
l

The
MDL

Programming Language
Primer

Michael Dornbrook
Marc Blank

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

--
ii

6. Simp·lle Functions

6.1. General
6.2. Defining FUN·CT IONS
6.3. Applicatlon of FUNCTIONs: B"nding
6,.4. DEFINE,ng Some Slmple FUNCTIONs
6.5. Pretty-PrinUng

6.5.1. Editors and Pretty Printing1
6.6 Loading afi e

7 .. MOL TYP'Es

7.1. TYPEs and PRIMTYPEs
7.2. In roduction t:o MDL Structu,res.
7.3. The TYPE? Predicate
7.4. Printi ng of MDL Objects
7.5. Stgnirtcanoe of PRI TYPEs / CHTY,PE
7 .6. Creating new TY !)Es

a. MDL Structure

8.1:. Equality
8.2. PRIMTYPE UST

8.2.1. Creating LISTS
8.2.2. IEVALing LISTS
8.2.3. Malllipul'ating LISTs
8. 2 .4. IF IXes Arst in FiORMs
8.2'.S. FORMs
8.2.6. FALSEs
8.2.1. SEGMENTs

8.3. PRIMTYPE VECTOR
8.3.1. Creating VECTOR ,
,8.3.2. EVALlng V1ECTORs
8.3.3. Manipu ati111g. V,ECTORs
8.3.4. UVECTORs

8.4. PR!MTYPE STAIING
8.4.1 . ASCII
8.4.2. Creating STRINGS
8.4.3. EVALing STRI ,Gs
8.4.4. Manipulating STRINGs

,8.5. Buil'dling Large Structures
8.'6. Searching Structures
8. 7. Garbage: Quoting Structures
8.8. Garbage: Building 1sts
8.9. Structur,ed NEWTY,PEs
8.1 o. Summary of MDL Structures
8.11 . Practice Quiz

9. Programming Constructs

9.1. Boolean Operators

THE MDL PRIMER

27

'2.7
2'7
28
30
33
34
34

35

35
36
36
:r,
37
38

41

41
41
43
45
45

52
52
53
53
55
56
56
56
58
59
60
60
161
61
62
6·2
63
63
65
65
166

6,9

69

iii

9.1.1. NOT
9.1.2. A '.D
9.1.3. OR

9.2. COND
9.2.1 . Examples

9.3. Shortcuts with Conditionals
9.3.1. Using AND and OR with CONDs
9.3.2. Embedded Unc,ondi ionals

9.4. Examp es

10. Looping

10.1_. ,PROG
10.2. REPEAT
10.3. Non-local! R1ETURNs;. etc.
1'0.4. MAPF

10A.1. Looping Through a Structure1
10.4.2. Other Than One Structure
10.4.3. Using· ntermediate Besults
10.4.4. MAPRET and MAPS.TOP
10.4.5. MAPR
10.4.6. MAPF/R Summary

10.5. Looping vs. Recursion

11. Argument Lists in 1FUNCTrONs

11.1. Arguments Not EVA ed
11· .2. Optional Arguiments
11.3. Arbitrary Numbers of EVA Led Arguments
11.4. Arbitrary Numbers of un EVALed Arguments
1, .5. Temporary Varfabfe.s
1.6. Order of Evaluation in. Arg,ument lists

11.7. Variable Declarations ·
11.8. Structures: DECLs and NEWTYPEs

11.8. . To NEWTYPE or Not To EWTYPE
11.9. Good Habits/ Bad Habits
I 1.10. Review of Argument List Syntax

12 .. Input/Output

12.1. Basics of f/,0
12.2. Conversion 1/0 - Input

1'2.2.11. READ
12.2.2. READCHR

12.2.2.1. ,NEXTCHR
12.3. Conversion 1/0 - Output

12.3.1. PRINT
12.3.2'. PRINt
1.2.3,.3. PRiiNC
12.3.4. CRLF

THEMDLPRI ER

,69
69
70
70
71
72
72
73
74

77

n
78
78
79
79
80
81
81
83
84
85

87

87
88
88
89
90
91
91
93
94
95
95

97

97
98
98
98
98
98
99
99
99
99

iv

112.4. CHANNEL 1(the TYPE)
12.4. ·. OPEN
12.4.2. FI . E~EXISTS?
12.4.3. CtOSE
12.4.4. CHANLIST
12.4.5. INCHAN and 0UTCHAN

12.5. End•of -File " Routine''
12.6. Additional 1/0 SUBRs

12.6.1. REAOSTR.IHG
12. 16.2. IPRINTSTRING

12.7. SAVE Fifes
12.7.1. SAVE
12.7.2. RESTORE

12.8. PARSE, LPARSE, and UNPARSE
12.91

• Other il/0 functions
12.9.1. FLOAD '
12.9.2. SNANE
12.9.3. FILE- ENGTH
12.9.4. RESET
12.9.5. RENAME

12.10. Terminal CHANNELs
12.10.1. TYi

1 3. Mak n,g Tables

13. 1. Use a LIST
13.2, Use a VECTOR
13.3. Use an ATOM
13.4. Use an Association

13.4. 1. Hashing
13.5. Use an OBLIST
3.6 .. OBLISTs READ,, and PRI T

14. Debugging, MDL Programs • An Introduction

14.1. Method 1: Start Over
14.2'. Method 2: Forcing FRAMEs to Return Values,
14.3. Method 3: Use EDIT to Repai,r your FUNCTIOHs
14.4. Method 4: Altering FRAMEs / RETRY
14.5. Summary

Index.

THE MOL PRIMER

100
100
101
1011
101
1011
102
02
03

104
105,
105
105
105
106
106
06

107
107
107
108
108

109

109
10

110
111
112
H2
114

1! 15

116
117
11.8
120
120

123

V TI-'.!E MDL PRIMER

List of Figures

Figu ,e 8-1: The MDL notion of eQuality Is demonstrated in this figure, which shows the •42
d"sfinetion between single-equal•? and double-equal n?.

Fig1ure 8•2: The LIST (1 2 3) 43
Figure ,6~3.: Removing a LIST element by moving only one pointer 43
Figure ,8~4: REST of a LIST .45
Figure 8•5: PUTs into LIS Ts 46
figure 8-6: Pointers. vs. Structures 47
Figure 8-7: PUTREST 48
Fi.gu re 8-8: Rem,oving an elemen from a LIST using PUTREST 491

Figure 8- 9: Splicing LISTS together using 'PUT REST 50
Figure 8-1 O: The VECTOR [t 2 3 4] 55
Figure 8-11: REST of a VECTOR 57
Fig11 1re s-1·2: BACK of a VECTOR 58
Figure 4 • 1 : Diagram for the examp 'e in ·th is chapter 121

HE MDL PAlMEA 1

I n·t rod u ct ion

Ov,er the years the original MDL (pronounced nMuddfe") Primer by Greg Pfister ,[Pfister 72] beca e
more and more a reference manua and less a Primer from which a nov.rce could learn the language.
Some o,f the text o,f the orJgina has been re•used ·n this document. but much has been ,eliminated,
changed, or re -ordered, and a reasonable amount of new material llas bean added. In partrcul'at, a
number of figures and many more examp:l'es have been added to make some of the more difficult
,concepts easier to, understand.

This Primer is intended as an introduction to MDL After assimilating the information contained
herein you should be able to write very good programs. However, for any individual topic in the· MDL
Primer there ts likely to be more ·nformati,o,n avaifable in The MDL Programming Language (Galley 79]'
and The MDL Programmfng Environment [Lebling180] and there are many topics in these documents
which are not addressed j,n the Primer. Anyone who plans o do, any serious work with MDL should
read these documents.

One ,of the difficulties in writing a Primer is to make it useful to those who don't know anything at 8111
a.bout programming without boring those who know a lot of th,e basics. Hopefully those at both
extr,emes will find Hiis to be easy to, read. If you are a complete novice, ho.wever, there may be some
unfamiliar references and some material which doesn't make sen~e on your first ,reading.

Why MDL?

Ma:ny people ask this. t is often hard for those 'who use MDL to put into words their reaso,ns for
liking it. Those of us who use MDL are convinced that it's a better languag,e than any other we've
encountered'. Unfortunately, vary little has been done to convince others of his and spread the use o,f
this marvelous tool.

MDL was created in the early 970's by a group at the Dynam,ic Modelling/Computer Gr,nihics
division of Ml 's Project MAC (f'ater renamed the Laboratory rm Computer Science). It is an offshoot
,of the original Lisp. There have been quite a few offshoots of Lisp in the past 10 years • Maclisp,
lnte.rUsp, Lisp Machine Lisp, Lisp .5, UC Lisp, Franz: Lisp, etc., etc.• but none of them are like MDL

Since MDL is a dis1an, re·lative of Lisp and many of those ti-rst learning MOL have some familiarity
with Usp, a short comparison of the two languages follows. f you are not familiar wi h Lisp (or, bet er
still , with mJ.Y other languages) count your blessings {you don't have any bad ha.bis, to unieam) and
skip the following discussion.

MDL's similarities to, Lisp: MDL shares lhe advantages of Lisp over the more pop1ular languages
such as Basic, Fortran, Cobo.I, Algol, Pascal, etc.

• It has an interpret,er which a: lows real-time interaction and allows you to deiine- and test
"ndrvidunl functions ~cparalely.

lrJTRO0UCTiO

-
2 THE MOL PRIMER'

. Us syntax is ve,ry simple.

· Any data object or function can be passed as an argument or returned as a value•.

• 1ft has fist slru ctures. equivalent to Usp1s.

· Recursive functions can be written quite easily.

he similarities between MOL and Lisp are· such that in many cases a few minor changes to Lisp
code wm convert it into working MDL code. G\;en he other featu res cf MDL, no MDL pro,grammer
would write the program in the same Lisp style.

MDL'sdissimllari.ies to Lisp: Many objections to Lisp are answered in MDL.

• Strongly typed languages provide much better error detection tools han Lisp. MDL
allows declarations of all variable types to whatever level of cornprexity is desired. A
variable can be declared to be one of: s-evetal· types.

• Recursion is a useful too!1
, but often is not a very effrcTe-nt way to solve the problem .. Us.p's

motto "To iterate is human, to recurse divine," is not one ,of MDL's tenets. MDL allows
recursion, but provides excel1lent fac.flfties for iiteration.

• MDL has a very powerful set of data structures - Lists, Slrings, Vectors, and U11iform
Vectors. Although lists are a very usefu and flex,bre form of structure, they .are certainly
not optimal in an cases. MOL's various, structures allow the user to save space and
access time. MDL's structures are also "first class," In that lhe standard functions 'for
manipulating data s1ructures can be used on all .of them equivaJenHy.

- Probabty the biggest complaint agains Lisp-like languages is that they are unsuitab .e for
"production programm·ng'' because they are too sow. MDL has an exoelfent compiler
which as far as we know .rs the best compiler for a Usp-ltke language. I produces
machine code equivalent in efficiency to Fortran and Cobo!. which are consider,ed very
efficient.

• MDL has a rich library of useful prog am aids. The editing and debuggi g hmctfons are
among the best. The package system allows building of very large programs from sma.U
sections., usua ly written by different peopre, without wonying about variable name
conflicts.

- Probably the most distinctive feature of MOL is its mechanism for user-defined types,
whi,ch k3 the best of any language with which we are familiar. User•defined types have
been r,etrofiUed on some ot the ne.wer versions of Usp, but in most cases they can be
used only with specfa! functions and cannot be used ·n the same general w.ay that Lists
can.

HopefuOy some of your Questions have been answered and you have some ready answers when
you get ilak fro your non,MDL progrnmming friends . Leaming MDL should be an enjoyable and
worth vhile experience. Your reactions to this Primer and suggestions for changes are arways
welcome. Good Juch!

THE MOL PRIMER 3

Waming! You are about to embark on an u"dertakh1g: fraught with peril. MDL programming has
been proven to be h at:i it-forming. Once you begin. you may Hnd t'he habit hard to kick I

IN m oDUCTION

4 THE I\ Dl PRIME.R

5 THE Mell PRlMER

Acknowledgments

We are deeply indebted to our predeoessors for their work on his topic: Greg Pfister, who wrote
~he original A Mvddie Primer [Pfister 72] , and Stuart Galley, who updated that document a11d added
significantly t-o i o create The MDL Programming Language GaHey 79) document. Some of the text
and, examples ,of the original: documents survive here,. and some other material was simply rewritten in
an order and style· which we• consider more comprehensible.

Special thanks to Chris Reeve1 Dave tebl'ing, Stu Galley, Poh Lim, Thomas Mfchalek1 Dave
Scrimshaw, Tim Anderson; Mark Plotnick, and Prof. J.C.R. L,ckl'der tor thei many comments and
suggestions.

N,o ,document on MDl wou d be complete without acknowledging the "original implementors,,, . If
not for tiheir inspiring work, this fine language would not exist We are fo ev,er gratefu to Gerald
Sussman, Carl Hewi~t. Chr,is Reeve Dave Cressey, and Bruce Daniels. Thanks are atso extended to
the many unnamed hackers who, have improved the l'anguage and the programming environment ove
the years.

This worK was supported lby the Advanced Research Projects Agency of the Department of
Def,ense and was monitored by the Office of Naval Research und'er contract N00014-75-C-0661.

This document was prepared using Scribe and printed on the Xerox Dov,et prin~r.

{c} Cony1iyht rno1 M:is~nctrnnetts nsHtute
of 'eclmotcigy. All rirJ 1~ 11. .. :..e rvcd.

6
THE MOL P-AIMER

OASrc JNTEnACTION
SECTION 1.0

THE MOL PRIMER 7

1. Basi'c 'lnt,eract.ion

The purpose of this chapter is to pi'o1.1ide you with that iminimat amount .of information needed to
experiment with MDL (pro1J.ounced; af'fectlanateiy, as Muddle) while r,eading this document. It is
strongly recommended that you do experiment, especial y upon reaching chapter 6 (page 27) (Simple
Functions).

1.1. Loadiing MDL'

First, catch your rabbit. Somellow get the interpreter running -- the progiram in the file SYS: TS
MD mn lhe ITS version ,o:r SYS :MD SAV in the Tenex version or SYS :MDL. EXE in the Tops-20 version.
[J:ust type :MDL to 11TS1 MDL or MUDDLE to, Tops.:20.] The interpreter w·n then ty.pe

M. DOLE nnn IN ,o:PERATIOH.
LISTE1NING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpr,eter for the language MDL. All it knows how
o do is interpret MDL expressions. There is no special "command language ' i you communicat,e with
lihe program •· make It do thing.s. f,or you •· by actu.ally typing legal MOL expressfons1 which it then
lnt.erpr,ets. Everything. you can do at a terminal can be done in a program, and vice versa, ·n exacUy
lbe same way.

T'he p.rog1ram will be referred to, as Just 'MDL'' (or ''the interpreter") from ·11ere on.

1 2 Typing

Typing a char,a,cter at MDL normally just causes ttlat character to be echoed (printed on your
terminal) and remembered in a buffer. The on y characters for whi1ch this is normally riot true act as
faHo.ws:

Typing lhe " Escnpe '' or ''Alt•Mode" key, whi.ch we wHI always refer to a~ $ (dollar-sig,n) , causes

SE.Crl'Ol'I I 0 BASIC II ff(; n /\Cl ION

8 THE. MDL PRIMER

MDL to echo dorlar-s·gn and causes the contents of the buffer (the characters which yol.l ' ve typed) to
be interpreted as an expression(s) in MDL. When this interpretation is done, the resun will be plinted
and MDL will wait for more typing.

yping the rubout character (DEL in the ITS. and Tops-20 versions, control-A in the Tenex version)
causes the last character in the buffer•· the one most recently typed .• t,o, be lhrown away (deleted). If
you now immediately type another rubout, once again the last character is deleted -- namely, the
seco d most ecently typed. Etc. The ,character deleted is echoed, so, you can see what you're
doing. On some "display" terminals, rubout wiH "echo" by causing the deleted character to
disappear. If no characters are in the buffer, rubout echoes as carriage-return line-feed.

Typi'ng ti (control-atsign) defetes. everything you have typed since th-e last$, and prints a carriage.
return l'ne-feed.

Typing -tD (contro.1-D) causes the current nput' buffer to be typed back out at you. This allows you
to see what you really have, wfthoul the confusing re-echoed' characters pr,oduced by rubout.

Typing tl (control-l) produces the same effect· as typing +D, except that, if your terminal Is. a
''display·• term·nal (for examp e, VT1001 VT52 H 91 •••), the screen is cleared before,the input bu fer is
retyped

Typing 1-G (control-G), causes MDL to stop whatever a is doing and act as if an error had occurred
(section 1.3 (page 9)). 1'G is g.enerally most useful for temp,orary interruptions to check the progress
of a computation. tG is "reversible" -- that is it does not destroy any of the "state" of the
computation it interrupts. lo "undo" a tG 1 typ,e the characters

<ERRETT>$

(This is discus-sed more fttlly far below, in chapter 14, page 115 (Debugging MDL Programs).)

Typing -tS (control-S) causes MO. to hrow away what it is curl'E!ntly doing and return to a normal
"listening" state. (In the Tenex and ops-20 versions, 1-0 also should have the same effect.) -tS is
generally mo,st useful for aborting infinite .loops and similar terrible things. tS destroys whatever is
going on, and so it is not reversible.

Most expressions in MDL include "bra,ck.ets" (generically meant} that must be correctly :po.ired and
nested. If you end your typfng with the pair of characters ! $ (exclamation•point IESC), al1I currently
unpaired brackets (but not double-quotes which bracket strings of characters) wil au omatically be
paJred and interpretation wlll start. Without the r, MDL will just sif thef\e waiting for you to pair Ulem.
If you have improperly nested parentheses, brackets, etc .. , within the expression you typed, an error
wm occur, and MDL wi I teU you whal is. wrong.

Once the bracke1s are properly paired and S (ESC) is typed, MDL will hnmediatefy echo carriage
re urn and line-feed and lhe ned thing it prints will be the result of 1he evaluation. Tims, ii a plnin $ is
not so echoucJ, you hove some xpression unclosed. In that case, ·r you hav~ nrlt typed any

BASIC 1rmr.ACTION SECTION L2

THEMDLPRMER 9

character.s beyond the$, you can usually rub ou the$ and other ,charact,ers back to the beginning of
the unclosed expressio' • Otherwise, what you have typed 1is bey,and the help, of rubout and 1-0'; if you
want to abort it, use +S.

MDL accepts and distinguishes between upper and lower case. AH "built-in functions" must be
re'ferenced in upper case.

1.3. Errors•- Simple Considerations

~hen MDL decides for .some reason that something is wron,g 1 the standard sequence of evafuation
is interrupted and an error function is cafed, This produces the following termTnal output:

*ERROR•
ofJen-hyphena.ted-teason
tu nc tion •in•which-e,rar--0ccurred
LISTENING-AT-LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing exp.ressfons and having them evaluated. There
exist facilities (built-in functions) al owing you to find out what wen! wrong, restart, 011" abandon
whatever was going on. lin parfcular-1 you can recover from an error •· that is undo everything but
side effects and return to the initia typing phase •• by typi11g the following first line, to which MDL will
respond with the second Hne:

<ERRn>s
LISTENING-AT-LEVEL 1 PROCESS 1

f you type the t9 If owing line whi la sm in the error state (before <ERR ET>), MDL wil I print the·
FRAMES it went through to evaluate Ule function:

<FRAMES,)$

Typing FR& (pronounced ' frampersand') ·ns1ead of FRAMES will cause MDL to print a condensed.
usually more readable output.

This will also, be explained, in chapte 14.

SECTrO 11.2

10 THE MDLPRIMEA

10l MifCS SECTIO 20

THE MDL PRIMER

2 .. MDL Basics

In a general sense1 when you are interacting with MDL, you air,e dealin,g1 with a wortd inhabited only
by a partlcular set of things:.MDL objects.

2.1 . Introduction to MDL TYPES

MDL objects are best considered as abstract entitfes with abstract properties, The pmpertie.s of a
particu ar MDL object depend upon the class of MDL objects to, which U belongs. This class is known
as the TYPE of the object, and every MDL object has, one. Easily recognized TYP1Es include
FIX ,(integers) and FLOAT (reaJ numbers). Examples of these might. be 1 and 2 . ,87, respectively. An
abbreviation often used is to r,efer to " a FIX" when referring to a MDL object whose TYPE is FIX. For
example, 1 is a FIX and 2. 87 is a 'FLOAT.

MDL TYf·Es can be diviidied iinto t.wo general classes: those with internal structure and those without
internal structure. The former will be referred to as being structured. Structured objects. are those
which can be tihougM ct as an ordered series of items he!d together in some way. There are a number
of ways in ,hich these items can be held together, and each of these is represen ed by a seri,es. of
MDL objects between a set of matched brac~ets (e.g. <>, O, [], O ""). As will be seen later, each
bracket type repr,esents a different TYPE of MDL object, and' some represent d ifferent ways of
intemallly storing the ser:ies of objects. Depending on the a:pptication, one of these may be more
suitable than another. ·

Here are some MDL Objects which are not structured:

20
20 . 0
TWENTY

The ri-rst two are examples O•f TYPEs FIX and FLOAT, as noted above. The last ts a11 ATOM, roughly
speaking an id,en Uieror a variabl:e, and wi.11 be discussed in Chapter 3.

Here are some MDL objects which are structured:

SEGTIOf 20 ti. [JI. BA.~ICS

12

<+ 1 2>
(+ 1 2)
[+ 1 2]1
• + 1 2"

THE MDL PRIMER

These represent very similar notrons; an ordered series of the MDl objects+, 1., and 2, the first of
these being an ATOM and the rest FIXes. These brackets correspond to the TYPEs FORM, lIST, and
VECTOR. The first of these, a FORM, ls central to MDL, as it represents the application of a function to
argumen s. The others will be considered later.

2 .2. Printing of MDL Objects

We have already seen the printed representati'on or some MDL ,objects: FIXes, FL0ATs, FORMs,
L ISls and VECTORs. As will be menHoned later, MDL allows an almost unlimited number of data
types. Obviously, there are not enough bracket types to make each data type recognJ2.able.
Therefore, most MDL types have a kind of generalized way of printing. This format is like this:

#type-name value

where lype-name is the name of a MDL TYPE and value describes the 'value·' of the object. Suffice it
for now to say that an obJect which prints like:

#FALSE ()

is of TYPE FALSE and an object which prints like

#MUMBLE [1 2 3]

is of TYPE MUMBLE.

2 .3 ... l\.~DL FORMS

A FORM in MDL is prfnted as: an open angle brac!<el (<), the name of the function to be applied, the
argurnents to which lhe function is befng applied, a11d rinally a c'losing angfe bracket()),. MDL's angle
brockels are one of ils distinguishing features (almost as dislincUve as Lisp's parent,heses).

MDL has a large number of buHt-in functions. These are usually of TYPE SUB,R (short for
subroutine). for example:

IDL ElflSlCS SECTIOH2.1

THE MOL PRIMER 13

<+ 1 2 3)

will, when given to the MDL inter,pr,eter, re um ,s. The way in which the name for a function, in this
case +, is associated wilh its funcUonal part (i.e. in this case, the thing which actuaHy performs the
addi:t on) is described later. Sufrce it f,or'now to .say that these functions. can be referenced by thei
name (an ATOM), as was done in the examp e.

2 .4. Pref ix NotaU9n

MD is a. distant relative. a much• imp roved descendant of LISP. The 11 desrrable features" of USP
were induded ln MDL One ot those features. prefix notation, you have]ust seen.

Prefix notaUo I sometimes referred to as Polish no ation, is different from the infix notation of
ordinary arUhmetic and reverse-Parish notation of some calculators. Below ar,e some examples. or
,equivalents in 1i,nfix anc!I prefix notation:

4 + 7
(+ 4 7)

8 - 8
<- 8 6)

8 - (3 + 2)
<- 6 <+ 3 2,))

e + (4 • e - 6, aJ
(+ 9 <- <• 4 6) (/ 6 3)))

7 + 3 + 4 + 8 + 11
(+ 7 3 4 8 11)

It will take you some time to become accustomed to prefix notation. One thing you will have to
keep in mind is bal'ancing or brackets. Notice that with prefix notation an operator can take an
arbitrary number ,of arguments and tha the nesting is never ambiguous (i.e. the parentheses of infix
notatl on are not ecessary),.

2.5. Evaluation of FORMS

Evaluation of a MD FORM procee'Js from l,e ft to right. The first Uem is the name or the function
which wiU be upplied lo II e mgumei ts which follow. The arguments may ll crnm1lvl:!'s lie FORM::. which

SECTIOi'll 2.3 MOL B4S!CS

14

will be evaluated Jn the same way. Fo, example, this FORM:

<+ <+ 1 2) 3)

THE MDL PRIMER

when evaluated will apply the addition funcUon to the evaluation of the first argument (which, since it
is itself a form, wilf

1

be recursivel'y evaluated until it retorns a value) and then to the evaJuation of the
second argument The arguments may be much more complex than this and requfr,e many levels of
evaluation before a result is returned. n is .Important to note that unlike many other languages, every
evaluation has a resulting value. As we wm see, even such operations as printing or setting the values
of variables return valaes.

2.6. Introduction to, Truth

In MDL, anything which does 11,0 evaluate to an ,object of TYPE FALSE is considered true. If an
expression returns falsej MDL usually prints it as #FALSE ().

MOL AASICS
S CTrON25

R

t

f
f

ThlE MDL PRIMEA 15

3. Read, Evaluate, and Print

3.1. Gen,eral

Once you type and all brackets are corr.ectly pai ed and nested, the current contents of tile input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL (uevaluate"), which passes its ou put to PRINT, which types its -output on the terminal.

Functionally,

REAO: printed representations•·> MDL objects,

EVAL: MDL objects ..) MDL objects.

PRINT: MDL objects-·> prinled' representations

That is, REAID takes. ASCII text, such as is typed in at a terminaJ, and creates the MDL ob!ects
represented by that text. PR I NT takes MDL objects, creates ASCH text representaUons of them, and
types. them out. EVAL, which ,is the realfy important one, performs transformations on MDL obj,ect:s.

3.2. EVAL and TYPES

The ,aws or t e MDL world are defined by EVAL. In a very real sense, EVA is the only MDL obJect
which "acts", which ''does something'". n "acting" EVAL is always "following the directions" of
some MDL object. Ev,ery MDL object should be loo'ked upon as supplying a set of direct ons to EVA Li
what these directions are depends heavilly on the TYPE a·f the MDL object.

