Truth-values -
~ Seauttoces --
:- S-express1oni . - ...

]- Abstcactions

:J-- S-expr&ss1ons

What remains, then, is to identify normal-fonn designators for the functions and for the

user's world.

Two comments are in order. First, all elements of the three of the four categories

we have just identified are always in normal fonn: every single handle, numeral, and

boolean, in particular, is a normal-fonn designator, and will therefore normalise to itself.

Not all rails, however, are in normal-fonn: a rail is normal just in case its elements are

normal.

Regarding the atoms and the pairs, however, we have indicated above that by and

large they are not normal-fonn designators. We still have the freedom, therefore, to make

some of them nom':ti-form designators if we choose, without violating our mandate of

category alignment. Another possible aesthetic, of course, would be to require a special

collection of structural categories, each of which was the normal-form designator of a

particular category of semantical object, but although this is cleaner in one sense than the

proposals we wi11 ultimately adopt, it obtains that cleanliness at the expense of rather too

many structural categories (simplicity is pait of cleanliness).

We said in the previous chapter that some kind of s-..:xprcssion in the spirit of a

closure would serve as a normal-form function cf . .:s1gnator. The discussion just laid out

suggesB that either ato,ns or pairs might &crvc ,'5 the syntactic category for clusurc. Atoms

are too atomic: closures must be structural entities containing information, and atoms, in an

informal sense, have no place to store that information. (This last, of course, is not a

theoretically justifiable claim, but rather a pragmatic one: from a mathematical point of

4. 2-LISP: a Rationalised Dialect Procedural Reflection 294

view \lie could simply posit that the atoms, in alphabetic order, would be the normal form

designators of the functions computed by some abstract machine - say a Turing machine

of a certain form. The scm.-,ntics of fttnction designators would in that case not be

compositional in any way. However we will not pursue r d1 suggestions.) Pairs, however, .

arc not ruled out by this criterion. It is natural, therefore, to review any possible a,guments

against using pairs as normal-~')rm function designators, since they would seem to satisfy all

of the design considerations we have explicitly adopted.

The standard concern with making closures out of pairs (or any similar "accessible"

type of structure) is that it is inelegant to allow a user to use such functions as CAR and CDR

over "functions". Closures, it is often said, can only be applied: they should not look like

structures open to dissection. It is striking to realise that this concern arises out of the

semantical informality of standard LISPS, however, and should not trouble us. In particular,

even though we will take pairs lo be the stmctural form of function designators, it does not

follow that one can apply the function CAR indiscrimirn1tcly to function designators as

arguments. CAR is defined only over those arguments whose referents arc pairs, not over

arguments that normalise to pairs. We would have in 2-LISP, for example, the following

(this makes use of procedures which will be introduced in the next section, but their t-LISP

analogs will suffice to m1ke the example clear):

(CONS 'A 'B) => '(A . B) (S4-147)
(CAR (CONS 'A 'B)) => 'A
(LAMBDA EXPR (X] {+ X 1)) => (<EXPR> •••

+ => (<EXPR> •••
(CAR {LAMBDA EXPR [X] (+ X 1))} => <TYPE-ERROR>
(CAR•} =:, <TYPE-ERROR>

In the last two cases, a function defined over pairs was called with an argument that

dc~ignated a function: hence a type error was recognised. There is in other words no type

problem introduced by this choice of normal-form function designator. (We use <EXPR>

since the closure that we denote by that abbreviation has no finite lexical notation.)

One might ask how it is noticeable - how one can even tell - that normal-fonn

function designators arc pairs. We will provide ways in which it is possible to obtain a

designator of the name of an entity - the first of our meta-structural primitives - in

section 4.d. As we will explain there, the form "t<EXP>" - using the NIIME function

illlustratcd in section 4.a.vi - designates a nonnal-form dcsignato,· of <EXP>. Using this

4. 2-LISP: a Rationalised Dialect Procedural Reflection 295

explicit mechanism, it will be possible to obtain explicit extensional access to the closure

pairs, as illustrated in the following console session (these examples illustrate why NAME is

more general than HANDLE):

> (CAR (CONS 'A 'B))
> 'A
> CONS
> (<EXPR> ...)
> (CAR CONS)
TYPE-ERROR: CAR, expecting a pair, found the function {<EXPR> ·-)
> tCONS
> '{<EXPR> •••)
> (CAR tCONS)
> '<EXPR>
> t(CONS 'A 'B)
>"(A.B)
> (CAR t(CONS 'A 'B))
TYPE-ERROR: CAR, expecting a pair, found the handle '(A. B)

(S4-148)

Our strict sep~ration of the reference relationship and the nonnalisation relationship, in

other words, which were conflated by traditional LISPS' notion of evaluation, means not

only that we are given an affirmative answer to the question of whether closures should be

structures, but also that that answer docs not unleash any inelegance or confusion about

how pairs and functions can be kept strictly septlrate.

Two questions remain: what are to be the normal-fonn designators for the user's

world of objects and relationships, and whether atoms are to be normal-form designators at

all. Since we know ahead of time nothing about that user's world, we may simply posit

that the user may use atoms for normal-form designators for that part of the semantical

domain. However such a decision will not much impinge on our investigation, because of

the fact that the processor we define is always at least one meta-level :iway from dealing

directly with stmcturcs that designate entities in that world. All expressions given to the

primitive 2-LISP processor, in other words, arc of degree at least 2 with respect to the user's

world. We provide the space of primitive names (atoms) fbr t11c user, in case t11c user

wants to define the user process in a categorically con-espondent way with the primitive 2-

LISP process, although there is no reason that this would have to be done. For our own

purposes, we will assume that no atoms arc normal-form designators, and wilt restrict our

attention to s u FUNCTIONS u ABSTRACTIONS.

It might seem that providing the atoms fnr the user's use, as normal-form

designators, is a poor ofTering, since they arc content-free (they "contain no information",

lr.J

4. 2-LISP: a Rationalised Dialect Procedural Reflection 296

in any sense). However two comments argue against this alleged meanness on our part.

First, the functions in FUNCTIONS are defined over all of o, not just over its structural and

mathematical components. Second, it is natural in English to use proper names as

canonical - even as rigid - designators. Standard names for objects that are not proper

names are typically formed of functions defined with respect to other proper names. Thus

I may have the name Caitlin as the standard name of my daughter, and the name Niegara

Falls as the name of the drop in the river between Lake Ontario and Lake Erie. Suppose

she lost a hat on a trip there: I may standardly refer to that hat as the hat Caitlin lost on

our trip to Niagara Falls. Such a standard name is approximately available in this 2-LISP

proposal, since it is constituted of fimctions defined over atomic and rigid proper names (of

course we don't have the definite description operator "the", but the general point

remains). Thus the combination of functions and atumic names is in fact a more generous

allotment than might at first appear.

In addition, of course, there is unlikely to be a serviceable notion of normal-form

designator in an actual practical system, even though the search for context-dependent

appropriate ways of rcfering is an important and difficult task. Any real system would in

all likelihood impose an entire naming structure, and designation relationship, on top of 2-

LISP: our dialect, in fact. would serve only to implement such a system, and one of the

freedoms that comes from implementing is that one enters an entirely new semantical

framework. In such a circumstance, the 2-LISP "data structures" would designate structural

elements of the structural field of the implemented architecture - which would presumably

be well-defined and straightforwardly denotable. Thus for this reason as well we have no

particular cause for worry about the user's domain.

The final arrangement of normal-form designation, then, is summarised in the

following diagram:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 297

(S4-149)
Designation Designator

(Structural Category) (Semantic Category)

Atoms

4.a. ix. Accessibility

Abstractions

functions
S-expressions
User's world

There arc two final concerns we must attend to, before looking at the 2-LISP

primitive procedures: the locality metric on the field, and graphical notation. In the

English describing the six z-LISP structural categories we made reference to the variety of

accessibility relationships for elements of each category. Our mathematical reconstructions,

however, did not deal with this aspect of U1e field - a lack we will now correct, since the

formulation of the import of various of the primitive 2-LISP procedures (and even of 2-.
LISP's e) requires reference to this accessibility relationship (CONS, for example, will require

such a treatment).

We will define a meta-theoretic function ACCESSIBLE that takes an clement s of s,
and a field F, onto the set of structures in s accessible in F from s.

ACCESSIBLE : ff S X ENVS X FIELDS] -+ S• J (S4-160)
s r.S E S, E E ENVS, F E FIELDS

[{HANDLE($)} U
[case TYPE(S)

NUMERAL -+ {}

BOOLEAN -+ (}

ATOM -+ E(S)
PAIR ➔ {CAR(S,F), CDR(S,F)}
RAIL -+ [{ T j 3i [1;5;i,:5;LENGTH{S) [T = NTH(N,S,F)]]]} U

{RI 3i [1;5;i,:5;LENGTH(S) [R = TAIL(I.S,F)]]}]
HANDLE -+ { HANDLE" 1(S) }]]

Similarly, ACCESSIBLE• takes an expression onto the transitive closure of ACCESSIBLE: thus,

ACCESIBLE•(s) is the set of all elements of s that can be reached in a finite number of local

relationships from s.

ACCESSIBLP [{ S X ENVS X FIELDS J -+ S• J {S4-161)
= >..S E S, E E ENVS, F E FIELDS

4. 2-LISP: a Rationalised Dialect

[the sma11est set T C S such that
(I ACCESSIBLE(S) C T] A
[vs· E T [ACESSIBLE(S') C r]J])

Procedural Reflection 298

What we then need a name for is the set of all structures that can be reached, in a given

context, from structures that can be typed in. Since pairs and rails are created new upon

reading, this reduces to those accessible from the numerals, booleans, atoms, and handles.

The handles, since they are accessible from their referents, can be ignored (they will be

included automatically). Thus we can define:

VISIBLES = VS E f ATOMS U NUMERALS U BOOLEANS J
the union of ACCESSIBLE•(S)

(S4-152)

It is this set, for example, that would have to be saved by a garbage collector on a marking

or collecting pass. It is this set, in addition, in which pairs and rails notated by parentheses

and brackets must not fall, by our account of a. Though we wilt not spell out these

matters here, some of them will arise when we characterise the full computational

significance of structure generating procedures such as CONS.

4.a.x. Graphical Notation

We tum finatly to graphical notation. Since we have redefined the structural

elements out of which our field is composed, it is clear that the 1-LISP graphical notation

we defined in chapter 2 will no longer apply. It will be useful, furthermore, in some of the

subsequent discussion to have a notation whose objects correspond one-to-one with the

structural field entities they notate. In this section, therefore, we will briefly define an

appropriate 2-LISP graphical notation, comprising an icon type for each of the six structure

types, and arrows for the CAR, CDR, FIRST, REST, and PROPERTY relationships.

We will generalise the "two-box" icons we used in 1-LISP for pairs, so as to allow

any number of boxes, and use it instead to notate rails. Pairs will be demarcated instead

with a diamond; the left hand used for the CAR, the right hand side for the CDR. Numerals,

atoms, and booleans will be notated with dots, circles, and triangles, but by and large we

will simply use their lexical names rather than particular icons. 1bus we have the following

sample of these five types:

4. 2-u s P: a Rationalised Dialect Procedural Reflection 299

Pair: <I:> Boolean: ~or~
·-

Numeral: • Atom: 0
Rail: I or □ or IT] or I I I I I I etc.

There is one complexity here: since rails can share tails, we need to be able to indicate that

graphically (since we have to preserve the one-to-one nature of 0). Thus between any

adjacent boxes in a rail icon we will admit if necessary a double line, connecting at its left

hand end with the right hand border of a box, and at its right hand end with the left hand

border of the box notating the tail. Thus if x was the rail [1 2 3 4], and Y was [o 3 4],

such that the first tail of v was the same rail as the second tail of x, the following notation

would. be appropriate:

X: ~

Y:~

($4-154)

In addition, distinct rails can of course have no elements at all (this is what is indicated by

the isolated single line at the left of the bottom row of S4-153). Thus, the following notates

the structure (JOIN (RCONS} (NAME (SCONS)}) (we immediatley begin to use the standard

extension of allowing lexical items to replace graphical icons where that is appropriate -

particularly for the constants):

(S4-155)

JOIN

NAME SCONS

RCONS

Finally, we need a notation for handles. Since there is exactly one handle per other

structure, we need a convention whereby the handle icon is uniquely associated with the

notation for its referent. We will adopt the following protocol: a small box sitting

immediately adjacent to and above (usually to the left) of a structure will notate the handle

4. z-LISP: a Rationalised Dialect Procedural Reflection 300

of that structure. Thus the structure lexically notated as (PCONS • A • e) would have the

following graphical image:

(S4-166)

Multiple handles would be notated in the obvious way; thus the following notates the

expression c = • (+ z 3) • " (+ 3 z)):

(54-157)

There is, of course, given our protocols ~:m har.dle::. t.1le p~ssibility of using two different

handles, one of which is the other's referent (or the other's referent's referent. etc.). If one

were to read in the expression (RCONS • { r) • • (r}), one would internalise the structure

notated as follC\ws:

(S4-158)

However there is another reading of that expression, by which the appropriate graphical

notation would be this:

(S4-169)

Though wc will not usc graphical notation often_ it will sometimes be crucial in order to

demonstrate the token identity of certain circular and shared structures.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 301

4.b. Simple 2-LISP Primitives

We have not yet introduced any of the primitive 2-LISP procedures, although we

have introduced more of 2-LISP than would traditionally be the case at such a point, since

we defined much of the declarative semantics, and also such formal notions as accessibility,

with respect to the field itself, rather than with respect to primitive functions defined over

it Nonetheless, we must now tum to 2-LISP behaviour, in tenns of its effect on the

structural field laid out in the last section.

There are thirty-two primitive 2-LISP procedures, listed in the table below. The

manner in which these procedures are made available is this: in the initial 2-LISP

environment {to which we will again meta-theoretically refer using the name E0} thirty-two

atoms are bound to thirty-two primitively recognised normal-fonn junction d:~signators. 2-

LISP differs from 1-LISP, in other words, in that it is the closures that are primitive, rather

than their names. Though it is convenient to provide standard names for them in the initial

environment, these names can be redefined, and other names can be bound to the

primitively-recognised closures. It is simpler and more elegant to have all primitives be in

nonnal form {which closures are) rather than having certain context-relative atoms be

primitive in some standard initial environment. Just what nom1al-form designators are

structurally like will become clearer in section 4.d after we introduce LAfdBDA; first, however,

we will simply illustrate their use. Reductions in tcm1s of these primitive closures, in

particular, are treated primitively and atomically {i.e., without any observable intem1cdiate

states, and, so to speak, in "unit time"), rather than in virtue of any recursive procedural

decomposition of their "body" expressions.

4. 2-LISP: A Rationalised Dialect Procedural Retlection 302

The z-LISP Primitive Procedures (S4-166)

Arithmetic: +, - , •, 1

Typing: TYPE

Identity: •
Structural: PCONS. CAR. CDR

LENGTH, NTH, TAIL

RCONS, SCONS, PREP

Modifiers: RPLACA, RPLACD

//0:
Control:

RPLACN, RPLACT

READ, PRINT, TERPRI

IF
Naming: SET. LAMBDA

Functions: EXPR. IMPR. MACRO

Semantics: NAME. REFERENT

Processor: NORMALISE. REDUCE

as usual
defined over 6 syntactic and 4 semantic types
s·expressions, truth-values, sequences, numbers
to construct and examine pairs
to examine rails and sequences
to construct " " "
to modify pairs
to modify rails
as usual
an if-then-else conditional
to define, modify, and bind names
three types of function designator
to mediate between sign and significant
primitive access to the processor functions

For each procedure type, three kinds of account are relevant: its declarative import,

its proct?dural consequence, and an account of how it is computationally tractable (i.e., a

computational account of how it can be made to work). In this and the following sections

(4.b through 4.c) we will deal with the first two, as embodied in the full significance

function 1:; the third wilt be taken up for the dialect as a whole in section 4.d.vii, when we

discuss the 2-LISP meta-circular processor.

4.b.i. Arithmetic Primitives

The four simple "arithmetic" functions (addition, substraction, multiplication, and

division) are designated in E0 by the atoms +, -, •, and 1. 'Ibus we have (all of the

examples in this section will be given relative to E0) the following normalisations:

(+ 2 3)
(* 10 -4)
(/ (• 4 4) (+ 4 4))

=> 6
=> -40
=> 2

($4-166)

Simple as these examples appear, they illustrate a profusion of facts about 2-LISP. We will

look in particular, in considerable depth, .i.. the first of. these: that the pair (+ 2 3)

normalises to the numeral 5.

First, it should be clear that, although the driving behaviour of the 2-LISP processor

is one of 11onnalisatio11, not de-referencing, these functions (and most other we will examine)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 303

are declaratively extensional, in the sense that from a declarative point of view they are

defined over the referents of their argumenl:S {although procedurally, of course, a different

story needs to be told). Thus, although + is a procedure which normalises its arguments,

yielding numerals, applications formed in terms of it nonetheless designate the number that

is the sum of the numbers designated by its arguments, not the number that is the sum of its

nonnalised arguments. Similarly, as we will see below, (CAR ' (A • B)) normalises its

argument, whic:1, being a handle, normalises to itself: • (A . B). Thus CAR, so to speak,

"receives" as its intermediate value a handle, not a pair. Nonetheless, (CAR • (A • B)}

designates the CAIi of the pair designated by that handle - namely, the atom A.

A nonnalising processor and an extensional semantics are fully compatible, as of

course the A-calculus and all previous mathematical calculi make manifest It is this

overarching fact that will lead us to a particular definition of EXT for 2-LISP, and will

enable us to align EXT and EXPR.

We will consider the (+ 2 3) example in more detail. Structurally. of course, this is

a pair, whose CAR is the atom + anc! whose CDR is a two-element rail, whose first element is

the numeral 2, and whose second clement is the numeral 3, since " (+ 2 3)" is an

abbreviation for "(+ • [2 3])". In E0 the atom + is bound to a closure - a normal-form

function designator - that is circular and primitively recognised (it is the normalisation of

the rather un·informative lambda abstraction (LAMBDA EXPR [X Y) (+ x Y)}). From the fact

that this is an EXPR two things follow: declaratively, it designates an extensional function,

and procedurally, it engenders the normalisation of its arguments. We will sec the

consequences of both of these facts in each of the following two stories, and will then show

how in combination they enable us to prove that + satisfies the over-arching normalisation

mandate.

First we look at (+ 2 3) declaratively. «ti of the primitive addition closure {in all

contexts) is the cxtensionatisation of the addition function:

'o'E E ENVS, f E FIELDS [iMF(Eo("+)) = EXT(+)) (S4-167)

where EXT is the 2-LISP extensionalisation function. lbe version of this meta-theoretic

function that we constructed for 1-LISP was complicated by the fact that it had to deal with

multiple arguments, but in our present circumstance only the CDR needs to be examined; if

that CDR designates a sequence (which it must in order for the whole reduction to be welt-

4. 2-usP: A Rationalised Dialect Procedural Reflection 304

fanned semantically) then the computational significance of the coR will show how that

goes. In particular, if the CDR is a rail (the typical case), then the significance of rails set

out in S4-105 will play a role. However in general the following definition of EXT will

suffice (we start straight away with a definition phrased in tenns of the full computational

significance ~):

EXT = AG (AS .AE.AF. (S4-168)
[l:(S,E,F,

P,.<S1,D1,E1,F1> . G(D/,o/, ... ,D/)]]]

The closure itself is a pair of the following form (by <EXPR>, as noted earlier, we designate

the circular closure sketched in s3-200; its full characterisation will be examined in section

4.d.iii):

Eo("+) = "((EXPR> Eo [X Y] (+ X Y)) (S4-169)

Finally, the internalisation of this closure - the function computed by the processor when

processing applications formed in terms of it - is, as we might expect, numeral addition

over the results of its arguments (actually over the first and second clement of the result of

its arguments, since we expect a rail):

~(E0("+)) = AS.XE.AF.AC.
(}:(S,E,F,

[A<Sz ,02 • E2 • Fz>
C(M" 1(+(M(NTH(l,Sz,F2)),M(NTH(2,S2,F2))),

E2.f2)]]

(S4-170)

This is sufficient characterisation to prove anything we need to prove about {binary)

addition, but before turning to an example we should straightaway define some meta

theoretic machinery that will enable us to say what we have just said much more compactly.

In particular, note that the internalisation of the plus closure contains some complexity

having to do with the normalisation of its arguments; it would be convenient if, instead of

writing S4-170, we would more simply say (since this has inherently to do with the fact that

+ is an EXPR):

(S4-171)

To translate this into English, this simply states that the internalisation of the (primitive)

addition closure is EXPR of numeral addition. We had no need to talk of the full

significance of the arguments, continuations, or the rest

4. 2-LISP: A Rationalised Dialect Procedural Reflection 305

What this requires is a suitable definition of EXPR, which is easy to define:

EXPR = AG (AS.;U.AF .:\C.
[::E<S,E,F,

["-<S1,D1,E1, F1>
C(G<NTH(l,S1,f1),NTH(2,S1,F1),

E1, f1)]]]

(S4-172)

Thus S4-171 can be taken as equivalent to S4-170. To review, we can then set out the full

computational significance of the atom + in the initial environment This takes two parts

(as we saw in the last chapter): its ::E-characterisation, and the additional internalisation of

its local procedural significance:

and

~(Eo("+)} = AE.Af.AC.
[C("(<EXPR> Eo [X Y] (+ X Y)),

EXT(+),
E,F)]

(S4-173)

(S4-174)

Finally, we collapse these two into a single notion of being simple. There are two salient

facts about the previous two equations. First, all the signified computations are side-effect

free. Second, there are three pieces of information beyond that, that need to be stated: the

form of the primitive closure, the designated function, and th~ internal function. 1berefore

we can define the following meta-theoretic function:

SIMPLE = A<L,G 1 ,G2> . (S4-176)
[[Eo(L) " f"((EXPR> Eo [V1 V2 ••. Vd (.!:. v, V2 ... v.J)l] I\
[::E(E 0(L)) = ALM.AC . C(E0(L),EXT(Gi),E,F)] A
(d[Eo{L)] = EXPR(G2)])

The variables L, G 1, and G2 in this definition arc intended to be bound to an atomic label, a

function (to be extcnsionalised), and another function that is the internalisation of the

primitive closure. 1bus we can assert:

(S4-176)

This single formula encodes all we need to say about addition; thus we can use it to

completely characterise the semantics of the other three arithmetic operators:

SIMPLE("•,•,[A<N1,N2>
SIMPLE("-,-,[A<N1,N2>

SIMPLE("/,/,(A<N 1 ,N2>

M- 1(*(M(N1),M(N2)})])

M- 1(-(M(Ni) ,M(N2}))])

M" 1(/(M(Ni) ,M(N2)))])

(S4-177)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 306

(Strictly, of course, SIMPLE would need to know the number of arguments (K) of the

functions in question. This could be repaired either by passing that number to SIMPLE as a

fourth argument, or by using an indefinite number of different versions of SIMPLE; in the

latter case S4-175 could be taken as a definition schema, rather than as a definition itself.

We will not worry about this here, as the intent is clear. The problem, furthermore, as the

reader will have noticed, is not restricted to SIMPLE: we would need special versions of EXT,

EXPR, and so forth. But this could all be taken care of without interest)

In order to see this characterisation at work, we will look in full at the significance

of the term(+ z 3). We repeat here, for reference, equations S4-21, S4-29, S4-38, and S4-

106 that give the declarative import of numerals, atoms, pairs, and rails, respectively:

VN E NUHERALS, E E ENVS, F E FIELDS, C E CONTS (S4-178)
[}";(N, E, F., C) = C(N, M(N), E, F)]

VA E ATOMS, E E ENVS, F E FIELDS, C E CONTS (S4-179)
[}";(A, E. F. C) = C(E(A). $Er(E(A)}. E. F) l

VP E PAIRS, E E ENVS, F E FIELDS, C E CONTS (S4-180)
~(P,E,F,C) = ~(F1(P),E,F,

[A<S1 ,D1 ,E 1 ,F1> •
[(ASi)(F/(P) ,E1,F1,

[MS2 ,E 2 ,F 2> •
C(S2,[D1(F12(P),E1,F1)],E2,F2)])]])

VR E RAILS, E E ENVS, F E FIELDS, C E CONTS (S4-181)
[>:(R,E,F,C) =

if [Vi 1:::;i::5:LENGTH(R,F) [NORMAL-FORM(NTH(i,R,F))]
then C(R,00 ,E,F)
e1se1f [NTll(l,R,F) = ..L]

then C("[J,<>,E,F) where"[] 1s tnaccessible 1n F
else ~(NTH{l,R,F),E,F,

[A<S1,D1,E1,F1> •
>:(REST(R,f),E1,F1,

[A<R2 ,D2 ,E2,F2> . C(S,D,E2 ,F3)])])
where SE RAILS and DE SEQUENCES and D0 E SEQUENCES;

NTH(l,S,Fa) = S1;
REST(S,F3) = R2:
F3 = F2 otherwtse;
LENGTH(R,F) = LENGTH(Do) = LENGTH(D);
ot = D1;

Vi 1,<;;i5LENGTH(Dz) [01
+

1 = D2 1
];

Vi 15iSLENGTH(00) [00
1 = IJ>EF(NTll(i,R,F))]

In terms of all of these, we can prove that (+ z 3) designates the number five, and returns

the numeral 5, in E0• We will look, in particular, at the meta-thcoretir; term:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 307

~("(+ 2 3),Eo,Fo,ID) (S4-182)

First we apply S4-181 siuce (+ 2 3) is a pair:

~(~(+ Z 3),E0 ,F0 ,ID) (S4-183)
= ~(F/("(+ 2 3)),Eo,Fo,

[>,<S1,D1,E1,F1> .
[(ASi}(F/("(+ 2 3)),E 1 ,F1,

[A<S2,E2,F2>.ID(S2,[D1(F12("(+ 2 3)),E1,F1}],E2,F2)])]])

Performing the CAR on F0 to extract the function designator, and ridding ourselves of the

inco_nscquential ID, leads to:

= ~("+,E0 ,F0 , (S4-184)
(A<S1 ,01, E1, F1> .

[{ASi)(F/("(+ 2 3)),E1,F1,
[A<S2,E2,F2> . <S2,(D1(Ft("(+ 2 3)},E1,F1)],E2,F2>])]])

The term "+ is an atom; thus S4-179 applies:

= ([A<S1,D1,E1 ,F1> . (S4-186)
[(ASi)(F/("(+ 2 3)},E1,F1,

[A<S2,E2,F2> . <S2,[D1(F?("(+ 2 J)),E1,f1)],E2.F2>])]]
<E0{"+),tl>E 0 F0 (E0("+)),E0 ,F0>)

We are now ready for some addition-specific reductions. In particular, we insert the Eo

binding of the atom +, and its designation in that context:

= ((MS1,D1,E 1 ,F1> . (S4-186)
((ASi){F/("(+ ·2 3)),E1,F1,

[A<S2,E2,F2> . <S2,(D1(F12{"(+ 2 J)),E1,F1)],E2,F2>])]]
<"((EXPR> Eo [X Y] (+ X Y)),EXT(+),E0 ,F0>)

Expanding next the extensionalisation of the (meta-theoretic) additbn function, we get:

= ([A<S1,D1,E1,F1> . (54-187)
((ASi)(F/("(+ 2 3)},E1,f1,

[A<S2,E2,F2> . <S2,(D1(F/("(+ 2 3)),E1,F1)],E2,F2>]))]
,"(<EXPR> Eo [X Y] (+ X Y)),

([AG [AS.AE.AF.
[~(S,E,F, (A<S1,D1,E1,F1> . G(D11,D/, ... ,D/)]]]]

This extensionalisation can be reduced:

= ([h<S1,D1,E1,F1> . (S4-188)
[(~S1)(F1

2("(+ 2 3)),E 1 ,F1,
[X<S2 ,E2 ,F 2> . <S2 ,[D1(F1

2 ("(+ 2 3)),E1 ,f1)],E2,F2>])]]
<"(<EXPR> Eo [X Y] (+ X Y)),

4. 2-LISP: A Rationalised Dialect Procedural Reflection 308

p,S.AE.AF.
[I(S,E,F, [A<S1 ,D1 ,E 1 ,F1> . +(D/,o/, ... ,D/)]]],

Eo,
Fo>)

There are no further reductions applicable to the four arguments to the continuation; we

can therefore reduce it (not, of course, that the reduction order matters - this, after all, is

the A-calculus - but applicative order seems the most natural way to r roceed):

= [(A["(<EXPR> Eo [X YJ (+ X Y))]) (S4-189)
<F/("(+ 2 3)),E0 ,F0 ,

[A<S2,f2,F2> .
<S2,

([}.~,.>..E.AF . [I(S,E,F, [A<S 1 ,D1 ,E 1 ,f1> . +(D/,o/, ... ,D/)]]]
<F 0

2("(+ 2 3)),E0 ,Fo>),
E2,
F2>]>]

We can reduce the innennost application fonned in terms of the extensionalised addition

function, after performing that straightforward CDR on F O (reducing, in other words, F a2 (" (+

2 3)) to "[2 JJ):

= [(A["(<EXPR> Eo [X YJ (+ X Y))])
<F/("(+ 2 3)},Eo,F0 ,

[A<S2,E2,f2> •
<S2,

[I("[2 3J,Eo,Fo, [X<S1,D1,E1,F1> . +(D/,o/, ••• ,D/)]]
E2,
Fz>}]>]

(S4-190)

We turn now to the full significance of the expression (2 3 J in the initial context. Though

we do this in full here, it will (as was the case in the examples of fast chapter) arise again

below, where we will carry over this fonnulation intact. 111e term in question, of course, is

a rail; thus a use of s1-1a1 is indicated. In the present case all elements of the rail are in

normal·fonn; thus the rail itself is returned rather straightforwardly. We have indicated

straight away that all of the clements of the designated sequence are numbers; this is

implied by the significance of numerals manifested in S4-178:

= [(A["(<EXPR> fl [X Y] (+ X Y))])
<F 0

2("(+ 2 3)),Eo,Fo,
[A<S2,E2,F2> .

<S2,

([A<S1,D1,E1,F1> . +(01
1,012

)] <"[2 JJ,<2,3>,E0 ,Fo>}
E2,
F2>]>]

(S4-19'}

4. 2-usP: A Rationalised Dialect Procedural Reflection 309

A simple reduction leads to:

= [(A[•(<EXPR> Eo [X YJ (+ X Y))])
<F/("(+ 2 3)),Eo,Fo,
[A<S2,E2,F2>. <S2,+(2,3),E2,F2>]>]

(S4-192)

Perfonning the addition, we have proved that (+ 2 3) designates the number 5. We can

also execute the outstanding CDR to obtain the arguments to the internal addition function:

= [(A["(<EXPR> Eo [X YJ (+ X Y))]) (S4-193)
<"[2 3J,Eo,Fo,[A<S2,E2,F2> . <S2,6,E2,F2>]>]

Next we need to explore the internalised function engendered by the primitive addition

closure. This was set forth in S4-174; it leads to:

= ([AS.AE.AF.AC. (S4-194)
[l':(S,E,F,

[A<S2,D2,E2,F2> .
C{M"1(+(M(NTH(1, F2 ,S2)} ,M(NT11(2. f 2 , S2))), E2 , Fz)]]]

<"[2 3J,Eo,f0 ,[A<S2 ,Ez,F2> . <S2,6,E2,F2>]>)

In preparation for the next reduction, we need to perform an a-reduction to avoid potential

variable collisions:

= ((AS.AE.AF.AC. (S4-195)
(l':(S,E,F,

[A<S2 ,D2,E2,F2> .
C(M" 1(+{M(NTH(1,F2,S2)),M(NTH(2,f2,S2))),E2,Fz)]]]

<"[2 3J,E0 ,F0 ,(A<S3 ,E3 ,F3 > . <S3 ,5,E3 ,F3>]>)

Then applying the arguments:

= [l':("[2 3J,Eo,Fo,
[A<S2,D2,E2,F2> .

([;\<S3,E3,F3> . <S3,6,E3,F3>]
<M" 1(+(M(NTH(1,F2,Si)),M(NTH(2,F2,Sz))),E2,F2>)]]

(S4-196)

Once again we need the full significance of the nonnal-fonn rail (2 3]; once again it is

simple:

= ([A<S2,D2 ,E2,f2> .
([A<S3,E3,F3> . <S3,6,E3,F3>]

<M" 1(+(M(NTH(1,F2,S2)),M(NTH(2,f2,S2))),E2,fz>)]
<"[2 JJ,<2,3>,Eo,f0>)

(S4-197)

Applying this, we are set to perform the numeral addition (note that this time the abstract

sequence < 2 , 3 > is ignored):

4. 2-usP: A Rationalised Dialect Procedural Reflection 310

• ([A<SJ,E3,F3> . <S3,6,E3,F3>]
<M" 1(+(M(NTH(1,Fo,"f2 3J)),M(NTH(2,Fo,"fZ 3]))),Eo,Fo>)

Expanding the NTHS:

• ([A<S3,E3,F3> . <S3,6,E3,F3>]
<M"1(+(M("2) ,M(•3)}, Eo, fo>)

The numeral addition is simple:

= ([A<S3,E3 ,F3> <S3 ,5,E3 ,F3 >] <M"1(+(2,3),E0 ,F0>)

• ([A<S3,E3,F3> <S3 ,6,E3 ,F3>] <M" 1(f),E0 ,F0 >)

= ([A<S3 ,E3 ,F3> <S3 ,5,E3 ,F3>] <"5,E0 ,F0>)

(S4·198)

(S4-199)

(S4-200)

(S4-201)

(S4-202)

Finally, the top level continuation puts together the designation (the number five) and the

result (the numeral 5), for a full significance of:

(S4-203)

What then have we done? A number of things. First. we have shown, in a proof

that in many ways resembles the example comprising section 3.e.iv, how a complete

derivation of the full significance of an expression yields both its designation and its result,

as well as manifesting any side-effects that may have occurred during its processing. Like

that example, this case involved no side effects; unlike that case, however, we have shown

how the result and the designation need not be the same. In particular, whereas the 1-LISP

expression (CAR '{A e C}) designated what it returned, the 2-LISP term (+ 2 3) designated

an abstract number, but returned the numeral.

Thus the local procedural import of (+ 2 3) is the numeral that designates the

declarative import Because of this fact, and because of the ancillary fact that numerals are

normal form, we have proved the following very particular instance of the normalisation

theorem:

I[cJ>E 0Fo("'EoFo("(+ 2 3))) = «l>EoFo("(+ 2 3))] A
[NORMAL-FORM(i'Eofo("(+ 2 3))) 11

(S4-204)

We have looked carefutly at (+ 2 3) from two points of view: declarative and

procedural semantics. In order to compJete the ana,ysis, we will very briefly examine it

from the third, computational, standpoint, inquiring as to how it is actually manipulated by

the formal processor.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 311

First, when the pair (+ 2 3) is normalised in E0, the CAR of the pair is normalised in

E0, as mandated by S4-180. Since that CAR is an atom, the binding of + is retrieved

(mandated by S4-173), yielding the closure (<EXPR> Eo [X Y] {+ x Y)). Since that closure is

discerr~bly an EXPR, the CDR of the original pair is normalised next, still in E0• The CDR in

this ca:,c is the rail [2 3]; when a rail is normalised, the processor first determines whether

the rail is a normal-form designator already - a condition true just in case the elements are

themselves in normal form. In our case there are two elements, both of which are

numerals; hence the rail is in normal-form, and is therefore "returned" as tl1e normalisation

of the CDR.

The closure and the normal-form rail are then reduced - primitively, in this case,

since the closure is a primitive closure. It is part of the definition of the 2-LISP processor

that the appropriate numeral addition function is effected in a single step. We will see how

"answers" are returned in terms of continuation in due course; for the time being we can

merely sec that, in our particular case, the numeral 5 is returned as the normalisation of the

original expression (+ 2 3).

More details on how the 2-LISP processor may be embodied wiIJ, as we mentioned

earlier, be taken up in section 4.d.vii. However two important points should be made here.

First, because this is a computational system, there is no sense in which the designation of

any term is produced, examined, looked at, or anything else, from the point of view of the

processor. It in no way knows that (+ 2 3) designates five; nor does it know that (2 J]

designates the abstract sequence of numbers. Nor, for that mattl!r, does it care. The entire

machinery in our meta-language dealing with declarative import merely assures us that our

pre-theoretic attribution of meaning to 2- LISP structures remains alligned with what the

processor docs. Computation, from beginning to end, is format.

One other general comment needs to be made before we look at other primitive

procedures, in a less mathematical way. We have shown tliat four of the six 2-LISP

strnctures satisfy the normalisation mandate: the booleans, the numerals, the handles, and

the rails (providing, in the last case, that their clements satisfy it). We have shown how a

particular example of a pair satisfied the theorem, but we have of course not shown that

pairs do in general. Nor have we shown that bindings arc in normal-form, which would be

required in order to show that atoms satisfy the theorem in all contexts. We will, as

promised, not do this: the basic structure of such a proof, however, is exhibited in the

4. 2-LISP: A Rationalised Dialect Procedural Reflection 312

structure of the examples we have given. The strategy would be similar to that suggested at

the end of the previous chapter, where we discussed proving the corresponding evaluation

theorem for 1-LISP: we would show that if all arguments to a pair satisfied the theorem.

and if the function were standard, then the pair itself would satisfy it We would then

show that all primitive procedures were standard, and that all procedures composablc and

definable within the dialect were standard if their consituents were standard. But the

mathematics has been sufficient for our present purposes. In what follows we will ease up

on formalism, in order better to convey the subtlety of the particular properties of the

procedures to be introduced. The normalisation theorem mandates a general semantical

cast to be honored by all 2-LISP expressions; these few simple examples have shown how

this general property can be straightforwardly embodied in an approximately familiar

dialect.

We conclude this section with a final comment about 2-LISP arithmetic. Since !he

examples of the use of the 2-LISP arithmetic functions arc so simple, there is a tendency to

think that there are no discernable surface differences from the behaviour of 1-LISP. That

this is not so, is easily demonstrable by making some errors. Consider for example the

following example of 1-LISP evaluation:

> (+ 3 '4)
> 7

; This is 1-LISP (S4-205)

This "works", of course, because in t-LISP numerals evaluate to themselves, whereas

quoted numerals evaluate to numerals as well. In 2-LISP, on the other hand, we would

encounter the following:

> (+ 3 '4) ; This is 2-LISP (S4-206)
TYPE-ERROR:+, expecting a numoe,, found the numeral '4

This is of course correct; the expression "' 4" is a handle, designating a numeral, and

addition is defined over numbers, not ove:- numerals. If this example were analysed

semantically in the manner of our long example above, it would emerge in the line of the

derivation corresponding to S4-201 that the real addition function would be applied to the

abstract sequence <3, "4>, which of course is inadmissable.

2-LISP, it may be said. is semantically strict. For such very trivial examples as these

this strictness might seem an inconvenience or even a mis-feature. When we turn to

questions of reflection, however, we will see that the ability to rely 0•1 the semantical

4. 2-LISP: A Rationalised Dialect Procedural Reflection 313

strictness - in particular, on the fact that nonnalisation process never crosses semantic

meta-levels - is a great boon, engendering great flexibility.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 314

4.b.iL Selectors on Pairs

We turn next to the simplest of the 2-LISP primitives that allow one to examine

structures: CAR and CDR. These are extensional functions; thus (CAR x) will designate the

CAR of the structure designated by x in the context of use. As was true in t-LISP, however,

we cannot define them in tcnns of EXT or SIMPLE, because we need to use the field passed

in as an argument What we aim for is something that captures the indcnded meaning of

the following formula - i.e.. the appropriate modification of this that ensures that F is

bound (we will focus on CAR; CDR is entirely parallel):

SIMPLE("CAR,
[),X .CAR(X, F)].
[AX.HAMDLE(CAR(HANDLE-1(X),F))]

(S4-210)

For example, (CAR • (A . a)) will designate the CAR of the pair designated by the argument.

which is a handle that designates the pair (A • B). The whole expression, therefore,

designates the atom A. The expression will therefore normalise to the normal-form

designator of that atom, which is the handle · A. In other words:

(CAR ' (A . 8)) (::,4-211)

The semantical equations that- will engender this behaviour are straightforward. First

the full significance:

~(E0{"CAR)) = [AE.AF.AC.
C("(EXPR Eo [XJ (CAR X)),

[AS1.AE1.M1.
I(S1,E1,F1,[A<S2,02,E2,F.> . CAR(Dz,F2)])]

E,
F)]

Second, the internalisation of the primitive CAR closure:

{S4-212)

4[E0{"CAR)] = AS1 .AE1 .AF1 .AC. (S4-213)
[~(S1,E1,F1,

[A<S3,D3,E3,F3> .
C(HANDLE{CAR(HANDLE" 1(NTH(l,S3,f3)))),E3,F3)])]

In English, what these two together imply is that in any context, the pfrnitive CAR closure

(the binding of CAR in E0) signifies a function that normalises its argument (s1). Both the

declarative and procedural treatments, as usual. are formulated in tcnns of the full

significance of that argument: what it returns is called both s2 and s3; what it designates is

4. 2-usP: A Rationalised Dialect Procedural Reflection 315

called both D2 and D3• It follows from the equations that any applica~ion fonned in terms

of the CAR function will designate the CAR of D2 in Ute field that is returned; similarly (from

the internalised function) we can see that it will return a handle designating that CAR. We

know this because it returns a handle of the CAR of the referent of s3, and, because of the

nonnalisation theorem, we know that s3 designates D3, and we have just pointed out that D3

and D2 are the same entity.

We need not present a complete derivation of an example, as it would be analogous

in structure to the one given in the previous section. Of more interest is the foltowing

proof that CAR is standard, in the sense of that word first introduced in section 3.e.v. The

appropriate definition of that term for 2-LISP (for a normalising language, in particular) is

the following:

STANDARD : f S _,, {Truth, Falsity} J
= AS E S .

[VP E PAIRS, E E ENVS, f E FIELDS
([CAR (P, F) = S] :J .
U «l>EF('11'EF(P)) = «l>EF(P} 1 A. [HORMAL-FORM(i'EF(P})]IIl

What we wish to prove is the following:

STANDARD(Eo("CAR))

(S4-214)

(S4-216)

We will need the following definitions of ell and 'It in tcrn1s of t, from S3-130:

'It = AE.M.>.S . (l:(S,E,F,[A<X1,X2,X3,X4> . X1])]
ell = AE.AF.>.S. [}:(S,E,f,[A<X1,X2,Xa,X4>. X2])]

(S4-216)

The first move in our proof is a recasting of the definition of STANDARD; although S4-214

best manifests the intent of the predicate, the following obviously equivalent formulation is

evidently easier to prove:

STANDARD : [S ➔ {Truth, Falsity} J
= AS E S .

[VP € PAIRS, E € ENVS, F E FIELDS
[(CAR(P,F) = S] ::>
[:E(P, E, F,

[X<R1,D1,E1,F1> .
I(R1 ,E 1 ,F1,

[MR2,D2,E2,F2>
[[D1 = 02] A. (NORMAL-FORM(Ri)]]])]]]]

(S4-217)

There are a variety of things to note straightaway about this formulation. First, we use E1

and F1 to establish the designation 0 2 of R1, rather than E and F; this was mentioned earlier

as being the more proper approach. Secondly, it follows, if we can prove the NORMAL-

4. 2-usp: A Rationalised Dialect ProceduralReflection 316

FORH(R1) part, that:

[[E1 = E2] /\ [F1 = F2]]

(S4-218)

since all nonnal-fonn expressions must be side effect free.

The first step is a statement of the full significance of pairs (this is s-,-3a):

VE E ENVS, F E FIELDS, C E CONTS, P E PAIRS (S4-219)
l:(P,E,F,C) a

l:(CAR(P,F),E,F,
[A<S1,D1,E1,F1> .

[(AS1)(COR{P,F1),E1,F1,
[i\<S2,E2,F2>. C(S2,(D1(CDR(P,F1),E1,F1)],E2,F2)])]])

If we particularise this to a situation in which the CAR of the pair in F is E0("CAR) we get:

VE E ENVS, F E FIEl.0S, C E CONTS, P E PAIRS (S4-220)
[[CAR(P,F) = Eo("CAR)] :J
[l:(P,E,f ,C) =

l:{ Eo("CAR) , E, F,
[i\<S1,D1,E1,F1> •

[(AS1){COR(P,F1),E1,F1,
[A<S2 ,E2 ,F2> . C(S2 ,[D1(COR(P,F1),E1,F1)],E2 ,F2)])]])

Now, however, the second part of this can be expanded, by applying s4-212:

VE E ENVS, F E FIELDS, C E CONTS, P E PAIRS (S4-221)
((CAR(P,F) = E0("CAR)] ::>
[l:(P,E,f ,C) =

[([i\<S1,D1,E1,F1>.
[(AS 1)(CDR{ P, f 1), E1, f 1,

[A<S2 ,E2 ,F2> . C(S2,[D1{CDR(P,F1),E1,F1)J,E2,f2)])]])
("(EXPR Eo [X] (CAR X)),
[AS1. AE1. AF1.

Z(S1,E1 ,F1,[A<S2 ,D2,E2 ,F2 > . CAR(Dz,Fz)J)]
E •
F)]

We can reduce this:

VE E ENVS, F E FIEI.OS, C E CONTS, P E PAIRS
[[CAR(P,F} = E0("CAR)] ::>
[l:(P,E,F ,C) =

[(A["(EXPR Eo [X] (CAR X))])
<CuR(P,f),E,°F,
[i\<Sz • Ez • Fz> .

C(S2,
{[i\S1 .AE1,Af1.

l:{S1,E1,F1,[i\<S2,D2,E2,F2> . CAR(D2,F2)]
<CDR(P,F),E,F>),

E2,
Fz)]>]]]

(S4-222)

4. z-usP: A Rationalised Dialect Procedural Reflection 317

Now we may substitute the internalised CAR function from S4-z1a:

VE E ENVS, F E FIELDS, C € CONTS, P E PAIRS (S4-223)
[[CAR(P,F) = Eo("CAR)] :J
[I(P,E,F ,C) =

([AS1.AE1. AF1.AC.
[l':{S1,E1,F1,

[A<S3,D3,E3,F3> •
C(HANDLE(CAR(HANDLE-1{NTH(1,S3 ,F3)))),EJ,F3)])]]

<CDR(P,F),E,F,
(A<S2,E2,F2>.

C(S2,
([AS1.AE1, AF1.

I(S1,E1,F1,[A<S2,D2,E2,F2> . CAR(D2,F2)]
<CDR{P,F),E,F>),

Ez,
Fz)]>]]]

This too can be reduced:

VE € ENVS, F E FIELDS, C € CONTS, P E PAIRS {S4-ZZ4)
[[CAR(P,F) ~ Eu("CAR)] :J
[l:(P,E,F,C) =

[}:(CDR(P,F),E,F,
[A<S3,D3,E3,f3> ··

([A<S2, E2, f2>
C(Sz,

([AS1 • AE1, AF1,
l':{S1 ,E1 ,F1 .[A<S2 ,D2 ,E2,F2> . CAR(D2,F2)]

<CDR{P,F),E,F>),
Ez,
f2)]

<HANDLE(CAR(HANDLE-1(NTH(1,S3,F3)})),E3,F3>)])]]]

And again:

VE E ENVS, f € FIELDS, C E CONTS, P E PAIRS
[[CAR(P,F) = E0("CAR)] :J
[l:(P,E,F ,c.) =

And again:

[l:{CDR(P,F),E,f,
[A<S3 ,D3,E3,F3> .

C(HANOLE(CAR(HANDLE-1(NTH(1,S3 ,F3)))),

((AS1,AE1,AF1,
I{S1,E1,F1,[A<S2,D2,E2,F2> . CAR(D2,F2)])]

<CDR(P,F),E,F>),
Ea,
f3)]}]]]

VE E ENVS, F E FIELDS, C E CONTS, P E PAIRS
[[CAR(P,F) = E0{"CAR)] :J
[}:(P,E,f ,C) =

[I(CDR(P,F),E,f,
(A<S3,03,E3,F3>

{S4-225)

(S4-226)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 318

C(HANOLE(CAR(HANOLE-1(NTH(t,S3 ,F3)))),

~(CDR(P,F),E,F,[A<S2,D2,E2,F2> . CAR(D2,Fz)],
Ea,
F3)]}])]

This is as far as we can reduce without knowing about the CDR; it is a good time as well to

review what this says. It is exactly what we would expert· the full computational

significance of any application in tcnns of the CAR function will be the following: it will

normalise the CDR of the application, since CAR is an EXPR (this is the fourth line of S4-226),

which will return a result (s3), a designation (o3), and a revised context (E3 and F3). The

significance of the whole application will be the four-tuple of the handle designating the

CAR of the result, the actual CAR of the result, and the context as received from the

arguments (i.e., the application of the CAR procedure itself doesn't further modify the

context).

We are almost done with our proof. Two steps remain. First, we can, using

universal instantiation, construct a more· particular version of S4-226, with a particular

continuation c: namely, the continuation

(S4-227)

In particular, we get the following instance:

VE E ENVS, f E FIELDS, P E PAIRS (S4-228)
[(CAR(P,F) = Eo("CAR)] ::>

(l':(P,E,F ,[A<R1,D1,E1, f1> . <R1,D1,E1,F1>])
= [l':(CDR(P,f},E,F,

[A<S3,03,E3,F3> .
([A<R1,D1 ,E1,F 1> . <R 1 ,D1,E 1 ,F1>]

<HANOLE(CAR(HANOLE" 1(NTH(l,S3,f3)))),
l':(CDR(P,f),E,F,[A<S2 ,D2 ,E2 ,F2 > . CAR(02 ,F2)],

Ea,
F3>)]}])

However, since this is essentially a null continuation, the second part of this can be

reduced:

VEE ENVS, FE FIELDS, PE PAIRS
[[CAR(P,F) = E0("CAR)] :::>
[Z(P,E,F,[A<R1,D1,E1,F1> . <R1,D1,E1,f1>])

= [Z(CDR(P,F),E,F,
[A<S3,D3,Ea,Fa> .

<HANDLE(CAR(HANDLE"1(NTH(l,S3 ,F3)))),

l':(COR(P,f),E,f,[A<S2 ,D2 ,E2 ,F2> • CAR(D2 ,F2)],

Ea,
F3>)])]]

(S4-229)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 319

The other component of the proof is the inductive part; we are allowed to assume that the

nonnalisation theorem holds for the arguments to CAR; we are allowed to assume, in

particular, that

VE E ENVS, F € FIELDS, P € PAIRS
([4>EF(VEF (CDR(P, F)) = tl>EF(CDR(P, F))] A
[NORMAL-FORM('l'EF (CDR(P, F)))]]

Thus we can assume that

NORMAL-FORM(S3)

and that

VE € ENVS, F E FIELDS [«l-EF(S3) = 03]

(S4-230)

(S4-231)

(S4-232)

and similar versions for S2 and 02, in the appropriately scoped contexts. In addition, since

CAR (x , F) is a partial fimction defined only over x in s, we can assume that 02 is in s. In

addition, since cflEF(S3) = 02, because of the semantical type theorem we know that s3 is a

handle. (In fact we have not proved the semantical type theorem, but it would be proved

in step with the nonnalisation theorem we are currently proving - hence it is legitimate to

assume its truth on the arguments to CAR, since we are taking ourselves to be illustrating not

a full proof but the proof of one step of an encompassing inductive proof.) Finally,

because of the declarative import of handles, we know that:

[HANDLE-1 (Sa) = 03]

From all of these it follows that:

VF€ FIELDS [CAR(HANDLE-1($3),F) = CAR(D3 ,f)]

and therefore that

VE € ENVS, F € FIELDS
ff S = HANDLE{CAR(HANDLE-1(S3),F))] :J
[«MF(S) == CAR(D3 ,F)])

Finally, we know that:

(S4-233)

(S4-234)

(S4-235)

(S4-236)

simply in virtue of the fact that functions yield the same answers for the same inputs.

Putting all of this together we have:

4. 2-usP: A Rationalised Dialect Procedural Reflection 320

\fE E ENVS, F E FlEl.DS, P E PAIRS
[(CAR(P,F) = E0("CAR)] ::J
(I(P,E,F,[A<R1,D1,E1,F1> .

[[NORMAL-FORM(R1}] A [lf)Ef(R1) ,. D1]]]]]

Discharging the use of ct> yields:

VE E ENVS, F E FIELDS, P E PAIRS
[[CAR(P,F) = E0("CAR)] ::J
[~(P,E,F,[A<R1,D1,E1,F1> .

[[NORMAL-FORM{R1)] A
[~(R1,E1,F1,

[A<R2,D2,E2,F2> . [D1 = Oz]])]]])]]

(S4-237)

{S4-238)

It is only a question of introducing the conjunction into the body of the lambda expression

to yield:

\ff E ENVS, FE FIELDS, PE PAIRS
[[CAR(P,F) = E0{"CAR)) ::J

[~(P,E,F,[A<R1,D1,E1,F1> .
~(R1,E1,f1,

[A<R2,D2,E2,f2> .
[[D1 = D2] A [NORMAL-FORM(R 1)]]])]]]

But this is exactly

STANDARD{Eo("CAR))

Hence we are done.

(S4-239)

(S4-240)

We will not prove that any other procedures are standard; the proofs would be

similar in structure.

Again in a manner exactly parallel to the numeric functions, combinations of the

structural selectors can be combined in the usual way: (CAR (CDR • (A . (B • C))))

designates the atom B, and nonnalises to the handle · B, and so forth. From an informal

point of view, it seems that 2-LISP works in much the way in which 1-LISI' worked, except

that it "puts on a quote mark" just before returning the final answer. Some more

examples:

(CAR '(A B C))
(CDR • (A 8 C))
(CAR (CDR '(A 8 C)))
(CAR (CAR (CAR '((((A)))))))

~ 'A (S4-241)
=> '[BC]
=> <TYPE-ERROR>
~ '(A)

Note, incidentally, that whereas in t-LISP there was some question about the identity

of CAR and CDR of NIL, we have no such troubles in 2-LISP, since there is no NIL.

4. 2-usP: A Rationalised Dialect Procedural Reflection 321

4.b.iil Typing and Identity

Before examining the other simple predicates over the field, it is useful to examine

two special primitives, one having to do with the typing of the semantic domain, and the

other with object identity. The first is a procedure, called TYFE, that r.1aps its single

argument onto one of ten distinguished atoms, depending on the category of the semantic

domain into which that argument falls. Twelve semantic categories were listed in S4-144;

three of them, however, were types of functions, requiring intensional access to

discriminate, as we will examine in a moment. Examples of the behaviour of TYPE on each

of the ten primary extensionally discriminable categ9ries are given in the following list:

(TYPE 4) => 'NUMBER (S4-242}
(TYPE (1 2 3]) . => 'SEQUENCE
(TYPE SF) => 'TRUTH-VALUE
(TYPE+) => 'FUNCTION
(TYPE '4) => 'NUMERAL
{TYPE 'HELLO) => 'ATOM
(TYPE 'Sf) => 'BOOLEAN
(TYPE '(+ 2 3)) => 'PAIR
(TYPE '[1 2 3]) => 'RAIL
(TYPE ''4) => 'HANDLE

Like the arithmetic functions, TYPE is extensional; thus, although the argument in the first

line of this list is a numeral, the designation of (TYPE 4) is the atom NUMBER since that

numeral designates a number. (TYPE 4) normalises to the handle 'NUMBER, since that is the

normal-form designator of the atom NUMBER. Similarly (TYPE [1 2 3 J) normalises to the

handle designating the atom SEQUENCE, and (TYPE $F) to the handle designating the atom

TRUTH-VALUE.

'Ibe expression in the fourth line returns the handle • FUNCTION, because its

argument, the atom +, designates a function. Likewise, the last six lines discriminate among

the six stmctural categories: in each case a handle designating an instance of the category is

used as the argument to TYPE. The last case is of particular note: the handle ' · 4 designates

the handle • 4 (which in tum designates the numeral 4, which in turns designates the number

that is the successor of three).

TYPE need not be called with a normal-fom1 designator of its argument, as the

following examples illustrate:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 322

(TYPE(+ 7 (/ 3 4)))
(TYPE (NTH 1 [6 '6]))
(TYPE (NTH 2 [6 '6]))
(TYPE (= 1 1))
(TYPE $F)
(TYPE 'Sf
(TYPE (TYPE SF))
(TYPE '(TYPE $F))
{TYPE TYPE)

=> 'NUMBER (S4-243)
=> 'NUMBER
=> 'NUMERAL
~ 'TRUTH-VALUE
~ 'TRUTH-VALUE
=> 'BOOLEAN
=> 'ATOM
=> 'PAIR
=> 'FUNCTION

In order to characterise the primitive semantics of TYPE, we first define a

corresponding meta-linguistic function of the same name:

TYP'" : CO - s 1
a AD • [ff [D E S]

then 1f [DE NUMERALS] then "NUMERAL
e1se1t [DE BO~LEANS] then "BOOLEAN
else1f [D € ATONS] then "ATOM
slse1f [D € PAIRS] then "PAIR
e1se1f [O € RAILS] then "RAIL
eiseif [OE HANDLES] then "HANJLE

e1se1f [DE ABSTRACTIONS]
then if [DE INTEGERS] then "NUMBER

else1f [O € SEQUENCES] then "SEQUENCE
elseif [D € TRUTH-VALVES] then "TRUTH-VALUE

e1setf (0 E FUNCTIONS] then "FUNC~!ON

(S4-244)

It is then straightforward to define the significance of TYPE within the language, since it is

an extensional procedure:

SIMPLE(" TYPE,
TYPE,
[AS. HANDLE(ff [S € HANDLES] ·

then TYPE(HANDLF." 1(S)))
e1se1f [S € NUMERALS] then "NUMBER
e1se1f [SE BOOLEANS] then "TRUTH-VALUE
olsetf [SE PAIRS] then "FUNCTION
81 S8 tf [S € RAILS] then "SEQUENCE)])

(S4-246)

We can see here how the ten types emerge from the six stmcture types: the handles

designate six of them (discharged through TYPE of their referent), and four of the other five

categories designate the other four semantical types. Since atoms are not nonnal-form

designators, no check need be made for tl?cm explicitly.

From S4-244 and S4-245 all of the behaviour in S4-242 and S4-243 follows directly;

we need say no more to characterise TYPE fuliy.

There is, however, a comment worth making about the use of TYPE over functions.

We have sorted procedures into three categories: EXPRS, IMPRS, and MACROS; it is natural to

4. 2-usP: A Rationalised Dialect Procedural Reflection 323

wonder whether a better definition of TYPE might be defined. to return one of the three

atoms EXPR, IMPR, and MACRO, rather than the undifferentiating atom FUNCTION. Thus, on

this view. it might seem that we would prefer the following behaviour:

(TYPE+)
(TYPE LAMBDA)
(TYPE LET)

=> 'EXPR
=> I IMPR
=> 'MACRO

instead of what we have currently defined:

(TYPE +)
(TYPE LAMBDA)
(TYPE LET)

=> 'FUNCTION
=> 'FUNCTION
::,:,. 'FUNCTDN

(S4-246)

(S4-247)

This would seem particularly indicated since we have chosen to have TYPE discriminate

among the various kinds of s·exprcssions, and among the various kinds of abstractions.

rather than simply designating the atoms S-EXt>RESSION or ABSTRACTION.

This option, however, is not easily open to us; such a TYPE would have to be an

intensional procedure, since, as an argument in chapter 3 showed us, the difference between

EXPRs and IMPRS cannot be decided in virtue of designation atone. None of the other

categorisations made by TYPE, however, require intensional access to the arguments; it is

therefore far more consistent to leave the definition as it is.

There is another reason for this. In 3-LISP, where the TYPE procedure will retain its

present definition, it will be possible for the user to define procedure types other than those

provided primitively. 11ms in order to accommodate an intensional TYPE that sorted among

EXPRS and IMPRS we would have, in the latter dialect, to modify it in a generally extensible

fashion so as to discriminate among user procedures, which is less than elegant for a

primitive procedure. Furthcnnore, there is no need to have the primitive typing predicate

make such a discrimination, since the meta-structural capabilities of 2-LISP a11ow a user

definable procedure to engender just such behaviour. In particular, we can define a

procedure called PROCEDURE-TYPE as follows:

(DEFINE PROCEDURE-TYPE
(LAMBDA EXPR [PROCEDURE]

(SELECT (CAR PROCEDURE)
[tEXPR 'EXPR]
[tlMPR 'IMPR]
[tMACRO 'MACRO]
[ST (ERROR "Argument was not a closuratt)])))

(S4-248)

4. 2-LISP: A RationaJised Dialect Procedural Reflection 324

This examines the closure in the function position of the closure to which a function

designator nonnalises (the EXPR, IMPR, and MACRO selectors in the SELECT statement, in other

words, designate closures). For example, the atom + (in the initial environment) will

normalise, as we have already mentioned, to the closure

(<EXPR> ~ [X Y] (+ X Y)) (S4-249)

Tnus in the reduction of the expression (PROCEDURE-TYPE H) the term PROCEDURE will

designate the closure just described. (CAR PROCEDURE), therefore, will designate the <EXPR>

closure. Similarly, (CAR tLAMBDA) would designate <IMPR>, and so forth. Definition S4-248,

in other words, would generate the following behaviour:

(PROCEDURE-TYPE t+)
(PROCEDURE-TYPE tLAMODA)
(PROCEDURE-TYP~ tLET)

'EXPR
'IMPR
'MACRO

We will from time to time assume this definition in subsequent examples.

(S4-250)

Note in S4-248 that PROCEDURE-TYPE is an extensional function, as is TYPE: the

difference is that PROCEDURE-TYPE cannot be reduced with function designators: it must be

reduced with function designator designators. It is NAME - the up-arrow - that perfonns

the magic of shifting up one level.

Before leaving the discussion of category membership, we will define ten useful

utility predicates for use in later examples:

(DEFINE ATOM
(DEFINE RAIL
(JJEFINE PAIR
(DEFINE NUMERAL
(DEFINE HANDLE
(DEFINE BOOLEAN

(LAMBDA EXPR [X] (= (TYPE X) 'ATOM))}
(LAMBOA EXPR [X] (= (TYPE X) 'RAIL)))
(LAMBDA EXPR [X] (= (TYPE X) 'PAIR)))
(LAMBDA EXPR [X] (= (TYPE X) 'NUMERAL))}
(LAMBDA EXPR (X] (= (TYPE X) 'HANDLE)))
(LAMBDA EXPR [X] (= (TYPE X) 'BOOLEAN)})

(DEFINE NUMBER (LAMBDA EXPR [X] (= (TYPE X) 'NUMBER)))
(DEFINE SEQUENCE (LAMBDA EXPR [X] (= (TYPE X) 'SEQUENCE)})
(DEFINE TRUTH-VALUE (LAMBDA EXPR [X] (= (TYPE X) 'TRUTH-VALUE)))

(DEFINE FUrlCTION (LAMBDA EXPR [X] (= (TYPE X) 'FUNCTION))}

Predications in tcnns of PROCEDURE -TYPE WC will do explicitly.

(S4-251)

lbc procedures TYPE and PROCEDURE-TYPE deal with the category identity of their

arguments. The primitive function that deals most directly with individual identity, in

distinction, is called "=" - true just in case its two arguments arc the same. 2-LISP's " is

defined over individual identity; it is therefore like 1-LISP's EQ, not like 1-LISP's EQUAL (we

4. 2-LISP: A Rationalised Dialect Procedural Reflection 325

discuss type-identity in 2-LISP below). Like TYPE, • is an extensional function. Some

examples (we have already seen some of these in section 4.a):

(• 1 1)
(• 1 (- 99 98))
(• 1 2)
(• 1 '1)
(• [ST SF] [ST SF])
(• '[ST SF] '[ST SF])
(• "'2 '"2)

~ ST (S4-262)
=:1- ST
=:1- SF
,_. SF
• ST
- SF
1:$ ST

It might seem that •, from a semantical point of view, would be rather

stragithforward, characterised by the following formula:

(S4-253)

We assume we can use E0 and Fo immaterially in this equation, since s1 and s2 arc

guaranteed to be context independent designators.

There is a problem, however: the predicate given in S4-253 as the third argument to

SIMPLE is not computable. Suppose, in partic11lar, that WC call it EQUI-DESIGNATING, and

attempt to construct an algorithmic and syntactic definition (the intent is to define a

constructive procedure defined over s-expressions that yields the boolean constants ST or SF

depending on whether its two normal-form arguments designate the same entity). We

would be led to something like the following:

EQUI-DESIGNATING : ff S X SJ - BOOLEANS J (S4-264)
= AS1 .ASz •

1f ([TYPE{S 1) = TVPE(S2)] A
[1f [S1 E f HANDLES U BOOLEANS U NUMERALS J]

then [S1 = Sz)
else if [S1 E RAILS]

then [(LENGTH(Si) = LENGTH(Sz}] A
[Vi t=s; i ~LENGTH(Si)

[EQUI-DESIGNATING(NTH(1,S1 ,F},
NTH(i,S2,F)} = "$Tll)

elseff [S1 € PAIRS) ... ??7 ...]]
then "$T
else "$F

The difficulty is that we do not have anything to put in case s 1 and S2 arc pairs (when, in

other words, they designate functions).

With this predicate, in other words, we encounter our first troubles with the

tractability of our definitions. In our mathematical meta-language, we can use equality

predicates with relative impunity, but there are of course many cases - functions being the

4. 2-LI$:i: A Rationalised Dialect Procedural Reflection 326

paradigmatic example - where the identity of two objects is not a decidable question. We

have our semantic domain divided into three main types of object: s·exprcssions,

abstractions. and functions. Equality is decidable (and • is therefore defined) over all s·

expressions. and over numbers and truth·vatues and some sequences. and not over

functions. The difficulty with sequences has to do with the fact that the identity of a

sequence is a function of the identity of the elements: equality (at least for finite sequences)

can be decided just in case equality of the corresponding members can be decided. 11le 2-

LISP equality predicate, therefore, is defined over all s-cxpressions and all abstractions, but

not over functions (it will produce an error. as shown below). Over sequences there is no

guarantee of its being well-defined. Some examples:

("TYPE+)
(" 'TYPE '+)
(• ['TYPE '+] ['TYPE '+])
(•['+'TYPE] ['TYPE '+]}
(~[TYPE+] [TYPE+])

<ERROR>
SF
ST
SF
<ERROR>

(S4-255)

We have a choice in deciding how to characterise the semantics of = in light of these

tractability problems. We could say that ,. designates a truth-value just in case its

arguments arc of a certain form, or we could say that it designates a truth-value just in case

the arguments are the same, but that the procedural consequence is simply partial

compared with the declarative import. It is the latter approach we will adopt, because our

metl1odological stance is to reconstruct semantical attribution, and there can be no doubt

that tem1s of the form (= x Y) designate truth just in case x and Y are co-designative,

whether or not this can be decided by algorithmic means. Thus we arc led to the following

characterisation:

SIMPLE("•,m, (S4-266)
MN1 ,N2> tf [[4>E0F0(Ni) E FUNCTIONS] V [cl>E0F0(N2) E FUNCTIONS]]

then <ERROR>
else [T" 1(cl>E 0F0(Ni) = cflE0F0 (N2))]))

From the fact that = is not defined over functions it should not be concluded that it

is not defined over nonnal-fonn fu11ctio11 designators (closures); on the contrary, since these

latter are s-expressions, it follows from what we said above that equality is in fact defined

in those cases. However, as discussed in the preceding section, the identity of function

designators is much finer grained than of the functions they designate, and therefore

equality of fi.mction designator cannot be used as a substitute for equality of function. In

4. 2-LISP: A Rationalised Dialect Procedural Reflection 327

such a case the type-identity of a function designator becomes relevant (in the sense in

which we defined a type-identity for 1-LISP lists in chapter 3), since type-identity is a

coarser grained metric than strict identity; nonetheless type identity on function designators

is still a finer grained metric than identity of function designated.

In order to illustrate this last point, suppose we define a type equality predicate

called TYPE-EQUAL. The idea - similar to the definition of EQUAL in t-LISP - will be to

say that numerals, atoms, booleans, and handles are type-identical only with themselves,

and that pairs and rails are type-identical just in case their elements (where the CAR and CDR

will in this context be taken as elements of a pair) are recursively type-identical. An

appropriate definition is given below. We have nat4rally extended its domain to include

not only s-exprcssions but also numbers, truth-values, and those sequences over whose

clements it is defined (we assume in this and other examples that 1ST is (LAMBDA EXPR [X]

(NTH 1 X)) and that REST is (LAMBDA EXPR [X] (TAIL 1 X))):

(DEFINE TYPE-EQUAL (S4-257)
(LAMBDA EXPR (AB]

(COND [(NOT(= (TYPE A) (TYPE B)) SF]
[(= (TYPE A) 'FUNCTION)

(ERROR "only defined overs-expression & abstractions")]
[(= A B) ST]
[(MEMBER (TYPE A) '(NUMERAL ATOM BOOLEAN HANDLE]) SF]
[{= (TYPE A) 'PAIR)

(AND (TYPE-EQUAL (CAR A) (CAR B))
(TYPE-EQUAL (CDR A) (CDR B)))]

[(MEMBER (TYPE A) '[RAIL SEQUENCE])
(AND(= (LENGTH A) (LENGTH B))

(AWD . (MAP TYPE-EQUAL AB)))])))

'The penultimate line requires some explanation. AND is a procedure defined over a

sequence of any number of arguments: it designates falsity just in case one or more of

those arguments designates falsity, truth if all designate truth, and is undefined otherwise.

'Thus for example we have

(AND $T ST H)
(AND(= '(] '[]))
(AND)
(AND. (TAIL 1 (!F ST ST]})

(S4-258)

MAP is a function that takes as its first argument a function, that it applies successively to the

elements of as many other arguments as it has, stepping down them. The form as a whole

designates the sequence of entities designated by the sequence of applications thus

generated. Thus for example

4. 2-LISP: A Rationalised Dialect

(MAP (LAMBDA ElPR [X] (+ X 1))
(10 20 30])

(MAP+ [1 ~ 3] [2 3 4])

Procedural Reflection 328

[11 21 31]

[3 6 7]

(S4-269)

Thus the expression (AND . (MAP TYPE-EQUAL A B)) will first generate a sequence of

booleans depending on the type-identity of the elements of A and a; the whole expression

will be true just in case all the elements are type-identical.

We can first illustrate some straighforward uses of TYPE-EQUAL:

(TYPE-EQUAL 1 1) => ST (S4-260)
(TYPE-EQUAL 1 2) => SF
(TYPE-EQUAL [ST SF] [ST Sf]) => ST
(TYPE-EQUAL '[$T SF] '[ST SF]) => ST
(TYPE-EQUAL ''[ST SF] ''[ST SF]) => SF
(TYPE-EQUAL '(CAR X) '(CAR X)) => ST

Thereat reason we constructed TYPE-EQUAL, however, was to look at the type-equivalence of

function designators. Note first that although simple equality is not defined over functions,

it is defined over function designators:

(= TYPE TYPE) => <ERROR> (S4-261)
(= HYPE tTYPE) => ST
(= t(LAMBDA EXPR [X] (+ X 1))

t(LAMBOA EXPR [X] (+ X 1))) => SF

As the last example shows, however, it is too fine-grained to count as equivalent even two

function designators that have identical spelling. TYPE-EQUAL overcomes this particular

limitation, as the following examples illustrate:

{TYPE-EQUAL TYPE TYPE) ::::> <ERROR> (S4-262)
(TYPE-EQUAL tTYPE tTYPE) => ST
(TYPE-EQUAL t(LAMBDA EXPR (X) (+ X 1))

t(LAMODA EXPR [X] (+ X 1})} ::::> ST

However even TYPE-EQUAL counts as different function designators that not only provably

designate the same function. but that on any reasonable theory of intension ought to be

counted as intensionally indistinguishable as well:

(TYPE-EQUAL ~(LAMBDA EXPR [Y] (+ Y 1))
~(LAMBDA EXPR [X] (+ X 1))) => SF

(S4-263)

'J1lus, as we have several times mentioned, we will not in tl1cse dialects be able to provide

either extensional or intensional function identity predicates.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 329

It will have been clear to the reader that there is another computational problem that

we have consistently ignored: that of non-terminating programs. For example, if x is a rail

such that it is its own first element, then (TYPE-EQUAL x Y) will never terminate. In ruling

functions out of the source domain for the procedural version of • we were excluding

arguments for which we have no algorithm at all; the present case is one in which we have a

well-defined algorithm that has the property that it will run forever. In constructing meta·

theoretic predicates we have attempted to formulate them in ways that are well-behaved in

the case of infinite structures; no attempt, however, wilt be made to define computable

predicates guaranteed to work correctly on circular structures (in tl1e sense defined in

chapter 2). This may be an area of legitimate study, but it would not be in the spirit of

LISP to focus on such issues, since LISP is fundamentally oriented towards tree-structured

objects.

A more adequate semantics might map non-terminating expressions onto .L; we have

mapped (= + +) onto <ERROR>, which is different. 'Thus the distinction between non

terminating and semantic ill·formedness is maintained in our account. What we have not

done - and what we will not do in this investigation - is to make explicit those

conditions under which procedural consequence will engender infinite computations. 1be

contribution of 2-LISP is more in the realm of what programs mean than in whether they

terminate.

4. 2-usP: A Rationalised Dialect Procedural Reflection 330

4.b.iv. Selectors on Rails and Sequences

In S4-62, when we first introduced rails, we assumed that our meta-linguistic

functions NTH and LENGTH were defined over abstract sequences as well as over 2-LISP rails.

When we introduced tails, however, and recognised the mutability of rails in both element

and tail position, we were forced to modify our definitions of these two functions to take

explicit field arguments. The resultant equations in S4-96 and S4-96 dropped abstract

sequences from the domain of the two functions. As we now tum to the use of these

functions within z-LISP, we will again expand their domains to include both sequences and

rails, for completeness and convenience. Furthennore, we will assume the same is true for

TAIL, in that (TAIL N SEO) will designate the sequence consisting of the Nth through last

clements of the sequence SEQ. It should be recognised, however, that the identity and

mutability conditions on syntactic rails and on mathematical sequeuces are radically distinct.

Before laying out careful characterisations, some examples of ·the behaviour we will

be characterising will be illustrative:

(NTH 3 [1 2 3]) => 3 {S4-267)
(NTH 3 '(10 20 30]} => '30
(NTH 3 ['10 '20 '30]) => '30
{NTH 1 {CDR '(FUN ARG1 ARGZ))) => 'ARG1
(TAIL O (]) => []
{TAIL O '[A CASTLE Of PURE DIAMOND]) => '(A CASTLE OF PURE DIAMOND]
(TAIL 3 '(A CASTLE Of PURE DIAMOND]) => '[PURE DIAMOND]
(TAIL 5 '[A CASTLE OF PURE DIAMOND)) => '()
{CAR. (TAIL 1 ['(A. 8) '(C . D)])) => ·c
(LET [[X '[NEVER MORE]])

(= X (TAIL OX))) ::::i, ST
(LENGTH []) => 0
(LENGTH (1 2 3 (4 5]]) => 4
(LENGTH '[1 '1]) => 2
(LET [[X '[QUOTH THE RAVEN]]]

(NTH (LENGTH X) X)) => 'RAVEN
,..-·-"

In order to set out the relevant semantics, it is convenient to define a notion of

vector to subsume both rails and sequences:

VECTORS = C RAILS U SEQUENCES J (S4-268)

We can then introduce new versions of the meta-theoretic functions FIRST, REST, NTH, and

LENGTH. First we define FIRSTS and RESTS, which arc the set of all possible rail versions of

the two primitive relationships maintained in a field:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 331

FIRSTS a f VECTORS ➔ C S U { l. } 11
RESTS e f VECTORS ➔ C RAILS U { l. } 11

We can then set out four definitions:

(S4-260)

FIRST : ff VECTORS X FIELDS 1 ➔ D] (S4-270)
a AV.AF • 1f [V € RAILS] then F3(V) else V1

REST : CC VECTORS X FlfLDS 1 ➔ C VECTORS U { .l} 11 (S4~271)
a AV.AF • ff [V € RAILS] then F4,V) .

e 1 se <V , v3, ... , ylt} where k • LENGTH(V)

NTH : CC INTEGERS X VECTORS X FIELDS] -+ D] (S4-272)
a AI.AV.AF . 1f [I a 1) then FIRST(V,F) else NTH(I-1,REST(V),F)

LENGTH : CC VECTORS X FIELDS] -+ [INTEGERS U { l.} 1] {S4-273)
a AV.AF . 1f [FIRST(V,F) " .L]

then 0
e1se1f [3N [NTH(N,V,f) ".L]

then [1 + LENGTH(REST(V,F))]
else oo

We need in addition the following constraint saying that rails have firsts and rests together

- demonstrably true of F O and provably true of all fields constructable in virtue of the

fonn of the primitive operations:

VR E RAILS, F € FIELDS (S4-274)
[l3Sr ES [FIRST(R,F) = s,}] A [3Sr E RAILS [REST(R,F) = SrilJ V
([FIRST(R) = .L] A [REST(R) = :Lffl

The corresponding constraint on sequences is provable:

VQ E SEQUENCES, FE FIELDS
[1fQ =<>then [(FIRST(Q,F) = .L] A [REST(Q,F) = .L)l

else [(FIRST(Q) = Qi) A [REST(Q) = <Q2 Oa ... Qk>])
wher·e Q = <01 Oz Q3 ... Ok>) ·

Finally, we can define a meta-theoretic TAIL function:

TAIL : [[INTEGERS X VECTORS X FIELDS J -+ [VECTORS U { .l}]1
= ;\I.AV.AF .

1f [I= O] then V
e1se1f [REST(R,F) • .L]

then J.
else [TAIL(I-1,REST(R),F)]

(S4·275)

(S4-276)

Given these new definitions, the primitive •.electors overs rails and sequences can

then be defined in the same way in which CAR and CDR were defined. Except for the

binding of the field argument. we would like:

4. 2-usP: A Rationalised Dialect Procedural Reflection 332

SIMPLE(•NTH,
(A<N,X>
[A<N,X>

SIMPLE(" TAIL,
(A<N,X>
(A<N,X>

SIMPLE(" LENGTH,

NTH(N,X,F)]
tr [X E RAILS]

then NTH(M(N),X,f)
else HANDLE(NTH(M(N),HANDLE" 1(X),F))])

TAIL(N,X,F)]
tr [X E RAILS]

then TAIL(M(N),X,F}
else HANDLE(TAIL(M(N),HANDLE"1(X),F))])

[AX. NTH(N,X,F)]
[AX . 1f (X € RAIi.SJ

then LENGTH(X,f)
else M" 1(LENGTH(HANDLE"1(X),F)])

(S4-277)

(S4-278)

{S4-279)

Thus instead we have to posit the following (we give the equation only for NTH; the others

are similar). Note as usual how the field. tacit in the language itself, is explicit in the meta

theory.

l:(Eo("NTff)) {S4-280)
= [AE.AF.AC.

C("(EXPR Eo [NV] (NTH N V)J,
[A<S1,E1,f1> .

E,
F)]

l:(S1,E1,f1,[A<S2,D2,E2,F2>
NTH(NTH(1,D2 ,F),NTH(2,D2,F2),F2)])],

In addition, we need the internalisations of the three primitive closures; this time we take

TAIL as our example:

A(Eo("TAIL)] {S4-281)
= AS1 .AE 1 .AF1 .AC

l:(S1,E1,f1,
[A<S2,D2,E2 ,F2> .

[1f [NTH(2,D2 ,F2) E RAILS]
then [C(TAIL(NTH(1,D2 ,F2 },NTH(2,S2,F2},F2),

E2,F2)]
else (C(HAtJDLE(TAIL(NTH(1,02 , f 2), NTH(2, D2 , f 2}, F2)),

E2,F2)]]])

There is some subtlety in this equation that should be explained, that has to do with the

fact that TAIL is defined over beth rails and sequences. The problem, in brief, is that even

if the arguments designate a sequence, there is a question about the relationship between

the syntactic identity of the result that is returned in tenns of the identity of the argument

In particular, if the argument in a reduction is a normal~fonn raiJ, such as (t 2 3], the fonn

4. 2-LISP: A Rationalised Dialect Procedural Reflection 333

(TAIL [1 2 3]) will return as its result the actual first tail of its argument, rather than some

different two-element rail (2 3] that designates the tail of the sequence designated by the

original argument NTH and TAIL, in other words, have aspects of their procedural

consequence above and beyond that implied by their declarative import The conditional

in S4-281 makes this behaviour clear.

In particular, given an application of the form (TAIL <K> <V>), assuming that TAIL

has its standard binding, the arguments to TAIL will be normalised, returning a rail

consisting of nonnal-form designators of the index and the vector. For example, if we had

(TAIL(+ Q 1) (3 4 5)) (S4-282)

then the result of normalising the args would be a rail consisting of the integer 1 and the

rail [3 4 5]. This is expected, because this rail will designate the sequence consisting of the

number one and the sequence of the numbers three, four, and five, which are what the

original arguments designated. Thus the predicate in the conditional will be true, and the

"then" clause will be relevant The continuation is thus applied to the result of applying

the meta-theoretic function TAIL to three arguments: the first is the number I in our

example (because the first argument is NTH(l,D2,F2)); the second is the rail [3 4 5]

(because the second is NTH(2,s2,F2), not NTH(2,D2,F2), which might have been expected);

and the third is the current field F2• Thus the application ln tenns of the meta-theoretic

TAIL function will yield the tail [4 5], which will be returned. Because s2, not 02, is used,

no function like M" 1 or HANDLE needs to be used to preserve semantic level.

The consequence is that the primitive TAIL procedure, as we noted, is strictly

extensional in the sense we defined that tenn in 3.c.iii: the referent of applications formed

in terms of it is a function purely of the designation of the arguments. In terms of result,

however, there is a strict dependence of the result on the fonn of the argument: the actual

tail of the normal-fonn version of the argument will be returned, not simply a co

designative tail. Thus we would have (these will be better explained aft.er RPLACT has been

described in section 4.b.vii, but the intent will be clear):

> (SET X [t (+ 1 lJ (+ 1 t 1)])
> [1 2 3]
> (SET Y (TAIL 2 X))
> [3]
> (RPLACT 1 ~y '[4 5])
> (4 5]
> y

as expected
extend Ya little

(S4-283)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 334

> [3 4 6]
> X
> [1 2 3 4 5]

Y of course has been modified

X has been modified as welt

It turns out that this behaviour has its very useful aspects; our present concern is merely to

illustrate how it is entailed by semantical equation S4-281. Further examples of the

interactions of side-effects and general vectors will be investigated in section 4.b.vii.

In the case where TAIL (or NTH) is applied to a rail. the situation is much simpler,

and the identity considerations more straighforward, as the "else" part of the conditional in

S4-281 makes evident

Before leaving the subject of vector selectors, we will define a variety of useful

procedures in terms of the three primitives, that we will assume in later examples:

(DEFINE 1ST (S4-284)
(LAMBDA EXPR [VECTOR) (NTH 1 VECTOR))

(DEFINE LAST (S4-285)
(LAMBDA EXPR (VECTOR] (NTH (LENGTH VECTOR} VECTOR)}

(DEFINE REST (S4-286)
(LAMBDA EXPR [VECTOR] (TAIL 1 VECTOR))

(DEFINE EMPTY {S4-287)
(LAMBDA EXPR [VECTOR](= (LENGTH VECTOR) 0))

(DEFINE FOOT (S4-288)
(LAMBDA EXPR [VECTOR] (TAIL (LENGTH VECTOR) VECTOR))

FIRST, LAST, REST, and EMPTY are self explanatory. FOOT is a procedure, intended to be used

primarily over rails. that returns the particular empty rail at the end of a rail. This is useful

since RPLACT of the foot of a rail will extend a rail. FOOT will be illustrated in section

4.b.vii.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 33S

4.b. v. The Creation of New Structure

Most of the primitive procedures we have introduced - +, -, •. 1, CAR, co~, TYPE, ••

and LENGTH - were what we will call procc.durally simple, in that their proceJural

consequence was simply a consequence of their declarative import coupled with the

nonnalisation mandate. Two others - NTH and TAIL - were slightly more involved. in

that their procedural consequence involved a preservation of syntactic identity of arguments

above and beyond that mandated by declarative import and normalisation requirements.

None of these, however, have involved any side effects or creation of new structure. There

are two additional classes of structural primitives to be introduced: one having to do with

the creation of (or access to) structure otherwise inaccessible, and one having to do with the

modification of the mutable relationships in the field. Members of the first class include

PCONS, RCONS, SCONS and PREP; of the second, RPLACA, RPLACD, RPLACN, and RPLACT. We will

look at each class in tum.

In t-LISP, the basic structure creation mechanisms were two: the use of parentheses

in the lexical notation, and calls to the CONS function. Because 2-usP has both rails and

pairs, there are two notations that create structure: parentheses and brackets. There are in

addition two procedures that generate new structure: PCONS, which creates pairs just as in 1-

L ISP. and HCONS, which creates rails.

Infonnally. PCONS is rather like 1-LISP's CONS: it is a function of two arguments that

engenders the creation of a new pair whose CAR is the structural field element designated by

the first argument, and whose con is the structural field element designated by the second.

The new pair is designated by the whole application; therefore a handle designating the

new pair will be returned as the result RCONS, on the other hand, takes an arbitrary

number of arguments, aP.d designates a new rail whose elements arc the referents of its

arguments. RCONS is not unlike the 1-LISP LIST. Some examples:

(PCONS 'A 'B) => '(A . B} (S4-291)
(PCONS '+ '[2 3]) => I(+ 2 3)
(RCONS 'NOW 'IS 'THE 'TIME) => '[NOW IS THE TIME]
(PCONS 'NAME (RCONS 'X 'Y)) => '(NAME X Y)
(RCONS) => '[]
(PCONS} => <ERROR>

4. 2-usP: A Rationalised Dialect Procedural Reflection 336

The 2-LISP PCONS is mathematically described, as in 1-LISP, in tenns of the

designation of an otherwise inaccessible pair, with the CAR and CDR relationships of the field

mooified appropriately. More formally, we have the following account First the full

sjgnificaiice:

l:{Eo("PCONS)) {S4-292)
,. [AE.AF .AC .

C("(EXPR Eo [A BJ (PCONS AB)),
[A<S1,E1,f1> • ::E(S1,E1,F1,[.\<S2,D2,E2,F2> • Pl)]
E,
f)]

where [[P € PAIRS] A [CAR(P,Fz) = oz'] A (COR(P,F2) = o/)]

Of more interest is the internalisation, since it is here where the side-effects arc manifested:

A[Eo("PCONS)] (S4-293)
,. AS1 .AE 1 .AF1 .AC •

l:(S1,E1,f1,[A<S2,D2,E2,F2> • C(HANDLE(P),E2,f3)])
where [(P E PAIRS) A

[F3 = <F4 ,Fc:,F/,F/,F/>] A
[HIACCESSIBLE(P,E2 ,F;)] A
[VP' E PAIRS

[1r [P' = r]
then [IF4 (P') = HANDLE-1(NTH(1,S2 ,f2))] A

[Fd(P') = HANDLE-1(NTH(2,S2,F2)) Il
else [[r.{P'} = F/(P'}] A [Fd(P') = F/(P'}Jl]])

Similarly, we have the following significance for RCONS:

l:(Eo("RCONS))
= [AE.AF.AC .

C("(EXPR ~ ARGS (R. ARGS)),
[A<S1,E1,F1> • ~(S1,E1,f1,[A<S2,D2,E2,F2> • R])]
E,
F)]

where U R E RAILS) A
[Vi l~f~LENGTtl(Oz,Fz) [NTH(1,R,Fz) = D2 1 ffl

(S4-294)

Of note in this characterisation is the fact that in the primitive RCONS closure the list of

fonnal parameters is a single atom ARGS, rather than a rail of atoms. As a consequence

ARGS will be bound to the arguments as a whole, rather than to them one by one, thus

facilitating the use of an indeterminate number of them. This practice is explained in

section 4.c.

The foHowing equation expresses the internalisation of the ncoNs closure, manifesting

the structure creation:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 337

A[Eo(•RCONS)] (S4-296)
• AS1 .AE1 .AF1,AC •

I(S1,E1 ,f1 ,[A<S2,D2,E2 ,F2> . C(HANDLE(R0),E2 ,F3)])

where ([F 3 • < f z 1 , F z2, fr.fr, f />] A
[Vi 0515LENGTH(D2,F2)

[3Rt € RAILS [INACCESSIBLE(R1,E2 ,F2)ll) A
[VR' E RAILS

[1f [31 O;S1;S[LENGTH(D2 ,F2)-1] [R' • Rt])
then ff Fr(R') • HANOLE" 1(NTH({ 1+1) ,S2, Fz))] A

(Fr(R') a R1+11l
e1se1f [R' • Rd

then [[F,(R') • .L] A[Fr(R') "J.ll
else [(F,(R') • F/(R')] A [Fr(R') a F2

4(R')]]))I

Though these equations completely charactP.rise the designation and import of these

two procedures, there are rather a wide var.c,y of consequences that stem from them, which

should be illustrated. First, the crodal fact about these two flavours of CONS - this is why

the first syllable of "constn:~t•' is part of their name - is that on each normalisation a

different s-expressio,1 is designated. This is the weight borne by the term

INACCESSIBLI:(R, E. F) in the internalised function. In this sense the "declarative" meaning

is dP;iendent on the procedural treatment. This is a different kind of dependence than

procedure~ (like PRINT) that have procedural consequence above and beyond t11eir

declarative import (applications in tcnns of PRINT always designate Truth).

The reason we arc concerned about the fact that calls to PCONS and RCONS return new

s·expressions is of course in case of subsequent side·e(!'ects. A striking difference between

2-LISP and 1-LISP has to do with "empty" enumerators. In 1-LISP the atom NIL served as

the null list; being an atom, it could not be extended, as the example in S4-67 made clear.

Since in 2-LISP all rails can be extended using RPLACT (to be defined below}, it is clear that

one cannot in general use a constant as the starting element when building up an

enumeration. Consider for example the following 1-LISP program to reverse a list:

(DEFINE REVERSE (LAMBDA EXPR (L) {REVERSE• L NIL)))

{DEFINE REVERSE• ; These are 1-LISP (S4-297)
(LAMBDA EXPR {OLD NEW)

(IF (NULL OLD)
NEW
(REVERSE• (CDR OLD) (CONS (CAR OLD) NEW)))))

A simple-minded translation into 2-LISP would be the following program defined for rails

(EMPTY, FIRST, and REST were defined above; PREP, defined below, ~·eturns a new rail whose

4. 2-LISP: A Rationalised Dialect Procedural Reflection 338

first element is the first argument and whose fint tail is the second):

(DEFINE REVERSE (LAMBDA EXPR (L] (REVERSE• L '[])))

(DEFINE RE"/ERSE•
(LAMBDA EXPR [OLD NEW]

(If (EMPTY OLD)
NEW
(REVERSE• (REST OLD) (PREP (FIRST OLD) NEW)))))

(54-298)

(S4-299)

This definition of REVERSE, however, has a bug, as the following session demonstrates:

> (SET X (REVERSE '[EXAMPLE FIRST THE IS THISJ)) (54-300)
> '[THIS IS THE FIRST EXAMPlE]
> (SET Y {REVERSE '[DIFFERENT IS SECOND THEJ)J
> '[THE SECOND IS DIFFERENT]
> {RPLACT 6 X '[WITH A NEW TAIL])
> '(WITH A NEW TAIL]
> X Xis changed, as expected
> '(THIS IS THE FIRST EXAMPLE WITH A NEW TAIL]
> Y Y is changed as well!
> '(THE SECOND IS DIFFERENT WITH A NEW TAIL]

The problem is that the very same mutable empty rail designated by · [J in the first line of

S4-298 is used as the foot of every rail returned by REVERSE, and thus any modification of

this empty rail wilt aiTect every reversed rail. In fact, not only is every other tail produced

by this procedure affected. but the rail within the procedure is changed as well. If the

body of REVERSE were printed out following the console session just illustrated, the

definition would look as follows:

(DEFINE REVERSE (S4-301)
(LAMBDA EXPR [L] (REVERSE• L '(WITH A NEW TAIL])))

A corrected version of S4-298 is the following:

(DEFINE REVERSE (LAMBDA EXPR (L] (REVERSE• L (RCONS)))) (S4-302)

The definition of REVERSE• can remain as is. With the new definition we would have:

> (SET X (REVERSE '[EXAMPLE FIRST THE IS THIS])) (S4-303)
> '[THIS IS THE FIRST EXAMPLE]
> {SET Y (REVERSE '[OIFFCRENT IS SECOND THE]))
> '[THE SECOND IS DIFFERENT]
> {RPLACT 6 X '[WITH A NEW TAIL])
> '[WITH A NEW TAIL]
> X Xis changed, as expected
> '(THIS IS THE FIRST EXAMPLE WITH A NEW TAIL]
> Y Y is unchanged, as expected
> '[THE SECOND IS DIFFERENT]

4. 2-LISP: A Rationalised Dialect Procedural Reflection 339

This is as it should be. The moral is simple: the rationalisation of side effects to work on

empty as well as non-empty rails implies that quoted empty rails should be used with

caution; expressions of the form (RC0NS) are by and large safer. 2-LISP's '[], in other

words, is potentially quite different from t-LISP"s '().

It should not be concluded, of course, that there is a single empty rail designated by

'[], as the following demonstrates:

("' '[] '(]) (S4-304)

Rather, the difference between ' [] and { RC0NS) brings out the difference between structure

constmction by the reader and stmcture constmction by the processor. The point is that the

notation "· []" causes a new inaccessible rail to be selected by the reader, but the handle

that this notation notates forever designates the same empty rail. On the other hand, the

string "(RCONS)" notates a pair, each normalisation of which designates a different empty

rail. The difference is exactly the same as that between the .constmction of pairs implied by

parentheses and dots, versus the creation of pairs implied by occurences of the procedure

PCONS.

Another different between 1-LISP's CONS and 2-LISP's RC0NS and PC0NS has to do

with the inherent typing of the results from 2-LISP's semantical characterisation. In

particular, in 1-LISP we have such welt-formed evaluations as:

(CONS 1 2) ➔ (1 . 2) ; This is 1-LISP (S4-305)
(CONS T NIL} ➔ (T)

On the other hand, in 2-LISP all of the following generate type crmrs:

(PC0NS 1 2) => <TYPE-ERROR> (S4-306)
(RC0NS $T SF) => <TYPE-ERROR>

In both cases the functions in question are extensional functions defined over s-expressions,

and should therefore be given s-cxprcssion designators as arguments. All four arguments in

the two examples in S4-306 designate abstract, rather than structural, entities. Of course

the following are well-behaved:

(PCONS '1 '2)
(RCONS 'ST 'SF)

=> '(1 . 2)
=> '[ST SF]

(S4-307)

'There is more to be said on this subject, however - for example, the facilities

demonstrated do not enable us to constmct a rail consisting of the numerals designating the

4. 2-LISP: A Rationalised Dialect Procedural Reflection 340

numbers designated by two variables, since the following yields another type error:

(LET [[X 3] [Y 4]] (RCONS X Y)) =:> <TYPE-ERROR> (S4-308)

and the following attempted solution fails in intent:

{LET [(X 3] (Y 4]] (RCONS 'X 'Y)) =:> '[X Y] (S4-309)

What we wanted was the rail (3 4], to be designated by the handle '(3 4]. The correct

solution, using · the primitive naming facility yet to be fonnally introduced but so often

illustrated, is the following:

{LET [[X 3] (Y 4]] (RCONS tX tY)) ~ '[3 4] ($4-310)

In the 1-LISP derived notion of a list, the CONS procedure serves an often-useful

function of prepending an element to a list: returning, in other words, a list whose 1ST is its

first argument and whose REST is its second. That this was so foUowcd directly from the

way in which lists were implemented in t -LISP, but we do not have access to this solution

in z-LISP, given our separation of pairs and rails. As hinted in the example given in S4-

299 above, we use instead a procedure called PREP (pronounced to rhyme with "step" but

short for prepose or prepend) which is defined to return a new rail whose first element is the

referent of its first argument (which must be an s-expression), and whose second tail is the

referent of the second argument (which must be a rail}. It is possible to define PREP as

follows:

(DEFIHE PREP
(LAMBDA EXPR [FIRST REST]

(LET [[NEW (RCONS FIRST)]]
(BLOCK (RPLACT 1 NEW REST)

NEW})))

(S4-311)

This definition, however, is ugly: it awkwardly uses a side-effect in order to provide a very

simple behaviour. In addition, its functionality so very useful - particularly because of its

natural use in recursive functions that build up structure, such as the REVERSE example of

S4-299 - that we make it a primitive part of 2-L ISP. It has already been tacitly implied

that our 2-LISP definition is not strictly minimal; this is even more true in 3-LISP, where

the basic reflective powers enable one to define non-primitively a variety of procedures one

would expect to find as primitive (including SET and LAMBDA). The present example is thus

just one example of a situation in which utility over-rules minimalism as a design aesthetic.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 341

It should be noted that. because of the ability to objectify arguments, RCONS serves as

a one-level-deep copying function. Suppose in particular that expression x designates a rail;

then the expression , RCONS . x} will nonnalise to a different rail with the same elements, as

illustrated in the following examples (actually this works because of a subtlety regarding the

relationship between a designator of a rail of s-expressions and a sequence of designators of

s-exprcssions - see section 4.c.iii):

> (SET X '[THIS IS A TEST])
> '(THIS IS A TEST]
> (SET Y (RCONS. X))
> '(THIS IS A TEST]
> (• X Y)
> SF
> (RPLACN 2 X 'WAS)
> 'WAS
> X
> '[THIS WAS A TEST]
> y
> '[THIS IS A TEST]

(S4-312)

X was modified,

but Y, the copy, was not.

The same is of course not true of PCONS: if x designates a pair, such as (A . B), then

(PCONS . x) will fail, because PCONS expects an argument designating a sequence of two

objects, and x designates a pair, not a sequence. However a simple pair copier - or a

generalised copier defined over pairs and rails - could readily be defined.

Again it is useful to define a utility - call XCONS - for constructing redexes (not to

be confused with MACLISP's xcoNs, which is a variant of CONS that takes its arguments in

reverse order). (XCONS <F> <A1> <A2> ••• <Ak>), in particular, will designate a new redcx

whose CAR is <F> and whose CDR is the rail [<A1> <A2> ... <A1t>]:

(DEFINE XCONS
(LAMBDA EXPR ARGS

(PCONS (1ST ARGS} (RCOHS . (REST ARGS)))))

Thus for example we would have:

(XCONS '+ '1 '2)
(XCONS 'RANDOM)
(XCONS '1ST '[2 3 4])

=> '(+ 1 2)
=> '(RANDOM}
=> '(1ST [2 3 4])

(S4-313)

(S4-314)

xcoNs will of course be useful primarily in programs that explicitly constmct other

programs.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 342

4.b. vi. Vector Generalisations

So far our discussions of structure creation have focused exclusively on procedures

that designate s-expressions - pairs and rails - since it is only meaningful to talk of

creation and accessibility with regard to elements of the structural field. We did not,

therefore. mention the creation of new sequencer. all sequences are mathematically abstract

and are assumed to exist Platonically, independent of the state of the field However we

cannot afford to ignore sequences completely, even from the point of view of structure

creation, as this section will demonstrate. In section 4.b.iv we defined the term vector to

include both rails and sequences. and extended the qomains of the selectors functions -

NTH, TAIL, and LENGTH - to include vectors of both types. It will tum out that we need to

define a constructor function SCONS for sequences, and to extend PREP to work over

s<>.quences as well ..

In section 4.b.iv we commented that the three selector functions - NTH, LENGTH, and

TAIL - were defined over both sequences and rails. Thus we had, for example:

(LENGTH [])
(LENGTH '(]}
(NTH 2 (10 20 30])
(NTH 2 '(10 20 30])

=> 0
=> 0
=> 20
=> '20

(S4-315)

In the first and third example, a rail was used in order to mention a sequence; in the

second and fourth, a handle was used in order to mention a rail. 1be relevance of these

observations here is this: when discussing rail creation in the previous section, we discussed

only those circumstances in which rails were mentioned (by using handles, and by using

applications formed in terms of RCONS and so forth). What we did not discuss was the issue

of the identity of rails in contexts where they are used, to designate sequences. It is this

question that deserves attention.

Some relevant facts have already been stated. For example, we said that some, but

not a11, rails were normal-fonn sequence designators. In particular, those whose elements

were in normal-form were themselves considered to be in normal fonn. We stipulated

further - and we noted that this was a more stringent requirement on the processor than

mere satisfaction of the normalisation mandate - that all normal-fonn designators

normalised to themselves. In other words, nonnal-fonn rails selfnom1a/ise; they do not

4. 2-LISP: A Rationalised Dialect Procedural Reflection 343

simply normalise to an arbitrary normal-form rail designating the same sequence. In other

words, although there can exist in the field any number of distinct rails consisting of the

numerals 2, 3, and 4, each of them will normalise to itself, rather than to any other. (This

is important in part in underlying the fact that multiple normalisations are harmless; the

result of the first is the exactly the same as that of any further ones, intensionally as well as

extensionally.)

This property of 2-LISP's processor can be noticed using, once again, the ubiquitous

operator that designates the name of its argument First, we observe that normal-fonn rails

normalise to lexically indistinguishable rails, as do handles of rails, but not rails that are not

in normal-form. In addition, we can see that -t<EXP> designates a normal-form designator

of the referent of its argument - and furthermore, not just any normal-form designator of

the referents of its argument, but that nonnal-fonn designator to which its argument would

nonnalise (this will be reviewed in section 4.d):

(2 3 4] => (2 3 4] (S4-316}
'(2 3 4] => '[Z 3 4] (S4-317)
t[Z 3 4] => '[2 3 4] (S4-318)
(2 (+ 2 1) (+ 2 2)] => [2 3 4] {S4-319)
'[2 (+ 2 1) (+ 2 2)) => '[2 (+ 2 1) (+ 2 2)] (S4-320)
1(2 (+ 2 1) (+ 2 2)] => '[2 3 4] (S4-321)

What is not apparent from these examples, however, is the identity of the rails on the right

hand side of these normalisations. in terms of the identity of those on the left. The

answers, however, were alt predicted by the equations in section S4-105: namely, that in

S4-316, S4-317, S4-318, and S4-320 the rail on the right is the same rail as that on the left,

whereas in S4-319 and S4-321 it is obviously different. In other words, all ~c rails that are

type-equivalent lexically {in these six examples) are in fact identical, although that is of

course not generally true, as the following illustrates:

(= [2 3 4] [2 3 4))
(= '[2 3 4] '[2 3 4])
(= t[Z 3 4] 1(2 3 4])

ST
SF
$F

The ruling equation {provably true for the 2-LISP processor) is this:

VS ES [NORMAL-FORM(S) e [VEE ENVS, FE FIELDS ['l'EF(S) = s]Il

(S4-322)
(S4-323)
(S4-324)

(S4-326)

This explains how rail identity is preserved in S4-316, S4-317, and S4-320, and why it is not

preserved in S4-319 and S4-321. S4-322 through S4-324 are explained because in each case

. ,.,,

4. 2-LISP: A Rationalised Dialect Procedural Reflection 344

the two lexical rail-notators (elements of L-RAIL) notate a distinct rait S4-322 designates

truth because the equality predicate is applied to the designated sequences, not to the

designating rail. It is, however, not as immediately obvious that S4-318 can be accounted

for by the same considerations.

That it does is again predicted by S4-105. Another example illustrating this point is

the following:

> (SET X '[2 .f])
> '[2 4]
> (SET Y '[Z (+ l 3)])
> '(2 (+ 1 3)]
> (• X Y)
> SF
> (NORMALISE X)
> '[2 4]
> (l!ORMALISE Y)
> '(2 4]
>(•(NORMALISE X) (NORMALISE Y))
> SF
> (" X (NORMALISE X))
> ST
> (• Y (NORMALISE Y))
> SF
> (LET [[It/ (NORMALISE X)]]

(• W (NORMALISE W)))
> ST
> (LET [[W (NORMALISE Y)JJ

(• Iii (NORMALISE It/)))'
> ST

(S4-326)

These are of course different rails

tX and tY normalise to equivalent
expressions because the referents of
X and Y are co-designative terms.
However they normalise to
d1fferent handles.
Xis self-normalising, because it is
in normal form already, whereas
Y is not self-normalising, because
it is not in normal form.
On the other hand both X and Y
normalise to self-normalising
expressions.

The circumstance explored in this dialog is pictured in the following diagram (single-lined

arrows signify designation relationships (IP), double-lined arrows signify n01malisation

relationships (it), and boxes with heavy outlines are normal·fmm expressions. which

normalise to themselves):

't NORM X'

(NORM X ' 2

the abstract se uence <2,4>

(S4-327)

at NORMY

It is crucial, in interpreting this figure, to recognise that HEXP> designates the result

of normalising <EXP>; thus HEXP> normalises to the handle of the result of normalising

4. 2-LISP: A Rationalised Dialect Procedural Reflection 34S

<EXP>. Thus 1'[] will always normalise to the same handle. Jn other words:

(LET ([X []]] (= tX tX)) ST {S4-328)

Toe consequences of all of this investigation are this: any given empty rail wili self

normalise: if the naming operator t is used to obtain mention of this rail, than that rail can

be modified. Often this is not a problem, because in a typical procedure body rails are

used wi.th variables which are not normat-fom1; thus if that rail is normalised before being

returned, a new rail is generated. Thus we have the following innocuous example (note the

use of SET rather than SETO; this will be explained in section 4.c. vi):

> (DEFINE TEST {LAMBDA EXPR [A BJ [A BJ)) (S4-329)
> TEST
> (SET X (TEST 3 4))
> [3 4]
> (SET Y (TEST $T $F))
> [ST SF]
> (RPLACT 2 ~X '[10 20 30])
> '[10 20 30]
> X
> (3 4 10 20 30]
> y
> [ST SF] no problems are encountered
> {PRETTY-PRINT TEST) no problems are encountered

(DEFINE TEST (LAMBDA EXPR [AB] [AB]))

Toe troubles arise only when empty sequences are designated. Suppose we for example

define a recursive copying procedure intended to construct a new designator of the

sequences of its argument's referent in every case, using the PREP function:

(DEFINE COPY 1

(LAMBDA EXPR ARGS
(IF (EMPTY ARGS)

[]
(PREP (1ST ARGS) (COPY1 • {REST ARGS}))}))

Toe intent is to engender the following sorts of behaviour:

> {COPY1 l 2 3)
> (1 2 3]
> (SET X ['FOUR 4])
> [' FOUR 4]
>(•XX)
> ST
> (• U tX)
> ST
> (a X (COPY1 . X))
> ST
> (• tX t(COPY1 • X))

X of course designates a single thing

Furthermore, Xis in normal form

They designate the same sequence

(S4-330)

(S4-331)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 346

> SF ; But they are different designators

These intended results are all generated by the definition given: COPY 1 indeed constructs a

new rail, but only if ARGS is non·empty. Furthennore - against the original intent - every

rail returned by COPY 1 shares the same foot, as i11ustrated in:

> (• (COPY1) (COPY1))
> ST
> (• -t(COPY1) ~(COPY1))
> $1
> (SET X (COPY1 3 4))
> (3 4]
> (SET Y (COPY1 5 8))
> [6 6)
> (RPLACT 2 -tX '[10 20 30])
> (3 4 10 20 30]
> y
> (5 6 10 20 30]
> (PRETTY-PRINT COPY1)

(DEFINE COPY 1

(LAMBDA EXPR ARGS
(IF (EMPTY ARGS)

[10 20 30]

This is as it should be

But this should be $F

X has been modified as expected

But Y has been modified as well
So has the definition of COPY1
{the modified part is underlined)

(PREP (1ST ARGS) (COPY1 • {REST ARGS))}))}

(S4-332)

TI1e solution, instead of using (], is to call the primitive function scoNs, which, like RCONS,

returns a new (otherwise inaccessible) designator of the sequence of referents of its

arguments. For example:

> (DEFINE C0PYz
(LAMBDA EXPR ARGS

(IF (EMPTY ARGS)
(SC0NS)
(PREP (1ST ARGS) (C0PYz. (REST ARGS))))))

> COPYz
> (SET X (C0PY2 3 4))
> [3 4)
> (SET Y (C0PYz 5 6))
> (6 6]
> (RPLACT 2 -tX '[10 20 30])
> (3 4 10 20 30]
> y
> [5 6] No problems arise, in Y
) (PRETTY~PRIFiT COPY2i or in COPY2

(DEFINE COPY2
(LAMBDA EXPR ARGS

(IF (EMPTY ARGS)
(SCONS)
(PREP (1ST ARGS) (COPY2 • {REST ARGS))))))

> (• (COPYz} (COPY2))
> ST : As expected (both designate the

(S4-333)

4. 2-LISP: A Rationalised Dialect

> (• f'(COPYz) f'(COPYi))
> $F

Procedural Reflection 347

; empty sequence), but they are
; different designators.

It should be apparent, in fact, that SCONS is COPY2,

The following examples illustrate in brief how SCONS, RCONS, and PCONS differ:

(SCONS) => [] (S4-334)
(RCONS) => '[]
(PCONS) => <ERROR: Too few arguments>

(SCONS 'A 'B 'C) => ['A 'B 'C] (S4-335)
(RCONS 'A 'B 'C) => '[A 8 C]
(PCONS 'A '8) => '(A . B)

(SCONS 1 2 3) => [1 2 3] (S4-336)
(RCONS 1 2 3) -~ <TYPE-ERROR: Expected ans-expression>
(PCONS 1 2) => <TYPE-ERROR: Expected ans-expression>

The reader may well wonder whether the distinction between rails and sequences,

which apparently gives so much trouble, is worth the effort. The answer is an unqualified

yes, for a number of reasons. First, we have no choice: it may be that the difference

between an abstract sequence of numerals and a rail of numerals is slight, but we simply

cannot have a rail of arbitrary objects - like large cities - without violating the very basis

of computation. We are forced, in other words, to distinguish structural entities from their

referents, by foundational assumptions. That. fact, coupled with our inclusion of the

structural field in the semantical domain - crucial for such meta-structural considerations

in general, and for reflection in particular - leads straight away to the fact that we must

encompass both. A possible reply is then that the system might provide automatic

conversion between rails and sequences just in ca~e all of the sequence's clements were

internal (elements of the field}. However this is inelegant and dangerous, in that one is

likely to lose any clear sense of the possible range of side-effects.

Furthennore the distinction is far more principled than that between EQ and EQUAL in

t-LISP. In addition, if we include a derivative notion of type-equivalence on vectors, in the

way in which we did in order to define 1-usr's EQUAL - if, in other words, we define a

procedure TYPE-EQUAL as in S4-257 - we obtain three levels of grain in tenns of

distinguishing orderings, all semantically well-defined. In fact an infinite number of levels

could be distinguished, by defining a type-equivalence predicate defined over vectors whose

elements were individually identical, and another over vectors whose elements were type

equivalent to some degree, and so forth. This suggestion is just the same as the one we

4. 2-LISP: A Rationalised Dialect Procedural Reflection 348

passed by in defining type-equivalence over lists in 1-LISP We again give some

illustrations:

> (• 1 1)
> ST
> (TYPE-EQUAL 1 1)
> ST
>(•fl fJ ZJ [1 [] 2])
> SF
> (TYPE-EQUAL [1 [] 2] [1 [] 2])
> ST
> (SET X '[THIS IS A RAIL])
> '[THIS IS A RAIL]
> (• X (RCONS. X))
> SF
> (TYPE-EQUAL X (RCONS. X))
> ST

(S4-337)

We will use the~e distinctions when appropriate, with due regard for the potential

confusions they engender. In practice, such confusions are slight: if one consistently uses

(SCONS) in place of [J and (RCONS) in place of ' [], all of the identity problems effectively

e·vaporate. Furthermore, the use of TYPE-EQUAL is rarely mandated.

What remain arc possible programming use/mention type-errors: using a rail when a

sequence was intended, and vice versa. There is no confusion in 2-LISP's behaviour in this

regard; quite the contrary: the programmer's problem is usually 2-usp's unswerving

strictness. By and large this will simply be admitted, but one important concession to user

convenience will be made, regarding the binding of variables, where a sequence of handles

will be made to bind in a manner exactly parallel to a rail of referents. This will be

discussed further in section 4.c.iii.

Though RCONS and SCONS are different, we have observed that NTH, TAIL, and LENGTH

are defined over vectors of both types. PREP is also defined over both types: it will return a

new designator of the same type as its second argument:

(PREP 'A '[B C])
(PREP 3 [4 6 6])
(PREP 'A (RCONS))
(PREP $T (SCONS))

'[ABC]
[3 4 6 6]
'[A]
[ST]

(S4-338)

Though primitive, even this extended version of PREP could have been (awkwardly} defined

as follows:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 349

(DEFINE PREP
(LAMBDA EXPR [ELEMENT VECTOR]

{CASE {TYPE VECTOR)
[RAIL {LET [[NEW (RCONS f.LE~ENT)]]]

(BLOCK (RPLACT 1 NEW VECTOR)
NEW))]

[SEQUENCE (LET [[NEW {SCONS ELEMENt)]]
(BLOCK (RPLACT 1 tNEW tVECTOR)

NEW))]))}

(S4-339)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 350

4.b. vii. Structural Field Side Effects

The final category of structural field primitives we have to introduce are those that

modify the mutable first-order relationships: CAR, CDR, FIRST, and REST. 'There are four

such functions: RPLACA and RPLACD (as in 1-LISP), that change the CAR and COR of a pair,

and RPLACN and RPLACT. that change elements and tails of rails. Ea\'.:h is defined to "return"

the modified pair or rail, having a new CAR, CDR, element, or tail, as the r..ase may be. We

have already used all of these functions, in ordt>r to demonstrate the salient identity

conditions on the structures involved; in this section we will present them more carr.fully.

RPLACA and RPLACD are as in t-LISP, except of courae they arc not used to modify

em,merations, since pairs arc no longer the basis for an implementation of lists. Some

examples:

> (SET X '(LENGTH [IT WAS THE 8£ST OF TIH£S]))
> '(LENGTH [IT WAS THE BEST OF TIMES])
> (RPLACA X 'TAIL)
> '(TAIL [IT WAS THE BEST OF TIMES])
> (RPLACD X '[2 [CITIES]])
> '(TAIL 2 [CITIES])

(S4-343)

Because we no longer use lists, and have no distinguished atom NIL, no questions arise

about modifying the ends of lists; or of modifying NIL.

Semantically, we P-xpect that ,i1e side-effects effected by RPLACA and RPLACD will be

maflifestcd in the characterisation of their full procedural consequence, in terms of l!. In

terms of local procedural consequence they are straightforward: they return the

normalisation of their second argument. What is rather unclear, however, is what their

declarative semantics should be, since it is rather unclP.ar that in any natural sense

expressions of this sort stand Jvr or refer to anything: it would seem that their entire import

js conveyed in their structural effects.

In a-LISP we will examine a rather elegant way in which to embody in the formal

machine the intuition that expressions with side effects should not be made to designate

anything, and similarly not to return anything. When we show how the processor works,

we can demonstrate a way in which the primitive procedures that exist in order to change

the field can call their cor.tinuatlons with no arguments, implying that their local procedural

consequence is null (even though their full procedural consequence is substantial). Wt will

4. 2-LISP: A Rationalised Dialect Procedural Reflection 3Sl

at that 9oint define a more sophisticated 'lLOCK function that demands an "answer" only

from the last form within its scope.

For the tirne being, however, since we don't have machinery for denying a function

any declarative import. we will say that each of these {and RPLACN and RPLACT, discussed

below) designates the new fragment, thus satisfying the normalisation mandate. In

particular, we have the significance/internalisation pair for RPLACA:

l:(Eo("RPLACA))
= [AE.AF.AC .

C("(EXPR Eo [PAIR A] (RPLACA PAIR A)),
(A<S1,E1,F 1> l'!(S1,E1,f1,[A<Sz,02,E2,f2> • D/])]
E,
f)]

A[Eo("RPLACA)l
"' AS1,AE1.AE1.AC •

l:(S1.E1,F1,[).<S2 ,D2,E2,F2> . C(NTH(2,S2,F2),E2,F3)])
where [[r3 "' <F.,Fz2,F2

3 ,F2
4 ,F/>] A

[VP € PAIRS [if [P = HANDLC1(NTH(t.S2 ,F1))) .

And similarly for RPLACD:

l'!(Eo("RPLACD))
= [AE.Af.AC .

then [F.(P) = HANDLe··~NTH(2,Sz,Fz)))

e 1 s 9 [F • { P} = F 2
1

(P) Jill

C("(EXPR Eo [PAIR DJ (RPLACD PAIR D)),

[A<S1,E1,F1> • l:(S1,E1,f1,(A<S2,D2,E2,f2> . D/])]
E,
f}]

A[Eo("RPLACD)]
= AS1,AE1,AF1.AC .

l'!(S1,E1,f1,[A<Sz,D2,E2,F2> . C(NTH(2,S2,f2),E2,f3}])
where ([r3 .. <F/,rd.rz3.r/,rz6>] A

[VP E PAIRS [if [P = IIANDLE"1(NT11(1,S2 ,F2))]
then [fd(P) = HANDLE"1(NTH(2,S2 ,F2))]
&1s9 [fd(P) = F/(P)])J)

(S4-346)

(S4-346)

(S4-347)

In both cases the field passed back to the main continuation {as evidenced in the third line

of the equation setting forth the internalised function) is not Fz, which is the one received

from the normalisation of the arguments, but rather is just like r 2 except that the CAR or

CDR of the argument is modified, as one would expect.

TI1c two rail modifiers are more complex, as previous examples have intimated.

RPLACN (for "replace Nth") and RPLACT (for "replace tail") each take 3 arguments: the first

4. 2-LISP: A Rationalised Dialect Procedural Reflection 352

designates an index into the rail that is designated by the second argument; the third

designate$ the new element or tail, respectively. The first argument to RPLACN should

designate a number between 1 and the length of the rail; the first argument to RPLACT

should designate a number between O and the length of the rail, since for any rail of length

N there are N+t defined tails. In both cases the modified second argument is returned as

the result We ~ave illustrated both of these functions from time to time in preceding

sections; the following examples review their straightforward behaviour:

X b11fore:

(CAVE CANEM]
(]
[I LIKE TO WATCH]
[t 2 3 4 6 6]

Form norma11sed:

(RPLACN 2 X 'CANTEM)
(RPLACT OX '[NEW TAIL))
(RPLACT (LENGTH X) X '[TOO])
(RPLACT 3 X (RCONS))

X after:

[CAVE CANTEM]
[NEW TAIL]

(S4-348)

[I LIKE TO WATCH TOO)
[1 2 3]

It is instructive as well to define several standard utility functions on rails, to illustrate the

ul-e of these procedures. First we give simple definitions of the 2-LISP rail analogues oft

LISP's NCONC and APPEND - two procedures that destructively and non-destructively

construct the concatenation of two enumerations (we use the term JOIN in place of NCONC;

the straightforward COPY is defined in S4-975):

(DEFINE JOIN (S4-349)
(LAMBDA EXPR [Rt R2] {RPLACT (LENGTH Rt) Rt R2)))

(DEFINE APPEND (S4-360)
(LAMBDA EXPR [Rt R2] (JOIN (COPY Rt) R2)))

Equivalently, JOIN can be defined in terms of the FOOT utility defined in S4-288:

(DEFINE JOIN (S4-361)
(LAMBDA EXPR [Rl R2] (RPLACT O (FOOT Rl) R2)))

Another example is the following procedure, called EXCISE, that takes as arguments an

element and a rail and destructively removes any occurences of that clement in the rail,

splicing the remaining parts together, and returning the number cf occurenccs removed:

{DEFINE EXCISE
(LAMdDA EXPR [ELEMENT RAIL]

(EXCISE• 0 ELEMENT RAIL)))

(DEFINE EXCISE•
(LAMBDA EXPR [N ELEMENT RAIL]

(COND [(EMPTY RAIL) N]
[(= ELEMENT (1ST RAIL))

(BLOCK (RPLACT O RAIL (REST RAIL))
(EXCISE•{+ N 1) ELEMENT RAIL))]

(S4-362)

(S4-353)

4. 2-LISP: A Rationalised Dk.Ject Procedural Reflection 353

[ST {EXCISE• N ELEMENT (REST RAIL))])))

For example:

> (SET X '[I'LL NEVER SAY NEVER AGAIN AGAIN])
> '[I'LL NEVER SAY NEVER AGAIN AGAIN]
> (EXCISE 'NEVER X)
> 2
> X
> '[I'LL SAY AGAIN AGAIN]

(S4-364)

Straightforward as these examples seem. there are some subtleties that emerge on a

closer look, worth mentioning particularly because they yield behaviour substantially

different from that of 1-LISP. In particular, we have pointed out that the ability to use

(RPLACT o ...) to change all of a rail is a facility that 1-LISP did not have; the

consequences of this behaviour, however, are visible even if o is not used as a RPLACT index.

