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Abstract 

Programs for integrated circuit layout at the module assembly level arc typically decom
posed into two phases-placement and routing. Jn this thesis we investigate a third phase 
which is often implicitly assumed-layer assignment. Thia tbesia studies how layer aasignment 
methodologies interact with placement and routing. 

A simple layer aaaignment methodology, which is alao commonly occurring, is rit1er 
routing, where all wires can be routed ·in a single layer. We give concise necessary and sufficient 
conditions for a channel to be river routable, and baaed on these conditions, give a linear
time algorithm to find the optimal placement of modules acron a channel. We also show that 
determining whether wires can be river routed in an arbitrary polygon can be determined in 
linear time. We show· that in a rectangular channel, the optimal decomposition of an arbitrary 
routing situation into the union of river routing situations can also be determined quickly. In 
addition, we give NP-completeness reaults for several other planar routing problems. 

In addition, we define new characteristics of channel routing: monotoniciti and jogging, 
and investigate their relation to minimizing the channel's width. In both the Manhattan and 
the /mock-knee two-layer wiring models, U-shaped turns do not help to reduce width. On 
the other band, jogging is essential to achieve this goal. We also generalize the definition of 
channels, and show that two-layer routability of certain configurations in T- and X-shaped 
channels can be checked in linear time. 

Finally, we discuss optimal layer assignment as an "after the fact" consideration, when 
wiring is specified without layer designation. We give an O(n2•5) algorithm for minimizing 
the number contacts required for two-layer reali1ation1. 

A glossary of layout problems is provided as an appendix. 

Theais Cosup,rviaors: Charles E. Leiserson, A11i1tant Professor of Computer Science and 
Engineering 

Ronald L. Rivest, Associate Prof esaor of Computer Science and En
gineering 

Key words. analysis of algorithms, computational geometry, design automation, graph theory, 
layout of integrated circuits, placement and routing, river .routing, VLSI 
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Note to the reader 

Chapters I and VIII of this thesis address mostly methodological issues and can be read 
almost independently from the rest of the document. Chapter Il contains the formal model 
required for the technical discussions that follow in Chapters ID-VII. The results included in 
these five chapters can be divided into three topics: river routing (ID, IV), channel routing 
(V, VI), and layer assignment (VII). Each topic can be read almost independently. The only 
exception is Section ID.1 which is a prerequisite for Sections V.2.2 and V.4.1. 

Chapter numbers always appear in roman numerals. Sections, figures, theorems, lemmas, 
and algorithms, are all numbered using arabic numerals, preceded by the chapter number. 
In the text, however, the chapter number prefix is dropped whenever the reference is to a 
figure {etc.) in the current chapter. In other words, chapter numbers are used only for cross 
referencing among chapters. 

References are tagged by letters and nu~erals. For works of two or less authors the first 
syllables of their surnames arc folJowcd by the last two digits of the year or publication. If the 
number of authors is three or more, the first letters of their surnames constitute the letters 
part of the reference. 
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Chapter I 

Introduction 

Layout systems for digital integrated circuits traditionally decompose the layout problem 

into two subproblems: placement and routing•. In this methodology, we first place predesigned 

pieces of the circuit - c.alled module& - on the chip, and then route wires to interconnect 

common aignal net&. Each module has terminal& located along its boundary that must 

be interconnected properly using. a given number of wiring layers which depends on the 

fabrication technology. The prime objective is to minimize the total area required to realize 

the circuit subject to various design rules (that ensure the feasibility of fabrication). This 

approach was used in the design of the "PI" system for placement and interconnect, developed 

here at MIT ([Bar81],[Riv82]). 

The placement phase is devoted to assigning geometric positions and orientations to 

modules on the chip. Even when no routing is specified the problem of minimizing the chip 

area is NP".complete** [LaPSOa]. _The intractabilJty of this phase is aggrevated when routing 

requirements are being taken into account. 

During the routing p~ase, entire parts of the mask area are allocated to global aignal 

interconnection. The task of routing wires within_ a specified area so u to achieve electrically 

valid connections of high quality constitutes a hard problem which is widely believed to be 

intractable on many counts. It is hard to optimize even one of several important layout 

characteristics, such as total area, wire length, and signal propagation delay. Even restricted 

versions of the problem, in which we isolate special subcasea with a certain common structure, 

are still hard to deal with. 

- • For complicated VLSI circuit■, one may need to form a hierarchy of 1uch problem■, u in IJ>r79]. 

~• See !GaJo79J for a di■cus■ion of NP-completenu■. 

g 
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Various design methodologies have been suggested to deal with the complexity of the 

layout problem, mostly within the placementrrouting paradigm. We start by describing these 

methodologies and stating the contributions of this thesis to their development, application, 

and understanding of their interrelation. Next we discuss various models r or studying the 

layout problem and justify our choice for modeling by a simple example. Finally we outline 

the thesis, highlighting its major results. 

1. Layout Methods 
Here we describe four methods for handling the awesome complexity of the layout prob

lem. They operate on different levels, but are certainly relevant to each other in significant 

ways. The results of this thesis demonstrate how combinations of such techniques either lead 

towards efficient optimal solutions or are still intractable in spite of being seemingly simple. 

1.1. Layer Aaaignment Method, 

One method for dealing with the routing problem is to separate the geometric iuue, 

which concerns area consumption and wire length,, from the more involved problem of layer 

asaignment, which affects mostly performance but also area. Various abstract models have 

been suggested to deal with the geometric aspect of the problem in such a way that layer 

assignment can _be avoided altogether by fixing it in advance using simple global rules, such 

u Manhattan routiug ILec61 ]. Even in 1uch a setting, moat problems are proven or believed 
/ 

to be NP-complete ([LaP80a), [Sz81], (Ric81), (KvanL82] and others). Another result of thi1 

approach is that the quality of the layout produced in terms of the layer assignment may be 

extremely poor: wires may change layers where they do not need to or may consist of long run• 

of bad conducton. Moreover, due to their handling of design rulea, these simplified models 

are too weak in the sense that certain features of the fabrication process are lost in the over 

simplistic restrictions on paths selection. For example, no overlap■ between wire■ are allowed, 

although they may be extremely useful in reducing area. Paradoxically, the more general 

models sometimes give rise to tractable algorithms with provable properties regarding their 

output ( e.g. ~M81 ]); this situation calls ror a better understanding of the layer assignment 

upect or layout. 

1.2. Placement Evaluation 

Another issue is the interrelation between the pl~emcnt and routing problems. The way 

in which modules are placed relative to each other may dramatically affect the difficulty of 

the routing problem and the quality of the solution. Ideally, we would solve the routing 

problem for each proposed placement (while looking for an optimal one), but this is obviously 
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intractable. Thus we need good estimates for the area needed to interconnect modules in a 

given placement without spending the time needed to actually solve the routing problem. Such 

estimates depend drastically on the layer assignment method assumed when these estimates 

are taken. 

1.3. Channel Routing 

One common method r or overcoming the difficulties inherent to the global nature of the 

routing problem was suggested by Hashimoto and Stevens in their seminal paper on channel 

routing [HaSt71 ]. They proposed t':) partition the routing area into rectangular channel& which 

are then routed individually. This breaks the original problem into a set or smaller, local 

problems, thus reducing the complexity of their solution. The major disadvantage of this 

approach is the fact that once the 1ubproblems are set up, their aolutions do not interact, and 

global patterns are lost in the process. In other words, the decomposition into subproblems 

is geometric and has hardly any bearing on the interconnection pattern that is set up by the 

terminal nets. 

1.4. Composition Methodologies 

Another way of managing the layout problem is implied by various restricted design 

methodologies, ~cording to which modules can be put together only in certain fashion, 

thus giving rise to specific routing situations. Prime examples of layout systems purporting 

such methodologies are Bristle-Blocks [Jo79,Jo81), the data-path generator of DPL/Daedalus 

(BMSSW81,Sh82), MacPitts [SSC82), and Ali (LSV82,LNSVV82). Although their main objec

tive is to provide a tool for specifying one's layout in functional terms (stressing a structured 

style), a beneficial side effect is a considerable simplification of the routing problem. Ho~er, 

the impact of such methodologies on layout algorithms has been by and large ignored by 

practitioners and theoreticians alike. 

1.5. Combining Methodologies 

In this thesis we investigate the impact of combining BeVeral or the above mentioned 

methodologies on the quality and efficiency of layout algorithms. First and foremost comes 

the layer auignment iaue: how do different layer aaignment strategies affect the power and 

complexity of solutions in the various contexts set up by each of the other methodologies? For 

- - · instance, how are channel routing algorithms affected by the selection of a layer assignment 

method? We also investigate the efl'ects of layer aaigilment on combinations of methodologies, 

e.g. how a one-layer strategy affects the placement evaluation in a data.path auembly system. 
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Another major concern is to find succinct routability conditions and how they affect 

placement considerations both in the general setting ( of arbitrarily composed rectangular 

modules) and in the restricted composition methodologies. In the first case, attention focuse■ 

on phenomena occurring due to interaction between conventional channels. Here we suggest 

that the routing Bituation inside each channel be inspected, and from this deduce informa

tion about the interaction between neighbouring channels. Only then can one make deci

sions concerning the details or the· wiring. In the aecond case, when restricted composition 

methodologies are applied, we demonstrate how certain compoiition rules lead to routability 

conditions that are sufficiently well-behaved to facilitate accurate and discrete modeling or 

the entire layout problem, which then becomes amenable to optimal and efficient algorithmic 

10lution1. 

The question or optimal layer assignment by itself is also examined here in a somewhat 

independent manner: &BSuming the layout baa been completed somehow, we are intereated in 

algorithms to assign layers after the fact. Naturally, the feasibility and quality of the resulting 

circuits still depends on the tools used initially to devise the geometry. 

Finally, this thesis also includes an investigation into fundamental problems concern

ing channel routing strategies. Layer assignment does not have a direct impact on theae 

considerations, neither have they an influence on placement evaluation, but these results in 

themselves comprise methodological guidance in theJI11elves. 

/ 

2. Models and Solution Techniques 

The methods be employed in this re■earch are intentionally discrete, with emphasi■ 

on exact analysis or performance, both in terms or the optimality of the results and the 

complexity of the algorithms Uled. .To put thi■ goal in perspective, a brief review i■ due~ 

Over the past two decades or research on layout, three major achool■ have emerged. One 

school, which comprises Aker, IA.k72), Donath (Do79), Heller et.al. (HMD78), Soukup and 

Royle [SouRo81), and subsequently El-Gamal (ElG81), has engaged in continuous analysi■ 

of routing phenomena and their etrect on placement consideration,. They try to model the 

effects or different terminal distributions using real-valued random variables, and thus obtain 

good estimates on routing requirements and the interaction between routing situation■• The 

heuristics guiding detailed routing are lnfluenced by this modeling and do not pay much 

attention to local phenomena. 

- · The second approach is primarily represented by Kub and his students (e.g. (YoKu82) 

and [MaKu82]} and by the work on the LTX system at Bell Laboratories [Deu76), [PDS77). 

Here discrete methods are used to try and -capture the fine point. that are due to local . 
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perturbations in the terminals' set-up. These methods have been rather successful in practice, 

but no attempt has been made to derive any formal results on their performance, especially 

when it comes to the relation between their solutions and the optimum. 

Recently, the theoretical computer science community started to develop interest in this 

area, and some careful analyses have been worked out that show how trivial changes to the 

routing configurations may cause disastrous eff'ects on the quality of the layout. A few of the 

early works that comprise this third school are [LaP80aJ, [DKSSU81], and [BrRi81). These 

recent results and the advances in the design and analysis of algorithms over the past decade 

call for a careful examination of the layout problem using discrete tools. 

I believe atrongly that despite the apparent difficulties, diacrete analysia ill the correct 

method of diacourae to deal with the layout problem. It is a mistake to use the wrong methods 

because they seem to work out easily; problems that are discrete in nature have to be dealt 

appropriately to yield the right kind of results. 

2.1. An Example: the One-1hift. 

A nice example that brings this point home is the one-,hift channel (Figure 1): imagine 

two identical rows of n terminals that must be connected in order. This goal can be achieved 

without any cost in area or wire length by simply putting the two rows right next to each 

other. If, ho_wever, you place them on modules acrolB a channel such that one row is shifted 

against the other by just one grid unit*, you are in for a~ unpleasant surprise. Depending on 

how many layers you are allowed to use and on the fashion in which you are allowed to route 

them, you may have to place the two modules n grid units apart {for one layer realization 

(DKSSU81), [LeiPi81)}, O(v'n) units apart {for Manhattan routing [BrRi81]}, or just one 

unit apart (for "real" two-layer design rule• [B~81),(LeiPi81]). Thus small perturbations in 

placement create vastly different routing situations, incurring area penalties that are orders 

or magnitude apart. 

l 2 3 4 5 

1 2 3 4 

n-1 n 

• • • n-2 n-1 n 

Figure I.1: The one-ahift channel routing problem: large width (separation) 
may be required due to the slight misalignment of terminals. 

• We u■ume an underlying grid whose unit. corre■pond■ to the minimum center-to-cent.er ■eparation required 
to layout adjacent wire■• For 1implicity, at thia 1tage1 we al■o a■■ume that thi1 ■eparat.ion ii uniform for 
all layen. Formal model■ for wiri111 are expo■ed iD Chapter II. 



14 INTRODUCTION 1.2.1 

2.2. Wiring Models 
• ,.f 

The discrete modeling of wiring plays a key role in faithfully representing the phenomenon 

of the one-shift example. Various models give rise to widely different results. Different models 

reflect different layer assignment methods, and it is our task to match models with practice. 

Another issue concerning modeling is the relation to actual mask data and design rules. 

Obviously, a model could be cluttered with excessive amounts of irrelevant detail, but on the 

other hand, making it too simple may render its results irrelevant. It is our goal to come 

up with a model that yields to efficient algorithmic methods and reflects the essential parts 

of the original problem at the same ~me. Also, a good model is one that can be naturally 

extended to represent the additional details if necessary. 

2.3. Analysis Tools 

Tools of diacrete mathematics arc used throughout this thesis. Most problems are solved 

by using techniques of graph theory and computational geometry. Aa much as poBBible, we 

try to characterize problems in an exact manner within the framework established by these 

diaciplinea. 

Mostly, we strive to find optimal solutions that can be computed efficiently (i.e. in 

polynomial time). In other cases we can prove that specific configurations give rise to NP

complete problems. In some cases, however, we cannot prove completeness for some difficult 

class, but we atill do not know of efficient algorithms to solve them optimally. Then one has 

to resort to heuristics, which may not be as accurately analysable as optimal algorithms, but 

should be discrete in their modeling of the problem. 

Once (desirably accurate) estimates for routing requiremr:nts are found and expreued 

aa succinct discrete structures, we can manipulate them abstractly in order to make global 

routing decisions. A novel approach suggested here is to apply heuristics to the intermediate 

abstractions provided by the first, algorithmic stages, rather than to try out heuristics from 

scratch. Furthermore, the heuristics could be borrowed from an entirely dift'erent domain 

than combinatorial optimization, and hence their evaluation will have a different flavor. 

One technique that could pe used ii that of constraint propagation, as exposed in [StSu79] 

and [St80]. Some modifications to the methods propoaed in Steele's thesis [St80) are due 

in order to make them applicable to nonscalar ~tities. Since our constraints will relate 

-~- algebraic objects such as relations and aggregates, and the constraint, themselves may i~volve 

maximization and minimisations, this task is nontrivial and is expected to require some 

interesting extensions to ISt80) which are beyond the scope of this theaia. 
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3. Thesis Outline and Major Results 
Chapter II introduces the models used throughout this thesis* to represent the layout 

problem and layer assignment methods. · The first set of results to be presented applies to 

a simple layer assignment strategy, namely - routing in only one layer. In Chapter m we 

discuss the problem or river-routing acrou a channel. We show how accurate routability 

conditions can be derived for a variety of om~-layer wiring models, and how those conditions 

can be used to solve the placement problem r or river routing optimally in linear time r or 

the rectilinear model. The problem, however, becomes intractable once multiple channels, as 

might be encountered in a data path, are considered. 

From this relatively simple configuration of river routing acron a channel, we extract a 

r ew essential properties that prove to be interesting from a methodological point or view as 

well as rich in algorithmic content. Chapter IV takes up the problem of planar routability 

and its impact on placement. The line between "easy" and "hard" problems is thin. Planar 

routing in a simple polygon is tractable, but once holes are introduced they render the problem 

NP-complete. The topological issues concerning placement are shown to be easy, which is 

not surprising considering the trivial topology or the interconnect. 

In order to handle more complicated situations one must use stronger strategies - both 

for layer assignment and for dealing with the interaction between routing areas. In Chapter 

V we go back to the channel context, looking at routing two-point nets acroa, a channel. 

Various routing atrategiea and their impact on minimizing the channel width arc investigated. 

In Chapter VI the channel structure ia generalised, and routing patterns in T-abaped and X
ahaped channel■ are investigated. Some tractable llituation■ are identified. Then, based on 

the observation■ that lead to efficient algorithms, we develop a methodology that auggesta 

way■ to combine many small solutions to solve the general routing problem in a coherent way. 

In Chapter VII, we tum around to ask how layers could be assigned retroactively io as 

to make a given piece of artwork realizable within certain design rules. A polynomial-time 

algorithm is provided to aotve the two-layer, usignment problem for a variety or optimization 

criteria, disclaiming a previous NP-completeneu conjecture. We also aet the ground for a 

more careful study of the BUbject in a graph-theoretic framework. 

Finally, in Chapter VDI we reflect on the results presented in this thesis, trying to draw 

the leuons that both a circuit designer and the purveyor or design aid■ ahould learn from 

our investigations. For readers who are interested in the combinatorial complexity aapecta or 

this thesis, a glossary or problems and their status (in the r orm or (GaJo79]} is provided in 

Appendix A. 

• The terminology defined in Chapter U may be changed locally in 10me of the 1ubaequent chaptera u 
indica~ clearly in \heir mtroductiona. 
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Chapter II 

Discrete Models for the Layout Problem 

Throughout this hesis, we assume that layout is generated over an underlying .square 

grid. A point in th plane is a grid-point if both its coordinates are integers. A line in the 

plane of th.,___,__._H'I .. z_= m, where m ia an integer, ia a vertical grid-line. Likewise, a line of 

the r orm 11 = m is a horizontal grid line. 

1. Modules and Their Placement 

A module is a rectilinear polygon, i.e. its sides are either parallel or perpendicular to each 

other; furthermore, the dimensions of all aides are integral. Also, a set of distinct points, 

called terminals, is associated with each module such that each terminal lies on one or the 

module's sides at an integral distance from (either or) its end(s). Each terminal is uaually 

labeled by the name or a ,ignal-net. Thus, if w~ pick an a~bitrary corner* of a module and 

align the two aides meeting at the comer with a hori1ontal grid-line and a vertical grid-line, 

all terminals and other comers of the module will fall at grid points, and all aides will coincide 

with segments or either vertical or horizontal grid-linea. 

A placement of a aet of modules is an assignment or each module to a portion of the grid 

such that its corners coincide with grid points and its aide■ - with grid lines, and no two 

(areas covered by) modules overlap. Furthermore, no two aides of modules or their corners 

may coincide. Thus the diatance between any two points within or on the boundary of two 

modules is at least 1. Figure 1 shows a legal placement for a set of rectangular modules on a 

- grid. 

• i.e. a point along a module'• boundary where two perpendic:ular ■idn meet. 

lT 
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Figure D.1: A placement or five rectangular modules on the grid. The dashed 
lines show a posaible partitioning into channel,. 

ll.1 

The orientation or a module in a placement may be cons~rained in various ways, depending 

on th! application domain and methodological considerations. The operations that can be 

performed on a module before placing it are (rectilinear) rotation and reflection. Rotation 

allows us to tum the module by 90°, 180°, or 27Cf. Reflection allows ua to mirror a module -

with respect to to the %-axis or the y-u:is. These operation• are realisable at the mask level 

for integrated circuits without affecting any or the physical aspects or the design; reflection, 

however, may not be aa easy to realise in a PCB deaign. 

2. Routing and Channels 

A placement or modules on the grid defines the locations of terminals that have to be 

connected. Wire, that aerve ~ realise the interconnect are modeled by path, on the grid. 

A path between two grid points, P and Q, i■ a sequence or grid pointa R 1,R2, ••• ,Rt ■uch 

that P = R1, Q = Rt, and each two aucceuive points, .R.;,.R.;+1 for i == 1, ... , k - 1, lie 

on the same grid line. These line aegmenta (including their end points) are called the path'• 

,egmenta and are denoted by [~, .R.+1J for i = 1, ••• , k - 1. Furthermore, the points ~ for 

i = 2, ••• , k - 1 are called turning point,, and we inaist that at each turning point a vertical 

aegment meets a hori1ontal one. 

- - GeneraJly, wires are not allowed to go through modules or lie on their aides. Thu■ 

. routing is completely disjoint from the modules, and the segment attached to each terminal i• 

perpendicular to the module's aide (going away from it). Sometimes, ·ror purposes or notational 
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convenience (especiaJly in river routing situations), we allow one side to be Cree for routing, 

and we shall make exceptions to our definition• u needed. 

The routing area can be subdivided into channel,. Channels are rectilinear, non-overlapping 

polygons with corners and Bides conforming with the grid (as modules do). Channels may 

share sides (and corners) with each other and with modules. In Figure 1, the routing area has 

been partitioned into (rectangular) channels as shown by the dashed lines. A terminal belong

ing to a module whose side is shared with a channel is now associated with that channel's 

aide. Obviously, the channels and modules do not cover the whole (infinite) grid; the objective 

or the layout problem ia usually to minimize the area of the smallest rectangle encloaing the 

ensemble (sometimes called the bounding bo:i:). 

Traditionally, channels are rectangles. We shall deviate Crom this convention in Chapter 

VI, but until then some terminology particular to the common rectangular structure is needed. 

In a rectangular channel, each horizontal grid line lying within the channel is called a track. 

Segments of vertical lines bounded by the sides are calJed column,. The width of a channel is 

one more than the number of tracks, and, likewise, its length is one more than the number of 

columns. A horizontal path segment is called a jog track and a vertical one - a jog column. 

In some contexts, a rectangular channel does not have fixed dimensions---only the 1hape 

of a rectangle bas to be maintained. Routing i1 confined to the infinite stripe between two 
~ 

parallel lines, as can be aeen in Figure 2. The two sides,' the top and the bottom, have fixed 

lateral positions, but they can move up and down. The width of the channel is the distance 

between the top and bottom sidea (and ii atill one more than the number of tracks), and the 

channel's length ia the difference between the :r-coordinatea of the leftmost and rightmoat 

columns used for routing. 

' 1 2 3 4 2 5 4 I • • • • • • • 
' l 
l 
I 
I • • • I • • • • • • • 3 6 7 2 3 4 5 6 1 7 

Figure U.2: Routing across a rectangular channel. 
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3. Layer Assignment 
In order to realize the wires, layers have to be assigned to the paths representing them. A 

set of rules that specifies how paths can be run on the grid so that layer assignment becomes 

feasible is called a wiring model. Note that although the purpose of devising such rules is 

to facilitate proper realization with respect to layers, the rules are formulated entirely in 

terms of paths. Thus wiring models provide a powerful abstraction that serves to reduce the 

complexity or routing problems. 

Wiring models are classified by the number or layers they use. There are, however, a few 

models that belong to more than one such class, as we note throughout the description of the 

models. 

3.1. One-layer Models 

To model one-layer realization, paths corresponding to different wires must be distinct: 

two different paths may not have any overlapping segments, all of their turning points have 

to be disjoint, and no point of one path is allowed to lie on segments of the other. This 

wiring scheme abstracts ·a uniform unit separation design rule, and is appropriately called the 

(one-layer) aquare grid model. Figure 3 shows a typical routing in this model. In general, 

one-layer models can be used only when the interconnection pattern is planar. In the channel 

case, for example, the order of the terminals' labels has to be identical on both sides, to avoid 

crossovers. For a channel, such a 1ituation is called river ro~fing. 

Figure D.3: Routing in the one-layer model. 

3.2. Two-layer Models 

- - For two-layer realizations we have a variety of models, each reflecting certain methodologi

cal considerations. First we have the directional model: each direction in the grid is pre

assigned to one or the two layers. Thus, for any two paths no turning point of one path may 
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lie on a segment or the other. In other words, the paths may cross each other, but cannot 

share segments, or turn at the same grid-point. This scheme conforms with the traditional 

Manhattan wiring model [Lee61]. In current technology (e.g. nMOS, see [MeaCo80, Chapter 

21), connections between the layers are facilitated by contacta (sometimes called vias), hence 

the justification for not making two turns at the same point (causing two contacts to overlap). 

The directional model is illustrated in Figure 4(a). 

1 2 3 4 5 1 2 3 4 5 6 7 . . • ◄ I . • . . ' 0 . 
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6 _ 2 4 5 1 8 2 1 5 

(a) The directional model (b) The knock-knee model 

Figure ll.-i: Legal routing in Two-layer models. 

Second, we have the knock-knee model, which was in~roduced by Thompson fTh80). Here 

paths are allowed to share corners, i.e. they may have common turning points, but no segment 

overlap is allowed. Layers must be assigned in such a way that whenever a corner is shared 

between two paths (wires), they are in different layers. This model has the advantage or 

avoiding undesirable electrical properties that are due to overlaps between dift'erent layers, 

such as capacitive coupling (see, for example, (MeaCo80, Section 1.41), but the complexity of 

layer assignment may become the overriding iuue since now we have the freedom to change 

layers at any "free" grid-point. This subject is discuued in detail in Chapter Vll. An example 

or a legal routing in this model is shown in Figure 4(b ). 

Finally, we have the general model which differs from actual routing with two layers only 

by imposing a uniform unit separation design rule. For completeneBB sake we present here 

· a definition of the model (developed jointly with Alan Barats), but give no further analysis. 

- - At each grid point, the following rule must be satisfied. If the point contains a contact, then 

only one path goes through it and ita layer gets changed there; if no contact is present, up to 

two paths may go through the point in any way they please. 

6 

7 

4 
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3.3. Multilayer Model• 

The next model for routing in two or more layers takes a different approach to layer 

assignment altogether. In the via-free model, each net (wire) is routed in one layer and may 

not change layers along the path. We assume that all terminals are available in all layers, 

10 each net can be assigned a layer by the routing algorithm. This approach alleviates the 

problems caused by using contacts, at the expense or not being a "general" wiring model. 

Figure 5 shows that not every interconnection pattern can be realized using the via-free wiring 

model, but it can still be used to embed many useful networks, such as the shuffle-exchange 

graph. This "one layer per net" model js in many ways a natural generalization of one-layer 

routing, aa we shall see in the results or Chapters III and V. 

1 2 3 n-1 n n+l -----4~----- ... 

--.•-·-----• ...... -- -- ... 
n+l n n-1 3 2 1 

Figure µ.s: A channel that cannot be routed in the via-free model using n 
layers. 

,, 
General models r or routing in more than two layers involve complicated rules concerening 

conta~ts: A contact between layer i and layer j may not coincide with any wiring on the layers 

k in between, i < k < j. Providing a specific wiring model for three layers may still make 

sense, but for four layers or more we end up, in fact, routing in a three-dimensional medium 

[Ro81). This domain is beyond the scope or thi1 thesia. _ 



Chapter ill 

River Routing in Parallel Channels 

River routing across a channels is a special routing problem which arises oft.en in the 

design of integrated circuits, and it has been shown to be optimally solvable in polynomial-time 

for many wiring models (see in particular 1Bar81), [DKSSU81), [SieDo81), and 1To80]). In this 

chapter, we improve t.he formulation of routo.bility conditions for one channel, and demonstrate 

that the placement problem for river routing acron one channel is also polynomial-time 

solvable. Further, we explore the situation of river routing in aevcral parallel channels and 

draw a fine line between tractable and intractable placement problems in this situation. 

0.1 a2 as a, I I a5asa1asa9a1ol 

T 
apread '1• separation 

•· 

I I b10 I J:... 
bs b, bs be ,,,, ba bg Fl 

Figure m.1: Two sets of chunks on either side of a rectangular channel. 
Terminal f1i must be connected to b, for i = 1, .•. , 10. 

The general character of the placement problem for river routing is illustrated in Figure 

1. Two sets of terminals a1, ••• , a,. and b1, ••• , b,. are to be connected by wires across a 

rectangular channel 10 that wire i is routed from f1i to bi• The terminals on each side of 

the channel are grouped into chun/c, which must be placed as a unit. The quality of a 

legal placement-one r or which the channel can be routed-can be measured in terms of the 

23 
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dimensions or the channel. The separation is the vertical distance between the two lines or 

terminals, and the spread is the horizontal dimension or the channel. 

The wiring model gives the constraints that the routing must satisfy. Although our results 

can be generalized to include a variety or wiring models (see Section 5), we concentrate on the 

(ant-layer} square-grid model. Recall that crossovers are disaJlowed in the square-grid model, 

and all wires must take disjoint paths through the grid. 

The placement problem r or river routing arises often during ordinary integrated circuit 

design. A common instance is when the terminals of one or more modules are to be connected 

to drivers. The various independent "chunks" are the modules, which lie on one side or the 

channel, and the drivers, which lie on the other. 

A more interesting manifestation or the placement problem occurs in the context or 

design systems such as bristle-blocks [Jo79,Jo81] and DPL/Daedalµs IJ3MSSW8l,Sh82]. These 

aystems encourage a designer to build plug-together modules so that the difficulties u
aociated with general routing can be avoided. A deaigner may specify stretch line, which 

run through a module and allow the module t.o be expanded perpendicular to the stretch 

line, as demonstrated in Figure 2. When two independently designed modules are plugg~ 

together, stretch lines permit the terminals to be pitch aligned, that is, the distances between 

pairs of adjacent terminals are made to match the distances between their mates, and routing 

is avoided because the aeparation of the channel is zero. Unfortunately, this approach may 

not succeed unleu stretch linea are put between every pair of adjacent terminal■• The stretch 

lines may not only disrupt the internal structure of the modules, but the consequence may be 

an inordinate amount or stretching that leaves the channel with a large apread. 