Since EVA:L is so ever-present, an abbreviation 1is in order; "evaluates to something '' or ''EVA Ls o
somethfng'' should be taken as an abbreviation for "when given to EV.AL, causes EVAL t,o return
something' •

Sf:.CllO 30 11Ct1D, EVALUATE. 1'1 ID Pnl

16

3.3. Example (TYPE FIX}

ts
1

The followi11g has OCCU~ed:

THE MOL PAI E:R

First, READ recognized the character 1 as the representation for an object of TYPE FJX, in
particular the ,one which corresponds to, the integer one (FIX means integer, because the decimal
point is understood aJways to be ·n a fixed position; at the right-hand end.) READ, built the MDL obJe<:t
corresponding to the decimal representation typed, and returned it.

Then EVAL noted that its input was of TYP!E FU. An object of TYPE FIX evaluates to itself, so
EVAL returned its .input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal lhe decimal character
representation of the corresponding Integer.

3.4. Example (TYPE FLOAT)

1.0$
1.0

What went on was entireJy analogous to the, preceding example, except that the MDL object was of
TYPE FLOAT. (.FLOAT means a. real number (of rim' ed precision), because the decimal point' can
float around to any convenient position: an internal exponent part tells where it •irealty" belongs.)

3.5. FIXes and FLOATs versus READ: Specifics

3.5. 1. READ and ,FIXed•point Numbers

READ considers any grouping of characters which are sorely digits t,o be a f IX, and the radix of tfl,e
representation is decimal (i.e. the base is 0) by default. A - (hyphen} immediately pr,ecedfng such a
grouping represents a negative f IX. lhe largest FIX representable on the POP-10 Is &wo to the 35th
power minus one, or 34,359,738,367 (decima,I); the smallest is one less than the negative of ttlat
number. If you attempt to, type in a f IX ours,ide that range-, R.EAD converts it. t,o a FLOAT; if a program
you wri1e a ten,pls to produce a f .IX ou,tside that range, an overflow error will occur (unlets overflow
errors are disabled).

RE /10. EVALU T , AND RINT
SEGflON 3.3

ER

in
al
ct

·o

H'

f

THE MDL AR[MER 17

3.5 2~ R'EAD and PRINT versus FLO.ATing~point Numbers

PR INT can produce! and READ can understand, two different formats for objects of TYPE FLOAT.
The first is '',decimal-point" Aota:tion, the second is "scientific" notation. Decimal radix is always used
for representaUons of FLOATS.

"Declmal-po'nt" notation for a. FLOAT consists o,f an arbitrarily long string of digits contaioing one •
(period) which ls followed by at least one digit READ will make a F lOAT out of any such object, with a
llmit of precision ot one part in 2 to the 27th power. (FIXed and f OA TTng-point numbers are stored in
one 36-blt PDP· 10 word. FLOATing-point numbers give up precision to gain their greater 1~a.ng,e.)

"Scientifict' notation consists of:

1. a number, the mantissa

2. immediately followed by E. or a (upper er ,lower case 1letter E),

3. immediately followed by an exponen •

where !:he mantissa is an arbitrarity I ong string or digits, with or without a rlecimaT point {see fol'lcwing
note); and the •·exponent' is up to two digits worth of FIX. This notation represents he " number' to
he "exponent'' power of ten. Note: if the mant,issa as above would by ftself be a FIX, and if th,e
"exponent' is positive, and If the result is within the ,allowed range of FI Xes, then the iresL•it wi I be a
FIX . For example RfAD understands 10E1 as 100 (a FIX), but toE-1 as 1. 0000000 (a FLOA~).

The largest•mag11itude FLOAT which can be handfed without overflow is 1. 7014118E+38 (decimal
radix),. Tile smallest-magnitude FLOAT which can be handled without underflow is . U6·936791E-38,.

Examp,les:

1.001$
1.001000

.001$
1 OE-3

143E2S
14300

1234567891.234$
! . 23456,781E+t2

SECnON 3.5 nl f 1[) E.Vf,LUlllT . A ID PR1 T

18

THE MDL PRIMER

ATO I Ar/0 THtJn VAUICS
SECTION4.0

.fER THE MDL PRIMER 19

4. Atoms and Their Values

4.1. Examp,le (TYPE ATOM, PNAME)

In the previous chapter; the handling of FIXed and , 1 oating point numbers by 1READ1 EVAL, and
PRINT was discussed. f y,ou type:

GE10RGES
GEORGE

a lot more h~ppens.

READ noted that what was yped had no special meaning, and therefo e assumed that it was the
representation of an object of TYP,E ATOM. (''Atom" means "·more or less rndlvis·ti1e. ') READ
therefore attempted to look up the representation in a table lit keeps. For such purposes. If ,READ finds
an ATON in its tab:le· whose representation matches the· representation just received, that AlO - is
returned as IREAD's "Jalue. If m,e look-up fails, READ creates a new ATOM, puts ·tin the tab'le with the
representation r,ead, and retums the new ATOM. Nothing which could in any way be referenced as a
regal " value" is at ached to the new ATOM. Tile initially-typed representation ,of an ATOM becomes its
PNAME , meaning its name for PRINT (fRINT NAME). One often abbreviates "object of TYPE ATOM
with P'NAME name" by say;fng "ATOM name". here is a reason for making this carefu distinction.
UnHke other 1·anguag,es whe:re atoms are names associated with va ues, a MDL ATOM is an object
wh,lch IDfil'.'. have values (globat and/or local) but which is distinct fr-om its value(s).

EVAL. g,iven an ATOM, retur;ned just that ATON.

PR I NT, given an ATOM, typed out ts PNA'ME.

4.2 READ and PNAMEs

The questton "what is a legal PNAME?" is actually not a reasonable one to ask; an,y non-empty
s1ring of arbitrary characters can be the PNAME o an ATOM. However, some PrUU•IEs are easier to, 1ype
to R£AD than ot ers. But even the question "what are easily typed PNAMEs?" is not 100 easonable.
becau~e~ READ decides hat a group of characters is a PNA I hy derault: if i can't possRi ly be
anything else, Tl' s a PNAMiE. So, tho rules gioverning the spec1lication ol PH.AMEs are mos.'sy, and best

SECTION4 0

20
THE MDL PAIMER

expressed in terms of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAME; that will always
work. If, for some reason 1 you need to know all the g.ory detaJls. about regal PNAMEs, see Subsection
2.6.3, of The MDL Prog,amf!)ing language [Garley 79].

4.3. Values of ATOMS

4.3 .1. ,General

Typing GEORGE to the MDL interpr,eter and causing it to create the ATOM with PHANE GEORGE does
not appear to be very useful. ATOMs in MDL serve as variables and as names for functions. and data
structures. They ar,e definitely useful.

The ATOM has itseJf as Its va ue. There are two addfti.onal kinds of "value" which can be attached to
an ATON. An ATON can have either, both, or neither ... They interact Jn no way. These two addi ional
values are referred to as the Jo.ca ~ and the 9!.Q!mJ val~ of an ATOM. The functJ,ons which
reference the local and global values of an ATOM and some of the charac eristfcs of local versus
global values, follow.

4.3.2. SETG

A global vaJue can be assigned to an ATOM by the SU8R SETG ("set globa ," pronounced 'set-gee'). as.in

<SETG atom any>

where atom must £VAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of he first argument The value returned by the SETG is, its second
argument, namely the new global vafue of atom.

Examples:

<SETG FOO <SETG BAR 489>>$
469

The above made the globaJ varues of both the ATOM FOO and the ATON BAR equal to the FIX,ed·
point number 469. -

ATOI ~ ANO THEIR VAi UES
S :CTION 4,2

•

ed
lYS

on

lS

ta

0
ii
h
s

THE MDL PRIMER

<SETG BAR FOO)$
FOO .

That made the g'.obal va ue of die A.T1DM BAR equal to the ATOM FOO.

4 .3.3. GVAL

The sue:R 1GVAL ("g:lobal vahre") is used to reFerence the global vaJue of an ATOM.

<GVAL atom>

21

returns as a value tile global value of atom. rf atom does. not ,evaluat.e to an ATOM or if the ATOM to
which it evaluates has no g obal value, an error occurs.

GVAIL .appried to, an A.TOM anywhere, in any function, wi I return the same value. Any SETG
anywhere ,changes the global value for ,everybody. Gl,obal values are context-independent.

READ understands the character • (comma) as an abbreviation for an application •Of GVAL to
whatever foUows it. PRINT always. translates an application of GVAl into the comma format. The
fo lowing are absolutely equivalent

t atom <GV L ai,om >

Assuming the ,examples in sec ion 4.3.2 (page 20) were carried out in the order given, the Following
will evaluate as indicated:

,FOO$
469
<GVAL FOO>S
46 18
.BARS
FOO
, , BARS
489

4 .3.4 SET'

The SUDR SET is used to assign a local va ue to an ATOM. Applications of SET are of the form

<SET atom ,any>

SECTION 3 TO!\lS :•11) TH(IR VAUJ[S

22

SET retums EVAL of any just as SETG does.

Examples:

<SET BAR <SET FOO 100'»$
2.00

TKE MOL PR IMER

Both BAR and FOO, have been given rocal values eciual to the FIXed pojnt number too.

<S,ET FOO BAR>$
BA'R

FOO has been given the local value BAR.

Note that neither of the above did anything, to any global va!ues FOO and BAR had or might have had.

4.3.5. LVAL

The SUBR LVAL is used to return the l'ocar value of an AT10N. As with GVAl, READ undetstand's an
abbreviatron for an application of LVAL: the charactet . (period), and PR'lll'T produces It. The
rouowing two representations are equ·val'ent, and when EVAL operates on the corresponding MDL
object, it ,returns the current local value or atom:

<LVAL atom> .atom

(Note: y,ou wilt generaJly hear. FOO pronounced as 'dot-foo'}. Assume .aJ of the previous exampres
in this chapter have be.en done. Then the fol'lowing evcdu~te as indicated:

.BARS
100
<LVAL BAR>S
100
.FOOS
BAR
•. FOO$
FOO
••.FOO,.$
489

ATOMS AUD TIIEIA \fl'ILUl:S
SECTION 4.3

ER

n
e
l

s

THE MOL PRIMER 23,

5. Built-in Functions

5.1 . Evaluation of FORMs

EVAL applied to a F10RM acts as lffoHowing thesedirec ·ons:

First, e'Xamine the lune (first member) of the FORM. ' fit is, an ATOM, look at its 1IWAL. If it is not an
ATOM, EV'Al it aJld look at the result of ~he ,evaluation. If what you are looking at is not something
which can be applied to arguments, complain (via. the 'ER.ROR function). Otherwise, inspect what you
are looking at and follow its d rections in evaluating or not evaluating the arguments and then "apply
the function" .. that is, 1EVAL the body of the object gotten firom tune.

5.2. Built in Functions (TYPE SUBR, TYPE FSUBR)

The built-in h.inctions of MOL come i1n two varieties: those which have all their arguments EVALed
before operating on them (TYPE SUBR, for "subroutine" , pronounc,ed 'subber') .and those which have
none of their arguments EVALedi (TYPE FSUBR, his,ortcaHy from Lisp ~Weinreb 781, pronounced
effsubber, for flmny-SUHR1). CoUecttvely hey will be called F / SUD s, although that term is not

meaningful to the, interpreter. See Appendix 2, Predefined Subroutines, in The MDL Programming
Language [GaUey 79] manual for a lisfng of all F/SUe:as and sh·ort descriptions. The term
"Subiroufrie' wi111 be used herein to mean both F /SUaRs and compiled user functions.

Unless otherwise stated, every MDt bui'lt-in Subroutine mentioned is of TYPE SUBR. Also, when it
is stated that an argument of a SUB,R mus be of a. particular TYPE, note that this means that EVAIL of
the argument must be of the particular TYPE.

Another convenient abbrev,iation which will be used is "the SUBR pname'' in place of "the SUBR
which is inUially the GVAl of the ATOM of PNIAME pname" . "The FSUBR pname" wlll be used with a
similar meaning. These disfnctions are necessary. 'he SUBR is actually the global value of the ATOM
of PNAME priame. The important point Is that the AtOM efiectively points at the ·•~ fu nction. '" For
ins1ance,

<GVAL SET>$
#SUDR •oooG0O746516•

SECil0H5.O IJUJL T-IN FUNCT101'5

24
TI-IE MOL PR tM£R

If you were so inclined, you could change the ATOM which points to a ,given FUNCTION or have
many ATOMs po-int to the same FUNCTION. All built-in SUB Rs and FSUBRs shall be referred to in this
book by the .ATOM which points to them when MD starts up. The poin.t is that there is nothing sacred
about these names, but for clarity1s sake it is recommended that. you not rename them.

5.3. Examples (+ and Fl X, Arithmetic)

<+ 2 4 6>S
12

The SUBR + adds numbers; Most of the usual arithmetic functi'ons are MDL SUBRs: +, -, •,/, MIN,
MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See Appendix 2 of The· MDL Programming
Language Galley 79] manual for short descriptions of these.) AU except MOD, which wants FIXes, ar,e
indifferent as to whether their arguments are FLOAT or FIX or a mixture. In the last case, they exhibit
"contagious FLOATing" ~ one argument of TYPE fLOAT forces the 1result to be of TYPE FLOAT.

<FIX 1. 0)$ 1

The SUBR FIX expJicftly eturns a FIX,ed-point number oorresponding to a FLOATing-po.int number
(it truncates). The SUBR FLOAT returns the FLOATing point number equivalent to i1s. argument.

<+ 6 <• 2 3>>S
11

<SQRT<+<• 3 3> <• 4 4>>>$
,6. 0
<- 6 3 2)1
0
<- 6)$
-6
<NIN 1 2.0>S
1.0
<I U 7 2.0>S
'0.6

Note this last result: the division of two FIXes gives a FIX with truncatfon, not rounding, ,of the
remainder; the · ntermediate result remains a FIX until a FLOA.T argument is encountered.

BIJIL T-IN ru crrmJS
SECTION5.2

\tER

ave
this
red

[N,
'ng
lre
bit

e

TiHE MDL PRIME 25

5.4. Arithmetic: DetaHs

+, -, •, / 1 M'IN, and AX ail'I take, any .number ot .arguments, doing the operation with the frst
argument and' ~he second, then with that result and the third argument, etc. If called with no
arguments, each returns the Identity for its operation {O, 0, 1, l , the greatest FLOAT, and the least
FLOAT, respect vely); n called with one argument, each acts as if the identity and the argumen had
been supplied. They all will cause an overflow or underflow error if any result

1
intermediate or final, is

too large or too small for the machine1s capadty. !Examples:

<+>$
0

(/ 3.0)$
0 .. 33333333

< 2)$
-2

One arithmetic function that al'ways requires some discussion is the pseudo-random-numb.er
generator. MDL's is named RANDOM, and it' always returns a FIX, uniformly distributed over the whole
range of f IXes. Example (",pick a number from one to ten"):

<+ 1 <MOD <RA,NDOM'> 10>)$
4

5 5. Simple Pr,edicates

The best analogy for a: predicate in MDL (or LISP) is the predicate of an English-language question
such as "Is John tal.ler than Jim?" MDL answers such a question with true or false ff there fs no
other useful information to return, MDL will return T for true (a la LISP) or BFALSE () for false.

The MDL predicate O? takes one argument which can be ei1her a FIX. or a FLOAT. lt evaluates to T
only if its argument is ,exactly equal to O or O. 0.

<O? 1. 2)$
lffALSE ()

The predicate 1? evaluates to T only if its argument is exactly equal to 1 or 1. 01• The predicate G?
takes two arguments, which again can be either FIXes or FLOATs. It evaluates to T only if the first
argument is algebraically greater than the second. L=-7 is the Boo ean complement of G?'; that fs, it is
T only ff the tirst argument is not algebraical'ly greater than the second.

<Le? 3 4)S
T

Similarly, L? evaluates to T only if its first argument is algebraically less than its second argument.
G=? is the Boolean complement of L?. ·

,,..,.? takes lwo argumants of filn! TYPE. In the case of arguments whicl1 are FIXos or FLOATs. it

SECT ON 5.4 mm TI J HJ /JCTlm :l

26
T E MOL RRtMER

returns T for two FIXes of the same value or for two FLO,Als of exactly the same value. A FIX ,can
never be lllf - 7 to a FLOAT.

(•s:7 17 11)$
T
<••? 1. Q, 1>$
IFALSE 0

To compare a f'IX to an equivalent FLOAT the SUSRs FIX or FLOAT are used:

<SET , 17>$
17
<SET B, 17. 0)$
17.0
<••? A <FIX .B>>S
T
<••? <FLOAT .A> .8)$
T

, · , .. ,7 is the Boolean comprement of••?.

GASSJ,GNED7 checks whether an ATOM has been assigned ,a ,global value.

<GASSIGNED? GAFWEEiP>S
#!FALSE ()
<SE.TG GAFWE EP ~023)$
4023,
<GASSIGNED7 GAFWEEP>S
T

ASSJGNEO? rs the corresponding predicate which checks whether an ATON has been assigned a focaJ
va.llue.

U you wish to compare the LVALs of two ATOMs, A and B,, where the LVAL of A ,is known to be a FIX
and the , VAL of Bis known to be a FLOAT, use the SUBRs FIX or FLOAT:

<••?<FLOAT.A> .B>S

or

<••? .A <FIX .B>>S

BUil T-1 ~ fU ICTIONS
SECTION5.S

an

X

WIEMDL PRIMER 27

6. Simpl·e Functions

6.1. 1Gene ral

The MDL equivalent of a "programt1' (unco pHed), is an object of TYPE FUNCTION. Actuallly, full
blown ilpmgrams'' are usuany composed of sets of FUNCTIONS, with most FUNCTI0Ns in the set
acting as "subprograms" •

. A FUNCTION may be considered to be a SUBIR. or FSUBR ihich you1 yourself define. U is "run" by
using a FORM to apply it to arguments (for example, <function arg- 1 arg-2 • • • >), and it always
''returns" a s·ngle object, which 'becomes the value of the FORM that applied it. l e single object may
be i,gnored by whatevet "ran" the !FUNCTION (equivalent to "retuming no value·"}, or it may be a
structured abject containing many objects (equivalent to ,tretuming many values"). MDL is an
" a,ppl1icative" language, in contrast to 'imperaijve" languages such as Fortran. In MDL1 it is
mposslble ro return values throug!h arguments in the normal case {i.e. "call by name"}; th,e,y are

returned normally as the value of he FORM itself, or as, side effects to structured objects or global
values..

In t is. chapter a simple subset of the FUNCTIONS you can writ:e is presented, namely FUNCTIONs
which ·•act lfke" SUB Rs with a nxed number of arguments. Whi e this class. corresponds ta about 90%
of he UNCT IONs ever wrltten1 you won't be able to do very much with them unm you read further and
1leam more about MDL's control and manipulato.ry machinery. However, au that machinery is Just a
bunch of SUB Rs and fSUBRs, and you already know how to "use" them; you just need ta be to!d wllat
they do. Once you have fUN CTI ONs under your belt1 you can immediately make use of everytlill n g
presented from this point on in this document. In tact 1 we recommend that you do so.

6. 2. Def·n. n g FUN CT If ON.S

<DEFINE SQUARE (X) <• .X .X>>$
S1QUARIE

DEFINE is a MDL FSUBR (remembe.r that FSUBRs have !:!QM of their arguments EVALed) for
delining your own fUNCTI0Ns. It 1akes an ATOM as the'' ame'' for the FUHCTI0fJ, a list of arguments,
and the :FORMs which make.up the body o,f the FUNCTION. DE · UIE SET Gs EV.AL of it!; first argument
Uhe Ator~) 1,0 an object or T 'Pr:: FUr~cno~ rnndc from the othor c:-:rgumcnts nnd r,elurns EVAL of the

SECTION6.0 SJ I/IPL FU~ C rlONS

28
TI-iEMDL PRIMER

first argument (the ATON ''naming" the FUNCTION).

If EVAL of DEFINE's first argument aJread}! has a GVAL, DEFINE produces an error. This helPS to
keep you from accidentally redeflning th-ngs •· such as MDL SUBRs and FSUBRs (if you want to be
able to redefine wUhout getting this error, ype <SET REDEFINE T>. The ATOM SQUARE has been
SETGed to the FUNCTIO which computes. th-e sc:iuare of a number. To use SQUARE, apply It to an
argument in a FORff:

<SQUARE 6>S
26
<SQUARE 1, 6>S
2.26

Using SQUARE vith the wrong type of argument (anything other than a FIX or FLOAT) will produce an
error. Using SQUARE with the wrong number of arguments. (anything other than one) wiJI' also
produce an error.

Taking the GVAL .of SQUARE will show you what a FUNCTION tooks mike:

.SQUARE$
l ,FUNCTIO ((X) <• .X .X>)

What DEFINE did was to SETG SQUARE to FUNCTION ((X) <• .X .X>). You could define a
.FUNCTI10N the same way. If you wished, or you could apply the FUNCTJON direcUy:

(IFUNCTIOHI ((X) <• .x .X)) 6.>S
2
<IIFUNCTION (,(X.) <•
2.2,6

,.x .X>) 1.15)$

ObvfoU-sly, this wourd become quite tedious.

6.3. A,pplication of FUNCTIONs: Binding

In order to make clear exactly what is happening n each of the examples in this section,
FUNCTIONs will be applied in the tedious, · on-standard method just shown.

FUNCJ'I,ONs, like SUB Rs and FSUBRs, are a,pplied using .FORM&. So
1

(#FUNCTION ((X) <• .X X>) &>S
26

s111.1rn..E FUNC roNS
SECTION 6.2

"4EA

be

an
llso

ea

TiHE MDL PRIMER

applied the indicated FUNCTION to 6 and returned 26.

Whait EVAL does \Vhen applying ,a FUNCTION is the fallowing:

1. Great,e a "world" ·n which the ATOMs of the argument LIST hav,e been .~ to the values
to which he iFUNCTION was applied, and al other ATOMs have their original values. This
is.called "binding". (In the above, this is a "world" in which X ls SET to 6.)

2. In th at new "wor•ld", evaluate aH the objects in the body of the FUNCT IOU, one after the
other, from first to last. (In the above, this means eva uate <• . X. • X> fn a "wor!d"
where Xis SET to .6.)

3. Throw away the "worrd" created, and restore the LVALs of air ATOMs bound in this
application of the FUNCTION to thelr originals (if any). This is ca led ''unbinding". (In the
abov,e, th s slmpty gives X back the local value, if any, that it had before binding.)

4. Return as a value th,e !Ml~ obtained when the FU'NCTION's body was. eval ated in
step (2). (In the above, this means return 26 as the value .•)

29

The fact tha such "worlds" are .separate frorn the FUNCTIONs which cause their generation means
that .all MDL FUNC.T I.ONs can be, usedl recursively. (For those of you who, understand the term, MDL is
• dynamicallty scoped.'')

The only thing hat ~s at all troublesome in this sequence is the effect of creating lhese new
"worilds « , in particular, the fact that lhe previo 11s worid ~s ll'estored. Th is n eans that if, inside a
FUNCTION, you SET one of its argument ATOMs to something, tha new LVAL w·11 nm be remembered
when EVAL leaves the FUN'CTION. However, if you .SET an ATOM which is not in the argumen LIST
(or SE1'G M.Y AT 10M) the new local (or global) value wll be remembered. Exampl',es·

·<SET X O>S
0
<IFUNCTION' ((X) <SE'T X <• .X X>>) ,6>S
26
.IS
0

On the other hand,

<S 1ET Z O)S
1Q

<IFUNCTION ((X) <SET Z <• • K . X> >) ,6)$
2,6

.z.s
2&

SECTIOt•l-6.3 SIMl'I.E UNC11011S

30
TlrlE DL PRIMER

By using PRINT as a SU;BR, we can ''see" that an argument's LVAL really is changed while
EVA uating the body of a FUNCTION~

<SET X 6)$
6
<lfUNCTIO ((X) <PRINT .X> <+ .X 10)) S>S

3 13
.X$
6

The first number after the appllcation FORM was typed out by the PRINT: the second is the \lalue of the
application.

Remembering that LVA s of ATOMs !l.01 in argument LISTs ar,e not changed, we can reference
them within FUNCTIONs, as n

<SET Z 100>S
100
(#FUNCTION! ((Y) (/ .z .Y.>) 6>1
20

ATOMs used lik.e Z in the above e~a.mples. are referred to as "rree variables", The use of ti1ee
variables, while ,often quite conven'ent, is rather dangerous un~ess you know e:,cactly how a FUNCTION
will always be used: if a FUNC ION containing free variables is used within a FUNCTION within a
FUNCTION within • .. , one of those FUNCTIOns mi91ht just happen to use your free variable ,in its
argument LIST. binding i1 to some unknown value and possibly causing your use of it to be
erroneous. Please note that "dangerous'', as used above, really means that it may be effect:ivefy
imoossibfe (1) for other people to use your FUNCTION's, andl (2) for you to use your FUNCTIONS a
month (two weeks?) later.

6.4. DEFINEing Some Simple FUNCTIONS

Using SQUARE as defined above, lets DEFINE a FUN·CTION to compute the length of the
hypotenuse of a right triangle given the lengths of the two sides:

<DEFINE HYPOT (SIDE-1 SIDE-2)

ffYPOT
<SQRT<+ <SQUARE .SIDE·1> <SQUARE .SIDE-2>>>>S

<HYPOT 3 4>S
ll.O

SrMPl F FUNCT,ONS SECTION6.3

I.MER

,hile

flihe

moe

free
'ION
iin a
n Its
) be·
lvely
Ms a

THE DL PRIMER 31

SQRT is the SUBR which r,etums, the sq are root of its argument. It always returns a FLOAT.

Awhimsica!I' FUNCTION:

<DE'FINE ONE (THETA)
(+ <SQUARE <SIN .THETA))

<SQUARE <COS • THETA>>>>S
ONE
<ONE 6)$,
0 .• 99999994
<ONE 11) • 23>.S
,0.99999999

ONE always returns (approximately) one, since the sum .of the squares of sin(x) and cos.(x) fS unity for
any x. (SIN and COS always return FLOATs, and each takes 'ts argument in radians. ATAN
(arctangent) returns its value in raoians. Any other trigonometric function can be composed from
these three.)