Consider for example the following session:

> (SET X '[IF NOT BECAUSE])
> '[If NOT BECAUSE]
> (SET Y (TAIL l X))
> '[NOT BECAUSE]
> (RPLACT 1 X '[AND ONLY IF]}
> '(ANO ONLY IF]
> X
> '[If ANO ONLY If]

(S4-366)

• as expected

The question, however, is what v designates in the resultant context If this were 1-LISP,

and lists were being used in place of rails, the answer would clearly be the "list" (NOT

BECAUSE}. In other word<: we have the following:

> (S!T X '(IF NOT BECAUSE))
> (If NOT BECAUSE)
> (SET Y (CDR X))
> (NOT BECAUSE)
> (RPLACD X '(AND ONLY IF))
> (AND ONLY If)
> X
> (If ANO ONLY If)
> y
> (NOT BECAUSE)

; This is 1-USP (S4-356)

as expected

Y doesn"t see the change to X

In some sense we have an option in 2-LISP - in that we could simply posit that in the

example given in S4-366 v should designate [NOT BECAUSE] - but this would mca11 that

RPLACT, if its first argument was other than zero, would have a discernably different

behaviour from that when its argument is zero. Such a design choicP. would nullify all of

the cleanliness we obtained by making our procedures work equivalently at any rail

4. 2-LISP: A Rationalised Dialect Procedural Reflection 354

position. rather than having to specify particular behaviour at the beginning and end. in the

1-LISP fashion. Therefore the only ar..ceptable choice is to have RPLACT unifonn. implying

that Y at the end of S4-366 should be bound to the handle '[AND ONLY IF].

Such a choice. moreover, represents no loss of power, for a procedure ,- we will call

it REDIRECT - can always be defined that mimics the 1-LISP style of behaviour. We can in

particular define the following:

(DEFINE REDIRECT (S4-367)
(LAMBDA EXPR [INDEX RAIL NEW-TAIL]

(IF (< INDEX 1)
(ERROR •REDIRECT called with too small an index•)
(RPLACT (- INDEX 1) RAIL (PREP {NTH INDEX RAIL) NEW-TAIL}))})

Thus we would have:

> (SET X '[IF NOT BECAUSE])
> '[IF NOT BECAUSE]
> (SET Y (TAIL 1 X))
> '(NOT BECAUSE]
> (REDIRECT 1 X '[AND ONLY IF])
> '(ANO ONLY If]
> X
> '[IF ANO ONLY If]
> y
> '(NOT BECAUSE]

(S4-3.18)

as expected

Y did not see the redirection of X

What is striking about this definition, however, is that it brings with it all of the problems

of 1-usP's RPLACO on lists: it cannot be used on the first element. Thus we are better off

in general with our unifonn definition.

Semantically, we have some choices as to how to characterise this behaviour. One

option would be to encode, within the meta-language, a constructive algorithm that

engenders the proper behaviour. Such an algorithm, of course, must be provided by an

implementation (one is given in the appendix). It is far simpler, however, to use a non

constmctive specification that merely states the constraints that such an implementation

must satisfy. From this point of view the behaviour of RPLACT is easily stated: the rail that

is changed should simply be different in the resultant context. Thus we can simply specify

that in the state that results from the execution of a RPLACT i11struction, every occurrence of

the old tail wilt be changed to an occurrence of the new rail. This is encoded in the

following two equations. The first is straightforwa,d, because it merely manifests the

declarative import, which is virtually identical to that of the other modifiers:

4. 2-LISP: A Rationa!ised Dialect Procedural Reflection 3SS

I(Eo(•RPLACT)) (S4-369)
• [AE.>.F.>.C .

C("(EXPR Eo [INDEX RAIL NEIi-TAIL] (RPLACT INDEX RAIL NEIi-TAIL)),
[A<S1,E;:-F1> . I(S1,E1,F1,['-<Sz,Oz,Ez,F2> • oz'])]
E,
F)]

The work is done in the following:

4[Eo("RPLACT)]
• AS~.AE1 .AF1 .AC .

I(S1 ,E 1,F1 ,[A<S2 ,D2 ,E 2 ,F2>. C(NTH(3,S2 ,f2),E3 ,f3)])
where Jet OLD• TAiL{M(NTH(1,S2 ,F2)),.

HANDLE-1(NTH(2,S2,F2)),
fz),

NEW= HANDLf-1(NTH(3,Sz,Fz))
1n [[(E3 E ENVS) A [f3 € FIELDS]) A

[VA E ATONS
[ff [E 2 (A) = OLD] then [E3(A) • NEW)

else [E3(A) "E2(A)]Il A
[VS € S, Vi t=s;1=s;6 .

[if [F2
1(S),. OLD] then [F3

1(A) "NEW]

81S8 [F31(A) • Fz1(A)]ffl

(S4-360)

This works because it constrains every possible access to the old tail, and simply states that

such accesses will henceforth point to the new rail. It is crucial that there is no way in

which an external (i.e., in virtue of lexical notation) structure can reference a rail directly:

all occurrences of lexical brackets construct new ones, as we have seen, and other ways in

which previously existent rails can be accessed must be mediated by the environment and

the field, both of which we have constrained appropriately.

The equations for RPLACN are simpler:

I(Eo("RPLACN)) (S4-361)
• [AE.AF.AC.

C("(EXPR Eo [INDEX RAIL ELEMENT] (RPLACN INDEX RAIL ELEMENT)),
[A<S1,E1,f1> . I(S1,E1,f1,[A<S2,D2,E2,f2> . D/])]
E,
Fl]

A[Eo("RPLACN)]
• AS1. AE 1 . AF 1. AC .

I(S1,E 1 ,f1,[A<Sz,Oz,E2,f2> . C{NTH{3,S2,F2),E2,f3)])
where [(F3 E FIELDS] I\

[F 3 = < f 21
, f ,2, Ft, F /, F ,5>] /\

[VR € RAILS
[1f [R "' TAIL(M(NTH(t,S2,f2)),

HANDLE" 1(Nftt(2,Sz,Fz)),
fz) J

(S4-362)

. ,...,

4. 2-LISP: A Rationalised Dialect Procedural Reflection 356

then [Fr(R) a HANDLE~(NTH{3,S2 ,F2))]

else [Fr(R} " F/(R) DB

As a kind of postscript. we may observe that the 2-LISP rail behaviour can be

implemented using a style of "invisible·pointer" mechanism, in the style of the M.I.T. LISP

machine. 1 Some subtlety is required, so that chains of invisible pointers do not get

constructed containing cycles, but the code is short and straightforward. One final example,

of the sort that inadequate implementations are likely to fail on, is the following:

> (SET X '(IF NOT TO TURN AGAIN])
> '(IF NOT TO TURN AGAIN]
> (SET Y (TAIL Z X))
> '[TO TURN AGAIN]
> (RPLACT 2 X '[AT THE BEGINNING])
> '[AT THE BEGINNING]
> y
> '[AT THE BEGINNING]
> X
> [IF NOT AT THE BEGINNING]
> (SET Z Y)
> '[AT THE BEGINNING]
> (RPLACT OZ (TAIL 2 X))
> '[AT THE BEGINNING]
> (RPLACT 2 X '[NOW WHEN])
> '[NOW WHEN]
> y
> '(NOW WHEN]
> z
> '(NOW WHEN]
> X
> '[IF HOT NOW WHEN]

4.b. viii lnput/Oupul

(S4-363)

no change to anything

We have by now dealt with t.:,e first five of the categories listed in table S4-165; the

last six remain. The three input/output procedures in 2-usP are sufficiently similar to

those in 1-LISP that they can be dealt with quickly, and the conditional, as well, is

straightforward (although semantically rather interesting). In this and the next sub·section

we wilJ deal with these two groups. The two naming primitives will then be taken up in

section 4.c, along with a general discussion of procedure construction, environments, and

binding protocols. Finally, the last two categories the semantical and processor

primitives - will occupy our attention in section 4.d.

111e three input/output functions of 2-usp arc adapted from t-LISP, although in

each case the argument designates the expression printed or read, rather than designating its

4. 2-usP: A Rationalised Dialect Procedural Reflection 357

referent This protocol follows from general semantical requirements, and is also the

natural design choice, but since it yields somewhat different behaviour from that oft-LISP,

we wiU look at examples.

In particular, there is a single procedure called (READ) whose procedural

consequence is to read in the lexical notation for a single s·expression from the input

stream, and to return a designator of that expression as a result Thus, declaratively. (REAO)

can be thought of as designating the structure notated by the "next" lexical expression in

the input A console session illustrates (we underline both input and output that is

independent of the reading and printing engendered by the READ-NORMALISE-PRINT loop.

malntaining the use of italics for input):

> (READ}&!
> '24
> (READ}

[TIME INEXORABLY DOES ITS THING]
> '(TIME INEXORABLY DOES ITS THING]
> (TYPE (READ}) $T
> 'BOOLEAN Not TRUTH-VALUE!
>(+(READ) (READ}) 4 6
TYPE-ERROR:+, expecting a number, found the numeral '4

(S4-364)

The reason that the last example produced an error is that what one "reads" arc in fact

expressions, not signified entities. Not only is this by and large what is wanted, it is also

semantically mandated. Suppose in particular that when the s-expression c READ) was

normalised the string 11
(+ 2 3) 11 was present in the input stream. The s-expression { + 2 3)

could not be returned as the result. since that s·cxpression is not in normal form.

Furthermore, it would be entirely inappropriate to nonnalise that cxpre'ision, and to return

the numeral 5; what we are discussing is simple reading. not a full READ-and-NORMALISE

processor. And even from an intuitive point of view, (READ) designates an expression; since

the processor is designation-preserving, the normal-fonn of (READ} should also designate

that expression. normally, which is just what the handle ' (+ 2 3) does.

That this behaviour is general1y appropriate is shown by the following example.

illustrative of the sort of code we will encounter when we construct the 2-LISP meta·

circular processor. NORMALISE is an extensional function defined over expressions, whose

value is the normal·fonn to which that expression would nonnalise. We have, for example:

> (NORMALISE (READ)) (+ 2 3}
> '5

(S4-365)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 358

In other words the argument to NORMALISE designates an expression to be nonnalised;

(READ) in this case designates the pair(+ 2 3), which normalises to the numeral 6 - which

numeral is designated by the handle returned. We add numbers, not expressions; we read

and nonnalise expressions, not numbers.

Lest the last example of S4-364 se,:m awkward from a programming point of view,

in spite of this semantical argument, we can again point ahead to a "level-crossing"

operator not yet introduced (the inverse of the NAME operator we have used so often), In

gen~ral, the expression +<EXP> will be shown to designate the referent of the referent of

<EXP>. Thus the following is facilitated:

>(++(READ) +(READ)) 10 20
> 30

(S4-366)

With regard to printing, there are two primitives: TERPRI, whose procedural

consequence is to print an "end-of-line" on the output stream and to return the boolean sr,
and PRINT, which prints out the lexicalisation of the expression designated by its argument.

Their use almost entirely resembles that of 1-LISP (in this and subsequent examples,

structures that are printed by explicit invocations of PRINT, rather than in the normal course

of running the READ-NORMALISE-PRINT loop, will be underlined for pedagogical clarity):

> (PRINT 'HELLO) 'HELLO (S4-367)
> $T
> (BLOCK (TERPRI) (TERPRif (PRINT '[MADELEINES AND TEA?]) (TERPRI))

'[MADELEINES AND TEA?]

> $T
> (PRINT '(RPLACN. [2 '[GOOD BYE] 'BUY])) '(RPLACN 2 '[GOOD BYE] 'BUY}
> $T

The last example in this set demonstrates that the standard lexical abbreviations are

employed by the printing routine when possible.

Although 2-LISP's READ may look from these examples to be (one meta-level)

different from the READ in 1-LISP, whereas PRINT looks remarkably similar, the lurking

l,ymmctry is in fact evidence of the semantics of 1-LISP's evaluation, not of 2-LISP's

normalisation. It is straightforward that 2-usP's READ and PRINT are entirely parallel in

designation, as illustrated in the following:

'!'t

. ,.,,

4. 2-LISP: A Rationalised Dialect

> {PRINT (READ)) (HELLO) (HELLO)
> ST
> (BLOCK (TERPRI)

(PRINT 'IN:)
(LET [[X (READ)JJ

(BLOCK (TERPRI)
(PRINT 'OUT:)
(PRINT X))))

IN: [DOUBLE TROUBLE]
OUT: [DOUBLE TROUBLE]
> ST

Procedural Reflection 359

(S4·368)

Like the various versions of RPLAC-, the output routines ar~ important solely for their

effect Though it is only arguable that (READ) can be said declaratively to designate an

expression, it is nonetheless evident that it should return an expression, especially in LISP'S

applicative environment It is not clear, however, that there is any substance in having

TERPRI and PRINT return a nonnal form. Therefore, when we explore the option of having

the structural modifiers return no form, we will also make PRINT and TERPRI return no fonn

(i.e., make vE("(PRINT}) and (>f("(TERPRI)) be .L in all environments).

Since we have not included input/output streams in our general significance

function, we cannot formally state the consequence of these primitives. The manner in

which such characterisations would be made will, however, be cle:1r from our other

examples.

The comments made in chapter 3 about the inadequacy of t-LISP's input/output

functions hold equally true for 2-LISP. A practical system would require more flexible

primitives - strings as valid elements of the structural field, and perhaps streams as

functional objects. It would have to be decided, of course, whether a string is, like a

number, an external object, in which case a normal~form string designator would have to be

selected, or whether they are stmctural elements {in which case they would be normally

designated by handles). However, since our interests lie elsewhere, we will not give

input/output considerations any further attention.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 360

4.b.ix. Control

The only control operator we will introduce in 2-LISP is the primitive conditional If.

Since we will be able in 3-LISP to define more radical control functions - THROW and

CATCH, QUIT, and so forth - as straight·forward user functions, and will therefore not need

to make them primitive in that dialect, there is little point in introducing them in this

preparatory version.

We have used the conditional many times already; in normal use it is just like the

corresponding conditional in 1-LISP. Some simple examples:

(IF(• 1 1) 'YES 'NO)
(If (• 1 '1) 'YES 'NO)
((If (EVEN 3) + -) 4 6)
((NTH 2 (+ IF LAMBDA]) ST O 1)

=> 'YE'S (S4-372)
=> 'NO
=> -1
=> 0

As the last two of these illustrate, conqitionals can be c~mbined with the higher-order

facilities of 2-LISP in potent, if demanding, ways.

We noted in chapter 2 that the computational conditional is semantica11y striking:

declaratively it is an extensional function, whereas procedurally it is crucially an IMPR, since

it must adjust the order in which it processes its arguments (it always processes just two of

them: the premise and one of the two consequents}. It in no way examines those

arguments, with respect to their form or intension; it merely holds off un-nccessary

processing, in order to avoid unnecessary side-effects, en-ors, and potentially non

tenninating computations. For example, each of the following examples would engender

different behaviour if IF were an EXPR: the first would print an atom; the second would

modify the field; and the third would never return:

(IF ST 1 (PRINT 'HELLO))
(If Sf (RPLACA X 'TAIL) X)
(If(• l 1) {+ X Y) (LENGTH (JOIN Rl R1}))

(S4-373)

In spite of this, however, conditionals are extensional, in the following strict sense: the

referent of an application in tenns of Ir is a function only of the referents of its arguments,

not of their intensional form (although, like aU extensional functions, it is a function of

their reference in a possibly modified context of use).

Our characterisation of the procedural aspects of the conditional will involve us in

some complexities, having to do with unexpected interactions between argument

4. 2-LISP: A Rationalised Dialect Procedural Reflection 361

objectification and non~standard order of processing. These are best iltustr-dted by

presenting a natural semantical account and showing how it yields unacceptable behaviour.

Given what we have said about how IF processes its arguments, the straightforward

semantical characterisation would seem to be the following (we will call this version of the

conditional IF1, since we will look at other proposals presently):

l:[Eo(" IFJ)] (S4-374)
= [AE."F.AC.

C("(IMPR Eo [PREDA BJ (IF1 PREDA 8)),
[A<S1,E1,f1> •

~[Eo("IFi)]

l:(NTH(1,S1 , Fi), f1, ft,
[A<S2,Dz,E2.F2> .

E,F)]

l:(NTH([1f 02 then 2 elseif ,02 then 3],S1 ,F2),

E2 ,F2 ,[A<S3,D3,E3,F3> . D3))])]

= AS1,AE1,AF1,AC
l:(NTH(l,S1,F1),E,F

[A<S2,D2,E2,F2> .
if [S2 = "$T] then ~(NTH(2,S1 ,F2),E2 ,F2 ,C)
elseif [S2 = "$F] then l:(NTH(3,S1 ,F 2),E2 ,F2 ,C)])

(S4-375)

IF 11 in other words, is on this account bound in tl1e initial environment to a primitive

closure that designates a conditional function. Note, however, that even the declarative

designation of the IF 1 closure must explicitly obtain the pcssibly modified context

engendered by processing the first argument (the premise), in order to obtain the

designation of the appropriate consequent in that context. The behaviour would be

different if, instead, the equation were the simpler:

l:[Eo("IF1)] (S4-376)
:.: [AE~AF.A!: .

C("(IMPR Eo [PREDA BJ (IF1 PREDA 8)),
[A<S1,E1,f1> ,

l:{S1,Ei,f1,[A<S2,D2,E2,F2> . 1f D2 1 then Dz2 eJse D23])]
E,F)]

since this would make the context in which the second consequent was examined

potentially vulnerable to unwanted side-effects of nonnalising the first consequent. It

would imply, for example, that

(LET [[X 2)) (IF 1 SF (SET X 3) X)) (S4-377}

would designate the number three, whereas on the account we have given this designates

two: and it certainly nonnaliscs to 2.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 362

Tite intematised function given in S4-375 is essentially similar in structure to the full

significance: it too tests the first argument, although of course it checks to see whether the

result of the premise term is a boolean, whereas the function designated by the closure can

be defined in tenns of the actual truth value designated by that premise.

A variety of things should be noted about the two equations. First, the semantical

typing of 2-LISP requires that the first argument designate one of the two truth-values; thus

one does not have the freedom, as one does in 1-LISP, of using any expression other than

one designating truth, in first position, in order to have the second expression normalised:

> (IF1 (• 2 3) (+ 2 3) (- 2 3))
> -1
> (IF1 (+ 2 3) 'YE5 'NO)
TYPE-ERROR: If 1 , expecting a truth-value, found the number 5

(S4-378)

Secondly, LISPS in general, and 2-LISP in particular, process the arguments to EXPR

procedures in what is called applicalive order, as described in chapter 3. The conditional,

on the contrary, employs what in the lambda calculus is called normal order; it is this

ordering difference that enables unwanted processing to be avoided. This fact is reflected

in the equation S4-375 in which it is obvious that only one of the two consequences will be

processed, depending on the result of normalising the first

These two points arc merely observations: the third begins with an observation, but

it is rather serious in consequence. It turns out that there is a rather curious interaction

between any IMPR, of which the conditional is a paradigmatic example, and our touted

ability to give as the con of an application a non-rail expression that nonetheless designates

an appropriate sequence of arguments. Suppose, for example, that the variable x
designated the sequence of Truth, the number 1, and the number 2. We have the

following rather disquieting result (in the first example we avoid the standard lexical

abbreviation - (F1 F2 ... Fk) for (F 1 • [F 2 ••• Fk]) - in order better to exhibit the structure

under analysis):

> (IF1 . [$T 1 2])
> 1
> (SET X [$T 1 2])
> ($T 1 2]
> (IF1 • X)
<ERROR: IF 1 , expecting a rail, found the atom 'X>

(S4-379)

4. Z-LISP: A Rationalised Dialect Procedural Reflection 363

The problem is that IF 1 cannot select the first of three arguments for nonnalisation, since x

is not a rail. This is predicted by equation S4-374 and S4-375, which as written apply the

meta-theoretic NTH function to the total, non-processed, argument, in order to extract the

first argument (the premise tenn) for normalising. In the example shown in S4-379, the

argument structure designated by s1 in for example equation S4-375 will be the atom x,

which is of the wro!lg type for an argument to NTH.

The exact nature of the trouble is most clearly demonstrated by a set of further

examples. In the illustrations beiow we have chosen consequents with obvious side-effects,

:,;o that it is immediately apparent when they are processed. (In addition, the expr~ssions

printed by such proce:;sing are underlined, and we ~nee again avoid the standard lexical

abLreviation.) First we duplicate the basic character of our results so far:

> (IF1 . [$T (PRINT 'HELLO) (PRINT 'GOOD-BYE)]) HELLO
> ST
> (SET Y [$T (PRINT 'HELLO) (PRINT 'GOOD-BYE)] HELLO GOOD-BYE
> [ST ST ST] . -.--
> (lF1 • Y)
<ERROR: IF1 , expecting a rail, found the atom 'Y>

(S4-3&0)

The first four lines here are as we would expect: the fif-h and sixth are what is

troublesome, even though the equations in S4-374 and S4-375 predict it What makes the

situation even more confusing is the fact that by employing meta-structural machinery it

seems possible to get around the odd behaviour illustrated in S4-379 and S4-380. We have

in particular the following (continuing with the same binding of v):

> +(PCONS 'IF1 tY)
> ST

or equivalently (REDUCE will be explained in section 4.d.ii):

> +(REDUCE 'IF1 tY)
> ST

(S4-381)

{S4-382)

What is going on here is this: the variable Y is bound to a rail of booleans. Because IF 1

does not first process its arguments, v cannot be used in the CDR of a procedure reduction.

However if we construct a procedure ourselves, using PCONS explicitly, and put down as the

CDR not the atom v but the ra:I to which it is bound, we can of course bypass the problem.

In particular, the pair generated by (PCONS • IF 1 tY} is (IF ST ST $T), which of course is

normalised without trouble. The second alternative also bypasses the problem: since t'i is

processed upon the call to REDUCE, that function is given the conditional and the rail [ST ST

4. 2-usP: A Rationalised Dialect Procedural Reflection 364

ST] as argumeuts, which are again handled without trouble.

Of course there is something odd about these solutions, since the processing of the

PRI~Ts hapi;encd when Y was bnund. But the meta-structural approach also enables us to

constrnct a pair without procC"..sing the two printing requests first: we need to bind a

variable (we will use z) to the handle designating the appropriate rail, rather than to the rail

itself. In particular, we can have:

> (SET Z '[$T (PRINT 'HELLO} (PkINT 'G01D·BYE)])
> '[$T {PRINT 'HFLLO) {PRINT 'bOOD-BVE)]
> (IF1 . Z)
<ERROR: IF1, e~pecting a r&il, found the atom 'Z>
> +(PCONS 'If1 Z) HELLO
> $T
> +(REDUCE 'IFJ Z) l~ELI.O
> ST

{S4-383)

In other ~ords ('10 this approach we can even manage to have just one of the two

expr~S3ions processed, depending on thr result of nonnalising the premise.

We have stumbled on what is a remarkably deep problem: our first serious challenge

- mentioned in the first chapter - to the claim that objectification can be achieved in an

intensional object language (for it is IF 1 's procedural intensionality that is causing the

problems). A variety of potential solutions present themselves. One would be simply to

live with the situation as described: one could argue that it will arise, after alt, only in the

case of IMPRS, which are presumably less common than EXPRS. Furthennore, it arises only

when IMPRS a11d objectified arguments arc combined, ·making trouble an even les!) likely

occurence. f•inaUy, as the examples just cited i11ustrate, meta-structural machinery

apparently enables one to get around the problem in cases where it does arise.

This is a totally unacceptable suggestion, however, for a number of both ae&thctic

and theoretical reasons. For one thing, it represents an abandoning of effort - a

cunclusion we should adopt, if ever, only after considerably more ini.-estigation.

Furthermore, it will be the case in a higher-order dialect like 2-LISP !hat procedures will be

passed as arguments, and it would be nice to bl! able to use objectified arguments without
-

/:nowilig the ifllensional (procedure) type of the function being called. For example, it is

easy to image a definition of MAP along the following !ines (this is far from efficient, but it

is relatively easy to understand, and it works):

4. 2-LISP: A Ratiot,alised Dialect

(DEFINE NAP
(LAMBDA EXPR ARGS

(MAP• (FIRST ARGS) (REST ARGS)))))

(DEFINE MAP•
(LAMBDA EXPR [FUN VECTORS]

(If (EMPTY VECTORS)
(FUN)
(PREP (FUN . (FIRSTS VECTORS))

(MAP• FUN (RESTS VECTORS)))))}

Procedural Reflection 365

(S4·384)

(DEFINE FIRSTS (S4·386)
(LAMBDA EXPR [VECTORS]

(IF (EMPTY VECTORS)
VECTORS Handles both rails and sequences
(PREP (FIRST (FIRST VECTORS))

(FIRSTS (REST VECTORS)))))) . .

(DEFINE RESTS (S4·387)
(LAMBDA EXPR (VECTORS]

(IF (EMPTY VECTORS)
VECTORS
(PREP (REST (FIRST VECTORS)

(RESTS (REST VECTORS))))))

This definition would support the following:

(MAP+ (1 2 3) [4 6 6])
(LET [(l '(ONCE UPON A TIME]]]

(MAP NTH (4 3 1] (X XX]))

However it would not support

(MAP If1
[(• 1 1) (= 1 '1)]
['A 'B]
['C 'D])

=> (6 7 9]

=> ['TIME 'A 'ONCE]

=> ('A 'OJ

(S4-388)

(S4-389)

as we might reasonably expect. given the fact that FUN in S4-386 is called with a non-rail

CDR. Nor does it seem reasonable to require that MAP distinguish procedure type: U1ere is

nothing to pr.went the following, for example:

(DEFINE INCREMENT (S4-390)
(LAMBDA MACRO (X] '(+ ,X 1))

(tfAP INCREMENT (1 2 3]) => [2 3 4] (S4-3G1)

and MACROS are procedurally distinct from EXPRS. If IV.Pas must be especially excluded from

such general company, a better reason needs to be offered than we have yet put forward.

Furthennore, our retreat to meta-structural machinery is much less general than the

examples so far presented might suggest. The trouble here stems from the static scoping

4. z-usP: A Rationalised Dialect Procedural Reflection 366

protocols of z-LISP that are part of its general ability to deal conveniently with higher-order

functions. In particular, we said that

+(PCONS 'IF1 Y)

where Y was bound to

'[ST (PRINr 'HELLO) (PRINT 'GOOD-BYE)]

would have the same general significance as

(IF1 $T (PRINT 'HELLO) (PRINT 'GOOD-BYE))

(S4-393)

{S4-394}

However the fact that this works is due in part to the .fact that there are no free variables

within the scope of v. If we use a slightly more complex example, we will not be so lucky.

For example, the following is straightforward:

(LET [(X 3] (Y 4]]
(If (a X Y) X Y))

However the expression

(LET [(X 3] (Y 4]]
(LET [[Z '[(a X Y) X Y]]]

~(REDUCE 'lf1 Y)))

(S4-396)
=> 4

(S4-396)

would generate an error, because the variable z is bound to a hyper-intensional expression,

so that when the REDUCE function is given it, the bindings of x and v will _not be available.

In 3-LISP we will have more powerful meta-structural abilities, so that when

processing crosses meta-levels in this way explicit environment designators will be available

for explicit use. Thus in 3-LISP one could construct the following:

(LET [[X 3] (Y 4]]
((LAMBDA REFLECT[[] ENV CONT]

(LET [[Z '((=XV) X Y]]]
(REDUCE 'IF1 Z ENV CONT)))))

(S4-397)
; This 1s 3-LISP

which would first bind ENV and CONT to the environment and continuation in force at the

point of reflection, and would subsequently give them as explicit arguments to REDUCE.

1hus S4-397 would nonnalise to 4. nut, as we have maintained all along, full procedural

reflection is required in order to make sense of meta-structural manipulations in a higher

order calculus with static scoping. Our present tasK is merely to make sense of objectified

arguments to the conditional. What we have illustrated here is that the apparently

straightforward resort to meta·strnctural facilities is in fact not so straightforward: to make

4. 2-us,.,: A Rationalised Dialect Procedural Reflection 367

it general ?,waits 3-LISP. Hence we have yet another argument for finding a palatable

solution within the object language.

A second option would be to define a version of IF with more complex behaviour: it

could check explicitly to see whether its non-processed argument was a rail, and if so work

as indic..ated above, but if not, it could normalise it explicitly, on the grounds that if

someone used (1 F • x) there is no other way in which the value of the premise term

constituent of x can be determined. Such a conditional - we call it IF 2 - would have the

foll~wing meta-circular definition (this is easier to comprehend than the corresponding A·

calculus equations in the meta-language). For perspicuity, we have not included other type

checking (such as ensuring that PRED returns a boolean) - in a real implementation this

would need to be added.

(DEFINE IFz
(LAMBDA IMPR ARGS

(IF(= (TYPE ARGS) 'RAil)
(IF(= (NORMALISE (1ST ARGS)) '$T)

(NORMALISE (2ND ARGS)}
(NC.:1~,•:_TC:E (3RD ARGS)))

(LET [[ARGS (NORMALISE ARGS)]]
(IF(= (1ST ARGS) 'ST)

(2ND ARGS)
(3RD ARGS))))))

(S4-398)

Note that the inner conditionals cannot be simple "if-then-else" conditionals of the form

(IF (NORMALISE (1ST ARGS))
(NORMALISE (2ND ARGS))
(NORMALISE (3RD ARGS)))

(S4-399)

since in a well-formed conditional redex being explicitly processed by the definition of IF 2

given in S4-398, PRED will designate a boolean, not a tmth-value (since we are meta·

circular); explicit equality testing is therefore required (i.e., PRED will equal • ST, not ST).

Also, the definition as given is more complex than needed: because NORMALISE (2-LISP's ,r,)

is idempotent, it is harmless to normalise an expression more than once. Thus the

following is equivalent:

(DEFINE IF2 (S4-400)
(LAMBDA IMPR ARGS

(LET ([ARGS (IF(= (TYPE ARGS) 'RAIL} ARGS (NORMALISE ARGS))]]
(IF(= (NORMALISE (1ST ARGS)) 'ST)

(NORMALISE (2ND ARGS))
(NORMALISE (3RD ARGS))))})

4. 2-LISP: A Rationalised Dialect Procedural Reflection 368

The argument for such a conditional is this: in the normal case it is unlikely that i.his

extended behaviour witl engender unwanted side-effects, since the normalisation of the CDR

is necessary to decipher any meaning of the conditional application as a whole, and

presumably it will not in turn spawn further unwanted normalisations. In the following

example, for instance, the side-effects involved in normalising the (PRINT •••) expressions

happen when x is set. rather than when the conditional is applied:

> (SET X [(• l 2) (PRINT 'YES) (PRINT 'NO)]) YES NO
> ST
> (IFz . X)
> ST ; Since all PRINTS normalise to ST

(S4-401)

However there is still anomalous behaviour where two normalisations are invoked, when

the de-referencing operator (.J.) is used. Consider for example the following:

> (SET Y '[(0 1 2) (PRINT 'YES) (PRINT 'NO)])
> '[(= 1 2) (PRINT 'YES) (PRINT 'NO)]}
> (IFz . H) YES NO
> ST

(S4-402)

The normalisation of the expression H caused the referent of the handle to which Y is

bound to be normalised (why this happens is explained in section 4.d); there is a sense in

which one might argue that the normalisation implied in the third line of S4-400 should

merely have normalised once, not twice. l!i particular, ARGS was bound in examµle S4-402

to the handle • n; the normalisation of ARGS produced • [SF ST STJ after printing out both

YES and NO. What intuitively was wanted was for the normalisation of Y to produce • [(= 1

2) (PRINT 'YES) (PRINT ·NO)].

That we were unable to provide such behaviour is particularly unfortunate given the

fact, mentioned earlier, that explicit construction of the procedural reduction (i.e., explicit

use of the mcta·structural machinery) satisfies this intuition. Not only do we have

> +(PCONS 'IF2 Y) fil
> ST
> +(REDUCE 'IF2 Y) ill
> ST

but this does not even require IF 2 :

> .J.(PCONS 'IF Y) YES
> ST -
> +(REDUCE 'IF Y) YES
> ST

{S4-403)

(S4-404)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 369

Note, however, that we have solved the MAP problem. We have, in particular:

(MAP If 2
[(a 1 i) c~ 1 '1)]
['A '8]
['C '0])

(S4-405}

['A 'DJ

In sum, then, IF 2 solves one of our two problems: it allows non-rail total arguments

~' IF. but it doesn't provide an easy way in which nonnal-order processing can be used in

that situation. Nor do we yet have a solution to the second problem: meta-structural

machinery is still necessary to deal with such a circumstance, but, as we pointed out above,

meta-structural solutions can be made acceptable only in a reflective dialect

What then are we to conclude? The situation we find ourselves in is this:

declaratively, the conditioml is defined over a sequence of three entities, but procedurally

the designators of these entities are processed in a peculiar manner Gust two, in fact, are

used in any given case). The objectification mandate suggested that a designator other than

a rail could be used to designate sequences of entities. The conditional has a problem, in

such a case, since it needs access to a nonnal-form designator of t..11e first element of the

sequence. //three discriminable element designators are provided. then the conditional can

process them individually. If, however, such discriminable designators are not provided, we

were led to conclude that IF was forced to process the full sequence designator, and then to

extract the nonnal-form designator of the first sequence element from the resullant

designator of the whole sequence. which is guaranteed {by the semantical type theorem) to

be a rail.

Once we see the issue in this full light. it is clear that the only way in which partial

nom1alisation can occur is for some party to be able to take a sequence designator and

dissect it into structurally distinct designators of the sequence clements. The very z-LISP

machine is able to do this with rails - which happen to be the standard sequence

designators. In fact if we could not pull apart alt rails (not just those in normal fonn) the

problem wou)d have arisen for every function we have seen so far, since EXPRS arc all called

with sequence designators, from which designators of the individual arguments are to be

extracted. However in the EXPR case that sequence designator is the result of a

nonnalisation; hence it is guaranteed to be a rail, so we did not encounter the current

difficulty. In the procedurally intensional case, at least as we have so far defined it, we

4. 2-LISP: A Rationalised Dialect Procedural Reflection 370

have no protocol for doing this in the general case. Hence we were led to IF 2 •

It is natural to ask whether we could define such a structural decomposition process

in the general case. But in order to ask this question we need to be clearer on what we

mean. From one point of view we do have a method of taking any sequence designator

and yielding a structurally discriminable designator of an element: we normalise the

designator as a whole, which is guaranteed to return a rail, which we can then disect. 11ms

we are led to put our question more carefully as follows: is there any general algorithm by

which we can take a sequence designator and, without processing it, extract a designator of

each argument. But again this needs clarification: what is it to process an expression?

What we arc concerned with, it becomes clear, is that we wish to avoid any unwanted side

effects of processing the inappropriate clement designator.

It might seem that one way - albeit impractical - would be to suspend the current

state of the computation, and to process the whole sequence designator in a completely new

and isolated context (into which, say, the whole original context was copied so that the

ground will have been appropriately set up). We could then process all of the sequence

designator, look at the designator of the first element to determine whether the premise

crune out true or false. It might seem, that is, that if we knew whether the premise was

true or false "ahead of time", so to speak, we could select the appropriate part vf the

sequence designator.

But there are two problems. The first has to do ·with termination: it is not clear that,

if any sense could be made of this suggestion, it would be possible to guarantee that this

pre-processing "hypothetical" pass could be executed in fashion which would be guaranteed

to terminate. Secondly, it simply is not in general definable which parts of the processing

of a sequence designator "belong" to which element of the designated sequence. Consider

for example the following expression:

(BLOCK (SET X ;i)
(SET Y 4)
(SET Z 6)
[X Y Z])

(S4-406)

A_ny presumption that the expression (SET x 3) has to do only with the first element of the

resultant sequence is of course based on purely informal and ultimately indefensible

assumptions.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 371

There is. in sum, as we said earlier in another context, no solace to be found in this

f.uggestion (perhaps that is fortunate, given the potential complexity of computation it hints

at). It should be admitted that for a certain class of sequence designators, however, some

approximations to such an approach can be defined. These arise from the notions of "lazy

evaluation" and message-based systems.2 For example, the primitive procedure PREP takes

two arguments: one designates the first element of a sequence, one the remaining clements.

If all of the elements of a sequence were designated by first arguments in PREP applications.

it would be possible to extract those designators one by one. For example, suppose we

consider the expression:

{IF . {PREP (BLOCK (PRINT 'HI) ST)
(PREP (BLOCK (PRINT 'THERE) l)

(PREP (BLOCK {PRINT 'HANDSOME) 2)
(SCONS)))))

(S4-407)

Under our original definition of IF, this would generate an error, since the •.:oR is not a

vector. Under IF2 it would return 1, but only after printing out all three words. Our

current suggestion is that it seems just vaguely possible, given that we know how PREP

works, that we might arrange it to print out only HI and THERE, given IF's regimen for

argument proce.ssing.

It is presumably clear that simply positing this one extra condition - that procedural

reductions fonned in tenns of PREP be treated specially - would be inelegant in the

extreme; we will not consider it seriously. However it does suggest a tack, far from the

LISP style of operation, that we will not adopt, but iliat might with further investigation

lead to a coherent calculus. The suggestion would be to require of all seGuence-dcsignating

tenns that they be able, in general, to yield nonnal-fonn designators for arbitrary elements

(or, to take a more restricted case, for their first clement, although this would not solve IF's

problems: we would need to Ji.ave them handle the first three). Thus rails would do this by

nonnalising only that element (they are easy); PREP would do it by nonnalising only its first

argument, if the first element was asked; otherwise it would pass the buck to its second

argument, with the index reduced by one appropriately, and so forth.

The question, of course, is what general procedures would do with such a request (it

is easiest to think of this architecture under a messagc-pru,sing metaphor). Many, such as

the primitives for addition and so forth, could legitimately complain (cause an error), since

. -,...., there is no reason they should be asked such a question. User-defined procedures would

4. 2-usP: A Rationalised Dialect Procedural Reflection 372

pass the query to their bodies, so the question would need to be decided only on the

primitives. A crucial question is what BLOCK should do. It is not that the answer is open -

there is indeed only one possible answer - rather, the question is whether it makes sense.

BLOCK would clearly have to process in standard fashion all but the last expression within its

scope, and then ask the appropriate question of the final term. Thus in the example shown

above in S4-406, all L'uee SETS would happen, before the rail [X Y Z] would be asked for a

normal-form designator of its first (or Nth} argument.

It is illuminating to examine the consequences of this suggestion on the examples we

have raised, and also to look at another example that is isomorphic, which we used as if it

were well-defined in S4-257 above, as the proverbi~ "astute reader" will have noticed.

That example had to do with AND: in section 4.b.iii we rather blithely assumed that a term

of approximately the · following structure

(AND. (MAP EVEN [1 2 3 4 5])) (S4-408)

was well-defined. However under normal assumptions (i.e., in traditional LISPS and in 1-

LISP) conjunction was defined to process only as many arguments as were necessary until a

false one was encountered. Under the obvious definition of AND, given below, we would

encounter the problem we have been fighting with the conditional: S4-408 would generate

an error because (MAP EVEN (1 z 3 4 5]) is an ill-formed argument for NTH. (Once again we

ignore type-checking for perspicuity.)

(DEFINE AND1
(LAMBDA IMPR ARGS (AND• ARGS)))

(DEFINE AND•
(LAMBDA EXPR ARGS

(COND [(EMPTY ARGS) ST]
[(= '$F (NORMALISE (FIRST ARGS))) SF]
[ST (AND• (REST A~GS))]}))

This definition would support the following:

> (AND1 (• 1 1)
(BLOCK (PRINT 'HOl~DY) $F)
(BLOCK (PRINT 'STRANGER) $T)) HOWDY

> SF

(S4-409)

(S4-410)

(S4-411)

but it would fail on S4-408. We could define an alternative AND2, by analogy with IF2, that

checked to see whether the arguments were a rail, and if not pre-normalised them, as

follows (ANO• can remain unchanged):

4. 2-LISP: A Rationalised Dialect

(DEFINE AND2
{LAMBDA IMPR ARGS

(AND• (IF(= (TYPE ARGS) 'RAIL)
ARGS
(NORMALISE ARGS))))}

This would give us

(AND2 • (MAP EVEN [1 2 3 4 6]))

while preserving

> (AN02 (• 1 1)
(BLOCK (PRINT 'HOWDY) $F)
(BLOCK (PRINT 'STRANGER) $T}) ~

> $F

but it would also generate:

> (AND2 • ~(TAIL 1 '[(BLOCK (PRINT 'NO) $F)
(• 1 1)
(BLOCK (PRINT 'HOWDY) $F)
(BLOCK (PRINT 'STRANGER) $T)])) HOWDY STRANGER

> $F

Proced,ual Reflection 373

(S4-413)

(S4-414)

(S4-416)

With these general examples of the problem set forth, we can return to the

suggestion that PREP reductions be dissectable. The problems with this proposal, however.

are rather far-reaching. Suppose, for example, that <X> was an expression that we believed

designated a sequence, and from which we· wa~ted to extract a designator for the first

element Suppose in additbn that this pre-processing of <X> effected a variety of side

effects on the resultant context. We may presume that this altered context would be passed

back with the designator of the first element However another structure would have to be

created as well, if the remaining elements of the sequence were ever to be determined. For

example, if <X> were

(BLOCK (SET X (+ X 1))
(SET Y (+ Y 1))
(SET Z (+ Z 1))

(PREP X (PREP Y (PREP Z (SCONS)))))

{S4-416)

then it would be unacceptable, if a normal-form designator of the second element of the

resultant sequence were ever sought, for the three incrementations to be repeated. This is

true even if acceptable closure mechanisms and so fo1th could be introduced to keep the

contexts straight. For what this approach is driving towards is a company of generators,

with conversations back and forth about pieces of their respective domains. The static

4. z-LISP: A Rationalised Dialect Procedural Reflection 374

scoping protocols of z-LISP facilitate this kind of programming, as has often been noted. 3

but to make clear sense of the partial normalisation of sequence designators would require

substantial extension of the governing protocols over this underlying behaviour.

Such extensions are not properly part of our current investigation, so we will pursue

them no further. What we are left with is a partial solution: we will adopt IF 2 as the

primitive 2-LISP conditional, since it deals with half of the troubles with IF1 and, being a

pure extension of that conditional, it does not alter any behaviour obtainable with the

simpler version.

There is a question as to whether we should adopt ANDz as well, in place of the

simpler AND1• On first blush, this would seem consistent; on second blush we realise that

AND is not a Z-LISP primitive, and therefore we don't have to decide: we can let the user

choose whichever he or she prefers. But yet further consideration should make it evident

that AND cannot be adequately defined as an IMPR in 2-LISP at all, for the reason we keep

mentioning regarding the use of free variables. In particular, suppose we adopt either

definition of AND given in S4-409 or S4-412. Even as simple example as the following will

generate an error, because x will be unbound:

{LET [[X 3]] (S4-417)
(ANO ST{= X 2)))

The formal parameter ARGS in the definition of AND will be bound to the rail [ST (+ x z}],

which, when given to NORMI.LISE, requires for its successful treatment the environment that

was in effect at the point of normalisation of the call to AND (as do all IMPRS - Sfction

section 4.d.iii). 11ms an adequate intensional AND awaits J-LISP also. If we are to h,we an

AND in 2-LISP - of either AND1 or AND2 variety - it would seem that it too will have to be

primitive.

Fortunately, this is not the case: we can define AND as a macro. The following code.

in particular, the details of which will be explained in section 4.d. v. will define a

procedurally-intensional conjunction in t.:!rms of IF. In other words, given the procedural

intensionality of the primitive IF, we can "piggy-back" similar abilities off it with the use of

macros. This definition is of the AND2 variety:

(DEFINE AND3
(LAMBDA MACRO ARGS

(IF (= (TYPE ARGS} 'RAIL)
(AND3"' ARGS)

(S4-418)

4. 2-LISP: A Rationalised Dialect

(DEFINE AND3•

(LAMBDA EXPR [ARGS]
{IF (EMPTY ARGS) '$T

'(If ,(1ST ARGS)
,(AN03• (REST ARGS))
$F))))

For example, the following three expressions:

(AND3 A 8 C)
{AND3 • (MAP EVEN [1 2 J 4 6]))
(ANDa)

would expand into the following expressions:

(IF A (IF B (IF CST $F) SF) SF)
+(AND3* t(MAP EVEN (1 2 3 4 6]))
ST

Procedural Reflection 375

(S4-419)

(S4-420)

(S4-421)

The1irst and last of these arc staightforw~d; the second would first normalise to (we make

use of the fact that uormal-form reductions can simply be substituted into an expression in

order to demonstrate a µartiatly processed tenn, as in the >.-calculus):

+{AND3 '[SF ST $F ST SF])

which in tum would nonnalise to

+'(IF SF {IP ST (IF SF (IF ST {IF $F ST) SF) $F} $F) $F)

(S4-422)

(S4-423)

which, though ungainly, is semantically justified, and would utlimately yield the proper SF.

The use or macros will be explained mor~1 fully in section 4.d.v. It is striking,

however, to note in the present context that once we have 3-LISP's primitive reflective

abilities, we will need no primitive reflective functions at all. IF. AND, and even LAMBDA will

be straightforward user-definable reflective procedures (IF can be defined with respect to a

primitive but non-procedurally intensional conditional}. Once again our analysis has shown

that 2-LISP is not on its own a calculus with natural boundaries.

One task remains: to demonstrate the proper meta-theoretic characterisation of our

revised (IF 2 style} conditional, whlch we now give:

l:[Eo("I Fi)]
= [AE.AF.AC .

C("(IMPR Eo [PREDA BJ (IF1 PREDA B)),
[A<S1,E1,F1> .

1f [S1 € RAIL$]

(S4-424)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 376

E,f)]

then ~(NTH(l,S1,f1),E1,f1,
[A<S2,D2,E2,F2> •

~(NTH(['ff 02 then 2 e1se1f -,02 then 3],S1 ,F2),

E2,F2,[A<S3,D3,£3,f3> . 03))])
else ~(S1 ,E 1 ,F1 ,[A<S2 ,D2 ,E2 ,F2>.1f D2

1 thon D2
2 else D2

3])]

41[E0("IF1)] {S4-426)
= AS 1 .AE1,AF1 .AC.

if [S1 € RAILS]
then ~(NTH(l,S1,F1),E,f

[A<S2,0z,E2,f2> .
1f [S2="$T] then l:{NTH(2,S1 ,F2),E2 ,F2 ,C)
e1se1f [S2="$F] then ~{NTH(3,S1,f2),E2 ,F2 ,C)])

else l:{S1 ,E1 ,F1 ,

[A<S2 ,D2 ,E2,F2> .
ff [NTH(1,S2 ,F2)="$T] then C(NT~{2,S2 ,F2),E2 ,F2)

elseif [NTH(l,S2 ,F2)="$T] then C(N1H(3,S2 ,F2),E2 ,F 2)])

A final comment. in passing. This example of interactions between de-referencing.

normalisation, and IMPRs illustrates rather vividly the importance of working through a full

language design under a set of design mandates. It is straightforward to argue for a design

principfo like the normalisation mandate and full category alignment, but the ramifications

of such a position ar~ rarely evident on the surface. For cxlIIlplc, the current difficulty has

arisen over the interaction between two decisions - one about argument objectification,

and one about normalisation - that until this point had seemed compatibilc in execution

and spirit. The moral is this: although working out the fine grained details of a dialect of

LISP might seem a distraction from more important theoretical purposes, particularly the

kind of aesthetic detail on which we are spending such time, this example - and many

more like it that we will encounter before we have delivered a satisfactory 3-LISP - arc in

fact crucial to the overall enterprise. All this by way of encouragement to any reader who

suspects that we have been seduced into unnecessary technicalities.

4. 2-LISP: A Rationalised Dialect Procedurai Reflection 377

4.c. Methods of Composition and Abstraction

We said in chapter 2 that a LISP system is best understood as comprising three types

of facilit!es: a set of primitive objects, and methods of composition and abstraction over

these primitives. The first of these aspects of 2-LISP has been presented: in section 4.a we

introduced the primitive structural types, and in 4.b we defined those primitive procedures

that are defined over those structural types. In the present section we tum to the second

and third kinds of capability: facilities for the construction of composite entities, and

protocols enabling composite objects to be treated as unities. Under this general topic will

fall discussions of LAMBDA and closures, naming and variable use, the defining of procedures,

the use of environments and global variables, a discu~sicn of recursion, and so forth.

The discussion iri this section will focus on object lcv ! matters - 1.m issues, in other

words, that do not involve meta-struc~ral machinery. TJlus, although we will discuss

LAMBDA terms, we will by and large restrict our attention to the creation of EXPRs; although

we will examine code that uses c!osures, we will not consider programs that mention them.

The general subject of meta-structural facilities of 2-LISP will be considered separately, in

section 4.d

4.c.l Lambda Abslraction and Procedural Intension

Atoms, as we said in section 4.a, are used in 2-LISP as context dependent names.

We also made clear, both in that sectior1 and in the discussion in chapter 3, that they are

taken to designate the referent of the expression to which they were bouud. Finally, we

have said that they will be statically scoped. It is appropriate to look at all of these issues

with a little more care.

The semantical equation governing atoms ·was given in section 4.a.iii; we repeat it

here:

VE E ENVS, f E FIELDS, C E CONTS, A E .tTOMS
[}:(A,E,f,C) = C(E(A),4>Ef(E(A)),E,f))

If we discharge tlh.: u.,e of the abbreviatory <fl, this becomes:

VE E ENVS, f E FIELDS, C E CONTS, A E ATOMS
[l':(A,E,F,C) = C(E(A),

~(E(A),E,F,[A<S,O,E 1 ,F1> . DJ),

(S4-430)

(S4-431)

4. 2-LISP: A Rationalised DWect Procedural Reflection 378

E, F)]

Because all bindings are in norrnal-fonn, the above equation can be proved equivalent to the

following:

VE € ENVS, f € FIELDS, C € CONTS, A € ATO#S
(:E(A,E,F,C) • }:(EfA),E,F,C)]

(S4-432)

This is true because, if E(A) is nonnal, then it will not affect the E and F that are p~d to

it Nonethe?css. S4-431 must stand as the definition; S4-432 as a consequence.

· What Wi! did not explain, however, is how environments arc constructed. The

answer, of course, has first and foremost to do with >.·binding. A full account of the

significance of atoms and variables, therefore, must rest on the acc:>Unt of the significance

of A-tenns. ;... >.-term is. in brief, an expres::ion that desigm:.tes a function. Structurally, it

is MY reduction (pair) fanned in terms of a ciesignator of the pr.mitive lambrta closure ?..td

three argumr., •.s: a procedure type, a parameter !il,, and a body expression. The pririlitivc

lambda closu.e is the binding, in the ii1itial environment, of the atom LAMBt>A, although

there is nothing inviolate about this association. The procedure type argument is typically

e'·her EXPR or !Mr1: - we will discuss what these tr.iffis mear.. below. The parameter list is

a pat .em against which arguments arc matched, and the body expression is an e:.pression

that, typically, conta\ns occurcr.~es of the variables named in the parameter pattern. Thus

we ,iJie assuming A ·terms of the follc,wing form:

(UL.DA <PROCEDURE-TYPE> <PARAMETrnS> <BOr>Y>) (S4-433)

We have of course us<"d >.-terms throughout the dissertation, both in LISP and in our

meta-Jar,guagc. We must not, howt:vcr, be misled by this familiarity into thinking we either

unders nd or have encountered the full set of issues havin3 to do with LAMBDA abstract:Jn.

For this reason we will assume in the follow!ng discussion that LAMBDA is being for the first

time introduced. In this spirit, we do wcl' to start with ~omc ~xamplcs of the use merely as

embedded termr (i.e., without any c,f the complexities of global variables, top-level

definitions, rcc:.irsion, or the like), 'i11csc examples arc similar in structure to the khtd of

!" n. that can be cxp•.:·~scd in th~ A·calculus:

((LAMBDA EXPR [XJ (+ X '1) 3) 4 (S4-434)

4. 2-LISP: A Rationalised Dialect

((LAMBDA EXPR [F]
(F (F 3 4) (F 6 6)))

+}

((LAMBDA EXPR (Gi G2)
(G1 (• (NTH 1 '[$T])

(NTH 1 ['$T]))
(G2 [10 20 30])
(62 '[10 zo 30])))

IF
(LAMBOA EXPR [R] (TAIL ZR)))

Procedural Reflection 379

(S4-436}

18

(S4-436)

[30]

S4-434 is a standard example, of the sort 1-usp would support: the expression (LAMBDA

EXPR [X] (+ x t)) designates the increment function. S4-436 illustrates the use of a

function designator as an argument, making evident the fact that 2-LISP is higher order.

Finally, S4-436 shows that procedurally intensional designators (IF) can be passed as

arguments as readily as EXPRS.

There is nothing distinguished or special abouc these LAMBDA expres.c:ions, other than

the far.t that LAMBOA designates a primitive closure Unlike standard LISPS and the original

>.·calculus. in other words, the label LAMtlDA is not treated as a syntactic mark to distinguish

O'le kind of expression froill general function applications. LAMBDA terms in Z-LISP are

reductions, like all pairs, in which the procedure to which LAMBDA is bound is reduced with

a standard set of arguments. We wm sec below that LAMBDA is lnitially bound to an

intensional procedure, but, as example S4-437 dcmo!lstratcs, this fact docs not prevent that

closure from itself being passed as an argument, or bound to a different atom:

(((LAMBPA EXPR [f]
(F EXPR [Y] (~ Y Y)))

LAMBDA)
6)

(S4-431)

10

It happens that EXf'R also names a function; thus we can even have such expressions as:

(((LAMBDA EXPR (FUNS]
((NTH 2 FUNS) (NTH 1 FUNS) (Y] (+ Y Y)))

(EXPR LAMBDA])
6) q, 10

(S4-438)

Finally, as usual it is the nonnal·form closures, rather Chdn their names in the standard

environment, that are primitiv<'ly recognised:

> (D!FINE BET, LAMBDA)
> BETA
> (DEFINE STANDARD CXPR)
> EXPR

(S4-439)

4. 2-LISP: A Rationali'!ed Dialect

> ((BETA STANCARD [FJ (FF)) TYPE)
> 'FUfllCTION

Procedural Reflection 380

LAMBDA. in other words, is a Junctiol!llt a function whose range is the set of functions:

(TYPE LAMBnA) => I FUNCTION (S4-440)
(TYPE (LAMBDA fXPR (X] (+ X 1))) => 'FUNCTION

Similarly, EXPR is a function, although we will show how it can be used in function position

only later:

(TYPE EXPR) => 'FUNCTION (S4-441)

Though the examples just given illustrate only a fraction of the behaviour of LAMBDA

that we will ultimately need to characterise, some of the most important features are clear.

First, LAMBDA is first and foremost a naming operator: the procedural import of LAMBDA tenns

in this or any oth~r LISP arises not from LAMllDA, but from general principles that permeate

structures of all sort, and from the type argument we have here made explicit as LAMBDA'S
. .

first argument We will explore the procedural significance rif LAMBDA tenns at length, but

it is important to enter into that discussion fully recognish,g that it is the body expression

that establishes that procedural import, not LAMBDA itself.

Second. LAMBDA is itself an intensional procedure; neither the parameter pattern nor

the body expression is processed when the LAMBDA reduction it itself processed. This is clear

in all of the foregoing examples: the parameters - the atoms bound when the pattern is

matched against the arguments, as discussed below - are unbound, but the LAMBDA tenn

does not generate an error when processed. This is because neither neither the pattern nor

the body is treated as no extensional argument. (Less clear, although hinted by S4-438, is

the fact that the type argumen~ to LAMBDA is processed at reduction time.)

Further evidence of this procedural intcnsio:1ality with respect to the second and

third argument position is provided in this example:

> {(LAMCDA EXPR [FUN]
{BLOCK (PRINT 'LAST) (FUN 1 2))

(BLOCK (PRINT 'SHOE) +)) SHOE LAST
> 3

(S4-442)

In other words processing of the argument occured before processing of the body of the A·

term. The body of a LAMBDA tenn, in other words, is processed each time the function it

designates is applied. This fundamental fact about these expressions will motivate the

4. 2-usP: A Rationalised Dialect Procedural Reflection 381

semantic<1l account

In spite of LAMBDA'S intensionality, however, there is a sense in which the context of

use of a LAMBDA redi:ctior. affects the behaviour of the resultant procedure when it is used.

IP particular, we have the following:

((LAMBDA EXPR [FUN]
((LAMBDA EXPR [Y]

(FUN Y))
2))

((LAMBDA EXPR [Y]
(LftABDA EXPR (X] (+ X Y)))

1))

(54-443)

In other words, the atom FUN is bound to a function that adds 1 to its argument. This is

hecause the v in the body of the lexically last A-tenn in the example (the second last line)

receives its meaning from the context in which it was reduced (a context in which Y is

bound to 1) not from the context in which the function it design:ites is applied (a context in

which v is bound to 2). In a dynamically scoped system, S4-443 would vf course reduce to

4.

The expression in S4-443 is undeniably difficult to read. We will adopt a 2-LI5P

LET macro, similar to the t-LI5P macro of the same name, to abbreviate the use of

embedded LAMBDA tenns of this fonn (this LET will be defined in section 4.d.vii). In

particular, expressions of the form

(LET [[<param1> <arg 1>]
[<param2> <argz>]

[<paramt> <argk>]]
<body>)

will expand into the corresponding expression

({ LAMBDA !:XPR (<param1> <param2> .•• <paramt>]
<body>)

<arg1> <arg2> ... <arg .. >)

(S4-444)

(S4-446)

Similarly, we will define a "sequential LET", called LET•, so that expressions of the form

(LET• [(<param1> <arg 1>]
[<param2> <arg2>]

(<paramt> <argk>]]
<body>)

(54-446)

4. 2-LISP: A Rationalised Dialect

will expand into the corresponding expression

((LAMBDA EXPR <param1>
((LAMBDA EXPR <parami>

((LAMBDA EXPR (para~k> (body>)
<argt>))

Procedural Reflection 382

(S4-447)

Thus each <arg 1> may depend on the bindings of the parameters before it The difference

between these two is illustrated in:

(LET [[X 11]
(LET [(X (+ X 1)]

[Y (- '/, 1)]]
Y))

(LET (CX 1]]
(LET• [[X (+ X 1)]

[Y (- X 1)]]
Y))

(S4-448)

(S4-449)

Although some of the generality of LAMBDA is lost by using this abbreviation (all LETS and

LET•s. for example, arc assumed to be EXPR lambda's), we will employ LET and LET•

forms rather widely in our examples. The expression in S4-443, for example, can be recast

using LET as foUows:

(LET [[FUN (LET [[Y 1]]
(LAMBDA EXPR [X] (+ X Y))]]

(LET [[Y 2)] (FUN Y))) =>

(S4-450)

3

The behaviour evidenced in S4-443 and again in S4-450 is of course evidence of

what is called static or lexical scoping; if S4-443 reduced to the numeral 4 we would say

that dynamic or fluid scoping was in ~ffect. Dyr.amic and static scoping, however, are by

and large described in terms of mecl.a11isms and/or behaviour. one protocol is t1·eated this

way; the other that. It is not our policy to accept behavioural accounts - we· are

committed to being able to answer such questions as "Why do these scoping regimens

behave the way that they do?" and "Why was static scoping defined?". Fortunately, the way

we have come to look at this issue brings into the open a much deeper characterisation of

what is happening. In particular, we said that LAMBDA was i11te11sio11al, but this example

makes it clear that it is not hyper-i11te11sio11al, in the sense of treating its main argume:i.t -

the body expression - purely as a structural or textual object It is not the case, in other

4. z-LISP: A Rationalised Dialect Procedural Reflection 383

words, that the application of the function bound to FUN in the third line of the example

consists in the replacing, as a substitute for the word term "FUN" the textual object "(+ x

Y) ". To treat it so would yield an answer of 4 - would imply dynamic scoping. Rather.

what is bound to FUN is neither the body as a textual entity, nor the result of processing the

body, but rather something intermediate. It is an object closer to the intension of the body

at the point of original reduction.

If we had an adequate theory of intcnsionality, it would be tempting to say that

LAMBDA was a function from textual objects (the body expression and so forth) onto the

intension of those textual objects in the context in force at the time of reduction. The

subsequent use of such a function would then "reduce" (or "apply", or whatever

intermediate term was chosen as proper to use for combining functions-in-intension with

arguments) this intension with the appropriate arguments. Sadly, we have no such theory

(furthermore, a somewhat more complex story has to be told: LAMBDA is of course a function

from textual objects onto functions, as we made clear cariicr; what we will show is that

those functions preserve the intension of the textual argument). But the crucial point to

realise here is tliat a statically scoped LAMBDA, which is what we have, is a coarser-grained

intensional procedure than is a dynamically scoped LAMBDA.

Static scoping co"esponds to an inte11sio11a/ abstraction operator; dynamic
scoping to a hyPer-illle11sio11a/ abstraction operator.

In order to understand this claim in depth, we need to retreat a little from the rather

behavioural view of LAMBDA that we have been presenting, and look more closely at what A·

abstraction consis!!; in. It is all very well to show how LAMBDA tcnns behave, but we have

not adequately answered the question "What do they mean?''. They designate functions:

that is clear. We know, furthc1more, that functions arc sets of ordered pairs, such that no

two pairs coincide in their first clement. We know what application is: a function applied

to an argument is the second clement of that ordered pair in the set whose first clcmc.ut is

the argument.

However none of this elementary know!edgc sugg.!SIS any relationship bctwccr. a

function and a function designator. We do have a consensual intuition about >.. -- that it is

an operatc,r over a list of variables and expressions, designating the function that is signified

by the A-abstraction of the given variables in the expression that is its "body" argument.

•

4. 2-usP: A Rationalised Dialect Procedural Reflection 384

However this intuition must arise independently, and therefore requires independent

motivation and explanation. The fundamental intuition underlying LAMBDA terms, and A·

abstraction in general, can be traced back at least as far as Frege's study of predicates and

sentences in natural language. A A-term is in essence a designator with a hole in it, just as a

predi,..ate term is a sentence with a hole in it If, for example, we take the sentence

"Mordecai was Esther's cousin", and delete the first designating term, then we obtain the

expression " __ was Esther's cousin". It is easy to imagine constructing an infinite set of

other derivative sentences from this fragment, by filling in the blank with a variety of other

designating terms. Thus for example we might construct "Aaron was Esther's cousin" and

"the person who lives across the Dord was Esther's cousin" and so forth. In general, some of

these constructed sentences will be true, and some will be false. In the simplest case, also,

the tmth or falsity hinges not on the actual form of the designator, but on the referent of

that designator. Thus our example sentence is true (at least so far as we know) just in case

the supplied designator refers tc Mordecai: any term codesignative with the proper name

"Mordecai" would serve equally well.

Predicates arise naturaHy from a consideration of sent~nces containing blanks; the

situation regarding designators - and the resultant functions - is entirely parallel. Thus if

we take a complex noun phrase such as "the :ountry imediate(v to the south of Ethiopia",

and remove the fir.al constituent noun phrase, we get the open phrase "the country

imediate/y to the south of __ ". Once again, by filling. in the blank with any of an infinite

set of possible noun phrases. the resultant composite noun phrase will (perhai,,S) d~signatc

another object. In those cases where the resultant phrase succeeds in picking out a unique

referent, we say that the 0bject so selected is in the range of the function, the object

designated by the phrase we put into the blank is in the domain, and thus erect the entire

notion of function with which we are so familiar.

Once the basic direction of this approach is admitted, a raft. of questions arise. What

happens, for cyample, if we construct two blanks? 111e answer, of course, is that we arc led

to a function of more than one argument. What if the. noun phrase we wish to delete

occurs more than oner; (as thr example the term "Ichabod" in "The first person to like

Ichabod and Ichabod's horse')? 'lbe pov:er of L'1e A-calculus can be seen as a fonnal device

to answer all of these various questions. The formal parameters arc a method of labelling

the holes: if one parameter occurs in more than one position within the body of the lambda

4. 2-LISP: A Ra!ionalised Dialect Procedural Reflection 38S

expression. then tokens of the fonnal parameters stand in place of a single designator that

had more than one occurrence. If there is more than one formal parameter, tl1en more

than a single noun phrase position has been made "blank". And so on and so forth - all

of this is familiar.

It is instructive to review this history. for it leads us to a particular stance on some

otherwise difficult questions. Note for one thing how the function of LAMBDA as a pure

naming ope;rator becomes clear. Jn addition, it is important to recognise how syntactic a

characterisation this is: we have talked almost completely about signs and expressions, even

though we realised that the semantical import of the resultant se11tence depended (in the

simple extensional case) only on the referent of the ingredient no1Jn phrase we inserted into

the blank. The :lP"tract notions of predicates, relationships, and functions were derivative

on the original syntactic manot-11 vering. Thus we have achie·,ed a stance from which it is

natural to ask essentially syntactic questions about the fundamental intuition (indeed, it is

because we want the answers to syntactic questions that we are pursuing this line). For

example, suppose we want to define a function, in some context, and do so by using some

composite tenn inm which we insert a blank. What, we may ask, is the natural context of

use of that open sentence? If it is being used to define a function, then the only

conceivable answer is that it is to be understood in the context where it is us~d to the

define the function. Suppose, for example, that while writing this paragraph I utter the

sentence "Bob is going to vote for tlie President's oldest daughter". Again staying with the

simplest cas~. it is natural to assume that I refer to the President's oldest daughter, known

by the name "Maureen Reagan". If I excise the noun "Bob''. and construct the open

sentenc~ " __ is going to vole for the President's oldest daughter". then I have constructed

a predicate true of people who will vote for Maureen Reagan. This, at least, u, the simplest

and most straightforward reading. It is undeniably more complex, if nonetheless coherent,

to suggest that we take the whole designator itself intensionally, so that when we Gsk

whether the resu/ant predicate is true of some person we will determine the referent of the

phrase "the Preside.11" only at that point. The ground intuition is unarguably extensional.

What does this ~mggest regarding LISP? Simply this: that the natural way to view

lambda tenns is as expressions that designate functions, where the function designated is

dete1mincd with respect to the context of use where the lambda term is used ("used" in the

sense of "stat~d" or "introduced" - not where the function it designates is applied). This

4. 2-usi>: A Rationalised Dialect Procedural Reflection 386

leads us to an adoption of statically scoped free variabk.s. but only because we can show

how that mechanism correctly captures this intuition. It is no accident that Church

employed static scoping when he defined the "A-c,'llculus: static scoping is rhe truest Jonna/

reconstruction of the linguistic i11tuitions and practice upon which the notion of "A-abstraction

is based.

In order to remain true to Church's insight, then, we must be true to the

understanding that his calculus embodies. There is no reason to propose a substitutional

procedural regimen, for this would mimic his mechanism, rather than what his mechanism

was for. It would be crazy for us t<> propose a substitutionai reduction regime for 2-LISP

- a formalism with procedural side-effects - since. every ocr.urence of a variable in a

procedure would engender another versii r. of the side-effects implied by the argument

expression. This was not a probfom for Church because he of course had no side-effects.

In sum. we will insist that the term

(LET [[Y 1)] (S4-461)
(LAMBDA EXPR [X] (+ X Y))

designate the increment. function, not that function that add~ to its c1.·gument the referent of

the sign "y" in the context of use of the designating procedure.

As far as it goes, this is simple. We saw in chapter 2 how the s!atic reading leads

rather naturally to a higher-order dialect, to uniform processing of the expression in

"function position" in a redex, .1nd so forth, though we did not in that chapter examine th~

underlying semantical motivation for this particular choice. Nor did we examine explicitly

a subject we must now consider: the i11te11sicnal significance of a LAMB:>A tenr,.

lliat this last question remains open is seen when we realise that the preceding

discussion argues only that the extension of the LAMBDA term be determined by the context

of use in for-.;c at the point where the LAMBDA term was introduced. However it remains

unexamined what role is played by the full computational significance of the term in

"body" position - the op21 rfcsignator with demarcated blanks in it, to use our present

reconstruction. In this regard it is instructive to look at tl1e reduction regimen adopted by

Church in the "A-calculus, which, as we have said, is a statically scoped higher or<ter

formalism. By the discussion just advanced, it should depend on an intensional LAMBDA, but

of course no theory of functions-in-intension accompanies the >.·calculus. Nor is ""A", in the

4. 2-LISP: A Rationalised Dialect Procedur .J Reflection 387

A-calculus, a function, since the >..-calculus is strictly an extensional system, and there is no

way in which an appropriately intensional function c1mld be defined within its boundaries.

A·terms in the >..-calculus, in fact, are demarcated 110/ationally, as they were in the first

version of 1-LISP we presented in chapter 2 {the lexical item ">t, in the lambda calculus, is

on its own uninterpreted, like the It~ and right parentheses and the dot). The reduction

regime, furthermore, is one of substitution, which would superficially appear to be a hyper·

intensional kind of practice. Actual textual expressions, afl:er all, are substituted one within

another during the reduction of a complex >..-calculus tc1m. The dictum a few pages back

said that hyper-mtensional abstraction corresponds to dynamic scoping (and intensional

abstraction to lexical scoping). How then can we defend our claim of intensional

abstraction in a statically scoped formalism?

The answer is that the >..·calculus is highly constrained in certain ways which enable

hyper-intensional substitution protocols to mimic a more abstract intensional kind of

behaviour. TwC' features contribute to this ability. First, there is no QUOTE primitive (and

of course no corresponding disquc,tation mechanism), so that it is not possible in general

and unpredictable ways to capture an expression from one context and to slip it into the

course of the reduction in some other place "behind the back of the reduction rules", so to

sp~ak. Second, there is that very important rule having to do with variable capture, called

a·reduction. It is a constraint on p~reduction - the main redur+ivc rule in the calculus -

that terms may not be substituted into positions in such a way that a variable would be

"captured" by an encompassing >..-abstraction. If such a capture would arise, one must first

rename the parameters involved in such a fashion that the capture is avoided. For

example, the fotlowing is an incorrect series of ,a-reductions:

(AF.((AG.(Af.FG)) F))
(Af.(Af.FF))

; This is an illegal derivation (S4-462)
; since this ,8-redur.ti?n is incorrect.

Rather, one must ur--: an instance of a-reduction to rename the inner F so that the

substitution of the binding of G for G will not !nadver .. cntly lead that substitution to

"b~ome" an instance of the inner binding. Thus the following is COITl.!Ct:

(>..F.((~G.(AF.FG}) F))
(AF.((AG.(AH.HG)) F))
(Af. (AH.HF))

This is a legal derivation
~irst we do an a-reduction, and
then a valid ,8-reduction.

(S4-463)

.,,

4. 2:-LISP: A Rationalised Dialect Procedural Reflection 388

The precise and only role of a-reduction in the >..-calculus is to re-arrange textual objects so

as to avoid the dynamic scoping that would be implied if a-reduction did not exisL

The question we may ask, however, is why the reduction in S4-452 is ruled out -

why dynamic scoping is so carefuliy avoided. The answer cannot be that the resulting

system is incoherent, since p-reductions with no a-reductions is one way to view LISP 1.5

and all its desccndcnts. Sure enough the Church-Rosser theorem woi..ld not hold, but, as

LISPS have shown, one can therefore simoly decide rather arbitrarily on one reduction

order. But we now have an answer: it violates the daim that the fonnal apparatus retains

the designation, attributed by the intuitive understanding of the significance of the original

A-term. More specifically, variable capture alters intension - thereby violating intention.

We have, then, the following result: the reduction of LAMBDA terms must, in a sense,

preserve the intension of the body expression. This of course is a much stronger result fr-an

the owrarching mandate that .r, preserve designation in every case. -+. on the other hand,

does not preserve intension generally, according to a common sense notion of intension.

This is difficult to say fonnally, for two reasons, the most serious of which is that we don't

have a theory of intension with respect to which to formulate it. If one takes the intension

of an expression to be the function from possible worlds onto extensions of tliat expressiov

in each poss~ble world - the approach taken in possible world semantics and by such

theorists as Montague4 - then it emerges (if one believes that arithmetic is not contrngcnt)

that all designators of the same number are intensionally equivalent. Thus (+ t 1) and

(SQRT 4) would be considered intensionally equivalent to 2 (providing of cour~e we are in a

context in which SQRT designates the square-root func•, lll). It is the view of this author

that this violates lay intuition - that a more adequate treatment of intensionality shoud be

finer grained (perhaps of a sort suggested by Lcwis5). Furthermore, without specifying the

intensions of the primitive nominals in a LISP system, it is difficult to know whether

intension is preserved in a reduction. Suppose, for example, that the atom PLANETS

designates the sun's planets, and is bound to the rail (MERCURY VENUS EARTH ... PLUTO]. Then

(CARDINALITY PLANETS) might reduce to the numeral 9 if CARDINALin was defined in terms

of LENGTH. It is argued that the phrases ''the 11umbe1 of planets" and "nine" arn

intensionally distinct because "the number of planets" might have designated some other

number, if there were a different number of planets, wher•.!as "nine" necessarily designates

the number nine in this language. On such an account the reduction of (CAHDINALITY

4. 2-LISP: A Rationalised Dialect Procedural Reflection 389

PLANETS) to 9 is not intension preserving. But making this precise is not our present

subject matter.

Furthermore, if all we ask of the reduction of LAMBDA terms to uormal form is that

intension be preserved, we do not have to reify intensions at all - we do not even have to

take a position on whether intensions are things. All that we are bound to ensure i~ this:

that the intensional c.'!'!tacter of the expression over which the LAMB9A term abstracts be

preserved in the function de,ignator to which the L ttHBDA term reduces. At the declarative

level this will be our guiding mandate.

However, with respect to LAMBDA terms we have a much more precise set of questions

to answer, having to do with the :elations!1ip between the intensional content of a LISP

expression and its computational significance. The issue is best introduced with a:1 example

that we v;ill make use· of later. It is a widely appreciated fact that, if an expression <X>

should not be procr.ssed at a given time, but should be processed at another time, a
. .

standard technique is to wrap it in a procedure defir"rion, and then to reduce it

subsequently, rather than simply using it. A simple example i., illustrated in the fol10·.ving

two cases: in the first the (PRINT 'THERE} happens before the call to {PRINT • IN); in the

second it happens after.

> (LET [[X (PRINT 'THERE)]]
(BLOCK (PRINT 'IN) X)) THERE IN

> $T

> (LET [[X (LAMBDA EXPR [] (PRINT 'THERE))]]
(BLOCK (PRINT 'IN) (X))) IN THERE

> $T

(S4-464)

(S4-466)

Because of 2-L ISP s,~tic scoping (which corresponds to this intensional reading of LAMBDA),

this approach can be used even if variables are involved:

> (LET• [[X 'THERE]
[Y {F'HNT X)J]

(BLOCK (PRINT 'IN) Y)) THERE IN
> $T

> {L~T• [[X 'THERE]

> $T

[Y (LAMBDA EXPR [] (PRINT X))JJ
(BLOCK (PRINT 'IN) (Y))) IN !!!.!ill!.

(S4-466)

(S4-467)

What this example illus~ratcs is that the side-effects engendered by a term (the input/output

behaviour is illustrated here. but of course control and field effects arc similar) take place

4. 2-LISP: A Rationalised Dialect ProceduralReflection 390

only when the tenn is processed in an extensional position. In other words if LAMBDA takes

an intensional reading of the body expression, it does not thereby engender the full

computational significance of that expressio:i. Such significance arises only when some

other function or context requires an extensional reading.

The QUOTE function in 2-LISP that we defined in S4-132, and handles in general, are

hyper-intensional operators; it was clear in their situation that the significance of the

mentioned tenn was not engender~d by the reduction of the hyper-intensional operator

over the tenn. We have not. however, previously been forced to ask the question of what

happens with respect to intensional operators, but the examples just adduced yield an

answer: they too do not release the potential significance of the term. It is for this reason

that the "deferring" technique works in the way that it does. (Note that no suggestior, is

afforded by the A·calculus with respect to this concern, since there are no side-effects at all.)

We have concluded, in other words, this constraint: intension-preserving tenn

transformations do not engender the procedural consequences latent in an expression; those

consequences emerge only during the nonnalistion of a redex, when intension is not

preserved. Though { + 2 3) reduces to co-extensionsal 5, it is on our view not the case that

(+ 2 3) and 5 arc intensionally equivalent

We have one more question to examine before we can characterise the full

significance of LAMBDA. In spite of our claim that LAMBDA is an intensional operator, it is not

the case that LAMBDA is a function from expressions onto intensions, nor is it the case that

LAMBDA terms rcdui::~ to intensions. If xis a term (LAMBDA ...), in other words, neither «l>{X)

nor 'It(x) is an intension. Both of these possibilities are rejected by protocols we have long

since accepted. In particular, note that in any form (<t> . <A>), we have assumed Uiat the

significanc;c of the whole arises from the application of the function designated by < F > to

the arguments <A>. Thus in (+ 2 3), which is in reality (+ • [2 3]), we said that the whole

designated five because the atom "+" designated the extensionalised addition function,

which when applied to a syntactic designator of a sequence of two numbers, yielded their

sum.

Similarly, iri any expression

{{LAMBDA <type> <params> <body>) . <args>) (S4-458)

4. 2-usP: A Rationalised Dialect Procedural Reflection 391

it follows that the term (LAMBDA ...) must designate a function Similarly, in a construct

like

(LET [[F (LAMBDA ••• })]
(F . <args>)) (S4-469)

F must also designate a function. 'This is all consistent with our requirement that variable

binding be designation preserving: F an1... (LAMBilA ...) must be f.o-designative.

It follows, then, that F cannot designate the intension of the (LAMBDA ...) term.

Hence (LAMBDA •••) cannot normalise to a designator of that function's intension. For we

do not know what intensions are, but they are presumably not syntactic, structurnl entities.

They are not, in other words, elements of s, and v has s as its range. We said earlier,

however, that F must be intensionally similar to the LAMBDA term - what this brings out is

that F must be co-intensional with the LAMBDA term, as well as co-extensional. The

normalisation of LAMBDA terms, in other words, must preserve inteusion as well as extension.

This is as much as we witl say regarding LAMBDA in its simple uses. In accord with

our general approach, we have attempted to characterise LAMBDA terms primarily in terms of

what they mean; from this we justified our account of how they behave. As usual, >It is

subservient to tfl. It remains, finally, to remark on how they work. The answer to the latter

question is of course quickly stated:· when a LAMBDA reduction is itself processed, a closure

(see below) is constructed and returned as the result. When a pair whose CAR nonnalises to

a non-primitive closure is encountered, the closure !<i: what we call reduced with the

arguments. If that closure is an EXPR, then this reductie,n begins with the reduction of the

CDR of the pair, followed by the binding of the variables in the parameter pattern against

the resultant normal-form argument designator. If the closure is an IMPH, no argument

normalisation is performed; instead a handle designating the CDR of the pair is matched

against the parameter pattern. In either case the body of the closure (the body of the

originai reduction with LAMBDA) is processed in a context that, as usual, consists of a field

and an environment The field is the field that result'i from the processing of the

arguments - as usual there is no structure to the use of fields: a single field is merely

passed along throughout the computation. The environment, however, is this: it is the

environment that was in force at the point when the closure was constructed, but

augmented to include the bindings generated by the pattern match of arguments against

-, variables.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 391

it follows that the tenn { LAMBDA •••) must designate a function. Similarly, in a construct

like

(LET ([F (LAMBDA ...))]

{F • <args>)} (S4-469)

F must also designate a function. This is all consistent with our requirement that variable

bindhg be designation preserving: F and (LAMBDA •••) must be co-designative.

It follows, then, that F cannot designate the intension of the { LAMBDA •••) term.

Hence (LAMBDA •••) cannot normalise to a designator of that function's intension. Fo: we

do not know what intensions are, but they are presumably not syntactic, structural entities.

They are not. in other words, elements of s, and ,i, has s as its range. We said earlier,

however, that r must be intensionally similar to the LAMBDA term - what this brings out is

that r must be co-intensional with the LAMBDA term, as well as co-extensional. The

normalisation of LAMBDA terms, in other words, must preserve intension as well as extension.

'This is as much as we will say regarding LAMBDA in its simple uses. In accord with

our general approach, we have attempted to characterise LAMBDA terms primarily in terms of

what they mean; from this we justified our account of how they behave. As usual, ,i, is

subservient to <P. It remains, finally, to remark on how they work. The answer to the latter

question is of course quickly stated: when a LAMBDA reduction is itself processed, a closure

(see below) is constructed and returned as the result. When a pair whose CAR normalises to

a non-primitive closure is encountered, the closure is what we call reduced with the

arguments. If that closure is an EXPR, then this reduction begins with the reduction of the

CDR of the pair, followed by the binding of the variables in the parameter pattern against

the resultant normal-fonn argument designator. If the closure is an IMPR, no argument

normalisation is pcrfonned; instead a handle designating the CDR of the pair is matched

against the parameter pattern. In either case the body of the closure (the body of the

original reduction with LAMBDA) is processed in a context that, as usual, consists of a field

and an environment. The field is the field that results from the processing of the

arguments - as usual there is no stmcture to the use of fields: a single field is merely

passed along throughout the computation. The environment, however, is this: it is the

environment that was in force at the point when the closure was constructed, but

augmented to include the bindings generated by the pattern match of arguments against

variables.

4. 2-usP: A Rationalised Dialect Procedural Reflection 392

If we were equipped with a theory of functions in intension, and could avail

ourselves of an intensional operator in the meta-language, called INTENSION-OF, that mapped

tenTts and lists of foimal parameters into intensions - whatever they might be - we could

specify the desired semantical import of LAMBDA in its terms. But, lacking such a theory, we

will instead look at LAMBDA from the point of view of designation and reduction, armed with

the mandate that it is the intensional properties of the resultant structures that are of

primary concern.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 393

4.c.ii. Closures: Nonnal-fonn Function Designators

Two questions press for resolution. First, since we do not have the theory of

intensionality called for in the previous section, we need to fonnulate an alternative account

of LAMBDA'S semantics. Secondly, we need to answer a question we have side-stepped

numerous times in this chapter: what is the fonn of nonnal-form function designators?

Our over-arching normalisation mandate requires of us that expressions of the form

(LAMBDA ...) nonnaJise to a term that meets the constraints on normal-formcdness, and

designate the function designated by the LAMDBA term. We said in section 4.a.vii that we

wo,·· i use pairs as the structural category for such terms: we said in section 3.f.ii that we

would employ the normal form designator of the EXPR function as the stmctural item in

functional position. Section 4.c.i argued that normal-form function designators should be

intensionally equivalent to the LAMBDA tems from which they arise. Finally, we said that we

would define as a closure any term that meets these various conditions. We need to

examine just what 2-LISP closures are.

One purpose of the discussion in the immediately preceding section, among others,

was to convey as sense of what closures must do. We wanted them to encode within

themselves the identity of the intension of the funtion designated, which, as we pointed out,

was some function of the context of use and the textual term in body position. But, when

put this way, the answer is clear: if we know that the intension is a function of these two

things, then if we store those two things (or store infonnationally complete designators of

them) we are guaranteed to have preserved sufficient information to reconstruct the context

and LAMBDA tcnn originally employed. Also, if we know how to move in a single step from

textual item plus context plus arguments to the full reduction, then if we have preserved

the entire context when we wish to apply/reduce the intension we can pretend we are

working in the standard extensional situation. In other words, though we don't know how

to reify intensions, we can be sure we have preserved U1e proper intensional properties if

we can back up to an equivalent hyper-intensional fonn plus context, and, so to speak,

"come back through again".

This is why closures contain encodings of environments. If we had a theory of

intension we would not need to define them in this fashion, but for the time being this

4. 2-usP: A Rationalised Dialect Procedural Reflection 394

approach must suffice. It is rather inelegant. as the reacier should be aware, for the

following reason, among others: environments, as we have been at pains to say again and

again, arc theoretical posits with which we have made sense of LISP's behaviour: never

before have environments entered into our actual domain of discourse. What we said in

section 3.f.iii bears repeating: environments have up until this point been objects in the

semantical domain of the theoretical meta-language, not in either s or o. However, our lack

of a theory of functions-in-intension forces us to have closures encode environments within

them: this is the meaning of the underlined Eo term that occurs as the first argument to

EXPR in all of the closures presented throughout the earlier parts of this chapter. In other

words, against all of our methodological principles, the object-level structure of the 2-LISP

language will be theory-relative (thus fundamentally challenging our operating assumption

that a higher-order meta-structural dialect can be obtained in a theory-free fashion).

In 3-LISP this encoding of environments within closures is not quite as inelegant as

in 2-LISP, because structurally encoded theoretical accounts of the processor play a major

role. However even there there remains a slight inelegance - the shadow of the same lack

that plagues us here. The notion environment, being a term in a theory of LISP, should

enter the discussion as a word that is used at a meta-level. This is the case when

environments (along with continuations) are bound to variables by reflective procedures.

However environments also enter into closures at the object level, as they do here in 2-

LISP, and as they properly ought not to do. Thus even 3-LISP would be cleaner if a

computable and finitely representable intensional object were forthcoming. (On the other

hand, it should be admitted that the inclusion of structural environment designators within

closures will prove extremely convenient when we discuss the question of changing a

closure to designate a different function, in accord with new definitions of constituent

functions. Thus this theory-relative encoding has its apparent advantages. It is not.

however, possible to argue at this time that a more adequate intensional encoding would

not provide similar benefits.)

The form of a closure, then, will be this:

(<EXPR> <ENV-D> <PATTERN> <BODY>) (S4-465)

where <EXPR> is the EXPR closure, <ENV-D> is an environment designator, <PATTERN>

designates the parameter pattern, and <BODY> designates the body. For both consistency

4. 2-usP: A Rationalised Dialect Procedural Reflection 395

and elegance, in other words, we have chosen to have all the arguments to <EXPR> designate

the closure ingredients; in this way <EXPR> can be itsdf an EXPR. It enables us.

furthcnnore, to have as nonnal-form redexcs only those <EllPR> redexes whose arguments

are ihemselves in nmmal-fonn. Thus both of the "pseudo-composite" structural types -

pairs and rails - will be in normal-form only if their "ingredients" are in normal form

(although there is an asymettry in the other direction: any rail whose clements are in

normal-form is by definition itself in nonnal form, whereas not every pair whose CAR and

CDR are normal is itself normal).

Since the second and third arguments to <EXPR> designate structures, they will in the

normal-form case necessarily be handles. Thus we would expect:

(LAMBDA EXPR [N] (+ N 1)) (<EXPR> 7 '[N] '(+ N 1)) (S4-466)

The question regarding the structure of environment designators was answered in section

3.f.ii: since environments are sets of ordered pairs of atoms and bindings, environment

designators are rails consisting entirely of two-element rails, with each sub-rail consisting of

two handles; the first designating the atom, and the second designating the binding. Thus

the general environment designator will be of the form:

(['<ATOM1> '<BIND1NG1>]
('<ATOM,> '<BINDING2>]

(S4-467)

Two questions remain, about what environments are actually in force, and about the

form of <EXPR). The first will be answered only in section 4.c.vi, when we take up global

bindings, top-level definitions, and SET. 'The second was sketched in section 3.f.ii; we said

there that the atom EXPR would be bound, in the initial environment, to a closure of the

following stmcture (this is the straightforward 2-LISP translation of the t-LISP structure

pictured in S3-200):

{S4-468)

<E0> ENV PATTERN BODY

However we can fill this out now more explicitly. We first give an admittedly circular

definition of EXPR:

4. 2-LISP: A Rationalised Dialect

(DEFINE EXPR
(LAMBDA EXPR (ENV PATTERN BODY]

(EXPR ENV PATTERN BODY)))

Procedural Reflection 396

(S4-469)

There is however a difficulty - or perhaps more accurately - an i11complete11ess here.

Closures are in normal-fonn; therefore they are self-normalising, a fact that is determined

primitively by the processor. Thus we have:

(LET [[X t(LAMBDA EXPR (N] (+ N 1))]]
(= (NORMALISE X) (NORMALISE X))} =>

($4-470)
$T

which is not predicted by S4-469. Thus the self-normalising aspect of normal-form

expressions must be considered as prior to, and not captured in, the definition just given.

Nonetheless. for other purposes S4-469 is adequate, implying that the EXPR closure would

be of this form:

EXPR => (<EXPR> Eo
'[ENV PATTERN BODY]
'(EXPR ENV PATTERN BODY))

as illustrated in the following graphical notation:

[NV PATTERN BODY

ENV PATTERN BODY

(S4-471)

(S4-472)

It is truer to the primitive nature of this closure, however, to avoid the explicit reduction of

EXPR in the function position of the recursive (circular) call to EXPR; this more clearly

suggests the normal-formcdncss of this fom1. Thus we will assume the following primitive

<EXPR> structure:

EXPR => (<EXPR> !:~
'[ENV PATTERN BODY]
'(<EXPR> ENV PATTERN BODY))

again as illustrated in graphical notation:

(S4-473)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 397

{S4-474)

ENV PATTERN BODY

Given this characterisation of EXPR, we need to look again at LAMBDA. We said earlier

that LAMBDA, though procedurally intensional, was nonetheless extensional with respect to its

first argument The problem with presenting a definition, even circular, of this procedure is

that it must do something without precedent: it must somehow reach into the workings of

the processor and extract a true designator of the environment in force at the point of

reduction. There being no mechanisms for this, we will instead present a (circular)

definition in pseudo-3-LISP, for the result is the same - the difference is merely that in 3-

LISP the mechanisms by which the result is obtained are mechanisms provided to the user.

We have, in particular, the following (the up and down arrows can be ignored for the

present; they merely mediate between the reflected level and the fact that the closure must

itself be an object level expression):

(DEFINE LAMBDA ; 3-LISPish (S4-475)
{LAMBDA REFLECT [[TYPE PATTERN BODY] ENV CONT]

(CONT t(i{NORMALISE TYP~ ENV ID} ENV PATTERN BODY}))

This definition leads us to an examination of the role of the first argument to

LAMBDA. In every example we have used so far, we have used "EXPR" or "IMPR" almost as if

they were keywords selecting between simple extensional and intensional procedures. It is

clear, however, that this argument position plays a potentially much larger role in

determining the significance of a LAMBDA term. Our approach, furthermore, means that no

keywords are needed, and facilitates the use of other functions in this position. A striking

example where this power is used is in the 3-LISP definition of MACRO. In that dialect we

will be able to define a function called MACRO to support such definitions as:

(DEFINE INCREMENT
(LAMBDA MACRO [X] '(+ ,X 1))

with the consequence that the nommlisation of the form

{INCREMENT(• X Y))

{S4-476)

{S4-477)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 398

will engender the subsequent norntalisation of the explicitly constructed expression

(+ (• X Y) 1) (S4-478)

The definition in S4-475 shows how this will proceed. The norntalisation of INCREMENT will

lead to the norntalisation of

(MACRO <ENV> '[X] 1 "(+ ,X 1)} (S4-479)

1nough we do not have enough machinery to define a suitable MACRO yet, its job is clear: it

must yield an intensional c1osurc such that when reduced, that closure will construct and

normalise the appropriately instantiated version of the schematic expression given as the

body in S4-476.

We will not pursue any uses of the type argument to LAMBDA in this chapter; the

definition of MACRO, and other extensions, will be examined in chapter 5.

Finally, we should inquire about IMPRS. Strikingly, the IMPR closure is almost

identical to the EXPR closure, although whereas EXPR was an EXPR; IMPR is not an IMPR: IMPR

is also an EXPR. In particular, we have this approximate definition:

(DEFINE IMP~
(LAMBDA EXPR [ENV PATTERN BODY]

(IMPR ENV PATTERN BODY)))

and this structure to the primitive IMPR closure:

IMPR => (<EXPR> Eo
'[ENV PATTERN BODY]
'{<IMPR> ENV PATTERN BODY))

as illustrated in graphical notation:

ENV PATTERN BODY

(S4-480)

(S4-481)

(S4-482)

Note that since <IMPR> is an EXPR, the body of the IMPR closure is not an intensional rcdex

which would be declaratively wrong.

One final comment needs to be made before we turn to characterising the semantics

of LAMBDA, EXPR, and IMPR more carefully. TI1e inclusion of the environment within a

4. 2-LISP: A Rationalised Dialect Procedural Reflection 399

closure interacts with the ability of SET to modify environments in force. This topic will be

pursued in greater l•.!ngth in section 4.c.iv, but it is worth mentioning here. In particular,

suppose that some LAMBDA body uses variable x freely: then the binding of x will be that of

the environment in force when the LAMBDA tenn was reduced. Subsequent changes to that

variable, in virtue of SET, may potentially modify the closed environment Thus for

example we have the following behaviour:

(LET• [[X 3]
[F (LAMBDA EXPR [Y] (+ Y X))]]

(BLOCK (SET X 4)
(F 2)))

(S4-483)

=> 6

F was originally bound to a closure designating a function that adds three to its argument;

the SET, however, since it affects the environment in which the LAMBDA term is closed,

modifies the binding within the closure as well.

It is at least arguable that this is not always the behaviour one desires. Our analysis

in terms of intension explains why: if we could map LAMBDA terms onto more stable

intension encodings, then the binding of x at the point of reduction of the LAMBDA term

would hold independent of subsequent alterations to that environment. It is for this reason

that some dialects (INTERLISP and SEUS arc examples) allow one to specify, through some

other mechanism, those variables over which a LAMBDA tenn should be closed, in such a

fashion that subsequent alterations to the binding of that variable do not affect the closure

itself. What our present analysis has shown us is how this vulnerability to the subsequent

modification arises out of our lack of an adequate intension operator. However in our own

defense we should add that we will be able to define (in section 4.c. vi) a straightforward

utility procedure that will facititiatc tl1e construction of closures that explicitly protect

themselves from the effects of subsequent modifications to the variables used freely within

them.

The ability to modify the function designated by a closure (strictly, to change what

function a closure designates by changing the closure itself - there is no meaning to the

notion of actually changing a function) will prove useful in reflective work. We said earlier

that SET is not a primitive in 3-LISP; instead, it is defined as a reflective procedure that

wreaks side-effects on environment designators. It can as well wreak side-effects on

closures. thus altering what functions they designate. 'Ibis ability is important to provide -

an example is the ability to redefine procedures used by closures, which is critical in

4. 2-LISP: A Rationalised Dialect Procedural Reflection 4CO

debugging and program development However we will argue that it should not be

confused with the nonnal use of SET in the object level of a program.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 401

4.c.iii. Parameter Patterns and Variable Binding

In the original intuition, li.·abstraction uses a single formal parameter to mark the

hole or holes in the composite designator. 'Thus, in the expression

AX.((fX)(GX)) (S4-484)

a single x marks two occurences of the same hole - a hole, in other words, to be filled by

two occurences of the same designator. We said above that multiple arguments - holes to

be filled by different designators - arise in a natural way, but there are a variety of formal

mechanisms we could use to implement them. For example, if we consider addition, and

use as our source template the term (+ 3 4), we could abstract this, over both the "3" and

"4" positions, in any of the following ways:

(LAMBDA EXPR Z (+ (1ST Z) (2ND Z))

(LAMBDA EXPR A (LAMBDA EXPR B (+ A 8)))

{LAMBDA EXPR [A 8] (+AB))

(54-486)

(S4-486)

(S4-487)

In the first we have reconstituted the template expression, so that only a single hole remains

(alU1ough there are two occurences of it); in this way we can retain the machinery that

accepts a single argument In the second we use two separate abstractions, one for each

blank. Thus the first abstracts the "3" position, and the second abstracts the "4" position.

This is the "currying" approach, mentioned earlirr, that we use in our meta-language. In

the third we apparently extend our syntactic mechanism to support two arguments in a

seemingly obvious way.

As discussed in section 4.a.v, the second approach fundamentally conflicts with our

objectification mandate, in spite of its f01mat generality. At first blush the third would

seem to do so as weti since it conveys the impression that a procedure defined in this way

would have to be called with exactly two argument expressions. Thus it would appear that

the objectification mandate would force us to adopt the first of the three suggestions. On

the other hand the third candidate is manifestly the most convenient - a fact to which

immediate intuition and standard LISP practice both attest. It remains to be explained,

however, what a rail of two atoms in a parameter position of a LAMBDA term means.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 402

A little investigation will show us that we can adopt the third candidate syntactically.

while making it semantically like the first. 1be approach emerges from the realisation that

the binding of variables or formal parameters is an extremely simple case of pattern

matching. We have already said that every 2-LISP (and 3-LISP) function/procedure is

called with a single argument - this was made clear as early as section 4.a.iv. In those

cases where the natural conception is of a function applied to multipie arguments, the

function will in fact be applied to a single sequence - an abstract mathematical ordered set

- of arguments instead. The parameter structure in a LAMBDA term, however, will be

allowed to be built up out of atoms and rails. Thus we will encounter such LAMBDA terms

as:

(LAMBDA EXPR ARGS ...) (S4-488)
(LAMBDA EXPR [A B C] ...)
(LAMBDA EXPR [[X] Y [[Z W R]]] ...)

We will call the entire parameter structure the parameter pattern or pattern; the atoms

within it will be the parameters tl1emselves. It is of course only the parameters t11at are

bound; no sense is to be made of binding a rail. Nonetheless, the pattern as a whole

determines how the parameters ar~ bound, given a particular designated argument. The

general mandate governing the binding - a mandate we will call the schematic designator

principle - is this:

The pallern. if used as a designator in the environmelll resulting from the
binding of a procedure's Jonna! parameters, should designate the full argument
to which the function is applied

This mandate is of course satisfied by the paradigmatic single argument case. In particular,

if some function F was designated by the Jdcrm

>.X.GX (S4-489)

and F was reduced witl1 some other expression - say, (+ 1 2) -- then we would expect the

parameter x to be bound to the numeral 3. Thus a subsequent use of the term x would

designate the number three, which is just what (+ 1 2) designates. Suppose, to extend this

to a multi-argument case, that we had instead the more complex function designator (we

switch to 2-LISP)

4. 2-LISP: A Rationalised Dialect

(LAMBDA EXPR [X Y] (G X (HY)))

bound to F, and this was used as follows:

(F (+ 1 2) 4)

then, since S4-491 is a lexical abbreviation for

(F . [(+ 1 2) 4])

Procedural Reflection 403

(S4-490)

(S4-491)

(S4-492)

F would be applied to a sequence of the two numbers (three and four). The only nonnat

fonn bindings of x and v such that [X VJ would designate this sequence are of course that x

be bound to the numeral 3 and v bound to the numeral 4. That bindings be to normal·

form designators is mandated by the fact that F is an EXPR, of course, although, as we will

discuss later, even IMPRS (and 3-LISP REFLECTS) receive their bindings in normal fonn.

Thus the parameter pattern may, to use popular terminology, "de-structure"

sequences of arguments. The fact that it is the designated sequence that drives the de

structuring, not the structure of the argument designators, grants us just the freedom we

wanted to enable us to use non-rail CDRS without colliding with the binding mechanism, as

for example in the expression

(+. (REST (10 20 30]}) (S4-493)

Furthe1more, it adequately treats what in MACLISP are called LEXPRs (INTF.RLISP "no·

spreads"). It should be clear just why this freedom arises:

The relalio11ship between argument structures and para1!,eter structures in
extensional procedures has only to do with designation; no /bnnal relationships
between the two are of any consequence.

This, at least, is the overarching constraint. Because of the intension-preserving aspects of

the binding of parameters to normal-form argument expressions, this is in some cases

violated. but we can stiH use it to define the principal protocols, around which other

developments will be organised.

It is of course both simple and elegant to enable this de-structuring to recurse: thus

we could have:

((LAMBDA EXPO [[AB] [CD]]
(+(•AC) (• B D)))

(REST [10 20 30))
(REST (6 16 25]))

(S4-494)

1060

4. 2-LISP: A Rationalised Dialect Procedural Reflection 404

It is sometimes thought that the formal parameter section of a procedure consists

merely of a "list of variables". It is instructive to contrast tlu ... view with the one we have

adopted. First, a "list of variables" would in 2-LISP be represented as, to take S4-490 as

our example, as

('A '8) (S4-496)

But there is of course something odd about this. We have admitted that the "parameter

pattern" argument position to LAMBDA is inherently intensional; thus it is arguable that it

should be possible to omit the explicit quotation implied in S4-495. Ignoring for a moment

the rail/sequence distinction, we could then allow [A a J in place of S4-495. On its own,

however, th;s doesn't answer a number of crucial questions; it would have to be added

explicitly t~at the order of parameters should match the order of arguments. Nor does it

explicitly .1dmit of recursion, or facilitate the use of a single atom parameter when it is

desired to obtain a name designating the entire argum~nt sequence. In this "lisc of

variables" approach all of these complexities would require private explication flnd

specification; the schematic designator mandate, however, couped with the fact that all z

LISP procedures are semantically called with a single argument. answers them in one sweep.

There are a variety of questions that arise in any multiple argument scheme. We

have not explained the significance of multiple occurences of the same atom in th~

parameter pattern, for example (in (LAMBDA EXPR [X Y X] ...), for example). We also med

to indicate the consequences of calling a procedure with a sequence that is longer than that

potentially designated by the parameter pattern, as illustrated for example in

((LAMBDA EXPR [X Y] (+ X Y))
1 2 3) 7i?

(S4-496)

Again, the schematic designator mandate supplies answers. In the former case, the pattern

should match if and only if the first and third argument of the sequence arc identical. The

latter suggestion is ruled out; no binding of x or v can render "[X VJ" a designator of the

sequence of the first three natural numbers.

This pattern matching binding protocol is of course not new in its surface fonn, but

it is instructive to follow out just a little the consequences of the semantical way we have

<lefined it Note as wen that we have in 2-LISP six structural types, of which only two have

been mentioned in the foregoing discussion. We bind only atoms; this is a decision that

4. 2-LISP: A Rationalised Dialect Procedural Reflection 405

wc15 long ago fixed in the dialect. However it does not follow from that fact that only

ato .. ,;; may occur in patterns, as the rail examples have made clear. It is therefore worth

exploring what would be implied by occurences of other structural forms in parameter

patterns, given the mandate just laid out

1bere are in particular four categories of ~tructural object to be considered, of which

three (booleans, ha~dles, and numerals) are constants, in the sense that they designate their

referents independent of context Thus if one of them were to appear in a pattern, the

governing mandate could apply only in case their referent was the very semantical entity in

the designated argument. For example, the mandate could be satisfied in a reduction of

the following form

((LAMBDA EXPR [X 3 Y $F] 'OK) (54-497)
c· 1 2> c+ 1 2> c- 1 2> c= 1 2» ::::;,. 'OK

but is impossible in this case:

((LAMBDA EXPR ['XX]) 3 4} (S4-498)

because · x designates the atom x, and can in no environment designate the number three,

as would be required in order for this to be meaningful.

'The ability to use constants in parameter patterns is probably not useful in a serial

language. If 2-LISP were a pattern-matching formalism, so that at a given step in the

course of a computation a variety of procedures could potentially be reduced, with the

choice based on the possible match between their parameter patterns and the argument

structures, then such a facility would be of interest. Such a calculus, however, might want

additional facilities, so that two occurenccs of a single variable could be treated in the

obvious fashion. We might want, for example, the reduction of

((LAMBDA EXPR [X Y X] (/ X Y))
(• 2 2) (- 2 2} (+ 2 2))

($4-499)

to bind x to 4 and v to o, yielding o as a result. The following, however, should fail:

((LAMBDA EXPR (XX] 'OK) 3 4) ($4-500)

But this is a different language. While admitting the possible extension of our dialects in

such a direction, we will not adopt these suggestions here. lbus the three constant

structural categories will for the present be ruled illegal in parameter patterns.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 406

Of much more interest is the use of pairs - of reductions - in a pattern. First. it

is of course a consequence of the separation of pairs and rails that the question is open,

even though we have admitted arbitrary de-structuring by rails. In standard LISPS, debate

has arisen over complicating the binding protocols, illustrated by the following examples.

One school has argued for destructuring similar to the rail proposal we have adopted: thus

in such a proposed LISP,

(LET (((A. 8) (CONS 3 4))) ; This is not 2-LISP (S4-601}
<BODY>)

would bind A to 3 and B to four. The opponents have suggested on the contrary that non·

atomic structures in binding position be treated rather like the intensional functions we saw

in SETF in chapter 2; thus in

(LET (((CAR 8) (+ 2 3))) ; This is not 2-LISP (S4-602)
<BODY>)

either the CAR of B would be bound to 5, or else the CAR of B would be made 5 (implying a

RPLACA) (we will consider these two possibilities in a moment) In 2-LISP we of course have

approximately both options. 'Ille first (S4-501) would result in:

(LET [[(X Y] (SCONS 3 4)]] (S4-503)
<BODY>)

whereas the second (S4-502), should we decide to support it, would look instead like:

(LET ([(CAR B) (+ 2 3)]] : This is not 2-LISP yet (S4-504)
<BODY>)

The question, then, is what sort of sense to make of this last proposal.

The schematic designator mandate provides a strong guiding principle. Two

examples in particular illustrate its force. Suppose first that we had a procedure F defined

as follows:

{DEFINE F (LAMBDA EXPR (PREP X Y) <BODY>))

and we used it as follows:

(F 10 20 30)

(S4-606)

(S4-606}

The principle requires this: that x and Y be bound so that (PREP x Y} designate the

mathematical sequence <10. 20, 30>. No mention is made of other computational

significance of (PREP x Y); thus we arc free to ignore (for the moment) the fact that it

4. 2-usP: A Rationalised Dialect Procedural Reflection 407

would generate an otherwisc·inaccesible structure if processed. We are required, as well, to

ensure that x and v are bound to nonnal-form designators. Thus x should clearly be bound

to the numeral to a.11d v to the rail [20 30]. In other words we have a method (should we

be able to generalise it sufficiently so that it warrants adoption) whereby such MACL ISP

expressions as

(OEFUN F (X &REST Y) <BODY>} ; This is MACLISP (S4-607)

fall out of the basic structure of the dialect, without requiring the addition of keywords or

other extraneous language elements.

Another example has to do with the level-crossing primitives NAME and REFERENT.

We said above that a function designator F of the form

(LAMBDA EXPR [X_ 'Y] <BODY>) (S4-608)

would be ruled out, since 'v can only designate Y. If however, we used instead

(LAMBDA EXPR [X tY] <BODY>) (S4-609)

which is an abbreivation for

(LAMBDA EXPR [X (NAMEY)] <BODY>) (54-610)

then our governing mandate requires that the atom Y be bound to some nonnal-form

designator such that (NAME v) designate the argument Thus if we used

{F '3 '4) (S4-611)

and x were bound to the handle '3 and v was bound to the numeral 4, then [X (NAME v) J

would be equivalent to [• 3 (NAME 4)], which would in turn be equivalent to ['3 '4], as

required. Similarly, if G were defined as

(LAMBDA EXPR [X +Y] <BODY>)

and used in

(G 3 4)

(S4-612)

(S4-613)

then x would be bound to the numeral 3 and Y to the handle • 4, since + • 4 designates the

number four.

Such facilities could be of use, although a variety of cautions need to be kept in

mind. For example, none of · x, tX, and u imply that x be bound to the un-nonnalised

argument structure (or bound to a designator of the un-normaliscd argument structure), as if

4. 2-usP: A Rationalised Dialect Procedural Reflection 408

a mechanism had been discovered so that intermediate procedures between EXPRS and IMPRS

could be defined. IMPRS (and in 3-LISP, reflective procedures) still need to be employed

for such purposes. Nor is it in general computable how to assign the open parameters in

an arbitrary expression <X> so as to ensure that <X> designate a given semantical entity.

Unification algorithms restricted so that only terms in one of the two expressions may be

expanded could be used, but there are severe limits on such an approach. It is likely that

even a moderate step in this direction would unleash virtually all of the problems associated

with unification protocols, pattern-directed computation, and the like.

For present purposes, therefore, we will reject the suggestions just presented. 2-LISP

and 3-LISP parameter patterns will be constrained to consist only of arbitrary combinations

of rails and atoms.

There are three final comments to be made about parameter binding. First, it might

seem that by introducing even a very mild version of pattern matching into the binding of

format parameters we have unleashed a raft of potential complications that could have been

avoided had we used instead a more traditional "list of variables" approach. However any

binding protocol is in its own small way a pattern matcher. Merely the question of whether

the procedure has been called with the correct number of arguments, for example, is in

essence a question of the "fit" or "match" between the parameter structure and the

argument structure. Similarly, type-checking in typed languages involves a pseudo

semantic, rather than purely structural, version of matching. It is our intent not to

introduce an otherwise absent notion, but rather to capitalise on the concepts that underly

parameter binding in the general case.

The second comment is this: the discussion just given, in line with our general

approach, specifies binding ~rotocols semantically, rather than in terms of implementable

behaviour. However it is clear that there is a very natural resonance between the

normalisation of sequence designators and the use of rails in parameter patterns. In

particular, we specified in section 4.a that rails were the normal·form designators of

sequences. Given the semantical type theorem, we know that if we normalise any 2-LISP

sequence designator successfully, we will obtain a rail. It is then a straightforward task, in

terms of computational complexity, to match such a rail against a parameter structure, given

one proviso: that no single parameter occur more than once within the parameter structure.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 409

At any step, we simply need to check whether the paramatcr is an atom; if it is, we bind

the whole normal-form argument designator to that atom; if it is not, the pattern must be a

rail, and we recursively match each element of the rail against each element of the

argument rail, checking only that they are of the same length.

Third and finally, in a major concession to pragmatics, we will adopt one extension

that violates the schematic designator mandate endorsed earlier. It turns out that in using

2-LISP it is very often the case that, given a rail R, one wants to bind parameters to

designate its elements (MACRO and IMPR procedures are typical cases, but there are others as

well). For example, consider the intensional redex

(TEST A 8 (F CD)}

This is of course an abbreviation of

(TEST . [AB (F CD}])

If TEST is an intensional procedure, defined as follows

(DEFINE TEST
(LAMBDA IMPR [ARGl ARG2 ARG3] ...))

(S4-614)

(S4-616)

(S4-616}

we have assumed throughout that we could asume, on processing S4-514, that ARGl will

designate A, ARG2 will designate o, and ARG3 will designate c r c D). However the "schematic

designator" mandate of course fails: the argument expression is the rail [A o (F c o)]; the

only possible parameter pattern that could designate it is a single ATOM - say, ARGS - with

the result that ARGS would be bound to the handle • [A B (r c D) J. What we intend,

however, is that ARGt be bound to the handle 'A, ARG2 to the handle ·o, and ARG3 to the

handle • (f c D).

If rails were sequences, then this result would follow automatically. In other words,

if we could view rails simply as sequences of structures, rather than more particular rails of

structures, then we would be able to engage in this sort of practice without extending our

matching protocols. Since rails arc not sequences, however, but since this kind of binding

is nonetheless useful, we will adopt the foltowing extension to parameter matching: a rail of

sub-patterns in a pattern will match an argument expression if the parameters can be bound

in such a way as to designate the referent of the argument expression, or to designate the

sequence of clements of a rail, should the referent of the argument expressions be a rail.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 410

Though this is undoubtedly a concession. note that it does not violate semantic level.

The bindings that it allows - those facilitating S4-614, for example - would be generated

by the simpler mandate if a designator of a rail of structures were equivalent to a rail of

designators of structures. The extension we are adopting. in other words. essentially allows

the "referent-of' and "element-of' operators to commute, which strictly they do not. It

does not allow one of them to be by-passed. which would be considerably less acceptable.

In addition, it is compatible in spirit with the use of NTH and LENGTH - paradigmatically

operators on sequences - over rails as weU. It was this original extension that led us to

the definition of the semantic type vector in section 4.b. vi. Thus one way to describe this

extension is this: just for the purpose of matching, a (schematic) rail may be viewed as a

designator of a vector of either type.

In order at least to be symmetric, we should enable rails of designators to be taken

as designators of rails, as well as the other way around. This extension - this backwards

commuting of the same two predicates - also proves· extraordinarily useful, adding

practical force to the argument for it In particular, we will find it convenient to allow

HX>, if <X> is a sequence of designators. to designate a sequence of the clements designated.

Again this is a pure extension. in the sense that the domain of the "reference" function is

being slightly extended beyond s to include sequences of elements of s. For example, we

will allow an expression such as:

-1-['2 '3 '4] (S4-617)

to normalise to this:

[2 3 4] (S4-518)

Without the convention S4-517 would be semantically ill-formed.

It would of course be possible to avoid this extension entirely, and still support the

desired behaviour, if we identified rails of normal-form structure designators (i.e. rails of

handles) with sequences - if. in other words, we accepted mathematical identity conditions

on these (or indeed on aU) rails. We will not pursue this suggestion here, however, since it

would change in a considerable measure the kinds of structural field modifications we

would allow.

Our new matching protocol, then, is effected by the following procedure (taken from

the meta-circular processor in section 4.d.vii):

4. 2-LISP: A Rationalised Dialect Procedural Reflection 411

(DEFINE MATCH
(LAMBDA EXPR [PATTERN ARGS]

(COND [(ATOM PATTERN) ([PATTERN ARGS]]]
[(HANDLE ARGS) (MATCH PATTERN (HAP NAME ♦ARGS))]

[(AND (EMPTY PATTERN) (EMPTY ARGS)) (RCONS)]
[(EMPTY PATTERN) (ERROR "Too many args supplied")]
[(EMPTY ARGS} (ERROR "Too faw args supplied")]
[ST (JOIN {MATCH (1ST PATTERN) (1ST ARGS))

(MATCH (REST PATTERN) (REST ARGS))}])))

(S4-519)

Though we will not mention this extension widely, it will be used in many of our reflective

and pre-reflective examples, particularly in section 4.d and in chapter 5.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 412

4.c. iv. 1he Semantics of LAMBDA, EXPR, and IHPR

We tum in this section to a fonnal characterisation of the semantics of LAMBDA, EXPR,

and IMPR. It should be realised that we do this before we have considered recursion or

definitions. That we can do so is an important to recognise: the subtleties that come up

with more complex naming interactions are to a certain extent external to the notion of

LAMBDA abstraction itself; they are better considered as questions about the use of LAMBDA

abstraction, as the subsequent discussion will make clear.

If all 2-LISP procedures were EXPRS, the definition of LAMBDA would be

straightforward. We assume a function ENV in the meta-language that returns a normal

fonn designator of an environment; thus ENV is a function of type CC ENVS x FIELDS J ➔ s
J. We would have the following full significance of the primitive LAMBDA:

~[Eo("LAMBDA)] (S4-520)
= >..E.AF.AC.

C("(IHPR Eo [PARAH BODY] (LAMBDA PARAH BODY)),
[>..S1,AE1,Af1 .

[A<S2. Ez, F2> .

E,F)

~(S2,Ez,Fz,
[MS3 ,03 , E3 , Fa>

~(NTH(2,S1 ,F3),EXTEND{E1,NTH(l,S1,F3),S3},F3,
[A<S4 ,D4 ,E 4 ,F4> . D4]}])]]

and the foltowing internalised function:

L\[Eo("LAMBDA)]
= >.S.;\E.Af.>..C .

C("(Eo("EXPR} ENV(E,F} NTH(l,S,F} NTH(2,S,F)),
E,F)

(S4-521)

where EXTEND is a function that extends environments according to the parameter matching

protocols. If parameters were constrained to be single atoms (as, for example, in the >.

calculus), EXTEND would have the following simple definition:

EXTEND : [[ENVS X S X S] ➔ ENVS J
a AE.AS 1 .ASz .

AA E ATOMS if [A= S1] then S2 else E(A)

(S4-622)

In fact we require a more complex EXTEND, because we support rail decomposition in the

matching process; a correct version of EXTEND will be given below.

4. 2-usP: A Rationalised Dialect Procedural Reflection 413

In order to support IMPRS and MACROS as well as EXPRS, however, we will adopt a

different strategy from that exemplified in S4-620 and S4-621. The idea - one we will

extend in 3-LISP - will be to have LAMBDA take three arguments, the first of which should

designate a function that takes environments designators as well as parameter patterns and

body expressions onto functions appropriately. Thus we will have the following simple

definition:

I[E~("LAHBDA)] (S4-523)
= AE . AF. AC .

C("(IHPR Eo '[PARAH BODY] '(LAMBDA PARAH BODY)),
[AS1 .AE1.Af1 .

I(NTH(1,S1,F1),E1,F1,
[A<S2,D2,E2,f2> . D2(E2,NTH(Z,S1,F2),NTH(3,S1,F2))])J

E,F)

and the following internalised function:

A[Eo("LAMBDA)]
= AS.AE.AF.AC .

I(NTH(1,S,F),E,F,
[A<S1 ,D1 ,E1 ,F1>.

I("(S1 HANDLE(ENV(E1,F1))
HANDLE(NTH(2,S,F1))
HANDLE(NTH(3,S,Ft))),

E1,f1,
[A<S2,D2,E2,F3> . C(S2,Ez,Fz)])])

(S4-624)

Thus the import of a term like (LAMBDA E XPR (x] (+ x 1)) is carried by the significance of

its first argument Crucial, then, is the significance and internalisation of EXPR:

I[Eo("EXPR)] (S4-626)
= AE.AF.AC .

C("(Eo("EXPR) Eo '[ENV PARAH BODY] '(EXPR ENV PARAH BODY)),
[AEc.ASp.ASb .

(1-,<S1, E1, f1> .
I(S 1 ,E 1 ,F1 ,

[A<S2,D2,E2,F2> ,
I(Sb,EXTEND(Ec,Sp,S2),F2,(A<S3,D3,E3,F3> D3])])]]

E,F)

A(E 0("EXPR)]
= >.S.AE.AF.AC

I(NTH(t,S,F),E,F,
[A<S1 ,D1,E1,F1> .

I(NTH(2,S,f1),E1,F1,
[X<S2,D2,E2,F2> .

k(NTH(3,S,F2),E2,F2,
[A<S3,D3,E3,F3> •

C{"(Eo("EXPR) S1 S2 $3),E3,F3)])])])

(S4-526)

4. 2-usP: A Rationalised Dialect Procedural Reflection 414

Note that S4-525 is recursive: the CAR of the closure returned as its result is itself; this was

predicted at the end of chapter 3, and we assume the minimal circular solution, pictured in

sa-200. Note as well that reductions in terms of EXPR are extraordinarily simple: they

simply normalise each of the arguments, and return an application of identical form. Thus

if x, Y, and z are in normal form, (EXPR x v Z) will normalise to (EXPR x Y Z}.

It is the designation of E0("EXPR) that is important and revealing. This term

designates a function of three arguments: an enclosing environment Ee, a parameter

structure Sp, and a body sb. Since a LAMBDA term designates the application of this function

designated by E0("EXPR) to the environment in the context of use at the time of reduction

in tcnns of LAMBDA, and to the parameter pattern and the body, this is as we expected. 'The

EXPR function then designates a standard type of function that normalises its arguments, and

that designates the designation of the body expression with respect to a context formed by

the extension of the enclosing environment to include the binding of the parameter

variables to the result of normalising the argument

The significance of IMPR is of course similar, except that the arguments are not

processed. Note however that the parameter pattern is matched against the handle of the

arguments: thus the bindings remain in normal form, but a meta-level cross has transpired:

I[E0("IHPR)] (S4-527)
= }.E.Af.AC .

C("(Eo("EXPR) Eo '[ENV PARAH BODY] '(IMPR ENV PARAM BODY)),
(AEc.ASp.ASb .

