The MDL Programming Environment

P. David Lebling

May, 1980

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

1. Overview of the MDL Programming'Environment

‘The MDIL. Programming Environment

Table of Contents

2. The Package System

2.1
A

2.3.

The Theory of Lexical Blocking in MDL
Package System Overview
2.2.1. Sample PACKAGE
PACKAGE

2.3.1. ENTRY

232. USE

2.3.3. USE-DATUM

2.3.4. DROP and | -UNUSE
2.3.5. ENDPACKAGE

2.3.6. PACKAGL: Restrictions
2.3.7. ENTRY Name Conflicts

3. Program Wriling and Debugging Aids

3l

32

3.3.

Pretty-Printing
L.L1. PPRINT Control Switches
3.1.2. Lower-level Pretty Printing
3.1.3. Ampersand Printing
J.1.4. Examining the Stack
‘The MDI. Editor
3.2.1. "T'he Edit "LISTEN Loop’
3.2.1.1. ‘I'he Reader
3.2.1.2. The Ampersand Printer
3.2.2. Edit Commands
3.2.2.1. General
3.2.2.2. General Commands
3.2.2.3. Movement Commands
3.2.2.4. Printing Commands
3.2.25. Editing Commands
3.2.2,6. Macro Facility
3.22.7. Cursors
3.2.28. Breakpoints
3.22.9. Edit Monitors
3.2.2.10. User-defined Iidit Commands
3.2.3. Examplecs
3.2.3.1. Simple Editing
32.3.2. X and G Commands
3.2.3.3. Unconditional Breakpoints
3.2.34. Conditional Breakpoints
324, lidit Command Summary
Debugging and the Interpreter

Table of Contents

10
11
11
12
13
13
13
13
14
14

15

15
16
17
18
18
19

21
21
21

23
24
25
27

29

31
31
3l
32
33

36
37

34, Loading and Dumping
3.5. The One-step Debugger
3.5.1. MDI. Debugger Command Summary
3.53.2. MDL. Debugger Special Features
3.6. Execution Tracing
3.6.1. Using TRACE
3.6.2. Understanding TRACE
3.7. Monitors
3.7.1. Monitor Internals
3.7.2. Creating MONITORs
3.7.3. Monitor Fvents
3.74. Killing Monitors
3.7.5. Other Monitor Routines
3.7.6. What You Can't Do with Monitors
3.8. FINDATOM
3.9. "PINFO"
3.10. Debugging in a Run-time Environment
3.10.1. DFL
3.10.2. RDFL
3.10.3. UN-DFL
3.104. UNLINK
3.11. CRITIC
3.1L.1. Global problems with the Group
3.1L.2. Parameuer list problems
3.11.3. Unused ATOMs
3.114. Function calling errors
3.1L5. SPECIAL/UNSPECIAL problems
3.1L6. DECLing problems
3.1L7. Miscellaneous
3.12. Program Environments

- The Library System

4.1. Program Libraries
4.1.1. Library Searching
4.1.2. Dynamic [.oading
4.1.3. USE-DEFER
4.14. USE-TOTAL
4.1.5. Translations
4.1.6. 'The Library Data File
4.1.7. Run-time Switches
4.1.8. Library Utility Functions
4.1.9. Internal Library Functions
4.1.10. Library Maintenance
4.2. The Purc-mapping Library
4.2.1. The Demon

Table of Contents

‘The MDL Programming Environment

o
e

i

4.2.2. Uscr Programs
42.2.1. Listing Functions
4.2.2.2. Find Functions
4.2.2.3. Other Functions
42.3. Using DBMAIN
4.2.4. Garbage Collection
4.2.5. Internal Structure

5. The Compiler

5L

%2

5.3.

Interfacing to the Compiler
5.1.1. Compiler Functions
5.1.2. Compiler Switches
COMBAT
5.2.1. Uscr interface
5.2.1.1. Symbuolic input
5.2.1.2. File names
5.2.1.3. Text
5.2.2. Combat Qucstions
5.2.3. Requesting Compilations
5.24. 'How 1o Run’ Options
3.2.5. User lailoring
5.2.5.1. Tailor files
5.2.5.2. Crealc type
5.2.5.3. Print type
5.25.4. Delete type
5.2.5.5. Alter type
5.2.5.6. l.oad wilor, Replace tailor
5.2.5.7. Xcrox tailor
The Compiler (Internals)
5.3.1. How it Works
5.3.1.1. COMPILE and COMPILE-GROUP
5.3.2. Modcling Pass
5.3.3. Analysis Pass
5.34. "The Type Analysis Model
5.3.5. life-and-I)ecath Analysis
5.3.6. 'Ihe Variable Allocation Pass
5.3.7. 'Ihe Code Generation Pass

6. Making It Run Faster

6.1.

6.2.
6.3.
6.4

GIL.UE

6.1.1. How to Glue

6.1.2. GI.UE as a Program
Glue Bits

PDUMP

SUBRFY

Table of Contents

I'he MDL Programming Environment

v ’ The MDL. Programming Environment

6.5. Purification 107
6.5.1. Purifying RSUBRs 108

6.5.2. Purifying an Environment: 109

6.5.3. Purification Summary ' 110

6.6. TEMPLATEs 110
6.6.1. Usc of TEMPLATEs 111

6.6.2. Asscinbly of TEMPLATEs 113

7. The Assembler 115
1.1. The Assembler 115
1.1.1. General Organization 115

7.1.2. The Assembler as a Program 116

T.1.3. Format of Assembler's Source 116

L.L4. Instruction Asscmbly 116

T.LS. Initial Symbols 117

7.1.6. Macro Writing 117

7.1.7. Pscudo Operations 118

7.L.8. The T'ype RSUBR 120

7.1.9. Writing Gluable RSUBRs 121

7.2. Debugging Binary Code 121
7.3. Unassembling Binary Code 122

8. Informational Aids 125
8.1. File Comparison and Checking with MUDCOM 125
8.2. The MDI. Listing Program MAT 126
8.2.1. MAT Switches 127

8.2.2. Subtitles 128

8.2.3. MAT Definition 128

8.2.4. MAT Record Files 131

8.3. The MDL-IPC Device Interface MUDINQ 131
Index 135

Table of Contents

‘The MDL. Programming Environment - !

INTRODUCTION

The Mui. language is described in “The Mll)!_ Programming |.anguage” [3]. but in addition w the language
itself, there is a rich and varied collection of software written in the language which facilitates the writing of
programs and systems of programs in MDIL., The information describing this programming environment has
been contained in various documents, some out of print or out of date, and in supplemental disk files
describing changes and additions. Some of the packages of functions used to deal with MDI. code have never

been formally documented. This manual brings together some of that scattered documentation.

The document’s purpose is to flesh out the description of the language contained in “Ihe MbL
Programming language.” giving a fuller description of the program writing and debugging aids available to
MDL. users, to describe the methods for producing code usable by others, to describe the M compiler and

the many other techniques for producing and speeding up MDI. object code.

‘The imagined reader of this document is someone who has read “The MDI. Programming |.anguage,” and
now Proposes to write programs in MDI, possibly even very large programs. M. packages that he would
find useful in the process of doing so are documented here: editors, debuggers, ete. Packages that he might

wish to use within his program arc not included: data-management systems, commuand interpreters, etc.

This document is of necessity highly self-referent, as many of the components of the MDI. programming
environment refer to cach other and adhere to the same conventions. Additionally, this document assumes

that the reader is familiar with the language itself (at least to some degree) and with the 'S, TENEX, or
TOPS-20 operating systems.

INTRODUCTION

o | |

Phe MDIL. Prograimming Envirenment

ACKNOWLEDGMENTS

The ML Programming Fnvironment 3

ACKNOWLEDGMENTS

The programs described in this document are the products of many man-ycars of effort by many people.

Must have been “touched” by several programmers, added to and improved over the years.

Some of the people responsible for the programs mentioned 'Ln this document arc: Chris Reeve (MD1, the
compiler. GLUE): Brian Berkowitz (M1, the compiler, TEMPLATE, SUBRFY): Bruce Danicls (MDI, the
compiler. PACKAGE, PPRINT. DEBUGR. ASSEM): Tim Anderson (PACKAGE, the Library. FINDATOM, DFL,
CoMBaT, Mubing): Nchl Ryan (EDIT, PDUME, the IPC interface); Mare Blank (MAT, MUIDCOM, MONITR,
CoMpat, EDIT. CURSOR): David |.chling tCHI.TIC. EDIT): Michael Broos (the Library): Roger Banks
(TRACE): Greg Phster (PPRINT): Joel Berer (EDIT).

(Muost of the documentation subsumed in this numual is from published and unpublished memos of the
Programming Technology Division of the M.LT, Laboratory for Computer Scicnce. As a general rule,
updates and revisions to this and other PI'D documents concerning M1 are available online in the directory
"MUDMAN" at MI'T-1DMS).

ACKNOWI.EDGMENTS

the MDI. Programming Environment

NOTATION

‘The MDI. Programming Environment 3

NOTATION

Anything which is written in the MDIJanguage or which is typed on a computer console appears herein in
a typewriter font, as in PPRINT. A metasyntactic variable -- something to be replaced in actual use by
something clse -- appears as channel. in an italic font. Where a meta-syntactic variable is being used to denote

a reguired argument to some function, it appears as before, but underlined, as channel.

In the argument templates of M functions, the individual arguments are often given in the form
argemeniziype, where argionent is a ‘descriptive’ name for the argument, and fype is its MDI type (or range of
types). In such cises. the type” bonlean indicates an arguiment that is only examined for truth or Galsity, and

not for any of its other qualities. Such arguments in M3, arc ofien declared *¢OR ATOM FALSE>".

Finally, Mle names are given as though for the I'TS vperating system:
device: sname; fuml fam2
The analogous specification for TENEX or T0PS-20 would be
device : sname> fuml . fumd
Note that in the TENEX/Z1'0PS-20 version of Mbi, the fum2 (which may include the generation number,
protection and acce -t fields) is by default "MUD™ as opposed o "> " for the I'TS version,

NOTATION

L0

Ihe MBI Programming Fnvironment

e ———

=1

The MDI. Programming Environment

1. Overview of the MDL Programming
Environment

The parts of the MDI. programming cnviromment described in this document are primarily those dealing
with the writing, debugging, sharing, and maintenance of code and programs written in M. Most of the
packages described herein are written in MDI themselves: some are assembly language programs uscful to

MDI programmers,

The document is divided into chapters dealing with the major issucs facing the novice (or even the

experienced) M1 programmer.

- “I'he Puckage System’ introduces the standard mechanism for lexical blocking and therefore,
sharing of Mni. code. Understanding its usc is fundamental to writing MDI. programs.

= ‘Program Writing and Debugging Aids’ is the largest chapter. It covers mechanisms for loading,
dumping, cditing. and debugging MDi. code. whether interpreted or compiled. in a development
or a production environment.

= “I'he Library System” discusses the usage of libraries of MDI. programs.

— “T'he Compiler” includes the specifics of interaction with the MpI. compiler, as well as an overview
of the theory behind its operation.

- ‘Making It Run Faster' covers the various methods for speeding up “production” MDI, code by
remuoving mediated calls and compacting data structures.

— “The Assembler’ documents the Mbi. assembler and some methods of debugging binary code.

— ‘Informational Aids’ discusscs a few programs, most written in assembly language rather than
Mni, which are useful to the MDI. programmer.

10

The M1, Programming Environment

The MDI. Programming Environment 9

2. The Package Sysiem
The portion of the MDL environment which provides a uniform facility for lexical blocking is known as the
Package Systemn. In one sense it is the most basic part of the environment, since it enables many programmers

o use cach other’s code without identifier conflicts.

In addition, the Package System is interfaced to a library fadlty (see section 4) by which MDIL. code may
be stored and later loaded as needed.

The Package System is su basic o use of the MDL environment that (with a few cxceptions) every

subsystem or family of MDIL functions described in this document is a *package’.

2.1. The Theory of Lexical Blocking in MDL
I.exical blocking is implemented in MDI by mcans of OBLISTs and L1STs of OBLISTs. Changes of
lexical eontext are performed using the SUBRs BLOCK and ENDBLOCK. The Puackage System provides a

high-level interface to these low-level constructs.

The primary goal of a lexical blocking scheme is the prevention of identifier conflicts, Specifically, when
your program references the variable X, it should be your X wnd not that of some other program. At the same
time, it should not be necessary for a programmer to scarch every program previously written to verify that an

identifier he wishes to use is not already “taken’.

It should be clear that the simplest solution, a single OBLIST, will not satisfy cither of these goals. With
unly one OBLIST there would necessarily be identifier conflicts. necessitating exhaustive scarching for unique

identifiers,

Obviously, programmers could put their program’s identificrs on an OBLIST unique to that program.
Unfortunately, such a solution addresses only half the problem. What happens when some other programmer
wishcs to use some of this code? He could insert the unique OBLIST for that program into the OBLIST path
for his program: but the mument that is done he gets all the identifiers for that program, including local

viriables, internal data structures, and so on.

Conseguently, we move to a situation where cach program uses two OBLISTs: onc for the identifiers that
are local w the program, and one for the identifiers that are to be used by other programs. In the Package

System, these are known as the ‘internal’ 0BLIST and the ‘entry’ OBLIST.
Most of the identifiers in a program arc local (o it, and want w be placed on the internal 0BLIST.

20

i0) ‘The MII. Programming Environment

Merefore, in terms of an argument to the BLOCK SUBR, when a program is being lvaded into M, the
0OBLIST path wanis to be:

{ internal-oblist
entry-oblist
<ROOT>)

With this OBLIST path, most ATOMs (identifiers) will be on the internal OBLIST (as READ puts unknown
identifiers on <1 ,0BLIST>), but the ATOMs for the entrics and the ATOMs for the usual SUBRs will be
available.

“The only issue yet to be addressed is that of using an entry of a different program in your program, This is
accomplished by adding the entry 0BLISTs of any such programs to the path after ROOT:

(internal-oblist
entry-oblist
<ROOT>
uther-program-entry-oblist
yet-another-program-entry-oblist

As only the entry OBLIST, and not the internal OBLIST, of the program being used is added to the path,

the chance of identifier conflict is lessened.

All that remains is to introduce the functions by which these various operations are performed.

2.2. Package System Overview
The functions which make up the Package System are: '

— PACKAGE. This indicates the start of a package of functions.
— ENDPACKAGE. This indicates the end of the package of functions.

— ENTRY. This indicates an ATOM which is to be made available outside the definition of this
package of functions. All other ATOMs will not be directly available outside the package.

— USE. This indicates a reference by name to another package of functions.
— USE-DATUM. This indicates a reference by name Lo a data set

— DROP and L-UNUSE. These undo the cffects of USE and USE-DATUM,

These functions are themselves part of a package named "PKG", which is preloaded into MDL.

The Theory of Lexical Blocking in MDL 21

e ML, Programming Environment 11

2.2.1. Sample PACKAGE
A sample M1 PACKAGE is given with comments in order to demonstrate the usage of these functions.
<PACKAGE "HOUR-STRING"> '

;"PACKAGE begins the package called HOUR-STRING."
<ENTRY TIME-STRING>

:"The atom TIME-STRING is an entry to this package;
it may be referenced by other packages by
USEing HOUR-STRING."

<USE "DATIME">

:"Indicate that the package DATIME is
used within the current package."

<DEFINE TIME-STRING ()
{STRING <UNPARSE <HOURS>> " o'clock">>

;"Define this little function which returns a string
telling the last hour in a strange format.”

<DEFINE HOURS () <1 <RTIME>>>

:"Define an internal function which is available
only within the HOUR-STRING package, since its
name is not in any ENTRY statement.

Note that this function refers to RTIME,

which is an ENTRY in the DATIME package."

<ENDPACKAGE>

:"The end of this 1ittle demonstration package."

2.3. PACKAGE
This function delimits the beginning of a package of functions. It takes one required argument, a STRING,
which is the name of the package. 'This STRING uniguely identifics the package within a library of packages

{sce section 4).

In a PACKAGE those ATOMs which are specified as entrics live in a separate OBLIST of their own, called
the entry OBLIST. The ATOM naming this OBLIST is on the PACKAGE OBLIST and has the same name as
the PACKAGE itself. “Thus. an emtrv. X" of a PACKAGE 'Y' would have as its ‘Tull-trailer’ name:
X!-Y!-PACKAGE!- .

PACKAGE blocks (sets up) the current OBLIST path so that the ATOMs which are internal to the PACKAGE

12 Package System Overview

12 I'he ML, Programming Environment

full intw an OBLIST which is not otherwise used. The ATOM naning this OBLIST is un the entry OBLIST of
the PACKAGE. and is by default given a name created by putting the character ‘1 at the beginning of the
PACKAGE's name. An internal ATOM “I' in the PACKAGE ‘Y" previously mentioned would have as its
full-trailer’ name: 2! -1Y!-Y!-PACKAGE! - .

PACKAGE also keeps track of the fact that the particulur PACKARE numed hus been defined in this MDL
prucess, by putting its nmne on the PACKAGE OBLIST.
PACKAGE name:siring

iname:siring
size:fix
isizezfix>
PACKAGE takes three optional arguments in addition to the required une (the optional arguments are
ignored if name is already o PACKAGE):

meone is the name of the internal OBLIST of the PACKAGE : by default it is the name of the PACKAGE with
the letter *[” prefixed.

size is the number of buckets in the entry ublist: by default 19,

isize is the number of buckets in the internal oblist: by default 23.

In addition to PACKAGE, there exists the obsolete function RPACKAGE. documented here only because
some programs still use it. “The difference between them is that the entry OBLIST for an RPACKAGE is the
ROOT OBLIST. The implication of inserting an entry into the ROOT is that this requires that the name of the
entry be unique over all PACKAGES, because the entry is, in effect, being promoted to the status of a SUBR. [t
is (in rarc cases) useful to do this, but the correct way is with the function RENTRY (see section 2.3.1).

2.3.1. ENTRY
The ENTRY function applied to onc or more ATOMs declares that these ATOMs are to be put into the
OBLIST reserved for entries in this particular PACKAGE. Only ATOMs declarced in this way will be accessible

(in the normal course of events) o functions oulside this PACKAGE.

Itis possible w place some entrics of a PACKAGE on the ROOT OBLIST using the function RENTRY. Itis
recommended that instead of using RPACKAGE in those rarc cases where entrics must go on the ROOT,
RENTRY be uscd instcad.

All ENTRY statements should appear immediately after the PACKAGE or RPACKAGE statement. Note:
never put a USE statement before the ENTRY statements; if you do. you may get the ERROR message

PACKAGE 23

The MDI. Programming Environment 13

ALREADY-USED-ELSEWHERE, mcaning that the name of an entry is conflicting with an ENTRY in one of the
PACKAGEs you USEd. ENTRY will also give an ERROR if it is used outside the body uf a PACKAGE.

2.3.2. USE

This function takes as arguments one or more STRINGs which arc the names (as given to PACKAGE) of
other PACKAGEs. EXTERNAL is a synonym of USE. USE causes the entry OBLISTs of the PACKAGEs named
to be spliced into the current OBLIST path. Thus, references o entries of those PACKAGES may be made
after the USE, until the next ENDPACKAGE (or the next DROP or L-UNUSE if USE is being invoked outside a
PACKAGE to load a file),

USE is consequently the mechanism for sharing code. If the PACKAGE being used is already loaded, its
entries are made available; il nol the PACKAGE is loaded first (see section 4.1 for details on how this is

accomplished).

2.3.3. USE-DATUM

USE-DATUM requires onc STRING argument, the name of a data set. If the data sct is not loaded,
USE-DATUM loads it and creates an ATOM of the same name, on the USE-DATUM OBLIST, whose GVAL is the
data set. USE-DATUM always EVALS to the data set named. regardiess of whether it had to be loaded or not.

2.3.4. DROP and L-UNUSE
These functions take the same arguments as USE and USE-DATUM and undo their effects.

DROP simply splices the named PACKAGEs out of the current OBLIST path. A USE of a DROPped
PACKAGE will not reload the PACKAGE but simply splice it back into the OBLIST path.

L-UNUSE splices the PACKAGE out and removes its name from the PACKAGE OBLIST, which will cause
the entire PACKAGE to be reloaded if it is USEd again. L-UNUSE of a data sct will remove its ATOM from the
USE-DATUM OBLIST.

2.3.5. ENDPACKAGE
The ENDPACKAGE function of no arguments terminales the definition of the current PACKAGE and

undoes the lexical blocking done by the PACKAGE function. The ENDPACKAGE statement should be the last

onc in the file.

23 PACKAGE

14 The MDI. Programming Environment

2.3.6. PACKAGE Restrictions
There arc some restrictions on what the user may do inside a PACKAGE. These arc enforced by the Library

Systein when the user attempts to submit a PACKAGE to a library.

A PACKAGE should not FLOAD or LOAD any file to obtain parts of itself. All such environment setup
should be dune with USE and USE-DATUM.

A PACKAGE may not reference any ATOM whose OBLIST path goes through the INITIAL OBLIST. All
of a PACKAGE's non-entry ATOMs should fall naturally into the PACKAGE's internal OBLIST.

As mentivned before, the RENTRYs of a PACKAGE have the same OBLIST status as SUBRs, i.c.. they must
be unigue among both all SUBRs and all PACKAGE cntries.

2.3.7. ENTRY Name Conflicts

It is possible to have two or more PACKAGEs (not RPACKAGESs) which have entries (not RENTRYs) with the
same PNAME. [If the user nceds both PACKAGEs at the same time. he may USE them both and refer to the
ambiguous entrics by their “full trailer’ names. All of the non-ambiguous entrics in both PACKAGEs may still
be referenced by PNAMF only.

PACKAGE 23

e MDI. Programming Environment 15

3. Program Writing and Debugging Aids

This chapter concentrates on editing and debugging aids for MDI programming. "The basis for editing and
debugging in MDL is twofold: First MDL is an interpreter, which permits interactive testing and debugging
uf software, Secondly, MDI. programs (even compiled MDI. programs) are structures and therefore may be

minipulated by other M. programs.,

Packages uscful in editing and debugging range from EDIT and PPRINT, which are preloaded, and which
form the core of most editing or debugging systems, o more sophisticated aids such as DEBUGR and TRACE,

which are more powerful, and uscful for more complicated debugging.

It should be noted that, in addition to the editors discussed below, RMODE [5] and EMACS [2]. Ti:CO based

text editors, understand much of the syntax and many of the conventions of M1 programs.