MDL doesn',t have a general 11to the power" SIIJBR, so let's define one using LOG and EXP (log base
e, and e to a power respect1i:ve'ly; aga·n, they retum FLO.Al's).

<DEFINE•• (NUN PWR)
<EXP<• .PWR <LOG .NUM>>>>S

••
(H ,2 2)$
4. 0,000001
(U 6 3>S
125.00000
(U 26 .o. 6).S
6 .. 0000001

Two FUNCTIONS which use asing:11':'I g~oba'I variable (Since the GVAL is used i cannot be rebound.):

SECTION 6.4 ShlPLE FLir lt.rlONS

32

<DEFINE START 0
<SETG GV 0>>S

START
<D.EF INE: STEP ()

<SETG GV <+ .GV 1>>>S
STEP
<START>S
0
(STEP>$
1
<STEP>S
2
<S,TEP>S
3,

ST ART and ST:EP take no arguments, o their argument LISTs are empty.

An interesting, but pathological, FUNCTION:

<DEFINE HC (ATM)
<SET ATM <+ •• ATM 1})>$

INC
<SET A O>S
,O

<INC A>S
1
<INC A>S
2
.AS

.2

THE MDL PRIMER

INC takes an ATOM as an argument, and SETs that ATOM to its cur,rent LVA plus 1. No,te that inside
INC, the A OM ATM is SET to the ATOM wh'ch is its argument; thus • • ATM returns the VAl of ttie
arau me nt. However, there is a problem:

<SET .ATM O>S
01
<I1NC ATM>S

•ERROR•
ARG-WRONG-TYPE
+

LISTENING-AT-LEVEL 2 PROCESS t

The error occurred because .AT ,t wris ATM, the argument to INC, and thus •• ATM vas ATM also. We

SIMPLE FUNCTIO S Sl::CTION 6.4

nside
:if the,

, We

THE MOL PRIMER 33

really want the outermost • in • • AiM to be done in the "world" (ENVlROtJMEN) •1hich existed .i.!&t
~ INC was entered •· and1 this cl'efinmon of INC does both applications of LVAL In its own

~world'i.

6.5 Pretty• Printing

In MDL, carriage•retums rinefeeds; tabs, etc. are just separators, like spaces. At least one space
is needed between MDL obJects, but there is no maximum numheli.

81

Using onl.y one space at all times resu ts in code which is effectively unreadable. This is even
demonstrable with tiny FUN CT lONs s~milar to the •ones created in th is ch apter. for example:

<DEFINE ZERO (THETA)
<-<+<SQUARE <SIN .THETA>>

<SQUARE <COS . THETA»>
<+ <SQUARE <SIN .THETA»

<SQUARE <COS . THETA»»>S
ZERO

Typl ng , Z E.ROS to MOL wil cause ·t to retum:

#FUNCTION ((TNETA), <- <+ <SQUARE <SI . THETA» <SQUARE <COS
. THETA»> <+ <SQUARE <SIN • THETA» <SQUARE <COS • THETA>»>)

Long FUNCTIONS printed likie this would be~ dim cult to read. MDL has a ''pretty-printer" (for full
details see The MDL Programming Environment Ileb!iing SO]), called PPRINT which prints function,s
with spacing similar to the e~am pies in this chapter.

<PPRIHT ZIERO>S

(DEFINE ZERO (THETA)
<- <+ <SQUARE <SI . THETA» <SQUARE <COS • THETA>>>

<+ <SQUARE (SIN .THETA>, <SQUARE <COS .THETA>>>>

The general idea behind MDL pretty printing is: if al1 the arguments to a Junction fit on one line they
are printed on one line, if not arguments are prlnted on s.uccessive lines indented by the same
amnunt. Tl,is allows you to· see the le'.Vei of ''nesting" at a glance, and makes it easier to see what is
happening.

SECflONM

34 THE.MOL PRJ EA

6.5 1. Editors and Pretty rinting

A good dispEay editor (such as AMODE [Lebling nJ or EMACS [Stallman 79J) wiH have built•in
commands which assist you in formatting your programs in pretty.print style. It is strongly
recommended that you get in the habit of using these tools from the beginning. Your code will be
more easily understood by others and, more importantly, by my several months after you write it.
Bracket bala,ming also becomes much easier and errors with brackets become quite rare.

6.6 loading a File

If you have a MDL p.rogram in a , le, you can ''load' it by typing

<FLOAD lile)S

where life is the name of the file, in standard operating-system syntax, elilclosed in "s (double
quotes). In the Tenex and Tops-20 versions, if the file name extension is • MUD, the extensi,on can be
omitted. For instance, to load the file ZERO. MUD you could type one of the following:

<FLOAD "ZERO">S <F OAD "ZERO.MUD >S

Once you type$, MOL will process the te,xt in the fie (includirig FLOAOs of yet other files) exactly as
If you had typed it on a terminal and . followed it wiih $ except that "values'' produced by the
computations are not printed. When MDL is finished proce~in.g the file, it will print "DONE".

If there Is more than one generation of he fil.e ZERO. MUD, MDL win load the high~st one unless a
generation number is specifically included in lhe argument to FLOAD (e.g. <FLOAD "ZERO.M 0.69106 ~-

When MDL starts running, it wi IF ' OAD the file "MUDDLE . INIT" (Tenex and Tops-20 versio,ns), if it
exists. This aUows you to have your working file or any other files you wish loaded into your MDL
when you begin a session. It aJso allows you to "customize" your MDL by setting certain flags,
redefining FUN'CTI0Hs, etc.

SIMr1 I: I IJCTrrn~s
SECTION ,s.s

THE MDL PRIMER 35

7. MD,L TYPEs

In Chapter 2, we provided an intr,oduction to the MDL 'TYPE. s,ys,tem. Thfs chapter will e.xpand on
that ntroduction and explain the creation of use •definable• MDL TYP.Es.

7 .1. TYPEs and PRIMTVPEs

In Chap er 2 it was s ated that eve,ry MDL oblact has a TYPE. Tlh e SUB R TYPE, given a MDL obj ec ·,
returns an ATOM w'hkh is the name of the object's TYPE.

<TYPE 12>S
FIX
<TYPE (1 2 3)>S
LIST

In MDL, each TYPE ca be thought or as a member of a smaller number of more 'primitive' TYPEs. n
MDL, these 'primHive,• TYPEs are knowri as PRIMTYPEs. Just as every MDL object has a TYPE, so
every MDL object has a PRIMTYPE. A SUBR ca led PRIMTVPE, given a MDL obj.act, returns an ATOM
which 1is the name of the object's PRIMITYPE.

We have already seen ,examples o,f a number of MDL PRIMTYPEs without ,ever mentioning the
notion ,of PRIMTYPE. Here are the most important PR IMTYPEs in MDL

-WORD · th,e P.RJM!TYPE of all FJXes1 FLOATS, and CHARACTERS. Any MDL object which
can be thought of as a number will be of PRIMTYP'E W01RD1 (CHARACTERs are iniemally
stored as their ASC I, values).

· ATOM · the PRINTYPE of ATOMs.

• LIST • the PR IMTYPE of' LISTs, f ORMs1 and f ALSEs.

· VECTOR· the PRIMTYPE olVECTORs.

• STRING · the PRIMTYPE of STR IN Gs.

SECTION 7.0 , . L l'r'PES

THE DL Prl IMEFI

7 2. r nt roductio1n to MDL Structures

As we· saw in Chapter 2, MDL objects may be either structured or not. A St'wcru,e can be· thought
of as an ordered series of MDL objects. MDL has a number of dU erent 'classes' of structures, each
with different properties. These · classes' are the structured PR.IMTYPEs: LIST, VE,CTOR, and STRING.
In Chapter 2, it was also noted that matching brackets are used to represent these structured objects.
Each or the structured PRIMTYPEs has its own unique bracket type by which it can be identified. The
brackets used for the structur,ed PRIMTYPEs are as follows:

- LIST• match'ng parentheses

-VE.CTOR • matchiing SQuate brackets

· STRING · pal red d'ouble quo,tes

<SET A (1 2 3))$
(1 2 3)
<TYPE ,.A)$
LIST
<TYPE <TYPE .A>>$
.ATOM
<PRIMlYPE .A>S
LIST
<SET B <+ 1 2)).$
3
<SE.T B <+ 1 2»S
<+ 1. 2.)

<TYPE .B)S
FOR,M1

<P·RIM.TVPE .B>S
LIST

n he example, notice that the ,FORM <+ 1. 2> witl get evaluated in the caH to SET. In order to SET B
to the FORM instead of the result of is evaluat.ion, . .a singe-quote is placed be ore the fORM. The
sing e-quo,te tells MDL not to eva'lua.te 1he foU.owing object.

7.3. The TYPE? Predicate

The SUBR TYPE? can be used to check the TYPE of a given object agains a particular se of TYPE
names. TYPE? takes a MDL ob'ect and any number o ATOMs, 1hich nust each be the name ,of a MDL
TYPE. If the object is not. one of those TYPE names g,iven, TYPE? returns fFALSE (). Otherwise, it
returns ~he TYPE of the object.

MDL TYPES SECTION72

THE MDL PRIMER

<TYPE? 10 ATOM VECTOR)$
IFALSE ()
<TYPE? 10 FU FLOAT ATOM>S
FIX

7 .4. Printing of MDL Objects

3,7

In ge11eral1, the printing of a MDL object is dependent on the IPRIMTYPE of that object. MDL ob,jects
will usually be pr nted as fo'.llows:

Usually, if the TYPE of the object and the PRIMTYPE of the object are not the same, the number-sign
and lyp,e-name ar,e printed. There are a few exceptions to this,: the TY'PE:s FIX, FLOAT1 CHARACTER,
and FORM aU print in a more simpli ied manner because of their common use.

We have already seen an example of thr,s number-sign notation' with the TYPE FALSE. Y,ou may
have noUced that it prints as a: number-sign, the ATOM FALSE, and an 'empty LIST. The meaning of
this is that FA.LSEs are of PRIMTYPE 'LIST: the #FALSE must ba used in both input. and output til
distinguish tihe object from obfects of TYP'E LIST. n general, you can tel he PR JMTYP:E of an
1.mknown type in 'number-sign notation' by look"ng at . he part after the rype-name . rr ·it has square
brack.ets, it's a PRIMTYPIE VECTOR. Parentheses, it's a PRI TYPE LIST. Etc.

<PRIMTYPE :#TABLE [1 2. 3]>S
VE.C.TiOR
<PRiiMTYPE #TEXT "ABCDE 11 >S
STRING
<PRIMTVPE #NUMBER 10)
wo:Ro

Note that' the TVP·Es TABlE, TEXT, and NUMBER, are not defined in MDL; a user might have created
them, however (see Water), and their PRl TYP Es are obvious from the part after the type-name.

7 5. Significan,ce, of PRIMTYPEs / CHTYPE

The notion of PRIMTYPE is very important. The IPRIMTYPE of a11 ob1ect tells MDL what the object
looks like Internally to MOL. As far as MDL fs concerned, any two objects of the same P',RU,ITYPE are
more or less interchangeabte (e.g. most SUDRs which can be used on LISTS can aiso be used on
FA.lSEs.)

SECTION 7.3 IDL n LS

38 HE MDL PR1IMER

This notion of interchangeabili y is a very powerful one. In fact, MDL allows you to arbitrarily
change the TYPE of virtually any MDL object to another TYPE, as long as objects of that other TYPE
have the same PRIMTYPE as the original. The SUBR which 'changes' TYPEs is called
CHTYPE (pronounced 'chitype''), lt'takes a MDL object and the name of a TYPE (ATOM), and returns
t e MDL object 'changed' to that TYPE.

<CHTYPE ,(+ 1 2) FORM)$,
(+ 1 2)
<CHTYPE (ABC) FALSE>$
IFALSE (ABC)
<CHTYPE 2.6 LIST>S

•ERROR•
STORAGE TYPES DIFFER
CHTYPE
LISTE ING-AT-LEVEL 2 PROCESS 1

Olten one woufd ike to know what the PRIMTYPE of an object of a certain TYP:E would be. This can
be found out by using the SUBR TYPEP1RIM: given a name of a TYPE, H rewms the name of the
PRJMTYPE of objects of that TYPE.

<TYP,iPRIM FALSE)$
UST
<TY,PEPRIM FLOAT>S
lrfORO

To, restate the conditions for a suc-cessful CHTVPE in erms of TYPEPRIM: the PRIMTYPE ,of the first
argume-nt must be the same as the TYPEPRIM ofthe second. Isn't that much clearer?

7 .6 .. Creating new TYPEs

Given the interchangeability among objects with the same PRINTYPE, if shou d not be surprisjng
that MDL wilt allow you to create any arbitrary new TYPE, so long as you define 1t to have a knollllfl
MD PRIMTYPE. The SU8R: which creates new TYPEs is, not surprisingly, NEWTYPE. EWTYPE takes
an ATOM (the name for your new TYPE) and the name o:f lhe TYPEPRJ.M for that new TYPE (atso an
ATOM), It returns its first argument. NEW'TYPEs wrn defaultly print out (and can be read back) in
'number.sign notation'.

Mnl. TYP S SECT JON 7.S

--

THE MOL PRIME_R

<NEWTYPE TABLE VECTOR>$
TABLE
<S,ET X If ABLE. [J,OE 1. JOHN .2]>$
IT'ABLE [JOE ·1 J,OHN 2] ·
<CHTYPE .X VECTOR)$
[JOE 1 JOHN 2J

39

There are only two ways to create an object of a user•defin.ed TYPE: type the object in directly (as
was done in the previous example) or to use the SUBR CHTYPE expliCitty.

<CHTYPE [JIM 2 JANE 4J l .ABLE>S
,TABLE [JIM 2. JANIE 4]

Sf:.C'l"ION 76 MDL TYPES

40
THE LPRiMER

f.l l RUCTIJl1ES
SECTION8.0

lHE MOL PRlMli:R 41

8 , .. MDL Structures

As we saw in Chapter 2, MDL objects may be either structured or not. 'It was stated that st uctures
can be thought of as, ordered series of MDL ,objects and that diife,rent classes of structures existed. In
thls chapte.ir we wil describe the common strucfu res used in MDL

8.1. Equality

It is necessary here to mention the notion o,f equality. In MDL, there ar,e two types of equal: double•
equal and single•eQuail. The SUBRs which r,epresent these concepts are =-? and ""? , respectively.
Simply stated two MDL objects which are the same thi1ng are double-equal. Two objects which look
the same, i.e. are printed the same way, are singe-equal. This confusing dist'lnotlon is unimportant
for objects which aren' strucrur,ed. Two non.structured objects which print the same are the same.
For e·xample, there is one and only one MDL object representing the iFIX 19. However, one can
easfly build two structures at two difrerent times whiich look the same, but which are not the same.
This wi I be explained below in the discussion about LIS Ts. As. an example of the use of ? , assume·
that you have written a program which takes some input from the user and wants to see if he typed the
word FOO. Let's assume .an ·nput 1r,outine cal ed INPUT which returnGaSTRING.

<SET STA <I ,PUT>>S
"FOO"
<••T ,STR "F0Qli)$
IFALSE ()
<•? .STR "FOO">$
T

This is because the two STRINGS were not identical; they look the same, however, and therefore are
.. 7, Fig.ure 6-1 p rports to demonstrate· the distinction between types of equality.

8.2. PRIMTVPE LIST

MDL objects of PRIMTY.PE LIST may be thought of as an orde ed series of MDL objects whose
connective link is o 'pointer' . This means hat fn order to find he Nlt1 elomcnt of a · IST one must
look at each ,ol the previous N• elemen s. fhis is shown in Fiume 8·2. his becomes rath~r !odious

SECTION8.0 MOL s rnucTUnES

42
THE Dl PRIMER

The representation of a MDL object is:

where <type> is the TYPE of the object and <value> Js a pointer fot structured
types, or a number.

B

(;••TI] • _[____ :f. ~
,,t, - 10
B tlOJ

C

f••T I
D

Definition:

Question:

Answer:

Question:

Answer:

~
C UOl
D - UOI
E 10
F - IO

Two MDL ,objects are ••? if and onty if the <type> and
<value> parts are the same. They are •7 if they~ Ile
same.

Are any of B, C, or D ••? to each ottier?

C and D. They have the same TYPE and point to the -~
structu,e. Band Care •?1 as are Band D •they~~.
but are no,t identical ..

Are any of A, E, or F ••? to each other'?

They are all-■? to each other.

Figure 8-1: The MOL notion of equal'ity is demonstrated in this figu11e,
which shows the distinctio,n between sing:le-equaJ •? and double-equal

••?.

MDI. m nuCTURE:S
SECTION8-2

u

THE MDL PF-\IMER 43

when one is interested in finding the 245th element of a LIST. You can see that large LISls hav,e the
property of bei ng1 rather inefficient to 'random-access'. On the other hand, LIS Ts ca11 easily be
modified (add1ng elements, remo\l]ng elements, etc) simply by chang ing the linking 'pointers'. In
Figure· 8· 3 ye u can see pictor,ally how an elem.en t of a LI ST might be removed. Notice that the
removed ffiement stHI 'exists', but that die LIST is no longer 'pointing' at it.

Two SUBRs whfoh shou d be mentioned here are L1ENGTlfl and EMPTY'i': the first, given a UST1

returns the number of etements in that LIST (as a FIX), and t:he second, given a LIST returns the
ATOM To #FALSE () , i.e. whether the LIST had no etements.

[FIX 3 j ~ 1-F_1_x_3~ .. -•--111

Figure B-2: The UST (1 2'. 3)

Y:1 f 't (FIX FIX] ~Fl X] •
2 3

Th'is LIST 'is now (1 3) .

Flgure 8~3: Removing a LIST element by mO\ling cnlyone pointer

8.2 ., 1. Creating LISTS

Creating a LIST is very simple. Simply type in the printed representation o it which (as describ.8d
befo,re)i is a series of MDL ob1ects surrounded by parentheses.

SECTION a.2 MDt. srnuc, u ES

44

<SET A (:1 TWO a .. 0))$
(1 TWO 3. O),
<SET B (.A .A. C)>S
(A (1 TWO 3·. 0) C) ·

THE MOL PRIMER

Using this method every MD objec placed between the matching parentheses is EVALed. Thus, the
LVAL of A was placed in the LIST.

<SET e (X Y Z)>S
(X Y Z)
<LENGTH .B>S
3
<EMPTY? •. B)S
#FALSE ()

<DEFINE EMPTY? (LIST)<••? <LENGTH .LIST> 0))$
EMPTY?

The end of the previous example ,gives a definition of EMPTY? in MDL, given on y the SUBRs LEN·GTH
and • 111 7.

A second way to cr,eate a LIST is with ffle SUBR LIST. This SU.BR takes any numb-er of arguments.
which are EVALed, and makes a fist with the evaluated arguments as elements. The enect is the same
as in the first method.

<SET A <LIST 1 TWO 3.0>>S
(1 n,o, a. O)

In both methods, a new LIST is created.

<SET A (1 2 S)>S
(1 2 3)
(SET B (1 2 3)>S
(1 2 3)
<••? .A .B>S
lfALSE ()
<•? .A .B>S
T

The two lists A and e are not double-equal because the construction of LISTs is guaranteed to
ge.nerate a new LIST. They are single-equal by the definition of sirigle-equal. ·

MOL SiRUCTURES
SECTION82

EMDLPRIMER 45

8.2.2. EVALing LISTs

LISTs, when EVA Lied, mall<e a new copr of the l.IST with all ,of the elements re-EVALed.

<SET A 1(1 Z 3,))$
(1 2 3)
<••? <EVAL .A> .A>S
f lFAlSE 0

8.2.3,. Man·pulating LISTS

In order to discuss USTs more fully., we need to know a. few ways to manipulate them. We will
introduce two SUiBRs here, NTH (pronounced 'enth') and REST. The SUBR NTH given a LIST and a
FIX, will return the, FIX th element of the LJST. REST, given a LIST and a FIX, wm return the LIST,
wlth the first FIX elements at the beginnin,g 1removed. The second argument to both NTH 811d REST
has a default value of 1. Some e)(amples:

<SE.T L (B C D)>S
(.A B C D)
<NTH L 3>S
C
<NTH .L 2.>S
18
<SET LL <REST .l Z>>S
(CD)
<REST . L 4)$
0
.LS
(A I C· D)

Notice that REST has no side-effects; l'n other words; it simply returns a pointer farther down the·
'chain' of elements in the LIST without. changing an¥th ng. This is rnustrated in Figure 8-4. Another
important operation o,n LlSTs is called PUT. As its name suggests , PUT puts an element into a LIST.
Given a LIST an element number (FIX, as in NTH), and an arbitrary objec I PUT makes e FIXth
element of LISl become that object, and returns the LIST. Let's conUnue from the example given in
Figure 8-4 w-u, L and LL aJready defined.

<PUT .LL 1 HAHA>S
(HAHA D)
.u
(AB HAHA D)

What happened here is ~hOwn n Figure 8-5. Since LL was a 'sub~et' oi L, any chi 1nge in tl was
reflected in l (the opposiito would also be true, Le. a PUT into lhe third or tourlh 1Jlcr1 k~nts o'f l would

SECTIO 8.2 ~lDL srnucrum:s

THE: MDL FRIME.R

<SET LL <REST .L 2>>S
(C D),

Notioe that the tIST (C D) is a subset or the LIST ,(A B C DJ because of
the way REST works.

Figure 8·4! R.E.Sf of a LIST

be reffected in LL)

~T~!. I

The only effect is that lh e contents of the third element was c:hanged
1

m.oved.
from~· to

C

liiiil:::J1 . No pointers have·
~

Figure 8-5: PUTS into USTs

l et's continue:

MDL smuCTURES SECTIOt~ 8.2

11:iE MDL PAIME_R

<SET .L>S
(A B, HAHA D)
<SET L (1 2 3)>S
(1 2 3)
,1M$
(A. I HAHA D)
.LL$
(HAHA D)
·<--? <REST .1M 2) . Lt>S
T

47

H you understand this, good. Otherwise, pay dose attentia,n to, Figure 8-6, in which this example is
diagrammed. It is of crucial importance that the distinction be 'learned between a structure and a
pointer· to, a structure. Changing a structure (e.g. with PUT) will be refl'ected in any object which
points o it Changing the point,er to a srructure doesn t affect ariy other poin .ers. If you don't
understand this dis inction, you wII ' probab 1J become more and rnore ost. As'k someo,ne for help.

<SET M .L> madeMpointtowhere L pointedM hatHme.
<S El L ,(1 2 3)) merely po ·tlted L so,rnewhere e se.
lhe values of iM and tL are Il,Q,t affected 1 the111 1 by reSETting L.

Ftgu re a-16: Pointers vs. Structures

Now things get a. little more complex . However, if you understood the prc!J'ious examples. this shoutd
be no dlffetenl. Earilier, we talke about 'moving' pointers to effect rwnoval. or o' i1~ct£ frnrn a LIST.

SGCTION 8 2 I, .l l. ~mUC1URES

48 THE MDL PRIMER

This m,ovement can be· accomplished in MDL using the SUBR PUTREST. PUTREST (equivalent to
Lisp's replacd) is, probably the rnost confusing SUBR to beginners, and even to accornpHshed MDLers.
Its effect is vert simple: given two, J.STs,. say A and B, it causes the REST of A to become B, and then
retu n.s A. This p:r,obably sounds ve·ry obscure. Before total confusion sets in , take a look at the
example and then at Figu e8-7.

<SET A (1 2 3))S
(1 2 3)
<SET B (4• 6 8,))$
<PUTREST .A .B>S
(1 4 6 6)
.BS
(4 6 6)

A I that has happened ~s that one point,er has been moved; the one connecting the first element of A to
,,ts succeeding element has been changed to a poin er to B. That's al l. Notice that .any object whiclh
points to the same place that A points has been changed. However, also not-tcetha any object which
points to the REST of A has not been changed.

<PUTREST .A .B>

FIX I •
3

4 l
Only one pointer has been moved. A is changed, but Bis not. Notioe that a
hypothetica C, pre11iously SU to REST of A, is also not changed.

Figu r,e 8· 7: P.UTREST

Using PUTR.EST, it is easy to remove erements from a LIST.

MOL SiRUCTURES SECTION 8..2

•

TlrlE MDL PRIMER

<SET A (1 2 3 4))$
1(1 2 3 .t)
<PUTREST • A (REST •.
(1 3 4)1

2))$.

What we have done is to make the first element of A (1 In the example) point to the value of A. RESTed
twke. This is demonstrated in F;igure&-8.

· ltl:ff .Al).

<PUTREST .A ('REST .A 2>>

0-- r---F_· _I X _ _.__ __ --1

2
t-l _F_

1

-1 x-- -3---,t • 1 F I X l . l

The REST of A has become A RESTed twice. The effec · is to remove the FIX
2. fr.om the ILIST.

Figur,e 8 8! Remolling1 an element from a UST usrng PYTREST

Notice that you can not use this method to remove the first element ,of a LIST, since PUTR·EST only
changes th,e· pointer which connects the first el•ement. to the second element. However, one can
always use !REST for this purpose, but be careful:

<SET A (1 Z 3 4)1
(1 2 3 •>
<REST .A>S
(2 3 •>
.A.S
(1. 2 3 4)

As we noted earlier, REST has no side-effects, unlike PUTRE.ST which does. TIH=· right thing to do ;s

<SET A <REST .A))$
(Z 3 4)
.AS
(2 a 4)

One can cause a L ST o terminate at any point by giving IPUTREST a second argument of an empty

SECTION8.2 MDL l'.'j HUCTU ES

50

LIST.

<SET A (1 2. 3 4)>S
(1 2: 3 4)
<PUTREST .A ())S
(1)

TI-IE: MIDl PRIMER

As adve:rtised, the REST of A has been made the second argument to PUT RE ST, i.e. the empty l I ST.

To combine LISTs1 one can use PUTRESl also. Try to think of ho-w you would combine the LISTs,
in the fol owing exa ··pie. Think pointers.

<SET A (1 2 3))$
,(1 2. 3)
<SET B (4 6 6))S
(4 & 8)

The idea is to make the third ,element of A (the FIX 3) to point to the LIST B. In terms of PUTREST,
we want B 'to become the REST of which LIS,T? The answer is

(~UTREST <REST .A 2) .B>S
(3 4 6 8)
.AS
(1 2 3 4 8 8)

PUT REST returned' its Hrst argument, which was A RESTed twioe. A, however. was changed. Refer to
figure s-9, if confused.