The other extreme is to forego stretching altogether and river route between the terminals. 

But the cost may still be large if a l~ge aeparation ill required in order to achieve a routing. 

A reasonable compromise is to place atretch lines where it is convenient, and then do a little 

stretching and a little routing .. Determining how much or each to do is exactly the placement 

problem r or river routing. 

Most or. the results reported in this chapter repersent joint research with Charles E. 

Leiaerson. Section 1 gives a concise necesaary and ■ufficient condition for a channel to be 

routable in the aquare-grid model. Section 2 show■ that the Corm of this condition allows 

the placement problem to be reduced to the graph-theoretic problem or finding the longest 

paths from a source vertex to all other vertices in a graph. Based on this problem reduction, 

a linear-time algorithm for optimal placement i■ given in Section 3. The discovery or a 

linear-time algorithm was initiated by diacusaions with James B. Su:e or Carnegie-Mellon 

University. Section 4 shows that the placement problem for multiple, parallel channels i■ NP-
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Ji'igure ll.2: A module before and afLcr strelchi11g (courtesy of John IJatali). 

complete if the individual channel widths are not specified, but an algorithm whose running 

time is exponential in the number of chcmncls alone ci,n be used to find an optimal solution. 

The NP-completeness proof represents joint research with Michael Sipser. Section 5 shows 

that the placement algorithm for a single channel extends to wiring models other than the 

square-grid model, but its performance depends on the particular wirahility conditions for 

the model. Section 6 discusses t.lw application of our results to other routing situations and 

suggests further placement prohlems. 

1. Necessary and Sufficient Conditions for Wirability. 
Figure 3 shows a soll!tion to the problem of Figure 1 using the square-grid modt!l. As 

the figure suggests, wires have width and minimum spa.cing between them. 'l'hrou(~hout this 

chapter (alone), we adopt the convent.ion that a grid point corrnsponds to the lower left port.ion 

of a wire. In our model the terminals ni, ... , an and b1, ••• , b" occupy grid points on opposite 

sides of the channel. As can be seen in the figure, we obey t.l1e lower-left convention by rout.ing 

wires on the bottom row of grid poi11ts in the channel but not on tlw top row. Thin convent.ion 
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also allows terminals to be locatfid at the left corner or a chunk, such as b6, but not :it the 

right corner. 

ba 

Figure Dl.3: A possible solution to the problem in }i'igure 1 for which Lhe 
separation is 5 and the spread is 28. 

In order to establish constraints on wirability in this model, consider a straight line 

St"gmcnL drawn from (x1, yi) to, but not inchu.ling, (x2, y2 ). We ask Lhe question, "llow 

many wires cnn cross this Jine?" With a simple analysis we can show that t.he :mswcr is 

max(lx2 - xd, IY2 - Yd), Without loss of generality, assume the situation is a:; in 1"igur11 •l, 

and look at the 1~rid points immediately below the line, that is, 

Any wire crossing the line must perforce occupy one or these grid points, and therefore the? 
/ 

number of such wires is bounded by the cardinality of this set. 

Figurci ID.4: The number of wires crossing the half-open line s.~gment i1:1 at 
most t.he number of grid point.s immediately Ldow·thc line. 

Let us now turn to the river routing problem and examine how this constraint can bt! 

brought to bear. Let a 1, ••• , an denote both the names of the terminals at the top of the 

channel and their x-coordinates, and lr.t the same convention hold for the t,?rminals b1, ••• , bn 

at the bottom of the channel. Figure 5 shows a ha.If-open line scgmP-nt drawn from terminal 

bi to the grid point immediately to the right of tc.mninal a,. The j- i + 1 wires cmmtating 

from a,, ... , a1 must all cT1Js11 this line. Similarly, the j-i+ 1 wires crnanat.ing from bi, ... , b, 

-------------------------,-~----------~ 
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must all cross a line drawn from ai to b; + 1. In order for a channel with separation t to be 

routable, therefore, it must be the case! that 

max(a; - b, + 1, t) ~ j- i + 1 and max(b; - ai + 1, t) ~ j - i + l (L) 

for 1 ~ i ~ j < n. 

i- i + 1 wire~ 

/ 
/ 

/ 

/ 
/ 

/ 

F'igure Ill.5: The j - i + 1 wires from ai, ... , a; mm1t cross the dashed line 
bet.ween b, and a;. 

1\lthongh Condition (1) is a new condition for wirability, the analysis that leads to it is 

cRsentially the same as that in (DKSSU81J and represents previous work in the field. One of 
/ 

the contributions of this chapter is to provide a more compact condition which is equivalent: 

(2) 

for 1 ~ i ~ n -- t. The channel is always routable if t > n. 

Condition (1) implies Coudil,ion (2) because Condition (2) can be obtained by substituting 

j = i +tin Condition (1). F'or Lhc opposite direction, suppos,i lin;t that j - i + 1 < t; then 

rnax(a3 - b, + 1, t) 2 t > j - i + 1. If j - i + 1 > t, on tlrn other hand, then 

a, - bi+ 1 = ai+t +Ci•-i-t) - b, + 1 

~ a·H-e - b, + 1 + (j - i - t) 
~ t + 1 + (j - i - t) 

=i-i+t 

since ak+t 2 ak + 1 for all 1 ~ k < n. Thus the two conditions a.re indcP.d equivaltmt. 

Figure (i shows a simple geometric intcrpret.ation or Condition (2). The condition a,+t -
bi ~~ t means that a line with uuit slopr. going up anc.l to the right from b1 must intersect. tltr. 

t-op of t.lw channd at or to the lefL of terminal ai-H• Ir Lhe r.onc.lition fails, terminal b1 must 
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be to the right of a, for i < j < i + t -1, that is, each wire from a n.1 goes down and to the 

right, which can be shown to follow from the fact that a;+i ~ a,-+ 1. Thus the geometric 

interpretation of failure is that too many wires arc trying to cross the lin<l of unit s101,e. (For 

bi-t·& - ai > t the line with slope -1 going down and lo the right from ai must int.crsect the 

bottom of the channel at or to the left of terminal bi+t•) 

Permissible ranpe for ai+t 

a, ~lj/1/U/ll//////(I 

"'~~~ Permissible range for bi+t 

Figure ffi.6: Geometric interpretation of a·H-t ~ bi + t and bi-t-t > ai + t. 
'I'his geometric interpretation can be used to show that Condit.ion (2) is not only a 

necessary condition for rout.ability of the channel, but a suJiicicnt condition as wdl. In fact, a 

sirnt>le greedy algorithm will succei;sl'ully route a routablc channel. Processing terminals left 

to ri1tht, the greedy iilgorithm routes each wire across the channel until it hits a prcvio11sly 

routed wire; then it follows the contour of the opposite side until it reaches its destination. 

To see that this algorithm works given Condition (2), we must be more precise about 

what paths are taken by the wirns. Consider without loss of generality a block of consecutive 

wires that go down and to the right, that is, ai ~ bi for alJ wires in the block. Ji'or any 

horizont:ll position x such that ai - t < x < b0 define 

r1t:(x) = max(ai - x, max r). 
11,_,~z 

The path of wire i is tlrnn dcscrihed by the locus of points {x + 171 (x), 1/i(x)) for ai -t < x < 
bi. 

A geometric interprr:taLion of this formulation us,is the same intuition as was given in 

Figure 6. The line with unit ~lope drawn from (:t,O} whr-re xis in the r:mge ai - t < :c ~ bi 

must cross wire i. Tlrn value ru(x) givr.s the y-coordinat.e of wire i where it crosses this line 

of unit slope. The two-part maximum in Uw definition of 1Ji(x) corresponds to whether the 

wire is being routed straight :1cross the chanMl or whether it is following the contour of the 

bottom. The value of 771(r) for the latter situation i:s the numb<?r of wires to the left of wire 

i which must cr.>ss the line of unit slope. 
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We must now show that the locus of points for a wire is a path, I.hat the paths arc disjoint, 

and that they never leave the channel. That the locus of point:1 is indeed a path can be seen 

by observing t.hat as x ranges from ai - t to b;., the initial point is (ai, t - 1), the final point 

is (bi, O}, and with a ,:hangc or one in :i: the coordinates of the path chan1;c by a single grid 

unit in exactly one of the two dimensions. To show that the patbs am disjoint, consider two 

adjacent wires i and i + l, and observe for a,+ 1 - t < x ~ bi that ai - x < ai-f-1 - x and 

maxbi-r~Z T < maxb;;-1-r~Z r, and therdore '7i(x) < 'h+t(X). 

To show a path of a wire never leaves the channel, we demonstrate that 7h(x) < t for all 

i and x in tbe associated range. It is for this part of the proof that we need the assumption 

that Condition (2) holds. If for a wire i, the two-part maximum in the definition of 77,(x) is 

achieved by a;. -x, then 1'/,(x) must be less than t becauS<: x > a;.-t. Suppose 1,hcn, that the 

two-part maximum is achieved by the maximal r such that bi-r ~ x. To show that r < t, 
we assume the contrary and obtain a contradiction. But since bi--t ~ bi-r 2 x > ai - t, 

the contradiction is immediate because ai - b,-t ~ t from Condition (2). 

2. The Structure of the Placement Problem. 

The objc!ctive of a placement· algorithm is to set up a routing problem that is solvable 

and minimizes some cost function. Many criteria can be adopted to nwnsure the cost. of a 

placement for river routing, whether in terms or area (tot;LI or channel) or snmc other fund.ion 

or spread and separation. A plot of minimal spread v·ersus given separation reveals that 

the region of feasible placements may not be convc-ic although the curve is guaranteed to be 

monotonically decreasing. (Figure 7 shows the plot for the problem of Fi1~11re 1.) Any measure 

of placement cost that is a-function of spread and separation and wbich is monotonically 

increasing in each of spread and ~eparation will therefore find a minimum on this curve:: 

Thus we content ourselves with producing points on this curve, that is, determining a 

placement which achiet1ea (he minimum spread for a given aepuratiori t, if indeed the channel 

is routable in t tracks. If minimum separation is lhe goal, for example, binary search can 

determine the optimum t in O(lg t) steps. Since the algorithm presented in tlw next sect.ion 

determines a placement for fixed t in O(n) time where n is the number of tcrmi11als, and :since 

the separation n<?tid never be more than n, a minimum-separation placmncnt can be achir.vr.d 

in O(n lg n) t.ime. For more gcnciral objective functions such as area, the optimnl value cnn 

be determined in O(n2) time. 

We now 1?1taminc the characte.r or the placmnent problem for river routjng when the 

scpar:ttion t is given. The n t.errninals are localed on rn chunks which arc pnrt.itioned into 

two scl.s th11t form the top and bottom of the diannel. li'or convenience, we shall number the 
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Figure ill.7: The curve of minimum spread versus separation for the 1ixample 
of Figure 1. 

III.2 

chunks from one to k on the top, and k -t- l to ni. on the bottom. 'l'he ordN of chunks on <:a.ch 

side of channel is fixed, but they may be moved sideways so long as they do not overlap. l•'or 

each chunk i, a variable Vi represents th.? horizontal position of it;; ll!CL edge. Any placement 
/ 

can the ref ore be specified by an as:;ignment of values to these variables. We also add two 

variables v0 and vm+l to Lhe set of variables, which represent the left and ritht boundaries 

of the channel. The spread is thus vm+t - v0 • }i"igure 8(::i.) shows the eight variables for the 

example from Figure 1. 

Since the relative positions of terminals within a chunk is fixed, the wirability constraint.I} 

of Condition (2) can be rcexpressed in terms of the chunks themselves to give placement 

constraints that any assignment of values to the v, must satisfy. Ir terminal C.ti+t lies on 

chunk h, and terminal bi lies on chunk j, the constraint ai+t - bi > t can be rewritten ns 

t11i. - v1 ~ r1i.1, where r1i.; reflects t and tlw offsets of Lbe terminals from the lcfL edge of their 

resp1?ctive cht1nkR. The constraint between two chunks determined in thiis way will be I.he 

maximal constraint induced by pairs of terminals. 

Additional com:traints arise from the relat.ivc positions of chunks on cit.her side of the 

channel. For each pair of adjac<·nt chunks i and i + 1, the constraint Vi -l· l - vi ~ Wi must 

be added to the set of placement constraint11, where Wi is the width of chunk i. F'our mQrc 

constraints are ncc1l1?d which involve the houndnry variables v0 and Vm-/-1 • Ji'or chunks 1 

and k + 1 which arc lefi.mo11t on the top· :ind bottom, the com:Lraints v1 -- v0 ~ 0 and 
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• • 9 • 

Vo 
l b3 ;., bs rb6 b1 ba I I b'10 I b9 

V7 
(a) Assig:iment of vilriables lo chunks and channel bc1rndarics. 

(b) The placement graph for separation 3. 

Figure Jti.8: Representing the placc!rnent constraints as a graph for the 
l~amplc of Figure 1. 

VA:+1 - 1Jo ~ 0 enforce that these chunks lie to the right of the left. boundary of the channel. 

For chunks k and m which arc rightmost on the top and bottom, the relations Vm--f-1 - Vk ~ 

WA: and t1m+1 - Vm ~ Wm constrain them to lie to the left of the right boundary, where Wk 

and Wm arc the widths of the c.hunk.s. 

Figure 8(b) shows a placement grc:.ph which represent,s the constraints beLween chunks for 

the placement problem of Ji'igurc 1 where the separation is 3 tracks. A directed edge with 

weight 6u goes from Vk to "' if therli is a constraint. of tlw form v, - v1.; ~ 6kt• For example, 

the wcigl1t of 1 on the cros., edge going from v5 to v2 is Lhe maximal constraint of ag - bs ~ 3 

and arn-b1 ~ 3 which yiC?ld t12-v5 ~ -2 and u2-t,5 ~ 1 since ag = v2+S, a10 = v2-t6, 

b6 = v5 1 and b1 = v 5 + 4._ The .,ide edge from 1,4 to 115 arises from t.he constraint that chunk 

4, which is 5 unit-s long, must not overlap chunk 5. 

The goal of the placcnwnt problem is Lo find an assignment of values to the Vi which 

- n1inimizcs the spread Vm-1-1 -- t'o subject to the set of constraints. This formulation is an 

inr.tancc of linear programming whC?re both tht~ coirntraint.s and I.he nhjcctivc function involve 

only difforrnces of vari:thlcs. Not surpri:;ingly, this problem can be solved morP <·nidcntly 

------------
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than by using general linear programming techniques. ln fact, it reduce:; to a singlc-source

longest-paths problem in the placement graph. The length of a longest path from 110 to v,n.t l 

corresponds to the smallest spread or tlw channel that complies with all the r.onstraints. The 

placement of each chunk i relative to the left. encl of the channel is the lonf;cst path from 110 

to Vi, lf the placement graph has a cycle of positive weight, then no placmnent. is possible for 

the given separation. 

For the placement problem of Figure 1 with a three-track i.ep:iration, Lhe longest path 

from vo to 112 in the placement graph (Figure 8) is v0 - V1 - ·v4 - vs - t 12 with weight l3 

which corresponds to the positioning of chunk 2 in the optimal placement shown in Figure 

9(a). Figures 9(b) through 9(d) show optimal solutions to the placement problem of Figure 

1 for separat.ions t = 4 through t = 6. The constraints for t = 2 yield a cyde of positive 

weight in the placement graph, and thus no placement is possible which achieves a separation 

of only two tracks. 

3. A Linear-Time Algorithm for the Fixed-Separati9n Placement Problem. 
The analysis of Section 2 showed that the optimal placement problmn for fixed-separation 

river routing was reducible to the single-sourt:e-Jongest.-paths problem on a placement graph. 

li'or a genera] graph G = (V, E) this problem can be sol vcd in time O(I VI• IEI) by a Bellman

Ford algorithm [La76). Detter performam:e is possible, however, chm to the special structure 

of pll\cemcnt graphs. This section rev1ews the Bellman-Ford algorithm, and shows how it can 

be adapted to give an O(m)-time algorithm for the longest-pa.Lbs problem on a placement 

graph, where m is the number of chunks. Since the placemllnt constraints can be generated 

in O(n) time, ·where n is the number of terminal pilirs, this algorithm leads to an optimal 

linear-tinrn algorithm for the fixed-separation placement problem. 

The linear-time algorithm is a rclinenumt of the st.andard Bdlman--Ford algorithm which 

for each VP.rtcx Vi where i = 1, ... , m + l, iteratively updates the length :\( vi) of a tentative 

longest path from v0 to u,. The al1;orithm initialb1,es X(·u0) to zero, and all other )-.('u,) to -oo; 

theri iL Rliquenccs through a list t of edges, and fo1· each edge (v,, v,) with wci,~ht. 6,,- updates 

~(v1) by 
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~ 

: 

bg b10 

(a) Scparntiun 3, spread 27. 

b9 b10 

(b) Separation 1, spread 2G. 

·- . 

. 

bi b2 b3 b"' bs ba b1 ba ~9 b11, 

(c) Separation 5, spreacl 26. 

. . 
a1a2a3a4 115 aa a1 a9 a9 n. 10 

. . . . . 

b-, bs b<J b10 

(d) Sr.parnlion 6, Rpread 23. 

Figurf' OI.9: Optimal placC'rnr.nl:1 nnd routings for the problm1 of Figure l 
with separations ranginv, from t = 3 l.-0 t = 6. 
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The list £ of edges is the key to the correctness of the algorithm. The length of a longe.,t 

path from lite source Vo to a vertex v1 converges to the correct value if the edges of the path 

form a subuquence of the list e. (This can be proved by adapting the analysis of !Yc70J.) In 

the normal algorithm for a general graph G = {V,E), the list e is IVI - 1 repetitions of 

an arbitrary ordering of the edges in E, which r,nsures that every vertex-disjoint path in G 

beginning wiLh v0 is a subsequence of c. H there arc no cycles of positive weight in the graph 

G, then from v0 to each other vertex in G, there is a longest pat.h that is vcrt.ex-disjoint; 

hence the algorithm is guaranteed to succeed. The condition of positive-weight cycles can 

be tested at the end or the algorithm dthur by checking whether all constraints arc imtisficd 

or by simply running the al1toril,hm through the edges in E one additional time and testing 

whether the values of any >.( vi} change. 

The list e is also the key to the performance of a Bellman-Ford algorithm. For the general 

algorithm on an arbitrary graph G = (V,E), the length of the list is (IVl-1) · IEI, and thus 

the algorithm runs in O(IVI • IEI} time. For a placement graph it ii not diflicult to show 

that both IVI and IEI are O(m), and thus the longest-paLbs problem can be solved in O(m2
) 

time by the gcner:d algorithm. But a linear-time algorithm can be found by cxploitiug the 

special structure of a placement graph to construct a lisL e of length O(m) that guarantees 

the correctnc:.s of the Bcllrnan-Ji'or<l algorithm. We now look at the structure of placement 

graphs more closely. 

The vertices of a· placement graph G = (V, E) corresponding to the chunks on UIC top of 

the channel have a natural linear order imposed by the left-to-right order of the chunks. We 

define the partial order -< as the union of this linear ord~r with the similar linear order of 

bottom vertices. Thus u -< v for vertices u and v if their chunks lie on the same side of the 

channel and the chunk that corresponds to u lies to the left of the one which corresponds to 

v. The lefL-boundary vertex v0 prccedt>s all other verticc?s, and all vertices precede the right: 

boundary vertex vm.+t• The partial order :5 is the natural extension to --< that includes 

cquamy. 

The next lemma clcscri bes some of the structural properties of placement graphs. Figure 

lO illustrates tht! impossible situations describP..d in Properties ( i) and ( ii} and shows the only 

kind of simple cycle that. can occur in a plncement graph together with the two consecutive 

cross edge is that satisfy PropcrLy ( iii). 

Lemma UI . .l. A11y pli.ice11w11L graph G == (V, E) lws llw following projlcrties: 

There do rwt t.•xist cross edges (u, v) and (x, y) such that u -< x and y -< v. 

(ii) TIJ<•re do rwt (?Xist cr<Jss Pdges (u, v) and (x; y) !iUclJ tliat v -< x :md y --< u. 

( iii) All cycfos h,irc two cons,icutivf! cross edges ( u, v) and ( v, -w) such that w ~ u. 
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c( 
---

The situation forbidc.leu by Property ( z"). 

(b) Th~ situation forbidden by Property (ii). 

----- , V ---
(c) Every simple cycle contains at most one vertex from the top or 

at most one vertex from the bottom. The edges incident on the 
vertex are a consequence of Property ( iii). 

Figure !U.10: The properties or the placement graph enumerated in Lemma 
1. ,• 

Proof. Propcrlic11 (i) and (ii) cc'\n be proved hy considering which or 1.he terminal 

constraints from Condition (2) induce the edges in the placement graph. For each of these 

cases, suppoac the edge (u, v) was caused by the terminals i in u and i +tin v, and the edge 

(x, y) came from the terminals 1· jn x and i + t .in y. For Property (i) we have u ~ x and 

y -< v, and thus i < i and j + t < i + t. Canceling t from tins latter inequality obtains 

the contradiction. The assJJmption t.o be proved impossibJn iu ( ii) is that v -< x and y -< u, 

which implies i + t < j and j + t < i. Since t is nonnegativr., we gain a contradiction. 

'fo prove Property ( iii), 1Nc neC?d only consider simple (vertex-disjoint) cycles. Since no 

cycle can ·consist !iolcly or side edges, every simpl<! cycle must have a cross edge (u, v) i~oing 

from bottom to top. In order to cornpleLe the cycle, thc!re must be a top-to-bottom edge (w, x) 

s11-!h that v ::5 v, and x ~ u. Ir v = 10 or x = u, then tlw pair of edgen satisfic~s Property 

(iii). But if v ~ w and x ¥:- u, then the pair of edges violat~s Property (ii). D 
Each edge in the placement graph is dther a top cdgfi, a top-boUom edge, a boUom-top 

edge, or a bottom edge. For each of these four m~ts of edges, tJuirc is a natural linear order 

of edges ba5cd on ~' where (u, v) precedes (:.c, y) ior two c<lg,is in t.lw. 1mme Met if u ~ x and 
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v -< y. Property ( ii) guarantees that the linear order bolds for two cross edges in the same 

set. Let TT, TB, BT, an<l DD bet.he four lists of edges according to the natural linear order, 

and include the two cdgns out of vo and the two edges into Vm-f-1 in either TT or lJ □ as 

appropriate. 

The list e used by the Bellman-Ford algorithm is constructed by a merge of' the four 

lists which we call MEH.GE. At each step of MERGg, a tournament is playeci among the first 

elements of each list. Jr (u, v) and ·(v, w) arc the first elements of two lisls, then (u, v) beats 

(v,w) if w ~ u. Since there may be more than one edge beaten by none of the other three, 

tics arc broken arbitrarily. The winner- is appended to t and removed frt>m Uw head of its 

list. The tournament is then repeated until no edges remain in any of the four lists. The 

performance of t.be tournament call be improved by recognizing that only six of the twelve 

po~sible comparisons of edges need he tried, and that w ~ u is guaranteed for all but two. 

Fii~ure 11 shows a possible ordering of edi~es in e for the placement graph in Figure 8. 

Figure m.H: A possil,le ordering of edges in ! for the placement graph in 
F'igurn 8. 

In order for :MEI1GE to be wc:ll-defined, the tournament must always produce a winner, 

which is a conscqum1ce of the next lemma. 

Lemma m.2. The li.~t € produced by 1-UCRCE is a topological .,ort of the edges of E 

aci:ording to the rr:lation R where (u, v)R(v, w) if w i u. 

Proof. First, we show that the relation H is a.cyclic so that the edges can indeed be 

topologically sorted. Dy definition of R, a cycle in R induces a cycle in the pl:1.cemcnt r;raph. 

According to Property (iii), the cycle must have twc, consecutive cross edges (u, v) and (u, w) 

such that w -< u. But since (u, v)R(11, w), we also have that, w i u, which is a contradiction. 

TJrn proof th,tt Mim.cg topologically sorts the edges of E according to n makc!l use or 
t.)1e fact t.hat if a vertex vis I.be tail o( an nrbit.rary edge in a.ny one oft.he four lisLs TT, TB, 

BT or DD, then for every u ~ v there is an ,·cl1~0 in Urn s:uuc list emanating from u. Suppose 

that. JvfEHGI•: doe~ not topologically sort t.ltt' ·,~dges of E ar.r,,rding to R. Then there is a first 
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edge (u, v) in e such that there exists an edge (v, w) earlier in t and (u, v)H(v, w). Consider 

the edge (x, y) in the same list as (u, v) that competed wit.h (v, w) when (v, w) was the winner 

of Lhe tournauwnt. lt'or P.ach of the possible combinations of lists for (u, v) and (v, w), it can 

always be deduced that there is an edge emanating from y such that which makes (x, y) an 

earlier violator or the topological sort than (u, 1J). I 
Since each edge of E is included exact.ly once in the list t created by MEHGE, the 

Bcllman-Ji'ord algorithm applied to e has a running time linciar in the number of chunks. The 

correct values for longest paths are produced by Urn algorithm if for every vcrl<ix v, there is a 

subsequence of ! that realizes a longest path from v0 to v, under the ai;sumption that there . '• 

" are no positive-weight cycles in Uw placement graph. Since for every longest path, there is a 

vertex-disjoint longest path, the following theorem proves the correctness of this lin,•ar-time 

Bcllman-Ji'ord algorithm. 

'l'heorcm III.3. Let G be a placement graph with left-boundary vertex t,0 • Then every 
~ 

,,crtcx-disjoint path l1eginning with v0 is a subsequence of the list ! created by the procedure 

MERGE. 

Proof. We micd only show that every pair of consecutive edges in a vert«!x-Jisjoint path 

from v0 satisfieH El because then Lemma 2 guarantees that tlw path is a subi;cquence of e. 
Suppose (u, v) and (v, w) arc two r.onsecut.ivc edges on a vertex-disjoint path from v0 which 

violate R., that is, w ~ u. If either (u, v) or (v, w) is a side edge, the pair must satisfy R, and 

thus both must be cross edges with the vertices u and v{ on Lbr. same side. Since if w = u, 

the pat.h is not vertex-disjoint, we need only show that w -< u is impossible. 

Assume, therefore, that w -< u, and consider the "initial portion of the path from vo to 

u. Since v0 -< v and v0 -< w, there must be 1111 edge (:r, y) on the path which goes from the 

set of vertices to the lefL or (v, w) to the right or (v, w) in order to get to u. But then c~her 

Property ( i) or Property ( ii) is violated depending on whether x -< v and w -< y, or y --< v 

and :r-< w. I 

4. The Placement Problem for Multiple Parallel Channels 

Multiple, parallel hoi:izont.al channels (Figure 12) are easily handled within the same 

graph-theoretic framework a:. long as the widt,h of each channel is given. Every row of 

chunks is represented by a chain of vertices from a common left boundary t.o a common right 

- boundary. The wiring coaditioni; in the channels arc represented by edges linking adjacent 

chain:;. The optimal placl?ment is achieved by t;olving tfo:• longc:d, J>aths problem on this graph. 

The standard l3dlman-Forcl al1~oril:hm runs in lime O(n + m 2) since tlu~ numlwr of e1l1~«!S in 
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the grnph is O(m). We do not know whether improvements of the kind used in Section 3 for 

the single channel problem can be obtained for the multiple channds case. 

The problem is much harder, however, when the input is specified so t.hat only t.he s1,m 

of t.he channel separat.ions is given. Then the problem is to allocate the channel widths so 

as to minimize the spread subject to the a.dditional constraint on the channels' total wutth. 
,· 

This problem is shown here to be NP-complete. The NP-completeness result was obtained 

jointly with Michael Sipser. 

'fhe problem can be stated formally as follows: 

(PDPJ PLACI~MENT FOU A DATA PATIi 

INSTANCE: A set of modules arranged in k -1- 1 rows, with all modules in the same row 

having the same height. Each module (except thone on the first and la.st rows) faces two 

channels - one at its top, the other at its bottom, with terminals on those sidrs. The top 

row has terminals only on the bottom of modules, the last -- only on their top. AlJ k channels 

arc river routab]e (so the order of modules in each row is fixed}. The dinumsions of the total 

routing area are also given: the sum of ihc widt.hs of all chanuels, t, and a spread, s. 

QURSTION: Is there a placement for the modules (in straight. rc,w11) such that all channels 

are routable, the sum of their widl;hs docs not cxccccl t.hc prespedfie<l t.otal width t, and the 

total c:xtent of the layout in the horizontal dimen:;ion (i.e. the distance from the lcrtuwst rdge 

of a module to the rightmost r.dgr!) d1,cs not exc<'cd s? 
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The transformation* is from Satisfiability of Boolean Expressions [GaJo79, pp.260-26lj. 

The set of binary connectives we use is { -> 1 -, }. The given formula 1 has p variables and q 

nodes in its parse tree. 

The data path placement problem 1.hat W<l construct. can be described by a franwwork into 

which the modules arc beinit put. Each variable in 1 is represented by a column consisting of 

one module in each row. Columns are separated by fomulcition.'I of the frarnllwork that ensure 

that no lateral movement of viniable-modules is allowed lwyond the extent of the column. 

Each column carries a signal by terminals that ke<ip all modules in a column vertically aligned. 

A truth assignment or a variable corresponds to whether the modules in the column arc 

justified to the lefL (true) or right (raise) margin of the column. We find the parse I.rec with 

the smallest number of intermediate terms, ancl add one extra column for <•ach :mch term. 

We <msurc the vertical ali1~nment of variabfo-modules in a ,:olumn an<l of the parts of the 

foundation by conncclin1~ them ·with a large number of nets that are ti~htly packed along 

the modules' sides at the same offset from the lcfL hand corner. The exact number will be 

calculat.e<l later. Hecall that the horizontal alignment of modules in a row is required by the 

problem specification. 

The 011rrators (--+ and -i) arc realized by the channels, two channels per oper:ltion. 

The interaction between a variable and its surrounding foundation at the intersection with 

the channel· is t.he key for realizing an operation. We demonstrate this by exposing the 

construdion for the implication, illustrated in Figure 1.3 which shows ihc construdion for 

x1 -+ x2• xi is realized by the column on the left, and x 2 -- by th~ column on the right. 