3.1. Preity-Printing

The purpose of pretty printing is o clarify the structure of Ml objects by printing them in a more
human-readable format than that provided by the SUBRs PRINT, PRINI, ctc. Objects ure pretty-printed
through the judicious insertion of spaces, tabs, and new-lines between okens. Pretty-printed objects are
readable by the M1 Reader. Pretty printing is an aid to understanding and debugging M1 FUNCT IONs or
other objects. You will probably find pretty printing to be extremely helpful, especially if vou are working
without a listing or with an old listing. In fact, pretty-printing is one way to make a new pretty listing after
cditing. PPRINT is pre-loaded in most initial MDIs. “The name of the package contiining PPRINT is "PP".

{PPRINT gny channel;

pretity-prints any on channel. The second argument is optional, by default .QUTCHAN . If any is an ATOM,
PPRINT will cnclose it in an application of DEFINE, DEFMAC, SETG, or SET, as scems appropriate.
COMMENTs found inside any are right-justified. PPRINT cannot output an RSUBR without F IXUPs (that is,
one that was READ in while KEEP-FIXUPS (see scction 3.4) had no LVAL or had a FALSE LVAL); it will
give the ERROR message CAN-NOT-BE-DUMPED. PPRINT rcturns , NULL, which is an ATOM whose PNAME
is a single rubout, invisible on normal consoles,

<PPRINF jn:string-or-atom-orlist outfile:string
widih:fix eval?:boolean®

pretty-prints all the contents of in into outfile.

If inis an ATOM or a LIST of ATOMs, its VALUE(s) arc the objects to be PPRINTed. In this case, vutfile is
by default a file whose first name is produced by taking the PNAME of in (or in's first clement, if inisa LIST).

30

16 ' Ihe MDI. Programming Environment

If in is a STRING, if specifics a file containing objects to PPRINT. In this case, vulfile is by default
TPL:™

width is the maximum width of output lines (although output lines are prevented from being extremely

lung); itis optional, by default €13 ,0UTCHAN>.

eval? 1ells PPRINF whether or not to EVAL everything in the file; it is optional, by default a FALSE (don't

EVAL). evul?is meaningless if in is nota STRING.

PPRINF returns cither "DONE™ or a FALSE if it couldnt vpen infile or vutfile. PPRINF insecrts page
houndaries in eutfile, between objects. every 60 lines or fewer: you may want to move these afterward to more
logical plices. PPRINF binds KEEP-FIXUPS and REDEFINE to T, and QUICKPRINT (scc below) to a
FALSE.

3.1.1. PPRINT Control Switches

PPRINT's output is affected by the local values of several ATOMs. Each value is examined only for truth,
.QUICKPRINT

If this ATOM's LVAL is a FALSE, you arc in slow mode; otherwise (including the case of no LVAL), you are in
fust mode. The behavioral difference is this: in fast mode, there may be COMMENTs in the pretty-printed
object(s) which PPRINT misses. Also. fast mode is indeed faster than slow mode. Fast mode is the default,
that is, QUICKPRINT is initially true. The modes are really distinguished by the depth of recursion to which
PPRINT resorts. In slow mode, it recurses all the way down to every monad in the thing pretty-printed; in

fast maode, it goes down only far enough to find something that will fit on a line,
. LOOKAHEAD

PPRINT uscs full recursive lookahead to avoid packing things against the right margin and, as a result, not
being able to fit things within the right margin. The lookahead results in very good formatting of
deeply-nested MAPFed and FUNCT IONs: all but the most bizarre cases should be very legible. However, it
can result in noticcable *pauses’ in the printing operation and, in some cases, a net speed slightly less than with
limited lookahead. Since this can be a disadvantage when using PPRINT interactively on a heavily-loaded
system, the lookahead can be disabled: if the LVAL of LOOKAHEAD is a FALSE, no lookahcad will be

performed; otherwise it happens, LOOKAHEAD is initially true, that is, lookahead happens by default
.VERTICAL : '

If LOOKAHEAD is a FALSE, the formatting can cause oo many objects to be squeezed against the right
margin. S0 that particular cascs can be made legible, the format when lookahead is not in use can be
manually set: if the LVAL of VERT ICAL is non-FALSE, PPRINT will indent very little whenever indenting is

Pretty-Printing 31

‘The M DI Programming nvironment 3 17

called for. (VERTICAL being true means a ‘'more vertical’ formal.) VERTICAL is initially FALSE . The value
of VERTICAL is ignored when LOOKAHEAD is true; the lookahead effectively chooses different values for
VERT ICAL for different parts of the object pretty-printed.

3.1.2. Lower-level Pretty Printing
It is sometimes desirable to use some of the functions that PPRINT uscs, but in a different way.' For

example, a specialized pretty-printer for Program Abstracts would want to insert indented field names into
the output and pretty-print field values with the same indentation. ‘The names of lower-level pretty-print
functions are included in the ROOT OBLIST for such purposes.

<EPRINT gny lefi-margin:fix>
pretiy-prints any on . OUTCHAN to the right of left-murgin. ‘The second argument is optional, by default
<VALUE LEFT-MARGIN> (scc below).

CEPRIN1 any lefi-margin:fix>
CPRIN1 isto EPRINT as PRIN1 isto PRINT.

LLEFT-MARGIN
T'his is the ATOM that EPRINT binds to its second argument. You can SET it outside calls to EPRINT in order
o make a permanent left margin. Its initial LVAL is 0.

CINDENT-TO colummn:fix channel>

outputs tubs and/or spaces Lo advance the output column (<14 channel>) to colwmn. if it is not already past.

<COLPP any
channel
lefi-margin:fix
right-margin:fix>

preity-prints any on channel (by default .OUTCHAN) between the margins leff-margin (by default
<14 channel> the current column) and right-margin (by default <13 channel>, the rightmost column). All
arguments but the first are optional. COLPP returns NULL. For cxample,
<COLPP any .OQUTCHAN 10 70> would leavc a I0-character margin at left and right on an 80-column
OUTCHAN. Also,

<PROG () <PRINT AAAAAAARAAAARAAA> <COLPP ,FOO>>

would result in vutput like

AARAAAAAAAAARAA #FUNCTION ((X GGGGGGGGGGGGGGGGGGGGGE)
G+ X 1)

EPRINT, EPRINI, and COLPP arc affected by the truth of .QUICKPRINT, .LOOKAHEAD, and
.VERTICAL.

3l Pretty-Printing

13 Ihe M1 Programming Favironment

3.1.3. Ampersand Printing
"Ampersand printing’ consists of printing any object on a single line by using the character & (ampersand)

to mean "There's more stuff here.” (This technique is borrowed from the Interlisp editor.)

‘There are two ways in which & is used by this printer as an abbreviation:

. An & appearing between some varicty of brackets indicates “that there is a big object of the
indicated TYPE there,

2. The characters . . & or &. . on the left or right of a structure mean that there are more objects to
the left or right which have not been printed.,

FExamples:
#FUNCTION ((A B C D) <&>)
This is « FUNCTION with four arguments in its argument LIST, and the FUNCTION hady contains onc FORM
which was too big to print in the remainder of the line.
{PROG () <KRK <+ .A 5>> <PRINC .Q> <SET BAR <ORG>> (&> &..>
‘I'his is o large FORM, namely, a PROG. In addition w the clements printed, there are more clements w the

right, and there is onc FORM which was too big to fit.

Ampersand printing is effected by two pure RSUBRs: &, analogous to PRINT, and &1, analogous to
PRIN1. A related RSUBR, &LIS, can be applicd to no arguments to put you into an endless READ-EVAL -&
lvop, insicad of the normal READ-EVAL-PRINT loop.

3.1.4. Examining the Stack

{FRM fix>
returns the fixth FRAME down from the top application of ERROR or LISTEN.

(FRAMES how-many.fix stari:fix>
pretty-prints Aow-many FRAMEs (by printing the FRAME number (suitable as an argument to FRM), FUNCT,
and ARGS of the FRAME), starting with <FRM starr> . Both arguments arc optional; start defaults to 0, and
how-many defaults 1o a large integer. A FRAME whose FUNCT is an ATOM whose VALUE is an FSUBR is not
printed. if the same information is found in the next lower FRAME .

(FR& how-many:fix stari:fix>
is like FRAMES but uses ampersand printing instead of pretty printing. It is handy for summarizing FUNCTs
and ARGS that arc large or unprintable (like RSUBRs with no fixups).

Pretty-Printing i1

e ML Programming Environment ~ 19

CFRATM how-many:fix stari:fix>
is like FRAMES but gives an abbreviated view of the stack. It prints FUNCTs only, and only for FRAMES
connected with named FUNCTIONs, RSUBRS.'und RSUBR-ENTRYs, It is handy when a FRAME contains a
non-LEGAL? object.

<FRLVAL giom
how-many:fix
start:fix>

prints out the stacked bindings of atam, going through how-many FRAMEs, starting with <FRM starr>. The
two numeric arguments are optional; how-many defaults w a large integer, and siart defaults o 0. The
format of the printing is two columns: the first coiumn is the number of the FRAME in which wrom has a

binding; the second column is the value bound. or a message procliiming the lack of a value.

<FREVAL atom
how-many:fix
stari:fix>

15 precisely the same as FRLVAL, except that the values are ampersand printed instead of PRINTed.

Finally, the "FRMSP" PACKAGE contains analogues of many of the preceding functions, but cach takes as
its first argument a PROCESS, by default <ME>. These are all named by adding a *P’ to the end of the usual

name. For example,
{FR&P <MAIN>>

does a <FR&> in the PROCESS MAIN.

There is one additional function of interest in "FRMSP ",
<FRTYPE how-many:fix start:fix>

is like FRAME S, but gives only the TYPEs of the arguments to cach. This is uscful in those situations when the
stack shows illegal FRAMEs or other unprintable objects.

3.2. The MDL Editor
EDIT allows a MDI. uscr to make incremental changes in MDL. structured objects, without leaving MDL
and with the ability to save the results in a file, and to sct or clear conditional breakpoints of various sorts in

ubjects that will be evaluated, such is FUNCT I0Ns.

EDIT is an cditor/debugger written in, written for, and running under MDI.. It comprises the package
"EDIT" and scveral smaller packages which will be mentioned later in this section. EDIT is preloaded in

most initial MDLs.
To start cditing, apply EDIT to no arguments or to the name of the object you wish to edit: <EDIT>

il Pretty-Printing

pil ‘The MDL. Programming Environment

causes entry into EDIT and opens the last object edited; CEDIT object> causes entry into EDIT and opens
object for editing. Permissible objecis include:

— ATOMs. ‘The GVAL (preferably) or the LVAL of the ATOM is opened. IF it has no value, EDIT
returns a FALSE.

— APRIMTYPE LIST. The PRIMTYPE LIST isopened.

— A FIX. The stack frame with that number is opened (i.c., CARGS <FRM fix>>).

Part of EDIT’s efficiency comes from forbidding it to delve into objects that are not of PRIMTYPE LIST,
that is, not LISTs, FORMs. FUNCTIONs, ctc. Attempts to edit objects of other PRIMTYPEs will result in error
messages. These objects can, however, be treated as units when inserting, searching, ctc.: or they can be

changed into LISTs, edited, and then changed back to their original types.

3.2.1. The Edit 'LISTEN Loop’

3.2.1.1. The Reader

When in EDIT, you are typing at a special, non-standard, input function: The EDIT Reader.

‘The Reader allows you to type EDIT comimands and have them exccuted, and also to cvaluate MDL

expressions normally. [ts characteristics are as follows:

= As in the normal ML Reader, nothing is done until you type ESC. DEL, tL, tD, G, and *S also
wuork normally.

— All EDIT commands are terminated when an ESC is encountered in the input stream. [n
addition, most commands will terminate whenever the maximum number of arguments required
hits been input or whenever an argument of the wrung type is encountered. In the former case the
next object is taken as a new command: in the latter case the object of the wrong type is taken as a
new command. EDIT commands may be typed in cither upper or lower case.

— If you type something that EDIT does not recognize as a command, nonmal MDI. evaluation and
printing arc performed on that ssmething. This evaluation will have no cffect on your position in
the object you are editing.

— While editing a function which is part of a PACKAGE (determined from an examination of the
OBLIST containing the ATOM whose value is the function), EDIT causes the OBLIST path to be
set up to what it was in the environment of that PACKAGE. 'This has the advantage of reducing the
number of trailers printed, and causcs newly entered ATOMs to fall on the correct 0BLIST (the
internal OBLIST of the PACKAGE). It has the slight disadvantage that it disables the dynamic
loader (which depends on unbound variables falling on the INITIAL OBLIST). If the GVAL of
E-PKG is a FALSE, this feature is disabled, and the normal OBLIST path is in effect during

The MDL Editor 32

Ihe MDIL. Programming Environment 21

cditing.

Fxamples:
R 5%

Causes exccution of EDIT command R, with argument 5.
<R 5>%

Causes application of the function R to §.

3.2.1.2. The Ampersand Printer
Your current position is displayed by “ampersand printing” (see section 3.1.3). This consists of printing any

abject on asingle line by using the character & (ampersand) to mean “There's more swff here.

The ampersand printer used in EDIT is much like the standard one, with the addition that your current

position (see below) is displayed by the glyph B.

When you initially enter EDIT. you arc in a mode called "non-verbose,” in which ampersand printing is not
atomatically done following exccution of EDIT commands. The ¥ command is used to toggle you in and out
nl verbose mode (sce below).

Examples:
#FUNCTION (E (A B C D) <&>>
Indicates that your position is just to the left of a FUNCTION's argument list, and the FUNCTION body

contains one FORM which was too big to print.
{..& <KRK <+ A 5>> B <SET BAR <ORG>> <& &..>

Indicates that you are in the middle of a large FORM (¢.g., a REPEAT or a PROG), positioned just to the left of
the <SET BAR <ORG>>. Inaddition to the ohjects printed, there are more objects to both the left and the
right, and there is onc FORM which was too large to fit on the line.

3.2.2. Edit Commands

3.2.2.1. General

A sequence of EDIT commands is exccuted as soon as you type ESC. If one commund fails, subsequent
commands up to the ESC are ignored, and EDIT types out an appropriate crror message. A failing EDIT

command generally has no effect whatsoever; but see individual descriptions.

Note that all arguments w EDIT functions must be legal MDL objects. In particular, you can't scarch for

32 "The ML Editor

22 " ‘I'he M1 Programming Environment

¢SET .sincc the ¢>'saren’t balanced. Nor can you insert it. (But you can, for instance, search for and insert
CSET THING 1>)

[f a command cxpects an argument and doesn’t get one, an error message will be printed.

Many EDIT commands take FIXes as arguments. Those that do interpret the ATOM * as an argument to

mean ‘as many as possible’,

Whenever you are in EDIT, you have a well-defined ‘position’. A position is a ‘place’ inside a Mbi.
structure; this ‘place’ is cither berween two clements of the structure, or berween an element and cither end of
the structure, or inside an empty structure. All editing, movement. and printing commands operate relative to
your current position. The term “cursor” is used in the following descriptions to refer to an embodiment of a
position.

The format used in cach of the following command descriptions is:

Command as Typed Fnglish Name

Description

3.2.2.2. General Commands
7 duh?

Causes a short summary of all EDIT commands to be typed out. The same suminary appears later in this

chapter.
77 huh?

Similar to the above, but the summary is even shorter, and should fit entircly on the screcn of an Imlac

terminal.

Q Quit
Leave EDIT and return to MDI.. (Causes EDIT to return the ATOM T.)

QR fix Quit and Retry

Quit from EDIT and then retry the frame specified, or by default, the one originally given to an open

command or, if none was given, the frame beneath the last ERROR or LISTEN frame,

tF Control-F

This is not really an EDIT command: rather, it is a character, ubtained from the input stream at interrupt

‘The MDL Editor 32

Ihe ML Programiming Environment 23

level, which is used to return you 1o the EDIT Reader from some higher level of application, ¢.g.. an ERROR’s

LISTEN. Itisthe EDIT ecquivalent of ERRET with no arguments.

tF (or +S) typed during execution of an EDIT command is similar to normal MDL 15 but returns to the

ED1T Reader instcad of the M. LISTEN loop.

0 whject ; Open
Fquivalent to Q followed by <EDIT wobject>. Positions the cursor just to the left of the first clement of the

entire object specified.

01 Open This
I the object to the right of the cursor is an ATOM, or a FTORM whose first element is an ATOM. and the

ATOM's value is openable. then it is opened. This command is useful when tracing a calling sequence through

several functions.

3.2.2.3. Movement Commands

ut Up to the Top

PMlaces the curse: at the position it had following an 0.

R fix Right

Muoves the cursor fix objects o the right, by default one. If fix is o large, ic., there are not that many

pusitions to the right of the current position, EDLT prints an error comnent and the cursor stays where it is.

B Back

Muves the cursor as far to the right as possible.

L fix Left

Maves the cursor fix positions to the left, by default one, [T fix is oo large, EDIT prints an crror message.

F Front

Muves the cursor as far to the lefi as possible,

DL Down Left

Pusitions the cursor just to the right of the rightmost ciement within the object o the left of the cursor, if

that object 1s of PRIMTYPE LIST. Visually, the curser moves left over one ‘close bracket'.

32 The MDL. Editor

24 The MDIL. Programming Environment

DR Down Right

Positions the cursor just o the left of the leftimost element within the object to the right of the cursor, if
that object is of PRIMTYPE LIST. Visually, the cursor moves right over one ‘open bracker’. If the cursor is

to the left of an clement that is not of PRIMTYPE LIST.EDIT prints an error message.

D Down
Equivalent to DR.
UR fix Up Right

Positions the cursor just to the right of the object the cursor is currently within, Does so fix times, by

default unce.

UL fix Up Laft

Pusitions the cursor just to the lefl of the object the cursor is currently within. ocs so fix times. by default

once.

U fix Up
Identical w UL.

S object Search

Does a depth-first, left-first tree-walk, (i.c., keft-to-right) starting with the object to the right of the cursor,
until the cursor is just to the right of an ubject structurally cqual (i.c., =?) to its argument. An occurrence of
the object will not be found if it is inside anything not of PRIMTYPE LIST. On failure, the cursor docs not

move. Ifthe argument is omitted, the last object searched for is used.

SR object Search Right
Same a8 'S,
SL object Search Left

Same as S. but the tree-walk is depth-first, right-first (i.c., right-to-Icft) and you end up to the left of the
vbject for which you were scarching.

3.2.2.4. Printing Commands

The Empty Command

The MDL. Editor 3

I'he ML Programming Environment 25

Causes the normal “ampersand print’ v be done. This is principally useful when you are in “silent” inode:

sec the V command.
By the way, an ‘cmply’ command is typed by typing ESC without having typed any visible characters
before it

P Print

PPRINTs (not ‘ampersand prints’) the object 1o the right of the cursor.
PU Print Up
PPRINTs the object the cursor is in. This is similar 10 doing a U and then a P, although the cursor is not
moved.

P Print Top

PPRINTs the whole object you have open.
v Verbosity
Toggles the verbosity mode between ‘verbose” (most commands cause mmpersand printing) and ‘silent’

(printing of any sort is donc only when some explicit print command is used, or when an error occurs). The
current state of verbosity is the GVAL of E-VERBOSE.

In silent mode, absolutely nothing is printed after cach command, not cven new-lines or prompls.

However, normal M DI evaluation still causes normal MDL printing.

3.2.2.5. Editing Commands

1 gny ... Insert

Inserts all its arguments immediately to the right of the cursor. None of its arguments are evaluated; you
can insert uncvaluated FORMs without using QUOTE. The cursor ends up to the right of the last object
nserted.

G gay ... Get

Same as 1, but its arguments are evaluated. This is useful in conjunction with the X command (see below).

1: wpe:atom fix Insert Type

Grabs fix objects o the right of the cursor, inscrts them into a newly created object of TYPE 1ype, deletes

them from the original structure, and inserts the newly created object in their place. In other words, it ‘inserts’

32 The MDL. Editor

% The M. Programming linvironment

the appropriate open and close brackets for #ype at the cursor and fix objects to the right.

By default fix is one, fype is LIST. An crror message is printed if fix is larger than the number of objects
to the right of the cursor,

There is no way to directly insert or delete single parentheses, brackets, etc., using EDIT. Instead, usc K:

(sec below) to remove pairs of brackets, and I : to insert them.

I* indicator:atom new-siruclure Imbed

Imbed looks for all occurrences of indicator in new-structure and replaces these occurrences with objects

taken and deleted from the right of the cursor, It then inserts the result

IF only new-structure is given, the indicator is the ATOM *. [f there aren’t enough objects to the right of the
cursor to replace cach indicator, remaining indicators are lefl untouched and a warning inessage is printed. If

no indticators are found, the new structure is inserted, but a warning message is printed.

I* is generally used to insert one or more structures into another complex structure in one operation,

instcad of several. For example:

<SET X B <12 .Y>>
I* <COND (<NOT <LENGTH? .Y 11>> *)>§
{SET X <COND (<NOT <LENGTH? .Y 11>> <12 .Y>)> 1 >

places a protective conditional around an NTH to prevent an out-of-bounds error.

IG any.. Insert into Group

inserts into a group. IG is similar to I, but assumes that the object you are in is a group (as produced by
GROUP-LOAD). Arguments to [G which are not ATOMs arc inscrted as in I. Objects which arec ATOMs and
which have a value insert a FORM which DEF INEs, SETGs, or SETs the ATOM as appropriate. Thus, to add a

new function F to a group G, one could type
0 GSIG F3QS

K fix Kill

Ieletes fix objects to the right of the cursor. Defaults to one. Negative fix causes deletion to the Ieft of the

cursor.

C any Change

Changes the one object to the right of the cursor to its single argument. Duoes not move the cursor. Does

not evaluate its argument. C is more cfficient than K plus I,

The MDL Editor 32

I'he MDI. Programming Environment 27

C: mpe:atom Change Type

Changes the type of object to the right of-the cursor to fype. Attempts to do something reasonable for
cvery type change. If you tell it to change a STRING to a LIST, you get a LIST of CHARACTERs. If you
attempt to change a structure whose clements are other than CHARACTERs and STRINGs to a STRING, you

will get a ML error,

K: Kill Type
Deletes the brackets around the abject to the right of the cursor. Le.. kills the object and inserts its

clements into the structure of which it was a part.

SU new old Substitute

The Substitute command takes two arguments. All occurrences of old from the current location w the end
of the open object (actually a search-right is done) are replaced by new. Once the scarch for old fails, the
command terminates, and the number of substitutions performed is printed. The cursor is left afier the last

nhject replaced.

X alom Transfer

SETs the afom to the object to the right of the cursor. X can be used with K and G to move things around
within the object being edited.

Sw Swap
Swaps the two objects to right of the cursor, leaving the cursor pointing at the same object. The effect is to

move the cursor and the object it points at one object to the right. Repeated SWs move cursor and object
lurther and further to the right.