<PUTREST <REST .A 2> .B>

Figure 8-9: Sp Icing LISTs together using PUT REST

MOL STfUJCTUR.ES SECT!ON8.2

THEMDL.~IMEA 51

w·th yo• r new-found expertise in PUTR!ESTing, you shoufd take a moment and think about how you
would build a LISJ backwards. F,o,r example, you wish to append the FIX 7 to the· LIST from the last
example. What is he correct MDL expression? Hint: You hav,e to creat,e a LIS,T with the FIX 7 in it.

<PUTREST <REST ,A 6> (7)>S
(6 7')
.A$
(1 2 3 4 6 8 7),

He-re are some problems to think about

<SET L (1 2 3 4)>S
(1 2 a 4)
<SET LL <REST .L 1))$
(2 3 4)'
<SET Lll <REST • L 2:)')S

(3 4)
<PUTRESl <REST • L> <RE.ST , l .3))·$
(2. 4)

What are the LVALs ol l, LL, and lll now?

<SET WALTZ (Z 3 1))$
(2 3 l)
<PUTREST <REST .WALTZ 2.) .WALTZ>$

If you by this, be ready to type t-S." What has happened? What is the LEN,GTH of L now? Why
s'houlcln't you try to find out? Why is, this a waJtz?

<SET ONES (1 :z 3)>$
(1 2 3)
<PUTREST .O'NES .. 10NES>$

What about thts?

The last tw,o examples demo.nstrate an important notion that of circularity. Th,ere is absolutely no
restriction on the creation of circular and self-referencing structures. However, you should be sure
you know what you're doing. For example, finding the LENGTH of ON ES o.r oi WALTZ in ths previ,ous
examples is quite time-consum1n,g. The SUBR caned LENGTH? can be of use here. Given a UST and
a FIX, LENGTH? ·1illl return l1e LENGTH of lhe LIST if it is less than or equal to FIX .. Otherwise, it wm
return #FALSIE (.). This is useful if you suspect a LIST is self-referencing or to check on·whether a
LIST is at least a certatn length. for example, prJ,or to trying to get the 12th element of a I.IST of
uncenaiin size, one· might check that

<LEHGTH? .LIST 11>

SECTIONB..2 r IDL smUCTURES

52
THE MDL MIMER

returned IF A.LS E () 1 ~ .e. there are at least 12 erements in the LI ST.

8.2 4. FIXes First in FORM·s

1lf the first elemen of a FORM is a FIX or an ATOM whose GVAL .rs a FJX , this is considered to be a
shorthand call to NTH or PUT, depending on whether i1 Is g·ven one or two argum.ents, respectjveJ:y,
Thus, the following two are EVALuated identicaHy.

<U .FOO>
(N'TH .FOO 11>

So are these~

(11 . . FOO .BAR>
<PUT • FOO 11 •. BAR>

Here is an example of an ATOM being used flrst In a FORMwit,h the same effect:

<SET L (FOO BAR BLETCH}>S
(FOO BR BLETCH)
<SETG FIRST 1>$
1
<SETG SECOND 2)$
2
<FIRST • L>S
FOO
<SECOND .L)$
BAR
<FIRST . L FROB)S
(FROB BAR BLETCH)

8.2.5. FORMs

As. described earlier, FORMs are used to apply functions to arguments, and are printed with angfe
brackets. However, FORMs are simpJf another variety of PR IMTYPE' L 1ST and al of the operati'ons
which can be done on L!STs can be done on them. Sfnce they are evaluated in a special way,
ere ting a FOR by fnputUng el,ements between, angle brackets wilt reQuire a s·ngre-quote. This is not
true if you are using the SUBR FORM.

ri.,oL srnucrnn s
SECTilONa2

llHE MDL PRIMER

<SET A<+ 1 2 3>>S
8
<SET A'<+ t 2 3>>S
<+ 1 ,2, 3)

<SET A <FORM+ 1 2 3))$
<+ 1 ;2, 3)

53

A special note should be made of the empty :FORM: it eva uates to an empty :FALSE. This is simply a
shorthand notation.

()$
#FAtSE ()

8.2.6. FALSEs

Pre1.1lously, you have seen examples ,of MDL objects of TYPE FAtSE. All of them thus far hav,e
been EMPTY?, although this is not always the case. MDL obj,ects of TYiPE FALS'E are P1RIMTYPE
'LISTs and, as has been stated before, c-an be used in the same ways as any other PRIMTYPE LIST.
In pa:rtfoular, one can create FA LS Es with any number of arbitrary elements. One use of this might be
to distinguish between mo types of failures in a function . Thus, the FAILSE can have two types of
meaning~ its TYPE (which is FALSE) and is contents. One might simply want to detect failure by
checking the TYPE, but one might acl:di ionally want to detect failure and also have other information
about the failure avai'lable.

<SET VAL <·OPEN "READ" "FOO.BAR">>S
IIF.A.LSE ("f11 ,e not tound 11 "FOO.BAR" 69106)
<1 .VAL>S
11 F 1 h not found

n this exa.mpfe,, he SU19R OPEN was catted in an attempt to open a fi'l'e called FOO.BAR. The OPEN
failed, ,and returned a FALSE which contained three pieces of informatron: the reason (a STRING), the
file name {a STRING) and an internal err,or code (a :FIX). One might have written a FUNCTION using
OPEN w'h'ch only cares n OiPEN returns a FALSE or not. On the other hand, one might want to print out
the reaso,n for the failure to the FUN CT ION's user. This would have been imp_oss,ible had FA LS Es not
been able to carry additi,ona information. AS you will find when doing your own programming, this is
a significant feature of MDL.

8.2.7. SEGMENTs

A SEGMENT is a PRJMTYP,E IST, which is handled very specially by MDL SEGMENTS pr'nt as an
exclamation point fol owed by a FORM. When EVA Led inside on expression, Us meaning is as follows:
pretend tha inslead: of using this SEGMENT, use instend al of the elements you get from EVALir g, the
FORM. There i5 an importnnt fmpli:ation here: that 1he FORM, when EVA Led, retu1 ns a srn,cture. An

SECTlmJo.2 r 1Dl !"-.TRUC unFS

54 THE MOL PRIMER

error wil ,occur if this is notthe case. ere are some examples;

<S,iET A (1 2. 3))$
(1 2 3,)
<SET B (l.A 4 6 6)>S
(1 2 3 4 6, 16) ;"Th1s ts a new 11 ,t, not shared with A"
(S,ET C (LA LB 7))$
(1 2. 3 1 2 3 4 6 6, 7) ; "No sharing here ,, etthe,r"

<+ i .• A>S
e

<SET L (BAR 10)>$
(BAR 10)
<SET I. 1L>S
10
.BAR$
10

This last ex.ample is quite pathological: note, however, that it is ,perfectly regitimate. The FORM was.
read by MDL as having, two elements, the ATOM SET and a SEGMENT. When the FOiR,M was E:VALed,
the SEGMENT acted as Hit was really al of the elements of • L. , i.e. the ATOM BAR and the FIX 10.
This is simply the case of SETting BAR to to.

One last very important note: There is one way to add erements to the beginning, of a LIST without
copying. This is the case in which a SEGMENT is the last element of a .IST and the SEGMENT'S FORM
EVAls to a LIST. In this. case ,only there· is no copying and th,e· structures wm share. This is similar to
CONSin ISP.

<SET l (FOO BAR BLETCH)>S
(FOO 8.AR 8LETCH)
<SET LL (1 2 3 f. L.)>$; "The last element is a SEGMENT wihiich

evalu,ates to a LIST'•
(t Z 3 FOO BAR BLETCH),
<PUT • ll 4 SHARED>.S
(1 2 3 SMARED BAR BLEICH)
.. LS
(SHARIED1 ,BAR Bt:ETCH)

llSTs are the most appropriate structure to use when elements are going to be added or removed.
The special use· of SEGMEiNTs shown i the la.st example is the best way of adding elemen1S, to the
fron t of a LIST. However, the resulting LIST will be 'backward', in that the most rec,ently added
element wrn be al the front' rather than at 1he 'back' of the LIST. Later on, we ,..,m demonstrate the
cor rect way o .add elements to the end of a LIST. As an exercise, see if you can figure oul a method
for doing so using PUTREST.

mt s nuc1unEs SECl lONB,2

TIFIE MDL PRIMER 55

Remember thar rhe previous use of SEG:MENTs ls an exception: in the case of objec1s of PRIMTYPE
VECTOR and SlRING (ne,ct sections) the use of a SEGMENT wfll cause- copying of the el,ements from
Ile sf ructure whtch is the EVA uation of the FORM.

8 3. PRIMTYPE VECTOR

A MDL object of PR IMliYPE VECTOR can, be thought of as a linear array of MDL objects. In a
VECTOR, it is triv;ial lo access the Nth element, as this simply requfres finding the correct offset into the
structure {see Figure 8-10) . Similarly, it is trivial to replace the Nth element with something else. On
the other hand, there is. no way to add elements to a VECTOR without creating a new one, and
removing elements can be simulated although it ;s rather difficult. U your eyes s',dpped back to the
section on PRIMTYPE IST, you might notice that these- properties of the two PRIMTYPEs are
reversed . This , then, is the rationale for having different structure 'classes' . The programmer is free
to choose the structure 'class' (i.e. PRIMTYPE) hill wants 1 based on the way in which it is to be used in
a program. For example,. a structure which is always of known te,ngth should probab1y be a VECTOR,
wh lie one which must undergo ohanges in size should probab! y be a LI ST.

Schematic representation of a VECTOR

[1 2 3 4] FIX I
I

FIX I
2

FIX I
3

FIX I
4 J

Figure 8· 10: The VECT10R [1 2 a 4]

8.3.1. Creating VECTnRs

Creatmg a VE.CT0R is completely analogous to creating a L 1ST. There are two options: you can
type in the printed representation or a: VECTOR, or you can use the SUBR VECTOR.

,rn. s muc1 unr:s

.56

<SET A [1 2 3])$
[1 2 3]
<SIET B <VECTOR 1 2 3>>S
[1 2 3]
<■-? .A .B)S
IFALSE ()
<•? .. A .B>S
T

<SET C [.A I .B]>S
[[t 2 3] 1 2 3J

THE MOL AA MER

.we does J2l share with BJ"

Both of these methods always cr,eate a new VECTOA. Therefore, two objects created in separate calls
to VECTO.R will never be••?.

8 3.2 EV.A ling VECTORs

As Wirth lISTs, £VAL of a VECTOR makes a new copy of the VECTOR with all of the elem.ents EVALed.

(SET A (<+ 1 f) '(+ 1 2) 1 '(+ 1 2)])$
[3 <+ 1 2) '(+ 1 2)]
<SET A <EVAL .A>>
[3 3 <+ 1 2>]
<EVA1L .A>S
ra 3 3]

8.3.3. Manipulating VECTORs

The SUBRs NTH, REST, PUT, LENG.TH, EMPTY?, and LEHGTH? alt work on VECTORs just as they do on LJSTs.

{SET A [ONE TWO 3])$
[ON,E TWO 3]
<NTH .A 2>S
nm

<PUT .A 3 THREE>S
[ONE TWO THREE]
.A$
[ONE TWO TllREEJ

MDL GilllJCTURES
SECTION8.3

THE LPRIMER

<LENGTH •. A>$
3
<REST .A 2>S
[THREE]
.. AS
[ON,E TWO THREE]

RESTtng VECTORS is shown in Figure 8·11,

<SET A [1 Z ~

<SET B <REST At>>

I

FlX I
I

FIX I
2

FIX I
3

FIX I
4

Figure 8· 11: REST of a VECTOR

57

I

Sinc,e VECTORs are not pointer structures, the PUTREST operation will not work on them. However,
there are a few operations which are possible wlth VECTORs which are not possTble wlth LISTS due to
their structure. The first of these is the inverse of REST: it is called BACK. Given a VE:CTOR and a fIX,
it tries to rep ace e ements to lh,e front of the VECTOR which were pre:V'ously RESTed off. Like REST,
ID.ACK has no side-effects. It simply returns a pointer to a ,different J·ocation In the VECT()R. An error
wm occur If you attempt to BACK more elements than have been RESTed. The SUB,R TOP, however,
given a. VECTOR, will BACK. as far as is egally possible.

<SET A (1 2 3 4]>$
[1 2 3 4]
<SET B <REST .A 2>>S
[3, 4]
<PUT .e 1 HAHA>S
["AHA 4]
.AS
[1 2 HAHA 4] ;"B 1s a subset of A"

SECTION 8.3 1IDL STRUCl"Uf!E..,

58

<BACK .8)$
[2 HAHA •J
.. 8$
[HAHA 4]
<TOP .B>S
[1 2 HAHA 4J
<••'l <TOP .B> .A>S
T

; •BACK has no, s 1 de-eftects 11

BACKing ot VECTORs is diagrammed in Figure 8-12.

SET B <BACK 8 2>>
Fl)(

FIX

2

FIX

3

FIX

Figure 8+12: BACK of a VECTOI

8.3.4. UVECTORs

THE MOL PRIM~

Although infrequently used, MDL has a PRUITYPE called lMECTORt for Uniform VECTOR.
UVECTORs are identical to VECTOAs in most ways excep.t that .~ erement of a UV£CTO·R must have
the same TYPE. lJVECTORs have a speclal input and output form: an exclamaUon pojnt followed by
paired squar,e brackets. Here are some UVECTORs,:

Ml)L ~mucTUHES
SECTrON8.3

THE: MDL PRIMER

<SET' A l[.A B CJ>S
J [A B CJ] : "Do , 1 t worri about the, other I bef,o,ra the]"
<1 .A>S
A
<REST .A 2)$
J[CI]

59

Analogousl,y to a VECTOR, "there are two ways to create a UVECTOR: type t in, or use the SUBR
UVECTOR. When typing. in a lJVIE,ClOR be careful that everything you type i11 is or the same TYPE,
before EVAL uation, as well as after!'

<SET X 10>S
10
<SET A .t[20 .X]>S

•ERRO'R•
TY P;ES .. DI FF E.R.-1,N-UN If ORN-VE.CT-OR.
READ
LISTEN ING-ATMLEVEL 2 PR.OCESS 1

This error occurred because.Xis a 'FORM, even though it EVALs to a FIX. To do this properly,

<SET A <LJVECTOR 20 .X>>S
J [20 10]

A SUBR called UTYPE ,returns the· iname of the TY1PE or thee ements of a given UV ECTOR. The,re are a
few TYPEs which are "llegal elements of UVECTORs: the on 'I •011e you are likely to come acmss is
STRING.

UVECT0Rs are useful only for efficiency. They take up roughly half ffle storage of VE1CTORs, All
other considerations are the same as for VECTORs.

8.4 PRIMTYPE STRING,

A MDL ST:RING is a sequence of MDL objects of TYPE CHARACTER. Objects of TYPE CHARA1CTER
are represent.eel by the sequence oI characters: exc amation•point, backslash, and me character
itself.

SECTION 8 3 r_ 11t smucnmrs

60

!\AS
!\A
<TYPE f\A>S
CHARACTER
<ASCII l A>S
86
<ASCU 66>S
r A

THE MOL PRJMER

This example has also demonstrated the use ol the SUBR ASCU, which given a CHARACTER returns
its ASCII value, or given a FIX gives the CHARACTER with that ASCII value. A STRING is represented
as a sequence of characters surrounded by double-quotes.

8.4.1. ASCU

ASCII, os used In MDL, is the name ol a 7-blt code (i.e. 0000000 -1111111 base two, corresponding
to O · 127 fn base ten) used to repre-sent keyboard characters (upper and lower case, control
characters, punctuation, etc,) as small integers.

8.4.2. Creating STRJNG,s

STRIHGs are created fn exactly the same wayS as the other structures.

<SET A "THJS IS A STRING>$
"THIS IS A STRING" .
<SET A <STRING l\T f\H 1\I J\S>)S
"THIS

However, STRING is more powerful tha,, this, as its arguments can be either CHARACTER$ or other STRINGs.

<SET A "THIS IS Att>S
"THIS IS A"
<STRING .A" STRING >S

THIS IS A STRING"
.AS
"THIS IS A"

As with Vf CTORs, all STR I llGs created this way are new, i.e. not shared. To put a double-quote inside
a string, you must place a backslash before the double-quote. This can be confusrng.

IOLcrn11c ri rm s

THE MDL PRIMER

<SET A "\ \ 11 ">S
11\fl\Htl

<LENGTH • A>S
2

61

Th is STRING has two elements, each a doub1e•q,uote. To put a backslash into a STRING the
backslash must be preceded by anottier backslash. This is even more confusing.

<SET A "\ \" >I
ft\\\llilt

<LENGTH .A>S
2

This i:s another STRI G of two elements: a backslash and a doub1e-quote.

8 .. 4.3. EVA Ling STRINGS

ST1RINGs are unlike LISTS and VECTORS in that they evah.1ate· to themselves, rather than to copies
of themsetves.

8 .4. 4. Mani p u I ati ng STR I NGs

SlRINGs are manipulated exacUy as are VECTORs. The CHARACTERs are stored sequentially; thus
PUTREST will not work, but BACK and TOP will. The only differ,ence is that the only legal third
ar,gument to PUT of a STRING, is a CHARACTER. Anything else will cause an ,error.

It is important to note that STR JN,Gs contain~ CHA.RACTERs. CHARACTERS with specia1 meanings
elsewhwere in MDL are simply CHARACTERS in STRIHG1s,

<SET A "1 2 3 (+ 2 2)d)S
"l 2 3 (+ 2. 2)"
(3 .A>$
2.

The above ~ample shows that the ' FOiRM' in the STRING is not EVALed 1 it is merely 7 CHARACTERS in
a STRING. Spaces are CHARACTERs.

There is a major difference between the following two structures.

f.ECT[ON 8.4

62

<SET L ("l 2 3" "4 6 181t "7 8 98))$
("1 2 3" n4 6 eff "7 8 9~)
<SET S "(1 2 3) (4 6 8) (7 8 9)">$
11

(1 2 3) {4 6 6) (7 '8 9)R
<LENGTH .L)S
3

<LERGTH .S>S
23

8.5 Building Large Structures

THE MDL PRIMER

It Is occasionally useful to create a large structure. H would be very painfu · to create. say, a VECTOR
of 100 elements by calling the SUBR VECTOR w,th 100 arguments. MDL provides a way to create
struc ures or a specmc size, namely the SUBRs ILIST, IVECTOR and ISTRING. These take b.vo
arguments, a FIX (the number of elements) and a MDL object. MDL will build a structure (LIST,
VECTOR, or STRING, respectively) with nx elements, each of which is the result o evaruating the
second argument to the SUBA. Some examples:

<n.rsr 10 o>s
(0 0 0 0 0 0 0 0 0 0)
(IVECTOR 6 <»$
[NFA SE (J #FALSE O NFALSE () 'FALSE O #FALSE ()]
<!STRING 30 ! \W)$

"WWWWWwwwwwwwwwwwwwwwwwwwlrflliWW"'

The second argument to !LI.ST and !VECTOR can be any MDL object. The second argument to I STRING must be a CHARACTER.

8.6. Searchin,g Structures

There are two S.UBRs which , given an arbitary MOL object and an arbitrary structure, will look
through the structure for that object. They a,e called MEMQ and MEMBER. What lhey do ;s 11,;s: starting
with lhe structure, lhey look at lhe fi,st element and••• If H Is equal to the object In question. I so,
they return the str(Jcture. 0 herwise, they REST the structure, by 1, and repeat the procedure. When
the structure becomes EMPTY? (i.e. the object wasn 't in the origjnal struc1ure)

1

, these SUBRs return
#FALSE (). This means that a successful MOtQ or MEMBER will return the original structure R£STed
down such !hat its firs! element is the object searched for.

You may hav noticed a rather ambiguous equal' in the last paragraph, and this is. the distinction
between MD!Q ond MEiiom. In NENQ, !he tesr is <louble"equar 1--?), Wltile in IIEMO£R lhe test Is single-eqL1al f:.?).

MOL Sl nUCHJA£S
S!:CTION 8.4

THE MDL PRlMER 63

<SET L (ONE 2 3.0 "FOUR)>S
(ONE 2 3.0 "FOURff)
<MEMQ 2: .L>I .
(2 3.0 11 FOUR")
<MEMQ "FOUR" .L)$,
fFALSE ()
<MEMIE:R 11 FOUR 11

• L>S
("FOUR)

B~ 7 Garb age: Qiuoti n,g St n.1 ctu r-es

Often in writing programs, one inctucles a structure in a FO•RM. For example., one might have a FOR
that I ooks like th is:

<NTH [ADD SUB MUL DIV] .OPCODE>

This is very inefficient because the VECTOR in the FORM is EVA Led every time the FORM ,s EVALed with
the result that a new VECTOR is created. This creates a tot of 'garbage•, wl1ere 'garbage is define-cl as
some ,piece of structur,e which is. no longer used (i.e. there are no pointers to it). Since your MDL
resides in a machine with finite memory, it pays to think about ways of maklng programs relativety
storage-effrcient. The pmper way of 'llriUng the FORM in the previous •example is

<NTH '[A.DD SUB MUI.. DIV] .OPCODE>

As mentioned eariier, the quote will ensure that the VECTOR will not be EV'Aled when the FORM is
EVALed. Thus, only one copy of the VECTOR will exist. Note that 'quoting 1 structures n this way
should be used for VECTORs and USTs. STRINGs EVAL to themsetves! You are warned: NEVER do a
PUT into a quoted sr,:ucture!'

8. 8 ~ Garbage~ Bui Id in g Lists

It is often necessary in a program to bui1d up a LIST of elements. Assume that you have a
FUN CTI ON which gets elemen ra one at a time and wants to buHd a 11st in the order in wh !ch they we-re
receiv,ed. Assume a LIST L and an element to be added, say .OBJ. One way of doing lhis ts as
follows:

<SET L (t.L .OBJ}>

This is not. good practice, as th LIST cr~ted is a copy of the o!d one with an element added a,t tile

SECTION 86 r,. [1L 3Tf1UC1 URE$

64 THE MOl PR1IMER

end. Assuming that nothing, else but th.e value of L points to the LIST , L, the old L 1ST .• L will
be-come garbage. If you assume adding 100 eJ'ements using this method, it becomes clear that
mousands of LIST elements are needlessly becoming garbage. Equalfy as bad would be to use· a
VECTOR. The bes way of doing this is using PUT REST. FoUow &his exampfe:

<SET L (1 2 3)>S
(1 2. 3)
<PUTREST <REST ,L 2> (4))$
(3 4)
.LS
(1 2 3 4.)

Notice that. in the generar case. one can add an element to the end O•f a LIST by saying:

<PUTREST <REST • LIST ·<- <LE GTH • LIST> 1>> (. ELEMENT)>

This is good pr,ogramm.iAg except hat IL1EHGTH and REST get called, both or which are quite slow for
.long LISTs. Remember that LENGTH must foHow au of the pointers to the end to co,unt up the
e.lements. Here's another way of doing this:

<SETG L (T)>S
(1)
<SE G LL • L>S·
(T)
<DEFI E ADDPTO-EHD1 (ELEMENT)

<SETG l.L <REST <PUTREST . t.L (.E,LEiMEHT)> 1>>>$
ADD-TO-EH·O
<ADD-TO-ED 100>1
(100)
<ADD-TO ... END 2010)$
(200)
.LS
(T 1001 200)

Notice that both L and LL needed lo have at least one element at the beg1inning so lhat PUTREST
woukl work. Remember that lhe first argument to PUTREST cannot be !EMPTY? by definition. he
effecl ,of the program ADD·TO-END i,s to append the element to a LIST (LL), which is RIEST,ed each
time. This saves having to perform long LENGTH and REST operations. Since LL is a sub-list of L, Lis
belng changed with every PUl RE ST. Thus, L is the compfete ill ST, and LL is always L RES Ted down
to tts last element. You should ren1embe , of course, that the· initial T In the LIST should be removed
at a later time .••.

MDL SJRUCTURES SECJION8.8

lHE MDL PRIMER 65

8 .. 9 .. St ru ct u red NEWTY PEs

In the prevlous chapter, we saw that MDL is a type-extensibte l:anguage in that the programmer can
create llis own TYPEs. Typically, an obiect of a NE\IITYPE will be a structure that is a model of some
real world entity wit.ti tie elements ot the structure models oi parts or aspects of that entity. The
creator of the N'EWTYPE will usually provide functions for manipulating the NEWTYP·E objects in all of
the ways which are considered meaningful for the intended uses of that NEWTYPE. This means tha
other users of the NEWTYPE can use these creator-defined manipulation routines and never need to
know the Internal structure of the NEWTYPE. This provides bo•th modularity of prngramming and data
abstracuon.

For ,example, suppose you wanted lo dea!1 with airline schedules. If you wer,e to construct a. set of
programs that define and manipulate a N EWTY PE cal eel FL GH T, then you could make that set into a
standard packag.e of programs and cal l on it to handle all information pertainirig1 to scheduled airline
mghts. Since all FLIGHTS would have the same quantity of information (more or 1ess) and you would
want quick access to individual elements, you w,ould not •1ant · he TYPIE.PRIM to be lIST. Since the
elements would be of v.ar; cus TYP'Es, you wou d 110:t want the TYPE PR IM o be UVECT0R. The natural
choice would be a TVPEPRlM of VECTOR.

Now, the individual elements ,of a f LIGHT would, no doubt, have TYP 'Es and meanings that don't
change. The elements of a FLIGHT might be airline code, flight number, originating-airport code, list
of intermediate stops, destination-airport code, type of aircraft , days o · ,operation, etc. Each and
every F IGHT would have the air ine code 'for its first elemen (say) , the, fHg'ht number for its second,
and so on. It is na1Ural to invent names (.ATOMs) for these elements and always refer to he elements by
name. For example, you could <SETG AIRLINE 1> . Then. if the 11ocal value of F were a FLHHT
<AIRLINE . f> would return the airTine code, and <AIRLINE . AA> would set the airline code to
AA. Once that is done, you can rorget about which element comes first: al'I you need to know are the
names of the offsets.