Across the top channel of t.he operation x 1 is conncc_ted to a part of the foundation that is 

to its Pight. x2 is connected to the foundation on its left across the bottom channel. If the 

modules for x1 are on the left, the separation of the top channel has to be at h!ast 1. If we 

want the combined s~paration of the two channels to be at most 1, the modules representing 

x2 have to be left justified in their column. If, on the other han<l, the modules for x 1 are on 

the right (meaning x1 is fals1,), x 3 can be assigned any value. A similar construction realiies 

the negation operation. 

Thus we set the spread Lo be the width of the assembly, and the separation is half the 

number of' channels. The number of terminals that c,mm•ct across a channel between two 

modt1les of the !lame variable or lwo blocks of thu foundation is one more than the numbl'r 

or r.ha.nnels. This way ;my additive ira<lcolTs between clmnnt'b are b~ing ruled 011t1 and the 

formula 1 can he sat.bfied if and only il' the data path <'an hn laid out; within lhe specified 

dimensions. 

* vVc use t.hr. f.C'rm iuology of !GnJo7'.>J, therefor~ "transformation" and not "reducLion". 

- ---~--- - - ------
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Figure fil.13: The realization of x 1 -+ x2 by two cha.nncls in the data path 
placement problem. 

5. Nonrectilinear ond Multilayer Wiring Models 

JIU 

For a single channel, the reduction from the Jix<:d-scparation placement problem in the 

S<1uare-grid model to the single-sourcc~longcst-paths problem is possible because the wirnhility 

constraints can all be written in the form vi - v; ~ 6,,. Thus for any wiring model where 

wiring constraints can be written in this form, the reduction will succc?cd. Also, it should be 

obr.crvcd that in general, the performance of the singlc-sourcc-longC'st-path algorithm will not 

be linear, but will be a function or the number of constraint.; times the number or variables. 

This sect.ion reviews other models and gives the necessary an,l sufiicient wirability constraints 

for each. Some of these mo,fols arc dii;cusscd in [Bar81J, [DKSSU81), [SieDo81], and (To80]. 

1. One-layer, gri,lle.,s rectilinear. Wires in this model must run horizontally or vertically, 

and although tlwy nc<id not run on grid points, 110 t\vo wirns can come within one unit or each 

other. 'l'hc wimbility constraints for this model are the same as for the square grid model: 

ai-+t - bi ~ t and bi+t - a-i 2 t 

for 1 S i ~ n - t. As with the square-grid model, the fixcd-scparat.ion placement algorithm 

for this mocfol can be made to run in linear time. 

2. O11e-layer1 gridlcss, rerlilinear and forty-jive degrr.e. This model is the same as the 

gridlcss rectilinear, but in addition wires can run which have slope ±1. The constraints in 

this case are 

ai+r - bi > rV2 - t and b~+r - ai 2 r..fi - t 

for t/v'2 ~ r S t and l. ~ i ~ n - r. The placement al1;orilhm for I.his model runs in 

O(min(tm2 + tn, m 3 + tn, m 3 + n 2)) time. 
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3. One-layer, gridless. Wires can travel any direction. The constraints arc 

a·+ -b· > V.r 2 -t2 and b+ -.-.:a > ../r2 -t2 ,r ,_ ,r ,_ 

fort~ r < n and 1 ~ i ~ n - r. The placement algorithm runs in O(m3 + n 2) time. 

4. Mullilayer models. All the models presented until now have been one-layer models. 

It is natural to generalize to I-layer models in which wires may travel -on difTerent layers. 

Hemarkably, optimal routability can always be achieved with no contact cuts (Bar81], that is, 

a wire need never switch layers. The necessary and suflkicnt conditions for these multilayer 

models are a natural extension of the one-layer conditions. For example, in the one-layer, 

gridless, rectilinear model the conditions arc modified for l layers to be 

for l ~ i ~ n - lt. 

There are some wiring models, however, where upper and lower l,ounds for wirability 

do not meet. li'or these models a constraint graph which represents upper bounds will give 

the best possible placement for t~ose bounds. A graph represeut.ing lower bounds will give 

lower bounds on the best possible placement. To1;ether, bounds can be established J"or some or 

these mo<lels, and heuristic algorithms invoked to attempt routing within the feasible ran1~e 

of optimality. 

6. Extensions and Conclusions 
A variety of related placement problems can be solved by the method described in this 

chapter. Some ent.ail extensions t.o the problem specifications, others employ dilTerent wiring 

models. In this section we shall mention a few ext<?nsions we can handle and suggest further 

research on more complicated problems. Some or these problems are exploreri in other 

chapters of this thesis, anc.1 appropriate references arc given. 

• Noririver routing. The placement algorithm gives opt.imal placnmcnts for river routing, 

hut there are other routing configurations for which it works optimally as well. One example 

is the two-layer, any-Lo-any routing problem where two sets of terminals must be connected 

across a chann<!I, but they may be connected in any order. More on U1is can he found in 

Chapter VI. 

• Rcmge-terminals. In some routing situations terminals occupy not a single point, buL 

rather a contiguous region along the <-'ltge of th~ channel. For example, the terminal mi1~ht 

be a wire that r11ns alonr, the edge of the chunk, and connect.ion c.:rn be made to t.l:e wirn 
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anywhere. The additional flexibility of viewing a terminal terminal as a contiguous range of 

points can be exploited by both the greedy routing algorithm and the placement al1~orithm 

in any of the river-routing models we have discussed. 

Each range-terminal is specified by an interval (af', af] or (bf, bf]. The greedy routing 

algorithm operates as before with minor changes. If the range-terminals overlap, the wire is 

routed straight across. Otherwise, assume without loss or generality that a:1 < bf', and use 

the standard greedy algorithm to route a wire from ap to bf. 
The wirability conditions for placement are accordingly adjusted. In the rectilinear case, 

for example, the condition ai+t - bi .> t is rewritten as a~H - b!· ~ t and condition 

bi+t - ai ~ t becomes bf;_, ___.: af ~ t. The transf ormalion to chunk variables is as before 

and the placement algorithm is unchanged. 

• Variable-width wires. In some applications the wires that must be routed do not all have 

the samn width. Our scheme can be generalized to deal with this situation as long as each 

wire has uniform width. Bot.h routability and placement for a fixed-separation problem can 

be determined in linear time by computing an experimental cumulative distribution function 

(ECDJi') of the wire widths . 

. The wirability conditions have to be changed and all coordinates are real numbers, not 

grid points as before*. The l~CDF is obtained by drawing parallel wire segments having the 

widths of the terminals ai, ... , an at minimum spacing between them, as shown in Figure 

14. We denote the x-coordinate of the left end of net i's representative by li, and align the 

diagram by l1 = O. 

Figure Jil.14: The experimental cumulative distribution fttnction for five wires 
of widths 7,2,3,5,1. The spacing required bctwlien wirns is 2 
units, thus 12 = O, l3 = 13, etc. 

Ji'or a fixed separation t, we associate with each net i the variable Xi = l. + t. To l1?st 

routability we draw fort.y-fivc degree rays from the left corner of each tt?rminal. For terminal 

ai, wu find Lhe terminal b1 closest on the lcfL to the intersection poiut on the bottom, and set 

d to the distance between (Urn left corner of) bi and the intersection point. We require that 

d ~ 0. Tlwn we set x1 = l1 + d, and the rontabiliLy condition is that Xi < x1 for all nets i 

" A finer grid, such as t.he >.-grid usl!d in [tfoaCoSO]· could be 11,ed instead or real numbers. 
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and their corresponding x/s. The test has to be repeated by applying it to all b;'s as well (in 

place of the a, 's above). 

• Minimum jogging. The number ot' jogs (or turns) of wires produced by the greedy 

algorithm may be excessive. In some cases, O(n2 ) jogs will be produced when O(n) jogs 

suffice to route the same channel. An adaptation of the routahility constraints developed in 

Section 1 can be used to absolutely minimize the total number of jogs in the channel; this is 

described in Section V.4. 

• River-routing in a polygon. Instead of constraining terminals to lie on two parallC!l lines, 

we allow them to reside anywhere along the boundary of a simple polygon. The planarity 

of the interconnect as well as the wirability within the polygon's area can be tested in time 

O(n + p), where pis the number of corners in the polygon. A routing can he produced in 

time O(n2 + pn) using an extension of the greedy algorithm. These? results arc described in 

Chapter IV. 

• Two-dimensional river routing. The two-dimensional river-routing problmn is illustrated 

in Figure 15. In the figure, a line between two chunks indicates that wires must be river

routed between them. Unfortunately, in order to optimally solve this general problem, it 

appears that the constraints indicated by the lines must be convex in b!>t.h dimensions, not 

just in one as is the case for the wiring models considered hern. When the constraints are 

convex, however,· convex programmirrg can be used to optimize a cost funcLion such as the 

area of the bounding box of the layout. One model which gives convex constraints for the 

general two-dimensional problem is the one in which all wires must be routed as straight line 

segments between terminals such that no minimum spacing rules are violat11cl. This model is 

not particularly interesting from a practical standpoint, however. Heuristics for solving the 

related two-dimensional compaction problem by repeatedly compacting in one dimension and 

then the other can be found iu [Ils79]. 

A different perspective on the two-dimensional river routing (and related placement issues 

other then stretching) is explored in the next chapter. 

A major deficiency of many placement programs is that they lack knowkdge about 

the wirabiHty of the routing problems t.hat they set up. We have shown for river routing 

that wirability conditions can be translated directly inlo placmwnt constraints without the 

overhead of actually wiring the channel. For rectilinear river routing, the running time of 

- the greedy wiring algorithm is O(n2), and any cost function for placement that. is monotonic 

in sprrad and separation can be opt.imi1,t:d in O(n2) time without. the overhead of rouLing. 

Stud;>1ing wirahility i:i. the general l'.ase may l<:ad lo thu development of heurist.irs for wirnbility 
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Figure lll.15: A two-dimensional extension to the river-routin~ problem. A 
eolid line h<!L',vcen two modules indicates routing or.cum betw(!cn 
them. 

that do not involve routing. A progratn that uses this heuristic knowledge rhould be able to 

onlperforrn the iterative place-route, place-route programs that dominate today. 

III.6 
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Chapter IV 

Generalized River Routing 

The problem of river routing across a channel, as studied in Chapter m, is only a special case 

of more general routing configurations. Both its methodological and combinatorial characteristics 

can be extended in useful ways which will be explored· in this chapter. The two characteristics 

that we generalize here are plana~ity and grouping. Planarity means that the connections are 

realizable in one layer, i.e. the interconnection pattern or the nets i1 planar. Grouping, which is a 

restriction of the planarity characteristic but deserves attention in its own right, means that the 

connections are made in order, that is to say that the routing or net i + 1 i1 adjacent, conceptually 

and preferably physically, to the routing of net i. 

This chapter investigate, placement and routing problems within the same framework. First 

we provide a graph theoretical model that accomodatel the interconnect specifications in a 

■uccinct manner, allowing us to ftnd a placement that enable■ a planar routing pattern in linear 

time. Second we study problems of detailed routing, namely whether wires fit in the area allotted 

by a 1peci_fic placement. ·Detailed planar routing of two-point nets for an entire chip (with 

rectangular modules) is shown to be NP-complete, whereas a polynomial time algorithm is given 

for detailed routing for a simple polygon (without holes). Rout.ability testing is shown to be easier 

than the actual generation or the wires. 

1. Introduction 

The iSBue of planarity is not new. Much of the attention devoted to the subject in the context 

of the design of electrical circuits dates back to the PCB era, when layer changes were expensive 

41 
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and degraded the quality or products. But even in the current MOS technologies single layer 

realisations have non-negligible advantages, because one layer (metal) is highly preferable to the 

other■• 

To discuss the grouping iBBue, we need to define cable■ and aequences. A maximal set or nets 

that connects one sequence or terminals on a side or a module in order to another sequence on 

another module, is called a cable. A sequence or terminals encapsulates the notions or contiguity 

and or a geometric order between the terminals. For sake or presentation, we confine ourselves 

to sequences that lie along one side or one module. In other words, a sequence cannot be split 

between modules and is lined up along a straight piece or a module'• boundary. Both tbeae 

restrictions are not easential, since more general notions or sequence■ can be constructed using 

this basic type without impairing the validity or the technical results presented in this chapter. 

Cables occur frequently in many designs, most notably in the design or microproce110rs 

where fields or data have to be transmitted from one place to another. The recognition or 

routing patterns such as cables constitutes an abstraction mechanism by which some or the low 

level details are suppressed in favor of a clear perception or the architectural issues. Such an 

abstraction is i~portant not only from a methodological point or view, but also useful in reducing 

the complexity or BOlutiona to teveral problems. In addition, it ia easier to control the circuit 
/ 

level perlormance or a parallel connection if the realization or all signals involved is similar, i.e. 
the wires are known to have aimilar characteristics in terms or layering, length, and jogging. 

In Section m.1 we saw that the problem or routing a cable acroaa a channel can be solved 

efficiently and optimally. One salient aaumption in that setting was that the orderinga or 

terminals on both aides conformed in such a way that a planar reali1~tion waa possible (provided 

there was enough room). In the general case, we mu1t decide whether this is the case to ■tart 

with. This teat has two parts. First, "Ii there a pasaage between the locations or the involved 

aides!", and second, "Are the aide■ oriented properly with respect to each other!" Figure l(a) 

demonstrates how the orientability iuue comes up even in the channel case. When the aides are 

further apart on the chip this problem may look harder (■ee Figure l(b) and (c)), but in fact it 

is not. The problem can be formalized u follows: 

(CR] CABLE ROUTABU.ITY 
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INSTANCE: A placement or a set or rectangular modules within a bounding box, and a cable 

connecting two sequences on (not necessarily disjoint) sides of modules. Then terminals or each 

sequence are numbered in order from 1 ton. 

QUESTION: Is there a planar (one-layer) realization for this cable? 

• • • 
.1 I 1 2 3 

I .~ -
3 

I I . . . ' . 
5 4 3 2 1 (b) properly oriented cable 

(a) A cable crosses 
a channel the 
wrong way. •3 

'2 

'l 
-- I 

• • • 1 2 3 

(c) improperly oriented cable 
Figure IV.1: Two-dimensional extensions to the river-routing problem. 

In a more general setting, however, we may have. the freedom or orienting the modules in 

such a way that will enable routing in the plane. Recall (from Section U.1) that the operations 

that may be performed on a module before it is. placed are (rectilinear) rotation and reflection. 

After a module is placed we may modify ita position by tranalation, which is the ability to move 

the module in the plane without changing its orientation. Reflection is essential in enauring 

the feasibility of planar embeddings from a topological point of view, whereas translation and 

rotation may be required from a geometric viewpoint-to make room for wirea (as we have seen, 

in part, in Chapter ID). All three operations are realisable at the mask level for integrated circuits 

without affecting any of the phyaical upect■ of the design. Reflection, however, may not be aa 

eaay to realize in a PCB design, which is a major concern since this very operation is the one 

that is most important r or the pouibility of planar embedding. 

The question to be asked, then, i■ how can these three operations (or a aubset thereof, 

excluding rotation) be used in generating a placement (or modifying an existing one) in which 
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all cables are routable in the.plane. First we state the problems concerning the topological iBBue 

alone. For the feasibility of planar interconnect we distinguish between the case in which the 

placement is given and the case where we are free to determine it. 

(PR] PLANAR ROUTABILITY 

INSTANCE: A placement of a aet of rectangular modules within a bounding box, numbered 

terminals on modules' boundaries.· 

QUESTION: Is there a planar embedding or the interconnect wires tor this given placement! 

(PO] PLACEMENT ORIENTATION 

INSTANCE: A set or (non-oriented, flippable) rectangular modules, numbered terminals on 

each modules' boundary. 

QUESTION: Is there an embedding or the modules on the plane such that the routing is also 

feasible in the plane! 

Once modules have been oriented and placed in such a way that a planar embedding is 

topologically r easible, there still remains the question of fitting the actual wire1 in the given area. 

Naturally, the placement found to be consistent with a one layer realization induces a set of 

possible routing path1 for the nets. However, such a set may not be uniquely determined by the 

topology suggested by the placement, but even if the paths are unique, the actual placement may 

impose some further constraints on the actual routing. Thus, the problem of detailed routing 

arises at two diff'erent levela. Fint, the more general problem is that of finding a routing for a 

given placement, where each wire can be routed wherever it flta: 

(DR] DETAILED ROUTING 

INSTANCE: A placement o_f a set of rectangular modules within a bounding box, numbered 

terminals on modules' boundarie1. 

QUESTION: Ia there a one-layer detailed routing for this configuration! 

The second detailed routing problem starts off' with more information about the routing plan. 

-For every net, we are given the homotopy of its intended wire relative to the placed modules. 

That is to say, we know how the path taken by the wire i1 related to the position• or the modules 

-::--:. how it goes "between" pairs, whether it goes to the "right" or or "above" a module etc. Figure 

2 exemplifies the notion of a homotopy. A given homotopy of a wire is sometimes called a rough 

routing of the net (as opposed to detailed routing which entaila apecif'ying the exact path). Also, 
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we say that we are given a rough routing for a problem if all its nets are roughly routed. Thia 

notion corresponds to that of global routing which is commonly used in the literature in the 

context of the general (nonplanar) routing problem (see, for example, [SouRo81), [Riv82]). The 

second detailed routing problem, then, can be formulated as follow■: 

(DRH] DETAILED ROUTING GIVEN A HOMOTOPY 

INSTANCE: A placement of a set of rectangular modules within a bounding box, numbered 

terminals on modules' boundaries, homotopy (rough routing) for each net. 

QUESTION: Is there a one--layer detailed routing for this configuration that conform■ with 

the given homotopy? 

Figure IV.2: Different homotopiea for the aame wire. 

When specifying a rough routing, the cable abstraction come■ in handy. Cables- provide 

a succinct manner by which the homotopy of a aet or "paralleln wire■ can be specified, and 

moreover, many or the detail■ concerning the relative position between wires in the aame cable 

are rendered unneceuary. 

A natural restriction of the planar routing problem is the situation in which there is no 

difference between DR and DRII. This ia the caae in which routing ia being perCormed in a ■imply 

connected polygon, where there are no "holes" to route around and the rough routing for each net 

is trivially unique (topologically). Figure 3 ■bows such a case in which planarity is guaranteed. 

The formulation of the deciaion problem is given as follows: 

(DRSRP)DETAILED ROUTING IN A SIMPLE RECTILINEAR POLYGON 
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INSTANCE: A simple rectilinear polygon with terminals on its boundary. 

QUESTION: Ia there a one-layer detailed routing for this configuration? 

6 

7 
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9 

2 1 1 2 

3 
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10 1112 
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14 
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16 

Figure IV.3: The specification of a planar routing problem in a Bimp)e polygon. 

IV.1 

The rest of this chapter is devoted to investigating and clauifying the complexity of the 

problem■ stated so far. We show that DR is NP-complete, and present polynomial time algorithms 

for CR, PR, PO, and DRSRP. The classification of DRll remains open. 

For those problems that are solvable in polynomial time, there may be a qualitative difference 

between the time it takes to decide the problem and the time it takes to produce an actual aolution 

(in the affirmative case). We have experienced this phenomenon already in Chapter m when we 

realized that testing for river routability acrou a channel can be done faster than producing the 

actual layout. Such distinctions concerning the problems ·or this chapter will be pointed out as 

we go along. 

2. Placement 

We start oft' here by studying the problem of cable routability (CR) in Subsection 1. Solving 

it will provide us with the proper insight required in order to study the placement problems, PR 

and PO. We shall be able to use the solution to CR in formulating the oricntability constraints 

that need to be satisfied. by· any feasible placement. These conatrainta, when applied to a 

given set of modules (with a given orientation), may force aome of the modules to be reflected. 

Such requirements can be straightforwardly accomodated in a graph theoretical framework to be 

developed in Subsection 2. The cue in which modules are not allowed to be reflected can be 

aolved within the same framework, but aome extra work ia necessary to ensure that the original 
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orientation is preserved. This is done in Subsection 3 by modifying the planarity testing algorithm 

due to Hopcroft and Tarjan ((HoTa74], (Ev79, Chapter 8)). 

2.1. Cable Routability 

Two problems need to be solved in. order to resolve the cable routability (CR) problem: 

reachability and orientability. Reachability is the problem 0f1 deciding whether the side on which 

one end of the cable lies on can be connected to the other ;iide by some path travelling through 

the routing area. This can be solved easily by finding the connected parts of the (not necessarily 

simple) polygon that comprises the routing area, and tcitinJ whether the two sides belong to 

the same component. The overall complexity of the reachability test is O(ma(m)•. This can 

be achieved by partitioning the routing area into 0( m) stripes and then merging them using a 

union-find algorithm. 

The orientability problem asks whether the sequences at both ends of the cable are oriented 

in a way consistent with a planar realization. This has been exemplified in Figure 1 above. 

First, we observe that there is a qualitative difference between cables comprised of two nets 

on one hand, and cables with three or more wires on the other hand. Two terminals can usually 

be permuted to obtain the two possible sequences on any aide of a module and still be realizable 

in the plane, but three terminals or more cannot. The reason r or this is that whereas two net, 

can be realized both as one single cable and aa two aeparate cables consisting of one wire each, 

and still fit in the plane, with three nets any aplit that maintains the sequence property at both 

ends of the cable will cauae a violation of planarity aa a consequence of Kuratowski's Theorem 

(see, for example, (Ev79, Chapter 71). Figure 4 ahowa how a two-net cable can be realized in the 

plane regardleBB of the relative orientation& of the sequence& at ita ends - once as defined (a) and 

once by splitting it into two cables (b). A three-net cable, however, must be oriented properly 

(parts (c) and (d) of Figure 4). 

• a ii the inverae or Ackermann'• funaion, and can be regarded u a conatant. for all practical pW'J)Offl. 
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1 Li 
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Figure IV.4: Two wires can be routed as one cable (a) or two cables (b), but 
three wires are forced into one cable (c and d). 

IV.2.1 

The orientability test for a given cable is easy and takes constant time to perform. E11entially, 
/ 

all we have to do is to find which way each aequence goes relative to the inside of the module 

it is on, and then compare the orientations of the two sequences and aee if they conform or not. 

The firat step can be done by just looking at the first two terminals of each sequence - the re■t 

must r ollow in the same direction. For the second part, we can do one of two things. We can 

either explicitly rotate and tranllate the aides of the respective sequences until they face each 

other (horizontally or vertically) and then check if the sequence1 are "parallel" acrou the artificial 

channel created that way, or we can compare the way■ in which the directions of the sequences 

are related to the inside of the module. When traveraed from terminal 1 to terminal n, the inaide 

of the module for one sequence sbould be on ita right, whereas for the other sequence the module 

1hould be on its kft. In short, the modules 1hould be on oppoaite aides relative to the sequence,. 

An explicit implementation of this teat can be attained by constructing a 4 X 4 table indexed 

by the four direction■ of Bides on which terminals can be: North, East, South, and West. Then we 

alao define a "positive" direction for each auch side; the convention i1 that left-to-right is poaitive 

for the horizontal aides (North and South); and top-to-bottom i1 positive for the vertical aides 
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(East and West). For example, the top sequence in Figure l(a) is positive, whereas the sequence 

in the bottom left of l(c) is negative. Now, each entry in the table tells us whether the "signs" 

of the two sequences for any given cable should be the same or not in order for the cable to be 

properly orientable. We can simply store the sign of the product at the entry, i.e. a '+' stands 

for the signs being the same, a '-' for being different. Here is the table: 

North East South West 
North - - + + 
East - - + + 
South + + - -
West + + - -

For example, the entry (East,South) in the East row and South column is'+', telling us that 

a left to right sequence on a 10uth side should· be matched with a top to bottom sequence on an 

east Bide, or a right to left 10uthem sequence is matched by a bottom to top eastern sequence, as 

is illustrated by Figure 5. This table is computed once and for all and the lookup takes constant 

time (indeed, this can even be sped up due to the structure or the entries). Even if the table 

has not been precomputed, the computation or each entry takes constant time, applying the rule 

used in constructing the table. 

Figure IV.5: The directions of sequences on south and east sides need to 
.. have the 1&111e sign- they have to be both positive (a) or both 

negative {b). 

If the .number of wires in the cable is only two, we can first apply the above .test to see if 

the cable is routable u one unit. If not, we know that we have to aplit the cable into two wires. 

Then, however, the reachability test has to be performed twice, since after the first wire bu been 
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connected, we must find out whether the aecond one ia still connectable in the new topology 

created by the connection made. 

2.2. Flippable Modules 

The problems concerning the routability of two wires are just a special case of Planar 

Routability: how do we accomodate aeveral cables on the same chip! The layout of one cable may 

interfere with that of subsequent wires, and thus we need a comprehensive placement method by 

which individual cables can be properly oriented so they can be each routed in one layer, and at 

the same time not croas over (at the cable level). 

The objective of making a cable properly orientable can be achieved by reflecting modules, 

i.e. flipping them over so that some "positive" sequences (in the aenae of the previous subsection) 

become "negative" (and vice versa) .. Obviously, flipping a module once changes the signs of 

all sequences around it, thus some binding between sequences' orientations is imposed by each 

module. The second problem, of placing the modules so that cables do not get into each others' 
/ 

way, aeema harder, since now we are trying to reeolve some global conflicts. This is where 

the cable abstraction comes in handy. Using cables u 111uper-wires" we can model the overall 

interconnection pattern of the chip by a graph that abstracts all the necessary properties. The 

- graph will be planar if and only if the modules can be placed and oriented in a way that makes 

a onerlayer realization of the interconnect feuible. 

Before introducing the way in which cables are u■ed, we present the following definition of the 

interconnect graph, that ia Bimilar to the layout graph concept found in {vanLOtt73). However, 

our u■age and modification of this concept in thia and the next aubaections are more elaborate 

·and present a different point of view on the aubject. 

We model each module by a "wagon-wheel" by placing a vertex in the middle of the module, 

making a ring out of the terminals around it, and then connect the terminal vertices to the 

module vertex by spokes. Each net is represented by an edge connecting its two terminals. The 

correspondence between a layout problem and its interconnect graph is ahown in Figure 6. 
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•3 6 7 8 9 10 

4 5 L, 1 2 

6 7 .8 9 10 

(a) schematic layout (b) interconnect graph 

Figure IV.6: The modules in the schematic layout of (a) are modelled by the 
wagon-wheel constructions in the interconnect graph (b}. 
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Definition IV.1. For a given layout problem L = (M,N), consisting of a set of modules 

M and a set of two-point nets N with terminals on the modules' boundaries, we define the 

interconnect graph G( L) = (V, E) as fallows: V = M U T where T = { t I t E 11 (or 10me II E 

N }, i.e. there is one vertex for each module (the module-vertices) and one for each terminal 

(the terminal-vertices); E = { (m,-t} I m E M, t E T, and t lies on m's boundary} U{ {t1, t2) I 
t1 and t2 are adjacent on the boundary of one module} LJ{(t1, t2) I {ti, t2} EN}. 

/ 
Next we use cables to reduce the size of the interconnect graph by modifying the given layout 

problem as follows: f!Very cable that consists or 3 or more nets ia replaced by exactly 3 net, -

the first,_ last, and one of the interim original nets (lying between the first and the last net). Thua 

all sequences on modules aides are at most 3 terminal• long. Then we use the modified layout 

to produce the· modified interconnect graph. The modified graph for the layout of Figure 6(a) ia 

shown in Figure 7. Notice that the number of vertices has been reduced from m + 2 • n {where 

n = INI, m = IMI} tom+ 2 ,· c where c is the number of cables (c < n). The number of edges 
··: - . 

in the graph becomes smaller :-is well. 
• .. :.! : fUlJi i•_ 

From here on, the solution .of the layout problem can be reduced to the graph pl_anarity 

problem, aince a layout is realizable in one layer (allowing module reftec~on) if and only if the 

corresponding (modified) interconnect graph is planar. The correctness of the reduction for the 

interconnect graph follows from the way modules are being modelled, which forces the order of 

terminals around a module to be preserved by any planar embedding of the graph. The spokes 

ensure that no connections are being made "inside" modules, i.e. ·neither can nets be routed 
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Figure IV.7: The modified interconnect graph for the 1ehema in Figure 6. 

through modules nor can one module be embedded within another. The correctness for the 

modified graph r ollows from our discu.ssion on the orientability of cables in the Subsection 1. 

Algorithms for planarity testing ( and actual generation or an embedding) are known to be 

fast. Both algorithms presented in (Ev79, Chapter 8) (one is due to Hopcroft. and Tarjan, and the 

other i1 due_ to Lempel, Even and Cederbaum) run in time linear in the number or the vertice■ 

of the graph. Thus the time complexity of our procedure i• O(m + c) once ■equences have been 

formed. 

2.3. Unflippable Modules 

The planarity testing algorithms used in Sub■ection 2 cannot be applied verbatim to ■olve 
/ 

planar routability (PR) if the given modules are not allowed to be reflected. Now the orientation 

of each module relative to a global lrame ii fixed a priori (up to rotation and translation). But 

the wagon-wheel con1tructs by which modules are modelled can be embedded in the plane in 

two different orientationa. Thia ■ituation, however, can .be remedied by modifying the plana_!ity 

· testing algorithm Uled. In this aubaection we ■how how to modify Hopcroft and Tarjan'1 path 

addition algorithm (HoTa74) 10 a■ to handle 1uch extra constraint■ aa the orientation of wagon

wheel 1ubgraph■• 

Preproce11ing. Before applying the path addition algorithm, ■ome preprocessing i1 required. 

Obvioualy, a necessary condition for embedding ~e interconnect in the plane for the given 

· orientation of module■ i1 that all cablea compri■ed of thtee net■ or more are routable. Thi• 

can be teated ea■ily by applying the algorithm given in Subsection 2.1 for CR (we do not have 

to. check reachability becau■e modules can be tran■lated freely). 