[A<S1,E1,F1>
l:(Sb,EXTENO(Ec,Sp,HANDLE(S1)),F1,[A<S2,D2,E2,F2> . Oz])]]

E,F)

~[Eo("IMPR)]
= >.S.AE.M .AC

~(NTH(l,S,F),E,F,
[}.<S1,D1,E1,F1> .

I(NTH(2,S,F1),E1,f1,
[}.<S2,D2,E2,Fz> .

I (NTII (3 , S , F 2) , E 2 , f 2 ,

[A<Sa,Da,Ea,Fa> .
C("(Eo("EXPR) St S2 Sa),E3,F3)])])])

IMPR, of course, is an EXPR, as mentioned in the previous section.

(S4-528)

On their own the three pairs of equations (S4-523 through S4-528) are not enough to

discharge our obligations rcgz.rding closures: we need in addition to specify the internalised

function signified by non-primitive closures. As we have characterised each primitive

4. 2-LISP: A Rationalised Dialect Procedural Reflection 415

procedure we have set out its internalised function, but of course in the general case the

CAR of a redex will reduce not to a primitive closure but to one fanned in tenns of EXPR,

IMPR (or MACRO once we have introduced that). In chapter 3 we gave a general

characterisation of A for non-primitive closures in S3-137; what we need is a 2-LISP version

of that equation.

Given the fact that all 2-LISP procedures are called with a single argument, the

solution will be even simpler than that shown in S3-137. We have, in particular, the

following:

VSe,Sp,Sb E S, E E ENVS (S4-529)
[I S0 = ENV(E)] :J
[Ar"(<EXPR> Se HANDLE(Sp) HANDLE{Sb))1

= AS1.AE1.AF1.AC1
[l:(S1,E1,Fi,

[A<S2,D2,E2,F2>
:Z(Sb,E•,F2,(A<S3,03,E3,F3> . C1(S3,E3,F3)])])]])

where E• is like E except extended by matching S2 against Sp.

The idea here is that s0 , Sp, and sb are the environment, pattern, and body, respectively, of

a non-primitive closure (S4-529 is intended to apply only to those closures whose

internalisation is not otherwise specified). The internalised function signified by such a

closure wil1 be the function that, for any argument and context and continuation, first

nonnalises the argument and calls the continuation with the result of normalising the body

in an environment which is the closure environment extended as appropriate by binding the

parameters in the pattern to the normalised argument

The internalisation of non-primitive IMPR closures is similar but simpler, as expected:

VS8 ,Sp,Sb E S, E E E.'iilS
[(Se = ENV(E)] :)
[t1r n (<IMPR> Sa IIANDLE(Sp) HANDLE(Sb))1

= lS1.lE1.Af1.AC1
[Z(Sb•E•,F1,[l<S2,D2,E2,F2> , C1(S2,E2,F2}l)])Jll

where E• 1s 11ke E except extended
by matching IIANDLE{Si) aga1nst Sp.

(S4-630)

The fact that the pattern in an IMPR are bound to designators of the argument expressions is

reflected in the "HANDLE(Si)" in the last line, plus the pattern matching extension adopted

at the end of the last section.

An example will show how these equations entail that (LAMBDA EXPR (X] (+ x Y))

will designate (the cxtcnsionaJisation ot) an incrementation function if v is bound to the

4. 2-LISP: A Rationalised Dialect Procedural Reflection 416

numeral 1 in the environment of reduction. In particular, we look at:

l:("(LAMBDA EXPR [X] (+ X YJJ,E1,F1,ID) (S4-631)

where we assume that E1(" Y) = 1 and E1 = E0 otherwise. By the general significance of pairs

(S4-38) we have

l:("(LAMBDA EXPR [X] (+ X YJ),E1,F1,ID) (S4-632)
= l:("LAMBDA,E1,F1,

[A<S1,D1,E1,F1> .
[A(S1)]("[EXPR [X] (+ X Y)J,E1,F1,

[A<Sz, E2, F2> .
ID(S2,[D1("[EXPR [X] (+ X Y)J),E1,F1],E2,F2)])])

We can discard the unproductive ID, and discharge the initial binding of LAMBDA by using

S4-523 that we just set forth:

= ([1'<S1,D1,~1,F1> .

[A(S1)]("[EXPR [X] (+ X YJJ,E1 ,F 1 ,

(A<Sz,E2,F2> . . .
<S2,[D1("[EXPR [X] (+ X YJJ,E1,f1)];Ez,F2 >])]

<"(IMPR Eo [PARAH BODY] (LAMBDA PARAH BODY)),
(AS1 • AE1. Af 1 •

l:(NTH(l,S1,F1},E1,f1,
[;\<S2, Oz, E2, F2> . D2(E2 ,NTH(2 ,S2, f2) ,NTH(3,S2, f 2))])]

E1,f1>)

(S4-633)

We will choos1.: to follow out the designational consequences first; when that is complete we

will return and expand the internalised LAMBDA function. First, therefore, we reduce S4-633:

= ([A("(IMPR Eo [PARAH BODY] (LAMBDA PARAM BODY)))] (S4-634)
<"[EXPR [X] (+ X Y)J,

E1,
F"
[A<S2 ,E2 ,F2> .

<S2,
([AS1-~U1,AF1

l:(NTH(l,S1,f1),E1,F1,
[;\<S2,D2,E2,F2> . D2(Ez,NTH(2,S1,f2},NTH(3,S1,F2))])]

<"[EXPR [X] (+ X Y)J,E1,F1>)
E2,F2>]>)

We can work now on the internal reductions here:

= ([A("(IMPR [o [PARAM BODY] (LAMBDA PARAM BODY)))]
<"[EXPR [X] (+ X Y)J,

E1,
F1,
[;\<S~, Ez, F2> .

<S2,
~(NTH(l,"[EXPR [X] (~ X Y)J,F1},E1,F1,

(;\<S2 ,D2,E2 ,F2> . D2(E 2 ,

(S4-636)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 417

Extracting the rail element on F 1:

NTH(2,"[EXPR [X] ,+ X Y)],F2),
NTH(3,"[EXPR [X] (+ X Y)J,F2))]),

= ([~("(IMPR Eo [PARAM BODY] (LAMBDA PARAH BODr)))] (S4-636)
<"[EXPR [X] (+ X Y)],

E1 •
ff.
[A<S2, Ez, F2> .

<S2,
l:("EXPR, Et, F ft

[A<S2,D2,E2,F2> D2(E2,
NTH(2,"[EXPR [X] (+ X Y)J,F2),
NTH(3,"[EXPR [XJ (+ X Y)J,F2})]),

E2,F2>]>)

and applying S4-29 governing the general significance of atoms, in conjunction with S4-526:

= ([~("(IMPR Eo [PARAH BODY] (LAMBDA PARAM BODY)))] (S4-637)
<"[EXPR [X] (+ X Y)J,E1,F1,

[A<S2 • E2 , Fz> .
<S2,

([A<S2,D2 ,E2 ,F2> . D2(E2,
NTH{Z,"[EXPR [X] (+ X Y)],Fz),
NTH(3,"[EXPR [X] (+ X Y)J,F2))]

<"(Eo("EXPR) Eo [ENV PARAM BODY] (EXPR ENV PARAH BODY)).
[AEc .ASp.ASb .

[A<S1,E1,F1> •

E1,F1>)
E2,F2>]>)

I(S1 ,E1 ,F1 ,

[A<S2 ,02 , E2 , F2>
l:(Sb,EXTEND(Ec,Sp,S2),Fz,

[A<S3,D3,E3,F3> . D3))])]]

This significance of E0("EXPR) r,an be reduced:

= ([~("(IMPR ~ [PARAM BODY] (LAMBDA PARAM BODY)))]
<"[EXPR [X] (+ X Y)J,E1,F1,
[A<S2,E2,F2> .

<Sz,
([AEc. ASp. ASb .

[A<S1,E1,F1> .
I(S 1 ,E 1 ,F1 ,

(A<S2 , D2 , E2 , F2>
I(Sb,EXTENO(Ec,Sp,S2),F2,

[A<S3,D3,E3,Fa> . D3]}])]]
<E,,NTH(Z,"[EXPR [X] (+ X Y)J,F1),

NTH(3,"f£XPR [X] (+ X YJJ,F1}>),
Ez,F2>]>)

And again, plus extracting the second and third rail elements out of F 1:

(S4-638)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 418

• ([A("(IMPR Eo [PARAH BODYJ (LAMBDA PARAH BODY}))]
<"[EXPR [XJ (+ X YJJ,E1,F1,
[A<S2,E!,Fz> .

<Sz,
[MS1 ,E1,F1> ,

l:(S1,E1,F1,
[MS2 ,D2,E2,F2> .

Er,Fz>]>)

l:("(+ X Y),EXTEND(E1,"fX],S2),Fz,
[A<S~,D3,E3,F3> , D3])])],

(S4-539)

This is as far as the designatio" will go: it is a function th.1t accepts an argument (s1) and a

context (E 1 and F1} and nonnalises its argument, and then designates the referent of(+ x Y)

in the environment E1, in which v designates I, extended with x designating whatever it

designates in the calling context E1•

4. 2-LISP: A Rationalised Dialect Procedural Reflection 419

We look then at the internalised LAMBDA function:

• ([AS.AE.Af.AC.
I(NTH(t,S,f),E,F,

[A<S1,D1,E1,f1> .
I("(~ HANDLE(ENV{E1,F1))

HANDLE(NTH(2 1S1 Ft))
HANOLE(NTH(3,S,Ft)}),E 1 ,F1,

[A<S3,D3,E3,F3> . C(S3,E3,F3)])])]
<"[EXPR [XJ (+ X Y)J,.Et,ftt
[A<Sz, Ez, Fz> .

<Sz,
[A<S1 , £1, F 1> •

l:(S1,E1,F1,
[A<S2,Dz,E2,F:> .

E2,F2>]>}

I("(+ X Y),EXTEND(E1,"fXJ,S2),Fz,
[A<S3,D3,E3,F3> . D3]}])],

and begin to reduce this (once again we do rail extractions immediately):

(S4-640)

• I(" EXPR, E1, F 1, (S4-541)
[A<S1,D1,E1,F1> • .

I("(St HANDLE(ENV(Et,Ft))
HANDLE(NT11(2,"[EXPR [X] (+ X Y)J,F1))
HANDLE{NTH(3,"[EXPR [X] (+ X Y)J,F1))),E1,F1,

[A<S3,D3,E3,F3> .
([MS2,E2,F2> ,

<S2,
[A<S1,E1,F1> •

I(S1 ,E1 ,F1 ,

(A<S2,D2,E2,F2>
I("(+ X Y),EXTENO(E1,"fXJ,S2),F2,

[MS3,D3,E3,F3> . D3])])],
E2,F2>]

<S3, E3, F 3>)])])

Once again the significance of E0("EXPR);

I("(St HANDLE{ENV(E1,F1))
HANDLE{NTH{2,"[EXPR [XJ {+ X Y)J,F1))
HANDLE{NTH(3,"[EXPR [X] (+ X Y)J,F1))J,E1,F1,

[A<Sa,Da,Ea,Fa> •
([A<S2,E2,F2> •

<S1,
[A<S1,E1,F1> •

I(S1 ,E 1 ,F1 ,

(A<S2,D2,E2,F2> .
I("(+ X Y),EXTEND(E1,"[XJ,S2),F2,

(A<S3,D3,E3,F3> . Da])])],
E2,F2>]

<S3,E3,F3>)]}]

(S4-542)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 420

<"(Eo("EXPR) lg_ [ENV PARAH BODY] (EXPR ENV PARAM BODY)).
[AEe.AS,.AS11 .

[A<S1 .E1 .F1>
:I{S1.E1,F1,

[A<S2,D2,Ez,F2> •
:I(S11,EXTEND(Ec,Sp,S2),F2,[A<S3,D3,E3,f3) . D3])])]]

E1,F1>)

When we reduce this we will construct the appropriate pair with handles and so forth:

• I!("((Eo("EXPR) lg_ [ENV PARAN BODY] (EXPR ENV PARAH BODY))
.:!,! '[XJ '(+ X Y))

E1 •Ft•
[A<S3,D3,E3,F3> .

([A<S2,E2,F2> •
<S2.
[A<S1,E1,F1> •

I!(S1,E1,F1,
[A<S2 ,D2 ,E2 ,F2> .

Ez,Fz>]
<S3,E3, F3>)])]

I("(+ X YJ,EXTENO(E1,"[XJ,Si),F2,
[>.<S3,D3,E3,F3> . 03])])],

(S4-643)

Now the first itc.m here is of course the pair containing the primitive EXPR closure as its

pair. From the general significance of pairs (S4-38) we have:

= I("(Eo("EXPR} Eo [ENV PARAH BODY] (EXPR ENV PARAH BODY)
E1 'Ft•
[A<S1 ,D1 ,E1, F1>

([A(S1)]
<F 12("((Eo("EXPR) Eo [ENV PARAH BODY]

E1,F1,
[A<S2 , E2 , F2> .

(EXPR ENV PARAM BODY))
'El '[X] '(+ X Y))),

([A<S3,D3,E3,F3> •
([MS2,E2,F2>

<S2,
(MS1,E1,f1> •

I(S1 ,E 2,F1 ,

[>.<S2 ,02, Ez, f 2>
I("(+ X Y),EXTEND(E1,"fXJ,S2),f2,

[A<S3,D3,E3,F3> . D3])])],
Ez,f2>]

<S3,E3 ,F3>)]
<S2,[D1(f12("((Eo("EXPR) Eo [ENV PARAH BODY]

(EXPR ENV PARAH BODY))
.:!.! '[X] '(+ X Y)J),),E1 ,F 1)],E2 ,F2>)])])

(S4-544)

111c primitive EXPR closure is in normal form and stable: thus we can simply abbreviate this

expansion (otherwise it would cycle forever). However we need to know what the primitive

closure designates (we will call this o• for the time being). We also do some F 1 field

4. 2-LISP: A Rationalised Dialect Procedural Reflection 421

extractions:

• ([AS.AE.AF.AC.
I(NTH(l,S,F),E,F,

[A<S1,D1,E1,F1> •
I(NTII(2, S, F 1), E1, Fi,

[A<S2 ,D2 ,E2 ,F2> .
I(NTH(3,S,fz),E2 ,Fz,

[A<S3,D3,E3,F3> •
C(•(Eo{"EXPR) St S1 §!),F.,F)])])])]

<"[.:!! 'CXJ '(+ X Y)J,
E1 • f 1 •
[A<Sz, Ez, Fz> ,

([A<S3,D3,E3,F3>,
([A<Sz,Ez,Fz> •

<Sz,
[1'.<S1,E1tf1> •

l!(S1,E1,f1,
[A<S2,D2,E2,F2> •

E2.Fz>]
<S3. Ea, Fa>)]

l!("(+ X Y),EXTEND(E1,"(XJ,S2),F2,
[A<S3,D3,E3,f3) . Da])])],

<S2,[D*("(f.:!! '[XJ '(+ X Y)J),E1,f1)],E2,F2>)])])

{S4-646)

Next EXPR normalises its arguments, but since they are all handles this is a straightforward

(if messy) three steps (another a-reduction for perspicuity):

,. l:(" 'Et,E1,F1, (S4-546)
[A<S1,D1,E1,f1> •

l!(NTH(2,"(.:!!, '[XJ '(+ X Y)J,F1),E1,F1,
[A<S2,D2,E2,F2> •

l!(NTH(3,"(.'.,!! '[XJ '(+ X YJJ,F2),E2,f2,
[A<S4,D4,E4,F4> .

{[A<S2,Ez,F2> •
([A<S3,D3,E3,F3> .

([A<S2,E2,F2> .
<S2,

[A<S1 ,E1,F1> •
l!(S1, E1, Fi,

[A<S2,D2,E2,F2>
I("(+ X Y),

EXTEND(E1,"fXJ,Sz),
f2,
[A<S3,D3,E3,F3> . D3])])],

= I(" '[XJ,E1 ,ft,
[A<S2,D2,E2,Fz>

l!(NTH(3,"f_'.!! '[XJ '(+ X Y)J,F2),E2,f2,
(A<S4,D4,E4,F4> •

([A<S2 ,Ez,Fz> •

(S4-547)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 422

([A<S3,D3,Ea,Fa>,
([MS1,Ez,Fz> ,

<Sz,
[A<S1,E1,F1> ,

I(S1 , E1 , f 1,

[A<S2,D2,E2,F2> ,
I("(+ X YJ,EXTEND(E1,"(XJ,S2),F1,

[A<S4, D4, E4, f 4) •
([A<S2 ,Ez,Fa> •

([A<S3 ,D3, E3, Fa>
([A<S2,E2,f2> ,

<S2,
[A<S1,Et,f1> .

[A<Sa,D3,E3,F3> • D3])])],

I(S1,E1,F1,
[A<S2 ,D2 ,E2,Fz> •

·I("(+ X Y),EXTEND(E1,"[XJ,S2),F2,
[A<S3,D3,E3,F3> • D3])])],

E2,Fz>]
<S3,E3,F3>)])]

<S2,[D*("([.'.!! '[XJ '(+ X YJJ),E1,F1)],E2,F2>)]
<"(~"EXPR) '!.! '[X] ScJ,E1,F1>)])])

= ([A<Sz,E2,F2> •
([A<S3,D3,E3,F3> •

([A<S2,E2,f2> •
<S2,
[A<S1,E1,F1> •

I(S1 ,E1,f1,
(A<S2 ,D2 ,E2 ,F2>

E2,F2>]
<S3,E3,F3>})]

I("(+ X Y),EXTEND(E1,"fXJ,S2),f2,
[A<S3,D3,E3,F3> • D3])])],

<Sz,(O*("(f.'.!! '[X] '(+ X YJJ),E1,F1)],E2,F2>)]
<"(Eo("EXPR) ',!.! '[XJ '(+ X Y)),E1,f1>)])])

(S4-648)

(S4-649)

We can now reduce this into the part of the signficance that is carrying the declarative

import.

= ([A<S3,D3,E3,F3> •

((MS2,E2,F2>
<S2,
[A<S1,E1,F1>

I(S1,E1,F1,
[A<S2 ,02 , E2 , F2>

(S4-650)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 423

Again:

l:(•(+ X YJ,EXTEND(E1,"[XJ,Sz),F2,
[A<S3,03,E3,F3> . 03])])],

• ([A<S2.Ez,Fz>,
<Sz,
[A<S1,E1 ,F1> .

l:(S1,E1, F1,
[A<Sz,D2,E2,Fz> .

I("(+ X Y},EXTEND(E1,"[XJ,S2),Fz,
[A<S3,D3,E3,F3> . 03])])].

And again:

= <"(Eo("EXPR) '!.! '[XJ '(+ X Y)).
[A<S1,E1,F1> .

l:(S1 • E1 •Fl•
[A<S2,D2,E2,f2>.

l:("(+ X Y),EXTEND(E 1 ,"[XJ,S2),F2 ,

[A<S3,03,E3,F3> . 03])])],

(S4-661)

(S4-662}

We are then done (no more p·reductions apply). The full significance, then of {LAMBDA

EXPR [X] Y) in E1 is as expected. The result - the local procedural consequence - of this

expression is a pair, the CAR of which is the primitive EXPR closure, reduced with three

arguments: a designaror of a stmctural encoding of E1s and the parameter pattern and the

body expression of the lambda form. This is just the closure we predicted. In order to

know what this closure designates, however we look at the second element of the sequence.

We sec that it designates the following form:

[A<S1,f1,F1> .
I(S1 , E 1, F 1,

[A<S2 ,D2,E2 ,F2>.
I("(+ X Y),EXTENO(E1,"fXJ,S2),Fz,

[A<S3,D3,E3,f3> . D3]}])]

(S4-663)

We recall from S4-168 that the definition of the extensionalising function is as foJtows:

EXT a AG . [AS.AE.AF .

l:(S,E,F,
[A<S1 ,D1,E1,F1> . G(D1

1 ,D/, ... D1k)])]

(S4-664)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 424

These are of course very similar in structure. The designation of (LAMBDA EXPR [X] (+ x v))

can therefore be seen in the following light: it is a function of a structure and a context c1

(i.e. E2F2}, that maps that structure onto the designation of the expression (+ x Y) in a
context c2 which is like c1 except that it is modified so that in it the variable x will be

bound to the normalisation of its argument in c1• 'Ibis is also correct.

The term l!("(+ x YJ,EXTEND ...) could in tum be expanded, in conjunction with

what know about E1 - namely, that v is bound to the numeral t - to prove that th;s is in
fact the incrementation function. We witl not do so here; we have merely shown how our

characterisations do indeed carry the weight which we wanted them to. What we will do,

in conclusion, is very simply show the significance of

((LAMBDA EXPR [X] (+ X Y)) 3) (S4-566)

in an environment in which v is bound to 1. A quick application of S4-38 yields:

~("((LAMBDA EXPR [X] (+ X Y)) 3),E1,F1,ID) (S4-566)
= ~("(LAMBDA EXPR [X] (+ X Y)),E1,F1,

[A<S1 ,D1 ,E1 ,F1> .
[A(S1)]("f3J,E 1 ,F1 ,[A<S2 ,E 2 ,F2> . C(Sz,D1("[3J,E 1 ,F 1),E2 ,F2)])])

But of course we have just computed the first major part of this; therefore this reduces

straight away to:

= ([A("(Eo("EXPR} 'Et '[X] '(+ X Y)))]
<"[3J,E 1,F 1,

(MS2,E2,F2> ,
<S2,

([MS1,E1,F1> ,
I(S1 , E 1, F 1,

[A<S2 ,D2 ,E2 ,F2> .
I("(+ X Y),

EXTEND(E1,"fXJ,S2),
F2,
(A<S3,D3,E3,F3> • D3])])]

<"[3J,E1,F1>),
Ez,
Fz>]>)

Reducing first the inner application:

= ([A("(Eo{"EXPR) '!J. '[X] '(+ X Y))}]
<"[JJ,E1,F1,

[A<S2, E2, Fz> •
<S2,
I("[3], E 1 , F 1 ,

[A<S2,D2,E2,F2>

(S4-667)

(S4-658)

4. 2-LISP: A Rationalised Dialect

E("(+ X Y).
EXTEND(£1,"[XJ,Sz),
Fz,
[A<S3,D3,E3,F3> . D3])]),

Ez,
Fz>]>)

Procedural Reflection 425

We will do the inner (declarative) semantics first, in one step assuming that [3] self

nonnalises and designates <3> without side-effects:

• ([A("(Eo("EXPR) '!! '[XJ '(+ X Y)))]
<"f3J,E1,F1,
[A<S2,E2,Fz> .

<S2,
l:{"(+ X Y),

EXTEND(E1 1 "[XJ,"(3J),
Ft•
[A<S3,D3,E3,F3> . D3]),

Ez,
F2>]>)

(S4-669)

Again we can assume from prior examp~es that (+ x v) f~ an environment in which x is

bound to 3 and v tot (as EXTEND(E 1,"[XJ,"C3J) will of course ensure), will designate the

number 4:

= ([A("(Eo("EXPR) 'fil '[X] '(+ X YJJ)]
<"[3J,E1,F1,(A<S2,E2,F2> . <S2,4,E2,F2>]>)

(34-660)

We arc now ready to apply the internalisation of general EXPR closures set out in S4-629:

• ((AS1 .AE1 .AF1 .AC1 . (S4-661)
[l:(S1, E1, F1,

[A<S2 ,D2 ,E2 ,F2> .
l:("(+ X YJ,E*,F2,[A<S3,D3,E3,F3> C1(S3,E3,F3)])])]]

<"[3J,E1,F1,(A<S2 ,E 2 ,F2> . <S2,4,E2,F2>]>)
where E• 1s 11ke E1 except extended by match1ng S2 agatnst "[XJ

A simple reduction:

• >:("f3J,E1,f1, (S4-662)
[A<S2 ,Dz, E2 , f 2>

l:("(+ X Y},E*,Fz,
[A<S3,O3,E3,F3> .

([A<S2 ,E2 ,F2>. <S2 ,4,E2 ,F2>]
<S3 , E3, F 3>)])]

where E• ts 11ke E1 except extended by matching S2 agatnst "[XJ

Once again we omit the simple derivation of the significance of [3]:

= l:("(+ X Y),E•,F 1,

[A<S3,D3,E3,F3> •
([A<S2,E2,F2> <Sz,4,E2,F2>]

<S3 ,E3,F3>)])

(S4-563)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 426

where E* 1s like E1 except extended by matching "[31 against •cxJ

Note that we have updated our account of E*. But again we assume that x is bound to 3 in

E•; thus we can again assume that (+ x Y) will normalise to 4 and designate 4:

= ([A<S2,E2,F1> . <S2,4,E2,F2>]
<".f,E*,ft>)])

which finally reduces to our answer:

(S4-664)

(S4-566)

In other words the field remains unchanged, and the modified environment E • is returned

(but that is of no consequence since we would discard it above). The original expression

thus designates four and returns the appropriate numeral. As expected.

4. 2-usP: A Rationalised Dialect Procedural Reflection 427

4.c. v. Recursion

We have discussed the use of >.-tenns as function designators without mentioning the

subject of recursion. This approach was intentional, for it is important to ground the notion

of a A-term in the simpler case, but it is of course necessary to face the question of

recursive definitions. We have used DEFINE with recursive >.·terms in many prior examples,

but it should be clear that none of the discussion in the preceding section explains how

they might be made to work.

As usual the first task is to make clear what we mean by the term. In recent years

the notion of a recursive procedure has been increasingly contrasted with that of an iterative

procedure, based on the intuition that certain functions that were traditionally considered

recursive are in some deeper sense not really recursive at all - they don't appear to have

the fundamental properties (such as requiring memory in proportion to depth of call)

characteristic of the "paradigmatic" recursive functions like factorial. On the other hand

there is a sense that any definition using its own name within it is recursiv.!. Finally, there

are a variety of mathematical concepts: of a "recursive" function, deriving from the notion

of composition of a certain set of functional ingredients; of a recursive set - a set with a

decidable characteristic function; and so forth.

What is of concern here is what the predicate "recursive" is being applied to. There

are in particular three ways in which we may use the term, of increasing semantic depth: as

applying to signs, to intensions, and to extensions. The original and most accessible notion

of recursion is as a predicate on function designators - on signs, in other words; a

definition of a function is recursive just in case a term designating the whole function is

used as an ingredient term within the definition. This is the sense in which LISP is said to

support recursion and FORTRAN not; it is also the kind of recursion we mean when we say

that a semantic domain is recursively defined by an equation such as o =::: C o x D J.

However it is of course a consequence of this definition that nothing of interest can be said

about the class of functions designated by recursive definitions, since for any function

designator r we can construct the following designator F ' that it recursive, on this syntactic

account, but that designates the same function:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 428

F' • AX • 1f (1 • O) then F' (X+l) else F{X) (S4-670)

Furthennore, there is no way mechanically to exclude such definitions - those involvin~

only gratuitous recursive uses of the function's name in the body of the definition - since

it is not in general decidable whether a recursive use of that name plays an essential role.

This, then, is the most "hyper-intensional" use of the predicate. The non-semantic

character of this use of the word will emerge strongly below, where we show how Church's

Y operator enables any recursive definition on our account to be converted into a non

recursive definition, in virtue of the use of an explicit non (syntactically) recursive

designator of the fixed-point function. In other words, not only can aU non-recursive

definitions be rendered recursive by the technique illustrated in S4-570; far more

importantly, all recursive definitions can be rendered non-recursive in conjunction with the

fix-point function. In · sum, syntactic recursion, as Church and others have showed, can

always be discharged. Nonetheless, it is with the support of recursive definitions -

recursive lambda tenns - that we are concerned in this section. Our fonnalism - the 2-

LISP architecture we have already adopted - is fully adequate to support arbitrary

recursive /unctions, general as well as elementary, in the technical sense, 6 no matter how

they are designated.

Midway between the hyper-intensional notion of a recursive definition and the

extensional notion of a recursive junction is the notion of what we will call a recursive

procedure - a use of the term "recursive" over functions in intension. The "iterative·

recursive" distinction of computer science trades on this intensional use of the term; it is

worth mentioning because it will matter in our characterisation of the meta-circular and

reflective processors we will encounter in later sessions. The intuition is exemplified by the

following two definitions of factorial: though both arc syntactically recursive, and although

they are extensionally identical (they both designate the factorial function), there is a point

of view - an intensional point of view, again - by which they are different The

processing of the first, in a depth-first "recursive" control regime (that's of course yet a

fourth notion of "recursive", having more to do with compositionality, although the

structure of the natural designators of such a processing function arc typicatty recursive in

fonn - thus it is not an unrelated notion), requires a finite 1.mt indefinite amount of

memory, whereas processing the the third, a sub-procedure to the second, requires a fixed

4. 2-LISP: A Rationalised Dialect Procedural Reflection 429

(and small) amount of storage, independent of the magnitude of the argument (altltough of

course the representation of the answer does require storage that grows with the depth of

the processing):

(DEFINE FACroqIAL1
(LAMBDA EXPR [N]

(IF (" N 0)
1
(* N (FACTORIAL {- N 1))))))

(DEFINE FACTORIAL2
(LAMBDA EXPR [N] (FACTORIAL2-HELPER O 1 N)))

(S4-671)

(S4-572)

(DEFINE FACTORIAL2-HELPER (S4-573)
(LAMBDA EXPR [COUNT ANSWER N]

(IF { = COUNT N)
ANSWER
{FACTORIAL2-HELPER (+ COUNT 1) (•ANSWER(+ COUNT 1)) N))))

In the ptoccssors we will define for 2-LISP and 3-LISP it will tum out that the essentiatly

"iterative" (non-increasing storage) nature of FACTORIAL2 -HELPER is embodied in its

processing, since the "embedding" of the continuation structure (as was pointed out by

Steele and Sussman} is engendered by the processing of arguments, not by the reduction of

procedures. The intensional distinction, in other words, matters to us, and is adequately

treated in our meta-theoretic accounts. Furthcnnore, this fact will play a crucial role in our

ability to claim that the entire state of processing of a 3-LISP procedure is contained at a

given reflective level, since our defense will involve a recognition of the fact that all

embedded calls to the processor function - the "recursion" mentioned above that

characterise the basic LISP control regime - are "tail-recursive" in the sense of FACTOR IAL2 -

HELPER, thus requiring no maintcnce of state on the part of its processor. But these are all

matters for a later section. Our present concern is merely with what we will call syntactic

recursion in LAMBDA terms.

Note that, in spite of an informal sense that syntactic recursion involves some sort of

self reference, the kind of recursion we are concerned with here involves the embedded use

of a name for the procedure, not a mention of that name. Syntactic recursion, in other

words, is not self reference of the sort that wilt penneatc our discussions of reflection in the

next chapter. In order to sec this clearly, consider again the recursive definition of

FACTORIAL in S4-671 above. The LAMBDA term is a sign, with some intensional content, that

designates the factorial function. The embedded use of the name FACTORIAL is intended

.,

4. 2-USP: A Rationalised Dialect Procedural Reflection 430

also to designate that function. However neither the LAMBDA term, nor the FACTORIAL term.

nor any of the other constituents, designate the LAMBDA tenn or the FACTORIAL term or any

of the other constituents. Nor does any part of the factorial function qua abstract

mathematical function contain any designators at all (both the domain and range of the

function are numbers, not signs). Though it is by no means easy to make the concept of

self-reference precise, the notion would seem at heart to have something to do with a

syntactic or linguistic obj~t that either was (or was part ot) its own designation. No

amount of circularity or recursion trades on any such mentioning of a designator by that

designator. Syntactic recursion, in other words, to the extent there is anything "seJf'-ish

about it, involves a kind of selfuse, rather. than true self reference.

There is a received understanding in the community that a proper or adequate

implementation of recursive definitions requires in a deep sense some kind of circularity on

the part of the implementing mechanism. We will ultimately show that this is true, but

that it is not obviously true was shown by Church (as part of a proof of the universal power

of the A-calculus) in his demonstration of the paradoxical combinator or Y operator, an

apparently non-circular and non-recursive (in the syntactic sense) term that designates what

has come to be known as the fixed point function. The pure >i. ·calculus form of the Y

operator is as follows:

AF . ((AX . F(X(X)})
(AX . F(X(X))))

(S4-574)

This would be used as follows. Suppose we had the following incomplete definition of

FACTORIAL - incomplete because the the term FACT is unbound (this is expressed in our

eclectic meta-language, not the pure A-calculus, since we are assuming numerical arguments

and other primitive functions, but the idea is clear):

AN . (1f [N = O] then 1 eJse [N • FACT(N-1)]] (S4-676)

Then the insight - the fundamental content of the notion of a fixed point - is that this

would designate the factorial function if FACT were bound to the factorial function. If.

more particularly, we had the expression:

H = AFACT. [AN. [ff [N = O] then 1 eJse [N • FACT(N-1)]]] (S4-676) .
then if H were applied to the actual factorial function, then the value would be that factorial

function. If, for example, we knew that G designated the factorial function, then H (G)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 431

would designate it as well.

To this intuition is added the realisation that S4-575 contains everfthing necessary to

specify the factorial function. It is then standard theory to show that the Y operator

correctly embodies this intuition. · lhe result is that v c H) designaies the factoriai function.

To continue with our mixed meta-language, one would show that

{{Y{H)) 6)

designated the number 720, and so forth.

This is all elementary. We have reviewed it because we can, if we wish, absorb this

behaviour almost directly into 2-LISP. This is particularly useful because we will be able to

define a declaratively and behaviourally adequate procedure that will enable us to handle

all kinds of recursion . (single and mutual recursion, top-level definitions of recursive

procedures, and so forth) - al1 without requiring us to define any new primitive

mechanisms to extend those we have already adopted. We will not ultimately employ the

procedure that results, since it involves some unavoidable conceptual ineffeciencies, but we

will base the (non-primitive) procedure we do finally select on our translation of Church's

function.

Before setting out on this project, we should admit straight away that the techniques

by which recursive definitions are supported in standard L ISPs must be rejected. By and

large definitions are allowed only at the so-called "top-level" (one cannot use DEFINE

embedded within a program); the bindings that result are established globally, in special

function cells. Since these standard LISPS are dynamically scoped, any recursive use of the

name of a procedure within that procedure's body will of necessity find the binding already

established, when the procedure is used, since the binding will have been constructed at an

earlier period of time, and there is only a single space of procedure definitions. We cannot

accept this protocol for a variety of reasons:

t. We want to be able to embed definitions, particularly within the scope of
bindings (in fonns such as (LET ([X 1]] {DEFINE F (LAMBDA ... X •••))), for
example). Useful in general, this kind of practice is particularly natural in a
statically-scoped dialect

2. We do not store "functional" properties differently from standard "values":
the binding of procedure names must therefore use the same mechanisms as
those used to support general binding. It would be awkward if one could both
LAMBDA bind and SET variables in general, but only SET could be used to bind

4. 2-LISP: A Rationalised Dialect Procedural Reflection 432

names to recursive definitions.
3. It is not possible to use the traditional mechanism to implement mutually

recursive sub-procedures visible only within a specific context In LISP t.6 a
separate primitive called LABEL was provided for this case. There is no
defensible reason to need an extra primitive.

4 . The success of the recursive nature of the definition arises rather accidentally
out of global properties of the system. which is inelegant

Furthermore, as the analysis of the next pages demonstrates, the acceptance of the standard

techniques overlooks some distinctions of considerable importance, that a close look at the

fixed point function will bring into ex;>licit focus. As wetl as defining LABEL and DEFU.E as

simple non-primitive functions, we will be able to provide such facilities as protecting

bindings in a closure from the impact of subsequent DEFINES, all without resorting to special

purpose mechanisms.

Some of our complaints are of course handled by Sussman and Steele's SCHEME, but

even that dialect does not support embedded definitions, in spite of its static scoping

(SCHEME has LABELS, but docs not support (LET {(A 1)) (DEFINE •••))). In sum, procedure

definition ha:; to date received rather ad hoc treatment, something we should attempt to

~pair.

We tum ,hen to Church's Y operator. It is a straightforward function: ii. is of course

of indefin,te order, since it applies to functions, but since 2-LISP is an untyped higher-order

fonnalism, no trouble will arise in using such a function in our dialect. Suppose, for

example, we define the following initial 2-LISP version (a certain circularity in our

pedagogical style should be admitted: we arc using DEFINE to define ti.mctions that we will

ultimately use in order to explain what DEFINE does, but so be it) - this is merely a

syntactic transformation into 2-LISP of S4-574:

(DEFINE Y1
(LAMBDA EXPR [FUN]

((LAMBDA EXPR (X] (FUN (XX)))
(LAMBDA EXPR [X] (FUN (XX)))}))

(S4-678)

This can be more perspicuously written as follows (although the Y operator has never been

the most pedagogically accessible of functions):

(DEFINE Y1
(LAMBDA EXPR [FUN]

(LEf [[X (L~MBDA EXPR [X] (FUN (XX)))]]
{ FUN (X X)))))

(S4·679)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 433

The idea would be that if we defined a version of factorial as follows:

(DEFINE H
(LAMBDA EXPR [FACT]

(LAMBDA EXPR [N]
(IF (• N 0)

1
(• N (FACT (- N 1)))))))

then we should have:

((Y1 H) 1)
((Y1 H) 6)

and so forth.

~ 1
~ 720

This 1s desired. but not
actual, behaviour.

(S4-680)

(S4-681)

Although Y1 is declaratively correct, any use of it will fail, for procedural reasons.

Toe problem is that although (Y 1 H) car. be shown to designate the factorial function, the

processing of (Y1 H) would never return. It would engender an infinite computation before

it ever returned a procedur(: to reduce with a numeric argument This trouble is apparent

from a brief exam!:1ation of how Y 1 works. v 1 gives to the function H a procedure that

embeds not ~nly another copy of H, but a copy of the application of the Y operator to H, so

that :i. thereby engenders an infinite embedded tree of procedure definitions. 11lis is all

very well declaratively, since that is really what the recursive use of the name means, but it

is less acceptable procedurally. since we do not wish actually to generate this infinite tree of

procedure expressions, which is what v 1 does.

In the A-Calculus, as we have noted before in conjunction with the conditional, the

reduction protocols are nonnal order, rather than applicative order. v 1 would work properly

in a normal-order system; to be LISP, however, we wilt require an adequate applicative

order varianL

This problem, however, is easily repaired. In section 4.c.i we discussed the fact that

wrapping a designating expression in a LAMBDA term and then reducing a corresponding

rooex at a different time is a standard way of deferring the processing of intensions. Using

this technique, i, is straightforward to define a modified version of v 1, to be called v 2, that

defers processing of each embedded application of itc;clf until the arguments have been

given to the recursive procedure. Thus v 2 alternately reduces one argument set, then one

self-application, then one argument set, and so on, back and forth. Note the use of a single

atom ARGS for a pattern, enabling v2 to be used for procedures of any number of

arguments:

4. 2-LISP: A Rationalised Dialect

(DEFINE Yz
(LAMBDA EXPR [FUN]

{(LAMBDA EXPR (X] (FUN (XX)))
(LAMBDA EXPR [X]

(LAMBDA EXPR ARGS
((FUN (XX)) . ARGS)))))

or, once again to use LET:

(DEFINE Yz
(LAMBD~ EXPR [FUN]

(LET ([X {LAMBDA EXPR [X]

Procedural Reflection 434

(S4-682)

(S4-683)

(LAMBDA EXPR ARGS ((FUN (X X)) . ARGS)))]]
(LAMBDA EXPR [X] (FUN (XX))))))

v2 is acceptable, both declaratively and procedurally, for single recursive procedures of any

number of arguments, providing, of course, that they are EXPRS (we will discuss recursive

IMPR definitions presently). We have, for example, the follow!ng actual z-LISP behaviour

(we avoid DEFINE here merely to illustrate how Y2 frees us from any need to have DEFINE

perfonn any sort of magic):

> (SET G
(Y2 {LAMBDA EXPR [FACT)

(LAMBDA EXPR [NJ
{IF ('" N 0)

1
(• N (FACT (- N 1))))))))

> G
> (G 0)
> 1
> {G 6)
> 720
> (G (G 4))
> 620448401733239439360000

(S4-684)

This illustration brings up a point we will consider at considerable length below: what it is

to give to a surrounding context a name for a recursive procedure. In the example we used

the name "G" - different from the name FACT used internally. It is of course nonnal, and

simple, to have the name in the environment and the name within the procedure definition

be the same, but our approach has shown how these are at heart two different issues. The

name. in any particular context, by which a procedure is known is a matter of that context,

whereas the name used within a recursive LAMBDA tenn to refer to itself is a matter of the

LAMBDA intension. As we have said before, with a better theory of intension we might

escape having to retain the internal name at all (for example, although this cannot be done,

because of decidability considerations, one can imagine replacing alt recursive instances of

4. 2-LISP: A Rationalised Dialect Procedural Reflection 435

the name replaced with actual references to the resultant closure). Tims in our discussion

of environments. which arise in connection with a suitable definition for DEFINE, we must

not be led into confusion about the recursive aspects of the LAMBDA term. As Church has

shown, and we have adapted to 2-LISP's circumstances, the latter concern can be treated

adequately and independently of the former.

Before turning to those issues, however, there are a variety of concerns with v 2 that

we should attend to, if we are going to base subsequent definitions of other variants on its

ext~mal behaviour. First, as given it is unclear how we might support mutually recursive

definitions. Algorithmic procedures do exist whereby two or more mutually recursive

definitions can be "unwound" into a single recursive one, but it is convenient nonetheless

to generalise the definition of Y to encompass more than one definition. It is convenient to

have an example. Though there arc familiar cases of mutually recursive definitions (the

EVAL and APPLY of t-LISP are a familiar pair), they tend to be rather complex; we will

therefore consider the following two rather curious mutually-defined functions: it can be

seen on inspection that (Gt AB) designates either A or B, depending on whether the product

of A and B is odd or even, respectively:

(DEFINE Gl
(LAMBDA EXPR [AD]

((G2 AB) (+AB) A)))

(DEFINE G2
(LAMBDA EXPR (AB]

(IF (EVEN (• A B)·)

Gt)))

Thus we have, for example:

(Gt 3 4)
(Gt 4 3)
(Gl 6 7)

4
3
6

(S4-686)

(S4-686)

It is clear that any fixed-point abstraction over mutually recursive defintions will have to

bind formal parameters to all of the elements of the mutually recursive set, since

applications in terms of any of them may app<'ar within the scope of each definition. Thus

we will have to treat the following two fixed point expressions:

Hl = {LAMBDA EXPR (Gt G2]
(LAMBDA EXPR [A BJ

((G2 A 8) (+AB) A)))

(S4-687)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 436

H2 a {LAMBDA EXPR [Gt 62]
(LAMBDA EXPR [AB]

(IF (EVEN(• A 8))

Gt)))

(S4-688)

An appropriate 2-function variant on v2• called YY2, is defined in S4-690. below. The term

(YY2 Ht H2} designates a two element sequence of the two functions in question; thus we

would expect the following behaviour:

((NTH t (YY2 Ht H2)} 3 4)
((NTH t (YY2 Ht H2)) 4 3)
{(NTH t (YY2 Ht H2)) 6 7)

The definition of vv 2 is this:

(DEFINE YYz
(LAMBDA EXPR [FUN1 FUN2]

((LAMBDA EXPR [X1 X2]

4
3
6

[(FUN1 (X1 Xl X2) (X2 Xl X2))
(FUN2 (Xl Xl X2) (X2 X1 X2))])

(LAMBDA EXPR [X1 X2]
(LAMBDA EXPR ARGS

((FUN1 (Xt Xt X2) (X2 Xt X2)) ARGS)))
{LAMBDA EXPR (X1 X2)

(LAMBDA EXPR ARGS
((FUN2 (Xl Xl X2) (X2 Xl X2)) ARGS))))))

Once again we present a LET version for those who find this clearer:

(DEFINE YY2
(LAMBDA EXPR [FU~l FUN2]

(LET [[Xl (LAMBDA EXPR [Xt X2]
(LAMBDA EXPR ARGS

((FUN1 (Xl Xl X2) (XZ Xl X2)) . ARGS)))]
[X2 (LAMBDA EXPR (Xl X2]

(LAMBDA EXPR ARGS
((FUNZ (Xl X1 X2) (X2 X1 X2)) . ARGS)))]]

(LAMBDA EXPR (X1 X2]
[(fUNt (X1 X1 X2) (X2 Xl X2))

(FUN2 (X1 X1 XZ) (XZ Xl X2))]))))

(S4-689)

(S4-690)

(S4-691)

This indeed supports the behaviour indicated in S4-589, both declaratively and

procedurally.

It is of course necessary to generalise once more. v2• will accept an arbitrary

number of mutually recursive definitions, and will designate a sequence of the functions

they designate. It therefore follows that the normalisation of

(S4-692)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 437

will return a nonnat-fonn rail of the appropriately defined closures of the functions in

question. v2• may be defined as follows:

(DEFINE Y2•

(LAMBDA EXPR FUNS
((LAMBDA EXPR [RECS]

(MAP {LAMBDA EXPR [FUN]
(FUN. (MAP (LAMBDA EXPR (REC] (REC . RECS))

ilECS))}
FUNS))

(MAP (LAMBDA EXPR [FUN]
(LAMBDA EXPR RECS

(LAMBDA EXPR ARGS

FUNS))})

Again a LET version:

((FUN. (MAP (LAMBDA EXPR [REC] (REC. RECS))
RECS))

. ARGS))))

(S4-693)

(DEFINE Y2• {S4-694)
(LAMBDA EXPR FUNS

(LET [[RECS
(MAP {LAMBDA EXPR [FUN]

(LAMBDA EXPR RECS
(LAMBDA EXPR ARGS

((FUN. (MAP (LAMBDA EXPR [REC] (REC. RECS))
RECS))

. ARGS))))
FUNS)]]

(MAP (LAMBDA EXPR [FUN]
(FUN (MAP (LAMBDA EXPR [REC] (REC . RECS)).

RECS)))
FUNS))))

Note the substantial use of non-rail argument forms, facilitating the fact that v• can be used

with an arbitrary number of muturuly recursive definitions.

Such a definition, of course, though of theoretical interest. would in a practical

setting never be used explicitly. What is striking is that we can define the standard LISP

notion of LABELS directly in terms of v2•. Assume, in particular, that LABELS is a macro that

expands expressions of the form:

(LABELS [[<L 1> (LAMBDA ... <E1> ...)]
[<Lz> (LAMBDA ••• <E2> •••)]

(<Lk> (LAMBDA ... <E1t> ...)]]
<BODY>)

into expressions as follows:

(S4-696)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 438

(LET [[[<L2> ... <L1,:>]
(Y2• (LAMBDA EXPR (<L1> <L2> ... <L1t>] (LAMBDA ••. <E1> ...))

(LAMBDA EXPR (<L1> <Lz> •.• <L1t>l (LAMBDA •.. <E2> •••))

(LAMBDA EXPR [<L1> <L2> ... <Lt>] (LAMBDA ... <E1r.> ...)))])
<BODY>)

(S4-696)

This is then the standard LISP 1. 6-style LABELS, defined as a user function. We would

have, for example:

(LABELS [(Gl (LAMBDA EXPR [X Y] ((G2 X Y) {+ X Y) X))]
[62 (LAMBDA EXFR [X Y]

(If (EVEN(• X Y)) - Gt))]]
(= (Gt 2 3) (Gt 3 6))) => ST

{S4-697)

Note as well that the definition of the LABELS macro makes explicit what we mentioned

earlier: it is standard, but not necessary, to have the name within the intensional expression

and external to the intensional expression be the same.

Given this definition of Y, it is straightforward to define a first version of DEFINE in

its terms. In particular, we can assume that expressions of the form:

(DEFINE <LABEL> <PROCEDURE>)

are macro abbreviations of

(SET <LABEL> (Y2 (LAMBDA EXPR [<LABEL>] <PROCEDURE>)))

(S4-698)

(S4-699)

In addition, to facilitate mutually recursive "top-level" definitions, it is straightforward to

assume equivalently that expressions of the form ·

(DEFINE• <LABEL1> <PROCEDURE 1>
<LABEL2 > <PROCEDURE2>

<LABEL1,:> <PROCEDURE1,:>)

are abbreviations for

{MAP SET [<LABEL 1> <LABEL2> ... <LABEL11>]
(Y2• <PROCEDURE 1> <PROCEDUREz> ... <PROCEDURE11>))

(S4-600)

(S4-601)

Since DEFINE• is a pure extension of DEFINE - i.e., since DEFINE• and DEFINE are equivalent

in effect when given a single argument - we might just as well ai;sumc the entire set of

behaviours under the single name DEFINE.

One issue this agreement raises is this: we have assumed throughout that DEFINE

need not be used with explicit LAMBDA terms. In particular, we have assumed we could use

')

4. 2-LISP: A Rationalised Dialect Procedural Reflection 439

it for simpler purposes, such as simply to give to one name the significance of another. For

example, suppose we wish to give to the atom EQ the approximate meaning it has in 1-LISP,

which in 2-LISP we have initially bound to the atom "=". 'The following would suffice:

(DEFINE EQ =) ($4-602)

Now it follows, from our present analysis, that the following would be equivalent in effect:

{SET EQ a) (S4-603)

Thus even if our new definition of DEFINE did not support S4-602, no power would be lost

(if, in other words, S4-602 fails on our new definition, we could always simply use S4-603).

However it is reassuring to recognise that S4-602 would simplify, under the expansion

assumed in S4-599, to (the multiple argument Y2• makes this immaterially more complex):

(SET EQ (Y2 (LAMBDA EXPR [EQ] •))) (S4-604}

which is equivalent, and thus in one sense correct, even though it employs complexity

unnecessary to the circumstance. In particular, the atom = nonnalises to the primitive

equality closure:

(<EXPR> Eo '[X Y] '(= X Y)) (S4-606)

However we also have:

(Y2 (LAMBDA EXPR [EQ] =)) (<EXPR> Eo '[X Y] '(= X Y)) (S4-606)

The explict use of Y 2, in other words, has no discernible effect. The reason is simple: Y 2 in

S4-604 causes the atom EQ to be bound to the fixed point defined over "· But = is bound

to a normal-form closure; thus when it is nonnaliscd in this extended environment, the

extended environment is thrown away (normal-forms are environment-independent). The •

closure was closed in E0 long before the reduction of Y 2 took place.

There would seem no disadvantage in using DEFINE in all cases, in other words, and

this is how we wilt proceed. It should be admitted, however, for complet\!ness, that there is

one minor, but observable, difference in their behaviours. If EQ was already defined, the

following code would have no visible effect:

(SET EQ EQ) ($4-607)

In this one case, however (where the second argument uses the term being set), the

following is different in consequence:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 440

(DEFINE EO EO) (S4=608)

In particular, S4-608 will define a viciously circular procedure, since it expands to

(SET EQ (Y2 (LAMBDA EXPR [EQ] EQ))) (S4:::609)

which is content-free. Thus we should employ DEFINE with this one proviso, although it of

course is hardly a seriously limitation (furthcnnore the explicit use of the simpler SET is

always possible).

We said earlier that we would discuss at a later point the issue of how the names of

recursively-defined procedures could be made available to a wider context; the present

suggestions show how that question has reduced to one of making any structure or binding

public. We have demonsu·ated, in particular, how to reduce questions of definitions and

recursion (both single ~d multiple) to questions of setting variables - a subject on its own

which we will take up explicitly in section 4.c.vi. What we intend to do in this particular

section is to explore to its limtts the question of constructing fu11ction designators; the issue

of providing generally available names is separate.

There are, however, consequences of our approach to naming that emerge from our

analysis of names. In particular, it is clearly possible to use DEFINE at other than the top

level, thus embedding a potentially more complex context within the intension of the

function defined. We have, for example:

{LET [(A 1]] (S4-610)
(DEFINE INCREMENT (LAMBDA EXPR (N] (+NA))))

where the resultant INCREMENT procedure will add the number 1 to its argument,

independent of the binding of A in that argument's context For example:

(LET [[A 3]] (INCREMENT A)) 4 (S4-611)

Such an ability, perhaps surprisingly, is not available in any standard LISPS or in SCHEME;

definitions being thought in some way to be remarkable - a view we are trying to

dismantle.

Furthennore, equivalent in effect to S4-610 is the following:

(DEFINE INCREMENT
(LET [[A 1]]

(LAMBDA EXPR (N] (+NA))))

(S4-612)

4. 2-usP: A Rationalised Dialect Procedural Reflection 441

This gives the procedure INCREMENT something like an OWN variable (this is because the

binding of A does not occur within the schemalfc scope of the LAMBDA; hence there is an

instance of A for the procedure as a whole, not a schematic instance, as there is for N - or

to put it another way, there is one A for all instances of INCREMENT, but one instance of N

per instance of INCREMENT}. We could for example define a procedure that printed out how

often it had been called:

(DEFINE COUNT!:R
(LET [(COUNT OJ]

(LAMBDA EXPR []
(BLOCK (SET COUNT (INCREMENT COU~T))

(PRINT COUNT)))))

yielding the following behaviour:

> (COUNTER} !
> ST
> (IF (COUNTER) (COUNTER) (COUNTER}}!!
> ST

(S4-613)

(S4-614)

We have still some distance to go: we have not yet. for example, discussed

inten!.iional procedures (sadly, Y2 will not work for recursive IMPRS}. But before turning to

that. we should make a comment: although we will not ultimately adopt the definition of

DEFINE given in S4-699, because of the conceptual inefficiency of v2, it is useful to have

shown the kind of behaviour it engenders, as illustrated in the last few examples. 'Ibey

provide an indication of the effect that any candidate treatment of recursion should honour.

In other words, v2 will be a behavioural guide as we search for more effective variants on

Y.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 442

The problems with Y 2 have in part to do with efficiency - not imp/ementational

efficiency, but a deeper kind of conceptual inefficiency. This is best revealed by looking in

more depth at how both Y 1 and Y 2 work, especially in light of the intuition that recursive

definitions have in some way to do with circularity. On the face of it we apparently

constructed a successful fixed point function defined as a pure tree, which reduced with

other definitions that were pure trees, in such a way that the required recursive procedures

emerged, without either Y or its arguments involving any circular or recursive use of self

names. We have shown, in other words, that we can eliminate syntactic recursion, without.

apparently, introducing any structural circularity to do so (it is trivial to remove it using

structural circularity, if one knows where to perfonn the surgery, as the example in chapter 2

illustrated). Thus it might seem that recursive definitions do not require circular structures,

intuition not withstanding.

But intuition does in fact stand. The Y operator does construct circular structure,

albeit of a particular sort. More specifically, an examination of the definition of v 1 reveal

that the v operator works by constructing essentially indistinguishable copies of itself

applied to the function in question, and at each application redoing this copying at

infinitum. What is true about these structures is that they are type-equivalent, according to

our definition of section 4.b.ii. The full {infinite) nol1Ila1isation of Y 1 reduced with

arguments, in other words, includes within it an infinite number of type-equivalent copies of

itself.

We will say, therefore, that a closure returned by (Y1 F) is type-circular. Y2 differs

from Y 1 in that the closures it yields defer the production of this infinite type-circular

structure so that one more embedded level of it is produced each time the closure is

applied (strictly, each time the recursive self-name is used). The closures produced by

applying Y 2, therefore, we wilt call type-circular-de/e"ed. In the A ·calculus, efficiency is not

an issue, since the extension - the functions designated by the A·tenns - arc of prime

importance. Similarly, since there is no intensionality or side-effects, type-equivalent and

token-equivalent (i.e .• equal) structures are immaterially different. It is of no consequence

in the A-calculus, in other words, whether a structure is type-circular or token-circular (or,

more carefully, it would be of no consequence: in fact token-circular structures cannot be

constructed), since no behaviour hinges on the token identity of any given expression.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 443

Given this analysis, it is natural to ask whether it is not possible to define an

extensionally equivalent variant of the Y operator that traffics in token-circular closures:

closures X such that [X € ACCESSIBLE*(X)].

This understanding leads to a variety of suggestions, that we will explore in turn.

First, it is instructive to imagine modifying the definition of v itself, so that the type

equivalent structures within its definition are in fact identical - making, in other words, the

definition of v use identity in place of type-equivalence. To show this, we of course

encounter a pedagogical difficulty: the resultant structures cannot be lexically notated.

However since th1.:y will not be complex, we will adopt a simple extension of the standard

notation, as follows. We wilt assume that any atom x followed immediately (no spaces

intervening) by a colon, followed by a pair or rail, will define what we will call a notational

label for that pair. Similarly, any occurrence of that label immediately preceded by a colon

will stand in place of an occurrence of the pair following the place the label was defined.

We will ignore scoping issues entirely (our examples will remain simple). To keep these

notational labels separate from structural atoms, we will use italics for the former. This

notation wiU handle both shared tails and genuinely circular structures. Thus the structure

notated in this extended notation as follows:

{ + J: (• 3 4) : J) (S4-620)

would be notated graphically as:

(S4-621)

Thie; would be simply, but misleading, printed out in the regular notation as:

{+ (* 3 4) {* 3 4)) (S4-622)

More interesting is the fottowing structurally (token) circular definition of factorial:

F: (LAMBDA EXPR [N]
(IF(=NO)

1
(• N (:F (- N 1)))))

which has the following graphical notation:

(S4-623)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 444

(S4-624)

If we printed this out in the regular notation, it would lead to the following infinite lexical

item:

{LAMBDA EXPR [NJ
(IF(• N 0)

1
(• N ((LAMBDA EXPR [NJ

(IF {"' N 0)
1
(• N ((LAMBDA EXPR (N]

...)
(- N 1))))

(- N 1))))))

(S4-625)

The first intuition, then, is to make the type-equivalent parts of the definition of the

various Y operators in fact identical. We start with Y1• The original definition was this:

(DEFINE Y1
(LAMBDA EXPR [FUN]

((LAMBDA EXPR [X] (FUN (XX)))
(LAMBDA EXPR [X] {FUN (XX))))))

Collapsing the largest type-equivalent stmctures yields:

{DEFINE Y1
(LAMBDA EXPR [FUN]

(K: (LAMBDA EXPR [X] (FUN (XX)))
:K)))

(S4-626)

(S4-627)

No particular mileage is obtained, however, since this remains as non-tenninating as ever.

We similarly had this definition of v2:

(DEFINE Y2
(LAMBDA EXPR [FUN]

((LAMBDA EXPR [X] (FUN {XX)})
(LAMBDA EXPR [X]

(LAMBDA EXPR ARGS
((FUN (XX)) . ARGS)))))

(S4-628)

The two main (LAMBDA EXPR (XJ •••) terms are different, because of the processing deferral,

but observe that there is no need for the first of these to be different; thus the following is

4. 2-LISP: A Rationalised Dialect

essentially similar:

(DEFINE Yza
(LAMBDA EXPR [FUN]

((LAMBDA EXPR [X]
(LAMBDA EXPR ARGS

((FUN (XX)) . ARGS)))
(LAMBDA EXPR [X]

(LAMBDA EXPR ARGS
((FUN (XX)) . ARGS)))))

We can now collapse this:

(DEFINE Yzb
(LAMBDA EXPR [FUN]

{G: (LAMBDA EXPR [X]
(LAMBDA EXPR ARGS

((FUN (XX)) . ARGS)))
:G))

Procedural Reflection 445

{S4=d29)

But now it becomes natural to begin to collapse the reductions - to do the implied /J·

reductions. In other words we are attempting to minimise the structure in v2: collapsing

type-equivalent structure does part of that task; applying p-rcductions in non-applicative

order, where possible, helps as well. In particular, x will be bound to the structure labelled

G, and the reduction of G with itself happens directly. Thus we get:

{DEFINE Yzc
(LAMBDA EXPR [FUN]

(G: (LAMBDA EXPR [X]
(LAMBDA EXPR ARGS

{(FUN (:G :G}) . ARGS)))
:G))

(S4=631)

But this whole thing can collapse, since it is the application of G to G that we are concerned

with:

(DEFINE Y2d (S4=632)
(LAMBDA EXPR [FUN]

(K: (LAMBDA EXPR ARGS
((FUN :K) . ARGS)))))

Furthennore, we can go back to the original style whereby the first application does not

wait for arguments. We will call this Y3 for discussion. since it is counts as a distinct

version:

(DEFINE Y3
(LAMBDA EXPR [FUN]

K: (FUN (LAMBDA EXPR ARGS
(:K . ARGS)))))

(S4-633)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 446

The normal form version of v 3 is thus:

(<EXPR> ~ '[FUN] 'K:(FUN \LAMBDA EXPR ARGS (:K. ARGS))))

This closure has the following graphical notation:

i:XPR ARGS

FUN LAMBDA

(S4-634)

(S4-636)

ARGS

v3 is again an adequate Y operator, both declaratively and procedurally, for any singly

recursive extt!nsional procedure. ((Y3 H} 6) can be shown to designate 720, and it wiil

return 720. But there is something still a little odd. The inherent circularity in the Y

operator has been brought out; by collapsing type-identities onto individual identities, we

have shown that the Y operator is itself. in the deepest sense, circular. In other words we

have seen that the definitions of Y1 and Y2 are themselves type-circu/a,-de[e"ed; v3, in

contrast, is token circular. 1bis result is useful, because it shows us how type-identity has

covered for a tack of primitive circularity in a tree-stmctured formalism. Furthermore, it is

evident that if a function is in a deep sense circular, it may be able to engender essentially

circular behaviour f'om a non-circular argument But it would be more to the point if we

could show another version of this same thing: how all of these Y operators, v1, Y2, and Y3

generate type-circular closures. Additionally, it would be more powerful if we can define

still another version of the : ;Jperator v 4 that generated tuke11-circular closw-es. We needn't

care how Y itself is stmcturcd: we ought to be more interested in the structure of the

procedures Y returns.

We will tum, therefore, to an examinatioJl of the intensional form of the procedures

that each version of Y returns. We wil! initially use H as our example, and will look first at

our latest version, v3 . We begin wilh:

(Y3 It}

Substituting the normal-form closure of Y3 from S4-634:

((<EXPR> f! '[FUN] 'K1 : (FLIN (l.AMODA EXPR ARGS (:K1 • ARGS))))
H)

(S4-636)

(S4-637)

4. 2-usP: A Rationalised Dialect Procedural Reflection 447

Similarly we can expand the binding of H, since we are about to reduce an EXPR:

((<EXPR> Eo '[FUN] 'K1 : (FUN (LAMBDA EXPR ARGS (:K,. ARGS))))
(<EXPR> Eo '[FACT] '(LAMbOA EXPR [N]

(IF(* N 0) 1 (• N (FACT(· N 1)))))))

(S4·639)

Binding FUN to the second EXPR closure, and substituting that into t'le body, we get the

following (this is slightly subtle, because we interpret through the pair that we have notated

with K; nonetheless the internal use of it retains the full pair, as indicated):

({<EXPR> Eo '[FACT] '(LAMBDA EXPR (NJ
(IF(= N 0) 1 (• N (FACT (- N 1))))))

(LAMBDA EXPR ARGS (K 1 : (FUN (LAMBDA EXPR ARGS) (:K1. ARGS))
. ARGS)))

(S4-639)

Once again, noting that the reduction is of an EXPR, we can nonnalise the single argument

This nonnruisation happens in an environment which is like E0 except extended so that FUN

is bound to the closure to which H expanded::

.. (Kz:(<EXPR> Eo '[FACT] '(LAMBDA EXPR [N]

{<EXPR> [[' FUN :Kz] •.. Eo]
'ARGS

(IF(• N 0) 1 (• N (FACT (- N 1))))))

• (K1 : (FUN (LAMBDA EXPR ARGS) (: 1., . ARGS)) . ARGS)))

(S4-640)

Finally, we can bind this to FACT, and nonnalisr the body of the c1osure being reduced.

yielding our answer. In this case the crucial thing is the binding of FACT, so we illustrate

the expanded environment:

(<EXPR> [('FACT (<EXPR> (['FUN '(<EXPR> fo
'[FACT]

••• Eo]
'[N]-

'(LAMBDA EXPR [NJ :K.,))]
... Eo]

'ARGS
'(KJ: (FUN {LAMBDA EXPR ARGS) {:K1 • ARGS))

. ARGS)J

'K3: (IF(= N 0) 1 (• N (FACT (- N 1)})))

(S4=641)

Though we need not go through them in detail, expansions for the other three

varieties of v can be worked out in the same fashion. We end up with the results

summarised in the following itlt:strations. Rather than use a particular H we have

generalised thci,e results to use a generic single-argument function of fonn:

<H> E (LAMBDA EXPR [<LABEL>] <FORM>) (S4-642)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 448

where for the time being we assume

<FORM> 15 (LAMBDA EXPR <PATTERN> <BODY>}) (S4-643)

(This is limiting, and we will generalise it presently.) First we look at Y1• Although (Y1 II)

would never return, it is easy enough to work out what it would return if we waited until

the end of time. A few steps through the reduction shows immediately the structure of the

infinite descenL We start with

(Y1 H)

which is equivalent to

((LAMBDA EXPR [FUN]

H)

((LAMBDA EXPR [X] {FUN {XX)))
(LAMDBA EXPR [X] {FUN (XX)))))

(.54-644)

(S4·646)

Binding FUN to H and reducing yields (underlining is used to indicate inverse normalisation):

((LAMODA EXPR (X] (ll (XX)))
(LAMBDA EXPR [X] (ll (XX))))

Another reduction:

(ll ((LAMBDA EXPR [X] (ll (XX)))
(LAMBDA EXPR [X] (tl (XX))))

(S4-646)

(S4-647)

But the argument to H here is type-equivalent to S4-646; hence it is apparent that (Y1 H)

will generate more and more of:

rn rn rn < ... i!Ll!l···> > > > (S4-648)

If we were to collapse type-equivalences into token identities, and thereby terminate this

infinite process, we would have:

IC: (!! : K) (S4-649)

But this cannot be posited as the appropriate infinite closure, since it is not in nonnal form.

Expanding the H yields

(Y1 H) ~ K: ((<EXPR> <ENV> '[<LABEL>] '<FORM>) :K) (S4-660}

if we do one more reduction by hand, we bind <LABEL> to K and normalised <FORM>.

Assuming the structures of S4-643 apparently yields:

4. 2-LISP: A Ration&•sed Dialect Procedural Reflection 449

(Y1 ff) => {<EXPR> (['<LABEL> (S4-661)
'K:((<EXPR> <ENV> '[<LABEL>] '<FORM>) :K)]
... <ENV>]

'<PATTERN>
'<BODY>)

But the point of K was to label the result. whatever it was that we decided (Y1 HJ returned'.

thus this should really be:

(Y1 H) => K: (<EXPR> [['<LABEL> :K] ... <ENV>] {S4-662)
'<PATTERN>
'<BODY>)

This is in a sense ideal; the problem is that it is the result of an infinite computation. We

will take it up below, however, after looking at Y2 and v3 •

A simple view of the result of normalising (v 2 H) leads to the following notation,

more easily first understood without using our extended notation to indicate shared

structure. Note that this is a finite structure because only one generation of the production

of the infinite type-equivalent tree has been executed (this· is the essence of Y2 generating

deferred circular closures).

(Yz H) => {<EXPR> (S4-663)
(['<LABEL> '(<EXPR>

[('X '{<EXPR>
[['FUN '(<EXPR> Eo '[<LABEL>] '<FORM>)]

••• Eo]
'[X]
'(LAMBDA EXPR ARGS ((FUN (XX)) . ARGS)))]

['FUN '(<EXPR> Eo '[<LABEL>] '<FORM>)]
... Eo]

'ARGS
'((FUN (XX)) . ARGS)}]

... Eo]
'<PATTERN>
'<BODY>)

If we explicitly identify all shared structure we have:

(Y2 H) => (<EXPR> (S4-664)
[['<LABEL> '(<EXPR>

[['X '{<EXPR>
[KJ:['FUN '(<EXPR> f! '[<LABEL>] '<FORM>)]
... Eo)

'[X]
'(LAMBDA EXPR ARGS

K2 :((FUN (XX)) . ARGS)))]
:Kl ... Eo]

'ARGS
':K2)]

4. 2-usP: A Rationalised Dialect Procedural Reflection 450

'<PATTERN>
'<BODY>}

Finally, the result obtained above in S4-641. re-written in terms of abstract <PATTERN> and

<BODY>:

(Y3 H) ~ (<EXPR> [['<LABEL> (S4-666)

In graphical form:

'(<EXPR> [['FUN '{<EXPR> f2 '[<LABEL>] '<FORM>)]

••• Eo]
'<PATTERN>
'<BODY>)

<PATTERN>

<EXPR>

.•. <EO>

... !!]
'ARGS
'(K1: (FUN (LAMBDA EXPR ARGS (:K1 • ARGS)))

. ARGS)]

(S4-667)

FUN LAMBDA

EXPR ARGS ARGS

~fORM>

From this last it becomes plain how both (Y2 H) and (Y3 H) fail to be what we want. If we

were to achieve token circu1arity in the resultant closure, the binding of FACT in the closed

envimnment would he the overall closure, not - like in S4-667 - a dosure that would

engender a type-equivalent closure. The behaviour we aim for, in other words, is that

produced after an infinite amount of processing by Y 1• The question is whether it is

possible to define a version of Y called Y4 that would be procedurally finite but

ccmputationally equivalent in result:

(Y4 <H>} =:,- K: {<EXPR> [['<LABEL> :K] ... Eo] (S4-668)
'<PATTERN>
'<BODY>)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 4S1

In graphical form would be this:

(S4·669)

<EO>

This is particularly mandated because v1 (and hence by assumption Y4) works correctly with

intensional procedures, whereas neither v2 nor Y3 have that advantage. The problem is that

both v2 and v3 yield processing-deferred closures, of the form (actually the normalisation of

this)

(LAMBDA EXPR ARGS (..• (FUN • ARGS))) {S4-660}

which clearly normalises the arguments automatically. It would be possible to complicate

the definition so that (v 2 H) would return

{ LAMBDA IMPR ARGS (... { FUN . ARGS))) (S4-661)

just in case FUN was bound to an IMPR, but there is no help in this, since FUN will then be

given • ARGS as its single bound argument, rather the the handles on the arguments

intended. (This is a re-occurcnce of the problem we encountered with IF.) No obvious

solution presents itself.

'· 'h:. · There arc many reasons, then, pushing us towards a tractable definition of v 4• If we

could assume that the <FORM> term in all H expressions was, as suggested in S4-643, the

following:

<FORM> • (LAMBDA EXPR <PATTERN> <BODY>) (S4-662)

then an adequate, if ugly, Y4 would be easy enough to define: a single-function version is

the following:

(DEFINE Y41
(LAMBDA EXPR [FUN]

(LET [[CLOSURE t(FUN '?)]]
(BLOCK (RPLACN 2 (1ST t(lST (CDR CLOSURE))) tCLOSURl)

+CLOSURE))))

(S4-663)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 452

This works by brute force: the variable CLOSURE is bound to a designator of the closure qua

pair; (1ST (CDR CLOSURE)) selects the internal environment designator; t (1ST (CDR

CLOSURE)) obtains access to this as a rail (environments are sequences; therefore we need

an uparrow to designate the rail that in tum designates the environment). The first element

of this rail is the binding of the procedure's name; it will temporarily be bound to the atom

"?'', in virtue of the term (FUN •?) in the third line. The term tCLOSURE, finally, designates

a handle that in turn designates the closure; since we are dealing with the environment

designator as an explicit rail, we need to insert the appropriate closure designator as a

binding. We are working, in other words. two levels above the object level at which the

procedure will ultimately be used. Note that there is an approximate balance in the use of

an up·arrow in both of the arguments to RPLACN. Finally, the closure itself cannot be

designated as a result; v 4• applied to a function should yield a function; hence ,&.CLOSURE is

the exit form.

However one of our whole reasons for constructing an explicit and adequate Y

operator is to handle a wider variety of forms. Suppose that we executed this:

(Y44 (LAMBDA EXPR [FIBONNACCI]
{LET [[FIB-1 1]

[FIB-2 11]
(LAMBDA EXPR (N]

{COND [(= N 1) FIB-1]
((= N 2) FIB-2]
[ST(+ (FIBONNACCI (- N 1))

(FIBONNACCI (- N 2)))])))))

(S4-664)

Without spelling out the details of all the intermediate st.!tes. it is clear that v 41 as defined

above in S4-663 would smilsh the binding of the procedural constant FIB-2, rather than the

binding of FIBONNACI. Thi~ is because the form of the closure that would be returned

would be this:

(<EXPR> [['FIB-2 '1]
['FIB-1 '1]
('FIBONNACCI '?]

... Eo]
'(NJ
'(COND ...))

(S4-666)

Thus v 44 cannot be adopted. Given this realisation, a second proposal natural arises: rather

that modifying the first binding in the environment in the closure, we should modify the

binding of the name FIBONNACCI. In the next section we will introduce a procedure called

4. 2-LISP: A Rationalised Dialect Procedural Reflection 453

REBIND of three arguments: a variable, a binding, and an environment; it destructively

modifies the binding of the variable in the environment so as to be the new binding. Jn

other words we might imagine the following version of Y4:

{DEFINE Y4b

(LAMBDA EXPR [FUN]
(LET [[CLOSURE t(FUN '?)]]

(BLOCK (REBIND '<LABEL> t(1ST (CDR CLOSURE)) tCLOSURE)
.£.CLOSURE})))

(S4-666)

There are however two problems with this. First. v 4 is not currently cognisant of the name

that the H fonn uses for its internal recursive use (hence the <LABEL> in the preceding code),

and it seems inelegant to have to extract it or pass it out explicitly to Y. This could be

arranged, however, except that there is a worse problem: there is no guarantee that <LABEL>

will be defined. One of the simplest such examples was our illustration in S4-602 of

(DEFINE EQ =}

which we said would expand (if we were to adopt this variant) into

(SET EQ (V4b (LAMBDA EXPR (EQ] =)))

But (LAMBDA EXPR [EQ] ..) will return the primitive closure

(<EXPR> Eo [AB](= A 8))

!S4-667)

(S4-668)

(S4-669)

and the subsequent call to REBIND will fail to find EQ bound in E0• Nor should it add such

a binding. But worse, it should not necessarily rebind the first occurence of <LABEL>; if the

H procedure did not bind ;t. then there might be a different use of <LABEL> in some

encompassing context. and it would be disastrous to modify that. Hence v 4b must be

rejected as well.

Fortunately, all is not lost: two further variants enable us to side-step most of these

difficulties. They hinge on the same observation: the REBIND in Y4b and the RPLACN in v4•

were similar in intent: they both attempted to locate and modify the appropriate binding in

the environment of the returned closure. The problem with both was a potential error in

determining the appropriate binding. The suggestion then is to ask whether we could

obtain any better access to that binding, rather than attempting to discover, after the fact.

which binding it was. There arc two answers to this, one of which we can implement, one

requiring a facility not currently part of 2-usr.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 4S4

The first, to be embodied in Y4c, is this: we (that is to say the code constituting Y4)

pass to the H function a temporary binding, currently the dummy atom "7". Suppose

instead we were to generate a temporary closure, and then to modify that very closure when

the H function returned. Since we cannot actually change what closure it is (what pair it is,

since pairs are used for closures), we would have to use RPLACA and RPLACD. Thi! definition

of Y 4c is as follows:

(DEFINE Y.cc
(LAMBDA EXPR [FUN]

(LET• [[TEMP (LAMBDA EXPR ARGS {ERROR))]
[CLOSURE t(FUN TEMP))]

(BLOCK (RPLACA tTEMP (CAR CLOSURE))
(RPLACD tTEMP (CDR CLOSURE))
TEMP))))

(S4-670)

Though this cannot be said to be elegant, it is no less elegant than v •• or ,, •b• Note,

furthermore, how it solves the problems that plague the previous two versions. If CLOSURE

does not bind TEMP, the side effects engendered by the first two BLOCK expressions will be

discarded upon exit from v 4c:, since all access to TEMP will be thrown away. If TEMP is

bound, somewhere in the environment within CLOSURE, then that binding will be to a

closure that is changed to be equivalent to the closure returned by app1ying H to "itself'.

The crucial word here is "equivalent". What makes v,.c work is that it, too, trades

on a type-equivalence. It makes TEMP be type-equivalent to CLOSURE, rather than actually

identical. Actual token identity eludes us, since we have no way of obtaining the

information of where the occurence of TEMP is, and no primitive stmctural procedure

enabling us to change that pair to actually be a different one.

This docs, however, lead to a fourth suggestion. Suppose there were a primitive 2-

LISP procedure called REPLACE that generalised the abilities provided by RPLA1CA, RPLACD,

RPLACT, and RPLACN. The idea would be that (RPLACE <X> <Y>} would affect the field so

that all occurences of <X> were hence, Jrth occurences of <Y>. REPLACE should be restricted

to the "pseudo-composite" structure types: pairs and rails (no sense can really be made of

actually replacing constants). TI1is behaviour is very similar to our provision of a RPLACT

that works with a zero index (indeed, the implementational consequences are very similar:

so-called "invisible pointers" would be required on pairs as well as rails, ilrl a natural

implementation on a Von-Neuman-like machine). The four present structural side-effect

procedures could be defined in terms of REPLACE as folJows:

4. 2-usP: A Rationalised Dialect Procedural Reflection 4SS

(DEFINE RPLACA
{LAMBDA EXPR [PAIR NEW-CAR]

(REPLACE PAIR (PCONS NEW-CAR (CDR PAIR}))))

(DEFINE RPLACD
(LAMBDA EXPR [PAIR NEW-CDR]

(REPLACE PAIR (PCONS (CAR PAIR} NEW-CDR})))

(DEFINE RPLACT
(LAMBDA EXPR (INDEX RAIL NEV-TAIL]

(REPLACE (TAIL INDEX RAIL) NEV-TAIL)))

(DEFINE RPLACN
(LAMBDA EXPR [INDEX RAIL NEW-ELEMENT]

(REPLACE (TAIL {- INDEX 1) RAIL)
(PREP NEW-ELEMENT (TAIL INDEX RAil)))))

Such a REPLACE would facilitate the fottowing definition of Y44:

(DEFINE Y4d
{LAMBDA EXPR. [FUN]

{LEl• [[TEMP (LAMBDA EXPR ARGS (ERROR))]
(CLOSURE t(FUN TEMf)])

(BLOCK (REPLACE HEMP CLOSURE}
TEMP))))

(S4-671)

(S4-672)

(S4-673)

(S4-674)

(S4-675)

Since we do not have such a REPLACE, we will have to adopt the marginally less satisfactory

Y4c.

Since the circular closures that v 4 constructs seem not unlike what a simple approach

might have suggested. the reader may question our long diversion through three other

versions of the Y operator. However our investigation can be defended on a variety of

counts. First, Y 4c is by no means isomorphic to the standard approach. as the discussion at

the begining of this section argued. and as the discussion of such procedures as PROTECTING

in the next section will emphasize. Furthermore, Y •c is similar in external behaviour to the

Y2 we based relatively directly on Church's fixed point operator; thus we can use Y4 in all

of the situations we used Y2• Embedded definitions, "own-variables" like those illustrated

in S4-610 and S4-612 are still supponcd. and so forth - c. 'l capabilities be) ond those

provided in standard LISPS. If we had staned with a primitive "r.,. FINE" operator we would

likely not have provide<! these capabilities, and even if we had ve would have had to

defend them ex post facto, rather than seeing how they arise n, uraJJy out of the very

nature of recursive definitions. Second. we still have a facility • · treating recursive

definitions that is not primitive. even though our final version is superficially inelegant It

is worth noting. however, whence this inelegance arises. The closures that v 4c constructs are

4. 2-LISP: A Rationalised Dialect ProccduralReflection 4S6

much more elegant than those generated by the simpler v 2 ; the only reason that v 4c is

messy is that it is messy to construct circular structure in a fundamentally serial dialect

The awkwardness of S4-670, in other words. emerges from the fact that it is awkward in an

essentially tree-oriented formalism to construct non-tree-like structures. There is no

inherent lack of cleanliness either in the closures constructed, or in the abstract task of

constructing them. In a radically different C".alculus. based on a more complete topological

mapping between program and behaviour, such construction would be essentially trivial. (It

must be admitted, however. that because to!<en circular closures are not primitively

provided. our definition of Y4 required meta-structural access, whereas the simpler v2 did

not: it was purely extensional.)

Third, we have seen how the question of providing public access to the names of

recursive procedures. and the question of providing a self-referential name to be used

within a recursive definition, are at heart different issues. The macro definition of DEFINE

given in S4-599, can be carried ove.r essentially intact so as to use Y.cc• In particular.

expressions of the form

(DEFINE <LABEL> (S4-676)
(LAMBDA <TYPE> <PATTERN> <BODY>))

will be taken to be abbreviatory for

(SET <LABEL> (S4-677)
(Y4c (LAMBDA EXPR [<LABEL>]

(LAMBDA <TYPE> <PATTERN> <BODY>')))

Nothing crucial any longer depends on the LAMBDA form of the second argument to IJEFINE,

however, so we can generalise this; expressions of the form

(DEFINE <LABEL> <FORM>)

will be taken to abbreviate:

(SET <LABEL> (Y.c~ (LAMBDA EXPR [<LABEL>] <FORM>)))

Again, we will examine the import of the (SET •••) in the next section.

(S4-678)

{S4-679)

Fourth, our developmental approach has shown us how the original v operator, and

our side-effect engendering closure modifier, are essentially related. Both have to do with a

kind of self.use, one effected in virtue of a type-equivalence. one effected in virtue of a

circular path for the processor.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 457

It is appropriate to review our four flavours of Y in light of our new tenninology and

conclusions:

Y1 : This version is itself type-circular deferred; it generates type-circular (but
not deferred) closures. Recommending v 1 is the fact that it is the direct
embodiment of the standard fixed-point function in the meta-language;
ruling it out, however, is the fact that it requires an infinite amount of time
to generate its closur~ (because they are not deferred).

Y 2 : Type-circular deferred itself, v 2 also generates type-circular deferred
closures; as such it is procedurally tractable, but inefficient of both time and
structure.

Y3 : Y3 is itself token-circular, but, like Y3, it generates type-circular-deferred
closures. Thus, although of some interest, it had little to recommend it
beyond Y2 •

Y 4 : v 4 (in all of its versions) was not itself circular at all, but it generates token
circular closures. Although it was not singularly elegant in this construction,
the closures that resulted were considered optimal, and thus it was selected.

There arc some tidying-up details we need to attend to before moving on to a study

of e:.1vironmer.ts and variables. First, there is a question of tenninology. Though Y4c is

de•,elopmentally related to the original Y operator, as our discussion has shown, and though

it designates the same function, it is markedly different intensionally; it is not strictly fair,

in other words, to call it by Church's nrune "Y". Since it is the only version we will adopt

in 2-LISP, it would be unnatural to retain the "4c" subscript In the following definitions,

therefore, and throughout the remainder of the dissertation, we will use the name "z" for

this procedure.

The single argument z of S4-6 70 can of course be generalised to handle multiple

mutually recursive definitions, in very much the way we generalised Y z· The following is a

two-procedure version (we won't use this, but it leads towards the subsequent definition of

z•):

(DEFINE ZZ
(LAMBDA EXPR [FUNl FUN2]

(LET* [[TEMPI (LAMBDA EXPR ARGS (ERROR))]
[TEMP2 (LAMBDA EXPR ARGS (ERROR))]]
[CLOSURE! t(FUNl TEMPl TEMP2)]
[CLOSURE2 t(FUN2 TEMP! TEMP2)]]

(BLOCK (RPLACA tTEMPl (CAR CLOSURE!))
(RPLACD tTEMPl (CDR CLOSURE2))
(RPLACA tTEMP2 (CAR CLOSURE!))
(RPLACD tTEMP2 (CDR CLOSURE2))
[TEMPI TEMP?.)))))

(S4-680)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 458

Finally, a version able to handle an indefinite number of mutually recursive definitions:

(DEFINE z• (S4-681}
(LAMBDA EXPR FUNS

{LET• [[TEMPS (MAP (LAMBDA EXPR?
(LAMBDA EXPR ARGS (ERROR)))

FUNS}]
[CLOSURES t(MAP {LAMBDA EXPR [FUN] (FUN. TEMPS~) FUNS)]]

{MAP (LAMBDA EXPR [TEMP CLOSURE]
(BLOCK (RPLACA tTEMP (CAR CLOSURE)}

(RPLACD tTEMP (CDR CLOSURE)}
TEMP))

TEMPS
CLOSURES))))

The behaviour is essentially similar to that of z · and zz.

In 3-LISP both z and z• wilt be structurally modified in very minor ways, but in

behaviour and semantics they will remain essentially unchanged. Finally, that z satisfies

our original goals - supporting general recursion. mun.ml recursion, EXPRs and IMPRs,

embedded definitions, own variables, and so forth - is shown in the following set of

e'l:amples, by way of review. First. a paradigmatic recursive definition:

(Z (LAMBDA EXPR [FACT]
{LAMBDA EXPR (N]

(IF(=NO)
1
(• N (FACT (- N 1)))))))

~ K: (<EXPR> [['FACT K:] ... Eo] '[N] (IF (" N 0) l ...))

Second, z used on a non-recursive definition docs not introduce trouble:

(Z (LAMBDA EXPR [EQ] =}

~ (<EXPR> Eo '(AB](= AB))

Third, z supports embedded definitions:

(LET [(X 1]]
(Z (LAMBDA EXPR (FACT]

(LAMBDA EXPR (W] (+ X W)))))

~ K: {<EXPR> [(FACT :K]['X '1] ... Eo] '[W] '(+ X W))

Fourth, it supports "own" variables:

(Z (LAMBDA EXPR (FIBONNACCI]
{LET [[FIB-1 1]

[fIB-2 1]]

(S4-682)

(S4-683)

(S4-684)

(S4-685)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 4S9

(LAMBDA EXPR [NJ
(COND [(a N 1) FIB-1]

[(= N 2) FIB-2]
($T (+ (FIBONNACCI (- N 1))

(FIBONNACCI (- N 2)))])))))

=;> K: (<EXPR> (('FIB-2 '1]
['FIB-1 '1]
['FIBONNACCI :K]
... to]

'[N]
'(COND [(" N 1) FIB-1] ...))

Fifth, z supports intensional procedures, recursi"e as wetJ as non-recursive:

(Z (LAMBDA EXPR (If]
(LAMBDA IMPR [PREMISE T-CONSEQUENT f-CONSEQUENT]

(IF(= '$T (NORMALISE PREMISE))
(NORMALISE T-CONSEQUENT)
(NORMALiSE F-CONSEQUENT}))))

=;> K: (<IMPft) (['If :K] ••• Eo]
'[~REMISE T-CONSEQUENT F-CONSEQUENT]
'(IF ...))

(S4-686)

Sixth ruid finally, z• may be used for non-top-level mutually recursive procedures (this is

an expansion of what normally be written using the abbreviatory LABELS):

{LET ((X 3] (Y 4]]
{LET ([(Gt G2]

(7-• (LAMBDA EXPR (Gt G2]
(LAMBDA EXPR (X YJ ((GZ X Y) (+ X Y} X)))

(LAMBDA EXPR [Gt GZ] · .
(LAMLDA EXPR [X Y] (IF (EVEN(• X Y)) - Gt))))]]

[Gl GZ]))

:::;> [K1 : (<EXPR> [['Gl ':Ki]['G2 ':K2] K3::['X '3]('Y '4] ... Eo]
'[X Y]
'({GZ X Y) (+ X Y} X))

K2 : (<EXPR> [['Gt ':Ki]['GZ ':K2] ::Ka]
'[X Y]
'((GZ X Y} (+ X Y) X)}]

(S4-687)

By "K3 : :" in this example we mean to label the tail of a rail; by ": :K3" we mean that the

tail is the rail so not,;ited. The two closures, in other words, share their second tail (why

this is so will be explained in the next section). Given this sharing, it might seem that it

would be more economic if z• could construct a single environment, cngtndering

something like the following:

4. 2-LISP: A Rationalised Dialect Proced11 rai Reflection 460

(LET [[X 3] (Y 4]]
(LET ([[Gt G2]

cz• {L~MBOA EXPR [Gl G2]
(LAMBD~ ,xPR [X Y] ((62 X Y) (+ X Yl X)))

(lAMBDA EXPR [Gt G2]
(LAMBOA EXPR [X Y] (IF (EVEN(• X Y)) - 61))))]]

[Gl G2]))

c,, [KJ: (<EXPR> IC3 :[['Gl ':K1]['G2 ':K2]['X '3]('Y '4] ... Eo]
'[X '{]
'((62 X Y) (+ X Y) X!j

(S4-688)

K2 : (<EXPR> :K3 This is wrong!!
'[X Y]
'((GZ X Y) (+ X Y) X))]

However this is incorrect: it is an artefact of the simplicity of the two H fi.m,;tions given to

z• that their environments are in this case.. type-equivalent. All of the arguments against "••

and v 4b would rule out any such simplification.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 461

.f.c. vl Environments and lhe Selling of Variables

One issue remains: the (destructive) setting of variables. In the previous part:. of

section 4.c we have discharged recursion, and reduced the question of defining procedures

to the question of setting of variables. We know that environments are the recorders of

variable bindings. and we know how to use LAMBDA terms to bind names in static contexts,

but there are two related qu~tions we have not yet considered. First, although we have

used the primitive SET a variety of times, we have not explained it. Second, although we

have shown how rails of handles arc nonnal-fonn environment designators, we have not

questioned the identity of those environment-encoding rails. As usual, these are two sides

of the same coin: it is the impact of structural side-effects that detennines, and depends on,

the identity of the structures in question.

We can define whatever behaviour we like; the issue is to detennine what makes
. .

sense. 'fris is particularly difficult in a statically scoped system; as Steele and Sussman

have made clear, there is an inherent tension between statically scoped dialects and the

ability to dynamically affect the procedures bound to previously used atoms. The standard

exemplar of this tension is in the "t~p-lcveJ" READ-NORMALISE-PRINT loop (ou;- version of

READ-EVAI -PRINT, of course) with which a user interacts with the language processor, since

it is in this context that procedure definitions are typically altered. It is not impossible to

constmct a user interface that binds variables using standard LAMBDA binding protocols; the

form (SET <X> <Y> }, for example, when used at top level, could be treated as a macro form

that expanded to (LET [[<X> <Y>]] (READ-NORMALISE-PRINT)). The problem is that this is

not the behaviour one wants: typically when rc·dcfining procedures, as we will see below,

one wants the re-definition to affect other previously defined procedures, which .:his

suggestion would not engender. The question is not one of how to support user interfaces,

but one of how to provide controlled protocols for effecting change on extant st~cture.

(In point of fact, that last characterisation is too broad: we already have the four

versions of RPLAC- for changing structural field elements. Our present concern is with

changing environments. Once put this way, it is natural to ask about cnanging

continuations, since those three entities coPstitute an entire context Modifying

continuat~on.;, however, is a matter we will defer until chapter 5.)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 462

It is important to realise that there is nothing unique about user interaction in this

regard; the user interface is merely the place where side-effects to environment'i are most

typically requested. Any program able to modify its own suuctures - any substantially

reflective process, in other words - will encounter the same issues. It was one of the

mandates on reflection we set out in chapter 1 that a reflective vroccss must have causal

access to the structures in tenns of which it behaves, in order that the reflective abilities

may matter. One of the ways mattering manifests itself is in the ability to modify bindings

in various contexts. In iliis present chapter, since we have not yet taken up reflection as its

own subject, we will constrain our examples primarily to user-interaction, but the reader

should be aware that this is by way of example only.

As usual, the best answer to this set of problems - the simple provision of a clear

facility that rationalises static scoping and dynamic control - will emerge from the

reflective abilities in 3-LISP. We do not yet have access to this machinery, but we will

present an inchoate version of it in 2-usP; one that makes use of some er:iergent reflective

properties we have already accepted as part of our definition of clnsures. In particular, we

will use some code that changes environment designators, rather than simply providing

primitives that affect tii~ processor's environment A hint of this approach was given in

section 4.c.ii, where we warned that the use of a procedure called REBIND on thr

c!lvironment designator contained within a closure could affect the semantics of that

closure. This equivocation between accessing environments directly, or indirectly through

environment designators, is part of 2-us11's inelegance. But so be it

In describing closures we showed the fonn of environment designators: if we add the

assumption that these environment designators not only encode the environment used by

the processor, but actually causally emtody it in such a way that changing them will affect

subsequent processor behaviour (very definitely an additional assumption, t,ut one that we

tacitly adopted when we set out the definition of z), then we can simply define a simple

variable setting procedure. We caJI our procedure REBIND; it takes three arguments - a

variable (atom), a binding, and an environment. A tentative definition is the following (we

discuss what should happen when the variable is not bound in a moment):

4. 2-LISP: A Rationalised Dialect Procedural Reflection 463

(DEFINE REBIND (54-691)
{LAMBDA EXPR [VARIABLE BINDING ENVIRONMENT]

(CONO [(EMPTY ENVIRONMENT) <the variable isn't bound>]
[(a VARIABLE (1ST (1ST ENVIRONMENT)))

(RPLACN 2 t(lST ENVIRONMENT) tBINDING)]
[$T (REBIND VARIABLE BINDING (TAIL 1 ENVIRONMENT))])))

The up-arrows are necessary because environments arc sequences of sequences, and RPLACN

requires that its arguments designate rails.

The most important property of this definition is the implicit semantic flatness of its

arguments. The function designated by this definition is to be applied to variables,

bindings, and environments, in a perfectly straightforward fashion. REBIND is extensional: it

should therefore be called with arguments expressions that designate these three kinds of

entity. Variables are atoms; therefore the first argument expression should designate an

atom. Bindings are s·expressions, and therefore the second argument expression should

designate an s-exprcssion. Similarly, environments arc sequences; the third argument

should designate a sequence.

If this seems obvious, it is striking to compare it with the behaviour of SET and SETQ

in traditional dialects. In particular, it is suddenly becomes dear why in t-LISP and related

dialects t:.1e primitive SETQ is natural and common, whereas SET is rare and often awkward:

SETQ is semantically balanced, in that both arguments are at the same semantic level, whereas

the .1-LISP SET is unbalanced: the expressions are at dijfere/11 semanlic levels. In order to see

this, suppose we wish to set the variable x to be bound to 3 in some environment E. We

intend, in other words, to be able, in the context that results, to use x to designate the third

natural number (after the binding has happened, (+ x X) should designate six). In 1-LISP

we would have the following:

> (SETQ X 3)
> :.;
>(+XX)
> 6

; This is 1-LISP (S4-692)

Our definition of REBIND, above, is of course rather different The following is improper:

> (REBIND 'X 3 E) (S4-693}
<ERROR: REBIND, expecting an s-~xpression, round the number 3)

Instead we need to use this:

4. 2-LISP: A Rationalised Dialect

> (REBIND 'X '3 E)
> 3
> (+ X XJ
> 6

Procedural Reflection 464

(S4-694)

The reason is that the REBIND rcdcx must mention both variable and binding: the variable is

the atom; the binding is the numeral. 1bus REBIND is semantically flat, as it should be. 1-

LISP's SETO is also semantically flat (to the extent we can say that anything having to do

with evaluation is flat), in that both expressions are wrillen down in a way that looks as if
they are being used. SETO, in other words, is more like LAMBDA or LET; the variable

argument - the first argument - is like a schematic designator, rather than a designator of

a variable. The result of the binding is such that using the variable will be (designationally)

equivalent to using the second argument

It is for this reason that we have called the 2- LISP version of SETO by the name

"SET", omitting the "o", so as to rid ourselves of the semantic level-crossing anomaly

suggested in the t-LISP version of the simpler label. SET can approximately be defined in

terms of REBIND (we will explain the "approximately" below):

(DEFINE SET (S4-695)
(LAMBDA IMPR [VAR BINDING]

(REBIND VAR (NORMALISE BINDING) <E>))}

Numerous questions have to be answered here: what tenn should be used for <E> ,:,l

designate the appropriate environment, and how NORMALISE behaves. The first can prop{.:rly

be answered only in a reflective system; the second will be explained in the next section.

However we can ocpcnd on one salient fact aboJt HORMALISE: cans to NORMALISE, like calls

to every procedure in the entire fonnalism, are scmantica11y flat: hence (NORMALISE • 3) will

return •3; (NORMALISE '(+ 2 3)) will return '5. As a consequence, the behaviour

engendered by S4-696 is just correct: the variafile VAR will be bound to a designator of the

variable in question, and the parameter BINDING will be bound to a designator of the un

nommlised binding expression. The explicit call to HORMALISE will return a designator of

the expression to which that second argument normalises. These arc just the two

arguments that we need to give to REBIND.

111is definition should make clear a very important fact: what distinguishes the first

and second position in a use of SET is just what distinguishes the parameters and body from

the arguments in a use of LAMBDA or LET: one set is used schematically or pote11tia/1v. the

4. 2-LISP: A Rationalised Dialect Procedural Reflection 465

other extensionally or actually. They differ in whether they are processed, but they do not

differ in semantic level. Our tearing apart of evaluation into nonnalising and de-referencing,

in other words, means that there are two ways in which an intensional procedure can treat

its arguments; as un·nonnalised or as mentioned. SET (and LAMBDA) want to do the first;

IMPRS want to do the second. The first honours our goal of maintaining semantical flatness,

whereas the second does not.

It would be possible, clearly, to make every procedure in 2-LISP extensional - to

dispense with IMPRS altogether, in other words - and to quote (using handles) all

arguments to all intensional procedures. With meta-structural powers, in other words, one

can subsume intensional argument positions. 7 However this last insight into the use of

variables in schematic positions suggests that the cleanliness such a protocol would

engender is sometimes at odds with another semantic aesthetic: that certain level

correspondences between arguments be maintained. This author docs not have a strong

view on whether it is better to honour one aesthetic or the other, although the mandate to

"maintain semantic flatness" seems closer to natural language (we more typically say "The

person called John", rather than "The person called 'John"1. What does seem clear,

however, is that the two variable-binding procedures - SET and LAMBDA (LET) - should be

parallel. If LAMBDA does not require its pattern to be quoted, then SET should not require its

"variable" argument to be quoted either. If, on the other hand, we insist on (SET ·x 3), we

should equally require (LAMBDA EXPR '[X] '(+ X 1)).

We can then illustrate the behaviour of our new SET: it is manifestly similar in spirit

to the familiar SETO of traditional systems (at the moment we si.Inply assume that the

environment question is resolved - we will take care of it presently):

> (SET X (+ 3 4))
> 7
> (SET Y (+ X 10))
> 17
> (I Y X)
> 2
> (SET ANCIENT-AVIATORS '[ICARUS DAEDALUS])
> '(ICARUS DAEDALUS]
> {NTH 1 ANCIENT-AVIATORS)
> 'ICARUS
> (TYPE (REST ANCIENT-AVIATORS))
> 'RAIL
> (LET [[X 3]]

(SET X (+ X 1))
X)

LET and SET are semantically parallel,
which, now that we think about it, surely
makes sense.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 465

> 4

We have mentioned in earlier discussion that all 2-LISP bindings will be in nonnal

form. The definition of SET shows how this property is naturally preserved from the very

meaning of the procedure. Since any expression of the form (SET x Y) is equivalent to

(REBIND ·x tY <ENV>), it is necesarily true that alt bindings engendered by the use of this

procedure will have the property of being in normal-form. We have already seen how

LAMBDA bindings in extensional procedures also maintain this property. It is clear from the

definition of REBIND presented in S4-691, however, that nothing in that definition prevents

the use of a form - such as for example (REBIND • x • (+ 2 3) < E NV>) - that will establish

a binding of a variable to a non-normal form expression. We are led therefore to expand

the definition of REBIND to ensure this (NORMAL designates the obvious predicate true just of

normal-form s-expressions):

(DEFINE REBIND {S4-697}
(LAMBDA EXPR [VARIABLE BINDING ENVIRONMENT]

(COND [(EMPTY ENVIRONMENT) <the variable isn't bound>]
((= VARIABLE (1ST (1ST ENVIRONMENT)))

(IF (NORMAL BINDING)
(RPLACN 2 t(lST ENVIRONMENT) tBINDING)
(ERROR "Binding 1s not in normal form"))]

[ST (REBIND VARIABLE BINDING (TAIL 1 ENVIRONMENT))])))

We tum next to the question of what environment is modified by a use of SET. In

3-LISP, when we have explicit access to any environment by reflecting, it is straightforward

to w1ite simple functions that modify arbitrary environments - such is the power of

reflective code. But with regard to an object-level procedure such as SET, the only

candidate environment that should be modified is the one in force at the point of

processing of the call to SET. An instance of (SET <VAR> <TERM>), in other words, should

"return" in a context in which the prior binding of <VAR> has been changed to the normal

form of <TERM>. The problem in 2-LISP is that we have no designator of this environment

provided primiHvely; therefore in this dialect SET will have to be primitive, rather than

defined in terms of REBIND (although we will retain REBIND, since we must use it, in certain

cases, to modify bindings in closures).

Furthermore, when an extensional designator of a variable is desired (when, in other

words, an equivalent of t-LISP's SET is mandated), we will allow REBIND to be used with

just two arguments; an absence of an explicit third argument. in other words, will default to

4. 2-LISP: A Rationalised Diclect Procedural Reflection 467

the environment currently in force. The !:emantic flatness of REBIND, however, will also be

maintained; thus the following will fail:

(LET [[VARS ['X 'Y 'Z]]]
(MAP (LAMBDA EX~R (VAR] (REBIND VAR(+ 1 2)))

VARS))

(S4-698)

If it is intended to set x, v. and z to designate three, one would need instead to use

(LET [[VARS ('X 'Y 'Z]]]
(MAP (LAMBDA EXPR [VAR] (REBIND VAR~(+ 1 2)))

VARS))

(S4-699)

It should be clear that in talking in this way about modifying environments we are

treading on rather unclear territory at the edge of 2-LISP, but not yet within the

encompassing scope of 3-LISP. When we talk about SET P.odifying the "current"

environment, then we speak about a change, in the meta-theoretic account, of the

"environment" element of the ordered pair that represents the complete computational
. .

context (the other being the field). It is in order to accomodate jurt this kind of change

that we have specified that environments are arguments to continuations - a facility in the

meta-language that we have honoured but to date have not used. On the other hand. when

we describe environment modifications in tenns of structural field modifications to

environment designators of the sort that play a role as ingredients in closures, we of course

do not see any effect in u1J.e meta-theoretic environment tc1m; we merely sec a change in

the field. We will 1r:ake SET primitive in 2-LISP, and make evident its context

modifications in the semantical account We will also show how a semantic theory that

constantly derives bindings from environment designators can be fonnulated (of the sort

that would be required ht a semantics for 3-LISP). What we leave open in our semantics of

2-LISP is the proper connection between the two - not because such connection could not

be articulated, but rather because the connection is simply ugly. As we have said again and

again, it is possible to construct correct semantical accounts of arbitrary behaviour, but that

is not our purpose in doing semantics. Rather, we want semantical analysis to drive our

design, and we already know that this environment question has its problems - problems

that can only be solved in a reflective system. It would therefore not repay the invc::stment

to document this fact in a fomml meta-language.

Three questions remain: a) what is the consequence of setting or rebinding a variable

that is unbound? b) what is the status of the context in force during the processing of

4. 2-LISP: A Rationalised Dial~t Procedural Reflection 468

expressions read in by the "READ-NORMALISE-PRINT" loop? and c) how does the environment

encoded in a closure relate to the context in which the closure is constructed.? In the most

general sense, these all reduce to a single question: what is the identily of environment

designators?

The answer is simple; we will explain it, and then review the motivation (it will be

easier to defend the behaviour if the behaviour is made clear first). It is assumed that the

environment encoded in a closure is, and remains, isomorphic to the meta-theoretic

environment in force when the closure was constructed. There are two way:. this can be

thought about: either subsequent SETS will, as well as modifying the environment, also

modify any encodings of that environment More practically, one can assume that the

environment is always driven off an encoding of an environment, and that SET merely

engenders structural modifications to that encoding (this is of course the view that would be

adopted by any implementation).

When a closure is constructed, the encoding of the current environment is provided

to <EXPR> as its first argument. That encoding - a rail of two-element rails, as mentioned

earlier - encodes the binding of some number of variables. When the closure is reduced

with arguments, the body of the closure will be normalised in an environment consisting of

the environment encoded in the closure extended with bindings of the closure's formal

parameters, as appropriate. Suppose that a closure contained a pattern containing three

formal parasneters. Then the body of the closure will be normalised in an environment

encoded in a rail whose first three elements will be two-element rails encoding the bindings

particular to the given reduction, and whose third tail will be - will actually be i;tructural

identical with - the encoding found in the closure.

In the vast majority of cases, in other words, the entire set of environment

designators throughout the system will form a tree, sharing a "tail" (the encoding of E~).

but otherwise branching out in a fashion the encodes the embedding structure of the

program that has generated them.

Since all manner of consequences follows from this des:.gn decision, it is necessary to

make it crystal clear. Suppose that in the initial environment (to be discussed below) we

define a FACTORIAL procedure in the usual way; we would then have the following closure:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 469

FACTORIAL (<EXPR> Eo '(N] ' (If ...))

Suppose we were then to process the following fmgment in E0:

(LET [[X 3])
(FACTORIAL X))

First we expand the LET:

({LAMBDA EXPR [X]
(FAClORIAL X))

3)

(S4-700)

(S4-701)

(S4-702)

By what has just been said, the body of this reduction - the term (r ACTOR iAL x) - will be

processed in an environment E1 in which xis bound to the numeral 3. This much has been

clear for many sections; what we are currently making evident is that there will be

constructed a designator of E1 of exactly the following form: it will be a rail, whose first

elemeni will be:

('X '3] {S4-703)

and whose first tail will be ~.

Of what consequence is this? It can be noticed in two ways. First, suppose that we

processed the following:

(LET [[X 3]]
(LAMBDA EXPR (K] (+ K X)))

This would return a closure as follows:

(<EXPR> [['X '3] ..• f2] '[K] '(+ K X))

(S4-704)

(S4-705)

where by " ... Eo]" we mean simply that the first tail of the first argument to <EXPR> in this

closure is E0• However if instead we processed:

(LET ([X 3]]
(LET [[TEMP (LAMBDA EXPR (K] (+ K X))]]

(BLOCK (SET X 100)
TEMP)}}

we would be returned a closure as follows:

{<EXPR> (['X '100] ... Eo] '[K] '(+ K X))

(S4-706)

(S4-707)

The reason, of course, is that the intervening SET modified the binding of x in tl1e very

environment encoded in the TEMP closure, and, as we said in the paragraph ealier, to modify

the environment is to modify the environment designator.

4. 2-LISP: A Rationalir;ed. _,alect Procedural Reflection 470

Given this brief introduction from a behavioural point of view. we can turn back a

little to motivation and explanation. First, consider the sentence ending the previous

paragraph: "to modify the environment is to modify the environment designator". Strictly

speaking, no sense can be made of the sentence "an environment was modified", given our

ontology, for we have said that environments are abstract sequences of pairs of atoms and

bindings, and abstract sequences. being mathematical entities. cannot be said to be modified.

Therefore if SET cannot be strictly described as a procedure that modifies environments.

Some other characterisation must serve instead.

Two possibilities present themselves. First, SET could simply be a procedure such

that reductions in terms of it return in a context consisting of a different environment from

that in which it was reduced. This would be a behaviour described in the following

semantical equation:

4[Eo("SET)] = >.s.>.E.AF.>.C.
[~(NTH(2,S,F),E,F,

[A<S 1 ,D1 ,E1 ,F1> .
C(NTH(1,S,F1),E2,f1)]]

where [VA € ATOMS [E2 (A) = (if (A = (NTH(l,S,f 1))]

then S1 else E1(A)]]]

(S4-708)

Note that it is the internalisation of SET that is crucial in this discussion; we assume

throughout the following general computational significance

~(Eo("SET))
= >.E.Af.>.C •

C("(<IHPR> Eo [VAR TERM] (SET VAR TERM)),
[M31,E1,F1> . NTH(l,S1 ,Fi)],
E,F)

(S4-709)

since SET merely returns the name of the variable modified (this in part to prevent us

becoming used to a SET that can be used both for effect and for a value: in 3-LJSP SET

redexes will have no designation at all, and will return no result).

The characterisation given in S4-708 and S4-709 is simple, and, although possibly

efficient of implementation, it is not what we want (nor docs it captur~ the behaviour

indicated in S4-706 and S4-707). The problem has to do with the identity of the encoding

of the environments in closures. By the account just given, the re-binding effected by SET

would be visible only so long as the environment in force during the processing of the SET

redcx was used. A quick examination of the general computational significance of pairs, as

set forth in S4-38, in conjunction with the internalisation of EXPR, as manifcstd in S4-526,

4. 2-LISP: A Ratim;alised Dialect Procedural Reflection 471

reveals that, in general, this will not be long. In particular, every reduction normalises its

body in the environment that is recovered from the one encoded in the closure extended by

the mandated bindings, not in the environment in which the redex is itself processed. This

fact means that the effects of SET, if its full significance were spelled out in S4-708 and S4-

709, would be constrained only to the two reduction boundaries on each side of it. !t

would be constrained, in other words, to its static contexL

The trouble is that SET is useful primarily for more long-range effects. It is for this

reason that it must be used with caution, but it is for this reason that it exists. Static

contexts, especially in a tail-recursive dialect, can by and large be adequately handled with

standard LAMBDA binding.

A particular example arises at what is known as the "top-level": the READ-NORAMLISE

PRINT loop with which the user interfaces with the processor. So-called global variables are

one standard practice involving the potential for long-range effects, as are procedure

definitions. Supplise, for example, that we discover that we have defined r ACTOR IAL in the

intensionally iterative fashion illustrated in S4-572 and S4-573, but incorrectly, as follows:

(DEFINE FACTORIAL (S4-710)
(LAMBDA EXPR [N]

(FACTORIAL-HELPER O 1 N)))

(DEFINE FACTORIAL-HELPER This has a bug
(LAMBDA EXPR [COUNT ANSWER N]

(IF (= COUNT N)
ANSWER
(FACTORiftL-HELPER (+ COUNT 1) (* COUNT ANSWER) N))))

The trouble is that this FACTORIAL will return o for any argument. But if this were not

noticed, and a variety of other procedures were defined, it is natural to assume that one

shoulc! merely "re-define" FACTORIAL-HELPER correctly (as in S4-573, for example). Suppose

we typed this to the user interface:

> (DEFINE FACTORIAL-HELPER ... the correct version •.•)
> FACTORIAL-HELPER

(S4-711)

We say in the previous section that DEFINE is a macrn that expands to SET. On the account

illustrated in the examples above, where this affects the environment designator stmcturally,

then any procedure defined in terms of it will be re-defined. This is the natural behaviour.

If, however, SE~ were merely of the consequence illustrated in S4-708 and S4-709, those

closures would not be affected. There would, in fact, be no way in which subsequent

4. 2-LISP: A Rationalised Dialect Procedural Reflect.ion 472

behaviour could affect any prior procedure definitions. Any procedures that used

FACTORIAL would have to be re-defined. Furthennore, this would recurse, so that any

procedures that used Lhem would similarly have to be redefined. And so on and so forth,

up to the transitive closure of acquaintance. Finally, any mutually-recur&;·•e procedures

would have to be e,cplicitly redefined within the scope of a single call to z•. This is

impractical in the extreme.

It is worth considering for a moment just what our suggestion comes to. As was the

case when we talked about modifying environments, it is similarly vacuous, strictly speaking,

to talk about modifying procedures or modifying functions. We have said that ~ET modifies

environment designators; we have said as well that closures contain environment designators

within them, in a manner such that tails are shared. When a SET - and by implication a

DEFINE - is processed, those environment designators will in turn be affected. Thus the

closures containing them will, strictly speaking, be different. Thus a name bound to such a

closure will. in a sense, be bound to a diff crent closure - it will certainly designate a

different function. This, of course, is exactly what we want We said that if SET had no

further effect than modifying the current theoretic context, then perhaps all prior definitions

would have to be re-done. However what the side-effect SET en6e:nders is exactly the same

thing - it merely does so with less work. For by modifying shared environment

designators, it changes the functions designated by exactly the transitive closure of those

procedures that use FACTORIAL, those that use procedures that use FACTORIAL, and so forth.

There is no escape, in sum, from the fact that by redefining a given procedure one

may thereby affect the full significance of a wide variety of otl,ers. It has been remarked in

other contexts that our beliefs "face the tribunal of experience tout court".8 What we have

seen is that there are two ways in which this corporate effect can be realised in a fonnal

system. In one scheme the structures encoding the designation of the wicie variety of

procedures can be linlced i'l the field; then a single change to that field will affect the total

set of defintions. In the other, each procedure is kept isolated one from the next; the

consequence is that in order to engender the correct behaviour, the complete set of

designators will have to be modified explicitly. It reduces, in other words, to a question of

whether the wide-spread effect should be explicitly or implicitly engendered; that the effect

must be wide-spread is simply a matter of fact Our choice has b\!en with U1e implicit

4. 2-LISP: A Rationalised Dialect Procedural Reflection 473

One reason we may adopt the implicit change protocol is that it need not cause us

undue concern. In particular, it remains possible to protect a given closure from any such

ill effects, should this be desired. We may, for example, construct a procedure called

PROTECTING, to be used as follows:

(DEFINE SUM-OF-SQUARES
(PROTECTING (SQUARE+]

(LAMBDA EXPR ARGS
(+. (MAP SQUARE ARGS}))}}

SUM-OF-SQUARES merely returns the sum of the square of its arguments; thus we have:

(SUM-OF-SQUARES 2 4 6 8) 120 (S4-713)

However the PROTECTING ensures that no subsequ. ·nl re--definiti.:m of SQUARE or + will

modify the procedures used by SUM-OF-SQUARES. We would have, in particular, the

following behaviour:

> (SUM-OF-SQUARES 2 4 6 8)
> 120
> (+. (MAP SQUARE [2 4 6 BJ))
> 120
>(DEFINE+•)
> +
> (+. (MAP SQUARE [2 4 6 BJ))
> 147456
> (SUM-OF-SQUARES 2 4 6 8)
> 120

Redefine+ to multiply

A public version of the

(S4-714)

body dues something quite new,
but the changed definitions
weren't seen by SUM-OF-SQUARES

PROTECTING is simply defined; it merely depends on the observation that a protected SUK

Of-SQUARES of the sort depicted in S4-714 i:an be defined as follows:

(DEFINE SUM-OF-SQUARES
(LET ([SQUARE SQUARE]

[+ +]]
(LAMBDA EXPR ARGS

(+. (MAP SQUAP.E ARGS)))))

{S4-715)

This works because the ~mbcddcd LAMBDA tem1 L closed in an environment in which the

atom SQUARE is bound to the binding that SQUARE had in the total surrounding environment;

the closure thus retains its own private copy of that binding. 'flms we can dtfine

PROTECTING as a macro so that expressions of the form

(PROTECTING [A1 A2 ... Ai.] <BODY>) (S4··716)

expand to

4. 2-LISP: A Rationnlised Dialect Procedural Reflection 474

(LET ([A1 A1] [l.2 A2] ••• [Ak Ak]]
<BODY>)

appropriate definition of PP.CTECTING will be given in section 4.d.vii.

(S4-717)

The procedure PrOTECTING works only because DEFINE uses z; this may not have

been clear from just a cursory glance at the example. It is worth examining this in some

detaii, for we are at an excellent position to observe how our 2-LISP definition of DEFINE in

tenns of cc,nstruction of circular closures differs noticeably from the practice normally

employed to support recursive definitions. In particular, the behaviour we have adopted

for SP Implies that if the seccnd argument to SET constructs a closure, then the binding

eF.ccted by the SET will be visible from th~~ closure. 111is fact is used by all standard LISP

systems to sua)port top-fovel recarsive definitions; as we see in the following eAample, if we

do not exercise it too strenuously i.t apparently yields the correct behaviour for recursive

definitions in 2-LISP as well. hs an cxampk, we will assume that our :..>iimitive addition

procedure accepts only tw< arguments, and will define a new procedure called ++ that will

add any number of arguments. The dcfir '. 1n will be recursive, but, rather tJ:.an using

:JEFINE, vc wi!l for illustration merely use so:

> (SET++ (LAHBDA F.XPR ARGS
(IF (EMPTY ARGS)

0
(+ (1ST ARGS) (++. (REST ARGS))))))

> ++

(S4-718)

In spite of the fact that we used SET rather than DEFI.NE for a recursive definition, it still

approximately works, since the closure is constructed in the top-level environment, and the

bindi: , tstablished by SET will be in that environment, visible to the procedure when it is

reduced:

> (++ l 2 3 4 5)
> 16
> (+.,.)
> 0

(S4-719)

In typical I ISP systems DEF H"" differs from SET because procedural definitions are

not cc:isidercd Pormal values, but other than this difference, immaterial in this discussion,

the effect is the same. Howl'•,·er using SET plus the global environment to implement

re;ursk,n will fail ~.~ r:"dow PROTECTING to work. Suppose for example we defined ++ as in

S4-71~ ,111d the:. defined a Sl.iM-Of-SQUARES a~ follows:

4. 2-LISP: A Rationalised Dialect Procet.iu,al Reflection 475

(DEFINE SUM-JF-SQUARES
(PROTECTING (++]

(LAMBUA SIMPLE ARGS (++ (MAP SQUARE ARGS)))))

This would work as long as ++ was not re-defined:

> (SUH-OF-SQUARf~ l 2 3 4)
> 30
> (SUM-OF-SQUARES Z 4 6 8)
> 120

(S4-720)

(S4-721)

However it would fail to protect ++, as the following i11ustratcs. First we change ++ to

multiply, rather than add, its arguments:

>(SET++ (S4-722)
(LAMBDA SIMPLE ARGS ; Redefine++ to be ••

(IF (EMPTY ARGS)
l
(• (lST ARGS) (++. (REST ARGS))))))

> +t
> (++ l Z J 4)
> 24
> (++)
> 1

Dy assumption '>UM-OF-SQUARES was intenc.ied to be pro:cctcd from this redefinition.

However this is not the case; we in fact get quite an odd result, which is neither the

expected SUM-OF-SQUARES nor the "product of squares" that would have resulted had the

(PROTECT [++] ...) tcnn been missing:

> (SUH-OF-SQUARES 1 2 3 4)
> 677
> (•• . (MAP SQUARE [l Z 3 4]))
> 676

Should be 120; rurthermoro,
the "product" or squares
is only 676.

(S4-723)

What has happened is this: m the private binding of ++ that the definition of SUM-OF··

SQUARES obtained in virtue of the fonn (PROTECTil,IG (++] ...), 1 t was bound not to a

circular closure, but to a closure fonned in the top-level {"global") environment. 'lhus the

internal use of the name "++" within the rccur.ive definition was affected by the re

definition of++ in S4-722. What SUM-OF-SQUARES obtained, in other words, was only a

single level of protection - not what was intended at all.

If, on the other hand,++ had been defined using DEFINE rather !han SET, as it ought

to have been (the only difference between this anJ !"4-718 is that DHINF. i: used rather than

SET):

4. z-LISP: A Rationalised Dialect

>(DEFINE++
(LAHBDA EXPR ARGS

(IF (EMPTY ARGS)
0
(+ (1ST ARGS) (++. (REST ARGS))))))

> ++

Procedural Reflection 476

(S4-724)

then a completely protected SUM-OF-SQUARES wou1d have been defined in S4-7ZO. We

would have, in other words (this is intended as a continuation of S4-724):

> (DEFINE SUH-OF-SQUARES (S4-726)
(PROTECTING [++J

{LAMBDA SIMPLE ARGS (++. (HAP SQUARE ARGS)))))
> SUM-OF-SQUARES
> (SUH-OF-SQUARES 2 4 8 8)
> 120
> (SET ++

{LAMBDA SIMPLE ARGS ; Redefine++ to be••
(IF {EMPTY ARGS)

> ++
> {++ 1 2 3 4)
> 24

1
(• (1ST ARGS) (++. (REST ARGS))))))

> (SUH-OF-SQUARES 2 4 8 8)
> 120

SUM-OF-SQUARES is properly
protected.

This of course works because the closure to which SUM-OF-SQUARES obtains a private binding

in tum contains its own private recursive access; it docs not depend on the global

availability of the name ++ within itself.

Some dialects, such as SEUS, have been proposed in which the ability tc protect

bindings within closures is provided as a primitive extension to the definition of LAMBDA.