3.2.2.6. Macro Facility
M macro Macro

‘Takes cither a STRING or something which EVALSs to a STRING and performs all of the commands in the

STRING. For complete assurance that your commands will be done properly, put an ESC between

commands.

11 fix macrg Iterate

This command (also called DO) takes a fix and macro as if an argument to M. This command will loop

through the macro fix times or until an crror is gencrated. When the iteration ends, the user is told how many

32 The MDIL. Editor

28 : I'he ML Programming Environment

complete passes have been made of the macro,

in both of the above commands, if an EDIT error is generated, the macro will be terminated, and the
macro itself will be printed, with an arrow pointing to the offending command. The cursor will remain at the

place where the last legal command left it.

The SU command is, internally:
DO * "S oldSLSC newS"

3.2.2.7. Cursors.

Cursors are locations in objects being EDITed. In addition to the main cursor, which is where editing
occurs, other locations (also called cursors) may be remembered. The main cursor may be moved to another
cursor in a single operation, potentially saving many motion commands, In large FUNCTIONs cursors may

also reduce confusion by distinguishing among several similar arcas of code.

uc Use Cursors

The PACKAGE for dealing with cursors is not normally loaded in an initial ML, so the UC command loads
it and makes the cursor commands available. 'The PACKAGE lovaded is "CURSOR"™.

CU arom ' Cursor

CU wkes an ATOM argument and SETs the ATOM to an object of type CURSOR, which tries to be clever in
the event you change the object. Also. if you use the X command to name a substructure and then move copy

it with G or I, the cursors in the substructure will follow to the new location.

There are some restrictions. Cursors in empty LISTs arc okay but they will not follow the object to new
locations. Also this “following’ featurc is effective only at the first G or I after the X. To move the substructure
again you have to X again,

I* is somewhat incompatible with CURSORs. Cursors in linbedded structures will sometimes disappear.

GO cursor Go

GO takes a cursor (normally the LVAL of an ATOM previously given as an argument Lo CU) and GOcs to that
position. [If the cursor is illegal (not in the current top-level structure), an error message will be printed and

you will remain in your previous position.

KC atom Kill Cursor

The MDL Editor 32

‘The ML Programming Environment 20

Kill the cursor assigned 1o atom,

PC . Print Cursors

Prints all cursors in the structure to the right of the main cursor,

PA Print A11 Cursors

PPrints all cursors in the currently open structure.

3.2.2.8. Breakpoints
B predicate any ... Breakpoint

Inserts a breakpuoint “around” the object to the right of the cursor, ‘Takes any number of arguwments.

Subsequently, whenever that object would have been evaluated. you instead hit a breakpoint function which:

L. Evaluates predicate. 17 the value is FALSE, evaluation continues as if there were no breakpoint, IF
the value is non-FALSE, or ifBK was given no arguments:

2. Types **BREAK®*®,

3. For cach argument afier the first that you gave BK, types
arg = FVAL ofarg
4. Enters LISTEN.
You continue by applying ERRET to onc argument, just as from an ERROR; the argument’s value is ignored.
lircakpoints are implemented by inserting a BREAKR (a PRIMTYPE LIST with APPLYTYPE FORM)
which consists of the functivn BREAKR and arguments, including the object breakpointed. A breakpoint

prints as a glyph similar to the cursor:

Bobject
Ifthe ATOM SHORT-PRINT is assigned and FALSE, the actual BREAKR LIST is printed.

‘The breakpoint function returns EVAL of the thing it is put ‘around,” and there are cases where this does

nut work. There are always equivalent places that do work.

1. Breakpuint on the first clement of 2 FORM does not work. Put it on the whole FORM.

2. Breakpoint on a LIST which is an argument to a COND does not work. Put it on the first FORM in
the LIST.

BA predicate any ... Ereak After

2 The MIDL Editor

0 ‘The MDIL. Programming Environment

Similar o BK. but puts the breakpoint affer the object at the cursor. Its action is like that of BK except that
the break occurs after the object it is on is EVALed.

T'his sort of breakpoint prints like the ‘before’ sort, but with the glyph after the object broken:
ubjecr§
‘Ihe predicate for a BA breakpoint may check the value returned by VAL for the object the breakpoint is on.
‘This value is assigned by BREAKR to the ATOM VALUE.

KT Kill This

Removes the breakpoint (if any) from the object to the right of the cursor.

KB Kill Breakpoints

Remuoves all breakpoints in the currently open object.

3.2.2.9. Edit Monitors
There are several commands in EDIT which provide a simple interface to the "MONITOR"™ PACKAGE.

These allow placing of monitors on references to or modifications of LVALS in interpreted MDL. code.

Far a more complete discussion of the use of monitors, sec secuon 3.7,

UM Use Monitors

The PACKAGES for dealing with monitors are not normally loaded in an initial MDL, so the UM command
loads them and makes the three commands for creating monitors available. The PACKAGEs loaded are
"MONITR", which is the gencral monitor PACKAGE, and "EMONIT™, which is the interface between EDIT
and "MONITR",

RW giom predicate any ... Read-write Monitor

The most general type of monitor that can be set is a read-write monitor. It will catch any reference to or
attempt to modify the LVAL of the afom specified. The restrictions on placement of breakpoints also apply to
monitors, with the addition that a monitor on an LVAL must be placed after that LVAL has become
ASSIGNED?.

The second, third (and so on) arguments to RW arc the samte as those for BK., The predicate may be
dependent on cither the new or old value of the variable: ‘These are available as the LVALs of NEWVAL and
OLDVAL, respectively.

The MDL Editor J2

‘I'ne ML, Programming Environment - K}

When a monitor is triggered, it prints the type of monitor, the variable being monitored, and any other

information requested by the user, and then calls LISTEN.

A monitor prints as yet another glyph:
N[atomn] object
where atom is the ATOM being monitored, and object is the object on which the call o MONITOR is placed.

Edit monitors are objects of type BREAKR, and thus they are killed by the same commands that kill normal
hreakpoints: KB, KT, and so on.

RM atom predicate "tmy i Read Monitor

RM is analogous o RW, but is only triggered by reading the variable,

WM aiom predicate any ... ‘Write Monitor

WM is analogous o RW, but is only triggered by writing the variable,

3.2.2.10. User-defined Edit Commands

It is possible to add user-defined commands to EDIT. ‘The valuc of EDIT-TABLE should be a VECTOR of
STRINGs (commands) and APPLICABLE objects. EDIT will scarch EDIT-TABLE before its own command
tahle. If a match is found, the APPLICABLE will be applicd to three arguments: the command string, the
LOCATIVE containing the item currently being edited (the immediately surrounding object) and the position

in that item.

Note that user-defined commands should not be added except by constructing a new value of
[DIT-TABLE from the commands to be added and the old value. Otherwise, any cxisting user-defined

commands may be lost when new oncs are added.

The Monitor commands described in section 3.2.2.9 arc effectively “installed’ user-defined commands.

ey add elements to EDIT-TABLE when loaded by the UM command.

3.2.3. Examples

3.2.3.1. Simple Editing
Suppose vou have the FUNCTION

32 The ML Editor

n 'he MDIL. Programming Enavironment

#FUNCTION (('A) CEVAL .A>)

1s the global value of the ATOM SIMP. and you wish to change it to
#FUNCTION (("BIND" B8 'A) (<EVAL .A .B> .A))

using EDIT. “Ihe following example does just that: it includes doing the cditing and applying of SIMP to an
argument. Console input and output are shown below exactly as they would be in non-silent mode. (Console
input consists of those characters to the left of every $). Note that there is nothing in SIMP which is big

enough to warrant use of an &.

CEDIT SIMP>S

Vs

#FUNCTION (8 ('A) <EVAL .A>)

D3

(§'A)

1 "BIND"™ BS

("BIND" B B 'A)

S LAS

{EVAL .A 8§ >

1 .B%

{EVAL .A .B 1 >

URS

#FUNCTION (("BIND" B 'A) CEVAL .A .B> 1)

I .AS

#FUNCTION (("BIND" B 'A) <EVAL .A .B> .A 1)
L 2%

#FUNCTION (("BIND" B "A) 8 <EVAL .A .B> .A)
1: LIST 2%

#FUNCTION (("BIND" B 'A) 8 (<EVAL .A .B> .A))
CSIMP {+ 1 2>>%

(3 <+ 1 2))

#FUNCTION (("BIND" B 'A) § (<EVAL .A .3> .A))
QsT

3.2.3.2. X and G Commands

In this examiple we have the FUNCT TON

(DEFINE F (X)
6 .X 10>
CH 23 <~ .X DS

By applying the X and G commands to the appropriatc FORMs, we are able to swap the FORMs within the
FUNCTION.

The MDL Editor 32

I'he ML Programming Environment

3.2

X%

X 133)

<DEFINE F (X)
<G .X 103
CH 23 <= X 1339
f
<EDIT F>$
§
HFUNCTION (B (X) <G .X 10> <H 23 <- .X 1))
RSS
H#FUNCTION ((X) B <G .X 10> <H 23 <-
X MOVERS
H#FUNCTION ((X) B <G .X 10> <H 23 <-
KE3
#FUNCTION ((X) B <H 23 <- .X 13))
RS S
HFUNCTION ((X) <H 23 <- X 1>> B)
G .MOVERSS
HFUNCTION ((X) <H 23 <- .X 1> <G .X 10> B)
Q%1
.MOVERS
<G X 10>

.3.8. Unconditional Ereakpoints

Toinsert unconditional breakpoints mitg the FUNCT 10N in the nexi example, do the following:

I

P

e

I

. Define FIB and test the FUNCTION a few times.

. Fnter EDIT and position the cursor appropriately.

- Insert the breakpoint.

.l.eave EDIT and run the FUNCTION again for the value 3. The breakpoint is exercised 5 times
during this run.

3

-
i

The MIJL Edttor

4 [Tie MDI. Programming Linvironment

DEFINE FIB (X)
<COND (<L=? .X 1> .X)
(ELSE <+ <FIB <- .X 2>> <FIB ¢~ .X 1>!§
FIB
(FIB 5>%
5
{FIB 6>3%
8
{FI8 10>3
55
{EDIT FIB>S
RSS
#FUNCTION ((X) B <&>)
BK T .XQST
{FIB 3>%
BREAK®
% K
LISTENING-AT-LEVEL 2 PROCESS 1
<ERRET T>$
*“*BREAK**
X =1
LISTENING-AT-LEVEL 2 PROCESS 1
<ERRET T>%
**BREAK®®
<A =2
LISTENING-AT-LEVEL 2 PROCESS 1
{ERRET T>§$
QREAK®
A =0
LISTENING-AT-LEVEL 2 PROCESS 1
{ERRET T1>§
BREAK®
X = 3
LISTENING-AT-LEVEL 2 PROCESS 1
{ERRET T>§
2

3.2.3.4. Conditional Breakpoints

We continue from the previous example and demonstrate conditional breakpoints with the following:

1. Enter EDIT and kill the breakpoint from the previous cxample.
2, Pusition the cursor and insert a conditional breakpoint with a predicare of <07 .X>.
3. Leave EDIT and run the FUNCT ION again for the value 10.

4. Enter EDIT and remove the breakpoint.

The MDL Editor J2

2l I'he MDL. Programming Environment 35

<EDIT>$

i

#FUNCTION ((X) B §<&>)

KB$SS

#FUNCTION ((X) B <&>)

BK <07 .X> <TIME>$QST

<FIB 10>

**BREAK®®

<TIME> = 14.794538
LISTENING-AT-LEVEL 2 PROCESS 1
X$

0

CERRET T>$

**BREAK®*®

<TIME> = 15,252382
LISTENING-AT-LEVEL 2 PROCESS 1
XS

0

CERRET T>§

BREAK

<TIME> = 15.716037
LISTENING-AT-LEVEL 2 PROCESS 1

and so on. Eventually we reach the last breakpuoint, and re-enter EDIT

CEDIT>S

s

#FUNCTION ((X) B B<&>)
KBSQST

CERRET T>$§

55 .

12 The MDL. Editor

36

e M. Programming [:nvironment

J.2.4. Edit Command Summary

NAME ARGS
? none
ids none
0 any
or none

Q none
QR Sfix

v none

Movement commands

L fix
R fix
u fix
D none
B none
F none
UR fix
DL fix
urt none
I an...
I: lype fix
I* atom,object
iG any...
su new,old
X alom
G any..
5w none
c any
C: Lupe
K fix
K: none
Search Commands
5/5R any
SL any
Macro Commands
The MDL Editor

MEANING

type out short summary

type ot this summary

Open object or the value of an atom
Open object at the cursor

Quit and return to MDL

Quit and Retry frame

loggle Verbosity

move §eft fix objects

move Right fix objects

maove Up fix levels

muove own one level

muove to Back of object

muove to Front of object

move Up fix objects and to the Right

move Down fix objects and to the Left ,

Up Top -- go o the place you were after you did 0

Insert arguments to the right of cursor

make next # objects into a fype

Imbed command: replace all occurrences of atom (default *)
in hject with objects to right of cursor

Insert into group

3 Ubstitute new for old

set the atom to the object to right of cursor

Get EVAL of arguments, insert to right of cursor
SWap the two objects to the right of cursor
Change the next object to arg

Change the type of the next object to fype

Kill {delete) the next fix objects

Kill (remove) the *brackets’ uround the next object

Search (Right) until match (=7) is found for any
Scarch Left as above

32

ment

The MDIL. Programming Environment -

IT/D0

string

[fix siring

Printing commands

P none
PU none
PT none
Cursor commands
uc None
cu 1]
GO Cursor
PC none
PA none
KC alom

Debugging commands

BK pred.any...

BA pred.any...

KB Hone

KT none

UM nong

RW atony,pred,any...
M glom,pred.any..,
WM alom, pred,any...

exccute the string as if typed to EDIT
ITerate the exccute siring fix times

PPRINT the next object
PPRINT the next Upper level
PPRINT the whole object open

Use Cursors

set atom 1o CUrrent cursor position

GO 1o the specified cursor posilion

Print Cursar positions in the current object
Print All cursor positions in the wp-level object
Kill the Cursor assigned to the atom

set BreaK point at next object; if pred cvaluates to FALSE,
don’t break; rest of arguments are printed out at break
sct Breakpoint Afier next object

Kill all Breakpoints in open object

Kill 'This breakpoint in the object to the right of cursor

Use Monitors

sct Read-Write monitor on afom
set Read Monitor on atom

set Write Monitor on afom

+F and +5 return you to EDIT from a higher level,

The ATOM * may be used as a fix argument whose valuc is the largest legal value for that command.

3.3. Debugging and the Interpreter

will expand on the discussion of ERROR, FRAME, (and so0 on) in Chapter 16 of [3]. To summarize that chapter,

3

Before continuing the discussion of the various packages that are used in the debugging of MDI. code, we

whenever an ATOM is bound or 2 FUNCTION or RSUBR is MCALLed in ML, information is added to the

contol stack. This information, normally ‘invisible’, may be cxamined using the funclions described in &

previous scction (FRAMES, FR&, FRLVAL, etc.). ‘An invocation of ERROR puts MDL. into a LISTEN-like loop.

32

The MDL Editor

38 e MDI. Programming Environment

Successive ERRORs stack up and are reflected in the LISTENING-AT-LEVEL message printed whenever
ERROR or LISTEN is called.

In addition to being cxamined, the stack may be modified as part of the debugging procedure, For
example, the SUBRs SET and LVAL take an optional second argument which may be (among several possible
TYPEs)a FRAME. EVALing

(SET X 10 <FRM m>>
would change the LVAL of X in the nearest binding lower in the stack than the FRAME n FRAMES lower than
the most recent call to ERROR or LISTEN. Similarly

{LVAL X (FRM m>>

cxamines the LVAL in a particular FRAME.

The most common use of the ML interpreter in debugging is to invoke the SUBR ERRET. With no
arguments, it drops all the way to the bottom of the stack and then culls LISTEN: It says ‘| give up” (although
side effects are not undone). More commonly, ERRET is given a single argument, which causes the last
invocation of ERROR ur LISTEN to return that argument. For example, suppose o program contains , FOO

but Fob has no GVAL. M1 would respond

*ERROR®

UNASSIGNED-VARIABLE

FOO

GVAL

LISTENING-AT-LEVEL 2 PROCESS 1

You could give up, saying CERRET>, but it is uften more reasonable to say “Oh, yes, FOO was supposed to be
1000, and then
{ERRET 1000>

Still better is
CERRET <3ETG FOO 1000>>

which will prevent future ERRORs from the same cause,

Finally, ERRET may be given a second argument of a FRAME, which means to return the first argument as
the value of the invocation of that FRAME. In the previous cxample, the programmer might look at the stack
(with FR& or FRAMES) and see

Debugging and the Interpreter 1.3

I he MDIL. Programming Environment 39

1 GVAL [FOO]

Z EVAL [,FOO]

3 EVAL [<+ .X .Y ,FO0>]

4 EVAL [<LOSER .A .B>]

5 EVAL [</ ,GOOD-GVAL <LOSER .A .B>>]
6 EVAL [<WINNER 1.0 2.0>]

7 LISTEN [

After sume thought. he may just say "Well, LOSER apparcntly needs some debugging, but for now I'm

mterested in WINNER', in which case he can *fake” a reasonable return from LOSER by typing
CERRET 342.0 <FRM 43>

which returns 342 . 0 exactly as though LOSER had returned it.

Maore complex errors are sometimes more difficult to fix, requiring the use of EDIT (at least). In the above
example, the programmer might decide 0 debug LOSER afier all. ‘There are two ways to go about this: First,
il the problem is localized., the FRAME itsclf may be edited (which is to say, the contents of the FRAME may be
cdined). Changes will show up in the FUNCTION from which the FRAME s contents were derived. The newly

corrected FRAME may then be RETRYed. For example,

<{EDIT 3>§
... various editing commands
QRS

Second, the function itself may be cdited. In the process, it may be so changed that the FORM which
ciused the ERROR no longer even cxists. Often, the easiest solution is o retry the invocation of the EDITed

TUNCTION from scratch: in this case
{RETRY <FRM 4>>§

‘s always, the major restriction to remember is that side-effects are not undone by RETRY.

3.4. Loading and Dumping

GROUP-LOAD and GROUP-DUMF arc used to load and dump files of M1, programs in such a way that the
contents of the file are made available in a MDL structure called a group. Many other PACKAGES in the MDL
cnvironment operate on or change groups: Among them arc "EDIT", "GLUE™, "PDUMP", and the MDL

vompiler,

GROUP-LOAD and GROUP-DUMP arc almost as widely used as FLOAD as a way of dealing with groups of
Mot functions. Conscguently, they are already loaded in most initial MIns, as part of the package

"GRLOAD'

3.3 Debugging and the Interpreier

i0 : the ML Programming Enviromment

‘GROUP-LOAD file-name:string
armup-name.alam

Tle-name:siring is the file to load.

srotp-name:atom is the name to give the group, It is optional and by default the ATOM formed by PARSE of
the first name of the file to load. The group will be stored as the LVAL of group-name.

SROUP-DUMP is the opposite of GROUP-LOAD. It vutputs the group from the Mpi. w the file given as is
first argument. Functions unchanged since the last GROUP-LOAD are copicd from the original input file.

Funetions that have been edited dre output using the routine given as the third argument to GROUP -DUMP.

{GROUP-DUMP filc-name:siring
eronp-danealom
prini-rontine
&ill-breakpoinis®

‘He=name:string is the only reguired argument. [Lis the file w which to output the group.

group-namezatont is optional, and defaults as it does for GROUP-LOAD. but of course gives an ERROR if the
zroup doesn’t already exist.

ortit-routine is optional, and defaults o , PPRINT unless the group contained NBIN formut RSUBRs, in which
zasc , PRINC is used.

Yill-breakpoimts? is optional, by default T, in which case GROUP-DUMP kills all EDIT breakpoints and
monitors in objects being dumped. Giving a fourth argument of a FALSE to GROUP-DUMP prevents this.

On the surface, it appears Lhat little happens in the process of loading a file and making it into a group.
However, a great deal of information about the group has been stored away in associations for later use.

Some of this information is of use to the MDL programmer:

|. On an association between group-name and the ATOM CHANNEL is stored a LIST giving the name
of the file that was GROUP-LOADed to form the group. Removing this association before
GROUP-DUMPing has the effect of making the entire group be output from core rather than
copied from the original svurce,

1. On an association between group-name and the ATOM MAGIC-RSUBR the ATOM T is stored if the
group contained any RSUBRs in fast (NBIN) format. It is this association which is used to
determine the default prins-rowtine in GROUP-DUMP,

J.'The OBLIST path in effect at any time during the load is available. The original path is stored on
an asseciation between growp-same and the ATOM BLOCK. Within the group, the path changes are
stored in an association between the group RESTed to the point of change and the ATOM BLOCK,

4. If the second clement of a FUNCTION definition is not an ATOM, the actual FUNCTION name
gotten by EVAL of that clement is stored as an association between the original element and the

|.oading and Dumping 34

—_—

nent

tof

ile.

1€

Ihe MIDL. Frogramming Environment 4]

ATOM VALUE,

5. The location of a function within the input file is stored as a LIST of the starting and ending
offscts (in characters) of the function, under an association between a locative wo the GVAL of the
FUNCTION name and the indicator DEFINE. ‘This assoctation is removed by EDIT {and other
cditors) w indicale that the FUNCTION has been changed.

There are additionally several switches that affect the operation of GROUP-LOAD:
.KEEP-FIXUPS

[l the LVAL of KEEP-FIXUPS is truc (and GROUP-LOAD hinds it that way during loading), the fxups of
l15UBRs GROUP-LOADed will be kept.

.EXPFLOAD
I the LVAL of EXPFLOAD is true. FLOADs will be expanded. "That is. the objects in the Tile FLOADed will be

added to e group in place of the FLOAD, The initial setting of EXPFLOAD isa FALSE.
.EXPSPLICE

1M the LVAL of EXPSPLICE is true, any ohjects returned within SPLICEs will be inserted directly intw the
promip as described above. “Ihe initial sctung of EXPSPLICE 1sa FALSE.