The next step is to notice that, outside 'the package of FLIGHT functions, no one, needs to know
whether Al'RL I NE Js just an offset or In fac:;t a. function of some kind . For example, the scheduled
duration of a fllght might not be e.x.plfciUy stored in a FLIGHT, just the scheduted times of departure
and arrival. But, 'f the package had the proper DURATION funcUon for calculating the duration, then
the call (DURATION • F> could return the duration, no matter how it is found. In this way the internal
details of he package are conveniently h dden from view and abstracted away.

8.1 O. Summary of MDL Structures

A few points should be obvtous fro the prev1ious discussions of the various structvred
PRl'MiTYPEs:

1. AH stru:clUres can be created in the same two ways: Either type in the printed
rep rese n tati on. or use the SUB R whose name is the name o:f the PR I MTV PE.

2. When LISTS and VECT10Rs are EVALed, a new copy of the strtrcture is ma<le. whose

SECTION 8.9 M L ~1 R UCTUfKS

66

THE MOL PRIMER

elements are £VAL of the elements of the original. STR!NGs EVALuate to themselv,es.

3. SEGNENTs are a very important and powerful feature of MDL If you don t undetsand lhelr
uses, re,read the appropriate section.

4. The SUBRs NTH, REST, PUT, LENGTH, LENGTH?, EMPTY?, MEMBER, and MEMQ work on all structures.

5. The SUBRs BACK and TOP work on all consecutively stored structures O.e. VECTORs, UVECTORs, and STRINGs).

6. The SUBR PUTREST works on LISTs only, and should be used lo append elements to lhe
end of LISTs. io add elements to the 'front' of LISTs, use the construct (. ELEMENT
r. LIST). Other ways of adding elements to LISTs create unnecessary garbage.

7. The SUBRs MEMQ and MEMBER can be USed to find a MDL object in an arbitrary structure.
MEMQ uses • ? as a test; MEIIBER uses•?. Bolh return the original structure RESTed
down to the MOL object which was found, or IIF -LSE ().

8. 11. Practice Quiz

A large amount of Important material has been covered in lhis chapter. Test your understanding by
trying the follOWing Qui<, lhen check your answers by typing them lo lhe MDL Interpreter.

Please write beJow each line the result of typing that line into a MOL.

MDL SiRUCTUA£S
SECTION 8.10

THE MCI. Pf.UMSA
69

9. Programming Constructs

In order to write any inte restln g prog l'ams, a.n sb llity Is required to es fol' various conditions and
take action only · f Ulose co:n.ditions are met. This chapter introduoes the MDL SUBRs and FSUBFls
needed ta do fhi$.

9. 1 _ Boolean Operators

9 •.1.1. NOT

The MDL predicate NOT takes one argument o.f any TYPE. It ev-a:iuates to l only if its argument
evalua.te,s to, a FALSE , and to, IIFAL$E () otherw~e.

<NOT <Lm? 4 3>>S
T

9.1 . 2. AND

AND ls an F SUB R, and It takes any number of ar•gum ents . It eval untes its argu ment:s from fi rst.
toward I ast as they appear in the FORM. As soon as one of them evaluates to a f AL SE, it retu n s that
FALSE , ignoring any remaining a.rgum ants. If none of them evaluate to FALSE, i l relums EVAL of its
las argument. <AND> relu m.s T.

<AND <G? 4 3) <SET A 6> <L? 4 3> <SET B 7))$
IFALSB ()
.A$
s

SEGTIOI\I O,a ?RQC:R,11, I '1 UG OONSTRLJGTS

70

.B$

·• ,ERR:OR•
UNBOUN'D· VARIABLE
B
LVAL
LISTENIN·G A'T 1LEVEL n PROCESS 1

<AND <G? 4 3> <L? 3 4> <SU ,c 1o»s
10
.cs
10

THE MDL PRIMER

AND? is the SU8R equivalent· to AND (atl Us argume.nts are evaruated befo,-e any of lllem is tested}.

9~1 3. OR

,O,R is afao an FSUBR and arso 'lal(es any number of arguments. It evaluates i1S at"guments from n,-st
to last as I.hey appear- in the FORM. A:s soon as one, .of them evaluates to a non. FA LS e, OR retu r-ns th at
non-FALSE varue, ignor:lng any r-emain 1111 arguments. n this neve,- occu,s It returns the last FALSE it
saw. (OR> retiums #FALSE ().

<OR <L? 4 3> <SET ,D O> <SET E 13>>$
6

Setting D to 6 returned B, which is not a FALSE, so rt was ,-etumed b:v 10R and E was neyer set to 13.

OR'? Is theSUBR equivafentta OR.

When you understand the following exampre, you should have no troub?e with MOL s boolean
operators. What is interesting abo 1Jt lhese rwo expressions?

<N'DT <OR • FOO .BAR .BLETCH)>

<AND <N DT •. FO 0> (,NOT • BAR.> <NOT • BLETCH> >

9 .. 2~ COND

The MDL $1.hbroutine which rs most us@d ro,- varyi,ng evaluation depending on a truth v rue fs ffle
FSUDR COND ("condilimml") . The aroumenis to COtlD, caned coral clnusc'S, mus1 be LISTs. and

PnOOnAMMrNG CONS l .RIJCTS
SCCJ'ION 9. I

71

there must be at. least one. COND always returns tihe resun 01" the mil. evaluation · t perfo:rrns. The
following rules determine the order of evaluations performed.

1. Evaluate the first elet111ent of each clause (from first toward last) untili either a. non~FALSE
object resu Its or the clau,ses. are ex haust:ed.

2. U a non• FALSE object is found in (1), Immediately ,evaJuate the remaini.ng elements (if any)
of tila clause and Ignore any remain·ng clauses.

In other words, COND goes wmking down its clauses, 1EVAling the first element of each ctause, looking
lor a non- FALSE result. As soon as it finds a non·FALSE, it I,orgets about all the other- clauses and
evaluates, In order, the othe:r elements (if an:ii) of the current clause and returns tlhe last thing i
evalua.t:es. if it can't ilnd a non• FALSE first element, it retums the last FALSE it saw.

9 .2 ~ 1 . Ex.amples,

<SET F • (1)>$
(1)
<COND (<EMPTY? .F>

EMP)
(<1? <LENGTH ,F))

ONE)>$
ONE

<SET F ()>S
0
<COND (<EMPTY·? • F>

EMP)
(<l? <LENGTH .F>>

0 E)>$
EMP

<SET F 1 (1 2 3))$
(1 Z .3)
<COND (<'EMPTY? . F>

'EMiP}
(<1? <LENGTH .F>>

ONE)>S
l'FALSE ()
<COND (<LENGTH? .f Z>

SMALL)
(BlG)>S

BIG

SECTlot~ 9 2 l"ROGRl\f',tl II IC: COi ~TRUClS

72 THE MDL PRIMER

<DEFINE FACT (N) ;Hthe standard recursive fac\or1a1ff
<COND (<O? .H> 1)

FACT
<FACT ,fi>S
120

(ELSE <• ,N <FACT < .,N l>>>)>>S

In the last e:iiample•, the use of ELSE was not necessary, but it makes it a bit easie,- to read the
program. The atom Tis often usfflj •for lhesame purpose.

9.3~ Shortcuts with Conditionals,

9.3.1. Using AND and OR with COND s

S!nce AND an,d O,R are FSUBRs, they can be used as miniature CONDs. but 1his is usuarly bad
programming st'yle. A con,strnct of th-e fo..-rn

<AND pre-conditions action(sJ>

or

<OR pn~•exc1wsions action(sJ>

will a.How action(::.} to be evaluated only if atl the pre-conditions are true or only if a!'I the pre
eJ>1c/usions are raise, r,especthJe!y. By nesting and using both A.ND and OR , fairly powerful constructs
can be made. However, usrng AND and OR in this wa.y can lead to some major pFobfems. n any of your
actions returns false or tru~ unexpectedly, the following cn,es wiU never be evaluated. Even wor.se,
pr□gra.mrneFs who get in the habit of doing Ulis tend to w ,rite programs which are very dlf'flcuH fo.r
anyone e,se to fellow.

AND and OR are Intended ta be used in COND clauses. If y,ou wanted to rnnlke .sur~ that an a!l"gument
catled ARG passed to a runction was a FIX bet:weeri 6 arid 10 inclusiverv:

PnOGRAMMJr JG CONSTl"lUCTS SECTION 9 ,2

iHE MOI. PRIMl:A

<C0ND (<AND <••T <TYPE ,ARG> FIX>
<G~i .ARG 6)
<L .. ? • A1RG to»

<what you want to do>)
(ELSE (wllar you want to do olherwise>))

73

If, instead,, y,ou wanted to ni ~e sure tne arg u meot w-as a F 1 X outs~de that range~

<COND ((AND<-•? (TYPE .ARG> FlX>
<OR <GI .ARG 10)

<LT . A'RG 6»>
<wh,!H you wanf to do>),

(El.S'E <wflat you want to cJo otherwise>)>

9 .3. 2. Em bedded Un con d iUonaJs

One of the d Tsadva.ntages of COND 1s that there is no str-aighUorward way to do llilngs
1..mconditionally in between tests. One way around this problem ls to insert a dummy clause tha:t never
succeeds, because Its on1y element is an AND tha.t retu ns a FALSE 'for- the test (this method is strongly
dlscou raged). Example:

<COND (<Oi .N> <FO .N))
(<1? ,N> (fl .H>]
(<AND (SIET N <• 2 <FIX (/ .N Z>>>>

;fiRound .N down to evan numb r.n
<>>)

(<LENGTH? . VEC .N> •[])
(T <REST .VEC <4 l .N>>)>

l"he preferred method Is to increase the nesting with a new C0ND after the, unconditional part . This
method does not make the code appear to a human read err as 'lhough n do-es something other- tha:n

what it rreally does. The ,above exam pie should be done 'thu. way:

<C0ND (<0? .N> <F0 .N>)
(<11 .N> <Fl .N))
(T

<.SET N <• Z <FIX (/ .N 2.>>>>
<COND (<LENGTH? ,VEC .N> "[])

(T <REST .VEC <+ l .N>>)>)>

sEc.nrnJ !il.a rnocmr r,,. MIMG c::i~1s r 1111cr

74

9.4. Examples

The fcJlowing prograrn will print all the prime factors of a given number:

<DEFINE FACTOR (N)
<FACTOR-FROM.NZ>>

<DEFINE FACTOR - FROM (N TEST-EHVISOR),
<COND (<G? <• . TEST-,DJVISOR • TEST-DIVISOR> • N>

<CRLF>
.N)

fHEMI) PRIMrn

(<O? <MOD • N • TEST-DIVISOR>.>
<PRINT .TEST-DIVISOff>
<FACTOR-FROM <I .N .TEST-DIVISOR>

.TEST-DIVISOR>)
(ELSE <FACTOR-FROM • N <+ • TEST-D VISOR 1.>>)))

If you are not fammar with recursion y,ou should traoe this by hand for a. simple case like <FACTOR
12>. The rirst COND clause tests to see If the test divisor is greater than the square root ot N. If it is M
must be prime so a carriage-rstum/fine-feed is printed (see chapter 112) nd the value of R ~ returned.
The second clause check.s wi'1ethe.r N is divisible by TEST-DIVISOR and, it it is, prints that TEST
DIVISOR an,d then racursiv0ly calJs FACTOR-FROM With th~ Quotient ot· N and TE:ST-OIVISOR and
with TEST-DIVISOR' a.gain. The third clause is eXJec1.Jted if both the first and second return a FALSE.
,n that case, FACTOR-FROM is called recurslvery with N and TEST-DIVISOR incremented by one_

Jf you are confused abo,Ut how this works, try typing it to a Muddro and experiment with U. You
shourd be able o improve ft (for- instance there is r:io reason to test even numbera after 2 has been
tested). Why does ttle program return only prime factors? Can y0u improve the program so u,at it
tests only with prrme numbers?

One way to write a test for prime, numbers wo,u,rd be~

<DEFINE PRLME? (X)
<••? .X <FACTOR .X>))$

TI,Js would work, however you would probatiry want to write a new version o,f FACTOR fmr this which
didn't print anything. Would this test for prime numbers improve FACTOR-FROM? Why not?

It is hard to Imagine- a program 0 1f any compfeXH)I without COND, clauses. The following example Is a
very small part of a fair-ly famous program called Zorl<. (One of the implementors of Zerk has 1:Jeen
heard to say that Zork Is a huge conditiona.r).

-rn£ MDL. l?FIIMe:A

<DEFINE RUSTY-KNl 'FE-FUNCTION, ()
CCOND (<•~? .VERB TAKE>

<COND (<.IN? • S,WORD , PLAY~R>
· <PRI~C

"As you p1ck up the rusty kn1f • your sword g1wes a single
pulse of b11nd1ng blue light.">

<CRLF>)>
<>)

(<OR <AND < ? • INDIRECT-OBJECT .RUSTY➔KNJ!FE>
<ME.MO • VERB • [ATTACK KI LL]>>

<AND <MEMQ ,VERB '[SWING THROW]>
<.., 11 ? ,DIRECT-OBJECT .RUSTY-KNIFE>
,INDIRECT-OSJECT>>

<REMOVE ,RUSTY-KNIFE>
<JlGS UP

"As th , k.n 1f•e app roac es 1 ts .,, 1 ct. 1m.. your nrl nd 1 s subrne r-ged by
an over-mastering will. Sl0w1~. your hand turns, un\tl &he
rust.y blade 1s an 1neh from your neck. The knife seems t.o sing
as 11. savagely s11t.s _your throat..">}>>

75

This function Is called wh.enever "the rusty knife" ls. referred o in any wa'J. This function checks
whether the verb ts " take" and the player has the "swo·rd. " f so the first message s pdnted and
#FALSE () ts r-eturned . U the• verb was not "take", it checks whether elther ttrn indirect obiect Is
••rus ty· knife '' ~ the verb is " ,tlack" or "kill" , .2r l'he verb I& "swing" or "throw"" and th e direct object
is ·• rusty kn ifo" i!,nd thei re is an lncnr-ecl ot:lject. If so , the " rusty knUe" IS T"em oved from the g me, an
inte,restlng message is pdnled, and Urn payer dies,

76
TI-lE MOl.. PR [MER

LOOPlNG
St;;CTIQN 10.0

THI:: MDL PRIME~ n

10. Loopi·ng

•One of MDL's strongest pofnts is its variety ot powe,rful looping constructs. These will be covered
in this chapte-r.

10.1. PRO·G

PROG makes 11 possible to en,capsulate sections of MDL code. A PR0G is v'Bry much like a.
FIIJNCT ION in syntax. It takes a LlST which is similar n some respects to an argument list, and an
arbitrary number of MDL objects whtch are EVALuated in tum. It returns the result of the EVALuation
of the I a.st object In its body. Here Is a prosaic P'ROG:

<PR.CG O <SETG A <>> <SETG B <>> <INITIALIZE>>

Notice that each of lhe three FORMs in the PR•OG could have been done wHhout using a PROG. PR.OGs,
i'loweve,-, are a bit more useful than this would inrJica.te.

First, the LIST CBll'I contain any number of

-AlOMs

T LI STs contalni ng an A T10M and an arbitrary initial value for u, at AT ON.

All of thes@ A.TOMs wrn be re.bound inside lhe PR0G (i.e. as if a new FUN CT ION were entered.) When
the PR0G returns the ATOMs wlU be unbound (i.e . re-bound to 1iheir old values. U atiy.) Thus, a PR0G
can bethought of as a mi m- FUNCTION o no argurnients.

<PROG (AB (C 10) (D . FOO)) >

In this example, fo~rnew bindings are made. TlleATOMsA and 8 are bound, but not asslgned a value.
T11ne ATOM C ls bound to 10 and the ATOM D is bOUll'ld to the current LVAL of the ATOM FOO, AT0Ms
should be placed in this 'argument' LIST when they are used as tempornry variables Inside the PRQ,G.
A fu ll exptanatlon of the use of temporary variables is in :section 11.5.

Moi-e In portanUy. a PROG can be restarted or caused to rnrum from the m.idc!!e any llma usi,ig the
St.ID Rs AGAIN and RETURN, At 1his poin1, It is suUicient tio S.."'IY lhal AGAIN wllh no nr-g1,.1m tmt~ starts

SECT ION 10 Cl

78

ax:ecuting th1;1 body of the PROG rrom the beginning (but bJndlngs are not redone) . RETURN of one
argument fo.,ce.s the PROG to return ,hat argument. No!Jce that AGAIN and RETURN as described will
arways refer to the nearestsurr,ounding PROG in the curr>ent ,FUNCTION.

PROG tums o.ul to be fafrly usele-ss in MDL, but the FSUBR R,EPEAT which is very similar, is enormously useful.

10.2. REPEAT

REPEAT has the same syntax as PROG and may be thought of as a PROG in which the ,last item in the
body ;.s <AGAIN). In othe_. word's , the body of the REPEAT wm be repeatedly e~ecuted until a RETURH
is done. There is no oUierway to leave a REPEAT except with a 1RETURN'.

<REP'EAT ((CNT I))

4
3
2
l
0 T

NDECL ,((CNT) FU:)

<CONb {(l '? <SET CHT <- .CHT 1>.> O> <,RETUR.N T>)
(T <PRINT • CNT>)>>$

10.3. Non-local .RETURNs, etc.

There are cases in Which one might lfke to RETURN o .. AGAIN to, someplace- other than the neaf'est
PR:OG or REPEAT, or for that mathtl"SOmeprace in a dUfe.,-@nf FUNCTION. MOL allows ~ou to 'name' any
PROG, REPEAT, or- FUNCTION by placing the STRING '"HAME" rollowed by an ATOM at Lhe and of an
1:ngume11t list or PROG/REPEAT r sr. This has the effect of binding ,ha.t ATOM to an object of TYPE
ACTIVATION which becomes a ,egal addftionaJ rgument to both AGAIN and RETURN. Thus, AGAIN
c an lake an optional ACTIVATION, and RETURN lakes a return value and an optional ACTIVATION.

The most common use of RETURN/AGAI,Ns to 'named activations' is fn ermr handling. Assume that
you have a FLirJCTION FOO which earls, a FUNCTION BAR whk:h caHs a FUNCTION BLETCH which
noUces something wrong. BLETCH might want to cause F'UtlCllCM FOO to return a FALSE, for
ex:tmple, or print an error- message. This is only possible Uthe fUNCTIOU FOO is defined to have a
'named acttvatron •. whose 'name' is known 1o FUNCTION BLE'TCH.

L.O CU 11NG

<'DE Fl'NE FOO (A)
<COND (<PROG ("NAME" ACT) <BAR . .A>>

·<PRINT .A> T)
(T (IPRIHT 'ERROR IN YOUR PROGRAM"> T)>>S

FOO
<DEFINE BAR (X)

<BLETCH <• .X .X>>>S
BAR

.
<DEFINE BLETCH (Z)

<C•OND (<G? , Z. 10) <RETURN
(T (SQRT .Z>)»S

BLETCH
<F100 2>S
2 T
<FOO 4>$
"'ERR.OR IN YOUR !PROGRAM"' 1'

10.4. MAPF

Ill FALSE () .ACT>)

10.4.1 ~ Liooping Th rough a St.ruclu re

MAP F (pronounced 'map-etf' foT 'map-first.') Is ma:lnly used to .a.p·ply a tun.ction to eaoh element ot a
suuctu~e , in turn. In Ulis most simple tarm, its fitrst argument is a FALSE, its second argument a loop
funcfion, and its third argumen a sm.scrure . Here is-a simple MAPF :

<M PF<>
<FUNCTION (X)

<PRINT .X>>
(l 2:. 3 ,4)>$

1
2
a.
4 4

l'he last 4 is the result or the MAPF (th:e resul of the last appt,ication of the 1oop-tunclfor1 to an element
ot 11ho srruc1iJre .

An FSUBR called FUNCTION is used in many places in this chapter. FUNCTION s very much like
DEFINE, e)(cept thal no name is specified. FUHCT IONs Cfea:led with FUNCTION are said lo b~
' nonll'mous' _ They canool e used ou1s-.1de the FORM -n which tl1ey a r-o lmbeddP.d, s. nc:e they 1,ave no
name l)y wh ich they can be reler~nce . Of cours~ . Ir 'lh e loap tu11cOoo you w i~h 10 use had already
bem, DEF J HEd, yo u wuuld 1elor 10 i,t 1n a MAP F as the r. loba11 vtdue of ils no.me.

SECT ION 10.:l LC"'_.oi.)l •ING

80

<DEFINE FOO (AB) <+ .A .B>>S
FOO
,FOOS
WFUNCTION ((A 8) <~ .A .B>)
<FUNCTION (AB)<+ .A .8))$
WFUNCTIOH ((AD)<+ .A .B>J

HJE MOL PRIME:fi

A MAPF can be prematurely stopped at ar..y time if the loop -fu11c.tlon calls the SUDR MAPLEAVE.
MAP LEAVE takes one argument: it stops the MAPF and cause.s Ulie MAPF to reh.Jm its argument.

<DEFINE BAR (L)
<MAPF <>

<FUNCTION (.lll,)
<COND (<G? .X 10> <MA!PLEAVE FOO>)

(T <PRINT .X.>)>>
.L»S

BAR

<BAR (1 2 3 4))$
l
2
3
4 4

<BA.R (1 2: 16 7 6 2))$
1.
2 FOO

10.4.2. Other Than One Structure

One can simuH-aoeous:ly loop through any number of B1'r.uctvres using HAPF. MA.PF wrn appJy the
loorhfunctlon to the first elements of each ot the structures The NAPF wm stop when any of the
strtJcture$ becomes EMPTY?.

lOOf">rNG

<MAPF <>

s
1Z
18
24 24

(FUNCTION (AB CJ
(PRINT<+ .A .B .C>>>

(1 3 6 7)
(2 4- 8 8)
(3 7 9)>S

S ·cnrn~ 10

1 Hl:a MOL PA.IMl:fl 81

<MAPF: <>
<FUNCT·l 10N (A B C)

<:PRINT (+ • A . B •. C>»
(t 3 6)
(Z 4 6)
(3))$

'Other Than One' also lnch.1de.s zero, but this is a special case. A MAP F with only two arguments is
something Ilka a REPEAT loop. It can only be terminated by an explicit call to MAPLEAVE . Se section
10.5. If any at the structures i.s empty to begin w'th, MAP1F retums lll'fALSE (J.

1 o. 4~3- Using I nte rmed i.ate Res u Its

By o-ow you must be wonde1ring why there ts a FALSE as the first. af"g,ument to MAPF. In fact, a
FALSE telts MDL not to do anything with the results of apply!ng the foop-funclfon to the elements of
the srruc:tr.ue. However, if the rirsl argumemt to MAP F s something which can be appHed to arguments
(I.e. a FUNCTION o-r SUBR), then MDL will 'save' t'he 11esulbs of applying the loop -tuner/on and, when
the looping Is finished, appfy the first ar9um0nt (called the flnal -funclfon) to a.lJ or the 'saved' results.
An ,eKamp e:

<MAPF .LIST
<FUNCTION (X Y)

<+ .x <SQRT .Y>»
(1 2: 31)
(1 4 , O)>S

(2. 4 18,)

<1MA1Pf .+
<FUNCTION (X "f)

<+ -)II <:SQRT .Y.>»
(1 2 3)
(1 4 9)>S

t .2.

In 1he first case, we built a LIST cut of the results of the loop-tunclion . In the second, we simply
added up all of the results.

10.4.4* MAPRET and MAPSTOP

There are cases Tn which you rni~ht w m to have an arbUrary nurnbet Dr results 'se.ved'. This can
be done with lhc St.10fl MA.PHET which lakt:s any number of aryrnne nls tinchoJ1n[l z.em); ca~so-s lhe

l.CXl1'1 n C',

82
iHEMDI. PRI R

fum;.tlon to terminate, and "saves• a.II of its arguments.

<DEFINE PRINE-LIST (L)
<M-APF ,LIST

<FUN,CT J!0N (NUN)

<COMO (<PRIME? .IUN> .NUN)
(l <MAPRET>)>>

.L>>S
PRIME-LIST
<PRIME-LIST (2 4 11 5 ,6 73)>1
(.2 11 73)

What happened here was that only prime numbers were allowed to be •saved'. Whenever PRIME?
returned FALSE, a MAPRET of no arguments was done; thus, no values were 'saved ' or this call to the
loop-function_ NAPRET. of oourse, wm not work if there ls no flnBf•ft.Ji'letion to return ~esiuffs to.

Assuming the fvnctlon PRIME? described in chapter 9 has been written;

<DEFINE PRIME - AN.O~SQUARES-LIST (l)
<MAPF • LIST

<fUNCTIO
<COND

(NUN)

(<PRIME? • NUM:> <MAPRET .NUM <• .NUN .NUN>>)
(T <MAPRET>))>

-L>>S
PRIME-AND-SQUARES-LIST
<PRIME-AND-SQUARES- LIST (2 4 U 66),>S
(2 4 11. 12:1)

A more useh . .lf function:

LOOPJNG

<,DEFINE UPPERCASIFY-1 (STR)
<NAP·F • STRING

UPPiERCASlFY

< FUN en: Ofl (CHAR)
<SET ASC (ASCII .CHAR>>
<COND (<AND (,G•? • A.SC <ASCII I \a:>>

<L•? • ASC ('ASCII J \z>)>
<MAPRET (ASCII<- ,ASC 32>>>)

(ELSE <MAPRET . CHAR> J>>
.STR>:>S

<SET Z- STR "Now 1s the t1m for &11 good me·n to <f0-0 .BAR)"')
<UPPERCASIFY .Z-STR>S
"NOW IS THE TIME FOR ALL GOOD MEN TO <FOO ,BAR>~
.Z-STR$

• Now 1s the t'lma f ,or e.11 gooid men to ·<FOO .BAR)""

S~C'rlON 1 ◄

TiiS MDL pft11ME_R 83

The SUBR MAPSTOP Is the same ,as MAP'.RET , except that , after 'saving ' Its arguments. it l in ishes the
MAPiF, allowing t'he ttnal-tunction to· be applied to a:H ofttle 'saved' resu lts. Like IMAPRET, MAPSTOP can
onl•Y be used if there s a f i naf-fum;tion .

10.4.5 .. MA PFI

The SUB R MAP R (for 'map• recst, ' pronou need ' m ap•ar') is exactly Hk.e MAP· F in every respect e.x cept
·that the arguments passed to the lo op-Junction . rather than being successive s-lernents of the
s t ructures, are he s tr u c tures themselve s RESTed down successiv,::1y. The nam~s for the two m ap
SUB Rs are m ne.monic: MAP F lrst and MAP Rest.