Once again we have seen that such functionality arises from the proper treatment of

recursion, and from the di£crimination between the public and internal recursive names of

procedures. No additions are required to 2-LISP to support PROTECTING; furthermore, it

behaves com.-c.tly n:1t only because of the first !e:v\!l insight embodied in its definition in S4-

717, but alsc, because of the proper bc:haviour of z. , .

It should be admitted in passing that protected procedures can of course always be

r~defined - the protection, in other words, can always be ovel'.'·riddcn - by obtaining

explicit access to the enclosed environment designator. In particular, we could have

(continuing S4-726):

> (REBIND '++ t•• (ENV tSUM·OF·SQUAHES)) (S4-726)
> (<EXPR> ...)
> (SUH-OF-SQUARES 2 4 6 8)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 477

> 147466

This example illustrates a tension - perhaps better seen as a dialectic - that we will

encounter again and again in 3-LISi>. Every attempt to detach one process (or program or

structure) from the affects of another can be over-ridden by the second, if the latter avails

itself of meta-structural and reflective powers. Similarly, the second process's attempts to

over-ride the first process's intentions can likewise be over-ridden by the first process, by

using yet more potent reflection. There is no way to do anything in 3-LISP that someone

else cannot control and modify by lising one level higher than you rose. 111is has both its

benefits rnd its troubles, as we will see.

One place that PROTECTING is useful is in the definition of DEFINE. The fotlowing

code (MACROS in general will be discussed in section 4.d. v) is protected against subsequent

re-binding of the a~m z:

(DEFINE DEFINE
(PROTECTING [Z)

(LAMBDA MACRO (LABEL FORM]
'(SET ,LABEL c.~z (LAMBDA EXPR [,LABEL] ,FORM})))))

(S4-727)

In general it has bec!I our approach to consider semantics first, to define behaviour

subsidiarity, and finally to give implementing mechanism a definite third place in order of

importance. In the present instance, however, we have motivated and defended our design

of SET on the basis of behaviour, for a simple reason: the import of SET is bchavi . .-mrat

import; SET is not interesting in terms of its own designation. However in a sense our

prevailing interest has remained, sin.:e the behaviour we have considered has to do with

what functions other strn~tures will ultimately designate, based on what effects SET

unleashes on the field. What we wanted was, in a controlled way, to change the

designation of previously-defined closures; what we have observed is that defining closures

in terms of shared rails, coupled with an adequate fixed point procedure, yields a

mechanism that supports this behaviour.

Given this design choice, it is natural to turn to the definition of the "top level" user

interface. Decausc of two tl,ings, however, we will put this task off a little while yet. First,

being essentially a behavioural matter, it is most easily explained with Ute aid of the meta

circular processor, which we examine in section 4.e. Second, this interface is another place

- we arc encountering more and more of them - where the intermediate status of

4. 2-LISP: A Rationalised Dialect Procedural Reflection 478

environments makes 2-LISP less than elegant. For this reason we will postpone such a

discussion entirely until well into chapter 5, where READ-NORMALISE-PRINT will be defined as

a straightforward user procedure. Environments and environment designators will be first

class entities in that dialect; with them the rest is straightforward.

There is, however, one additional issue to be tackled here. We have never given

explicit attention to the questic." of errors, such as the use of a variable in a context in

which it is not bound. We wilt continue to ignore them, but we have a problem with SET,

since it is not an error, in standard practice, to SET a variable in a context where it is not

bound. Indeed, in order to define any procedure with a previously unused name we use

SET. The definition given in S4-691 of REBIND, on which SET is dependent, did not deal

with unbound variables. If a variable is bound, it is clear that the effect of SET is at the

point where it is bound, which has considerable consequences in terms of the public

visibility of the change. It is easy simply to posit that SET (and REBIND) should establish a

binding if there was none before. The question, however, is where in the environment

structure such a binding should be inserted.

'The only reasonable suggestions are at the "beginning" or at the "end" of the

environment given to REBIND as its third argument - no other place is di~tinguished. Both

pragmatics and analysis suggest the end - at the maximally visible place, in other words.

That this is pragmatic is suggested by the fo11owing example:

(LET [[X (FACTORIAL 100)]
[Y (EXPONENTIAL 100)]]

(If (> X Y)
(SET BIG-FUNCTION FACTORIAL)
(SET BIG-FUNCTION EXPONENTIAL)))

(S4-728)

Given that BIG-FUNCTION is not bound in the context of the body of the LET, a protocol

selecting the beginning of the cc11text's environment as a place to establish a new binding

would mean that upon return from the LET in S4-728, the binding of BIG-iUtJCTION would

have been discarded, along with the bindings of x and v. 111is would seem contrary to the

apparent intention.

The "end" decision is at least suggested by analysis, as well. It would be possible to

define the initial environment to contain bindings of all atoms: as we have said, a handful

arc bound to the primitively recognised closures; the rest could be bound to a distinguished

and presumably non-designating structure, such as a special token <UNBOUND>. To do this

4. Z-LISP: A Rationalised Dialect Procedural Reflection 479

would complicate our dialect. since a new single-element structural category would have to

be introduced. This token would fall outside of the range of any primitive function or

procedure, so that any use of an unbound atom would engender an appropriate error.

Then SET could be defined without regard to actually unbound atoms, since there would be

none of them.

It only adds confusion to have a binding whose sole purpose is to encode the fact

that an atom is not bound (this is reminiscent of an "end-of-file" token being used to

indicate that a stream has been exhausted). Nonetheless, under this proposal all SETS to

otherwise unbound atoms would be made visible to everyone - compatible with our

suggestion that they add a binding at the end, rather than to the beginning, of the

environment designator.

In sum, then, we will assume approximately the following definition of REBIND:

(DEFINE REBIND .
(LAMBDA EXPR (VAR BINDING ENV]

(IF {NORMAL BINDING}
(REBIND• VAR BINDING ENV)
(ERROR "Binding is not 1 normal form"))})

(DEFINE REBIND•
(LAMBDA EXPR (VAR BINDING ENV]

(CON~ ((EMPTY ENV) (RPLACT O tENV t((VAR BINDING]])]
((= VAR (1ST (1ST ENV)))

(RPLACN 2 t(lST ENV) tBINDING)J
(ST (REBIND VAR BINDING (REST ENV))])))

(S4-729)

(S4-730)

'lbe primitive use of SET, futhennorc, and the use of REBHJD with only two arguments, can

be assumed to follow this protocol, with the appropriate environment designator provided

automatic.ally by the 2-LISP processor. 'Ibis temporary inelegance will of course be

dispensed with in the next chapter.

Finally, we need to discharge a debt we have carried for a long while: the use of Eo

in primitive closures. We need to establish, in other words, the structure of the encoding of

the initial environment. All of the ingredient,; to lhc answer have been set ouL; we :iced

merely to assemble lhcm. We sai<l that thew arc thirty·two atoms bc,und to primitive

closures, and there arc no other privileged binds. Thus [o (we have al~o called it <EO>) is

(type·equivatcnt to) the following rail:

4. 2-LISP: A Rationalised Dialect Procedural Reflection 480

Eo: [['TYPE
['•
['+
['-
['•
['/
['PCONS
['RCONS
['SCONS
['CAR
['CDR
['NTH
['TAIL
['LENGTH
['PREP
['RPLACA
['~P~ACD
('RPLACN
['ttPLACT
('NAME
('KHERENT
('READ
['PRINT
['TERPRI
['NORMALISE
['REDUCE
['EXPR
['IMPR
['MACRO
('LAMBDA
('SET

[' IF

' (:X :Eo '[X] '(TYPE X})] (S4-731)
'(:X :Eo '(AB] '(• AB))]
'(:X :Eo '[AB] '(+AB))]
'(:X :Eo '[AB] '(- A 8))]
'(:X :Eo '[AB] '(•AB)}]
'(:X :Eo '[AB] '(/AB))]
'(:X :Eo '(AB] '(PCONS A 8))]
'(:X :E0 'ARGS '(PCONS . ARGS))]
'(:X :Eo 'ARGS '($CONS • ARGS))]
'(:X :E0 '[P] '(CARP))]
'(:X :E0 '[P] '(CDR P))]
'(:X :Ea '[INDEX VECTOR] '(NTH INDEX VECTOR))]
'(:X :Ea '[INDEX VECTOR] '(TAIL INDEX VECTOR))]
'(:X :£0 '[VECTOR] '{LENGTH VEC10R))]
'(:X :Eo '[EL VECTOR] '(PREP EL VECTOR))]
'(:X :Ea '[PAIR A) '(RPI.ACA PAIR A))]
'(:X :E0 '(PAIR D] '{RPLACD PAIR D))]
'(:X :Ea '[INDEX RAIL El) '{RPLACN INDEX RAIL El))]
'(:X :Ea '[INDEX RAIL TAIL] '(RPLACT INDEX RAIL TAIL))]
'(:X :E0 '[X] '(NAME X))]
'(:X :Ea '[X] '{REFERENT X))]
'(:X :Ea'[] '{READ))]
'(:X :Ea '[S] '(PRINTS))]
'(:X :Ea'[] '(TERPRI))]
'(:X :Eo '(F.XP] '(NORMALISE EXP)}]
'(:X :Ea '[PROC ARGS] '{'REDUCE PROC ARGS))]
tX: (:X :E0 '[ENV PATTERN BODY] '(:X ENV PATTER~ BODY))]
'1: (:X :Eo '[ENV PATTERM BODY] '(:I ENV PATTERN liODY)}]
'M: (:X :Eo '(ENV PATTERN BO~Y] '(:M ENV PATTERN BODY))]
'(:1 :E0 '(TYPE PAT BCDY] '(+TYP~ (ENV) PAT BODY)}]
'(:I :Eo '[VAR FORM]

'{REBIND VAR (NORMALISE l DRM; (ENV)))]
'(:I :E0 '[PREM Cl C2]

.' { IF (= • $T (NORMALISE PREM))
(NORMALISE Cl)
(NORMALISE C2)))]]

4. z-LISP: a Rationalised Dialect Procedural Reflection 481

4.d. Met.a-Structural Facilities

We turn next to a consideration of meta-structural questions and facilities: a

particularly important step in the progression towards 3-LISP. We have already

encountered a variety of practices having to do with the designation of clements of the

field: all handles, for instance, are meta·structurcl in this sense. What we have not

examined, however, are the protocols for "crossing levels", of which there are a variety of

kinds. This section, however, witl be comparatively brief. for two reasons. On the one

hand those meta-structural capabilities that deal purely with the mentioning of

uninterpreted structures are quite simple, and hence easily explained. Toe other primitives,

on the oth-. · hand, like NORMALISE and REDUCE, that involv~ us in a shift of level of

processing, are far from simple, but they will also be much bc~ter handled in 3-LISP. In

the present section, therefore, we will examine such facilities in just enough detail to

convince the reader that our development of 2-L ISP should be abandoned, and that we

should progress to a fully reflective dialect

The sectioh will proceed as follows: in 4.d.i we will look at NAME and REFERENT -

the functions that have stood behind our ability to u:.c "up" and "down" arrows ("-t" and

",i. ") from time to time in previous examples. The next two sub-sections examine

NORMALISE and REDUCE; in 4.d.iv we will look at intensional procedures (IMPRs), and then in

4.d.v at macros and at the 2-:..IsP version of the so-called "backquote" notation. We will at

that point have completely introduced the dialect; the final section, by way of review, will

re-examine the "semantical flatness" that we promised to retain throughout the design of 2-

LISP, and show how this property is true of all of 2-LISP, in spite of its mcra-strur.!ural

cap;\bilities.

4.di. NAME and REFERENT

It was made clear in the previous chapter that nonnal-f orm designators nonnalise to

themselves. It follows from this that there is no clear way to "strip the quote" off an

expression. For example, suppose that some expression <EXP> designates a rail (1 2 3 4~ -

<EXP>, for example, might be (PREP '1 (RCONS '2 '3 '4D. We know that <EXP> would

nonnalise to the han!ile • [1 z 3 4] - the normal-fonn designator of that rail. If we

4. 2-usP: a Rationalised Dialect Procedural Reflection 482

wanted to bind a variable v to th.at handle, we could use (LET [[Y <EXP>]] ...) as usual.

since in that fonn <EXP> will bf; nonnaliscd prior to binding. On the other hand, if we

should want to bind a variable v to the expression that <EXP> designates, we cannot rely on

any number of applications of the nonnalisation process, since nonnalisation is not a level

crossing operation. Some further mechanism is required.

In general, what we are loo1cing for is a function that would map any expression

<EXP> onto the entity desi.gnated by <EXP>. Such a function is not new to us, of course: it

is the main semantical interpretation function ~. In order to construct a composite

expression in the syntactic domain we therefore need to be able to designate the

interpretation function ~= this is what we primitively require of the closure bound in the

initial environment to the atom m FERENT. Thus, any application of the form (REFERENT

<EXP>) is mandated to designate that entity designated by the expression designated by

<EXP>, since REFERENT takes its argument in a nonnal, extensional position. This "double

de-referencing" is entirely analogous to LisP·s EVAL, which doubly evaluates its argument (1-

LISP's (EVAL ''A) evaluates to A, not to 'A). While 2-LISP's main processor function

NORMALISE is idempotent (ir = '4'0 '1'), the declarative interpret:aion function is not (tfl * 4> 0 '1>),

just as 1-usP's processor function was not (EVAL * EVAL 0 EVAL). Therefore ~(r"(REFERENT

EXP)l) is different fro.n cl>(EXP).

For example, consider the situation just described where ,EXP> designates the rail (1

2 3 4J. Then tl1e composite expression (REFERENT <EXP>) designates the designatum of that

term designated by <EXP>, which is to say, { REFERENT <EXP>} ~esignates the designa•um of

[1 2 3 4], which is the four-clement sequence consisting of the first four positive integers.

The situation is pictured in S4-735 (we assumJ that <EXP> in this case is the atom x):

(REFERENT X (S4-736)

<the abstract sequence 1 2 3 4>

What then does the expression (REFERENT X) 11om1a/ise to? It must nom1alisc to the normal

fonn designator of the sequence just mentioned, which is the rail (1 2 3 4]. 'Thus the claim

that the atom REFERENT designates 4>, plus the nonnalisation mandate, yields directly that

4. 2-LISP: a Rationalised Dialect Procedural Reflection 483

REFERENT is the proper "quote-removing" function. In sum:

X ~ '[1 2 3 4] (S4-736)
(REFF.RENT X) ~ (1 2 3 4]

Note that REFERENT w1S defined purely declaralively: we did not d'!finc some new

interpretive behavioural procedu;·e called DE-REFERENCE to be executed when we want to get

the designatum of some expression. It was entirely adequate (to say nothing of simpler)

merely to give a primitive name to the semantical interpretation function: the procedural

consequence of generating the referent, given a tenn, was supplied by the procedural

consequence already embodied in the nonnalisation process. Put another way, although

primitive functions have to be defined to 1esignate to the semantical functionc;, no

additional behavioural features need to be added to the int('rpreter: the standard processor

is sufficient This will prove tme also when we refer to explicit nonnalisations - even

including the function NORMALISE, which we wia need to designate only declaratively. as will

be seen in section 4.e.ii.

As mentioned in section 4.b.viii, we define a notational abbreviation for the

reference function. In particular, notations of the fonn:

"i" <notation> (S4-737)

will be taken as abbreviatory for:

"(REFERENT"_ <notation>_")" (S4-738)

Thus we can write u in place of (REFERENT X). for simplicity.

Some further examples:

,l.'(1 2 3 4] => [1 2 3 4] (S4-739)
+(PREP '1 (RCiNS '2 '3 '4)) => [1 2 3 4]
+,l.' If 'A => ''A
+(+ 2 3) => <TYPE-ERROR:>
(+. l~~CONS '1 '2)) => 3
(LET [[X 'SF]] ((iYPE X) (TYPE U)]) ~ ['BOOLEAN 'TRUTH-VALUE]
,l. ' (PCONS 'A 'B)) => '(A . B)
i(PCO~S 'PCONS (RCONS ''A ''B)} => I (A . B)
,l.(PCONS 'A 'B) => <ERROR: "A" 1s undefined>

The Ja<;t three examples in this list indicate nm only that two reference relationships play a

role in the semantics of REFERENT (the one between the argument and its referent - since

REFEIIENT is extensional - and the one between that designated expression and its referent,

which is the mapping th;it REHRENT recovers}, but two nom1alisatio11s as well. To sec why

4. 2-LISP: a Rationalised Dialect Procedural Reflection 484

this must be so, w~ will look at two types of example. First, it is straightforward that if the

fonnal argument in an application to REFERENT involves a s\de-effect, that side-effect will

occur in the course of nonnalising the application, as the following session illustrates:

> (SET X '[1 2 30 4])
> '[1 2 30 4]
> +(RPLACN 3 X '3)
> [1 Z 3 4]
> +(BLOCK (PRINT 'DE-REFERENCING/) ''OK) DE-REFERENCING!
> 'OK

(S4-740)

What is less obvious, huwcver, is that a second nonnalisation is required in all applications

in terms of this function:

> (SET X '[1 2 30 4])
> '[1 2 30 4]
> +(PCONS 'RPLACN '[3 X '3])
> '(1 Z 3 4] The RPLACN happened as well as the PCONS
> X
> '(1 2 3 4]

(S4-741)

This double n0tma1isation, it turns out, is mandated by the conjunction of standard

computational considerations, and the declarative semantics of REF:RENT, as the following

diagram illustrates (as usual, single-tailed arrows represent designation (4>), double-tailed

arrows signify normalisation ('1'), and heavily-outlined boxes surround expressions in

normal-form). Given an expression of the form (REFERENT <E>), <E> is normalised as usual

in order to determine its referent, which is called 01 in the figure. This is simply because

REFERENT is declaratively an extensional function: procedurally an EXPR. Thus the whole

term (REFERENT <E>) designates the referent of r 1, which is called R in the figure. This

much is not problematical, and, furthermore, is all there is to the declarative story. But the

normalisation mandate requires more: given that (REFERENT <E>) designates R, then

(REFERENT <E>) must nonnalise to a nomzal-form designator of R. The (or ,1.t least a)

normal-form designator of R is the very expression to which 01 nonnalises. Furthermore,

there is no tractable way of determining what 01 would normalise to without normalising it.

Therefore o 1 is normalised as well as < E>: the result of non 1alisiug o 1, called 02 in the

figure, i~ then returned as the result of normalising {REFERENT <E>).

4. 2-LISP: a Rationalised Dialect Procedural Reflection 48S

(54-742)

In terms of this figuic, the example of S4-741 would be labelled as follows: E is the

expression (PCONS 'RPLACN '[3 x '3]); the referent 01 of E is the expression (RPLACN 3 x

'3); the referent R of 01 is the revised rail [t 2 3 4]. The normal-form designator of R is

t.he. handle '[1 2 3 4], which is the result of normalising 01: namely, 02.

Another simple example is illustrated in the following figure: the expression · (+ 2 3)

designates the redex (+ 2 3); the referent of that redex is the abstract number five. of

which the numeral 5 is the normal form designator. Therefore (REfERENr ' (+ 2 3))

designates five, but retums s:

(REFERENT
{S4-743)

We have remarked in other contexts that although the extensionality of a function F

implies that the designation of { FD • <ARGS>) will depend only on F and the designation of

<ARGS> (where we assume that FD designates F), there are nonetheless intensional properties

of the expression to which (FD • <ARGS>) reduces that may depend on the intensional form

of <ARGS>. We have seen in the case of REFERENT redcxcs that the intensional dependencies

can be rather complex: although (REFERENT <E>) designates the referent of the referent of

<E>, the 1esult of normalising (REFERENT <E>) may depend not only on the fonn of <E>, but

also on the form (the intension) of the iCferent of <E>. This is what example S4-741

illustrated, In particular, 02, which is the result of normalising (REFEllff:T <E>), depended

on the full computational significance not only of <E> (the expressi0n (PCClNS • RPLACN • (3 x

'3]) in the ex~mple), but also on the full computational significance of 01 ((RPLACN 3 x 'l)

in the example).

4. 2-LISP: a Rationalised Dialect Procedural Reflection 486

The i.eccnd nonnalisation inherent in REFEREt.iT will play a role in the reflective

manoeuvring that comes into play in the next chapter. It will also come into focus when

we discuss explicit calls to NORMALISE in the next se-:tion.

Although the discussion of REFERENT may seem straightforward, there is a

considerable issue we have not yet discussed: the context used in the seconc! normalisation

engenaered in the course of normalising a REFERENT redex. The answer is implicit in

example S4-741, but needs to be made clear by stepp;ng through some examples. First,

suppose we nonnalise

{LET [[X 3]] (S4-744)
(REFERENT 'l()) => 3

It is natural that this should return the numeral 3, sinc.e • x designates x, and x in this

context designates three, and 3 is the normal-form designator of three. Indeed, this analysis

is correct Similarly, we might instead have the following:

(LET* [[X 3]
[Y 'X]]

H) => 3

($4-746)

Again this will nonnalise to 3, as indicated. However the following is problematic:

{LET [[Y (LET [[X 3]] 'X)]] (S4-746)
~Y) => <ERROR: Xis unbound>

The problem is that in the context in which the referent of Y is normalised, the variable x

has no bin<iing.

There are two icvels at which we may react to this fact. On the one hand, the

analysis, and this fact that results from it, seem natural enough. It is striking that by and

large RUERENT is used in a situation where its argument expression designates a nonnal

form designator. From the fact that alt normal-form designators are environment

independent, it follows that they can be normalised in any context without error (indeed,

they nonnalise to themselves). Furthermore, rather than quoting a designator from a

context and passing it to another function as an argument, as the use of 'x in S4-746

exemplified, it is by and large more semantically defensible and practical to pass the

nonnal-fonn name instead (constmcted with NAME, discussed below). Thus, in place of S4-

746, the appropriate and meaningful behaviour would have been this:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 487

(LET [[Y (LET [[X 3]] tX)J] (S4-747)
+Y) => 3

This works bcc:..use tX nonnalises to '3; thus Y is bound to '3. Hence (REFERENT Y)

returns the numeral 3, because the referent of Y (the numeral 3) is a context-independent

tenn.

From this point of view, then, we may simply observe these straightforward

constraints. But there is something unsatisfying about such a shallow analysis. Though it is

perfectly reasonable to point to a context-independent tenn and ask for its referent. it

seems less reasonable to point to a context-relative term, and to ask for its referent (as we

did, for example, in S4-746), without specifying what context we mean to use that tcnn in.

Suppose for example that I ask you for the referent of the proper noun phrase "/ Musici",

and you reply that it has no referent, because we are talking English. Sure enough we arc

talking English, but when I mention a tenn all bets arc off, so to speak, on the relationship

between the context in which you are intended to interpret the words I usc to mention that

tenn, and the colllext you are intended to use to interpret the mentioned term. It would be

perfectly reasonable. for example, for me to ask you for the referent of" I Musici", taken as

an Italian phrase. Similarly, I may ask you for the referent of the tenn "believe" for you,

and ask you a moment later what its referent was in pre-Rennaissance literature.

ft would be semantically preferable, in other words, if REFERENT were a function of

two arguments, a term and a context. Thus (Rt FERENT <E> <C>) would designate the

referent of the tcnn designated by <E> in the context designated by <C>. It would 1101

designate the referent of the tenn designated by <E> in the context being used to interpret

the whole.

The problem with this suggestion, so far as 2-L ISP goes, is that we have not in

general provided facilities for passing environment designators as arguments. Such

designators crept into closures, but it awaits 3-LISP before environment designators are fully

integrated into the structure of tt,c fonnalism. For U1e present, therefore, we will accept

the simpler single-argument version of REFERENT, knowingly admitting that it is semantically

improper. REFERENT has to do with crossing processes or interpreters - a subject beyond

2-LISP's ken.

It is useful to characterise REFERENT semantically, in part to illustrate with precision

the points just made. First, without regard to context, we have the following simple

4. 2-LISP: a Rationalised Dialect

equations. Declaratively we expect this:

lf#Eo("REFERENT) = EXT(4')

Procedurally, the situation is mildly more complex:

'l'E0 ("REFERENT) = EXPR('l'0 4))

Procedural Reflection 488

(S4-748)

(S4-749)

The proper treatment of full significance and context, however, demands a more complex

story.

As is common with primitives, the full significance }; of the primitive REFERENT

closure is straightforward:

~[Eo("RffERENT)]
= AE.Af.AC

C{"(<EXPR> Eo '[rERM] '(REFERENT TERM)).
[AS1,AE1,M1 .

~(S1,E1,F1,
[A<S2 ,D2 ,E2 ,F2> .

I(NTH(l,Oz,Fz),E2,F2,[A<S3,D3,E3,f3>
E,F)

(S4-760)

Intuitively, we expect REFERENT to designate a function that designates the referent (o3) of

the referent (02) of the single argument (s 1) with which it is called. Actually the story is a

little more complex: 02 is the sequence designated by REFERENT'S argument, and o3 is the

referent of o2's single element, becaL1se of our overall single-argument bent Otherwise the

simple story holds. As expected, the contexts yielded at each step of the way are passed

through to the subsequent determinations of reference.

The internalised REFERENT function is also the straightforward consequence of the

decisions ,iust made. We have, in particular:

~[E0 ("REFERENT)]
= ASt,E1,f1,C1 .

};(S1,E1,F1,
[A<S2 ,D2,E2,F2>

l:(HANDLE" 1(NTH(l,S2,F2)},E2,F2,
[A<S3,D3,E3,F3> . C1(S3,E3,F3)]))])

(S4-761)

Note the assumption that NTH(l.S2 ,F 2) is a handle. This will be always be true, because it
is assumed that NTH(1, s2 , F 2) must designate a structure, and the semantical type theorem

tells us that atl normal-form structure designators arc handles. s2 is guaranteed to be in

normal-form because it is the result of a normalisation; if it designates a sequence (which it

must), it will be a r:--11 of normal-fonn designators of that sequence's clements. Hence U1e

4. 2-LISP: a Rationalised Dialect Procedural Reflection 489

precondition will be met in all cases in which REFERENT applies.

In contrast, we present the semantical equations governing the suggested two

argument REFERENT, where the second argument designates the environment (the field -

the other part of the context - is as usual passed through by default). We will call it

REFERENT2• First we give the full significance (the portion that differs from S4-750 is

underlined):

l:[E 0("REFERENT2)] (S4-762)
= AE.Af.AC

C("(<EXPR> Eo '[TERM] '(REFERENT TERM)),
[AS 1 ,AE1,Af1 .

I(S1,E1,F1,
[A<S2,D2,E2,f2> .

I(NTH(1,D2 ,F 2),NTH(2,D•,F2),F2 ,(A<S3 ,D3,E3,F3> . D3])])]
E,F)

Note the use ofNTH(2,D2 ,F 2) in the second argument position to the embedded call to l: (in

place of E2}: we of course assume that «I> is the appropriate interpretation function to yield

environments from environment designators.

Slightly more problematic is the internalised function signified uy REFERENT 2• A first

attempt is this:

6[E0 ("REFERENT2)]

= AS 1 ,E 1 ,F1,C1 .
I(S 1 ,E1,F1o

[A<S2 ,D2 ,E2,F2>
E(HANDLE-1{NTH(1,S2,F2)),NTH(2,D2,F2),F2,

[A<S3,D3,E3,F3> . C1{S3,E2,F3}])])

(S4-753)

In general it is of course illegal, in the specification of an internalised function, to make

substantive use of the designations returned as the second coordinate of embedded calls to

I. We have violated this with respect to the environment argument because, as we have

made clear, environments are theoretical entities of the meta-theory; thus I has paradigmatic

rights to actual environments, rather than to environment designators. Note as well that we

needed a slightly different final continuation; c1 is given E2, and E3 is discarded. 3-LISP's

more adequate treatment of environments will correct this Jack.

It should not be surprising that REFERENT must be primitive: there is no other way,

for example, in which the referent of a handle may be obtained, even though we said in

section 4.a that the "HANDLE" relationship was one of bi-directional local accessibility (it is

REFERENT that functionally embodies that locality aspect of the field). What is less clear is

4. 2-LISP: a Ration;iJised Dialect Procedural Reflection 490

whether other meta-structural capabilities - such as those provided by IMPRS, for example

- redundantly provide this power. This is not the case, because REFERENT crosses levels in

a way that no other functionality can.

TI1e situation regarding naming of entities is in many ways analogous to that of

referring to their referents, although it is somewhat simpler, and we have used the primitive

NAME function more in previous examples. The task is the inverse of the one just

considered: given a term designating some entity, what expression enables one to refer to a

normal-fomz designator of that entity. For example, suppose we have a variable x that

designates some number. If we normalise x we know that we will obtain a numeral that we

can use; the question is how can we mention that numeral.

It should made clear straight away that the question is not the simpJcr one of merely

being able to mention any designator of that entity, for this is trivial: one merely uses the

appropriate handle. In particular, given any term <X> designating entity o, the term • <X>

designates one designator of o. For example '(+ x Y) is guaranteed to designate a term that

designates the referent of(+ x Y). What must also be provided, however, is the ability to

mention a context-independe11t, side-effect free, stable designator; and this, it turns out,

requires primitive support.

In this situation we require a primitive closure that designates the inverse designation

function: that function that takes each entity in the semantical domain into (one of) its

nonnal-form dcsignator{s). We call this function NAME (although note that it designates not

just any name, but a 110nnal-fom1 name of its argument). In a manner parallel to REFERENT,

we have a notational abbreviation: expressions of the form:

"t" <nc,tation> (S4-754)

are considered abbreviations for:

"(NAME"_ <notation>_")" (S4-76/i)

Again like REFERENT, NAME is defined purely declaratively, but from ihat definition the

following examples follow directly:

t$T ~ 'ST (S4-766)
t(= 3 4) ~ 'SF
t7 ~ '7
t(+ 3 4) ⇒ • 7
t(PCONS 'A 'B) ~ "(A . B)
(LET [[X 3](Y 4]] t(+ X Y)} ~ • 7

4. 2-LISP: a Rationalised Dialect Procedural Reflection 491

ttt1'(" 3 4)

Another set of examples makes clear the difference between applications in terms of the

NAME function and corresponding handles:

(+ 2 3) ==> 6 (S4-757)
'{+ 2 3) ==> '(+ 2 3)
t(+ 2 3) ==> '6
(TYPE ('" 'A 'A)) ==> 'TRUTH-VALUE
(TYPE '(= 'A 'A)) ==> 'PAIR
(TYPE t(= 'A 'A)) ==> 'BOOLEAN
(TYPE t'(= 'A 'A}) =:> 'HANDLE
(TYPE 't(= 'A 'A)) ==> 'PAIR
'(TYPE(= 'A 'A}) ==> '(TYPE (= 'A 'A))
t(TYPE (= 'A 'A)) ==> ''TRUTH-VALUE

From the properties of NAME a few corrollaries are provable. First, since expressions

of the form t<EXP> always designate a designator of the referent of <EXP>, it is provable that

they always designate an element of the structural field (all designators being structural

field elements). Thus (TYPE t<EXP>) will always designate one of ATOM, PAIR, RAIL, HANDLE,

BOOLEAN, or NUMERAL. In addition, expressions of the form t<EXP> will always nonnalise to

handles, since all structural field elements' normal-form designators are handles.

All of these follow from the semantical equations governing NAME:

l:[Eo("NAME)]
= i\E.AF.AC

C("(<EXPR> Eo '[TERM] '(NAME TERM)),
(AS1,>.E1,Af1 . l:(S1,E1,F1,(A<S2,D2,E2,F2> NTH(l,S2,F2)])]
E,F)

l\[E0 ("NAME)]
= >..S 1 ,E 1 ,F 1,C1

l!(S1,E1,f1,
[A<S2,D2,E2,F2> . C1(HANDLE(NTH(1,S2,f2)),E2,f2)])

(S4-768)

(S4-759)

Note in S4-751? that the NAME closure designates an extensional function that maps terms

onto what they nvm1alise to. Thus NAME is not in fact strictly extensional, in spite of the fact

that it is an EXPR (it is the only exception to the rule that procedural EXPRS are dedaratively

extensional, just as IF is the exc,iption to the rule that procedural IMPRS are declaratively

in tensional). ·

NAME and REFERENT, being inverse functions, can be composed with rather interesting

results. Thus, in general, "down-up" signifies (procedurally and declaratively} the identity

function:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 492

VS E S [l:(r"h~l) "' I(S)] (S4-760)

Of much more interest, however, is the other combination: what we call "up-down",

referring to "t ♦ E", the abbreviation for (NAME (REFERENT E)). A tenn of the fonn tH may

fail to be extensionally equivalent to E: first, NAME is not strictly a function: some forms

(such as fimctions) have more than one normal-fonn designator. Secondly, REFERENT is a

partial function of the semantical domain; HXP is defined only when EXP designates a tenn

(an element of the structural field s); HJOHN will typically be ill-fonned (assuming the atom

JOHN designates a person John), since John the person is not a tcnn. Similarly, HLAMBD/\ is

semantically ill·fonned, because the function that the atom "LAMBDA" designates is not a

sign. In spite of these limitations, however, in section 4.c.iv we will prove a striking

theorem: H<EXP> is always entirely equivalent, both procedurally and declaratively, to

(NORMALISE <EXP>) (NORMALISE, of course, is declaratively the identity function: this merely

states that NORMALISE - 2-LISP's it - is designatio!l-preserving: our main semantical

mandate). It is for this reason that NORMALISE in 2-LISP need not be primitive (or,

alternatively, NAME need not be - what we really prove is that they arc interdefinablc).

This will be pursued in greater depth in section 4.d.iv. Before leaving the NAME

procedure, however, we have two final comments. First, no issues arise in connection with

NAME of the sort that attend REFERENT, having to do with a second context and a second

processing. As the semantical equations governing NAME demonstrate, only the single

processing step common to all EXPRS is engendered by a NAME redex.

Secondly, for those familiar with P-is work, we should arrest any tendency to equate

the 2-LISP NAME function with the operator that Richard Montague uses in his intensional

logics9 to designate the intension of a term (he also uses a prefix up-arrow). We have

admitted that we have not reificd intcnsions; therefore we provide no way, given a term x,

to construct another tcnn Y such that the referent of Y is the illlension of x. Had we an

adequate theory of intensionality, such a primitive would be useful. For the time being,

however, our "t" remains a simple meta-structural primitive, rather than a "meta

intensional" one. We use "tx", in other words, to refer to the name of the nonnal /om, of

term x; Montague uses "tX" to refer to the intension of term x.

4. z-usp: a Rationalised Dialect Procedural Reflection 493

4.dii. NORMALISE and REDUCE

We are now in a position to examine explicit "calls" to the processor itself - forms,

for example, like (NORMALISE • (CAR X)). Two procedures in particular will be provided.

For historical compatibility we will call them "NORMALISE" and "REDUCE", although "rJORMAL

FORM" would be more appropriate than "NORMALISE", and "REDUCTION" than "REDUCE", since

they do not actually denote the interpr1~tive process per se, but merely the function

computed by that process.

Intuitively, there is no real difficulty with these procedures, once we recognise that

they are standard extensional functions. In particular, (HORMALISE <A>) will designate

just in case the structure designated by <A> would normalise to . Hence (NORMALISE

<A>) will nonnalise to a normal-form designator of . <A> must of course designate an

expression (normalisation - 'I' - is only defined over s). and will be an expression.

Hence (NORMALISE <A>) will return a normal-form expression designator - a handle.

We observed in connection with REFERENT rcdexes that two normalisations were

involved; the same is true with respect to NORMALISE, for much more obvious reasons.

Since NORMALISE is an EXPR, the argument in a NORMALISE redex will be normalised; then,

the expression that that expression designates will in turn be normalised. Some simple

examples:

{NORMALISE ' '[THIS IS A RAIL]) => '' [THIS IS A RAIL] {S4-765)
(NORMALISE ''ST) => ''ST
(NORMALISE 'ST) => 'ST
(NORMALISE ST) => <ERROR>
(NORMALISE '3) => '3
(NORMALISE '(+ 1 2)) => '3
(NORMALISE '(CAR '(A 8 C))) => ''A
(NORMALISE (XCONS 'CDR ''(1 . 2))) => '·z

Perhaps the easiest way to think about these examples is this: if you understand the

argument to NORMALISE as designating an expression that appeared on the left side of our

standard "=>" arrow, what expression would appear on the right? Then the handle

designating that right hand side expression is the n:sult returned by the NORMALISE redex.

NORMALISE is of course idempotent; thus (NORMALISE (NORMALISE <X>)) will always

have the same full significance as the simpler (NORMALISE <X>). Some examples:

4. 2-LISP: a Rationalised Dialect

(NORMALISE (NORMALISE 'SF))
(NORMALISE (NORMALISE '(+ 2 3)))

(LET [[X 1]]
(BLOCK (NORMALISE '(SET X (+ X 1)))

X))

(LET [[X 1]]
(BLOCK (NORMALISE

(NORMALISE '{SET X (+ X 1))))
X)) =>

Procedural Reflection 494

'SF
'6

'2

'2

(S4-766)

: Not '3

However this does not imply that nonnalising an explicit call to NORMALISE is

indistinguishable from simply n01malising an expression directly; whereas two uses of

NORMALISE come to the same thing as a single use, mentioning NORMALISE is of course quite

different from simply using it:

(NORMALISE '{= 3 4)) => 'SF The first two (S4-767)
(NORMALISE (NORMALISE '(= 3 4))) => '$F aro equivalent, but
(NORMALISE '{NORMALISE '{= 3 4))} => ''$F the third is different.

The crucial fact about NORMALISE redexes is this: they do not cross semantic levels.

Rather, they can be understood as if they reach down one level, but remain at that higher

level looking down. In other words, whereas the semantic level of (NAME < E 1>) is one level

higher than the level of <El>, and the semantic level of (REFERENT <E2>) is one level below

that of <E2>, the semantic level of (NORMALISE <E3>} is the same as that of <E3>. This

should come as no surprise: the salient fact about normalisation in general, as opposed to

evaluation, is that is preserves semantic level; it is to be expected that explicit references to

this function will themsdves preserve se:nantic level.

'Ibe general structure of the .i:, and 4' relationships among the constituents and results

in a NORMALISE rcdcx arc shown in the following diagram. The idea is this: in general,

given a rcdcx of the form (NORMALISE <El>), the argument <El> will designate some term

<Tl>, which in tum presumably has some referent <R>. If <Tl> were nonnaliscd, it would

yield some other term <T2> that also designated <R>, but that was in nonnal form; this is

what it is to normalise. Therefore (NORMALISE <E1>) designates T2. What then should

(NORMALISE <El>} nonnalise to? Clearly, to the nonnal-fonn designator of <T2>: an

expression we have called <E2> in the diagram.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 495

($4-768)
(NORMALISE

An simple example is pictured in the following diagram. <Et> is the handle '(+ 2 3);

hence <Tl> is the addition redcx (+ 2 3), which designates an <R> of five. <T2>, therefore,

the nonnal-form designator of five, is the numeral 5. Hence <E2>, the normal form

designator of that numeral, is the handle • 5.

(S4-769)

(NORMALISE '(+ 2 3)

(+ 2 3ll===:;4 .____,.. ...

Finally, a slightly more complex case. In the following, <ED is not in normal-form; it is

the XCONS rcdcx (XCONS 'NTH '1 ''[KEEP ON KEEPING ON]). Thus <El> designates a <Tl> that

is the NTH redex { NTH 1 • [KEEP ON KEEPING ON)}, which in turn designates an <R> that is the

atom KEEP. The normal-form designator of U1is atom - the example's <T2> - is the

handle • KEEP. Hence <E2>, the normal-form designator of this handle, is the further handle

''KEEP.

(S4-770)

(NORMALISE XCONS 'NTH '1 KEEP ON KEEPING ON

(NTH 1 '[KEEP ON KEEPING ON])

Given t11is much of an analysis, it is straightforward to present the fonnal semantics

of NORMALISE. Without regard to the complexities of context and full signficance, we of

course are aiming at the following:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 496

<P(Eo("NORMALISE)) = EXT(ir) (S4-771)

(This should be constrastcd with S4-748's claim that 4:>(E 0("REFERENT)) .. EXT(<!>).)

Procedurally, we will approximate this:

(S4-772)

Though 4i· 1 is not in general well-defined (since 4' is many-to-one, 4i·1 is not in general a

function), it happens that 4'"1 is well-defined over the range of v, namely s. In other words

we essentially have the following:

\fS E S [<P" 1(S) = HANDLE(S)]

Hence S4- 772 reduces to

ir(Eo("NORMALISE)) = EXPR(HANDLE 0 '1'0 4')

More fully, however, we have the following full significance:

:E[Eo("NORMALISE)]
= >.E.>.F.>.C

C("(<EXPR> Eo '[TERM] (NORMALISE TERM)),
[>.S1,E1,f1.

I(S1,E1,f1
[>.<S2,D2,E2,F2> .

I(NTH(l,D2,F2),E2,F2,[>.<S3,03,E3,F3>. S3])])],
E,f)

and internalised function:

A[Eo("NORMALISE)]
= >.S 1 ,E1,F1,C1

:E(S1 •Et• ft•
[>.<S2,Dz,E2,f2> .

I(HANDLE· 1(NTH(1,S2,F2)),E2,f2,
[>.<S3,D3,E3,F3> . C1(HANDLE(S3),E3,F3)])])

(S4-773)

(S4-774}

(S4-775)

(S4-776)

11te underlined parts of these two equations highlight the only p1accs in which they differ

from the semantics of REFERENT, with which they should be compared. This fact -

mandated by the meaning of the words, not something we have aimed for explicitly -

begins to hint at the close relationship among NAME, REFERENT. and NORMALISE that will be

brought to the fore in the "up-down" theorem of section 4.d.iv.

What these equations, and the examples presented earlier, make clear is that the

second normalisation mandated by a NORMALISE redex happens in the context resulting from

the processing of the NORMALISE arguments. All of the discussion as to why this is inelegant

holds equally with respect to NORMALISE; this function should not be given just a single

4. 2-LISP: a Rationalised Dialect Procedural Reflection 497

argument; it should be given a context as well. We need not belabour this point here,

because we will shortly begin to look at better ways of doing this. The meta-circular

processor in section 4.d.iii will define a Vl!rsion of NORMALISE that takes not only an

environment but a continuation argument; similarly the fully reflective NORMALISE of 3-LISP

will be defined in terms of these same three arguments. Thus we will ultimately support

such code as

{LET [[X '(+ X Y)]]
(NORMALISE X

[['X '3]('Y '4] ...]
<CONT>}}

(S4-777)

'7

in which the use of x is relative to a different environment than the mention of x. The

present inadequat(; single-argument version is merely intended to illustrate the kind of

behaviour that the explicit use of NORMALISE can engender.

'The situation regarding function <;'PPlicatiun, and r~dex reduction - and therefore

any explicit use of the REDUCE function - is entirely analogous to that regarding the general

normalisation of expressions. The arguments about ultimately requiring a different context

hold, but we will restrain our attention to the single-context version for the time being. It

should be noted as well that we arc defining a reduction, not an application procedure: as

set forth in section 3.f.i, a correct definition of an APPLY procedure is both trivial and

useless.

REDUCE is provided as much for convenience as necessity. We have, in particular, the

following sorts of behaviour:

(REDUCE '= '[3 3))
(REDUCE 'HTH '(l '[BE BRIEF]])
(REDUCE

(NTH 2 [+ IF LAMBDA])
(TAIL 1 '((= 3 3) (= 3 4) 'YES 'NO]))

(REDUCE 'NORMALISE '('(+ 2 3)])

REDUCE could have been defined as follows:

(DEFINE REDUCE
(LAMBDA EXPR [PROCEDURE ARGS]

(NORMALISE (PCONS PROCEDURE ARGS))))

'$T
'BE

''NO
''5

(S4=778)

{S4=779)

We needn't, therefore, take the time to examine its semantics: they are a simple

combination of the semantics of NORMALISE (presented in S4-775 and S4-776) together with

the semantics of pairs, as given in S4·38.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 498

Of more interest is a comparison between 2-LISP's REDUCE and t-LISP's APPLY, in

particular since we set out to define a dialect that would subsume at the object level all of

the inessential reasons that APPLY was used in t-LISP. This is particularly salient given the

definition just presented in S4-779, since 1-LISP's APPLY cannot be defined as follows:

(DEFINE APPLY
(LAMBDA (FUN ARGS)

(EVAL (CONS FUN ARGS})))

This is 1-LISP,
and it is also
incorrect.

(S4-780)

We will look, therefore, at five diffierent examples using APPLY and REDUCE, in order to

bring out the differences.

Consider first a case in which a perfectly ordinary rec!ex would serve: as for example

in 1-LISP's (CONS 'A 'B) and 2-LISP's corresponding {PC0NS 'A 'B). If these fonns were

designated by a simple quoted fonn, the11 could be given as a single argument to each's

dialect's name for its '1':

(EVAL '{CONS 'A 'B))
(NORMALISE '{PCONS 'A 'B))

_. {A . B)
~ "{A . B)

; 1-LISP
; 2-LISP

{S4-781)

The (double) lack of semantic flatness on 1-usP's part is of course evident here, but

otherwise the situations arc not dissimilar. Furthermore, we can take the expression apart

into "function" and "argument" components, and use APPLY/REDUCE, leading again to

approximately similar constructs:

(APPLY 'CONS {LIST 'A 'B))
(REDUCE 'PC0NS '('A 'B])
(REDUCE 'PC0NS (RCONS 'A 'B))

_. (A B)
~ ''{AB)
==> ''(A B)

1-LISP
2-LISP
2-LISP

{S4-782)

Again there is no striking difference except the de-referencing behaviour of EVAL. In the

first 2-LISP form (the second line of S4-782) we simply used explicit rail brackets to

designate a rail, although the second 2-LISP fonn (the third 1inc) was semantically

equivalent, and more similar to the 1-LISP counterpart.

If we were to go no further, it might look as if the dialects were therefore

moderately alike in these respects, but this is of course far from the case. For one thing,

there is an unclarity, in the first line of S4-782, as to whether the second argument to APPLY

objectifies the arguments (i.e., is a single designator of a sequence of arguments), or whether

it designates the appropriate argument expression for the procedure in question. It should

be clear that the 2-LISP REDUCE redexes (the second and third line) arc finnty entrenched in

the second of these two options, since REDUCE is throughout meta-structural. Any attempt to

4. 2-LISP: a Rationalised Dialect Procedural Reflection 499

use the first strategy would lead to an error:

(REDUCE 'PCONS ['A 'B])
(REDUCE 'PCONS (SCONS 'A 'B))

:::;,, <ERROR: exp'd an s-expr>
:::;,, <ERROR: exp'd an s-expr>

although both of the following are perfectly acceptable:

(PCONS . ['A 'B])
(PCONS . (SCONS 'A 'B))

:::;,, '(A . B)
:::;,, '(A . B)

; 2-LISP
; 2-LISP

(S4-783)

(S4-784)

Therefore we realise that the use of APPLY in S4- 782 is really a case where the arguments

have been objectified, rathe1 than being a case where the argument expressions have been

meta-structurally designated. In moving from a standard issue redex to one appropriate for

APPLY, in other words, we were forced to give as APPL v's first argument a designator of the

procedure name, but to give as APPL V's second argument a designator of the sequence of

argument values, not a designator of the argument expression. 1-LISP's APPLY, as we can

now see, is in terms of diagram S3-178 approximately a function from function designators

(FD) and arguments themselves (A) onto either value designators or values, depending on

whether the values themselves are structural entities.

That this is indeed the case is more clearly revealed in the next set of examples,

where we consider a second type of circumstance, where rather than converting an

expression lhat worked properly on its own, we actually consider a situation in which we

need to use APPLY. In particular, if we let x designate a list of two atoms in the only way

1-LISP provides for doing that, and if we want to cunstmct the pair consisting of these two

atoms, then we must subsequently use APPLY:

(LET ((X (LIST 'A '8)))
(APPLY 'PC0NS X)) ➔ (A. B)

(S4-785)
; 1-LISP

On the other hand, we do not need to use REDUCE in 2-LISP:

(LET ([X ['A 'B]]] (PC0NS. X)) :::;,, '{A. B} ; 2-LISP (S4-786)

Furthermore, it generates an error if we do, unless we cJi.plicitly extract the appropriate

designator of that designator of a sequence of atoms:

(LET ([X ('A '8]]]
(REDUCE 'PC0NS X))

(LET [(X ('A 'B]]]
(REDUCE 'PC0NS tX))

(S4-787)
<ERROR: Expected ans-expression>

"{A . B) ; 2-LISP

4. 2-LISP: a Rationalised Dialect Procedural Reflection 500

Conclusic,n number one, therefore, is this: whereas APPLY is indicated in 1-LISP for

argument objectification, that can be accomplished in 2-LISP by using non-rail CDRs. The

second argument to REDUCE must designate an argument expression, not an objectified

argument sequence, since REDUCE, unlike APPLY, is consistently meta-structural.

A third case, where APPLY is indicated in 1-LISP, arises when, infonnally, the

"function" is the value of a tenn, rather than being the term itself. Now of course

functions arP.n 't terms: what is meant is that the term designates the function name. Since

this differs from objectifying the arguments, standard LISPS typically have an APPLY variant

to treat it, called APPL y• in INTERLISP and FUNCALL in MACLISP (we will use the INTERLISP

terminology). Some examples:

(APPLY• '+ 2 3)
(LET {{X 'CONS))

(APPLY* X 'A 'B))

- 5

- (A . B)

1-LISP

1-LISP

(S4-788)

However it is of course true in a higher-order dialect that no resort to explicit processor

primitives is indiec~ed in such a circumstance:

(LET [[X PCONS]] (X 'A 'B)) =:> '(A . B) : 2-LISP (S4-789)

It must be admitted, however, that in the 1-LISP examples (S4-788) x is bound to a

designator of the constructor's name; if we were to do the same in 2-LISP (that being a

meta-structural operation) we too would either have to de-reference it before using it, or

else would need to use REDUCE explicitly (but in the latter case we would have to designate

the argument expression as well):

(LET [(X 'PCONS]] (X 'A 'B))
(LET [[X 'PC0NS]) (+X 'A 'B})
(LET [[X 'PC0NS]]

(REDUCE X '('A 'B]))

<Efi~0R: Expd a function> (S4-790)
'(A . B) 2-LISP

"(A . B) : 2-LISP

This is the circumstance regarding MAPS, as well (the "function" argument to MAP must be

quoted in 1-LISP but not in SCHEME and 2-LISP), relating to the use of static versus dynamic

scoping, and so forth. Once again, especially from the fact that the arguments to APPLY•

(after the first one, which is the function) appear in exactly the same form ars if the

function's name were used explicitly in the first position of the rcdcx, we can conclude that

this use of a member of the APPLY family has to do with context-relative procedure

specification, rather than with anything inherently meta·stmctural or objectifying of the

processor.

4. i-LISP: a Rationalised Dialect Procedural Reflectfon 501

This is made even clearer by considering a foun,, ~ituat1on in which one does have a

designator of the appropriate argument expressions. Strikingly, in that case neither of 1-

LISP's APPLY or APPLY• can be used; one must resort to EVAL. Suppose in the following

examples that x is bound to 3 and v to 4. In 1-LISP we have:

(LET ((A 'X) (8 'Y)) (S4-791)
(APPLY• '+ A B)) -+ <ERROR: X not a number [!1c]>

(LET ((C '(X Y)))
(APPLY '+ C)) -+ <ERROR: X not a number (sic]>

What one must resort to instead is this:

(LET ((A 'X) (8 'Y)) (S4-792)
(EVAL (CONS '+(LISTA 0))) -+ 7 1-LISP

(LET ((C '(X Y)))
(EVAL (CONS '+ C)) -+ 1 1-LISP

This is because APPL v, althout;h it itself evaluates its arguments, doesn't re-evaluate them just

because the first argument is an EXPR (APPL v and APPLY• treat their argument expressions

idcnticalty for both EXPR and IMPR procedures). By constructing the full 1-LISP redcx,

however, we are able to get to the processing decisions before the test is made on whether

the procedure is an EXPR or IMPR.

In 2-LISP, however, having designators of argument expressions is just the kin-i of

meta-structural situation in which REDUCE is appropriate:

{LET ([A 'X] (B 'Y]]
(REDUCE '+ (RCONS A 8))) => '7

(LET [[C '(X Y]]] (REDUCE '+ C)) => '7
; 2-LISP
: 2-LISP

(S4-793)

Although of course even in this situation REDUCE need not be used, if the intent is to remain

at the object level:

(LET ([A 'X] [B 'Y]] (+ -l-A -l-8)) => 7
{LET ([C '[X Y]]] (+ . +C)) => 7

2-LISP
2-LISP

There is a certain indisputcd simplicity in the 1-LISP maxim that, when the

processor evaluates a redex, it checks to sec whether the function is an IMPR or an EXPR. In

the former case it applies the function to the arguments without further ado; in the latter it

evaluates them first, and applies the function to the values of the argL1mcnts. Other than

being rather hopelessly semantical, this is not a bad characterisation of what happens. At

its level of formality, furthermore, 2-LISP honours it as well - especially if one takes

seriously the talk about "functions" and "applications" and "values". For consider the 2-

4. 2-LISP: a R:itionalised Dialect Procedural Reflection 502

LISP processing of a redex. We look at the CAR of the redex and detennine whether it is an

intensional or extensional procedure. lf intensional, we apply the function designated by

that CAR to the arguments, without further ado; if extensional, we apply the function

designated by that CAR to the referents of the argumellls. The only thing is that, since we

cannot manipulate functions explicitly, or do anything except formally simulate function

application, what we really do is to reduce nonnal·form function designators with nonnal·

form argument designators and so on and so forth.

The moral, in other words, is that 1-LISP's self-conception is not far off the mark, so

long as meta-structural considerations arc not taken too seriously. The problems arise - as

the foregoing examples wiJI with luck have made plain - only when one needs to make

explicit reference to the structures carrying the semantical weight. It is at that point that

use/mention clarity and all the rest begins to pay for the rigour it exacts.

A final set of tables will perhaps set this matter to rest once and for all. Note that

we have encountered what are essentially four independent axes of decision, represented by

the following four questions:

1. Do we have a standard function designator, or a designator of a function
designator?

2. Do we have standard argument designators, or do we have designators of
argument designators?

3. Is the function designator context relative, or global?

4. Arc the arguments designated as an objectified whole, or piece by piece?

In 1-LISP the answer to the third question is always "global"; in 2-LISP it is always

"context-relative"; this was a design choice taken long ago. Thus the dialects differ on this

axis even before considering any further issues. But the remaining questions naturally form

a 2x2x2 space, in which APPL v and REDUCE and so forth fill natural spots. The following

tables are intended to depict the natural usage of each of the variety of simple forms in

each dialect. We assume that F is a (schematic) standard function designator, that A and

ARGS designates entire sequences of arguments, and that A1, A2, and so forth designate each

argument individually. Similarly, FD is intended to stand in place of a term that designates

a function designalor, AD and ARGS-D arc intended to designate a sequence of argument

designators, and A1D, A2D, and so forth arc intended to designate individual argument

designators.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 503

(S4-795)

Piecewise ("spread") Objectified ("no-spread'')

A: (r A1 Az ... A1t)
F:

AD:

A: (APPLY• FD A1 Az ... A11) (APPLY FD ARGS}
FD:

AD: (EVAL (CONS FD ARGS-D))

In contrast, the 2-LISP grid looks as fotlows:

{S4-796)

Piecewise ("spread") Objectified ("no-spread'')

A: (F A1 A2 ••. A1t) (F . ARGS)
F:

AD:

A:
FD:

AD: {REDUCE FD [A1D A20 ... A1tD]) {REDUCE FD AD)

In both dialects, of course, it is possible to construct expressions that fill in the other

positions. Thus we give this filled in table for 1-LISP:

(S4-797)

Piecewise ("spread'') Objectified ("no-spread''}

A: (F A1 A2 ... A1r.) (APPLY 'F ARGS)
F:

AD: (EVAL (LIST 'F A1D AzD ... AkO)} (EVAL (CONS 'F ARGS-0)}

A: (APPL v• fD A1 Az ... A1t) {APPLY FD ARGS)
FD:

AD: (EVAL (LIST FD A1D A20 ... A1r.D)) (EVAL (CONS FD ARGS-0))

Similarly, the 2-LISP space filled in, using REDUCE explicitly:

(S4-798)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 504

Piecewise ("spread'') Objectified ("nrrspread'')

A: (F A1 A2 ... At) (F ARGS)
F:

AD: (F ,l,A1 U 2 ... ,I.At) (F ,1,ARGS)

A: (REDUCE FD t[A1 A2 ... At)} (REDUCE fO tARGS)
FD:

AD: (REDUCE FD [A1D AzD ... A1,.D]) (REDUCE FD AD)

Equivalently. the 2-LISP space filled using down arrows rather than explicit calls to REDUCE:

{S4-799)

Piecewise ("spread'') Objectified ("no-spread")

A: (F A1 A2 ..• A1,.) (F ARGS)
F:

AD: (F +A1 U2 ..• +At) (F +ARGS}

A: (+FD At A2 ..• A1,.) {HD ARGS}
FD:

AD: (+FD +A1 +A2 .•• ,l,A1,.} (HD +ARGS)

There is one subtlety not brought out here: we arc being careless in not distinguishing

terms AD and ARG-D that designate a series of individual argument designators, as opposed to

terms that designate a designator of a sequence of argumeJl/s (the difference between [• t • 2

'3] and '[1 2 3), for example). In 1-LISP these two cannot be told apart, so our confusion

simply reflects its confusion. In 2-LISP these arc of course distinct, but the generalisation

that takes a sequence of designators to designate a sequence of entities designated, coupled

with the normalisation mandate, means that the appropriate entries in these tables (the right

hand column of the second and fourth rows of S4-796, S4-798, and S4-799) will in fact

support both circumstances.

4. 2-LISP: a Rationalised Dialect Procedural Reflection SOS

4.diii. Intensional Procedures

2-LISP has three primitive intensional procedures (IMPRs): IF, SET, and LAMBDA. We

have explained their behaviour in the foregoing sections. It is also possible, however. to

define arbitrary user intensional procedures in terms of the primitive IMPR closure, as for

example in:

(DEFINE TEST (LAMBDA IMPR [X Y] (TYPE X))) (S4-800)

Like alt inchoate reflective capabilities, we will see how IMPRS land the user in confusion

regarding contexts. (As usual we will demonstrate environment difficulties, rather than

control difficulties, but that is only because we haven't yet introduced any mechanisms for

affecting control structure; if we had such capabilities, they would cause problems in IMPRS

as well.) Nonetheless, we must explain at least to some extent how IMPRS work.

The processing (upon reduction) of the body of an intensional closure (as we will

call any closure whose CAR is the primitive <IMPR> closure) is standard: the body is

normalised in an environment consisting of the environment recorded in the closure (which

was the environment in force when the closure was constructed) extended as dictated by the

process of matching the parameter pattern against the arguments. What distinguishes

intensional closures is that when they are reduced with arguments, the pattern is matched

against a designator of the argument expression, rather than against the result of nonnalising

the argument expression. Thus if we were to normalise the form

(TEST(+ 1 2) (= 1 2)) (S4-801)

then the pattern [x Y J would be matched against the handle • [(+ 1 2) {,. 1 2} J. Because of

the extended matching protocol we adopted in section 4.c.ii, this wilJ result in the binding

of x to the handle '{+ 1 2) and of v to the handle '{" 1 2). Thus expression S4-801 will

reduce to • PAIR, since (+ 1 2) is a pair.

Before proceeding further we must an-est a potential terminological confusion.

Intensional closures are to be distinguished from intensional redexes: redexes whose CARS

signify intensional closures. Additionally, an intensional procedure is a procedure whose

normal-form is an intensional closure. Thus IF is an intensional procedure; therefore { IF

{ = 1 2) • YES 'NO) is an intensional redex (it is not a closure at all). We similarly have

extensional closures, extensional procedures, and extensional redexes; in section 4.d.v will

4. 2-LISP: a Rationalised Dialect Procedural Reflection 506

encounter the corresponding macro closures, macro procedures, and macro redexes.

In standard LISPS, FEXPRS and NLAMBDAS - the constructs on which 2-LISP IMPRS are

based - bind parameters to their un-evaluated arguments. In 2-LISP we bind IMPR

parameters to designators of un-nonna/ised arguments, which mi6ht seem, on the face of it,

to be more complex than necessary. That the argument expressions should not be processed

is taken for granted: that is the situation intensional procedures are intended to handle.

But is is not immediately clear why we need to bind to designators or them. It is therefore

worth considering the suggestion that we simply match the IMPR pattern again ;t the un

normalised argument expression directly rather than against a designator of it. We will

reject this suggestion as incoherent, but it is instructive to see why.

Note that the acceptance of such a scheme would immediately falsify our claim that

bindings arc all in normal-form, since in the case at hand x would be bound directly to the

redex (+ 1 z). However the fact that we have violated this aesthetic is not in itself an

argument against this practice; the question would merely reduce to the utility or substance

of the aesthetic claim. The question is a more serious one, about what such a circumstance

would mean. Suppose the parameter x was used in the body of the intensional procedure

(as indeed it is in S4-aoo, as an argument to TYPE). Since bindings arc semantically co

referential, there can be no doubt that x would in this scheme designate the number three,

but it simply isn't clear what it would mean to process x. We have said that the local

procedural consequence of an atom (a parameter) is its binding; thus the local procedural

consequence of x would be the redex (+ 1 2). However it would follow that processing x

would not yield a normal-form designator, thereby violating the normal-form theorem,

giving TYPE a structure it would not recognise, and so forth. 111is simply contradicts every

assumption we have made about 2-LISP's '1'.

Another possibility would be, if x was used extensionally, to have its local procedural

consequence be not its binding, but the (possibly recursive) local procedural consequence of

its binding. Normalising, in other words, would iterate through such bindings until a

normal-form designator was achieved. Thus processing x in S4-800 would first acquire U1e

binding of x in the local context, and then process the (+ 1 2) rcdex, yielding the numeral

3. This at least maintains the integrity of ,i, in one sense - in tl1at the local procedural

consequence of all terms would still be in normal form.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 507

This plan has several consequences (and resembles in various ways ALGOL'S "call-by

name" protocols). First. if an intensional parameter (a parameter in an intensional closure)

were bound to an expression with side·eff ccts, then every use of that parameter would

engender the side-effects. Thus we would have, for example:

> ((LAMBDA IMPR [X]
(+ X X))

(BLOCK (PRINT 'HELLO) 4)) HELLO HELLO
> 8

This 1s not 2-LISP, (S4-802)
but a proposed variant
we will soon reject.

This is not incoherent. but it is not minor, either. Also, there are environment problems.

Suppose that "by accident", so to speak, we did this:

> (LET [[X 31]
((LAMBDA IMPR [X]

(+ X X))
X))

(S4-803)

To our possible surprise, this would cause a non·term.\nating computation, since x would be

bound to itself, and the iterative processing scheme Wt\ arc assuming would recurse forever.

Nor is this environment problem climinable. T,lte scheme we will have adopted for

IMPRs has environment problems too, but it is easy to see from whence they stem, and it

will be equally easy in 3-LISP to avoid them. Under the present scheme, however, there is

no obvious way to tell what context a variable was intended to derive its significance from.

Furthermore, all of these suggestions are mcchan istic in nature; U1cy do not spring

from grounded semantical argument. The essence of an intensional construct is that it

derives its significance in some way from the form of the argument. What should be

intensional are the argument expressions in an intensional redex, not the variables within the

body of the intensional closure itself. They are standard designating variables as usual.

The point, rather, is that the variables in the intensional closure should designate the

intensional content of the argument expressions in the intensional redex. In other words,

the bound parameter x in S4-802 and S4-803 should designate the appropriate intensional

argument expression.

If in 2-LISP we had a theory whereby we could reify intensions, we might make

intensional parameters designate intensions. For the time being, however, we adopted our

usual hyper-intensional stance, and have them designate expressions. It is for this reason

that we adopt the protocol we do. In 3-LISP we will bind not only the argument

4. 2-LISP: a Rationalised Dialect Procedural Reflection 508

expression, but the surrounding context of use; thus in 3-LISP we will be able to obtain any

level of significance from the argument expression. Though 3-LISP will not present a

theory of intension either, it will at least be able to provide coverage of the territory where

such a notion might lie.

We mentioned that our IMPR scheme has context problems. To illustrate this, we

will attempt (and fail) to define SET, in terms of a version of REBIND that accepted just two

arguments (i.e., a two-argument REBIND will be assumed to be an extensional version of

SET). We aim, that is, to define a procedure SET so that expressions of the form

(SET <VARIABLE> <EXPRESSION>)

would be entirely equivalent to expressions of the form

{REBIND '<VARIABLE> ~<EXPRESSION>)

Thus (SET x (+ z 3)) should be equivalent to (REBIND •x • 5).

We begin with a plausible and certainly simple definition:

(DEFINE SET1
(LAMDBA IMPR [AB]

(REBIND A (NORMALISE B))))

(54-804)

(54-805)

(S4-806)

ft is easy to see a problem with this definition, however: in calling NORMALISE explicitly the

environment in which the expression that B designates will not be the same one that was in

fon::c when the original SET redex was normalised. In particular, two bindings - of A and

B - have intervened. Thus although we might think we would correctly get:

(LET [(X 3]]
(BLOCK (SET 1 THREE X)

THREE)) 3

This actually
won't work.

it is nonetheless apparent that we would (incorrectly) generate:

and

(LET [(A 3]]
{BLOCK {SET1 THREE A)

THREE))

(LET [[B 3]]
(BLOCK {SET1 THREE B)

THREE))

'THREE

'B

(S4=807)

(S4 2 808)

(S4=809)

'The problem in S4-808 is that the binding of A to 3 is over-ridden by the subsequent

4. 2-LISP: a Rationalised Dialect Procedural Reflection 509

binding of A to • THREE (the A and B of the definition of SET 1 are bound to • THREE and • A.

respectively). Thus the interior (NORMALISE a) would return the handle on the binding of A.

which is the handle • 'THREE. Hence REBIND would set THREE to the handle • THREE,

unexpectedly.

In S4-809, the interior bindings of A and e would be to the handle 'THREE and ·a;

thus (NORMALISE B) would return • •e; hence THREE would be bound to the handle •e.

This example is one of the simplest ones imagineable; with just the slightest

complexity ln the code the unintended binding interactions in IMPRs can be virtually

impossible to predict without simulating the code. Typically, the accepted practice in

standard LISPS is to have definitions such as that of SET 1 use extremely unlikely spellings

for their parameters, so as to minimise the chance of collision between the formal

parameters of the IMPR closure and those of the expressions designated by those parameters.

Thus we might expect to sec a definition such as the following:

(DEFINE SETz
(LAMDBA IMPR (##l!-SET-INTERNAL-PARAMETER-1-11##

##ll-SET-INTERNAL-PARAMETER-2-11##]
(REBIND ##!!-SET-INTERNAL-PARAMETER-1-11##

(NORMALISE ##II-SET-INTERNAL-PARAMETER-2-11##))))

(S4-810)

As a principled solution, however, this obviously has little to recommend it. (Another

standard solution - to provide IMPRS with a second argument, bound to the "calling

context", is a step towards the objectification of theoretical entities that is part of reflection,

to be examined in the next chapter.)

However we have an even more serious problem than this, as hinted by the

comment to the side of S4-807. Completely apart from these anomotous cases, it is by no

means clear how SET is supposed to work, given that 2-LISP is statically scoped. In t-LISP

the answer is clear, and is manifested in the way the problem identified in the previous

paragraph is normally solved. Since free variables are looked up dynamically, we would

expect the free variables in the arguments to SET to "reach back up the stack" past the

bindings of A and B (or past the bindings of ##! ! -SET-INTERNAL-PARAMETER-1-11 #II and

#/Ill -SET- INTERNAL-PARAMETER-2- ll ##), to their bindings in the context in which SET was

called. But this betrays a hope that the call to NORMALISE in the last line of the definition of

SET 2 will somehow magically use the environment in force at the point of the call to SET -

an environment that, in a statically scoped dialect, is no longer available once inside the body

4. 2-LISP: a Rationalised Dialect Procedural Reflection 510

of the closure.

The problem, of course, stems from the switch in environments that occurs when the

processor of a statically scoped language normalises the "body" of a closure. This is not a

problem with a simple solution, although it does show that our first concern (with collision

between the closure's own parameters and those in the un-normalised argument

expressions) was a red-herring. One of the great benefits of statically scoped languages is

that there is by and Jarge not a problem of conflict across closure boundaries. Thus our

imagined concern with such a collision should have alerted us to our error.

What of course we have to do is to give NORMALISE an explicit "environment"

argument, obtained somehow from the underlying processor in a primitive way. Thus the

last line of the definition of TEST ought rightly be (REBIND A (NORMALISE 8 ENV)) (we can go

back to using A and B as parameters, with impunity}. But there is no obvious way in which

to pass such a thing to SET, unless IMPRs in general could be given the environment from

the point of call automatically. One obvious candidate solution, namely, to provide a

primitive procedure called, say, CURRENT-ENVIRONMENT, which one could call to obtain a

reference to the environment currently in force, has a fatal flaw. The problem is where one

would call it If SET was called with an extra argument (i.e. (SET x {CONS A B} (CURRENT

ENVIRONMENT))), since SET is an IMPR that call wouldn't be processed, and the problem

would recurse. If SET tried to execute (CURRENT-ENVIRONMENT} in its body, then the context

of the processing of TEST'S body would be returned, rather than the context of the

processing of the call to TEST, which is exactly the wrong behaviour. Finally, if it were

processed outside the scope of the call to SET, and a variable bound to the result were used

within the SET redex (as for example in (LET [[ENV (CURRENT-ENVIRONMENT)]] (SET X (CONS

AB) ENV))), the problem would again recurse, since there would be no way to obtain the

binding of ENV.

In exploring these issues we are close to a discussion of implementing reflective

procedures. It is not our mandate to suggest how they should be provided in this chapter;

we aim merely to convince the reader from a variety of positions that soine kind of

reflective abilities arc required in order to deal rigourously with standard practice. There is

of course no problem in providing primitive intensional constructs, such as IF and LAMBDA,

since we can simply posit that they should work in some way or other. However this

4. 2-usP: a Rationalised Dialect Procedural Reflection 511

discussion of IMPRS has shown that until we have a primitive reflective capability, general

intensional procedures are fraught with incurable problems.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 512

4.div. The "Up-Down" Theorem

We tum next to the proof of what we call the up-down theorem: a claim that both

declaratively and procedurally (i.e., in terms of designation, and local and full procedural

consequence) all expressions of the form .,.-,.<EXP> are equivalent to (NORMALISE <EXP>},

From this fact, since "' and .,, are primitive functions, we can if we like excise NORMALISE

from the list of 2-LISP primitives, since we have a way of defining it The theorem has a

corrollary with respect to REDUCE; we said in section 4.d.ii that REDUCE could be defined in

terms of NORMALISE, but it is also true that we can reduce it to a combination of up and

down arrows as well. In particular. any expression of the form (REDUCE <E 1> <E 2>) will be

entirely equivalent to one of the form t(HE1> . HE2>). Put informally, these two results

can be stated as follows:

(NORMALISE S) s -t,&.S (S4-814)

(S4-815)

More formally, however, we have the foltowing characterisation of the first of these (this is

the mathematical statement we will prove):

VS 1 ,S2 ,S3 E ATOMS, S4 E S, E € ENVS, F € FIELDS, C E CONTS
ffi E{S1) = Eo("NORMALISE)] A

[E(S2) = Eo("NAHf)] A
[E(S3) = Eo("REFERENT))] :::>
[~("(S1 S4),E,F,C) = l':("(S2 (Sa S4)),E,F,C)fl

Similarly, the corollary has a similar format statement:

VS1 ,S2 ,S3 E ATOMS, S4 ,S5 E S, E E ENVS, F E FIELDS, C E CONTS
Ill E(Si) = E0("REDUCE)) A

{ E(S2) = E0 ("NAME)] A
[E(S3) = Eo(''REFERENT)]) :::>
[I("(S1 S4 S6),E,F,C) "I("(S2 ((S3 S4). (Sa S6)),E,F,C)])

(S4-816)

(S4-817)

Before we set out to prove this, it is important to realise that this is a different result

from the less formal conclusion argued throughout this chapter, and summarised in section

4.h: that there is very little need ever to use NORMALISE explicitly (be it primitive or

derived): that many of the traditional rca(jons one needs access to such a function arc

handled directly in the 2-LISP base language, without any need of meta-structural facilities

at all.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 513

The diagram given in S4-818 below shows why the result !s true. In particular, for

any expression s, the tenn (NORMALISE S) designates what (REFF.RENT S} nonnalises to. The

point is that the referent of (NORMALISE S} is 'l'cl>(S} - 4> because NORMALISE is an

extensional function; ,i, because NORMALISE designates EXT('I'). This was also the essential

content of diagram S4-768. On the other hand, the nmmal-form of (REFERENTS) is 'l'«l>(S),

indicated below but also depicted in S4-135. Therefore the normal-form of (NORMALISE s)

is 4>" 1 '1'4>(S), where «1>- 1 is the HANDLE function since the range of v is s. Similarly, the

normal-form of (NAME S) (the expansion of -,.s) is ct,"1v(S). Hence the normal form of

(NAME (REFERENT S)) is «1>" 1itv«I>(S), which collapses to «1>" 1'1'1>(S), since v is idempotent.

Thus the two arc equivalenl

(NORMALISE) F===;t 1'=:~===i t.&, S
l-:.-------===i=-.-J ... __,..__.

(S4-818)

We will prove only S4-816; the proof of S4-817 is entirely parallel. The technique

will be to expand the significance of each side of the equation, using the preconditions as

premises (i.e. using the deduction theorem). We start with the "(NORMALISE S}" side.

Assuming that

I(S1 ,S2,S3 E ATOMS] A [S4 E S] A
[E E ENVS] A [F E FIELDS] A [C E CONTS] A
[E(Si) = E0 ("NORMALISE)] A
[E(S2) = Eo("NAME)] A
{ E(S3) = Eo("REFERENT)])

we look at

~("(St S.c),E,F,C)

Because of the significance of pairs (S4-38) this reduces to:

= I(S1 ,E,F,
[A<S2 ,D2 ,E 2 ,F2> .

[&S2("[S4],E2,F2,
[A<S3, E3, F3> . C(S3, [D2("[S4], E2, f2)] ,E3, F3)])]])

(S4-819)

(S4-820)

(S4-821)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 514

But we know the full significance of s 1 (from S4-arn); hence we get (we have perfonned a

variety of a-reductions, even those not strictly mandated, to make this slightly clearer):

= ([AE 5 ,AF 5 ,AC5 . C5 ("(<EXPR> E0 '[TERM] '(NORMALISE TERM)), (S4-822)
[AS5 ,E6 ,F6 • ~(S6 ,E6 ,F6 ,

<E,
F,
[A<S2, Dz, E2, F2>

[AS2("[S4J,E2,F2,

[A<S1,D1,E1,F1> .
~(NTH{l,D7,F7),E7,F7,

[A<Sc,D8 ,E8 ,F8> . Sa])])]

[A<S3,E3,F3> . C(S3,[D2("[S•J,E2,f2)],E3,F3)])]]>

Reducing this once:

=([A<S2 ,D2,E2,F2> • (S4-823)

and again:

[AS2("[S•J,E2,F2,
[A<S3,E3,F3> , C(S3,[D2("[S4J,E2,F2)],E3,F3}])]]

<"(<EXPR> E0 '[TERM] '(NORMALISE TERM)),
(ASG,Ee,fs ~{S5,E5,F5,

E,F>)

[A<S7 ,D7 ,E7 ,F 7> .
l:(NTH(1,D7 ,F7),E 7 ,F7 ,c;\.<S8 ,08 ,E8 ,F8> . Sa])])]

= ([A"(<EXPR> E0 '[TERM] '(NORMALISE TERM))]
<" [S4], E, F, [A<S3, Ea, f 3> •

(S4-824)

C(S3,((AS5,Ee,Fe .
l:(Se. Ee. F 6.

[A<S1,D1,E1,F1> •
~(NTH(l,D1,f1),E1,f1,

[A<Sa,Da,Ee,Fs> . Sa])])]
<"[S4J,E,F>).

Ea,
f3)]>)

Before applying the interna1iscd NORMLALISE, it is convenient to simplify the continuation:

= ([A"(<EXPR> E0 '[TERM] '(NORMALISE TERM))] (S4-825)
<"[S4],E,F,[A<S3,E3,F3> .

C(S3 ,[~("[S,J,E,F,
[A<S1 ,07, E1. F 1>

~(NTH{l,07,F7),E7,f7,(A<Sa,Da,Ea,Fa>, Sa])])],

Now we know the internalisation of the primitive NORMALISE closure from S4-776; hence we

can expand this into:

4. 2-LISP: a Rationalised Dialect Procedural Reflection SIS

• ([A<S2 .E1.F2.C2> . (S4·828)
l!(Sz, Ez, Fz•

(A<S3 ,D3,E3.F~> .
I(HANDLE" 1(NTH(1,S3,F3)),E3,F3.

[A<S9 ,D9 ,E9 ,F9> . C2(HANDLE(S9),E9,F1}])))]
<"[S,J,E,F,[A<S3,E3,F3> •

C(S3, [I("[ScJ, E • F,
[~<S1,D1,E1,F1> .

l!(NTH(1,D7,F7),E7,F7,[A<S11,Da,Ea,Fa>, Sa])])],

And reduce:

• I;(" (Sc J, E, F,
[A<S3 ,D3,E3,F,1> •

l:(HANDLE" 1
(NTH(1, S3, f,1)), E3, f3,

[A<S9 ,D9 ,E9 ,F9> •
([A<S3,E3,f3) •

C(S,1,[I("[S,J,E,F,

E3,
Fa)]

[A<S7 ,D7 ,E7 ,F1>
I(NTH(1,D1,f1),E1,F1,

(A<Sa, Da, Ea, Fa> . Sa])J)],

<HANOLE(S9),E9,F9>)])])

(S4-827)

Now rather than demonstrate all the intervening steps involved in establishing the

significance of the rail "fS•J, we can convert this to a simple question of U1e significance of

s, on its own:

= l!(S4 , E , F,
[A<S3,03,E,1,f,1> •

I(HANDLE.1
{ S3), E3, F3,

[A<S1,D9,E9,F9> •
{[A<S,1,E3,F3> .

C(S3,[I(S4 , E,F,
[A<S1,D7 ,E1,F1>

I(D1 ,E 7 , F7 ,

[A<Sa,Oa,Ea,Fa> • S8])])],

E3,
f,1)]

<HANDLE(S9),E9,F9>)])])

We can collapse the continuation:

(S4-828)

= l!(S4 .E,F, (S4-829)
[A<S3,D3,E3,F3> .

I(HANDLE-1(S3).E3,F3,
[A<S9,D9,E9,f9> .

C(HANDLE(S9),
(J(S4 ,E,F,[A<S1,D1,E1,F1> .

J(D1,E1,f1,[A<Sa,Da,Ea,Fa> . Sa])])],

4. 2-LISP: a Rationalised Dialect Procedural Reflection S16

f1)])])

This is approximately what we would expect: the structure s4 would first be processed.

yielding a handle s3• The referent of this handle (HANDLE"1(S3)) would then in tum be

pr.xessed, after which the handle designating what it returned would be given to the

original caller. However note that this too can be drastically simplified. If s3 is a handle,

as the equation demands it must be, then o3 must equal HANDLE"1(S3). Hence the

embedded designational function is equivalent to the overall function in which it is

embedded (i.e. 01 • o3 • HANDLE" 1(S3)); hence S4-829 can be collapsed down to:

• l:(S4 , E, f,
[A<S3,D3,E3,F3>.

I(HANDLE"1(S3),E3,F3,
[A<S1,D9,E9,F9> . C(HANOLE(S9),S1,E1,F1)])])

A clearer account is hard to imagine.

(S4-830)

lbis is half of the proof; the other proceeds similarly; we will therefore present only

some of the intervening steps. We start with the same assumptions, and look for the

appropriate expansion of:

l:(•(S2 (Sa S4}),E,F,C)

Again, being a pair, this reduces to:

"'l:{Si,E,F, (S4-832)
[A<S1 ,D1,E 1 ,F1> •

[~S1("[(S3 S•)J,E1,F1, .
[A<S3,E3,F3> . C(S3,[D1{"(53 S•J,E1,F1)],E3,Fa)])]])

Taking the significance of S2 from S4-819 (since we know that S2 bound to the primitive

NAME closure):

= ([AE6 ,AF6 ,AC6 . C6 ("(<EXPR> E0 '[TERN] '(NAME TERM)), (S4-833)

<E,
F,
[A<S1,D1,E1,F1> •

[AS6 ,E11 ,F1 •

I(Ss,Ee,Fe,[A<S7,D1,E7,F1> . NTH(l,S1,F7)])]
ta,Fa)]

[AS1("[(S3 S4)J,E1,F1,
[A<S3,E3,F3> . C(S3,(01("[(S3 S4)J,E1,F1)],E3,F3)])]]>

A f cw simple reductions:

4. 2-LISP: a Rationalised Dialect Procedural Reflection S17

<("(<EXPR> Eo '[TERM] '(NAHE TERH)),
[AS1,Ea,F1 , I(S1,E1,fe,[A<S7,07,E7,F7) , NTH(t,S,,f,)])],
E,F>)

• ([A("(<EXPR> E0 '[TERH] '(NAME TERH)))] (S4-836)
<"[(Si S4)1,

E,
f,
[A<S3, E3, fa> •

C(S3,
([AS1 ,E1 ,F1 • E(S1 ,E1 ,Fa,[A<S7,D7,E7,F 7>. NTH(1,S1,F7)])]
<"[(~ ~)J,E,F>),

E3,f3)]>}

• ([A("(<EXPR> E0 '[TERHJ '(NAME TERH)))]
<" [(S3 S•) J,

E,
f,
[A<S3,E3,F3> •

C(S3,
I{"[(~ ~JJ,E,F,[A<S1,D1,E1,F1> . NTH(t,S1,F1)]),
E3,F3)]>)

Now we obtain the internalised NAME function from S4-759:

(S4-836)

• {[A<S1,E1,F1,C1> • (S4-837)
I(S1,E1 ,F1,[A<S2,Dz,E2,F2> . C1(HANDLE(NTH(l,Sz,Fz)),E2,F2)])]

<"[(53 S4)1,
E,
F,
[A<S3, E3, F3>

C(S3,
I("[(~ ~JJ,E,F,[A<S7,D7,E 7,F7> . NTH(1,S7,F7)]),
E3,F3)]>)

As before, we will intervene in this to simplify the processing of sequences - we convert it

to a single argument fonnat:

= ([A<S1 ,E1,F1 ,C1>. (S4-838)
I(S1,E1,f1,[A<Sz,D2,E2,F2> . C1(HANDLE(NTH(t,S2,F2)),E2,F2)])]

<" (S3 S.t),
E,
F,
[A<S3 ,E3,F3>

C(S3 ,

I("(S3 ~J,E,F,[A<S1,D1,E1,F 7> . NTH(1,S7 ,F7)]),

E3,F3)]>)

Applying the internalised function:

• I("(S3 S4),
E,
F,
[i\<S2,D2,E2 ,F2> .

([A<S3 ,E3,F3>

(S4-839)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 518

C(S3,I("(S3 S4),E,F,[A<S1,D1,E1,F1> . NTH(t,S1,F1)]),E3,F3)]
<HANDLE(NTH(1,Sz,Fz)),Ez,Fz>)])

Note that we have now discharged the "NAME" portion of (NAME (REFERENT X)); what

remains is the signficar.ce of (REFERENT X), with a revised continuation that, as expected,

from a procedural point of view constructs a handle, and from a declarative point of view

designates what (REFERENT X) will return. For the second last time we expand this in terms

of the general significance of pairs:

• :E(S3,E,F, (S4-840)
[A<S1 ,01 , E1, F 1>

[A(S1)]("[S•J,E1,F1,
[A<S2,E2,F2> .

([A<S5,D0,E0,Fa>.
([A<Se,Ee,Fo>

C(Se,
:E("(~ S4) , E , F,

[A<S1,D1,E1,f1> . NTH(t,S7,f7}]),
Ee,

. Fe)] .
<HANDLE(NTH(1,S5,f5)},Eo,Fo>)]

<S2,[D1("[S4J,E1,F1)],E2,F2>)

There are two internal reductions that can be discharged:

= l:(S3 ,E,F, (S4-841)
[A<S1 ,D1 ,E1,F1>

[6(S1)J("[S•J,E1,f1,
[A<S2,E2,F2> .

C(HANDLE(NTH(t,S2,f2)),
I("(S3 S4),E,F,[A<s,,o,,E,,F,> . NTH(l,S1,F1)]}.
Ez,
f2)])])

We threw away one designated entity, but we have to re-expand tl1e significance of (S3 S4)

one more time:

" l!(S3 ,E,f, (S4-842)
[A<S1,D1,E1,F1>

[6(S1)]("[S•J.E1,F1,
(A<S2,E2,Fz> .

C(HANDLE(NTH(l,S2 ,F 2)),

I(S3,E, F,
[A<S1 ,D1 ,E 1 ,F 1>

[A{Si)]("[S4J, E1, F 1,

[A<S2,E2,f2> .
([A<S7,D1,E1,F1> . NTH(l,S7,F7)]
<S2,[D1("fS•J,E1,f1)],E2,F2>)])]),

4. 2-LisP: a Rationalised Dialect Procedural Reflection S19

However as usual there is a great simplication that can be treated here. There are two

identical structures obtaining the significance of < s3 S4); they can be collapsed:

• I(S3.E,f, (S4-843)
[A<S1,D1,E1,F1>

[A(S1)](·cs,J,E1,f1,
[A<Sz •Ea• Fz> •

C(HANDLE(NTH(l,Sz,Fz)),
[A(S1)]("(S•J,E1,F1,

[A<S2,E2,Fz> .
([A<S1,D1,E1,F1> . NTH(1,S1,f1)]
<S2,(D1("[S,J,E1,f1)],E2,Fz>)]),

We can also perfonn a reduction in the internal continuation:

,. l:(S3, E, F, (S4-844)
[A<S1,D1,E1,F1>

[A(S1)]("(S,J,E1,f1,
[A<Sz • E2 • Fz> •

C{HANDLE(NTH{1,S2 ,F2)),

[4(S1)]("(S•J,E1 ,F1 ,[A<S2,E2,f2> . NTH(l,Sz,Fz)J),
Ez,
Fz)])])

And again dispense with the redundancy of using the internalised REFERENT function twice:

• l:(S3 , E, f,
[A<S1 ,D1 , ::.1, F1>

[A{S1)]("(S•J,E1,f1,
[A<S2,E2,Fz>

C(HANDLE(NTH(1,S2 ,F2)),NTH(1,S2 ,F2),Ez,Fz)])])

(S4-846)

We are next ready to obtain the futl significance of the primitive REFERENT closure from S4-

753:

= ([A<S1 ,D1 ,E1,F1>
[A(S1)]("(ScJ,E1,f1,

[A<Sz, Ez, Fz> •
C(HANDLE(NTH(l,Sz,F2)),NTH(l,S2,f2),Ez,Fz)]}]

<"(<EXPR> Eo '[TERM] '(REFERENT TERH)),
[A<S1,E1,F1> •

l:(S1,E1, f1,
[A<S2,D2,E2,F2> .

l:(NTH(l,D2,F2},E2,F2,(A<S3,D3,E3,F3> . D3])])],
E,F>)

We begin our final set of substitutions:

= ([A("(<EXPR> Eo '[TERM] '(REFERENT TERM)))]
<"[S•J,f,F,[A<S2,E2,Fz> •

C(HANOLE(NTH(t,S2 ,F2)),NTH(1,S2,F2),Ez,fz)]>)

(S4-846)

(S4-847)

4. 2-LISP: a Rationalised Dialect Procedural Reflection S20

Note that the designation of (REFERENT X) has just been thrown away, which is quite

proper: (NAME (REFERENT X)) is going to designate what (REFERENT X) returns, and will

return a handle designating that result; hence the referent of (REFERENT X) is immaterial in

this circumstance. We pick up the internalised REFERENT function, leading to this:

• ([A<S1,E1,F1,C1> .
l:(S1,E1,ft,

[A<S6 ,D0 ,Ea,F8> .
l:(HANDLE" 1(NTH(1,S6 ,F6)),E5 ,Fa,

(A<S3,03,E3,F3> . C1(S3,E3,F3)])])]
<•[ScJ,E,F,[A<Sz,Ez,Fz> .

C(HANOLE(NTH(1,S2 ,F 2)),NTH(l,S2 ,F1 },Ez,Fz)]>)

Substituting:

(S4-848)

u l:("[S4],E,F, (S4-849)
(A<Sa,Da,Ea,Fa> .

l:(HANDLE"1(NTH(t,S,,Fa)),
Ea,
Fa,
[A<S3 ,D3,E3,F3> .

([A<S2 ,E2 ,F2> .C(HANDLE(NTH(1,S1 ,F2)),NTH(t,S2 ,F2),E2 ,F2)]
< S3, E3, F 3))])])

Our standard technique of convening to a single argument:

,. l:(S4 , E ,F,
[A<Sa,Da,Ea,Fo> •

And reducing:

l:(HANOLC 1
(Sa),

Ea,
Fa,
[A<S3,D3,E3,F3> .

([A<S2,E2,F2> .C(HANDLE(S2),S2,E2,Fz)]
<S3,E3,F3>)])])

= l:{S4 ,E,F,
[A<S6 ,D6 ,E6 ,Fa> .

I(HANDLE-1(So),Ea,Fo,
[A<S3,D3,E3,F3> .C(HANDLE(S3),S3,E3,f3)])))

(S4-86O)

(S4-861)

But this is exactly the same as S4-830. Hence the two sides of the equation in S4-817 have

been shown identical. One use of the deduction theorem, then, gives us S4-817. Q.E.D.

Given this result. and the attendant corrotlary, we could now define NORMALISE and

REDUCE as follows:

(DEFINE NORMALISE (LAMBDA EXPR [S] tiS)) (S4-862)

4. 2-usP: a Rationalised Dialect Procedural Reflection S21

(DEFINE REDUCE (LAMBDA EXPR [Sl S2] t(+Sl . +S2))} (S4-863)

However we will not do this. since we are about to shift to 3-LISP, where the results will

no tonger be true, since NORMALISE and REDUCE will be given expanded roles to play. What

is interesting about these results, however. is that we can now use the up and down arrows

to effect any behaviour that would in 2-LISP have been obtained using NORMALISE and

REDUCE. The simple cases will remain simple, in other words, which is a pleasant result.

Furthennore, it was instructive to have defined NORMALISE and REDUCE on their own

initially. since it is only with an independent definition of their significance that we have

been able to show. with any confidence or insight. that appropriate combinations of .. , ..

and "+" adequately discharge their particular responsibilities.

4. 2-LISP: a Rationalised Dialect Procedural Reflection S22

4.dv. Macros and Backquote

The discussion in section 4.d.iii made it clear that at least in this dialect non

primitive intensional procedures of the IMPR fonn were of dubious value, since they had

lost any conncctior, with the context under which the intensional redex was originally

processed. In this section we look at macros - a different kind of intensional procedure

that partially circumvents this particular difficulty. Though macros will be definable in 3-

LISP as a certain special type of reflective procedure. in 2-LISP they must be primitive for

much the same reason as IMPRS are limited: they involve a re-use of the environment in

force at the point of their original reduction.

Macros are, infonnally speaking, procedures that designate functions from structure

to structure. The idea is that when a macro redex (a redex whose CAR signifies a macro

procedure) is reduced, the macro procedure signified by the CAR of the redex constructs a

different structure out of the "argument expressions", to be processed in place of the

original redex. For example, we can easily define a macro procedure INCREMENT so that any

redcx of the fonn (INCREMENT <EXPRESSION>) will be converted into one of the form (+ 1

<EXPRESSION).

Of course the INCREMENT in (INCREMENT (• X Y)) can't quite be said to designate a

function that transfonns the rail [(• x Y)] to the redex (+ 1 c• x Y)), since processing

(INCREMENT c• x Y)) will not only construct this further redex, but will then process it as

well. The processing of macros, in other words, naturally fatls into two rather distinct

parts: a first phase computation that yields what is often called the "expanded" form, and

then a second phase that processes that expanded fonn in the standard fashion.

Declaratively, then, INCREMENT will have to be shown to designate the simple successor

function; procedurally, however, it will involve these two computational parts, the first of

which is a structure·transfonning operation. As we wi11 ultimately see in detail, these two

parts are best seen as happening at distinct semantic levels.

There arc a variety of subtleties arising in connection with macros, having to do in

part with the following issues:

1. The interaction just mentioned between the context in which the "translation"
is effected, and the context in which the resultant expression is then processed;

4. 2-LisP: a Rationalised Dialect Procedural Reflection 523

2. The interaction between non-rail CDR's (objectifying mutliple-argumcnts in the
source redex) and the patterns of macro closures;

3. The use of recursion in macro definitions: and
4. The allowable dependencies of the translation process on the context specific

significance of the fonn being translated.

Before taking up these issues, however. we do well to illustrate some simple cases. Like

IMPRs, macros are nonnally constructed in 2-LISP using the atom MACRO (which is bound in

the initial environment to the primitive <MACRO> closure, similar in structure to the <EXPR>

and <IMPR> closures) in the "type" argument positio.1 in a LAMBDA expression. Thus in

order to define the INCREMENT macro just mentioned, we might use something like the

following (using the redex-constructing xcoNs defined in S4-313):

(DEFINE INCREMENT1 (54-860)
(LAMBDA MACRO (X] (XCONS '+ '1 X)))

This definition works because, as with IMPRS, the fonnal parameters in a MACRO procedure

are bound to designators of the argument expressions in the macro redex. If for example

we normalised

(LET ([A 5) (B 6]]
(INCREMENT1 (•AB)))

(54-861)

the parameter x in the pattern of INCREMENT 1 would be bound to the handle • (0 A e), thus

designating the • redex. Consequently, the body expression (XCON5 • + • 1 X) would

designate (+ 1 (• A e)) . In general the structure that is designated by the body of the

closure signified by the macro redex - designated, in our example, by (XCONS '+ '1 X), in

other words - is then processed in approximately the same context as the original macro

redex. In our example, for instance, (+ 1 (• A B)) would be processed in the context where

A was bound to 6 and e to 6, Thus S4-861 would normali~e to 31, as expected.

We say "approximately" for two reasons. First, as always, the field component of

the context is passed through serially from one nonnalisation to the next: thus if

normalising the body of the macro procedure affects the field, those changes will be visible

to the subsequent processing of the expression returned by the macro. The following

expression, in other words, would designate the atom c, not the atom A:

(LET [[X '(A. B)]]
(LABEL [[TEST (LAMBDA MACRO [Y]

(BLOCK (RPLACA X 'C) (XCON5 'CARY)))]]
(TEST X)))

4. 2-LISP: a Rationalised Dialect Procedural Reflection 524

In addition. to the extent that the macro affects enr;ronment structures that it shares with

other procedures, it may alter subsequent processing of those procedures (that it shares

environment follows from standard static scoping protocols, ar.d is evidenced by the fact

that the TEST macro in the preceding example retained the binding of x). This means that

the context in which the expression returned by the macro redex is nonnalised may not be

identical to that in which the macro redex itself was processed. 'l11Us the following (a

variant on S4-862) would also designate c rather than A:

(LET ([X '(A. B)]]
(LABEL ([TEST (LAMBDA MACRO [Y]

(BLOCK (SET X '{C . D)) {XCONS 'CARY)))]]
(TEST X)))

(S4·863)

Both of these behaviours, however, are non-standard in the sense that they are rarely

utilised. Much more common are the simple kinds of macro expansions exemplified by the

definition of INCREMENT t above.

It is evident, in this description, that in defining a macro what one provides is the

"code" for only the first phase of the processing of macros; the second phase - the

processing of the structure designated by the first phase, follows norm,1 rules. In fact it is

easiest to think of macros in the following fashion: upon encountering a macro redex, the

normal processing is interrupted, and a computation of a rather different sort is enjoined.

which runs around and constructs an appropriate expression, based presumably on the form

of arguments in the macro redex, and perhaps on other things as well. When this

expression has been constructed. it is handed back to the processor, as if with the comment

"OK, I've got the expression you really want to process: you can resume now".

When viewed in this manner, macros look to be procedures that, like the processor

itself, sit one level above thP. structures under interpretation, manipulating them in various

ways (but always formally, of course). Whereas the regular processing algorithms are

general and unifonn in application, rcdcxes that invoke macros provide a way in which

special purpose programs can run. This of course is inchoate reflection: our general

characterisation of reflective procedures will be of code U1at runs at the same level as the

regular processor, integrated with that processor in ways that the next chapter will make

clear. What distinguishes macros from more general reflective procedures is this simple

fact: whereas a reflective procedure can in the general case engender any computation -

can engage, roughly speaking, in any dialogue whatsoever with the nonnal processor - a

4. 2-LisP: a Rationalised Dialect Procedural Reflection 525

macro procedure engages in a particular and constrained fonn of dialogue. namely, one that

ends with the macro saying the sentence ending the previous paragraph, to the effect that

Ute processor may continue, in essentially the same state that it was before encountering the

macro redex, with a new form to process.

Strikingly, the structure of this conversation will be manifested rather clearly in the

definition of MACRO in chapter 5. In our present dialect, however, MACROS have to be

primitive, because we have no sufficiently powerful protocol in which to define such a

constrained interaction. There are, however, a variety of properties of (and difficulties

with) macros that can be illustrated here. Before turning to them, however, we need to

pause for a digression, and introduce the 2-LISP backquote notation, for a very simple

reason: without it the definition of any but the most trivial macros becomes almost

unmanageable. We will therefore put the discussion of macros themselves aside for a few

pages.

The "back-quote" notational extension we will adopt is not unlike that of 1-LISP,

modified to fit 2-LISP's notational and semantical conventions. In t-LISP, we said that

expressions of the form ·<EXP> were equivalent in procedural consequence to those of the

form • <EXP>, except that occurences within <EXP> of forms preceded by a comma would be

evaluated when the whole expression was evaluated. Thus we had, where x had the value 3

and Y the value NIL (this is 1-LISP):

'(+ 4 ,X) -+ (+ 4 3) (S4-864)
·ccoNs • ,x ',(CONS •p. Y)) -+ (CONS '3 '(A))
'(CONS ',X ,'(CONS 'A Y)) -+ (CONS '3 {CONS 'A Y})
(EVAL •c+ 4 ,X)) -+ 7
(EVAL ·ccoNS ·.x t ,(CONS 'A Y))) -+ (3 A)

1-LISP's backquote, in other words, was defined in terms of evalualio11, whereas we will

have to define expressions containing back-quotes in terms both of designation and

procedural consequence. Since evaluation is a notion we have pulled apart into two notions

of 11onnalisation and de-referenci11g, we have to decide whether a comma in a 2-LISP's

back-quoted expression should imply that the expression it precedes should be 11onnalised

or de-referenced when inserted into the whole. The two different candidates have

observably different consequences. The following would be implied, in particular, if we

take it to imply normalisation (assume that x is bound to 3, Y to [ST SF], and w to • (1 21):

4. 2-LISP: a Rationalised Dialect

•{+ 4 ,X)
'(AND . ,Y)
'(+ . ,W)
(NORMALISE '(+ 4 ,X)j
(NORMALISE •(ANO. ,Y))
(NORMALISE •(+. ,W))
(NORMALISE '(+ . • ~W))
(NTH 2 ~•(PREP '0 ,W))

Procedural Reflection 526

=> '(+ 4 3)
• '(AND ST SF)
• '(+ • '[1 2])

- '7
=> 'SF
=> <ERROR: Pattern failure>
=> '3

- 1

If we take the comma to imply de-referencing. on the other hand, we would have

(assuming the same bindings):

•(+ 4 ,X) => <ERROR: expected an s-expr> (S4=866)
• (AND . ,Y) => <ERROR: expected an s-expr>
•(+ • ,W) => '(+ 1 2)
'(+ 4 ,-tX) => '(+ 4 3)
(NORMALISE • (+ . ,W)) => '3
(NTH 2 ~ '(PREP '0 ,W)) => <ERROR: expected an s-expr>
{ NTH 2 ~ • (PR,E P '0 ,tW)) => 1

In both S4-865 and S4-866 the variables x and Y are bound to designators of mathematical

objects (a numeral and a sequence, respectively), whereas the variable w is bound to a

designator of a structural rail. In S4-865, where the comma implies that the nonnal-fonn is

to be used, the first two examples yield valid structures; the third yields a legal structure.

but one that causes a semantic error upon normalisation (as the sixth line demonstrates). In

S4-866, on the other hand, the first and second examples yield processing errors, since a

number cannot be part of a pair; the third, however, under this regime yields a

semantically well-formed addition redex. 'lhe fourth line illustrates a repair to the example

of the first line by using the explicit naming operator (1').

It should be clear that both alternatives are well-defined, and both usable: as the

examples show, an explicit naming operator can be used to overcome the automatic de

referencing in the second scheme, and an entirely parallel strategy can be used under U1e

first scheme to de-ref ere nee explicitly when that is required. The question in deciding

between them reduces to a question of whether in our use of such notation we think of the

expressions preceded by commas as designating the expression that should fonn a constituent

in the whole, or whether we think of it is a kind of variable or schematic constituent, one

that designates what the constituent in the whole should designate, relativised to circumstance

(the former is the de-referencing alternative; the latter the normalising one). Although

4. 2-LISP: a Rationalised Dialect Procedural Reflection 527

back-quotes in general fonn expressions, which might seem to argue for the former choice.

it is a fact about quoted expressions that once one has writen the quote, one then writes the

symbols that form its constituents as if one were using (not mentioning) them. For example,

in writing the lexical notation that notates the structure that designates tl1e pair consisting of

i.he symbols"+", "2", and "3", we write'(+ 2 3), not'('+ ·2 '3). A single quote, in other

words, suffices for the entire expression within its scope. The question, then, is whctller we

think of an expression preceded by a comma as being within the scope of the quotation. or

witllout it The basic power of the back-quote notation is that it enables us to think as if
we were using structure, not about how to designate it, even though the structure that the

back-quote notation actually notates is structure designating. It would seem to follow.

therefm.!, that the comma should not itself de-reference, since wr will have performed the

requisite degree of de-referencing ourselves. However it is also true tllat the structure

within the closer scope of the comma has to do with specifying what expression should

form the contituent; it is not structure of that constituent

It is not clear tllat a unique and principled answer is forthcoming. We will adopt

the first alternative: that expressions within the scope of a comma should designate the

consituent to be used in tlle overall quoted expression. We will view these "comma'ed"

expressions, in other words, as structure designators, not as schematic tenns. 1bis facilitates

macro definitions, which is our present subject matter: we would thus define the (simple

version) of the INCREMENT 1 macro as follows:

{DEFINE INCREMENT1
(LAMBDA MACRO [X]

'(+ ,x 1)))

(S4-867)

Under the scheme we are rejecting this would have to be defined as follows:

(DEFINE INCREMENT1
{LAMBDA MACRO (X]

'(+ ,,l.X 1)))

(S4-668)

which seems less compelling. This docs not, however, seem so much a principled as a

pragmatic choice.

To express this decision precisely requires a little care, since we have to speak

expclitly both of notation and of designation. We can summarise it as follows, in what we

will call the hack-quote principle:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 528

A lexical expression E1 preceded by a back-quote will notate a structure S1 that
designates a structure S2 that would be notated by E1, with the exception that
those fragments of S2 that would be notated by portions of E1 that are preceded
by a comma will in fact be designated by the structures that those portions
notate, rather than notated by them directly.

This can be understood using our example. In S4-867, the expression E1 is "(+ ,x t)";

since it is preceded by a back-quote, it will notate a structure s1 that designates a structure

s2 with certain properties. In particular, s2 would be notated by " (+ • x 1)" - would, in

other words, be a"+" redex, except that the one portion of s2 that would be notated by the

portion of E1 that is preceded by a comma - the first element of the rai! that is s/s con, in

other words - is not in fact notated by "x". but is instead designated by the structure

notated by "x". We know this, in other words: s2 will be a redex whose CAR is the atom +

and whose CDR is a two-elerr!ent rail. The second element of that rail will be the numeral 1,

but we don't know exactly what the first clement will be; all we know is that it will be

designated by the atom x.

An obvious s 1 satisfying this account is this:

(PCONS '+ (RCONS X '1)) (S4-869)

Thus S4-869 is a candidate for what"'(+ ,x 1)" notates. It should be noted, however, that

the back-quote principle is not completely specific as to what structure a given back-quoted

expression will notate: the constraint is entirely on its designation. Tims the following

would also be allowed (given as suitable definition of sussr):

(SUBST X '77? '(+ ?7? 1)) (S4-870)

although this of course suggests an unworkable general strategy, since the atom being used

llS a place-holder would have to be guaranteed as falling outside the range of atoms used

within the quoted expression itself. However this is a diversion; a much more serious

issues has to do with the identity of the pairs and rails used by the constructors into which

back-quoted expressions expand. We adopt a policy whereby such expressions expand to a

new structure creating expression at the level of the back-quote, and down to and induding

any level including a comma'ed expression. This is intended as a logical compromise, that

simultaneously minimises the chance of unwanted shared tails, but at the same time avoids

unnecessary construction. Some examples are given below (note in particular that • []

expands to (RCONS), not to · []; this is very useful as an abbreviation):

4. 2-LISP: a Rationalised Dialect Procedural Reflection 529

'[] m> (RCONS) (S4-871)
'[[ABC) (0 ,E f]] s;} {RCONS '[ABC] (RCONS 'DE 'F))

a> (PCONS FUN (RCONS '1 A '3)) ' (, FUN 1 • A 3)
'(=(,FA B) (- A 8)) m> (PCONS '• (RCONS (PCONS F '[A 8]) '(- A 8)))

Given this machinery, we can then return to the subject of mac:;ro procedures, and

illustrate some of their properties. Li!te any other procedures, they can be given own

variables. defined embedded in contexts and so forth. The following, for example, is

behaviourally equivalent to the If.lCREMENT 1 macro defined above:

(DEFINE INCREMENT2
(LET [[Y 1]]

(LAMBDA MACRO [X) '(+ ,X ,~Y))))

(S4-872}

This should be contrasted with the following variation, which expands into a fonn that adds

the contextually-relative binding of v to its argument:

(DEFINE ADO-Y
(LAMBDA MACRO [X] '(+ ,X Y)))

Thus we for example have

(LET [[Y 100]] (INCREMENT2 4))

but in contrast:

(LET [(Y 100]] (ADO-Y 4))

Similarly we have:

{LET ((Y 100)] (INCREMENT2 Y))

in contrast with

(LET ((Y 100]] (ADD-Y Y))

(S4-873)

{S4-874)

~ 104 (S4-875)

~ 101 (S4-876)

::;o 200

Macros can also be recursive, but it turns out on inspection that there are a variety

of quite different circumstances all with some vague claim to the phrase "recursive macro".

We will distinguish three separate circumstances, only one of which will count as

legitimately recursive on our use of that term, but. though coherent, we will suggest that

such definitions are probably extremely rare.

The first - and perhaps the most common - sense of the tc1m "recursive macro"

describes a definition where the macro translation function yields a structure that may

contain uses of its own name. As an example, we wilt define a multi-argument addition

4. 2-LISP: a Rationalised Uialect Procedural Reflection 530

procedure ++ that will accept any number of arguments. Rather than expanding

into the obvious

(+ <A1> (+ <Az> (+ ... (+ <At-1> <At>) ...)))

our version will instead generate a tree of the following sort:

(+ (+ ... {+ <A1> <Az>)
•·· (+ <At,z-z> <Aklz-1>))

(+ ... (+ <A1t.11> <A1r:.12♦1>)
••• (+ <A11-1> <A11.>}))

(S4-879}

The definition is as follows (we assum~ (SUB-RAIL <J> <K> <RAIi >} designates a rail whose

elements are the Jth through Kth elements of <RAIL>):

(DEFINE ++
(LAMDD~ ~ACRO ARGS

{'ONO [(EMPTY ARGS) '0]
[{UNIT ARGS) (1ST ARGS)]
[$T (LET [(K/2 (/ (LENGTH ARGS) 2)]]

'(+ (++. ,(SUB-RAIL 1 K/2 ARGS})
(++. ,(TAIL K/2 ARGS))))])))

(S4-881)

Thus we have the following expansions (we use "s>" to indicate the texicalisation of the

macro expansion relationship):

(++) a> 0 (S4-882)
(++ 1) a> l
(++ l 2) a> (+ 1 2)
(++ 1 2 3) e> (+ 1 (+ 2 3))
(++ 1 2 3 4) &) (+ (+ 1 2) (+ 3 4))
(++ 1 2 3 4 6) El) (+ (+ 1 2) (+ 3 (+ 4 6)))

and so forth.

What is intuitively "recursive" about this definition is that the structures generated

by the iirst phase - by the expansion part of the macro processing - yield structures that

may in turn re-invoke the first stage processing when th\!y arc processed (in the second

stage). Thus the second-stage processing of the main macro redex may involve instances of

macro redexes defined in terms of the same macro. In such a circumstance the procedure

defining the macro - such as the procedure defined in S4-881 - does not involve the use

of its own name; rather, it mentions its own name in the structures it designates. In the

example, for instance, the embedded tokens of the name "++" arc quoted, not used. For

4. 2-usP: a Rationalised Dialect Procedural Reflection 531

this reason we will call such a macro an iterative macro, since a) it docs not satisfy our

definition of self-use in a definition, .;nd b) because the process of macro expansion

iterates, but not, so to speak, inside itself; one instance of first-stage macro expansion is

over before the next is begun.

Iterative macros are useful and common; our refusal to call them recursive is not

intended as a normative judgment Quite different. however, arc what we will call recursive

macros: macro procedures whose definition involve a genuine use of the macro in the code

that performs the translation function. Not only are they different; they arc difficult to

motivate. TI1e problem is that it is difficult, given some constraints on macro definitions

that are typically obeyed (that we will examine below), to define such a procedure that

terminates. As a simple example of a genuinely recursive, but non-terminating, macro, we

have the following definition of IF. constructed on the assumption that IF conditional must

be discharged into AND and COND expressions (assuming, in other words, that AND and COND

were primitive but that IF was not}. The design is intended to support uses of IF with

either two or three arguments:

(DEFINE IF
(LAMBDA MACRO ARGS

(IF(= (LENGTH ARGS) 2)
• (AND . , ARGS)
·ccoND [,(tST ARGS) ,(2ND ARGS)]

[ST ,(3RD ARGS)])}))

(S4-883)

However it is clear that every invocation of IF will cause another invocation of IF, leading

to a vicious infinite ascent It would seem, in order to be useful and well-behaved, that a

recursive macro would have to use tlle macro only in one branch of the definition, which is

guaranteed at some point to invoke a different branch of the procedure that did not use the

macro name recursively. 'Though this strucn1rc is of course necessarily true of all well

behaved recursive definitions (it has, in other words, nothing special to do with macros),

satisfying it is much more difficult because, as explained below, a macro is not "supposed"

to make decisions based on the particular significance of the structure being transformed.

The following is such a definition, though without merit:

(DEFINE REVERSE-RCONS
(LAMBDA MACRO ARGS

(SELECT (LENGTH ARGS)
(0 '(RCONS)]
(1 '(RCONS ,(1ST ARGS)}]

(S4·884)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 532

[2 '(RCONS ,(2ND ARGS) ,(tST ARGS))]
[3 {PCONS 'RCONS

(PREP (3RD ARGS)
(REVERSE-RCONS (1ST ARGS) (2ND ARGS))))]

[ST (ERROR 8 0nly defined over O - 3 argumentsw)])))

This is well-defined only because the recursive use of REVERSE-RCONS is over two-arguments,

which is known to be adequately handled without any such use. Some examples:

{REVERSE-RCONS)
(REVERSE-RCONS 'LAPSTREAK)
(REVERSE-RCONS 'SHCE 'LEATHER)
(REVERSE-RCONS 'ELEVEN 'TIMES 'SEVEN)
(REVERSE-RCONS '1 '2 '3 '4)

=> '[] (S4·886)
=> '[LAPSTREAK]
=> '[LEATHER SHOE]
=> '[SEVEN TIMES ELEVEN]
=> <ERROR: Only defined over 0-3>

Quite a third kind of infonnally "recursive" macro is one that employs a recursive

procedure to effect the requisite translation. Consider the following definition of a multi

argument addition function, quite different from the ++ of S4-88t:

(DEFINE+++
(LAMBDA MACRO ARGS

(+++-HELPER ARGS)))

{DEFINE +++-HELPER
(LAMBDA EXPR [ARGS]

(IF (EMPTY ARGS)
•o
'(+ ,(tST ARGS} ,(+++-HELPER (REST ARGS))))))

(S4-886)

(S4-887)

What distinguishes this example is that a recursive procedure is defined whose sole purpose

is to create the expanded or transformed structure from the original arguments to the +++

redex. However there is nothing recursive about +++ in this case; we merely employ a

recursive procedure in defining it This in fact is perhaps the most common circumstance

of the three, but there is no reason to give it a particular name.

What is odd - or at least distinguishing - about the genuinely recursive macro is

revealed in terms of the model of it being "meta-level" or suggestively reflective. In the

course of the meta-level processing, yet another level shift is employed, leading to yet

another dialogue one level above the first one. Recursive macros, in other words, and

recursive reflective procedures when we get to them, cause as many reflective shifts of the

processor as there are recursive invocations in the course of a given expansion. In 3-LISP

each one of these will be run at a different level and with a different environment and

continuation structure. With the ileralive macros, however, the situation is quite different:

4. 2-LISP: a Rationalised Dialect Procedural Reflection 533

the shift back down to regular processing has happened before the second call is

encountered; thus an iterative macro simply causes a succession of shifts between object

level and first meta-level - back and forth as often as necessary. Only two levels are

involved, however.

It is sometimes said that macros are procedures that can be nm at compile time.

Though this is hardly a semantically perspicuous remark, we can see in part what is

intended by it Since in 2-LISP the macro body itself has no access to the context in which

the expression that it generates will be processed (equivalently, no access to the context in

which the original macro redex was processed), the macro cannot itself, by and large,

depend in any way upon that context. The extreme examples presented in S4-862 and S4-

863 show that this convention can be violated, but again in the nonnal case this is true.

Note that, in some sense, this constraint is more true than in 1-LISP, where the dynamic

context can always be used It is striking, however, to recognise that it is universally agreed

in the standard LISP community that although it ca11 be used, it should not be used - that

such use violates the essential nature of MACROS. As an example, in t-LISP it is legal {but in

bad taste) to define the following:

(DEFINE STRANGE1
(LAMBDA MACRO (X)

(IF (EVEN (EVAL X})
'(+ ,x 1)

·c- .x 1»»
Thus we would have:

(LET ((A 2) (8 3))
(STRANGE 1 (+AB))

(LET ((A 2) (B 4))
(STRANGE 1 (+AB))

This is 1-LISP

These are 1-LISP
... 4

... 7

On the other hand if we construct the following 2-usr definition:

(DEFINE STRANGEz
(LAMBDA MACRO [X]

(IF (EVEN ~(NORMALISE X))
(XCONS '+ X '1)
(XCONS •- X '1))))

and try to use it:

; This is 2-LISP

(S4-888)

(S4-889)

(S4-890)

(S4-891)

4. 2-L ISP: a Rationalised Dialect

(LET [[A 2] (B 3]]
(STRANGE2 (+AB))

(LET [(A 2] [B 4]]
(STRANGE 2 (+AB))

Procedural Reflection 534

{S4-892)
~ <ERROR: A is unbound>

=> <ERROR: A 1s unbound>

we generate an error. since the call to NORMALISE in the body of STRANGE2 attempts to

normalise the variable A in an environment - the static context of the definition of

STRANGE2 - where it has no meaning.

Note as well that the definition in S4-891 means that the argument to the macro

redex will be proc~ed IWice - thus if it involved side-effects, they would happen twice in

the course of complete reduction of the macro redex: once in the first stage of processing,

once in the second. It seems unlikely that this is an intended consequence of such a

definition.

A full understanding of why this is considered ill-formed is best revealed by analysis

that goes far beyond that of this dissertation - an analysis where the present dissection of

evaluation into normalisation and reference is extended, yielding a conception of

normalisation as the production of a nomtal-form co-designator of an instance of a schema.

In such a framework a macro can be defined as a schematic meta-description of a schema;

what examples S4-888 and S4-891 illustrate are schematic meta-descriptions of instances of

schemata. It is this dependence on the instance that is poorly attempted in 1-LISP, and

impossible in 2-LISP. Furthermore, a procedure that is free of dependence on

instantiations can of course be compiled because precisely what is avaitab1e at so-caJled

"compile time" is the schematic structure of a program, but not the instance structure. In

fact of course it is IMPRs that are the natural locus of meta-descriptive access to instance

structure; that is one aspect of how they most fundamcnta11y differ from MACROS (as well as

the more obvious fact that they do not give back to the processor a form to be processed,

but merely one to be used directly). Given this analysis, a space of four, rather than two,

kinds of procedures begins to emerge, since these two distinctions seem independent and

orthogonal. But such talk takes us into areas we are not yet equipped to explore.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 535

In chapter 5 we will discuss macros in greater depth. For present purposes we have

two remaining tasks: a) we need to make a comment about parameter matching in macros,

and b) we must explain the form of MACRO closures.

Regarding the binding of macro parameters, once again there arises an interaction

between our support of non-rail CDRS in general redexes, and the intensional stance - the

non-nonna/ised manner - in which MACROS receive their arguments for first-stage

processing. This is similar to the difficulty we encountered with IF, but in the present case.

as we will see. some acceptable solutions can be found.

The trouble is best introduced with an example. We will define a macro called

AVERAGE so that expressions of the form:

(AVERAGE <El> <E2>)

will be transformed into expressions:

(/(+<El> <E2>) 2)

Our first definition of AVERAGE is this:

(DEFINE AVERAGE 1
(LAMBDA MACRO (El E2]

•(/(+,El ,EZ} Z})))

As expected. we would support the following simple behaviour:

(AVERAGE 1 10 20) => 16
(LET [[X -5] [Y 6]] (AVERAGE 1 X Y}) => 0

But a user might be surprised, given that we have:

(LET [[Y [10 20]]] (+. Y)}

to discover the following:

(S4-893}

(S4-894)

(S4-896)

(S4-896)

(S4-897)

(LET [[Y (10 20]]] (AVERAGE 1 • Y)} => <ERROR: Pattern failure> (S4-898)

The problem is that the CDR of the macro redcx (AVERAGE 1 . Y) in S4-898 is of course an

atom, not a rail, and therefore there is no way that its designator • v can be matched against

AVERAGE 1's pattern (El E2], even given our rail/sequence extension. Though v in this

context designates a sequence, it is not itself a designator that can be piecewise decomposed.

A local solution would be to redefine AVERAGE so as not to require that its argument

be decomposable. The following would fail (the problem has merely been shifted):

4. 2-LISP: a Rationalised Dialect

{DEFINE AVERAGEz
(LAMBDA MACRO ARGS

'(/ (+ ,(lST ARGS) ,(2ND ARGS)) 2)))

Procedural Reflection S36

{S4-899)

Clearly, what is required in this instance is the following:

(DEFINE AVERAGE3
(LAMBDA MACRO ARGS

• (/ (+ • , ARGS) 2)))

(S4-900)

However this option is open t.o us only because we happen to use the exact same sequence

as the full argument set to another function. We may not always be so lucky. Consider for

example the following seemingly reasonable definition of a function called VOLUME, intended

to take three arguments (the x, Y, and z dimensions of a rectangular solid) and yield the

volume. We assume that we have only a two-argument multiplier: thus we propose:

(DEFINE VOLUME1.
(LAMBDA MACRO [X Y Z]

·c· ,X c• ,Y ,Z))))

{S4-901)

(A note in passing: there is no harm in using z as a formal parameter, even though we are

using that name for lhe circular Y operator of recursion, since wilhin lhis context no use of

that <.,ther function is required.) However, allhough S4-901 will support:

(LET ((A 3] (B 5] [C 4]]
(VOLUME 1 A B C))

It will as expected fail in lhis case:

(S4-902)
=> 60

{LET [[X (3 5 4]]] (VOLUME 1 • X)) => <ERROR: Pattern failure> (S4-903)

Nor is any simple solution of the sort employed in S4-900 available, since we cannot use

the designator of all three numbers as the argument designator for any interior function.