3.5. The One-step Debugger

e M1 One-step debugger allows the user to step through the evaluation of any MDL expression one
aperation” at a time. Between steps, variables may be cxamined or changed, functions edited, and so on.
s 15 possible because the debugger runs in a different M1 PROCESS than the expression being stepped,
andd # MDI. PROCESS may 1STEP another [3]. To load the Debugger. <USE "DEBUGR™>.

e Mbi. Debugger can be in any of three states. In the initial state, OFF, no une-stepping occurs and the
Iebugger does not listen for any special interrupt characters. The Debugger is, therefore, completely inactive.
Iy 1yping <DEBUG> to MDIL., vou leave the OFF staic and enter the READY state. In the READY state no
wne-sicpping occurs, however the Debugger does listen for interrupt characters. By typing the interrupt

lencter 1B, you enter the ON state and vnc-stepping begins. In addition, if you were stopped at an EDIT
trvakpoint when the tB was typed, the breakpoint will automatically be exited and evaluation continued in

e one-sicpping state,

While in the ON state, the Debugger will proceed through the execution of any MbL. objects one step at 2
e In essence, the Debugger stops just before and just after every call to EVAL. At cach step the 1ehugger
1 dieane its current condition as follows. 11 EVAL is recursively entered at level, s, with input, ebiect. the

fepslity will be:

14 Loading and Jumping

12 Ihe MIDL. Programming Environment

n=> object
(where vbject is ampersand printed). IFEVAL is returning froin level, , with result, object, the display will be:
né= opbject

{where object is ampersand printed).

The Debugger will stop at each such step and wait for directions, | here are four interrupt characters that
may be typed w proceed further in the program: tN, 0, tR and tA. They cach take an optional prefix
argument that serves as a repeat count

N
causes the Diebugger to perform the next step of the current evaluation.

+0
causes the current object to be completely evaluated without any one-stepping and then stops with the result
of that evaluation. 0 is useful for sicpping over COND predicates that you know will not succeed, or more

generally, uninteresting parts of a program.
tA

is similar to +0, bul specific tw the evaluation of the argument list of a FUNCT ION, PROG, or REPEAT. Typing
tA during such cvaluation allows the rest of the argument list to be evaluated without one-stepping and then

stops before evaluating the budy of & FUNCTION, PROG, or REPEAT or retuming of a result.
'R

is most cffectively used in a REPEAT or PROG lovp. Typing tR causes evaluation to proceed until control
returns to the point in the body uf the REPEAT /PROG at which *R was typed. It thus allows you to go once
around a loop.

It should be noticed that, when stopped at one of these steps, you can cxamine and modify program
variables, do a FRAMES or FR&, EDIT FUNCTIONs and sct breakpoints, and in general perform any valid
MDL operations. Also, when you stop, the LVAL of the ATOM LAST-0UT will be set to the object the
Debusgger last typed out. This is useful if the & performed by the Debugger did not show a particular detail
that you are interested in.

Use the interrupt character 1€ Lo leave the ON state and return to the READY state. Use the interrupt
character +Q to leave cither the ON state ar the READY state and return to the OFF state. When leaving the ON

state a5 described, the execution currently heing one-stepped will be finished in the usual manner.

The function REPAIR attempts to fix any errors in the Debugger that you might happen to invoke. These

errors are casily distinguished since they never occur in MDL's MAIN PROCESS. Therefore, you will sce:

The One-step Debugger 35

Yo Fom

The MDI. Programming Environment - 43

LISTENING-AT-LEVEL m PROCESS n
{where n is not 1). REPAIR turns off the Debugger and returns you to running in the MAIN PROCESS (no

longer one-stepping). Because REPAIR turns off the Debugger, you must do <DEBUG?> again if you wish to
try any further onc-stepping.

3.5.1. MDL Debugger Command Summary

<{USE "DEBUGR"> loads the Debugger.

<DEBUG> makes the [Jebugger ready.

tB begins onc-siepping.

tN performs the next step of the computation.

0 s;tcps completely over the next computation, then stops and continues one-siepping.
A evaluates the arguments of the current object then stops and continues one-stepping through the body.
tR continues evaluation until you return o this point.

tE ends one-stepping.

tQ quits one-stepping and makes the Debugger unready (turned off).

¢HELP> prints a command summary.

{REPAIR> attempts to repair any Debugger errors you might invoke.

3.5.2. MDL Debugger Special Features

The following flags have special importance to the Debugger:
,INDENT-INC

is the amount by which Lo indent for cach level (by default 2 spaces).
. INDENT-MOD

The indentation-level is the real level taken modulo this number. The default is 10. Indentation ‘restarts’

when level gets here. If you don't like this feature, make the number large.
,INDENT-DIF

i the minimum amount of free space to reserve on cach line that indentation must not uch (by default 20).

Therefore at level L the indentation is exactly:

35 The One-step Debugger

“ I'he M. Programming Environment

{MIN <* ,INDENT-INC <MOD .L ,INDENT-MOD>>
{- <13 ,OUTCHAN> ,INDENT-DIF>>

,OUT-FAST

if true the Debugger will not stop when leaving a level with a result. The defaultis T.
,OUT-UNIQUE

if hoth this and previous flag are true successive ‘outs’ of the same item will not be displayed (defaults to T).
,SELF-FAST

if rue the Debugger will not stup when entering a level with an object which EVALS to itself (c.g. ATOMs,
FIXes, STRINGs). The default is T. ‘The display will be:

n: object

,FORM-FAST
if[ruc.lhc ebugger will not stup when entering a level with any of the short” FORMs (e.g. <>, .FOO0, ,BAR,
"ANY THING). The defauitis T. The display will be:

n: .FOO = lval
Any of these flags can be SETGed by you to tailor the Debugger to yvour own tastes.

3.6. Execution Tracing

I'he "TRACE™ PACKAGE provides a facility for observing the arguments and returned values of selected
FUNCTIONS and RSUBRs. It is possible to print the arguments on entry to the function, print the value
returned, and to break on entry w and exit from the function. All actions may be performed conditionally.

To load TRACE, type
{USE "TRACE">

3.6.1. Using TRACE
TRACE is invoked by
{TRACE what options>

what is cither an ATOM or a LIST of ATOMs, naming the things to be traced. These may include SUBRs,
FUNCTIONs, and RSUBRs: however, anything which is truced must EVAL all of its arguments. options

specifies the behavior of TRACE with respect to the specified function. There are five switches, as follows:
IN-BREAK

means break (causc o MDI. ERROR) before culling the function, Normally off.

e One-step Pebugger 15

I'he MIDIL. Programiming Environment 45

IN-PRINT

means & function arguments on entry. Normally on.
QUT-PRINT

means & function value on exit. Normally on.
OUT-BREAK

hreak after exccuting the function call. Normally off.
VERBOSE

means & the arguments to the function one per line. This is useful if the arguments are long. Normally ofT.

T cause a given option n be unconditionally on, include its name (an ATOM) in the oprions TUPLE. To
cause an option t be unconditionally off, include a two-clement LTST. composed of the option name and a
FALSE. IT the second clement of the LIST is neither FALSE nor an ATOM, it will be EVALed cach time
TRACE cxamines the setting of the given option for the function. This allows conditional breakpoints, for

example.

Thus:
<TRACE FOO (OUT-PRINT <>)>

will causc FOO's arguments to be printed on entry, but the value will not be printed.
{TRACE FOO (OUT-PRINT '<G? <TIME> 4.03)>

will cause printing of the value after four seconds of cpu time have been used. Printing of the arguments will

occur cach time FOO is called.

UNTRACE turns off tracing of the specified functions:
{UNTRACE what:atom-or-list»

What defaults to a LIST of all functions which have been traced.

3.6.2. Understanding TRACE
TRACE works by CHTYPEing the specified functions to new lypes which have an APPLYTYPE associated
with them. This means that one cannot trace calls o RSUBRs or RSUBR-ENTRYs which are already linked.
In addition, it means that UNTRACE must be used to get the old value back. ‘l'v determine the status of a
function with respect to tracing, say
<{GET applicable TRACE?>
I'his returns FALSE if applicable is not traced; otherwise, it returns an object which describes (he scitings of

the various options. The object has a PRINTTYPE which associates the name of cach option with its setting:

36 Execution ‘I'racing

46 I'he M DL Programming Environment

{GET ,FO0 TRACE>$S

FOO
IN-BREAK: #FALSE ()
IN-PRINT: T

OUT-PRINT: <67 (TIME> 4.0>
OUT-BREAK: #FALSE ()
VERBOSE: #FALSE ()

Individual settings for a particular function may be changed by PUTting into this structure:
{PUT <GET ,FOD TRACE> ,IN-BREAK T»

causes a break whenever FOO is called.

3.7. Monitors
A common problem in debugging is the mysterious “clobbering” of some value or clement of a data
structure. MDI has imbedded in it & mechanism for triggering interrupts on references, cither for reading or

writing, w values of variables and clements of structures.

The "MONITOR" PACKAGE is designed to be a readily accessible user interface to these "READ™ and
"WRITE" interrupts in the MDI. interpreter.

To obtain "MONITOR",
¢USE "MONITOR">

There are three basic kinds of ‘things' which can be monitored: values of ATOMs, clements of
STRUCTUREDs (the TYPE of the element is not important), and ASSOCIAT IONs.

For ATOMs, the LVAL or the GVAL may be monitored. If the LVAL is to be monitored, tne ATOM must be
ASSIGNED?. l‘or the GVAL, thc ATOM must be GBOUND?. If these conditions cannot be met, a monitor

cannot be generated,

For STRUCTUREDs, the monitor is on the #th clement, where » is specified when the monitor is created.

Remember, the monitor is on a slot of the STRUCTURED, not on the contents of that slot!

For ASSOC IATIONs. the monitor is on the association itself,

3.7.1. Monitor Internals

This section expands on the discussion of monitors in the MDL. document itsclf[3].

MDi. defines two types of monitors: Read and Write. These arc implemented in the language by two

Execution Tracing 36

I'ne MDI. Programming Environment 47

interrupts, READ!-INTERRUPTS and WRITE!-INTERRUPTS, respectively. In addition. the "MONITOR™
PACKAGE can allow read-wrilc monitors. ‘l‘hc_"MONITOR" PACKAGE is at basc a sct of functions to create
and handle these interrupts. A monitor is triggered in the following cases:
Read monitor:

For LVALs -- via LVAL

For GVALs -- via GVAL

FFor STRUCTUREDSs -- via NTH
For ASSOCIATIONs -- via GET and GETPROP

Write monitor:
For LVALS - via SET or "AUX " bindings
For GVALSs -- via SETG
I‘or STRUCTUREDs -- via PUT, SUBSTRUC
For ASSOCIATIONs -- via PUT and PUTPROP

Mote that PUTRESTs of L1STs which may alter the sth clement of a LIST, do not access the old nth

clement of the LIST and therefore do not cause a write monitor to trigger.

Internally, Mpi. performs monitoring on LOCATIVES to STRUCTUREDs. In fact, LVAL and GVAL are
rcally pointers to an internal structure. ‘This need not concern the user except in the case of LVALS of ATOMs.
In this case. MDI. will monitor a LOCATIVE to rhat (exactly that unique) hinding of the ATOM. When that
binding becomes invalid. or more precisely,

<NOT <LEGALT locarive>>
a function in the "MONITOR" PACKAGE will make the monitor vanish. [lllegal monitors print as
#MONITOR [ILLEGAL] (if you ever get a pointer o one). Remember that if you want to monitor the LVAL
of an ATOM bound in & FUNCTION (or PROG, ctc.), you must creale a new monitor each time, as a new
binding is created cach time. One way to do this is to cdit into the FUNCTION a call to MONITOR (sce below)
after the ATOM becomes ASSIGNED?. Fortunately, EDIT (see section 3.2.2.9) has commands to do cxactly
that.

3.7.2. Creating MONITORs
Creation of all monitors is done through a call o MONITOR (which returns an ubject of TYPE MONITOR),
as follows:

37 Monitors

3 I'he MDL. Programming Environment

(MONITOR [ype:siring
ebject
where
predicate
todo:tuple >

where:
ypeisonc of "READ", "WRITE", or "RW".
ubject is cither an ATOM or a STRUCTURED, or an ASSOCIATION item.

where is cither LVAL or GVAL (if object is an ATOM) or a FIX, (if wbjecr is a STRUCTURED), or an
ASSOCIATION INDICATOR.

predicate is smmething which is EVALed to determine whether the monitor is to be triggered: this defaults to
I. The "MONITOR" PACKAGE defines three variables which can be referenced in the test:

OLDVAL is the old value of the object monitored.

NEWVAL is the new value of the object monitored.

MONOBJ is the objcct monitored (ATOM or STRUCTURED).

Here value means LVAL, GVAL, ur clement. Obviously, NEWVAL is not set for "READ"™ monitors.
fode is any number of things to be EVALed and PRINTed when the monitor is triggered.

Note that predicate and todo are identical to the analogous arguments of the EDIT BK command.

3.7.3. Monitor Events

When a monitor is triggered, the following is printed (remember the predicate is evaluated before this),
and then LISTEN iscalled. Tocontinue, <ERRET T).

Read:

READ of where of objeci
Value: ofdval
todod = resultl
todo? = result2

Write:

Maonitors 3

‘The MDL. Programming Environment 4%

WRITE of where of objecr
01d value: oldval

New value: newval

todel = resultl

lodo? = resuli2

A slightly different first line format is used for associations.

3.7.4. Killing Monitors
Killing a MONITOR is accomplished by calling KILL-MONITOR as follows:
<KILL-MONITOR monitor’
or
<KILL-MONITOR npe objeci where>

In the latter case, fype, vbject, and where arc as given in the original call to MONITOR.

Tu kill all MONITORSs, use
{KILL-ALL-MONITORS>,

3.7.5. Other Monitor Routines
<MONOBJ mionitor>

returns the object monitored.
<MONSPEC monitor>

returns the where of the MONITOR.
{CLEAN-MONITORS>

flushes invalid MONITORs from the MONITOR LIST. This is done internally and need not be called

routinely.
,MONITORS

isa LIST ofall current MONITORs.

3.7.6. What You Can’t Do with Monitors
You can’t monitor the LVAL of something BOUND? but not ASSIGNED?. E.g.,

3.7 Monitors

50 I'he MDL. Programining Environment

{DEFINE WRONG ("AUX" BAR)
{MONITOR "READ" BAR LVAL>
callos 2

You can't expect compiled code to cause monitors to be triggered. Naturally, you can't place monitors in
compiled code: however, a compiled reference w a monitored ATOM will not usually cause the monitor o

trigger either.

3.8. FINDATOM
The "FINDATOM" PACKAGE is intended to reduce the problems caused by multiple OBLISTs and
lengthy ATOM names in MDL. [t allows one to find all ATOMs whose PNAME s match some specification, which

need not be exact; in addition, one may place constraints on the values of the ATOMs found.

FINDATOM is invoked as:

{FINDATOM specsir:siring
searchlist

constraints
oulobl:fisty

speestr is a STRING describing the PNAMEs of the ATOMs one wishes to find. Three special characters are
recognized in this STRING:

*: matches anything, including an empty string

=; matches any single character

tQ: quotes the following character

Scarch strings may be an arbitrary concatenation of normal and special characters. For example:
"*S5DM*": matches any ATOM containing "SOM™ anywhere in its PNAME.

"*=S0OM*": matches any ATOM containing "SDM" in its PNAME, provided that at lcast one character
precedes the "SDM™.

"+Q*": matches any ATOM with PNAME "*",
"= matchcsany ATOM.

If +Q is the only special character in the string, it nced not be quoted: " +Q" scarches for ATOMs with
PNAME "tQ".

searchlist specifics the OBLISTs to scarch. Possible values are:

#FALSE (): scarchall OBLISTsin .0BLIST

Monitors 37

‘The MDL. Programming Environment 51

#FALSE (oblists-or-forms): scarch all but the OBLISTs specified.
oblist: scarch only this OBLIST.

list-of-oblists: scarch only the OBLISTs in this list.

else; scarch all OBLISTs. This is the default.

constraints is a TUPLE describing the value of cach ATOM found. It may consist of any number of valid TYPE
names, along with arbitrary structures and the following special objects:

T: if present. overrides any other constraints: if no other constraints arc specified, this is assumed. Any
ATOM matching specsir will be accepred.

ANY: overrides any constraint other than T. Any ATOM matching specsir which has a value (cither GVAL
or LVAL) will be accepted.

<>: any ATOM which has no value will be accepted. Note that giving both ANY and <> is equivalent to
giving T.

LINK: any LINK will be accepted.

If other constraints are provided, they work as follows: all valid TYPE names given (ones for whom
VALID-TYPE? rcturns T) are stored in a structure; when a value is encountered, its TYPE is MEMQed
on this structure. If the ATOM docs not succeed here, it is next checked against the ‘arbitrary
structures.’ |

Anything in constrainss which is neither one of the above “special objects’ nor a valid type is treated as 2
DECL specification. All such objects are put in a FORM starting with OR, which has the effect of
generating a single DECL specification. When a value is found. DECL7 is called with the value as its
first argument and the generated FORM as its second, 1FDECL? returns T, meaning that the FORM is
valid as a DECL for the VALUE, the ATOM is accepted.

FExamples:
ATOM FALSE '<LIST [REST FIX]>

specifics that any ATOM accepted must have ecither a GVAL or an LVAL which is of type ATOM or
FALSE, orwhichisa LIST of FIXes,

"{OR ATOM FALSE> '<LIST [REST OBLIST]>
specifics that any ATOM accepted must maich the DECL
<OR <OR ATOM FALSE> <LIST [REST OBLIST]>>

outobl, if present, is a LIST of OBLISTs which is the LVAL of OBLIST when FINDATOM prints things, Thus,

one may force all ATOMs to be printed with full trailers by providing an empty LIST here. T'he last
argument given o FINDATOM, provided itis a LIST, is assumed to be owiobl.

FINDATOM prints the name of cach ATOM it accepts, followed by the STRING "Gassigned" and the
type of GVAL if the ATOM has one; this will be fullowed by the STRING "Assigned™ and the type of the

38 FINDATOM

52 ' ‘The MDI. Programming Environment

LVAL if thc ATOM has onc. It prints the number of ATOMs found when it finishes.

3.9. "PINFO"
"PINFO" is an informational PACKAGE. Itis used to examine the OBLISTs of the PACKAGES loaded into
an MD1.. There are two major entries in PINFO,

<PCK-INFO package:siring
internal?:boolean?

Buth arguments t PCK-INFO arc optional. 1f neither argument is given, the names of the PACKAGESs loaded
into the Mot are listed. Ifa package is given, the contents of the package's ENTRY OBLIST are listed, as well
as information about the VALUE of cach ENTRY. If internal? is provided and non-FALSE the contents of the
internal OBLIST arc also listed. PCK-INFO prints an error message if package is not loaded.

{PCK-USES package:string>
lists the names of PACKAGEs USEd by package or returns a FALSE if package is not loaded.

3.10. Debuggingin a Run-time Environment

A fairly common occurrence when running “debugged’ code is to find that if was not after all completely
debugged. It is useful to be able to lvad interpreted versions of some FUNCTIONs in a PACKAGE into the
compiled environment for debugging. "DFL™, "RDFL", and "UNLINK" arc PACKAGEs written to simplify
this procedure,

3.10.1. DFL
The "DFL" ("Dcbugging Fload') PACKAGE is a set of routines for loading and dumping of small numbers
of FUNCT IONs from a larger file. It is useful in debugging already running systems, or ones which have not

been GROUP-LOADed. To get "DFL”
<USE "DFL">

The main entry of the "DFL"™ PACKAGE isDFL:
<OFL func-names file-name:string unlink?: boolean>
where all arguments are optional and
Sfune-names is the name(s) of the DEF INEd FUNCT ION(s) to be obtained from this file. It may be an ATOM, a

STRING, or a structure of ATOMs or STRINGs; if ATOMs are given, their SPNAMES arc used. The default is
the argument last given to DFL or RDFL.

file-name is the file to obtain the FUNCT ION(s) from. The default is the last file DFLed or RDFLed. An ATOM
may be given, in which casc its SPNAME is uscd for the first file name.

unlink? If this is true, and if one or more of the values replaced by the DFLed FUNCT IONs were RSUBRs or

FINDATOM 38

i "

i
¥

oy e Skl

e XY

e

#

The ML Programming Environment 53

RSUBR-ENTRYs, the reference VECTORs of all RSUBRs, including pure oncs, will be scarched for
occurrences of the old value; such occurrences will be replaced by the ATOM. “This is the inverse of
RSUBR-LINKing. Purc structures will be unpurified; this does not change their address in core, but
simply makes the page they live in read/write.

In the normal casc, if an RSUBR or RSUBR-ENTRY is being replaced, unlinking will occur automatically in
garbage-collector space only if RSUBR-LINK is T. Also, remember that unlinking is not the same as
substituting: only RSUBRs stored at top level in reference VECTORs are found: if the old value itself was in a

structure (such as a dispatch table), it will not be replaced.

3.10.2. RDFL
RDFL is similar to DFL but is for reloading RSUBRs rather than FUNCTIONs. RDFL is contained in the
PACKAGE "RDFL".
<ROFL func-names file-name wnlink? glue®>
‘I'he first three arguments are as for DFL. The only difference between RDFL and DFL (barring the effect of
the fourth argument) is that RDFL searches in the file for '¢SETG " rather than "<DEFINE °

gliee? If non-FALSE, RDFL will READ and EVAL the next object in the file following cach RSUBR read. This
will in the normal case obtain the "glue bits” for the RSUBR (see section 6.1). "The default for glue? is

{AND <ASSIGNED? GLUE!- > .GLUE!- >
This is the FORM used in NBIN files to determine whether glue bits should be kept.

Note that RDFL will work to reload any SETGed object, not just RSUBRs.

RDFLing an RSUBR-ENTRY docs not work and may well be fatal: you must RDFL the RSUBR in which
the RSUBR-ENTRY is an cntry, as well.

3.10.3. UN-DFL
UN-DFL is for writing out DF Led FUNCT I0Ns after EDITing.
<UN-DFL gtoms filnam force?>

atoms is an ATOM or a list of ATOMs, which will bc UN-DF Led. "The FUNCT I0Ns defined must all be from the
same file, or UN-DFL will not work. UN-DFL can only UN-DFL things which were previously loaded by
DFL.

Silmam ''he default is the file the ATOMs vriginally came from.

force? Normally. UN-DFL will object if there is a version between the file the FUNCT IONs came from and the
file which UN-DFL will create: it thinks it will likely destroy useful information. Providing an ATOM here
causes this scruple to be ignored. 1t is almost always unwise to do so. For cxample:

il0 Debugging in 2 Run-time Environment

S I'he MDI. Programming Environment

{DFL (FOO BAR)> <UN-DFL FOO0> <UN-DFL BAR>
will causc UN-DFL to fail. Moral: DFL and UN=-DFL your FUNCT IONs together.

3.10.4. UNLINK

The "UNLINK" PACKAGE contains thrce cntrics: UNLINK, PURE?, and UNPURIFY. UNLINK is
sometimes called by DFL; PURE? and UNPURTFY are good ways to thuratively defeat the safety “interlock’ of
MDL.