<MAPR <>
<FUNCTION (X)

<PRINT .X>>
U 2 3 ApS

(1 Z 3 4)
(2 3, 4)
(3 4)
(4) (4)

MA.PR is useful if H is necessacy to change elements of the $truct 1He(:s) that you awe m apping down.
Here ts a FUINCTION which takes a stJructure full of rmmbera and changes U to cont ain double the otd
1o1alues:

<DEFINE DOUBLE (STR)
<NAPR <>

<FUNCTIO:N ($)
<PUT . S 1 c• <l . S> Z>>>

.STR>)S
DOUBLE
<SET l (l Z 3J>S
(1 2. 3)
<DOUBLE .L>$
(6)
.LS
(2 ,I B)

in UPP'ERCASI FY-1 a MA'PF was used which ~ene-rated a new structure. Using MAPR. a new
function can be w ritten wh1ch modmes the origina.l st:ring :

SECTtO U IO•I L001" 1N Ci

<DEFINE UPPERCASIFY-2: (STR)
(MAPR 0

<FUNCTION (STRlJ
"<SET ASC <ASCII <t .STRt»>
<co,No, (<AND· <G .. ?· • ASC < SC I I I \a>)

<L•? .ASC <ASCII r z>>>

Tl-IE MOL AAIM~

.STR>
<PUT ~STR1 1 <As,crt <- .ASC 32»>)>>

.STR>S
UPPERCASIFY-2.
<UPPERCASIFY-Z <SET STR "'Now 1s: tbe tfme for <BAR ,BLETCH>">>S
'NOW IS THE TIME fQ,R <OAR . 8LETCM)"
.STR$
"NOW IS THE TIME FOR <BAR .BLETCIO"

'MAPR is not always used to chnnge an existing s ructure. The fol owing exampte shows another
use. Thrs function marches down a structure and builds a new structure or the $a.me fype in which
fhe erements or the first structure a,ppear onty once.

<DEFINE U:NIQUIFY (STRUC)

UNIQUIFY

<COND (<NOT <STRUCTURED? .STRUC>>
iflfALSE ("WRQ,NG TYPE OF ARGUMENT"))

(ELSE
<CHTYPE

<NAPR ,<PRJNTYPE .STRUC>
<FUNCTION (S)

<c,oN,D (<NEMQ <1 • S> <REST • S>>
<M P,RET;>)

.S,TRUC>
<TYPE • STRUC>>)>>$

(ELSE (,MAPRET <1 .S>>)>>

<UNIQUIFY NFROB (1 2 33 2 1 GJ>S
#FRO.B (33 Z l 6)

rt vou wished to be able to remove efements which "look the same," such as :stmctures which ara •?
C,ike (1 2 3) and (1. 2. 3), o:r FROTZ and '"FROTZ '"), you wculd have to replace the ,MEMQ wi h
MEMDER, which ls Slowe~.

10.4.6 MAPF/R Summary

The synt:a:x for N'.AP F / R is as foltows:

LOOf'II\IG
SECTIOr~ I0.4

iHE MCL RRIMER

<MA.PF /R. tinal-luncrton
lo·OP•fu.no rfo n
sttucture-1

srructu r:e-rr>

wrth only Ille first two w,gume n ts required.

10.5. Looping vs. Re,,cursion

l,n ttle prevlous cha.pter, the "standard reoursive ractori.d '' Y.tas. shown. It can now be re-written
using me looping constructs introduced In this ,chapter.

<DEFlNtE FACT (N)
<REPEAT ((ANS 1)}

<CO'ND (<0? .N> <RETURN .,ANS>)
(EL.SE (SET A.NS < 11 • ANS . N> >

<SET N <- .N 1>>)>>>

Some might argue that lhis Is a larger and m.ore compllca.ted program to w r-i.te than the rec1ush,e form,
and therefore inferlo·. The itera.tf\re form just shown, however , Is raster and more erncient.

The same pr-ogram can also be written using M'.APF.

<DEFINE FACT (N)
<SET ANS, t>
<iMAPP <>

(FUNCTION ()

Or, more ele 9 antly:

<DEFI E FACT (N)
<MAPf •

<COND1
(<O? • N> <MAPLE AVE • ANS>)
(ELSE <SET ANS <• ,ANS • N>>

<SET N <- . N 1>>)>>>>

<FUiUC.TION ()
<COND ((07 .N> ~MAP$TOP>)

{ELSE<+ l <SET N <- .N 1>>>)>>>>
.~<FACTO> w11 1 return 1 since• of no argumen~s

returns 1. '"

SEC:TION 10.~

86

As po rUed out earlier, a MAPF does not have to take any structures as arguments as rong as the
second argument; the looping functi on , does not taka any arguments.

Although recursion can be a very slrnpJe and ef'egant way to solve a problem, iteration is often more
efficient. Take, for exampfe, the tactOJ"lial example of chapter 9 . If you only intend to usf! the function
whh very smair numbers the £"ecu,sive form will not -cost much to use and does have lhe advantage cf
being srighUy easier to write. However, since every recursive call of a runction requ ires the creation
of a new 'environment, ' calcvfat.ing fac,toriar of a farge number win take .;i lot or time and computer
memory. The ~terativa rorms of factorial shown above- wou!d be mucn more efflcient.

rn summary, the advantage of the looping techniques described Jn this ch~Ph:u· over r-ecul'Sion is
that the overhead of calls is eliminated, Howev.er, a long program (say, bigger than hall a prjnted
page) may be more difficun to write Ueratively· than recur:slV@Jy and hence more difficult to malntwn. A
progr-am whose repetition is comrol!ed by a str-uctured object (for examp,e, " walking a tree '' to visit
each mariaa In he object) often should use looping ror cove.ring one "tevel" of the structure and recuraion to change ''reveJ&"'.

SECTION 10•.s

-

TH£ MOL. PALMER 87

11 A_rgument Lists 1n FUNCTIONs

In Cha.pter 6 , the creaUon of a :simtile ype of FUNCTION was expla ned: a FUJ~CTION taking a fixed
number c'f arguments au of which get EVA Led . While this may be suHic ent for writing most cf yeur
FUNCT IONs, there, are o,ther ways ·n which ycu might IB-te argum~nts to be handled. Some of these
might Include:

- 1FUNCT iCNs which can take an arbitrary number ot arguments (Ilka the SUB Rs+, - , LEST,
VECTOR. eto.)

• fUNCTIONs which act mor,e, like FSUBRs ,(i.e . they don'\ have their arguments EVALed.),

• FUNCTIONS which can take optional arguments, which can be defaulted.

In fact, a.II of these things (and a few more) can be done easi ly by specifying them ln the argument list
of the fUNCTlON . The remainder of this chapter wi:11 descrtbe the complete synt.a>:: for MDL argument
1st&.

11 ~ 1. Arguments Not EVA Led

Placing .a single-quote b fore an ATOM ln the argument 1st wm cause that ATOM to be given U"l(l!
value of its, respective argument withoul EVALuation.

<DEFINE FOO (• ITEM) . ITEM>S
FOO
<FOO <+ 1 :2:>>S
<+ 1 2>

Were 1he ATOM lT'E.M not quoted In the argument l1lst ma FU..i'CTIOH woutd have retumed the FIX 3 .
Quoting arguments, as it turns ouL, is not, used orten fn MDL.

~ CT!Ol'J 11 ,0 M 1C-,Ut. NT Li~ I S IN FUNCTIONS

ea Tt-dEMDL ~IMSA

11 .2 .. Optiona'I .Arguments

MD can be told to expect opt\onal arguments by placing the STRING hQ,Pi ION.AL;, in the
argument Hst airer all of the required a.rgurr111.nts . Following the STRING can be an.y ru.unber of ATOMS.
which wrn be bound to the values of the optional arguments , if given. To specify that ~n optional
argument is to have a default vatue (te. if no,t passed as an argument), place a LIST containing the
ATOM and Ule: defaul valu~ in place of just the ATOM. Hliii!.re's an example:

<DE Fl NE ADD-ONE (N UM "0 PT l,ONAL., ,(HOW-MANY l))
<+ .NUM .HOW- MANY>)$

ADO-ONE
<ADD-ONE 10>$
11
<ADD-0N'E 10 2)$
lZ

This rather- useless FUNCT 'ION adds ffie LVAL of HOW-MANY lo its first argument. HOW-NANY is an
option.al argument, whose derault value is the FIX 1. Therefore, with one argument, ADD-OHE adds
one to its argument. With two arguments .• it adds them.

As was menUoned earlier, H isn' t necessary to supply a defautt value for an optional argument. If
there ·s no default value , and the opt:i:onal argument is nor supplied, the ATOM gets bound, but is not
as.sign~d .a value. LVAL of thai ATOM will genemte art e.rrol", because an ATOM must be both bmmd
and assigned to have a local value. One can t0II wllalher- an ATOM has been a=lgned a value by us,ing
tha SUBR ASSUlNED?, wMch returns TH its argum.ent(an ATOM} is assigned; otherw1ise #FALSE ().
The following d.efi,nition of ADD-ONE acts. ide111tically to the previm.1s one:

<DE FINE ADD-ONE (NUN OPTI,QNAL" HOW-MARY)
< COND (<NOT <ASS 1 GtfED 7 HOW-MA1NY> >

<SET HOW-MANY 1)))
<+ . NUN .HOW-MA·NY»S

AD:D-,ONE

The use of single-quoted ATOMs is allowed with optional arguments as we!I as required ones. You
may supply yaur own example, Jf you can think of one. W,e can't .•

11.3. Arbitrary Numbers of EVA Led Arguments

A any place In the argument Hst, aUer any raq1.1i~d and optional (if any) argument~. you can
specify that a ll of the remafn1ng argumm,ts {supplied at the t·me of cnU) be EVALed and grouped
1ag her in a spacl I structure called a TUPLE (for all pmcticar purposes, TUPLES n y be thought of
as VECTORs, and can be m~nipulated in the same ways) . To do this, place the STRING
"TUPLE" foll o 1t1.; f by a ATOU in the argum ent list. The ATDr-1 will be bauncJ lo lhe TUPLE. liere are

Ill IGUt, lf NT lliHS trJ H JNCTIONS

TH~ MOL PRIMER

<DEFINE MY+ ("TUPLE" NUMBERS) <+ I ~HUMBE.RS>>S
NY+
<MY+ 1
21
<MY+>S
0

2 a 4 - e>s

<DEFINE MY-STRING ("TUPLE'" STRI.NGS) <STRING l .ST'Rl ,NGS>>$
MY-STRING,
<MY-STRING "THIS hIS" "A" BIG" "STRINQ 1\1)$
'"'THIS l SABI GSTR. I ING J "

<DEFINE TIMES-P·LUS (NUM T'UPI.E" NUMBERS)
<• .NUM <+ l .N,UM.BERS>>>S

TIMES-PLUS
<TI MES-PLUS, 4 l 2. S>S
24

11.4. Arbitrary Numbers of un~EVALed Arguments

89

\nstead of using "TUPLE 1• , one could have used the STRING "ARGS" , This has the effect of
binding the following ATOM lo a LIST of all of the remain ing arguments, u n EVALualed. rn fa~, ~he
ATO'M is bound to the LIST which is the FORM used to ca.II the FUNCTION RESTed down to the
remaining a.J'lguments. 1':h e use of •• ARGS" allows one to, write FSUB Rs i 111 MDL.

<DEFINE FOO ("ARGS 0 L) .l>S
FOO
<SET F •<FOO 1 Z a>>S
<FOO l 2 3')
<SET LL <EVAL .F>>S
(1 Z 3)
<••? .LL <RESl .F 1>>$
T

In th,e previous e,c;ample, we explici'tly called tile SUBR ~VAl, which caused EVALuation of the F·ORM
<FOO l 2. 3>. This returned the L ST (1 Z S:), wh ch s., ? to <REST • F t>.

Now we w II write n FUNCTION t.o simu1ale the FSUBR DE FINE in MD · : th is is IUSI what MDL does
intematly when the FS JBR DEf IH'E is called.

90

<DEFINE MY-DEFINE (NAM "ARGS" L)
<J:SETG .NA <CHTYPE • L FUNCTIOD>>
.NAM>$

NY-DEFINE
<NY-DEFINE FOO (A R CJ <+ .A . B .C>>S
FOO
.FOO$
-FUNCTION ((ABC) <+ .A .e .C>)
<FOO t Z 3>$
6

Now 1tlat we have simulated DEF !NE, let's try our h31:1d at AND.

<DEFINE MY-AND (nARGS L)
<REPE l ((LAST T)i)

<CONl!ll (<EMPTY? .L) <RETURN . · AST>)
(<NOT <SET LAST <EVAl ·<1 • L>>>>

<RETURN • LAST>)
(T <SET L <R,EST • L>>)>>>S

THE: MOL PRIMER

This wrn exactty simulate the behavior or AND. Ths REP EAT loop initializes the ATON LAST lo T,
because AND of no arg1.rrnents is defi'ned to retom T. The loop itself firnt checlks on whether the LIST
L has became, EMPTY?. If .so, the AND was successful, and LAST is returned. Otherwilse, LAST !s SET
to EVAL of <1 • L>. If that is a. FALSE, n is returned. Dtherwiise L i.s RESTed once and the ,oop is
rnpealed.

As an e)(.ercisei, write OR and •COND. It 1s legitimate to use COHD in y0ur CO•ND simulator, but if yau
ca I your :sl mul alor COND watch o ul.

11 ~5. Temp,o ra ry Variables

You may recalf that chapter 6 referred to ''free variables" as those va.riabres (ATOMs) whose tocrd
values are SE "r er acoessed ins de a FUN CT I on,. but which are not bo unct inside that function. One
.should alwayS avoid using "free variables"' In MDL programs, but there is often a need for variables
whose values will contain temporrary results. You can specify such variables 'to be bound Inside a
FUNCTJON by incruding the ;,AUX" (foJ" auxiriary) followed by any numbe .. of ATOMs or LISTs of .ATOMs
and values (Ii ke "0 PT I ONAL"' arguments) ait the end or the argument lis1~

ARGUMF-Nl LISTS IU ntNC l"POMS SEC fON 11.A

<DEFINE SUM (nTUPLE~ NUMS nAUXM (SUM OJ)
<REPEAT()

<C0ND (<EMPTY? .NUMS> <RETURN .SUM>)
(11" •

<SET SUN <+ .SUM <1 , Nii.IMS>>>
<SET NUMS <REST .NUMS>>)>»S

SUM
<SUM :I i 3 OS
·10

The FUNCTION SUM, in this exampfe, simurates the .S,UBR. + . The .A.TOM SUM is initialized to ~ero in
lhe argumeiru list. The following is identical in effect, aJthou:gh poor in styre:

<DE FINE SUM ("TUPLE NUM:S "AUX SUM)
<S,ET SUM 0)
<REPEAT 6 • • >>

It should be noted that. the part of the argument list whrch follows "U!TRA"' or ''AUX"' is identical 1in
syntax and me.aning lo the 'argument list' whcch is the first argument to PROG and REPEAT.

11 .6 0 rde r of Evaluatio,n in Argument Lists

Unlike many othef" languages, Including USP, TOMic bJrn;lings after the required argument$ ~re
done from left to l'ight., rather than simultaneously. This means that, for example, u,e defaun varues
for optional ar-gumonts and extra. variables cam, refer to the values of other ATOMs to u,eir leh in the
argument list.,

<OE FINE FOO (A "OPTIONAL" (D <+ .A 1'0>) "AUX" (C <:F00BAR . B>)))
The previous exam.pie shows an example o·f what is r.io.sslble In argument I sts due to MOl's order of
eva1lualion.

11. 7. Variable Deel a rations

MDL has a built•in facility for checking the TYP Es of arguments to, FUNCTION$ as weir as other
t&mporary variab,es. Th is is ana logous to the cr1ecJ ing wl,ich rs done when F /SUBf s are c,illed : if
you cafl lhe SUDR + with an ATOM, ror example, MDL will generato an error. In MDL. v:1.riatolas can be
declMed o b~ of a certnfn TYPE or group or TVPE s. Thi:. t~• done by placing an :,biec l oJ TYPE
DECL (fl R IUTY PE LI ST) imuH-icHately alt!'.!r lhe FUHCT [Cltl 's: .i.rgumel'lt l:s t. II nmy Jlso folrow the

AflGI IMI: JT U!"TS IN rur C:::TIONS

92 THE MDl PR IMEFI

argument list or a PROG or REPEAT and declare the variables bound wi"thin. The DEC.L {for
"dedaration," pronounced 'deckl.e') has the form of r-epeaUng pairs of LIS Ts of ATOMs the AT,OMs to
be dedared) and the declaration proper. The simplest TYPE decfa.raUon s the name of a TYPE or Ule
ATOM AINY.

1¥DECL ((FOO BAR) FIX (BUTCH) AUMII (MUMBLE) ANY)

This declares the ATOMs FOO and BAR to be Fixes, thE! ATOM BLETCH to be an ATOJil, and Che ATOM
MUMBLE to be anything.

Anothel' declaration rorrn is the union of different TYPE.s, which is S:pec:ified by a FORM whose Hrst
element is the AT OM OR and tile remainder lega I TVP E names.

lfOECL ((NUM) <OR FIX FLOAT> (STRUC) <OR UST VECTOR>)

Also u.serur is the form <PRIMTYPE nama-ol•a-PRIMTYPE>, whfch specifies anything or that
PRUITYPE. For example:

#DECL ((PL) <PRIMITYPE LIST>)

will allow Pl to be a LIST, a FORM, a SEGMENT, or any other PRIMTYPE LIST.

In, fact, the fuU-blown MOL dec1ara1ion :nntax ls far moro baroque than has b-een descl"ibed, but
these simple forms \viii sufffc:e In almost eH cases. Fo'r more information on DE1CL consult The MDL
Prof/ramming Lang1.1age (Ga11ey 79]. Here are some examples of oJd friends., no,w including DEC Ls.

<DE FINE MY-AND { "ARGS"' L)
lfflECL ((L) LIST)
<REPEAT ((LAST l))

IJDECL ((LAST) ANY)

MY-AND

ARC.Ur .1EN'JI' LIS $ l<N FU ~CTIOl>!S

<COND (<EMPTY'? .L> <RETURN .LAST>)
(<NOT <SET LASl' <EVAL <t • ,L))))

<RETURN .LAST>)
(T <SE.l L <REST • L.>>)>»$

SECT ION 11 ,7

(D,E:flNE ADD OHE (Nl!JM "OPTIONAL" (HOW-MANY 1)}

P.Dn-ONE

.mE:CL ((NUM,) <OR FIX FLOAT> (HOW-MANY) FlX)
<+ ,NUM .HOW-MANY»$

<ADD-ONE Z.3 1.~>S

•ERROR•
TYPE-MISMATCH
HOW-MANY ;"The ATOM of 1neorrect TYPE"
FIX ;"The DECL for that ATON"
l.2 :"What the ATOM was ubout to De SET to'
E.VAL ; "EVAL 1 og the FORM <ADD-ONE :2.. 3 1, Z> caused 1 t
LISTENING-AT LEVEL Z PROCESS 1

93

Deel araUons have a number of purposes . Flrat, they make your oode easieir for someone else to
understand, as ttie sor1s of arguments you!'" FUNCTIONS take can be deduced from them. It wrn also
help you read y01.1 r own code at a later tim,e w'h en you may have forgotten how it aH works. Sec:a nd, it
helps in debugg ng your programs, since an error will be caused if the declaration is violated. Finally,
when your FUN CT I ONs eventually get cirJ1mpiled, much better code can be pr-oduoed with the
information given by your declarations. Always DECL your' fUN,CT IONs!

11.8. Structures: DECLs and NEWTYPEs

Before c!osing our cliscussio n or DEC ls, one special type or deciaratio n shou Id be considered: th at
of srructures. "T1he syntax for this declaration is:

<type-name (PAMATYPE t)'p8prim>
decla r,a Uon •for-fir sr~etemerit
decla ra Uon -lor-seco nd-elemenl

cJeclaratlon-fo r-lasr •element>

For example, we could DECL a VECTOR of three elements as follow$:

<VECTOR FIX LISli <VECTOR ATOM ATOM>>

This declares lhe VECTOR to have a f IX. a. LIST, and n VECTOR which must cont-~n two ATOKs.
There may be more elements in a structure than those DECLed. Any additional elemerns will be

consid sred to have the DEC L ANY .

(<PRIMTYPE LIST> ATOM <OR FIX FOAT>>

SECT ION 1·1.7 AA<':1111, !:NT LI~ TS •N MJIIIC::TlOr IS

94

Th sdeclares a.structure of PREMTYPE LIST containing an ATOM and either a FIX or a FLOAT.

We originally descl'"ibed the SUBR NEWTYPE as taking two arguments: the new TYPE name and its
TYPePRlM. srruorured N1EWTYPEs can take a thi,l'd argumen as well : a decla..-aron,, a.s described
above. et's use the airt"ne pr,oblem from our ea.l'ilier discussion. W,e will define a FLIGHIT as rollaws:

<NEWTYPE Pl,;f1GHT
VECTOR
• <<PRl 1MTYPE VECTOR> Al'OM FIX FU>'>S

FLIGHT
<SETG AIRLINE t>S
1
<SETG FLIGHT-NUMBER. ,2:>$
2
<S ETG DURATION U ·S
3

Notice Hiat the declaration of FLIGHT IS quoted: thls Is because it Is a FORM and NEWTYPE is a SUBR.

Now tha.t FLIGHT is a regal TYPE, U can be used i.n declarations. In fact, it is a lot easier to say

~ECl ((FL) FLIGHT)

than to.say

f'IOECL C(Fl) <VECTOR ATOM FIX FIX>)

especially when you add another ten e ements to the definition of FLIGHTS. It Is a.l:so a ot clearer for
both your-self and others to read.

11 .8.1. To NEWTYPE or Not To NEWTYPE

That is the question most frequently asked . Should I make my table of house members: a NEVTYPE?
ShouTd it just be a VECTOR? Sad to tall, \here Ls no cut and dried answel'. In general , whenever a
structure nas a 'slgniflcaot' am,ount of in1ernal structure, or some readlty understood outside wo,-ld
meaning' , if Is good dea io make 11: a HEWTYPE. Most peop1a woutd deem a structure to have
'significant' internal structure al the poinl when they type out the whole d.u'n D'ECL fo the n nety
foun:h time. Others U, nk a.bead.

An lit l! NT I.I s IU r IMCTIO~S SECnON 11 .e

ME MOL AA IMER

11.9. Good Habits/ Bad Habits

This. chapter has some suggestions for good programm·ng practice- You may ignore them at your
risk, but we have found that people learning MDL are always mo:re successful if they develop good
habits early on In their MOL ng. Here are 1.he good h.mits~

- Always use "AUX" to bind mmpoirairy variables n your functions. Don 'i use "free
variables'' l

- Always DECL your FUNCTIONS, PROGs and RIEPEATs. Eve if a variable ca.n have any
value, Jt Is good practice to DEC L It as such, so th at H is clear that you h a e n' t slmpl y
forgotten.

1 1 . 1 o. R,eview of Argument Ltst Syntax

Here is a full-blown, ultra-hairy, and incredlbly strange argument. list:

<DEFINE H IR (A 1 8 HQPTION l~ (C 10) D
"TUPLE" NUMS
"AUX"l (E <+ .A .• B>)

(F <:SQR.T <I • E .C>)·)
"NAME" FOO)

i'DECL ((B C E) FIX
(A E) <OR FIX FLOAT>
(FD} FLOAT
(NUMS) TUPLE
(fOO) ACTIVATION)

(CONO (<NOT <ASSIGNED? D>>
<SET D <.ATAN .,8>>)>

(+ .A .B ,C .D .E ,F I.NUMS>>S
HAIR

Th Is poor excuse for a FUN CT I ON takes two required arg u rnents, the second of which is
1.m EVA Luatecl , two opti ono.l arguments, one of w·lrl ich defaults to 1 o, and any n 1J mber of other
arguments, t:u.mchiro together in a TUPLE called HUMS. Two temporal"y v:;v-iabi@s E and F are also
used, both of which refer to the LVALs of 0U1er ATOMS to their left in the argumG-nt I st.

S£Cf1Qr,1 11 .9 Armrn.u:t. T u_.1s IN ru,~ t1o t s

96 Tl=tE MDL PRIMER

INPUT l'OUTPVT SEC'l' tOt-J 12.0

-

98 THE MOL PR tM~R

1 2 .. 2 . Conversion !/0 - Input

All o,f 1he fol owing fnpu't Subroi:.,Hney, when directed at a. tru-minal , hang until S (ESCJ is typed and
a1,ow norrmaiT use ot rubout, 1-D, 1"'L and +I.

12 .. :2.1. READ

<READ)

This r-eturns the enUrie MDL obJecf Whose character representaUon is next in ·the input stream.
Successive <REAID>s return successive objects . This is pi-ecisely the SUBR READ mentioned in
chapter 3 (page 5).

1 2.2 .2. READCHR

<READCHR)·

("read character ") ratums the neXl CHARAC'TER fn the input stream. Successive <READCHR>s
""e:tu rn successive CitARAC TERs.

12~:2.2.1. NEXTCHR

<NEXTCHR)

("next character'') returns the 1CH MCTER which REA.DCHR will return the next t me READCHR is
called (if READCHR' is the ned input SUBR caHed. Multiple <MEXTCHR>s, with no input operat~ons
between t,hem. aJI re urn the same thing.

12.3. Conversion 1/0 • Output

If an obJect to be output requ res !(or can tol'erate) separatots, within it (for e)(arnple, t'.lstween the
elements in a structured object or after ,he lYPE name in '' JII notation'") , these conver.s1on .output
SUB Rs wm use a carriage -returti/line -feed .separator to prevent ov,er-flowing a line. Ov~rflow is
detected In advance from elements of the CHANNEL in use.

l F'>i,JT /'OUTPUT SECTION l2.2

12.3.1. PAINT

This ou ;puts, in o.rder-,

2. the charncter repre~entation ol' EVAL ot its argument (PRINT is a SUBR), and

3.aspa.ce

99

and then returns EVAL of its argumeBL This is precisely the SUBR PRINT me.n ioned in chapter 3
(page 15).