Ralher, it would seem lhat we have to construct an expanded fonn lhat explicitly de

structures the referent of the argument expression, ralher than having lhe macro itself try to

decompose lhe argument expression itself (i.e. qua expression). 'fbus we encounter no

problem with:

(DEFINE VOLUME2
(LAMBDA MACRO ARGS

'(• (1ST ,ARGS)

(• (2ND ,ARGS) (3RD ,ARGS)))))

This would stiJl support all of:

(S4-904)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 537

(VOLUME2 3 6 4) • 60 (S4-906)
(LET [[Al] [B 2] [C 7]]

{VOLUME2 A 8 C)) • 14
(VOLUMEz (+ 1 1) (• l 1) (- 1 1)) • 0

and would also properly generate:

(LET [(X (3 6 4]]] (VOLUME2 • X)) • 60 (S4-908)

since ARGS in this last case would be bound to the handle • x, implyir1g that the VOLUME2

redex would generate as the transformed expression:

(• (1ST X) (• {2ND X) (3RD X}))

which would clearly normalise to so.

(S4-907)

There is very little that is inspiring about this solution. For one thing, this techniquf

lays down, in its first phase, three copies of the argument expression, which must therefore

be normalised three independent times, which is an ill design. The processing, for example,

of

(LET [[X 3]]
(VOLUME2 . (BLOCK (SET X (+ X 1))

(X X X]}))

would return the unlikely result of 120.

{S4-908)

Furthermore, there was nothing unique about VOLUME: every macro that wished to

facilitate the use of objectified arguments would have to use techniques of approximately

this sort.

In search of a better solution, we may note that VOLUME merely wanted to re-arrange

the argument expressions of the redex with which it was called: though the macro did not

itself normalise the arguments, it constructed an expression in which they would be

notmalised. Thus if instead of S4-9'l4 we defined VOLUME as follows:

(DEFINE VOLUME3
(LAMBDA MACRO ARGS

'(LET [([X Y Z] ,ARGS]] (• X (• Y Z)))))

(S4-909)

we would still support all the behaviour in S4-905 and S4-906. Furthermore, this would

engender only a sing1c processing of the argument expression, which is happier by far than

the previous suggestion. In addition, this technique could be generalised; we could define

a procedure called N-MACRO (for "normalising macro"). for those macros that are prepared to

normalise all of their arguments independent of the expansion that the macro itself yields.

,.,

4. z-LISP: a Rationalised Dialect Procedural Reflection 538

The idea would be to use N-MACR0 as a type argument to LAMBDA so as to generate MACRO

procedures of the sort illustrated in S4-909. N-MACR0 depends for its success on the fact

(true in z-LISP but not in any standard LISP) that the result of processing an expression is

an expres8ion that can be processed any number of further times without visible

consequence. Thus we would use N-MACR0 for example as follows:

(DEFINE VOLUME4 (S4-910)
(LAMBDA N-MACRO [X Y Z] '(• ,X (* ,Y ,Z))))

The trouble with N-MACR0, however, is that it solves the problem by essentially avoiding it:

MACROS defined in terms of N-MACRO differ from full-fledged EXPRS in no interesting way. To

see this. we first note that the body of S4-909 is itself an abbreviation for an expression

more complex than, but essentially equivalent to:

((LAMBDA fXPR [X Y Z] (• X (• Y Z)))
. <ARGS>)

(S4-911)

If the definition in S4-909 were converted to an EXPR, rather than an N-MACR0, however, it

would look as follows:

(DEFINE VOLUME5 (S4-912)
(LAMBDA EXPR [X Y Z] (• X (• Y Z)))

Whether VOLUME is invoked in virtue of its name being bound to an EXPR of S4-912 fonn, or

expands into the equivalent S4-911 form, is surely rather inconsequential. Thus the

adoption of N-MACR0 does not seem recommended.

(In passing we may discard the situation that the S4-911 proposal is somehow

inherently "open-coded" in the sense that is used to discuss compilation strategics: we

consid.;!r that to be an implementationat, rather than a semantic, concern. There is of

course no reason that EXPR function definitions can not be used in an "open-coded" fonn

by a compiler.)

Once again, we are forced to conclude that meta-structural machinery (of which

MACROS arc an example) and the use of non-rail CDRs in object level code to objectify

arguments seem rather to collide (perhaps suggesting, as this author believes but counter

our entire approach here, that objectification may be inheremly meta-structural in some

deep sense). As a pragmatic, if not elegant, solution, we can adopt the tactic that we

employed in defining IF, in conjunction with the fact that the normalisation of an

expression can be used in place of the expression itself. We propose, in other words, a

4. 2-usP: a Rationalised Dialect Procedural Reflection 539

variant of N-MACRO, to be called s-MACRO, that binds the pattern to the argument expression

as a rail if possible, and if not (i.e., if the argument expression is not a rail), engf~nders the

normalisation of that expression prior to the matching. This visible or behavioural

consequence of this strategy, as with IF, will be only this: when a non-rail CDR is used, then

that CDR will be nonnalised in its entirety, and at the beginning of the translation stage of

macro reduction, even if the macro would on rail CDRS normalise the argument expressions

only selectively. We expect in the definition of s-MACRO, in other words, to encounter

something like the following code:

(BIND PATTERN
(COND [(ATOM PATTERN) ARGS]

[(RAIL PATTERN)
(IF (RAIL ARGS}

ARGS
. (NORMALISE ARGS))]

[ST (ERROR "Illegal pattern structure")])}

(S4-913)

The problem, however, is that in order to use this code correctly, the call to NORMALISE in

the penultimate line needs to pass as an explicit argument the environment in force when

the macro redex is itself processed, or else it needs to cause the macro itself to expand into

an explicit binding operation, of the sort pursued in the definition of N-MACRO. How such

an s-MACRO would differ from N-MACRO is that it would expand into code of the sort

illustrated in S4-909 only if necessary, whereas N-MACRO generated this kind of "wrapping"

code in all circumstances.

The strategy here is only partially satisfactory, which recommends against adopting it

in our primitive definition of the MACRO facility in 2-LISP. Defining s-MACRO, however, is

beyond the realm of possibility in this dialect, because of the ensuing context complexities.

Once again, therefore, we will back off in our attempt, deferring our final solutions until 3-

LISP. In that dialect defining s-MACRO (and indeed any number of other types of MACRO

functions) will be readily possible: thus the dialect itself wiU not have to make a dedsion.

For the time being, therefore, we will content ourselves with tl1e simpler macros of S4-901

style, which eitl1er require that the argument expressions be rails, or else do their

destructuring explicitly (as exemplified in the definition of AVERAGE3). An unhappy

conclusion, but one we wiH fortunately soon be able to relinquish.

In part by way of review, and in part in order to illustrate another often useful

technique for coping with these problems, we wiJl as a last example define a macro version

4. 2-LISP: a Rationalised Dialect Procedural Reflection 540

of ANO as suggested in section 4.b.ix, where we indicated that we would like expressions of

the form

to expand into

(IF <S1>
(IF <S2>

(IF <S3>

SF)
SF)

-· (IF <St> ST SF)
SF)

(S4-914)

(S4-915}

A simple 'cfinition of ANO using a recursive meta-level procedure is the following:

(DEFINE AND1
(LAMBDA MACRO ARGS (AND• ARGS)))

(DEFINE AND•
(LAMBDA EXPR [ARGS]

(COND [{EMPTY ARGS) '$T]
[(UNIT ARGS) (1ST ARGS}]
[ST '(IF ,(lST ARGS)

,(AND• (REST ARGS))
SF))))

(S4-916)

(S4-917)

However this will not support non-rail CDRs. We suggested in that section the following

definition, which we can now explain.

(DEFINE ANDz {S4-918)
(LAMBDA MACRO ARGS

(IF (RAIL ARGS)
(AND• ARGS)
'i(AND• t,ARGS))))

Thus we have the following expansions:

(AND2)
(ANOz (ATOM 'X))
(AND2 (= 1 1) (= 1 2))
(ANDz A B C O E}
(AND2 • (REST (X Y Z]))

e> $T (S4-919)
s> (ATOM 'X)
s> (IF (= 1 1) (= 1 2) SF)
s> (IF A (IF B (If C (IF D E) SF) SF) SF}
s> i(AND• t(REST [X Y Z]))

We can now sec how this works. TI1e basic idea is to recognise that the macro itself is

defined in terms of a subsidiary but meta-level procedure that takes an expression -

crucially decomposable - and constructs from it the appropriate conditional expression.

What the main macro then does is this: if the expression can be decomposed in general, it

does that and returns the appropriate conditional straight away. If it cannot (the CDR of the

4. 2-LISP: a Rationalised Dialect Procedural Reflection 541

macro redex is not a rail) then it returns an expression that says first to normalise the CDR,

and then to have the meta-level procedure construct the appropriate conditional from that

nonnalised CDR, which is guaranteed to be a rail. In other words although the macro cannot

itself process the CDR {since it has no access to the appropriate context), it can yield an

expression that will cause that processing to happen. The term , ,ARGS wiJl normalise and

obtain a handle of the result, in the appropriate context. as we have already seen; the tenn

+(AND• t, ARGS) will yield. as the result of the processing, the appropriate term to

dereference (thereby processing) the conditional that is subsequently constructed.

It should be noted that this works because of the idempotence of 'It: the expression

that AND• will create will be built out of the results of normalising the CDR, rather than out

of the un-nonnalised CDR in the standard case. However this is of course perfectly

acceptable.

Though there is perhaps a certai.i ingenuity to this technique, it can hardly be called

elegant. A better solution will be obtained in chapter 5, where macro procedures wilt, if

necessary, be able to perform their own normalisations.

Two final tasks must be discharged. First we need to establish the structure of the

primitive MACRO closure. Like IMPR and EXPR, MACRO will in the initial environment be

bound to a primitive and circular closure of no particular content, other than betraying its

(type) stability. In our extended lexical notation it would be printed as follows:

MACRO ~ M: (<EXPR> Eo
'[ENV PATTERN BODY]
'(:M ENV PATTERN BODY))

(S4-920)

This was in fact indicated in S4-731. Graphically, <MACRO> would be notated in this way:

(S4-921)
£NV PATTERN BODY

Finally, we need to inquire about the semantics of this primitive. The crucial fact

about macro procedures is this: the function designated by the body of a macro closure is the

junction computed in the first stage of processing; the second stage follows in virtue of the

surrounding context and the structure yielded as the result of that processing. In other

4. 2-LISP: a Rationalised Dialect Procedural Reflection 542

words. if Mis a macro procedure whose normal-fonn is {<MACRO> <Et> <Pt> <Ft>), then the

significance of an M redex - an expression of the fonn (M • <ARGS>) will be the

significance, very approximately, of (flt(Fl) . ARGS}. It is i.his fact which we should most

expect to be revealed by the semantical account

As we saw in section 4.c.iv, there are three things that we need to explicate: the

general significance of <MACRO>, the internalised function engendered by <MACRO>, and the

significance of non-primitive MACRO redexes (this is all MACRO redexes, as it happens, since no

MACROS are primitive - <MACRO> itself, like <IMPR>, is an EXPR). The first two are relatively

simple:

~[E0{"MACRO)] (S4-922)
= AE.AF.XC

C("(Eo("EXPR) Eo [ENV PATTERN BODY] '(<MACRO> ENV PARAM BODY)),
[?I.Ee. ASP. ASb •

E,F)

[i\<S1,E1,F1> •
l:(Sb,

EXTEND(Ec,Sp,HANDLE(S1)),
F1,
[).<S2,D2,E2,F2> .

?(D2 ,E1 ,F2 ,(A<S3 ,D3 ,E3 ,F3> 03])])]],

We can see in the designation of MACRO the essential properties beginning to emerge. In

particular, note how a MACRO closure, when reduced with a structure s1 in a context E1 and

F 1, o!Jtains the designation D2 of its own body expression (in the context appropriately

extended by binding its pattern to a designator of the arguments: in this way MACROS are just

like IMPRs), and then obtains the significance of that designation in the appropriate context

(the E1 that the macro redex was processed in, and the field that as usual has been passed

straight through).

The internalisation of MACRO is essentially identical to that of EXPR (in S4-526) and

IMPR (in S4-528): it reveals only that MACRO rcdexes whose arguments arc in normal·fonn

arc stable:

A[Eo("MACRO)]
= AS.Af.AF.XC

Z(NTH(l,S,F),E,F,
[A<S1,D1,!:1,F1> .

Z(NTH(2,S,F1),E1,f1,
[A<S2,D2,E2,f2> .

I(NTH(3,S,F2),E2,f2,
[A<S3,D3,E3,F3> .

C("(Eo("HACRO) S1 S2 S3),E3 ,F3)])])])

{S4-923)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 543

But of some interest is the foUowing: the internalisation of non-primitive MACRO closr ,res (for

it is this that wilt m~mifest the computational consequences of MACROS when they appear in

reductions):

\/S3 ,Sp,Sb € S, E E ENVS
ff S• • ENV(f)] :J
(Ar" (Eo("HACRO) ~ HANOLE(Sp) HANOLE{Sb))1

• >.s 1 .>.E1.AF1->-Ci .
[I(Sb, E • , f 1 ,

[A<Sz,D2,Ez,Fz> . [l:(HANOLE-1(Sz) ,E 1 ,F2 ,Ci)]])]])
where E• 1s 11ke E1 except extended
by matching HANDLE(S1) ags1nst Sp.

(S4-924)

If a non-primitive macro is reduceu with arguments s1, in other words, the body sb of the

MACRO will be processed in an environment e• which comes from ma::ching the designator of

the arguments to the MACRo's pattern sP. This proceS3ing must return a handle (a structure

designator) s; the signi]1cance of the MACRO redex is the significance of this generated

structure in the original environment E1 and the current field r 2•

Perhaps the most interesting fact about this last equation is the striking similarity it

will bear to the definition of MACRO 1S a ~ser 3-LISP procedure in chapter 5. We are slowly

getting to the point where the meta-theoretic and procedural definitions can be seen in very

close parallel.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 544

4.d vi. The Nonnalisalion ("Flat"} and Type Theorems

2-LISP has been completely described; it would therefore be appropriate at this

point to prove the two theorems about it that are of most interest to us: the nonnalisation

(or flat) theorem. stating that designation is preserved by the processor. and the semantical

type theorem. stating that any designator of each of the five semantical categories is mapped

by the processor onto an element of that category's corresponding syntactic type. We have

tdmitted, however, that we will not actually demonstrate proofs of these theorems, though

at various points along the way (such as in the proof that CAR was standard in section 4.b.ii)

we have shown how and why the results are true.

What we will in this section do, however. is to state the two theorems precisely, and

bring to light various subtleties that have so far been overlooked We start with the

nonnatisation theorem. In S3-4 we gave our simplest formulation of this property:

vs E s [[cf>(S) • 4>(... (S))] " [N0RMAL-f0RM(i'(S)) D (S4-928)

Then in S3-132 we gave a more complete context-relative version, as follows:

VS E S, E E ENVS, F E FIELDS (S4-929}
II 4'EF(S) • ~EF(i'Ef(S)) 1 " (N0RMAL-F0RM(+Ef(S)) 11

This was based on the following definitions of 'Ir and 4> in tenns of l: (these are from S3-

130):

~ & ~E.AF.AS. [l:(S,E,F,[AX. x:])]
cit El AE.>.f.M . [l:(S,E,F,[AX . X])]

(S4-930)

Another particularly simple expression of the same theorem, using the NFD predicate

defined in S4-100, is this:

VS E S, E E ENVS, F E FIELDS [NFD('i'EF(S) ,cJIEF(S)}] (S4-931)

Rather than simplifying the presentation of the result, however, it is instructive to recast the

main theorem by discharging all of these abbreviations: as the discussion in section 4.b.ii

intimated, we thereby en~ounter some subtleties about contexts that need attention. In

particular. we get the following by straightfoward substitution:

VS E S, E E ENVS, F E FIELDS
Hl:(S,E,F,[Mt. X2

]) • I(I(S,E,F,[AX. X1]),E,F,[AX. x2])] A
[NOPMAL-FORM(I(S,E,F,[AX . X1])) fl

(S4-932)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 545

However we can convert this into the following more perspicuous fonn:

VS E S, E E ENVS, .f E FIELDS (S4·933)
ff I{S,E,F,

(A<S1,D1,E1.f1> •
:t(S1,E 1,F1,

[A<S,,0z,Ez,Fz> . [[D1 11 Dz] A [N0RMAL-f0RM(S1)ll])]) n
This is much more similar in structure to the standard continuation-passing meta-theoretic

characterisations we are familiar with, from our many examples, although in this particular

case the "continuation" is a predicate, rather than a function, with the consequence that the

overall expression is a sentence, rather than a term (as of course we expect).

It looks superficially as if there might be a problem with this: what this says is that

the result of nonnalising a term will have the same designation in the resulting context (E 1

and F 1) as s did in the original context A moment's thought, however, makes us realise

that this doesn't matter, since normal-form designators are context-independent designators

by deflnilion (we assume the 53-191 definition of "NORMAL-FORM" throughout). Thus if the

second part of the predicate (NORMAL-FORM(S1}) is true, it doesn't matter what context we

pass to determine the designation of s .. since it won't depend on it Therefore, according

to this revised understanding, S4-933 should be provably equivalent to:

VS E S, E E ENVS, F € FIELDS (S4-934)
ff I(S, E, f,

[A<S1 ,D1 ,E1,F1> •
I(S1 ,E ,f,

[A<S2,D2,E2,Fz> [[D1 = D2] A [N0RMAL-FORM(S1)]]])]) ll

However we in fact do have a minor problem; the original worry indeed has some merit,

suggesting S4-933 to be the more proper formulation. The difficully has to do with the

same thing that has caused us difficulty all along: the encoding of environments within

closures. We have not made our meta-theoretic account honest to our claim U1at

environments and environment-designating rails will somehow (magically} be kept

synchronised - a change to one being reflected instantaneously in a change ~o the other.

In point of fact closures arc not strictly environment independent in their designation: if the

field changes in such a way that their enclosed environment designators arc modified, they

will then designate different functions. We even advertised this as a feature, in section

4.c.vi, when we discussed the side effects engendered by the use of SET and DEFINE. And,

once put, it is clear we c:!nnot have both things: context independent function designators,

4. 2-LISP: a Rationalised Dialect Procedural Reflection 546

and the ability, by altering the field. to change the designation of previously constr'Jcted

nonnal fonn designators. The two desiderata are in outright contradiction.

This is not a difficulty we can take up fonnally, without first facing the task of

alignint meta-theoretic environments ar.d structurally encoded environment designators.

However some directions can be indicated. First, it would be possible to identify a nonnal

fonn structure not as a single structural field elemc,1t (like a pair or a rail) but rather as a

composite object, containing all of the structures locally accessible from it (i.e., using an

environment-free version of ACCESSIBLE• that did not follow bindings). This was what in

section 4.a.ix we did in defining a redex. A closure, then, wculd include as part of its very

self the environment designator, on such a view. Once this move had been taken, we could

redefine NORMAL-FORM to be true of a composile structure that was context independent

providing it ilself was nol altered.

Once this suggestion is raised. we can see that such a move is in fact required in any

case, because of rails. We cannot in honesty claim that the rail (1 2 3] (we will call this

rail y) designates the sequence of the first three natural numbers indepewlent of context, for

in some other context the rail y might have its taU chopped off, or modified, so that y

became (1 21 or (1 2 (Z . Z)]. Now of c<>urse these are gratuitous challenges, for the

point we had in mind was that so long as y exists, it designates the sequence in question.

But the point is that closures' dependence on internal environment designators, and this

problem with rails, could be solved with the same machinery.

We should return to closures. If we define a closure to be a redex, rather than a

pair, in otocr words, and complicate our definitions of "context-independent" to mean

"independent of context so long as the designator's identity is preserved", then our original

results stand. Thus we can assume the intent and even the fonnulations of S4-928 through

933 after all - what must be changed is merely the definition of s to include composite as

well as atomic elements, and the definition of NORMAL-FORM.

We will not pursue the details of these manoeuvres here, but before leaving the

topic, it is well to point out, with some simple examples, some things lhat the normalisation

theorem docs not say. In particular, from the fact that any rcdcx of the fonn

(<PROCEDURE> • <ARGS>) (S4·936)

4. 2-usp: a Rationalised Dialect Procedural Reflection 547

will return an expression s that is guaranteed to designate what S4-936 designates, nothing

whatsoever is implied as to the relationship between the designation of s and the

designation of <ARGS>. We raise this because there is a natural tendency to think that our

inclusion of primitive "referencing" and "de-referencing" functions (NAME and REFERENT) in

the calculus entails that we cannot have a designation-preserving processor. However these

are entirely unrelated matters. In fact our whole reason for including NAME and REFERENT

was to facilitate the crossing of levels (the obtaining of access to entities at different

semantic levels) within the confines of a semantically flat formalism, since in very virtue of

the normalisation theorem the processor itself would not give us this power. Consider for

example the expression

(NAME 3) (S4·936)

which normalises to the handle • 3. The numeral 3 - the argument to NAME - designates

of course the third natural number; the result of normalising S4-936 designates a numeral;

the number and the numeral are, it cannot be denied, absolutely different What the

semantically flat processor guarantees is that the entire expression S4-936 and its result are

co-designating, and this is of course true: the rcdex (NAME 3) and the handle • 3 both

designate the numeral.

In standard situations there is ·or course no tendency to think that the mere ability to

use functions challenges semantic flatness. Thus from the fiict that

(INCREMENT 3) (S4-937)

simplifies to 4 no one would suspect that 2-LISP's ,i, is a function that takes terms x onto

tenns v that designate the successor of the designation of x. It is INCREMENT that designates

the successor function, and INCREMENT is by no means designation preserving. Our claim is

only that NORMALISE is designation preserving. Though this is transparent in the arithmetic

case, the use of explicitly semantical functions within the dialect - NAME and REFERENT. in

other words - is apparently liable to engender confusion. To reiterate, neither NAME nor

REFERENT is a designation-preserving function: it is in fact exactly because they are 1101

designation preserving that they arc useful. Rather, it is only NORMALISE - 2-LISP' s v -

that is advertised, and relied on, as having this property.

Another potential confusion to defuse has to do with the !·elationship between 2-

LISP's designation-prcse:-ving 'I' and any claim that 2-usP's it is purely exte11sio11al. In our

4. 2-LISP: a Rationalised Dialect Procedural Reflection 548

use of this last predicate. we have always been careful to state that a context of occurence

of a term is extensional if the designation of the overall composite structure depended only

on the designation of the constituent In this sense much of 2-LISP is extensional,

including it - NORMALISE (the "input'' to NORMALISE can be viewed as an "ingredient"

expression since if [Si ==- S2], then equivalently [S2 .. NORMALISE (Si)], and in the latter

formulation the whole is the result; the ingredient is the inpt1t). However this does not

imply that the inter. ~ional properties of the results of normalising an expression may not

depend in various ways on the intensional properties of the input

Perhaps the most complex example of this intensional dependency arose in our

consideration of LAMBDA, but surely the simplest instances have to do with what we called

the stability of normal-form designators. From the fact that normal-form expressions

normalise to themselves, plus the fact that not all normal-form designators are canonical. it

follows that normalisation is not blind to the intensional properties of its inputs.

Intensional properties may be "passed through" 'I'. in other words, in various at times

complex ways, all witl1in the extensional constraints demanded by the designation

preserving aspects of the main processor function.

As opposed to the normalisation theorem, we have not previously put the semantical

type theorem into formal language. Briefly, its claim is this: all expressions that deslgnate

elements of each semantical category (numbers. truth-values, sequences, s-cxpressions. and

functions) will nonnalise lo an expression of a given structural category (numerals, boaleans.

rails, handles, and closures, respectively). Though we defined a meta-theoretic TYPE

function h1 S4-244, it is simplest to state the theorem directly in terms of category

membership. The first proposal is this {note that we ease up a little, by restricting its

application to expressions that do in fact return a result):

VS1 ,S2 E S, E E E:"NVS, F E FIELDS, D € D
U(Sz = 'i'EF(S1)) A [D = cl>EF(Si}]) :J
[1f [D € S] then [S2 € HANDLES)

e1se1f [o E INTEGERS] then [s2 E NUHERALS)
elseif [DE TRUTH-VALUES] than [S2 E BOOLEANS]
e1so1f [D E SEQUENCES] then [S2 E RAILS]
e 1 se 1 f [D E FUNCTIONS] then [S2 E CLOSURES}])

(S4-938)

Given the definition of o in S4-143, this covers all possibilities except for designators of

entities in the user's world, about which we have nothing to say.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 549

There is, however, one tenn in S4-938 that we have not previously defined:

CLOSURES. Our intent is clear; the definition is not The obvious suggestion is this:

CLOSURES = { P E PAIRS (S4-939)
I[CAR(P, F) € { E0(" IMPR) , E0("EXPR) , E0("MACRO) }]}

The problem, however, is that F is undefined in this tenn. We could make CLOSURES a

function of F, but the appropriate F (the one resulting from the normalisation indicated in

the second line of S4-938) is not explicitly available. We could refonnulate S4-938 so as to

change this fact, but since the NORMAL-FORM theorem guarantees that the s 2 of S4-938 will be

a closure if it is a pair, it is simpler merely to change this theorem to claim only that

function designators will be pairs. Thus we have instead (this will stand as our official

statement of the theorem):

VS 1 ,S2 E S, E E ENVS, F € FIELDS, D E D
II(Sz = 'ltEF(S1) 1 A [o = «llEF(S1) 11 ::>
[1f [0 E S] th,m [S2 E HANDLES]

e1se1f [o E INTEGERS) then [S2 E NUMERALS]
e1se1f [D E TRUTH-VALUES] then [S2 E BOOLEANS)
e 1 se; f [D E SEQUENCES] then [S2 E RAILS]
else 1 f [D E FUNCTIONS] then [S2 E PAIRS]])

(S4-940)

Again, we will offer no proof of this theorem; it is unlikely. however, that the reader will

not have come to believe it in virtue of our many examples.

4. 2-LISP: a Rationalised Dialect ProccduralReflcction 550

4.d vii. The 2-LISP Meta-Circular Processor

A great many of the procedural and computational aspects of 2-LISP are revealed in

the 2-LISP meta-circular processor. In this section we will present and briefly explain the

code for one version of such an abstract machine. Four things, however, shouln be noted

before we begin. First, no inkling of the declarative semantics is revealed by this code - all

that the meta-circular processor manifests is procedural consequence. Ii. is for this reason

that we have deferred the discussion of this processor until late in the chapter, since it has

been primarily with declarative issues that we have been concerned. A quick glance at the

code in the following pages will show how much simpler is this purely procedural account

than the meta-theoretic characterisations of full semantics we have explored in the last four

sections. Secondly, there are any number of ways in which a meta-circular processor can

be constructed, as discussed in chapter 2. We witl focus here on a tail-recursive

continuation-passing version, since it maximalJy encodes the state of the computation being

executed in explicit argument structures, rather than in the state of the meta-circular

processor itself. Third, the semantic flatness of 2-LISP's -r, is in part reflected in the

absence, in this code, of up-arrows and down-arrows. There are a few notable exceptions

(such as in the case of simple primitives), but by and large the terms in the meta-circular

processor designate the terms being processed: the maintenance of a clear separation

between semantic levels is relatively strict Fourth and finally, the comparative simplicity of

the meta-circular processor in part stands witness to our success in developing an elegant

dialect To the extent that a formalism is simple, its internal self-description is typically

doubly simple; to the extent that it is complex, the self-description is doubly complex -

for the attempt to describe a baroque language in a baroque language can unleash

multiplicative confusion.

It will be useful for the reader to obtain a relatively thorough understanding of this

code at this point, since the 3-LISP rnflectivc processor, which will be a central part of the

definition of 3-LISP, is based on this 2-LISP meta-circular processor, but modified in ways

that make it difficult to understand without a prior grasp of the simple case. One further

comment: for simplicity, we will not attempt to include explicit crror-cht:eking in the code;

we will always assume that the structures being processed arc both syntactically and

semantically well-formed.

4. 2-LISP: a Rationalised Dialect Procedural Reflection 551

We begin with the NORMALISE - the main processor function:

(DEFINE NORMALISE
(LAMBDA EXPR [EXP ENV CONT]

(COND [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) (CONT (BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

(S4-945)

If an expression is in nonnal-fonn, it is sent to the continuation unchanged; thus the first

clause in the conditional will catch all the handles. booleans, and numerals. Thus we have

the following basic category structure to the NORMALISE dispatch: the first three of the six

structural categories are treated in the first clause, and the other three are discharged in the

remaining three claufes. However there is one exception to this simple characterisation:

nonnal-fom1 pairs (closures) and nonnal-form rails are recognised by NORMAL (a predicate we

will define below), and are sent directly to the continuation; this is so that the exact

structure can in each case be returned (ensuring that i' be token-;dempotent). If this were
. .

not done, and they were dispatched in the subsequent clauses of the conditional like other

members of their structural category, a type-equivalent stmcture would in each case be

returned, but it would not be the same one.

tJORMAL IS£ and REDUCE form a mutually-recursive pair; the definition of the latter is

as follows:

(DEFINE REDUCE (S4-946)
(LAMBDA EXPR [PROC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA EXPR [PROCI]

(SELECTQ (PROCEDURE-TYPE PROCI)
[IMPR (IF (PRIMITIVE PROCI)

(ttEDUCE-IMPR PROCI tARGS ENV CONT)
(EXPAND-CLOSURE PROCI tARGS CONT))]

[EXPR (NORMALISE ARGS ENY
(LAMBDA EXPR [ARGSI]

(IF (PRIMITIVE PROCI)
(REDUCE-EXPR PROCI ARGS! EHV CONT)
(EXPAND-CLOSURE PROCI ARGSI CONT))))]

(MACRO (EXPAND-CLOSURE PROCI tARGS
(LAMBDA EXPR [RESULT]

(NORMALISE RESULT ENV CONT)))])))))

We wilt generally adopt a convention of using, for parameters that designate normal-form

structures, a name formed by adding an exclamation point to the name used for the un

normaliscd stmcture. Thus REDUCE, given a procedure, arguments, and an environment and

continuation, first normalises the procedure, with a continuation that binds the result to the

4. 2-LISP: a Rationalised Dialect Procedural Reflection S52

parameter PROCI. It is not that PROCI is itself in normal form (no atom is in normal form)

nor that PROC I is bound to a normal-form structure (alt atoms arc bound to normal fonn

structures); rather, PROC I designates a normal-form expression. That PROC is normalised like

any other argument reflects the fact that 2-LISP is a higher order dialect

It is very important to note that each call to NORMALISE throughout the entire meta·

circular processor is tail recursive; thus if this code were itself being run by a continuation·

passing processor, the NORMALISE redex in the third line would be given the same

continuation as the REDUCE redex that originally caused this code to be run. We will review

this fact more carefully in chapter five, where it will matter more crucially, but we will

honour this aesthetic throughout the present code, by way of preparation.

Once the normalised procedure PROC I has been received, REDUCE dispatches on its

type. Note that we cannot use TYPE, since it is a procedure type we want to select on, not a

referent type (the term (TYPE PROCI) would always return 'PAIR, since PROCI will always

designate a closure, and (TYPE +PROC 1) would always return • FUNCTION, for the same

reason). If PROC I designates the EXPR closure, the rcdex arguments are in tum normalised

(again tail-recursively); it if designates the IMPR closure, they are not In either case, a

check is made to see whether the closure is one of those primitively recognised. If so, the

reduction is treated primitively (below); if not, a general EXPAND-CLOSURE is called to bind

the closure pattern to the arguments and normalise the closure body.

If the expression is a MACRO redex, no primitive ·check need be made since there are

no primitives MACROS. Instead EXPAND-CLOSURE is run as the first phase of macro reduction;

the result that it returns is then handed right back to NORMALISE, as the second stage. Note

that the second stage call to NORMALISE is tail recursive in two senses: it honours our

aesthetic that all syntactic recursion within the processor be intensionally iterative, but in

addition NORMALISE is called with the same ENV and CONT that were originally used to

process the MACRO rcdcx. Once the MACRO has generated the appropriate structure for second

stage normalising, in other words, its job is done; no name for that part of the processing

needs to be retained in the second stage.

EXPAND-CLOSURE normalises the body of the closure in an environment formed by

extending the environment extracted 1rom the closure itself with the appropriate bindings

caused by matching the arguments against the c1osure pattern (PATTERN, BODY, and ENV,

i

4. 2-LISP: a Rationalised Dialect Procedural Reflection 553

defined below. are straightforward utility selector functions on closures). Note that EXPAND

CLOSURE is not called with the environment from the context of the original rcdex; thus we

see the embodiment of the static scoping protocol:

(DEFINE EXPAND-CLOSURE
(LAMBDA EXPR (CLOSURE ARGS CONT]

(NORMALISE (BODY CLOSURE)
(BIND (PATTERN CLOSURE) ARGS (ENV CLOSURE))
CONT)))

(S4-947)

In addition, we sec that the body is normalised with the original continuation passed down

from NORMALISE through REDUCE. In other words, as Steele and Sussman have pointed

out, 10 embedding of continuations has fundamentally to do with recursively normalising

arguments, not with reducing procedures. The calls to NORMALISE on the third and ninth

Jines of S4-946 employ what we will call embedding continuations: continuations that

contain within themselves a binding to a simpler continuation; the present NORMALISE,

however. does not.

Next we look at the reduction of primitives: sorted into primitive IMPRS and

primitive EXPRS. 1ltere are in 2-LISP three primitive IMPRs: SET, LAMBDA, and If. SET

normalises its second argument, re-binding the un-normalised first argument to the normal

form expression that results in the current environment We will define REBIND below, but

it was also introduced earlier in section 4.d.iv. Note the semantic flatness of SET that we

commented on before: although a SfT redex is intensional in first position, the parameter

there is at the same level as the second normalised argument In the present code,

therefore, (1s r ARGS} will designate the parameter - i.e., if the governing red ex was (SET x

(+ 2 3)) then (1ST ARGS) would designate x and (2ND ARGS) would designate (+ 2 3).

Therefore in the call to REBIND, (1ST ARGS) would normalise to the handle 'X, and BINDING

would normalise to the handle '5, Thus we need no complicated level-shifting primitives

to keep things straight.

(DEFINE REDUCE-IMPR
(LAMBDA EXPR [PROCEDURE ARGS ENV CONT]

(SELECT !PROCEDURE
[SET (NORMALISE (2ND ARGS) £NV

(LAMBDA EXPR [BINDING!]
(CONT (REBIND (1ST ARGS) BINDING! ENV))))]

[LAMBDA (NORMALISE (1ST ARGS) ENV
(LAMBDA EXPR (CLOSURE-TYPE]

(REDUCE CLOSURE-TYPE
t[ENV (2ND ARGS) (3RD ARGS)]

(S4·948)

4. 2-LISP: a Rationalised Dialect

ENV CONT}]
[IF (NORMALISE (1ST ARGS) ENV

(LAMBDA EXPR [FIRST!]
(IF (= FIRST! 'ST)

Procedural Reflection 554

(NORMALISE (2ND ARGS) ENV CONT)
(NORMALISE {3RD ARGS) ENV CONT))))])))

Note that the SELECT (not SELECTQ) uses ,I.PROCEDURE, rather that PROCEDURE, because it uses
actual equality with the primitive closures of the implementing language to detennine

identity. This interacts with the fonn of the initial environment, which we will discuss

below.

LAMBDA, as we mentioned earlier, passes the buck to its first argument, after first

normalising it. Although this will typically be one of the primitive EXPR, IMPR, or MACRO

closures, it may of course in general be an arbitrary user procedure. What is important

about this treatment is the level shift we encountered earlier: that procedure that is to

establish the closure is given designators of the environment, pattern, and body expressions.

Since REDUCE requires a designator of the argument structure, we explicitly construct the

appropriate rail. The actual environment and continuation in which this reduction happens,

however, remain meta-level theoretical posits; hence the third and fourth arguments to

REDUCE are nonnal; it is only the second argument that involves the passing down of

structures from this level.

Finally we have the conditional. First the premise (the first argument) is

normalised; upon return its result is checked. We of course have to see whether the

boolean '$T is returned (again because of semantic flatness). Again all calls to NORMALISE in

our code are tail-recursive; in addition, the second or third argument to IF - the

appropriately selected consequent, in other words - is normalised with the same

continuation as was the original IF rcdex (i.e., these continuations are not embedding). For

example, if a conditional redex R is of the fonn (If <P> <El> <E2>), the nonnalisation of

either <Et> or <E2> will be given the same continuation as R was given originally.

There are about two dozen primitive EXPRS that we need to treat as well. Three of

these, as the discussion in the last few sections has indicated, involve a subsequent

nonnalisation in the current context: REFERENT, NORMALISE, and REDUCE. It is fo:- this reason

that REDUCE-EXPR must be given the environment and continuation as explicit arguments.

In the following code these three are treated first:

4. 2-LISP: a Rationalised Dialect Procedural Reflection SSS

(DEFINE REDUCE-EXPR
(LAMBDA EXPR [PROCI ARGS ENV CONT]

(SELECT PROCf
[tREFERENT (NORMALISE +(lST ARGS) ENV CONT)]
[tNORMALISE (NORMALISE +(lST ARGS} ENV

(LAMBDA EXPR [RESULT] (CONT tRESULT)))]
[tREDUCE (REDUCE +(lST ARGS) +(2ND ARGS) ENV

(LAMBDA EXPR [RESULT] (CONT tRESULT)))]
[ST (CONT t{+PROC! . +ARGS))])))

(54-949)

REFERENT first de-references its own argument (which must be a handle, since it must be a

normal-form structure designator), and then normalises the result. Note that the original

continuation is passed along to that normalisation: thus the se::ond normalisation mandated

by a REFERENT redex is given the same continuation as the original. From the level-shift

here it is clear that REFERENT is fundamentally a level-crossing procedure. Both NORMALISE

and REDUCE, however, embed a continuation within the recursive calls to NORMALISE and

REDUCE ensuring that the original continuation is given a designator of the result, rather than

the result itself. This is of course necessary. We sec as well how the same environment ~s

used for the embedded normalisation in both cases: ENV is given as the penultimate

argument to the recursive calls to NORMALISE and REDUCE. In a more adequate dialect this

argument would be (3RD ARGS) (not +(3RD ARGS), since environments are not object level

structures!).

TI1ere are two options regarding the other 25 primitives. Since this is a meta-circular

processor - since, in particular, the structures we are processing are structurally identical to

those in the language we arc using - we can simply complete the definition of REDUCE

EXPR as indicated in S4-949. This works because none of those 25 involve any explicit

access to the environment or continuation, which we would otherwise have to pass to them

explicitly. This can be put another way: if a primitive does involve environment or

continuation, then the last line in S4-949 would fail, for it would cause the interaction to be

with the environment and continuation structures of the meta·circular processor itself, rather

than with the explicit environment and continuation structures that the meta-circular

processor mentions. If, for example, we treated SET rcdexes in this fashion (say, (SET x 3)),

then x would be set to 3 in the meta-circular processor's environment, not in the

environment that the meta-circular processor maintains for the sake of the stmctures it is

processing. But since we have alrcndy treated all such potential interactions, tJ1c last line of

S4-949 can stand.

4. 2-LISP: a Rationalised Dialect Pre,cedurat Reflection 556

Indeed. it might as well, since an explicit version would be no more illuminating.

We would have to replace the last line by something of the following fonn:

(SELECT PROCi
[t+ t(+ +(1ST ARGS) +(2ND ARGS))]
[t= t(= +(lST ARGS) +(2ND ARGS))]
...)

(S4-950)

which !S hardly elucidating. One subtle point can be made: the approach followed in S4-

949 de-references the arguments en masse; the protocol just suggested de-references them

one-by-one. Toa! these both work turns on the fact that 1ST and 2ND and so fmth work on

rails. In particular, suppose we were nonnalising (+ 2 3). Then PROCEDURE would designate

the primitive addition closure, and ARGS would be bound to the handle '[2 3]. The full

+ARGS would nonnalise to [2 3]; similarly, +(tST ARGS) would simplify through +'2 to 2,

and +{2ND ARGS) similarly to 3. Hence the two approaches are equivalent

The only other main processing function is NORMALISE-RAIL:

(DEFINE NORMttUSE··RAIL
(LAMBDA EXPR (RAIL ENV CONT]

(IF (EMPTY RAIL)
(CONT (l"<COWS))
(NORMALISE (1ST RAIL) ENV

(LAMBDA EXPR [ELEMENT!]
(NORMALISE-RAIL (REST RAIL) ENV

(LAMBDA EXPR [REST!]
(CONT (PREP ELEMENT! REST!)))))))))

(S4-961)

This is a straight-forward left-to-right tail-recursive (i.e., iterative) normaliser. Worth noting

are the use of (RCONS) at the end, rather than · (], so that every nonnal-fonn rail is not

given the same foot fo addition, it is important that NORMALISE-RAIL is called with tne

"rest" of the rail, rather than NORMALISE; the difference is that if the general NORMAUSt were

called, an explicit check for nonnal·fonnedness would be executed each time. We do not

care so much about the inefficiency here as with the fact that, if some tail were determined

to be in nonnal-fonn, that whole tail would be returned as is. In other words, if x were

bound to 1, the rail [X 2 3] would normalise to (' 2 3], as expected, but the fir;:;t tail of the

original rail and of the returned rail would be actually the same (with potential side-effect

consequences). It would also mean, for example, that NORMALISE-RAIL wculd not need to

check for the empty case, since all empty rails arc in nmmal-fonn. The ad,Jpted strategy,

however, is that if any of the clements of a rail are not in nonnal-form, an c11tircly new rail

is returned as the nonnal-form result

4. 2-usP: a Rationalised Dialect Procedural Reflection 5S7

It fo!lows from S4-961 in conjunction with our use :>f rails for multiple arguments

that we are committed to to a left-to-right order of processing arguments. Often meta"

circular processors do not reveal this: if they were processed right-to· left. then the processor

they implement would process argume:1ts in a right-to-left fashion as well. However this

propt!rty is not true of our definition, since the processing of the remainder of a rail is

wrapped in a continuation (deferred wi~h our standard technique).

This then completes the processor. We also give a definition of the top-k.vcl READ

NORMALISE-PRINT. ft is assumed that this is initially called with an appropriately initialised

standard environment, which is then handed around the loop each time (we discuss

initialisation below):

(DEFINE READ-NORMALISE-PRINT
(LAMODA fXPR [ENV]

(BLOCK (PROMPT)
(LET ([NORMAL-FOR:◄ (NORMALISE (READ} ENV IO)]]

(BLOCK (PROMPT)
(PRINT NORMAL-FORM)
(READ-NORMALISE-PaINT ENV))))))

(S4-9(-2)

Of interest here is the fact that IO - the ider.tity function - is given a~ the continuatio11 to

NORMALISE, with the printing of the result outside the scope of that continuation. Althougn

this docs not matter crucially here, we will see in 3-L ISP how this affects the interaction

between reflective procedures and user interaction. Also we may note the semantic

.appropriateness of READ and PRINT: they return and expect arguments designating stn:ctures,

respectively, which is just what NORMALISE expects and rctcrns. Thus the two mesh without

complicated level-shifting.

In the remainder of me section we will briefly present ate utility function;; tr'-lt

underwrite the workings of this meta-circular processor, as Ytell as giving dcfintions for

some other utilities of a similar nature tnat have bcC'n used in prior examples. W"- begin

with the identity function, used primarily as a co11tin11ation to NORMALISE er iH:DUCE to "flip''

the answl!r out to the caller of the NORMALISt o: REDUCE rcdex:

(DEFINE ID (LAMBDA EXPR [X] X))

Four simple vector selectors:

(DEFINE 1ST {LAMBDA EXPk (l] (NTH 1 X)))
(DEFINE 2ND (LAMHDA EXPR [X] (NTH 2 X)))
(DErINE 3RD (LAMBDA EXPR [X] (NTH 3 X)))
(DEFINE 4TH (LAMBDA EXPR [X] (NTH 4 X)))

(S4-963)

(S4-954)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 558

Two common tail selectors: the first and the last:

(DEFINE REST (LAMBDA EXPR [VEC] (TAIL l VEC)))
(DEFINE FOOT (LAMBDA EXPR [VEC] (TAIL (LENGTH VEC) VEC)))

Two common predicatP.S on vector lengths:

(DEFINE EMPTY (LAMBDA EXP~ [VEC] (• (LENGTH VEC) 0)))
(DEFINE UNIT (LAMBDA EXPR [VEC] (• (LENGTH VEC) 1)))

Ten type predicates:

(DEFINE ATOM
(DEFINE RAIL
{DEFINE PAIR
(DEFINE NUMERAL
(DEFINE HANDLE
{l'EFINE BOOLEAN

(LAMBDA EXPR [X) (• (TYPE X) 'ATOM)))
(LAMBDA EXPR [X] (• (TYPE X) 'RAIL}))
(LAMBDA EXPR [X] (• (TYPE X) 'PAIR)))
(LAMBDA E~PR [X] (= (TYPE X) 'NUMERAL)))
(LAMBDA EXPR [X] (• {TYPE X) 'HANDLE)))
(LAMBDA EXPR [X] (• (TYPE X) 'BOOLEAN)})

(DEFINE NUMBER (LAMBDA cXPR [X] (= (TYPE X) 'NUMBER)))
(DEf!NE SEQUENCE (LAMBDA EXPR [X] (= (TYPE X) 'SEQUENCE)))
(DEFINE TRUTH-VAtllE (LAMBDA EXPR [X] (• (TYPE X) 'TRUTII-VALUE)))

(DEFINE FUNCTION (LAMBDA EXPR [X] (• (T~PE X) 'FUNCTION)))

A closure is primitive if it is in the following rail:

(S4-966)

(S4-956)

(S4-967)

(DEFINE PRIMITIVE (S4-968)
(LAMBDA EXPR [CLOSURE]

(MEMBER CLOSURE
t[TYPE • + • - / PCONS SCONS RCONS CAR CDR LENGTH NTH PREP

TAIL RPLACA RPLACD RPLACN RPLACT LAMBDA EXPR MACRO IMPR
NAME REFERENT SET READ PRINT TERPRI IF NORMALISE REDUCE])))

BINDING designates the binding of a variable in an environment:

(DEFINE BINDING
(LAMBDA EXPR [VAR ENV]

(COND [(EMPTY VAR) (ERROR "Unbound variable")]
[(= VAR (1ST (1ST ~NV))) (?.ND (1ST ENV))]
[ST (BINDING VAR (REST ENV))])))

Three selector functions on closures:

(DEFINE f.NV (LAMBDA EXPR [CLOSURE] +(1ST (CDR CLOSURE))))
(DEFINE PATTERN (LAMBDA EXPR [CLOSURE] +(ZND (CDR CLOSURE))))
(DEFINE BODY (LAMBDA EXPR [CLOSURE] +(3RD (CDR CLOSURE))))

The type function for distinguishuing procedure types (from S4-248):

(DEFINE PROCEDURE-TYPE
(LAMBDA EXPR (PROCEDURE]

(SELECT (CAR PROCEDURE)
(tEXPR 'EXPR]

(S4-969)

(S4-960)

(S4-961)

4. 2-LISP: a Rationalised Dialect Procedural Reflection 559

[tIMPR 'IMPR]
[tMACRO 'MACRO])))

And the xcoNs mentioned in section 4.b.iii that facilitates the explicit construction of

closures:

(OEF INE XCONS
(LAMBDA EXPR ARGS

(PCONS (1ST ARGS) (RCONS . (REST ARGS)))))

(S4-963)

The BIND procedure used to extend environments upon the expansion of closures. Note

that it is MATCH, a subsidiary. that performs the recursive decomposition of non-atomic

patterns (MATCH was first introduced in S4-617).

(DEFINE BIND (S4-964)
(LAMBDA EXPR [PATTERN ARGS ENV]

•(JOit. t(MATCH PATTERN ARGS) tENV)))

(DEFINE MATCH (S4-965)
(LAMBDA EXPR [PATTERN ARGS]

(CONO ((ATOM PATTERN) [[PATTERN ARGS]]]
[(HANDLE ARGS) (MATCH PATTERN (MAP NAME •ARGS))]
((ANO (EMPTY PATTERN) (EMPTY ARGS}) (SCONS)]
[(EMPTY PATTERN) (ERROR "Too many arguments supplied")]
[(EMPTY ARGS) (ERROR "Too few arguments supplied")]
[$T i{JOIN t(MATCH (1ST PATTERN) (1ST ARGS))

t(MATCH {REST PATTERN) (REST ARGS)))])))

As opposed to BIND, REBIND smashes the current binding in an environment, or adds it to

the end if there was none there (see section 4.c.vi). The check for nonnal·formedness of

the bjnding is done just once.

(DEFINE REBIND
(LAMBDA EXPR [VAR BINDING ENV]

(If (NORMAL BINDING)
(REBIND• VAR BINDING ENV)
{ERROR "B1nding 1s not 1n normal form"))))

(DEFINE REBIND•
{LAMBDA EXPR (VAR BINDING ENV)

(COHO [(EMPTY ENV) (RPLACT O tENV t[[VAR BINDING]]))
[(= VAR (1ST (1ST ENV)))

(RPLACN 2 t(lST ENV) tBINDING)]
[ST (REBIND• VAR BINDING (REST ENV))])))

We include our side-effect vcr.;ion of the fixc.d-point function:

{S4-966)

(S4-967)

(DEFINE Z (S4-968)
(LAMBDA EXPR [FUN]

(LET• [[TEMP (LAMBDA lXPR ARGS
(ERROR "Partially constructed closure reduced"))]

[CLOSURE t(FUN TEMP)]]

4. 2-LISP: a Rationalised Dialect Procedural Reflection 560

{BLOCK (RPLACA tTEMP (CAR CLOSURE))
(RPLACD tTEMP (CDR CLOSURE))
TEMP))))

and the version of DEFINE that uses it (from S4-727):

(DEFINE DEFINE
(PROTECTING [Z]

(S4-969)
; Since there is a tendency

(LAMODA MACRO [LABEL FORM] ; to reset Zin examples!
• (SET , LABEL

(,tZ (LAMBDA EXPR (,LABEL] ,FORM))))))

Because we are using the primitive closures {in the meta-circular processor's own

environment) to mark procedures we wilt primitively reduce, the following procedure will

yield an appropriately initialised standard environment (encoding of E0). (There is actually

an incompleteness here: the closures that are the bindings here will have the meta-circt.lar

processor's own E0 as their first argument, rather than this one, but since these are

recognised primitively this won't matter. We will cure this inelegance in 3-LISP.)

(DEFINE INITIAL-ENVIRONMENT (S4-970)
(LAMBDA EXPR []

(['TYPE tTYPE] ['• t•] ['+ t+]
r·• ,.1 c·, t/J c·- t-J
['PCONS tPCONS] ('RCONS tRCOHS] ['SCONS tSCONS]
['CAR tCAR] ['COR tCOR] ['LENGTH tlENGTH]
('NTH tNTH] ['TAIL tTAIL] ('PREP tPREP]
('RPLACA tRPLACA] ['RPLACO tRPLACD] ['RPLACN tRPLACN]
['RPLACT tRPLACT] ['LAMBDA tLAMBDA] ['EXPR tEXPR]
('IMPR tlMPR] ['IF tIF] ['NAME tNAME]
['SET tSET] ['READ tREAD] ('PRINT tPRINT]
('TERPRI tTERPRI] ['REDUCE tREDUCE] ['NORMALISE tNORMALISE]
('REFERENT tREffRENT]]))

Given this definition, the 2-usr processor could be "sttrtcd up" by executing

(READ-NORMALISE-PRINT (INITIAL-ENVIRONMENT))

A simple prompter:

(DEFINE PROMPT
(LAMBDA EXPR [] (BLOCK (TERPRI) (PRINT '>))))

(S4-971)

(S4-U7Z)

MEMBER is defined over both kinds of vector. Note that we don't need to distinguish a

special "EQ" version, as we did in 1-LISP:

(DEFINE MEMBER
(LAMBDA EXPR [ELEMENT VECTOR]

(COND [(EMPTY VECTOR) $F]
[(= ELEMENT (1ST VECTOR)) $T]
($T (MEMBER ELEMENT (REST VECTOR))])))

(S4-973)

4. 2-LISP: a Ratioualised Dialect Procedural Reflection 561

All clements of three of the structure types are normal-form inherently; atoms are never in

normal form, and certain rails and pairs can be:

(DEFINE NORMAL
(LAMBDA EXPR [X]

(SELECTQ (TYPE X)
(NUMERAL ST]
[BOOLEAN ST]
[HANDLE ST]
[ATOM SF]
[RAIL (AND . (MAP NORMAL X))]
(PAIR (AND (MEMBER (CAR PAIR) t[EXPR IMPR MACRO])

(NORMAL (CDR PAIR)))])))

A simple rail copying procedure:

(DEFINE COPY
(LAMBDA EXPR [RAIL]

(If (EMPTY RAIL)
(RCONS)
(PREP (1ST RAIL) !COPY (REST RAIL))))))

(S4-974)

(S4-976)

The following two rail conjoiners were first illustrated in section 4.b.vii (see in particu]ar

S4-349 and S4-360):

(DEFINE JOIN
(LAMBDA EXPR [RAIL1 RAIL2]

(RPLACT (LENGTH RAILl) RAilt RAIL2)))

(DEFINE APPEND
(LAMBDA EXPR [RAIL1 RAIL2]

(JOIN (COPY RAILl) RAIL2)))

(S4-976)

Finally a variety of useful macros. LET and UT• were exp1aincd in section 4.c.i:

(DEFINE LET
(LAMBDA MACRO [LIST DODY]

'((LAMBDA EXPR ,(MAP 1ST LIST) ,BODY)
.,(MAP 2ND LIST))))

(DEFINE LET•
(LAMBDA MACRO (LIST BODY]

(If (EMPTY LIST)
JODY
'({LAMBDA EXPR ,(tST (1ST LIST))

,(LET• (REST LIST) BODY))
.,(2ND (1ST LIST))))))

SELECT and SELECTQ: extensional and intcnsiona1 case dispatches:

(DEFINE SELECTQ
(LAMBDA MACRO ARGS

'(LET [[SELECT-KEY ,(lST ARGS)]]

(S4-977)

(S4-978)

(S4-979)

4. 2-LisP: a Rationalised Dialect Procedural Reflection 562

,(SELECTQ• (REST ARGS)))))

(DEFINE SELECTQ•
(LAMBDA EXPR (CASES]

(COND [(EMPTY CASES) (RCO~S)]
[(u (1ST (1ST CASES)) '$T)

(2ND (1ST CASES)}]
[ST '(IF (D SELECT-KEY .~(1ST (1ST CASES)))

(BLOCK . ,(REST (1ST CASES)))
,(SELECTQ* (REST CASES)))])})

BLOCK is the 2-LISP sequencer:

(DEFINE BLOCK (LAMBDA MACRO ARGS (BLOCK• ARGS)))

(DEFINE BLOCK•
(LAMBDA EXPR [ARGS]

(COND [(EMPTY ARGS) (ERROR "Too few arguments"}]
[(UNIT ARGS) (1ST ARGS)]
[t '((LAMBDA EXPR [?]

,(BLOCK* (REST ARGS)))
, (1ST ARGS))])))

(S4-980)

(S4-981)

(S4-982)

The ever-useful COND. Note that though it is tempting coNo• cannot itself use COND:

(DEFINE COND {LAMBDA MACRO ARGS (COND* ARGS}))

{DEFINE COND*
(LAMBDA EXPR [ARGS]

(IF (EMPTY ARGS) (RCONS}
'(IF ,(1ST (1ST ARGS))

,(2ND (1ST ARGS))
,(COND• (REST ARGS)}))))

{S4-983)

(S4-984)

Finally, the PROTECTING macro introduced without definition in section 4.c.vi, and used in

defining DEFINE above:

(DEFINE PROTECTING
(LAMBDA MACRO (NAMES BODY]

'(LET ,(PROTECTING* NAMES) ,BODY))}

{DEFINE PROTECTING*
(LAMBDA EXPR [NAMES]

(If (EMPTY NAMES)
(RCONS}
{PREP '[,(lST NAMES) ,(lST NAMES)]

(PROTECTING• (REST NAMES))))))

(S4-986)

(S4-986)

We have defined all the utilities used in the meta-circular processor (plus a few

more); in the rest of this section we will define an additional set that were used in

examples, either with or without definitions. These will be considered to be part of the

4. 2-LISP: a Rationalised Dialect Procedural Reflection 563

"kernel" system - we will use them here and in 3-LISP without further introduction.

We begin with two multi~argument boolean connectives that process only as far as

necessary, providing the arguments are rails; if not, they allow the entire argument

designator to be processed, before returning a result (see S4-918):

{DEFINE ANO
(LAMBDA MACRO ARGS

(IF (RAIL ARGS) (AND• ARGS) '+(AND• t,ARGS))))

(DEHNE AND•
(LAMBDA EXPR (ARGS]

(IF (EMPTY ARGS)
'$T
0

(IF ,(lST A~GS} ,(AND• (REST ARGS)) 'SF))))

(DEFINE OR
(LAMBDA MACR~ ARGS

{IF (RAIL ARGS} (OR• ARGS) '+(OR• t,ARGS))))

(DEFINE OR•
(LAMBDA EXPR [ARGS]

(IF (EMPTY ARGS)
'$F
'(IF ,(lST ARGS) 'ST ,(OR• (REST ARGS))))))

(S4-987)

(S4-988)

(S4-989)

(S4-990)

We use a MAP that is reminiscent of LISP 1.s's MAPC: it is given successive elements of the

sequence (or sequences) on each iteration, and a sequence of results is returned. The

FIRSTS and RESTS used by MAP are inefficient but simple:

(DEFINE MAP
(LAMBDA EXPR ARGS

(MAP• (1ST ARGS) (REST ARGS))))

(DEFINE MAP•
(LAMBDA EXPR [FUN VECTORS]

(IF {EMPTY VECTORS)
(FUN)
(IF (EMPTY (1ST VECTORS))

(1ST VECTORS)
(PREP (FUN. (FIRSTS VECTORS))

(MAP• FUN (RESTS VECTOR~)))))))

(DEFINE FIRSTS
(LAMBDA EXPR [VECTORS]

(IF (EMPTY VECTORS}
VECTORS
(PREP (1ST {1ST VECTORS))

(FIRSTS (REST VECTORS))})))

(S4-991)

(S4-992)

(S4-993)

4. 2-LISP: a Rationaiised Dialect Procedural Reflection 564

{DEFINE RESTS
(LAMBDA EXPR [VECTORS]

(IF (EMPTY VECTORS)
VECTORS
(PREP (REST {1ST VECTORS))

(RESTS (REST VECTOPS))))))

{S4-994)

The REDIRECT of S4-367 that did not affect others who held access to the old tail:

(DEFINE REDIRECT (54-996)
{LAMBDA EXPR [INDEX RAIL NEW-TAIL]

{If(< INUEX 1) (ERROR "REDIRECT called with illegal indexH)
(RPLACT (- INDEX 1)

RAIL
(PREP (NTH INDEX RAIL) NEW-TAIL})}))

Finally, a version of PUSH that does not require re-sET-ing in order to be effective, and a

corresponding POP. It is assumed that ST ACK is a rcil of items:

(DEFINE PUSH
(LAMBDA EXPR [ELEMENT STACK]

(RPLACT 0

(DEFINE POP

STACK
(PREP ELEMENT

(IF (EMPTY STACK)
(RCONS)
(PREP (1ST STACK) (REST STACK)}}}}))

(LAMBDA iXPR (STACK]
(If tEMPTY STACK)

(ERROR "Stack underflow"}
(9LOCK1 (1ST STACK)

(RPLACT O STACK (REST Si'ACK))))))

(S4-996)

4. 2-LISP: A Rationalised Dialect Procedural Reflection 565

4.e. Conclusion

Considering that it was to be a preparatory step in the drive towards reflection. the

development of 2-LISP has taken considerable v.1ork. Nonetheless we stand in good stead

to tackle the intricacies of self reference in the next chapter. We have demonstrated, in

addition, lhat normalisation and reference as independent notions can carry us through the

entire range of issues involved in designing a computational formalism.

We said at the very beginning of the chapter that, as well as this primary task, two

other goals were sought: the support of higher order functionality and argument

objectification within a base language. On these fronts we have succeeded rather well: so

long as everything remained extensional, we encountered no problems with the provision of

statically scoped higher order functional protocols, and the use of distinct structural

categories for redexes and enumerations, either on their own or in interaction. In addition,

we were able to provide a full range of meta-structural support: handles, intensional

procedures, NAME and REFERENT primitives, macros, and so forth.

However there are a number of ways in which we may have seemed to fail as well.

Three stand out as of prime importance. The ~twas the undeniably awkward interaction

that we constantly encountered between non-rail redex CDRs and intensional procedures

(both IMPRs and MACROS). Although it is often extremely useful to be able to use designators

of a whole argument set rather than one designator per argument, we found it natural, in

constructing intensional procedures, to assume that we could decompose the argument

expr'?ssion, rather than simply being able to decompose the argument sequence in the way

that extensional procedures typically do. This is of course not a formal or theoretical

difficulty: everything remained perfectly well defined, and a variety of techniques arose

naturally to cover the examples we investigated. Dut it does challenge our assumption that

argument objectification and meta-structural concerns arc independent and orthogonal. It

was of course a criticism that we lodged against 1-LISP that it was forced to use meta

structural 1rachinery for objectifying purposes, and we were indeed able to show that in the

standard (extensional) case there was no need for this practice. It is important to realise

that the frnstration we arc currently diFCussing did not arise from argument objectification

on its own, but rather from its illleraction with bona fide meta-structural manoeuvcring.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 566

We seem, in sum, to have ended up with the following conclusion: argument objectification

can be adequately u·eated in an extensional base language without meta-structural

machinery. However it makes that base language slightly more complex than it would

otherwise be; therefore when meta-structural machinery is introduced (for other reasons), it

has to be able to cope with non-syntatically-deccmposable argument expressions.

Once put this way. it seems natural enough. Our frustrations may have arisen

because we were not able, without modification or even review, to import into our meta

structural practice assumptions as to what was reasonable that were developed in the

simpler 1-usP case. The lesson with regard to this first difficulty, then, is not that we have

failed, but that we will need to develop new and more sophisticated meta-structural

techniques.

The second "failure", mentioned at the beginnning of the chapter, is more serious.

We have come to see how the use of dynamic scoping in 1-LISP, with its natural

connection with first order language, facilitates a certain kind of intensional meta-structural

practice. It was natural to use static scoping, closures, and the rest. since we wanted a

higher-order base language; indeed, our success in this regard implied that we could avoid

meta-structural behaviour in many cases where in 1-LISP it would be required. However

we encountered an odd consequence of this decision: although it freed us from using meta

structural machinery, it also made using meta-structural procedures extremely difficult. The

problem was that "once quoted", so to speak, there was no way to "uoP·Jote" an

expression, in a way that could recapture its intended significance at the point where it

originally occured. Thus 2-LISP IMPRs looked to be of rather little utility after all. MACROS

did not so much solve this problem as provide us with a certain ability to by-pass it. in part

because as part of the definition of macro redeY processing the structure generated by the

first phase of macro processing is normalised in the original context. Thus we can see that

MACROS solve the problem rather gratuitously.

Though severe, the solution to this problem in 3-LISP was clear: if we could melllion

the processor state, as well as mentioning program structures, then it would be possible

completely to overcome this difficulty. Furthcnnorc, as the examples we looked at suggest,

and as the discussion in the next chapter will make clear. the situation one achieves with

reflection in this regard is not only far more satisfactory than the impoverished 2-LISP

4. 2-LISP: A Ration~d Dialect Procedural Reflection 567

IMPRs, but it is also superior to the 1-LISP situation where the context was available not

because it was reified, but because every program fragment, intensjf.\~:!?. or meta-structural

or whatever, was processed in effectively the same context. If everything is one, then you

won't suffer from too much disconnection (as z-LISP did), but you have other problems: it

is difficult to avoid tripping over your own feet, in a sense (exemplified for example by

unwanted variable name collision and so forth). 2-LISP was cleaner than 1-LISP with

regard to context, but it was too separated. In 3-LISP we will retain the cleanliness and

give back just the right amount of connection.

The third major failing of 2-LISP had to do with our inability to keep the dialect

theory independent - with the fact, in other words, that we were forced, for Jack of a

theory of functional intension, to provide encodings of environments in closures. This

decision unleashed a raft of theoretical questions about the relationship between these

encodings and the environments they designated, about the range of side-effects of SET, and

so forth. As we said in 4.c.ii, 3-LISP will be somewhat better in this regard, because the

relationship between environments and environment designators will be faced directly,

because 3-LISP is inherently theory-relative in very conception, and because all reflective

procedures will bind and pass environment designators as a matter of course. But in spite

of all of these facts a certain inelegance wiU remain, arising from this fu.ndamental

theoretical lack on our part. The inclusion of an environment designator in a closure is

"over-kill". as we suggested in the text: it is a technique that is guaranteed to provide

sufficient infonnation to preserve intensional properties, at the expense of preserving far

more infonnation than can reasonably be demanded. Nonetheless, it is a limitation we will

have to live with in 3-LISP as well. In addition, as we mentioned in section 4.c.vi, it is a

failing with certain advantages: in particular, jt certainly facilitates redefinitions in a

straightforward manner.

Note that the previous (second) problem - that of constructing potent intensional

procedures - may in fact reduce to this same lack of a theory of intensionatity. If we

could bind the parameters in an intensional procedure not to designators of the expressions

in the original redex, but to designators of their illlension -- if. in other words. we could

have an operator (like Montague's "t") that would render the intension of its argument into

the extensiun of the whole - then we might no longer need access to the context in which

that argument expression originally occurred. This suggestion is supported as well by the

4. 2-LISP: A Rationalised Dialect Procedural Reflection 568

observation, made originally in connection with LAMBDA, that general computational

significance is unleashed not on taking the intension, but on reducing/applying that

intension subsequently. Under such an approach, furthermore, IMPRS would finally deserve

their name: they would be intensional procedures, rather than the hyper-intensional

procedures that they are in the present scheme.

It is worth just a moment's investigation to see how this would go, since this

connection with LAMBDA suggests a manner in which we could unify the two issues.

Suppose, mcrel!' as a temporary mechanism, that IMPR parameters are bound not to the

argument expression as it occured in the original redex, but to closures of those argument

expressions. In addition, suppose that a revised version of NORMALISE, if given a closure of

this form (we can suppose they are especially marked) would reduce it with no arguments,

rather than simply normalising it. We will call this new version NORMALISE•. In other

words, given a definition of SET as follows (SET was an example that illustrated our previous

difficulty):

(DEF E4E SET 1

{LAMBDA IMPR [VAR BINDING]
(REBIND VAR (NORMALISE• BINDING) <EijV))))

and a use of it as fo1tows:

(LET ([X 3]]
(BLOCK {SET1 X (+ X 1))

X}}

(S4-997)

(S4-998)

then the fonnal parameters VAR and BINDING, rather than being bound in the normal way:

VAR
BINDING

'X
'(+ X 1)

would instead be effectively bound as follows:

VAR
BINDING

=> t(LAMBDA EXPR [] X)
=> t(LAM&DA EXPR [] {+ X 1))

; This is {S4-999)
: regular 2-LISP.

; This is our (S4-1000)
; new proposal.

where the assumption is that these would be nonnalised in the original context In other

words definition S4-997 and S4-998 would together (on this new proposal) be equivalent to

the following:

{DEFINE SET 2

(LAMBDA EXPR [VAR BINDING]
(REBIND VAR (REDUCE VAR '[]) <ENV>)))

This version of {S4·1001)
SET is an EXPR.

4. 2-USP: A Rationalised Dialect

(LET [[X 3]]
(BLOCK {SET2 t(LAMBDA EXPR [] X)

t(LAMBDA EXPR [] (+ X 1)))
X))

Procedural Reflection 569

(S4-1002)

In other words, the real bindings of VAR and BINDING in the body of SET would be the

following:

VAR
BINDING

=? '(<EXPR> [['X '3) ..•] '[) 'X)
~ '(<EXPR> [['X '3) ..•] '[] '(X + 1))

(S4-1003)

Then the original call to NORMALISE• in S4-997, which was converted to the equivalent

REDUCE in s4-1001, would in fact yield the corre<:t answer '4.

There is a minor difficulty, however: the first argument to REBIND was intended to be

the simple handle • x, not a designator of a closure. In other words SET really wanted

hyper-intensional access· to its first argument. To make sense of this proposal, it turns out,

we would want to provide an ability co extract the variable name from the closure.

We needn't pursue this - the point is clear. Given that we do not have an

adequate theory of intensionality, it will prove much simpler, and more general as well, to

provide access to the context explicitly, rather than having the dialect itself try to

encapsulate that context around the hyper-intensional forms automatically. In S4-1001 we

still had no answer to the question of what cnvironmP-nt should be given to REBIND as its

third argument, which would require yet further machinery. Finally, with an explicit

context argument available, code very similar to that in S4-997 and S4-1001 will be easy to

write in 3-LISP. We will have, in particular, the following perfectly adequate 3-LISP

definition of sn:

(DEFINE SET This is 3-LISP {S4-1004)
(LAMBDA REFLECT [(VAR BINDING] ENV CONTj

(NORMALISE BINDING ENV
(LAMBDA SIMPLE (BINDING!)

(CONT (REBIND VAR BINDING! ENV))))))

Apart from the minor extra complexity having to do with the explicitly available

continuation, which will prove useful in other cases, the simplicity and the transparency of

S4-1004 certainty rival that of S4-997, with the addition that no further complexity about

automatically creating pseudo·intensions needs to be added to the underlying dialect.

Therefore in the next chapter we will make no further moves to solve the intcnsionality

problem, and will work entirely with reificd contexts.

4. 2-LISP: A Rationalised Dialect Procedural Reflection 570

As well as providing us with a rationalised base on which to build a reflective

dialect, the development of 2-LISP has had another advantage. In this chapter we have

articulated two different theories of 2-LISP: our general meta-theoretical account, and the

tail-recursive meta-circular processor of section 4.d.vii. Although the suprdicial notation of

these two fonnalisrns is rather different, it should be clear that the structure of the

descriptions formulated in them has been rather similar (although the meta.·cricular

processor has had to carry only the procedural toad, whereas the x-calcu!us account has

formulated declarative import as well). In the next chapter we will see yet another

theoretical encoding of the structure of a dialect: the reflective model. Because our subject

matter is only "procedural" reflection, once again only the procedural consequence wilt be

encoded in this causally connected self-referential thec.ry. In a full reflective calculus,

which 3-LISP is not, the full theoretical story, including both declarative and procedural

consequence, would be embodied in the gei.eral reflective model. Such a goal, however, is

for another investigation; we tum now to the simpler procedural case.

S. Procedural Reflection and 3-LISP Procedural Reflection 571

Chapter 5. Procedural Reflection and 3-LISP

With 2-LISP in place, we turn now to matters of fcflection, and to the design of 3-

LISP. The presentation of this new dialect will be straightforward: procedural reflection is

comparatively simple. given a rationalised base.

Our strategy will be to approach 3-us,, from two opposite directions. First, we will

show how the various aspects of 2-LISP that exhibit inchoate- reflective behaviour {the

meta-circular processor, NORMALISE and REDUCE, and so forth) fail to meet the full

requirements of a reflective c.apability: we will demonstrate, in particular, that they lack the

requisite causal connection with the underlying processor. Second, in investigdting a variety

of candidates for a reflective archi~ccture, we will in contrast look at some suggestions that

arc too cunncc:tcd: proposal~ that ldck sufficicf'.t perspective to be cor~rcntly controlled

The direction we will then hea~ s towards an acceptable middle fxo 11nJ - towards an

architecture in which the full stat~ of both stmctural field and processor arc available

within the pun·icw of the reflective procedures, but where thosi; reflective procedures have

chP.ir own independent processor state out of which to work. In addition, we will see how

the ·various theories of LISP that have permeated the analysis so far - embodied in our

meta-theorctir.al characterisations and meta-circular processors - suggest the fonn that a

t .!tlcctive dialect might take. These preparations will occupy section 5.a.

'Ibough the solution we will converge on will strike ct1c reader of the pr~vious

chai;~ers as relativciy obvious, it is important t.o investig&te a variety of altcrnative3 for two

rc11sons. On the one hand, it is not enough to show that our particular reflective

;irchitccturc satisfies our overarching goals; we must also make clear what design choices

have been mudc in the cause of its construction. This is particul;irly important because

nothing in our i-,ciur analysis uniquely determines Ule structure of 3-LISP. More

specifically, we will chm ;terisc three diffcrcr.t styles of viable reflccti vc fon11alism, all

compatible with the overarching reflective mandates, but differing in terms of the extent to

which each level i~; dctachcct fro 111 drnt below it. Though we will select jl!st one of these

(the int':.11P..~uiatc o· ~) fo.· 3-LISP, we will ,,i,.ctch the advantages and limitations of th~

oth~rs, dnd wit: show how a more comp!ex formalism could support more than one

5. Procedural Reflection and 3-LISP Procedural Reflection 572

simultaneously. In addition, though we will adopt c~rtain "programming conventions" in

our use Qf 3-LISP, we will show how our particular calculus could be used to suppon a

variety of different structuring protocols.

As wcli as surveying the range of possible architectures, it is equally important to

show how the requirements of reflection rule out a variety of plausible candidates. We

c::innot prove that our range of solutions is unique or complete - indeed, the goals arc not

of a sort t!1at real proof can be imagined - but there are some apparently simpler

proposals that might seem, on shallow consideration, as if they would answer the mandates

of reflection. Defore we take up the definition of 3-LISP we will have shown that these

simpler proposals are inherently inadequate.

Ruling out simpler alternatives is particularly importar1t. given that the solution we

will adopt will implicate an infinite hicrnrchy of partially independent processors (an

in!lnitc number of environments and continuation structures at r.ny given point in time).

The hierarchy is in some ways lir.c that of a typed logic or set theory, although of course

each reflective level of 3-LISP is already an omega-order untyped calculus (as was 2-LISP).

Rejleclive levels, in crhers words, are at once scrnngcr and more encompassing than arc the

order levels of traditional calculi. It may at first blush seem troublesome that, accerding to

the simplest descriptions of 3-LISP, an infinite amount of activity - an infinite number of

hindings and procedure calls - happen between any two steps of any program,

independent of that program's level. Nonetheless, the fact that J-LISP is infinite will not

prove troublesome: we will be able to show tJrnt only a finite amount of information is at

any time encoded in these infinite stales, so that ::;-usr is after all a fil,itc machine, even

though the most convenient virtual account is of an infinite tower of processes. This

analysis should <lispcll any concern as to whether 3-Lisr could be efficiently (or even

finitely) constructed in an actual physical device. The appendix contains the code of a

simple implementation coded in MACLISP, by way of concrete evidence, but we will also in

this chapter discuss more generally what is involved in implementing reflective aialccts in a

way that is complete, and not incurably iuenicient. Though it will take some argument, we

will be able to demonstrate the following conclusion: there is 110 theoretical or practical

rP.aSolJ why 3-LTC.P could 1101 be made lo nm as ej]i, 111/y as any oilier cu"e11t dialect.

5. Procedural Reflection and 3-LISP Procedural Reflection 573

3-LISP itself will be intfoduced in section 5.b. Structurally - that is, from the point

of view of the structural field and simple functions defined over it - 3-LISP is identical to

2-LISP. As a consequence, 3-LJSP is for the most part already defined. Thus, the

structural primitives (!>CONS, CAR, C0R, TAIL, SC0NS, PREP, and all thP. rest) will have their

same definition, both declaratively and procedurally. All of the work we did in defining 2-

LISP - including for example our exploration of the relative identity conditions on rails

and sequences - will be carried over intact. 111e only aspects of 2-LISP that will change

arc the 2-LISP IMPRS and MACROS, both of which will be subsumed under the more general

notion of a reflective procedure. It will also tum out that, in virtue of the power of the

reflective capabilities, some of what is primitive in 2-LISP (LAMBDA, IF, and SET, for

insmnce) will be definable in 3-LISP.

Althoufl}l its superficial differences arc few, 3-USP merits its status as a distinct

dialect because of the rather major shift in the underlying architecture that it embodies.

111is change is manifested in its implementation: even the simple (and inefficient)

implementation presented in the appendix is :-everal times more complex than a comparably

efficient implementation of 2-LISP would be. This complexity of implementation, however,

should not be read as implying that the dialect is itself complex - rather, it arises out of

the dissonance between the abstract stmcture of the implementing architecture, .:s corr.pared

with the abstract strncture of the implemented architecture (between MAcusr's single

processor and 3-LISP's infinite number, to be specific}. ln fa~t 3-USP is in many wayl> a

simpler fonnalism than 2-LISP. /\t the end of chapter 4, in formulating 2-usr, we

encountered more and more awkward issues and unresolvable contlicts. 3-LISP, in contrast,

is in a much happier state: it has natural and rather complete boundaries. Not only will it

provide solutions to all of our pro!Jlcms with 2-LISP (as section 5.b.viii makes clear}: in

addition, none of the issues we will investigate about the new calculus will bring us into

conflict with its own new limit~. That 3-LISP is in this way selfco11tai11ed is one of it'i

strongc\: recommendations, providing indirect evidence that our inclusion of reflective

capabilities is indeed the correct solution to a range of programming problems.

One fact about 3-LISP should be kept in mind throughout the discussion. In dealing

with reflective architectures it is mandatory to maintain a clear understanding of the

relationship between le,,e/s of dcsig11atio11 and levels of refler,tion. When a process reflects,

as we will sec, what was tacit becomes explicit, and what was used becomes mentioned.

5. Procedural Reflection and 3-LISP Procedural Reflection 574

We saw a glimpse of this in the 2-LISP IMt>Rs, where the argmr.ents that were used in the

applications were mentioned by the fonnal parameters in the body of the IMP~ procedure

itself. When we come to make substantial use of 3-LISP reflective procedures, we wilt

encounter many more examples of such level-crossing protocols. In order to keep this all

straight, we will depend heavily on a feature we (not accidentally) built into 2-LISP: the 2-

LISP processor is "semantically flat", in the sense that it stays at a fixed semantical level

(neither "referencing·• nor "de-referencing") in the nonnal course of events. Because of

this, by ar,d large, 3-usp's reflective level (how many steps it has backed off from

"reasoning" about the user's world) can be aligned with the mela·strucJural level (how many

levels of designation lie between the symbols being used and that user's world). In spite of

this correspondence, however, it should be clear that this is not a tautological correlation: a

reflective version of LISP 1.5 or SCHEME or of any other non-flat calculus could be defined,

without this property. Indeed, we will allow semantic level-crossing behaviour (using tJAME

acd REFERENT) within a given reflective level, even though we also enfo.-ce a semantical

level crossing between reflective levels. Our point is tliat the semantic flatness of the 2-

LISP processor will be useful in helping us keep use and mention straight as we cross

reflective boundaries, not that the semantic and reflective boundaries arc the same thing.

Finally, there are two ways in which our analysi'.i of J-LISP is incomplete. First, in

this chapter we will almost entirely avoid any mathematical analysis, for tlic simple reason

that this author has not yet dcvc.:opcd a mathematical approach to reflection that would

enable us to characterise 3-LISP in any finite way (other than the objectionable solution of

effectively mimicking the implementation in the meta-theory). The subject is taken up in

section 5.e, where some suggestions arc explored as to what would be involved. This lack

of mathematical power is one of the r·eas01.s we designed 2-1.ISP first, for 2-LISP was a

fonnatisrn in which our mathematics (other than the one issue of environment encodings)

was at least partially adequate. In the present chapter we will be forced to rely solely on

conceptual argumentation and example.

Second, although we will define a "complete" version vf 3-LISP, it will take

substantial further research to explore the best ways in which to use the architecture in a

raft of different situations. Many suggestions will arbe in U1is chapter that have not yet

been fully explored; section 5.d, for example, introduces but docs not follow through on

half a dozen programming problems where solutions involving reflective abilities seem

5. Procedural Reflection and 3-LISP Procedural Reflection 575

indicated. We think of 3-LISP more as a kit or laboratory in which to investigate practical

uses of reflection, rather than as an already instantiated system. We will conclude with an

explicit discussion of "directions for future research" in chapter 6, but many of the issues

requiring additional investigation will emerge in the present chapter.

5. Procedural Reflection and 3-LISP Procedural Reflection 576

5.a. The Architecture of Reflection

In the prologue and in chapter I we identified a number of properties that any

reflective dialect must possess: the ability at any point to step back from the course of a

computation to consider what was being done, the power to reach a decision that would

influence the future course of that computation, and so forth. We said as well that

reflection is inherently theory-relative - that in order to contemplate one's prior state one

must have a theory with respect to which that state is described. It has been clear

throughout that the meta-circular processors of 1-LISP and z-LISP are approximalely self

descriptive theories (albeit of a procedural '· aricty, but since we arc in pursuit of procedural

reflection that will suffice), but we 11 ve implied as well that their obvious encodings lack

some crucial properties that a reflccti<t·e theory would have to have - of which adequate

causal connection and sufficietll detachme111 arc two of primary importance. Our analysis in

this section of candidate proposals for a reflective architecture, therefore, will focus

primarily on their respective me1it with respect to these two properties. A great many of

the technical problems in reflection, in other words, arc best viewed as facets of two general

issues: where you stand and what you have access to.

5.a.i. The Limitalio11sof2-LISP

We will first show how 2-LISP's processor primitives, and its meta-circular processor,

boU1 fail to be reflective. We will assume, for discussion, that the names NORMALISE and

REDUCE are bound to U1e primitive closures designating the actual processor functions, as

arsumed i.n chapter 4 (or to definitions in terms of NAME and REFERENT as suggested in S4-

852 and S4-853 - it makes no difference), and that MC-NORMALISE and MC-REDUCE are the

names of meta-circular versions of these functions, defined approximately as follows (fuller

definitions were given in S4-945 and S4-946; the attendant utilities were defined in section

4.d.vii as well):

(DEFINE MC-NORMALISE (S6-1)
(LAMBDA EXPR [EXP ENV COHT]

(CON0 [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) (CONT (BINDING EXP ENV))]
[(RAIL EXP) (MC-NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (MC-REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

5. Procedural Reflection and 3-L!SP Procedural Rcf..ection 577

(DEFINE MC-REDUCE
{LAMBDA EXPR [PROC ARGS ENV CONT]

(MC-NORMALISE PROC ENV
(LAMBDA ...))))

The first task is to make clear how NORMALISE and MC-NORMALISE differ.

(S6-2)

There arc four facets of a computational process: field, interface, environment, and

continuation. NORMALISE and MC-NORMALISE arc equivalent with respect to the first two of

these, but different with respect to the third and fourth. More specifically, in terms of the

field and interface, NORMALISE and MC-NORMALISE are identical not only to each other but

also to the underlying processor: they have causal access to these parts of their embedding

context tacitly, ia virtue of their existenci:: as normal programs. This access is illustrated in

the following two sessions:

> (PRINT 'HELLO) HELLO
> $T --
> (NORMALISE '(PRINT 'HELLO)) HELLO
> ST
> (MC-NORMALISE '(PRINT 'HELLO) GLOBAL ID) HELLO
> " --

(S5-3)

Thus printing causes the same behaviour. whether engendered directly, by a call to

NORMALISE, or by a call to MC-HORMALISE (as is reading). Similarly, a request to modify the

field given to any of these three processors wilt have the same result:

> (SET X '[INELUCTABLY AMICABLE]) (S6-4)
> X
> (XCONS 'RPLACN '1 tX ' 'INEXORABLY)
> '{RPLACN 1 '[INELUCTABLY AMICABLE] 'INEXORABLY)
> (MC-NORMALISE (XCONS 'RPLACN '1 tX ''INEXORABLY) GLOBAL ID)
> ' I INEXORABL y
> X Even though MC-NORMALISE was
> '[INEXORABLY AMICABLE] used, X has changed.
> (NORMALISE '(RPLACN 1 X 'INEXTRICABLY))
> INEXTRICABLY Similarly, NORMALISE can also
> X be used to change X.
> '(IN[XTRICABLY AMICABLE]
> (RPLACN Z X 'CONFUSED)
> X Finally, X can of course be
> X changed directly.
> '(INEXTRICABLY CONFUSED]

For discussion, WC will say that NORMAL IS:: and MC-NORMALISE absorb the field and interface

from tllcir C'mbedding context

Nothing requires the ab:mrption of field and interface: a meta-circular processor, an

suggested informally in chapter 2, is merely one of a variety of possible procedural self-

3. Procedural Reflection and 3-LISP Procedural Reflection 578

models. A full implementation of 2-LISP in 2-LISP would more likely explicitly mention at

least the field, and possibly the interface as welt. For example. we could readily construct a

procedure, called IMP-NORMALISE, that required explicit arguments designating all four of

these theoretical posits. We would have to decide on some fom1at for designating the

structural field and input/output streams in s·cxprcssions (including a decision as to what

the appropriate normal-form designators would be, which would depend in turn on what

ontological structure we took those cntitir.s to have); we would then call IMP-NOilMALISE

with redexes of the form

(IMP-NORMALISE <EXP> <ENV> <CONT> <FIELD> <INPUT/OUTPUT>) (S5-6)

Primitive functions like RPLACA would call the continur,tion with a different FIF.LO argument

than that with whic.:h they were called, and so forth. One could imagine, for example, code

for treating RPLACA of roughly the following sort (assuming that the field was represented,

as in our meta-theory, as a five-element sequence of functions that mapped structures onto

the appropriately related s-expression):

(SELECT PROCI

[tRPLACA ((1ST ARGS)
ENV

...))

[(LAMBDA EXPR [PAIR]
(IF(= PAIR (1ST ARGS))

(~ND AllGS)
((NTII 1 F IHD) PAIR)))

UJTll 2 FIELD)
(NTII 3 FIELD)
(NTII 4 FI ELD)
(NTII 6 FI ELD)]

INTERFACE]]

(S5-6)

The result
The (unchanged} environment
The five-part field, with
tho 1st cJordinate changed
to encode a now CAR ro,a
tionship for this argument.
The fDR, FIRST, RFST, and
property-list coordinates
remain intact.

The {unchanged) interface

Such an implementation would look very much like a st,-~~ghtforward encoding of the

mathematical meta-language description of r (not }:, since of course no denotations would

be relevant).

With respect to the state of the processor, NOr.MALISE and MC-NORMALISE differ: MC

NORMALISE requires explicit environment and continuation arguments, whereas HORMALISE

also ;1bsorbs these aspects of the processor from the tacit context. Furthermore, it is in

general impossible to provide particular arguments to MC-t-;ORMALISE so that it exactly

mimics NORMALISE. The bask problem is that in 2-LISP there is no way in which one can

5. Procedural Reflection and 3-LISP Procedural Reflection 579

flbtain (designators ofJ the. actual environments and continuations that arc in force during

the normal course of a compt:tation. Continuations, in particular, arc completely

inaccessible; our inelegant practice of including environment designators in closures could

be utilised to obtain an environment designator in certain circumstances, but as we will see

in a moment even this trick is difficult to parlay into a generally useful protocol.

We will say, in those circumstances in which we can obtain causally connected

designators of the &ppropriatc farets of a process, that those theoretical entities are reifted.

Thus the construction of a closure by primitive LAMBDA reifies the environment in force at

the point of reduction of the LAMBDA (we will sec considerably more powerful reification

facilities as our invcstgation proceeds).

It is instruc.:tive to show why we cannot construct appropriate rcified context

arguments for MC-NORMALivE, We start with a very simple case. (The ID function here is

!he identity function (LAMBliA EXPR (X] X) of 54-953. Note that WC write (HORMALISE 'X ••

), not {NORMALISE x ...) - an entirely different matter.)

(LET [(X 3]] (NORMALISE 'X))

(LET [[X 3]]
(MC-NOHMALISE 'X [] ID))

= '3 {S6-7)

=> <1:RROR: "X" unbound>

The first of the pair works "correctly", so to speak, since the call to the primitively-available

NORMALISE makes reference to the same environment (albeit one that is part of the tacit

background) that the LET used to bind the x. In the second case the x was bound in the

same tacit environment, but MC-NORMAL!SE was given a null environment, for lack of a

better alternative, and x was not bound in that environment.

Examples ss-1 can be co11strasted with:

(NORMALISE '(LET [[X 3]] X))

(MC-NORMALISE '(LET [[X 3]] X)
[]
ID) => <ERROR: "LET" unbound>

(S5-8)

That the first designates the numeral 3 is straightforward: x is bound, as in S5-7, in the

tacit encompassing environment, and is looked up in that same environment by NORW.LISE.

The second, however, doesn't even get started, since LET is not baund in the environment

given to MC-NORMALISE. If we had a designator of an environment in which LE.T was bound

to the appropriate macro, wc would have:

5. Procedural Reflection and 3-LISP

{MC-NORMALISE '(tET [(X 3)] X)
([•LET ... J ... J
ID) => '3

Procedural Reflection 580

(S6-9)

In this case x is bound in the explicit environment passed around within MC-NORMALISE and

HC··REDUCE - on top, in other words, of the initial environment [(•LET ... J ... J. What is

shared by the first pat of 55-8 and 55-9 is that the binding of x and the lookup of x occur

in the same environme 1t. because both expressions are selfcontaine<', in a certain sense:

they do not depend on the state of the processor external to the call to NORMALISE (or MC

NORMALISE). (In this particular case that Jack of dependence is reflected in the fact that they

contain no free variables, although there are other forms that dependence can take besides

variables.) It is behaviour of this latter sort that motivates us to say that MC-NORMALISE is

equivalent to NORMALISE.

Note that the continuation function ID did not need to be bound in the environment

designator passed to MC-NORMALISE in S5-9. This is important: continuations are functions

at the level of the call to the processor. they are not mentioned in the code chat the

processor proccsse~.

'There are two ways in which the con-cct environment could be constmcted in the

earlier S5-7. First, we could extract the binding of x from the standard environment and

put it in place by hand:

(LET [[X 31] (SE-10)
(MC-NORMALISI: 'X ([' X tX]] IO)) => '3

This works because th1\ ENV argument to MC •NORMALISE normalises to the correct sequence

[(· x · 3]]. However this is a gratuitous solution: it could not be generalised except in

infinite ways (by, for example, constrncting the environment consisting of the present

bindings of all atoms prior to any call to MC-NORMALISE).

Second, we could tap 2-LISP's inchoate reflective abilities by con<;tmcting a dummy

closure and ripping the environment designator out of it explicitly:

(LET [[X J]]
(LET [[ENV (2ND t(LAMBDA EXPR? ?})]]

{MC-NORMALISE 'X ENV ID)))

(S5-11)

=> '3

'Ibis is in fact a marginally acceptable solution. It works because closures have to work -

we are committed, in other words, by our design of closures, to having the second

argument to <EXPR> be a causally connected designator of thl environment. However it is

5. Procedural Reflection and 3-LISP Procedural Reflection 581

unworkable, as the discussion of GET-ENVIRONMENT at the end of section 4.d.iii made clear.

The term (2ND t(LAMBDA EXPR ? ?)) will obtain the environment in force only in the stalic

colllext in which il is nonnalised Example ss-11 was so simple that this sufficed: in a more

complex case, such as to handle the problem of IMPRS, we would like to obtain a designator

of ail environment in force at a stmctura/ly distal place (typically, at the point where a

redex occured that calls the procedure that attempts to obtain that environme~t).

·me situation regarding the continuation structure - the control stack - is

analogous: MC-NORMALISE, since it passes a continuation explicitly, forces the continuation

structure of the expression being explicitly normalised to be entirely different from that in

force when the call to MC-NORMALISE was made; NORMALISE once again uses the same

continuation with which it was called. Furthermore, we have in 2-LISP no other behaviour

from which we can extrn I contmuation designator in the way that we just used closures

to obtain an environment designator. Since we do not have fancy control procedures i:o

illustrate this point, we will not give specific examples, but the general problem is easy to

envisage. Imagine for instance that a CATCH were wrapped around a call to MC-NORMALISE,

and the latter procedure encountered a THROW rcdcx in the middle of an expression that it

was processing. Clearly the two would not mate in any simple way. The TflROW that MC

NORMALISE processed would mati::h only a prior CATCII lhat MC-NORMALISE had hee11 explicitly

given.

The contrast between NORMALISE mid t.tc- NORMALISE is made even clearer by looking

at examples where the code being processed explicitly calls the processor. Suppose that the

atom CLOBAL designates an appropriate)• initialised environment containing bi:idings of all

the primitive procedures, of ID, of MC-11111RMALISE, and so forth (GI.OOAL could be built by

extending the result of a call to the INITIAL-ENVIRONMENT procedure of S4-970, for

example). Then we would have the following:

(NORMALISE (S6-12)
'(LET ([X 3]] (NORMALISE 'X)}) ;;:::,. '3

(tJORMALISE
'(LET ([X 3]] (MC-NORMALISE 'X GLOBAL ID))) ::=:> <ERROR>

fn the second line of this example, x was bound by one processor, but looked up by the

other, generating an errnr. Similarly:

5. Procedural Reflection and 3-LISP

{MC-NORMALISE
'(LET [[X 3]] (NORMALISE 'X))
GLOBAL
ID)

(MC-tlORMALISE
'(LET [[X 3]] (MC-NORMALISE 'X GLOBAL ID})
GLOBAL
ID)

Procedural Reflection 582

(S6-13)

(S6-14)

=> <ERROR>

If the ~~ta-circular MC-NORMALISE correctly implements the language, then it will implement

NORMALISE to use the same environment it was passing around; but if it contains yet another

call to MC-NORMALISE (assuming MC-NORMALISE was defined in GLOBAL} yet a third

implementation is invoked, bearing no causal relationship either to the underlying

processor, or the the explicit meta-circular MC-NORMALISE running it

5. Procedural Rdlection and 3-LISP Procedural Reflection 583

5.a.ii. Some Untenable Proposals

The present condition, then, is this: tile meta-circular MC-NORMALISE and MC-REDUCE,

although they are adequately equipped with arguments that fully encode the state of the

processor, fail to be reflective because those arguments cannot be causally related to the

actual state of the processor that runs the code. 111e primitive processor functions

NORMALISE and aEDUCE, on the other hand, are fully connected, but they fail in two other

ways: they are not designed to talce environments and continuations as arguments, and they

are sn conncct~d to the basic processing that in using them one encountciS .::ollisions and

awkwardness - they lack not connectedness but detachment Furthennore, we still have a

rnft of procedures - THROW, QUIT, RETURN-FROM, Md so forth - that would have to be

defined primitively, in terms of the implementation, because neither tJORMALISE nor MC-

NORMALISE provides sufficient power to defini! them.

At first blush, these facts suggest a rather simple solution. It would seem natural to

provide two primitive functions - called, say, GET-STATE and SET-STATE - that,

respectively, return and set the state of the current processor. This is a proposal worth

examining for two reasons. First, it is simple - if it were sufficient it should be adopted

for that reason alone. In addition, it resembles in certain ways various focilties provi<lf!d in

current dialects whereby a user program can obtain access to the state of the

implementation. In particular, the "spaghetti stack" protocols of INTERLISP provide almost

exactly this functionality. TI1erc is, however, a cmcial diffcrcnct:: we will define GET-STATE

ar.'.(SET-STATE to traffic in full-fledged LISP structures (with declarative and procedural

semantics and all the rest), not in implementation-dependent data structures. Thus the

results returned by GET-STATE will be standard structural-field clements: no reference wi11

be made to the structure of tl1e machine on which the dialect of USP is implemented. Our

indictment and ultimate rejection of this proposal, therefore, will hold even more strongly

for analogous practices in standard dialects.

Oddly enough, however, this cleanliness of remaining within the structural field

makes our suggestion initially more confusing than the INTERLISP protocols, rather than less.

'The reason has to do w;th a ditliculty in keeping track of the distinction between structures

at one level and structures at the oth~r. One admitted virtue of dealing with regular

procedures and with stack pointers, in other words, is lhat you can tell lhem apart: the

5. Procedural keflection and 3-LISP Procedural Reflection 584

manner in which they are distinguished has little to recommend it. but that you can

distinguish them turns out to be useful. In the architecture we will ultimately adopt we too

will introduce a system of levels, thereby having both structural homogeneity and

disciplined behcviour. The present GET-STATE and SET-STATE proposal, however, will fail in

part for lack of any such structuring. In sum, the su&::;estion we are about to explore is

rather a mess: though we will do our best to explain it clearly, any intuition on the part of

the reader that GET-STATE and SET-STATE ue confusing should be recJgnised as correc~

The idea is this: normalising a GET-STATE redex would return a LISP structure

designating the state of the processor at the moment of reduction. Normalising (GET

STATE), in particular, would be expected to return a two-clement rail consisting of

designators of the environment and continuation in force at the point of reduction, as

follows:

(GET-STATE) [[['<atom1> '<binding 1>]
['<atom2> '<binding2>]

...]
(<EXPR> ...)]

(S5-HI}

The form of S5-18 is dictated by general 3-LISP facts about nmmal-form designators, the

theoretical posits in terms of which we characterise the state of LISP processors, and so

forth. No new decisions were required, once the basic functionality of GET-STATE was

determined.

Similarly, a parallel function SET-STATE would accept a sequence of the same kind of

argument.:;: rather than proceeding with the course of the computation in effect at the time

the application in tenns of SET-STATE was executed, the processor would be automatically

converted to that encoded in the arguments.

In order to sec the consequences of this proposal, .:;uppose we execute the following

code:

(LET [[X 3] [Y 4))
(LET [[[fNV CONT] (GET-STATE}]]

... })

(S5-19)

The presumption is that rnv wi1l be bound to an environment designator containing, as wen

as the entire surroundiug environment, the just-added bindings for x and v:

5. Procedural Reflection and 3-LISP Procedural Reflection 585

ENV =-> (['X '3] ['Y '4] ..•] (S6-20)

Similarly CONT will be bound to (a normal-form designator of) the continuation in effect

when (GET-STATE) was normalised. To our possible surprise, this continuation (remember

all of this is forced) wi11 be one that is ready to accept the result of normalising Uie

argument (GET-STATE), in preparation for binding 1" the formal parameter structure (ENV

CONT]! In other words, suppose the fragment in S5-19 were extended as follows:

(LET [[X 3] [Y 4]]
(LET [~[ENV CONT] (GET-STATE)]]

(BLOCK (TERPRI)
(PRINT tENV)
(CONT '[TIIATS ALL])}))

(S5-21)

If we were to normalise this, (GET-STATE) would return an ENV and CONT, which would be

bound to ENV and CONT, and the first would be printed (the up-arrow is of course necessary

because environments arc structures). This would proceed as expected:

> (LET [[X 3] [Y 4]]
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (TERPRI)
(PRINT tENV)
(CONT '[THATS ALL]))))

rr•x '3] r·v '41 ... 1

(S5-22)

The question, however, is what would happen next. CONT, as we have just agreed, is bound

to the continuation ready to accept values for binding to rnv and couT; once tl1is binding is

done, the body of the LET will be normalised. In other words th•! last line of ss-21 would

restart CONT (for the second time), this time with two atoms, rather than with legitimate

processor state designators. The printing would happen again, and the whole process would

cycle, but only once; U1e second time through would engender a type-error, since CONT

would be bound to i:he atom ALL, which, not designating a function, cannot be redu ~d

with arguments:

> (lET [[X 3] [Y 4]] (S5-23)
(LET [[[ENV CONT] ((ET-STATE)]]

(BLOCK (TERPRI)
(PRINT ENV)
(CONT '[THATS ALL]))))

~x '3] r·v '41 ...]
'TIIATS ---

TYPE-ERROR: REDUCE, expecting a function, was called with tho attm ALL

5. Procedural Reflection and 3-LISP Procedural Reflection 586

The problem is that our CONT is not very useful: it is still too close to the call to GET-STATE

(it rcifics but it still lacks detachment). And furthcnnorc, this would always happen -

there is nothing idiosyncrntic about our 9articular example. If GET-STATE were ever to be

usefol, calls to it would have to be embedded within code which unpacked its offering,

examined the environment and continuation, and so forth. CONT would always be the

..... ut;11u<a;u11 i -:ady to <lo this unpacking, and that is not a continuation that one typically

wants to reason with or about.

A possible but inelegant solution would be first to agree that GET-STATE would

always be bound within the scope of a LET of just the sort illustrated in S5-21 above, and

then to define a utility function - called, say, STRIP - that would name CONT (in order to

obtain access to it as a structure) and strip off just as many levels of embedding as the LET

had added, so as to obtain access to the continuation wiih which the LET was called. This is

typically what is done when defining debugging functions - RETFUN md so forth - from

primitives that merely provide access to the state of the implementing stack: one uses such

constructs as { STKPOS -2) and so forth. We could lay out the definition of such a function

here, but since we will reject GET-STATE presently, we will avoid it (routines t11c1t inspect and

decompose continuations, however, will be defined in section 5.d below). However we can

illustrate how STRIP would be used:

> (LET [[X 3] [Y 4]]
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (!ERPRI)
(PRINT tENV)
((STRIP CONT) '[THATS ALL]))))

(['X '3] ['Y '4] ...]
> '[fllATS ALL]

(S5-24)

What is a little odd about this, however, is that it would appear to be merely a complex

version of t11c following:

> (LET [[X 3] [Y 4]]
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (TERPRI)
(PRINT tENV)
'[1/IATS ALL])))

(S5-25)

It seems, in particular, that if in S5-24 we simply wanted to return [THATS ALL] as the result

of the UT, then this lauer suggestion - if it works - would be a simpler way of doing

that.

5. Procedural Reflection and 3-LISP Procedural Reflection 587

Indeed this is the case. Though we have not made it explicit, the presumption

throughout the foregoing examp1cs was that not only did the call to GET-STATE return

(designators of) the environment and continuation that were in effect at the moment of the

call, but that this very continuation received the result of the call as well. In other words

corn was called with the sequence [ENV CONT] - an oddity that begins to betray why GET

STATE will ultimately be discarded. In other words S5-25, as suspected, would return

[THATS I\LL] as its result:

> (LET [[X 3] [Y 4]]
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (TERPRI)
(PRINT tENV)
'[THATS ALL])))

[['X '3] ['Y '4] ...]
> '[THATS ALL]

(S5-26)

Though this is well enough defined, it solves a problem by avoiding the question. It is

beginning to appear as if the continuation returned by GET-STATE will never be used.

This is actually not true: we can imagine a more complex STRIP-like procedure that

unwound not only the binding part at the beginning of its use, but that threw away even

more of the continuation. For example, we might define a RETURN procedure that would

hand (the normalisation of) it,; argument to the closest enclosing call to some procedure

(say, lo the nearest BLOCK). RElURN would presumably call STRIP, and then examine

continuations one by one in the resulting fonn until one of the propc~ form were

discovered, which would then be called. For example we might be tempted to define

RETUHN in approximately the following way:

(DEFINE RETUHN
(LAMBDA EXPR [ANSWER]

(LET [[CONT (STRiP (1ST (GET-STATE))}]]
... look through CONT ... }))

(S5-27)

However it is not clear we can put the call to STRIP there, since all that this arrangement

would do (at best) is to strip off the extra continuation structure Jhal it put 011 for its own

arguments. Thus we would need something closer to:

(OF.FINE RETURN
(LAMBDA EXPR [ANSWER]

(LET• ([[CONT ENV] (GET-STATE)))]
[CONT (STRIP CONT)]]

... look through cmn ...)) }

(S6-28)

5. Procedural Reflection and 3-LISP Procedural Reflection 588

Even this, however, will probably not be correct. since the continuation structure added by

the call to RETURN may need to be by-passed. We need not work through the details, but

this sort of manoeuvring to avoid stepping on your own toes is entirely typical of the use of

this kind of self-referential facility (a difficulty we will avoid in 3-LISP).

Another use of a GET-STATE continuation would be as part of a result passed out to a

caller, thereby retaining access to the continuation within the scope of this procedure.

Again, this is very much like the functionality provided by INTERLISP'S spaghetti:

everything one rould do in that system couid be done here.

To see how all of this would go, however, we need to explore the relationship

between GET-STATE and SET-STATE, on the one hand, and NORMALISE and MC-NORMALISE, on

the other. Note that we have not yet used SET-STATE, although we called CONT as an

explicit function. (This last fact, too, should suggest that the proposal under discussion is at

least odd - it is not quite clear yet whether SET-STATE will ever be necessary.)

We will look at NORMALISE and SET-STATE in turn. First, if WC call MC-NORMALISE

with the ENV and CONT that WC obtained from GH-STATE, it would seem that WC could

proceed the computation that was in force. Suppose, for example, we executed the

following (note again our use of STRIP, without which we would have the same difficulty

we experienced earlier about cycling this code):

(LET ([X 10] [Y 20]]
(LET [[(ENV CONT] (GET-STATE)]]

(BLOCK (MC-NORMALISE 'X ENV (STRIP CONT))
{PRINT 'DONE))))

(S5-29)

Two important observations arc provided by this example. First, it is not clear that the call

to PRINT wilt ever happen - or if it happens, when that will be - since CONT, which may

at the top include the infinite procedure REI\D-NORMALISE-PRIIH, may never terminate. It is

not as if the BLOCK and the pending call to PR INT arc thrown away, since MC- ~JOHMALISE is a

regular procedure - rather, they are likely to remain hanging forever. ff indeed CONT

includes this call to READ-NORMAI.ISE-PRHJT (which for the moment we will presume}, then

the call to MC-NORMALISE will never return, even though it will apparently come hack to top

level:

> (LET [[X 10] [Y 20]]
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (MC-UORMALISE 'X ENV (STRIP CONT))
(PRINT 'DONE)}))

(S5-30)

5. Procedural Reflection and 3-LISP

> 10
> (+ 2 3)
> 6

Procedural Reflection 589

The second observation is related to this odd behaviour. This is that all subsequent

normalisation will be processed with one level of implementation intermediating: whereas

we assume that all code up to the point of the call to MC-NORMALISE was executed by the

primitive processor. In other words, all ensuing computation will be effected not directly

by the primitive processor, but in virtue of the primitive processor rnnning MC-NORMALISE.

1l1is is presumably unfortunate, since nothing in S5-29 suggests that this deferral of

subsequent processing was part of our intent

We may ask whether SET-STATE answers these troubles. According to our original

proposal, SET-STATE takes two arguments - an environment c1nd a continuation - and

proceeds the primitive processor with those as its states, rather than with the ones that were

in effect at the moment the SET-STATE redex was itself normalised. This of course has a

minor bug: we would have to specify. in order to be well-formed, an argument with which

the continuation should be reduced: continuations have to be given answers. We wilt

assume, therefore, that SET-STATE takes three arguments: an environment, a continuation,

and an argument for that continuation (other options are possible, such as providing it with

an expression and an environment, but they make no material difference here). '111e natural

re-casting of S5-29 under this proposal would be this:

(LET [(X 10] [Y 20]] (S5-31}
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (SET-STATE ENV (SfRIP CONT) (MC-NORMALISE 'X ENV ID})
(PRINT I DOl~E)))}

Our intent here is to look up the value of x in ENV (the only way we have of doing this is

by calling MC-NORMALISE as indicated), and then setting the processor as before.

This is different, sure enough, but once again the c.ill to PRINT would be ignored!

The reason is not, in this case. because it would be pending for ever, but rather because it

would simply be thrown away. 'Tile presumption is that SET-STATE is a dcstn1ctivc

operation - the state in effect when it was called was supposed to be replaced by that

encoded in its arguments. This, now that we use it in an example, seems unnecessarily

extreme. 'lllere are other odd aspects to this decision as well: if CONT, or { srn Ir COHT) in

our case, is a standard continuation, the ENV argument to SET-STATE is immaterial. In fact,

5. Procedural Reflection and 3-LISP Procedural Reflection 590

if anything, it played a role in the call to MC-NORMALISE, not in the call to SET-STATE.

One apparent advantage of S5-31 over S5-29, however, is that subsequent processing

is effected by the primitive processor, not by one level of indirection through MC-NORMALISE.

The behaviour in the following ses,;;ion is similar to what we had before (in S5-30), but

without the concomitant serious inefficiency:

> (LET [[X 10] [Y 20]] {S6-32)
(LET [[[£NV CONT] (GET-STATE)]]

{BLOCK (SET-STATE ENV {STRIP CONT) (MC-NORMALISE 'X ENV ID))
(PRINT 'DONE))))

> 10
> (+ 2 3)
> 6

We could attempt to repair the design of SET-STATE so as to take an expression,

environment, and continuation, and to send to that continuation the result of nolTilalising

the expression in the environment This would seem to rationalise the curious structure of

S5-32, yielding something of the following sort:

> (LET [[X 10] [Y 20]]
(LET [[[ENV CONT] (GET-STATE)]]

{BLOCK (SET-STATE 'X ENV (STRIP CONT))
(PRINT 'DONE))))

> 10
> (+ 2 3)
> 5

(S5-33)

Though this seems better, there is a striking fact about this example that we cannot ignore:

the call to SET-STATE lvoks almost exactly like a call to MC-NORMALfS= - it took exactly the

same arguments, and approximately the same behaviour resulted. Thus we must ask how

this new SET-STATE differs from MC-NORMALISE. To this important question there arc two

answers: subsequent processing was not indirected, and no pending calls to PRINT were

saved forever.

We must keep these t.wo points in mind, but deal with them independently, since

they do not seem to bear any inherent relationship to each other. It would seem natural to

deal with the first in the following way: since we now have a way in which to obtain access

to normal-form designators of environments and continuations, we will posit that the

primitivdy named processor functions NORMALISE and REDUCE take processor states as

arguments, just as MC-NORMALISE and MC-REDUCE did. We will no longer need. the meta

circular versions, since their only use in these last pages has been as variants on HORMALISE

5. Procedural Reflection and 3-LISP Procedural Reflection 591

and REDUCE that take these extra arguments. Furthermore, if we use primitive procedures

we will dispense with our concern about indirect processing: NORMALISE and REDUCE by

definition perform the required processing directly.

The problem with this proposal, however, is that by solving one difficulty (that of

deferred processing) it raises another, much more serious one. We admitted explicitly that

when SET-STATE was called, it discarded the environment and continuation that were in

force at the point of reduction: what is far from clear is what happens to the environment

and continuation in force when our new NORMALISE is called (that they are somehow

maintained is the one thing that distinguishes NORMALISE from SET-STATE in our present

configuration). Some examples will suggest that our new proposal if: in rather serious

trouble in this regard.

First, it seems reasonable to expect that, if given a continuation of ID, that NORMALISE

should return its result to the caller (we will have much more to say later about the use of

ID as a continuation - it will play a very important role}:

> (LET [[X 10] [Y 20]]
(LET [[[ENV CONT] (GET-STATE)]]

(NORMALISE '(+ X Y) ENV ID)))
> '30

Secondly, we would still expect to be able to use COfJT directly:

> (LET [[[ENV CONT] (GET-STATE)]]
((STRIP CONT) '100))

> 100

(S!i-34)

(S5-35)

However it would seem that the following would be equivalent in effect to S5-34:

> (LET [[X 10] [Y 20]]
(LET [[[ENV CONT] (GET-STATE)]]

(NORMALISE '(+ X Y) ENV (STRIP CONT))))
> '30

(S5-36)

This is odd: the last fonn (tJORMALISE • (+ x Y) rnv (STRIP CONT)) is itself called with

(STRIP CONT) as a continuation, as a quick examination of the definition of LET and of the

meta-circular processor will show. One wonders what happens to this pending call to that

continuation. Once again, in other words, we have a situation similar to that in S5-33

above:

> (lET [[X 10] [Y 20]] (S5-37)
(LET [[[ENV CONT] (GET-STATE)]]

(BLOCK (NORMALISE '(+ X Y) ENV (STRIP CONT))

5. Procedural Reflection and 3-LISP Procedural Reflection 592

(PRINT 'HELLO))))
> '30

There would seem to be two options: either the call remains pending forever, or else it is

discarded. However it cannot be discarded, for two reasons. First, if it were discarded, it

would be identical to SET-STATE: we have pretty much admitted that the PRINT redex in the

following expression wilt never be encountered:

> (LET [[X 10] [Y 20]]

> '30

(LET [[[ENV CONT] (GET-STATE)]]
(BLOCK (SET-STATE '(+ X Y) ENV (STRIP CONT))

(PRINT 'HELLO))))

(S5-38)

However there is a more serious reason (we don't have to keep NORMALISE different from

SET-STATE: we could discard the latter name if necessary): if NORMALISE redexes were to

discaid the context they were processed in, S5-34 would not work: the ID would have no

one to give the answer to! lbercfore th~ continuation in s~-37 must remain pending until

the NORMALISE returns. But this will be to wait forever, since (srn IP CONT} contains an

embedded non-tcnninating can to READ-NORMALISE-PRINT.

Not only will this be an infinite wait, but if it remains pending - and this is the

killer argument - there is an implication that there are two different continuations being

maintained by the underlying processor: the one that is handed to tJOHMALISE exnlicitly, and

the one that was in force at the point of reduction of the NORMALISE rcdcx. This is the first

step down a long slippery slope: if there can be two continuations, there can be an arbitrary

number. Suppose for example we were to nom1alisc the following expression:

(LET [((ENV1 CONT 1] (GET-STATE)]]
(BLOCK (NORMALISE '(LET [[[ENV2 CONT2] (GET-STATE)]]

EPlV1

(BLOCK (NORMALISE '{+ X Y} ENV2 CONTz)
{ PRINT I TWO}))

CONTi}
(PRINT 'ONE}))

(S5-39)

There is a question as to whether CONT 2 would be bound to CONT 1, or to some amalgam of

CONT 1 and the continuation pending to print "ONE". No answer is immediately forthcoming.

It is time to step back for a moment to sec what is going on. In the INTERLISP

spaghetti protocols, the continuation structures were implementation dependent constructs,

and as such there was no tendency simply to call them. Rather, the analogue of SET-STATE

had to be used in each case. This has a certain clarity, although the extreme difficulty of

5. Procedural Reflection and 3-LISP Procedural Reflection 593

stepping cautiously over and around these continuations while manipulating them was a

difficulty, as well as their structural inelegance. When we introduced a protocol in which

first-class closures were used to encode the continuation structure, we lost any clear sense of

what was running what. The spaghetti protocols are layered, in other words: two layers, to

be srecific, and strncturalJy rather distinct. 111erc seems some evidence that the layering is

crucial.

It is also noteworthy that we have not once used the environment strnctures returned

by GET-STATE. There is a reason for this: in a statically-scoped dialect there are many

different environments around, with a relatively well-defined protocol dictating which are

used in what situation. Because of this isolation of one context from another, the use of

GET-STATE did not put us into environment difficulties. It is worth just one example to see

how this would not be the case in a standard dynamically scoped LISP. In particular,

suppose that we were to embed GET-STATE and SET-STATE into 1-LISP, and that we wanted

to define a procedure called DEBUG that was to update a counter each time it was called, and

was also to normalise its argument in a modified environment (we assume some function

MOIJIFY-ENVIRONMENT has been appropriately defined). We might imagine something of the

following sort:

{DEFINE DEBUG (S5-40)
(LAMBDA IMPR [ARG]

(LET [((ENV CONT] (GET-STATE)]] This is 1-LISP
(BLOCK (SET 'COUNTER(+ 1 COUNTER))

(NORMALISE ARG
(MODIFY-ENVIRONMENT ENV)
(STRIP CONT))))))

We assume that COUNTER is a global variable that is initialised before any calls to DEBUG are

normalised. The problem, of course, is that the SET might use a variable name that was in

ENV, and affect it. For example, we would have:

> (LET [[COUNTER 40]]
(BLOCK (DEBUG)

(+ COUNTER 10)))
> 51

(S5-41)

The reason we raise this has to do with relative isolation: in a statically sc0ped dialect there

arc different environments in the two rcdcxcs S!i-40 and ss-41; thus the unwanted collisions

arc naturally avoided. What is curious about all of our explorations of various

continuations in these last pages is that roughly the same sorts of collisions seem to be

5. Procedural Reflection and 3-LISP Procedural Reflection 594

troubling us. It is natural to wonder, therefore, whether some analogous solution might be

found: a protocol for continuations that bore the sam! relationship to our current protocols

as static scoping bears to dynamic. Obviously it cannot be an isomorphic solution - it is

nonsensical to suggest that each reduction that involved the expansiun of a closure would

use a different continuation: continuations are exactly what tie such redexes together.

However it is less clear whether some solution with similar abstract structure might not be

found.

5. Procedural Reflection and 3-LISP Procedural Reflection 595

5.a.iii. Reflective Code in the Processor

What is good about GET-STATE is the fact that it provides access to well-formed

normal-form designators of the processor state: a minimal requirement on a reflective

facility. What is bad about it, however, has to do with the code that is given those

designators. In other words we have succeeded in providing a view of the processor, but

we have not provided an adequate place to stand in order to do the looking. The troubles

in the foregoing examples arose not so much from the results returned by caUs to GET

STATE, in other words, but rather in the integration of code using GET-STATE into the

processing of regular base-level code. For example, GET-STATE both reified and absorbed

the continuation from the tacit context. It is all very well to reify it - that has been our

goal - but rcification should be an alternative to absorption, not an addition.

In order to see why this is a problem, and from there to identify a better solution,
. .

we will look briefly at the revised meta-circular processor that would be required for a

dialect in which GET-STATE and our new three-argument NORMALISE were defined. We

informally assumed, in the discussions above, that the meta-circular MC-NORMALISE and MC

REDUCE of S5-1 and S5-Z would suffice, even if GET-STATE was defined, but of course the

addition of GET-STATE should be manifested in an altered meta-circular interpreter.

Furthennore, the second change, whereby NORMALISE and REDUCE were extended to accept

three arguments, obviously requires changes to the meta-circular processor as well. The

definitions of MC-REDUCE and MC-NORMALISE remain unchanged (providing we assume that

SET-STATE and GET-STATE are EXPRs; since the latter takes no arguments, this is as good a

choice as any); the differences arc manifested in a new definition of rirnucE-EXPR

(modifications are underlined):

(DEFINE MC-REDUCE-EXPR (S5-45)
(LAMBDA EXPR [PROCI ARGS ENV CONT]

(SELECT PROCI
[tGET-STATE (CONT t[ENV CONT])]
(tREFERENT (MC-NORMALISE +{lST ARGS) ENV CONT)]
[tSET-STATE (MC-NORMALISE +(lST ARGS) {2ND ARGS) {3RD ARGS))]
[tNORMALISE (MC-NORMALISE +(lST ARGS) (2ND ARGS) (3RD ARGS))J
[tREDUCE (MC-REDUCE i(lST ARGS} +(2ND ARGS)

(3RD ARGS) (4TII ARGS)}]
[$T (CONT t(+PROC! . +ARGS))])))

5. Procedural Reflection and 3-LISP Procedural Reflection 596

The definition makes plain the fact alluded to earlier: calls to GET-STATE return as part of

their result the same continuation that that result is sent to. As we said above, the

difficulties we had arose not over the results tlrnmselves, but over the integration of the

supposedly reflective code into the main program body. This should make us suspect that

CONT is not the ideal continuation to send 1'[ENV CONT] to.

There are some other things to notice about S5-45. First, the level-shifting

embodied in all of these protocols is made clear: GET-STATE provides to a continuation {at

some level) designators of the environment and continuation of that same level. I.e. CONT is

called with '!'CONT as an argument. Similarly, SET-STATE de-references its first arguments,

but not its second two. Finally, the code for NORMALISE and REDUCE is simply wrong: it is

identical to that for SET-STATE. The problem with multiple continuations is made clear in

this code: NORMALISE was supposed to save CONT, but it is not clear how this is to be done.

There arc limits to pursuing malformed proposals. The crucial insight, to which all

of these considerations lead us, is this:

Reflective code should be nm at the same level as the meta-circular processor; ii
should not be processed !!J:. the meta-circular processor.