Next we look at cables that are made of exactly two, neta. If auch a pair can be routed u 

one cable we do nothing at thi1 stage. However, if the pair hu to be split into two cable■, the 
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implication of connecting both nets in the given orientation has to be taken into account. Figure 

8 shows the four ways in which a pair can be connected as two separate cables. The effect on the 

planarity of other connections between the two modules is the same in all four cases: the (other) 

terminals of one module cannot be connected to the (other) terminals of the other module by 

any path in the plane. Nets 3 and 4 in Figure 8 demonstrate this phenomenon. Terminals whose 

connection is for bidden in this .way are called aeparated. Our modification to the path addition 

algorithm will be to guarantee that no path (possibly through other modules) connects separated 

terminals (unless it goes through one of the edges that belong to the pair). 

2 1 

3 4 

3 4 

1 2 

2 1 

Figure IV.8: Four ways to connect nets 1 and 2, which.all cut off neta 3 and 
4. 

/ 

3 4 

1 2 

For f!Very pair that cannot be routed as a cable, we have to designate the terminals that are 

separated by it. We generate a pair or complementary labels, l and I, for f!Very problematic pair 

or nets. 

Modifications to the path addition algorithm. Now we can ■tart running the path addition 

algorithm. Every time an. edge e = ( u, v) is travere1ed during path generation the labels from 

the tail, u; are added to the label■ of the head, 11. There ia one important exception: an edge 

that belo_ngs to the pair of nets that generated the ·Jabels pair ( l, 1) does not propagate either of 

these labels. 

The planarity testing is modified as follows: every time a net edge (as opposed to a wagon-

- _ wheel edge) is traveresed, we check if a conflict has occurred: if we try to add 1 to a set containing 

: the label l the planarity test fails. (This failure condition comes in addition to the failures which 

may arise from the original parts or the algorithm.) 
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Correctneaa. During the path addition algorithm every edge is traversed once. By the definition 

of the label propagation rule, the only way aeparated terminals are connected via a path* ia if 

they use a net edge that caused their· separation, but not through any other net edge. 

Complezity. The modifications required in the path addition algorithm cause only constant 

overhead. per step. We have to assume, however, that set operations such as union and membership 

can be done in constant time; this.can be achieved if a membership vector is used to represent 

the sets. The ai1e of the sets that have to be kept is the number of problematic pairs, which is 

persumably small. The presprocessing ijiat ia required is linear as well. 

All in all we have lhown 

Theorem IV.l. Planar Routability (PR) can be aolved in linear time. 

3. Detailed Routing 

3.1. Routing in a Simple Rectilinear Polygon 

Given an instance of Detailed Routing in a Simple Rectilinear Polygon, we ■tart oft' by 

checking whether the connections specified by the nets are at all reali1able in one layer from a 

topological point of view, i.e. whether the interconnect pattern is planar when constrained to lie 
/ 

within the polygon (ignoring minimum spacing rules). We could have used a teat similar to the 

general teat suggested in Subaection 1.2, but here we can use a simpler method. What we have to 

check is whether the terminals as they appear along the boundary of the polygon match without 

intersecting. T.his is analogous to checking whether a 1et of parentheaes is properly balanced, as 

r ormulated in the r ollowing algorithm: 

1. Initialize the stack S to be empty. 

2. Cut the boundary of the polygon at any (single) point and straighten it out. 

3. Scan the list ot terminals from left to right. For each terminal compare the net number 

(or any other form of a net id) to the number at the top or S. If they are equal, pop S, 

elae push the number on S. 

•· If at the end or the acan S i■ empty, the net■ are properly nested. Otherwise, they are not 

realizable in one layer. 

• Not.ice that. a path in the graph may be compriaed of part., of 1everal path■ that. haw been added duriq 
· the al1orit.hm. 
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Figure IV.9: The correspondence between planar routing in a polygon (a) and 
parentheses expressions (b). 

Correctness. We interpret the first occurrence or a terminal in a net as an opening (left) 

parenthesis, and the second occurrence* as a closing (right) parenthesis. Regardless or where 

the boundary has been cut, the interconnection pattern is internally planar if and only if the 

parentheses in the ~pression (obtained by the above interpretation) are properly balanced. Nets 

must be nested within each other or be mutually exclusive in their span in order to allow a planar 

(non-crossing) realization, which is the same as requiring that a set of parenthe■e1 be balanced. 

This correspondence is demonstrated by Figure 9, parts (a) and (b). 
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Figure IV.10: Changing the cut position does not aff'ect the validity. ~f the 
parentheses balancing test. 

-

The position of the cutting point is immaterial since the area enclosed by the polygon can 

be viewed as a half-plane-for purposes or planarity checking; thus it does not matter how this 

half-plane is spanned relative to the original setup. This is demonstrated by Figure 10, which 

shows a diff'erent cut than the one used in Figure 9 without changing the outcome of the teat. 

• Remember that we are dealing with two point net■ only. Multipoint net■ can be treated by duplicating the 
intemal terminal■, thui in1erting a ")(" in the parenthflea apnuion. 
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From here on we shall discuSB detailed one-layer routing in a rectangle. The techniques 

developed to solve both the routing and the routability prob~ema for a rectangle are generalized 

later to the case or a simple rectilinear polygon. 

We now tum to the question whether the area of the rectangle is enough to realize the routing 

of the nets relative to a given wiring model. As has been pointed out in previous chapters, there 

is a quantitative difference (in terms of time complexity) between the routabilit11 question and an 

actual routing algorithm, · i.e. it is sometimes faster to check whether a set or nets is routable 

within a given area than to produce the actual paths taken by the wires. For the problem or river 

routing acron a channel, for example, we saw that testing routability takes time O(n) for n nets, 

whereas producing the layout may take time 0(n2). In what follows we show that the situation 

for river routing in a polygon ia similar. It ia easier to test fo~ routability than to produce a 

layout. 

For purposes or clarity, we shall start off by providing an algorithm that river routes nets in 

a rectangle whenever poasible. 

Use the template given in the algorithm for planarity checking (without straightening the 

boundary): whenever a net is being popped off the stack, simply route it! The routing is done in 

a "greedy" Cashion relative to the contour - the router stays as cloae as possible to the boundary 

by initially routing nets along the original boundary (for "innermost" nets), and then staying 

aa close as possible to the contour formed by previous nets towards the boundary. Thia routing 

atrategy is demonstrated by Figure 11,. . 6 7 7 6 5 3 

8 

8 

cut 5 3 2 1 1 2 
Figure IV.11: Routing the example or Figure 9(a). The cut is in the SW 

comer. 

4 

4 

This procedure takes time that ili proportional to the number or straight (or elementary) wire 

segments that are produced; this number. can be as large as 0(n2) in the rectilinear model, u 

shown, for example, in Figure 12 (where:n ia the number or nets to be interconnected). The worst 
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case time complexity of the algorithm is O(n2), matching the existential lower bound, thus it is 

optimal from this point of view. However, it may produce results that are suboptimal in terms 

of wire length and number of jogs. 

n 

Figure IV.12: The greedy routing rule may produce O(n2) segments even when 
all terminals are on one aide. 

In r act, this algorithm is just one member in a family of algorithms obeying the r ollowing 

greedy routing rule: 

"Each net is routed when all* nets between its terminals 

along the boundary (according to the linear order) have al

ready been routed." 

The argument for the sufficiency of such a rule is quite obvious: all nets are routed in a way 

that minimizes their mutual interference. Each net is routed aa tightly as possible relative to 

the area requirements or the nets that have been routed/10 far, and as far away as possible from 

any subsequent net. The order or routing is dictated by the planarity - up to mutual exclusive 

nestings - r or any given cut. The position or the cut is immaterial: although it does dictate the 

distinction between "opening" (left) and "closing" (right) parentheses as far as terminal pain are 

concerned, and so also makes the association between a net and the side(s) of the boundary it is 

supposed to be routed closeat to, there is no difference between one cut and another as long as 

the auociation of nets with bou_ndaries is conaistent between nets r or each cut. Due to the fact 

that wires are routed according to the greedy rule, no area is taken up unless it is required by the 

minimum spacing conditions, so the lide the net is associated with does not affect the routability 

of the whole area. Figure 13 shows how the example of Figure 11 will look if the cut point is 

moved as shown. 

• Thia condition may be vacuoualy true, i.e. it hold■ when there are no other net■ between the terminah or 
the current net. 
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6 7 7 6 5 
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8 

5 3 2 1 1 2 
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Figure IV.13:Routing the example of Figure 9{a) using a northeast cut. 

IV.3.1 

This brings us to the fine point concerning failure to route an area. Since the greedy routing 

rule is sufficient, at least one net will be unroutable if the area is not large enough to accomodate 

the pattern. The identity of this net does depend on the location of the cut, as can be seen in 

Figure 14. 
5 4 5 4 

l.,_ _____ .,. 

2.,,_ ___ _ 

3.,_ __ __ 

3 2 1 3 2 1 
/ 

(a) Net 5 fails (b) Net 3 fails 

Figure IV.1(:Different nets manifest unroutability depending on the location 
of the cut. 

Now we turn to the question of routability. Som~ terminolc;gy is due at this point. We classify 

nets according to the relation between the aides their terminals lie on. If both terminals are on 

the aame aide of the rectangle, the net constitutes a aingle-,ided connection. If the terminals are 

on adjacent sides, we say the net is a comer connection. If they are on opposite aides, it is a cro11 

connection. Also, for purposes of presentation, we label the four sides of the rectangle by definite 

names - north, east, south, and west. The corresponding connections inherit the appropriate 

names, e.g. "north-east connections" (the orientation is arbitrary, of course, but once it has been 

aet it remains fixed). Notice that although single-aided connections and comer connections can 

occur at all possible locations in one instance of the problem, cro11 connections can either go 

north-south or west-east, but not both (as anyone who plays Hex or Bridge-It can tell you). Thia 

is trivially due to the planarity requirement on the interconnect pattern (see Figure 15). 
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-
Figure IV.15: Cross connections can be or one kind only. 

From here on we restrict ourselves to the square grid wiring model. 1n addition, as you may 

have already noticed by looking at the figures, we do not ·allow wiring on modules' sides (as we 

did r or river routing acroBB a channel); thus, the mathematics that we borrow from Chapter m 
has to be slightly modified by adding or subtracting 1 when moving away from the boundary. For 

example, if' the separation between the Bides or a channel is measured by t with such boundary 

conditions, i.e. the number or tracks available for routing i■ t - 1, the routability condition■ 

become "•+&-1 - ~ > t - 1 and b.+i-1 - a. > t - 1. 

The technique we use here to obtain the routing requirements without generating all the 

routing details is a generalization or the method used for river routing acroBB a channel. Recall 

the geometric interpretation of the river routing constrainta as 45° lines drawn from terminal 

positions towards the other aide or the channel. These lines told us how other terminals had 

~ stay clear from the source of the "ray" to accomodate the wires around its net. Since the 

interconnection pattern was known (all nets went in order acrou the channel) and monotonic 

wiring was sufficient, we could make all lines the same length (as a function or the separation) 

and compare each endpoint statically to the rest of the channel. Here the structure is more 

complicated, and we have to dynamically change the length or the "ray" we draw in order to 

establish the routing requirements around the current net relative to the other nets. -

Let us start with the .simplest case - generating the boundary around single-Bided connec

tions. Here there is no problem or routability because the connections can always be realized 

(assuming the rectangle above the aide has unbounded height), and all what we &eek is the small

est area required for routing. The output of our procedure will be a description of the routing 

contour that is neceaaitated by the given configuration, i.e. the path closest to the boundary that 

can be taken by the outermost nets. As any path, the contour can be described either by its . 

segments or its comers. We shall produce a representation by comers. Due to the way in w~ich 

the sp~ing rules affect the wiring, the skeleton or the contour is generated by its convex comers, 

i.e. comers that protrude from the perimeter of the rectangle inwards. Convex comers that arise 
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from the spacing calculations are called markers. We shall see now how to set the markers and 

generate the path using them. 

I 

I 
2 3 3 2 1 

Figure IV.16: The contour of a set or nested single sided connection■• 

For sake of presentation we give the details or how to construct the contour along a south 

side that is being ■canned from leh to right, a■ ■hown in Figure 16. We a■sume that each 

terminal has two pieces or information associated with it (formulated in terms of parentheae■ 

expressions): whether it is an opening parenthesis or a closing one, and its depth (or nesting level) 

in the expression*. Markers corresponding to a south side ~e either northwestern or northeastern 

(convex) corners. The west end of the aouth aide is the origin (0, 0). Markers are set according 

to the following rule■: 

{1} 

(2) 

For an opening terminal at (:r, 0) and depth i, establish a 

northwest marker at (:r: - i + 1, i). 

For a closing terminal at (:r:, O} and depth i, eatabli■h a 

northeaat marker at (z + i - 1, i). 

The geometric interpretation of these rule i■ simple. Imagine 45 degree "rays" that emanate from 

one row (of the grid) above the side at terminal positions, i.e. the ray for a terminal at (z, 0) atart■ 

at (:i:, 1). The length or the r~y ia one less than the depth of the net, and rays correaponding 

to opening terminals go to the northwest whereas those corresponding to a closing terminal go 

to the northeast. Figure 17 exemplifies the procedure. Each marker in the figure is tagged by 

the number of the net that generated it. Northwest (NW) marker, were generated by opening 

terminal■, and northea■tern (NE) onea by cloaing terminal,. 

• Thi■ information can be euily generated on the fly. 
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Figure IV.17:Determining the contour for single-sided connections using markers. 
The net numbers correspond to their nesting level. 

67 

Intuitively, NE markers "guard" the area that i1 immediately below and to the left of their 

position, and similarly NW markers "guard" the area below and to their right. All we must find 

out is how far these areas go laterally, i.e. how markers are to be connected in order to form 

the contour. Notice that markers generated by terminals of the ■ame net are both at the same 

height (have the same y-coordinate). We associate with each net the rectangle formed by the 

line connecting its markers, their projections on the side and the portion of the side bounded by 

the projections. The routing contour is defined by the perimeter (excluding the side itself) of the 

union of these rectangles. Performing the union is too costly, however, and fortunately can be 

avoided. Essentially, what we do i1 trace the markers~ they are being produced and connect 

them according to certain rules. 

The contour tracing rules have to accomodate two subtle phenomena. Net 1 in Figure 18{a) 

reveals a point concerning the detection of "gaps" between opposite markers: "bumps,, are cau1ed 

by deep nestings that are far from each other, but ■ome nets ■pan the side between the bumps. We 

have to make BUre that at any point (z-coordinate) the contour cannot be closer to the boundary 

than the depth of the parenthese1 expre11ion (by a simple density argument). Secondly, as can 

be ■een in Figure 17, ■ome markers are right above other markers or the same kind that were 

generated before them (such as 3 above 2), and more importantly - some northwestern markers 

end up to the west or northeastern markers that belong to ter~inals on their east (such u 2 and 

5 in Figure 18(b)) and vice versa. Such "dominated,, marker, must be ignored so that the correct 

contour will be produced. 
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t ~: u ~ E. j 
• I I • • I I I 

1 2 3 3 2 4 5 5 4 1 1 2 3 4 4 3 2 5 6 6 5 1 
(a) (b) 

Figure IV.18:Problems with marker tracing: gaps (a) and domination (b). 

The tracing algorithm which r ollows scans terminals from left to right. Markers are generated 

according to the rules (1) and (2) by the iterator next_marker that returns the triplet (z, '1/, t), 

where :,; and y are the coordinates, t is the type (NW or NE). The algorithm outputs the corners 

or the contour, but notice that aome outputs may be erased. 
:,;NE _ 0. :,;NW +- O· max , max , 
for (:,;, y, t) +-next_marker cf'o 

if t=NE then do 

fl 
end_for 

if :,; = x~ then erase last comer 
else output(x, 'JI) fl; 

output(:,;, y -1); 
NE Xmu +-:z: 
od 

else comment t=NW; do 
if :L° ~ x~ then let ( :,;*, y*) be a corner ~hat wu 

generated by a NE marker such that 
x* = min{:z:' I z' > :z:} 

fl 

and y* = max{y' I (z*,y') E contour} 
it 11* < 11 then do 

erase all points from ( z*, 'II•) to the end; 
output(:r:, y*); 
output(:,;, r); 

NE :Z:mu +-:Z: 

od 
else ignore (z, 11) fl 

else comment :z: > ~; do 
it x = x~ then erase last corner 

elae output( z, y - 1) tl; 
output(z, y); 
NW :Z:mu +-:z: 
od 
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The correctness or the rectangle union procedure can be deduced from Tompa's anaJysis in 

1To80]. In order to show that the above algorithm realizea it, we must study the marker generation 

more carefully. First, we observe that markers or the same kind are being produced in ucending 

order relative to their :r:-coordinate: 

Lemma IV.1. Ir :r:1 < :r:2 are the :r:-coordinates or two opening (closing) terminals t1 and 

t2, then :r:m1 < :Z:ma where :z:,..., is the :z:-coordinate of the NW (NE) marker generated by ti, 

Proof. We shall prove the lemma for opening terminals since the case for closing ones is 

analogous. Number the opening terminals from left to right i.a they appear, so that :z:1 is numbered 

i and :z:2 is numbered j, where i < j. Denote k = j- i. Due to the unit spacing design rules, 

:t2 ~ :z:1 + k. Also, _if t1 's neating depth is d1 and t2's is d2, then d2 ~ d1 + k. Thus, 

I 

:r:,...1 = :z:1 - d1 + 1 

< (:r:2 - k) - {d2 - k) + 1 

= :r:2-d2+l 

The accond observation is that the y-coordinates or two markers generated by consecutive 

terminals differ by exactly 1 if the· terminals are or the same kind (both opening or both closing), 

and are the same if the terminals are of different kinda. 

Lemma IV.2. Ir :z:1 < :r:2 are the :r:-coordinatea or t)YO consecutive terminals t1 and t2, and 

Jim, is the 11-coordinate or the marker generated by ~. then 

(i) Jim.a = J/m 1 + 1 if both terminals are opening; 

(ii) J/m1 = JI"', - 1 if both terminals are closing; and 

(iii) J/m1 · = Jlm1 if the terminals are or different kinda. 

Proof. Trivial, by the definition or markers and properties or balanced parentheses expres

sions. I 
From these two lemmas we can deduce that the only kind or "cro110ver" between a sequence 

or NE markers and one of NW markers is as shown in Figure 19 - each sequence is monotonic. 

Any other pattern will violate one or the two lemmas. Thus the contour is generated correctly, 

without creating degenerate (straight) comers. 

i' 

'4 j1 

Figure IV.19:The only way markers can cro11 is as two monotonic sequences. 

The time complexity or the whole ·procedure is O(n), where n is the number or nets. The 

only part that seems difficult is finding (:r:•, 11•). We exploit the fact that markers or the aame 
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kind are generated with consecutive y-coordinatcs, and that the only type of crossing is between 

two monotonic sequences aa shown in Figure 19. The idea is to store NE markers in an array 

indexed by their y-coordinate (array- cells may be reused later), and whenever a crossing NW 

aequence is generated, the crossing is found by a single test. To make sure the complexity is 

linear, each array cell must contain a pointer to the maximum y that has the same x position, 

which may be difTerent from they of the stored marker. 

So far we have proven: 

Theorem IV.2. The routing contour required by n two-point nets whose terminals are on 

a single straight line can be computed in time O(n) for the one-layer rectilinear wiring model. 

The next step is to deal with corners. Notice that a corner connection may have single

sided connections nested within it, as shown in Figure 20, but not vice versa. Thus single-sided 

connections need not be dealt with any further. 1...,_ __ 
2 __ 

4 

4 

3 

5 

5 6632 788 7 1 
Figure IV.20: Corner connections (1, 2, and 3) with-single Bided (and other 

corner) connections netsed within them. 
/ 

For concreteness, we describe the procedure for a aouthwest (SW) corner. Unlike single Bides, 

comers may not always be routable. First, single-aided connections coming off orthogonal ■idea 

could interfere with each other, as in Figure 21. Second, connections to terminals may be blocked 

by narrow passages between the aingle-aided contoura. 

~er 1 □ I 
. 2 3 3 2 

Figure IV.21: Interference between single-aided connections coming off adjacent 
aides. 

To solve these interference problems we maintain a separate contour for each aide, and 

then check whether the contours intersect. Thus all single-aided connections are processed first, 

setting up contours for subsequent analysis. We also process those corner connections that do not 

_ have Bingle-sided connections embedded in them, which is an easy extension to the single-sided 

algorithm, and in fact, none or the complications arise. The contour or these innennost comer 

connections can be auociated with either side of the comer. 
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The essence or the procedure for testing the routability of corners is finding out whether 

the wires that must be connected to the sides have enough room to pass through the "straits" 

formed by the single-.sided countours. The test we are shall devise applies not only to making 

comer connections per ,e, but also to the ability or terminals that are on the sides of a corner to 

"get out of the comer" and be connected to their mates regardless whether the mates reside on 

the other side of the comer or on another side of the polygon altogether. However, for sake of 

clarity, we start oft' by restricting ourselves to connections that arc all on the corners in order to 

understand the general phenomena that will be utilized when constructing the overall test for a 

rectangle. 

We define the routability problem for an open corner as r ollows. Given a quadrant with 

terminals of two-point nets on its sides, can the nets be connected using one layer subject to the 

minimum spacing requirementa? 

To solve the routability problem for an open comer, we devise a uniform way to (i) ensure 

that all "straits" are wide enough to accomodate the nets that have to go through them, and (ii} 

check whether the contours themselves collide. The technique is to draw forty-five degree "rays" 

from all convex (protruding) corners of single-sided contours and find their intersection with the 

rest or the contour. Recall that the contour consists or original aides as well as pieces generated 

by aingle-sided connectiona. 

Each ray is trimmed at its first intersection with the rest of the boundary. If the ray hits the 

boundary r rom the "inside" then we know that two contours collide and the test fails. If, on the 

other hand, the ray has positive length, we compute bow many wires can cro11 it. The cro11ing 

teat for a ray succeeds if this number is not smaller than the number or nets that must cro11 it. 

Lemma JV.3. An open comer is routable if and only if the crosaing test succeeds for all 

forty-five degree rays emanating from convex co~ers of single-sided contoun. 

Proof. The necessity of the tests is obvious: if any or the raya is over-congested no wiring can 

take place across it. The sufficiency ia a conaequence or the sufficiency of the greedy routing rule. 

To realize that, we must examine the structure of the interconnect pattern left after Bingle-sided 

connections have been processed. 

Each wire must go around at least one contour that was generated by single-sided connections. 

We can group together te~minals of comer connectiona according to the gap, between• contours 

or single-sided connections in which they reside. Notice that all terminals in the aame gap are 

connected to the other aide; in particular, if there are no innermost corner connectiona, the 

- terminals of corner connections that are closest to the comer itaelf lie all on one side. 

• We conaider the 10uth-1ide 1egemnt to the eut or the eutmoat terminal and the weat-aide H11Dent to the 
north or the northmoat terminal u pp■ u well. 

-------------------- -~ ---
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The areas between neighbouring single-sided contours (and outside the outermost contours) 

can be perceived as channels through which the nets connecting to the terminals in the gap have 

to go. Since both parts of the neighbouring contours are monotone with respect to this channel, 

the analysis given in Sect.ion m.1 regarding the sufficiency of the greedy routing rule applies here 

as well. In essence, each convex comer of a single-sided contour is present due to a terminal on 

the side. The ray drawn from this comer is an extension of the ray used in the proof in Section 

ID.1. The only difference is that for comer connections there is no simple characterization or the 

form the wire is going to take in terms of the overall terminal ipeciftcations. We need to proceBB 

single-sided connections first to set the framework so the analysis can be used. I 
Remark. In r act, only rays that are being drawn towards the other side of the comer matter. 

That is, when dealing with a SW corners, we have to consider only rays that emanate from NW 

markers on the contour of south single-sided connections, and SE rays that emanate from the 

west connections. The contour or innermost comer connections can be ignored altogether (as far 

as the generation of rays is concerned). 

Complezit11. The number of wires that can crou a forty-five degree line is one less than (the 

floor or) the length of its rectilinear projection. To find the number of wires that must cross the 

trimmed ray, we count the number or_ comer connections that have one terminal on each side or 

the line. This can be done efficiently by maintaining a direct access data structure (such aa an 

array) to record the contour as it is being generated and associating with each entry the identity 

of the relevant corner connections as they are being acannecL 

Now we are ready to introduce the routability test for a rectangle. We start by constructing all 

the single-sided contours (including contours or comers that do not have single-sided connections 

embedded within them). The next step is a generalization or the comer routability test. Three 

rays (rather than one) are being drawn from each comer, and also rays are being generated by 

terminals. 

The three rays that are generated at each convex comer of a contour go outwards relative to 

the inside of the contour in the following directions: vertically, horizontally, and in a 45° angle. 

The first and second ray■ are extensions to the contour itself, and the third bisects the right angle 

created between them, a■ shown in Figure 22. From each terminal we draw now two forty-five 

degree rays - one to each direction. 

The test for routability is the same a■ in the comer case: all trimmed rays must be longer• 

than the number or nets that have to cro11 it. A ray that ■tarts from within the contour of 

{U)other side has negative length, thus the test as stated covers the contour intersection problem 

as well. 

• We do not 1ubtract 1 from \he length in thi• natement, 10 that ii why we jut •Y "longer". 
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The necessity of the three rays is due to the interaction between single-sided contours that 

are generated on opposite sides. Forty-five degree rays are not guaranteed anymore to be trimmed 

by a perpendicular side, thus we need an explicit density test between opposite contour. This is 

exemplified in Figure 23, where the forty-five degree rays miss the contour on the opposite aide, 

but the passage between the contours is too narrow to permit four nets to be routed across it. 

1 

6 7 7 6 

Figure JV.23: The necessity or rectilinear rays is demonatrated by the narrow 
passage between the single-aided contour,. 

The sufficiency or the test is shown by the same ara;ument as r or open corners. Each triple 

or rays ensures that the contour-comer can be cleared by all wires that have to pass along it if a 

greedy routing rule ia uted. 

The argument concerning rays that emanate from terminals that bf-Jong to crolB and comer 

connections also ia similar to the proof used for river-routing acrou a channel (Section ID.1). 

Now, however, we cannot auume any routing fashion insofar u monotonicity ia concerned. Also, 

we have to account for connections that are very clo.e to comers on both of ita sides (thia ia 

possible now). Therefore raya must be drawn in both directionL 

Notice that if the rectangle happens to have only cro11 connections, we end up applying the 

river routing test twice - once for a left to right enumeration of terminal,, and once for the 

other way around. Obviously, if one 1et of testl 1ucceed1 so will the other, but the overkill ia 

required to cover the general caae. 

The linearity of the general test is shown by the same argument as for an open corner. So 

far we showed 

Lemma JV.,. Planar routability of n nets in a rectangle can be checked in time O(n). 

When routing in a rectilinear polygon, rather than a rectangle, the corners or the polygon 

have to be treated as contour-comers, generating three raya each. Ir the polygon i• known to be 

simple, all routability tests can be done in linear time. So all in all 
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Theorem IV.3. Detailed planar routability in a simple rectilinera polygon (DPRSP) can be 

decided in linear time. 

3.2. Routing around Modules 

The problem of detailed routing around modules when no homotopies of wires are given (DR) 

is NP•complete. In this subsection we show how to modify a recent result of Kramer and van 

Leeuwen IKrvanL82) to obtain the· claimed statement. The intractability of the problem is due 

to the possibilities of routing wires around modules in more than one way. Unlike the situation 

in Section 2, where planarity was the only concern, here the spacing requirements play a key role. 

Routing a wire using a certain path may render other wires unroutable due to the consumption 

or routing area by the first wire. Thus some global decisions need to be made in a way that is 10 

typical or most known NP•complete problem■• 

The two problems discussed in !KrvanL82) concern one.layer routing of two-point nets 

ona square grid. In the firat problem ( "Routing·") routing is done in the absence or modules 

altogether. In the second problem ( "Obstacle Routing") modules are allowed as part of the 

problem specification, out they are viewed only as forbidden areas rather than pieces of logic 

with connections on their boundaries. Thus all terminals are grid•points that can be routed from 

in all four directions (unless one of the immediate neighbours is occupied by a terminal of a 

different net). This deviation from our notion of terminals as residing on modules' boundaries 

can be remedied easily by providing a simple construct for .local replacement (GaJo79, Section 

3.2.2) to be used in our transformation. 

The transformation can be made from either of the problem■ discussed in (KrvanL82]. We 

prefer here to use the problem in which modules (obstacles) are present. Notice that in all 

the constructions of the proof in (KrvanL82), a path leaves a terminal in one or two opposite 

directions. Thus all arguments can be retained if we conatruct a layout in which the patha are 

constrained a priori to leave a point in one or two opposite directions ( or even in one of three 

directions). This can be done by using the replacement or Figure 24: terminal P in the original 

construction is replaced by terminal P' on the side of a module that is parallel to the direction 

in which the paths leaving P go in the original construction. The point P has to coincide with 

P'', the immediate neighbour of P', rather than with P' itaelf'. 

•I i I H 11 
► 

Figure IV.2-t:A pin in the Kramer and van Leeuwen construction can be 
replaced by a terminal on a module's lide. 
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Figure IV.25:River routing to pada. 

Since most terminals in the construction of [KrvanL82] are located next to modules (obstacles) 

anyway, and their routing direction is parallel to the side of the module, this replacement can be 

performed by just moving P to the boundary. In tblfew cases where this is impossible, we splice 

a new module into the layout, thereby expanding the grid by the necessary dimensions without 

affecting the area available for routing. Thus the feasibility of a aolution remains invariant under 

this transformation, proving 

Theorem IV.4. Detailed planar routing is NP-complete. 

The major question that remains open concerning detailed routing is that of finding the 
/ . 

detailed routing when the homotopy for all wires is given a priori (DRH). Then the decision of 

how to route around the modules topologically is eolved, but we still have to find exact paths for 

the wires. When no modules {holes} were present, nets could be routed using the greedy routing 

rule defined in the previous aection. Now, however, there is no unique contour with which neta 

can be associated to start with: it is unclear •how long" a wire has to aaty close to the side of 

one terminal and when to start moving towards the aide of the other terminal in the net (not to 

mention sides that the net. pasaea by on the way). 

This problem manifests itself even in the simple situation of a donut router, which is typical 

for routing to pads, as can be seen in Figure 25. Johannsen 1Jo81, Appendix 3] provides a heuristic 

for aolving the problem that is based on the greedy routing rule for a channel, but his strategy 

does not produce optimal results. 