UNLINK is used to unlink RSUBRs afler they have been linked. (Sce the discussion of RSUBR-LINK in

(3D
CUNLINK aroms pure?>

atoms is a list of the ATOMs to be unlinked, or 4 FALSE, mecaning unlink cvery RSUBR in the M1, or a
group-name, meaning unlink calls to all FUNCT IONs and RSUBRs in the group.

pure? is optional and defaults to FALSE, but if true, ceven purc RSUBRs will be scarched. UNLINK
examines all the 0BLISTs in the Mbi, looking for RSUBRs; if an RSUBR exists only in a structure, and not at
top level in any RSUBR's reference VECTOR, it will not be found.
(UNPURIFY pureobject:any>

PURE? takes an object and determines if the right half of the value word is greater than the number
contained in the MDL location PURBOT, which is the lowest pure location in ML, Ergo, *1s the object [gave
you pure?” Itis only meaningful for structures.

{UNPURIFY pure-object:any>

UNPURIFY takes a single argument. which must be of PRIMTYPE VECTOR or UVECTOR (i.c., it must have
an AOBJN pointer for its value word). [t causes the pages in which that object lives to become impure, and
returns T,

Because there is no way on I'I'S to make a read-only page an impure page dircctly, the following algorithm
is used by UNPURIFY:

1. Is the object pure, according o PURE? If not, leave.
L ISUNPURIFY-PAGE!-TUNLINK GASSIGNED? If not, get a page from the interpreter, and SETG

the aforementioned ATOM (o its number. le., the page is more or less permancntly taken for use
of UNPURIFY,

3. For cach page occupied by the vbject: a) If the page is alrcady impure, do nothing; b) otherwise,

Debugging in a Run-time Environment 310

The MIL. Programming Environment 55

map the page on top of UNPURIFY-PAGE: c) create a new, impure page where the old page was,
d) copy the contents of UNPURIFY-PAGE back to the old, now impure page.
‘Thus, no pointers are changed: as far as MDI is concerned, in fact, nothing has changed. ‘The unpurified

pages are still pure, according to its page map. However, you may freely change the unpurified object.

If your change to the newly unpurified object consists of PUTing a pointer into garbage-collected space
into the object, you may lose completely unless the pointer points to a frozen object. The Mni. garbage
collector does nor examine unpurified objects. UMLINK can only use UNPURIFY because all ATOMs

referenced by pure R)SUERS’ are indeed frozen.

For the above reason, use of UNPURIFY is not recommended for the general user.

3.11. CRITIC

"CRITIC" is a PACKAGE designed to aid the user in debugging (and perhaps increasing the efficiency of)
his programs. [t accumulates and prints in a readable format information about the interactions of the various
FUNCTIONs (and LVALS and GVALS) in a group. 1t also warns the user about various conditions it considers
to be cither non-optimal or erroneous, such as incorrect use of SPECIAL, forgetting to QUOTE some structurc,
and so on. Like most critics, it is sometimes wrong, but it trics to perform a uscful service. To load
"CRITIC" say

<USE "CRITIC">

There are two major entrics, one of which prints more information than the other.

{CRITIC groug-name
vuiput-filed

where group-name is the ATOM rcturned by a GROUP-LOAD, and the optional oufput-file is a STRING giving
the name of the file to output to (by default with second file name "CRITIC™). This can alsu be a CHANNEL
if you arc planning to do several CRITICs into one file. CRITIC prints information about interactions
among the FUNCT IONs in a group (as described below).

{CRITIC-NOTES group-name
output-file>

is similar but only prints "errors’ and ‘warnings’ -- things that might be problems with the FUNCT IONs in the

group.

‘The output format (for cach FUNCT 10N and for the group as a whole) is as follows:

Sunction (object number of function in group)

Called-by: alist of all the functions which call function

310 Dcbugging in a Run-time Environment

36 I'he ML Programming Fnvironment

Cal1s: alist of ull the functions called by function
SETG: external globals SETGed by function

GVAL: external globals referenced by fisnction

SET: external variables SET by function

LVAL: external variables referenced by fiunction
SPECIAL: variables declarcd SPECIAL by function
USE-DATUM: DATUMs used by function

The above table is printed by CRITIC but not by CRITIC-NOTES. ‘External® as used above means

‘External to function'.

CRITIC-NOTES and CRITIC both print information about possible defects or errors in cach FUNCT ION.

‘These can be any or all of the following (cxplanations follow where needed).

3.11.1. Global problems with the Group
FLOAD in file.
‘This is pretty minor: FLOADs at top level are discouraged if you can avoid them.

BLOCK or ENDBLOCK at top level in PACKAGE.

PACKAGEs should not have to resort Lo this.

atom-name: MANIFESTed structurs.

The ATOM given is a structure but was MANIFESTed. Since a MANIFEST is copied within the reference
VECTOR of any RSUBR that uses it, it is usually not a good idea..

ENTRYs not bound, assumed locals: atom-lisi

The ATOMs given were made ENTRYs in the PACKAGE, but were not bound, so CRITIC has assumed they

arc locals, for lack of something better to do.

Packages USEd but never referenced: package-names

These PACKAGEs were in USE statements but no ATOM was cver found which fell on their OBLISTs.
‘There will sometimes be incorrect entrics in this list if you USE o PACKAGE which scts up a funny ENTRY
OBLIST (RPACKAGES included) or no OBLISTs at all.

Internal functions unused: afom-list

These are FUNCTIONs DEFINEd but apparently never referenced and not entrics. There will sometimes

be incorrect entrics in this list if you have FUNCT IONs invoked only by funny dispatching methods, such as

CRITIC 11l

The ML Programming linvironment 57

APPLYing or EVALing an clement of a structure.

Internal globals unused: aton-list

ATOMs SETGed at wp level but never referenced.

Internal manifests unused: atomn-list

ATOMs SETGed and MANIFESTed at top level but never referenced.

3.11.2. Parameter list problems
ATOM aiomi-name used twice in parameter 1ist.

‘The ATOM named was bound twice in the same parameter LIST within the FUNCTION. Mbi. doesn’t
worry about this, but you might.

Untasteful re-use of ATOM aromr-namie in ROOT.

An ATOM was bound which happened to be in the ROOT OBLIST and happened to have a GVAL that is &
SUBR or FSUBR. This is repurted because the ATOM will have to be unpurified, which is cxpensive.

"BIND" illegally located.

A "BIND" was found other than at the beginning of a parameter LIST.
"CALL"/"ARGE" illegally located.

A "CALL" or "ARGS" was found after the "AUX " in a parameter LIST,

"OPTIONAL" illegally located.

"OPTIONAL" was found after "AUX" in a parancler LIST.

"TUPLE" illegally located.

"TUPLE" was found after "AUX" in a paramcter LIST.

atom "AUX" illegally QUOTEd.

The ATOM named was given as a guoted argument in the "AUX" part of the parameter LIST.
External locals set but unbound and unDECLed: arom-list

External locals set but unbound: atom-list

Two diffcrent classes of hacking an external local. In both cases it means that the ATOMs did not appear to

i CRITIC

58 : ‘I'ne ML, Programming Environment

be improperly SPECIALed, since no one bound them higher in the call tree (or at top level). These are most

often indications of misspelling or forgetting to put a temporary in the parameter LIST.
External locals used but unbound and unDECLed: arom-list

External locals used but unbound: atom-list

A reference to an external local which was not bound anywhere is probably a misspelling of a SPECIAL
bound elsewhere or the result of forgetting to put the ATOMs in the FUNCT ION’s parameter LIST.

External locals set but unDECLed: afom-list

External locals used but unDECLed: atom-list

An external used but not DECLed usually means that the compiler will produce poorer code.

3.11.3. Unused ATOMs
Argument unused: atom-list
The arguments listed were never referenced.

Unused: atom-list

The ATOMs listed were bound at top level of the EUNCT 10N and never referenced.

Unused in PROG: atom-list

Similar to the above, but the ATOMs were bound within a PROG.

Unused in REPEAT: artom-list

Similar to the above, but the ATOMs were bound within a REPEAT.

Unused in FUNCTION: atom-list

Similar to the above, but the ATOMs were bound within a nameless FUNCT ION, such as the second
argument o a MAPF/MAPR.

Unused SPECIALs: afom-list

The same as above (including® ... in FUNCTION' ctc.), except that the ATOM was SPECIAL. This
message results from really looking down the call tree, so it is more accurate about this problem than the
compiler, which only looks at the FUNCT ION in which the ATOM is bound.

CRITIC 3.1

‘The MDL. Programming Environment 59

3.11.4. Function calling errors
Calls undefined function aiom.
The FUNCT ION calls an undefined FUNCT ION (undefined at the time CRITIC ran).
Calls function with too few arguments.
Calls function with too many arguments.

External FUNCTION function

‘The FUNCT ION named is called but doesn’t seem to fall on any of the OBLISTs associated with the group.

3.11.5. SPECIAL/UNSPECIAL problems
SPECIALs never used as SPECIALs: atom-list

The ATOMs were made SPECTAL but never used outside the FUNCTION in which they were bound.

aton=name is unused or should be SPECIAL.

A very specific error which means that the ATOM given (always one of INCHAN, OUTCHAN, or OBLIST)
was bound but never referenced within the FUNCTION, and was not SPECIAL: Fither you bound it for
cffect and forgot w SPECIAL it, or you didn’t need 1o bind it

alom unbound in paths: path-list

If the FUNCTION is called by one of the paths given, the arom will be unbound. A path is just a list of calls
CRITIC has found are possible, such as (FOO BAR BLECH), mecaning ‘FOO is called by BAR which is called
by BLECH'.

The ATOM giom used in fen! should be special in fenl.

This note will appear with both FUNCT IONs mentioned. It means that atom is referenced in fenl and the
nearcst FUNCT ION that binds it and calls down to fen/ is fen2.

3.11.6. DECLing problems
RSUBR has no DECL.
FUNCTION has no DECL.

Parameters not DECLed: aiom-list

The ATOMs given were bound but not DECLed in the parameter list of a FUNCT ION, PROG, or REPEAT,

3l CRITIC

bl Ihe ML, Prugramming Environment

No DECL in DECL for: atom-list

Ihe ATOMs in the atem-fist given had no associated declarations.

NEWTYPE not DECLed: {ype-name

A NEWTYPE of a structured type was made but no DECL argument was included. In a structured

NEWTYPE. including a DECL of the interivr can greatly increase the efficiency of compiled code.

I11egal DECL: atom-list decl reason

‘The DECL pair given had illegal syntax for the reason given. These can include:
"Not a lagal type": Anuobject appeared ina DECL that was notan ATOM, FORM, or SEGMENT.
"Type-name not a type: atem": Something vther than a type-name or special symbol (such as ANY)
appeared where a type was expected. This is sometimes caused by not having your environment
completely set up when CRITIC is run.
"FORM/SEGMENT too short”: A FORM/SEGMENT constructivn of only one clement was found.
"SPECIAL/UNSPECIAL with three or more elements”
"Bad PRIMTYPE type”: Thetypegivenin a PRIMTYPE was .0l a type-name.

"PRIMTYPE with three or more elemants”

"Bad type of structured type": Thc type-name given as the type of a structured type was not a
type. For cxampic, <FO0 FIX» where FOO is not a type.

"Bad BYTES specification”: A BYTES specification was not of the furm <BYTES fix fix>, or the
byle size was greater than 36.

"BYTES DECL too short™ A BYTES cunstruction of only one element was encountered.

"BYTES DECL too long": A BYTES construction of more than three clements was encountered.
"VECTOR 1in OR specification™: An NTH/REST/OPT construction was found at top level of an OR.
"Nth/REST/0PT too short"™: A onc-clement NTH/REST/0PT,

"Only REST or OPT may follow OPT": Somcthing other than a REST or OPT was found after an
OPT.

"REST must terminate DECL": Somecthing was found after a REST in the DECL.

CRITIC i1

The MDIL. Programming Environment 61

3.11.7. Miscellaneous
Possibly should be QUOTEd: siructure.

The structure given will be =7 tw itsclf if EVALed. CRITIC lists these under the assumption that you
might have forgotten to QUOTE a structure that should have been. It says “possibly” because you obviously
want to build new structure sometimes. One way o do this without offending CRITIC is to build new

structure with explicitcalls o LTIST, VECTOR, eic.

3.12. Program Environments
The ENV PACKAGE makes it casier w load programs into different environments. 1t allows certain actions

to be taken during loading only if a given “feature” is present. ENV has three ENTRYs, and is preloaded.
{FEATURES features:iuple>

If given no arguments, FEATURES returns the current feature LIST. Ifits first argument is not a FALSE, the

arguments are added w the feature LIST. If the first argument is FALSE, the remaining arguments are

removed from the feature LIST. Thus,
{FEATURES "COMPILER">

says that we are currently in a compiler. All of the “feature” arguments may be cither STRINGs or ATOMs;

internally features are stored as STRINGs to avoid OBLIST problems.

<FEATURE? features:iuple>

returns T if any of its arguments is on the feature LIST.

{EVAL-WHEN fearures
conscguences: (upled

uscs the first argument o decide whether to evaluate the remaining arguments.

Seatures specifies which feature(s) to look for. Tt may be a single feature or a LIST of features. In the latter
casc, if the first clement is a FALSE, what is checked lor is the absence of the features listed. Note that this
argument is often a LIST created out of arguments to FEATURE?.

consequences-are things to be evaluated only if the features are present (or absent, in the FALSE case).

For example,
{EVAL-WHEN GLUE <SETG FOO 1>>

would perform the SETG only if it's evaluated in a GLUE (or some other environment defining that feature).
<EVAL-WHEN (<> COMPILER) <SETG BAR 2>

would not perform the SETG in the compiler environment

Unfortunately, the ENV PACKAGE is a relatively recent innovation, and so many programs do not set up

appropriate environments,

311 CRITIC

62

40

The MDI. Programming Environment

T

The M. Programming Environment 63

4. The Library System
A coherent unified library system serves to-facilitate the sharing of algorithms and data by imposing a

discipline appropriate for the particular environment. The MDI Library System provides:

— A uniform access method for referring to functions and data outside of the current logical group;

— lLexical blocking. climinating difficulties arising from overlap of names between different logical
groups;

— Automatic loading of functions for the user who knows only the name of the function which is
wanted;

— A facility whereby functions which may be necessary only in unusual situations arc loaded only in
the event that they are needed.

The Mt Library System may be divided into distinet parts. “These are:

— The Package System, the collection of routines used to provide lexical blocking for i logical group
(sce section 2);

— The “explicit’ loading facility, the routines used to explicitly indicate that references are being
madec 1o a particular logical group;

— The “implicit’ (or *dynamic’) loading facility, the machinery for automatically loading functions
when they are needed during consule interaction.

4.1. Program Libraries

In the previous discussion of the Package System and USE (see section 2.3.2). we glossed over the
mechanism by which a PACKAGE is loaded when another PACKAGE (or the user at his terminal) refers to it.
We will now give the details.

There arc two types of lvading common in MDI. programming: ‘explicit’ loading, such as USE may
initiate, and ‘implicit’ or ‘dynamic’ loading, initiated by attempting to call or examine a function that is not

currently loaded.

In the case of "explicit’ loading, it is necessary somehow to map the name of a PACKAGE into a file name
which contains the body of that PACKAGE. 'I'ie mechanism for doing so must be flexible enough to allow
both ‘installed” programs (those that have been debugged and submitted to the library) and developmental
programs (o be loaded. It must also be tailorable for special needs, such as libraries for specific systems and

personal librarics for individual users.

4.0

64 ‘The MDIL. Programming l‘nvironment

In the case of ‘implicit’ loading, the further mapping from the specific ENTRY of a PACKAGE referenced to
the PACKAGE itself must be performed. It must deal with the case of two or more PACKAGES cach containing
an ENTRY with the same PNAME.

For programs that are ‘public’ or “installed’, both of these mappings arc perfurmed by a library. A library
is a file which contains puinters between the names of ENTRYs of PACKAGEs and the PACKAGEs containing
them, and from PACKAGE and DATUM names to the files containing them,

The standard library is named LIBMUD and lives un a directory named L IBMUD (on I'TS) or MDLLIB (on
Tenex/Tops-20). but other libraries, personal or special purpose, may also exist; the mechanisms for creating

and maintaining them are the same in both cases.

4.1.1. Library Searching

When a PACKAGE is USEd, MDL first checks to sce if the PACKAGE is already loaded, by looking up the
PACKAGE name on the PACKAGE OBLIST. If the PACKAGE is not yet loaded. MDI. must search for the file
cuntaining the body of the PACKAGE.

When MbL scarches, it does so under the direction of a search path stored as the LVAL of the ATOM
L-SEARCH-PATH. This LVAL is a LIST, cach element of which specifics ‘a place to look™ for the PACKAGE.
These clements may be:

" file-name™
A STRING refers to a library file; "LIBMUD; LIBMUD™ for example.
(1

An empty VECTOR refers to the ¢SNAME > dircctory. The directory will be searched for files whose names are
the name of thc PACKAGE being loaded (truncated to six characters on ITS) and sccond names from the
LVAL of thc ATOM L-SECOND-NAMES, which is a VECTOR of STRINGs which arc possible second names for
the File.
[dir:siring-or-false]

A non-empty VECTOR specifics a directory. The first element of the VECTOR gives the directory as a STRING
or a FALSE, the latter casec meaning <SNAME >, [f that is the only clement, L-SECOND-NAMES specifics the
file names to look for. IF there are other clements, they should be STRINGs to usc in place of
L-SECOND-NAMES.

A scarch path may consist of any number of such clements. The loader will examine them sequentially,
attempting to find the PACKAGE being loaded.

Program Libraries 4.1

—tmpa Veemd Eefgre

The MDI. Programming Environment 65

The initial LVAL of L-SEARCH-PATH (on ITS) is
("LIBMUD" "LIBMUD;LIBMUD" [] ["MBPROG"] ["MPROG" ">"7)

and on Tenex/TOPS-20, it is

("LIBMUD" "<MDLLIB>LIBMUD"™ [] ["MDLLIB"])
This instructs the loader to first scarch the user’s personal library (if it exists), then the *public’ library, Next,
scarch the user's directory for a file whose first name is the PACKAGE name, and whose sccond name is
specified by L-SECOND-NAMES. If that fails, perform the same search on the library dircctory, and finally

{on I'TS), look for a source version of the PACKAGE on the source directory.

The initial LVAL of L-SECOND-NAMES (on [TS) is
["FBIN" "GBIN" "NBIN" ">"]

and on Tenex/TOPS-20, it is
["FBIN" "GBIN" "NBIN" "MUD"]

To give a simple example of how this mechanism may be tailored for individual needs, consider a
programmer debugging a subsystem. If he wants his debugging versions of various PACKAGEs to be loaded

befure the installed versions, he CONSes a new clement onto L-SEARCH-PATH so that it contains
([] "LIBMUD" "LIBMUD;:LIBMUD" [] ["MBPROG"] ["MPROG" ">"])

(assuming the files with his debugging versions are on the <SNAME> dircctory).

4.1.2. Dynamic Loading

To case the use of "top level’ routines from the console, a feature is provided whereby the Library System
can load a PACKAGE of functions automatically when one of the functions which is an ENTRY in that
PACKAGE is invoked by name. This facility is not available for use by other PACKAGESs of functions, which
must refer explicitly, via USE, to PACKAGEs which they require: while a human can resolve the difficulty of

possible multiple PACKAGEs with ENTRYs of the same namc, a program cannol.

When an error is gencrated because a FORM is cvaluated, and the first clement of that FORM is an ATOM
which has no value, and the particular ATOM is in the INITIAL OBLIST, an error handler established by the
Library System determines if there are any PACKAGES in the current librarics which contain an ENTRY with
the same name as the PNAME of that ATOM. If there is one such PACKAGE. it is loaded, und the cvaluation
which got the error is continued with the correct value. If there is more than one such PACKAGE, the possible
choices are displayed, the user is asked which is the desired PACKAGE, and it is lpaded. If there are no
PACKAGEs with ENTRYs of the correct name, the error is not handled, and so it will fall into the standard

error mechanism. This same procedure is also invoked when GVAL is applied to an ATOM on the INITIAL

4.1 Program Libraries

66 I'he ML Programming Environment

OBLIST and the ATOM has no value.

4.1.3. USE-DEFER

It is sometimes desirable to have available functions that are rarcly invoked. but are nonctheless available.

{One example would be certain error handling routines.)

The USE-DEFER function sets up the OBLIST path so that, when a reference is made to an ENTRY in the
specified file. the correct ATOM is found, but the PACKAGE is not actually loaded at that time. When a
function at a later time tries to call the function which is the value of one of the entries in this PACKAGE, the
whole PACKAGE will be automatically loaded. USE-DEFER has two constraints which USE doces not. First, the
PACKAGE must be in une of the currently active libraries; it may not simply be a file as in the case of USE.
Second, no reference may be made to ATOMs which arc entries but do not have values which are applicable. In
other words. ATOMs which are entrics because they are data (rather than functions) may not be referenced

when USE-DEFER is employed instead of USE.

Because USE-DEFER utilizes the dynamic loader, which utilizes the ERROR interrupts, USE-DEFER will
not work in a demon or any other MDI. program which sets up its own error handlers. All such MbL
programs should SETG the ATOM L-NO-DEFER o a non-FALSE, which (as explained previously) will cause
USE-DEFER to behave exactly like USE. Then, PACKAGEs containing a USE-DEFER can be used without

maodification in demons and the like.

4.1.4. USE-TOTAL
USE-TOTAL is analogous to USE, but instead uf splicing in only the ENTRY OBLIST of the PACKAGE, it
additionally splices in the internal OBLIST. This is uscful in some debugging situations, as it reduces the

number of trailers printed and also makes the internal identifiers of the PACKAGE more accessible.

4.1.5. Translations

It is occasionally useful to have more than onc copy of a particular PACKAGE loaded at once. One
example that comes to mind is the case of debugging a debugging PACKAGE. ‘The Library System contains a
mechanism for “translating’ a PACKAGE name into another one. More specifically, it is possible to tell USE: “IF
you ever load the PACKAGE named fio, pretend it was named bar instead.” Note that this does not change the

scarching and loading procedure described above, unly the names of the 0BLISTs and so on used to store the
ATOMs in the PACKAGE,

Program Libraries 4.1

e =&

‘The MDI. Programming Environment - 67

{TRANSLATE pld:siring new:siring-or-false>
causes the PACKAGE old. when it is USEd, to behave as if it were named new. If new is FALSE. it means that
old should be loaded as though it were not a PACKAGE at all: its ATOMs will appear on the DEFAULT OBLIST
or<l1 .OBLIST> (normally INITIAL).