12.3 •. 2. PRIN1

<PRXH1 any>

outputs Just the character rep-resen·tatlon of, and returns, EVAL of any.

12.3.3. PRING

,(" print ch ara:cters ") acts exactly "ke PR IN 1, except that

1. Hits argument is a STRING or a CHARACTER, it suppresses the surrounding "s or initial E
respectively;· or,

2. it its argument is an AT•OM, U suppresses any \s or OBlIST tra,iler.s which would otherwise
be necessary.

If PRINC's argument is a structure contaJnlng STRINGs, •CHARA1CTERs, or ATOMs, flle servioes
,mentioned wlll be done fm all of them. Ditto for the ATOM used to name the TYPE n "M no,taUon''.

12.3~4- CRLF

<CRLF>

SECTtON 12.3 INFUT✓OUTPl,J'l'

100 'fretE MDL AA IMEFli

(''carriage.retu n line-reed ') 0ut1puts a c .arria.ge.retum I ne -feed and then returns T.

12 .4 . CHANNE L (the TYPE)

MDL l/0 'channels' are represented by an ,object o 'f TYPE: CHANNE , whi,ch is of P·RIMTYPE
VECTOR. The oternaJ structure of a. CHANNELS lis not frequent y examined or manipulated. Those
interested can consun the MDL manual for- details.

The SUBR OPEN is used to create and return a CHANNEL. It takes two arguments, a mode and a
me-name, both of which must be ST,R I Gs, tf successful, OPE.N retums a CHANNEL; otherwise, it
returns a FALSE containing the reason for the fail um and the file-name (both STRINGs.}

Therearetwo commonly used modes: "READ" and "PRINT'". These are used, reasonab'lyenough,
fol" inDut and output. respectiv,ely. These modes Input and output ASCI characters (i.e. conversion
1/0).

File names are de:pendenrt onr the host operating sys.tern. The following, applies only to TOPS·20
systems. File names are composed of four- parts: the de,vice, the dir,ectory, a first flle name, and a
seconel file name. A lypical file name might be~

"DSK:<MARC)CALCULATOR.MUD"'

MDL will use certain clef au Its for thesi1l rou r pa~ if they are not s,pecUled explicitly. These are DSK,
your working directory, INPUT, and MUD, respec1ively. These defaults can be overridden by SET(Hng
the ATOMs DEV. SNM, NH1 , and NM2 to the defaults you desire. These defauUs must be STRINGS. For
some devices, :so,m~ of the rour parts ot the me name are ignor-ed, for example the ling printer and Hie,
terminal (called TPL and TTY).

Here are som.e exam pies of lhe •1Jses of OPEN:

<,OPEN "PRINT"' '"'lrPL; '"> opens an output channel to the llne pr,nter.

<OPEN "PR iNT" "<MARC> FOO"> opens ,a.n output channel to a disk FIie called FOO . MUD.
Remember that the default device is DSK (Le. the disk) and n,e defaulit second file name is MUD.

<OPEN "READ"' ''FOO. lEST"> opens an input ,channel to a disk me called FOO. TEST in ~he
d@fault me dJrectory (i.e. MARC).

h is good pT'ac lee to g¼ve all of your MDL mes a second name of MUD. This allows you to make use
of \he MDL defau lt second file na1mJ and also makes It easier ror oth you and others ta lind f lcs of

ltJ~l,JT / OlJiP,i.Ji SECTION 12.3

z♦s

TI-IEMOL~IM~ 10

MOL code. ln general, mes containing only text should be given the second rile name TXT.

1 2 .4* 2. Fl LE-EXISTS?

FILE-EXISTS? tests for. the e:xfstenoe o'1 a me without creating a. CHA.NNE 'L , which oc.cupies about
a. hundr d machine words of storage. It ~kes a file-name argument (like OPEN) and returns either T or
a F,A LS E cont,a,lnl ng the re~on <(a STRING).

1 2 .4.3 .. CLOSE

CLOSE, given a CHANNEL, closes Nlat CHANNEL. An erro,. will occur U any Input or output Is directed
to a CLOS Ed CHANNEL.

It is 1possib e lO tell whether a CHA.NiNEL is currently 'open' or has been CLOSEd by looking at the
first ,element of the CHANNEL itself'. ThiiS wm always be a FIX. and Is the 'channe I number' assigned 'by
lhe operating system. A •chann~I number' of zero indicates a: CLO·SEd CHANNEL.

1 2 .4 .. 4. CHAN Ll:ST

<CHAN LIST>

r,etu ms a. LIST whose elements are al.I tti e currently open CH N NE Ls.

12.4.5. INICH.AN and OUTCHAN

The channel used by default for input SUB Rs is the tocal va1ue of the ATOM IN CHAN. The channel
used by default fer output SUB Rs Is the loca1 value of the ATOM, OUT CHAN .

You can diriect 1/0 to a CHANNEL by SElting INCflAN or mnc IAN (remembering their old values
somewhere}, or by giving the SUHR you wish to use an argument or TYPE CHANNEL. (Thesa actually
have the same eHect, because READ binds I NC HAIN to an exp licit argument, and PRINT binds
0UTCHAN similarl,y.

By he way, a good tricl'l for playing with INC HAN and OUTCHAN wiU1ln a runcUon is to use the ATOMs
IN CHAf'1 and OUT CHAN as "AUX" van obi es, re•bi nd in g their I ocal values to the CH ANNE L you want.
When you leave. ot course, the otd lVALs are restored (wMch s the whole point).

INC HAN and OUTCHAN also have globa1 values. iRitially the CHANNE Ls directed al lhe terminal
running MDL. lnitia.Uy. 1HCt'IAN's am:! OUTCHA.N"s local an glob~1 vailuo-g am u,e s:nr1e. Whenever an
error occm:s in MDL, U1 local values ol IUtllAN aud OUTCUAN are rebound to 1he glob I v·dues o f lhe

INPUT /OUT PU

102 THE OL PAIMER

same AT0Ms. Unless you itve dangerously and change the global 11alues of these AT·0Ms, th is wnl have
the enect oi reairect!ng Input and output to you'" terminal, where you are free to go about d bugging.

1 2 .5. End-,of-File ., Routine'"

As mentioned above, an expltcit CH:ANNE L is the ffrst optional argument. of all SUB,Rs used ro
conversion 1/0. The second optional ai-gument for ccnversion-lllw.!.1 SUB Rs is aJtl " end•of-Ule routine"
- - that is, something for 'I.he lnpul SUHR to EVAL and return , Hit reaches the en.d of the flle It ls eading.
A typical end-cHlle argument is a QUOTEd FORM which applies a func'lion or \/Ours. The value of this
argument used by defauU Is a call to ERROR- Not.e: tlhe CHANNEL has been CLOS Ed b~ the, time th 1ios
argument is evaluated.

End-ot-me rouUnes are nor used wlth te.rmi·nal lnpuU

The foltowing FUNCTION1 counts the occurrences of a character in a file, accord ng to its
arguments.

<DEFINE CHAR-COUNT (CltAR FILE "EXTRA" CH:N)
JJDECL ((CHAR) CHAR CTER (FILE) STRIMQ

(1CHN) <OR FALSe'. CHANINEIL>)
<COND (<S,ET f:HN <OPEN "'RE.AD" • FILE>:>

<REPEAT ((Can OJ)
MECL ((CNT) FIX)
<COND (<,..,? <READCHR .CHN '<RETURN .CNT>>

.C.HAR>
<SET CNT <+ .CNT 1.>>)>>)>>

The Idea here· is that the F•ORM <RETURN • CNT> will be EVAILua.ted when the end-of-Hie is reached.
Had READCHR been given only ona argument, ERROR. would have been called when end-of.file
occurred. Also noti'ce tha,t the cnly way for this REPEAT to tefll'Tiinate is fro,n with"n 'ihe caH to
READCHR.

1 2 .6. Additional1 1./0 SUB Rs

There are a few othef"extremely useful 1/0 routines which shourd be men.Uoned here.

INPU r / OUTPUT SCCTI04i 1:il.4

THE MDL PR!MEFI 103

12 .6.1. READSTFUNG

READS TR 1 NG provides a rnechan ism ot read1ng charac\e rs into a STRING until a specified cand i • on
is met. This c ,ondit.ion may be one cUwo types: ·

1. A speci ied number or characters has been 1read.

2. One of a specifiied set of characters hns been read.

READSTRtNG takes a STRING which will be m1ed With CHARACTERS read from its second argument, a
CHANN E.L . An optiona1 t'hird argument specifies tne condition on which th@ REJ\DSTRI NG wlll
terminate. If the argument is a FIX, FIX CHARACTERS will be re.ad from CHANNE 'l. H the argument is a
STRING, CHARACTEAs will be read until one is a MEMBER of the that STRING (MEMO really) . In ell fl er
case 'READSTRING will ·termtnata when the STRING (ts. tne first argument') is filled , should Lhis occur
prior to ?he meeting of the 'stop condition' , or H the end -of-tile Is reached . H there is no third
argument, these laHer two condtUonsare he only ways in which RE.ADSTRING will terminate.

READSTRlNG returns the number of CHA.RACTE'Rs 'read at tile time cf its termination. Here's haw to
interpret tlrle return from, READSTRING. (it really isn't all that complica:ted, bu it's hard to explain}:

- If here was no third argument, the return wHI either be the length of the STRING or a
smal ler- number. If a smaller number-, the end-or-me was reached and that small.er
number rs the number ol CHARACTERS read before end-of.file was reached.

• If the 1hird argument was a FtX and the return was less than that FIX, then end.of-file
was reached.

• If the third argument was a STRING , the return was the number of CHARACTERS read
betor the termination CHARACTER was seen. tt is very important to realize that the
termination CHARACTER is nol read. 111 other words , H wrn not be in tne STRilW, and the
next time you try to input from CHANNEL, that termination CHARACTER win be lying in wai1 .
Not taking 1h s into account is the cause of many an ,error for novice MDLers.

t the termina:hng eveot was end -of-file and another READSTRING is performed, the @nd•of-flTe routine
,,.,ill be EVALed. As with the other non-terminal.dire,c\ed 1/0 lnp11t rouUnes , he default end -ot-me
rnutlne ls a. ca.II to ERROR.

This must seern very conrusing, but many or your programs win require reading rrom the terminal
and R'EADSTRING s by far the best way ta do this in MDL. One of the reasons for thT.s Is that
REAC•STRING ill allow the person in pulling to your program to edit his Input !:Jy means of the rubout
key and the like. This rac!Hly is very hard to simulate if you are reading one CHARACTER at a tlme (e.g.
with READCHR).

A very important warning regarding R,EADSTRIN1G: MDL you will reca.U , only starts proces:sTng
te,rmlnal input airer an esco.pe ts typed. rhis is true also ror caHs to H E:ADSTR! NG. This means that
you cannot expect to get a line or inpu1 lrorn a user by doI11g a READS H UJG wl h a 'stop condilion' of
a cnrrlage-retu,rn or a tine.feed unless his is tallowed by an escape. Tflsre are wn.ys around this
'feature'. but they are beyond the scope of tMs pr mer . Please consull the manual or a seasoned
MDL er for help,

$EC1 ION 1 P .6 I JPUTtt'llJTPUT

104

Here's a skeletcm of a calculator progr,run~

<DEFINE CALC (•• "AUX" •• CNT (BUFFER <ISTRING 100 I\ >) ..)
MDECL (••• tcNT) FIX (BUFFER) STRING •••]
<REPEAT()

<PRINC'"

<SET CNT <REAOSTRING .R,UFFER
• INC HAN
<STRING <ASC I Z7>>>>

<READCHR .INCHAH>
<COND (CO? .CNT)

<PRINC "Thanks for using the calculatorl~>
<RETIJRNI>)

(<'••? .CNT 100>
<PRINC n

Sorry, th t one•s too b1g for e. Please try
so:meth ng a b1t easier, 111::e 2: + 2, '>)

(l <CALCULAl'E BUFFER .CNT>))>>

This calculator program is essentially a large REPEAT oop , as you might expect. Each time
through, U starts by printing a prompt (a carriage-return followed by a closing angle-bracket) . 'It then
eads some input from the terminal Into a STRING which is initialized at' th e s1at1 of the FUNCTION as

hav ing a LENGTH or 100. Tne stop.condition is the presence of an escape (27 decimal -n ASCII) .
Sne e READSTRING wm not read the teTminatfng escape , a ,REACCHR is performed. If one were to
en eek on whal the FIEADCHR was returning, o ne would ffnd it to always be an escape. Ir the value, of
the call to READSTR I NG is zero , no input was typed before e escape. In this example, the program
terminates. If the return rrom READSTRING were 100, Ulen the person typing to the program has
g iven an excess ively long input. (this is only true in this example: th e FUNCTION coutd have been
written to accept much longer inputs) and he is told this. Otherwise , the ftJncrfon CALCULATE is
called wHh lhg user's input (. BUFFER) and the number of CHARACTERs that the user WJJed (. CNT, i.e.
the number of ' val d' CHARACTERS iri . BUFFER). With any luck, CAI.CU AT :e: w II do some1thin.g useful
wi h U:s arguments, IU11;.e pedorming the 1'8Quested calculation and printing the resuU:(s).

Could you write th is skeleton without using a REPEAT? There are at least two other reasonabl,e
ways. If you can not, try rereading Chapter o.

1 2 ~6 .2. PR I NTST RING

The SUDR PRINTSTRlNG is analogous to the .SUBR READSTRING. It takes three arguments, a
STRING (the STRING to print) . a CHANNEL (on which to print it), a111d a FIX (the number or Characters
rrom the STRING to pr nt). n the LENGTH of the STRING is tess !han the third argument,
PRINTSTRING Just prints the STRING. n any event, PRINlSTRING returns the number of chairacter-s
actuauy p inted.

IN l"'UT / OIJTI~. SECTION 12'..6

THE MOL ~LMER 106

12.7. SAVE Files

The entire state of MDL can be saved _away In a me for later restoration : tMs Is done with the SUB Rs
SAVE and RESTORE. This is a very different- form of 110, from any mentioned up to now; the me used
contains an ac:luail image of youi MDI. address space and is not, . n generaJ , " legibte" to other MDL
,ouUrHJs. REST,QREing a SAVE me rs much faster than re•READlng the objects It contains.

12.7 .1 SAVE

Cal'li ng the SUB R SAVE with a file• name wili save away the entire state of your MDL i 11 a me with that
name. It. t.hen returns "SAVED" . When a RESTO,RE is done later (to return l'O the 'saved' state), ·the caH
to SAVE Tetums "RE ST OR ED".

<DEFINE SAVE-IT ("OPTIONAL~

<SETUP>

(FILE <GUEST)PUBLIC.SAVEn)
"AUX" (SNM HJ)

<COND (< .. ? "SAVED" <SAVE . FILE»
<CLEANUP>
NSaved.)

(T
<P'RI,NC "

Amaz1 ng progili"$m at your se rv 1 ce. ">
<START-RUNNING>)>>

1 2. 7 .2~ RESTORE

RESTORE, g ven a file-name, completely replaces-!he contents of the MDL from ths 1 file. induding
the state or execution existing when ttie SAVE was done and the srate of all open VO CHANNELs. If a.
file which w as open when th@ SAVE. was done does not exist wnen the RES'JOR 'E. is dOl'h~ , a message to
tJhat e-ffect will appear on the terminal.

A RESTORE never returns (unless it gets an error): it causes a SAVE done some Ume ago to r,etiurn
again (th is time w ith the value "REST·0RED") , even if the SAVE was done in the m~dst of nmning a
program. In the laU!er case, the program will continue 1s executi on upon RESTOR Eation .

12.8. PARSE; LPARSE, and UNPARSE

These SUB Rs are b o r e rlim1 [/0 routines. PARSE, g iven a STRING, uses READ ~ al gorilhm tor
converting le x I into MDL obi('c l s. and relums the nrst one Trn.md

tNi: UT /OUTPUT

100

<SET STR "(FOO l Z.3)
' ,(FOO 1 2. 3} HO-HUM'"

<PARSE .STR>S
(FOO 1 Z.3)

Tl-IE MDI.. PRIMER

HO-HUM">S

LPARSE, givli!n a STRING, retums a LIST containing aJI or the Items which RE.AD would have found
in fhe STRING. Using the sama exampre:

< P·ARS E. • STR>S
((FOO 1 2.3) HO-HUM)

UNP RSE is the inver$e or· PARSE. Given a MOL Object, UNPARSE returns a STIU!NG, suitable for
MDL PR IN Ting.

<UNPARSE (ABC))$
"(A B C}'"
<UNPARSE 3 4>
"3.40000000"'

Al'I of these SU BRs are "1ery ex pensive CPU-wise. They shourd be a.voided if at all possjbfe.

12 .9. Other 1/0 Functions

Fl
1

0AD, given a rlle-oame, READs and EVALuates everytih 'ng, in the me, fn order, and retums
"DONE". If the file speciiiied does not exisf, FLOM> returns a FALSE containing the reason why.

1 2.9.2. $NAME

(SNAHE srrlng> is idenUcal rn effect with <SETG S,NM string·>, that Is, it causes stdng to become
the dlr argument used by default by all SUBRs which want fllespecmcaticns (in the absence of a local
va!ue for SN M'). SNAM E retu n,s its argument.

<SN AME> is identical in erfec:t with < GVA L SHM'), that s, it f'@tu ms the current c:Hr used by default.

SECTION 12'.8

llH.I: MDL PFtlMEcR 107

12.'9.3. FILE-LENGTH

FILE- LENGTH, giv1m a CHANNEL open ror nput, retums the length In charactera of the fite
associated with 'that CHANNEL. Doing a FILE-LENGTH on an tel'mimll CHANNEL is silly.

12.9.4. RESET

returns channel, after " resettl n g~ it. Resetting a CHA NH EL Is like OPE Ni ng it afresh , wUh only the
file-name slots preserved. For an inpu CHANNEL, this rnean.s emptying all lnpu[bufle.-s nd, if it is a
CHANNEL to a file. doing an ACCESS to O on it, For an output CHANNEL, this means returning to the
beginning of the me-· w'hich implies, i the mode is l'llot "l"Ril'IH'O" , destroying any output done to it so
Far. If the ,opening fails (for example. If the mode slot of c-nanne1 says input. and if the m e .specified in
its real-name slats does not exist}, RESET (Hke OPEN) ,returns #FALSE (re.ason:string flle -spec:slring

st atus;f/x) .

1 :2.9.5 RENAME

RENAM,E is f'or renam ng and deleting fl es. It Ulkes two kinda of arguments:

- (a) two ma names, separated by the ATOM TO

- (b) one· me rn1m.e

Omitted me-name parts use the same val1.1es by defaun as do~ ()PEIL If the operati on is succe.-ssful ,
RENAME retums T, otherwise f!FALSE (reason:string SltW.Js:IIK).

In case (a) u,e file speciUed by 1he first argument is renamed to the second argument. For example:

<RENAME "FOO" TO "BAR"> • "Rename FOO. MUD to BP_.R . MUD.,.

tn caw (b) Ule single file name specmes a file to be deleted. For example:

<RENAME "(MARC>FOD. MUD~> : ffDelute rtte FOO .MUD
from MARC• s ,d1 recta,ry.'"

51::CTION 12 .9 IN · I.I r IOUTPU"I'

108 THE MDL PR IMEA

12.10. Term.inal CHANNELS

MDL automatically adds a line-feed, whenever a carriage-return 1s Input from a terminal CHANNEL.
In order to type in a !one cal'riage~return, a carriage-retu'l"n followed by a rubout must be lnput.
PRINT, PRTNl and PRE NC do l!lQl automaticaUy add a line-feed when a carriage•rBtum is output. This
enables 011erstriking on a ,e;rm nal that lacks backspacing capabflity. It also means that what goes on
a. terminal and what ,goes. in a me are more likely to look the same.

TYI, g ven a terminal input ohannel , returns one CHARACTER from n when it is. t'{ped, rather than
after-$ (ESC) is, typed, as Rs 1he case with READC'HR. Novice MDLers tend to use TYi to read input
fmm the terminal . This is not recommended as a rule. Use READSTRING instead.

I hlr l I r / OUl' PUl' SECTION 12.10

THE MOL PR.I.MER 109

13. MakJng Tables

I seems that MDL progr,a.mmers are always making tab?es af one tt,in9 or another. Someone's
Whois program may want a table relating a. persons lot:iio name to his full name. Someone's
Calculator pro-gram may want a table to ,associate arbitrary vadeble name:s wiith values.

There are any number of ways to hnptement tables ror these lypes of purposes; some cf these may
already have come to mind. For our discussion, l'et's use the example of a ca'.lculator program which
accepts inputs of the form:

A • 4 + 3
B • (A • A) + 7

Without considering She actual detaills of how the calculator might be- written , something must be
done to keep track of the fact that the 'Variable A has a value of 7, and that B has a va1ue of 56. Whal
tcllows are a number or diffel"ent approache,s to solving this sort of problem. Each should be
exam ned carefuHy and die advantages and disadva,ntages noted.

13.1 - Use a LIST

Thfs is the most common and possibly the most useful approach. For the given e:xarnple, we can
create a LI.ST' which, for ex amp re, is the GVAL or the ATOM VARI BLES .

• VARIABLES$
(A 7 B 66)

If one wants to add a new variable. say C, with a value, say 100. one can do the following~

<SETG VAHlAB ES (C too ! 'VARIABLES)>

To check if a variable, say D, has a value, one can do this:

<MENCi D .VARIABLES>

SECTION 13 0

no

To actually get DTs most recent value,

<COND (<SET M <MEMO D .VARIABLfS.»
<2 .M))>

THE MCL PRfMER

Th~ C0ND clause returns !'I- FALSE n D doesn't have a value; otherw se, H rett:1rns the· value.

Removing variables rrom the LIST can be done with PUTREST. As an exercise, write a FUNCTION
which, given a variabte name and a LIST (l'ike the on,e we used above), removes the variable and its
value from the LIST. Be sure you handle 1he case in whfch the variable isn' t ln the l J1.ST. One
solution to 01is is given at the end of the chapter. Don't peek, and don't be too rrustrated. The
FUNCTION isn't that easy to write•.

LISTs are very space-efficient. However, whife LISTs are practical fow smaltish tab res, larger one.s
will tend to become very sfcw to access, since LIST:s are not random•.acce-ss :structures (see Chaipter-
7). If your table needs to be mo:re than a hundr-ed elements long, you should probably try something
else.

13.2. Use a VECTOR

Think twice berore you do. Aswe saw in Chapter 7, VECTORS have Lile, prnpBrty that they cannot be
ruided to · nd cannat have elemeRts removed wittiout creat.ing an entirely new structure (wh·ch is very
garbage-creating). Thei,efore, u$ing VECTORS, is not a good idea unless to'.he table is ' pre-form,ed' and
elements need never- be removed or added. If you have table of ordeced elements of n;ilaUv,ely fixed
si:%.e, use of VEClORs with some son: or bi.nary•seaf'.ching1 algor"i:thm is appropriate. For the ,c.alcuJa.tor
exampht. don't use a VE,CTOR.

13.3. Us,e an ATOM

Another .SJimpre approach wourd be to SETG llle variable name (which is an ATO .) to its value.
Then, ~ou can use GASSIGNED?' to check if it ha.s a value, GVAL lo get it, and GUNASSIGNto remove It.
Lookup using GVALs is moderately fast, but there ls a problem. ma,gine the result of you1r poor
calculator user setUng a variable whose name is the name of your program. The use of SET and LVAL
is :llso perilous.

MAltjl'llO TABLES

THE MCL ~IMER 111

13.4. U.se ,an Association

MD , allows you to assign a vaJue tq a pair of MDL obJects. This can be done using the SUBR
PUTPROP. Thi;, value, of such an 'association' can be ll"etrieved witn the SUBR GETPRCP.

<PUTPIR0P
MICH EL
<GETPROP
2.8

MJ,CHAEL AGE 2 ,B>S .
MICNAE L A.GE>$

One can associate ,my three MDL ob.iects using PUT PROP . A useless, but regal, use might be:

<PUTPROP [1 2 3] (4 6 6) "FOOOAR">S
[1 2 3]
<GETPROP [1 z 3] (4 6 6J>S
lll'FAlSE 0

Why did tile last GET PROP return ti FALSE ()? Hint Are either of t:h e a:rg u ments to GE TPRO P '""' i to
tile erg u rnents to PUT PR'0 P?

By g v~ng PUTPROP only two arguments, it returns what GETPRO'P wou!d have returned, and lhen
rerno-ves the asscoiation.

<PUTPROP MICHAEL AGE>S
ZB
<GETPROP MICHAEL AGE>S
ll'fALSE ()

tn the calculator example, ,one could do something ike this:

<PUTPROP A VARIAO -Ens
A
<PUTPROP B VARIAB _e &ll>S
8

to set the variab es' value. One would retrieve the values Ike this:

<GETPROP A VARIABLE>$
1
<G,ETPROP B VARIAB,LE>S
66

Associations are fnst (they U5-e a ha!:11 ing scherne with a: fix.ad m mber of l.Jok1.~ s) , bul 1'8ll er"

12
THE MDL PAIMER

space-inef:ticieol. Large numbers of them wrn tend to cr-owd your oore-image.

13.4.1. Hashing

Hashing, for those unf&miliar with the nation, is an algorithm for table lookup which ~ based on a
'directed search ' . A hash table can be thought of as a VECTOR of LIS s . These LISTs are cornmonfy
called 'buckets'. Each actual item in Nle hash table is found in one of these 'buckets'. What makes
hash rookup tast Is nat there is a simpfe algol"iitt,m, ror determining which 'bucket' an item is in. Once
th at determination is made, the 'bucket' is searched linear'ly Im the item. Th us, a hash table o,f length
100,, which contains ·moo items. would have an average ot 10 ii.ems per 'bucket'. Thus , lhe access
time tor looking up an item v,oufd be he same as that for MEMQ'ing a LIST of 1 O elements plus the
small overhead or deter-min ing which 'bucket' the item ls in . This is obviously much faster than
linGaFl'ysearching• a LIST of ·moo el,ements, by a factor a,pproachlng, 100.

13.5. Use an OBLIST

OB L ISTs are tables of ATOMs which are hashed in such a way that: findinQ an ATON in one is very
fast. SlmHatly, ,Inserting and remov; ng ATOMs Is simpfe.