4. Conclusions 
In this chapter we have introduced the cable abstraction for planar routing. We saw that 

cabels are useful for two reasons. First, they reduce the complexity of the combinatorial problems 

tb~?'~ie wheii modelling the orientability and placement problems.· Second, keeping wires that 
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have to carry parallel signals together this is desirable for delay computation purposes (although 

it may be a bad idea when the routing ia too tight or the number of wires is large due to croBB 

talk). 
Later, when dealing with detailed routing in a simple polygon, we realized that single-sided 

connections are the source of many complications in the routability test. Although the problem 

of generating the routing contour around such connections (in the absence of othe requirements) 

is easy, the conditions they set up for the rest of the test are irksome. It may be useful if a global 

routing heuristic doesn't generate single-sided connections at all, thus simplifying the routability 

test for each channel considerably • 

.. 



Chapter V 

Routing Two-point Nets Across a Channel 

At this point in the thesis we forsake tht! planar paradigm that baa been explored so far, 

and start to investigate routing patterns that require more than one layer. From here on, wiring 

models will be used depending on the interconnect topology and layer assignment method used. 

In Chapter ID we started oft' our study or one-layer realizations by looking at river-routing 

across a channel. In this chapter we route acro11 a channel, but discard the planarity assumption. 

The resulting interconnect pattern is routing two-point neta acroaa a rectangular channel. 

Why do we restrict ourselves to dealing with channels in the first place? Routing (in its full 

generality) is believed to be intractable. Hashimoto and Stevens (HaSt71] proposed the channel 

paradigm to battle the overwhelming complexity of the problem. Since then, many authors have 

described heuristics to handle signal routing in the channel framework {[Ak72], Pil74], (Deu76], 

(Pr79], (Bar81J, (SouRo81), [MaKu82), (YoKu82], [Riv82), and (RiFi82], to mention only_ a few). 

Early work was motivaied by applicat.ions to printed circuit board (PCB) layout, but recent 

advances in VLSI technology have prompted a renaissance or the field. 

Recently the theory of computing community began to pay attention to the channel routing 

problem. A better understanding or the fundamental phenomena that occurr when it comes to 

detailed, actual design has been gained in the put two yean by looking at restricted, albeit not 

impractical, inatances or cbannel routing ((BrRi81), (DKSSU81], (LaP80a], (LeiPi81], (LloRa81], 

[RBM81], and others). Most notably, routing of t11Jo-point net.s acro11 rectangular channel• has 

been studied intensively. In such channels, terminal■ occur only on two opposite sidea and each 

signal is compriaed of only two terminal• - one on each of the opposite aides as in Figure 1. 

Understanding the routing problem in even such a limited context has already proven instrumental 

77 
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when analyzing more general situations, and will no doubt continue to play a key role in the 

future. 

1 3 6 4 7 2 5 

7 5 4 3 1 6 2 

Figure V.1: Two-point nets across a channel. 

In this chapter we present a digest of results concerning this routing situation - some 

previously known and some new. (All results stated as theorems are new.) In Section 1 we refresh 

some of the terminology from Chapter Il and introduce some terms specific to this chapter. In 

Section 2 we first survey known results on minimizing channel width, and then take up the width 

issue in the framework of the newly proposed via-free model. Section 3 introduces monotonic 

versus nonmonotonic routing strategies, Section 4 ~scusaes jogging, and Section 5 deals with the 

resolution of conflict cycles using monotonic routing. We conclude this chapter by listing some 

relevant open problems. 

1. Terminology 
/ 

When routing two-point nets across a rectangular channel, we are given two parallel line 

segments• whose relative lateral positioning ii fixed. These line segments are called the ,idea or 

the channel. On each of the two lines there are n terminals labeled by the integers 1, .•• , n. The 

number ai denotes the x-coordinate of the terminal on the top side whoae label is i, and similarly 

the x-coordinate or the itb bottom terminal ia bi. The ith aignal-net is represented by the.: pair 

N, = (cii,b,). The width, sometimes called the aeparation, of the channel is the diatance between 

the sides. The channel it■elf ii perceived u the {infinite) ■tripe bounded by the aides. 

When routing in a channel, wires are not allowed to lie on its sidea, contrary to the convention 

or Chapter m. Therefore the aegment attached to each terminal ia alway■ perpendicular to the 

side, which is vertical according to our convention. Each horizontal grid line lying within the 

channel i■ called a track. Segments or vertical lines bounded by the lidea are called column,. 

The width of the channel is one more than the number of tracks, and ita length is the difl'erence 

between the :r:-coordinatea or the leftmost and rightmost columns used for routing. A horizontal 

path segment is called a jog track and a vertical one ia a jog column. 

• Thne linea are typically 1id.n of modulea encloaing the channel between them.. 
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2. Width 

The primary concern in routing across a channel has traditionaly been to reduce the number 

or tracks to a minimum. Most ·or the time no lateral movement of the sides is allowed, so 

the probelm is one-dimensional in a sense and i1 perceived as a routing problem rather than a 

placement problem. When the sides are allowed to move laterally as well-they have to remain 

parallel-the offset problem that is generated is indeed a placement problem. 

Other optimization criteria, such as minimizing the total wire length, or minimizing the 

longest wire, have not received much attention in the literature. The interrelation between these 

criteria, especially in the context of the offset problem, i1 also quite interesting, but has been 

neglected all the aame. 

In this section we shall confine ourselves to the width problem in the static, one-dimensional 

setting. (The generalizations to the offset problem and other optimization criteria will be discu1sed 

in a forthcoming paper.) First we describe the state or the art in the study or the width problem 

in exisitng wiring models, and then present some new results on the layer minimization and 

widths problems in the via-Cree model. Throughout this chapter we shall keep the width problem 

in mind, relating our results to this important criterion. 

2.1. Minimising Width in Conventional Models (summary or results) 

River routi11.g acrosa a channel was discuued in Chapter m. The terminals on the top side, 

a1 < ... < ""' are in the same order as the terminals on the bottom aide, b1 < ... < bn (see 

Figure 8). Thus no crossover between wires is mandated and a via Cree realization (in one or more 

layers) is feasible. Efficient solutions for minimising the width or the channel in this situation exist 

and have been studied extensively in [DKSSU81), (LeiPi81], and (Bar81). If routing is rectilinear 

the solution can be found in time O(n), which ia optimal. The channel is scanned from left to 

right and the routability condition■ or the Corm a;+u - b. ~ t and bi+u - a, > t are being 

tested on the fly-t ia initialised to O and is being incremented by 1 every time a test fails. Since 

t < 1f, where l is the number or layers, the complexity or the whole procedure is linear. 

On the other end or the spectrum we have an intereating reault due to LaPaugh (LaP80a, 

Section 4.3.1) concerning routing two-point nets acrosa a channel where the orderings of the 

terminals on top and on bottom is not necessarily the same. Then the problem or minimizing the 

channel's width in the directional model using only one jog track per signal net is NP-complete. 

Since the length or the ith wire is lai - b.l + v, (where v, is the channeP1 width) when the 

one-jog strategy is used, the wire length minimisation problem (total or longest) in this setting is 

NP-complete as well. Notice, that aince no wire extends beyond the extent or its terminals, the 

length of the channel is simply the distance between the extreme terminals. 
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. Szymanski has recently shown [Sz81} that minimizing the width for two-layer dogleg routing 

(i.e. arbitrary jogging is allowed) is NP-complete. His construction needs, however, four-point 

nets (with terminals on both aides of the channel) to support the NP-completeneH result. It 

remain■ open whether minimizing width for two-layer, dogleg routing of three- or two-point nets 

i1 NP-complete as well, or is the problem tractable after all (very much to everyone's surprise)! 

Channel routing in the knock-knee model is considerably more tractable: Rivest, Baratz and 

Miller (RBM81} show how to achieve channel width that is only a constant times the optimal 

aolution. Their wiring strategy, however, requires routing in columns beyond the extent of the 

cahnnel, thus the channel's length may not be minimized together with its width. 

Another interesting subject concerning channel width is establishing lower bound.,. An 

obvious requirement on the width or the channel is that on every line crossing the channel there 

will be enough room for the wires realizing the nets that have to croas that line. The den,ity 

argument has traditionally been applied to vertical cro11ing lines, obtaining the following lower 

bound on channel width: 

d = max l{Ni I (Ai - :r:)(bi - :r) < O}I 
s 

(it suffices to check one value of x between every two terminal positions). In Chapter ill we ■aw 

how non-vertical crossing lines can be used to derive lower bounds in a river routing situation, 

but this technique does not generalize well when terminals are in different order on the bottom 

and the top aides of the channel. 

Recently, other lower bound techniques have been developed, most notably by Brown and 

Rivest [BrRi81} r or the directional model and by Leighton (Lei81] r or the knock-knee model. The 

techniques of [BrRi81) draw heavilly on the fact that no two wires can ahare a comer. If the 

number or nets r or which Ai ,' bi is m, and the hori1ontal distance between the rightmost and the 

leftmost terminals is e, then. the number of tracks required is t > -( e - n) + r V ( e - n )2 + 2m 1, 
allowing wires to be routed beyond the extent of the channel. In fact, their argument can be 

uaed. to show that if routing is allowed only within the extent of the terminals (i.e. using e + 1 

columns}, then t = O(m/e - m)•. In (Lei81) a channel routing problem ia described for which 

the smallest attainable width is t = 2d -1 if the knock-knee model i1 being used. This matches 

the performance achieved by :he algorithms in (RBM81 ], thus exi1tentially the lower and upper 

bounds agree. 

The major question that remain■ open concerning lower bound■ is whether the relative 

orderings between the terminal■ can be incorporated into the derivation. In other words, can 

the structure of the permutation (on neta) being realised by the channel be used to obtain tighter 

• For t.wo runct.ion1 /, , we ■ay that. / - OC,) ur fl = 0(/). 
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bounds? From previous work we have learned that the relative positioning of the terminals is 

sometimes more important than their ordering ( e.g. river routing), but the ordering-no doubt

plays an important role by itself. · 

2.2. Minimbing Layen and Width in the Vaa-rree Model 

In this section we first show how to efficiently determine the minimum number or layers 

required to route two-point nets across a channel using the via-free wiring model. Then we show 

how to find the minimum width or a channel when the smallest number of layers is being used 

in the via-free wiring model. This is done by combining the framework developed for the layer 

minimization problem with our earlier work on river-routing across a channel (Chapter ID). 

In the via-free model, each net is being assigned exactly one layer in which the net is to be 

realized. Two nets have to be assigned different layers if and (!nly if they cros, each other, that is 

if the straight Jines drawn to connect their terminala interaect. In symbola, the crossing condition 

for nets Ni and N; ia (ai - a;)(bi - b,) < O. 

A set of nets going acro11 a channel can be assigned l layers so that no two crosaing neta 

will be assigned the same layer if and only if the following coloring problem can be solved: Given 

are l colors and the graph G = (V, E) where V = { Ni, i = 1, ... n} is the set of nets, and 

E = { (Ni, N,) I Ni crosses N;} represents crossings. The coloring problem in general ia NP

complete, but the kind of graphs set up by the channel routing problem in the via-free model i■ 

a special clau called permutation graphs. Such graphs can be colored in polynomial time for any 

number of layers l. In case, however, ,ingle-,ided connections are allowed, the channel routing 

problem becomes NP-complete ■ince it ia equivalent to the problem of coloring a circle graph 

(GaJo79]. 

Even, Pnueli, and Lempel ~L72] have provided an O(n2) algorithm for colorin_g a per

mutaion graph with n nodea. In fact, they recognized the applicability of such graphs to the very 

same problem diacussed h~re (cast in a PCB context). Here we ■ball deacribe how their algorithm 

can be modified to run in time O(n log l), where n is the number of nets and l is the number of 

layers. 

To be consistent with (EPL 72}, let us number the nets so that the terminals on the top side 

or the channel read 1 to n when going from left to right (i.e. 111 < a 2 < . . . < an)- The net 

name■ of the bottom terminals, when read from le~ to right, form a permutaion of the numbers 

1 to n, which is the permuation of the graph ( or the permutation realized by the channel). We 

- - - also associate with each bottom terminal its ordinal as obtained when scanning the bottom side, 

i.e. we associate the number 1 with the leftmost bottom terminal, 2 with the aecond from the left, · 

etc. Pi denotes the ordinal auociated with net N,. An example or the canonical net numbering 



-

82 ROUTING TWO-POINT NETS ACROSS A CHANNEL V.2.2 

and the associated Pi '1 is given in Figure 2: Pt = 4 since b1 is the fourth terminal from the left 

on the bottom Bide. 

5 

,,/ 

... ... .. 
4 3 5 1 7 6 2 

Figure V.2: Minimal layer assignment in the via-free model. 

We denote the layer assigned to net N; by L(i), and for each layer k we define Pmax(k} = 
max{Pi I L(i) = k}. Nets are routed in increasing order by net number, and layers are assigned 

according to the following rule: L(i} +- k such that Pmu(k) < ~ is largest. In other words, for 

each layer we look at the rightmost net assigned to it; we eliminate all rightmost nets that cross 

Ni, and then choose the layer whose bottom terminal is the closest to~- In the example or Figure 

2, nets 1 and 2 are routed in the same layer, and then 3 and 4 are routed in a second and third 

layer. Net 5 can be routed either in L(3) or L(4), but since Pmu{L(4)) = 1 and Pmax(L(3)) = 2, 

we set L(5) +- L(3). Net 6 is then routed in L{S), and finally L{7) +- L( 4) following the same rule. 

Notice that we have been intentionally vague about the ,et of layers over which we iterate. 

This is because .the same algorithm, essentially, can be used both for the minimization and the 

decision version or the problem, i.e. we can either uk 11ho'Yt'. ✓many layers are required to realize 

the interconnect pattern?" or ask "are I layers enough!" and use the a.me algorithm to answer 

them. In the minimization version we try to use existing layers as long as possible; only when 

a net is encountered that has to be on a new layer do we use up a new layer. On the other 

hand, when the number or layers is given we could either adhere to the same philosophy and 

claim "failure" .when we run out of layers, or-alternately-we can initialize Pmu(k) +- -oo for 

all layers k = 1, •.• , l and run the algorithm until a net for which a_ layer cannot be assigned is 

found. 

The correctness or the procedure devised in [EPL 72) applies to our algorithm as well. Their 

algorithm is slightly different in the rule for selecting the next layer: rather than looking for 

the closest rightmost net on the bottom, they look for the farthest rightmost net on the top. 

Formally, their algorithm can be reformulated* by first defining 9max(k) = mu{ i I L(i) = k }, 

and then the layer aelection rule is: l(i) +- k such that j = 'lmax{k) is the smallest for which 

Pi < p;, i.e. N, and N, are non-crossing. The argument in the correctness proof in !EPL 72] can 

be now repeated verbatim for our selection rule. 

• IEPL72) doe1 not include 111ch 1pecific inltructio111, it ia only the proof th&\ implin their neceaaity. 



V.2.2 MINIMIZING LAYERS AND WIDTH IN THE VIA-FREE MODEL 83 

The advantage of looking for the closest bottom terminal rather than the farthest top terminal 

is in improving the worst-case running time of the algorithm from O(n2) to O(n log l). We conduct 

a binary search on the Prnax(k)'s using Pi as a key; as soon as we find the largest Pmax(k) that 

is smaller then Pi we can assign L(i) - k. Each such search takes time at most O(log l) since the 

test for non-crossing between two nets is a constant time operation. 

Now we tum to the subject or minimizing the channel's width in the via-free model. The 

interaction between wires aa far as spacing is concerned occurs in each layer independently or the 

other layers. Thus we can partition the wires into set according to the layer they are routed in. 

We can exploit the river routing constraints as developed in Chapter ill in order to determine 

the width that is required for routability: whenever a layer is being assigned to a net, we test 

whether it will fit in the specified ( or current, depending whether we are solving the decision or 

the minimization problem) width. 

Unfortunately, in order to obtain the minlmum width attainable with the minimum number 

of layers required, we have to resort to the layer assignment rule from (EPL 72), rather than the 

new rule devised here. The reason is that choosing the f arhte1t--ratber than the closest--net 

guaranteed maximal usage or the ·available space. In the example or Figure 3 we sec how the two 

layer assignment procedures differ. Although the number or layers utilized is the same '6), the 

selection in 3(a)-f ollowing (EPL 72)-yields a narrower channel than the selection in 3(b ). 

1 2 3 

2 1 3 4 2 1 3 4 
(a) two tracks (b) three tracks 

Figure V.3: Two solutions to the same channel routing problem using t\«> 
layers in the via-free model. Each has minimum width relative 
to its layer assignment, but (a) is narrower than (b). 

Another point concerens the relationship between the minimum width and the minimum 

number or layers. The width minimisation works only when the routing is done with the minimum 

number or layers needed .• If more layers are available, the extra degree or freedom makes the 

optimization problem too compicated to handle with the same technique. We tried to use dynamic 

programming to solve the general decision problem, in which l and w are given and the question 

- ·· is "can the channel be routed in l layers within ~ tracks?", but we were not able to devise a 

proper criterion. The only situation for which this problem is solved is river routing (see Section 

m.s). 
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- (a) (b) (c) 

Figure V.4: Monotonic routing across a channel: (a) is monotonic only in 
the horizontal sense, (b) is monotonic only in the vertical sense, 
and (c) is monotonic in both directions. 

3. Monotonicity 

V.2.2 

A wire going acroSB a channel is routed in horizontall11 monotonic fashion if the x-coordinatea 

of its jog columns form a monotone sequence (aee Figure 4(a)). Similarly, the y-coordinatea of 

the jog tracks of a verticall11 monotonic wire muat form a monotonically decreasing sequence (■ee 

Figure 4{b)). Intuitively, a wire is horizontally monotonic if when traversing its path from one 

terminal, all turns from vertical to horizontal segment■ are made towards the other terminal, 

and similarly for vertical monotonicity. We say that a wire is monotonic) if it is monotonic both 

horizontally and vertically (Figure 4(c)). 

It has been shown recently ((BrRi81) and [LloRa811) for the directional two-layer model that 

using horizontally nonmonotonic routing can reduce a channel's width by a factor as large as 

8( v'n)* in comparison with the optimal solution achievable with horizontal monotonic routing. 

The savings in width is made at the expense of the channel's length. For a discussion of the effect 

on the area see (LloRa81). The situation for vertical .monotonicity ia different. 

Theorem V.1. Whenever routing two-point neta acro11 a channel using the knock-knee 

wiring model, a minimum width 10lution can be obtained by using only vertically monotonic 

wires. If the directional two-layer model ia being uaed, a aolution whose width is at moat 1 more 

than the posaible minimum width can be attained in a similar manner. 

(Note that a &imUar result for the one-layer model is trivial.) 

Proof. The proof is constructive in that we show how to transform every vertically non

monotonic routing to a monotonic one without increasing the number or tracks at all for the 

knock-knee model, or by increasing it by at most 1 for the directional model. We start by dealing 

- with both models together; from a certain point, the knock-knee property enables us to complete 

• For two function■ /, 1 we ■ay that / - 8(1) Hr / = O(g) and f - 0(/). 
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the construction without changing the original width of the channel. The directional case is 

harder and may nece.ssitate the usage or an extra track, all in all yielding the desired result. 

A vallt11 is a jog track whose attached jog columns both lie above it, as in Figure 5. The 

horizontal tracks arc scanned from bottom to top, left to right in each track. Whenever a valley 

is encountered (whether original or produced at an earlier stage of the procedure), we try to fill it. 

Figure 5 demonstrates this construction. We run a wire in the horizontal track that is the lower 

among the top ends of the jog columns adjacent to the valley and eliminate the unncecessary 

portions of the original wire. 

)o 

Figure V.5: Filling a valley. 

Al a result of filling a valley, the new wire may overlap with some existing horizontal segments 

in the filled area. We pull down all wires with such segmenta to the position r reed by the valley. 

This may cause two kinds of problems: overlaps with other horizontal segments outside the valley, 

and overlaps of vertical aegments ~nywbere in the channel. The difference in treatment between 

the knock-knee and the directional models depends on whether vertical overlaps occur within the 

valley's span (i.e. between its right and left ends) or not. 

For the knock-knee case we abandon the filling plan;· and just look for the lowest horizontal 

track above the valley with which the valley can be exchanged without causing any vertical or 

horizontal overlap, within its span. Because a valley ia defined u being delimited by two upwards 

turning jog columns such a track always exista strictly above the valley. Notice that by this 

operation we have raised the floor of the valley to a higher track than before if not eliminated 

it altogether. At this point only conflicts outside the valley remain. In the knock-knee model 

they can be virtually ignored: we can use the geometry of wirea as it was betore the valley was 

processed and twitch the uaigmnent or wires to neta without changing the geometry. Neceuary 

connections can be made by using the columns freed by the vertical 1egments adjacent to the 

original valley (as can be BeeD in the transition from Figure 6(a) to 6(b)). 

The directional case is much harder, and we just mention briefly the main points: here we 

insist on "filling" the valley the first time we encounter it. Thia is done by forming a chain of 

interference, due to overlaps of both kinds - within and outside the valley's span: instead of 

- - pulling the wirez from the fiU-track all the way down to the valley's track, we pull them only as 

far down as possible in compliance with the interferences, thereby r orcing another set of segments 

down to the track with which they interfere etc. If we are lucky, we shall be able to accomodate 
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(a) original channel 

(b) solution for the knuclc-kncc model 

(c) solution ror the directional model (extra track needed) 

Figure V.6: Converting a vertically non-monotonic route to a monotonic 
one. The original channel is shown in (a), aolution for the knock
knee model in (b ), and the solution for the directional model in 
(c). In (c), an extra track ia needed. 

V.3 

the whole chain by the time we reach the valley; otherwise, we need one extra track. In the latter 

case, we take the wires that were originally routed in the fill-track and put them in a specially 

created track at the top of the channel, and leave the rest or the chain intact. This is partially 

demonstrated in the .transition from Figure 6(a) to 6(c). . ,, 
In both cases the transformation may create new valleys. However, as long as the tracks on 

which valleys are sought are scanned from the bottom upwards, and the leftmost valley or the 

lowest track is processed firat, we shall eventually eliminate all valleya. Note also that the extra 

track introduced in the directional case can be ■hared between all valley■ that need it. Proving 

the convergence of this proceu ia lengthy and relies heavilly on propertiea of the modela and the 

definition or a valley. I · 
Remark. The procedure used in the above proof outline is not tight in the sense that it may 

create an extra horizontal track even when such a track is not required. Thia may happen 

when a minimum width routing can be obtained by "atraightening out" a valley and its adjacent 

plateau, rather than filling the valley. We could not find a procedure that will take care or thia 

phenomenon. The example o{Figure 6, however, demonatratea that the additional track may be 

indeed required in order to achieve vertically monotonic routing. 

The result of Theorem 1 auurea ua that if we are willing to sacrifice one hori1ontal track, 

- we ahould not waste any reaourcea looking at aolutiona involving vertical non-monotonic wire■ 

when employing a heuristic. This is in contraat with what ia believed to be the case r or channel• 

including aignal-neta with three terminals or more. In fact, popular heuriBtica for that case 
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((Deu76), [YoKu82)} make heavy use of such routes. Moreover, this result provides a bound on 

the length of t.he routing needed to be done in the layer chosen to implement vertical segments. 

The bound for each net. is simply the width of the channel. Since in nMOS circuits t.he resistance 

or various conducting layers differs considerably, and we tend to minimize channel width, this 

result indicates that we should use metal for the horizontal direction and polysilicon or diffusion 

for the vertical one. 

4. Jogging 

There are various reasons why excessive jogging, i.e. including relatively many turning point• 

in the wiring, should be avoided. The major concern is the size of the data structures maintained 

by the layout procedure because the number or turning points is an obvious lower bound on the 

space complexity or any algorithm generating the wiring or dealing with it aft.erwards. Also, 

limiting the amount or jogging cuts down the search space ·required by a heuristic procedure. 

Thus it would be desirable to have some kind of a guarantee that bounding the amount of jogging 

. is not going to hurt us too much in terms of optimality. 

Another aspect of the jogging problem is electrical· performance. In the via free model, and 

10metimes in the knock•knee model, turning points are corner• on a single layer. Depending on 

the fabrication proceas, the resistance per unit square in such comers may be as much as 56% 

higher than along straight Jines [Zi81J, and we would like to avoid a cumulative effect or such 

phenomena*. In the directional model, and-again-10metimes in the knock•knee model, the 
. ..• 

problem is even worse. Each turning point ia implemented as a contact between two layer■• Then 

not only extra resistance is being incurred, but also more area ia required, forcing us to use a 

larger grid ai1e. 

Storer (Sto80) has studied the relationship between the area required to lay out a planar 

graph on a grid and the number· of turns that edge• make. He provides evidence to the effect 

that minimizing area may require arbitrarily more turns than optimal and vice versa. 

In this section we shall discuss the relationship between the number or jogs in a solution and 

its optimality. We limit our setting to routing two-point net1 across a channel, but we discuSB 

both planar and nonplanar pattem1. 

One well understood routing situation is river routing. In Chapter ID we saw how to use the 

greedy ("contour hugging") algorithm to obtain 10lutiona that are optimal both with respect to 

the width and the length of the channel. Unfortunately, there are river•routing situations that 

require a large number of jogs so that full advantage can be taken of a channel's capacity when it 

-- - - • SoJJietime1, however, the interaction between· 1uch phenomena alleviate■ their individual effect■, and the end 
result· ia not additiYe. Tli-, analy1i1 in thi1 cue ii not jU1t quantit.ative-it require■ a closer e:umination 
or the geometry or wires. AJ10, better circuit level models are needed, and thi1 i1 beyond the ■cope ol this 
the1i■• 
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is low. To route n signal nets, we may need as many as O(n2) turning points; this is exemplified 

by Figure 8(a). On the other hand, the greedy routing algorithm may generate more jogs than 

are necessary in less constrained situations, as shown in Figure 8(b ). We now. give an algorithm 

that is essentially as fast as the greedy algorithm to river route a channel using the minimum 

possible number of jogs. 

(a) 
1 2 4 56789 

1 2 J 4 5 

(b) 

4 5 6 7 6 9 1 2 3 4 5 

Figure V.8: River-routing: (a) shows a situation requiring O(n2) jogs, whereas 
in (b) more jogs than necessary are generated by the greedy al
gorithm. 

Similarly to the greedy algorithm, this procedure routes the channel net by net, acanning 

it once from left to right, in the order that the nets are numbered. Nets that are pitch-aligned 

(ai = bi) are routed straight across. The treatment of rising nets (a, > bi) is symmetric to that 

of falling nets (ai < bi), and for sake of brevity we shall discuss the latter case alone. 

Here is a semiformal specification of the routing procedure for one net (in pseudo-Algol): 

Algorithm V.1. Routing a falling net 80 as to minimise jo~s 

route vertically down from ai as far as pouible; 

t +- number of tracks crossed by above segment; 

l!hik a.+t - ~ < t d2. 
jog once along contour; 

t - t +length of last vertical segment 

sul; 
route horizontally to bi 'a column and down to ~; 

All we have done was to modify the greedy algorithm by adding the following rule. Whenever 

a net is about to take a downward tum, we check whether routing it atraight horizontally all the 

way to its target column will not render the nets on its right unroutable. Thia test is simple and 

quick (involves one compariaon) using the formulation cast in Section ID.1 (Condition (2)). We 

apply the teat to a contracted channel consisting only of the track■ that have already been croaaed 

_ by the wire, including the one reached 80 far. The relevant number of tracks is accumulated 

in the variab]e t . . Ir the teat aucceeda, no jogging ia required, and .thus we simply route the 

wire horizontally to its target location. Otherwise, we tum downwards right away (at the next 
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(2:il, !/ii __ _ 

Figure V.9: Representation of the ith wire. 

available column, i.e. follow the contour for one tum) and route as far as possible towards the 

other side. Then we start a new horizontal segment and apply the test again when a possibility 

to turn downwards arises, and so on until we reach the destination. 

In order to implement any algorithm of this kind, including the greedy algorithm, one needs 

a data-structure for wires and contour,. Our suggestion is the following. Since all wires are 

monotonic and rectilinear, it suffices to store every other comer, starting from the first jog. For 

falling nets this means that we represent a wire by its bottom-left comers as in Figure 9, and we 

also include the terminal positions in the description. Thus a falling wire i is represented by the 

list (ai, (xil, t.'it), ... , (:tu;, t/il,), bi), where 4i = :tit, the .:r-coordinates form an increasing series, 

and they-coordinates form a decreasing series. A rising wire is described by upper-left corners, 

and the only difference in the representation is that both the :z:-coordinates and the 11-coordinates 

are monotonically increasing. Notice that a description of the ith wire provides a description of 

the contour need~ for routing the (i + l)st wire. 

Evidently, the time required to nin this algorithm is b~unded by a constant times the number 

of jogs (or wire segments) it produces, thus it is optimal in the complexity sense. Moreover, it 

indeed generates the minimum number of jogs r or the channel and thus is optimal in the quality 

of its results as well. It turns out that minimizing the total number of jogs also attain• the 

minimum number of jogs r or each net individually. Trying to minimize some other fun_ction of 

the distribution of the number of jogs (such as standard deviation) seems to be a much harder 

problem, though. We summarize by ltating: 

Theorem V.2. For a channel with a given width, Algorithm 1 (when applied to all nets) 

river-routes it using the minimum number of jop per net (and subsequently, the total number as 

well). The algorithm'• time and space complexities are linear in the size of its output. 

Proof. We distingui1Jt between rising 6locb and falling ones (following left-going and right-

going blocks in [DKSSU81 ]). A rising block is a maximal set of consecutive riling nets, and 

· likewise r or a falling block. The channel can be partitioned into auch adjacent blocks because 

- · ·· the routing within one block do not interfere with what happens in the other blocks and hence 

it is enough to prove the theorem for one block. Without loss or generality we choose a falling 

block. 
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There are two key observations. First, jogs are taken only if they are necessary to enable 

routability of the remaining nets. Second, if a jog has to be taken it bad better occur as soon as 

possible (i.e. along the contour). We must show that each jog generated by this algorithm on any 

wire is mandated by the channel's configuration. This is done by induction on nets: net i attains 

the minimum number of jogs it requires to ensure routability provided that nets 1 through i - 1 

were routed using the algorithm. The basis, for net 1, is obvious. The induction step relies on 

the surprising r act that once a corito·ur is being followed r or one turn-it bas to be r ollowed all 

the way except for, possibly, the very last turn. (Algorithm 1 can be subsequently simplified 

to aave unnecessary comparisons.) This ensures that no extra jogging in wire i can aave some 

subsequent jogging in net j > i. In other words, the greedy approach to jogging in necessitated 

- by the routing constraints. 