CUNTRANSLATE oldstring>

causes any translation of old to be removed.
{TRANSLATIONS>

lists all translations currently in existence.
,L-TRANSLATIONS

is 2 LIST containing all the translations.

4.1.6. The Library Data File

In addition t its ability to map between PACKAGEs, ENTRYs, und the files which contain them, the library
serves another purpose. [f a user is compiling a function which USEs a given PACKAGE. that PACKAGE isnot
usually going to be run. All that is necessary is to examine the calling sequences of its functions, and make
sure that all *side-cffects’ (such as the definition of new TYPEs) occur. 1f only these necessary parts of the

PACKAGE are loaded, a great saving of time and space is cffccted.

‘The library data file provides a way of achicving this cnd. When a PACKAGE is added to the library, more
information than the list of ENTRYs and the file containing the PACKAGE is collected. In particular,
MANIFEST GVALs, NEWTYPE definitions, some MACROs, and RSUBR DECLs are stored. Since this is the
information used by the compiler, one can save a great deal of space and time by using information from the

library where possible.

If ,L-USE-DATFILE is true, USE of a PACKAGE will load from the data file if possible. It is impossible if
the PACKAGE has changed since the data file entry was created. In those cases, the PACKAGE itsclf is loaded
instcad. If ,L-ALWAYS-DATFILE is truc, an ERROR will result if the data file entry is outdated; one can
ERRET T to causc the real PACKAGE to be loaded.

USE-DATFILE is just like USE, cxcept that it temporarily SETGs L-USE-DATFILE and
L-ALWAYS-DATFILE o T.

The data file containg, for cach PACKAGE, information for cach interesting ENTRY: MANIFEST GVALs,
NEWTYPE definitions, RSUBR DECLs, and MACROs. It also has, of course, the lists of ENTRYs and RENTRYs
needed by the dynamic loader. 1t docs not contain other structures, nor docs it contain functions. When a

41 Program Libraries

68 ‘The MDL. Programming Environment

PACKAGE is lpaded from the data file, it is effectively USE-DEFERed; if you end up needing to run part of
the PACKAGE, it will be loaded dynamically.

Sume PACKAGESs can not have data file entrics. 1fa PACKAGE defincs MACROs that use data not stored in
the data file (if the MACRO calls a FUNCTION, for cxample), the PACKAGE will not get a data file entry: it

would normally end up being loaded from the file anyway.

It is pussible for a data file entry t become obsolete (if a new version uf a PACKAGE is created without the
library entry being updated). For this reason, the library is examined periodically for such entries and an

attempt is made to update the appropriate entries.

4.1.7. Run-time Switches
There are a number of variables which may be set dynamically to tilor the Library System’s perforinance.
.L-SEARCH-PATH
as described above (see section 4.1.1) is a LIST specifying the libraries and dircctories to look in. and the files
to look for when trying to load a PACKAGE. This variable is used by USE, USE-DEFER, USE-DATUM, and the
dynamic loader.
.L-SECOND-NAIES
as described above (sec section 4.1.1) is a VECTOR of the second names of files to look for when attempting to
load & PACKAGE from a directory.
JL=-NOISY
If the GVAL of L-NOISY is non-FALSE, the names of PACKAGESs and DATUMs are printed whenever they are
loaded, dynamically or otherwise. This feature may be turned off by SETGing L-NOISY w #FALSE ().
L=NOISY has an initial GVAL of T.
.L=NO-MAGIC
Dynamic lvading may be disabled by SETGing L-NO-MAGIC to a non-FALSE. L-NO-MAGIC has an initial
GVAL of a FALSE.
LL-ALWAYS-INQUIRE

If the GVAL of L-ALWAYS~-INQUIRE is non-FALSE, the dynamic loader will always ask the user before it
lpads anything. The GVAL of L-ALWAY S- INQUIRE is initially a FALSE.

,L-NO-DEFER
If the GVAL of L-NO-DEFER is non-FALSE, USE-DEFER will work cxactly like USE. L-NO-DEFER is
initially SETGed to #FALSE ().

‘r'rv

‘The M. Programming Environment 69

4.1.8. Library Utility Functions
A number of functions exist which allow the user to examinc libraries, list their contents, and retrieve their

entries. All of the functions below except L-PATH and L-0BL accept an optional STRING argument, a
library specification. If it is defaulted, they operate on the public library, specified by the string "LIBMUD;
LIBMUD" or "<MDLLIB>LIBMUD".

<{L-LOAD package:string library:string>
L-LOAD requires a STRING (the name of a PACKAGE or DATUM) and attempts to load it from library (if
given) or the current librarics, as per L-SEARCH-PATH.

<L-FIND function-name:string library:string?
L-F IND requires a STRING (the name of an ENTRY), returning & UVECTOR of two-element VECTORS of the
form:

[package-in-which-function-exisis:string
library-in-which-package-exisis:string]

This finds all of the entries which have the same PNAME but are in different PACKAGES.

The remaining functions are in the PACKAGE "L", rather than in the PACKAGE "PKG". For cach of
these, the optional [library argument is by default the library; that is, "LIBMUD;LIBMUD" or
"(MDLLIB>LIBMUD".

<L-FILE package:siring library:string
L-FILE requires a STRING (the name of a PACKAGE or DATUM) and returns a STRING which is the file
specification of the file, pointed to by the library, which contains the body of that PACKAGE ur DATUM,
<L-WHERE package:siring library:string>
L-WHERE is similar to L-FILE but rcturns a VECTOR of STRINGs which is the actual complete file
specification of the file containing the PACKAGE (i.c., the ‘real’ siuts in a CHANNEL open to the file).
{L-LISTE library:string>
L-LISTE prints the names of all of the entries of all of the PACKAGES in the library.
{L-LISTP library:siring>
L-LISTP prints the names of all of the PACKAGEs and DATUMs in the library.
<{L-COUNTE [library:string>
L-COUNTE rcturns a FIX, the number of entrics defined by all of the PACKAGES in the library.
<L-COUNTP library:string>
L-COUNTP returns a FIX, the number of PACKAGEs and DATUMs in the library.

41 Program L.ibraries

70 ‘ ‘The MDI. Programming Environment

{L-LISTPE package-siring library:string>

L-LISTPE requircs a STRING (the name of a PACKAGE) and prints the names of all of its entries.
CL-PATH> '

L-PATH prints a list of the names of all of the 0BLISTs in the uscr's current OBLIST path.
<L-0BL afom>

L-0BL requires an ATOM and returns an ATOM, the name of the first ATOM's OBLIST. L-0BL is in fact
{GET <OBLIST? arom> OBLIST>

4.1.9. Internal Library Functions
‘There are several internal functions used for scarching libraries (which is, after all, all the Library System

cver does).

CPACKAGE-FIND package:string [ibran;siring?
scarches library for package. |f there is no such PACKAGE or DATUM in /ibrary, it returns a FALSE.
Otherwise, it returns a STRING, which is the name of the file containing package.

CENTRY-FIND gninv:siring-oratom [library:siring>
scarches fibrary for PACKAGES containing ensry. It returns a FALSE if there are none, utherwise a LIST some
multiple of four clements long, where each set of four elements describes a package containing an ENTRY
with that PNAME. These clements are:

package:string is the PACKAGE being described.

file-name:string is the file-name containing the package.

rpackage?:atom-or-false indicates, if non-FALSE, that the package is in fact an RPACKAGE.
rentry?:atom-or-false indicates, if non-FALSE, that the entry is an RENTRY.

{DEFER-FIND package:siring library:siringd
returns a FALSE if the PACKAGE or DATUM is not found, or a VECTOR of five elements describing the
PACKAGE.

rpackage?:atom-orfalse indicates, as above, whether the package is an RPACKAGE.
name:siring is the name of the package.

file-name:string is the file containing the package.

entries:list isa LIST of the PNAMEs of the ENTRYs of the package.

rentries:listisa LIST of thc PNAMEs of the RENTRYs of the package.

Program Libraries 41

The MDL. Programming Environment [}

This is all the information about the package that the library contains.

4.1.10. Library Maintenance

The PACKAGE called "LUP™ contains functions used to modify libraries, and to add, update and delete
PACKAGEs and DATUMs. It should be noted that librarics do not contain the bodies of PACKAGEs and
DATUMs. Rather, they point o files which contain these.

<LUP-ACT [ibrary:siring>

requires one argument. a library specification STRING, and activates the library so specified. If the library
doesn’t exist, it is created. In order o protect the library from luss due to system or MDIL crashes, activating &
library for modification copics the library data files and locks the library so that no one clse may modify it.
Muodifications are made to the copics, which are renamed back over the originals only when the library is
explicitly deactivated. Obviously, PACKAGEs added to a library aren’t available, even to the person adding

them, until the library is deactivated.
<LUP-DCT>

deactivates the currently active library.

<LUP-ADD-PACK package-file:string
update?:boolean

datfile-entry?:boolean>
package-file is a file specification of the file containing the body of the PACKAGE to be added.
LUP-ADD-PACK will find the PACKAGE statement within the file (or complain if it can't).

update? is optional, and if non-FALSE, it allows the PACKAGE to update an older version of itself,
something which is not otherwise allowed. Note that, since the libriary points to the file which contains the
body of the PACKAGE. that file should not be deleted later, clse the library won't be able to find it

datfile-entry? is by default T, but if it is FALSE, no entry will be created in the datfile for this PACKAGE.
Since datfile entries arc generally uscful only in the compiler (and similar environments), it doesn't do much

good to have them for PACKAGES that are only called from top level (c.g., FINDATOM).

When adding a PACKAGE Lo the public library. the PACKAGE's object file should be copied to the
appropriate library directory ("LIBRMa" on IS, or "<MDLLIB>" on Tops-20) and the library pointed at
that copy of the file. If no library is activated when LUP-ADD-PACK runs, it will activate "LIBMUD;
LIBMUD" or "<MDLLIB>LIBMUD".

41 Program l.ibraries

n I'he M1 Programming Environment

{LUP-ADD-DATUM pame;string
update?: boolean>
is analogous to LUP-ADD-PACK, adding a DATUM to the active library. LUP-ADD-DATUM requires two
STRING arguments, the name of the DATUM and the specification of the file which contains the body of the
DATUM. LUP-ADD-DATUM will accept the same optional argument that LUP-ADD-PACK accepts, with the
same meaning and default. The same restrictions concerning the file w hich contuins the DATUM also apply.
<LUP-DEL package:string>
LUP-DEL requires one STRING argument, the name uf a PACKAGE or data set. and deletes that PACKAGE or
DATUM from the currently active library. LUP-DEL does not touch the file containing the body of the
PACKAGE or DATUM.
CLUP-MOVE package:string file:string>
causes the file pointer of package to be changed to point to file. This is a faster operation than re-adding the
PACKAGE, and it is intended for situations in which an existing library file has been moved for some reason.
{LIB-GC library:string>
garbage-collects the library in question, if this is required. Garbage-collection is occasionally useful since it
causes all the clements of cach hash bucket to live near cach other in the library file, thus improving

performance during searches. It also allocates some free storage i cach page of the file.

4.2. The Pure-mapping Library

‘The basic idea behind MDL pure mapping is to separate out the code part of RSUBRs in compiled
programs. The RSUBRs themselves are kept in a file known as an FBIN (sce 6.3). These RSUBRs do not
contain the code but instead point to a file which contains the code. This scheme has several advantages.
First, the code can be dynamically mapped in when needed. This allows MDI. to use more code than will fit
in the virtual address space of the machine it is running on. Sccondly, since the code is pure it can be shared
between several MDLs using it Finally, the FBIN file itsclf is smaller than a corresponding NBIN file and
therefore FLOADs more rapidly.

In the most basic implementation of FB INs, there are three files: the FBIN, the SAV file (which contains
the code), and the FIXUP file, which contains the information necessary to update the SAV FILE for new
releases of MDL. As is obvious, this cntails a lot of files, and potentially a lot of file directories. The MbL

Purc-mapping l.ibrary reduces this storage overhead by collecting all of the SAV and FIXUP files together.

The scheme uses two large data bases, cach contained in one file. The data bascs arc called *SAV' and
‘FIXUP'. These files store all currently existent SAVs and F I XUPs for all existing versions of MDL. Each data

Program Libraries 41

The ML, Programming Environment - 73

base is structured like a file system. There is a main ‘directory” that points to a number of other “directories’,
cach of which points to a number of *files” inside the data basc. In this section the word *file’ or *directory’ in
quotes refers to an object inside a data base. The files containing the data bases are named (on [1S)
"MUDSAV;SAV FILE" and "MUDSAV:FIXUP FILE", On Tenex/TOPS-20, they are
"{MDL>SAV.FILE" and "<MDL>FIXUP.FILE".

4.2.1. The Demon
While all Ml s can read from the Pure-mapping Library. there is only one program which can write into
it. This is a maintainer demon which runs once a day to keep the Library updated. This demon can add *files’,

delete *files’, and add “subdirectories” to both dita bases.

“T'o facilitate updating of the Library there is a directory on which to put files to be added as well as files
indicate what is to be deleted. 'This is the "MUDTMP" directory on ITS and the "<MDLLIB>" directory on
Tenex/TOPS-20. Any file on it with the second name of SAVunn or FIXnnn (where nun is a 2 or 3 digit ML
release number) will be added tw the appropriate data base. If the files "DELETE SAVS"™ or "DELETE
FIXUPS™ exist, then they will be used 1o delete *files’ from the data bases. These files must be ASCII files of
the form

filename | [SPACE] filename 2 [CRLF]

An example of a valid delete file is as follows

NCODGE SAVS53
1INCODGE SAVS3

The demon will ignore any deletion requests for *files’ not in the data base.

The demon docs its work in scveral passes. The basic passes are the delete pass, the planning pass, the
update pass, and the salvage pass. The delete pass deletes “files” if either a "DELETE SAVS™ or "DELETE
FIXUPS" file exists on its working directory. The planning pass builds a plan file by examining the working
directory and calculating where new “files’ will be placed in the data bases. The planning pass builds two files
using a special internal format. These files will be used by the update pass to add *files’ to the duta bases. The
planning pass also enlarges the data base files as much as necessary Lo accomodate the new “files’. The update
phase reads the plan files and adds new SAV and FIXUP ‘files’ to the data bascs. If a ‘directory” overflows, a
new “directory” is added during this pass, and all the ‘directorics’ are recreated (i.c.. all the ‘files” have o be
rchashed, since they were originally placed in a “directory’ according to a hashing algorithm based on the
number of *directories’). The salvage pass is used to pick up any free storage that has been lost through system

crashes or lost through holes created during the updating of the data bases.

4.2 The Purc-mapping Library

4 I'he MDI. Programming Environment

Throughout the entire processing of the data bases attempts are made to keep the data bases in a consistent
state. "Directories’ are updated only after *files” arc guaranteed to be in the data bases. The plan files described

arc used to keep the data bases consistent in case the system crashes while the demon is in the update pass.

A major goal in the design of the data bases is to allow recovery in case of demon errors or system disk
crashes. To this end the data bases are backed up on tape every other week. (It would be dumped more often
but the file is currently over two million words long). This of course leaves the problem that “files’ added to
the data bases hetween dumps could be Jost in a disk crash. To aid in recovery from such a crash, all *files’
added between duinps are copied to the "MUDRST™ dircctory (on I'I'S) or the "<MDL.SV>" dircctory (on
Tenex/TOPS-20). Morcover a file is kept listing all the “files” added during the previous week. This file is
cilled "ADDED FILES™. All this information is deleted once the data base is dumped to tape.

4.2.2. User Programs
Occasionally it is useful for a user w list the data base *directories’, to see if certain *files” are in it. and copy

“files’ out of the data base. DBMAIN is a program which allows the user to do these things.

The following are functions available to the user.

4.2.2.1. Listing Functions

{CLISTF data-base:string>
is used to list all the “files’ in a data base. It takes one optional argument which is the name of the data base
(cither "SAV™ or "FIXUP"). If no arguinent is supplicd, "SAV" is used by default. (This is always the
default whenever a function takes an optional argument spccifying the data basc.) CLISTF prints cach ‘file’,
its Iength, and where it is located. The format of a line of listing is as follows;

ml fu2 size block ‘
where firl is the first ‘file’ name, fii2 is the second *file’ name, size is the length of the *file” in blocks (1024.
words for SAVs, 256. words for F IXUPs), and block is the block at which the *file’ starts. This is the format
used whenever listing “files”.

{LISTF dala-base:string directories?
is used to list all the ‘dircctories’ of an entire data base. It takes two optional arguments, the data-base to be

listed. and a specification of which ‘directories to list. "I'he *directories’ may be:
a F IX: list the ‘directory’ specified by the FIX;

aLIST of FIXs: list the ‘dircctorics’ specified in the LIST;

the ATOM ALL: list all the “directorics’ (this is the default).

The Pure-mapping Library 42

,.

P ———

- ——

The MDIL. Programming Environment 75

<FLIST data-base:stringd
lists free arcas of storage in the data basc. It lists the free storage in the form:

length block '
where length is the length of the arca of free storage and block is the block number of the starting block. This
function takes one optional argument which is the name of the data base o be examined. At the end of the

listing it will tell the total amount of free storage.

4.2.2.2. Find Functions
{FIND-FILE file:siring data-base:siringd
is used to find a specific *file”. It tukes as its argument a *file” specification and prints the ‘file’ name along with
the information printed by the listing functions if the *file” exists, otherwise it rewurns an object of type
FALSE. The *file” specification must be of the form:
“dir; fnl fa2"
where diris cither SAV or FIXUP and firf and fir2 arc the first and second "file’ naines respectively.
{SPEC-FIND ful:siring data-base:string>
is used to find all *files” with the same basic name. disregarding the leading digit(s) which are added to make
*file’ names unique. It takes one reguired argument which is the fi/ to look for. It takes an optional second

argument which is the data-base to look in. For example the call
<SPEC-FIND "MAIL">

might print:

MAIL S5AV63 B 140
IMAIL SAV53 8 380

4.2.2.3. Other Functions
{DELETE file:string data-base:stringd
allows the user to delete a “file” from a data base. It takes the same type of *file” specification that FIND-FILE
takes. The *file” you specify will be deleted the next time the demon that maintains the data base runs.
<GET-FILE file:siring ouiput:siring data-base:siring>
allows the user to retrieve a ‘file” from the data base. It takes two arguments. The first is the *file’ specification

of the file to retrieve out of the data base and the second is the vurput file you wish to copy it to.
<STATUS>

gives the information about the state of the data bases. It tells the number of *files” and the amount of free

storage in cach data base. STATUS takes no arguments,

4.2 ‘The Purc-mapping Library

76 “ ‘The MDI. Programming Environment

4.2.3. Using DBEMAIN
There are several ways to use DBMAIN. It can be used by typing
:DBMAIN function argl ... argn
o DDT. The jel-line is of the form function argl ... argn, where function is the name of the function to be used.

For example
:DBMAIN FLIST "FIXup"

will list the free storage block for the "FIXUP™ data basc. DBMAIN will kill itsclf afier finishing and can be
killed carlier by typing tS.

‘T'he jel-line mentioned above can be modified to allow output to be routed to a file. This can be done by

preceding the normal jel-line with a string specifying the file name of the output file.
:DBMAIN "LISTOF SAVS™ CLISTF

will produce a listing of the files in the SAV data base and will print this information to the file "LISTOF
SAVS",

4.2.4. Garbage Collection

Onc problem of the MDI. Pure-mapping Library is that many uscless SAV and F I XUP *files’ remain as new
revisions of user programs are created. To alleviate this problem there is a garbage collection system for the
data bases.

The major goal of this scheme is to determine which “files” in the data bascs are no longer useful. To do
this all files in the system are scanned to see what SAV files are still pointed to (nef including those pointed to
only from within 1TS archive files). A SAV ‘file’ can be pointed to from FBIN files and SAVE files. A SAVE
file contains pointers in its PURVEC (Purc VECTOR). All FBIN files should begin with sumething of the form

'{PCODE file:string>
where file is the name of the SAV *file" associated with this FBIN. If an FBIN has more than one SAV ‘file’
associated with it then there can be several PCODE FORMs at the beginning of the file. For purposes of
garbage collection, this FORM (or FORMs) must be retained whenever an FBIN file is edited. If these PCODE
FORMs disappear, their pointers to the SAV *files’ will go with them, and the SAV ‘files” might be garbage
collected.

Garbage collections proceed by looking at every file on the disk, building a list of all *files’ pointed to. The

program then examines the data bascs and any *files’ which arc not pointed to are deleted.

It is possible that deletions can fragment the free arca in the data bases. If compaction becomes necessary,

The Pure-mapping Library 42

The MDI. Programming Fnvironment 77

there exists a routine to do in-place compaction of the data bases,

4.2.5. Internal Structure

The "SAV" and "FIXUP" data bases have similar formats. The *files’ in the data base are pointed to by
entries in what is essentially a hash table. Associated with cach data base is a main ‘dircctory’ (the hash table).
This ‘directory’ is located in the first 1024 words of the file. This main 'directory’ points to other ‘directories’
in the data base (the hashing buckets). Each of these ‘directories’ is 1024 words long. The first ‘file’ name is

used to determine which ‘dircctory” the *file" is on. The structure of the main ‘directory’ is as follows.

word 0/ number n of entrics in the main ‘directory’
words 1-n/ block number of cach ‘dircctory’

There can be up tw 1023 ‘directories’ and cach of these can contain approximately 500 *files”. This provides a
virtually unlimited *directory”.

Word 0 of cach *directory’ gives its length in words. From Word 1 on are ‘directory” entrics. All entries
have the same two word format. ‘The first word contains the the first ‘file’ name in SIXBIT. ‘The second word

contains the following ficlds:

length of the *file iu blocks (a block for a SAV *file’ is 1024 words long while a block for a F IXUP *file” is 256
words long) (bits 1-6)

version revision of MDL this ‘file’ belongs to (bits 8-17)

block in the data base where this ‘file” starts (bits 18-35)
The *directories’ are sorted by strict numerical order (e.g., AAA SAV53 comes before 1AAA SAV53).

Each data base contains a free Storage table. This table occupies the second 1024 words of the data base.
The first word of the table is the number of entries in the free storage table. The remaining entrics define
arcas of free storage. These arc of the form

length, , block
where length is the number of blocks for this free arca, and block is the block number at which it starts.

There are two major differences between the "SAY* data base and the "FIXUP" data base. The first deals
with block sizes. In the "SAV" data base the block size is 1024 words. In the "FIXUP" data base the block

size is 256 words. This smaller size allows for more compaction of these small *files’,

The second major difference is that while there can be many versions of the same *file” in the "SAV" data
base (c.g. NCODGE SAV53 and NCODGE SAV54), there can only be one version in the "FIXUP" data base.