This realisation in one move solves a number of problems: it deals straight away with the

ambiguity engendered by the tension between tJORMALISE and MC-NORMALISE in lhe examples

in S5-29, S5-31, and S5-34, above, where in one case subsequent code was indirectly

processed through the meta-circular processor, whereas in the other it was processed

directly. It will also solve all of the problems of integration, as well as the inelegance of

the level-shifting involved in such expressions as 1'[ENV COUT] in the code just presented. It

is an insight with consequence, however, so we will look at it rather carefully.

lbe first way to understand it is to take a particular example, rather than attempting

to solve the general case. Suppose in particular that we look again at our suggested

procedure called DEBUG that was supposed to normalise its arguments in some variety of

modified environment. We assume that DfBUG with a single argument should engender the

normalisation of something like the following code:

(BLOCK (SET COUNTER(+ 1 COUNTER)) (S5-46)
(NORMALISE ARG (MODIFY-ENVIRONMENT ENV) CONT))

5. Procedural Reflection and 3-LISP Procedural Reflection 597

where ARG is assumed to be bound to (a designator of) the arguments provided in a

particular application, and ENV and CONT are bound "appropriately" - what this comes to

we will see in a moment

Suppose we constmct a special-purpose meta-circular processor to handle this case.

I.e., we will not define DEBUG, but will instead make it primitive in the processor. This time

we will modify MC-REDUCE. (Once again the new code is underlined; in addition, we have to

use (1ST ARGS) in place of ARG.)

(DEFINE MC-REDUCE {S5-47)
(LAMBDA EXPR [PROC ARGS ENV CONT]

{MC-NORMALISE PROC ENV
{LAMBDA EXPR [PROC!]

(IF {EQUAL PROCI tOEBUG)
(BLOCK (SET COUNTER(+ 1 COUNTER))

(MC-NORMALISE (1ST ARGS} (MODIFY-ENV ENV} CONT))
(SELECTQ {PROCEDURE-TYPE PROCI)

[IMPR (IF {PRIMITIVE PROCI)
{MC-REDUCE-IMPR PROCI tARGS ENV CONT)
(EXPAND-CLOSURE PROC! tARGS CONT))]

[EXPR (MC-N1RMALISE ARGS ENV
(L MBDA EXPR [ARGSI]

{IF (PRIMITIVE PROC!)
(MC-REDUCE-EXPR PROC! ARGS! ENV CONT)
(EXPAND-CLOSURE PROC! ARGS! CONT))))]

(MACRO (EXPAND-CLOSURE PROC! tARGS
{LAMBDA EXPR [RESULT]

{MC-NORMALISE RESULT ENV CONT}})])))))

The striking fact, of course, is that ENV and CONT are bound to their natural bindings within

REDUCE; with just the correct resulting behaviour. Suppose, for example, we took at the

following code:

(LET [[X 3] [Y 4]] (S5-48)
{ + X (DEBUG Y)))

and suppose in addition that MOOIFY-BJVrnONMENT takes an environment and changes the

bindings of all atoms bound to numerals, in such a way that they end up bound to double

what they were bound to originally. We would thus get (assuming, of course, that the

processor nmning the following code is the one described by the MC-HEDUCE of S5-47):

> (LET [[X 3] [Y 4]]
(+ X (DEBUG Y)))

> 11

(S5-49)

This works because the expression (DEBUG Y) is normalised in the course of the computation

just as any expression would be: since it is a pair (a redcx), it is reduced, causing the

5. Procedural Reflection and 3-LISP Procedural Reflection 598

nonnalisation of the CAR, which yields PROC 1 (in REDUCE) bound to a designator of the

closure of DEBUG. This fact is noticed by the conditional in MC-REDUCE, which the1,

nonnaliscs the first argument (v, in this case) in the modified environment, with the

continuation given to the normalisation of (CEBUG Y). This is a continuation that expects

nonnalised arguments for +, since that function is an EXPR; thus a is returned to that

continuation, and U1e addition proceeds, yielding 11 as a final answer.

The "place to stand" that we were looking for, in other words, is provided in this

example by inserting the code within the meta-circular processor. This is perhaps to be

expected, for the meta-circular processor ha5 exactly the properties we have been requiring

for reflection: it has its own environments and continuations, but its arguments designate

the environments and continuations of the code running one level below it.

The open question, however, is how to provide a general solution - our treatment

of DEBUG was highly particularised, requiring essentially a private dialect. A first suggestion

as an answer is to modify DEBI.JG as follows: rather than having it primitively recognised by

REDUCE, we will posit that it will be categorised as a special type - a REFLECTIVE procedure.

Then we will assume that associated with each reflective procedure (of which DEBUG is now

just one exc1.rnple) there is another procedure (say, DEBUG* in this case) which is called with

the arguments and with the environment and continuation in current force in REDUCE.

Finally, we assume that some procedure CORRESPONDING-FUN will embody the mapping

between these two (from DEBUG to DEBUG• in our case). The revised definition of REDUCE

would be the following:

(DEFINE REDUCE
(LAMBDA EXPR [PROC ARGS ENV CONT]

(MC-NORMALISE PROC ENV
(LAMBDA EXPR (PROC!]

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT ((CORRESPONDING-FUN PROC!) ARGS ENV CONT)]
[IMPR (If (PRIMITIVE PROC!)

(MC-REDUCE-IMPR PROCI tARGS ENV CONT)
(EXPAND-CLOSURE PROC! tARGS CONT}}]

[EXPR (MC-NORMALISE ARGS ENV
(LAMBDA EXPR [ARGSI]

(IF (PRIMITIVE PROC!)
(MC-REOUCE-EXPR PROCI ARGSI ENV CONT)
(EXPAND CLOSURE PROCI ARGSI CONT))})]

[MACRO (EXPAND-CLOSURE PROCI tARGS
(lAMBOA EXPR [RESULT]

(MC-NORMALISE RESULT ENV CONT)))]))}})

(S5-50)

5. Procedural Reflection and a-LISP Procedural Reflection 599

In addition, we have the following definition of DEBUG•:

(DEFINE OEBUG• (S5-61}
(LAMODA EXPR [ARGS ENV CONT]

(BLOCK {SET COUNTER(+ 1 COUNTER))
(NORMALISE ARG {MOD[FY-ENVIRONMENT ENV) CONT))))

We are close to a final solution; the present proposal, however, can be simplified

substantially. Note that under this new plan the function DEBUG is never defined; we

merely used expressions of the form (DEBUG <arg>). In addition, DEBur.• is never called

explicitly, except in the sixth line of the REDUCE just given. Furthermore, we have not yet

indicated how we have indicated that DEBUG is a reflective procedure, nor have we defined

CORRESPONDING-FUN. All of these problems can be solved in one move if we adopt the

folJowing convcnthn: procedures of type REFLECT (i.e., dcsignflted by such expressions as

(LAMBDA REFLECT ...) will be recognised by PROCEDURE-TYPE as reflective. When they are

used, they will be called with a standard set of argument'>. Their definitions, however, will

be, like the definition of DEBUG•, designed to accept tl1rec argument~: a designator of the

arguments provided in an application, an environment, and a continuation. lbey will be

processed much as in the case of DEBUG• just given. Thus, for example, under this new plan

there would be no function DEBUG': instead, we would define DEBUG approximately as

follows (note the use of pattcrr, decomposition to extract the first argument):

(DEFINE DEBUG
(LAMBDA REFLECT [[ARG] ENV CONT]

(BLOCK (SET COUNTER(+ 1 COUNTER))
(NORMALISE ARG (MODIFY-ENVIRONMENT ENV) CONT))))

(S6-52}

Exactly how reflective procedures arc treated by REDUCE will be explained in detail in

section 5.c, but tlle general flavour is predicted by I.he foregoing examples.

The final, and perhaps the most important, comment to be made about the

definition of RtoUCE just given is that it can no lunger be fairly called a "meta-circular"

processor, in the sense that we were using that term in previous chapters. 111c problem is

that whereas previous versions were merely models of the main processor: runnable but in

no way part of the regular processing of expressions, tllis new definition has a very diff crent

status. It would seem as if it would always have to be run, since, when a rctlcctivc

procedure is invoked, it will actually have to be passed the environments and continuations

that tiave been built up over the course of the computation. In addition. there is no

indication of how reflective procedures arc in fact treated, since wherc~s all expressions

5. Procedural Reflection and 3-LISP Procedural Reflection 600

treated br the meta-circular processor were previously mentioned (both IMPRS and EXPRs),

reflective p:-ocedures are in this new version used in the meta-circular processor.

Furthermore, reflection should of course be able to recurse. Thus, not only do we

seem to have mandated one level of indirected processing, we may in fact have mandated

an infinite number of levels.

In spite of these concerns, however (all of which can be taken care of), the

suggestion as laid out is essentially the one we will adopt It has all of the required

properties: the full state of the processor is available for inspection and modification, it is

fully general, and a natural context is provided for reflective code to run.

There is one final footnote to this long introduction. GET-STATE and SET-STATE have

of course disappeared in favour of reflective procedures, but it is trivial to define them as

3-LISP routines, as follows:

(DEFINE GET-STATE GLOBAL (S5-63)
(LAMBDA REFLECT[[] ENV CONT] (CONT t[ENV CONT])))

(DEFINE SET-STATE GLOBAL (S5-64)
(LAMBDA EXPR [ARG ENV CONT]

((LAMBDA REFLECT 7 (NORMALISE ARG ENV CONT)))))

It is readily apparent how GET-STATE returns designators of the environment and

continuation to the continuation itself, and how SET-STATE (an EXPR) reflects, ignoring the

current context, and proceeding in virtue of the context passed in as an argument.

Finally, the NORMAi. ISE mandated by our new definition has all the properties we

wanted: it takes three arguments, and it maintains continuations (potentially an infinite

number of them, because there are an infinite number of reflective levels). All of this wilt

be made clear in section 5.c.

5.a.iv. Four Grades of Reflective Involvement

We have rather debugged ourselves into an acceptable design, in part by modifying

and reacting to the limits of previous suggestions. Before turning to the full development

of 3-LISP in accordance with these insights, we must pause to review our progress. What

we would like is an abstract characterisation of the various proposals that have been

rejected, and of the apparently acceptable suggestion we will shortly pursue.

5. Procedural Reflection and 3-LISP Procedural Reflection 601

First, the discussion of the meta-circular 2-LISP processor showed us that, to the

extent that the reflective programs pass designators of processor state, those designators must

be causally linked to the actual state they designate. There is no advantage in passing

environment and continuation arguments explicitly to MC-NORMALISE if they arc not in fact

designators of the environment and continuation that were in force. TI1e first principle of

reflection, then, is that one must retain adequate causal access.

Second, we saw that there were two ctiffercnt ways in which a processor could have

adequate access to a non-reflected process (or aspects of it). In other words there is more

than one way to have causal access: either by simply being "within" the same context (or

field or whatever), or by dealing with structures that name that process (or aspects of it).

We will call these two kinds of access direct and indirect, respectively. Thus whereas MC

NORMALISE dealt with designators of environment and continuation, and had no causal access

at all; NORMALISE, on the other hand, had direct causal access to the environment,

continuation, and field. (Too much direct causal access, as we saw, is no better than none.)

It emerged in the discussion of GET-STATE that there is no virtue in having both

direct and indirect access: only confusion resulted from that suggestion. The problem in

that circumstance, in other words, was not only that there was insufficient room for

reflective manoeuvring, but also that it was unclear whether the tacit encompassing context,

or the one returned as the result of a GET-STA TE redcx, was to be used in any given

situation.

1bese considerations lead to the following suggestion: reflective procedures should

run in the following manner: all of those aspects of the non-reflected procedures that arc

their subject matter should either be given in terms of causally connected indirect (reified)

designators, or they should be directly shared with those procedures. We have,

approximately, four components to a simple computational process: environment,

continuation, field, and input/output interface; thus this mandate would seem to suggest as

many as sixteen possible designs, in which each of these four compomcnts were provided

either directly or indirectly to the reflective procedures. Thus the most general theoretical

approach would be to define sixteen types of reflective procedure (procedure rather than

architecrure because, as we will discuss shortly, a given architecture could support more

than one reflective procedure type). However from these sixteen we will select four that

5. Procedural Reflection and 3-LISP Procedural Reflection 602

seem the best motivated.

First. there is not much argument - nor much sense - to provide the environment

as a direct property (except with regard to publically defined procedures - sec section

5.b.iv). Additionally. since the continuation is with the environment part of the state of the

processor. it is natural to consider them together (i.e., to think of the computational process

as consisting of processor and field, and the processor in turn as consisting of environment

and continuation, as we have suggested all along). There is no necessity, however, to do

this: it would be possible to define a dialect that reified the environment but absorbed the

continuation. 1bis, after all, is very much like the inchoate use of "environment pointers"

in standard LISPS.

What does seem suggested, however, is that it is more reasonable to rcify the

continuation than the whole field, and also that it would be extremely unlikely to want to

reify the continuation and not the environment. This suggests that we can order the

environment, continuation, and field, in terms of candidacy for reification. The interface

we will simply for the present ignore, mostly because we have dealt so little with

input/output behaviour; its reification (perhaps in the form of streams and so forth) is both

straightforward and perhaps less engendering of confusion than any of the other three; in

addition, current practice comes closest to rcifying it. This leads us, therefore, to the

following four types of reflective dialect (we include type O for completeness, although it

doesn't quite count since it reifies nothing):

(S6-55)

Environment Continuation Strnctural Field

Type O reflection absorbed absorbed absorbed

Type 1 reflection reified absorbed absorbed

Type 2 reflection reified reified absorbed

Type 3 reflection reified rcified reified

Type O reflection is what the 2-LISP IMPR facility provided: mention of procedural

fragments, but entirely within the standard processor regimen. NORMALISE and REDUCE (the

single argument versions) were similarly of this type O variety. As we discovered there, this

is an inadequate scheme, and must be rejected: type O reflection, in other words, is not

really rellection at all.

5. Procedural Reflection and 3-LISP Procedural Reflection 603

Type 1 reflection, as mentioned earlier, is not unlike the use of pointers into

environments in standard LISPs; we, however, will reject it as well, since it provides no

ability to describe continuation (control) aspects of processing, and there is no rem",n to

reject this half of the processor. On the other hand the IMPR problems of 2-LISP would be

solved rather nicely by this sort of reflective ability: one imagines an IMPR type of LAMBDA

term, binding parameters to argument structure and environment in force at the point of

the IMPR redex, but operating within the same continuation structure. Thus for example we

might have the following definition of SET (see example S4-806):

(DEFINE SET {S5-56)
(LAMBDA IMPR [[VAR EXP] ENV]

(REBIND VAR (NORMALISE EXP ENV ID)}))

Even more elegant, however, would be to have a version of NORMALISE to use in such

circumstances which required only two arguments:

(DEFINE SET (S5-57)
(LAMBDA IMPR [[VAR EXP] ENV]

(REBIND VAR (NORMALISE EXP ENV))))

We will not adopt this practice in 3-LISP, in order to leave that dialect simple, but two

things should be said. First, the strategy we will adopt - rcifying environment and

continuation - is more powerful, so that the behaviour engendered by such IMPRS can

always be defined in J-LISP. It turns out not to be possible to translate syntactically

between IMPRS of this sort and more general reflective procedures, for reasons that have to

do with subtleties arising from the interaction of continuations. For this reason a practical

J-LISP system might well want to include this sort of type 1 reflection, as well as the more

powerful kind we will explore in this chapter.

Finally, there is a choice between type 2 and type 3. TI1e difference would be that

reflective procedures. under a type 3 .;cheme, would receive as an argument a designator of

a field, much as the meta-theoretic characterisation of 2-LISP received as argument a field

designator. Procedures that accessed components of those fields would have to be provided

(again as in the meta-theoretic characterisation): thus we might expect such constructs as

(NTH 1 X F) and (LENGTH l1 FIELD-7} and so forth.

We will reject this extra complexity, and proceed instead with developing a type 2

dialect. The reason is merely one of simplicity: there is nothing incoherent about the type

3 proposal, and from a purely mathematical point of view it is perhaps the most elegant.

5. Procedural Reflection and 3-LISP Procedural Reflection 604

However two facts argue against its adoption. First, it is not clear that there would in a

pratical system be much difference between a type 2 and a type 3 dialect, except that the

latter would be more complex, because all access to the structural field is of two types:

either it is direct. in which case it always involves the creation of new structure (PCONS and

so forth}, or else it is through names, which are environment relative. By reifying the

environment we have reified access to the field; thus we arc not liable to trip over another

level's use of the field unwittingly, by allowing it to remain as a whole undifferentiated

among levels. Furthennorc, one of the only arguments for reifying the field is to save state

(so as to be able subsequently to back up a computation); on the other hand, given that a)

the field is infinite, and b} we have reified access, we can make a copy of the entire

accessible fragment of the field with our current proposal.

Second, in the model of computation in which the structural field was introduced (in

chapter 1), it was not presented as particular to the processor state, but more as the world

over which the programs were embedded. It was this fact that led us to characterise alt

programs as meta-structural; terms in them designate structural field elements. 'fllus to

rcify the entire field is not so much to make one process reflect as to implement an entire

computational process in another. This, it would seem, is perhaps too much separation.

These are not hard and fast decisions: it is important to recognise the potential

viability of both type 1 and type 3 architectures. Nonetheless we will adopt the type 2

proposal in our own design.

A very rough idea of the 3-LISP levels of processor is given in the following

diagram. The intent of this picture is to show how each level is processed by an active

processor that interacts with it (locally and serially, as usual), but how each processor is in

tum composed of a structural field fragment in turn processed by a processor interacting

with it.

5. Procedural Reflection and 3-LISP Procedural Reflection 605

(S6-68)

level 1 Code

Nothing like the detail required to fonnulatc 3-LISP can be conveyed in a simple diagram,

of course, but one facet of 3-LISP is indicated here that is crucial to understand. Each

processor runs always: there is not a single locus of agency that moves around between

levels (even though this is how the implementation works, as we will sec i1~ section 5.c).

Thus it is reasonable to ask at what level a given procedure is run, but it is not reasonable

to ask at what level the 3- LISP processor is running.

5. Procedural Reflection and 3-LISP Procedural Reflection 606

5.b. An Introduction to a-LISP

There are two primitive categories of procedure in 3-LISP: simple and reflective.

Simple procedures are entirely like 2-LISP EXPRS: they are declaratively extensional, and

procedurally, they "normalise their arguments" on reduction, in left to right order.

Reflective procedures, on the other hand, are more pc,werful than either 2-LISP IMPRS or 2-

LISP MACROS; thus we dispense with both of the latter categories. (It is because reflective

procedures are also extensional that we have replaced the name EXPR with SIMPLE.)

Procedurally, then, we will deal with two classes of closure. Declaratively we adopt the

same semantical domain as in 2-LISP, with its five major categories (structures, truth-values,

numbers, sequences, and functions). In addition, the 3-LISP structural field is identical to

that of the simpler dialect

There are twenty-nine primitive 3-LISP procedures, listed in the following table.

Those that differ substantiatly from their 2-LISP counterparts, or that arc new in this

dialect, arc underlined. The table is divided into two parts: the two in the lower half are

not strictly primitive, in the same sense that the others are (it is not necessary to have

primitively recognised NORMALISE and REDUCE closures bound in the initial environment. for

example). but in spite of this their intensional structure is fundamentally integrated into the

way that the dialect is defined.

Arithmetic:
Typing:
Identity:
Structural:

Modifiers:

//0:
Control:
Functions:
Semanlic:

The 3-LISP Primitive Procedures (S6-63)

+. -, • I .
TYPE
=
PCONS, CAR, CDR
LENGTH, NTH, TAIL
RCONS, SCONS, PREP
RPLACA, RPLACD
RPLACN, RPLACT
READ, PRINT, TERPRI

ll
SIMPLE, REFLECT
NAME, REFERENT

as usual
defined over 6 syntactic and 4 semantic types
s-expressions, truth-values, sequences, numbers
to construct and examine pairs
to examine rails and sequences
to construct " " "
to modify pairs
to modify rails
as usual
an extensional if-then-else conditional
two primitive kinds of procedure
to mediate between sign and significant

5. Procedural Reflection and 3-LISP Procedural Reflection 607

Processor: NORMALISE. REDUCE - primary functions in the reflective processor

Though this complement of primitives is similar to the 2-LISP set, there are a variety of

important differences (the section in which the difference is explored is indicated in

brackets at the end of each entry):

1. All 3-LISP primitives are simple. There are, in other words, no primitive
reflcctivcs - no primitives that deal with their arguments intensionally. This
not only makes for a rather elegant base; it also simplifies the structure of the
reflective processor [5.c]. There are two reflective procedures we might expect
to be primitive: LAMBDA and IF. LAMBDA, however, can be defined as a user
procedure [5.b.vi], and IF can also be defined, in terms of a simple, applicative
order, extensional conditional that we do provide primitively, called EF {for
Extensional iF, since IF can be viewed as the name of an Intensional iF) [5.b.ii].

2. There arc no naming primitives: SET can be defined, as wen as LAMBDA [5.b.iv].

3. The label SIMPLE replaces the label EXPR in alt situations in which the latter
occurred in 2-LISP. 11rns, simple procedures have normal form designators
that arc redcxes formed in terms of the primitive SIMPLE redex; the type
argument to a LAMBDA form will in the standard (non-reflective) case be
s IMP LE; we wilt define a PROCEDURE -TYPE predicate to map simple closures onto
the atom SIMPLE, and so forth. Tims we would for example have: [5.b.iii]

+
((LAMBDA SIMPLE (X] (+ X 1)) 4)
(PROCEDURE-TYPE tTYPE)

(<SIMPLE> •••)
6
'SIMPLE

(S5-64)

4. The four replacing operators {RPLACA, RPLACD, RPLACT, and RPLACN) and the two
printing functions {PRINT and TERPRI) can be defined to return no result,
although their side-effect behaviour is exactly as in 2-LISP. Contexts, such as
in all but the argument position to BLOCK, can be defined to accept such
constructs {BLOCK is not primitive). [5.d.i)

5. REFERENT takes an extra (environment) argument. [5.b.vii]

6. NORMALISE and REDUCE, though causally connected to the primitive processor,
take three and four arguments, respectively, like the 2-t ISP meta-circular
processor's versions of these procedures, rather than one and two {like the
primitive procedures). [5.c.J

7. Reflective redexes - rcdexes whose CARS normalise to reflective closures,
which in turn are closures whose CAR is the primitive <REFLECT> closure - are
of course processed in an entirely new way, that has no analogue or precedent
in 2-LISP. This Jast difference is the fundamental way in which this dialect is
radically distinct from 2-L ISP.

5. Procedural Reflection and a-LISP Procedural Reflection 608

From a pedagogical point of view it is a little difficult to introduce 3-LISP, since it is

difficult to obtain a deep understanding of reflective procedures without a prior

understanding of the reflective processor. On the other hand without some understanding

of what reflective procedures are, the reflective processor will in its own way make little

sense. In the remainder of this section, therefore, we wilt rather briefly survey those aspects

of 3-LISP that are different from 2-LISP, before turning in the next section to an

investigation of the processor.

5.b.i. Reflective Procedures and Reflective Levels

Rather than beginning with the new primitives, we will start with the 3-LISP

treatment of non-primitive reflective procedures. As was suggested in section 5.a, the b0dy

of reflective procedures is intended to be run "one level above" that of the code in which

redexes formed in terms of them arc found. For example, we illustrated a trivial reflective

procedure called DEBUG; if a call to DEBUG is found in code at some level K, then the body of

the procedure associated with the name DEBUG is run within the Jynamic scope of the

reflective processor that mns code at level K: the body, in other words, is run at level K+l.

We assume, in other words, a hierarchy of reflective levels. For convenience alone

we number these from 1 to oo, but there is nothing substantive in the absolute values of

these numbers: the user, by calling READ-NORMALISE-PRINT explicitly, can create levels with

negative indexes. Furthermore, even their ordering is as much a convention as a fact of the

3-LISP architecture; by binding continuations at one level and passing them between other

levels the user can essentially defeat this stmcturing, which is primitive only in the sense of

being embedded in the treatment of RF.AD-NORMALISE-PRINT (sec section 5.c.iii). A diagram

of these reflective levels was given in S5-58; the main idea is that code at each level is run

by a processor which consists of its own small fragment of the structural field, and its own

processor of one higher degree.

The crucial fact about each reflective level is that it is provided with its own

processor state - its own environment and continuation stmctures. As will be explained in

considerably more depth in tl1e next section, the initial working assumption is that each

level (except the lowest one) is initially running the code of the reflective processor;

reflective procedures are integrated with this code in a very particular way. Since tcm1s in

5. Procedural Reflection and 3-LISP Procedural Reflection 609

the reflective processor designate the program being processed (because of our association

of designation and reflective levels), we can expect that the terms in user-provided reflective

procedures will also designate fragments of the program being processed. In addition, other

terms in the reflective processor designate the context in force for the processing of the

program in the level below; again, reflective procedures will by and large do the same.

l11ese assumptions are embodied in the formal protocols as follows. First, the

parameter pattern of every reflective procedure is always bound to a normal-form

designator of a sequence of three arguments: the argument structure of the reflective redex,

the environment in effect at the point of normalisation of that redex, and the continuation

ready to accept the result of that normalisation. Although the argument structure of the

reflective redcx will not have been normalised, reflective procedures (as did 2-LISP IMPRS}

obey the basic principle that all bindings are in normal-form. In fact, as wilt become

increasingly clear over the next pages, reflective procedures can be thought of as simple

extensional procedures one level up. Thus the normal-form designator just mentioned will

always be a three-clement rail consisting of a handle (designating the argument structure), a

rail (designating the environment), and a pair (a closure designating the continuation).

The environment in effect during the normalisation of the body of the reflective

procedure will be the one that was in effect when the reflective procedure was defined, as

always. Again, reflective procedures, except for the one fact that they shift levels upon

being called, are otherwise entirety like simple procedures. The standard static scoping

protocols apply as usual. However the continuation in efTect will be the one mandated by

the structure of the reflective processor, as explained in the next section.

In order to make all of this clear, we need to look at some simple examples. Since

all reflective procedures arc applied to three arguments, it is standard to use as the

parameter pattern a three element r:1iJ. Thus suppose we were to begin defining a simple

test procedure as follows:

(DEFINE TEST (S5-66)
(LAMBDA RHLECT [ARGS ENV CONT] ...)

Note first the USC of the function REFLECT in type position in the defining LAMBDA. REFLECT

is in the same class as were EXPR and IMPR in 2-LISP (and SIMPLE in 3-LISP); it will be

explained in section 5.b.iii below.

5. Procedural Reflection and 3-LISP Procedural Reflection 610

If the rcdex (TEST 1 2 3) were normalised in environment E1 with continuation Ci,

the atom TEST would first be looked up in Ei, and discovered to be bound to a reflective

closure (the normal-form designator of a reflective procedure). The body of that closure

would then be normalised in a context where ARGS was bound to a designator of the CDR of

the reflective redex, ENV was bound to the normal-form designator of Ei, and CONT was

bound to the normal-form designator of C1• In particular, since the CDR of the reflective

redex is the rail [1 2 a J, ARGS would be bound to the handle · [t 2 a J. Similarly,

environments are sequences of two-element sequences of atoms and bindings: since normal

form sequence designators are rails, ENV would be bound to a rail of two-clement rails of

the standard sort Finally, CONT will be bound to the normal-form-designator of a

continuation, which is a closure. About the procedural type of the closure nothing absolute

can be said, for reasons that will become clear later. In the usual case, however, that

closure wi11 be a s IMP LE closure designed to accept a single argument - the local

procedural consequence of the original redex (as is predicted by the continuations passed

around in the meta-circular 2-LISP processor in section 4.d.vii - but see also section 5.c

below).

These few introductory comments would lead us to expect the behaviour shown in

the following console sessions. Note that the prompt character in a-LISP has changed from

that in 2-LISP: to the left of the caret is printed the index of the current reflective level.

Since the various versions of TEST reflect up but do not come down again, each invocation

causes the answer to be returned to the READ-NORMALISE-PRINT loop of the level above it

(there arc an infinite number of these loops all in effect simultaneously - U1is wilt all be

explained in due course). In the first example we return simply the argum.:nts, un

modified (we use (RETURN ARGS) in pface of the simpler AHGS for a mason, unimportant

here, that will emerge in the trestment of READ-NORMAL ~$c -PRINT):

t> (DEFINE TEST1
(LAMBDA REFLECT [ARGS ENV CONf] (RETURN ARGS)))

1> TEST 1

1> (TEST1 1 2 3)
2) '(1 2 3]
2> (TESTJ)
3> 'U

The next example returns the environment rather than the arguments:

(S6-66}

5. Procedural Reflection and 3-LISP Procedural Reflection 611

1> (DEFINE TESTz
(LAMBDA REFLECT [ARGS ENV CONT] (RETURN ENV)))

1> TEST2
1> (LET [[X 3] [Y {+ 2 2)]] (TESTz 1 2 3))
2> [['X '3] ['Y '4] ...]

(S6-6i)

Similarly, we can illustrate the return of the continuation, this time without defining a

procedure but using a reflective LAMBDA form directly:

1> ((LAMBDA REFLECT [ARGS ENV CONT] (RETURN CONT)))
2> (<SIMPLE> ...)

(S5-68}

As us11al the primitive SIMPLE closure that is the CAR of all SIMPLE closures (including itselO

is not printable, being circular; thus we will notate it as "<SIMPLE>" throughout.

So far, these examples are not very instructive. What is important about the

continuation that is bound in each case to the atom CONT is that this is in fact the very

continuation that was in effect when the reflective (TEST) redex was normalised. if it is

called, the computation proceeding one level below will resume with the value pas!:ed to it

by the explicit reflective procedure. For example, we can define a procedure called THREE

that always calls its ccntim.iation with the numcrai 3, irrespective of any arguments it is

given:

1> (DEFINE THREE
(LAMBDA REFLECT [ARGS ENV CONT]

(CONf '3)))
1> THREE
1> (THREE)
1>3
1> (+ 2 (THREE))
1> 5
1> (THREE (PRINT 'HELLO))
1> .'.i

{S6-69)

: THREE ignores its arguments, without
; normalising them.

When CONT is called in the body of THREE, the computation down one level proceeds, which

results in the returning of a value to the top level of the level 1 version of READ-NORMALISE

PR rn·r in the fourth line of this example. Thus the numeral plays a standard role in that

computation, as the example illustrates. Although the body of THREE was itself nonnatised

at level 2, this fact is in some sense hidden from the user of the reflective procedure, since

the reflect upwards was followed by a reflect downwards when the continuation was called.

This last fact is of considerable importance. In the previous examples using TEST,

the reflective level was systematically increased, since each call to TEST returned i:o the level

above it. This definition of THREE, however, since it calls CONT, although it runs one level

5. Procedural Reflection and 3-LISP Procedural Reflection 612

above that where it is used, does not return one level above. Thus procedures that are

passed around and used in the normal way can be reflective procedures without that fact

needing to be noticed by their users. Note also how much simpler the use n~ i;ONT was in

these examples than the versions we toyed with in section 5.a. J"!G STRIP was needed to

awkwardly side-seep the fact that we were binding ENV ?-.-:J CONT. Note as well that, since

the 3-LISP processor is tail-recursive, no reflective continuations ai-e saved in virtue of

running THREE.)

As the last call tr: f:ifitE illustrates, and as is evident from its definition, lHREE

ignores the ar~!_,,nents with which it was called. Furthermore, since THRE(is reflective,

those .:.rguments are not normalised prior to being bound (ARGS in the last call to THREE

would be bound to the handle '((PRINT 'HELLO)]); therefore no potential side-effects take

place.

Note as well that the call to CONT is given as an argument an expression that

designates the expression with which the continuation should proceed. In our example, CONT

is called with the handle • 3 designating the numeral 3 - implying that the computation

below should proceed using that numeral. In other words what is mentioned by the code

making explicit use of the continuation is what is used by the code being processed. What

is explicitly used in the reflective code (the continuation and environment, in particular}. arc

tacit in the code being processed. Thus we have:

(TYPE 3)
(TYPE '3)
(TYPE (TIIREE})

~ '"'UMBER (S6-70)
=:::> 'NUMERAL
~ 'NUMBER

From these last examples it may look as though forms are de-referenced by continuations,

but it should be absolutely clear that this is not so. Rather, the diff(:rence in semantic level

is a consequence of the difference in reflective level: it is a difference of perspective on one

and the same computation, not a difference arising from some primitive act or cvenl It was

true as well in the meta-circular processors for t-LISP and 2-LISP: in processing the

expression (+ 2 3), those processors manipulated numerals, not numbers. It is the same fact

as our assumption throughout that '1' is a function from s-cxprcssions to s-cxpressions

(nothing else would make sense). Furthermore, any attempt to violate this will cause an

error:

5. Procedural Reflection and 3-LISP Procedural Reflection 613

1> (DEFINE THREE1
(LAMBDA REFLECT [ARGS EN~ CONT]

(CONT 3)))
1> THREEz
1> (THREE1)
TYPE-ERROR: CONT (at level 2), expecting ans-expression.

was called with the number 3

(S6-71)

Before we can make substantial use of these reflective abilities, we will need to

introduce further machinery in the next sections. But we can construct some additional

simple examples to illustrate the few points we have covered. First we define a rather

vacuous procedure called VARIABLE so that any occurcncc of (VARIABLE <X>) (in an

extensional context) witl be entirely equivalent to a simple occurence of <X> on its own:

(DEFINE VARIABLE
(LAMBDA REFLECT [(VAR] ENV CONT]

(CONT (BINDING VAR ENV)))))

{S5-72)

We have here used the recursive decomposition provided in parameter matching so that the
. .

parameter VAR wilt designate the single argument to VARIABLE. Thus for example, if we

normalised (VARIABLE A), VAR would be bound to the handle · A. Suppose in particular that

we used VA!lIABLE as follows:

1> (LET [[A 3] [B (+ Z 2)]]
(+ (VARIABLE A) 8))

1> 7

(S5-73)

The redex (VARIAELE A} would be processed in the midst of normalising the argument

expression for the extensional +. The environrr:ent in force at that point, which would be

bound to ENV, would be:

[['A '3) ['B '4) ...] (S5-74)

'Therefore the body of VARIABLE would be processed in an cnvironmc11t in which VAR was

bound to 'A, ENV was bound to the rail given in S5-74, and CONT was bound to the

continuation that was ready to accept an clement of the arguments to +. The call to

BINDING would explicitly look up A in that environment (BINDING wa~ defined in S4-969),

returning the handle • 3. Thus the equivalent of the rcdex (CONT • 3) would be processed,

which would proceed the computation of +'s argument~ appropriately.

Two things should be notable by their absence. First, in spite of the fact that the

processing of S6-73 and the processing of the body of VARI ADLE occur at different reflective

levels, we did not need to avail ourselves of any explicit machinery to name or de-reference

5. Procedural Reflection and 3-LISP Procedural Reflection 614

expressions (no "t" or "+" appears in any of tMs code). As usual the semantic flatness

ensures that everything works out correctly.

Second, there are no potential variable conflicts, since VAR and ENV arc bound in a

different envi::-onment from A and e. Thus we would have no trouble with:

1> (LET [[VAR 'HELLO]]
(RCONS (VARIABLE VAR) 'THERE))

1> '[HELLO THERE]

(S6-76)

In this case the VAR in the pattern of VARIABLE wou1d be bound to the handle 'VAR, and ENV

would be bound to the environment designator

(['VAR ''HELLO] ...] (S5-76)

The body of VARIABLE would therefore itself be nonnalised in an environment of

approximately the following fonn:

[('VAR 'VAR]
['ENV [('VAR ''HELLO] ...]
['CONT <some continuation>]
...]

(S5-77)

However what is crucially important is that S5-76 is the level 1 environment, and S5-77 is

the level 2 environment. The fonner is bound in the latter. but the two do not collide.

This is exactly apropriate; the binding of ENV gives us access, and the separate environment

gives us a place to stand.

5.b.ii. Some Elemelllary Examples

We turn next to some further examples that arc almost as simple as the foregoing,

but that are of some potential use. First, we can define a QUIT procedure:, that returns the

atom QUIT I as the result of an entire computation - that is. as the result of an explicit call

to the tail-recursive normalising processor. 1l1e idea is to reflect once, and then simply to

"return" the given atom. Since the reflective model of the interpreter is a "tail-recursive"

prugram, a simple return will invoke the top level continuation of the caller of the

nonnaliser, which will be the program that called this whole round of processing: namely,

the READ-NORMALISE-PRINT loop. Thus we have:

(DEFINE QUIT (S5-78)
(LAMBDA REFLECT 7 'QUIT!))

5. Procedural Reflection and 3-LISP Procedural Reflection 615

QUIT binds "?" (a regular atom that we will consistently use to indicate arguments we don't

care about) to a rail designator of both arguments and context, and returns. Its precise

behaviour can be better explained with reference to the READ-NORMALISE-PRINT code shown

below in S5-194; what is relevant is that the atom QUIT! will be given to the top level of

that code, which will print it out and the read in another expression for normalising. 'l1ms

our definition would engender the following behaviour:

1> (QUIT)
1> QUIT!
1> (+ l 2)
1> 3
l> (+ l (I (QUIT) 0))
l> QUIT!
1> [(PRINT 'HELLO) (QUIT) (PRINT 'Tl/ERE)] HELLO
1> QUIT!

(S5-79)

Very similar to QUIT is the foltowing definition of RETURN, which sends to the same caller of

the processor a designator of an expression normalised in the RETURN rcdex's context (this is

the RETURN WC used in S5-66 through S5-68 above):

(DEFINE RETURN
(LAMBDA REFLECT ([EXP] ENV CONT]

(NORMALISE EXP ENV ID}))

For example, if we were to process the following expression:

(LET ((X (- 3 3)]]
(NTH 2 (X (+XX)(• XX) (REfURN X)])}

(S5-80}

(S5-81)

then when the RF.TURN redex was processed, it would reflect, binding EXP to 'x, ENV to ([' x
'OJ •••], and CONT to a continuation that expected the final clement for the normal-form

rail being readied for NTII. The definition of RETURN, however, completely ignoring that

continuation, normalises the argument iu the context (thus obtaining the handle · o), and

allows that result to return to the caller of the reflective procedure: the top level of this

round of processing. Thus Sc-st would return a designator of the numeral o to this top

level; thus o would be printed out, as in:

1> (LET [[X (- 3 3)]]
(NTH 4 [X (+XX)(• XX) (RETURN X)]))

1> 0
l> (RETURN (RF.TURN 4))
1> 4

(S5-82}

5. Procedural Reflection and 3-LISP Procedural Reflection 616

These RETURNS are more useful when combined with procedures that can intercept

their answers. Instead of RETURN such facilities arc typically called CATCH and THROW in

standard LISPS. We can define this kind of coordinated pair. The functionality we want is

this (we wiH start simply): CATCH1 will be a function of a single argument, whose result it

merely passes back to its caller. However if somewhere within the dynamic scope of that

argument there is an occurrence of a form (THROW1 <EXP>), that result of normalising <EXP>

will be returned straight away as the result of the entire CATCH1 redcx. Thus for example

we would expect:

1> (DEFINE TEST
(LAMBDA SIMPLE [XJ

(CATCHJ
(+(•XX)

(/ X (IF(• X 3)
(TIIROWJ OJ

1> TEST
1> (TEST 4)
1> 20
1> (TEST 3)
1) 0

(- X 3)))))))

Ready to accept a throw

X o(4 works normally

X of 3 exits prematurely

This sort of CATCH and rnnow are trivially easy to define:

(DEFINE CATCH1
(LAMBDA REFLECT [[ARG] ENV CONT]

(CONT (NORMALISE ARG ENV ID)}})

(DEFINE THROW1
(LAMBDA REFLECT [(ARG] ENV CONT]

(NORMALISE ARG ENV ID)))

(S6-83)

(S5-84)

The reason that these work is this: in the definition of CATCH, rather than giving NOHMALISE

the continuation that takes answers onto the final answer of the overall computation, the

simple identity function is interposC'd between the result of the argumem of the CATCH and

the continuatioa with which the CATCH was called. Thus if that NORMALISE ever returns, the

ID will flip the answer out to the explicit call to CATCH. Put another way, we have seen

many times before that it is argument strncturc that embeds a· process, not procedure

calling. In general calls to IJORMALISE arc tail recursive, but the call to NORMALISE in S5-84 is

crucially not tail-recursive: it very definitely embeds the processor one level. 'Ibe definition

of THROW shows how TIIROW returns the result of its argument to the top of the current level

of the computation; since· this will in general be the surrounding CATCII, the behaviour that

we expected is simply generated.

5. Procedural Reflection and 3-LISP Procedural Refkction 617

Aqother common utility function of very much the same sort is UNWIND-PROTECT: a

function of two arguments, such that the second argument is guaranteed to be processed

alter the first returns, no matter whether the first returns nomially or directly (because of

an error or RETURN or THROW or whatever). UNWIND-PROTECT can be defined as follows:

(DEFINE UNWIND-PROTECT
{LAMBDA REFLECT [[FORMl FORM2] ENV CONT]

(CONT (BI.OCK1 (NORMALISE FORM1 ENV IO)
(NORMALISE FORM2 ENV ID)))))

(S5-86)

where 01.ocK1 is a form that processes an arbitrary number of argument,; and returns the

first:

(DEFINE BLOCKl
(LAMBDA SIMPLE ARGS (1ST ARGS)))

Alternatively, UNWINO-PHOTECT could be defined independently, as follows:

(D:FINE UNW[ND-PROTECT
(LAMBDA REFLECT [(FORMl fORM2] ENV CONT]

(LET [[ANSWER (NORMALISE FORM! ENV ID)]]
(BLOCK (NORMALISE FORM2 ENV ID)

(CONT ANSWER)})))

(S5-86)

(S5-87)

Again, this definition succeeds because of ihc use of ID, and because the call to NORMALISE

is noJ tail-recursive - rather, it is embedded in such a way that a full return to the

continuation will be intercepted. The following definition, for example, would not work:

(DEFINE UNWINO-PROTECT (S5-88)
(LAMBDA REFLECT [(FORMl FORM2] ENV CONT]

(NORMALISE FORM! ENV This definition
(LAMBDA SIMPLE (FORMll] would fail!

(NORMALISE FORM2 ENV
(LAMBDA SIMPLE [FORM2!] (CONT FORM11}J)))))

111e problem here is that all of the subsequent intended processing is embedded in the

continuation given to the normalisation of FORMl, and it is exactly this continuation which is

neatly discarded by THROW and QUIT and so forth.

It should be observed that the use of BLOCK t in S5-85 above is at the reflected level:

thus the fact that BLOCK 1 will normalise its argument (with the help of NORMAi.I SE -RAIL)

with a continuation is not problematic. It is not the reflected levels co11ti11uatio11 that HIROW

and QUIT bypass; it is the continuation passed around by t!te reflected /e11el.

As an example showing how THROW and CArCH interact smoothly with UNWIND

PROTECT. we have the following behaviour:

5. Procedural Reflection and 3-LISP

1> (DEFINE ADD-TO-X
(LAMBDA SIMPLE [YJ

(IF (• Y 0)
(THROli X)
(BLOCK (SET X (+ X 1))

(ADD·TO-X (- Y 1))))))
1> AOD-TO-X
1> (DEFINE TEST

(LAMBDA SIMPLE [YJ
{LET [[SAVE X]J

(UNWIND-PROTECT (ADD-TO-X Y)
(SET X SAVE)))))

1> TEST
1> (SET X 3)
1> 3
1> (CATCH (TEST 6))
1> 8
1> X
1> 3

Procedural Reflection 618

(S6-89)

ADD-TO-X increments X
V times, finally throwing
X out as an answer.

TEST saves X, and wraps
protection around the
call to AOD-TO-X to
restore it on exit.

In1tfa11se X to 3
Tho THROW will come here.
5+3 ts thrown out, but
X was restored between
the THROW and the CATCH.

Similarly, UNWIND-PROTECT works correctly with the QUIT procedure defined earlier:

1> (UNrIND-PROTECT (BLOCK (SET X 100) (QUIT))
(SET X 4))

1> QUIT!
1> X
1>4

(S6-90)

The THHOW and CATCH situation can be approached in quite a different fashion. It is

standard, beyond the simple functionality we provided above, to define THROW and CATCH

tags so that each CATCH identifies itself by name, and each THROW tosses a result to a named

CATCH, rather than merely to the one closest in. One obvious approach would be for each

THROW to return not just the intended result, but also the tag (in a two-clement rail, say),

and for each CATCH to check the identity of the tag, passing back the result if the tags

matched, and proceeding in case they didn't. In particular, we could define such as pair as

follows:

(DEFINE CATCH2
(LAMBDA REFLECT ([TAG FORM] ENV CONT]

(LET [[ANSWER (NORMALISE FORM ENV (LAMODA SIMPLEX X})]]
(IF (AND (SEQUENCE ANSWER) (• (LENGTH ANSWER) 2))

(IF(= (1ST ANSWER} TAG)
(CONT (2ND ANSWER))
ANSWER)

(CONT . ANSWER}))))

(DEF INF. lllROWz
(LAMBDA REFLECT ([TAG EXP) ENV CONT]

(NORMALISE EXP ENV
(LAMBDA SIMPLE [EXP!] [TAG EXP!]))))

(S6-91)

5. Procedural Reflection and 3-LISP

This then would support the following:

> (CATCHz TAG1
(+ 10 (CATCH1 TAG,

(+ 20 (THROWz TAG1 3})}))
> 3
> (CATCHz TAG1

(+ 10 (CATCH1 TAG1
(+ 20 (THROWz TAG1 3)))))

> 13

Procedural Reflection 619

(S6-92)

The definition of THROW2 is straightforward; it is CATCH2 that requires some explanation. If a

thrown result is returned (recognised by the fact that a two-element result is returned: all

standard results arc single, as will be explained in section 5.d.i, below), then a check is

made to sec whether it was intended for this CATCH. If it was, then the thrown answer is

given to CONT (implying that the THROW, so to speak, is stopped at this point); if '. · is not,

then the answer is thrown back to the next embedding caller, etc.

More elegant than this approa~h. however, is 1:he technique of binding the

continuation to a particular name. The one requirement here is for dynamically scoped

free variables (not unlike the problem we arc concerned with, but more general - dynamic

scoping is discussed below in section 5.d). Suppose in particular that we had a dialect

where the redex

(DYNAMIC <ATOM>) (S6-93)

occurring in a pattern would bind <ATOM) dynamically, rather than statically, and where the

same redcx occuring in an extensional context would look it up dynamically. Thus for

example if we had t11c following definitions:

(DEFINE SQUARE-ROOT
(LAMBDA SIMPLE [X) (SQRT-APPROX X 1)))

(DEFINE SQRT-APPROX
(LAMBDA SIMPLE [X ANS]

(IF(< (ABS (- X (• ANS ANS)))
(DYNAMIC ERROR))

ANS
(SQRT-APPROX X (/(+ANS(/ X ANS)) 2)))))

(S5-94)

(S6-96)

then we would expect the following behaviour {assuming we supported floating point

arithmetic):

1> (LET [[(DYNAMIC ERROR) 0.1]]
(SQUARE-ROOT 2))

1> 1.417

{S5-96)

5. Procedural Reflection and 3-LISP Procedural Reflection 620

We could then define CATCH and THROW as follows:

(DEFINE CATCH3
(LAMBDA REFLECT [[TAG FORM] ENV CONT]

(NORMALISE '(LET [((DYNAMIC ,TAG) ,tCONT]] ,FORM)
ENV
CONT)))

(S6-97)

(DEFINE THROW3 (S6-98)
(LAMBDA REFLECT [[TAG FORM] ENV CONT]

(NORMALISE FORM ENV
(LAMBDA SIMPLE (FORNI)

(NORMALISE '(DYNAMIC ,TAG) ENV
(LAMBDA SIMPLE (CATCH-CONT] (-&.CATCH-CONT FORM!)))))))

These are mildly awkward because they have to bind the continuation (which is at heart a

reflected entity) in the dynamic environment of the level below, since it is that level's

dynamic structure which is intended to control the scope of the tags.

In passing, the definition given above of SQUARE-ROOT rather inelegantly made SQRT

APPROX a globally available procedure. The following would be more discreet:

(DEFINE SQUARE-ROOT
(LABELS [(SQRT-APPROX

(LAMBDA SIMPLE [X ANS]
(IF(< (ABS (- X (• ANS ANS)))

(DYNAMIC ERROR))
ANS
(SQRT-APPROX X (/(+ANS(/ X ANS)) 2)))))]]

(LAMODA SIMPLE [X]
{SQRT-APPROX X 1))))

(S6-99)

This works because of the fact that LABELS, as explained in chapter 4, uses our z operator,

making the definition of SQRT-APPROX appropriately recursive, and then gives the SQUARE

ROOT closure access to that recursive closure under the same name.

S. Procedural Reflection and 3-LISP Procedural Reflection 621

5.b.iii. LAMBDA. and Simple and Reflective Closures

We intend the semantics of 3-L ISP's LAMBDA to remain unchanged from 2-LISP,

although in the present dialect this function must be defined. Perhaps the simplest

characterisation of LAMBDA is the following viciously circular definition (an alternative

formulation was presented earlier as S4-475):

(DEFINE LAMBDA
(LAMBDA REFLECT [[TYPE PATTERN BODY] ENV CONT]

(REDUCE TYPE t(ENV PATTERN BODY] ENV CONT)))

(S5-103)

Note, from the definition of REDUCE in for example S4-946, that this normalises the referent

of TYPE; there is therefore no need for the following more complex version, which is

behaviourally equivalent (in this way REDUCE differs from standard LISPS' APPLY):

(DEFINE LAMBDA (S5-104)
(LAMBDA REFLECT [[TYPE PATTERN BODY] ENV CONT]

(NORMALISE TYPE ENV ; This is equivalent
(LAMBDA SIMPLE [TYPE!] ; to S5-103 above.

(REDUCE TYPE! t[ENV PATTERN BODY] ENV CONT)))))

In sum, the first argument to LAMBDA is reduced with designators of the environment,

pattern, and body. For example, if we were to normalise the following designator of the

increment fi.mction:

(LET [(X 1]]
(LAMBDA SIMPLE [Y] (+ X Y)})

the LAMBDA rcdcx would be normalised in the following environment:

[('X '1] ...]

(S5-105)

(S5-106)

LAMBDA would be called; the LAMBDA body would be normalised in the following (level 2)

environment:

[['TYPE 'SIMPLE]
[' PATTERN '[Y]]
['BODY '(+ X Y)]
('ENV (['X '1] ...]]
('CONT (<SIMPLE> ...)]
...]]

(S6-107)

We may presume that the atom SIMPLE is bound in this environment to the primitive

<SIMPLE> closure; thus TYPE will normalise to a designator of that closure. Thus the REDUCE

redex in the last line of ss-103 is equivalent lo the following (since we can substitute

5. Procedural Reflection and 3-LISP Procedural Reflection 622

bindings for variables in a flat language):

(REDUCE '<SIMPLE> (S6-108)
'([['X '1] ...] '[Y] '(+ X Y)]
[['X '1] ...]
(<SIMPLE> ...))

This is processed at level 2, but it is essentially the reflection of the following level 1 redex:

{<SIMPLE> [['X '1] ...] '[Y] '(+ X Y)) (S6-109)

Thus we see how the "current" environment is passed to <SIMPLE> (something we could not

arrange except primitively in 2-LISP). We see as well how the inelegant level-crossing

behaviour implied in our treatment of closures is indicated by t'1e use of 11
1'" in S6-103.

This treatment of LAMBDA puts the weight of lambda abstraction on the two primitive

closure functions: <SIMPLE> and <REFLECT>. 3-LISP's <SIMPLE> is isomorphic to Z-LISP's

<EXPR>: thus the <SIMPLE> closure would be notated as follows:

<SIMPLE> a S: (:S :Eo
'[ENV PATTERN BODY]
'(:S ENV PATTERN BODY))

(S6-110)

Similarly, we have the following structure to the primitive <REFLECT> closure (bound to the

atom REFLECT in the initial environment):

<REFLECT> = R: (<SIMPLE> :fo (S6-111)
'(ENV PATTERN BODY]
'(:R ENV PATTERN BODY))

Like 2-LISP's <IMPR> and <MACRO> closures, 3-LISP's <REFLECT> is itself simple. These

structures are notated graphically in the following diagram:

<REFLECT>: ENV PATTERN BODY
(S5-112)

<SIMPLE>: .., ENV I PATTERH I BODY I

•
5. Procedural Reflection and 3-LISP Procedural Reflection 623

There is a consequence of these protocols that deserves to be made clear. Although

a reflective procedure may run at one or other level, its own environment (the environment

in which it was defined, and over which it was closed) is retained within it Thus we can

define a (highly inelegant) reflective version of INCRf!:lENT as follows:

(DEFINE INCREMENTR
(LET [[X 1]]

(LAMBDA REFLECT ([ARG] ENV CONT]
(NORMALISE ARG ENV

(LAMBDA SIMPLE (ARGI] (COtU t(+ X +ARGI)))))))

(S6-113)

Note that x can of course not be added to ARG 1, since ARG I will designate a numeral, not a

number. Tims we would have:

1> (INCREMENTR 3)
1> 4
1> (LET [[X (+ 2 3)]] (INCREHENTR X))
1> 6

(S6-114)

Even though the body of INCREMENT R in this case will run at level 2, it will be normalised in

the following environment:

[['ARG 'X] (S6-116)
['ENV [['X '6] ...]]
('CONT {<SIMPLE> •••)]
['INCREMENTR (<REFLECT> ...)]
['X '1]

The recursive binding provided by Z

...]

Thus the binding of x will always be available within the body, no matter at what level

INCREMENT R is used. This is further indicated by showing the normal-form reflective closure

to which INCREMENT R is bound:

I: (<REFLECT> [['INCREMENT ':I] ['X '1] ...]
'([ARG] ENV CONT]
'(NORMALISE ARG ENV

(LAMBDA SIMPLE [ARGI] (CONT t(+ X lARG!))))}

(S6-116)

This whole closure is the closure that was elided in the fourth tine of S5-115; in addition,

the first argument in this closure is identical to the third tail of S5-115. Both of these facts

follow from standard considerations of closures as explained in section c of l11e previous

chapter.

Given this characterisation of how LAMBDA works, it is straightforward to define it.

5. Procedural Reflection and 3-LISP Procedural Reflection l24

As a first step, we can see straight away what the definition in S6-103 would reduce

to. In particular, that definition would clearly bind LAMBDA to the foliowing closure:

(<REFLECT> Eo
'[(TYPE PATTERN BODY] ENV CONT]

(S6-117)

'(REDUCE TYPE t(ENV PATTERN BODY] ENV CONT))))

Thus it might seem as if we could establish LAMBDA by executing the following:

(SET LAMBDA (<REFLECT> Eo (S6-118)
'((TYPE PATTERN BODY] ENV CONT]
'(REDUCE TYPE t(ENV PATTERN BODY] ENV CONT)))))

However there are still three problems. First, this is still viciou~ly circular because of the

fact that REDUCE cannot be defined without first defining LAMBDA (since REDUCE is not

primitive). Second, we have to discharge the "Eo" in the reflective closure. Third, we also

cannot use SET without defining it, which requires LAMBDA.

The first difficulty can be discharged by employing the up-down theorem: the

closure demonstrated in S5-118 is provably equivalent to this:

(<REFLECT> Eo (S5-119)
'[(TYPE PATTERN BODY] ENV CONT]
'(CONT ti(PCONS TYPE 1(ENV PATTERN BODY])))

which is the closure that would result (once LAMBDA were defined) from the following

circular definition, which is equivalent to S5-103:

(DEFINE LAMBDA
(LAMBDA REFLECf [[TYPE PATTERN BODY] ENV CONT]

(CONT t+(PCONS TYPE t[ENV PATTERN BODY]))))

(S5-120)

The second problem (ridding the closure of!!) can be solved not by catting CURRENT-

ENVIRONMENT, since we can't define it yet, but by inserting its hody directly. The basic

insight can be seen by noting that the following term will nomialise iv a designator of the

environment in force when it is processed:

((LAMBDA REFLECT[(] ENV CONT] (CONT tENV)))

Since we cannot use LAMBDA, we could equivalently write:

((REFLECT Eo '[(l ENV CONT] '(CONT tENV)))

(S5-121)

(S5-122)

'This would seem no better than S6-117, since Eo appears once again. However in S5-117 it

is important that Eo be the real global environment (because REDUCE will be defined later,

and we want that subsequent definition to be visible from the resulting closure); in S6-122

5. Procedural Reflection and 3-LISP Procedural Reflection 625

it needs only to support the processing of the body, which contains only three identifiers:

CONT, NAME. and ENV. Two of these will be bound by the reflective pattern; thus we can

merely construct an environment designator with the appropriate binding of NAME:

((REfLECT [['NAME tNAME]] '[[] ENV CONT] '(CONT tENV)))

Inserting this into S6-122 then yields:

(<REFLECT> ({REFLECT [['NAME tNAME]]
' [[] ENV CONT]
'(CONT tENV)))

'[[TYPE PATTERN BODY] ENV CONT]
'(CONT t+(PCONS TYPE t(ENV PATTERN BODY]}))

(S6-123)

(S5-124)

Also, we can use REFLECT rather than <REFLECT>, since the CAR of this will be normalised

when the whole is processed. Thus we wish to establish, as the initial binding of the atom

LAMBDA, the result of normalising of the following term:

(REFLECT ((REFLECT [('NAME tNAME]]
'[(] ENV CONT]
I (CONT tENV}})

'[(TYPE PATTERN BODY] ENV CONT]
'(CONT T+(PCONS TYPE t[ENV PATTERN BODY])))

(S5-125)

'D1is is wetl defined, and indeed provides the behaviour we desire (in particular, ss-125

normalises to S5-119). The remaining third problem involves actualty establishing it as

LAMBDA'S binding: we will not pursue that here, since it is merely tedious (since no LAMBDAS

can be used in the process). We wilt merely take S5-125 as a reference definition for the

moment, and assume that the binding has been established.

We say "for the moment" because there is in fact one remaining difficulty with S5-

125, having to do with continuations, that makes its behaviour discernably different from

that sketched in S5-103. We will ultimately use the definition in ss-125 to construct an

improved version, in section 5.c.iv (sec in particular S5-241). However the current version

is sufficient for all the examples we will present in this chapter.

5. Procedural Reflection and 3-LISP Procedural Reflection 626

5.b.iv. The Strocture of Environments

There is a question about environments, having to do with the extent to which

environments are shared across levels. In 2-LISP we assumed that there was a single global

environment - the primitively provided environment within the scope of which READ

NORMALISE-PR Itn was called, so that all interaction with the processor through the

communication channels took place with respect to this environment. In this environment

thirty-two atoms were bound to the primitive closures, and so forth. Each LAMBDA fonn

closed under this environment shared it in the way in which rails can share tails; in this

way routines that worked side-effects onto environment designators could affect the

environment in which previously defined procedures had been closed. Furthermore,

destructive modification of otherwise unbound atoms caused the creation of bindings at the

tail of this structure, making them maximally visible. In this way we were able to combine

an entirely lexically scoped variable-scoping protocol with the provision of primitive

routines that effected side-effects on structural field elements in such a way as to provide

effective and convenient defining and debugging facilities for a programmer. In addition,

as the discussion of recursion in section 4.c set forth, we were able to impfomcnt recursive

definitions in terms of side-effects to the global environment This structure is indicated in

the following diagram:

[Ai Bi]

[Al Bl]

[Al Bl]

[A2 B2]

[A3 B3]

(Ak Bk]

[Am Bm]

(An Bn]

(S6-126)

Global Environment

(Aq Bq] (Au Bu]

5. Procedural Reflection and 3-LISP Procedural Reflection 627

In 3-LISP it is convenient as well to have a global environment, shared by each

reflective level. If this were not the case, we wvuld have to provide bindings for all of the

primitive procedures at each level; when a new procedure was defined, it would have to be

defined at each level if it were required at all levels, and so forth. The situation is not

dissimilar to the situation that arises in a typed-logic. where different orders of predicates

and logical particles are sorn';times required at each type level. However, because each of

our reflective levels is an untyped higher-order functional domain, we are assuming that no

tyr,e considerations require differentiation among levels. We have in fact tacitly assumed

this sharing in the examples already given: in S5-66, for example, we defined TEST 1 at level

1, but invoked it successfully at level 2. If the binding of the atom TEST 1 had not been

established in a common context, the second invocation would have failed.

It will also prove convenient, however, to have what we will call a root environment

for each level, global to all expressions within a given level, but private to that level. In

this way we will be able to define special versions of procedures specific to a given level,

witl1out necessarily affecting all levels. The basic stntcturc of this protocol is pictured as

follows:

(S5-H'l}

Rather than fixing this arrangement inncxibly in the design of 3-LISP, however, we

can instead introduce a rather more nexibtc arrangement that will allow this protocol to be

used at will. as well as any other the user should define. 'Illis is because SET, as mentioned

at the beginning of this section, is not a 3-LISP primitive. We said in chapter 4 that SET

S. Procedural Reflection and 3-LISP Procedural Reflection 628

could have been defined in tenns of REBIND except that there was no way to provide the

appropriate environment designator; in 3-LISP this problem is of coul'Se overcome. In

particular, we assume the following (non-primitive) definition of REBIND (this is a simple a
LISP version of S4-966 and S4-9'>7):

(DEFINE REBIND
(LAMBDA SIMPLE [VAR BINDING ENV]

(If (NORMAL BINDING)
(REBIND• VAR BINDING ENV)
(ERROR "Binding is not in normal form"))))

(Di:FINE REBIND•
(LAMBDA SIMPLE [VAR BINDING ENV]

(COND [(EMPTY ENV) (RPLACT O tENV t((V~k BINDING]])]
[(= VAR (1ST (1ST ENV)))

(RPLACN 2 t(1ST ENV) tBH:iJUlG}]
[ST (REBIND* VAR BIND!~G (REST ENV))))))

(S6-128)

(S6-129)

It is then straightforward to define a version of SET as follows (for the time being we wilt

call this GSET, rather thi:m SET, foi: reasons that wiU presently become clear):

(DEFINE G~!:-,
(L~P.dOA REFLECT [[VAR BINDING] ENV CONT]

(NORMALISE BINDING ENV
(LAMBDA SIMPLE [BINDING!]

(CONT (REBIND VAR BINDING! ENV))))))

(S5-130}

As opposed to the situation in S4-695, where we had no appropriate binding of ENV, in the

present circumstance the environment produced in virtue of the reflection is the correct

argument to give to REBIND.

Finally, we define DEFINE in tenns of GSET (again this is virtually identical to the 2-

LISP version of S4-969, although we will define a non-primitive 3-LISP version of MACRO in

section 5.d):

(DEFINE DEHNE
(PROTECTING [Z]

(LAMBDA MACRO (LABEL FORM]
• (GSET ,LABEL

(,tZ (LAMBDA SIMPLE [,LABEL] ,FORM))))))

(56-131)

From none of these ddinitions, however, is the behaviour of so-called "global" bindings

made obvious. In particular, we need Lo know the relationship between the "initial

environment" and the environments wiU1 which each of the levels' READ-NORMALISE-PRINTS

arc called. Further, the question is one of deciding what is appropriate, since when we

construct those levels in the next section we will be able to specify any behaviour we wanL

5. Procedural Reflection and 3-LISP Procedural Reflection 629

The question of root environment arises most clearly in the case of global

designators of arbtirary semantic entities, rather than in the specific case of function

designators. We have seen already that having separate environments for each reflective

level is hygenic, avoiding collisions and other confusions that would otherwise arise. It

seems right to continue this separation - or at least to enable the user to continue it - for

the establishing of names that transcend any particular local LAMBDA scope. What is

required is to define SET not to search all the way into the global environment for bindings,

but rather to establish the binding at the end of the root environment as appropriate. We

call this set "LSET" for "level-SET", in distinction with the global "Gs ET". Such a definition

(and a companion LEVEL-REBIND) can be defined as follows:

(DEFINE LSET
(LAMBDA REFLECT [[VAR BINDING] ENV CONT]

(NORMALISE BINDING ENV
(LAMBDA SIMPLE [BINDING!]

(CONT (LEVEL-REBIND VAR BINDING! ENV)}))))

(DEFINE LEVEL-REBIND
(LAMBDA SIMPLE (VAR BINDING ENV]

(IF (NORMAL BINDING)
(LEVEL-REBIND* VAR BINDING ENV)
(ERROR "Binding is not in normal form"))))

{S5-132)

(S5-133)

(DEFINE LEVEL-REBIND• (S5-134)
(LAMBDA SIMPLE [VAR BINDING ENV]

(COND [(EMPTY ENV) (RPLACT O tENV t[[VAR BINDING]]}]
((= VAR (1ST (1ST ENV))}

(RPLACN 2 t(lST ENV) tBINOING)]·
[(= (REST ENV) GLOBAL}

(RPLACT O ENV
(PREP• (1ST EHV} t[(VAR tBHIDING]] (REST ENV))}]

[ST (REBIND• VAR BINDING (REST ENV))])))

PREP.. is a multi·argumcr.t version of PREP defined as follows:

(DEFINE PREP•
(LAMBDA SIMPLE ARGS

(CONO [(EMPTY ARGS) (ERROR "Too few arguments to PREP•")]
[(UNIT ARGS) (1ST ARGS)]
[ST (PREP (1ST ARGS) (PREP• . (REST ARGS}))]})}

(S5-135}

The S5-132 definition of LSE r will engender the expected behaviour just in case llEAD

NORMALISE-PHIN T is called with an environment which has the global environment as a tail,

but it not ilsclf identical with Lhat global environment. The protocols we adopt in section

5.c will have this property; thus we will assume LSET and GSET in subsequent examples. In

addition, since we always use DEFINE to define procedures, which we have defined in terms

5. Procedural Reflection and 3-LISP Procedural Reflection 630

of GSET, we will therefore use the term SET (which remains still unused) as an alias of LSH.

In other words we will assume:

(DEFINE SET LSET) (S6-136)

Thus procedures will by default be globally accessible; variables set in virtue of SET and

LSET will be accessible only on a level-specific manner. Truly gl.lbal variables should be set

using GSET explicitly.

It should be realised L'1at these arc only conventions: they are not part of the 3-LISP

definition, but a protocol we will find convenient for subsequent examples. In addition, it

should be clear that closures - even those that themselves may run at any level - will be

closed in the environment that includes the root environment of their place of definition.

We will illustrate this with a highly inelegant example. First, we define a test reflective

procedure called UP that returns to the READ-NORMALISE-PRINT of some level above it:

(DEFINE UP
(LAMBDA Rf;fLECT [[ARG] ENV CONT]

(NORMALISE ARG ENV
(LAMBDA SIMPLE [ARGI]

(If (= iARG I 1)
(RETURN 'OK)
(UP (- iARGI 1)))))))

Thus we would expect the following behaviour:

l> (UP 3)
4> 'OK
4> (UP 2)
6> 'OK

(S6-137)

(S6-138)

Then suppose we define a level-specific variable x, and define a procedure on this level

(which wiU thus have access to it):

1> (LSET X 100)
1> X
1> (DEFINE TEST

(LAMBDA SIMPLE [YJ (+ X Y)))
l> TEST
1> X
1> 100
1> (TEST 3)
l> 103
1> (UP 6)
6> 'OK
6> X
ERROR at level 6: Xis unbound
6> (TEST 3)
6> 103

Give X a level
s~ecific value of 100
and define TEST to
use X freely.

X 1s 100 here at level 1

TEST adds 100
Move up to level 6

X is not bound at level 6

But TEST still adds 100

(S6-139)

5. Procedural Reflection and 3-LISP

6> (SET X 20)
6> X
6> (TEST X)
6) 120

Procedural Reflection 631

We can give X a level 6
value of 20.
Now Xis bound to 20, but
TEST continues to add 100.

The procedure TEST adds the level 1 value of 100, since it is closed in that environment, no

matter where it is used. The name nsr is made globally available {by DEFINE) as usual,

but the TEST closure remains defined in that level 1 environment, as the examples show. If,

however, we return to level 1 and reset x, as in the following, then TEST i:; modified at that

and at every other level:

1> (SET X 5)
1> X
1> (TEST 3)
1> 8
1> (UP 4)
5> 'OK
5> (TEST 20)
6> 25

Come back to level 1 (S5=140)
and reset X. Now
TEST adds 6, rather than
100, here or at any other
level.

What are we to conclude from these examples (which arc hardly elegant)? 1be

answer is this: environment'> arc by and large independent of reflective level: the whole

amalgam of lexical scoping protocols, closures, and the rest (as we have seen in the previous

chapters) make the environment structure of a process leafy and shallow, and quite

orthogonal to the continuation stmcture, which more accurately represents the recursive

descent of the procedures being called. The simplest solution to the problem of how

environments interact with reflective levels, then, is this: they do not Reflection has to do

more with mention of programs, and with independent continuations, than it docs with

independent environments, since, in a statically scoped dialect, environments are kept by and

large independent from one clo~ure lo the next. However what the previous examples have

illustrated is that we can extend this basic position so as to allow some level-specific

environment, without the need for more primitives. We wilt rarely depend on level-specific

bindings, but from time to time they will prove convenient.

As a final footnote, we should observe that the use of x in the manner of TEST in

S5-139 is far from recommended practice. Much more reasonublc is to give TEST its own

copy of a binding of x, as in (we demonstrated this kind of definition in section 4.c):

(DEFINE TEST (S5-141)
(LET [[X 100]]

(LAMBDA SIMPLE [Y] (+ X Y))))

5. Procedural Reflection and 3-LISP Procedural Reflection 632

The resultant TEST could be used at any reflective level, as usual. Should the private

version of x ever need to be changed, we would do so using an explicit REBIND on the

environment contained in TEST's resultant closure, as follows:

(REBIND 'X '5 (ENV tTEST)) (S5-142)

This is all far simpler, and far more elegant, than the unhappy behaviour of S5-139 and S6-

140.

5. Procedural Reflection and a-LISP Procedural Reflection 6)3

5.b. v. Simple Debugging

One place that reflection is likely to prove useful is as an aid to debugging. The a

LISP reflective protocols are not themselves debugging protocols, but it is simple enough to

build such behaviour on top of them. We will look at some simple suggestions in this

section. In section 5.d we sketch various ways in which interrupts might be connected to

the reflective machinery, but we will restrict ourselves here to situations in which a program

itself recognises that a trouble has arisen, and makes an explicit call to an error package.

Suppose for example we were to define a procedure such as the fo11owing, with a

call to a procedure called DEBUG (this assumes a version of + that accepts an arbitrary

number of arguments):

(DEFINE AVERAGE
(LAMBDA SIMPLE (SEQ]

(IF (EMPTY SEQ)
(DEBUG "AVERAGE was called with an empty sequence")
(/ (+. SEQ) (LENGTH SEQ)))))

(S6-147}

Our intent is to have DEBUG interact with the user, by printing out the message, and

allowing access to the computation that was in force. We expect to support, in particular,

something like the following scenario:

1> (SET X [l 3 5 7 9])
l> (1 3 6 7 9]
1> (AVERAGE X)
1) 6
1> (DEFINE SUM-AND-AVERAGE

(LAMBDA SIMPLE [SJ
[(+. S) (AVERAGE S)J))

1> SUM-AND-AVERAGE
1> (SUH-AND-AVERAGE X)
1> (25 6]
l> (SET Y [])
1) y
1> (SUM-AND-AVERAGE Y)
ERROR: AVERAGE was callad with nn empty sequence
2)

($5-148)

It seems natural U1at DEBUG should interact with the user at level 2, although this will be

revised later. At this point we expect the user to be able to test the bindings of various

variables. In particular, suppose we arc interested in the binding of SEQ. We cannot use

this name directly:

5. Procedural Reflection and 3-LISP Procedural Reflection 634

2> SEQ (S6-149)
ERROR: SEQ unbound variable

Rather, it must be looked up in the environment that was made available to OEBUG (we

assume DEBUG is a reflective procedure). Suppose for example that DEBUG inelegantly SET

the atoms ENV and CONT at its level (we will use LSET} and then returned the error message

(this is an awkward definition that we will soon replace}:

(DEFINE DEBUG
(LAMBDA REFLECT [[MESSAGE] ENVIRONMENT CONTINUATION]

(BLOCK (LSET ENV ENVIRONMENT)
(LSET CONT CONTINUATION)
(RETURN MESSAGE))))

(S5-160)

(TI1ere arc problems with the message part of this, but we will ignore them for now.}.

Then we might expect the following (as a continuation of S5-149):

2> (BINDING SEQ ENV)
ERROR: SEQ unbound variable
2> (BINDING 'SEQ ENV)
2) '(]

(S5-161)

In other words we need expressly to took up the binding in the "globally" bound ENV,

where the appropriate empty sequence is found.

Suppose we decide to materially alter SEQ to be a sequence of three integers - not

only the binding of SEQ, but the rail to which it was bound (in other words we intend to

affect the binding of v as well}; we would perform the following:

2> (RPLACT O (BINDING 'SEQ ENV) '[-5 0 20])
2> '[-5 0 20]

We check to make sure our alteration took effect.

2> (BINDING 'SEQ ENV)
2> '[-6 0 20]

(S5-152)

(S5-163)

Had we wanted only to change the parameter binding in AVEnAGE, we could instead have

used:

2> ENV
2> [['SEQ '[]] ...]
2> (RPLACN 2 {1ST ENV) '[-5 0 20]))
2> ('SEQ '(-5 0 20]]
2> {BINDING 'SEQ ENV)
2> '[-6 0 20]

(S6-164)

5. Procedural Reflection and a-LISP Procedural Reflection 635

Or, using the REBIND of S6-128:

2> (REBIND 'SEQ '[-5 0 ZOJ ENV)
2> 'SEQ
2> (BINDING 'SEQ ENV)
2) '(-5 0 20]

(S6-166)

No matter how this is done, we arc set with SEQ bound to a non-empty rail. Suppose we

now want to continue the computation. The first task is to obtain access to the

appropriate continuation. CONT was bound by DEBUG; we can try to look it up in rnv:

2> (BINDING 'CONT ENV)
ERROR: CONT unbound variable

(S6-166)

But of course CONT is bound at the reflective level. since it is a theoretical entity, not part of

the code being debugged:

2> CONT (S6·167)
2> (<SIMPLE> [..•] ...)

Suppose now that we tried to use it, returning the result that would have been engendered

had SEQ been bound to (-6 o ZO] all along:

Z> (CONT(/(+. SEQ) (LENGTH SEQ)))
ERROR: SEQ unbound variable

(S6-168)

This error is of course to be expected: once again we are attempting to use a variable at the

cu"ent level, when it belongs one level below. An inelegant attempted repair is this:

2> (LET [[S2 (BINDING 'SEQ ENV)]]
(CONT(/(+ . S2) (LENGTH S2)))

TYPE-ERROR:+, expecting a number, found the numeral '-6

(S5-169)

Once again the level problem intervenes: sz is bound to a designator of the binding of SEQ.

This too we could try to circumvent:

2> (LET [[S2 (BINDING 'SEQ ENV)]]
(CONT(/(+. +S2) (LENGTH +S2)))

TYPE-ERROR: CONT, expecting ans-expression, found the number 6

(S5-lb0)

Again a type error: CONT was bound to a continuation that expected the designator of the

average; not the average itself. A final fix in this terrible direction is this:

2> (LET [[S2 (BINDING 'SEQ ENV)]]
(CONT ~(I(+ . +S2) (LENGTH +S2)))

1> (0 6)

(S5-161)

5. Procedural Reflection and 3-LISP Procedural Reflection 636

However all of this ugliness is telling us something. The point is that we have tried to

execute at a reflective level a computation that was intended to be executed at the base

level one below us. Certainly a far better treatement would be the following:

2> {NORMALISE '{/(+.SEQ) (LENGTH SEQ)) ENV CONT) {S6-162)
1> (0 6]

Ths is simpler, and is semantically reasonable. The appropriate variables are set, used in

the appropriate environments, and the correct continuation is supplied, yielding a final

answer at level 1.

Of course as an answer, (0 5] is incorrect, since the sum was perfonned over SEQ

while it was still bound to the null sequence (], whereas the average was performed over

the new binding of SEQ to [-5 o 201. In practice one would want to redo the whole

computation, or use more sophisticated continuation examining functions of the sort

described in section 5.d.

Now that we have returned to base level, we can see the differences in how we

changed SEQ; if we executed ss-1s2 we would now have:

1> y (S5-163)
1> (-5 0 20] : Y was altered

If on the other hand we had chosen S5-154 or S5-155, Y would remain bound to the same

null sequence:

1> y
1> (] ; Y is unchanged

There is an undeniable price paid for the strict separation in environments

maintained between reflective levels. and an argument can be mounted that it would be

more convenient to interact with a READ-NORMALISE-PRINT loop al le,•el /, rather than at the

reflccicd level looking down. In addition. we rather inelegantly had to use LSET to set level

variables ENV and CONT in order to make them available to the user. These realisations

suggest a different approach. Suppose that instead of S6-t50 we had defined DrnuG as

follows:

(DEFINE DEBUG
{LAMBDA REFLECT [[MESSAGE] ENV CONT]

(BLOCK (TERPRI)
(PRINT MESSAGE)
(READ-NORMALISE-PRINT ENV))))

(S5-165)

5. Procedural Reflection and 3-LISP Procedural Reflection 637

'Ibis is a good start, but DEBUG will be useful only if there is some way in which to leave the

READ-NORMALISE-PRINT, which is otherwise an infinite computation. We can always reflect

out of it, and thereby return from the BLOCK, but that would return to the top level of the

level 1 computation. which is not what we intend. What is striking about this definition,

however. is that the RETURN we have already defined will suffice, if we merely modify S6-

166 as follows:

(DEFINE DEBUG
(LAMBDA REFLECT ([MESSAGE] ENV CONT]

(BLOCK (TERPRI)
(PRINT MESSAGE)

(S6-166)

(CONT (READ-NORMALISE-PRINT ENV)))))

Given this last definition we could have the following session (note that all user interaction

is at level 1. in spite of level 2 machinations going on over its head):

1> (SET 'Y [])
1> []
1> (TEST Y)
AVERAGE was called with an empty sequence
1> SEQ
1) []

1> (SET 'SEQ [-5 0 ZO])
1> (-6 0 ZO]
1> (/ (+. SEQ) (LENGTH SEQ))
1) 5
1> (RETURN (I(+. SEQ) (LENGTH SEQ)))
1> (0 6]
1) y
1) []

(S6-167)

We can use SEQ directly

Similarly we set it at this
level.
This is tho correct average,
But it simply prints it.
Call RETURN with this, and
the computation completes.

Note that Y remains null.

What is crucial to understand about S6-167 is that the fourth through eleventh lines arc

interactions with the reflectively embedded call to READ-NOf!MALISE-PRINT. A better user

protocol would be to use a variant on READ-NORMALISE-PRINT that prints a distinguishable

prompt character that indicates that the user interaction remains at level 1, but that the call

is embedded. Something of the following sort is indicated:

1> (SET 'Y [])
1> (]
t> (TEST Y)
AVERAGE was called with an empty sequence
1» SEQ
1» (]
1>> (SET 'SEQ [-5 0 20])
1» [-6 0 20]
1>> (I(+ . SEQ) (LENGTH SEQ))
1» 6
1>> (RETURN (I(+. SEQ) (LENGTH SEQ)))

(S6-168)

We can use SEQ directly

Similarly we set it at this
levol.
This is the correct average,
But it simply prints it.
Call RETURN with this, and

5. Procedural Reflection and 3-LISP

1> (0 5]
1) y
1> []

Procedural Reflection 638

thg computation completes.

Note that Y remains null.

What is important about this example is the recognition that reflective level

procedures facilitate the debugging protocols substantially, but that user interaction at the

reflected level was quite inconvenient. It proved much easier to interact with the errant

code in an embedded READ-NORMAUSE-PRINT loop at the same level as the bug, rather than

above it It is exactly this sort of recognition that 3-LISP can facilitate - without both the

semantic rationalisation of 2-LISP and the reflective abilities of 3-LISP we would not have

been able even to ask the question, let alone come upon an answer in this simple way.

5.b. vl REFERENT

In section 4.d.i we defined the 2-LISP version of REFERENT, noting that it inherently

mandated a second normalisation (of the referent of its argument expression), and that that

normalisation took place in the context that resulted from the standard normalisation of its

primary argument. We commented as well that this was perhaps inappropriate; that it

would be reasonable to require of REFERENT that a second argument be provided that

designated the context in which the referent of the first argument was to be processed. In

3-LISP we will adopt this suggestion, sin.cc context designators are of course

straightforwardly obtainable.

We will require, in other words, REFERENT rc<lcxes of the foltowing form:

(REFERENT <EXP> <ENV>} (S5-169)

where <EXP> is taken to designate an expression, and <ENV> an environment, and where the

whole redex designates the reforcnt of the expression designated by <EXP> in the

environment designated by <ENV>. 11ms for example we would have:

(REFERENT '3 [])
(REFERENT 'X [['X '4]])
(LET [[A 'BJ

[B 4]
[ENV [('A '6]['8 '8] ...]]]

(REFERENT A ENV}

=> 3 (S5-170)
=> 4

Tbe last example illustrmcs how the environment used to establish what expression and

what environment arc intended, and the environment used to establish the subsequent

referent, play different roles.

5. Procedural Reflection and 3-LISP Procedural Reflection 639

Though this protocol is general and acceptable, there is something odd about it,

which should be brought out REFERENT (and NAME), as we have said all along, involve a

kind of level-crossing behaviour that is rather different in flavour from the kind of

behaviour mandated by reflective procedures. As we have been at pains to indicate,

reflective procedures don't so much shift the level of the processor; rather, they are

procedures that are run at a different level than that in which the reflective redex occurs,

but that upper reflected level is considered always to exist - running the reflective

procedure correctly amounts merely to integrating it into the level as appropriate.

Therefore the use of REFERENT in a reflective procedure is only occasionally

indicated. One good example is the definition of UP given above in S5-137; our definition

there was as follows:

(DEFINE UP
(LAMBDA REFLECT ((ARG] ENV CONT]

(NORMALISE ARG ENV
(LAMBDA SIMPLE (ARGI]

(IF (= -MRG I 1)
(RETURN 'OK)
(UP (- +ARGI 1)))))))

Much more perspicuous, however, is the fottowing:

(DEFINE UP
(LAMBDA REFLECT ([ARG] ENV CONT]

(LET ([N (REFERENT ARG ENV)]]
(If(=Nt)

(RETURN 'OK)
(UP (- N 1))))))

(S5-171)

(S6-172)

This code binds N to the actual result of normalising the argument to UP in the environment

of the original UP redex, rather than to a designator of it, which is what ARG I was bound to

in S5-171. However there are many cases - the last line of S5-171 is one - where there

is no motivation to supply a different environment than the one covering the redex as a

whole. One such case (this is the circumstance in ss-111) arises when the argument to

REFERENT is known to be in normal-form, and hence the second argument to REFERENT is

immaterial. We have not explained what 11
+ARG r II expands to in 3-LISP; the current

discussion indicates that it will be some fonn (REFERENT ARG! <ENV>). The fact that ARG!

designates a normal·fonn expression implies that it will not matter what the second

argument is, in the particular case we are considering.

5. Procedural Reflection and 3-LISP Procedural Reflection 640

Our general policy has been to align reflective level and semantic level - NAME and

REFERENT are provided to allow additional flexibility, since we are allowing each reflective

level its own meta-structural powers, above and beyond those implied in the very

architecture of the reflective hierarchy. We will therefore arrange it so that it is convenient

to use the current environment as an explicit second argument to REFERENT, and will make

this the normal expansion of+. In particular, WI! can define a procedure called CURRENT

ENVIRONMENT as follows (note the use of(] as the argument pattern, implying that CURRENT

ENVIRONMENT must be ca11ed with no arguments):

(DEFINE CURRENT-ENVIRONMENT (S6-174)
(LAMBDA REFLECT[[] ENV CONT] (CONT -tENV)))

The use of NAME (in the "-t") makes manifest the fact that CURRENT-ENVIRONMENT embodies a

fi.mdamental level-shifting kind of operation: giving a designator of the environment to

code at that very level. We will then simply posit that the lexical notation using the down

arrow wiJl use this procedure. It would be simple to define the notational expansion as

follows:

+<EXP> e> {REFERENT <EXP> (CURRENT-ENVIRONMENT)) (S6-175)

However this relies (since it is a macro expansion) dangerously on the bindings of the

atoms CURRENT-:..NVIRONMENT and REFERENT. Thus we will instead adopt the following

normal-form version of the same thing (the atoms have been replaced with lhe closures that

S6-175 assumes they are bound to):

+(EXP> e> (<primitive-REFERENT-closure> (S5-176)
<EXP>
((<REFLECT> Eo

7([] ENV CONT]
'(CONT (<primitive-NAME-closure> ENV))))

lhis will successfully deal with both problems: meta-structural operations that intend to

remain within a given level, and the explicit de-referencing of expressions in normal-form,

where the environment argument makes no difference.

There is one final remark to be made about REFERENT, having to do with

continuations. We have said nothing about what continuation is used for the second

normalisation indicated by a REFERENT redex. but we can retain the answer we provided in

2-LISP (as indicated in S4-949); namely: the same one given to the REFERENT redex as a

whole. In other words, if (RHERENT '{lST [1 2 3]} ENV) were normalised in environment

5. Procedural Reflection and 3-L.CSP Procedural Reflection 641

E 1 with continuation c1, then the handle ' (1ST ' [1 2 3]) and the atom E NV would be

no!lnaliscd in environment E1, with some other continuation C2 (the exact form of c2 will be

demonstrated in section 5.c). Suppose that the atom ENV designates (in E1) an environment

that we call E2 in our meta-language. Then the structure designated by the handle • (1ST r.1

z 3]) - namely, the rcdcx (1ST [t 2 31) - will be normalised in environment E2 and with

continuation c1• REFERENT, in other words, nonnalises the referent of its argument

expression tail-recursively. This fact is :nade evident in the fifc.h line of the definition of

MAKE-Ct in the listing of the reflective processor given in S6-207 in section 5.c.

5.b. viL The Conditional

We said at the outset that 3-LISP provides an extensional conditional cal!cd EF, in

place of an intensional IF. We can define IF in terms of EF: the approach is to use

reflection to obtain proper access to the appropriate contexts, and to use the intcnsionality

of LAMBDA in the standard way to defer processing. Ignoring fer a moment the question of

reducing IF with non-rail CDRS, we have:

{DEFINE IF 1
(LAMBDA REFLECT [[PREMISE Ct C2] ENV CONT]

(NORMALISE PREMISE ENV
(LAMBDA SIMPLE [PREMISE!]

((EF (= PREMISE! 'ST}
(LAMBDA SIMPLE[] (NORMALISE Ct ENV CONT))
{LAMBDA SIMPLE(] {NORMALISE CZ ENV CONT))))))))

(S5-176)

The cmcial aspect of this dcfinitinn is (he fact that the second and third arguments to Ef

(which is processed at the reflected levei) are LAMBDA terms, rather than simply NORMAUSE

redcxes. Thus, in the processing cf the f.F rcdex, two closures witi be produced, sinr.c EF is

prccedurally extensional, b1Jt only one of them will be returned as the result of the Ef

redex. That one result is tl1en reduced with rio arguments (this is why there arc two

parentheses to the kft of the "EF" atom in the fifth line). Thus, if the premise normalises

to ST, then the first closure will be reduced; otherwise the second. Since it is only on

reduction of the constructed closures that the consequents are i10nna1iscd, we thus have the

appropriate behaviour. In particular, whereas EF would yield the following:

1> (EF (• 1 2)
(PRINT 'YES)
(PRINT 'NO)) YiS NO

1> ST

(S6-177)

S. Procedural Reflection and 3-LISP Procedural Reflection 642

the intensional IF would on the other hand yield:

1'> (IF1 (• 1 Z)

1> ST

(PRINT 'YES)
(PRINT 'NO)) !!Q

(S5-178)

This works b~ause the ct and cz parameters in the definition of IF 1 in S5-176 would be

bound, respectively, to the handles '(PRINT 'YES) and '{PRINT NO). The EF redex would

effectively be of the fonn

(EF (" 'SF 'ST)
(LAMBDA SIMPLE[] (NORMALISE '(PRINT 'YES) ENV CONT))
{LAMBDA SIMPLE(] (NORMALISE '(PRINT 'NO} ENV CONT)))

which would normalise to the following closure of the third line:

(<SIMPLE> [,_] '[] '(NORMALISE '(PRINT 'NO) ENV CONT))

(S5-179)

(S5-180}

When this is reduced with a null argument, the body would be normalised, causing the

processing of the second consequent, as expected.

The only additional subtlety to consider is the use of non-rail CDRs. Since EF is

extensional we have no trouble in its case:

1> (EF. (REST[(• 1 2) (• 2 2) (+ 1 2) (+ 2 2)]))
1> 3 .
1> (HAP EF [(• 1 1) (• 1 2) (• 1 3)]

[(+ 1 1) (+ J 2) (+ 1 3)]
[(• 1 1) (• 1 2) (• 1 3)])

1> (2 2 3]

(S6-181)

On the other hand neiU1er cf the expressions using EF in S5-181 would work using IF

(assuming the definition of HAP of S4-991 was carried over from 2-LISP):

1> (IF. (REST[(• 1 2) (• 2 2) (+ 1 2) (+ 2 2)]))
ERROR: Bad pattern match
1> (MAP IF[(• l J) (• 1 2) (• 1 3)]

[(+ 1 1) (+ 1 2) (+ J 3)]
[(• J l) (• l 2) (• l 3)])

ERROR: Bad pattern match

(S5-182)

We could, as initially suggested in S4-398, complicate the definition of IF as follows:

(DEfINE IFz
(LAMBDA REFLECT [ARGS ENV CONT]

(LET ([(PREM Cl C2]
(IF (RAIL ARGS)

ARGS
(NORMALISE ARGS £NV IU))]]

(NORMALISE PREM ENV

(S5-183)

This will not do.

5. Procedural Reflection and 3-LISP Procedural Reflection 643

(LAMBDA SIMPLE [PREM!]
((EF (• PREM! 'ST)

(LAMBDA SIMPLE[] {NORMALISE Cl ENV CONT))
(LAMBDA SIMPLE[) (NORMALISE CZ ENV CONT)))))))))

However this cannot stand, since ther~ is a viciously circular use of IF within the body.

When we were meta-circularly defining IF in S4-398 this didn't matter, but here we are

actually proposing a definition that is intended to be self-sufficienL Though it might seem

possible to replace the inner IF with an EF, that would always n":-matise all three

arguments, so it is not an answer.

There is a solution, however: we can iterate our technique of avoiding processing by

wrapping expressions in LAMBDAS, as follows:

(DEFINE IF3 {S6-184)
(LAMBDA REFLECT (ARGS ENV CONT]

((EF { RAIL ARGS)
(LAMBDA SIMPLE[]

(LET [[[PREMISE Cl CZ] ARGS]]
(NORMALISE PREMISE ENV

{LAMBDA SIMPLE (PREMISE!]
((EF (= PREMISE! 'ST)

(LAMBDA SIMPLE [] (NOllMALISE Ct ENV CONT))
{LAMIJDA SIMPLE (] (NORMALISE C2 ENV CONT)))))}))

(L~MBDA SIMPLE(]
(NORMALISE ARGS ENV

(LAMIJOA SIMPLE ([PREMISE Ct CZ]]
(CONT (EF (• PREMISE! 'ST) Cl C2)))))))))

In other words, if the argument expression to an IF3 is a rail, then the premise expression

(the first element of the rail) is normalised. and depending on its result either one or other

of the consequents (the second and third clements of the rail) are normalised tail-rccursfrely

(this is important). If the argument exprcssi0n is not a rail, it is nonnaliscd as a unit; the

continuation dcstructures it into the appropriate pieces, returning whichever piece is

appropriate (no further processing is required in this case, of course).

We will take the definition in S5-t84 as our reference. It should be noted, however,

that if it were not for the ability to l1andle non-rai1 coRs, the simpler definition in S5- t 76

would suffice. On the other hand, if that simpler behaviour were considered acceptable, we

could use lhe following even simpler macro (once we define MACRO in section 5.d.ii):

(DEFHJE IF4
(LAMODA MACRO [PREM Ct C2]

' ((EF PREM
(LAMBDA SIMPLE[] ,Ct)
(LAMBDA SIMPLE[] ,C2)))))

(S6-186)

5. Procedural Reflection and 3-LISP Procedural Reflection 644

However in our general attempt to support argument objectification even in intensional

contcxLc;, we will stay with the more complex definition in S6-184.

It is striking that EF must be primitive. If we associated Truth and Falsity with 0

and l, respectively (if, in other words, we used the numerals o and t in place of the

booleans $T and SF), then it would be trivial to define EF, as follows:

(DEF1NE EF
(LAMBDA SIMPLE [PREM Ct C2]

(NTH(+ 1 PREM) (Cl C2])))
; This is not a possible
; definition of EFI

(S6-186)

However such a suggestion would of course vitiate our aesthetic of category alignment

Given that we treat U1e booleans as a distinct structural class, we can see that the only other

primitives that can take them as arguments (the only primitive functions, in other words,

defined over truth-values) are SCONS, =, TYPE, NAME, and PREP (the last only in its first

argument position). The essential task is to compare a truth-value or boolean, to select one

or other of a pair of alternatives. Though " is of course capable of checking identity, and

could therefore be used to compare the result of the premise against the booleans, it always

yields another boolean, so that no comparison of a boolean with anything e1se would free

us from the need to discharge a boolean. No solution, in other words, will emerge from a

definition containing the following term:

... (= PREM $f) (S6-187)

The only selector we have is NTH, which requires for its index a number; thus if it were

possible to select one of tNo numbers based on having one of two booleans, a candidate

definition could be founri. However this task - choosing a number based on a trnth·value

- is essentially similar in structure to the original one: choosing a consequent based on a

truth-value. In sum, though we do not offer fonnal proof, it should be clear that there is

no way of composing these with other functions to yield EF behaviour non-primitively.

There is an alternative, suggested by S6-186: EF could be replaced with another

primitive. In particular, if we defined a primitive procedure called nooL to map Truth and

Falsity, respectively, onto the numbers O and 1, we could then have the following

definitions of boU1 H (IF could be defined in terms of EF as above, or could be given its

own definition directly in terms of BOOL):

5. Procedural Reflection and 3-LISP Procedural Reflection 645

(OHINE EF (S5-188)
(LAMBDA SIMPLE [PREM Cl C2)

(NTH(+ 1 (BOOL PREM)) [Cl C2])))

Very little rests on a choice between these two proposals (EF vs. BOOL as primitive); we will

retain the extensional conditional.

Again we have a footnote. We pointed out above that the nonnalisation of the

consequents of a conditional arc iterative (tail-recursive) calls; it is also true that the

reflected level calls to NORMALISE are tail-recursive as well (but tail-recursive at a different

level). This last fact is crucial, as a discussion in section 5.c.iii will make clear.

5.b. viil Review and Comparison with 2-LISP

It is instructive to review briefly the difficulties we encountered in our design of 2-

LISP, and to show how the 3-LISP reflective capability has dealt with all of them. Six

issues were of particular concern, as we mentioned at the end of chapter 4:

1. The relationship between environments and environment designators.

ln 2-LISP environment designators crept into closures, but were not otherwise handled, and

we left unsolved a rather major problem with our meta-theoretic characterisation: how these

stn1ctural environment designators were to be kept synchronised with the environments

posited in the meta-theoretic account. In 3-LISP the relationship between environments

and environment designators is subsumed in the general issue of reflection: shifting levels is

guaranteed to provide informationally correct designators of the context prior to the shift.

'Ibos, although we do not have a mathematical account of reflection, we have made the

correspondence between theory and structure explicit and well-behaved. '1be use of such

designators in object level closures remains somewhat inelegant, but U1is level-crossing

behaviour is not theoretically problematic.

2. The difficulty of using IMPRs in a statica!ly scoped dialect.

We pointed out in section 4.d.iii that, partially in virtue of 2-usp's static scoping, it was

difficult to make good use of IMPRS, because the context of use of the non-nonnalised

argument was not available to the body of the intensional proc:::dure. Reflective procedures

(REFLECTS) differ from intensional procedures (IMPRs) precisely in that they provide access

not only to the (hyper-) intensional argument expression, but also to the context that was in

5. Procedural Reflection and 3-LISP Procedural Reflection 646

force at the point of use. Thus this difficulty is thoroughly dissolved

3. Non-standard control operators.

We did not introduce any non-standard control operators into 2-LISP, but it was evident

that if we had wanted any, they would have had to be provided primitively - there was no

chance of constructing them in the language as defined. In contrast, we ha\-c already seen

in 3-LISP that we can define such outre procedures as UNWIND-PROTECT, CATCH and THROW,

QUIT, and so forth, each using just a few lines of code. Even more radical control structures

could be defined using more subtle reflective procedures, as we will see later in the chapter.

Again, this limitation of .:-LISP has been completely discharged.

4. The relationship between SET and REBIND.

In 2-LISP we had to provide SET primitively, and also had sometimes to use REBIND (such

as when we wanted to modify an own variable of a procedure from the outside). Though it

was clear that REBIND was more general, we could not define SET in its terms becausl.! we

lacked the ability to provide the proper environment designator. 3-LISP's reflective

capability of course overcomes this difficulty: SET was adequately defined in terms of

REBIND in S5-130, above.

5. Different contexts for the two 11ormalisatio11s inherent in REFERENT.

Though we admitted it was less than elegant. in 2-LISP we were forced to execute the

second normalisation mandated by REftRENT redexes in the context resulting from the first.

In 3-L ISP we were able conveniently to provide an additional argument to REFERENT

enabling these contexts to be different. Furthermore, we were also able to define a

function (CURRENT-ENVIRONMENT) that engendered the simpler 2-LISP behaviour for

circumstances when that behaviour was appropriate.

6. The relatio11ship between NORMALISE {the primitive processor) and
MC-NOPMALISE (the meta-circular processor).

In 2-LISP the primiLivc NORMALISE bore very tittle connection to the meta-circular MC

NORMALISE of section 4.d.vii. In 3-LISP, as the next section will make clear, the reflective

processor, which subsumes the functions of the meta-circular processor, is also the primitive

NORMALISE: it has the explicitness of the meta-circular processor with the causal grounding

of the primitive processor. In addition, it provides abilities that neither NOIIMALISE nor MC-

5. Procedural Reflection and 3-LISP Procedural Reflection 647

NORMALISE did in 2-LISP: access to the state of a computation mid-stream. 1bus the

reflective processor unifies three capabilities of a standard LISP: mid-stream access to the

state of a computation (something that is typically implementation-dependent), publicly

available names for the primitive processor function, and the support of explicit meta

circular code embodying a procedural theory of the computational significance of the

processor function.

In addition, we can see even at this early stage in our investigation how a-LISP has

various properties that we predicted in chapter 1. First, it is clearly an inherently theory·

relative dialect: the reflective protocols absolutely embody the "environment and

continuation" theory of LISP in the very behaviour of the primitives. Second, it is simpler

than 2-LISP in many ways: we were able, for example, to remove three of the 2-LISP

primitives, defining them straightforwardly as simple procedures in a few lines of code.

In spite of this theoretical simplicity, we must not shrink from the fact that 3-LISP is

infinite: everything we have said about the dialect this far implies that an infinite tower of

processors, or at least processor states, must be (at least virtually) provided. The tractability

of this infinite ascent remains as the main open question about the coherence of the

formalism. It is a threat we will be able to defuse, but we must first investigate the

structure of the reflective processor itself.

5. Procedural Reflection and 3-LISP Procedural Reflection 648

5.c. The Reflective Processor

Though simple examples of 3-LISP, like those in the previous section, can be

understood on their own, it is difficult to understand 3-LISP reflective procedures in any

depth, except with reference to the reflective processor. We tum to this procedure in this

section. Strictly, by "the processor" we refer to an active process: what makes it reflective,

as suggested in section 5.a, is that it can be understood in terms of the processing of a

particular program by what amounts to a type-identical copy of itself. Since we have only

limited vocabulary for discussing processes per se, we wilt focus entirely on the procedures

that the processor runs.

Superficially, the code for the reflective processor is similar to that of the meta

circular processors presented in previous chapters. 11lere are four main functions of

interest: NORMALISE, REDUCE, NORMALISE-RAIL, and READ-NORMALISE-PRINT (the others are

subsidiary utilities, unchanged from chapter 4). NORMALISE and NORMALISE-RAIL arc

identical to their 2-LISP counterparts, except of course for the EXPR/SIMPLE conversion:

(DEFINE NORMALISE
(LAMBDA SIMPLE [EXP ENV CONT]

(COND [(NORMAL EXP) (CONT EXP)]
((ATOM EXP) (CONT (BINDING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR f.XP) (CDR EXP} ENV CONT)])))

(DEFINE NORMALISE-RAIL
(LAMBDA SIMPLE (RAIL [~V CONT]

(If {F.MPTY RAIL)
{CONT (RCONS)}
(NORMALISE (1ST RAIL} ENV

(LAMBDA SIMPLE [ELf.MENTI]
(NORMALISE-RAIL (REST RAIL) ENV

(LAMBDA SIMPLE [REST!]
(CONT (PREP ELEMENT! RESTI)})))))))

(S6-191)

($5-192)

REDUCE wil! differ in certain respects; in this first version we ignore primitives and

rcflcctives. and expand the call to EXPAND-CLOSURE, since we have only one instance of it

(since the present dialect has primitives of only one procedural type):

{DEFINE RCDUCE
(LAMBDA SIMPLE (PROC ARGS ENV CONT]

(NOllMALISE PROC UlV
(LAMBDA SIMPLE [PROCI]

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT ...]

(S5-193)

5. Procedural Reflection and 3-LISP Procedural Reflection 649

[SIMPLE (NORMALISE ARGS ENV
(LAMBDA SIMPLE [ARGSI]

(IF (PRIMITIVE PROCI)
... deal with primitive simples ...
(NORMALISE (BODY PROCI)

(BIND (PATTERN PROC!)
ARGS
{ENV PROCI))

CONT))))])))))

READ-NORMALISE-PRINT cans the procedure LEVEL (defined below) to detennine the reflective

level at which the code is being processed, giving the answer to PROMPT to print to the left

of the caret, as the examples have shown. Otherwise it is unchanged:

(DEFINE READ-NORMALISE-PRINT
(LAMBDA SIMPLE [ENV]

(BLOCK (PROMPT (LEVEL))
(LET [(NORMAL-FORM (NORMALISE (READ) ENV ID)]]

(BLOCK (PROMPT {LEVEL))
(PRINT NORMAL-FORM)
(READ-NORMALISE-PRINT ENV))))))

(S6-194)

The most important difference between this and the 2-LISP version, of course, has to

do with causal connection. Viewed as the code for a meta-circular processor, one would

take these definitions in the following light: if they were processed by the primitive

langauge processor, they should yield behaviour equivalent to that of the ?rimitive

processor, in the sense that they would compute the same function from expressions to

expressions (i.e., NORMALISE would be provably equivalent to 'It). From our reflective

standpoint, however, we require something stronger: that from the point of view of any

possible program, the behaviour of the primitive processor be indistiguishab/e from that

engendered by this code, even upon reflection. In order to see what that comes to, we will

consider import of the Jine left incomplete: the proper treatment of rctlcctive rcdcxes by

REDUCE. It is in our treatment of that particular line where the substance of reflection will

be manifested.

5.c.i. The lnlfgration of Reflective Procedures

A reflective procedure is one that is run one level above simple functions, as if it

were called as part of the processor itself. If a reflective redex is reduced, the first clause in

the SELECTQ statement in the definition of REDUCE will be chosen. We want the reflective

functirm to be called directly: not to be mentioned by the processor code. The latter would

5. Procedural Reflection and a-LISP

suggest code of some form such as

(EXPAND-CLOSURE PROC I ARGS ... }

Procedural Reflection 650

(S5-196)

just as in the case of the simple functions, but that would be to process a reflective

procedure, from a level above: it would not include the function at the current level.

Rather, we simply want to call it (not worrying, for the moment, about how it will itself get

run). A first suggestion as to how to do this is the following:

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT (PROC! ARGS ENV CONT)]
(SIMPLE ..•])

; This has a bug
(S5-196)

This has one correct property; it calls the reflective procedure with the proper three

arguments: designators of the non-normalised arguments in the redex, of the environment

in effect at the point of normalisation, and of the continuation with which the reduction

was called. There is a problem, however, with PROC 1 : it is a variable used in the body of

REDUCE as the name of a function designator, not a function itself. For example, if

NORMALISE were called with the expression (CAR • (A . B}), REDUCE would be called with

• CAR and ' [• (A . o}] as arguments, PROC I would be bound to the designator of the binding

of CAR in the appropriate environment: likely the primitive closure of the CAR function. But

that closure is an expression (like all closures); therefore the redex we just wrote down -

(PROC I ARGS ENV CONT) - is semantically ill-formed. We have made, in other words, a

use/mention error; we intend instead to apply the function designated by the referent of

PROC t to the arguments in question.

An apparently simple solution would be to dereference PROC I explicitly, as follows:

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT ('PROC! ARGS ENV CONT)]
[SIMPLE •.•])

(S6-197)
; This has a different bug

But this is a little too hasty: sin.;e PROC I designates a reflective closure (as the SELECTQ has

just determined) , PROC I wiU nom,alise to that reflective closure. The consequent of the

second line in S6-197, therefore, is ilself a reflective redex, which will start up the processing

of a line just like this one in the: reflective processor that runs this one, and so on forever:

it would engender an infinite number of reflections up the reflective hierarchy. This is not

1.mly infinite, it is wrong: we intended the reflective function to be run at this level, not to

rcti<!ct again. We would like, in other words, to apply the actual fimclion designated by the

5. Procedural Reflection and 3-LISP Procedural Reflection 651

referent of NORMAL-FUN, and functions are neither reflective nor simple. We do not want to

reduce a reflective procedure; we want to reduce a simple procedure that designates the

junction designated by the reflective procedure PROC t.

1be answer was suggested in section 5.a: if it were possible to define a different

procedure PROc•. such that PROC* was a simple closure that designated the same function as

PROC I and that had the same arguments and body as PROC, then that is the procedure we

would like to use in the reflective processor. We will simply posit, therefore, a temporary

function SIMPLIFY (not unlike the CORRESPONDHJG-FUN of S5··60) that converts REFLECTIVE

closures to SIMPLE closures. Then our definition of REDUCE would look as follows:

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT (+(SIMPLIFY PROCI) ARGS ENV CONT)]
(SIMPLE ...])

We can define an appropriate SIMPLIFY as follows:

(DEFINE SIMPLIFY
(LAMBDA SIMPLE [REFLECTIVE-CLOSURE]

t(SIMPLE . +(CDR REFLECTIVE-CLOSURE))))

(S5-198}

(S6-199)

111ese definitions, being purely structural, remain essentially unexplained: we need to

inquire as to what function SIMPLIFY designates. An adequate answer, however, requires an

answer to the prior question of what reflective closures designate in general: both topics are

pursued in section 5.e, below. For the time {:leing we will simply adopt the solution,

dispense with the name SIMPLIFY, and insert the solution directly into the definition of

REDUCE, omitting the redundant NAME and REFERENT operators. We arrive at the following

definition:

(DEFINE REDUCE
(LAMBDA SIMPLE [PHOC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROC!l

(SELECTQ (PROCEDURE-TYPE PROC!)
[REFLECT ((SIMPLE . l(COR PROCI)) ARGS ENV CONT)]
(SIMPLE {NORMALISE ARGS ENV

(LAMBDA SIMPLE [AAGS!]
(IF (PRIMITIVE PROC!)

... deal with primitive simples .•.
(NORMALISE (BODY PROC!)

(BIND {PATTERN PROCI)
ARGS
(ENV PROC I))

CONT))))])))))

(S6-200)

5. Procedural Reflection and 3-LISP Procedural Reflection 652

Aside from its omission of primitive functions, this definition will stand. It should

be realised, however, that this simple introduction of ((s IMP LE . + (CDR PROC I)) ARGS ENV

CONT} into the code has major and rather ramifying consequences. For one thing, it

apparently renders the definition circular: these "meta-circular" programs were originally

intended to explain how 3-LISP code is treated, and this last move has included in the

midst of this supposedly explanatory program some of the code we were attempting to

explain. We used what we were to have mentioned - a maneouvre that suggests

vacuousness (although it must be admitted that even the "meta-circular" processors for 1-

LISP and 2-LISP were fonnally vacuous as well, as betrayed by their names). Some

explanation is due as to what S5-200 means - and, more particularly, how the resulting

machine is finite. For wiili this one move we have already implied an infinite tower of

processors. However . we must first complete the processor definition.

5.c. ii. The Treatment of Primitives

We have not yet treated the primitives. In chapter 4 we used the following meta

circular defin!tion of REDUCE-EXPR for 2-LISP:

(DEFINE REDUCE-EXPR (S5-201)
{LAMBDA EXPR [PROCEDURE ARGS ENV CONT]

(SELECT +PROCEDURE ; This is 2-LISP
[REFERENT (NORMALISE 1(1ST ARGS) ENV CONT)]
[NORMALISE (NORMALISE +(lST ARGS) ENV

(LAMBDA SIMPLE [RESULT] (CONT tRESULT))}]
[REDUCE (REDUCE +(lST AkGS) +(2NO ARGS) ENV

{LAMBDA SIMP~E [RESULT] (CONT tRESULT)})]
[$T (CONT t(+PROCEDURE . +ARGS))])))

It was important to deal explicitly with REFERENT. NORMALISE, and REDUCE, sine\! they

involved explicit normalisations beyond those implied by their being extensional

procedures. This was not merely an aesthetic point: we had to make such processing

explicit in order to ensure that the proper context arguments were used. In our present

situation we must again manifest any explicit additional processing that is indicatrd by our

primitives, for the same reason. Once again only these three primitives are candidates for

special treatment: the rest will be adequately described, as they were in 2-usr, by the term

t(+PROCEDURE . +ARGS).

However in 3-L ISP we can reduce our concern about "special primitives" from three

to one, for this reason: we are in the midst of fonnulating definitions of NORMALISE and

5. Procedural Reflection and 3-LISP Procedural Reflection 653

REDUCE: no farther treatment needs to be given. It is for this reason that we said that

NORMALISE and REDUCE were not like other 3-LISP primitives: we don't need to recognise

them as special. If the user were merely to type in the definitions we are laying out, that

would be perfectly adequate: they could be used as fully competent calls to the processor.

Why then do we say that NORMALISE and REDUCE are primitive at all? Because even

though primitive closures of these two functions need not be recognised by the reflective

processor, we are nevertheless defining the processor to be of such a form that. if it were to

process the definitions we are spelling out, indistinguishable behaviour would result. In

other words it is the behaviour of NORMALISE and REDUCE that is primitive, not the

designators of that behaviour. If you formulate an importantly different definition of

NORMALISE, it will be wrong: it wilt fail to designate the procedural function computed by

the primitive processor. If, however, you formulate one that is correct (we will spell out a

little more later about what "correct" comes to in this regard), then you can use that with

impunity; no primitive binding needs to be used. In the initial 3-LISP environment, in

other words, there are only twenty-seven primitive bindings, not twenty-nine.

Thus our explicit treatment of primitive simple closures needs to focus only on

REFERENT. We said earlier that 3-LISP's REFERENT differed from 2-LISP's in that a second

argument was used as a designator of the appropriate environment, rather than defaulting

to the tacit context in present use. We said as well that the second normalisation was tail

recursive: it was given the same continuation as the original REFERENT redex. We are led,

then, to the following characterisation:

(DEFINE REDUCE-EXPR
(LAMBDA SIMPLE [PROCEOURF. ARGS ENV CONT]

(If(= PROCEDURE tREFERENT)
{NORMALISE +{lST ARGS) +(ZND ARGS} CONT)
(CONT t(+PROCEDURE . +ARGS)))))

(S5-202)

Rather than have a specially-named procedure called REDUC£-EXPR (or even a 3-LISP version

called REDUCE-SIMPLE), we can merely integrate this behaviour into the definition of HEDUCE.

For perspicuity we define a function called MAKE-Ct (we wiJI explain that name later) that

constructs an appropriate continuation for the recursive call when normalising SIMPLE

argument expressions. In addition we re-arrange the tests to make things simpler:

(DEFINE REDUCE
(LAMBDA SIMPLE [PROC ARGS ENV CONT]

(NORMALISE PROC ENV

(S5-203)

5. Procedural Reflection and 3-LISP Procedural Reflection 654

(LAMBDA SIMPLE (PROCI]
(SELECTQ (PROCEDURE-TYPE PROCI)

[REFLECT ((SU1PLE . +(CDR PROC!)) ARGS ENV CONT))
[SIMPLE (NORMALISE ARGS ENV {MAKE-Cl PROCI CONT))])))))

(DEFINE MAKE-Cl (55-204)
(LAMBDA SIMPLE [PROCI CONT]

(LAMBDA SIMPLE [ARGS!)
(r.OND [(= PROCI tREFERENT)

(NORMALISE +(lST ARGSI) +(2ND ARGS!) CONT)]
[(PRIMITIVE PROCI) (CONT t(+PROCI . +ARGS!})]
[$T (NORMALISE {BODY PROCI}

{BIND (PATTERN PROCI) ARGSI (ENV PROCI))
CONT) l))))

This will stand as the official definition. Though simple, many of its cons(;quences are yet

to be explored.

We can see right away how fortunate we are in our ability to have no primitive

reflectives. Suppose for example we had retained an intensional IF as a primitive

procedure, with something like the following meta-circular characterisation {this is only able

to treat rail CDRS - but it is better to remain simple here):

(DEFINE IF
(LAMBDA REFLECT [[PREM Cl C2) ENV CONT]

(NORMALISE PREM ENV
(LAMBDA SIMPLE (PREM!]

(IF (= PREM! '$T)
(NORMALISE Cl ENV CONT)
(NORMALISE C2 ENV CONT)}))))

(S5-206)

lbe reflective processor, upon encountering a conditional redex, would nonnalise the CAR

and obtain a designator of a primitive IF reflective closur~. It would not do to "SIMPLIFY"

this in the second last line of S5-203, since that would construct a non-primiLive closure, of

roughly the fonn (<SIMPLE> Eo '([PREM Cl C2] ENV CONT) '(NORMALISE. ...)), to be

processed by the reflective processor. This would again call NORMALISE, ultimately

engendering vicious circularity (since IF appears in the body of this newly-constituted

"simplified" closure). There would have to be a special check for primitive reflectives, jus(.

as there is a special check for primitive simples. We would be led approximately to the

following:

(DEFINE REDUCE
(LAMBDA SIMPLE (PROC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROCI]

(SELECTQ (PROCEDURE-TYPE PROCI)
[SIMPLE (NORMALISE ARGS ENV (MAKE-Cl CONT))]

(S5-2<16)

5. Procedural Reflection and a-LISP Procedural · tlection 655

[REFLECT
(If(~ PROCI tlf)

(LET [[(PREM Cl C2] ARGS]]
(NORMALISE PREM ENV

(LAM~DA SIMPLE [PREMI]
(If (= PREM! '$T)

(NORMAL1~E Cl ENV CONT)
(NORMALISE C2 ENV CONT)))~)

((SIMPLE . ~(CDR PROCI)) ARGS ENV CONT)])))))

Though in one sense this is no less well-defined than anything else, it means that the

processor mu<:t reflect in the course of processing object le,;el code. Furthermore, since the

reflected processor itself uses IF, this means that every one of the infinite number of

processors must reflect in order to treat a single conditional at the object level. Strikingly,

so long as we have no primitive r..:flectivcs this is not the case: the processor did not reflect

in order to treat reflective code: that was exactly the point of SIMPLIFY.

We have, then, completed t.'lc reflective processor; a complete listing of the

substantive part is given here (the attendant utilities can be derived from chapter 4 by

making tht: SXMPU/EXPa suh,th.ution):

5. Procedural Reflection and 3-USP Procedural Reflection 656

The 3-LISP Reflective Processor

(DEFINE NORMALISE
(LAMBDA SIMPLE [EXP ENV CONT]

(COND [(NORMAL EXP) (CONT EXP)]
[(ATOM EXP) {CONT (3INOING EXP ENV))]
[(RAIL EXP) (NORMALISE-RAIL tXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV CONT)])))

(DEFINE REDUCE
(LAMBDA SIMPLE [PROC ARGS ENV CONT]

(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROCI]

(SELECTQ (PROCEDURE-TYPE PROCI)

(S5-207)

[REFLECT {(SIMPLE . +(CDR PROCI}) ARGS ENV CONT)]
[SIMPLE (NORMALISE ARGS ENV {MAKE-Cl PROCI CONT))])))))

(DEFINE MAKE-Ct
(LAMBDA SIMPLE (PROCI CONT]

(LAMBDA SIMPLE [ARGSI]
(COND [(= PROCI tREFERENT)

(NORMALISE +(1ST ARGSI) +(2ND ARGS!) CONT)]
((PRIMITIVE PROC!) (CONT t(+PROCI . +ARGSI)\]
[ST (NORMALISE (BODY PROCI)

(DEFINE NORMALISE-RAIL

(BIND (PATTERN PROCI) ARGSI (ENV PROCI)}
CONT)]))))

(LAMBDA SIMPLE [RAIL ENV CONT]
(lf (EMPTY RAIL)

{CONT (RCONS})
(NORMALISE (1ST RAIL) ENV

(LAMBDA SIMPLE [ELEMENT!]
(NORMALISE-RAIL (REST RAIL) EN~

(LAMBDA SIMPLE [REST!]
(CONT (PREP ELEMENT! REST!)))))))))

(DEFINE READ-NORMALISE-PRINT
(LAMBDA SIMPLE [ENV)

(BLOCK (PROMPT (LEV[L)}
(LF.T [[NORMAL-FORM (NORMALISE (READ) ENV ID)]]

(BLOCK (PROMPT (LEVEL})
(PRINT NORMAL-FORM)
(READ-NORMALISE-PRINT ENV))))))

5.c.iii. Levels of READ-NORMALISE-PRINT

In a standard LISP, it is enough Lo say that EVAL is the main processor function, to

show a simple definition of RfAD-EVAL-PRINT, and to claim that the top-level user interface

is mediated by a call to this pr0Ccdurc. Jn 3-usr, however, considerably mqrc is required.

5. Procedural Reflection and 3-LISP Procedural Reflection 657

As we will explain in this section, it is not immediately obvious how the infinite set of 3-

LISP processor levels is, so to speak, "initialised".

We gave a definition of 3-LISP's REAO-NORMALISE-PRINf in S5-207 on the previous

page. Suppose that we claimed only that a user interacted with this routine at "top level"

(at reflective level 1), without offering any further explanation of how this came about. In

addition, suppose that we were then to type the following expression to this reader:

1> ((LAHBDA REFLECT 1 'HELLO)) (S5-208)

It is of course clear that this is a reflective rcdex that will reflect and return the atom

'HELLO. What is also clear, given the definition of READ-NORMALISE-PRINT, is that the call to

NORMALISE wi1l be given that atom, which would be printed, and the cycle would repeat:

1> ((LAHBDA REFLECT 1 'HELLO))
1> IIELLO
1)

(S5-209)

What is not clear, however, is who called READ-NORMALISE-PRINT. 11lUs, if we were instead

to reflect twice, as in:

1> ((L~MBDA REFLECT 1 (S5-210)
((LAMBDA ~~FLECT? 'BONJOUR))))

or in the equivalent:

1> ((LAMBDA REFLECT? (RETURN 'BONJOUR}}} (S5-211)

then all that we know is that the atom BONJOUR wilt be given to the .::allcr of llEAD

NORMALISE-PRINT.

We can surmise (given the ir,finitc number of reflective levels that we know arc

there) chat RtAD-NORMALISE-PRINT was invoked in virtue of the normalisation of the redcx

(RtAD-NORMALISE-PRINf <ENV0 >) (S6-212)

but there are various ways in which this could have come about. There arc no such

redcxes in the reflective processor itself (except within the definition of READ-NOIIMALISE

PRINT itself. but that is no help), so if il occurs strncturalty it must occur in some other

procedure. Furthermore, the problem recurses: though we do not yet know what invoked

this redex, it is also reasonable to suppose that an analogous structure invoked that

invocation, and so forth.