Next we show that Algorithm 1 (as stated) indeed produces jogging only in the above pattern. 

I 

Now recall LaPaugh 's NP-completeness result concerning minimizing width in the directional 

model that requires one jog per net (LaP80a, Section 4.3.i). In the situation of routing two 

point nets acroSB a channel when the orderings among the terminals on top and on bottom are 

unrelated, the problem or minimizing the channel's width in the directional model using only 

one jog track per signal net is NP-_complete. This result has special meaning in the context 

of this section because it tells us th~t even if we limit ourselves considerably in terms of~ bow 

much jogging we allow, we are not likely (unless P=NP) to find a polynomial-time algorithm 

for routing which will be opti,;nal with respect to to the width criterion. Notice, of course, that 

since only one -horizontal segment is allowed for each net, the length of the channel is simply the 

distance between the extreme terminals. 

In this light, the following result is interesting: 

Theorem V.3. For both the directional and the knock-knee wiring models, there exist 

routing configurations for n two-point nets acrou a channel in which any minimum width 

monotonic routing will force one of the wires to have 0( vn) jog tracks. 

- - Proof. The constructions given in Figure 10 provide the pathological cases. For simplicity, 

we used definite configurations, but they can be understood as generic patterns. In the directional 

· case of Figure lO(a), each configuration is made up of block, oC signal nets labeled contiguously 
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from some index l to some index r, such that bi = ai + 1 for i = l, ... , r. In the knock-knee 

case of Figure lO(b} the structure of the block is slightly more complicated, as shown. Irk is the 

number of jogs we want to force, we use k -1 blocks or k- 2 nets each, plus 2 blocks with k - 1 

nets per block. Adding on the forced net (having the largest label), we have all in all k•(k-1)+ 1 

nets, achieving the desired ratio between jogs and number of nets. In Figure 10, we chose k = 4. 

1 ~ ~ \3 a i ~ ' ~ a9 1.0 .1 ;2 • 
• • • • • • • • • • ,. • • l 2 3 4 5 6 7 8 9 13 10 11 12 

(a) construction ror the dircc1ional model 

l 13 2 \ a ; a ,1 ~ a 1g ;i.J, 4' 2 • • 
• • • • • • • • • • • • • 3 2 1 5 4 6 7 9 8 12 11 13 10 

(b) construction fbr the knuck·kncc model 

Figure V.10: Channels forcing net 13 to jog 4 times. (a) is the construction 
for the directional model, and (b) is the construction for the 
knock-knee model. 

In Figure 11, we see how a width of k + 1 (i.e. routing in k tracks} can be obtained. This 

is optimal due to a density arguments. It remains to be shown that in f!'lery optimal routing 

the forced net is required to have k jog tracks. We prove this by induction on k. At each step 

we splice the additional net1 into the existing structure, showing that anything short of jogging 

through the blocks will make a monoto~i.c routing or the forced net _impossible. I 
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(a) optimal solution for the directional model 
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(b) optimal solution for the knock-knee model 

Figure V.11: Solutions for the channels of Figure 10. (a) and (b) give the 
optimal solutions for the directional and knock-knee model■, 

respectively. 

V.4 

Rem.ark. Notice that here, unlike the situation of Theorem 1, relaxing the minimum width 

goal by allowing it to be 1 or any other constant more than optimum does not help - the lower 

bound on the number of jogs is still essel).tially the same. 

To summarize, we have seen that on one hand, jogging is essential in obtaining minimum 

width channels, but on the other hand limiting ita extent does not make the problem of finding 

optimal solutions in general any ea■ier. 

5. Resolution of Conflict Cycles 

A major problem in channel routing is that of vertical conflict&. In all models which disallow 

overlaps of wires and comers, if two terminals with. ditf erent labels appear in the same column 

(i.e. have the same :i:-coordinate) we must assign a higher jog track (in this column) to the top 

terminal. This may impair the quality of the routing, and sometimes even make it impoBBible. 

The notion of a wrtical _conflict graph, due to Hashimoto and Stevens (HaSt71), has been 

widely used to model this problem. We auociate one vertex with each signal net, and draw a 

directed edge from one vertex to another if a terminal of the first occurs under a terminal of the 

second in some column. Figure 12 shows a channel and its corresponding graph. It is easy to 

see that if we constrain ourselves to using only one jog track per net, no routing can be round 

whenever the vertical conflict graph contains a directed cycle. On the other hand, we show in 
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this section that resolution of cycles can be obtained using (almost) monotonic routing except for 

extreme cases and only with a slight deviation from the one jog track per signal net restriction. 

1 2 3 4 5 6 7 8 

5 4 6 7 8 2 l 3 

0G ~-
000t18 

Figure V.12: A channel and its corresponding vertical conflict graph. 

The vertical conflict graph is well defined r or channels whose nets have more than two 

terminals, but its usefulness decreases as the size of the nets grows. Thia is demonstrated. in 

(YoKu82}, where the nodes of the vertical conflict graph are split (according to the positions 

of internal terminals) in order to achieve smaller channel width. From here on, we limit the 

discussion again to two-point nets across a channel and to monotonic routings. 

First, we consider nets whose terminals occur in the aame column. The only way they can be 

routed monotonically is straight across, thus taking up all the routing space in their column and 

not interacting with the rest of the channel. Hence we eliminate these nets altogether from the 

channel by removing their column and contracting the channel accordingly. This simplification 

concerns both the actual routing and the definition to follow, malting it simpler to state. 

Definition V.1. A cycle in the vertical conflict graph is tight if the nets involved in it occupy 

a contiguous block of columns. A cycle that is not tight is called looae. :. 

The next two lemmas-eatabliah the relationship between tightness and routability. 

Lemma V.1. 

monotonically. 

A set of nets corresponding to a tight conflict cycle cannot be routed 

Proof. Since there are only two terminals per net, the number of columns in the block must 

be equal to the number or nets in the cycle. The proof proceeds by induction on the number of 

__ nets. For n = 2 we have the infamous X croBBover that is unroutable by inspection (Figure 13). 

If a tight cycle of n = k nets cannot be routed, neither can a tight cycle of n = k + 1 nets, 

because the new net essentially establishes an X withthe rest of the nets. I 
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1 2 

2 1 

Figure V.13: An X crossover: no horizontally monotonic routing exists. 

Lemma V.2. A chanirel con~isting solely of nets corresponding to one loose conflict cycle 

can be routed monotonically so that each net but one uses only one jog track; the remaining net 

uses two jog tracks. 

Proof. The order in which nets are routed is determined by the conflict cycle: starting with 

any net, we route each net using one horizontal track and then route the next net on the cycle. 

This can be done successfully until we try to route the last net, which has to broken into two 

tracks. Since the cycle is not tight, there exists one column in the channel that can be used to 

awitch from one track to another. To ensure (horizontal) monotonicity, we make sure that the 

last net to be routed (which precedes the first net in the cycle) has one terminal to the left of 

the free column and the other one to its right. One such net always exists by the definition of 

a loose cycle. The result or this routing strategy is demonstrated in Figure 14, where we started 

routing from net 4, ending up by splitting net 1 between two tracks. I 

1 2 3 4 

L -
-3 4 2 1 

Figure V.U: Resolution or a aingle vertical conflict cycle. 

The more interesting case is when cycles interact: 

Definition V.2. A set of nets corresponding to a union or diajoint cycles in the conflict 

graph is called tight if their terminals occupy a contiguous set or columns. A set or nets that is 

not tight is called loose. The ,pan or a set or nets is the set or columns enclosed between the 

leftmost and rightmost columns belonging to any or the net■• 

- - A tight set or nets corresponding to three cycles is shown in Figure 15. A set or nets is loose 

if there is even one column in its span that baa a terminal or a net not involved in any or the 

cycles. 
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1 5 3 6 2 4 
••••••• 

• • • • • • 
2 6 4 5 1 3 

RESOLUTION OF CONFLICT CYCLES 

Figure V.15: Three cycles forming a tight set of nets. 

The following result is an extension of Lemma 1. 

Lemma V.3. A tight set of nets cannot be routed monotonically. 

95 

In order to obtain the main result of this section, we have to relax our monotonicity require

ment slightly. 

Theorem V.f. Any loose set of nets can be routed within the span of the set so that each 

net but one per cycle uses only one jog track. The remaining net, use two jog tracks each. 

Proof. Clearly, it is enough to look at a set of nets corresponding to a union of cycles. Also, 

if we can show that a loose act containing only one extra column can be routed in the fashion 

described in the Theorem, we are done. The proof is by induction on the number of cycles: we 

can use the same fr~ column to resolve all cycles (aa in Lemma 2). This may force the routing 

of one net per cycle to be horizontally nonmonotonic, but the routing is still within the span of 

the original set. I 
If we use the routing scheme devised in the proof, e end up having one column that baa 

as many vertical .jogs as the number of cycles. This may be cumbersome when it comes to the 

representation of the routing in a dab structure, ao a mofe elegant construction can be used that 

splices the cycles into one another as shown in Figure 16. The resulting routing contains in each 

column at most one vertical segment connected to a top terminal, one connected to a bottom 

terminal and maybe one dangling in between (the number of such dangling segments is equal to 

the number of cycles). 

3 1 5 2 4 6 

4 2 6 1 3 5 

Figure V.16: Resolution of a non-tight set of nets involving three cycles. 
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Professor Jeffrey D. Ullman from Stanford University has pointed my attention to the fact 

that a similar idea was applied in (KaKa79] to expandable channels. The setting in their paper 

is rather different from ours, but it is interesting to note the versatility of this technique. 

This routing strategy haa an interesting application to restructurable VLSI (Ra79), as baa 

been brought to my attention by Sandeep Bhatt. In this technology, metal connections can be 

made or broken aft.er fabrication by laser welding. Now note that a permutation of n elements 

can have at most J cycl('.!s, Using our technique, we can realize any such· permutation by a 

crossbar switch layout of dimensions (n + 1) X f n, rather thadi the obvious n X 2n layout. 

All in all, we have shown how cycles can be resolved using a simple strategy in most cases. 

We have, however, discussed only the issue of routability, not the one of optimality. If there 

is only one free column in a loose set of nets (as in Figure 16), the solution provided is indeed 

optimal for width, but the problem of relating the width to the ~umber of free columns remain a 

open. 

6. Routing Across a Rectangle in Arbitrary Order 

Consider the case in which a aide of the channel belongs to a module in which the order 

of the signals can be changed arbitrarily by easy changes to the module, e.g. 1/0 to a PLA, 

1/0 pads, or data registers. Then a set of terminals is aasociated with a set of signals of equal 

cardinality, and we create the individual association between··aignals and terminals as part of the 

routing procedure. In this case we might take advantage of the freed om we are giYen and reduce 

the width of the channel or the number of layers that are needed by using an optimal algorithm 

for a certain type of ordering, such as river routing. Here we shall discuss the problem in the 

context of the directional model, for which an optimil algorithm exists if terminals are allowed to 

be connected in arbitrary order. The savings in width earned by such an algorithm is exemplified 

by Figure 17(a). 
i 

i r ' • • T I 

' T T p ' I ' • I ' • I . ' I • ' • ,, 
• .L ~ 

I I ~. I I • • I • I • ~ " 
Figure V.17: Routing across a channel with arbitrary terminal ordering (notice 

the terminals have no labels). (a) shows a simple case using only 
one horizontal track; (b) demonstrates a more complicated case 
with ec = 3 (due to i). 
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The key observation is that terminals which are aligned across the channel must be connected 

straight across. The .rest are processed in order from left to right (on the top aide) and each is 

connected to the first available terminal on the bottom side. Each wire is assigned the highest 

available horizontal track as its only jog track. An example of this procedure is shown in Figure 

17(b). 

We restrict ourselves to a horizontal channel, C, having terminals on two opposite sides only. 

Let lT(xo) and l8 (xo)) be the number of terminals on the top and bottom side, respectively, of 

the channel lying to the left of :r:0 • Then we define the exceaa number at a point :z: = x0 to be* 

Equivalently, we could have defined excess number with terminals lying to the right of xo. 

The exceBB number of the channel, e0 , is defined aa 

ec = max ec(:z:) 
SL Ss:Ss.R 

where XL and XR are the x-coordinates of the left and right ends, respectively, of the channel. 

Theorem V.5. The number of horizontal tracks needed to route C is exactly Ee, which is 

optimal. 

Proof. The number of ec tracks can be attained by first routing aligned terminals straight 

across and then assign horizontal jog tracks using the track assignment rule mentioned above. 

Note that this algorithm does not cauae two vertical tracks to overlap, as opposed to a similar 

case in [DKSSU81] (aee Figure 17(b)). Also, no wire passes through more than two contacts. The 

lower bound is proven by drawing vertical line aegments through the channel. By the definition 

of ec at least at 10me point x as many as ec(x) signals have to be routed from the left aide of x 

. to its right side, thus forcing us to use as many aa ec tracks. I 
-

The calculation or the excess number is linear once the terminals are sorted. The auignment 

of tracks is also linear. The tracks can be maintained in a fr~list, because it does not matter 

which track is assigned to which net as long aa they do not overlap. Remember that there are no 

vertical conflicts, because all aligned terminals have been connected at the beginning. All in all 

we have linear time algorithm1 both for testing routability and for routing the channel (assuming 

the terminals are presorted). If they are not, the complexity i■ O(nlogn), where n is the number 

or terminals on each aide. 

This result can be generalized to dealing with disjoint sets of signals. The order of terminals 

within each is arbitrary, but we are not allowed to. mix terminals from different sets. Thia 

• zo ·need not be integral; in fact, we mu■t look at point, oft.be Corm l + i where l i■ an integer. Moreover, 
it i■ 111perftuou1 t.o look at integral point■. It i■ enough to look at point.I ju1t before (-½) and ju■t aft.er 
(+½) terminal■ tor the application to follcnr. · 
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is achieved by modifying the definition of the exce11 number to accommodate this constraint. 

Furthermore, the excess number has the same bitonicity property as the conflict number discuBBed 

in (DKSSU81], thus it can be used to solve the offset problem in the same fashion as described 

there. 

7. Conclusions 
A few topics concerning the routing or two-point nets have been exposed and analyzed. Many 

open problems remain and promise some exciting research in the field. 

• Can we improve the result of Theorem 3 by finding a channel with n nets such that one net 

is forced to have more than O( vn) jogs? What can be said about the average number of jogs per 

net? 

• Szymanski has recently shown (!Sz81]} that dogleg routing, allowing an arbitrary number of 

jog tracks per net, is NP-complete even when terminals are located only on two opposite sides 

and all routing is horizontally monotonic. To support his result, however, he needs four-point 

nets. Can this be extended to two- or three-point nets? 

• Can we derive lower bounds r or channel width that will incorporate the relative orderings 

between the terminals? A first success in showing that density is not a tight lower bound is 

(DrRi81]. Can we improve their result? 

• How do conflict cycles affect the optimality of channel width? 

• (RBM81] includes some limited expl_oitation of the ge~~ral two-layer model. What can be 

gained by using all the freedom allowed by this model? On the other hand, can we find non-trivial 

lower bounds for it? Notice that now the density is half of its traditional value, since wires can 

■hare tracks. 

Two-point nets going acrou a channel can be used in the decomposition of a general channel 

problem into a collection of simpler ones. This can be done either by conceptually breaking 

up more complicated nets into related parts having two terminal■ each (such as in (YoKu82]}, 

or by handling two-point nets aeparatcly ([Bar81] for example). Moreover, some of the leuons 

learned from the study of two-point nets can be applied successfully to nets with more than two 

terminals, but intricate interactions between such nets are very subtle and call for a concentrated 

research effort. 



Chapter VI 

Routing In and Around Junctions 

The decomposition or the routing area available on a chip into rectangular channels is 

aomewhat orthogonal to the global nature of the routing problem. The way that one signal 

net is routed affects the potential solutions for other bets. This global characteristic is one of 

the major reasons why routing is such a hard problem. In channel routing, the global nature or 

the routing patterns is fragmented by the channel structure in a way that makes a solution even 

harder to achieve. As a result of this approach placement evaluation becomes quite inaccurate 

as well. 

In this chapter, we propose to look at routing problems in nonrectangular channels while 

still maintaining rectilinear aides. AB long as modules are rectangular, such channels take one 

of three general shapes: T, X or L, as indicated in Figure 1. While the L's are relatively eaay 

to handle, the other two are more complicated. Some instances or T's and X's yield to aome 

interesting theoretical analyses which are presentedin this chapter. In general, non-rectangular 

channels are treated by partitioning them internally along edges and dealing with each section 

separately: The edges are· used to maintain con,traint, in such a way that overall optimality is 

achieved. We develop a powerr ul algebraic abstraction for constraint propagation, called pairwise 

ordering,· which is well suited to the problem, and study it carefully. 

The theoretical research on routing in rectangles has thus far paid little attention to configurations 

which are common in practice, and even less to the problem of propagating routing constraints 

through the channel. In order to fill the gap, we should examine routing or useful patterns both 

in T and X shaped channels as well as in rectangular ones. 

*** Talk about orderings here*** 

99 
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Figure VI.1: T and X junctions appear frequently in a typical layout. 

The discussion in this chapter is limited to the Manhattan and knock-knee two-layer wiring 

models. The first two sections of this chapter describe polynomial-time algorithms r or attaining 

optimal routings for certain configurations in T-shaped channel (Section 1) and X-shaped channels 

(Section 2). The notion or pairwise ordering is defined and discussed in the beginning of Section 2. 

Then we recall our results on routing between arbitrarily ordered terminals lying along a channel's 

side (from Section V.6), and conclude with a discussion or implications on a methodology for 
/.· 

generalized channel routing. 

1. Routing in T-shaped Channels 
A T-shaped channel is shown in Figure 2. Its sides are named top, flanks, legs and ends. 

These names are qualified by the appropriate direction• when needed. In general, terminals can 

lie on any side and routing the channel means to connect terminals with the same labels to each 

other using paths lying within the channel, obeying the design rules~ 

The decision problem associated with routing a channel is: "Can we route the channel in 

its given dimensions!" A procedure for solving this problem can be relevant in the placement 

phase of layout. The related minimization problem is somewhat more interesting: "How can 

we minimize the area required in order to route the channel?" This gives rise to an ambiguity 

because even if we assume that the side& of the channel (except for the ends) belong to three 

modules in the natural way, as implied by Figure 2, what movements of the modules are allowed? 

When does the channel cease to have a T-shape! First, we decide that the flanks of the channel 

will remain aligned (i.e. share the same grid-line). Second, it seems unnatural to use the absolute 

area as the optimality criterion for various reasons (see [Pr79l).Thu1 it is natural to consider the 



t Op 

left right 
end end 

left flank right flank 

eft ri
eg ght 

leg 

~ '------~ / 
bottom end 

Figure VI.2: A T-shaped ~hannel. 
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distance between the legs (denoted w8 , for bottom width) and the distance between the top and 

the flanks (denoted WT, for top width) as our. criteria in a way to be described in the following 

paragraph. 

Moreover, it is obvious that changing the distance between the lower modules (i.e. changing 

the leg to Jeg distance) may effect the routing or signals going to the top and the flanks. Thus our 

strategy will be to minimize w B first, and then minimize WT with respect to it. This approach 

11 most practical in most design situations and is also likeJy to approximately minimize other 

interesting cost functions, such as area. Notice that minimizing WT first (by setting it to 0) will 

flatten out the T, i.e. make it into a rectangular channe1-·by pushing the lower modules outward 

to the ends of the upper one. Also, once w8 ia known, we can fix the horizontal location of the 

lower modules with respect to the top one, forming a solid T. Finally, we shaU see that WT tends 

to be much smaller than w8 ; thus minimizing Ws first in an unconstrained manner is preferable 

from the placement procedure's point of view (since it is better in preserving the T-sha~)-
Now we restrict ourselves to two-point nets, i.e. to instances or the problem where each 

signal-net name can appear as the labeJ of exactly two terminals. Also, for sake of simplicity, 

we exclude the ends as posaible aides for terminals to lie on (they can be added at a lat.er stage). 

Assuming no net connects two terminals lying on the same Bide or on two adjacent sides of the 

channel, which is reasonable if theae are the sides of Bingle modules, the nets can be divided into. 

5 cases according to whic~ kinda or sides they connect: 

(i) top to flank& 

(ii) 

(iii) 
(iv) 

(v) 

top to legs 

Hanks to legs (left to right and right to left only) 

flank to flank 

leg to leg 



102 ROUTING IN AND AROUND JUNCTIONS VI.1 

The most interesting case to consider is Case (ii). Cases (i), (iv) and (v) are embedded. in 

standard rectangular routing, whereas (iii) is essentially a restriction of (ii). We shall solve Case 

(ii) in the rest of this section. 

1.1. Terminology and Notation 

This subsection summarizes the terminology required for describing and discussing the rout

ing results presented in the next subsection. We assume here that the flanks have been positioned. 

relative to the top, which makes sense since the leg-to-leg distance will be computed immediately 

from the input without involving any of the notations to follow. Most of the terminology ia 

summarized in Figure 3. 

T-tenna ________ .A.._ _______ _ 

\ L-t,erms , H-t.,erms R-te~s , 

A .; - c' ~ 'o E
1

' ~i G
1 f4 • 

i ! 
left central ! 

portion portion I 
• 1 

! 
• 

C 

B- H 

B 

' 
F 

fl . 
/ 

E 
,it•ll.11.•3, " •2 Ill 

·-·-·-· 
Figure Vl.3: More terminology for T-shaped channels. 
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Here (B,G) is an aligned pair inducing a conflict; (A,F) is an aligned_pair 

not inducing a conflict. 

n = 8, n, = n,. = 3, n_ = 2. 

All terminals on the legs (excluding the comers) are called B-terms, and the terminal, on 

the top are called T-terma. We denote by n the number of lignal pairs; thus there are n T

terma and n B-terms. T-terma whose z-coordinate i1 within the range of the left (right) flank 

(including end points) are called L-terma (R-tenn.s); the reat of the T-terms are called M-term, 

(for middle-terminals). We denote the number or L-term,, R-terms and M-terma by ni, nr and 

nm, respectively (thus n = n, + nr + n,n), 

Definition Vl.1. Two B-tenna with the same 11-coordinate are called an aligned pair. 

Alignments of B-terms induce pairing between the T-terms bearing the same labels. If the 

z-coordinate of the top terminal corresponding to the bottom terminal lying on the right leg ia 
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smaller than that of the top terminal corresponding to the bottom terminal lying on the left leg, 

the pair is considered to be a conflicting pair. More precisely: 

Deflnition VI.2. Let S1 and S2 be two signal nets, with corresponding top terminals Sf 

and sr, respectively, and bottom terminals Sf and Sf, respectively. If Sf lies on the left leg, 

Sf on the right leg and they are aligned, then Sf and Sf constitute a conflicting pair if sr lies 

to the left of Sf. 
We classify conflicting _pairs according to the subclasses their T-terms fall into. For all 

possible combinations of X, YE { L,R,M} an XY-pair is a conflicting pair in which one T-term 

is an X-term and the other a Y-term*. For example the pair (B,G) in Figure 3 is an LR-pair, or 

equivalently an RL-pair. We order the pairs according to the positions of their T-terms, i.e. we 

write (S1, S2) if the :r:-coordinate 9f sf is smaller than that of Sf. The number of XY-pairs is 

denoted by ns11 , and thus there are n,r LR-pair■• 

The grid-line segment going from the left end-point of the right flank to the right end-point 

of the left flank (dashed in Figure 3) is called the croasing edge. The part of the channel above it 

is called the top part1 the one below it - the bottom part. The ei:tension of the right leg upwards, 

until it bits the top (dotted in Figure 3), is called the right edge; the portion of the top part to 

its right is called the right portiun. Likewise for the left edge and the left portion. The portion 

between the right and the left edges is called the central portion. A grid point residing on an 

edge and coincid~ng with a routing path is called a croa,ing point. 

A grid-line segment enclosed by· either the top part or the bottom part of the channel is 

called a track. The orientation of a track (horizontal or vertical) is relative to the T-shape, not 

to its parts, Tracks going from the right end to the left end, or from one leg to the other, are 

horizontal tracks. Vertical tracks go from the bottom end to the crossing edge, or between the 

flank, and the top. 

1.2. Routing re1ults 

AB noted above, the bottom part of the channel is routed first. By assigning one vertical 

track for. each signal, we can easily route the B-terms to the crossing edge attaining ws = n + 1 

by sharing horizontal tracks between aligned pairs regardlesa of the positions of the other B-terms 

(see Figure 4). The only constraint this imposes on the crossing edge is that aligned pairs will 

appear on it in the order corresponding to their legs. We shall see how to handle this, from the 

top part's point of view, whether the pair is conflicting or not. The ordering among the other 

signals may be arbitrary, which will be taken advantage of heavily. 

• JlOtice that t.here ii no difference between the Ht of XY-pairt and the le\ of YX-paln. 
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Figure Vl.4: Routing the bottom part of the channel optimally and propagat
ing its constraints to the crossing edge. 

VI.1.2 

Lemma VI.1. The bottom part of a T-shaped channel can be routed optimally (ws = 
n + 1) assuming there is no leg-to-leg routing. 

Proof The number of signals that must cross the common edge is n. Since they must abide 

the design rules, we need n tracks that take up width n + 1. I 
/ 

This lemma is of no consequence unleBB we can route the top part efficiently. First we notice 

that signals corresponding to L-terms and R-terms can be assigned to arbitrary horizontal tracks 

in the left and right portions (resp.) without any loss or optimality (of WT) there: each such 

(non-M-)term has to jog in order to get to the corresponding edge, so it needs a horizontal track; 

since there are no conflicts with respect to vertical track■, we have complete r reed om in the way 

we assign these horizontal tracks. Of course, some logic has to be applied in order to avoid chaos 

in the central portion if we want (naturally) to use the same horizontal tracks. Now, the first 

problem which comes to mind is how to accommodate conflicting pairs. Let us consider LR-pair■ 

first: at first it seems that routing them will require u many aa 2n"' horizontal tracks in the 

central portion as might be implied by Figure S{a), but we have: 

Lemma VI.2. The LR-pairs can be routed from the left and right edges using n," + 1 

horizontal tracks, which is optimal. 
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Figure Vl.5: Routing conflicting pairs in a T-shaped channel. (a) shows single 
pair, and (b) shows how to interleave many pairs. 
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Proof. The lemma is proven by the construction or Figure S(b ). Notice that nothing can be 

gained by interleaving the crossing points of different pairs. The construction can be described 

as follows: The signal corresponding to the L-term or the first pair is routed all the way to the 

rightmost vertical track, and jogs down; the signal correaponding to the R-term of the pair is 

assigned to the next higher track and jogs down immediately to the left of the former signal, 

thus forming the desired crossover. The second pair uses for ita L-term the same track that was 

used for the former R-term, thus sharing a track, and the crouover is formed to the left of the 

former one, etc. Notice that (a) there is no significance whatsoever to which order the pair■ are 
picked in, and (b) we could have likewise gone from left to right in the crossover ordering, putting 

aignals for R-terms below the ones for L-terms. / 

The optimality is proven by induction. One pair needs two tracks for density reaaons. Each 

additional pair requires at least one more track, agai1,1· by a density argument. I 
Notice that in the construction of Figure S(b) one track was unused to the left of the leftmost 

crossing point, and another track waa not used to the right or the rightmost cro11ing point. This 

free space is utilized in subsequent route■• 

The next atage is the ordering of aignals along the crossing ·ectge. On the left we put those 

signals associated with L-terms that are not involved in conflicts with non-L-terms; likewise on 

the right. The LR-pairs are being put in the middle. M-terma not involved in conflicting pairs 

are routed straight down through the central portion. Aa for ordering on the left and right edges: 

Signals corresponding to LR-pain are put aa low u posaible. This leaves one free hori1ontal 

track either on the right or the left (depending on the direction uaed in the construction of the 

crossovers, as in Lemma 2) which ia used by one (any) aignal of the corresponding side. All other 

- - 11gnals corresponding to L- and R-terms are put above. Thia strategy yields the situation in 

· Figure 6(a), which is abstracted schematically in Figure 6(b). 

Thus, if we define 
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XT= ' 
. {1 

o, 

we have 

if ntr "F- 0 and n, = nr = n,r 

otherwiae 

VI.1.2 

Theorem VI.1. If nm.1 = nmm = nmr = O, then* the width of the top part of a T-shaped 

channel is WT= max(nr, n,) + XT + 1. 

I 
I 

: : } conflicting 
conflictin~( I I I I R-terms 

r I 
L-terms i I 

I ' I 

I r I I I ! I I 

I . I ' I I I 

(a) detailed layout 

(b) schematic layout 

Figure VI.6: Routing in absence of conflicting M-terms. (a) ia a detailed 
layout1 and (b) is ICbematic diagram or it. 

Proof. Conflicting LL-pairs and RR-pairs are ordered properly on the crossing edge. Horizontal 

tracks for signals of L-terma and R-terms are then assigned arbitrarily ao aa to form the situa

tion in Figure 6{b ). If XT = 0 then either there are no LR-pairs to worry about, or the extra 

horizontal track needed to accommodate the LR-pairs in the central portion is being used by a 

lignal either on the right or on the left. Only if XT = 1, we are forced to use an extra horizontal 

track. I 
Changing the wiring model to the knock-knee model, in which two signals may share a 

common turning point, does not affect this result. 

Notice that we have opted to resolve conflicts only in the top part or the channel. Some 

1uch conflict■, however, could have been reaolved in the bottom part without loss of optimality 

there. Since exploring this possibility complicates matters conliderably, this has not been done. 