42 The Pure-mapping Library

The M1, Programming Environment

‘I'his will be the F IXUP “file’ most recently added. The corresponding SAV “file” fur this FIXUP file” should

exist 1o allow the SAV file to be updated for future M. revisions.

‘I'he Purc-mapping Library 42

— e — —

The M. Programming Environment ° 79

5. The Compiler
The purpose of the MDL compiler is to transform interpreted MDL code into assembly language. The
compiler comes in several incarnations for various purposes.

FCOMP is a program which runs the “installed’ compiler -- that is. the one which is most debugged, supported,
and otherwise official. The *P” stands for “purified,’ incidentally.

NPCOMP is a program which runs a2 nower, less well-debugged compiler, if there is one. NPCOMP is often
where development work of one sort or another is being debugged.

The *Bawch Compiler.” ofien called CoMRA'T, though strictly speaking the name refers w a different program
{sce section 3.2) is 4 program that compiles, at night, those compilations that have heen queued for it

The remainder of this chapter describes the specifics of interaction with the caompiler, including & scction on

its internals.

S5.1. Interfacing to the Compiler

The vperation of the ML compiler is controlled by a few very high-level functions and a sometimes
bewildering array of ATOMs whose values are switches and data, “I'his section will describe cach such ATOM
and its use. The reader should bear in mind that in the normal case he will be using COMBAT to set up his

compilations and thus will not have to deal directly with these ATOMs and calls,

5.1.1. Compiler Functions
SCOMPILE source:firnction-prlist pwiput:channel>

is the lowest level call to the compiler. It compiles exactly one FUNCTION (ora LIST of them) and prints the

generated code on the CHANNEL given as the second argument. COMPILE is used primarily for compiler
debugging.

<FILE-COMPILE jupui:siring oulpul:string>
FILE-COMPILE attempis to provide a convenient interface between the user and the compiler. The user
simply gives FILE-COMPILE the name of an input file, and it can do all the rest. The user may specify other

information about output fles. compiler modes, cte., but if he docsn't. reasonable assumptions are made.

FILE-COMPILE works in the following way. First it reads in the input file and collects into a LIST the
names of all of the defined FUNCT IONs that it finds. It sorts this LIST based on which FUNCT IONs call
which other FUNCTIONs. ‘The FUNCTIONs which call no other FUNCTIONs are at the beginning of the
LIST, followed by those that only call FUNCTIONs that call no other FUNCTIONs, and so on. Groups of

FUNCT IONs that are mutually recursive are collected in LIS Ts subordinate to the main LIST,

50

h

h,,

b‘

|

II‘

|

|

|
f

|
|

|

|

||[

|

|
|

h‘

|
|

|

\

|

|

w‘
|

,
‘ ﬂ

|

|

|

|

|

I\

|

i‘

|

80 I'he M. Programiming Environment

Euch FUNCTION will produce a scparate RSUBR. COMPILE is called successively on each member of the
LIST of FUNCT IONs. LISTs of mutually recursive FUNCT 10Ms arc also passed to COMPILE,

After each FUNCTION or LIST of FUNCTIONS is compiled, the resuliing RSUBR is wrilten into a
temporary file w cnable more convenient crash recovery. This file is written in such a way that, no matter

when the system crashes, the contents of the tempuorary file are guaranteed o be in a consistent slate.

When all is compiled. F TLE-COMPILE writes out an oulput filc which is identical to the input file except
that all FUNCT I0Ns have been replaced with their compiled counterparts, [Fany of the FUNCTIONs did not

compile due to programmer errurs or compiler bugs., those FUNCT I0Ns are lefi unchanged in the output file.

1Juring its operation, FILE ~-COMPILE maintains a "RECORD” file which contains all of the messages,
warnings and error messages produced by the compiler. It may optivnally produce a listing of the object code
produced, in M asscmbler format. Uhis is primarily useful for compiler debugging. (MNote that a somaewhat

less complete listing may be made at a later time. See section 7.3.)

On 'S, FILE-COMPILE usually runs as a demon called COMBAT ZONE. In this case anuther interface
called FCOMP resides above FILE-COMPILE. 'This interface reads files that are compilation specifications
and passcs them o FILe ~-COMPILE.

CFCOMP %. INCHAMN jupui-file ptpui-file>
As must compiler usage is based on COMTIAY plan files, FCOMP is the mosi-scen driver of the compiler. (MNote
that the % in front of . INCHAN causes the CHANNEL the PLAMN file is being read from to be passed as one
argument o FCOMP.)

<STATUS>
is an informational function; it tells how far the compilation of a given group has progressed, which
FUNCTION is being worked on, and how many FUNCTIONs remain to be compiled. It also prints the
accumulated real time and cpu time since the beginning of the compilation. Obviously, you must *G the

compilation to use it, but see section 8.3.
5.1.2. Compiler Switches

The calls to the various compiler drivers are rather shurt, for the simple reason that the controlling

information is passed to the compiler as the LVALS of a set of ATOMs,

Interfacing to the Compiler 5.1

1T111

The M. Programming Environment 21

<3ET DEBUG-COMPILE - boolean>
(by declault FALSE) causcs the compiler to generate extra in formation about what it's doing. ‘This information
is in the form of "warnings” produced when lhl:'tr:umpﬂcr was forced to generate less than optimal code. For
example, invocations of the arithmetic SUBRs can be open-compiled if the variables used can be determined
v be cxclusively FIXes. “The debugging compiler will warn you if it is forced o resort to less officient
arithmetic calls.

<SET PRECOMPILED!- file:siring>
Often, a file of FUNCTIONs has been compiled before, and now only a fow FUNCTIONs have been updated
and need to be compiled-again. Most of the file is already correctly compiled: it is quite wasteful to recompile
the entire thing. Ifa PRECOMPILED is given, the file is londed before compilation: any functions which have
corresponding RSUBRs in the precompilation. and which are not on the REDO list, are not recompiled. It is
appropriate wy specily the temporary fle as o precompilation i your previous compilation was interrupted by
a system crash,

<S5ET REDO!- [lisr-ofatoms>
REDO isa LIST of FUNCT ION names to be recompiled, regardless of whether or not they are compiled in the
precompilation. In conjunction with PRECOMPILED and PACKAGE-MODE., REDO allows compilation of
precisely thuse FUNCT I0ONs which have been changed since the last compilation. Mote that ComMpat will set
up these values more-or-less automatically in most situations.

<SET PACKAGE-MODE! - string>
This should be the name of a PACKAGE. which is assumed to be the PACKAGE being compiled. FUNCTION
names in the REDD LIST will be lovked up in the appropriate PACKAGE OBLISTs if this flag is set, therchy
saving some typing of trailers.

<SET TEMPNAME ! - file:siring>
The compiler writes intermediate results to the temporary file, which is normally the file “sname; fivn >" on
I'T'S, where firm is the fArst name of the input file. It is rarely (if ever) necessary to change that default

CSET SOURCE!~- JfiHe:sirings
Seuting this switch causes the compiler t write out the assembler input it gencrates. This is sometimes uscful
for compiler debugging. On TS, such output normally gucs o "suamte; finn SOURCE™, where finn is the
first name of the input file.

<S5ET SPECIAL!- beolean>
The compiler normally assumes that variables which aren’t declared SPECTAL aren’t SPECIAL. ‘This means
that they will be available only o the RSUBR in which they are declared: SPECIAL variables are bound on
the control stack, just as all variables are in interpreted code. I this flag is T (by default FALSE), all variables

will be assumed o be SPECIAL unless declured otherwise. This is analogous w SPECIAL-MODE being

51 Interfacing 1o the Compiler

82 ’ The MIJI. Programming Environment

SPECIAL, and it is not recommended that any code be written using this convention.

<SET EXPFLOAD!- boolean>
If true, FLOADs in the file being ;:umpitc-ﬁ will be expanded at load time: what was FLOADed befure will be
treated as part of the file. EXPFLOAD is examined by GROUP-LOAD, and not the compiler itsclf. The default
is FALSE.

<SET EXPSPLICE!- boolean>
[T true. objects of type SPLICE (primtype LI5T) which are encountered in the course of EVALing the forms
processed by GROUP-LOAD will be spliced directly inte the group: it is therefore a lot like EXPFLOAD.
EXPSPLICE is cxamined by GROUP-LOAD, and not the compiler itself. The default is therefore FALSE. Its
only known use has been to make functions at load time and have them compiled.

¢SET CAREFUL!=- boovlean>
Defaults o T, 1T FALSE, the compiler will omit most of the bounds-checking code it normally generates for
NTHs, PUTs, and su on. ‘Ihis obviously will make the compiled code run faster, but alse makes debugging the
compiled code nearly impossible.

<SET REASONABLE!- boolean>
[efaults to T. If FALSE, the compiler will gencrate reasonable code only if everything ever called from the
functions being compiled is loaded inw the compiler. A call to a function not loaded produces an EVAL of a
FORM, thereby cnsuring that such constructs as "CALL® in the called function will work correctly. This is
admittedly pretty unreasonable (if not paranoid), whence the name of the switch.

£SET GLUE!- boolean>
Defaulis to T. IFFALSE, the compiler will not generate GLUE bits. As you always want GLUE bits, there is no
reason to everchange this.

<SET MACRO-COMPILE!|- boolean>
Defaults to FALSE. If non-FALSE, the compiler will compile MACRDs into RSUBRs. This docsn’t change
anything produced by macro expansions, but does cause the expansion to speed up. Since the compiler
expands the inacro and then compiles the expansion, this is rarcly uscful.

<5ET MACRO-FLUSH!- boolean>
Defaults to FALSE. IFf non-FALSE, MACROs which appear in the file being compiled will not appear in the
resulting NB IN. This saves space, at the expense of making debugging harder.

<SET MAX-SPACE |- beolean>
Defaults to FALSE. IF non-FALSE, the compiler flushes from core most of cach RSUBR once it has been
compiled: only the DECL is needed to help compile other functions. Since the cntire RSUBR is written out in
the temporary file, no information is lost. This can, for compilations which are too large, result in

considerable improvements in speed, primarily because more space is available in the MDL and less time is

Interfacing to the Compiler 51

The MIJ. Programming Environment B3

spent in the garbage collector.

<SET HAIRY-ANALYSIS!- bBoolean>
Defaults w T. If this is not set, the compiler ;vill not perform the complex type checking it usually does. IF
HAIRY -ANALYSIS is FALSE. the code will be generated faster, as typc-analysis is expensive, but will not

exccule as fast.

5.2. COMBAT

I'he usual method of dealing with the compiler is through the program COMBAT, whose specialty is the
preparation of "plan files’ to be loaded by the compiler. COMBAT is a program which knows about each of the
previously described compiler switches and the interactions among them. It has an easy-to-use interface, an
ability to store commuonly used “plan files” as eownpilarion fypes. and in general is designed w make using the

M, compiler a less-cumbersome task.

5.2.1. Userinterface

ComMBat’s user interface is patterned after, though not identical to, a CALICO interface [1]. In particular, it
expects in response Lo any given prompt a particular type of input from the user, which may be a file name, a
symbol’, or text. Jrdinarily, the tvpe of input expected is indicated by the “syntactic prompt’ which follows
the normal prompt: this is one of *{FILESPECY, *(SYMY, and "(TEXTY. ‘The “Tugele verhosity’ compilation

type turns the printing of the syntactic prompt on and off, and causes a tailor file to be written out when used.
A number of special characters arc defined for any of these types of input

t@: Clears the input buffer, as in MDL

+D: Redisplays the input buffer, as in MDL.

*L: Clears the screen and redisplays the input buffer, as in MDL.

tG: When given as the first character of an answer, allows one o get the answer from a user-defined type.
See the section on tiloring.

Q: Has special effects when a compilation plan is being made (see below). Sce also the section on file name
input.

TR: Causes COMRAT to *back up’. Typically this means go to the previous question asked, but in certain
moades it may have a slightly different effect. When a Mupcom is running, this kills it and backs up to the
last question asked.

t3: Abnormally ends whatever is being done, and returns to the “I'ype of compilation” guestion, If a

MUDCOM is running, it will be killed. When a long compilation plan ("How to run’ is ‘Many') is being

51 Interfacing to the Compiler

—
—

g4 The MIN. Programming Environment

made, the portions already made will be saved. Sec the *Flush many” compilation type.

7: When given as the first character of an answer. this causes a more detailed description of what is expected
to be printed, along with the current default and haw to obtain it

1 ‘I'his quotes whatever character follows it including DEL, ESC, etc. It does not have the effect of quoting
strange characters in file nomes: see the section on file name input. %\, used as a quolte character, never
echoes, and cannot be rubbed out

In addition. when the syntactic prompt is { SYM), ©F is useful (see below).

5.2.1.1. Symbolic input
If you are familiar with CALICO, this scction can probably be skipped. When entering symbalic input,
unce need only type the characters required o uniguely specify the desired choice: the interface will complete

the response, and in addition can display the availalile choices at any point

SPACE completes the response as far as it can. 1 the response is uniguely specified. it w il be displayed in
its entircty, followed by *1°; if more than one chaice is still possible, then the portion of those choices which is
unmmbiguously specified will be displayed, followed by "&". For instance, if ‘Expand foads™ and “Expand
splices’ are among the choices. and “Ex SPACE™ has been typed, “Expand & will be displayed if the "Ex’

reduces the choices (o those two.
In some cascs, if SPACE is the first character typed, it will select the default (first) choice and terminate.
When *F is typed, all remaining choices will be displayed.

To terminate responscs in this mode, cither ESC or CRLF may be used. In cither case, the current
respunse is completed as far as it can be, If only one choice then remains, the answer is terminated and the

single choice will be used. If more than one choice is possible, it is just as iF SPACE had been typed.

Typing ESC or CRLF before any other characters have been entered causes the default answer Lo be used.

5.2.1.2. File names

File names are expecied in the standard dev: sname s firamel firame2 format on TS on Tenex/TOPS-20,
standard file name recognition is used. ‘U'ypically, typing simply ESC ur CRLF answers ‘ne” to the guestion.
while SPACE ESC says 'usc the default’. In certain special r:a;acs!n‘lnpui file” and "Outpul file’), when some
answer to the guestion is imperative, the default will be used in either case. File names should not be

surrounded by guotes in this mode; they are not ML STR THGs!

COMDBAT 52

I'he MID. Programming Environment - 25

Itis racher painful to get funny characters (such as SPACE) into file names. When the file-name parser
sces i T0. it uses the following character in the name being generated regardless. Unfortunately, the 1Q must
be quoted tw get it past the reader, since it has special effects in the normal case., Thus, the file name given to

ML as "TAA: FOO > has 10 be typed to COMBAT as TAA - “1Q FOO >,

5.2.1.3. Text

Text i5 just that: relatively arbitrary characters. terminated by ESC. Since CRLF is allowed in text. it docs
not terminate input. Text type input is used in a number of cases where it isn't quite appropriate, such as the
‘Redo list” and “Package mode’ questions. IF it is known that the eapected responscis a LIST or STRING, as

in those cases, the appropriate brackets or quotes should ser be typed.

5.2.2. Combat Questions
This section discusses the questions that can be asked of the user during the preparation of a COMRBAT plan
file, which is FLOADed by the CoMaT deman or by PCOMP to ofTect a compilation. ‘I'he perceptive reader
will notice a strong resemblance o section 5.1.2. in which the switlches relevant o the compiler are listed.
Questions asked by the pre-existing compilation types (*Verbose® and ‘Short’) are so indicated. Al guestions
are available in user-defined compilation types (see section 5.2.5)
‘Bname™: sets the default dircctory for questions that want a file name as an answer: also causes the FORM
SSNAME suame>, where sname is the answer given, to be included in the plan. This sets the default

directory for files referenced by the compiler; it also causes the temporary file (see below) to go o the
starre directory.

"Use new compiler? (Verbuse and Short): specifies whether the “new’ compiler or the “old’ compiler should
be used. Often, when there is only one compiler, this question will not be asked. IF answered
affirmatively, it causes the FORM

<0R <GASSIGNED? EXPERIMENTAL!-> <NEWCOMP|-33

e be included in the plan. This FORM will load a new compiler on top of the old iF necessary.

‘Debugging compiler? (Verbose): causes DEBUG-COMP I LE [- to be sct to T, which causes the new compiler

I gencrate cxtra information about what it's doing. This currenily is asked only if the new-compiler
question is answered affirmatively.

“Input from” (Verbose and Short): the file to be compiled. This appears in two places in the plan: as

<S5ETG COMBAT!- input-file>
and in the call 1o FCOMP described below,

"Output o' (Verbose): the file name to be used for the NB IN. The default is the input file name, with NBIN as

the second file name instead of whatever it was for the inpuL. This completes the call to FCOMP that ends
cvery plan:

52 COMBAT

86 The ML Programming Environment

SFCOMP %. INCHAN input-file outpui-file>

This call is what actually invokes the compiler.

‘Precompilation from® (Verbose): specifies a file containing a previously compiled version of the input file.
Any FUNCTIONs which have corresponding RSUBRS in the precompilation. and which are not on the
‘Rede” list are not recompiled. [t is appropriate to specify the tempaoriry file as a precompilation if your
previous compilation was interrupted by a system crash. Scis PRECOMPILED! -,

‘Compare with' (Verbose): This question is asked only if a precompilation file is specified. If answered
nfMirmatively (user types cither SPACE ESC or a file name) MUDCOM (see section 8.1) will be run with jel
of the input file name, and the file miume provided here (the default is as for precompilation). plus some
extra stuff specificd below. 1F°FO0 NBIN is given here. then Muncom will look for the newest revision
of FOO which was created befire the NBIN. Munconm determines which FUNCT [ONs in the file have
changed and therefore need to be recompiled. It alse determines whether the file is a PACKAGE, and
answers the "Packuge mode” guestion appropriately. It is therefore not usually necessary for the user o
answer the "Redo” and "Package muode” guestions directly.

‘Check macros? (Verbose): asked only if "‘Compare with® is answered alMirmatively, This adds */M" to the jel
passcd o MUDCOM, which causes it tov check for MACROs amd MANIFESTs which hove changed: if a
FUNCTION uscs o MACRO or MANIFEST which has changed, the FUNCT ION will be listed as changed.
Mucos does not normally check for this.

‘Extra 1CL* (Verbose): asked only if *Compare with® is answered aMirmatively. Whatever is supplicd here will
be passed to MuUxCe-Mm as jel, before the files o compare. ‘I'his can be used tw load macro files: sec section
8.1.

“RRedo (Verbose): asked only if a precompilation file was given. Takes a bunch of FUNCTION names, which
will be recompiled. Note that the names supplied here will be appended w the list returned by MUDCOM,
irany, and that duplications in the list are ignored. Sets REDO I -.

“Package mode” (Verbose): asked ifa precompilation file was given and MuUDCos was not run {(Muncom will
set this if run). ‘This should be the name of a PACKAGE, which is assumed to be the PACKAGE being
compiled. FUNCT ION namcs in the "Redo’ list will be looked up in the appropriatc PACKAGE OBLISTs if
this flag is sct, thereby saving soime typing of trailers. Sets PACKAGE-MODE! -.

“Temporary file wo': The compiler writes intermediate results to the temporary [ile, which is normally

" snaimes; fiiamed >" (on I'TS)
" & sncpne ; firame . TEMP™ (0N Tenex TOPS-20)

You may change that by answering this question; there is rarcly a good reason to do so. Seis
TEMPHAME ! -.

'‘Source file to': The compiler can be caused o write out the assembler input it generates by answering this
question. Assembler output normally goes to

COMBAT 52

I'he M. Progranuning Envirenment 87

*snaene; fivmne!d SOURCE™ (on ITS)
*Lemane 3 firame . SOURCE " (on Tenex/ 10OPS-20)

which is the defuult for this question; another name may be provided if desired, Sets SOURCE ! -,

‘Special?: The compiler normally nssumes that variables which aren’t DECLed SPECTAL aren’t SPECTAL. If
this flag is T (defaults 1y FALSE), all variables will be assumed to be SPECIAL unless declared utherwise.,
Scis SPECIALL-.

‘Expand Moads?’: (Verbose) IF true, FLOADS in the file being compiled will be expanded at load time. Sets
EXPFLOAD! -,

‘Expand splices?: If true, objects of type SPLICE (PRIMTYPE LIST) will be expanded and inserted into the
group. Scis EXPSPLICE! -

‘Carelul?': (Verbose) By defuult T, but il FALSE, the compiler will omit most of the bounds-checking code it
normally generates for NTHs, PUTs, and so on. ‘This obvioushy will make the compiled code run Faster: it
also makes debugging the compiled code nearly impossible. Scts CAREFUL T -,

‘Reasunable”: By defaule T, but if FALSE, the compiler will generate reasonable code only if everything vou
call from the functions being compiled is loaded into the compiler. Sets REASONABLE! -,

‘Glue?: By default T, but if FALSE, the compiler will not generate GLUE bits. There is no good reason Lo
ever answer this. Scis GLUE | -,

‘Macro compile?': By default FALSE, but if true, the compiler will compile MACROs. Scts
MACRO-COMPILE ! -.

"Macro flush?: By default FALSE. but if true, MACROs which appear in the filc being compiled will not
appear in the NBIN, Scis MACRO-FLUSH! -,

‘Max space?: By default FALSE, but if true, the compiler Mushes from core most of each RSUBR onee it has
been compiled: only the DECL is needed to help compile other functions. ‘This ean, For compilations
which are very large, result in considerable improvements in speed. Scits MAX-SPACE | -.

"First things to do’, "Things to do’ (Verbose), and ‘Last things to do™: 1t frequently is necessary Lo perform
some actions before a compilation can be run: definitions files must be loaded, special environment sclup
| might have o be performed, and so on. All three of these questions are designed to allow that: whatever
you supply is put out afier everything else in the plun but before the call to FCOMP. There are three
questions, instead of one, w allow some things to be specificd in a tailored compilation type. while others
are provided at compile time, or pussibly from another wilored type. “Ihe three questions do nat depend
un cach uther; they arce asked in the order given here, and the answers appeur in the plan in the same
| order.

5.2.3. Requesting Compilations

The first question asked by COMBAT is “Type of compilation’. In addition to a number of special

possibilities described later, there are two answers to this question (in additon to any provided by the user

5.2 COMBAT

23 ! I'he MIM. Programming Environment

through the tailoring facility) which request pre-defined tailored compilation types. These are "Verbose™ and
‘Short’.