5. Procedural Reflection and 3-LISP Procedural Reflection 658

No unique answer is mandated by any of our prior concerns: this is rather an

isolated problem, although it docs demand a solution. Two general protocols seem

suggested. One is that the normalisation of the READ-NORMALISE-PRINT rcdex was

engendered by an explicit call to the processor, one level above it, of the fonn

(NORMALISE '(READ-NORMALIS~-PRINT <E~V0 >) <ENV1> <CONT 1>) (S6-213)

If we were to generalise this suggestion in the obvious way, we would expect that this redcx

would have been normalised in virtue of the level above it nonnalising the following

expression:

(NORMALISE '(NORMALISE '(READ-NORMALISE-PRINT <ENV0>)
<ENV1>

.tf.tV,i>
<CON_T2>)

<CONT 1>)

(S6-214)

And so on and so forth. There is no doubt that this schema could be extended indefinitely.

It would remain to specify the appropriate environment and continuation arguments.

Regarding the first, we have already said that each level is provided with a level-specific

"root" environment, consisting of the number of the level bound to the atom LEVEL, over

the global environment Thus we could fitl in S6-214 as follows:

(NORMALISE '(NORMALISE '(READ-NORMALISE-PRINT GLOBAL)
(PREP ('LEVEL '1] GLOBAL)
<CONT 1>)

(PREP ('LEVEL '2] GLOBAL)
<COtH 2>)

(S6-215)

Again, this could be extended arbitrarily. However the continuation argument is more

problematic. One obvious candidate would be the identity continuation, as follows (we

continue to illustrate the level 3 expression, since it hest manifests the essential slructure):

(NORMALISE '(NORMALISE '(READ-NORMALISE-PRINT GLObAL)
(PREP ['LEVEL '1] GLODAL)
ID)

(PREP ['LEVEL '2] GLOBAL)
ID)

(S6-216)

However this proposal has an extremely odd and unacceptable consequence. Suppose that

we took this as the correct initial strncture (i.e., assumed that each level consisted of the

appropriate version of this), and then normalised the expression gi,rcn in ss-211. The

BONJOUR would be lifted out of the READ-NORMAllSE-PRINT, and handed to the identity

5. Procedural Reflection and 3-LISP Procedural Reflection 659

continuation at level 2. This would cause a handle to this atom to be handed to the

identity continuation at level 3, and so on. At the end of time the top level of the

hierarchy would be given an infinite degree handle to this atom, and the processor would

(presumably) stop.

This seems extreme. It is for this reason that we have adopted a different strategy

altogether. What we simply posit is this: at the beginning of time, the top level processor

normalises the rcdex

(READ-NORMALISE-PRINT (PREP ['LEVEL '00] GLOBAL)}

This would cause the following to be printed at the process interface:

00)

(S6-217)

(S5-218)

We then posit further that (the lexicalisation ot) approximately the same redex is given to

READ as input:

00) (READ-NORMALISE-PRINT (PREP ('LEVEL '00-lJ GLOBAL))

'Ibis would of course engender:

00) (READ-NORMALISE-PRINT (PREP ['LEVEL '00-1] GLOBAL))
00-1)

And so on and so forth, until we get to the bottom:

00) (READ··NORMALISE-PRINT (PREP ('LEVEL '00-1] GLOBAL})
00-1) (READ-NOHMALISE-PRINT (PRCP ['LEVEL '00-2] GLOBAL))
00-2> ...

; An infinite number of intormediate steps

4> (READ-NORMALISE-PRINT (PREP ['LEVEL '3] GLOBAL))
3> {READ-NORMALISF.-PRINT (PREP ('LEVEL '2] GLOUAL))
2> (READ-NORMALISE-PRINT (PREP ['LEVEL '1] GLOBAL))
1)

(S5-219)

(S6-220)

(S6-221)

We presume that it is at this point - in this state - that the 3-LISP process is given to the

user.

This scheme has the advantage, among other things, that any unsuspected return to a

higher-level continuation that was not provided by the user will be printed at that level,

rather than disturbing anything at any yet higher level. In addition, it is both general and

simple, in that nothing special distinguishes the call lo READ-NORMALISE-PR I NT t11at the

reader secs.

5. Procedural Reflection and 3-LISP Procedural Reflection 660

Because of the infinite number of calls, and because of the control structure of READ

NORMALISE-PR INT (which will be examined in more depth in the immediately next section),

it is a consequence of this proposal that there is a continuation of one level of embedding

at each reflective level, rather than the identity continuation (this is why otherwise

untreated returns are adequately caught). Because of this fact, we have to make this

proposal part of the definition of 3-LISP, since any finite implementation will have to

simulate this infinite ascent of readers. However this protocol interacts only mildly with the

rest of the 3-usr definition; any number of other proposals could equally well have been

chosen (such as the one suggested. above, wherein an uncaught return would presumably

engender an error). Nonetheless the present regimen will suit our purposes.

5. Procedural Reflection and a-LISP Procedural Reflection 661

5.c.iv. Control Flow in the Reflective Processor

It is essential to lay bare the control flow through the processor code. The first

thing to establish is that NORMALISE is intensionally ileratfre: that it is called taihecursivcly.

To show that it is true, we first present a copy of the listing given in S5-207, but annotated

in ways we will shortly explain.

Control Dependencies in the Re(lectfre Processor

(DEFINE NORMALISE
(LAMBDA SIMPLE [EXP ENV CONT]

{CONO [(NOnMAL EXP) ifONT EXP)]
[(ATOM EXP) (CONT (BINDING ATOM ENV))]
[(RAIL EXP) {NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP} (CDR EXP) ENV CONT)]}))

(DEFINE REDUCE
(LAMBDA SIMPLE [PROC ARGS ENV CONT]

(NORMALISE PROC ENV

(S6-226)

(LAMBDA SIMPLE [PROCIJ ; Continuation CO
(SELECTQ (PROCEDURE-TYPE PROCI)

(DEFINE MAKE-Cl

[REFLECT ((SIMPLE. +(CDR PROCI)) ARGS ENV CONT)]
[SIMPLE (NORMALISE ARGS ENV (MAKE-Cl PROCI CONT))])))})

(LAMBDA SIMPLE [PROCI CONT]
(LAMBDA SIMPLE [ARGSI] ; Continuation Cl

(COND [(• PROCI tREFERENT)
(NORMALISE +(ZST ARGSI) +(ZND ARGSI) CONT)]

[(PRIMITIVE PROCI) (CONT t(+PROCJ . +ARGSI))]
[$T (NORMALISE (BODY PROCI)

(DEFINE NORMALISE-RAIL

(BINC (PATTERN PROCt) ARGSI (ENV PROCI))
CONT)]))})

(LAMBDA SIMPLE [RAIL ENV CONT]
ill (EMPTY RAIL)

(CotJT (RCONS))
{NORMALISE (1ST t!AIL) ENV

(LAMBDA SIMPLE [ELEME.vTI] ; Continuation C2
(NORMALISE-RAIL (REST RAIL) ENV

(LAMBDA SIMPLE [REST!] ; Continuation C3
(CONT (PREP ELEMENT/ RESTI)))))))))

(DEFINE READ-NORMALISE-PRINT
(LAMBDA SIMPLE [ENV]

!.!LOCK (PROMPT (LEVEL))
{LET [[NORMAL-FORM (NORMALISE (READ} ENV ID)]]

(BLOCK (PROMPT (LEVEL))
(PIUtlT NORMAL-FORI~)
(RF.AD-NORMALISE-PRTNT ENV))))))

5. Procedural Reflection and 3-USP Procedural Reflection 662

We can identify four classes of procedures that are called here:

1. Utilities (like RAIL and 1ST and SIMPLE) that in turn call only other utilities
and primitives, thus engendering no recursion in the processor;

2. Main processor functions (like NORMALISE and NORMALISE-RAIL); and

3. Continuations: functions, designators of which are passed in each case to
procedures that bind them to the parameter CONT.

We can ignore procedures of the first variety, since they do not contribute to the topology

of the control paths. It is straightforward to analyse those of the second sort; with the help

of the annotations in the preceding listing we will be able to analyse calls of the third sort

as wen.

In particular, t.1-icre are nine composite function dcsigP1tors th:::t together form the

substance of the reflective processor: five named reflective processor f.mctiuns of type 2 in

the preceding list (NORMALISE, REDUCE. MAKE-Cl, NORMALISE-RAIL, and RF.AD-NORJ\1ALISE

PRINT), and four continuations (of type 3), generated within the named rcllective processor

functions, labelled co through CJ, and notated in an ita1ic face. We will call these nine

closures the sta11dard closures, consisting of the five standartl procedures and four standard

continuations. 'Inc continualions arc passed to NORMALISE or NORMALISE-RAIL as a third

argument; in each of those procedures that third argument is sometimes explicitly called.

Those closures, being lexicaUy scoped, will contain the dosed bindings of a variety of

processof variables. We will look at each of them in turn.

co: The continuation constmcted by REDUCE when it normalises the CAR of the
redcx (the function designator). It is closed in an cnvironm~nt in which PROC,

ARGS, ENV, and CONT are bound to designators of the non-nornialised function
Jesignator, the non-normalised c,rgument designator, and the environment and
continuation. Thus all co continuation designators will be of the following
fom1:

(<SIMPLE> (['PROC ...]('ARGS ...]('ENV ...]['CONT ...] ..•]
'[PROCI]
'(SELECTQ (PROCEDURE-TYPE PROCI) ...)))

(S5-226)

It is evident from this example how, the continuations embed: the closed
environment embodied within the co continuation contains within it a binding
of the variable CONT to the previous continuation.

c1: The cm,tinuation constructed by co in virtue of calling MAKE-Cl (w~ now see
why we chose this name) when it normalises the arguments to a simple redex.

5. Procedural Reflection and 3-LISP Procedural Reflection 663

It is closed in an environment in which PROC I is bound to a designator of the
normal-form simple function designator (i.e., to a handle of a simple closure),
and in which CONT is bound to the original redex continuation. Thus c 1

continuations will be of the following form:

(<SIMPLE> [['PROCI •••]['CONT ...] ...]
'[ARGSI]
'(COND [(= PROCI '!'REFF.RENT) •••))

(S5·227)

c2: The continuation constructed by NORMALISE-RAIL when it normalises the first
clement of a rail (or rail fragment). It is closed in an environment in which
RAIL is bound to the normal-form designator of the rail of non-normalised
expressions of which the first is being normalised; it expects a single normal
form designator of that first element's referenl c2 continuations will be of the
following form:

(<SIMPLE> [('RAIL ...]('ENV ...]('CONT ...] •..]
'[ELEMENT!]
'(NORMALISE-RAIL (REST RAIL) ENV (LAMBDA ...)))

(S5-228)

Note once again how the compositionality of the continuation structure is
encoded in the embedded bindings of CONT.

C3: The contimntion constructed by c2 when it normalises the remainder of a rail
(or rail fragment) by ca!ling NORMALISE-RAIL. It is closed in an environment in
which ELEMENT! is bound to the normal-fcnn designator of the element
belonging ahead of the tail being normalised. In addition, since C3

continuations arc always closed in c2 continuation bodies, the bindings in force
for cz continuations will also be in effect. C3 continuations will therefore be
of the following form:

(<SIMPLE> [[ELEMENT! ...]['RAIL ...]['ENV ...]['CONT ...] ...]
'[REST!]
'(CONT {PREP ELEMENT! REST!)))

(S5-229)

Givl'.!n these identifications, we can begin to lay out the potential control flow for all

possible paths through the reflective processor. We begin with NORMALISE; it is clear that it

can call (tail-recursively in each case) any of three procedures: NORMALISE-RAIL, REDUCE, and

CONT. 1lms we approximately have the following beginnings of a control diagram:

5. Procedural Reflection and 3-LISP Pro.:edural Reflection 664

NORMALISE (S5-230)

NORMALISE-RAIL REDUCE

<CONT>

We know what REDUCE and NORMALISE are; our goal is to discharge the CONT variable by

tracing it around the entire loop. If we can figure out who calls NORMALISE and with what

third argument, in other words, we can replace the un-informative "CONT" box in the above

diagram with pointers to closures we can identify.

REDUCE always calls NORMALISE, with closure co as the continuation. Thus we add this

line to uur diagram, with the annotation "c co)" on the line, indicating that th:s is the

continuation argument (that will be bound to CvNT in NORMALISE). In addition we have

indicated with the sign-">" that co is an embedding continuation, in that it maintains within

it the binding of the continuation that was passed in to REDUCE.

(S5-231)

NORMALISE

NOilMALISE-RAIL REDUCE > co

<CONT>

NORMALISE-RAIL can call either the continuation that it was passed, or else it can caU

t..ORMALISC: with another embedding continuation c2, as indicated on the next version of our

diagram. Furthc1morc, since NORMALISE-RAIL is called directly from NORMALISE, the

continuation arguments that it can call are the same as those that NORMALISE can call

directly; thus we indicate an arrow to the same "continuation" box yet to be discharged

(NORMALISE-RAIL will also be called from c2, but again the same set of continuations will be

involved):

NORMALISE
(S5-232) ------------,

> C2 NORMALISE-RAIL REDUCE > co

<COIH>

Now we can factor co out of the continuation box, since we know it is a pcssible

continuation. co can call NORMALISE (if the rc<lcx is simple) with another embedding

5. Procedural Reflection and 3-LISP Prcccdural k1;.:!e-:tion 665

continuation c 1. or it can reflect. in which case all bets are off, because we have no way of

knowing what the simplification of the user's reflective procedure witl come to. These two

alternatives are depicted in the following diagram:

NORMALISE
________ __,......,,_,,5-233)

> CZ NORMALISE-RAIL REDUCE > co

.----<C_O_N_T_>---..___..__..;-----C-0---~ > Cl

<fleflective Procedure>

We still have c1, cz, and CJ to follow through. ct takes one of three paths: either it calls

NORMALISE with the continuation CONT that was embedded within it (on two of its paths), or

else it caUs that continuation directly. c2 always calls NORMALISE-RAIL, with an embedding

continuation CJ. Finally, CJ always calls its embedded continuation. We mark the direct

calls to continuations (from NORMALISE and tJORMALISE-RAIL as well as from Cl and C3) with

"<", to indicate that the complexity of the passed continuations has decreased, rather than

increased (on a standard implementation the stack would be popped, rather than grown).

The diagram we now have looks as follows. This summarises all pos.-;iblc control flows

except for intervening reflective procedures and READ-NORMALISE-PRINT:

(S5-234)

> C2
NOHMALISE-RAIL

,-------------, > co
REDUCE

< <

< -----'----~ ::
CJ Ct

C2 co > Cl

<Reflective Procedure>

Finally WC look at the driver: READ-NORM/\LISE-PRINT. It calls NORMALISE with the identity

continuation:

5. Procedural Reflection and 3-L ISP Procedural Reflection 666

{S6-236)
READ-NORMALISE-PRINT.__, __

> CZ NORMALISE-RAIL REDUCE > co

< <

<
" C3 Cl

CZ ------.. > Ct co

<Reflective Procedure>

Given this analysis, it is straightforward to establish that every call to a standard

redex (every arrow in diagram S5-235) other than the call from READ-NORMALISE-PRINT to

NORMALISE is tail recursive (intensionally iterative). In particular, in the listing presented in

S5-225 we have italicised each of the continuation stmctures, to help distinguish them from

the closures in which the1 appear. Furthermore, within each of the nine closures we have

underlined the CAR of each redcx that will be processed with the same continuation the

enclosing closure would be. Consider for example NORMALISE: if a rcdcx (NORMALISE A B C)

were normalised with continuation Ct, then the corm redex would similarly be called with

continuation c.. Since COND (a macro} expands to a series of u's, and since we know that

the consequents of I rs are normalised iteratively, it is also true that the four consequents of

each branch of NORMALISE's COND would also be called with continuation ct, Thus in the

listing the CAR of the COND redcx and the CARS of the consequents of each of the COND

consequents arc underlined. Similarly in the other nine closures.

Consider then diagram S6-235 in conjunction with U1e listing in S5-225. NORMALISE

calls NORMALISE-RAIL, REDUCE, and all continuations iteratively. Similarly, REDUCE calls

NORMALISE iteratively. NORMALISE-RA IL calls either NORMALISE or its continuation argument

iteratively. co calls NORMALISE iteratively; ct similarly. And so on and so forth for c2 and

CJ. In fact the only non-iterative call in the processor (to one of the nine standard closures)

is the call to NORMALISE within the body of the LET in READ-NORMALISE-PRINT - this is why

it is indicated with a heavier line in S5-235.

This result should be understood in combination with the annotations (">", "<", and

"=") on the arrows of S5-235. From the fact that all the arrows in the diagram represent

5. Procedural Reflection and 3-USP Procedural Reflection 667

iterative tail-recursion, we can conclude that the entire state of any given level of processing

will be reflected in the three arguments passed around: in the expression, environment, and

continuation arguments p,\Ssed around between NORMALISE, REDUCE, and so forili. We will

use this fact in many plt.ces: in showing that a-LISP is finite, in designing an acceptable

implementatfon, and in encoding appropriate debugging protocols. What •~e three

annotations on the arrows shows is how that explicitly passed state designator increases or

decreases in complexity: each ">" implies that the continuation passed as an argument

embeds the previous continuation (strictly, the previous continuation is bound to an atom in

the environment over which the new continuation is closed); each "<" implies that such an

embedded continuation is itself being calted (implying that t~1e continuation stmcture is

decreasing in complexity); finally, an ".," signifies that the same continuation is passed from

one star.dard closure to the next, in such a way that the continuation complexity is

maintained.

These continuations, of course, may occur as the ·third argument to a reflective

procedure - the one we always bind to the parameter CONT. This is notable because it is

natural to ask, when writing a reflective procedure, about what possible arguments may be

bound to the third parameter. lhere can be no general answer to this question, since

higher level reflections may always call the processor with arbitrary functions as

continuations. However a subsidiary question - and one to which we can provide a

definite answer - is this: what wiil the binding of this variable be if no previous reflective

functions have altered them. We will say that a reflective procedure is called with standard

PJ:!.lments if those arguments are of a form that could have arisen from the processing of

arbitrary simple expressions at this level and lower. unaffected by the intervention of prior

reflective code. 'Oms the third parameter, in a reflective procedure called with standard

arguments, will be bound to a standard continuation, in exactly the sense that we defined

that tenn earlier. Of the nine standard closures, in other words, only four can occur as

standard continuations.

As our investigation of 3-LISP deepens it will turn out U1at a thorough

understanding of the standard continuations will play a crucial role. For one thing, any

implementation must be able to provide them as explicit arguments, even if it has in fact

nm the prior code through some other mechanism than explicit processing through a copy of

1he reflective interpreter. In the implementation presented in the appendix, for example, the

5. Procedural Reflection and 3-LISP Procedural Raflecticn 668

MACLISP routines run 3-LISP code directly, but at each step they put together the

appropriate. 3-LISP designators that could be bound to CONT (as well as to ENV and ARGS), in

case some 1ater reflective function accesses them. Though terribly inefficient, such

functionality must be virtually provided, since the implementation cannot know when some

reflective procedure may require access to the information they encode.

Note that there are an infinite number of possible distinct standard continuations:

we have merely identified four classes, called co through C3. Nor arc all instances of the co

class even type-identical, for they can contain arbitrarily different bindings of the EXP

argument, and arbitrarily different embedded continuations within them. What is

important about co continuations is that if a reflective redex bbds one to its CONT

parameter, that unplies that the redex occurred in the CAR of another redex. Similarly, if

the CONT parameter is bound to a c 1 continuation, the 1 vflective redcx occurred as the CDR

of a simple redcx. If the parameter is a c2 continuation, then the rr.dex occurred as an

element in a rail that was being normalised. Strikingly, there is no possibility of a rcdex

being given a C3 continuation: only rails arc nonnalised wi!l1 such a continuation. However

by looking at the embedded continuations bound within a given continuation, it is possible

to encounter CJ continuations.

It is important finally to consider HEAD-NORMALISE-PRINT. It is a substantial design

decision to have it not call NORMALISE iteratively; the opposite would always be possible, as

the following code demonstrates:

{DEFINE READ-NORMALISE-PRINT
(LAMBDA SIMPLE [ENV]

{OLOC~ (PROMPT (LEVEL})
(NORMALISE (READ) ENV

(LAMBDA SIMPLE [READI]
(BLOCK (PROMPT (LEVEL))

(S5-236)
This is an a1tornative
definition of HNP.

This would be continuation C4

(PRINT READ/)
(READ-NORMALISE-PRINT ENV)))))))

We can sec here why we had to USC (RETURN ARGS) af'i (RETURN ENV) and {RETURfJ CONT) in

our very first examples of reflective rcdexcs, in S5-66 through S5-68. If we had adopted

the definition just given in S5-236, instead of the actual version presented in S6-207, then a

simple return at tile reflected level would discard not only the continuation of the present

computation, but would discard as well the entire continuation that was reading in and

normalisi11g and printing out expressions. In particular, proposed continuation C4 in S5-236

5. Procedural Rcfle.::tion and 3-llSP Procedural Reflection 669

would ~e embedded in further continuations in the course of processing a given composite

expression; continuation C4 contains the code that prints out the answer and r\!ads in

another expression. Thus hy reflecting and ignoring the continuation one would dismiss

the rest of the READ ·NORMALISE-PR INT behaviour for this entire level, rather than si:nply

shelving tlle continuation fc:- this given expression.

However it docs not seem reasonable that the continuation in a given continuation

should include not only the state of the processor with respect to that computation, but also

the potential for any further computation. In the popular wi~dom a continuation is a

function from iniennediate results to answers; if we were to adont the definition of REAO

NOllMALISE-PR INT given in S5-236 all continuations would be infinite (non-terminating)

functions from !ntem1ediatc results onto 1.. It is for this reason that we have adopted the

def:nition iI' S5-207. Under this regime, tl,e continuation with wliich NORMALISE: is called is

the simple identity functior; the rest vf the REAO-'JOllMALI:iE-PRHlT function - the

continuation that says that REAO-NOllMALISE-PRH'T should loop - is embedded tn the

conti11ualion stmcture of the next level abo.,e.

It should be noted in thi:; regard that the identity function IO plays a very special

role when used as a continuation: lt seem~ to act as a function that flips the answer out

,rom •me tail-re-.:ursive program to the continuation of the cal!cr up one level. Thu!. whe11

an ID rcdex is ci~countered in the course of the reflective processor, the otherwise iterative

NORMALISE ceases, and the result is handed to lhc continuation that initiated the cycle.

Howcv•;r ID docs not itself of course cross levels; this view of its role emerges only from

the inte1 .. _tion between the tail-recursive NOllMAUSE and the m.her non-mcs~agc-passing

protocols we employ in programs that call NORMALISE.

It m?ttcrs whether one ::mbcds the processor or increa~cs I.he comp!" .Hy of

confi1 iations. a:, the following illustrative definitions of IF show (these arc straightfor vard

thr~e argument vcrsiGns that circularly us~ IF in the reflective processor - the sort of

aefinitions that would be posited as gci1, ~ating the pri'llitivc closures, if IF were primitive).

In the f.rst N<'r:MAUSE is called t,1i1-1e;cursivcly, wi1.h the remaining strncwrc of the

comr,utation embedded in the r ... plidt continuation given as the third argument:

5. Procedural Reflection ar.d 3-LISP

(DEFINc IF1 GLOB~L
(LAMBDA REFLECT ([PREMISE Cl C2] ENV CONT]

(NORMALISE PREMISE ENV
~LAMBDA SIMPLE [PREMIScl]

(IF(= R~SULT 'ST)
(NORMALISE Cl ENV CONT)
(NORMALISE C2 ENV CO~T))))))

Procedurnl Reflection 670

(S6-237)

This is an 1terat1ve
call to NORMALISE

In the second, we embed the continuation in variables bound in the reflective environment.

and use as the continuation for th<! premise the simple identity function:

{DEFINE lF2 GLOBAL
(LAMBDA REFLECT [[PREMISE Cl C2] ENV CONT]

(LET [[PREMISE! (NORMALISE PREMISE ENV ID)j]
(IF (r PREMISE! 'ST)

(NORMALISE Cl ENV CONT)
(NORMALISE C2 ENV CONT)))))

(SG-238)

This is not

The difference would be manifested in reflective procedures that used or bypassed these

continuations. For example, if we used the RETURN of S5-80 with the first, the returned

value would be passed back over the conditional rcdex to the s1..,rounding barrier:

t> (IF1 {• 1 (RETUnN $F})
'YfS
'NO)

1> SF

(S6-240)

In contrast. if we use IF 2 the answer would be returned only as the value of the premise:

1> (IFz {• 1 (RETURN $F))
'YES
'NO)

1> 'NO

{36-239)

'lbough there· cannot be a final decision as to which is ·'right" and which "wrong", it seems

unlikely that the first is intended: IF is not by and large thought of as a "barrier" at the

reflective lcvd, in the way that UNWIND-PROTECT and CATC!I and the Lop level of R[AD

NORMALISf.-PilINT arc. We will therefore endorse the following general strategcm:

Reflective code should call NOP.MALIS£ ;ail-recursively unless it has an explicit
reason for not doing so (in whh.h case it should be prepared lo receive non
standard results, passing /hem through or otl•envise trealing them .':lppropriolely).

In the examples we pursue in the next section we will h<,nour this ma,:,fatc by default,

remarking explicitly in each case wh.zre we cmbccl the reflective !)roc....ssor.

It sl\ould be noted in addition that the definition of IF we adoplc<l - given in S6-

1d4 - is in fact tail-recursive in this sense (it would therefore engender the behaviour

5. Procedural Reflection and 3-LISP Procedural Reflection 671

shown in ~5-240). So too is the definiLJn of SET given in S6-130. ·n1c only other

reflective procedure that we have defined for standard use is LAMBDA: the version in S5-125

does not obey this mandate. It is, however, simple to define a version that docs; the cru;icst

approach is to define LAMBDA as we did before, as a first version, and then use it to define a

properly iterative version, as follows (this is essentially a copy of the circular definition first

introduced in S6-103):

(LET [[OLO-'AMBDA LAMBDA]]
(DEFINE LAMBDA

(OLD-LAMBDA REFLECT [(TYPE PATTER~ BODY] ENV CONT]
(REDUCE TYPE t[ENV PATTER~ BODY] [NV CONT))))

We will assume this redefinition in subsequent examples.

5.c. v. The lmpleme11tatio11 ofa Reflective Dialect

(S6-241)

Given the analysis of reflective processor control flow in the previous section, we can

sec hew a finite implementation of 3-LISP could be constructed. Our approach will be to

review how a non-reflective dialect would typka1ly be implemented, and then, with respect

to such an implementation, to discuss what additional facilities would be required in the

reflective case.

Nothing absolute can be said about implementation, of course, beyond the minimal

satisfaction condition: all that is required is that the surface (behaviour) of the implemellling

process be interpretable, hy an outside observer, as the surface of the implemented process,

according to some conventional mapping. However there is a great deal of structure to the

way in which implementations arc typically built. In particular, one first establishes some

encoding of the dialect's structural field in the structural field of the implementing language

(a language we will generically call "n" - it nrnkcs nu difference what it actually is).

Thu:i for example if we were to implement 2-LISP in a standard machine language, we

might use pairs of adjacent memory cells to represent pairs, potentially longer sequences for

rails, "pointers" to itr: llcmcnt each of the first-order relationships (CAIi, con, FIRST, Rf.ST,

and PROPEnTY-LIST), and so forth.

Once the protocols for encoding the field arc fixed, one then constructs an IL

program that. with respect to this cncoc'.ing of structure, effects the behaviour of the

dialect's 'i'. To continue with the 2-1.ISP example, we would construct nr IL program that

5. Procedural Reflection and 3-LISP Procedural Reflection 672

took IL structures representing some 2-LISP structure as input, and produced as a result

some other IL structure tl1at reprcsemed tllc result of normalising the first. This IL

program would itself be composite - recursive or iterative - according to the

implementation design and tlle power of IL. In the course of normalising (encodings of) 2-

l ISP structures, this program woul<l likely maintain state infonnation in the fonn of

environments and a stack (continuation stntcture). Oilier state infonnation might be

maintained, for example in tables to support input/output (an "oblist" to facilitate tlle

correspondence between lexical items and tlleir associated atoms, for example). Titere

would in addirion be utility routines to maintain the integrity of tlle mapping of the 2-LISP

field into tllc IL field (memory management modules. garbage cotlectors, etc.).

Suppose tllat we had built a full implementation of 2-LISP along these lines, and

that we tllen wanted to modify it to be an implementation of 3-LISP instead. ll1e

overarching mandate we have to ratisfy is this: we will have to be able to provide, as full

fledged 3-LISP structures, designators of the environment and continuation information

spelled out in tlle reflective processor. As implementors we of course have great freedom

in our decision as tu what constitl!tcs an implementatio11 of a full-fledged 3-LISP structure:

we may want to put tllis infonnation into the standard encoding we arc already using (a

simple but likely expensive approach), or we may want to leave it in a minimally complex

fom1, and complicate our agreement as to what the mapping is between thl! two fields Li

question (a tricky but likely more efficient approach). For example, suppose that we have

tllc continuation structure encoded in something like a stack in IL, and that we want to

provide tllis infonnation as a 3-1.ISP continua .. ion designator {a closure). On the first

approach we would build the (enccding of) the appropriate pair, presumably lifling the

information from our stack and using it to fonn the closun.: as appropriate. On the second

approach we would leave tllc information on the stack {or copy the stack fragment into

some convenient place if necessary}, and intercept all field accesses to sec whether they

pointed to this (type of) information. If so, CAIi and con and so forth would be treated

appropriately.

We mention all of these encoding concerns only to dispcns(' with them: they can be

handled by standard data encapsulation and d;11a abstraction meLhojs, We will simply

assume tllat this is done somehow, and turn more crucially to the question of what

information needs to be presented, and when.

5. Procedural Reflection and 3-LISP Procedural Reflection 673

If the 3-LISP program we were processing was entirely simple - mcludcd, that is to

say, no reflective redexes - the 3-LISP implementation could (and probably should)

proceed much in the way it did in the 2-LISP case. Suppose however that a reflective

rcdex were encountered: we have to provide, for that redex, the appropriate three

arguments: designators of the argument expression, the environment, and the continuation.

The first is trivial; the second and third we can presumably construct in the manner just

discussed. However what is crucial is that we have to shift the level of tlze implementing

process. We have been assuming that the implementing processor has been running just one

level above the explicit 3-LISP code -- processing i~ directly, in other words, not in virtue

of an intermediating level of reflective processor. When we encounter this reflective redex

we have to shift back into exactly the slate we would have been in had we been running up

one level from the very beginning. In other words, suppose that we called the processor

embodied by the implementation the IL processor. Then at any given point in the

computation, the IL processor is simulating one of the processors in the infinite 3-LISP

reflective hierarchy. Hy shifting the level of the IL processor we mean that we arc changing

which level of 3-LISP processor the IL processor is currcmly simulating. We must never

think that 3-LISP reflects: all levels of the 3-LISP hierarchy of processors arc always active,

in the 3-LISP virtual machine.

It is at the point of shifting the level of the IL processor that the itcrativt; .-,ature of

the 3-LISP processor is absolutely critical: it is relatively straightforward to figure out what

environment and continuation structures would have been constructed had this deferred

mode of processing been in effect since the beginning.

Suppose we call the environment and continuation s~mctures actually used by the

implementing processor the present co11text. What is required, then, when the processor

encounters a reflective rcdex, is that the present context be given to the reflective closure as

arguments, and that a new present context be constructed, of exactly f11e form that it would

have had, had the processor been running rc!lcctivcly since the beginning. What we know,

however, which is a great help, is that no non-standard reflective programs have previously

been encountered: thus the appropriate new present context will simply consist of the single

embedding mandated by REAU-NORMALISE-PRINT.

5. Procedural Reflection and 3-LISP Procedural Reflection 674

Though it is comparatively straightforward to maintain the appropriate present

context, it is not trivial. The best approach is to match the course of computation of the IL

processor line by line with the 3-LISP reflective processor, and thereby determine exactly

what information is required. For example, suppose that the IL processor is given a

simple 3-LISP redex to normalise. If it had been running reflected, then this would be

given to tJORMALISE, which would bind it to the atom EXP, and would bind the current

present context to the atoms EXP and CONT. Since there is no possibility of reflection within

th-! body of NORMALISE, we will never need to reify this context, but we need nevertheless to

know what the bindings arc so that we can track subsequent calls.

Assuming that our simple redex is not a closure, the fourth clause of the CONO redex

in NORMALISE will be selected. We know, further, .!lat REDUCE will be called with the CAR

and coR of the redex bound to PROC and ARGS, with the same present context bound once

again to HJV and CONT. The CAR is next normalised, with a co continuation as the

continuation. We arc about to recurse; what must be constructed somehow is an

appropriate new present context containing enough information so that this co continuatim~

could be constmcted (normalising the CAR, we must remember, might c;:iuse a reflection, in

which case this co continuation might hav<' to be made available to some user code as an

argument). In the simplisitic implementation presented in the appendix we actualJy

conslrocr Lhe full (encoding) of the co implementation, but this is far in excess of what is

actually required: all we need to know is that it would be a co continaution (two bits of

infom1ation, since there arc only four standard continuation types), and the bindings of

PROC, ARGS, ENV, and CONT (four pointers).

And so Dn and so forth. When CONT arguments arc called (such as in the first two

clauses in NORMAi.IS£) we can take the infonnation we have retained an<l unpack ir

appropriately. Suppose for example that our simple rcdex is the structure "(+ x J)"; then,

we know that NORMALISE would take the second CONO clause, resulting in the processing of

(CONT (!.!INDING EXP f.NV)). Our IL processor, therefore, will want to look up the binding or'

"+" in the environment, and then call CONT with the result. However we look at CONT and

discover that it wr.s a co continuation; thus we know that we need to invoke that p:.!ft of

our IL processor that mimics the last four lines of REDUCE, with PROC and ARGS and the rest

bound to what they were bound to when we constructed the co continuation.

5. Procedural Reflection and 3-LISP Procedural Reflection 675

When we do encounter a reflective redex, we bind the pattern of the reflective

closure to our reiftcd present context. and adopt a new context a~ suggestert above: the very

simple one-level-deep context engendered by the top-level calJ to NORMALISE from READ

NORMALISE-PR INT.

lhis describes a theoretically viable implcmentstion. We may call the obvious

infinite implementation (a simple implementation running an infinite number of levels of

reflective processor code) a class O impleme11tation, and the current proposal a class 1

implementation. Unfortunately, although the class 1 implementation achieves mathematical

finiteness, it has by no mean~ yet achieved tractability. In particular, although the process

that would result would behave correctly, it would be extraordinarily inefficient, for a

reason we can readily see. In brief, our IL processor would be able to reflect upwards, but

it would never rejlecl down again. Suppose for example that we had given it for processing

the following structure:

((LAMBDA REFLECT[[] ARGS CONT] (CONT '3}) (S5-242)

This is a reflective rcdex, which would cause the IL processor to shift upwards in the way

we have talked about above. The issue we need to consider is what happens when this

reflected processor processes the redcx (CONT • 3). CONT will be bound to a continuation

structure that was reificd by the IL. proces~or just at the moment of reflection. Viewed

from 3-LISP this continuation is a standard simple redex, of a form that was made clear in

section 5.c.iv above. If the IL processor were to treat it this way - that simplest possibility

- then from that moment on the IL proces!:;or would remain one reflected level above a11

5uosequent simple 3-LISP structures. It was all very well to have "faked" this shift

up «ards, so as to look from the point of view of the reflected 3-LISP code as if we had

always been stepped back, but it is equally crucial to come back down when t11is reflective

posturing has lived out its usefulness.

This is not, we should make clear, a minor point of efficiency. 171c problem is made

utterly serious by fact that the reflective processor contains rcOccLve rede;'{es (the SELECTQ

at the beginning of all co continu:.itions, for example); if the IL processor could only reflect

L,pwards and could never reflect down, it would reflect upwards once again in running the

co continuation. In other words onr.c the first reflective redcx in a 3-LISP program had

been encountered, the IL processor would reflect upwards (with a concomitant loss of

5. Proccdura~ Reflection and 3-LISP Pr0ccdural Reflection 676

efficiency) approximately half a dozen times per subsequent operation. The kind of

inefficiency we are talking about. in other words, is devastating.

We must consider, then, what we will call a class 2 implementatiof!.. It is not

difficult to have the IL processor put a special stamp on any structure handed to a

reflective rcdcx, so that if it encounters it at any future time as an argument to either

NORMALISE or REDUCE, it can recognise that fact. and reflect down again. If those reified

arguments are of the same fonn as those that the IL processor uses directly, then the shift

down can be a very straightforward process; if they were explicitly constmcted and in quite

a different from the direct IL structures, then an appropriate b:-ickwards mapping will have

to be pcrrormcd. In any case this is all conceptually quite simple.

There is one subtlety to this downwards reflection, however: there is no guarantee

about the complexity of the reflected processor when the downwards decision is made.

Thus, as part of reflecting down, the present context of the IL processor must be saved. If

and when a future reflective redex causes the IL processor to reflect upwards, that saved

context must be used, rather than the very simple one from READ-NORt.,ALISE-PRINT that we

mentioned earlier. But again this is not difficult to implement: there must merely be a

stack of contexts representing the state of each reflective processor above the one that the

IL processor is currently simulating.

'Ille overall idea is this: the IL processor operates as low in the reflective hierarchy

as it can, at all times. When uscr·supplicd reflective code is cncountcied, the IL processor

no longer knows how to simulate the processor at its current level, so it has to climb one

level higher, admitting the user·sup~Jlicd code at the level it just vacated. However it keeps

an eye on that level, and as soon as that user-supplied code is 110 longer under direct

scrutiny by ils processor, the IL processor knows that it can safely drop do,m again c1nd

resume its standard mimickry. It can do this not just when that user-supplied reflective

code is finished; rather it does it whe11e11er it can, even in the midst of such code.

This has been U1c briefest of sketches of what in full detail is a complex subject.

Issues that we have not considered include the following:

1. How docs one monitor the specially marked arguments given to reflective
procedures to ensure that they have not been modified by the user? (Suppose
someone docs a RPLACA on a co continuation, fur example: can we be sure to
note this?)

5. Procedural Reflection and 3-LISP Procedural Reflection 677

2. How should the implementation recognise explicit calls to the processor the
form (NORMALISE <STRUCTURE> <ENV> <CONT>) or (REDUCE <P> <A> <ENV

<CONT>}? Given that the NORMALISE definition need not be primitive, it is
advantageous to recognise any type-equivalent definition, S\J that the IL

processor can be used directly, rather than having to indirectly process the
user-supplied definition. One approach would be to perform a quick check on
every user-defined closure to see whether it is type-equivalent to the standard
definition in the reflective processor (using hashing or some other efficient
:;tratcgy). That the user uses the atom N0HMALISE to refer to this closure is of
course not something one wants to dep!md on: thus we should equally catch
the embedded redex in:

(LET [(N NORMALISE]](~ <S> <E> <C>)) (S6-243)

Alternatively, these two rcdexes could be made primitive, even though that is
not strictly necessary (this is >crhaps the most practical suggestion).

3. What i.s involved in supporting more than the minimal number of primitives
in a 3-LISP implementation? Suppose for example th,1t we wanted to make
C0ND or SUBST an implementation primitive. What we must recognise is that if
an argument to such a procedure were to reflect sufficie1tly, it could examine
the continuation structure generated and determine, if the implementation is
not very clc•1cr indeed, what is primitive and what is not (by seeing what
expresslons had been expanded and which had been treated in an
indissoluable step). Thus it would seem that the only invisible way to add
such primitives would be to force the !L procersor to provide (presumably
only virtually) the conlinuation and environments that would have been
consttucled had the procedure been defined in the normal (non-primitive)
manner. This much at least is necessary if the extension is truly one of added
efficiency, not changed behaviour.

These concerns may at first blush seem worr.somc. And there arc otheis perhaps even

more major: what would it mean, for example, to cl'•npile a 3-LISP program? Certainly the

general answers to all of these arc beyond the scope of the present investigation, but the

beginnings of an answer can be sketched,

The important insight is this: all of these concerns arc ve01 similar one to another.

The point is that 3-LISP programs, being in a sense arbitrnrily powcrfttl (at]cast

potentially), can wander around what must be virtually provided as an infinite hierarchy of

explicit reflective levels. Th<.' only way that this can be implemented at all is for the

implementing processor to mimic the lowest level of tile infinite hierarchy such that, at that

moment, every single kvcl above it consists of exact copies of the primitive reflective

5. Procedural Reflection and a-LISP Procedural Reflection 678

processor. Furthcnncre, this mimicking must be rather good: not only must the same

behaviour ensue, but the same trace must be left, the same structures must be created, and

so forth. Only if the mimicking is truly indistinguishable from all levels (except in terms of

the passage of time, which we grant as an open parameter) can the implementation be

calted correct.

The issues raised in the last ,ew pages have shown that the constmction of such a

correct implementation is not trivial. But the impo~ant thing to note is that no more

information is kept by 3-LISP than in a standard dialect. In particular, the 3-LISP reflective

processor docs not automatically save records of all prior continuations or environments,

which would increase the cost of an irn9lementation categorically. Furthermore, since no

more information is maintained th.in in a standard dialect, there is no reason that the way

tl1at it is kept in a standard dialect cannot suffice: the cleverness of implementation can be

put into tllosc routines that need to iook at it, ratller than into the processes that maintain

it. In this way complex reflected procedures may be marginally slower than they might

otherwise have been, but the sta~dard and presumably overwhelmingly common behaviours

will be engendered as speedily as they ever were.

In sum, while we do not deny that an implementation of 3-LISP may require some

ingenuity, we sec no reason why· it needs to be inefficient.

5. Procedural Reflection and 3-LISP Procedural Reflection 679

5.d. Reflection in Practice

3-LISP is by now completely defined and explained. In this section we will present

a number of examples that use its reflective powers, in pan by way of illustration, and in

part by way of suggestion. A few of the examples (like the one in section 5.d.ii on macros)

are reasonably well worked out. but there arc many issues raised here that should be

investigated in much more depth: some of the examples merely point in the direction of

interesting problems and inchoate solutions.

5.di. Continuations with a Variable Number of Arguments

We have seen that standard cont' , uations are designed to accept a single argument;

they are all of the forin (LAMBDA SIMPLE [RESULT J ...). Because of the 3-LISP \t?.riable

binaing protocols, requiring the the pattern exactly matc.h the argument structure, this

means that exactly one argument must be supplied. However since continuations are

regular procedures, it is of course possible to construct variants that demand no argument

(literally, demand an empty sequence), o~ ~hat demand several. We will explore a variety

of such constructs in this section.

Consider first the following procedure, called NONE, which reflects and ca11s the

conlinuation with no argument:

(DEFINE NONE (S5-249)
(LAMBDA REFLECT [7 7 CONT] (CONT)))

Any use of this function in ,, sta11dard co11text - an extensional context normalised with a

standard continuation - will cause an error, since too few arguments will have been

supplied:

1> (NONE)
ERROR at level 2: Too few arguraents supplied
1> (+ 2 (NONE))
ERROR at level 2: Too few arguments supplied
1> [1 (NONE) 3]
ERROR at level 2: Too few arguments supplied

(S5-250}

The problem in each case is that :J,c tacit continuation (the m continuation supplied by

READ-NORMALISE-PRINT in the first case:, and a CJ continuation in each of the last two)

required that a single expression be returned as the result of nonnalising a form, and

5. Procedural Reflection and 3-LISP Procedural Reflection 680

(NONE) called that continuation with none.

It is equally straightforward to define a procedure that returns several answers:

(DEFINE SEVERAL (S6-261)
(LAMBDA REFLECT (7 7 CONT] (CONT '2 '3 '4)))

Again, however, any use of this, given our current protocols, in a standard context will

engender an error:

1> (SEVERAL)
ERROR at level 2: Too maoy arguments supplied
1> (+ 1 (SEVERAL))
ERROR at level 2: Too many arguments supplied
1> [1 iSEVERAL) 3]
ERROR at level 2: Too maoy arguments supplied

(S5-262)

In order to use either NONE or SEVERAL, we would have to construct our own continuations

to bind them. A simple example is this:

1> (NORMALISE '(SEVERAL) GLOBAL (LAMBDA SIMPLE ANSWERS ANSWERS))
1> ('1 '2 '3]

(SIJ-253)

We can also define a procedure called RECEIVE-MULTIPLE that explicitly accepts multiple

replies from the normalisation of its (single) argument, and packages them togctl1er into a

single sequence for its continuation:

(DFFINE RECEIVE-MULTIPLE {S5-254)
(LAMOOA REFLECT [[ARG] ENV CONT]

{ NORMALISE ARG HIV (LAMODA SIMPLE ANSWERS { CONT ANSWERS)))))

We then have (note the use of the convention that a sequence of designators designates a

sequence of their referents):

1> (RECEIVE-MULTIPLE (SEVERAL))
1) [1 2 3]

(S5-256)

Similarly, we can define a procedure that will happily nomiatisc any expression, without

demanding any reply at all:

1> (DEFINE RECEIVE-NONE
(LAM9DA REFLECr [[ARG] ENV CONT]

(NORMALISE ARG FNV (LAMBDA SIMPLE ? (CONT ''OK)))))
1> RECEIVE-NONE
1> (RECEIVE-NONE (NONE))
1> 'OK

(S5·256)

Though RECEIVE-NONE accepts no reply, it of course will not complai11 if a reply is given:

5. Procedural Reflection and a-LISP Procedural Reflection 681

1> (RECEIVE··NONE 3)
1> 'OK
1> (RECEIVE-NONE (PRINT 'HELLO)) _!!g!:Q
1'> 'OK
1> (RECEIVE-NONt (SEVERAL))
1> 'OK

(S6-267)

It is this last function - RECEIVE-NONE - that is of most interest, for it enables us to

d'l what we promised to do .in chapter 4: to define the side-effect primitives (RPLAC-, PRINT,

and so forth) to return no answer. If we simply posit this change, then a simple use of

PRINT in a standard cont.ext would cause an error:

1> (PRINT 'HELLO) HELLO {S5-268)
ERROR at level 2: Too few arguments supplied

In a context where no answer is demanded, such as the argument position to RECEIVE-NONE,

however, this revised PH INT will work acceptably:

1> (RECEIVE-NONE
(PRINT '[IT IS A FAR FAR BETTER THING]))

[IT IS A FAR FAR BETTER THING]
1> 'OK

(S6-259)

In order to make this practice convenient, we would have to redefine BLOCK so as not to

require answers from any except the last expression within its scope. The straightforward

conversion of tile 2-LISP definition of BLOCK that we have been assuming in 3-LISP is this

(we call it BLOCK1 to distinguish it from new definitions we will shortly introduce):

(DEFINE BLOCK1 {LAMBDA MACno ARGS (BLOCK1• ARGS)))

(DEFINE I'! OCK1•
(LAMBDA SIMPLE [ARGS]

(COND [(EMPTY ARGS) (ERROR "Too few arguments suppliod"}]
[(UNIT ARGS) (1ST ARGS)]
'(LET([? ,(1ST ARGS)]]

,(BLOCK 1• (REST ARGS))))))

(S5-260)

{S6-261)

Our new definition, rather than being a MACRO, is a reflective function that docs the

sequential normalisation explicitly:

(DEFINE HLOCK2
(LAMBDA ~EFLECT (ARGS ENV CONT] (BLOCK2• ARGS ENV CONT))}

(DEFINE 11LOtK2•

(LAMBDA SIMPLE [ARGS ENV CONT]
(COND [(EMPTY ARGS) (CONT}]

[(UNIT ARGS) (NORMALISE (1ST ARGS) ENV CONT)]
[ST (NORMALISE (1ST ARGS) ENV

(LAMBDA SIMPLE? (BLOCK2 • (REST ARGS)}))]])))

(S6-262)

(S5-263)

5. Procedural Reflection and 3-LISP Procedurai Reflection 682

Note that BLOCK2 does not require that the last expression within its scope return a result;

rather, the nonnalisation of that last expression is simply given the BLOCK'S continuation.

Thus (BLOCK (PRINT ·HELLO)) will return no result, since the last expression within the

BLOCK returned none. In addition, in distinction to BLOCKi, BLOCr I need not have any

expressions within its scope: in that case it returns no result on its own (no compelling

behaviour suggested itself for a BLOCK1 rcdcx with no arg,Jments, so we made that cause an

error).

We can expect to use this just as we did before; the difference is that NONE and the

newly re-defined side effect primitives will work correctly with it:

1> (BLOCK2 (TERPRI)
(PRINT 'YES-OR-NO?)
(READ))

YES-OR-NO? Y_ES
1> 'YES
1> (BLOCK2 (NONE)

(+ 2 3)
(• 2 3))

1> 6
1> (BLOCK2 (NONE))
ERROR at level 2: Too few arguments supplied
1> (BLOCK2 (SET X '[COWBOYS AND INDIANS])

(RPLACN 1 X 'COlv-PERSONS)
(RPLACN 3 X 'NATIVE-AMERICANS)
X)

1> '(COW-PERSONS AND NATIVE-AMERICANS)
1> (RPLACT 2 X 'OR)
ERROR at level 2: Too few arguments supplied

(S6-2G4)

These last examples illustrate an unfortunate side-elTcct of our new scheme: the top level

driver (READ-NORMALISE-PRINT) is stilt a standard context, demanding a single reply. We

could redefine READ-NORMALISE-PRINT to compensate for this, so that it will print out an

answer only if one is returned (making it, in effect, a READ-NORMALISf-AND-MAYBE-PRINT):

1> (RPLACT 2 X 'OR)
1> ; No result is printed

(S5-266)

Similarly, it should be possible to use multiple-value procedures at top level as well, as for

example in:

1> (SEVERAi.)
1) 2
1> 3
1> 4

(S6-266)
Three different results are printed

5. Procedural Reflection and 3-LISP Procedural Reflection 683

An appropriate re-definition of READ-NORMALISE-PRINT is the following:

(DEFINE READ-NORMALISE-PRINT
{LAMBDA SIMPLE [ENV]

(BLOCK {PROMPT (LEVEL))
(LET [[NORMAL-FORMS (NORMALISE (READ) ENV ID•)]]

(BLOCK (MAP (LAMBDA SlMPLE [RESULT]
(BLOCK {PROMPT (L~ fl))

{PRINT RESULT)))
NORMAL-FORMS)

(READ-NORMALISE-PRINT})))))

where rn• has the following definition:

(DEFINE ID• (LAMBDA SIMPLE ARGS ARGS})

(S5-267}

(S5-268)

Note that tlic innennost BLOCK in S5-267 will on this new scheme return no result, since its

body ends with a PRINT redex. This would mean that MAP will be given no result, which on

the present definition would cause an error, since MAP tries to return a sequcnc~ of the

results of the element-by-clement reductions. Any number of solutions arc pos~ible, which

we needn't bother with here: a version of MAP could be defined that did not assemble

results; the inner BLOCK could extended to return a dummy value; and so forth.

There is no need that BLOCK be a reflective procedure rather than a macro: the

following version is identical in effect to that in S5-262.

(DEFINE BLOCK3
(LAMBDA MACRO ARGS (BLOCK3* ARGS)}}

(DEFINE BLOCK3*
(LAMBDA SIMPLE (ARGS]

(COND [(EMPTY ARGS) '(LAMBDA REFLECT[?? CONT] (CONT))]
[(UNIT ARGS) (1ST ARGS)]
[$T .((LAMBDA REFLECT[? ENV CONT]

(NORMALISE ,(1ST ARGS} ENV
(LAMBDA SIMPLE 7

(NORMALISE ,(BLOCK3• {REST ARGS))
ENV
cmn))))) J)))

(S6-260}

(S5-270}

111is code works by wrapping all but the iast expression inside a reflective application that

nonnalises but ignores the result. Some examples will illustrate. f n the follawing list, the

first expression of each pair is expanded by the BLOCK3 1nacro into the second (thus we use

the symbol "=>", as in chapter 4, to indicate the first phase of macro reductions):

(8LOCK3 'HELLO) E) 'HELLO (S5-271)

5. Procedural Reflection and 3-LISP Procedural Reflection 684

s> (LAMBDA REFLECT[?? CONT] (CONT)}

(BLOCK3 (RPLACT 1 X '[NEW TAIL])
(PRINT X)
(1ST X))

e> ((LAM60A REFLECT[? ENV CONT]
(NOPMALISE '(RPLACT 1 X '[NEW TAIL]) ENV

(LAMBDA SIMPLE?
(NORMALISE

'((LAMBDA REFLECT[? ENV CONT]
(NORMALISE '(PRINT X) ~~V

{LAMBDA SIMPLE?
(NORMALISE '(1ST X) ENV CONT)))))

ENV cmJT)))))

Though this will work correctly, it is rather inelegant, in that it causes a reflective drop to a

reflective application (i.e., a drop followed immediately by a jump back up) between each

pair of expressions except the last. A seemingly better expansion for the second of these

two pairs would be this:

({LAMBDA REFLECT [? ENV CONT]
(tJORMALISE '(RPLACT 1 X '(NEW TAIL]) ENV

(LAMBDA SIMPLE ?
(NORMALlSE '(PRINT X) ENV

(LAMBDA SIMPLE?
(NORMALISE '{lST X) ENV CONT}))})))

(S5-272)

This reflects up just once, and then normalises each expression in turn, giving all but the

last a special no-result continuation. The following definition of BLOCK will generate this

code. Note that the role of the subsidiary BLOCK* has changed. A check for the single

argument case is put into DLOCK4 itself, so that {BLOCK <EXP>) will expand into just <EXP>,

rather than into {(LAMBDA RF.FLECT [? ENV COfff] (NORMALISE '<EXP> rnv CONT))), which is

identical in effect but messy.

(DEFINE BLOCK4
(LAMBDA MACRO ARGS

(COND [(UNIT ARGS} (1ST ARGS)]
[(EMPTY ARGS) '(LAMBDA REFLECT[?? CONT] (CONT))]
[$T

0

((LAMBDA REFLECT[? ENV CONT]
,(OLOCK4 • ARGS)))]))}

(DEFINE BLOCK4•

(LAMDOA SIMPLE [ARGS]
'(NORMALISE ,(lST ARGS) ENV

, (IF (UNIT Al!GS)
CONT

'(LAMBDA SIMPLE? ,(DLOCK4 • (REST ARGS})}})))

(S6-273)

{S6-274)

5. Procedural Reflection and 3-LISP Procedural Refl'!ction 685

We now have:

(B!.OCK4 {+ 2 3)) a> {+ 2 3)

(BLOCK4) 5) (LAMBDA REFLECT[?? CONT] {CONT))

(BLOCK4 (PRINT 'YES-OR-NO?)
(TERPRI)
(READ)}

s> ((LAMBDA REFLECT[? ENV CONT]
(NORMALISE '(PRINT 'YES-OR-NO?) ENV

(LAMBDA SIMPLE 7
(NORMALISE '(TERPRI) ENV

(LAMBDA SIMPLE 7
(NORMALISE '(READ) ENV CONT)))))))

{S6-276)

Note that BLOCK4 is tail-recursive in the proper fashion: the final expression is nonnalised

with the same continuation as was given to the whole BLOCK.

The importance· of this exploration has been in showing how the reflective

machinery has allowed us to use multiple results, and also no results, in a flexible way,

without altering the underlying design of the dialect We used the side effect primitives

merely as illustrations of functions that arguably should not return a result: any other

procedure might be given this status as well. We have not suggested that any of the

primitives return more than a single result, although again a user procedure might avail

itself of the possibility.

As a corollary to this main point, we are in a position to suggest that the 3-LISP

side-effect primitives should return no result (and be given no declarative designation). In

particular:

1. Rcdexes formed from the primitive procedures HPLACA, HPI./\CO, RPL/\CN, RPL/\CT,

PRINT, and TERPIU would he defined to call the reflected level continuation
with a null sequence. In tcnns of full procedural consequence their definitions
will remain unaltered.

2. The definition of BLOCK4 would be accepted as the standard definition of
BLOCK.

3. 'Ille definition of READ-NORM/\LISE-PR INT would be modified, perhaps as
suggesteo. 1n S5-26 7, so as to accept expressions that return either no or several
results, as wen as the default one.

4. The definitions of SET (S6-130) and DEFINE (S5-131) would, as a consequence
of the former decisions, also return no result (although no redefinition is
required).

5. Procedural Reflection and 3-LISP Procedural Reflection 686

It should be clear that these changes would not be made in order to handle variable numbers

of results. Rather, we would adopt them because 3-LISP as presently defined is able to dca:

with variable numbers of results.

Two final remarks must be made. First, it would still be possible to define

composite procedures that have side-effects and return results. For example, the following

definition of RPLACT:NEW-TAIL would be just like the primitive RPLACT except that it would

return the new tail (it is, in other words, exactly like 2-usP's RPLACT):

{DEFINE RPLACT:NEW-TAIL GLOBAL
(LAMBDA SIMPLE [INDEX RAIL TAIL]

(BLOCK (RPLACT INDEX RAIL TAIL) TAIL)))

(S6-276)

Similarly, we could define a RPLACT:MODIFIED-RAIL, that returns as a result the entire

modified rail:

(DEFINE RPLACT:MODIFIED-RAIL GLOBAL
(LAMBDA SIMPLE [INDEX RAIL TAIL]

(BLOCK (RPLACT INDEX RAIL TAIL) RAIL)))

Arbitrary other combinations arc clearly possible.

(S5-277)

Secondly, if we were to adopt this suggestion we would have to revamp the reflective

processor slightly. As it stands, primitive procedures other than REFEREtn arc treated in a

line of the following form:

(CONT t(IPROCEOURE . IARGS)))

Expanded, this comes to:

(CONT {NAME {(REFERENT PROCEDURE (CURRENT-ENVIRONMENT))
. (REFERENT ARGS! {CURRENT-ENVIRONMENT))))

($5-278)

(S6-279)

Hy our new conventions, if PROCEDURE designated one of the six primitive closures that

return no rcsult'i, then the NAME rcdex wvuld cause an error, because the c2 continuation

looking for ,ts first argument would be given no answer. A revised MAKE-Ct of the

following fom1 could be used:

(DEFINE MAKE-Ct (S5-280)
(LAMBDA SIMPLE [PROCI CONT]

(LAMBDA SIMPLE [ARGS!J
(COND [(= PROCI tREFERENT)

(NORMALISE l(lST ARGS!) 1(2ND ARGS!) CONT)]
[(MEMBER PROC! t[RPLACN RPLACT RPLACA RPLACD PRINT TERPRI])

{BLOCK (IPROCEDURE . IARGSI} {CONT))]
[(PRIMITIVE PROCI) (CONT t(IPROCEDURE . IARGSI))]

5. Procedural Reflection and 3-LISP Procedural Reflection 687

[$T (NORMALISE (BODY PROCI)
(BIND (PATTERN PROCI) ARGSI {ENV PROCI))
CONT)]))))

The reason that we are not yet in a position to accept this whole proposal, however, is that

t11erc are some decisions U1at would still need to be made. It is not clear, however, whether

the strategy suggested in S5-280 is best: another would be to have c2 insert into the

constructed sequence as many answers as were returned. Thus for example we would have:

[1 2 3]
[1 (NONE) 3]
[(SEVERAL) (NONE) (SEVERAL)]

=> (1 2 3]
=> (1 2)
=> (1 2 3 1 2 3]

(S6-281)

This has a certain elegance, although it also has a major consequence: the cardinality of the

sequence designated by a rail would no longer be identifiable with the cardinality of the

rail itself. The proposal would, however, allow the def!nition of MAKE-Cl in S5-207 to stand,

and it would not require the complex definitions of BLOCK we have just constructed. On

the other hand, it would perhaps be better to define a procedure, in the way we defined

BLOCK, U1at would support this behaviour; thus we might have something like the following

(assuming we chose Ute name C.OLLECT):

(COLLECT 1 2 3)
(COLLECT 1 (NONE) 3)
(COLLECT (SEVERAL) (NONE) (SEVERAL))

::::> (1 2 3]
=> (1 2)
::::> [123123]

{S5-281)

This is area where further experimentation and thought is required, especially since

there is no doubt that all of these various schemes arc tractable. Furthermore, there arc an

entire range of related modifications to 3-LISP that should be considered if the dialect were

to be used in a practical way, of which this is just one example. It would seem only

reasonable, for example, to make the body expressions of LAMBDAS and LETS and COND

clauses and so forth be implicit BLOCKS - this would allow the proposed definition of READ

NORMALISE-PRINT in S5-2G7 above to be more compactly written as follows:

(DEFINE READ-NORMALISE-PRINT
(LAMBDA SIMPLE [ENV]

(PROMPT (LEVEL))
(LET [[NORMAL-FORMS (NORMALISE (READ) ENV IO~)]]

(MAP (LAMBDA SIMPLE [RESULT]
(PROMPT (LEVEL))
{PRINT RESULT)}

NORMAL-FORMS)
{READ-NORMALISE-PRINT})))

(S5-282)

5. Procedural Reflection and 3-1.ISP Procedural Reflection 688

'I11ere is in addition the question of whether it is reasonable to insist, as we have

throughout, that a pattern match all arguments to a procedure. There would certainly be

some convenience if extra arguments could be ignored, implying for example that ((LAMBDA

s IMP LE [x J (+ x 1}} 3 5) would return 4. Alt of these suggestions have to do with

sequences and cardinality, and should probably be considered tcgcther, so that a coherent

policy would cover them alt. Since it is not in our present interest to complicate the

dialect, even in these ways that would simplify its surface use, we w~ll defer the "returning

no result" decision, with the assumption that it would be resolved before a practical system

were constructed.

5.dii. Macros

We have used the procedure MACRO as a type argument to LAMBDA in prior examples,

but we have said that MACROS arc not primitive; therefore we still have to define the MACRO

procedure. This is also a generally instructive exercise, in part because tl1c proper

treatment of macros provides an excellent example, in a nutshell, of many of U1c subtleties

that characterise the proper use of procedural reflection. The issue is one of stopping the

regular interpretation process in mid-stream, rnnning a program to generate a structural

representation of a procedure that is needed, and then dropping back down again to

continue the interrupted computation using this new piece of code. The smooth integration

of such a facility - and the ability to define such behaviour straightforwardly - arc the

kinds of characteristics we originally set out to provide in a reflective system.

The definition of LAMBDA in S5-103 shows how MACRO will be called: with three

arguments: designators of an environment, a pattern, and a body. fn 2-usr alt that was

required was that this be turned into a MACRO closure, but because MACROS arc not primitive

some other type of closure - either SIMPLE or nEFLECTIVE - will have to be constructed.

It should be clear that it is a reflective closure that we will need.

111e easiest way to sec how MACRO should be defined is to show how they can be

modelled using reflective functions. In particular, the following:

(DEFINE <NAME> {S6-283)
(LAMBDA "1ACl!O <PATTERN> ,BODY>})

should be entirely equivalent in effect to:

5. Procedural Reflection and 3-LISP Procedural Reflection 689

(DEFINE <NAME> (S6-284)
(LAMBDA REFLECT [ARGS ENV CONT]

(NORMALISE (LET [[<PATTERN> ARGS]] <BODY>)
ENV CONT)))

For example (making use of the back-quote notation), suppose we defined the following:

(DEFINE INC
(LAMBDA MACRO (X] •c+ 1 ,X)))

Then by our reconstru,tion this is to be equivalent to:

(DEFINE EQUIVALENT-TO-INC
(LAMBDA REFLECT [ARGS ENV CONT]

(NORMALISE (LET [[(X] ARGS]] '(+ 1 ,X))
ENV CONT)))

(S5-286)

(S5-286)

This works as follows: Given a call to EQUIVALENT-TO-INC such as (EQUIVALENT-TO-INC (+ A

B)), the processor will reflect and bind ARGS to • [(+ A B)], and rnv and CONT to the

previously tacit environment and continuation structure as usual. Thus, using the fact that

we can substitute bindings into expressions, the body of S5-286 would be equivalent in this

case to:

(NORMALISE (LET [((X] '[(+ A 8)]]] '(+ 1 ,X))
ENV CONT)))

(S6-287)

Because of tl1c automatic dcstructuring, x will be bound to '(+ A 8), and '(+ 1 ,X) will

normalise to'(+ 1 {+AB}); therefore S5-287 will in turn be equivalent to:

(NORMALISE '(+ 1 (+AB)) ENV CONT} {S5-288)

which is of course just right. What is perhaps most striking about this is the fact tJ1at no

dereferencing of the code produced by the macro definition was required: its definition is

merely a procedure that generates function designators, which should be nm and then

nonnalised, just as our example has shown. Since the macro is run at a reflective level, the

fact that it generates a function designator rather than a real function is entirely appropriate:

function designators arc what NORMALISE and REDUCE need as explicit arguments.

We may turn then to the question of defining MACRO. We know that the reduction of

the following generic LAMBDA redex:

(DEFINE <NAME> (S6-289)
(LAMBDA MACRO <PATTERN> <BODY>))

5. Procedural Reflection and 3-LISP Procedural Reflection 690

will lead to the tail-recursive reduction of the following:

(MACRO <ENV> '<PATTERN> '<BODY>) (S6-290)

Furthermore, we have just argued that this should generate the same structure as would

result from the normalisation of the following alternative LAMBDA rcdcx (we have expanded

the LET of S5-284; we can't use LET to define MACRO because we will uJtimately want to use

MACRO to define LET):

(DEFINE <NAME>
(LAMBDA REFLECT (ARGS ENV CONT]

(NORMALISE ({LAMBDA SIMPLE <PATTERN> <BODY>) . ARGS)
ENV CONT)))

namely, to a redcx of the following form: ·

(<REFLECT> <ENV>
'[ARGS ENV CONT]
'(NOHMALISE ((LAMBDA SIMPLE <PATTERN> <BODY>) . ARGS)

ENV CONT))}

From these four facts we can readily define MACRO as follows:

(S6-291)

(S5-292)

(DEFINE MACRO (S6-293)
(LAMBDA SIMPLE [DEF-ENV PATTERN BODY]

(REFLECT DEF-ENV
'[ARGS ENV CONT]
"{NORMALISE ((LAMBDA SIMPLE ,PATTERN ,BODY) . ARGS)

ENV CONT)))

However this can be substantially simplified, by putting the pattern match directly in the

reflective procedure's pattern:

(DEFINE MACRO
(LAMBDA SIMPLE [DEF-ENV PATTERN BODY]

(REFLECT OEF-ENV
"[,PATTERN ENV CONT]
0

(NORMALISE ,BODY ENV CONT}))

(S6-294)

DEF-ENV here is the "defining environment" - the environment in which the MACRO LAMBDA

redex is dosed; ENV is in contrast the environment in which the resulting dosure is m,ed.

To see how these differ, we will look at some simple examples. Consider, for example, the

following definition:

(DEFINE ADD- Y (S5-294)
(LAMBDA MACRO [X] '(+ ,X Y))))

5. Procedural Reflection and 3-LISP Procedural Reflection 691

This is a macro that adds its argument to whatever value Y has in the context where the

macro is used. For example, we would have:

(LET [[Y 100]]
(ADD-Y (+ 1 2))) => 103

Quite different, however, is the following definition:

(DEFINE INCREMENT
(LET [(Y 1]]

(LAMBDA MACRO [X]
·c+ .x ,HD»

(S5-205)

(S5-296)

This defines a macro that increments its argument, independent of the binding of Y in the

environment in which the macro is reduced. The point is that the macro function is one

reflective level removed from the simplification of the expression it generates, and the

environm~nt in which the macro function is to be run is the cefining (lexical) environment

- DEF-ENV in ss-203; the one in which the resultant expression is simplified is the one in

effect where the macro is applied - ENV in S5-293. We would for example have:

(LET [[Y 23]] (A0D-Y Y))
(LET [[Y 23]] (INCREMENT Y))

=> 46
=> 24

{S5-297)

We are all but done, but there is unfortunately one slight further problem: the

familiar conflict between meta-strnctural argument decomposition, and non-rail CDRS.

Consider for example our definition of INCREMENT in the following context:

(INCREMENT. (REST [2 3])) (S5-298)

This will cause an error, because the macro assumes that it can decompose the argument

position in a single element rail (in virtue of having its variable list be [X]). We could

define a more general INCREMENT 2 as follows:

(DEFINE INCREMENT2 (S5-299)
(LAMBDA MACRO ARGS

0

(+ (1ST ,ARGS) 1)))

111is will work, but it seems inelegant For one thing, the problem is not unique to

INCREMENT: every macro would seem to potentially suffer this problem, which would seem

to imply that no macro definition should ever count on being able to dcstructure its

arguments. This is, unfortunately, true for macros that do not necessarily plan on

simplifying their arguments. One answer is afforded by the following insight: INCREMENT

expands into a fonn that will simplify the argument positions: we arc simply not

5. Procedural Reflection and 3-LISP Procedural Reflection 692

particularly interested, in this case, in whether the first argument position can be

destructurcd before simplification, since we intend that position to be simplified in the case

of its use. Furthennorc (another example of the usefulness of a simplifier), we don't care if

more than one simplification is engendered. This suggests that we define a new macro

definition function called S-MACRO, that simplifies the argument positions in the macro call

first. and then runs the macro definition over the resultant simplified expression. The

obvious first definition of S-MACRO is this:

(DEFINE $-MACRO
(LAMBDA SIMPLE [DEF-ENV VARS BODY]

{REFLECT DEF-ENV
'[ARGS ENV CONT]
"(NORMALISE ARGS ENV

{LAMBDA SIMPLE [ARGSI]
(NORMALISE ((LAMBDA SIMPLE ,PATTERN ,DODY)

. ARGSI)
ENV CONT))))))

(S6-300}

However this is redundant; we can use the PATTERN argument directly in the continuation.

Thus the following is equivalent but simpler:

(DEFINE· S-MACRO
(LAMBDA SIMPLE [OEF-ENV VARS BODY]

(REFLECT DEF-ENV
'[ARGS ENV CONT]
• (NORMALISE ARGS ENV

(LAMBDA SIMPLE [,PATTERN)
(NORMALISE ,BODY ENV CONT))))))

If we now define rnc in terms of this new function:

(DEFINE INC
(LAMBDAS-MACRO [X]

0

(+ ,X 1)))

we will facilitate such uses as the following:

(INC 3)
(INC . (TI\IL 3 [2 4 6 8]))
(MAP INC [1 2 3 4])

::.-> 4
=> 9
=> [2 3 4 5]

(S5-301)

(S5-302)

(S5-303)

One final comment is warranted: not a problem, but an illustration of the elegance of our

solution. In standard usp's, it is possible to constmct macro definitions that, while legal,

arc generally considered to be counter to the proper "spirit" of macros. In addition they

cannot be compiled (although that should be taken as symptomatic of a problem, not in

itself cause for rejection). An example from MACLISP is the following:

5. Procedural Reflection and 3-LISP Procedural Reflection 693

(DEFUN UNFORTUNATE MACRO (X}
(COND {(LESS (EVAL X} 0) '(+ ,X 1}}

(T '(- ,X 1))))

(S6-304}
This is MACLISP

The problem is that the definition of the macro makes reference to the run-time value of

the variable x. Nothing in the nonnal definitions of LISP or macros, however, actually

excludes such definitions, and they will indeed work (interpreted). Somehow, though, one

is not supposed to do this.

Suppose we try to constmct the 3-LISP version of this macro:

{DEFINE UNFORTUNATE
{LAMBDA MACRO [X]

(IF (LESS i(NORMALISE X <ENV> ID) 0)
'(+ .x 1)

·c- .x 1»»

(S5-305)

This will simply fail, pretty much independent of what we use for the <ENV> argument to

NORMALISE. The NORMALISE redex occurs in a lexically scoped function that is closed in the

defining environment (DEF-ENV of the example above). Even if we were able to obtain an

access to this environment, as for example in the following expression, the referent of x will

surely not be bound there.

(DEFINE UNFORTUNATE
(LAMBDA MACRO [X]

(IF (LESS i(NORMALISE X (CURRENT-ENVIRONMENT) ID) 0)
'(+ .x 1)
·c- .x 1»»

(S5-306)

This call to CURRENT-ENVIRONMENT will obtain access t,) DEF-ENV extended with bindings of

ARGS, ENV, and CONT, but x will not (in general) be bound in this. Presumably the author of

this definition intended the simplification of x to be carried out in the environment of the

macro redex itself. But - and this is the crucial point - S5-293 makes it clear that the

function that generates !he program slructure is run at a reflected level, and in the defining

environment. Thus our 3-LISP reconstruction not only shows why S6-304 merits its name,

but it in addition prevents such functionality from being defined. Once again, tacit

intuitions about programming practices turn out to be explicitly reconstructed in the 3-LISP

framework.

'I1lis development has been intended to illustrate a variety of points. First, in

dealing witl1 macros clear thinking about environments and levels of designation is crucial

S. Procedural Reflection and 3-LISP Procedural Reflection 694

to success. Second, we have shown how reflection can be used to extend the apparent

power of an interpreter: by adding a function that causes the interpretation process to

reflect and construct a new form to nonnalise, and then to drop back down again with this

new form in hand - this is one of the prime desiderata on reflective thinking we

mentioned in the introduction and in the prologue. Macro definitions, it turns out, provide

a good example of such reflective manipulation in a computational setting. Finally, as the

case of S-MACRO illustrated, circumstances often arise where a behaviour slightly different

from the most general case proves convenient; the fact that we could define MACRO made it

easy to also define a minor variant

5. Procedural Reflection and 3-LISP Procedural Reflection 695

5.diii. Pointers to Further Examples

It has been our task in this dissertation to develop 3-LISP; a full exploration of its

powers, and of the practical uses of reflection, remains a topic for future research. In this

last sub-section we will simply sketch very briefly a number of issues where the use of

reflection seems indicated.

First, at various points the the foregoing discussion we have talked of dynamically

scoped variables, of the sort that were supported primitively in 1-LISP. It should be clear

that the UNWIND-PROTECT of S5-85 is sufficiently powerful to define a dynamically-scoped

variable protocol: at each point where a dynamically scoped variable was to be bound, the

code would reflect, save the prior binding, and set the (global) binding of the variable in

question to its dynamic value. For example, we have suggested that we might support the

following kinu of stmctures (since pairs in patterns are otherwise unused):

(LET [[(DYNAMIC ERROR) 0.1)) (S5-310)
(SQUARE-ROOT 2))

It is then assume that the use of the redex (DYNAMIC ERROR) in a standard context, within,

say, the body of the SQUARE-ROOT procedure, would provide access to the binding

established in S5-310

Our current point is that this functionality co;dd be implemented by expanding the

foregoing kind of structure into:

{UUWIND-PROTECT
(BLOCK (PUSII ERROR ERROR-SAVE)

(SET ERIIOR 0.1)
(SQIJARE-ROOT 2))

(POP ERROR ERROR-SAVE))

{S5-311)

However this is far from an elegant solution. What it docs is to establish an environment

protocol that tracks the continuation structure, rather than one Urnt follows the normal

environment scoping rules; if this is the intent, a more perspicuous proposal would be to

have a dynamic environment explicitly maintained by the processor, passed around

explicitly, objectifiab1e upon reflection, and so forth (approximately this suggestion is

presented in Steele and Sussman1). An appropriately modified processor would look

approximately as follows (the new or modified parts are underlined):

5. Procedural Reflection and 3-LISP Procedural Reflection 696

(DEFINE NORMALISE (S6-312)
(LAMBDA SIMPLE [EXP ENV DYN CONT]

(COND [(NORMAL EXP} (CONT EXP)]
[(ATOM EXP) (CONT (BINDING EXP ENV)}]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV DYN CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP) ENV OYN CONT}])})

(DEFINE REDUCE (S6-313}
(LAMBDA SIMPLE [PROC ARGS ENV DYN CONT]

(NORMALISE PROC ENV
(LAMBDA SIMPLE [PROC!]

(SELECTQ (PROCEDURE-TYPE PROCI)
[REFLECT {(SIMPLE . +(CDR PROC!)} ARGS ENV DYN CONT)]
(SIMPLE (NORMALISE ARGS ENV DYN (MAKE-Cl PROC! DYN CONT)}])))))

(DEFINE MAKE-Cl (S5-314)
(LAMBDA SIMPLE [PROC! DYN CONT]

(LAMBDA SIMPLE [ARGS!]
{COND [(= PROC! tREFERENT)

(NORMALISE +(1ST ARGS!) +(2ND ARGS) DYN CONT)]
[(PRIMITIVE PROC!) (CONT t(+PROCI . +ARGS!))]
[$T (LET [[[NEW-ENV NEW-DYN)

(UIND (PATTERN PROC!} ARGS! (ENV PROC!) OYN}]]
(~ORMALISE (BODY PROC!) NEW-ENV NEW-DYN CONT))]))))

(DEFINE NORMALISE-RAIL {S6-316)
(LAMBDA SIMPLE [RAIL ENV OYN CONT]

(IF (EMPTY RAIL) -
(CONT (RCONS))
(NORMALISE (1ST RAIL} ENV DYN

(LAMBDA SIMPLE [ELEMENT!]
(NORMALISE-RAIL (REST RAIL) ENV DYN

(LAMBDA SIMPLE [REST l] (CONT (PREP ELEMENT! REST!)})})))))

(DEFINE READ-NORMALISE-PRINT (S6-316)
(LAMBDA SIMPLE [ENV DYN]

(BLOCK (PROMPT (LEVEL))
{LET [(NORMAL-FORM (NORMALISE {READ) ENV OYN ID)]]

{BLOCK (PROMPT (LEVEL))
(PRINT NORMAL-FORM)
{READ-NORMALISE-PRINT ENV DYN))))))

{DEFINE BIND (S5-317)
(LAMBDA SIMPLE [PATTERN ARGS ENV DYN]

{LET [([E-BINDINGS D-BINDINGS] (MATCII PATTERN ARGS)]]
[{JOIN E-BINDINGS ENV) (JOIN 0-BINDINGS OYN)])})

(DEFINE MATCH (S6-318)
(LAMBDA SIMPLE [PATTERN ARGS]

(COND [(ATOM PATTERN) [[[PATTERN ARGS]] (SCONS)]]
[(AND (PAIR PATTERN) (= (CAR PATTERN} 'DYNAMIC))

[(SCONS) [[PATTERN ARGS]]]]
[(HANDLE ARGS) (MATCH PATTERN (MAP NAME !ARGS))]
[(AND (EMPTY PATTERN) (EMPTY ARGS)) [(SCONS) {SCONS)]]
[(EMPTY PATTERN) (ERROR ~Too many arguments supplied~)]
[(EMPTY ARGS) (ERROR "Too few arguments supplied")]
($T (LET ([[ElS 01S] (MATCH {1ST PATTERN) (1ST ARGS))]

5. Procedural Reflection and 3-LISP Procedural Reflection 697

[[E2S D2S] (MATCH (REST PATTERN) (REST ARGS)Jl]
[(JOIN ElS E2S) (JOIN DlS 02S)])])))

This code may seem odd in part because the dynamic environment is never used.

However, given this protocol, we can define the procedure called DYNAMIC to support the

behaviour suggested earlier, as follows:

(DEFINE DYNAMIC
(LAMBDA REFLECT [[VAR] ENV DYN CONT]

(CONT (BINDING VAR OYN))))

The similarity to the treatment of atoms in NORMALISE is evident

(S6-319)

If we were to adopt dynamically scoped free variables as a primitive part of 3-LISP,

the reflective processor w01,1d look approximately as above (except perhaps a more efficient

MATCH algoriU1m would be adopted). However it is important to realise that the cnde just

given can be used explicitly, even in the dialect as current defined. In particular, it would

be possible, if dynamically scoped free variables were required, to reflect at any point and

to use the processor just presented. From an implementation standpoint the code that was

run during this processing would necessarily be treated less efficiently than normally, but

from a theoretical point of view no problems would arise. It must be admitted, however,

that this would provide dynamic scoping .. mly at a given reflective level, :,ince reflective

redexes processed by U1is processor (assuming that this processor was itself processed by the

standard primitive 3-LISP processor) would be processed not by this NORMALISE, but by the

standard 3-LISP processor.

On obvious question to ask is what would be required in providing a new definition

of NORMALISE that would take effect at all reflective levels, but we will not answer that here;

it would lead us into a much larger subj~ct that this dissertation does not attempt to treat.

There arc other reflective procedures that should be examined. We have not, for

example, presented routines that examine and unpack continuation structures: although the

basic strncture of continuations was explained in section 5.c.iv, convenient debugging and

error routines built on top of these remain to be developed. Similarly, we could explore

modifications to the processor to support the tracing and advising of arbitrary procedures.

Again, we might want to explore user interrupts, which would presumably cause the

processor to reflect not because it encountered a reflective redex. but because of an external

event One can imagine, in other words, a modified processor of approximately the

5. Procedural Reflection and 3-LISP Procedural Reflection 698

following fonn:

(DEFINE NORMALISE (S6-320)
(LAMBDA SIMPLE [EXP ENV CONT]

(COND [(PENDHIG-INTERRUPT) ((GET-INTERRUPT-ROUTINE} EXP ENV COHT)]
[(NORMAL EXP) (CONT EXP}]
[(ATOM EXP) (CONT (BINDING EXP ENV})]
[(RAIL EXP) (NORMALISE-RAIL EXP ENV CONT)]
[(PAIR EXP) (REDUCE (CAR EXP) (CDR EXP} ENV CONT)])))

The interrupt routine, if it wished to resume the computation, would merely need to

normalise (NORMALISE EXP ENV CONT); if it wished to abort it, it could simply return.

As was the case with respect to dynamic environments, this sort of modified

definition of NORMALISE could either be made part of the primitive reflective processor (i.e.,

the dialect could be altered), or, more interestingly, such a processor could be run,

indirectly, during any part of any other process. It is important to realise that the

fi.mdamental ability to reflect allows the integration of these modified processors into the

normal course of a computation, with at worst a cost in efficiency. Such an ability is not

possible in any prior dialect

Two other areas of exploration arc the simulation of multi-processing schemes, and

more complex non-standard control protocols. It is striking that the definitions of the non

standard control primitives that have been provided in standard LISPS (THROW, CATCH,

UNWIND-PROTECT, and so forth) arc definable in 3-LISP in just one or two lines. There is no

reason to suppose that, once provided with a reflective capability, much more complex or

more subtle forms of reflective control might not be found useful. Again, we emphasise

that it is not a contribution of the present research to suggest such regimes; our point is

merely that 3-LISP can provide an appropriate environment in which such explorations

could be easily conducted.

5. Procedural Reflection and 3-llSP Procedural Reflection 699

5.c. The Mathematical Characterisation of Reflection

Another open research problem emerging from our analysis has to do with the

appropriate mathematical characterisation of procedural reflection in general, and of 3-LISP

in particular. At present we do not even have any suggestions as to how such an account

might be fonnulatcd, except to reject out of hand any attempt to construct the

mathematical analogue of the implementation presented in the appendix (even though that

would presumably lead in some fonnal sense to a tractable description). 111c problems

stem from the infinite tower of processors; what we would like is a mathematical technique

that would construct the appropriate limit of this recursive ascent, in much the way that the

fixed point theorem establishes the limit of another kind of infinite recursive description.

In spite of a certain superficial similarity between recursion and reflection, it is

important to recognise that there is a fundamental difference between the kind of infinite

"self-reference" involved in recursive definitions, and the kind implicated in the tower of

reflective processors. As we mentioned in section 4.c.v, the former remains always at the

same level, whereas the latter involves a use/mention shift at each 5tage. It is for this

reason that, at least so far as this author can presently see, no simple reconfiguring of the

problem of reflection will put it into a fonn in which standard fixed-point results will

apply. Rather, it seems likely that some absti"act characterisation of the "finite amount of

information" embodied in the 3-LISP processor would have to be developed, as well

perhaps as an entire theory of processing. We leave this as an important but open

problem.

6. Conclusion Procedural Reflection 700

Chapter 6. Conclusion

There is a natural tendency, now that we have succeeded in providing a-LISP with

reflective capabilities, for our analysis to shift from a study of what reflection is, to an

investigation of how such facilities can best be used. Section 5.d identified a variety of

open q.iestions along these lines; further research is clearly mandated. In this last chapter,

however, rather than pushing our inquiry forward, we wilt instead draw back from the

details of 3-LISP and, by way of conclusion, will look briefly at the question of how 3-LISP

- which is itself only an exemplar of a reflective formalism - fits into a larger conception

of computation and semantics.

Several questions, in particular, arise in this regard. First. it is clear that rationalised

semantics and procedural reflection are to some extent separable; this was manifested in

our decision to present 2-LISP and a-LISP as distinct dialects. We said at the outset that

semantical cleanliness was a conceptual pre-requisite to reflection; we can now ask whether

it would not be possible to retrofit a reflective capability into an evaluation-based dialect of

LISP (we might imagine, for example, something called 2.7-LISP: a reflective version of t.7-

LISP, just as a-LISP is a reflective version of 2-LISP). In other words, given that the

semantical and reflective issues can be at least partially separated, is it our position that

rationalised semantics is a necessary pre-requisite to reflection, or could reflective powers be

developed in standard, non-reconstructed dialect?

For a variety of reasons this is not a question with a sharp yes/no answer, but we

maintain our position that a usable reflective capability requires a semantically rationalised

base, even if in some formal sense a procedurally reflective formalism could be built

without such a base. 111ere is no doubt that a "2.1-LISP style" dialect would be technically

possible (especially now that 3-LISP can be used as a guide), but there are any number of

reasons why it would be a bad idea, to the extent that the suggestion can even be made

clear.

For one thing, in the rather philosophical analysis with which we started out, we

defended our use of the term "reflection" because of the knowledge representation

hypothesis, which made crucial reference to attributed declarative semantics. In fact, we

6. Conclusion Procedural Reflection 701

de.fined reflection in tenns of what a process was reasoning about, and it is "aboutness" with

which semantics is primarily concerned. Whether a procedural regimen counted as an

instance of reflection would be. judged, on our view, by looking at the semantical

characterisation of it, including at the declarative fragment of that account. It would

therefore be important to clarify, for any variant proposal, just what it claims regarding this

pre-computational declarative attribution.

Specifically, there would be a question whether, in rejecting the semantical flatness

of 2-LISP and retaining the notion of evaluation, one was in turn rejecting the entire

account of attribution of declarative import, or whether one was accepting the account, but

merely arguing for a procedural regimen (v) that <le-referenced sometimes (or even

always1). One can clearly reject the story that we tell about declarative attribution

(anything can be ignored), but one cannot, we maintain, reject the phenomenon; this is part

of what chapter 3 is intended to argue. We have not proposed that people attribute

declarative import to LISP stmctures, suggesting that it is wonderfutly enlightening to take

the numeral 3 as standing for the number three, and NIL (in traditional LISPS) as standing

for Falsity. Rather, it is our claim - and it is a claim that it would surely be very hard to

argue against - that we programmers do make just this kind of attribution. Therefore it is

our view that the suggestion that one reject the declarative semantics amounts merely to a

suggestion that our theoretical reconstruction of LISP pay no attention to how people

understand LISP. Seen in this light, such a suggestion can be readily discounted.

Given then that one accepts the notion of an at least partly pre-computational

semantics, what argument have we against an evaluation-based dialect? The substance of

our argument was given in section 3.f.i; we need not repeat ourselves here. However there

is another suggestion, not explored there, which is that we design our formalism so as

always to de-reference (under such a proposa1, in particular, it would always be the case

that v(S) = cI>(S)). It is a consequence of such a view, of course, that one could never use

the symbols T or NIL, or any numeral, in an evaluable context. Thus for example the

expression

(+ 2 3) (S6-1)

would be semantically ill-formed. Rather, one would be required instead to use something

of the following fmm:

6. Conclusion Procedural Reflection 702

(+ '2 '3) {S6-2)

Similarly with the boolean constants. Furthennore, it would seem that the symbol "+"

would have to designate not the addition function, 1 ,ut the numeral-addition fimction (i.e.

41("+") in this dialect would be what 'I'("+) is in 2-LISP and 3-LISP).

However there is a problem: a moment's thought leads one to realise that "+" could

not designate any function at all, at least in a higher-order dialect (and we take it that the

ability to "pass procedures as arguments" is a requirement; if we had to avoid that

capability we would again simply dismiss the proposal as not serious). For suppose we

defined a procedure that could meaningfully accept "+" as an argument:

(DEFINE At
(LAMBDA EXPR [FUN]

(LAMBDA EXPR [ARG] (FUN ARG 1))))

Th1s is perfectly
acceptable in 2-LISP
or 3-LISP.

Presumably the intent would be to support the following behaviour:

> ((Al +) 7)
> 8

Or perhaps this (i.e., we are not currently concerned with the numerals):

> ((111 +) '7)
> 8

(S6-3)

(S6-4)

(S6-5)

In the first line of S6-4 (and ss-5), the symbol "+" was evaluated (for want of another

tenn, we continue to use this verb for the 'I' of this proposed dialect, although it is not clear

that it signifies the evaluation we are used to), and by the current suggestion this means

that it was de-referenced. Since functions qua functions are infinite, non-structural objects,

it must follow that "+" docs not designate a function, but rather some structural object

(presumably something like a closure, of course, but the question is what the 11otio11 of a

closure comes to, on U1is account).

1bis is ail a little odd. LISP is ostensibly a functional language, but we have just

been forced to admit that it cannot be used to deal with arithmetic (only with numerals),

and we have now admitted that we cannot use tenns that designate functions. The truth

values, sets, and all of mathematics would be dismissed for similar reasons. Nor do we

even have the option of quoting the "f1mctional terms", the way we quoted the numerals,

as an escape; the following simply won't work (because of environment problems, as well as

structural errors):

6. Conclusion Procedural Reflection 703

> ((Al '+) '7) (S6-6)
ERROR: Atoms cannot be applied.

In sum, if one accepts the suggestion that we abandon the notion of functions, as well as of

numbers, then indeed it might be possible to construct a dialect that "always de

referenced". However it would appear that this move is merely a reductio ad absurdum of

our own proposal. In particular, we can look at this proposal as if it embodied a decision

merely to discard (or rather, to pay no attention to) what we have called cii, and to name

our v relationship as one of "reference". Then of course v "de-references" - but it does

so tautologically, not for any interesting reason. In such a dialect one loses entirely the

force of the question "What is the semantical character of the function computed by the

processor?". One loses as well the subtlety of the relationships among v, cf>, and fl.

Furthennore, the proposed semantics would not illuminate why the function (or procedure

or closure or whatever) designated by the atom + happens to take the pair uf numerals 3

and 4 onto the numeral 7 - a practice that can of course be defended only because those

numerals designate numbers. All in all, it would appear that this proposal pays homage to

a notion of reference that simply is not what we consider reference to be. Thus we will

dismiss this suggestion as well.

There remains a third possibility: to accept our account of declarative semantics, and

to adopt the semantically mixed notion of evaluation set out in the evaluation theorem.

This is coherent - we have never denied that, nor do we have an argument that a

procedurally reflective dialect of some sort could not be defined. AU of our claims about

how it would be difficult to understand, how it would fail to resonate with our tacit

attribution, how it loses any claim to modelling true reflection, and so forth, would stand,

but these are theoretical claims. A small piece of more practical evidence as to the

difficulty of d~ling with reflective procedures in such a scheme is provided by the MACLISP

implementation of 3-LISP presented in the appendix. 1be task there is to encode, within

MACLISP structures, an implementation of another dialect's structures. By and large 3-LISP

structures are identified wiU1 MACLISP structures, as it happens (thus 3-LISP numerals are

implemented as MACLISP numerals, 3-LISP atoms as MACLISP atoms, and so forth). Thus the

MACLISP code is not dissimilar to the sort of reflective code one might imagine constructing

in a reflective evaluation-based formalism. 1be code given in the appendix is replete with

up-arrows and down-arrows, requiring considerable care to avoid making untenable

6. Conclusion Procedural Reflection 704

use/mention errors. Reflective code in 3-LISP, however, as the examples in the previous

sections have shown, typically requires much less explicit level-crossing machinery. Thus,

while we admit that a staunch advocate of evaluation could build an at least approximately

reflective dialect, it is our contention that, although it might perhaps be initially easier to

use (primarily because it would be more continuous with our LISP habits), as the

complexity of programs increased, the dissonance between the procedural regimen and the

naturally accorded semantics would defeat any serious attempts to use the reflective powers.

. Another salient question has to do with the issue of adding reflective capabilities to

programming languages other than LISP, and with the matter of rendering such languages

semantically flat, in the spirit of 2-LISP. The first of these is straightforward, and was

discussed very briefly in chapter 1; there would be no problem, providing a few

requirements were met (providing an encoding of programs structures as valid data

structures, formulating an explicit procedural theory of the language in the language, and so

forth). The second is perhaps more interesting, especialiy as we move outside the realm of

algebraic and functional paradigms, to more imperative and message-passing schemes, m1ch

as those manifested in FORTRAN or SMALLTALK. However even here it is clear that semantical

flatness - and, even more simply, declarative import - would still make eminent sense.

Consider for example the question of updating a display - a paradigmaticatty operational,

rather than descriptive, type of behaviour. Even if the central command in such an

interaction were defined primarily in terms of procedural import, however, the arguments

with which it is phrased would presumably be cogent primarily declaratively. Suppose for

example we wished to update the display corresponding to some particular editing buffer,

and were led to write something of approximately the fonn DISPLAY(BUFFER(FILE 16)). This

"description" would most likely be simplified into a canonical (normal-fonn) name for the

display in question - a process that would resemble our standard normalisation process,

whether the procedural import was effected by command, or by procedure call, or by the

passing of a message.

Furthennorc, it is not oui seqiantical line that all expressions be treated purely

declaratively. This would be a fundamentalism of no particular merit (furthennore, it is a

position that the A-calculus and logic already explore): even natural languages like English

are not purely declarative. The point, rather, is that those parts of the langauge that are

declarative should be treated so; those that are procedural should be treated so; and the

6. Conclusion Procedural Reflection 705

interaction between them should be semantically sensible, from all points of view. The

mere fact that we distinguish 'It and cfi should not be taken as an argument that cfi is better,

in any sense. Our claim is merely that if the declarative import (that cl> is an attempt to

reconstruct) plays a role in how we observers understand the full significance of an

computational expression, then it is best to design the language and its semantics so as to

make sense of that attribution. No more; no less.

One final point deserves a moment's attention. Although our generic comments on

reflection have not had this specific orientation, all of our technical work has focused on

the provision of reflection in programming languages, not in computationally based

processes defined or constructed in such languages. The concept of reflection is in no way

restricted to language design; it is easy to imagine, for example, a natural-language query

system for a data base, or any other process, designed with reflective capabilities, so that it

could stop at any point and deal reasonably with its interaction with the world, and with its

own internal state. We have taken the approach we h~ve for two reasons. First, the details

of any such use have more to do with the question of how to use reflection, rather than
'·

how to provide it, and as such they stand as open questions for further research. Second,

we hold that a coherent treatment of reflection of the sort presented here is a pre-requisite

to any such exploration; without it, any attempt to construct specific reflective systems

would founder for lack of a theoretical base. The basic distinctions and results we have

explored, furthermore, and the underlying architecture of 3-LISP, should carry over intact

into a particular situation. In other words, although 3-LISP is indeed a programming

language, the understanding of reflection that it is intended to embody is not specific to

programming languages per se; it should serve in more particular situations equally welt

There is of course a reason for this last point, arising from our constant

methodological stance. Our theories of reflection and of semantics have been derived

almost entirely from iutuitions and insights into our natural human use of thought and

language, not from programming languages viewed as an isolated phenomenon. In fact it is

one of our foundational assumptions that computational concepts in general - certainly

including programming languages - ai-e, in the deepest sense, derivative on our

understanding of mind. It has therefore been our intent to apply an understanding of

language to an ostensibly computational matter, with the hope, in part, of integrating the

theoretical frameworks of the two disciplines. There seems no doubt that theories of

6. Conclusion Procedural Reflection 706

language can help in understanding computational issues; whether the contribution in the

other direction will prove as useful only time will tel1. On the surface it seems at least

plausible that the theories we have articulated here might play a role in our understanding

of human language, but these are speculations for a different time and place. For now our

investigation remains computational; authentic human reflection is a much larger question.

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 707

Appendix. A MACLISP Implementation of 3-LISP

The code listed in the following pages was printed out from a version of the 3-LISP

iIPplementation running on the CADR processor (a version of the M.I.T. LISP machine) at

the Xerox Palo Alto Research Center. on January 23, 1982. rn.... implementation was

originally constructed in MACLISP, and was modified minimally to run on the LISP machines

in the fall of 1982; the only changes were made to the input/output and interrupt routines.

which could be readily changed back to a MACLISP format if necessary. The code is by and

large documented; the intent, as mentioned at the outset, was merely to demonstrate as

transparently as possible the functionality of the 3-LISP abstract virtual machine; as a

consequence the performance of this implementation is unacceptably slow for anything

except small examples. The constmction of a fast but full implementation of 3-LISP is a

project that should be undertaken in the near future.

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection

001 ...
002 ...
003 ...
004 ...
006 ...
006 ...
007 .. .
008 ...
009 ...
010 ...
011 ...
012 ...
013 ...
014 ...
015 ...
016 ...
017 ...
018 ...
019 ...
020 ...
021 ...
022 ...
023 ;;;
024 ...
026 ...
026 ...
027 ...
028 ...
029 .. .
030 ii;
031 ...
032 ...
033 ...
034
036 ...
036 ...
037 ...
038 ...
039 ...
040 ...
041 ;;;
042 ...
043 ...
044 ...
046 ...
046 ...
047 ...
048 ...
049
060 ...
061 ...
052 ...
063 ...
064 ...
065 ...
056 ...
057 ...
058 ;;;
J69 ;;;
060 ...
061 ...
062 ...
063 .. .

-•- Mode:LISP; Package:User: Base: 10. -•-

3-LISP

A statically scoped, higher order, semantically rationalised, procedurally
reflective dialect of LISP, supporting SIMPLE and REFLECTIVE procedures •

This 1s a straightforward and EXTREMELY INEFFICIENT implementation; the
intent is merely to manifest the baste 3-LISP functiohality. A variety
of techniques could increase the efficiency by several orders of magnitude
(most obvious would be to avoid consing explicit continuation structures at
each step of NORMALISE). Wfth some ingenuity 3-LISP could be implemented
as efficiently as any other dialect •

1. Structural Field:

Structure Type Notation

1. Numerals
2. Booleans

Designation

Numbers
Truth values
functions (& appns)
Sequences
S-express1ons
(whatever bound to)

sequence of digits
ST or SF

3. Pairs (<exp> • <exp>)
4. Rails
6. Handles
6. Atoms

(<exp> <exp> •.• <exp>]
'<exp>
sequence of alphanumerics

a. There is no derived notion or a LIST, and no atom NIL •
b. Pairs and rails are pseudo-composite; the rest are atomic •
c. Numerals, booleans, and handles are all normal-form and canonical.

Some rails {those whose elements are normal form) and some pairs
(the closures) are normal form, but neither type is canonical .
No atoms are normal-form •

2. Semantics: The semantical domain is typed as follows:

numeral
,- boolean

s-expression ,- pair
,-- · -,- rail
I ,- handle
I ,- atom

Object I -
-, number

I abstraction ,- truth-value
,-- --,- sequence
I -
I ___________ function

3. Notation:

Each structural field category fs notated with a dfstfnguishable notational
category, recognisable in the first character, as follows (thus 3-LISP
could be parsed by a grammar with a single-character look-ahead):

1. Digit -->
2. Dollar Sign -->
3. Left paren -->

Numeral
Boolean
Pair

4. Left bracket
6. S~r.ge quote
6. Non-digit

--> Ra11
--> Handle
--> Atom

The only exceptions are that numerals can have a leading "t" or"-", and 1n
this implementation an atom may begin with a numeral providing it contains
at least one non-digit (since MACLISP supports that) .

708

Page 1

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 709

064 ...
066 ...
066 ;:;
067 ...
066 ...
059 ...
070 ...
071 ...
072 ...
073 ...
074 ...
076 ...
076 ...
077 ...
078 ...
079 ...
080 ...
081 ..
082 ..
083 ;;
084 ..
086 ..
086 ..
087 ;;
088 ..
089 ...
090 ;; ;
091 ...
092 ...
093 ;;;
094 ...
096 ...
096 ;;;
097 ...
098 ...
099 ...
100 ...
101 ...
102 ...
103 ...
104 ...
106 ...
106 ...
107 ...
108 ...
109 ...
110 ...
111 ...
112 .. .
113 ...
114 ...
115 ...
116 ...
117 ...
118 ...
119 ...
120 ...
121 ...
122 ...
123 ...
124 ...
126 ...
126 ...
127 ...
128 ...

BNF Grammar

formula
form

l-numeral
L-boolean
L-pair
L-rail
L-handle
l-atom

character
non-digit

digit
alphabetic
special

reserved

break
comment

Double quotes surround object level constants, " .. " indicates
concatenation, brackets delineate groupings, "*'' means
zero-or-more repetition, and "I" separates alternatives:

··• [break ..]• form [.. break]•
··• L-numeral I L-boolean I l-pair I L-rafl I l-handle I L-atom

::•["+"~I ·-• ..]• digit [.. digit]•
· • • "ST" I "SF"
··•"("~formula .. •.•~ formula .. ")"
··•"[" .. (formula ..)•"]"
··•••• .. formula
•·• [character+]• non-dfgft [.. character]•

··• dfgft I non-d1g1t
::• alphabetic I special

..• "1" "2" "3" "4" "6" "6" I "7" ... "a" "b" "cit "A" "8" I "C" ... "*" ·-· "+" "I" "8" "#" I "X"
" .. " "•" "\" "?" ":" ·-" I "I"

: : Q "'" " ... "(" ")" "[" "]" I "{" .
" " " " "t" ... "$" <space> I .

: : . <space> I <end-of-line> I comment ..• ... [+character I ..reserved I .. <space> .

I "8" I "9" ·o·
I etc .
I "&" I "(" ")"

I "}" I "I" I """
<end-of-line>

]• <end-of-1 ine>

The Lexical Notation Interpretation Function THETA (by category):

L-numeral
l-boolean
L-pair

L-rail

l-handle
L-atom

NOTES:

Numerals in the standard fashion;
ST and SF to each of the two booleans:
A new (otherwise inaccessible) pair whose CAR is THETA of
the first formula and whose CDR is THETA of the second:
A new (otherw1se inaccessible) rail whose elements are THETA
of each of the constituent formulae;
The handle of THETA of the constituent formula.
The corresponding atom.

1. Case is ignored (converted to upper case on input)
2. Notational Sugar:

"(<el> <e2> ••• <en>)" abbreviates "(<et> . [<e2> .•. <en>])"

3. We use exclamation point in place of down-arrow, since MACLISP does
not support the latter character (it is not fn ASCII, sadly) .

4. A Summary of the use of reserved characters:

11: (starts pairs h: in "[. ..]" for JOIN
b:) ends pairs i: t flAME
c: in"(. ..)" for CDR j: I REFERENT
d: [starts rails (k: DYNAMIC)
e:] ends rails l: Oackquote a la MACLISP
f: I starts handles m: " " " "
g: starts comments (to CRLF) n: ~ Switch to MACLISP

A-g are primitive, h-m are sugar, and n is implementation-specffic. In
this implementation. since "I" is used for REFERENT (it should be
down-arrow), it is reserved rather than special. Similarly, "N" is
reserved in this implementation for the MACLISP escape. Finally, the
characters"{", "}", "I", and""" are reserved but not currently used
{intended for sacks, arbitrary atom names (a la MACLISP) and strings) .

Page 1:1

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 710

129
130 ...
131 ...
132 ...
133 ...
134 ...
136 ...
136 ;;;
137 ...
138 ...
139 ...
140 ...
141 ...
142 ...
143 ...
144 ...
146 ;;;
146 ...
147 .. .
148
149 ...
160 ...
161 ...
162 ...
163 ...
164 ...
166 if i
166 ...
167 ...
168 ...
159 ...
160 ...
161 ...
162 ...
163 ...
164 ...
166 ...
166 ...
167 ;;;
168 ...
169 ...
170 ;;;
171 .. '
172 ...
173 ••• 174 ...
176 ...
176 ...
177 ...
178 ...
179 ,,,
180 ...
181 ;;;
182 ...
183 ...
184 ; ; ;
185 ...
186 ...
187 ...
188 ...
189 ...
190 ...
191 ...
192 ...
193 ''' 194 ;; ;
196 ...
196 "' 197 .. '
198 ...
199 ...

4. Processor:

The main driving loop of the processor is a READ-NORMALISE-PRINT loop
(see 1tem 6, below), taking expressions into normal-form co-designators.
The normal form designators for each of the semantic types are:

Semantic type Normal form designator (NFD)

t. Numbers Numerals
2 • Truth-values Boolean constants
3 • s-expressions Handlea
4 • Sequences Rails of NFD's of the elements
6 • Functions Pairs: (<type> <env> <pattern> <body>)
6 • Environments Rails: (['<at> '<bt>] ['<a2> '<b2)) •••

1-3 are CANONICAL, 4-6 are not. Thus, A• B implies tA • tB only if A and
B designate numbers, truth-values, ors-expressions •

6. Primitive pro~edures:

S01;::,,11ry (fuller definitions are g1Ven below):

Typing:
Identity:

Structural:

Modifiers:

Functions:

TYPE

PCONS, CAR, CDR
LENGTH, NTH, TAIL
RCONS, SCONS, PREP
RPLACA, RPLACO
RPLACN, RPLACT
SIMPLE, REFLECT

defined over 10 types (4 syntactic)
defined overs-expressions, truth
values, sequences, and numbers
to construct and examine pairs
to examine rails and sequences
to construct " " "
to modify pairs
" " ra11s
make procedures from expressions

Page 1:2

)

Control:
Semantics:

EF
NAME, REFERENT

an extensional if-then-else conditional
to mediate between sign & signified

Arithmetic: +. -, •, / as usual
I/0:
Reflection:

READ, PRI~T, TERPRI
LEVEL

as usual
the current reflective ievel

The following kernel functions need NOT be primitive: they are defined in
the reflective model in terms of the above:

DEFINE, LAMBDA, NORMALISE, REDUCE, SET, BIIIDIHG, MACRO

Syntax and definitions:

Form of use

(TYPE (exp>)

(• <a>)

(PCONS <a>)
(CAR <a>)
(COR <a>)
(RPLACA <a>)
(RPLACD <a>)

(LENGTH <a>)
(NTH <n> <a>)
(TAIL <n> <a>}
(RCONS <at> ... <ak))
(SCONS <at> .•• <ak>)
(PREP <a> <rs>)
(RPLACN <n> <a>)
(RPLACT <n> <a>)

Designation (environment relative):

The atom fndfcatfng the type of <exp> (one of
the 10 on the fringe of the tree in #2, above)

Truth if <a> and are the same, falsity
otherwise, providing <a> and are or the
same type, and ares-expressions, truth-values,
sequences, or numbers

A (new) pair whose CAR is <a> and COR 1s
The CAR of pair <a>
The CDR of pafr <a>
The new CAR or modified pair <a>
The new COR of modified pair <a>

-- The length or rail or sequence <a>
-- The <n>th element of rail or sequence <a>
-- Tail of rail/seq <a> starting after <n>th elemnt
-- A new rail whose elements are <at>, ..• , <ak>
-- The sequence whose elements are <at>, ••• , <ak>
-- A new rail/seq whose 1st is <a>, 1st tail fs

The new <n>th element of modified rail <a>
-- The new <n>th tail of modified rafl <a>

Appendix. A MACLISP Implementation of 3-LISP Procedural Reflection 711

zoo ;;;
201 ;; :
202 ...
203 :;:
204 ...
206 .. '
206 ...
207 ...
2\18 ...
209 ...
210 ;;;
211 ...
212 ...
213 ...
214 ...
216 ...
216 ...
217 ;;;
218 ...
219 ...
220
221 ;;;
222 , ..
223 ...
224 ...
225 ...
226 ...
?.27 ...
228 ...
229 ...
230 ...
231 ...
232 ...
233 ...
234 ...
236 ...
236 ...
237 ...
238 ...
239 ...
240 ;;;
241 ...
242 ...
243 ;;;
244 ...
246 ...
246 ;;;
247 ...
248 ...
249 ;;;
260 ...
261 ...
262 ...
253 ...
264 ...
265 ...
266 ...
267 ...
268 ...
269 ;;;
260 .. .

(S!MPLE <e> <p>)
(REFLECT <e> <p>)

(EF <p> <a>)

(NAME <a>)
(R£FERENT <a> <env>)

{+ <a>)
(- <a>)
(• <a>)
(/ <a>)

(READ)

(F'RINT <a>)

(LEVE!..)

6. Processor Top Level:

NOT FOR CASUAL USE! (The function of given type
designated by the lambda abst.raction or pattern
<p> over expression in environment <e>)

<a>, 1f <p> designates truth; ff falsity.

-- The (or a) normal-r~.~ designator of <a>
·- The object designate~ by <a> fr. environment <env>

The sum, difference, produce, anJ quotient of
<a> tnd , respectively

The s-express1on notated by the next formula in
the input stream •
<a>, which has Just been printed.

The number or t.he current reflective level •

Each reflective level of the processor 1s assumed to start off
running the following function:

(define REAO·NORMALISE·PRINT
(lambda simple [onv]

(block (prompt (level))
(let [[normal-form (normalise {read) env id)]]

(prompt (level))
(print normal-form)
(read-normalise-print env)))))

The way this fs imagined to work is as follows: the very top processor
level (infinitely high up) fs invoked by someone {say, God, or some
functional equivalent) normalising the expression (REAO·NORMALISE·PR1.NT
GLOBAL). When ft reads an expression, it fs given the input string
"{READ-NORMALISE-PRINT GLOBAL)", which causes the level below it to read
an expression, which is in turn given "(REAO-NORMALISE·PRINT GLOBAL)",
and so forth, until r1nally the second reflective level is given
"(READ·NORMALISE·?RINT GLOBAL)". This types out "1>" on the console,
and awaits YOUR input.

7. Environments:

Environments are sequences of two-element sequences. with each sub-sequence
consisting of a variable and a binding (both of which are of course
expressions). A normal-form environment designator, therefore, is a rail of
rails, with each rail consisting of two handles. Variables are looked up
starting at the front (1.e. the second element of the first subrail whose
first element is the variable is the binding of that variable in that
environment). Environments can also share tails: this is impl~mented by
normal-form environment designators sharing tails {this is used heavily in
the GLOBAL/ROOT/LOCAL protocols, and so forth). Effecting a side-effect on
the standard normal-form environment designator tHANGES what the environment
is, which 1s as ft should be. Each level is Initialised with the same global
environment (the implementation does not support root environments-· see
note 11) .

Page 1:3

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 712

261
282
263
26~
265
266 ...
267 ...
268
269
270 ...
271 ...
Z72
273
274 ...
276 ...
276 ...
277
278 ...
279 ...
280· ...
281 ...
282 ...
283 ...
284
286 ...
286 ...
287 ...
288 ...
289 ;;;
290 ...
291 ...
292 ;;;
2fi3 ...

·•• I 294 ...
295
296 ...
l.97
298
299 ...
300 ...
301
302 ;;;
303
304
306 ;;;
306 ...
307 ...
308 :; :
309
310 ...
311 ;;;
312 ...
313 ...
314 ...
315 ...
316 ...
317 ...
318 ...
319 ...
320 ...
321 ;;;
322 ...
323 ...
324 ...
326 ...
326 ...
327 ;;;
328 ...
329 .. ,

8. Implementation:

3-LISP Structural Type:

1. Numerals
2. B'loleans
3. Pairs
4. Rails
6. Handles
6, Atoms

HACLISP implementation:

Numerals
The atoms ST and SF
Pairs
(-RAIL- <et> .•. <en>} (but see note 9)
(-QUOTE- • <exp>)
atoms (except tor ST, SF, -RAIL-, -QUOTE-,
-CO-, -Ct-, -CZ-, -C3-, -C4-, -C6-, -PRIM-,
and NIL)

Tne main processor functions constantly construct MACLISP representations
of the 3-LISP normP.1-form ~es1gnat'lrs of the cont1nuat1ons and environments
that WOULD be being used 1f the processor were running reflecti\ely, In
this way functions that reflect can be given the right arguments without
further ado. In assembling these continuations and environments (see
3-NORMALISE etc.), the code assumes that the 1ncom1ng values are already 1n
normal form. A more efficient but trickier strategy would be to put these
objects toGether only if end when they were called tor, I haven't attempted
that here. This would all be made simpler if both environments and
continuations were functivns abstractly defined: nu copying of structure
would evor be n&eded, since the appropriate behaviour could be wrapped
around the ·;nformation 1n whatever form it was encoded in the primitive
implementation.

Two major recognition strategies are used for efficiency. Those instances
of the four STANDARD continuation types that were generated by the MACLISP
version of the processor are trapped and decoded primitively: if this were
not done the processor would reflect at each.step. Also, explfc1t calls to
REDUCE and NORMALISE are trapped and run directly by the implementfng
processor: th1s is not strictly necessary, but unless it were done the
processor might never come down again after reflecting up.

The standard continuation types, called CO - CJ, arc identified in the
comments and fn the deftn1tions or IIORMALISE and REDUCE {q.v.), 1,,.,d listed
below. These types must be recogn1ied by 3-APPLY and 3-REDUCE, so that the
implementing µrocessor can drop down whenever possible, whether or not the
explicit interpretation of a (non-primitive) reflective function has
intervened. The atoms -co-, -ct-. -C2-, and ~C3- -- called the SIMPLE
ALIASES -- are used instead of the primitive SIMPLE closure as the function
type (i.e. as the CAR of the continuation closures), These atoms are also
MACLJSP function names to effect the continuation). The implementation
makes these atoms look• to the SIMPLE closure, so that the user cannot
tell different atoms are being used, but so that the continuattons can be
trapped.

Three other simple aliases are used (~C4-, ~C5-, and -PRIM-). -C4- is used
to identify the continuation used by READ-NORMALISE-PRINT, since the higher
level READ-NORMALISE-PRINT continuation may not explicitly exist. -cs- ts
used !Jy the lll-3-LISP macro to read in 3-LISP code emb11dde<J within MACI.ISP
(it can therefore be used to read in 3-LISP code 1n files and so forth).
-PRIM- is used 1n normal-form designators or primitive procedures. Thus,
while PCONS fn the initial global environment looks to a 3-LISP program to
norm&lise to (<SIMPLE> '[... <global>] '[AB] '(PCONS AB)), 1n fact the
CAR of that form 1s -PRIM~, not <SIMPLE>.

The four standard continuations:

CO: Accept the normalised function designator in an application.
Ct: Accept the normalised arguments for a SIMPLF. application,
CZ: Accept tho normalised first element fn a rail fragment.
C3: Accept the normalised tail of a rail fragment.

(C4: Identifies top level call of READ-NORMALISE-PRINT.)
(C5: Used in order to read 1n 3-LISP structures by IN-3-LISP.)

Pago 1:4

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 713

331 ...
332 ;;;
333 ...
334 ...
335 ...
336
337
338 ;;;
339 ...
340
341 ...
342 ...
343 ...
344
345 ...
346 ;;;
347 ;;;
348 ...
349 ...
360 ...
361 ;;;
362 ...
353
354 ...
365
366
357
358 ...
359 ...
360 ...
361 ...
362
363
364 ...
366 ...
366
367 ...
368 ...
369 ...
370
371 ...
372 ...
373 ...
374 ...
376
376 ...
377 ...
378 ...
379
380 ...
381 ...
382 , ..
383 ...
384 ;;;
385 ...
386 ...
387 ...
388 ...
389 ;;;
390 ...
391 ;;;
392 ...
393 itt
394
396
396 ;;;
397 ...
3e8 ...
399 ...
400 ...
401

Page 1:6
Programm1ng conventions:

Special variables are prefixed with "3•". Procedures are prefixed with •J-".
If they operate on MACLISP structures implementing 3-LISP structures, the
procedure name is defined with respect to t~e operation viewed with r,spect
to the 3-LISP structure. For example, 3-EQUAL returns T ff the two arguments
encode the same 3-LISP structure.

NOTE: In rall 1981, the implementation was minimally changed to run on an NIT
CADR machine, not in MACLISP, The only concessions to the new base were in
the treatment or 1/0 and interrupts; no particular features of the CADR have
been used. tt should therefore require m~nimal work to rotrofit 1t to 4
MACLISP base •

9. Rails: Implementation and Management:

The implementation of rails is tricky, because RPLACT modifications m~st be
able to take effect on the 0'th ta11, as well as subsequent ones, requiring
either the use of full b1-directional linkages, or "invisible pointers" (a
true LISP-machine implementation could perhaps use the underlying 1nvis1~1e
pointer facility) and special circularity checking. We choose the latter
opt1on. The implementation (where"+" means one or more, """ means zero or
more) of a rail 1s:

[ab ... z] ••}

where the -RAIL- atoms are effectively invisible, but begin every rail that
is given out to the outside world (and can thus be used to distinguish
rails trom 3-LISP cons pairs). Just reading in [AB ... Z] generates
(-RAIL- AB ... Z).

Unless RPLACT's are done, the number of -RAIL- atoms cannot exceed the number
ot elements. With arbitrary RPLACT'ing, the efficiency can get arbitrarily
bad (although it could be corrected back to a linear constant of 2 by a
compacting garbage collector.)

10. User Interrace:

To run 3-LISP, load the appropriate one of the following FASL files:

ML:
PARC:

ML:BRIAN:3-LISP FASL
(Phylum]<BrianSmith>3-lisp>3-lisp.qfasl

The processor can be started up by executing (3-LISP), and re-initialised
completely at any point by exocuting (3-INIT) (both 1n MACLTSP), The
READ-NORMALISE-PRINT loop prints the c~rrent reflective level to the left
ot the prompt character. The following interrupt characters are defined:

a. Control-E

b. Control-G
c. Control-F

Toggles between MACLISP and 3-LISP.

Quit to level 1 {regular quit in MACLISP)
Quit to current level (regular quit 1n MACLISP)

To read in and manipulate files, surround an arbitrary number of
expressions with the MACLISP wrapping macro IN-3-LISP, and precede each
3-LISP expression wfth a backslash. so that it will be read fn by the
3·LISP reader, Then load the file as 1f 1t were a regular MACLISP file.
For example:

{in~3-l isp
\(define increment (lambda simple (x] (+ x 1)))
\(define quit (lambda reflect[) 'QUIT)))

Equivalent, and with the advantage that TAGS and 8 see the definitions, is:

(tn-3-1 isp \[

(define increment (lambda simple [x] (+ x 1)))
(define quit (lambda reflect? 'QUIT))

Appendix. A MACLISP Implementation of 3-USP Procedural Reflection 714

404 ...
406 ...
406 ;;;
407 ...
408
409 ...
410 ...
411 ...
412 ...
413 ...
414 ...
41'1 ...
416 ...
417 ;;;
418 ...
419 ...
420 ...
421 ...
422 ...
423 ;;;
424 ...
425 ...
426 ...
427 ...
428 ...
429 ...
430 ...
431 ...
432 ...
433 ...
434 ...
436 ...
436 ...
437 ...
438 ...
439 ...
440 ...
441 ...
442 ...
443 ...
444 ...
446 ...
446 ...
447 ...
448

11. limitations or the Implementation:

There are a variety or respects 1n which thfa 1mplement~t1on 1s incomplete
or flawed:

1. S1dft effects to the reflective procedures will not be noticed -- fn a
sorious implementation these procedures would want to be kept 1n a pure
page so that side effects to them could be trapped, causing one level
of reflective deferral •

2. Ref1ect1ve deferral 1s not yet support at all. No problems are
expected; ft merely needs attention.

3. ln part because I think it may be a bad idea, this implementation d6es
not support a root environment protocol •

12. Obvious Extensions:

Obvi~us extensions to the implementation tall into two groups: those that
would increase the efficiency of the implementation, but not change its
basic functionality, ~nd those that ~ould e~tend that tuncttonality •
Regarding the first, the following are obvious candidates:

1. Get rid of the automatic consing of continuation and environment
structures, as mentioned earlier •

2. Support various intensional procedures (LAMBDA, IF, COND, MACRO, SELECT,
and so forth) as primttives. Thfs would require the virtual provfston
of all of the continuation structure at the reflective level that would
have been generated had the definitions used here been used explicitly:
ft wouldn't be trivial. Unless, of course, the language was redefined
to include these as primitives (but the current proof of its finiteness
depends on no reflective primit1ves, so this too would take some work) •

Functional extensions include:

1. Make the bodies or LAHDBA, LET, COND, etc. take multiple expressions
(i.e. be virtual BLOCK bodies) •

2. Strings (and normal-form string designators, perhaps called "STRINGERS")
could be added .

Page 1:6

Append!X. A MACLISP Implementation of 3-LISP Procedural Reflection

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020·
021
022
023
024
026
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
046
046
047
046
049
060
061
052
053
064
056
066
067
068
069
060
061
062
063
064
066
066
067
068
069

;;: Declarations and Macros:
;r.; ••••••••••••••••••••••••

(declare
(specfal

3•s~mple-alfases 3•globa1-envfronment 3•states 3•1eve1 3•break-flag
3•1n-use 3•readtable L•readtable S•readtable 3•a1 3•a2 3•a3 3•a4
3•norma11se-closure 3•reduce·closure 3•s1mple·closure 3•reflect-closure
3•1d-closure 3•backquote•depth ignore 3•process)

(•lexpr 3-read 3-read• 3-error))

;;; (herald 3-LISP)

(eval-when (load eval compfle)

(defmacro ~fst7 (x) "(eq (typep ,x) 'lfst))
(defmacro 1st (1) "(car ,1))
(defmacro 2nd (1) "(cadr ,1))
(defmacro 3rd (1) "(caddr ,1))

(defmacro 3-pr1m1tJve-s1mple-fd (proc) '(cadr (3r-3rd (cdr ,proc))))

(defmacro 3-numeral (e)
0

(f1xp ,e))
(defmacro 3-boolean (e) '(memq ,e '(ST SF)))

(defmacro 3-bind (vars vals env)
'(cons •-RAIL- (nconc (3-bind• ,vars ,vals) ,env)))

::: Two macros having to do with input:

(defmacro fn-3-lisp (&rest body)
'(progn (or (boundp '3•global-envfronment) (3-init))

,@(do ((exprs body (cdr exprs))
(forms nil (cons 0 (3-lfspffy ',(car exprs)) forms)))

((null exprs) (nreverse forms)))))

(defmacro -3-BACKQUOTE (expr) (3-expand expr nfl))

3-NORMALISE• If MACLISP were tail-recursive, calls to this would
simply call 3-NORMALJSE. Sets up the loop variables
and jumps to the top or the driving loop.