• we add 1 at the end became "'" meuure, width, which ii 1 more than the number of track■• 
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The additional complexity does not justify the effort since the best it can help is by reducing 

WT by 1 for Theorem 1 (only if n, = nr and then by resolving all conflicts) or 2 for Theorem 

2 (by resolving most·conflicts). Thus, _the notion of "near-optimal" in this section and in the 

subsequent one should be viewed realtive to this simplifying decision, but it is not far from being 

truly optimal. 

The case in which M-terms are involved in conflicts is dealt with by extending the paradigm 

of Figure 6. First, ML- and MR-pairs whose M-terms are above the crossing points allocated 

for the corresponding L-term or R-term, respectively, can be accommodated in the appropriate 

ranges by simply r orcing assignments of crossing points to the corresponding L- or R-term ( e.g. 

D and F in Figure 7(a)). 'l'he number of ML-(MR-) pairs not handled in such a way is denoted 

by n~ (n:,u), and consequently we define n~ = n,,.m + n~ + n!nr• 

Other conflicts of the above kind and MM-pairs are handled one at a time in the remaining 

tracks, making full use of track segments left free in the upper-middle part of the central portion. 

The block of LR-pairs is pushed all the way towards the more congested edge. A greedy approach 

in assigning tracks at this stage (on a pair-by-pair basis, putting the two crossing points u close 

to each other as possible) is good enough to attain a minimal WTi again, pairs share tracks u 

LR-pairs did. The only trouble is. with M-terms which are too close to the right and left edges 

and are involved in conflicts with L-terms and R-terms, respectively, or appear in MM-pairs. 

Surprisingly, this might cost us at most 1 extra horizontal track: 

We say that an M-term is m-adja.cent to the right (left) edge if all (poBSibly zero) grid-points 

between it and the edge (along the top side) have M-terms located at them. Now we define 

µ~ = 1 if an M-tcrm involved. in a conflict with an L- or M-term ism-adjacent to the right edge 

a.nd n.r > n,; µ~ = 0 otherwise. µ~ is defined likewise by reversing the roles of left. and right in 

the definition. Also, µT = mu(µ~, ,4~ ). Finally, ,T = 1 iff both leR edge and right edge have 

m-adjacent M-terms involved in such conflicts and nr = n,. 
Now we are ready to ~te 

Theorem VI.2. The width of the top part of a T-ahaped channel is given by 

Proof. The addend before last• is due to the fact that there might be too many MX-pairs 

{for X=M,L,R) to fit into previously allocated tracks, so the excess has to be allocated new tracks. 

Figure 7(b) shows an elaborate (but not exhaustive) case of rouiing in a T-shaped channel. 

• the 1 at the end appeart for the u.me reuon u in Theorem 1 
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(a) All conflicting pairs involving M-terms are simple. 
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(b) A more complicated case, in which M-terms are involved in conflicts with L
or R-terms of the far portions. 
Here n = 14 with n1 = 5, nr = 5, and n.,. = 4. Using the definitions given 
in the text, we obtain XT = 0, IPT = 1, and /.J.T = 0 (since n, = n.). By 
Theorem 2, WT= 1. 

Figure VI.7: Complete routing in T-shaped channela. 

VI.1.2 
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Ir we use the knock-knee wiring model, µT and ;T disappear from the sum in the statement 

or Theorem 2. Since their product is always O and their sum is at most 1, the effect of their 

omission is quite insignificant. 

The dominant operation involved in the algorithms used to attain this optimum is sorting 

or the terminals, thus the complexity or both routing and finding the optimum is O(n log n), but 

the actual routing takes many more operations to complete. In case the terminals are presorted, 

which is common, the comp_lcxity is O(n). 

2. Pairwise Ordering and Routing X-shaped Channels 

The major notion emerging from the previous section is that or sharing the constraints of 

two almost independent rectangular channel routing problems by an ordering or points on their 

common edge. This ordering is very sparse, but extremely powerf'ul. 

Defl.nition VI.3. Given a set A, a pairwiae ordering W of A's elements is a binary, 

antisymmetric relation over A such that if (ai, a,) E W then ~ ~ a; and neither ai nor a; 

appear in any other·member or W. 

The interpretation or (A, W) as a directed graph induces an undirected graph with bounded 

degree 1 (see Figure 8(a)). The reason this algebraic structure represents channel routing con-. 
straints is that exactly two signals are involved in each conftict, no signal is involved in more than 

one conflict, and · the conflicts are directional in nature. ,,-

Figure VI.8: 

a2 ►-_.,.a_. 

"5 ... - _,.. Ofi 

a1 ..--->eaJ 

.. -------""' ___....--~~--.,,-· 
a2 a1 a3 tl4 

(c) (A, ·1r1 U'R'~) 

The graphic representation of pairwise orderings and their union. 
A= { a1, .•• , Cl&} W1 = { (a1, a4), (as, a,), (e11, aa) }, and W2 = 
{ (e12, a1 ), (aa, a4), (cia, as)}. 

An X-shaped channel (Figure 9) is most naturally partitioned into five portions: four arms 

and one central portion. JI we ignore, for the time being, terminals on the channel's ends, the 

constraint~ propagating from the arms inwards to the edges separating the arms from the central 

portions are simply pairwise orderings. Again, if we restrict ourelves to two-point nets and ignore 

- · - signal nets connecting terminals in the u.me arm, the central portion is a rectangular channel 

with pairwise orderings on its 4 sides. For sake or aimplicity, we deal here only with nets having 

points on opposite edges (but not adjacent ones). 



110 ROUTING IN AND AROUND JUNCTIONS VI.2 

arm 

--- -- - ----I I 
I I 

: central I a 
arm I r 

1 portion I 

I 
am -----

arm 

Figure VI.9: An X-shaped channel and its parts. 

Each edge of the central portion has a pairwise ordering associated with it. In routing thi■ 

portion, we must satisfy these constraints. Look at the structure obtained by taking the union 

.or two pairwise orderings, W1 and W2, defined on the same ■et o( elements, which is exemplified 

in Figure 8(b) and (c). The graph interpretation of the resulting structure induces an undirected 

graph with bounded degree 2, thus it consist■ or isolated vertices, open paths and even-length 

cycles. Open paths and cycles that are not directed cycles (i.e. there are at least two arc■ 

going in opposite directions) can be arranged on a line ■uch that all arrows go in one direction 

by topologically sorting the nodes (see Figure 10). Thus the union or two pairwise ordering■ 

corresponding to opposite edges or the central portion or an X-shaped channel can be arranged 

in ■uch a way that signals in the central portion can go straight acrosa unless there is a directed 

cycle. / 
II 12 l3 
,t --=--.... . 
-,~ ~ 

7 ' .. B . )I 
6--~ _,J{ 

.,,. ... 2 
5 --r;;-t 

i 
•••••••••••••• 
5 43 2 HID 9618-/213141 

Figure VI.10: Topologically sorting a cycle that does not create a conflict. 

Directed cycles are the only interesting case to· look at. Obviously, a cycle involving k nets 

can be routed rectilinearly using k + 1 tracks in one direction and 1 in the other (Figure ll(a)). 

Thia turns out to be optimal for one cycle, whether we are using the directoinal or the knock-knee 

wiring model. However, sharing tracks between cycles going in perpendicular directions turns out 

to be .beneficial. 
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Before we proceed, let us introduce some notation. A cycle whose points are on the horizontal 

(vertical) edges is called a vertical (horizontal) cycle, because of the directions of the signals. The 

number of vertical cycles is denoted by v, and of horizontal ones - by h. We denote the total 

number of cycles by c = h + v. Obviously, we need at least h horizontal tracks and v vertical 

tracks to route across the central portion of an X. Let Av and Ah denote the number of extra 

vertical and horizontal, respectively, tracks needed to do the routing. 

Theorem Vl.3. For the dire~tional two-layer wiring model, Av+ tl.h = c + 1. In the 

knock-knee model Av= Ah= 1. Moreover, in the directional model, any pair of values for Av 

and Ah satisfying Av+ Ah= c + 1 for Av, Ah > 1, can be attained. 

k. tracks 

extra L--------- • track 
(a) One cycle needs an extra track 

in each dimension. 

4, I I ---, I I 
I I 
I I 

I I I I 

I I I 
I 
I 

I I I 
I I I 

• ~ ---, 
I I I I I 

I 
___,J,111 ,,, ,, I I 

(b) !:;.h=h+I, ~v=v. (c) !:;,h == h, ~v = v + l. 

Figure Vl.11:Laying out vertical and horizontal cycles i~ an X-shaped chan
nel. 

Here h = 2, v = 3. 

Proof. The construction follows t~e paradigm of Figure 11 (b) and ( c ). Both cases attain the 

claimed bound, and can be folded around ((b) horizontally and (c) vertically as indicated by the 

arrows) to attain all interim values. The result for the knock-knee model is achieved by merging 

corners. The optimality is proven by induction on c. 
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I 

Using the result of Theorem 3, different optimality criteria can be employed to achieve 

desirable layouts. 

3. Other Orderings 

Pairwise orderings arise mostly due to the interaction between rectangular channel areas. 

Other orderings may arise due to such interaction, but more importantly, if we want to account 

for all of the routing done on a chip,· we have to consider ordering requirements as they come 

off modules' sides. Such orderings have been encountered in previous chapters, but have not 

been explicitly handles as such. Here we shall name three such orderings, in preparation for the 

discussion in Section 4. 

First we introduce the total ordering, which is. essentially generalization of cables (that were 

discussed in Chapter N). In this ordering a total order (in the algebraic sense) among the nets is 

specified, but no exact location is associated with each of them. This is typical for an an ordering 

that arises in global routing due to channel interaction, wether cable are being used or not. 

Next we formalize orderings that come off' modules sides. Such orderings have been discuBSed 

in Chapter V, and all we do here is recast their definitions in terms of orderings. A ft.zed ordering 

is a set of terminals along a straight line. with an exact loc~~~n associated with each. Thus the 

terminals induce a total order on nets, and they also have distances between their positions that 

have to be kept. This is the commom ordering arising from a side of a module. 

An arbitrary ordering is a aet of locations for terminals with no net designation for them. 

This ordering has been introduced in Section V.6, and occurs on aides of certain modules auch as. 

PLA 's, 1/0 pads, and register arrays. 

For completeness, we also introduce the empty ordering. This is simply a (not necessarily 

empty) set of nets with no relation between them. This is the counterpart of the arbitrary 

ordering when it comes to orderings that occur on channel boundaries. They arise as a result of 

propagating arbitrary orderings across channels, or when routing in an L-shaped channel, when 

any permutation of net& can be realized without extra area requirements. 

4. Conclusions 

We have shown that optimal routing for some configurations in rectilinear-polygonal channels 

_can be obtained efficiently. Technically some surprisingly compact, yet simple, routing patterns 

were discovered. Although moat seem to be ad hoc, they share a co~mon flavor which is induced 
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by the pairwise ordering introduced to represent constraint propagation. The results obtained 

are truly or nearly optimal, not just in order of complexity as in (Lei80]. 

Surprisingly, compact routing schemes can be achieved by decomposing the polygonal chan

nels in a natural way, and solving the parts almost independently while maintaining constraints 

that are shared in a simple manner. This method gives rise to a general methodology according to 

which the routing area of a chip is divided into polygonal channels, which in turn are subdivided 

into rectangular parts. The original channels are used to form routing constraints in terms of 

orderings on the sides of these rectangles. The types of orderings on the sides of a rectangle and 

their interaction, in terms of common signal nets, induce a typing of rectangles. For example, the 

center portion of the T-shaped channel in Section 1 may be described as arbitrary-fixed-arbitrary

pairwise (going clockwise Crom the lea edge) where nets are split between the first three sides 

and the last one (Figure 12(a)). Allowing terminals to reside also on the flanks yields a pairwiae

jized-pairwiae-pairwise (with similar net splitting) deacri_ption for the same portion (Figure 12(b )). 

An X-shaped channel in which two-point nets can be split in any way between two different sides 

yields a pa.irwi.se-pairwiae-painoise-pairwise description with the aforementioned net interaction 

(Figure 12(c)). Such types can be characterised in terms of the complexity of their optimal 

routing problem. Some, as we have seen, can be routed both optimally and efficiently, but other 

configurations may be intractable. Still, good heuristic solutions will be helpful. 

For this method to be effective, we may need to allow channels to overlap, which relaxes the 

convention assumed so far. The ~mmon areas will reflect constraints arising from more ~an one 

polygonal channel which must be solved limultaneously. Trying to find independent solutions 

and piecing them togethe~ is probably a bad idea. Although this complicates matters llightly, 

the types of rectangles are easentially the same and the general methodology applies. 

A further direction is to consider parametrized modules (Goo81] which can be integrated 

into the constraint propagation methodology to enhance the interrelation between placement 

and routing even further. Other interesting cues are skewed T's and X's {Figure 13(a) and {b), 

respectively) in which a side of an internal rectangle might be further subdivided. Solving the 

offset problem (generalizing the channel context as discussed in Section V.1) for such channels is 

another possible extension. 
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Chapter VIl 

Layer Assignment for Interconnect 

It has long been believed that optimizing layer assignment in itself is NP-complete even 

for restricted routing situations, and heuristics have been suggested to deal with the problem 

(traditionally, con~t minimization is the objective and design rules arc simplified). In this 

chapter we dispute this claim for the two-layer case. We show that achieving a variety of 

optimization criteria ror the layer assignment problem (including contact minimization and metal 

maximization) for two-layer realizations subject to "real life" design rules is tractable*. 

We present a_polynomial-time algorithm that accepts as input a purely geometric specification 

or the layout, an objective and design· rules, and produces" an optimal layout iC it is possible or an 

indication that the design rules cannot be satisfied by the given geometry. AB Cor three or more 

layer realizations, we conjecture that the problem is indeed NP-complete, based on our abstract 

representation or the problem. 

In the following Section we give some more. or the problem's background and an overview 

or the algorithm. For didactic reasons, we start oft' by presenting the Cormal definition or the 

contact minimization problem and its solution in Section 2. Section 3 ex.plains how the same 

solution technique can be applied to solve the layer assignment problem in general. We conclude 

by listing open problems in Section 4. 

1. Background 

The ·layer aaaignment problem for interconnect is the problem of determining which layers 

should be used !or wiring the signal nets. The goal is to optimize the perrormance of the circuit 

• There ia one rare 1pec:ial cue that we C&DDot handle u yet, u we lhall clarify in the technical part· of thia 
chapter. 
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and possibly minimize its manufacturing cost. The problem has appeared in different incarnations 

over the past dozen years. 

The most popular version is the ·ma minimization problem r or printed circuit boards, and 

was first formulated by Hashimoto and Stevens (HaSt71]. They wished to minimize the number 

of via holes that must be drilled in a PC board in order to make connections between the two 

available conducting layers. 

The development of the integrated circuit has added another dimension to the problem. 

The layers on an IC are not equal in performance. Deciding what portion of a wire should be 

implemented in which layer becomes important. The reason for reducing the number of contact, 

is to improve the yield of the fabrication process. 

Another aspect of the problem is the design effort involved in specifying mask data. An 

efficient procedure for optimal layer assignment relieves the designer from an arduous task without 

compromising the quality of the resulting layout. In addition, she or he can use simpler equipment, 

such as a monochromatic or low reolution display. 

In the literature published so far, only the contact minimization problem has been studied 

formally, and then only two layers were considered. Two recent papers on the subject obtained 

incomplete results. Kajitani [Ka80) sJtows how to use a polynomi~-time algorithm for finding 

a max-c~t in planar graphs (see (GaJo79], Section 4.1) to minimize contacts if they are allowed 

only at corners of paths (i.e. at places where a path changes its direction in a rectilinear design). 

In another paper, Ciesielski and Kinnen (CieKi81] give an integer programming solution to the 

case in which contacts are. allowed wherever they fit, but the time complexity of their solution is 

exponential. In both these papers, the only way two paths may overlap is by simple crossovers. 

In this chapter we present a polynomial time algorithm to aolve the general layer assignment 

problem•. The solution proposed here is a three step reduction. First we two-color a graph 

representing conflicts between layers 'in the given layout. We then contract its connected com

ponents to Bingle nodes assigning appropriate weights to the combined edges to represent the 

penalty associated with different coloring of components. Finally we solve the max-cut problem 

on the derived graph that always turns out to be planar. 

2. Contact Minimization 
We consider the following formalization of the contact minimization problem. "Given a 

collection of paths representing the interconnect wires without specifying what layers they use, 

~nd a layer assignment to all the paths segments that will minimize the total number of contacts 

• Chen, Kajit.ani and Chan have independent.ly obt.a.ined ■imilar rnult.■ for contact minimisat.ion. It ii not 
apparent. that. their algorithm, reported in the 1982 ISCAS Proceedings (CKC82), lend■ ·itaelr to dealing 
with metal muimisation or other optimisation criteriL 
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used." Pictorially, the problem setting is a colorless (black and white) picture of the interconnect 

pattern as in Figure 1, in which crossovers, overlaps, and sharing of corners are allowed. We 

are given a number of layers l, each in a different color, and ask "Can the picture be colored so 

as to minimize the number of points at which the color of a path changes along its way, and 

such that no two paths segments that use the same color are too close?" In this section, we 

constrain ourselves to two layers only (l = 2), and each wire is connected to exactly two points 

on boundaries of modules. 

-
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Figure VIl.1: A "colorless" routing. The numbers along wires are !or future 
reference. 

First, we capture the notion of how different layer assignments to wires affect each .other. It 

is clear that two wires that cross each other, overlap in some other way, or are even too close 

to be in the same layer, must be assigned different layers. On the other hand, we must consider 

the problem of whether there is enough room on a wire to place a contact where we may need it. 

These two problems go hand in hand in the sense that part■ or wires that do not have room on 

them for layer changes because of overlaps must be uaigned a lingle layer, and their a11ignment 

must be considered relative to the assignments of all conflicting wires. So we give the following 

complementary definitions. 

Definition VIl.1. A free run is a maximal piece of wire that does not overlap any other 

wire, and can accommodate at least one contact. 

Deflnifion VIl.2. A wire ,egment'ii a piece of a wire connecting two free runa. 



118 LAYER ASSIGNMENT FOR INTERCONNECT 

-------0 

I ·\ 
I \ 

I I 
_:_\-

I I \ \ 
\ 
\ 

Figure Vll.2: The layout graph for the routing shown in Figure 1. Conflict 
edges are solid(-), continuation edges are broken (- - -). 

_ Representative nodes are doubly circled for future reference. 
/ 

VIl.2 

The following graph structure encapsulates both the notion of conflicts between wire segments 

and the notion of how they are linked together, so that we can tell whether contacts are needed 

along them or not. 

Deftnition Vll.3. Let R be a given "colorless" routing. The graph G(R) = (S,XUC) 

ia the layout graph of R. Its nodes are the wire segments of R, denoted by S. Its edges are of 

two kinds - conflict edges, denoted by the aet X, and continuation edge,, denoted by the aet C. 

These two aets are defined preciaely u 

X = { (s., s;) I Bi ands; cannot be on the aame layer}, 

C = { (si, •;) I •i ands; connect to the aame free run}. 

If (,., s;) E C then Bi an~ s; belong to the l&llle wire. Figure 2 shows the layout graph 

corresponding to the layout of Figure 1. The numben that appear next to wires in Figure 1 are 

- ~he labels of the segments in S. 

A segment must be assigned a aingle layer, because by Definitions 1 and 2 there is not enough 

room to put a contact along it. Thus, the problem of finding a f eaaible layer usignment for a 
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1 2 3 4 5 
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Figure VIl.3: Routing across a channel in the knock-knee model may require 
three layers. 

routing R is equivalent to the problem of coloring the conflict aubgraph Gx(R) = (S,X) of the 

corresponding layout graph G(R). AB long as the number of layers is only two, this coloring 

problem is easily solvable because in linear-time we can tell whether Gx is indeed two-colorable. 

Whenever it is, we obtain a way in which to color the nodes in S. IC the conflict part or the 

graph turns out to be noncolorable with two colors, we can saf'ely deduce that there is no way 

to assign two layers to the paths such that design rules are obeyed. Note that if the original 

routing was done using the directional model or by any other procedure that guaranteed that 

a two-layer realization exists, in which case the layer aasignment algorithm can be just viewed 

as an improvement phase, there will be no problem in two-coloring Gx. The knock-knee model 

does not have the same property since it permits routings that are not two-colorable. Figure 3 

shows that this may occur even when routing two-point nets across a channel. However, even 

if the directional model is being used we cannot skip the· two-coloring stage because we need its 

results to solve the gene_ral problem. 

The following observation concerns the identification or colors with nodes. For each connected 

component or the graph (Gx, in this case), all that the two-coloring algorithm produces is a 

partitioning or the nodes into twQ sets such that -the nodes in each set are colored the same. The 

partitioning is unique r or each component, but we have the freedom to decide which color to 

assign to which set. For each component, once a representative node is picked, the coloring or 

the rest of the nodes in the component is forced. We arbitrarily select representatives, one from 

each component, and number them uniquely. We denote the color of the ith representative by a 

binary variable, Iii• 

The coloring of different components ia independent insofar as the feasibility of the layout 

is maintained. Our goal ia to find an assignment which will cause the minimum amount of color 

awitching. To do this we need the wiring inf onnation as represented by the CQntinuation edges, 

- - C. A simple observation is that whenever we decide to place a contact on a free run, one contact 

is enough because there is no sense in switching layers twice or more along a single free run, that 

ii, alnog a continuation edge, if we are trying to minimize their number. 
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This is where the next step starts. We contract the connected components of G x to single 

nodes, each labeled now by its representative. These connected components are the nodes of the 

weighted residue graph, G / X = (V, E, u, 6), whose edges are defined u 

E = { (vi, vi) I 3, E Vi, t E Vi Lt.(,, t) E C }. 

The edges can be thought of as contractions of the original continuation edges, C, in the layout 

graph G. The two remaining parts of the definition are both weight functions from the edges 

to the integers. With each edge we associate two numbers telling us how many color changes 

(contacts) will be needed if the representatives of the components incident upon the edge are 

assigned the same or different colors. Formally, for each e = (vi, vi) EE, we define u(e) to be the 

number of color changes needed if 'Iii = 'Iii, and 6(e) to be the number of color changes needed 

if JI, :/:- 'Iii· Figure 4 shows the residue graph for the layout of Figure 1, with representatives as 

shown in Figure 2. 

(.3,o) 

(1,0) 

Figure vn.t: The residue graph corresponding to ·the layout of Figure 1, using 
the representatives u numbered in the nodes. A denotation 
(,, d) on an edge e means u(e) .= ,, 6(e) = ,l. 

The weight functions u and 6 can be computed in time linear in the size of the original layout 

graph, G, by using the following technique. First we two-color all co.mponents of Gx arbitrarily 

with respect to relative colorings of components, which we know can be done in linear time. 

Now, for eve_ry edge e = (vi, vi) EE, we simply check whether 'Iii= 'Iii• H yes, then we check 

all continuation edges going between segments of components i and j and count the number 

of edges that connect segments with the 1&II1e color and the number that connect edges with 

different colors. The first number is aet to be 6(e), and the second i■ aet to a(e). If, on the other 

hand, 1/i :/:- 1/i, then u and 6 change roles. All that matters in Jetting the weights is whether the 

components are colored compatibly or not, relative to their representatives, but we do not care 

about their particular colors. The choice of representatives i1 immaterial, as well, as long as the 

same representatives are used throughout the procedure. 

------~----------~--------
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Now we can state our goal of minimizing the number of contacts in the layout as 

min z = L u((vi, v,)) + L 6((v., v,-)) (1) 
11, ==11i 11, ,'11i 

for all possible assignments of 'Yi 's to nodes in G / X. To express the minimization goal in purely 

algebraic terms, we can-associate numeric values with the predicates = and ::/:- We say that a 

predicate has the value 1 if it evaluate,i to true, and O otherwise. For instance, (Yi = Yi) has the 

value 1 if !Ii and Y; have the same value, and O otherwise. With this notation we can reexpreSB 

z using only one summation: 

z = L (u((v,, v,)) · (y, = Y;) + 6((v,, v,-)) · (Iii ::/: y,-)). 
(11,,11i)EB 

The conditions (Yi = y,) and (y, ::/: y1) are mutually exclusive, and thus we can express one in 

terms of the other. By also relaxing the notat!on somewhat and understanding that e = (vi, v,-) 
whenever it appears, we obtain 

z = L (u(e): (1- (Yi=/: y,-)) + cS(e) · (y, =/: y,)). 
eEB 

But EeeE a(e) is a constant for the given graph, 10 we can ignore it and reatate the goal given 

in (1) 81 

min z·= L(6(e}-u(e))•(11i =/: 11,) (2) 
eEB 

for all poSBible assignments or 11/1. 

Once we arrive at this stage, we can ltart the final step in our procedure. Remember that 

the 11.'s are binary variables, but all that we want to know about any pair of them is whether 

they are different or not .. Thus we certainly do not have to check all possible assignments or their 

values, we just have to look at all poBSible way• of putting these values into two disjoint sets; 

that is, all ways to partition the nodes or G / X. Such a problem, or finding a partitioning or the 

nodes or a graph, is a cut problem. In particular, we are interested in finding the mazimum cut 

or the graph G' = (V,E,u - 6) in order to solve the minimisation• problem as stated in (2). 

Figure 5 shows the optimal solution for the problem or Figure 1. It is obtained by the cut V1 = 
{ 5, 17 }, V2 = { 10, 11, 18} in the graph or Figure 4. The cut value is 6, and EeeE u(e) = 7, 

thus the number or contacts needed is 1. 

In general, the max-cut problem for weighted graphs is NP-complete (GaJo79, Section 4.1), 

but now comes the final observation. The connected components or the conflict subgraph G x or 
• Notice that -we now ■ubtract 6 rrom o to match the muimilation 10&1 with the original minimisation 

■tatemeut; thil is to conrorm with ■tanclard termiDolog. 
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Figure VIl.5: An optimal solution for the layout in Figure 1 uaing one contact. 
Layer 1 ia drawn in solid lines (--), layer 2 is in broken lines 
(- - -), and contacts are solid aquarea. 

Vll.2 

the layout graph G, correspond to all neighbourhoods in which cro11ings can occur in the given 

geometry. Thus, the residue graph, G/X, which has one Bingle node for each such neighbourhood, 

must be planar, as is G'. Fortunately, the mu-cut problem for planar graphs with arbitrary 

weights (including negative numbers, as o-(e)-cS(e) may well be for tome edges) is known to have 

a polynomial time solution ([OrDo72), [Ha75]). 

The solution technique suggested in both these references is based on finding a maximum 

matching for a graph. Since these papen were written, some new results on matching _have . . . -
appeared, and it is entirely poasible that they will be further improved in the future. So it we 

denote the running time of a ~tching algorithm on a graph with n nodes by /(n), the running 

time of our algorithm for a given layout R is 0(/(IRI)), where IRI is the length of the input 

describing R. Since/ is known to be at least linear, and all the steps we went through up to the 

max-cut step were linear in IRI, this statement is l&f'e. The best value currently known for /(n) 

ii O(n2•5) [MiVa80). 

So, all in all, we have proven the r ollowing result. 

Theorem vn.1. A given routing R can be assigned two layer■ to as to minimize the number 

of contacts used to connect between them in time O(IRl2•5). 

This result is independent of any particular design rules. All we need to know is how close 

wires of the same layer are allowed to get. Then we can abstract the appropriate graph from the 
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given colorless picture and apply the technique as described. The size or the description or the 

routing, IRI may depend on the specific geometries used. For the common rectilinear style, IRI 
is typically the number of corners in wires (counting endpoints aa well). 

3. Extensions. 

The method proposed in t~e previous section is general enough to consider different perf or• 

mance of the two layers. That is, if we use, say, metal and polysilicon as our interconnect layers, 

we can maximize the amount or metal, or minimize a linear combination between the number of 

contacts and the penalty involved fn using polysilicon. This problem baa been dealt with only 

informally, so far, in the "PI" system (Ri82), but now the rigorous solution suggested by the new 

method will be incorporated in it. 

The basic idea of metal minimization is quite simple. The weights " and 6 now reflect the 

relative merits of coloring one component in one way or the other. Even if thue weights depend 

on the lengths of various wire segments and free runs, our technique still works. Notice that by 

trying to maximize the total length or ~etal wires we may incur more contacts. This problem 

can be remedied by finding a common scale to measure the "badness" or contacts and that or 

the nonpreferred layer, and then combining the two linearly. Again, this affects only the values 

or the weights, which must be multiplied by the scale coefficients, and the rest or the technique 

still holds. 

In Section 2 we only showed how to handle twa.pofut nets. This constraint can be relaxed 

almost completely. If a wire connects more than two terminals, it must have internal splits. Most 

commonly, we find only three-way splits, which can· be modelled in G(R). Replace each split 

by a constant number of edges and weights aa shown in Figure 6. This replacement faithfully 

reflects the required number of contacts depending on the coloring of the segments that the edges 

connect. Ir the split ii four•way (more is highly unlikely), we do not know how to handle it. 

~ .5 
Figure Vll.6: Transf'orming a 3-way split to the corresponding edges. 

Another extension is very useful. Assume that the terminals are available in certain layers, 

but not in others. Connecting to a pin may then cost us a contact r or which we also need to 

find a place to put it down. This problem can be aolved using the above approach by inserting 
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extra edges with very large weights between terminals with different layers without destroying 

planarity. ff the weights are polynomially bounded by the size of the problem, the solution is 

■till obtainable in polynomial-time. 

4. Open Problems. 
Several problems remain open: 

(i) What if l > 2! It seems that just the question of feasibility, i.e. whether a layout 

can be realized using l layers, is NP-complete, let alone minimizing the number of 

contacts (or the badness, in general). Even if, much to everybody's surprise, we could 

settle the feasibility problem efficiently, grave problems arise from allowing multiple 

contacts at one point, or even the coexistence of a contact between two layers and a 

wire in a third layer. 