To create an ,OBLIST ,of yo1J1" own, use the SUBR MOBLIST ,{Make OBLISl] , which t<ik,es a name
(ATOM) and the m1mbe of hash buckets for the OB LIST (defauUly '117) . F,or best l'esults, the number of
buckets should be prilme.

<SEliG FOOBAR <MOBLIST FOOBA,R 7>)$
lfODLIST .I[() 0 () () 0 0 ()]

Note that there are sev n empty LIS Ts in the OB LIST •• you guessed n ··- each LIST is a buck-eU

T a insett 8'n ATOM into an OB LIST. use lt!B SUBR INSERT. To re1nove an ATON from an OBLIST.
use the SUBR REMOVE. T o look up en ATOM in an OBLIST, us.e the SUBR LOOKUP. Each of these
three SUBRs ta.ke.s a STRING, U'le PNAME ol the ATOM, and an ,QBLIST.

<INSERT "NIKE'" , FOOBAR>·S
MIKEr-fOOBAR
• FOOBARS
lfOBLIST J [(J () 0 () (MikE !-FOO:BAFI) () 0]
<LOOKUP ''MIKE"' • FOOBAR>S
MIKEI-FOOBAR
<LOOKUP lt8LETCH" .FOOBAR>S
ll'FALSE 0

MJ\l<ING TA8Ll::S SEC,TION 13.◄

..

THe MDL PRIMla:R

There's something new here, nanne'ky thts suffix to the name of the ATOM: an exclamation point, a
hyphen, and an ATOM. 1·his suffix is called an ' obHst•trai er' or simply a 'trailer· . IL is there so that
REA'D and PRINT can distinguish this new A OM whose PNAHE is FOO:BAR from an ATOM on another
OBL I.ST whose PNAME is FOOBAR. Therefore, to directly ,ererence the ATOM of PNAME BLETCH in the
F 0OBAR OB LIST, one must type in th a fo II owing:

BL ETCH t - ,FO0BAR

In fact, typing BLETCH 1-FOOBAR causes READ to create an A.TOM wi1h PNAME BLETCH in the FOOBAR
DBL 1ST if none already existed . Not c,nly that, but typing FROB 1-MUMBLE causes READ to create an
ATOM o1 PNAME FROB in the MUMBLE OBL tSl (creating ;11 MUMS LE 08LJST it necessary} H none
already existed.

lf you a~e Interested in a more complete description ct 10BLISTs, refer to the next section . To
continue with the calculator example, we mfg ht start by creating an OB L 1ST for varlab!es.

<SETG VAR IAB,LES <MOBLIST VARI.ABLES»S,
NODLIST ••••

Then, we assign values to A and e as foHows:

<DEFINE SET-VARIABLE (NAM V.O.l "AUX" (PN <PNAME , NAM>))
#DIECL ((NAM) ATOM (VAL} ANY (PNM) STRING)
<SETG <C0ND (<LOOKUP .PNM ,VARIABLES>)

(T <INSERT .PNM .VARIABLES)))
.VAL>>$

SET-V,ARIABLE
<SET-VARIABLE A 7>S
7
<SET- VARIABLE B 66>$
66

To retrieve values, we might do this:

<DEFINE GET-VARIABLE ('NAM "AUX" ATM)
NDECL ((NAM) ATOM (ATM) <OR 'FALSE ATOM>)
<COND (<SET ATM <LOOKUP <PNAME .NAM> , VARIAIBLES>>

, .ATM)»S
G'El-VARI BlE
<GET-VARI BLE B>S
66
<GET-VARIABLE D,)$
IIIFA.LSE ()

Usin□ OD L. STs in this way so!ves ihc prob!ern m illionoo earlier r-00 . ,rding the llSe or ATOMs; th □ t of

MAK.lt~C AOL ES

U4
THE DL ?RIMER

variable conflrcts" By using ATOMs jn your own pr]v.at:e OBLIST, there is no danger of mistakenly
changing the va;rue of some-ol"le else's (er yaur own ...) ATON. Now, yo-u,- cah.::ulator user can use
variable names which are lhe same as those of your calcurator FUUCTIONs without rear of disaster.

To summarize. using OBLISls Is 1fa.st. ATOlils are f'ather lal'ge; about the same :size as an
association. Whereas the hashing table ror associations is a fixed siZle, ;he hashing table for an
OB LIST can b1e1 determined when the OB LIS T ls cr,eated . ATOl(s a.re m,ore versatile than associations,
and ,can be used in more WayS. Good MOL p·rogrammers, given the choice, wm use OBLI.STs 011er
associations.

1 3 .6. OBLISTs, READ, and PRINT

It was stated in section 4.1 Hiat typing GEORGE to MDL caused READ to "look. up the representation
[of GEORG.EJ" in a ''table it keep.s for such purposes '' It .should now b111 clea, that the " lable it
keeps"' ls, in fact, an OBLIST, and that it "l,ooks up the representation'' by using tne SUBR LOOK,UP.
You are now ready 10 understand what • . in ra.ct, READ does.

When READ encounters somethrng that it determines must be an ATOM (I.e. it can't be anything
else), it does LOOKUPS of the PNAME sequentla ly in all of the OBL !Sl's In • OB LIST {i.e. the LVAL of the,
AT

1

0M OBllST), [MOL. sets up ,OB LIST to be a LIST or 0BLISTs. Initially, . 0SLIST has two
OB L ISTs 1n it: the INITIAL OB LIST (user ATOMs) and the ROOT OB LIST (MDL 's AH)N$) . The ATONs
which poinl to, the F /'SUB Rs a.JI nve in ROOT.] The value of the first LOOKUP to succeed becomes the
value c 'f the call to READ. If the PNAME isn't found , an AJ,ON with that PNAME is INSERTed into (1
.OBLIST>.

H RE.AD (of ATOMs) were written in MDL, it might look Uke this:

<DEFIN,E RE D-AT10 (STR)
•DECL ((STR) STRt 6)
<:COND (<MA!PF <>

<FUNCTION (DBL "AUX'" ATN)
lfDECL ((OBL) OBLIST ,(ATM} <OR FALSE ATOM>)
<COND (<SET ATM <LOOKUP .STR .OBL>>

.OBLIST>)
<MAPLEAVE .ATM>)>>

(T <INS£RT .STR <l .OBLIST>))))

However, if an explicit trailer is given the AT,OM is placed in the OBL tST named in the trailer.
Trailers may be 'recursive'. For ex amp re, Ar - BI - CI -El! -E is an ATON w th PNAIME A which i:s in an
OBLISJ whose name is an ATOM with PHAME B whi,ct'l fs on an OBLlST whose name The ATOM with
PNAME E wi,I reside in one of 1.h0 OBLlSTs in • OD LIST. When PRI'NT attempts to print ~m ATOM of
this kind, i1 prints b"ai!ers unHI one of the OB LIST names can be roc.md on an O,DLIST in .OBLIST.

MAKI JG TABLES
SECTION l3.S

THE MDL PRIM~ 115

14. o ,ebugging MDL Programs - An Introduction

lf you ha.ve ever written a prog:ram which works oompleteiy correctly on the firs.t attempt,)IOU most
likely have benefited from dh1ine intervention. In the more likely event that or,e of your MOL p.rog.ra.ms
is "buggy", you will see messages which look li'ke this:

•ERROR"'
reason
In form a tion•ab out•error
function-whlc h .generated'~it
LISTENING-AT-LEVEL n PROCESS m

The Jnf.ormation-at:rnur-,error may be one o ·r more than one ob1e-ct. Then lsan indication of how many
ravels of errors h.ll.ve occuned, and m shoutd be comptetely ignored. It you ever see a number other
than 1 in that posUion, yol.ll pl'Obably don't need to be reading this.

The m•eaning of this gobbledygook is that. Ule MDL SUBR ERROR was invoked. This may have
trn.ppened rr"fJm an explicit call to ERROR, as r,n the following:

<ERROR YOU- LrOSE BECAUSE MY-FUNCTION:>

More likely, however-, lihe MDL ntetpreter- ~iscovered an r-ror in your program, such as e. variable
w ·thout a v.:iih.ae, or a bad argument to a func tion , and called ERROR internallry. The effect is the same:
•ERROR"' Is printed , followed by aH of the arguments to ER.R,QR., and MDL starts LISTENing at the next
higher levei. In other wol"ds, LISTEN has been calted r-ecursively.

In the remainder of thls chapter, we will be discussing the debugging of a particuiarly trivial e rcr in
a samp1e FUNCTI0111 . Please refer frequently to the fi,gure at t:he end of the chapter in which pa!l"I.S of
the example a.re diagrammed and commented. ·

fn order- to correct an error, tt ·s necessary to have some information about the history of MDL's
execution at the time oi the e-rro . To do this , the function FR& is caJlcd , U<Sually w ithout arguments.
Let us assume that the following FUNCTION ls being caUed as follows!

SEC TI.O~ 1•t .C DEB U G-G IN · M l)I. PROGflA,MS /'\H irHROOUCTiO N

116

<DEFINE GllO (ARG) <G? .AGR 10>>S
GT10
<6T10 ll>S
•ERROR•
UNB OUND-V R IA.B LIE
AGR.
LVAL
LISTENING-AT-LEVEL Z PROCESS t

D ERROR
1 LVAL
2 EVAL
3 EVAL
4 EVAL
6 LISTEN
TOPLEVEL

[UNBOUND-VARIABLEI-ERRORS AGR LVALJ
[AGR]
[.AGR]
[<G7 ,AiGR 101>]
[<GTlO 11)]
[]

Tl-IS: MOL PRIM fl

What is sho,wn here, one to a line, aire the FRAMEs which have been generated by MDL starting rrom
tie one called LISTEN, which is where MDL was wafUng when ~e F01RM <GT10 11> was input. The

lines above this one am the steps which MD took unnl the err,or ,o-ccurted, namely in the code ror
LVAL. Each line has a numb r by which the FRAME can be Identified, the FUINCT of the FRAME
(always an AT OM) . and tti e AR GS of the FRAME (always a TUPLE). For these purposes, a TUPLE can be
consid@red to be a VECTOR. Given a FRAME number. fh.e FR.AME can be ni.tfarenoed by invoking the
funcnon FRM, as roMows.:

<SET f <FRM 3>>S
,FRAME EVAL
<FUN·CT . F>S
EVAL
<ARGS • F>$
[<G? .A.GR 10>]

Having gotten thrs far, it has become obvious that tlhe problem is n1at #le runctlon GT10 Is incorrect,
in that Lh e i,e-Fe rence to A.GR was ntended to be a reference w A RG . Whact fol ows are some ways or
rhdng the problem. all of which wm work. Although l:h is is a bi-vial example of an error. as the problem
itself was easy to spot, the· me1hods cf ermr recovery a.ire always Ute same

14.1. M •ethod 1 :· Start Over

Edit the FUN CT ION with yeui:- favorite !.ext editor and reload it, refype it in to Mm_ directly, or
whateve . hen invoke the suun ERR ET with nQ 8.1'"guments. TMs will cause MDL to return to its "top

0 BUGGINCi M□L MOGR/1\M.$, AN !NTRODUC..TION ~T!Oti 1 .0

THE MCL PRIMER 1 7

level'', i.e. LISTENING- Al-LEVEL 1. All parts or the execution in progress ine<luding all . JO'M1 c
b ndings (except those made at "top level") will be lost.

<ERREl>$

LISTENING-AT LEVEL l PROCESS 1

14.2. Method 2: Forcing FR'AMEs to Return Values

It ~s pOS-sible to cause MDL to for.ca an arbitrary FRAME to return an arbitrary vaJue and to continue
e:.:ecution from that point, 1"his Is done by calling ERR ET with eittuir one or two arguments. The first
.argument is the valu for the FRAME to return , and me second, if given, is the FRAME which is to return
that value. If no second argument i.s given , the• FRAME imrnecHately pre'llious to the ERROR FRAME will
be used as a defauH.

<ERRET 9•>S
i!FALSE ()

What happened was that the LVAL. F'RAME (I.e. < FRM t> was caused to retum 91
• E.."lecution

oontinued, su:ch that the EV L FRAME above (.e. <FRM 3>) a1so returned 9 , and the next ftame
evaluated <G? 9 10>, whi.ch ,l"E!tumed an empty FALSE , which beca,Tle the value of the call to GTlO.
Notice that ·n this case, I.tie fact that· 11 was originally pass,@d to GllO has b8'Ccme unimportant .
Anothe,r way or doing the same th n g wou Id have been to say

<ERRET 9 <FRM 1.)>$
#FALSE 0 or
<ERRET 9 <FRM 2>>S·
W1FALSE ()

However saying

<ERRET 9 <FRM 3))$
9

has a different result. What hap·pened was that the FORM <G? • AGA 10> was 'forced to retum 9.
Since that fO•RM was the Ja.sl in the body of tih,e FUNCTION , tile resutl of ils evaiuatkm became t:11e
,result of th e e\l'aluation ol the FUNCTION. Therefore, GT10 re1umed 9.

S EC1'10N 14 1 Ui EUJGGlr G M [l rnoc.i:1 f. MS - fl IN TRO DUCTIOIII

118 THE MDL F'A!MER

14.3,. Method 3: Use EDIT to Repai 1r your FUNCT!ONs

rn the ta.st method, nothing has been done to c,orrect Ule r~al problem, i.e. that the prngrn.m has a
bug in it. One way to solve this is 1.0· use the MDL editor, a function caned ED IT to alter 1he program
itself. EDIT is usually invoked with the name of a FUNCT .ION to be edi1edl as the only argument. You
wil'I now be "talking'· to the MDL editor_ Commands to thei @dito.r should be terminated with an
escape, an.d are one or two characters followed by some arguments, which are usuaHy optional.
EDIT wrn display arter each command' your ourrent "location'' in the FUNCTION you a.re edl'ting_ To
move around, the comma.nds L (left), R (right) , U (up) , and D (down) are used. These may be romlowed
by a numerical arg~ment, d'le number of i:imeiS to pert,orm , he command. The arguments must be
preceded by a space. A vertical bar is used here to ind 'cate yaur "posltion" In the edUed FUNCTION.
In the rea f MDL ed ito.r, the "1Posmo n" may be ind icatsd by some other characters.

<EDIT GTl0>S
l!ilFUNCTION (I (ARG) <G'l .AGR 10>)
R 2$
~FUNCTION ({ARG) <G? .AGR 10) I)
L$
IIIFUNCTION ((A.RC) Ii <G? .AGR 10))

D$
<I G? ,A:GR 10)
DS
ERROR. YOU CAN'T GO DOWN
<I G? .AGR 10>
RS
<G? I .AGR lO>)

To alter the FUNCTION the follow-ng commands may be used: I (insert), K (k:111)., and ,c (change). In.sen
takes any number- of oblects as a.-guments and .inserts them all to the right of your "location''. Kill
takes an option~I numb-el" (de:fault 1) and removes that malilly objects from the -right of your "location".
ChaJ!'lg e takes one argument and changes u,e object ~o the right of your "1oca.ti on" to it.

<G? I .AGR 10>
C .AR6$
<G? I .ARG 1.0>

This hes had the effect of fixing the error in the pl"ogram. To exit the editor, use me Q command.

<G7 I • ARG 10>
OST

The Twas the retumed value of the call to EDIT. Now, a look at the FRAME:s using FR& shows the·
fol ow ng ;

['J OUGGING ~mt. PROGn.At,.m J\H rN'TROCUCTION SEC tON u .a

THE MOL. PRIMER

a, ERROR
1 LVAL
2. EVAL
3 EVAl
4 EVAl
6 LISTEN
TQ,p .EVEL

[UNBOUND~VARIAB LE I - ERRORS AGR LVAL]
[AGRJ ·
[.AGR]
[<G? .ARG iO)]
[<GT10 11>]
[J

119

Make sure you understand what has happened. The way the editor works for the case of the C
command is to PU'T the argument to C into the .strucwre. The FORMs contained in the ARGSs of
fRAMEs are slmply pointers dlrecUy into the FUNCTION being execut.ed. Thu..~. the Pl.IT into the FORM
will change the argument to the FRAME which points to i I Th s is extremely important , and is
mustrated In the diagram at the end of the chaspter. Think about thls very carefully if y0u don't
understa11d this, and then be sure you convince yourself of why the argument to <f'RM 2> has not
changed.

Now th at you have done this, it would be useful if you could tell MDL l.o go lback and retry <FR M 3>.
In fact you can , using the SUB R RETRY wh1ch takes a FRAME as an argument, and simply pretends
that nothing past that point in executio.n, has ever happened. This works complete.ly as long as the
execution below that point hasn ' t had any sid!e-erfec:ts. A MOL funcriori is said to have side-effects if it
does anything other than maniputate its local variables and return a value. Stated another way, at

function wfth no side-effects is a b1aCk•box with an input (arguments) ond an output (va ue), but no
effect or:i the 'outside wodd '. The most blatant sids-eUecting SUB Rs are PUT PUTRESf, SETG, and
PRINT. SETting ATOMs which are not bound in a ourren.tly executing FUNCTION also has side·eMects.
In a purist structured -prn'aJramming sense, no tunct,on should ha"e side-effects (with the obvious
exception of printing output) , However, lhe re are certainly cases In whi c il PUT, PUT R.ES T, and SE TG
are tremendc.usty useh.11, If not v.ltat care should be taken , howeveF, since many bugs can be. b"aced
to one lunction'.s cau•slng a side-effect which causes another funcrlon to ran.

<RETRY <FRMI 3>>$
T

,Question: Would

<RETRY < FRM 4))$

have the same effect? The answer Rs yes, because you are res arcing from an earlier level ct
ex:ecution. What would be the effect of RET.RYing <FRM 6>? Hint: It isn't a return or T. What would
be the eHeot or RETRYing <FR'M 2>? Hint: It isn't good. If you aren't completely sure at the answer to
these, try it in MDL

120

14.4. Method 4: AHering FRAMES/ RETRY

Let's try the roUowing, starting from the point of the ertor:

<SET X (1 <ARGS <FRN 3).:»>S
<G? .AGR 1Q>
<PUT • X Z •. ARG>S • "Why :the quote? N

<G? .ARG l0>
<RETRY <FRN a»s
T'

Tl-t MIJI. PFI rMER

We ha.ve done the same thing as we did using method 3, but trom a different angle. ,Question; What
does the FUNCTION GT 10 look ll'ke now? Htnt; Not the same. If you don't see tMs, you d dn't

n:del"Starid why editing the IFUNCT ION wo:rked either.

'14.5. Summary

We have presented four different ways of handling ert10rs In MDL. This list is not exhaustive, but it
should provide eno.ugh background to enable, yeiu to haod e most situations. If this cha,pter has been
totally conru:sing, ask someone for help and use method I in the meantime .• Notice thal method 2
doe,s nat prevent the same error from recurring: it merely corrects the coHent in.stance of that error.
Methods 3 and 4 corr ct the general problem and the current instance of the error generated by the
problem. However, even though the FUNCTION is changed in your MDL,, you still must altar i1 using
your ravorite editor at a later time (or write out an updated copy of lhe me directly rom MOL). The
change,s made while in MDL ar,e not reflected in your l"Hesl They will , however, allow you to p:roc,eed
without moving back mn::t forth constantly bat~n MOL and your editor.

MDL has many other debugging a fd',s Jncluding bre!l,kpoi11ts (fn EDIT), treeing, monitoring the,
varues or local and g obal variabl~, and more. For a, detailed descripfon of these faciJities. o,msuU
The MDL Programming cn'vironment [Lebling 80).

D OUC',G ING MOL MOGFIAM,S • AN INfRODUCTIOt~ SECTIOl,I 14 .4

TH MCI.. PALMER

Selected FRAMEs durlrig e;recutio11 cf GTUI' as descr[bed In the texr. Note that
the FRAMES rmmJ; dir,eethi: a.t tlie struc~ure of GT'IO (e,g . he FORM in FRM3 Is
• =? to ~B se=cond element at the FUNCTION),.

,.,_ ______ ___. FRM

FORM 3

..,.
{.
~ FFIM

_A_T_O_M_' --I---. I

.A.GR

•• ERROR'"
FRA.ME

FRM
0

I LI ST : J • 1--Fo_ R_M____.__o_, _

L...,~ _A_T_M_· _o_ l
I ARG .

------_-_-_ ... --4-_
""I A_T_O_M_G..._1'_::::::1-·· s.,_'F_O_R_M ____ ___.

Th,e dotted airow and cross Indicate, the stauai, of po nters ~
Lh FUN CT ION has been ediled. N:oti ce thal < F~ H z> stil~
points toruift, even though <,FRM a> point~ to <G? _.A.B!i

a>-

Flgu re 14-1: Dia,gram for the example in this ,chapter

121

FIX 0

10

122
THE MOI. ~F=IIMER

References
{G'ailey 79J _

S. W. GaHey and Greg Pfister.
The MDL P.rogrammtng Language.
M. I. T. Lab oratory .for- Com,pufer Science, 1979.

(LebJing nJ
P. Da.\lla Lebl ng, R. V. Baron and Bruce K . Daniels.
RMODE: A Real-rime fidlt Fac/J;ty.

TechnicaJ Report· SYS.04.07-1 , Mff LCS Programming Technology Division, October, 19n.

(ebHng OOJ

P. David Lebling,.
The MDL Programming Environment.
MJ.T . Laboratory for Computer Science, 1980.

[Pfister 72]
Grng Pfister.
A Muddle Primer.

Technical Report SYS.11.01 , Mff Prnject Mac DM/OGS, May, 1972.

(SfaHman 79J
Rlchard M. Stat,man.
EMACS.
Ml r A I Laboratory 1979.

[Weinreb 78]

Dan el Weinreb and David Moon.
llSfJ Machine Manual.
Mff Al Laboratory, 1978.

123

t $4
I'S 8
1- 112
I[-58
I $9.891
I] 58

$ 7,98, 108

• 38. 63.tsr

(11

) 11

.. 24

• 21

- 24

:112

o, :2S

1't 2S

< 11

... , :,!$. 41
1 41

> n

ADS 24
ACTIVATION 78
Pt.G,llN 77
AND 59. 72, 80
1,mn 1 0

Index

~AIRGS 9 89
tl.SCU 60
A$$ IGMre:ot "'3, S8
ATAN N,31
ATON1 m, 85, 99
RAux~ 001 101

IIACI(S7,00
Binding 29, 77

Cfl,.NLIST nu
CHANN L 100, 101
CHARACTER 35.58.61.99
CHTVPE 313
CLOSE 101
• 21
COl'iD 70
cos 24,31
C!:RLF 00·

DECL 91. 9S
DEflNE 89
• 22

EDIT 118
l,MP IY? 43, 66

f 41
•f ~- 41

5qualil)' 41

ERRIET 9 , ns. 117
Eli!ROR 9, 'IHi
EVAl!. 1 S. 23, 45, 65, 57, 89
t 54
n 59
,- 119
IS 8
I(iS8
IJ ~
UP ~4-,31

Fatse 14, 2,5

FA.LSE ~.37.S:3
~IL£-E~ISTS? 101
ULIE-U:fl!CT" 107
FIX 11 . i6. 17, 24, 26. 35
FLOAO aA'. 106

THE MDL l"RIMER

HOA f n , 113L 17, 24 ,. 26, :15
f01tM 12, 35

24

fR& 9,115
FRAME 116
fRANl:S 9
Fr&e variabl!Mi SO, QO

FSUl!IR 23, 69, 70, 89
FIJNCTlO!I 27, 7D

G•? 25
67 25
Garbage 83
GASSIGNEOt al-, 110
GHIP~O:P 111
G:IJIP.SSIGII "110
GVAl. 21 , 31

ILIST $2'
INCHAN 10•1
HIT 84
INS!:Rli 112
ISTRIMll 62'
l.te:ratl0<1 88
ITS 8
IV CTIIR 62

L•f 25
L'l' 25,
L!ENG'RI 4S, 66
UNGnt'f ;51, 68
Usp 1
LIST 12, ss. ~1 • .w,m
LISTEN 115,
LOG 24, 31
11..00KUP U2
LPARS!E 100
Ii.VAL 22, 29

MAPF 79, 84
MAP L!U.VE 00
IU.PR 83,84
MPJIEif 81
MAPSTOP B2
MAX :2A
MDL 1
MEM!IIER 62', 66
MEN(! 62,66
MIM 24
M:OllUSl 112
MOD 24
litUOOLE 34
•MUDDLE. 11111'1'" 34

N,..7, 26
~Nu[• 78
NIElllll"Y'PE 38. 65. 83
NE"XKHR 98,
JJIOT ,fi9
,JITlt ~!!i. !12, 66

OBILIST 9~l'. 1 12, 11
0 PEM 100. 107
OPTIONAL 88
OR 70. 72
ORf 70
OUTCliAJI 101

PARS'E 105
• 22
PNME 19. l14
PHUIT :l'}.

Predlcalns 25
Pirmi x Notalicm 13
Prelty Pt'!,,; Ing 33
PJIIMTI'PE a5, 1. '~
PRJ,IU. W., 108
Pl!;lll'C 00•. 108
P.RIKT 15, 17, 99,, 108,
PRIH,l'STRDG UM
PR()G, 77
POT 4$, S2, ~
PUTP,80P 111
PUTR£ST _.7, 66

RMIDON 25
RUD 15, 16, 98, U4
llUOCHM 88. 108
R•E'.1\C.STRltil li 103
Recursion 7'4, 00
REMOVE 112
ROiANE 107
REPEAT 78
Rt.SET 107
REST 45.till
RESTORE 1:00
JIETRV 119
Rl!l'UR■ 77, 78
Aubout e, 98 •

SAVE 105
SE6NElll1" 53, 66,
SE"li 21, 29
SETG 20. 29
SIii 24,~1
S..,_.E 100,
:SIDI 100
SQRT 24.~
SI llr& 35,59, 613, 981
S R 23
Subt"ou ne :29

T 2S
T- &34
TO 107
TO 57,66
Top&-20 8 M
Tn!IToir 113
Ttue 25

THE MDL. PP:IMER

Truth 14

MfUPt.E'" -
T'fl 108
TYP,E 11, 115, 36
liYPE? 38
lYP EfR1M 311

UNP.11.liSE 1106
untPE $9
UVEC roa $8. 813

VE(:l'OR 12. 35, $4.. tii13

WRD 3S

Zerk. 74

[11

\. 99

] 11

't@ 8, 90
d) 8.98
ffi, 8
\IL 8, SB
~8
1"$ 8. 51

(11

} 11