(defmacro 3-normalise• {exp env cont)
'(progn (setq 3•al ,exp 3•a2 ,env 3~a3 ,cont)

(•throw '3·mafn-loop 'nil)))

;;; The rest of the macro derfnftfons are RAIL specific:

(defmacro 3r-lst (exp) '(car (3-strfp ,exp)))
(defmacro 3r-2nd (exp) '(car (3-strfp (3-strtp ,exp))))
(defmacro 3r-3rd (exp) '(car (3-strip (3-strfp (3-strip ,exp)))))
(dermacro 3r-4th (exp) '(car (3-strfp (3-strip (3-strfp (3-strip ,exp))))))

...
;; ; ...

Macros for RAIL management:

3-STRIP

3-STiUP•

-- Returns a rafl with all -RAIL- headers removed. Have
have to step through as many headers as have buflt up •

-- Returns the last header of arg -- used for RPLACO, and
to establish rail identity. Stops down t~rough headers.

(eval-when (load eval compile)

(defmacro 3-strfp (rail)
0 (do ((rest (cdr ,rail) (cdr rest)))

((not (eq (car rest) '-RAIL-)) r~st)))

71S

hge 2

Appendix. A MACLISP Implementation of3-LISP

010
071
072
073
074
076
076
077
078
079
080
081
08~
083

(defmacro 3-str1p• (rail)
'(do ({rest ,ra11 (cdr rest)))

((not (eq (cadr rest) •-RAIL-)) rest)))

;;; 3-LENGTH• -- Return the length of a a-LISP ra11.

(defmacro 3-length• {rail)
'(do {(n 0 (1+ n))

(rail (3-strip ,rail) (~-strip rail)))
((null rail) n)))

Procedural Reflection 716

Paoe Z:1

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection

, ..

...

... .. .

... .. .

...

...

...

Input/Output:

A special readtable (3•READTABLE) 1s used to read in 3-LISP notation, since
it must be parsed differently from MACLJSP notation. The 3-LISP READ
NORMALJSE·PRINT loop uses this: 1n addition, a single expression w111 be
read 1n under the 3-LISP reader if preceded by backslash("\") in the
HACLJSP reader. Similarly, a single expression w111 be read 1n by the
MACLJSP reader 1r preceded with a tilde("-") fn the 3-LISP reader.

MACLISP and 3-LISP both support backquote. The readers and the backquotea
can be mixed, but be cautious: the evaluated or normalised expression must
be read in with the right reader. For example, a MACLISP backquoted
expression can contain a 3-LISP fragment with a to·bo-evaluatad-by-MACLISP
constituent, but a tilde is required before it, so that the MACLISP reader
will sea ft. Example: "'\[value -,(plus x y)J". ",i" and",." are not
supported by the 3-LISP backquote.

Any 3-LISP backquoted expression will expand to a new-structura-creatfng
expression at the level of the back-quote, down to and including any level
fncluding a comma'ed e~pressfon. Thus '[] expands to (rcGns), '[[ab c) [d
,e t]J expands to (rcons '(ab c] (rcons 'de 'f)), and so forth. Th1s 1s
done so as to minfmfse tho chance of unwanted shared tails, but to avoid
unnecessary structure consfng. We use '[J tn place of (rcons) many tfmes fn
the code •

Expressions lfke "-CO-" ere necessary in order to get the aliases into
3-LISP. sfnce the first tflde flips readers. Once 3-LISP has been
fnitfalfsed the aliases wfll be rejected: to reload a function containing an
alias, temporarily bind 3•simple-aliases to NIL.

There ar& two ~pecfal read macro characters, for name and referent (MACLISP
and 3-LISP versions). (Ideally these would be uparrow and downarrow, but
down-arrow 1s u~fortunately not an ASCII character):

Form

t. t<exp>
2. l<exp>

HACLISP ~xpansion

(3-NAME <exp>}
(3-REF <exp>)

3-LISP expansion

(NAME <exp>)
(REFERENT <exp> {current-env))

(eval-when (load eval compile)

;;: Five constants need to be defined for 3-LISP structures to be read fn:

(setq S•readtable readtable
L•readtable (copy-readtable)
3•readtable (copy-roadtable)
3•simp1e-alfasos nfl
3•backquote-depth 0)

Save the system readtabte
and name two special ones:
one for LISP, one for 3-LISP.
Make these NIL so we can read
fn the aliases fn thfs filol

... The followfng has been modfffed from the original MACLISP to enable ft to
operate under the 1/0 protocols of the MIT LISP machine:

717

Pago 3
001
002
003
004
005
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
046
046
047
048
049
060
051
052
053
054
055
066
057
058
059
060
061
062

(logfn-setq readtable L•readtable) : Needed fn order to read this file.

(let ((readtable l•readtabte})
(set-syntax-macro-char#/\ #'(lambda {1 s) (3-read s)))
(set-syntax-macro-char #/t #'(lambda (1 s) '(cons '-QUOTE- ,(reads))))
(set-syntax-macro-char #/I #'(lambda (1 s) '(3-ref ,(reads))))
(set-syntax-rrom-description #/] 'si:single)) ; So "-FOO)" will work.

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 718

063
064
066
066
087
088
08S
070
071
072
073
074
076
078
077
078
079
080
081
082·
083
084
086
086
087
088
089
090
091
092
093
094
096
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
116
116
117
118

Page 3:1

(let ((roadtable 3•roadtable))
(set•syntax-macro-char SI- #'(lambda (1 s) (let ((readtable L•readtable)) (reads))))
(set·syntax-macro•char Ill #'(lambda (1 s) '(referent -RAIL- ,(3-road* a)

{curront·env -RAIL-))))
(set·syntax•macro·char llt #'(lambda (1 s) '(name -RAIL- ,(3·read• s))))
(sot·syntax·macro·char II' #'(lambda (1 s) '(-QUOTE- . ,(3-read• s))))
(set-syntax-macro-char#/(#'{lambda (1 s) (3-read·pair s)))
(set-syntax-macro-char II[#'(lambda (1 s) (3-read·rafl s)))
(set-syntax-macro-char 11• #'(lambda (1 s) {3-backq-macro s)))
(set-syntax-macro-char II, l'(lambda (1 s) (3-co11111a-macro s)))
(set·syntax-from-descr1pt1on II) 's1 single)
(set·syntax-from-descr1pt1on Ill 's1 sfngle)
(sot·syntax-from-descrfptfon II$ 's1 single)
(set-syntax·from-descrfpt1on II] 'sf single)
(set·syntax·from-descrfptfon II. 'sf single))

3·REAO(•) Read fn one 3·LISP s•expresafon (•·version assumes the
--------- 3-LJSP readtable 1s already fn force, and accepts an

optional list of otherwise illegal atoms to let through),

(defun 3-read (&optional stream)
(let ((readtable 3•readtable)) (3-read* str~am)))

(defun 3·read0 (stream &optional OK)
(let ((token (read stream)))

(cond ((memq token OK) token)
((memq token '(1)1 1,1 1)1)) (3-111ega1-char. token))
((or (memq token '(-RAIL- -QUOTE- NIL))

(memq token 3•simple-aliases)) (3·i11egal·atom token))
{(eq token • /$) (3-read·boolean stream))
{t token))))

(defun 3-read-boolean (stream)
(let ((a (readch stream)))

(cond ((memq a '(T It)) 'ST)
((memq a '(F /f)) 'SF)
(t (3-111ega1-boolean a)))))

(defun 3-read·pa1r (stream)
(lot ((a (3-read• stream))

(b {3-read• stream ' (I, I I) I))))
(1f(eqb'l,I)

(progt (cons a (3-read• stream))
(setq b (read stream))
(if (not (eq b '1)1)) {3-111egal-char b)))

(do ((b b (3-read• stream '(1)1)))
(c nil (cons b c)))

((eq b '1)1) (list• a '-RAIL- (nreverse c)))))))

(defun 3-read-rail (stream)
(do ((a nil (cons b a))

(b (3-read• stream '(1)1)) (3-read• stream '(IJI)}})
((eq b 'Ill) (cons •-RAIL- {nreverse a)))))

; End of eval-when

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 719

119
120
121
122
123
124
126
126
127
128
129
130
131
132
133
134
136
136
137
138
i39
140
141
142
143
144
145
146
147
148
149
160
161
162
163
164
166
166
157
168
169
160
161
162
163
164
165

Page 3:2

(eval-when {eval load compile) ; Start another eval-when, since the following
: needs to be read 1n using 3-REAO

,
;:;

BACKQUOTE 3-BACKQ-MACRO and 3-COMMA-MACRO are run on reading: they
put calls to -3-BACKQUOTE and -3-COMMA 1nto the structures
they build, whfc~ are then run on exft. Thfs allows the
expansion to happen from the 1nafde out.

(defun 3-backq-macro (stream)
(let ((3•backquote-depth (1+ 3•backquote-depth)))

(macroexpand (11st '-3-BACKQUOTE (read stream)))))

{defun 3-comma-macro (stream)
(ff(< 3•backquote-depth 1) (3-error 'IUnscoped commal))
(let {(3•backquote-depth (1- 3•backquote-depth)))

(cons '-3-COMMA (read stream))))

The second argument to the next 3 procedures fs a flag: NIL ff the
backquote was at this level: T 1f not (implying that coalescing can
~appen ff possible).

(defun 3-expand {x f)
(caseq (3-type x)

(PAIR (3-expand-pafr x f))
{RAIL {3-expand-rail x f))
(T tx)))

(defun 3-expand-pafr (x f)
(cond ((eq (car x} '-3-COMMA) (cdr x))

((eq (car x) '-3-BACKQUOTE)
(3-expand (macroexpand x) f))

(t (let ((a (3-expand (car x) t))
(d (3-expand (cdr x) t)))

Found a ",<expr>".
Recursive use of backq, so
expand the inner one and then
this one.

(ff (and f (3-handle a) (3-handle d))
t(cons (cdr a) (cdr d)) Do the cons now 1f possible:
'\(PCONS -,a -,d)))))) ; else use MACLISP's backquote

; to form a call to PCONS.

{defun 3-expand-ra11 {rafl f)
{do ((rail (3-strip rail) (3-str1p rail))

(elements nil (cons (3-expand (car rafl) t) elements)))
((null rail) .
(1f (and f (apply 'and (mapcar '3-handle elements)))

t(cons '-RAIL- (mapcar 'cdr (nreverse elements)))
'(RCONS -RAIL- ,@(nreverse elements))))))

; end of eval-when

Appendix. A MACLISr Implementation of3-LISP Procedural Reflc,;tion 720

166
167
168
169
170
171
172
173
174
176
176
177
178
179
180
181
182
183
184
186
186
187
188
189
190
191
192
193
194
196
196
197
198
199
zoo
201
202
203
204
206
206
207
208
209
210
211
212
213
214
216
216
217
218
219
220
221
~22

••• 3-PRIHT Print out <exp> in 3-LISP notation using notational su~,r ff
possible. No preliminary CR is printed (use TERPRI). Some
attempt is made to avoid printing known circular structures
(like <SIMPLE> and <REFLECT> and obvious circular environments
of a sort that would be generated by Z).

(defun 3-print (exp)
(caseq (3-type exp)

(numeral (princ exp))
(boolean (princ exp))
{atom (if (memq exp 3•sfmple-alfases)

(pr1nc '<simple))
(print exp)))

(handle (princ 'l'I) (3-prfnt !exp))
(pair {cond ((eq exp 3•sfmple-c1osure) (prfnc '(simple>))

((eq exp 3•reflett·closure) (print '<reflect>))
(t (prfnc 'I(I)

(3-print (car exp))
(ff (3-rail (cdr exp))

(if (3-cirtular~closure-p exp)
(progn (princ 'I <cfrcular-env>I)

(3-print-elements (cddr exp) 't))
(3-print-elements (cdr exp) 't))

(princ 'I . I) (3-print (cdr exp)))
(princ '1)1))))

(rail (print 'l[I)
(3-prfnt-elements exp 'nfl)
(print 'IJI))))

{defun 3-print-elements (list flag) .
(let ((global (3-strip 3•global·env1ronment)))

(do ((list (3-strfp 11st) (3-strip list))
(flag flag 't))

((null list))
(if (eq list global)

(return (print 'I <global>I)))
(if flag {prfnc 'I I))
(3-print (car list)})))

(derun 3-prompt (level)
(terpri)
(princ level)
(pr inc 'I> I))

(defun 3-circular-closure-p (exp)
(and(< 0 (3-length (cdr exp)))

(3-rail (3r-lst (cdr exp)))
(< O (3-length (3r-tst (cdr exp))))
(let ((env7 (3r-1st (3r-1st (cdr exp)))))

(and {3-rail env7)
(< 1 (3-length env7))
{3-handle (3r-1st env?))
{3-atom 1(3r-lst env?))
(3-handle (3r-2nd env7)}
(eq exp 1(3r-2nd env?})))))

Paga 3:3

Appendix. A MAC LISP Implementation of3-LISP Procedural Reflection

001
002
003
004
006
906
007
008
009
010
011
012
013
014
016
016
017
018
010
020-
021
022
023
024
025
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
046
046
047
048
049
060
061
062
063
064
066

066
067
068
069
060
061
062
063
064
066
066
067
068

..
;;;
;; ;

M&1n Processor:,
3-NORMALISE and 3-REOUCE The second clause 1n the following takes care
------------------------ of numerals, booleans, handles, normal-form

function designators (applications in terms of
the functions SIMPLE, MACRO, nnd REFLECT whose args are fn normal form),
and normal-form sequence designators (rails whose elements are all 1n
normal-form). Thus all normal-form expressions normalise to themselvea,
even those (like rails and function-designators) that are not canonical
designators of their referents.

(defun 3-norma115e (exp env cont)
(cond ((3-atom exp) (3-apply cont (3-b1ndtng exp env)))

((3-normal exp) {3-apply cont exp))
((3-rafl exp) (3-norma11se-ra11 exp env cont))
{t {3-reduce (car exp) (cdr exp) env cont))))

(defun 3-reduce (proc ergs env cont)
{3-norma11se• proc env

'\(--CO- (('proc -,tproc] ['args -,targsJ ['env -,tenv] ['cont -,tcont]]
'[proc•J

...
;;;

'(selectq (procedure-typo proc•)
[reflect ((simple . l{cdr proc•)) args env cont)]
[simple (normalise args env (make-ct proc• cont))]))))

3-NORMALISE-RAIL Normalise (t~e ffr~t element of} a rail, .

(derun 3-norma11se-ra11 (rail env cont)
{if (null (3-strip rail))

(3-apply cont rail)
(3-normalise• (3r-1st rail) env

.\{--CZ- [['rail -,trail] ('env -,tenv] ['cont -,tcont]]
'[element•]
'(normaltse-rail (rest rail) env

(lambda simple [rest•]
(cont (prep element• rest•))))))))

3-PRIMITIVE-REOUCE-SIMPLE The way each primitive function is treated 1s
highly dependent on the way that 3-LISP
structures are encoded in MACLISP.

{defun 3-pr1mftfve-reduce-simple (proc args cont)
{3-rail-check args)
(1f (eq proc 'referent)

(3-normalise• l(~r-lst args) (3r-2nd args) cont)
(3-apply cont

(caseq proc
(simple
(reflect
(type
(ef

(peons
{car
(cdr
(length
{nth
(tail
(prep
(rcons
(scons
(rplaca
(rplacd
(rplacn
(rplnct

'(,3usfmp1e-closure. ,args))
'(.3ureflect-closure • ,ergs))
t(3-ref-type {3r-1st args)))
(if (eq (3-bool-check (3r-1st args)) 'ST)

(3r-2nd args) (3r-3rd args)))
t(cons 1(3r-lst args) 1(3r-2nd args)))
t(car (3-pair-check 1(3r-lst args))))
t(cdr (3-pafr-check 1(3r-1st args))))
(3-length (3r-lst args)))
(3-nth (3r·tst args) {3r-Znd args))}
(3-tafl (3r-1st args) (3r-2nd args)))
(3-prep {3r-1st args) (3r-2nd arys)})
(3-rcons (3-rafl-check ergs)))
(3-scons (3-rail·check args)))
t(rplaca (3-pafr-check 1(3r·1st args)) 1(3r-2nd args)))
t(rplacd (3-pa1r·check 1(3r-tst Ar:s)) 1(3r-2nd args)))
t(3·rplacn (3r-lst args) 1(3r·2nd args) l(3r·3rd args)))
1(3-rplact (3r-1st args) !(3r-2nd arys) 1(3r-3rd args)))

721

Page 4

co

C2

Appendix. A MACLISP Implementation ofa-LISP Procedural Reflection 722

069
070
071
072
073
074
076
076
077
078
079
080

Page 4:1
(• (it (3-equal (3r-1st args) (3r-2nd args)) 'ST 'SF))
(read t(3-read))
(print (3-print 1(3r-1st args)) (pr1nc '/) 'ST)
(terpr1 {terpr1) 'ST)
(+ (+ (3-num-check (3r-1st args}) {3-num-check (3r-2nd args))))
(• (• (3-num-check {3r-1st args)) (3-num-check {3r-2nd args))))
(- (- (3-num-check (3r-1st args)) (3-num-check (3r-2nd args))))
(II (II (3-num-check (3r .. 1st args)) (3-num-check (3r-2nd args))))
(name t(3r-1st args))
(•rebind (3-rebind 1(3r-1st args) (3r-2nd args) (3r-3rd args))) : tor
(level 3•1eve1) ; efficiency
(t (3-1mplementatfon-error))))))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 723

001
002
003
004
006
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

;;;

Continuation Application:•
3-APPLY Called with 3-LISP continuations, has to sort them out and do

the right non-reflected thing with those that are tokens of the
s1x types (CO - C5) that are pr1mitively recognized. In

addition, redexes in terms or primftfve procedures (identified by PRIM)
are recognised. We assume a continuation of the form
(<simple> • [env [argJ body]), and a standard environment structure.

(detmacro 3a-env (cont)
(defmacro 3a-arg (cont)
(defmacro 3a-1st (env)
(defmacro 3a-2nd (env)
(defmacro 3a-3rd (env)
(defmacro 3a-4th (env)

'(3r-lst (cdr ,cont)))
•car-2nd {cdr ,cont)))
't(3r-2nd (3r-1st ,env)))
'1(3r-2nd (3r-2nd ,env)))
'1(3r-2nd (3r-3rd ,env)))
't(3r-2nd (3r-4th ,env)))

(defun 3-apply (cont normal-form)
{let ((env (3a-env cont)))

(if (~emq (car cant} 3•sfmp1e-aliases)
(funcall (car cont) env cont normal-form)

CO:

(let ((new-level {3-fncrement-level))) ; REFLECT UPI
(3-reduce cont ~•\[-,normal-form) ; •••••••••••

(car new-level) {cdr new-level))))))

Accept a normalised function designator from a pair. Dispatch
on the function type: if it 1s SIMPLE, normalise the args; if
primitive reflective, go do it; otherwise reflect up explicitly.

{defun ~CO~ (env cont proc)
ignore cont
(let ((args (3a-2nd env))

(env .(~a-3rd env))
(cont (3a-4th env)))

{cas9q (3-proc-type pror.)
(simple (3-normalfse• args env

•\(-~Ct- [['proc -,tproc] ['args -,targs] Cl
['env -,tenv] ['cont -,tcont]J

'[args•J
'(cond [(• proc• treferent)

(normalise !(1st ergs) !(2nd args) cont))
[(primitive proc•) (cont t(lproc• . largs•))]
[$T (normalise (body proc•)

Page 6

(bind (pattern proc•) args• (env proc•))
cont)]))))

(reflect !let ((nlevel (3-increment-level)) REFLECT UPI
(proc {cdr proc))) ; •••••••• ... •

(3-normalfse* 1(3r-3rd proc)
(3-bind 1(3r·2nd proc)

'\[-,targs -.env -,cont)
(3r-1st proc))

(cdr nlevol)))))))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 724

064
066
066
067
068
069
060
061
062
063
064
066
066
067
068
069
070
071
072
073-
074
076
076
077
078
079
080
081
082
083
084
086
086
087
088
089
090
091
092
093
094
096
096
097
098
099
100
101
102
103
104
106
106
107
108
109
110
111
112
113
114
115
116
117
118
119

;; ; Cl: Accept the norma1ised arguments to a SIMPLE application. Dispatch
on primitivts, and reflect down in case we encounter a call to a
continuation we ourselves once put together. Also trap explicit calls
to NORMALISE and REDUCE, for efficiency.

(defun -Ct- (env cont args•)
ignore cont
(1et {(proc (3a-1st env)))

{cond ({eq (car proc) •-PRIM~)

;; ; C2:

(3-argument-check args• proc)
(3-pr1m1t1ve-reduce-s1mple (3-pr1mit1ve-simple-fd proc)

args•
(3a-4th env)))

((memq (car proc) 3•s1mple-a11ases)
(3-drop-level (3a-3rd env) (3a-4th er.v)) REFLECT DOWN
(3-apply proc 1(3r-1st args•))) ••••••••••••

{(eq proc 3•norma11se-closure)
(3-drop-level (3a-3rd env) (3a-4th env)) REFLECT DOWN
(3-normalise• 1(3r-tst args•) ••••••••c•••

(3r-2nd args•)
(3r-3rd args•)))

((eq proc 3•reduce-closure)
(3-drop-level (3a-3rd env) (3a-4th env)) REFLECT DOWN
(3-reduce 1(3r-1st args•) • 8

••••••••••

1(3r-2nd args•)
(3r-ilrd args•)
(3r-4th args•)))

(t (let ((proc• (cdr proc·)))
(3-normalise•

1(3r-3rd proc•)
(3-bind 1(3r-2nd proc•) args• (3r-1st proc•))
(3a-4th 2nv)))))))

Accept the normalised first element in a rail fragment.
Normalise the rest.

(defun -C2- (env cont element•)
ignore cont
(3-norma11se-rail

(3-tail• 1 (3a-tst env))
(3a-2nd env)
'\(--C3- -,(nconc '\[['element• -,telement•]] env) C3

;; ; C3:

'[rest•]
'(cont (prep element• rest•)))))

Accept the normalised tail of a rail fragment.
element on the front.

(defun -C3- (env cont rest•)
ignore cont

PLtt the first

(3-apply (3a-4th cnv) (nconc '\[-,(3a-1st env)] rest•)))

C4: Accept an expression normalised for the top level of a
--- READ-NORMALISE-PRINT loop. Print it out and read another.

On entry here ENV will be bound to the environment of the C4 closure, CONT
will be bound to the whole C4 closure, and NORMAL-FORM will be bound to a
designator of the result of the NORMALISE at the level below.

(defun -C4- (env cont normal-form)
(3-prompt 3=leve1)
(3-print !normal-form)
(3-prompt 3°leve1)
(3-drop-level 3=global-env1ronment cont)
(3-normalise• (3-read} (3-binding 'env env) 3°id-closure))

Page 6:1

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 725

120
121 ::: C5: Accept the re,ult of norma11s1ng an expressfon wrapped 1n an
122 ;;; --- IN-3-LISP macro. Return answer to the caller.
123
124 (defun -c~- (env cont normal-form)
126 ignore env cont
126 (•thro~ '3-ex1t normal-form))
127
128 (defun 3-argument-check (args proc)
129 (let ((pattern 1(3r-2nd (cdr proc))})
130 {ff (and (3-rail pattern)
\31 (not(• (3-length args) (3-length pattern))))
132 (3-error '!Wrong number of arguments to a pr1m1tfve:
133 '\(-,(car 1(3r-3rd proc)) • -,ergs)))))
134

Pago 6:2

Appendix. A MACLISP Implementation of3-LISP Procedural Refleetion 726

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020
021
022
023
024
0215
026
027
028
029
030
031
032
033
034
0315
031!
u37
038
039
040
041
042
043
044
045
046
047
048
049
050
051
062
063
064
066
056

;:: Environments:••.
;;: 3-BINDING Look up a binding in a 3-LISP standard environment

designator, but, for &ff1c1ency, bypass rail type-checking • ---------.. '
(defun 3-bind1ng (var env)

(3-atom-check var)
(3-rail-check en~)
(do ((env (3-str1p env) (3-str,p env)))

...

((null env) (3-orror '(,var unbound variable -- BINDING)))
{if (eq var 1(3r-1st (car env))) (return 1(3r-2nd (car env))))))

Bind variable structure to argument structure. Oestructur&s on
rails and sequences. For efficiency, does rail man1pu1ation by
itself, saving t1me and cons'es. The DO construct, a reversed
MACLISP ra11 designator, NREVERSEd on exft.

(defun 3-bind• (pattern vals)
(caseq (3-type pattern)

(atom '(\(-,tpattern -,tvals]))
(rail (caseq (3-type vals)

(rail (do ((binds nil (nconc ~3-bind• (car pattern) (car vals)) binds))
(pattern (3-sttip pattern} (3-strip pattern))
(vals (3-st~1p vals) {3-strip vals)))

((or (nu11 pattern) (null vals))
(co~~ ((and (null pattern) (null vals))

{nreverse binds))
((null vels) (3-error '!Too few arguments supplfedl))
(t (3-error 'IToo many arguments supplfedl))))))

(~andle (1f (3-rafl lvals)
(do ((binds nil (nconc (3-bfnd• (car pattern) t(car Vdls))

binds))
(pattern (3-strfp pattern) (3-strip pattern))
(vals {3-strfp lvals) (3-strfp vals)))

((or (null pattern) (null vals))

Page 6

(cond ((~nd (null pattern) (null vals))
(nreverse binds))

((null vals) (3-error 'IToo ft« arguments supplfedl))
(t (3-error 'IToo many arguments suppliodl)))))

(3-type-error vals 'IATOM, RAIL, or RAIL DESIGllATORI)))
(t (3-type-error vals 'IATOM, RAIL, OR RAIL DESIGNATOR!))))

(t (3·type·error pattern 'IATOM, RAIL, OR RAIL DESIGNATORI))))

(defun 3-rebfnd (var binding env)
(3-atom-check var)
(3-rafl-check env)
(if (not (3-normal bfnd1ng))

(1-error '(b1nd1ng not in normal form -- REBIND/:) binding))
(do ((env (3-strip• env) (3-strip• (cdr env))))

((null (cdr env)) (nconc env '\[[-,tvar -,bfndfng]]))
(ff (eq var 1(3r-lst (cadr onv)))

(return (3-rplacn 2 (cadr env) binding))))
binding)

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017
Oltl
019
020·
021
022
023
024
026

••• Reflective state management:
•• , 3•STATES is a queue of the environment and continuation of each reflective
... level ABOJE the current one (the value of 3•LEVEL), H they were ever
::: explicitly ~enerated (all relevant ones BELOW the current lovel are of
,,, course being passed around explicitly in 3-LISP programs).

(dofun 3-drop-level (env cont)
(push (cons env cont) 3•states)
{setq 3•leve1 {1- 3•1eve1)))

(defun 3-increment-level ()
(setq 3•1evel (1+ 3•1evel))
{ff (not (null S•states})

{pop 3•states)
(cons 3•global-env1ronment

'\(--C4- -,(nconc '\[('env -,t3•global~env1ronmentJ]
3•global-env1ronment)

'[normal-form]
'(block (prompt (level))

{print normal-form)
(read-normalise-print env)}))))

727

Page 7

Appendix. A MACLISP Implementation of 3-LISP Procedural Reflection

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017 ·
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
046
046
047
048
049
060
061
062
063
064
066
066
057
058
069
060
061
062
063
064

••• Rail Management:
••+ ••••••••••••••••
••• 3-RCONS Make a new rail (or sequence designator) out of the args
;;; 3-SCONS
i;;

(defun 3-rcons (args)
(do ((args (3-str1p (3-rafl-check args)) (3-strfp args))

(now nfl (cons !(car args) new)))
((null args) t(cons •-RAIL- (nreverse new)))))

(defun 3-scons (ergs) .
(do ((args (3-str1p (3-rail-check args)) (3-strfp args))

(new nfl (cons (car args) new)))
((null args) (cons •-RAIL- {nreverse new)))))

••• 3-RS Macro that takes two forms, one !or ra11s and one for sequences,
••• ---- and wraps the appropriate type dispatch around them.

(defmacro 3-rs (exp rafl-form seq-form)

...

'(caseq (3-type ,exp)
(handle ,rail-form)
(rafl ,seq-form)
(t (3-ref-type-error ,exp 'IRAIL OR SEQUENCE!))))

3-PREP
3-LENGTH
3-TAIL
3-NTH

-- These four kfnds are defined over both rails and sequences.
They are all defined in terms of •-versions, which operate
on the implementing rafls.

(defun 3-prep (el exp)
(3-rs exp t(list• '-RAIL- lel (3-rail-check !exp))

(list• '~RAIL- el exp)))

(defun 3-length (exp)
{3-rs exp (3-length• (3-rail-check lexp))

(3-langth• exp)})

(defun 3-tail (n exp)
(3-rs exp t(3-tai1• n (3-rail-check !exp))

(3-tail• n exp)))

(defun 3-nth (n exp)
!3-rs exp t(car (3-nthcdr• n (3-rail-check lexp)))

(car (3-nthcdr• n exp))))

;;; 3-RPLACN Defined only on RAILS.
.... --------· · ·
(defun 3-rplacn (n rail el)

(rplaca (3-nthcdr• n (3-rail-check rail)) el)
ra11)

(defun 3-nthcdr• (n rail)
(if(< n 1) (3-index-error n rail))
(do ((1 1 (1+ 1))

(rest (3-strip rail) (3-strip rest)))
((or (an 1) (null rest))
(if (null rest)

(3-1ndex-error n rail)
re.st))))

728

Page 8

Appendix. A MACLISP Implementation of a-LISP Procedural Reflection 729

066
066
067
058
069
070
071
072
073
074
076
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

(defun 3-ta11• (n o-rafl)
(ff(< n 0) (3-1ndex-error no-rail))
(ff {zerop n)

o-ran
(do ((1 0 (1+ 1))

(ra11 (3-str1p• o-rail) (3-str1p• (cdr ra11))))
((or(• n 1) (null (cdr rail)))
(1f (• n 1)

(if (eq (car rail) •-RAIL-)
rail
(let ((ta11 (cons '-RAIL- (cdr rail))))

(rplacd rail tail) ; Splice fn a new header
tail))

(3-error '(,n 1s too large for a tail of) o-r&fl))))))

,,, RPLACT fs what all the trouble fs about. A tempting 1mp1ementatfon 1s:

:;: (defmacro 3-rplact (n rt r2) •(cdr {rp1acd (3-ta11 .n .~l) ,r2)))

,,, but this has two problems. Ffrst, ft can generate an unnecessary header,
,,, since 3-TAIL may construct one, even though r2 1s guaranteed to have one
,,, already. Second, some uses of this (such as (RPLACT 1 XX)) would generate
;;; circular structures. The following version avoids these problems:

(defun 3-rplact (n rl rZ)
(3-ra11-check rl)
(3-rafl-check rZ)
{if(< n 0) (3-index-error n rl))
(do ((1 0 (l+ 1))

(last rl rail)
(rail (3-strfp• rl) (3-strfp* (cdr rail))))

((or (an f) (null (cdr rail)))
(progn
(if (not(• n 1)) (3-1ndex-error n rl))
(ff (let ((r2-headers (do ((r2 rZ (cdr r2))

(heads n11 (cons r2 heads)))
((not (eq (car rZ} '-RAIL-)) heads))))

(do ((rt-header {cdr last) (cdr r1-heeder)))
((not (eq (car rt-header) '~RAIL-)) 't)

(1f (memq rt-header r2-headers) (return 'n11))))
(rplacd ra11 r2))

r1))))

Page 8:1

Appendix. A MAC LISP Implementation of3-LISP Procedural Reflection

001
002
003
004
006
006
007
008
009
010
011
012
013
014
0115
016
017
018
019
020
021-
022
023
024
025
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
046
046
047
048
049
050
061
052
063
054
065
066
057
058
069
060
061
062
063
064
066
066
067
068
069
070
071
072

;;; Typing and Type Checking:
;;:••.•••.....
(eval-when (load eval compile)

(defun 3-type (exp)

Backquote neods this

(cond ((f1xp exp) 'numeral)
((memq exp '(ST SF)) 'boolean)
((symbolp exp) 'atom)
((eq (car exp} •-RAIL~} 'ra11)
((eq (car exp) '-QUOTE~) 'handle)
(t 'pair)))

; end of eval-when

3-boolean and 3-numeral are macros, defined above.

(defun 3-atom (e) (and (symbolp e) (not (memq e '(ST Sf)))))
(defun 3-rafl (e} (and (list? e) (eq (care) '-RAIL~)))
(defun 3-pair (e) (eq (3-type e) 'pair))

(eval-when (load eval compile)
(defun 3-handle (e) (and (list? e) (eq (care) '~QUOTE-)))
)

(defun 3-atom-check
(defun 3-rafl-check
(defun 3-pair-check
(defun 3-handle-check
(defun 3-num-check
(defun 3-bool-check

(e) (ff (3-atom e} e (3-type-error e
(e) (ff (3-ra11 e) e (3-type-error e
(e) (1f (3-pair e) e (3-type-error e
(e) (1f (3-handle e) e (3-type-error e
(e) (if (3-numeral e) e (3-type-error e
(e) (if (3-boolean e) e (3-type-error e

'atom)))
• ra11)))
'pair)))
'handle)))
•numeral)))
'boolean)))

;;; 3-REF-TYPE
..... ----------... Returns the type of the entity designated by the 3-LISP

object encoded as the argument •

(defun 3-ref-type (exp)
(caseq (3-type exp}

(numeral 'number)
(boolean 'truth-value}
(rail 'sequence)
{handle (3-type (cdr exp)))
(pair (if (or (eq (car exp) 3•s1mple-closure)

(eq (car exp) 3•reflect-closure)
(memq (car exp) 3•simple-a11ases))

'function
(3-error '(not in normal form -- REF-TYPE/:) exp)))

(atom (3-error '(not fn normal form -- REF-TYPE/:) exp))))

3-REF Returns the referent or the argument, which must efthor be a
handle or a rail of handles, since the only kinds of ref's we
can return ares-expressions.

(dofun 3-ref (exp)
(cond ((3-handle exp) (cdr exp))

({3-rafl exp)
(do ((rail (3-strip exp) (3-strfp rail))

(elements nfl (cons l(csr rail) elements)))
((null rail) (cons '-RAIL- (nroverse elements)))

(ff (not (3-handle (car rail)})
(3-ref-type-error exp 'I SEQUENCE OF S-EXPRESSIOHS I))))

(t (3-ref-type-error exp 'IS-EXPRESSION OR SEQUENCE OF S-EXPRESSIONSI))))

3-PROC-TYPE Returns the procedure type or the argument

{defun 3-proc-type (proc)
{3-pair-check proc)
(cond ((eq (car proc) 3•s1mple-closure) 'simple)

((memq (car proc) 3•simple-aliases) 'simple)
{{eq (car proc) 3•reflcct-closure) 'reflect)
(t (3-type-error proc 'closure))))

730

Page 9

Appendix. A MACLISP Implementation of 3-LISP Procedural Reflection 731

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017 ·
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
04!1
049
Oi'iO
061
062
063
054
055
056
057
058
059
060

, •• Idont1ty and Normal·form Predicates:

;;; 3-CANONICALISE Maps aliases onto their proper identity,

(defun 3-canon1ca11se (exp)
(ff (and (symbolp exp) (memq exp 3•s1mple-a11ases))

3•sfmple-closure
exp))

••• 3-EQUAL True just 1n case arguments implement the same 3-LISP object.

(defun 3-equal (el e2}
(and (eq {3-type et) {3-type e2))

{caseq (3-type el)
(handle (let {(rt (3-eanonfcalfse let))

{r2 (3-canonfcalfse le2)))
(or (aq rt r2)

(and (3-ra11 rt)
(3-ra11 r2)
(eq (3·strip• rt) (3-strfp• r2)))

(and (3-handle rt)
{3-handle r2)
(3-equal rt r2)))))

(boolean {eq et e2))
(numeral {• et e2))
(rail (do ((et (3-strfp et) (3-strfp et))

{e2 (3-strfp e2) {3-strfp e2)))
((null el) (null e2))

(ff (not (3-equal (care!) (car e2)))
(return 'n11))))

(t (3-error 'I• is defined only over s-expressfons,
numerals, truth-values, and some sequences!)))))

,,, 3-N0RMAL True fn case argument fs 1n normal form.

(defun 3·norma1 (exp)
(or {3-handle exp) (3-pnormal exp)))

(defun 3-pnormal (exp)
(or (fixp exp)

(memq exp '(ST SF))
(and (list? exp)

(or (eq (car exp) 3•sfmple-closure)
{eq (car exp) 3•reflect-closure)
(memq (car exp) 3•slmple·a11ases))

(3-rail (cdr exp))
(3-normal (3r-tst (cdr exp)))
(3-normal (3r-2nd (cdr exp)))
(3-normal (3r-3rd (cdr exp))))

(and (3-rafl exp}
(do ((ex9 (3-str1p exp) (3-strip exp)))

((null exp) 't)
(1f (not (3-normal (car exp))) (return 'nil))))))

P1190 10

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 732

001
002
003
004
005
006
007
008
009
010
011
012
013
014
016
016
on
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
046
046
047
048
049
05il
061
052
053
064
066

;;; Top Level:
;;; ··········
(defmacrn loop-catch (tag &rest body)

"(do n1i (nil) (•catch ,tag ,8body)))

, , , 3··LOGIN
;;; 3-LOGOUT

Used only for obscure reasons on the LISP machine, having
to do with compatibility wfth other users, recovery from
wcrm boots, and so forth • --------...

(defun 3•logout {)
(setf (tv:10-buffer-fnput-function tv:kbd-1o-buffer)

n11}
(setq readtable S•readtable))

(defun 3•1og1n ()
(or (boundp '3•global-environment) (3-1n1t))
(setq ba~e 10. 1base 10. •nopoint t)
(setq readtabte L•readtable)}

... 3-LISP . ,. . -----... Starts up the 3-LISP processor. The 3-LEVEL-LOOP loop fs
only run on initialisation and errors; otherwise the
READ-NORMALISE-PRINT loop is run out of -C4-.

(defun 3-lisp ()
(setr (tv:fo-buffer-input-functfon tv:kbd-io-buffer)

(let-closed ((3•process current-process))
N'3-interrupt-h~ndler))

(or (boundp '3•g1obal-envfronment) (3-fnft})
(•catch • 3-ex1t
{loop-catch '3-top-loop
(let ((3•fn-use t)}

(setq 3•1eve1 0
3•states nil)

(loop-catch '3-level-loop
(3-prompt (1+ 3•1evel))
(setq 3•a1 (3-read)

3•a2 3•global-envfronment
3•a3 3•fd-c1osure)

{loop-catch '3-mafn-loop (3-normalfse 3•a1 3•a2 3•a3)))))))

3-LJSPIFY Normalises its argument (should be a 3-LISP expression)
at the top level of the level 1 3-LJSP environment (inter.dad
for use by IN-3-LISP).

(defun 3-11sp1fy (expr)
(setq 3•1eve1 1

3•states nfl
3•a1 expr
3•r.2 3•globa1-env1ronment
3•a3 ·,c--cs- -,3•a2 []})

(•catch '3-oxit
(loop-catch '3-mafn-loop (3-normalise 3•a1 3•a2 3•a3))))

Page 11

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 733

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020-
021
022
023
024
026
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
061

;;; Errors and Interrupt1: ... ••••••••••••••••••a•••

;;; 3-ERROR General error handler. MESSAGE is to be printed by MACLISP's
PRINC, whereas EXPR 1s printed by 3-PRINT.

(defun 3-error (message &optional expr {label '!ERROR: I))
(terpri)
(pr1nc label)
(1f (atom message)

(princ message)
(mapc #'(lambda (el} (prfnc el) (pr1nc 'I I))

message))
(if expr (3-pr1nt expr))
(break 3-bkpt 3•break-flag)
(if 3•tn-use

(•throw '3-level-loop nil)
(3-ltsp)))

;;; 3-TYPE-ERROR
.,, 3-INDEX-ERROR
••• 3-IMPLEMENTATIDN-ERROR

3-ILLEGAL-CHAft
3-ILLEGAL-ATOM
3-ILLEGAL-BOOLEAN

{defun 3-type-error (exp type)
(3-error '(expected a ,(implode '(,9(explodec type)#/,))

but found the ,(3-type exp))
exp ' I TYPE-ERROR: I)) ·

(d&fun 3-ref-type-error (exp type)
(3-error "(expected a ,(implode '(,@(explodec type) NI.))

but round the ,(3-ref-type exp))
exp 'ITYPE·ERROR: I))

{defun 3-index-error (n rail)
(3-error '(,n fs out of range for) rail 'llNOEX-ERROR: I))

(defun 3-1mplementat1on-error () (3-error '!Illegal 1mplement~•1on state!!))

{defun 3-fllegal-char (char)
(3-error "(unexpected ,(implode "(l"I ,@(explodec char) l"I)))

nil '!NOTATION-ERROR: I))

(defun 3-fllegal-boolean (exp)
(3-error '(e1.pected a boolean/, but found ,(implode"($,0(explodec exp))))

nil '!NOTATION-ERROR: I))

(defun 3-111ega1-atom (atom)
(3-error "(The atom ,atom 1s reserved 1n this implementation)

nil '!STRUCTURE-ERROR: I})

Page 12

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 734

062
063
064
055
056
061
068
069
060
061
062
063
064
066
066
067
068 ·
069
070
071
072
073
074
0715
078
077
078
079
080
081
082
083
064
086
086
087
008
089
090
091
092
093

;;; INTERRUlTS (this code 1s LISP machine specific):
::; ----------------------------------~-------------
(defun 3-interrupt-handl er (f gnoi·e character)

(values character
(and tv:selected-wfndow

(eq 3mprocess (funcall tv:selected-window ':PROCESS))
(ooundp '3•1n-use)
(seloctq character

(#t8/G
(setq sf:fnhibft-schedulfng-flag nil)
(process-run-temporary-function

"3•Main-Quit" 3•process ':INTERRUPT
#'(lambda() (3-qu1t-1nter~upt '3-top-loop)))

T)
(ltB/F

(setq si:fnhibft-schedulfng-flag n11)
(process-run-temporary-function

"3Qlevel-Quit" 3•process ':INTERRUPT
#'(lambda() (3-quft-fnterrupt '3-level-loop)))

T)
(#tB/E

(setq sf:1nh1bft-schedu11ng-f1ag nil)
(process-run-temporary-function

"3•Flfp" 3•process ':INTERRUPT
#' (lambda ()

(if 3•1n-use

T)))))

(defun 3-quft-fnterrupt (tag)
{ 1f 3•1n-usa

(progn (prfnc 'fTo LJSPII) {terprf)
(•throw '3-exft (ascff 0)))

(progn (prfnc 'I To 3-LISPII)
(3-lisp))}))

(progn (prfnc 'I QUITII)
(terprf)
(•throw tag nfl})

(•throw 'sys:command-level nil)))

Page 12:1

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 735

001
002
003
004
006
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
046
046
047
048
049
060

;;; In1t1altsat1on:
;;;•••
(defun 3-tn1t ()
(pr1nc 'I (1nit1al1s1ng 3-LISP reflective model -- this takes a few minutes)!)
(setq

3•1n-use n11
3•1evel 1
3•break-flag t
3•s1mpl11-al ·iases • (-Co- -Ct- -cz- -cs- -C4- -C6- -PRIM-)
3•norma11se-closure nil : These will be set to real values
3•reduce-closure nil ; later, but will be referenced first
3•1d-closure nil
3•global-env1ronment
pr1nlength 6
pr1nlevel 4
bas3 10.
1b11Se 10.
•nopo1nt T)

(3-fnit1al-environment)
In case environments

: mre printed by LISP
: Since 3-LISP assumes base 10
; and we use the straight LISP

integers
printer

(setq 3•s1mple-closure (3-binding 's1mple.3rglobal-env1ronment)
3•reflect-closure (3-b1nd1ng 'reflect 3•global-env1ronment))

(3-def1ne-ut11it1es-O)
{3-define-reflective)
(setq 3•norma11se-closure (J-b1nding 'normalise 3•global-env1ronment)

3•reduce-closure (3-binding 'reduce 3•globa1-env1ronment))
(3-define-ut111ties-1) ; The order here 1s crucial: have to
(setq 3•1d-c1osure (3-b1nding 'id 3•global-env1ronment))
(3-deffne-utflities-2) ; get the def's marked before these.
(3-def1ne-uti11t1es-3))

...

3-INITIAL-ENVIRONMENT Returns a new initialised 3-LISP environment,
--------------------- with each of the names of primitive functions

bound to a circular definition, closed 1n the new
enviro~ment, that betrays both the type and the number of arguments. For
example, CAR is bound to the normalisation of (LAMBDA SIMPLE [X] (CAR X)).
This could just be a constant 11st that was copied, but 1s instead
generated by the following function, that fakes the normalisation process
and then side-efrects the result to make the environment structures
circular •

(defun 3-1nitia1-environment ()
{let {(env '\[['global----]

-,0{mapcar '3-make-primitfve-closure
(3-circular-closures))]))

(mapcar #'(lambda {entry)
(3-rplacn 1 (cdr 1(3r-2nd entry)) env))

(cddr env))
(3-rplacn 2 (3r-1st env) ~env)
env))

Page 13

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 736

Page 13:1
061
062
063
054
055
066
067
068
069
060
061
062
063
064
066
066
067
068
069
070·
071
072
073
074
076
076
077
078
079
080
081
082
083
084
086
086
087
088
089
090

;;; 3-MAKE-PRIMITIVE-CLOSURE Constructs the pr1m1t1ve definitions.
... --*--~-~--------·-·-----...
(defun 3-make-primitive-closure (entry)

(let ((name (car entry))
(def (cdadr entry)))

'\[-,tname -,t(cons •-PRIM- '\[--dummy- -,t(3r-2nd def) -,t(3r-3rd def)])]))

(defun 3-circular-closures ()
'((terpr1 \(lambda simple[] (terpr1)))

(read \(lambda simple[] (read)))
(type \{lambda simple [exp) (type exp)))
(car \(lambda simple [pair] (car pair)))
(cdr \(lambda simple [pair] (cdr pair)))
(length \(lambda simple (vector) (length vector)))
(print \(lambda simple [exp) (print exp)))
(name \(lambda simple [exp] (name exp)))
(• \(lambda simple [a bJ (•ab)))
(peons \(lambda simple [a bJ (peons ab)))
(rcons \(lambda simple args (rcons. args)))
(scons \(lambda simple args (scons. args)))
(prep \(lambda si1 .. ,,le [element vector] (prep element vector)))
(nth \(lambda simple (n vector) (nth n vector)))
(tail \{lambda simple [n vector] (tail n vector)))
(rplaca \(lambda simple (a pafr] (rplaca a pair)))
(rplacd \(lambda simple (d pair] {rplacd d pair)))
(rplacn \(lambda simple [n rail element] (rplacn n rail element)))
{rplact \(lambda simple (n rail tail] (rplact n rail tail)))
(+ \(lambda simple [ab](+ ab)))
(- \(lambda simple [ab] {-ab)))
(• \(lambda simple [ab](• ab)))
(// \(lambda simple (a b] (/ a b)))
(referent \(lambda simple [exp env) (referent exp env)))
(simple \{lambda simple (env pattern body] (simple env pattern body)))
(reflect \{lambda simple [env pattern body] (reflect env pattern body)))
(er \(lambda simple (premise cl c2) (ef premise cl c2)))
(•rebind \(lambda simple [var binding env] (•rebind var binding env)))
(level \(lambda simple[] (level)))))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 737

001
002
003
004
005
006
007
008
009
010
011
012
013
014
016
016
017 ·
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
036
036
037
038
039
040
041
042
043
044
045
046
047
048
049
060
061
062

;:: a-LISP: Reflective Processor:

;;; ······························
(defun 3-deffne-reflective ()
(in-3-lisp \[

(define READ-~ORMALISE-PRINT
(lambda simple (env]

(block (prompt (level))
(let [[normal-form (normalise (read) env id)])

(prompt level)
{print normal-form)
(read-normalise-prfnt env)))))

(define NORMALISE
(lambda simple [exp env cont]

{cond [(normal exp) {cont exp)]
[(atom exp) (cont (binding exp env))]
[(rail exp) (normalise-rail exp env cont)]
[(pair exp) (reduce (car exp) (cdr exp) env cont)])))

(define REDUCE
{lambda simple [proc args env cont]

(normalise proc env
(lambda simple [proc•]

(selectq (procedure-type proc•)
[reflect ((simple . l(cdr proc•)) args env cont)]
[simple (normalise args env {make-cl proc• cont))])))))

(define MAKE-Ct
(lambda simple [proc• cont]

(lambda simple [args•]
(cond [(• proc• treferent)

(normalise !(1st ergs) !(2nd args) cont)]
[(primitive proc•) (cont t(lproc• • largs•))]
[ST (normalise {body proc•)

(bind (pattern proc•) args 0 (env proc•))
cont)]))))

{define NORMALISE-RAIL
(lambda simple [rail env cont]

(if (empty rail)

]))

(cont • [])
(normalise (1st rail) env

{lambda simple [element•]
(normalise-rail (rest rail) env

(lambda simple [rest•]
(cont {prep element• rest•)))))))))

co

: Cl

: C2

: C3

Page 14

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 738

Page 16
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
046
046
047
048
049
060
051
052
053
054
056
056
057
068
069
060
061
062
063
064
066
066
067
058
069
070

3-LISP: Utility Support:
••••••••••••••••••m••••a•

3-DEFINE-UTILITIES-O sets up the definitions of SET, DEFINE, LAMBDA,
and Z, so that subsequent defining can proceed regularly. The technique
is to bootstrap our way up through tempornry versions of a bunch of
procedures, so «s to put oursolves into a position where more adequate
versions can be manageable defined.

(defun 3-define-ut11ities·O ()
(in-3-lisp \[

::: First define CURRENT-ENV (so that down-arrow can work) and LAMBDA:

(rplact (length global)
tg)obal
'[['CURRENT-ENV ,tt(reflect [['name tname]]

• [[] em, cont]

...

'{cont tenv))]
['LAMBDA ,u(reflect ((reflect [['name tname]J

'[[] env cont]
' (cont tenv)))

'[[type pattern body] env cont]
'(cont tl(pcons type t(env pattern body])))]])

Next tentative ~ersions of SET, and a real version of Z {though we can't
use LET or BLOCK in defining Z, this definition is equivalent to the one
given in the text). In the following definition of &SET, •REBIND is used,
rather than &REBIND, for efficiency (•REBIND 1s provided prim1ttve1y). We
have left in the full definition of &REBIND, to show how it would go: it
is merely unacceptably slow.

(rplact (length global)
tglobal
'[['&SET ,tt(lambda r3flect [[var binding] env cont]

(cont (•rebind var t!bfnd1ng env)))]
['Z ,tt(lambda simple [fun]

((lambda simple [temp)
((lambda simpie (closure]

((lambda simple (1 7) temp)
(rplac& ttemp (car closure))
(rplacd ttemp (cdr closure))))

t(fun temp}))
(lambda simple args (error 'partial-closure-used}))}]])

Now a temporary version of REBIND (whfch 1s recursive, and uses an explicit
call to Zin its construction), and a temporary DEFINE that doesn't protect Z,
and that expands the macro explicitly:

(rplact (len9th global)
tglobal
'[[•&REBIND

,tt(Z {lambda simple (&rebind]

J))

(lambda simple (var binding env]
((ef {• {length env) O)

(lambda simple(]
(rplact O tenv t[[var binding]]))

(lambda simple[]
{(ef (m var {nth 1 {nth 1 env)))

{lambda simple[]
(rplacn 2 t(nth 1 e~v) tbinding))

(lambda simple(]
{&rebind var binding (tail 1 env))))))))}}}]

('DEFINE ,tt(lambda reflect[[label form] env cont]
((lambda simple 7 (cont label))
t(referent '(&set ,label

(z (lambda simple (,label) ,form)))
env)))]])

Appendix. A MACLISP Implementation of a-LISP Procedural Reflection 739

071
072
073
074
076
076
077
078
079
080
081
082
083
084
086
086
087
088
089
090,
091
092
093
094
096
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
ll4
125
126
127
128
129
130

Page 16:l

::: In general there is a sense cf order hero: IF, for example, must proceed
,,, LET: hence it cannot use LET 1n its own def1n1tfon. And so on and so forth:
;:: it takes a little care to build things up in a consistent and non-circular
;;; manner~

(defun 3-def1ne-ut111t1es-1 ()
(1n-3-11sp \[

(define ID (lambda simple [xJ x))

(define 1ST {lambda simple [xJ (nth 1 x)))
(define 2ND {lambda Jimple [x] (nth 2 x)))
(def~ne 3RD (lambda simple [x] (nth 3 x)))
(define 4TH (lambda simple (x] (nth 4 x)))

(define REST (lambda simple [x] (t&il 1 x)))
(dof1no FOOT (lambda simple [x] (tail (leni)th x) x)_))

{define EMPTY (lambda simple [xJ (• (length x) 0)))
(define UNIT (lambda simple (x] (• (length x) t)))
(define DOUBLE (lambda simple [x) (• (length x) 2)))

(define ATOM (lambda sim~le [xJ (• {type,.) 'atom)))
(def 1 ne RAIL (lambda simple (x] (• (type xj, •rail)))
(definl' PAIR (lambda simple [x) (• (typa x} 'pair)))
(define NJMERAL (lambda simple [xJ (• (type x) 'numeral)))
(define HANDLE {lambda simple (x] (• (type x) 'handle)})
(define BOOLEAN (13mbda simple [x] (• (type x) 'boo 1 ean)))

(define NUMBER (lambda siffiple [x] (• (type x) 'number)))
(define SEQUENCE (lambda simple (x] (• (type x) 'seq1111nce)))
(define TRUTH-VALUE (lambda simple (x] (• (type x) 'truth-value)))

(define FUNCTION (lambda simple [x] (• (type x} 'function)))

(define PRIMITIVE
(lambda simple [proc]

(member proc
t[type • peons car cdr rcons scons prep length nth teil rplaca

rplacd rplacn rplact simple reflect ef name rqterent + • .- /
read print]))}

(define PROMPT (lambda simple[) {block {print t(level)) (print '>))))

(def1ne OJNDJl,IG
{lambda simple [var env]

(cond [(empty env) (error 'unbound-variable)]
[(• var (1st (1st env))) {2nd (1st e~v))J
($t (binding var (rest env))])))

{define ENV (lambda simple [proc] !{1st (cdr proc))))
(define PATTERN (lambda simple (proc] !(2nd (cdr proc)))}
(define BODY (lambJa simple [proc] !(3rd (cdr proc})})

(define PROCEDURE-TYPE
(lambda simple [proc)

(select (car proc)
[tsimple 'simple]
[treflect •reflect]}))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 740

Page 16:2
131
132 (define XCONS
133 (lambda simple args
134 (peons (1st args) (rcons • (rest args)))))
136
136 (define BIND
137 (lambda sir.r1e (pattern args env]
138 !(join t(match pattern args) tenv)))
139
140 (define MATCH
141 (lambda simple [pattern args]
142 (cond [(atom pattern) [[pattern argsJJ]
143 [(handle args) (match pattern (map name largs))J
144 [(and (empty pattern) (empty orgs)) (s~ons)]
146 [(empty pattern) (error 'too-many-arguments)]
146 ((empty args) (error 'too-few-arguments)]
147 · [ST !(join t(match (1st pattern) (1st args))
148 t(match (rest patt~rn) (rest args)))])))
149
150 (define IF
151 (lambda reflect [args env cont)
162 ((ef (rail args)
163 (1 ambda simple []
164 ((lambda simple [premise cl c2J
166 (normalise premise env
166 (lambda simple [premise•]
167 ((ef (• premise• 'ST)
168. (lambda simple [J (normalise ct env cont))
169 (lambda simple[) (normalise c2 env cont)))))))
160 • args))
161 ("lambda simple []
162 (normalise args env
163 (lambda simple [[premise ct cZ]]
164 (cont (ef (• promise 'ST) c1 c2)))))))))
166
166 (define MEMBER
167 · (lambda sfmple ~element vector)
168 (cond [(empty vector) SF)
169 [(• eleme:it (1st vector)) ST]
170 (St (member element (rest vector))])))
171
172 {define PREP•
173 (lambda simple args
174 (cond [(empty args) {error 'too-few-args)]
176 [(unit args) (1st args)l
17i; [(daub 1 e args} (prep • args)]
177 [ST (prep (1st args) (prep• . (rest args)))J)))
178
179 (define NORMAL
180 (lambda simple [x]
181 (selectq (type x)
182 [numeral ST)
183 (boolean ST]
184 [handle ST]
186 [atom SF]
186 [rail (and. (map normal x))]
187 [pair (and (member (car pair) t[simple reflect])
188 (normal (cdr pair)))])))
189
190 (define NOT (lambda simple [x] (if x SF ST)))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 741

Page 16:3
191
192 (deffno COPY
193 (lambda simplo [r•ilJ
194 (1f (empty rail)
196 (rcons)
198 (prep (tat rail) (copy (rest ra11))))))
197
198 (define JOIN
199 (lambda simple [ra111 ra112J
200 (rplact (length ra111) ra111 ra112)))
201
202 {define APPEND
203 (lambda s1mpl~ [ra111 ra112J
204 (jo1n (copy. ra111) ra112)))
205
206 (define REDIRECT
207 (lambda simple [index ra11 new-ta11J
208 (if(< index 1)
209 {error •red1rect-called-with~too-sma11-an-1ndex)
210 (rplact (- indox 1)
211 rail
212 (prep (nth 1ndox rail) new-tail)))))
213
214 (define PUSH
216 (lambda simple [element stack]
216 (rplact O stack
217 (prep ele11ent
218 (if (empty stack)
219 "[)
220 (prep {1st stack) (rest stack)))))))
221
222 {define POP
223 (lambda simple [stack)
224 (if (empty stack)
226 (error 'stack-underrlow)
226 (blockt {1st stack)
227 (rplact O stack (rest stack))))))
228
229 (define MACRO
230 (lambda simple [def-env pattern body]
231 (reflect def-en¥
232 "[,pattern env cont]
233 '(normalise ,body env cont))))
234
236 {define SRACRO
236 (lambda simple [def-env pattern body]
237 (reflect def-env
238 '[11rgs env cont)
239 '(normalise args env
240 (lambda simple [,pattern]
241 {normalise ,body env cont))))))
242
243)))

Appendix. A MAC LISP Implementation of 3-LISP

244
246 (defun 3-def1ne-ut111t1es-2 ()
246 (1n-3-11sp \[
247
248 (define LET
249 {lambda macro [11st body]
260 '((lambda simple ,(map 1st 11st) ,body)
261 .,(map 2nd list))))
262
263 (define LET•
264 (lambda macro [list body]
266 (if (empty list)
266 body
267 '((lambda sfmple ,(1st (1st list))
268 ,(1st• (rest 11st) body))
259 • ,(2nd (1st list))))))
260
261 {define SELECTQ
262 {lambda macro args
is3· '(let [[select-key ,(1st args)]]
264 ,(selectq• (rest args)))))
266
266 (define SELECTQ•
267 (lambda simple [cases]
268 (cond [(empty·cases) '[]]
269 [(• (1st (1st cases)) • ST)
270 (2nd (1st cases))]
271 [ST '(if(• select-key ,t(lst (1st cases)))
272 (block . ,(rest (1st cases)))
273 ,(selectq• (rest cases)))])))
274
276 (define SELECT
276 (lambda macro ergs
277 '(let [(select-key ,(1st args)]]
278 ,(select• (rest args}))))
279
280 (def1ne SELECT•
281 (lambda simple [cases]
282 (cond [(er.,pty cases) '[]]
283 [(• (1st (1st cases)) 'ST)
284 (2nd (1st cases))]
286 [ST '(if(• select-key ,(1st (1st cases)))
286 (block . ,(rest (1st cases)))
287 ,(select• (rest cases)))]jjj
288
289 (Jefine BLOCK (lambda macro args (block• args)))
290
291 (define BLOCK•
292 (lambda simple [args]
293 (cond [(empty args) (error 'too-few-args-to-block)]
294 [(unit args) (1st args)]
295 [ST "((lambda simple 7
296 ,(block• (rest args)))
297 ,(1st ergs))])))
2Q8
299 (define CONO (lambda macro args (cond• args)))
300

Procedural Reflection 742

Page 16:4

301 (define CONO• ; COND• cannot ftselr use CONO
302 (lambda simple [args]
303 (if (&mpty args) '[]
304 '(if ,(1st (1st args))
306 ,(2nd (ls't args)}
306 ,(cond• (rest args))))))

Appendix. A NACLISP Implementation of3-LISP Procedural Reflection 743

Page 16:6
307
308 (deffne AND
309 (lambda macro args
310 (ff (rail ergs) (ande args) '!(and• t,args))))
311
312 (deffne AND•
313 (lambda simple [args)
314 (ff (empty args)
316 'ST
316 '(ff ,(1st args) ,(and• (rest args)) Sf))))
317
318 (define OR.
319 (lambda macro args
320 (ff (rail args) (or• args) 'l(or• t,args))))
321
322 (define OR•
323 · (lambda simple [args]
324 (ff (empty args) 'SF "(ff ,(1st args) ST ,(or• (rest args))))))
326
326 (deffne MAP
327 (lambda sfmple ergs
328 (map• (1st args) (rest args))))
329
330 (deffne MAP•
331 {lambda simple [fun vectors]
332 (ff (empty vectors)
333 (fun)
334 (ff (empty {1st vectors))
336 (ts t vectors)
336 (prep (fun • (ffrsts vectors))
337 (map• run (rests vectors)))))))
338
339 (daffne FIRSTS
340 (lambda simple [vectors]
341 (ff (empty vectcrs)
342 vectors
343 (prep (1st (1st vectors))
344 (firsts (rest vectors)))}))
346
346 {define RESTS
347 (lambda simple [vectors]
348 (ff (empty vectors)
349 vectors
360 (prep (rest (1st vectors))
351 (rests (rest vectors))))))
362
363 (define PROTECTING
354 (lambda macro (names body)
366 '{let ,(protecting• names) ,body)))
366
367 (define PROTECTING•
358 (lambda simple [names)
359 (ff (empty names)
360 '[)
361 (prep '[,(1st names) ,(1st names)]
362 (protecting• (rest names))))))
363]))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 744

Pago 16:6
364
366 (defun 3-deffne-utflftfes-3 ()
366 (in-3-lfsp \(
367
368 (define REBIND
369 (lambda simple (var bindfng env]
370 (ff (normal bfndfng)
371 (rebind• var binding env)
312 (error 'binding-is-not-in-normal-form))))
373
374 (define REBIND•
376 {lambda simple [var binding env]
376 (cond [(empty env) {rplact O tenv t[[var binding]])]
377 [{• var (1st (1st env)))
378 (rplacn 2 t(1st env) tbfndfng)]
379 [ST (rebind• var binding (rest env))])))
380
381 {define SET
382 (lambda reflect [[var binding] env cont]
383 {normalise b1nd1ng env
384 (lambda simple (binding•] .
385 (cont (•rebind var binding• env))))))
386
387 {define DEFINE
388 (protecting [z]
389 (lambda macro [label form]
390 '(set ,label (,tz {lambda simple [,label] ,form)))):)
391
392 (define ERROR
393 {lambda reflect [a a c]
l94 (undefined)))
396
398]))

Appendix. A MACLISP Implementation of3-LISP Procedural Reflection 145

Sylllbol Table for: 3-LISP.LSP[l.1634)

1ST ••.••••••.••••.••.••. DEFMACRO 002 018
1ST •••••••••.••...••..•• DEFINE 015 082
2ND •.•••.••.••.•••.•.••• DEFMACRO 002 019
2ND ••••••••••••••••••••• DEFINE 016 OB3
3-APPLY •••••••.••••..••. EXPR 006 019
3-ARGUMENT-CHECK ••••..•. EXPR 006 128
3-ATON .•••.•••.••••.•.•• EXPR •.• 009 019
3-ATOM·CHECK •.•••••••••• EXPR ••• 009 027
3-BACKQ-NACRO ..•••.••..• EXPR .•• 003 127
3-BINO •.•••.•••..••••••. DEFMACRO 002 029
3-BIND• • . . • • • • • • • • • • • • • • EXPR . • • 006 020
3-BINDING •••••••••••..•• EXPR ... 006 008
3-BOOL-CHECK •••.•.•.•••• EXPR ••• 009 032
3-BOOLEAN .•.••.••..••... DEFMACRO 002 027
3-CANONICALISE .•••.••.•. EXPR 010 009
3-CIRCULAR-CLOSURE-P •••• EXPR 003 211
3-CIRCULAR-CLOSURES •.••. EXPR 013 060
3-COMMA-MACRO .•.•••••••• EXPR 003 131
3-DEFINE·REFLECTIVE •••.. EXPR 014 006
3-DEFINE·UTJLITIES-O EXPR 016 011
3-DEFINE-UTJLITIES-1 EXPR 01B 077
3·DEF1NE·UTILITIES-2 •••• EXPR 016 245
3-DEFINE·UTILITIES-3 •... EXPR 016 365
3-DROP-LEVEL •••••••••••• EXPR 007 010
3·EQUAL ••••••••.••••••.• EXPR 010 017
3-ERROR ...••.••.•••••.•. EXPR 012 008'
3-EXPAND ••••.••.•••••.•• EXPR 003 140
3•EXPAND-PAIR ••••••••••. EXPR 003 146
3-EXPAND·RAIL •...•..•••. EXPR 003 167
3-HANOLE ..•..•••••.•••.• EXPR 009 024
3-ffANDLE·CHECK .•••.•..•. EXPR 009 030
3-ILLEGAL-ATOM •...•.•••• EXPR 012 049
3·ILLEGAL·BOOLEAN •.•..•. EXPR 012 045
3-ILLEGAL-CffAR ..•..•..•. EXPR 012 041
3-IMPLEMENTATION·ERROR •• EXPR 012 039
3-INCREMENT-LEVEL ••••.•• EXPR 007 014
3-INDEX·ERROR •..•....••. EXPR 012 036
3-INIT EXPR 013 006
3-INITIAL-ENVIRONMENT •.. EXPR 013 042
3-JNTERRUPT-HANDLER ••.•• EXPR 012 066
3-LENGTH••.•••••..•• EXPR 008 038
3-LENGTH• ...••.•.•.••... DEFMACRO 002 079
3-LISP •..•..•..••.••...• EXPR 011 026
3-LISPIFY •..••..•..••.•• EXPR 011 047
3-LOGHI EXPR 011 017
3-LOGOUT EXPR 011 012
3-MAKE·PRIMITIVE-CLOSURE EXPR 013 065
3-NORNAl •...•...•.•...•. EXPR 010 042
3-NORMALISE •.••.•.••.•.. EXPR 004 016
3-llORMALJSP •...•.•.•••. OEFMACRO 002 046
3-NORMAUSE·RAIL .•••...• EXPR 004 032
3-NTH .•••...•••..•.••..• EXPR ..• 008 046
3-NTffCDR• ••••...•..•.... EXPR ... 008 067
3-NUN·CHECK ••.••...•..•• EXPR •.• 009 031
3-NUMERAL •.•.•....••.... DEFMACRO 002 026
3-PAIR EXPR 009 021
3-PAIR·CHECK•••...•. EXPR 009 029
3-PNORMAL . • • EXPR . • . 010 046
3-PREP .••....•..••.•••.• EXPR ... 008 034
3-PRJMITIVE·REDUCE·SIMPLE EXPR ..• 004 046
3-PRIMITIVE-SIMPLE-ID ... DF.FMACRO 002 024
3-PRINT EXPR 003 173
3-PRINT-ELEMENTS ..••.... fXPR 003 196
3-PROC·TYPE•....... EXPR 009 067
3-PROMPT .•............•. EXPR 003 206
3·QUIT·INTERRUPT ...•..•. EXPR 012 086
3·RAIL EXPR 009 020

3-REF·TYPE .•.•.••••.•.•• EXPR 009 037
3-REF-TYPE·ERROR •••••••• EXPR 012 031
3-RPLACN ••...•••..••..•. EXPR 008 053
3-RPLACT ..•••.•••.•..•.• EXPR 008 090
3-RS .. • • . • .. • .. • • • .. DEFMACRO 008 023
3-SCONS •.•••.••.•...•••. EXPR ••. 008 016
3-STRIP •••.••.••..••.•.• DEFMACRO 002 067
3-STRIP• .••••....•.•...• DEFMACRO 002 071
3-TAIL •••••....•.••••••. EXPR 008 042
3-TAIL• •••••••••••.•••.. EXPR ..• 008 066
3-TYPE ••.••.•.••••••.••. EXPR ••• 009 007
3-TYPE·ERROR ••••••••••.. EXPR .•• 012 026
3A-1ST .••.......••...•.. DEFMACRO 006 0\4
3A·ZND • . • . . • • • • DEFMACRO 005 016
3A·3RD •.•...•....•....•. DEFMACRO 006 016
3A-4Tff DEFMACRO 005 017
3A·ARG •..••••..•••••.••. DEFMACRO 006 013
3A·ENV .. . •.. • DEFMACRO 006 012
3R·1ST ••.••........••••. DEFMACRO 002 052
3R-2ND ..••............•. OEFMACRO DOZ 063
3R·3RO .•.•.•••.•...•••.. DEFMACRO 002 054
3R-4TH •••.••....••....•. DEFMACRO 002 066
3RD ••...•••••••.•.•..... DEFMACRO 002 020
3RD ••••••••..•••.•••.••• DEFINE 016 064
4TH •••.•..••.••..•..•... DEFINE 015 085
AND • • • DEFINE 015 308
AND 6 •••••••••••••••••••• DEFINE 015 312
APPEND •..•.•...•..•••••• DEFINE 015 202
ATOM •••.••••••..•.••••.. DEFINE 015 094
BIND •••.....••.•.....•.. DEFINE 016 136
BINDING •.•.••....••.••.• DEFINE 015 116
BLOCK ..•..•.•.••.•...... DEFINE 016 289
BLOCK• •••••.•.••..•.•.•• DEFINE 015 291
BODY DEFINE 016 124
BOOLEAN •••..••.••.••...• DEFINE 015 099
CDADR • • • . • . • . . • • . . • . • . • . DEF . • . . 013 057
COHO .•...•••........••.. DEFINE 016 299
COND• .••..•....•..••.•.. DEFINE 015 301
COPY DEFINE 016 192
DEFINE DEFINE 015 387
DOUBLE .•................ DEFINE 015 092
EMPTY ..•.••.•••....•.••. DEFINE 015 090
ENV ••.••••.••••.•....... DEFINE 015 122
ERROR DEFINE 015 392
FIRSTS ..•••............. OEFINE 016 339
FOOT .•••.....•.•........ DEFINE 016 088
FUNCTION .••••..•.•..••.. DEFINE 015 106
IIANDLE DEFlHE 015 098
IO .••.•...•••..•......•. DEFINE 016 080
IF •.•.•..•.....•..•••••. DEFINE 015 150
IN-3-LISP .•.....•....... DEFMACRO 002 034
JOIN•...•....... DEFINE 016 19b
LET .••••••.•......••.... OfF!NE 016 248
LET• DEFINE 015 253
LIST? . . • • .. • DEFMACRO 002 017
LOOP-CATCH DEFMACRO 011 006
MACRO •...•.........•.... DEFINE 015 229
MAKE-Ct .•.•............. DEFINE 014 031
MAP•.....•....•.. DEFINE 015 326
MAP• ..•................. DEFINE 016 330
MATCH ..•................ DEFINE 016 140
MENRER DEFINE 016 166
NORMAL ..•.........•..... DEFINE 015 179
NORMALISE•...•..•.. DEFINE 014 016
NORMALISE-RAIL DEFINE 014 041
NOT ...••......••...••... DEFINE 015 190
NUMBER DEFINE 015 101

Pago 16

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 746

Symbol Table for: 3-LISP.LSP[t,1634)

3-RAIL-CHECK ••••••••••.• EXPR
3-RCONS . • • • . . • • • • • . • • . . • EXPR
3-READ . • • • • • • • • • • • • • • • • • EXPR
3-READ• • • • . . . • . • • • • • • • • • EXPR
3-READ·BDOLEAN •.••.•••.• EXPR
3-REAO·PAIR .•••••••.•••• EXPR
3-REAO-RAtl .•••••••••••• EXPR
3-REBIND •••••••••••.••.• EXPR
3-REDUCE • • • • . . • • • • • • • . • • EXPR
3-REF .•••••••••••••.•.•• EXPR

PROTECTING •.••••••••.•.• DEFINE
PROTECTING• ••.•••••..•.• DEFINE
PUSH • . • • • • • • • • • • • • • • • • • • DEFINE
RAIL • • • • • • • .. • • . • . • . • • • . DEFINE
READ-NORMALISE-PRINT .••• DEFINE
REBifiC ••.••••••••••••••. DEFINE
REBIND• •••••••••••••..•• DEFINE
REDIRECT • • . . • • • . • • . . • • • • DEFINE
REDUCE • • • • • • • • • . • • • • DEFINE
REST • • . • • . • • . • • . • • . . DEFINE
RESTS • • • • • • • • • • • . • • • . • • • DEFINE
SELECT • • • • • • • • • • • . • • . • . • DEFINE
SELECT• DEFINE
SELECTQ DEFINE

009 028
008 010
003 064
003 087
003 096
003 102
003 113
006 046
004 021
009 064

016 363
016 367
015 214
015 095
014 008
016 368
016 374
016 206
014 Ol3
015 087
016 346
016 276
016 280
016 261

NUMERAL • • • • • • . • • • • . • . • • . DEFINE
OR •••.••.••.••••..••••.. DEFINE
OR• •••.•••••••.•.••••••. DEFINE
PAIR • • • . • • . • • . • DEFINE
PAT~ERN DEFINE
POF • . • • • • • • • . • . • • • • • • . . . DEFINE
PRE1'• • • • • • • • • • . • • • • • . • • • DEFINE
PRl1ITIVE •••••.••••.•••• DEFINE
fROCEDURE·TYPE •••••...•• DEFINE
Ph~CPT • • • • • • • • • • • • • • • • • • DEFINE

Page 16:1

016 097
016 318
016 322
016 098
016 123
016 222
016 172
016 107
016 126
016 114

SELECTQ• • • .. • .. • • .. • DEFINF 015 266
SEQUENCE •••••••••••••••. DEFINE 016 102
SET ••••••••••••••..•.••• DEFINE 015 381
SMACRO •••••••••...•.•••• DEFINE 015 236
TRUTH-VALUE ••••••••••..• DEFINE 016 103
UNIT •••••••••.••..•..•.. DEFINE 015 091
XCONS .••••••••••••••.••• DEFINE 016 132
-3-BACKQUOTE ••••••••..•• DEFMACRO 002 040
-CO- •••••••.•••• , •.••••• EXPR ••. 006 031
-ct- , EXPR , • • 005 060
-C2- •••••••••••••••.••• , EXPR 005 091
-C3- • • • • • • • • • • • • . • • • . • • . EXPR 005 103
-C4- ••••••••••••••.••••• EXPR 005 114
-C5- .•••.• , •••••.••••••• EXPR 006 124

'·

Appendix. A MACLISF Implementation of3-LISP Procedural Reflection 747

Page 17
Cref of: 3-LISP.LSP[l,1634)

Key to types of symbol occurrences (Note references come last):

Dash - Reference.
t - Proo tag.
1 - Lap tag.

t - Function.
c - Catch tag.
a - Array.

b - Bound.
p - Property name.
9 - &define.

• - Top-level Setq.
m - Macro.
d - Oefprop (or edef1ne'd definer).

&OPTIONAL
1ST

2ND

3-APPLY
3-ARGUMENT-CHECK
a-ATOM
3-ATOM-CHECK
3-BACKQ-MACRO
3-BINO
3-BIND•
3-BINDING
3-BOOL-CHECK
3-BOOLEAH
3-CANiJNICALISE
3-CIRCULAR-CLOSURE-P
3-CIRCULAR-CLOSURES
3-COMMA-MACRO
3-DEFINE-REFLECTIVE
3-DEFINE-UTILITIES-O
3-0EFINE-UTILITIES-1
3-DEFJNE-UTJLITIES-2
3-DEFJNE-UTILITIES-3
3-DROP-LEVEL
3-EQUAL
3-ERROR

3-EXPAND
3-EXPAND-PAIR
3-EXPAND-RAIL
3-HANDLE

003b084 003b087 012b008
002d018 016d082 006-042 014-036 014-046 015-082 016-119 016-119 016-119

016-122 016-134 016-147 016-147 015-169 016-176 016-177 016-196
016-220 016-226 016-260 016-267 016-267 016-269 015-263 016-269
016-269 015-270 016-271 015-271 015-272 016-277 016-283 016-283
016-284 016-286 016-286 016-286 016-294 016-297 016-304 016-304
016-306 016-316 015-324 015-328 016-334 016-336 016-343 016-343
015-350 016-361 016-361 016-377 016-377 016-378

002d019 016d083 006-042 014-036 016-083 016-119 016-123 016-261 015-269
016-270 016-284 016-306

005f019 004-0lff 004-017 004-034 004-060 006-070 006-106
006f128 006-064
009f019 003-219 004-016 009-027
009f027 006-009 006-047
003f127 003-072
002d029 005-060 006-086
006f020 002-030 006-024 006-033
006f008 004-016 006-119 013-021 013-022 013-026 013-026 013-028
009t032 004-066
002d027 009-032
010f009 010-020 010-021
003f211 003-186
013f060 013-!>45
003f131 003-073
014f006 013-024
015f011 013-023
016f077 013-027
016f245 013-029
016f365 013-030
007f010 005-069 006-072 006-077 005-118
010f017 004-069 010-028 010-034
012f008 002-011 003-132 006-132 006-012 006-030 006-031 006-040 006-041

006-060 008-079 009-047 009-048 010-036 012-027 012-032 012-037
012-039 012-042 012-046 012-060

003f140 002-040 003-149 003-160 003-161 003-169
003f146 003-142
003f167 003-143
009f024 003-152 003-162 003-161 003-218 003-220 009-030 009-066 009-060

010-026 010-027 010-043
3-HANOLE-CHECK 009f030
3-ILLEGAL-ATOM 012f049 003-092
3-ILLEGAL-BOOLEAN 012f046 003-100
3-ILLEGAL-CHAR 012f041 003-090 003-108
3-l~PLEMENTATION·ERROR 012f039 004-080
3-INCREMENT-LEVEL 007f014 006-023 006-047
3-INDEX-ERROR 012f036 008-06a 008-063 008-067 008-093 008-099
3-INIT 013f006 002-035 011-018 011·030
3-INITIAL-ENVJRONMENT 013f042 013-016
3-INTERRUPT-HANOLER 012f066 011-029
3-LENGTH 008f038 003-212
3-LENGTH• 002d079 008·039
3-LISP 011f026 012-019
3-LISPIFY 011f047 002-037
3·LOGTN 011f017
3-L050UT 011f012

003-214 003-217 004-069 006-131 005-131
008-040
012-083

3-Mh~E-PRIMITIVE-CLOSURE 013f065 013-044
3-NORMAL 010f042 004-017 006-049 010-063 010-064 010-056 010-069
3-NORMALISE 004f016 011-041 011-064
3-NORMALISE• 002d046 004-022 004-035 004-049 006-037 006-049 006-073 006-083 006-119
3-NORMALJSE·RAIL 004f032 004·018 006-093
3-NTH 008f046 004-060

Appendix. A MACLISP Implementation of 3-LISP Procedural Reflection 748

Page 17:1

3-NTHCDR• 008f067 008-047 008-048 008-064
3-NUM-CHECK 009f031 004-073 004-073 004-074 004-074 004-075 004-075 004-076 004-076
a-NUMERAL 002d026 009-031
3-PAIR 009f021 009-029
3-PAIR-CHECK 009f029 004-067 004-068 004-065 004-066 009-068
3-PNORMAL 010f046 010-043
3-PREP 008f034 004-062
3-PRIMITIVE-REDUCE-SIMPLE 004f046 006-056
3-PRIMJTIVE-SIMPLE-ID 002d024 006-066
3-PRINT
3-PRINT-ELEMENTS
3-PROC-TYPE
3-PROMPT
3-QUIT-INTERRUPT
3-RAIL

3-RAIL-CHECK

3-RCONS
3-READ
3-READ•

3-READ-BOOLEAN
3-READ-PAJR
3-REAO-RAIL
3-REB'IND
3-REDUCE
3-REF
3-REF-TYPE
3-REF-TYPE-ERROR
3-RPLACN
3-RPLACT
3-RS
3-SCONS
3-STRIP

3-STRIP•
3-TAIL
3-TAIL•
3-TYPE

3-TYPE-ERROR

3A-1ST
3A-2ND
SA-3RD
3A-4TH
3A-ARG
3A-ENV
3R-1ST

3R-2ND

3R-3RD

3R-4TH
3RD
4TH

003f173 003-160 003-184 003-190 003-204 004-071 006-116 012-016
003f196 003-188 003-189 003-193
009f067 006-036
003f206 005-116 005-117 011-037
012f086 012-066 012-072
009f020 003-185 003-213 003-216 004-018 005-130 006-032 009-028 009-066

010-023 010-024 010-062 010-066
009f028 004-047 004-063 004-064 006-010 006-048 008-011 008-016 008-036

008-039 008-043 008-047 008-054 008-091 008-092
008f010 004-063
003f084 002-011 003-059 004-070 006-119 011-038
003f087 002-011 003-066 003-068 003-069 003-086 003-103 003-104 003-106

003-109 003-115 003-115
003f096 003-093
003f102 003-070
003f113 003-071
006f046 004-078
004f021 004-019 006-024 006-078
009f064 003-061
009f037 004-054 012-033
012roa1 005-021 009-051 ooe-oa2
008f063 004-067 006-054 013-047 013-049
008f090 004-068
008d023 008-036 008-039 008-043 008-047
008f016 004-064
002d067 002-062 002-063 002-063 002-054 002-064 002-064 002-066 002-066

OOZ-056 002-065 uOZ-081 002-081 003-168 003-168 003-197 003-198
003-198 004-033 006-011 006-011 006·025 006-026 006-026 006-026
006-036 006-035 006-036 006-036 008-011 008-011 008-016 008-016
008-080 008-060 009-067 009-067 010-031 010-031 010-032 010-032
010-067 010-067

002d071 006-061 006-051 008-071 008-071 008-096 008-096 010-026 010-026
0081042 004-061
008f066 006-094 008-043 008-044
009f007 003-1~1 003-174 006-~21 006-023 008-024 009-021 009-038 009-042

610-018 010-018 010-019 012-028
012ro26 005-042 005-043 006-044 009-021 009-028 009-029 009-oao 009-031

009-032 009-072
005d014 005-062 005-094 006-106
005d015 006-033 006-095
006d016 005-034 006-069 005-072 005-071
006d017 006-035 006-067 005-069 005-072 006-077 006-086 005-106
006d013
006d012 005-020
0~2d052 003-213 003-214 003-215 003-215 003-218 003-219 004-036 004-049

004-064 004-056 004-066 004-057 004-058 004-069 004-060 004-061
004-062 004-066 004-066 004-067 004-068 004-069 004-071 004-073
004-074 004-075 004-076 004-077 004-078 005-012 006-014 006-052
006-070 005-073 005-078 006-086 006-013 006-063 010-063 013-049

002d053 003-220 003-221 004-049 004-056 004-066 004-060 004-061 004-062
004-065 004-066 004-067 004-068 004-069 004-073 004-074 004-076
004-076 004-078 006-013 005-014 005-015 005-015 006-016 006-017
005-050 005-074 006-079 005-085 006-129 006-013 010-064 013-047
013-068

002d064 002-024 004-055 004-067 004-068 004-078 005-016 006-049 006-076
005-080 006-084 005-133 010-066 013-068

002d055 006-017 006-081
002d020 015d084 015-084 016-124
016d086

Appendix. A MAC LISP Implementation of3-LISP Procedural Reflection 749

A
AND

ANO•
APPEND
ARGS

ATOM
B
BIND
BINDING
BINDS
BLOCK
BLOCK•
BODY

BOOLEAN
C
CDADR
CHAR
CHARACTER
COND

COND•
CONT

COPY
DEFINE

DOUBLE
E

El

E2

EL
ELEMENT•
ELEMENTS
EMPTY

ENTRY
ENV

ERROR

EXI'

EXPf.
EXPHS
F
FIRSTS
FLAG

Page 17:2

003bl14 003-116
015d308 003-152 003-161 003-161 003-212 003-216 006-130 006-028 006-038

009-019 009-020 009-024 010-010 010-018 010-023 010-026 010-048
010-056 012-068 016-144 016-186 016-187

016d312 015-310 016-310 016-316
016d202
004b021 004b046 005b128 008b010 008b015 008b011 008b016 004-023 004-026

004-027
006b060 005-064 005-066 005-070 005-073 006-074 006-075 005-078 005-079

006-080 006-081 006-006
012b049 015d094 012-060 012-060
003b109 003b115 003-110 003-111
016d136 005-046 014-038
006b046 015d116 006-049 006-050 006-050 006-054 006-055
006b024 006b033 006-029 006-033 006-034 006-039
016d289 007-022 014-010 016-114 015-272 015-286
016d291 016-289 016-296
015d124 002-034 002-036 005-044 011-006 013-085 013-086 014-037 015-233

015-241 016-260 016-256 015-268 016-355
016d099 003-176 009-009 009-032 009-040 010-029
003bt10 003-111
013d067
012b041 012-042
012b066 012-067 012-061
016dZ99 003-089 003-098 003-147 003-181 004-016 095-041 006-063 006-028

006-038 009-008 009-066 009-069 014-018 014-034 015-118 016-142
016-168 016-174 016-268 016-282 016-293 016-376

Ot6d301 015-299 016-306
004b016 004b021 004b032 004b046 005b019 005b031 006b060 005b091 005b103

006b114 006b124 007b010 004-016 004-017 004-018 004·019
016d192 016-196 016-204
015d387 014-008 014-016 014-023 014-031 014-041 016-066 016-080 016-082

016-083 016-084 016-C86 016-087 016-088 016-090 016-091 016-092
016-094 016-096 015-093 015-097 015-098 016-099 016-101 016-102
015-103 015-105 016-107 015-114 016-116 016-122 016-123 016-124
016-126 015-132 016-136 016-140 015-160 016-166 016-172 016-179
016-190 016-192 016-198 016-202 016-206 016-214 015-222 015-229
016-236 015-248 016-263 016-261 015-266 016-276 016-280 016-289
015-291 016-299 016-301 016-308 016-312 016-318 015-322 016-326
016-330 016-339 015-346 015-353 016-357 016-368 015-374 016-381
016-392

016d092 016-176
009b019 009b020 009b021 009b024 0096027 00Sb028 009b029 009b030 009b031

009b032
010b017 010b031 010-018 010-019 010-029 010-030 010-031 010-031 010-031

010-033 010-034
010b017 010b032 010-018 010-029 010-030 010-032 010-032 010-032 010-033

010-034
008b034 008b053 008-036
006b091 006-096 006-098
003b169 009b068 003-161 003-162 003-163
016d090 014-043 015-118 015-144 015·144 016-145 015-146 015-168 016-174

015-194 016-218 015-224 015-265 016-268 016-282 016-293 016-303
016-314 016-324 015-332 016-334 016-341 015-348 016-350 016-376

013b066 013-066 013-067
004b015 004b021 004b032 006b031 005b060 006b091 006b103 006blt4 005b124

006b008 006b046 007b010 006b011 006b061 016dl22 004-016 004-018
004-019

016d392 016-045 016-118 016-146 016-146 015-174 015-209 016-226 015-293
016-372

003b173 003b211 004b016 008b034 008b038 008b042 008b046 009b007 009b037
009b064 Ot0b009 010b042 010b046 OJ2b026 012b031 012b046 0l0b057
003-174 003-176 003-176 003-177 003-179 003-181 003-182 003-184
003-185 003-186 003-188 003-189 003-190 003-193

011b047 012b008 011-060
002b036 002-037 002-038
003bt40 003b146 003b167 003-142 003-143
015d339 016·336 016-344
003b196 003b199 003-199 003-199 003-203

Appendix. A MAC LISP Implementation of 3-LISP Procedural Reflection 7S0

FOOT
FORMS
FUNCTION
HANDLE
HEADS
I
IO
IF

IGNORE
IN-3-LISP
JOIN
LAST
LET

LET•
LEVEL
LIST
LIST?
LOOP-CATCH
MACRO

MAKE-Cl
MAP
MAP•
MATCH
MEMBER
MESSAGE
N

NEW
NORMAL
NORMAL-FORM
NORMALISE

NORMALISE-RAIL
NOT

NUMBEll
NUMERAL
O-RAIL
OK
OR

OR•
PAIR

PATTERN

POP
PREP•
PRIMITIVE
PROC
PROCEDURE-TYPE
PROMPT
PROTECTING
PROTECTING•
PUSH

Page 17:3

016d088
002b037 002-038
016d106 009-048
015d098 003-180 006-032 008-026 009-012 009-030 009-042 010-020 016-143
008b101 008-102
008b069 008b070 008b094 008-061
015d080 013-028 014-011
016d160 003-106 003-108 003-132 003-162 003-161 003-177 003-186 003-186

003-201 003-203 004-033 004-046 004-066 004-069 006-021 006-130
006-013 006-032 006-049 006-063 007-016 008-068 008-062 008-067
008-068 008-073 008-074 008-093 008-099 008-100 008-106 009-027
009-028 009-029 009-030 009-031 009-032 009-043 009-060 010-010
010-034 010-059 012-011 012-016 012-017 012-079 012-087 014-043
016-190 016-194 015-208 016-218 016-224 016-266 015-271 016-286
016-303 015-304 016-310 016-314 016-316 016-320 015-324 016-324
016-332 015-334 015-341 016-348 016-369 015-370

012b066
002d034 014-006 016-012 016-078 015-246 016-366
016d198 015-138 016-147 016-204
008b095 008-103
015d248 003-068 003-064 003-066 003-085 003-088 003-097 003-103 003-128

003-133 003-150 003-197 003-215 006-020 005-023 005-033 006-047
005-062 005-082 005-129 008-076 008-100 010-020 011-033 013-043
013-066 014-011 015-263 015-277 016-366

015d263 016-258
003b206 003-208
003b196 003bl98 003-198 003-198 003-198 003-200 003-201 003-204
002d017 009-020 009-024 010-048
011d005 011-032 011-036 Oll-041 011-064
016d229 016-249 016-264 016-262 015-276 015-289 015-299 016-309 016-319

ou;-354 015-389
014d031 004-027 014-029
016d326 016-1~3 015-186 015-260 016-251
015d330 015-328 015-337
016d140 016-138 016-143 016-147 016-148
016d166 015-109 015-170 015-187
012b008 012-011 012-012 012-014
008b042 008b046 008b063 008b057 008b066 008b090 012b036 002b080 008-043

008-044
008b012 008b017 008-013
Ol6d179 006-060 009-047 009-048 014-018 015-186 015-186 016-370
005b019 006b114 006b124 006-022
014d016 004-027 006-042 006-044 013-025 014-011 014-025 014-029 014-036

014-037 014-046 016-166 015-168 015-159 016-1£2 015-233 016-239
016-241 015-383

014d041 004-038 014-020 014-047
015d190 002-069 002-073 003-108 006-131 006-049 006-060 007-016 008-099

008-102 008-104 009-019 ~09-047 009-048 009-060 010-034 010-069
015d101 009-039
015d097 003-176 009-008 009-031 009-039 010-030
008b066 008-067 008-069 008-071 008-079
003b087 003-089
016d318 002-C35 003-091 006-027 006-037 008-061 008-072 008-097 009-043

010-022 010-043 010-046 010-049 011-018 011-030
015d322 015-320 016-320 016-324
016d096 003-142 003-181 009-013 009-021 009-029 009-043 013-064 013··065

013-076 013-077 014-021 016-187 015-188
006b020 006b026 006b035 016d123 006-021 006-024 006-025 006-026 006-026

006-027 006-028 006-033 006-036 006-036 006-035 006-037 006-038
006-044

016d222 007-017
016d172 015-177
015d107 006-043 014-035
004b021 004b046 005b031 006b128 009b067 004-022 004-023
015d126 004·025 014-027
016d114 007-~22 014-010 014-012
016d353 015-338
Ot5d357 015-366 015-362
015d214 007-011

Appendix. A MACLISP Implementation of 3-LISP Procedural Reflection 751

Rt
Rt-HEADER
R2
RAIL

READ-NORMALISE-PRINT
REBIND
REBIND•
REDIRECT
REDUCE
REST
REST•
RESTS
SELECT
SELECP
SELECTQ
SELECTQ•
SEQUENCE
SET-
S'4ACRO
STREAM
TAG
TRUTH-VALUE
TYPE
UNIT
VALS

VAR
X
XCONS
-3-BACKQUOTE
-co-
-ct-
-C2-
-C3-
-C4-
-C6-

Page 17:4

008b090 008-091 008-093 008-096 008-096 008-099 008-107
008b103 008-104 008-106
008b090 008b100 008-092 008-100 008-100 008-100 008-101 008-102 008-106
003b167 004b032 008b053 008b067 012b036 002b081 003b168 008b071 008b096

009b057 016d096 003-168 003-158 003-158 003-159 003-160
014d008 007-024 014-014
015d368
015d374 016-371 016-379
016d206
014d023 013-026 014-021
002b068 002b072 008b060 015d087 002-069 002-069
006b103 006-106
015d346 015-337 016-351
015d275 016-128
016d280 016-278 016-287
015d261 004-025 012-061 014-027 016-181
015d266 015-264 016-273
016d102 009-041
015d381 016-390
016d235 .
003b084 003b087 003b096 003bl02 003b113 003b127 003b131 003-086
012b086 012-090
015d103 009-040
012b026 012b031 012-027
015d091 016-175 015-294
006b020 006b026 006b036 006-023 006-024 006-026 006-026 006-026 006-027

006-028 006-030 006-033 006-036 006-036 006-037 006-038 006-040
006-042 006-043

006b008 006b046 006-009 006-012 006-013
003b140 003b146 003-141 003-142 003-143
016d132
002d040 003-129 003-148
006f031 013-011
005f060 013-011
006f091 013-011
006f103 013-011
005f114 013-011
006f124 013-011

Notes and Referen~;S Procedural Reflection 7S2

Notes

Preface and Prologue

l Bobrow and Winograd (1977), and Bobrow et al. (1977)
2. Weyhrauch (1978), Doyle (1979), McCarthy (1968), Hayes (1979), and Davis (1980a).

respectively.

3. For a discussion of macros see the various sources· on LISP mentioned in note 16 of
· chapter l; meta-level rules in representation were discussed in Brachman and Smith

(1980); for a collection of papt!rs on non-monotonic reasoning Bobrow (1980); macros
are discussed in Pitman (1980).

4. Brachman (1980).

s. Newell and Simon (1963); Newell and Simon (1956).
6. The proceduralist view was represented particularly by a spate of dissertations

emerging from MIT at the beginning of the 1970s; sec for example Winograd (1972),
Hewitt (1972), Sussman et al. (1971), etc.

7. See Minsky (1975), Winograd (1975), and a11 of the systems reported in Brachman
and Smith (1980).

8. Searle (1980), Fodor (1978 and 1980).

9. Brachman and Smith (1980).

10. See the introduction to Brachman and Smith (1980).

11 References on node, frame. unit, c:oncept. schema. script, pattern, class, and plans can
be found in the various references provided .in Brach'tlan and Smith (1980).

12. See in particular Hayes (1978).

13. The distinction between central and peripheral aspects of mind is articulated in
Nilsson (1981); on the impossibility of central AI (Niisson himself feels that the
central faculty will quite definitely succumb to Al's techniques) see Dreyfus (1972)
and Fodor (1980 and forthcoming).

14. Nilsson (1981).

Chapter 1 (Introduction)

1. PROLOG has been presented jn a variety of papers; see for example Clark and McCabe
(1979), Roussel (1975), and Warren et al. (1977). The conception of logic as a
programming language (with which we radically disagree) is presented in Kowalski
(1974 and 1979).

•

D

Notes and References Procedural Reflection 753

2.

3.

4.
5.
6.
7.
8.
9.
10.

11.
12.

13.
14.

15.

16.

For a discussion of the ~rmmtical properties of computational systems see for
example Fwor {1980), F\Xior (1978), and Hauge1and (1978).
Such facilities as provided in l\1DL are described in Galley and Pfister (1975); an
INTERLISP, in Tcitclman (1978).

Reiter (1978), McDermott and Doyle (1978), Bobrow (1980).

Clark and McCabe (1979).
McCarthy et al. (1965).

Sussman ".nd Sceele (1975); Steele and Sussman (1978a).

Greiner and Lenat (l980), Oenesereth and Lenat (1980).
Quine (1953a), p. 79 in the 1963 edition.
References on the message-passing metaphor. See Hewitt et al. (1974), Hewitt (1977),
for ACTl see Lieberman (19??); SMALLTALK see Goldberg (1981), lnga!ls (197~).
Fodor {forthcoming)
See, however, the p(lstscript. where we in part disavow this fractured notion of
syntactic and semantic domains.
Fodor (1980).

Gordon (1973 nnd 1975);

Church (1941).

SCHDIE is reported in Sussman and Steele (1975) and in Steele and Sussman (1978a);
MDL in Galley and Pfister (1975), NIL in White (1979), MACLISP in Moon (1974) and
Weinreb and Moon (1981), and INTERLISP in Teitelman (1978). COMMON LISP and
SEUS arc b0th under development and have not yet been reported in print, so far as
we know (personal communication with Guy and with Richard Weyhrauch).

17. Stallman and Sussman (1977), deY..leer et al. (1977).

18. Davis (1980)
19. Stefik (l~ .. lb).

20. deKlecr ct al. (1977).

21. Doyle (1981).

22. References to specific LISP dialects arc given in note 15, above; more general
accounts may be found in Allen (1978), Weisman (1967), Winston and Horn (1981),
Charniak et al. (1980), McCarthy ct al. (1965), and McCarthy and Talbott
(forthc,,ming).

24. Clark and McCabe (1979), Roussel (1975), and Warren et z.1. (1977).

25. Goldberg (1981); lngails (1978).
26. Wr.yhrauch (1978).

27. I am indebted here to Richard Wcyhrauc.1 for personal communication on these
iJOints.

Notes and References Procedural Reflection 754

Oiapter 2 (1-LISP: A Basis Dialect)

1. It is reponed that Jean Sammett introduced a conference on programming languages
with the comment that modem programming languages could be divided into two
large classes; LISP, and the rest

2. Gordon (1973, 1975a. 1975b, aud ln9).
3. Moses (1970) and Steele and Sussman (1978b).

4. Quite understandably, there arc differences between the SCHEMES reported in Sussman
and Steele (1975) and Steele and Sussman (1978b), and between either of these and
the current implementation to be found on the PDP-10 at the M.I.T. Artificial
Intelligence Laboratory.

5. Moses (1970).

6. Pitman (1980).
7. References are given in notes 22 and 23 of chapter 1, above.
8. Strele and Sussman (1978b).
9. Maturana (1978).

Chapter 3 (Semantic Rationalisation)

1. aark and McCabe (1979), Roussel (1975), and Warren et al. (1977).
2. Gordon (1975a, 1975b).

3. Tennent (1976), Gordon (1979), Stoy (1977). etc.

4. Gurdon (1979), p. 35.
5. Tarski (1936 and 1944).

6. Weinreb and Moon (1981).

7. Donnellan (1966).
8. Sussman and Steele (1980}, and Steele (1980).

9. Searle (1969).

10. Winograd (1975).
11. Quine (1951).

12. Frcgc (1884), p. X.

13. Tarksi (1936)

14. McCarthy et al. (1965).
15. Qui11e (1953b).

Notes and Referenc~ Procedural Reflection 755

Chapter 4 (2-LISP: A Rationalised Dialect)

1. Weinreb and Moon (1981).
3. Steele and Sussman (1978b).
4. Montague (1970, 1973).
5. Lewis (1972).
6. Rogers (1967). Kleene (1952).

7. Quine (1966).

8. Quine (1978).
9. Mont.ague (1973); see for example p. 257 in the version printed in Thomason (1974).
10. Steele and Sussman (1978b).

01aptcr 5 (Procedural Reflection and a-LISP)

1. Steele and Sussman (1978b) pp. 47-50.

Chapter 6 (Conclusion)

1. In preliminary conversations about these issues Gerry Sussman has suggested that this
proposal - that the evaluator always de-reference expressions - best reconstructs his
understanding of how LISP should be designed and/or described. 111ere is some
evidence (sec for example Steele and Sussman (1978b) p. 10) that his comment is true
to the conception of LISP embodied in SCHEME; see, however, the subsequent
discussion.

Notes and References Procedural Reflection 756

References

Allen, J., Anatomy of LISP, New York: McGraw-Hill (1978).

Bobrow D. G., (ed.) Artificial Intelligence, 13:1,2 (Special Issue on Non-Monotonic
Reasoning), (1980).

Bobrow, D. G., and Winograd, T., "An Overview of KRL: A Knowledge
Representation Language", Cognitive Science 1:3-46 (1977)

Bobrow, D. G., Winograd, T., et al., "Experience with KRL-0: One Cycle of a
Knowledge Representation Language", Proceedings of the Fifth International Joint
Conference on Artificial Intelligence. Cambridge, Mass (August 1977) pp. 213-222.

Bobrow, D. G., and Wegbreit, B., "A Model and Stack Implementation of Multiple
Environments", Communications of the ACM 16, 10:591-603 (Oct 1973).

Brachman, R. "Recent Advances in Representation Languages", invited presentation
at the First Annual National Conference on Artificia1 Intelligence, Stanford,
California, (August 1980), sponsored by the American Association for Artificial
Intelligence.

Brachman, R., and Smith, B. C., (eds.), Special Issue on Knowledge Representation,
SIGART Newsleuer, 70 (February 1980).

Charniak, E., Reisbeck, C., and McDermott, D., Artificial Intelligence Programming,
Hillsdale, N.J.: Lawrence Erlbaum (1980).

Church, A., The Calculi of Lambda-conversion, Annals of Mathematics Studies 6,
Princeton, NJ.: Princeton University Press (1941).

Oark, K. L., and McCabe, F., "Programmers' Guide to IC-Prolog", CCD Report
7917, Imperial College, London (1979).

Davis, R. "Applications of Meta Level Knowledge to the Construction, Maintenance,
and Use of Large KNowlcdge Bases", Ph.D. thesis, Stanford University, Stanford,
California; also in Davis, R., and Lenat, D., (eds.), Knowledge-Based Systems in
Artificial Intelligence, New York: McGraw-Hill (1980a).

--, "Meta-Rules: Reasoning about Control". M.I.T. Artificial Intelligence
Laboratory Memo AIM-576 (1980b); also Artificial Intelligence 15:3, December
1980, pp. 179-222.

deKlcer, J., Doyle, J., Steele, G. L. Jr., and Sussman, G. J., "Explicit Control of
Reasoning", Proc. of the ACM Symposium 011 Artificial Intelligence and
Programming Languages,. Rochester, N.Y. (1977); also M.I.T. Artificial Intelligence
Laboratory Memo AIM-427 (1977).

Donnellan, K., "Reference and Definite Descriptions", Philosophical Review 75:3
(1966), pp. 281-304.; reprinted in Rosenberg and Travis (eds.), Readings in the
Philosophy of Language. Prentice-Hall (1971).

Notes and References Procedural Reflection 757

Doyle, J., "A Truth-Maintenance System", Artificial itltelligence 12:231-272 (1979).

--. A Model for Deliberation. Action. and Introspection, doctoral dissertation
submitted to the Massachusetts Institute of Technology; also M.I.T. Artificial
Intelligence Laboratory Memo AIM-TR-581 (1980).

Dreyfus, H., What Computers Can't Do, New York: Harper and Row (1972).
Fodor. J., The Language of Thought, New York: Thomas Y. CroweJI, Company

(1975): paperback version. Cambridge: Harvard University Press, 1979.
--. "Tom Swift and his Procedural Grandmother", Cognition 6 (1978); reprinted

in Fodor, Jerry, Representations, Cambridge: Bradford, 1981.

--. "Methodological Solipsism Considered as a Research Strategy in Cognitive
Psychology", The Behavioral and Brain Sciences, 3:1 (1980) pp. 63-73; reprinted in
Haugeland (ed.), Mind Design, Cambridge: Bradford, 1981, and in Fodor, J.,
Representations, Cambridge: Bradford 1981.

--, The Modularity of Mind, Cambridge: Bradford (forthcoming).

Frege, G., Die Grundlagen der Arilhmetik. eine logisch-mathematische Untersuchung
iiber den Begriff der Zahl (Breslau, 1884); reprinted in The Foundations of
Arithmetic. A logico-mathematical Inquiry into the Concept of Number. English
translation by John L. Austin, Evanston, 111.: Northwestern Univeristy Press
(1950).

Galley, S. W., and Pfister. G., The MDL Language, Programming Technology
Division Document SYS.11.01. Laboratory of Computer Science, M.I.T. (1975).

Gcncsercth, M, and Lenat, D. B. "Self-Description and -Modification in a Knowledge
Representation Langauge", Report of the Heuristic Programming Project of the
Stanford University Computer Science Dept., HPP-80-10 (1980). .

Goldberg, A., et al. "Introducing the Smalltalk-80 System", and other SMALLTALK

papers, Byte 6:8, (August 1981).

Gordon, M. J. C., "Models of Pure LISP", Dept. of Machine Intelligence,
Experimental Programming Reports No., 30, University of Edinburgh (1973).

--, Operational Reasoning and Denotational Semantics", Stanford University
Computer Science Dept. Deport No. STAN-CS-75-506. (1975a)

--. "Towards a Semantic Theory of Dynamic Binding", Stanford University
Artificial Intelligence Laboratory, Memo 265, Stanford University Computer
Science Dept. Deport No. STAN-CS-75-507 (1975b).

--. The Denotational Descript:011 of Programming Languages: An lntroduction,
New York: Springer-Verlag (1979).

Greiner, R., and Lcnat, D. D .• "A Representation Language Language", Proc. of the
First Annual Na1io11al Conference 011 Artificial !11tellige11ce, Stanford Univ.,
(August 1980), pp. 165-169.

Haugc1and, J.. "The Nature and Plausibility of Cognitivism" The Brain and
Behavioral Sciences 1 (1978).

Notes and References Procedural Reflection 758

Hayes. P. J., "In Defense of Logic", in Proc. Fifth International Joint Conference on
Artificial Intelligence, Massachusetts Institute of Technology (August 1977) pp.
559-565; available from Carnegie-Mellon University, Pittsburgh, PA.

--, "The Naive Physics Manifesto", unpublished m~muscript (May 1978).

--, Pr.rsonal conversations on the GOLUM deduction system (1979).

Hewitt, C., "Description and Theoretical Analysis (using Schemata) of PLANNER: A
1..anguage for Proving Theorems and Manipulating Models in a Robot", M.'i.T.
Artificial Intelligence Laboratory TR-258 (1972).

--, "Viewing Control Structures as Patterns of Passing Messages", Artificial
Intelligence, 8:3, (June 1977) pp. 324-364.

Hewitt, C., et al. "Behavioral Semantics of Nonrccursive Control Structures". Proc.
Col/que sur la Programmatio11, B. Robinet (ed.), in Lecture Notes in Computer
Science. No. 19, pp. 385-407 B~rlin: Springer-Verlag (1974).

Ingalls, D. H. "The Smallcalk-76 Programming System: Design and Implementation",
Conference Record of the Fifth Annual Symposium 011 Principles of Programming
Languages, Tucson, Arizona (January 1978) pp. 9-16.

Kleene, S. Introduction to Metamathematics, Princeton: D. Van Nostrand (1952).
Kowalski. R. A., "Predicate Logic as a Programming Language", Proceedings IFIP,

Amsterdam: North Holland (1974) pp. 569-574.

Kowalski, R. A., "Algorithm = Logic + Control", CACM (August 1979).

Kripke, S. "Outline of a Theory of Truth", Journal of Philosophy, 72:690-716 (19??).
Lewis, D., "General Semantics", in Davidson and Hannan (eds,), Semantics of

Natural Langauges, Dordrecht, Holland: D. Reidel (1972), pp. 169-218.
Maturana, H., and Varela, F., Autopoietic Systems. in Boston studies in the

philosophy of science, Boston: D. Reidel, (1978); originally issued as B.C.L.
Report 9.4, Biological Computer Laboratory, University of Illinois, 1975.

McAHcster, David A. "A Three-Valued Tmth Maintenance System", M.I.T. Artificial
Intelligence Laboratory Memo AIM-473 (1978).

McCarthy, J.. "Programs with Common Sense", in M. Minsky (ed.), Semantic
b{(o1111ation Processing, Cambridge: M.I.T. Press (1968), pp. 403-418.

McCarthy, J., ct al., LISP 1.5 Programmer's Manual, Cambridge, Mass.: '111c MIT
Press (1965).

McCarthy, J, and Talbott, C., LISP: Programming and Proving, Cambridge, Mass.:
Bradford (forthcoming).

McDermott, D., and Doyle, J., "Non-monotonic Logic I", M.I.T. Artificial
Intelligence Laboratory Memo AIM-486 (1978).

McDermott, D., and Sussman, G. "The CONNIVER Rcfornce Manual", M.I.T.
Artificial Intelligence Laboratory Memo AIM-259a, Cambridge, Mass. (1973).

Notes and References Procedural Reflection 759

Minsky, M. "Matter, Mind, and Models", in Semantic Information Processing, M.
Minsky (ed.), Cambridge: MIT Press (1968).

Minsky, M., "A Framework for the Representation of Knowledge", in P. Winston
(ed.), The Psychology of Computer Vision, New York: McGraw-Hill (1975) pp.
211-277.

Montague, R., "The Proper Treatment of Quantification in Ordinary English", in J.
Hintikka, J. Moravevcsik, and P. Suppes (eds.), Approcahes to Natural Language:
P10ceedings of the /970 Stanford Workshop on Grammar and Semantics,
Dordrecht: Reidel (1973) pp. 221-242; reprinted in Thomason (1974).

--, "Pragmatics and Intensional Logic", Synthese 22 (1970) pp. 68-94; reprinted
in R. H. Thomason (ed.), Fonnal Philosophy: Selected Papers of Richard
Momague, New Haven: Yale Univ. Press, 1974.

Moon, D., "MacLISP Reference Manual", M.I.T. Laboratory for Computer Science,
Cambridge, Mass. (1974).

Moses, J., "The Functi.on of FUNCTION in LISP", ACM SIGSAM Bulletin, pp. 13-27,
(Juty 1970); also M.I.T. Artificial Intelligence I~boratory Memo AIM-199 (1970).

Newell, A., and Simon, H., "The Logic Theory Machine: a comlpex information
processing system", IRE Transactions on lnfonnation Theory, Vol. IT-2, No. 3, pp.
61-79.

Newell, A., and Simon, H., "GPS, a Program that Simulates Human 1bought", in E.
A. Feigenbaum and J. Feldman (eds.), Computers and Thought, New York:
McGraw-Hill (1963).

Nilsson, N. "Artificial Intelligence: Engineering, Science, or Slogan?" manuscript (to
be published), (April 1981).

Pitman, K., "Special Forms in LISP", Conference Record of lhe 1980 LISP
Conference, Stanford University (August 1980), pp. 179-187.

Quine, W. V. 0., .Mathematical Logic [New York: Norton, 1940], Cambridge:
Harvard University Press, 1947; revised edition, Cambridge, Harvard University
Press (1951).

--, "Identity, Ostcnsion, and Hypostasis", in From a Logical Point of View,
Cambridge: Harvard University Press, (1953a); reprinted in paperback by Harper
Torchbooks, 1963.

--, "On What 1bcre Is", in Quine, W. V. 0., From a Logical Point of View,
Cambridge: Harvard University Press, (1953b); reprinted in paperback by Harper
Torchbooks, 1963.

--, "Three Grades of Modal Involvement", in The Ways of Paradox, and Other
Essays, Cambridge: Harvard Univ. Press (1966).

Quine, W. V. 0., and Ullian, J. S., The Web of Belief, New York: Randon House
(1978).

Notes and References Procedural Reflection 760

Reiter, R., "On Rea'.mning by Default", Proc. Second Conference on Theorelical
Issues in Natural Language Processing, University of Illinois at Champaign,
Urbana (1978) pp. 210-218.

Rogers, H. Jr., Theory of Recursive Functions and Effective Computability. New York:
McGraw-Hill (1967).

Roussel, P. "PROLOG: Manuel de R.!fercnce ct d'Utilisation", Groupe d'lntelligence
Artificielle, Universite d'Aix-Marseille, Luminy (1975).

Russell, B. "Mathematical Logic as Based on the Theory of Types", American Journal
of Mathematics 30:222-262 (1908); reprinted in Van H<:ijenoort, J. (ed), From
Frege to Godel: A Source Book in Mathematical Logic, 1879-1931, Cambri<lge,
Mass.: Harvard (1967).

Searle, J. R., Speech Acts: An Essay in the Philosophy of La.ngauge, Cambridge:
Cambridge Univ. Press (1969).

--, "Minds, Brains, and Programs", The Behavioral and Brain Sciences 3:3 (1980)
pp. 417-457; reprinted in Haugeland (ed.), Mind Design, Cam'Jridge: Bradford.
1981, pp. 282-306.

Stallman, R. M., and Sussman, G. J., "Forward Reasoning and Dependency Directed
Backtracking in a System for Computer-Aided Circuit Analysis", ArtiJlcial
imeiiigence 9:2 (1977) pp. 135-196; also in Artificial Intelligence: An MIT
Perspective, Volume 1, P. H. Winston and R. H. Brown (eds.), pp. 31-91,
Cambridge: M.I.T. Press (1979).

Steele, G. "LAMBDA: The Ultimate Declarative", M.I.T. Artificial Intelligence
Laboratory Memo AIM-379 (1976).

--, "The Definition and Implementation of a Computer Programming Language
Based on Constraints", Ph.D. Dissertation, M.I.T. Artificial Intelligence
Laboratory, Report AFfR·595 (1980).

Steele, G, and Sussman, G. "LAM8DA: 1be Ultimate Imperative", M.I.T. Artificial
Intelligence Laboratory Memo AIM-353 (1976).

--, "The Revised Report on SCHEME, A Dialect of LISP", M.l.T. Artificial
Intelligence Laboratory Memo AIM-452 (1978a).

--, "1be Art of the Interpreter, or, The Modularity Complex (Parts Zero, One,
and Two)", M.I.T. Artificial Intelligence Laboratory Memo AIM-453, Cambridge,
Mass. (1978b).

--, "Constraints", M.I.T. Artificial lnte11igence Laboratory Memo AIM·502
(1979).

Stcfik, M. J., "Planning with Constraints (MOLGEN, Patt l)", Artificial Intelligence
16:2 (JuJy 1981a) pp. 111-139.

--. "Planning and Meta-Planning (MOLGEN: Part 2)", Artificial Intelligence
16:2 (July 1981b) pp. 141 • 169.

Notes and References Procedural Reflection 761

Stoy, J. E., Denotational Semantics: The Scott·Strachey Approach to Programming
Language Theory, Cambridge: MIT Press (1977).

Sussman, G., and Steele, G., "SCHEME: An Interpreter for Extended Lambda
Calculus", M.I.T. Artificial Intelligence Laboratory Memo AIM-349 (1975).

--, "CONSTRAINTS - A Language for Expressing Almost-Hierarchical
Descriptions", Artificial Intellirsence 14:1 (August 1980) pp. 1-39.

Sussman, G., et al. "Micro-PLANNER Reference Manual" M.I.T. Artificial
Intelligence Laboratory Memo AIM-203a (1971).

Tarski, A., "The Con~ept of Truth in Formalized Languages" (1936), in Tarski, A.,
Logic, Semantics. Metamathematics, Oxford (1956).

--, "The Semantic Conception of Truth and the Foundations of Semantics",
Philosophical and Phenomenological Research 4:341-376 (1944); reprinted in
Linksy (ed.), Semantics and the Philosophy· of Language, Urbana: University of
Illinois, 1952, pp. 13-47.

Teitelman, W. "INTERLISP Reference Manual", Palo Alto: Xerox Palo Alto
ReS<'3rch Center (1978).

Tennent, R., "The Denotational Semantics of Programming Languages",
Communications of the ACM 19:8 pp. 437-453 (Aug. 1976).

Thomason, R., (ed.), Fonnal Philosophy: Selected Papers of Richard Montague. New
Haven: Yale University Press (1974.)

Warren, D. H. D., Pereira, L. M., and Pereira. F., "PROLOG: The Language and its
Implementation Compared with LISP", Proc. Symposium on Al and Programming
Languages, Rochester, New York, ACM SIGPLAN/SIGART Notices, 12:8
(August 1977) pp. 109-115.

Weisman, C. LISP 1.5 Primer, Belmont: Dickenson Press (1967).

Weinreb, D., and Moon, D. LISP Machine Manual, Cambridge: Massachusetts
Institute of Techr.ology (1981).

Weyhrauch, R. W., "Prolegomena to a Theory of Mechanized Format Reasoning",
Stanford University Artificial Intelligence Laboratory, Memo AIM-315 (1978); ·atso
Artificial Intelligence 13:1.2 (1980) pp. 133-170.

White, J. L., "NIL - A Perspective", Proceedings of the MACSYMA Users'
Conference, Washington, D. C. pp. 190-199 (June 1979). Available from tl1e
Laboratory for Computer Science, M.I.T., Cambridge, Mass.

Winograd, T. Understanding Natural Language, Academic Press (1972).
--, "Frame Representation and the Declarative-Procedural Controversy", in D.

G. Bobrow and A. Collins, (eds.), Representation and Understanding: Studies in
Cognitive Science, New York: Academic Press (1975) pp. 185-210.

Winston, P. H., and Hom. B, K. P., LISP, Reading, Mass: Addison-Wesley (1981).