(ii) Our relaxation of the design rules is not entirely general in the sense that it does 

not reflect some of the more subtle aspects of the problem. There are two points to 

make here. First, the minimum center-to-center distance between wires varies from 

one layer to ·another. Before, we were just concerned with the question of whether 

two wire segments can be realized in the same layer or not. Now, we point out that 

the answer may depend on the actual assignment, which is not known at problem 

definition time. Second, in many fabrication technologies contacts are wider than 

wires. Putting a contact down may affect the allowable assignment in a neighbouring 
. . /. 

wire, and so again, a conflict depends on the solution, not just the naive definition. 

These two manifestations of the problem of using full-blown design rule■ may break 

the symmetry exploited 10 strongly in the original solution, and may render the 

problem intractable. 

(iii) Our solution is global In the procesa of minimizing the total number of contacts we 

may burden one net with an excessive number of contacts. How do we minimize the 

largeat "badness" figure of any wire in the layout! 

(iv) As mentioned in the previous section, aome geometries, such as four way splits in 

wires, cannot be handled properly. The only reasonable way to extend the analogy 

between the edges in the graph used in our technique and the allowability of contacts, 

aeems to-use hyp~edges in a hypergraph. The question then would be, "What is a 

natural extension to the planarity criterion", and, more seriously, "Can we expect to 

aolve the max-cut problem in polynomial time!" 
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Discussion 

This thesis has investigated various aspects or layer auignment methods as they affect 

the design and complexity of layout algorithms for integrated circuits. We started off with a 

trivial layer assignment strategy, namely, routing in qnly one layer. From a relatively simple 

configuration of river routing across a channel that we showed to be 10lvable optimally and 

efficiently, we extracted a few essential properties that proved to be both interesting from a 

methodological point of view aa well as rich in algorithmic content. In order to handle more 

complicated situations we used stronger strategies, both for layer &BBignment and for dealing 

with the interaction between routing areas, and the impact of the,e strategies on the quality of 

the resulting layout■ were investigated. Finally, we tumed around to ask how layers could be 

assigned retroactively 10 as to make a given piece of artwork realizable within certain design 

rules. 

- . . Let us summarise the char~teriatica of layer assignment methods and their relation to 

... _·. -placement and routing strategies in light of the results presented in this thesis. At the same time 

.. we shall try to provide 1011_1e useful pieces of advice both to circuit designers and to providers of 

design aids. 

1. From River Routing to Arbitrary Interconnect 

The term "river routing" embodies at leaat three important characteristics: all nets consist 

of exactly two terminals, the connections are made in order among two sequences, and the 

interconnection topology i ■ realizable in the plane. Initially we imposed the pattern of going 

across a channel. This constraint was relaxed in subsequent discussions of river routing, but 

motivated a discussion of the nonplanar case in the channel context. 

125 



126 DISCUSSION VIII.1 

The first property of river routing that· we generalized was the sequence compatibility. 

We noticed that terminals of certain two-point neta come off modules at both ends in similar 

sequences, i.e. they are ordered among themaelves in the same way. This led us to the cable 

abstraction that was used to handle river-routing-like situations among dist.ant modules on the 

chip. We showed how to test efficiently whether a cable was realizable in the plane. 

The next characteristic that was extracted was the planar realizability for an entire design. 

We tried to fit many cables on one chip, first by allowing the modules of the design to be oriented 

arbitrarily and then by disallowing reflections. Finally, we investigated the geometric - as 

opposed to the topological - details of planar routing patterns within a given hole-free area that 

is not necessarily a rectangular channel. 

River routing may be perceived as the ultimate push for planar realization of interconnect. 

Reaching the limits of this strategy led us to further pursue the implications of other layer 

assignment methods on the quality and feasibility of interconnect patterns. We investigated the 

impact of various wiring methods on routing acrou a rectangular channel, routing in junctions 

formed by the intersection of channels, and finally looked at layer assignment at the chip assembly 

level. 

In studying the multilayer strategies, we started off by investigating some fundamental 

characteristics of routing two-point nets acroaa a channe4 thus forsaking the planarity assumption 

but staying witliin the channel context. Minimizing the width of the channel is traditionally the 

Coremost concern. The attainable minimum turns out to be highly sensitive to the wiring model 

being used. We surveyed known results on the subject and introduced a new wiring model, the 

via-free model, and studied the minimum width problem within it. The major contribution or 

thi1 part was the definition and investigation of new properties of routing strategies and their 

relation to the minimum width criterion. Other op.timality criteria than width were suggested 

and discussed in the aame framework. 

Next the channel structure was generalized. Rather than dealing with rectangular areas, the 

routing in junctions where such areas intersect was studied. Based on certain two-layer routing 

models, we developed a methodology r or generating and propagating routing constraints from 

terminals (on modules' aides) to the internals of channels. Routing configurations that arise from 

such constraints were classified, and optimal algorithms r or some of these configurations were 

devised. 

Finally, a broader aspect of the layer assignment problem for arbitrary interconnect patterns 

was discussed: given the geometry of some wiring and design rules for the artwork, the problem 

is to assign layers. to features in such a way that some circuit perr ormance function - such as 

aignal delay - will be optimized. The comj>lezity of such a problem depends qualitatively on 
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the number of layers that we arc allowed to utilize, BO the allocation of layers to routing should 

be a major consideration in the design proceBB. 

2. Design Considerations 
What are the leuons of this thesis· for an IC designer? Overall, there is the straightforward 

moral, "Find out what you get yourself into when making decisions about your layer assignment 

strategy." Such a strategy determines both the power of one's routing model, in terms of what 

routing situations can be handled, aa well as the complexity of the combinatorial problems that 

arise when trying to generate the actual wiring. In this thesis we tried to establish some of these 

dependencies, and expose the implications of various routing paradigms. To be more concrete, 

let us spell out the dependencies between model selection and routing results as they should be 

reflected in the design process. 

2.1. Cables and Cable Bu11e1 · 

One-layer realizations are limited in their capability of handling arbitrary wiring patterns. 

The interconnect graph must be planar, and if modules are not flippable, the situation ia even 

more restrictive. On the oth,er hand, the algorithms for testing whether the strategy is applicable 

for a given situation, as well as routing algorithms for producing truly optimal results themselves, 

are generally efficient with minor exceptions. Thus it is reasonable to spend time in trying to use 

a one-layer method before going on to more complicated strategies. 

It is, however, naive to believe that the interconnect"of an arbitrary circuit could be realized 

in the plane. But this is exactly where our advice comes in. Because the actual routing ia BO 

much easier when doing it in one layer, try to deaign in auch a way that will make we of a., many 

cablea a., po,s,sible. This may not be BO hard when designing certain kinds of circuit,, auch aa 

atlcroprocessars, in which a fair amount of the data is being grouped in aequences. In otl!er caaes, 

the order of signals coming off certain logical modules, such as PLAs, can be reordered at will 

(without changing the functionality of the circuit) BO aa to generate conformable sequences. We 

shall return to the aubject of ordering later on in this chapter. 

In general, it is hard to find a maximal subaet of planar interconnections: this is equivalent 

to the maximum planar subgraph problem, and is known to be NP-complete !GaJo79, p. 197]. 

But the planarity of a single cable ia easy to check both for orientability and connectivity. Firat, 

the proper orientation of a cable can be checked in constant time, so we have a fast way to detect 

planarity of such subgraphs. Second, it is easy to check whether the insertion of a new cable into 

- -- an existing layout will violate its planarity or not. Thu, a simple hill-climbing heuristic can be 

used with many start position, in trying to find a reasonably large aet of cables all realizable in one 

layer. The reduction of complexity achieved by the cable abstraction can, in fact, be exploited 



128 DISCUSSION Vlll.2.1 

by any other heuristic for the maximal planar subgraph or even by an exhaustive procedure if 

the number of cables is small enough. 

To the provider of support soft.ware for computer aided design (CAD), our advice would be 

to make cables "first-class citizens" in the design environment. The user should have at her/his 

disposal easy ways to specify and manipulate cables. Such aids should incJude operations for 

handling connectivity as well as test~ for oricntability and routability. In thi~ way, the designer 

can test the feasibility of her /his design while creating it, expl~iting planarity as one goes along, 

without the fear that at the end of the process she/he will find out that ihe planar realization 

failed without being able to trace it to a specific culprit. 

Similarly, one would like to have support for parts of the design as weJl. We may partition 

the nets into sets that wilJ be each realized in one layer. 1'he planarity tests will apply to one set 

at a time, and the user should be able to specify the identity of· such sets. There should be an 

easy way of moving around members of these sets without changing their connectivity data, but 

in a way that will make the necessary geometric adjustments. 

Another consid,?ration that is relevant to the design of microprocessors is the possibility that 

some of the signals "traveling" on a _cable need to be fanned-out to more than one terminal. 

These are special kinds of multipoint nets that occur rather frequently in structured design 

such as microprocessors. We propose a generalization of cables that encapsulates this routing 

situation, namely cable bussea. A cable bus is a construct in which two identifiable sequences 

must be connected in one layer, and some of the nets have more connections other than within 

the sequences. These extra connections could be realized by attachments to the main cable that 

are river routed in themselves on another layer. 

Cable busses pose quite a few p~oblems, such as bow to bias the routing of the main cable 

so as to make the routing of the attachments easier, and bow to conduct detailed river routing 

to targets that are "floating" _along a wire, rather than being fixed terminals. These problems 

remain open, but the methodological framework exists for some support at the design aids level. 

We summarize by giving a list of "rules" for good design in one layer: 

(1) Use cables, since they reduce ~omplexity. 

(2) Provide design aids that know about cables and can manipulate them well. 

(3) Assign the same layer to cables that run in "parallel". 

{ 4) Provide subsetting facilities that maintain association with layers. 

(5) Extract cables from multipoint nets if they can be used in a natural way. 



VIII.2.3 CHANNEL INTERSECTION AND ORDERING 129 

2.2. Channel Routing 

Obviously, we have to start by mentioning that river routing across a channel is tractable 

and lends itself to various placement considerations. So this is one routing model that can be 

analyzed accurately. If the channel can be river routed in a given area, there is no reason to go 

to another model. If, on the other hand, either the topology or the geometry are not adequate,. 

we have to resort to other routing strategies. 

The quest is usually minimizing the width or the channel. Different wiring models affect the 

quality of the attainable results. Other considerations sometimes play an important role as well. 

The lessons concerning channel routing can be summarized briefly as follows: 

(1) The Manhattan model may cause the width of a channel to far exceed its density, and 

thus the knock-knee model should be used (in a guarded way, such as in IRBM81]) if 

one's Manhattan based heuristic is doing poorly. 

(2) Heuristics should allow unlimited jogging in all two-layer models. The effect or 

bounding the number or jogs on the channel width can be disastrous - at least in 

extreme case, and no "average case" behaviour is known on the subject. 

(3) Vertical non monotonicity is not useful whereas horizontal nonmonotonicity can indeed 

be helpful in reducing the channel's width. 

(4) Vertical conflict cycles are easy to resolve, and there is no reason to exclude them 

irom allowable routing patterns, as some routing packages do. 

(5) If the genus of the interconnect pattern is low (less than the number of available 

layers), via-free routing is a good strategy, although it may require large width. 

2.3. Channel Intersection and Orderin& 

Ordering between wires as they are routed globally (as opposed to channel by channel) may 

affect the layout quality quite significantly. Some or the ordering·constraints arise from modules' 

. sides, and others are a result of the interaction between sides as induced by the wiring model. 

The designer as well as the design aids provider should be aware of the impact caused ordering, 

especially at channel junctions. Solving large systems of routing constraints as they are mandated 

by orderings seems to be a computationally intractable task, as we have learned from other 

constraint propagation problems. Thus one should be able to manipulate orderings explicitly -

either at the module edges, using parameterized module&, or at channel boundaries. 

It is unclP,ar how such an abstraction can be made successfully in a design aids environment, 

but the new breed of "expert" routers that are coming into being {Bat82] could have the potential 
' of incorporating such an Alish notion into them. 
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2.4.. Global Layer Assignment 

Some of the efl'ort invested in the specification of artwork - whether manually or automati

cally - is spent on the assignment of layers t.o various pieces of the interconnect. Having to 

decide which layer a wire will be implemented in as part or the path specification seems to bind a 

somewhat independent decision with the path selection mechanism. Layer assignment should be 

regarded as an end rather than part or the means during the routing stage. Although the layer 

assignment decisions may be relevant, they are distracting and tend to be made locally rather 

than globalJy. A beautiful example for doing away with layer assignment considerations is the 

Manhattan model. By obeying the ro~1ting ru)es that allow only simple crossovers, layers can be 

assigned retroactively without fear of unfeasibility. In more involved models such safety is not 

guaranteed, but since layer assignment can now be done efficiently (Chapter VIl), the risk may 

be worthwhile. 

Our advice to the designer wou)d be to concentrate on the geometry, not the layer assignment. 

H there seems to be enough space, using the Manliattan model is pref er able. Ir not, knock-knees 

and overlaps can used, but with caution. Do not use too many of them in congested areas, and 

particularly avoid impossible patterns (as in Figure VIl.3). 

' For the design aids provider, our first advice is to facilitate "colorless" (b)ack and white) 

routing. Let the user specify paths without selecting layers for them. In addition, supply a layer 

assignment service; the algorithm of Chapter VII will produce optimal results, but its running time 

or O(n2·5 ) may be too slow for some situations. Fast heuristics, like those suggested in (CieKi81), 

may prove more useful Crom a practical standpoint. More subtle is the following request. The user 

should have an easy way by which •he or be can remedy an infeasible situation. U the artwork 

is inconsistent with the feasibility of layer assignment, some stretching of the interconnect area 

may be required where contacts could be accommodated. Such stretching facilities should know 

about the interconnect being realized in that they will maintain connectivity or wires and will 

not interfere with the layout of neighbouring logic or completed routing. 

-As to the subject of using more than -two layers, there is not much that we can firmly 

substantiate by formal results. Currently we do not even have proper modeling for all subtleties 

of the design rules. 

Naturally, one would lik~ to observe a reduction in routing area when more layers become 

available. But the complexity of the layout problems, such as layer assignment, is presumably 

harder. This should provide an incentive for working on heuristics to solve layout problems. In 

the meantime, we can suggest a few "high level" strategies which subdivide the layers into groups 

according to functionality. We dedicate one or the layers, either the top one or the bottom one, 

but not any of the middle ones, to one-layer routing or cables or other planar structures, and 
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then use the other layers in a general multilayer routing procedure. This strategy cuts down 

on the interaction between layers, and enables us to control the complexity of the process. The 

discussion of planar subcmbeddings and cable busses in Subsection 2.1 is an example of such a 

strategy. 

Such a "functional partitioning" approach could also be used to some extent when performing 

retroactive layer assignment, as in Chapter VII. Now we try to extract planar subgraphs, and . . . 
then try to two-color what is left. This may be too weak a strategy for congested interconnect 

patterns and may miss potential solutions all too often. But when the designer is made aware of 

the layer assignment strategy, such an approach may work. 

3. Routing versus Routability: Impact on Placement 

As has been pointed out throughout this dissertation, there is often a quantitative difference 

in terms of time complexity bet.ween the routability question and an actual routing algorithm. 

Sometimes it is faster to check whether a set of nets is 'routable within a given area than it is to 

produce the actual paths taken by the wires. For the problem of river routing across a channel, 

for example, we saw that testing routability takes time O(n) for n nets, whereas producing the 

layout may take time O(n2). 

This differentiation has a major impact on placement evaluation. If a placement can be 

tested for routability relatively fast, it may pay off to invest more in this part of a placement 

procedure than is customary. In some extreme cases, as river routing across a channel in the 

presence of stretch lines, we saw that the routability conditions were integrated into the placement 

evaluation problem to yield optimal results. Although this is no doubt a rare case, the lesson 

to be learned is that ~~utability in itself is of utmost importance. The discussion of routing in 

junctions demonstrated aome of these characteristics as well. 

Designers may stilf construct modules and assemble floor plans by hand. The layout, however, 

should be specified lD iiiih~.1 a way that stretching or modules and moving them around will be an .. .,,, ... :-

easy task. The:DPL/Q~epalus (BMSSW81, Sh82) system encourages such a modular design style 
;.,.,, ... ~ .. 

by referring to layout objects relative to each other. 

Providers of desigri'~~ds should be aware of the potential speedup gained by testing routability 

rather than instantiating"a router. If you are writing a placement algorithm, be more inclined 

to check rout.ability in certain cases than in others. More importantly, provide explicit aids for 

routability testing for the designer. Checki!}g the feasibility of interconnect situations as they 

are being set up could be extremely useful. 
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4. Conclusions :1 one-' 

The main thrust of this thesis was to find out bow various design methodologies, especially .. 
•• •. ~ I ..._ ;~ L' ... 

layer assignment strategies, affect the complexity of layout algorithms, mainly for the ·routing task. 

In aome cases, like the data-path construct, a thin line has been drawn bet.ween efficient, optimal 

solutions and intractability. In other case, the gap between P and NP bas been m~de somewhat 
•,o:,:. 

narrower by showing that certain common situations could be handled efficiently although their 

generalizations are intractable (or unc.lassified). 



Appendix A 

Glossary of Problems 

This appendix contains a list of the problems.~iij~ussed in the thesis. We adopt the problem 
statement form from [GaJo79], summarize tpe known results· about each problem under the 
heading "Status». The order of the problems in this list is more or less the same as the order in 
which they have been presented in the thesis, thereby trying to follow the development of ideas 
and refinement of situations as they evolved. 

All problems are formulated in their decision version. For those problems that are solvable 
in polynomial time, there may be a qualitative difference between the time it takes to decide 
the problem and the time it takes to produce an actual solution (in the affirmative case). Such 
distinctions will be pointed out when applicable. 

!RR) RIVER. ROUTING ACROSS A CHANNEL 
INSTANCE: Two increasing sequences of terminals, a 1, ••• , an and b1, ..• , bn, on two parallel 
straight lines located at distance (separation) t from each other. 
QUESTION: Can the terminals be connected in order, i.e. ai to bi for i = 1, ..• , n, within the 
area confined between the two lines subject to rectilin~ wiring rules! 

Statw;: Doable in linear time (Section ill.1). If· we are interested in actually producing the 
layout of the interconnect, we can run the greedy algorithm {Section DI.1) whose time complexity 
is O(n2

). This can be improved by running the modified greedy algorithm {Section V.4} that run• 
in time O(i), where j is the minimum number of jogs required to realize the layout. There are 
cases, however, where J° = O(n2) (more on this subject can be found under MJ). Tbe routability 
result can be generalized to various other wiring _rul_eE! at the expense of the complexity, which, 
however, remains polynomial (in n and t). : -\ .·• _. ·: 

(PRR] PLACEMENT FOR RIVER ROUTING (ACROSS ONE CHANNEL) 
INSTANCE: Two sequences or modules to be placed acroSB a channel in such a way that their 
sides facing the channel are lined up 1traight (for each of the two sets), and that the interconnect 
pattern they set up is a river route (as in RR). Each module has a length, and the positions of 
terminals along the side of each module i1 fixed. We are also given two numbers, t (the separation, 
as in RR), and s (the spread). 
QUESTION: Let p1 , •.• , Pm

1 
be the positions of the left corners of the modules on the top 

line (from left to right), and qi, ... , qm,3 are the positions for the bottom line. Is there an 
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assignment to the p/s and q/s such that the channel is routable within dimensions t and • 
subject to rectilinear wiring rules and so that the modules do not overlap! i.e. can we satisfy 
mu(pm1 + l~

1
, qm3 + l!

2
) - min(p~, q1) < s subject to the design rules, the bound t on the 

separation, and the colincarity restriction (where l; is the length of the ith top module, lf -
that of the jth bottom module)! 

Status: Can be solved in linear time, i.e. time O(n + m) where m = m 1 + m2 (Sections ill.2, 
W.3). The time remains linear even when the actual placement is required. The complexity 
ii polynomial for other wiring mod~ls as well, and is related to the corre~ponding result for 
the previous problem (RR). A special case of this problem is the offset problem suggested in 
(DKSSU81], which is obtained by setting m1 = m2 = 1. 

IJ>DP] PLACEMENT FOR A DATA PATH 
INSTANCE: A set of modules arranged in k + 1 rows, with all modules in the same row having 
the same height. Each module ( except those on the first and last rows) faces two channels - one 
at its top, the other at its bottom, with terminals on those sides. The top row has terminals only 
on the bottom of modules, the last - only on their top. All k channels are river routable, as in 
RR (so the order of modules in each row is fixed). The dimensions of the total. routing area are 
also given: the sum of the widths of all channels, t, and a 1pread, a. 
QUESTION: ls there a placement for the modules (in straight rows) such that alJ channels are 
routable, the sum of their widths does not exceed the prt:spccified total width t, and the total 
extent of the layout in the horizontal dimension (i.e. the di■tance from the leftmost edge of a 
module to the rightmost edge) does not exceed s? 

Statw: The problem is NP-complete in the strong sense (Section ID.6). It remains so even 
if each module has the same number of terminals on both sides, i.e. nets just "feed through" 
modules (this is a common practical case for data path design). The fastest known method to 
solve the problem runs in time O{nk), where n is the total number of nets to be interconnected. 
If the widths of individual channels t 11 ••• , t1c are given (rather than a total width t), the problem 
becomes solvable in time O(n2) for rectilinear wiring rules. The time complexity in the latter case 
remains polynomial even if the wiring rules are changed, but the degree will change accordingly 
(depending on the corresponding results for RR). 

The last two problems (PRR and PDP) could be formulated in terms or stretch lines rather 
than as placement problems. The formulation i■ easier in terms of modules, but in some design 
contexts (such as datapath design) it is more natural to view the problem as a stretching problem. 
In such contexts the placement issue may be disguised as a routability question, but stretchable 
modules do indeed set up {albeit restricted) placement problems. 

(CR] CABLE ROUTABll.,ITY 

INSTANCE: A placement for a set of rectangular modules within a bounding box, two (not 
necessarily disjoint) sides of modules each containing a sequence of n terminals numbered in order 
from 1 ton. 
QUESTION: Is there a one-layer rough routing for this configuration? 

Statw: The reachability aspect is solvable in time proportional to the number of modules. The 
orientability aspect is solvable in constant time (Section IV.2.1). 

IJ>O) PLACEMENT ORIENTATION 

INSTANCE: A set of (non-oriented, flippable) modules, terminals on modules' boundaries. 
Each net consists of two points. 
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QUESTION: Is there an embedding of the modules in the plane such that a one-layer rough 
routing is (topologically) feasible? 
Status: Solvable in linear time, _using your favorite planarity testing algorithm (Section IV.2.2, 
using [Ev79, Chapter 81). 

(PR] PLANAR ROUTADll.ITY 

INSTANCE: A placement of a set of rectangular modules within a bounding box, terminals (of 
two-point nets) on modules' boundaries. · 

QUESTION: Is there a one-layer rough routing for this configuration! 

Status: Solvable in linear time, by a modification to the Hopcroft and Tarjan [HoTa74] planarity 
testing algorithm (Section IV.2.3). 

[DPR] DETAILED PLANAR ROUTABll.ITY 
INSTANCE: A placement of a set of rectangular modules within a bounding box, terminals (of 
two-point nets) on modules' boundaries. 

QUESTION: Is there a one-layer detailed routing for this configuration! 

Status: NP-complete, by an adaptation of a result due to Kramer and van Leeuwen [KrvanL82] 
(Section IV.4.2). 

(DPRHJ DETAILED PLANAR ROUTADILITY GIVEN A HOMOTOPY 
INSTANCE: A placement of a set of rectangular modules within a bounding box, terminals (of 
two-point nets) on modules' boundaries, homotopy (rough routing) for each net. 

QUESTION: Is there a one-layer detailed routing-for this configuration! 

Status: Open. 

(DRSRP]DETAILED ROUTING IN A SThfPLE RECTILINEAR POLYGON 
INSTANCE: A simple rectilinear polygon with terminals (of two-point nets) on its boundary. 
QUESTION: ··1s there a one-layer detailed routing for this configuration! 

Status: Solvable in time O(n+ p), where n is the nu·mber of nets and pis the number of corners 
in the polygon (Section IV.3). U a layout is required it takes time O(n2 + p • n). 

(MCW2] MINIMUM CHANNEL WIDTH FOR TWO-POINT NETS {ARBITRARY INTER
CONNECT) 

INSTANCE: Two rows of terminals on parallel lines, each containing one terminal of each net, 
but the order is not necessarily the same. The distance between the lines is w, their extent is e. 
QUESTION: Can the channel be routed in its given dimensions, w and e! i.e. can the nets be 
interconnected subject to the wiring rules in the given area? 

Statua: The only solid results on this subject are for two extreme cases. First, if the via-free 
model is used the problem is solvable in time O(n2), where n i1 the number of nets (Sections m.s, 
V.2.2). However, unless the channel i1 river routable, the minimum number of layers required 
to realize the interconnect must be used to guarantee minimum width with respect to the given 
number of layers. If we are free to use more than the minimum the problem i■ open. see also 
MLC. Also, if the configuration is a river route, the complexity can be improved to linear time 
(Section m.s, (Bar81 ]). On the other hand, in the general case, if the Manhattan ( directional) 
model is used,· and in addition, each wire is constrained to have at most one horizontal segment, 
then the problem becomes NP-complete (LaP80a). (In the absence of vertical conflicts, using 
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the same routing strategy, the problem becomes solv.a't.:e in polynomial time.) All other cases 
are wide open: when doglegs are allowed, or if the wiring model is more general, the problem 
remains unclassified. Szymanski has shown (Sz81) that using four-point nets makes the problem 
NP-complete even when doglegs are allowed. 

(MLC) MINIMUM NUMBER OF LAYERS FOR A CHANNEL 

INSTANCE: AB in MCW2, and a number or layers, 1. 

QUESTION: Can the channel be routed using I layer; in the via-free model? Can it be done in 
width w within the extent e? i.e. if each wire is routed in exactly one ]ayer, are l layers enough 
to realize the permutation? If so, are w tracks enough! 

Statw: The first question can be solved in time O( n log l), where n is the number or nets 
(Section V.2.2}. The problem becomes NP-complete if single-sided connections are allowed. The 
width question can be solved only if the number of layers used is the minimum required, and then 
the complexity rises t.o O(n2) for the rectilinear wiring model. 

(VMJ VERTICAL MONOTONICITY 

·1NSTANCE: Two rows of terminals on parallel lines, ea.ch containing one terminal of each net, 
but the order is not necessarily the same. 

QUESTION: Can the minimum channel width be attained by using only vertically monotone 
wire■! 

Stat'U.8: Almost. One extra track may be necessary in order to avoid vertically nonmonotone 
wires altogether (Section V.3). Notice that we do not have to find the minimum width of the 
channel (see MCW2); we are only asking whether the minimum is attainable using the specified 
strategy. 

(MJ) MINIMUM ·JOGGING 

INSTANCE: Two rows of terminals on parallel lines, each containing n terminals - one of 
each net (the order is not necessarily the same), and a number k. 
QUESTION: Can the minimum channel width be attained by using at most k jogs per wire! 

Statw: Open. In Section V.4 example are given for which the number of jogs for at least one 
net is 0( ./n) in both the Manhattan and knock-knee models. This 1uggasts that the question i1 
difficult. We could also ask a similar question about the total number of jogs. Both question• 
were fully answered for the· river-routing case: an O(max(n,j)) algorithm was given in Section 
V.4 that would river-route a channel using j jogs if possible; the same algorithm can be used to 
test whether any net exceeds k jogs in time O(max(n, nk)). 

(CRC} CONFLICT RESOLUTION WITHIN A CHANNEL 

INSTANCE: Two rows of terminals on parallel liner., each containing one terminal of each net, 
but the order is not necessarily the same. 

QUESTION: Can the rou~ng be completed within the span or the nets, i.e. with no wire 
exceeding beyond the rightmost or leftmo1t terminal? 

Statw: Solvable in linear time (Section V.5). 

(RTC] ROUTING IN A T-SHAPED CHANNEL 
INSTANCE: A T-shaped channel with terminals on its sides. 

QUESTION: Can the nets be routed within the given area? 
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Status: This is obviously a generalization of MCW2, ao the results from there apply here. One 
special case that was studies is when all nets have two points with one terminal on the top side and 
one on either side of the bottom (see Section VI.1 for terminology): then the problem is solvable 
in O(n log n} time (where n is the ·number of nets) in both the directional and knock-knee models 
provided only one jog per net is allowed in the bottom part of the channel. 

(RXC) ROUTING IN AN X-SHAPED CHANNEL 
INSTANCE: An X-shaped channel with terminals on its Bides. 
QUESTION: Can the nets be routed within the given area? 

Status: This is a generalization of RTC. Again, there is one special case, namely when all 
nets have two points, split between opposite flanks (see Section VJ.2 for terminology): then the 
problem is solvable in time O(n) in both the Manhattan and knock-knee models. 

(RAT) ROUTABILITY OF AN ARBITRARY TILE (WITH ORDERS) 
INSTANCE: A rectangle with one terminal* set associated with each side. The terminals in 
each set have a relation defined among them that partially specifies the order in which they are 
allowed to appear along the side. Some terminals may be associated with fixed locations along 
their sides. 
QUESTION: Is there an assignment of terminals to locations that will conform with design 
rules and make the channel routable! 

Status: Open. One simple case that has been aolved is when two-point nets are split across a 
channel, and terminals are allowed to be at fixed locations. Then it takes time O(n) to route the 
channel or to test it for routability (Section V.6). 

(LAI] LAYER ASSIGNMENT FOR INTERCONNECT 
INSTANCE: A layout including the geometry of the interconnecting wires, and a set of design 
rules (including the number of layers, l). In addition, given is a set of "badness" coefficients 
b1 , ••• , bi for the layers, one coefficient c for contacts (layer changes), and a total figure, B. 

QUESTION: Is there an assignment of layers to the wires, such that if the total length of wires 
in layer i is Xi, and the total number of layer changes is v, then c • v + E! ... 1 bi • :r:i < B1 

Status: Solvable in polynomial time for l = 2 as long as there are no four-way junctions (Section 
VII.2). The problem for l > 3 is conjectured to be ~-complete. The general two-layer case 
(allowing four-way junctions) is open. 

• We use the term terminal in a ■lightly dift'erent way than usual, namely now it i■ not nece■,arily a11ociat.ed 
with a fixed location, it i■ ju■t a member of· a: net. 
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