“Verbose™ causes all the normal questions to be asked: “MNew compiler?, ‘Input file’, "Precompilation’,
switches, “Things to do’, and s0 on. ‘Short’, on the other hand, defaults the answers o all questions except

‘Mow compiler?, *Input fle’, and "How 1o run’.

When requesting a compilation, one may type 1Q at any time. This has the same immediate effect as an
ESC, but in addition causecs all questions between the one just answered and the “Things to do” question to be

defaulted. This is particularly uscful in the *Verbose' sequence of questions.

IF " Many” was given as "How to run’ for a previous compilation request, and the resulting plan has not yet
been written out, subsequent plans will be appended w i, Using "Many” will sometiimes cifect a major
savings of time if several compilations wish o perform the same environmental setup; if they USE many of
the some PACKAGEsS, for example. When using "Many' in combination with predefined compilation wypes, it
is useful o remeommber that whatever is specified under "Things to do” may end up being performed for each
plan. You might modify your compilation types to reflect this, or alternatively, edit the plan file produced by

COoOMBAT to remove redundant operations.

The enly way to get rid of the *Many' plan is o answer *“Many flush’ w the “Type” question. Typing +5 or
answering "Abort’ o the "How to run’ question will abort the current portion of the "Many’ compilation, but

not the whole thing.

If “Many" was mistakenly given as ‘“How to run’, and you don't wish to destroy the plan you have
gencrated, it is possible to (in essence) go back to the *How to run® question by answering *Many print” for the

compilation type. In this case, you are nos back in the plan-making loop; *R acts just like +5.

tR, here, backs up to the last question asked. There are two qualifications. First, if tQ has been typed,
then it backs up to the last question that would have been asked if +Q had not been typed. Sccond, the four
questions “Precompilation”, "Compare’, *“Redo’, and *Package mode’ arc treated as a group: if the “Package
mode’ question has not yet been answered, it is possible 1o back up normally: but once that question has been

answered, backing up to it will go o the first member of the group, ‘Precompilation®,

+G allows one to obtain the answer to the current question from any uscr-defined compilation type. It
reguests a type name, and wuses the answer or default supplicd thercin, printing the information so oblained.

The +G must be typed as the first character of the answer for this to occur. This allows one to use parts of a

COMBAT 5l

The M. Programming Environment g9

defined type without cither using the type itself or aliering it for the occasion. For “Text type input (such as
“Things to do’), the string is placed in the input buffer but not completed. so it may be edited before an ESC is

typed. Sce also the “Xerox type” command.

MNote that there is a distinction made between ‘Compare” and *Redo’; the former causes a MUDRCOM to be
run, and the latter asks for the names of FUNCT IONs to be recompiled. [t is possible to do both, in which case
the two groups of FUNCT TONs are appended to form the ‘Redeo’ list for the compilation. Note also that if a
MupcoM has been run, the “Package mode” question will not be asked, since the answer is supplied by the

Mucos. Either R or +S may be used to kill a running MUDRCOM.

One of the responses to the ‘Tlow o run® question is "Abort’, which returns directly o the “Type of
compilation” question withoul writing out a plan, starting up a PCOMP, or anything clse. lts effect is exactly
that of a +5. In particular, if you are making a long plan, only the portion just completed, not the entire

compilation, will be aborted,

It is also possible at the "“How to run’ guestion to supply an answer o any of the compilation questions
(Input file, ete.). The "Question” response asks for the name of a guestion, then asks that question. Any
number of questions can be asked in this manner, one at a time. “This is particularly useful for Alling in the

blunks left by a "Short” type compilation, or by user-defined compilation types.

When a compilation request has been finished, CoMBAT normally loops back to the “T'ype of compilation”
guestion, but changes the defiult from “Verbose™ w "None” (meaning "Quit’), unless another compilation may

reasonably be expected. Thus, one may leave by typing a single ESC.

It is possible o modify CoMBAT's behavior such that it either kills itsclf after finishing the compilation

plan, or lpops back with *Verbose” as the default for the “Type of compilation” question.

ComMpaT first decides whether a long compilation plan is being made; if so, the default remains ‘Verbose.”
If not, it then cxamines the current compilation type: if *Another compilation?” has been sct to "Yes', the
question will be asked with default *Verbose™; if it has been sot to "No®, Compat will kill itself; if o "Ask”,

"

further consideration is required.

IF the user is in "Multiple” mode (the *‘Multiple’ compilation type), the type of compilation will be asked
with the "Verbose” default. Otherwise, COMBAT examines the state of two tailorable switches, set by the
*Another compilation? compilation type. 1P Another compilation? has been set to *MNo’, CoMBaT will dic; if

to “Yes', the type question will be asked with default *Verbose': if to "Ask’, the type guestion will be asked

52 COMBAT
iﬁ
.
— — - —
— —
— . — = — - —

90 I'he ML Programming Environment

with default *None®. NMormally this is "Ask’.

MNote that *Another compilation? is like "Toggle verbuosity” in that it will have no cffect unless user-defined

compilation ypes exist.

5.2.4. 'How to Run'" Options

There are four uptions available when answering the "How o Run’ guestion which determine where your
plan file will be written and when the compilation it specifies will be run.
‘Pecomp’ places the plan file on the <SNAME > dircctory, and names it *PCOMP >, Additionally, COMBAT

will start o PCOMP (or NPCOMP, as appropriate) process if i is exited after writing &« PCOMP file. "Pcomp’ is
the standard method for running o compilation in one’s own process,

woMBAT writes the plan file o "COMBAT : PLAN >". The coMpatl demon successively compiles all such
plans at night. informing the persuns who submitted them uf the result.

‘Waste is like ‘COMBAT, excepl that the plan is written to "COMBAT ;WASTE > ™. The "wastc” queue is only
run after midnight. which is usually suflicient for thise who are doing “overnight” compiladons. ‘Waste’
is the answer used by default for "How o Run’.

*File’ places the plan file on the <SHAME> dircciory, and names it "PLAN >". “I'his means that it will not
be run until you cxplicitly lead it into a compiler process.

5.2.5. User Tailoring

It is often the case that a particular file is compiled quite often, or that some sequence of actions must be
performed as the “Things to du' before many compilations. ComMpaT allows the oser to define his own
‘Compilation types’, cach of which specifies exactly those questions which should be asked and the answers
for those which should not. For example, one could have a type named “Esign’, which says that the input file
is always "SEND;ESIGN >" and in addition provides for the FLOADIng of two files in "Things o do’.
Further, since most questions are defaulted, once might choose w answer only those questions which are
interesting, such as "Precompilation”. It is also possible to supply a default answer for a question which will be

asked.

In addition, there are some questions which are not asked by the *Verbose® compilation type, but which
nevertheless are available o user-defined types. These are: *Macro compile’, *Macro flush®, "Max space’,

"Fxpand splices’, "Special mode”, "Glue’, and others.

One can select any of one’s own defined compilation types as an answer to the “Type of compilation’

question, just like *Verbose® and *Short”. Except that the questions asked may differ, user-defined types are

COMBAT 52

I'he M. Programming Environment - 91

identical tw the predefined types.

5.2.5.1. Tailor files
User-defined types are saved (and loaded) from the file "sname: %COMBT TAILOR". It is possible to load
other tailor files, but the "%COMBT" file in sname is loaded during startup. Tailor files are quite similar to

M1, GC-DUMPed files and thus cannot be edited other than with COMBAT.

5.2.5.2. Create type

This special compilation type requests a name for the type being made, then enters a loop with the prompt
‘Question’. One may choose any of the availabhle questions, and cither supply an answer or (by default)
request that the question be asked when a compilation of this type is being submitted. Mote that only the
How o run” and the following “I'vpe of compilation? guestions will be asked unless others are explicitly

supplied; but one may supply answers to "How to run” when creating a type.

In this mode, TR will return to the "Question” loop if one is about to supply an answer: otherwise, it returns

tr the "T'ype of compilation® loop, aborting the type creation.

G behaves cxactly as it does in the normal loop. To indicate that one is finished, one should answer *Finis®
te the "Question” prompt. It is possible to supply several different versions of the answer (o a particular
question: the last one given will be used. One may wish to default a particular question, after specifying that
it was to be asked or after supplying some different default. This may be done by answering “Delete guestion®
t the "Question” prompl. whereupon anc will be asked for a particular question to ignore. This question will

then be completely ignored. Note that alf interesting questions are initially in this state.

There is also a "Set question default” "Question”. This requests a question name, then asks the user to
supply an answer. The question will be asked, with the default supplicd. Thus default settings of switches can
be changed. and onc can supply a file name Ffor the precompilation while still being asked whether
precompilation is desired. Unfortunately. user-supplied defaults for "Text™type questions are used if ESC is
answered; o get rid of the default, type SPACE ESC. Note that this is exactly the inverse of the convention

for defaulting file names.

When ‘Finis’ has been typed, a new copy of one’s tailor file is written out. This may, in combination with

‘l.oad tailor’ and *Replace tailor”, have undesirable side effects.,

52 COMBAT

92 The M. Programming Environment

5.2.5.3. Print type

This requests the name of one of the types currently loaded, and prints out for it all guestions which either
will be asked when a compilation is being submitted or which have user-supplied defaults. IF a particular
question has been globally “turned of T (such as the "New compiler? guestion, when there is no new compiler),

an asterisk will be printed on the appropriate line to indicate that the information there is currently not used.

5.2.5.4. Delete type
This requests the name of one of the currently-loaded types. and deletes it A new copy of the tailor file is

written out, 5o all trace of the type will vanish when this command is used.

5.2.5.5. Alter type
This requests a type name, then becomes identical o "Create type’. excepl that some questions already
have answers. Again, “Finis® must be tvped to leave the loop and cause the modifications o be fled; typing

tR or +5 will leave the loop, but the modifications will be forgotten.

5.2.5.6. Load tailor, Replace tailor

Both of these request a file name, defaulting o the last one used for cither a *Load tailor’ or "Replace ailor”
command. Initially this is "swame; XCOMBT TAILOR™. ‘lead tailor” appends the wypes defined in the
specilied file to those already loaded, while "Replace tailor” first throws away those already loaded. ‘The types
defined in this way arc not distinguished from those loaded from one’s own COMBAT tailor file; in particular,
using “Toggle verbosity” or any of "Create”, "Alter’, and *[2elete type” will cause all the types currently loaded to
be written out to the COMBAT tailor file. [F, therefore, one has done a “Replace tailor”, one can casily lose all

of one’s own types in this manner. l.ec., it is very casy to destroy yourself,

5.2.5.7. Xerox tailor
This requests the name of an existing uscr-deflined type, and a new type name. The new type becomes an
exact copy of the previously-cxisting type. This is particularly useful when one has several different types

which do almost the same thing.

5.3. The Compiler (Internals)

The compiler’s job is to take a MDD FUNCTION or group of FUNCTIONs and produce an operationally
cquivalent machine-language subroutine (RSUBR) using whatever information can be extracted from the
source code and whatever additional information the user wishes to supply. ‘Ihe efficiency of the output code

produced is dircctly proportional (o the amount of information supplicd by the programmer and inversely

COMBAT 52

r

llllll.ll !I‘ !.l| [I‘IQI!]I'U'!'[I\UI'!I

W

The M. Programming Environment "

proportional to the generality of the source program.

The information supplied by the programmer is usually in the form of aptional data-type declarations
(DECLs) and the use of programmer-defined data types (NEWTYPEs) that have built-in declarations. Unlike
many programming languages, however, declarations are never required. The compiler will compile

programs with no declarations at all, but the resulting output will not run as fast as with well-declared code.

The current compiler can achieve speed-up factors of anywhere from about 4 to 100. The factor of 4
represents the speed-up for a very general program with very poor declarations. On the other hand, the factor
of 100 represents a program with a very narrow range of application that has very good (that is, restrictive)

declarations. Typical progroms can expect to achicve factors of 20-40,

5.3.1. How it Works
The compiler as it currently exists is really two distinet programs. GETORDER s basically an interface
between files of M1y, lunctions and the compiler. It is a relatively small progrom that reads in the file, sets up

the various compiler switches, calls the compiler one or more times and writes oult the Ninal Ale of RSUBRs.

COMPILE iwself is basically a compiler with three major snd three minor passcs. Pass 1 builds o model of
the program, pass 2 analyzes cach node of the tree and does data type analysis, pass 2.5 (minor) allocates stack
space fur variables and temporaries, pass 1 gencrates output code and two minor passes do lnul stack

allecation and pecep-hole optimization.

5.3.1.1. COMPILE and COMPILE-GROUP

There are two distinet modes of compilation available, They are simple and multiple. Simple comipilation
occurs when COMPILE is called with one FUNCTION. It simply compiles that FUNCTION and returns.
Multiple compilation occurs when COMPILE is called with a list of FUNCT IONs. [t compiles cach FUNCTION
into a scparate RSUBR. It differs from multiple calls o COMPILE in that it sometimes partially compiles a
FUNCT ION out of order to determine its calling sequence and do argument typce-checking. "This behavior is

necessary when compiling mutually recursive FUNCT IOMNs.

In all modes of compilation, COMPILE-FUNCTION is called to actually compile the individual

FUNCT IONs. Itecalls the various compiler passes.,

5.3 The Compiler (Internals)

94 ! I'he ML Programming Environment

5.3.2. Modeling Pass

‘The first pass of the compiler takes the input FUNCTION and builds an expanded model of it. In the
process of duing this, it produces a symbol table entry for every local variable bound and/or declared in the
FUNCTION, any of its PROGS/REPEATs or MAPF/MAPR FUNCT I0ONs. It also producces the RSUBR DECL for
the final cutput. Pass 1 also tries to decide if an internal entry (that is, an entry which can be called efficiently
(scc scction 6.1)) can be used with this FUNCTION. If an internal entry tumns out o be possible, Pass 1

generates an appropriate calling seguence for internal calls to use,

e model built by Pass 1 looks like the original FUNCTION with all of the nodes in the FUNCTION's
structure replaced with objects of type HODE (a new type delined for the compiler). A node in the model may
have anywhere from S to 30 clements. The 5 clement node is for simple quoted objects like Mixed-point
numbers, ATOMs cte. “The 30 clement nodes are for major clements of the program such as the node for the
FUNCTION itsclf and nodes for PROGs and REPEATs. ‘The majority ol the nodes are gencral SUBR nodes,

which have 10 clements.

The Pass 1 structure is built in the following way. The wp level program in Pass 1 generates a node for the

entire FUNCT ION. This node gets the following information put into it
1. A code specifying that this is a FUNCT I0N node.
2. The data type that this FUNCT ION is declured to return (or ANY)L
3. A LIST that will cventually contain the nodes comprising the body of the FUNCTION.
4. A UWECTOR of internal names for internal calls to this FUNCT ION,
5. A symbaol table For the variables declared and/or bound in this FUNCT ION.

6. A list of entries in the symbol able specifying how the arguments are to be set up (whether they
are optional, QUOTEd, TUPLE erc.).

7. The final RSUBR DECLs.

8. A specification of how to pass arguments w this FUNCT ION when it is compiled (whether the
arguments should be in registers or on the stack).

9. The number ol required arguments and the total number of possible arguments.

In addition to the above information, slots exist in the node for additional information to be supplied by

later compiler passes.

The Compiler (Internals) 53

The M1, Programming Environment 95

After the main node for the FUNCTION is built, the sub-nodes for the FORMs comprising the body of the
FUNCT ION arc built. This is done by first dispatching to special Pass 1 code for the first clement of the FORM,
If no special code exists for this first clement, a dispatch is made on the TYPE of the first ¢clement of the FORM

{that is, ATOM, FIX, FUNCTION cic.). If no speeial code exists for cither the first element or its TYPE, a

general FORM node is buil. Tn the case of an ATOM as the first clement of the FORM, the normal lookup rules

are invoked on the ATOM and it is dispatched again based on its value. ATOMs with no values cither cause

compilation warnings or arc assumed to be RSUBRs (depending on compiler switch REASONABLE).

All FSUBRs (COND. AND, OR, FUNCTION, PROG, REPEAT. UNWIND, ctc.) have special Pass 1 code and
produce very specific nodes. Muost SUBRs don’t dispatch o specific code during this pass. "The exceptions are
things like MAPF, ILIST. GET cic.. which have somewhat non-standard treatment of their arguments.
(Actually, MAPF and MAPR don’t treal their arguments non-standardly, but they are treated specially in Pass 1

s that the inner FUNCT ION may be open compiled.)
As mentioned previously, all nodes have al least 5 clemenis. These are as follows:
1. A node type code.
2. A pointer to the parent node (if one exists).
3. A specification of the data type the node will generate,
4. A hst of sub-nodes referred to as kids.
5. A name for the node, which may have different mcm.‘ning:; for different nodes.

In addition, nodes other than nodes for QUOTEd objects have additional elements that are filled in during

later passes of the compiler.

After Pass 1 all additional passes work on the model built during Pass 1. The original FUNCTION is no

longer even considered.

5.3.3. Analysis Pass

During Pass 1, very little information is determined regarding the resulting data types of various nodes.
Indeed, with the exception of nodes produced by guoted objects, structured objocts which will produce code
to build copics of themselves, and FUNCTIONs, PROGs and REPEATs with declared valuecs, no type
information is produced. Fven in the cases where type information is produced during Pass 1, it is usually not

as detailed as other passes would like, The Analysis Pass has the job of relining the result type of cach

5.3 The Compiler (Internals)

96 The ML, Programming FEnvironment

individual node based on various criteria

1. ‘The deelared types of the variables.used in the program including GDECLs and MANIFESTs.

“I'he known type transfurmations produced by various SuBRs. (For cxample, it is known that
LENGTH always producesa FIX resull.)

Bt

3. Sume anlysis of the conteal of the nodes within the prograta. (For example in the following
code:
£COND (<AND <TYPE? .X LIST> <HOT <EMPTYT .X>>2
<1 LX)

regardless of how X is declared, it is obviously a LIST when the EMPTYT is run, and it obviously is
not empty when the €1 (X2 05 run.)

‘I'he Analysis Pass performs a standard depth-first lefli-to-right tree wulk on the Pass 1 model. "The main
dispatch function during this pass is called ANA. It does an initial dispach based on the node type of cach
node. Since most nodes arc still considered "SUBR nodes’, most of the dispatches end up at the SUBR call
analyrer. The SUBR call analyzer has twa types of further dispach quailable. First it looks in a table for
SUBRSs that are capable of being completely open-coded: iF i finds an entry in the table, the analyzer for that
SUBR is invoked. 17 this SUBR is incapable of being open-coded, ANA checks another whle w see if this SUBR
has an internal entry available. 1Tit does. the node is changed from a SUBR node o an internal SUBR node, IF
buth dispatches fail. another table is checked to sce if the object 1ype returned by this SUBR is known, and ifit

is the result is put into the SUBR node.

Most of the work done by the Analysis Pass happens when the first dispatch occurs and special SUBR
analyzers are invoked. Generally speaking, these analyzers check to sce if they know enuugh about their
arguments to transform their nodes o an ppen-code specification. For example, an invocation of the SUBR
REST only transforms to an open-code node if both the PRIMTYPE of the first argument is known at compile
time and there are no SEGMENTS in the call to REST. (fa specinl SUBR analyzer decides that it can’t

open-compile in this case, it cither leaves the node as a SUBR node or transForms it to an internal SUBR node.

5.3.4. The Type Analysis Model

In addition o the mode! of the FUNCT 10N built in Pass 1, the Analysis Pass adds additional information to
the model concerning the current stales of local variables. As the .::n:'nyn:r plunges down inlo the tree, it trics
to keep track of the current peECL of cach variable. Specifically, there is a slot in each symbul table entry
called CURRENT-TYPE. The analyzer updates that slot bascd on its current knowledge. A call to SET causcs

the CURRENT-TYPE slot o be changed to the analyzed type of SET's second argument. When multiple

The Compiler (Internals) 5.3

|
l
|

L

,IJ

L

P

L

|
|
\
\
\
|
\
B N

N e e

a

|

N EE

The MI. Programming Environment 97

control paths meet, the CURRENT - TYPE slots of a variable are OR'd wogether at the joining point.

Conditional control structure nodes for COND. AND and OR also maintain two lists of transient information.
These are called TRUTH and UNTRUTH. They specify what information will be valid if the true or false
branches arc taken respectively. For instance, a COND clause compilation can assume that any TRUTH

information generated in the predicate of the COND will be valid for the rest of the clause,

Sume of the analyzers for the more widely used predicates have special code in them to add information o

the current TRUTH and UNTRUTH values. These predicates include TYPET, EMPTY 7, LENGTH? and NOT.

1.ouping control structures pose additional problems for the type analysis model. The approach taken by
the type analyrer is to build a copy of the current types of all variables before analvzing the loop structure.
This copy of the local type information constitutes the assumptions currently in effect. Alter the loop analysis
is compete, the assumptions are checked against the current state of the variables. If any of the assumptions

have been violated, the assumptions are updated and the loop is re-analyzed.

5.3.5. Life-and-Death Analysis

T'he Analysis Pass also performs a life-and-death analysis on the local variables. “This is done by ASSIMINE
that the variuble’s value is dead at each LVAL node for that variable. 1f another LVAL node for this variable is
discovered that is reachable from this one before any intervening SET nodes for this variable, the original

node is updated to be alive. ‘This life-and-death information is used during the Code Generation Pass.

5.3.6. The Variable Allocation Pass
The Variable Allocation Pass (VAFP) is a relatively simple one. 1ts purpose is to allocate stack space for all
of the variables bound in the FUNCT ION, its PROGs and REPEATs and its MAPF /MAPR FUNCT IONs. There

are various switches that control the manner in which this allocation is performed.

‘The most important switch specifies whether or not this FUNCTION needs a FRAME or not. The VAP
always starts out assuming it docs not need to build a FRAME, ‘This assumption will be changed if it is
discovered that exterrially accessible named ACT IVAT IONs cxist in the FUNCT ION or any of its inner blocks
(PROGs ur REPEATs ur FUNCT IONs) or if at any time it is discovered that the address of a variable cannot be
specified as a fixed offset from the top of the stack. Whenever this assumption is changed, the VAP starts

over again with the new assumption in affect.

Another switch that controls the behavior of the VAP specifics whether or not the stack slots for inner

53 The Compiler (Internals)

98 The MIM. Programming Environment

blocks will be pre-allocated because the stack will be in a "fuzzy’ state when these blocks are running. The
stzck is said to be in a *fuzzy” state when the number of slots currently being used cannot be determined at

compile time. This usually vccurs when a TUPLE is being constructed fur a MAPF. For instance, in

<DEFINE F (X 1)
<MAPF ,VECTOR <FUNCTION (Y) <==7 .Y .ZI>> .X>>

the clements of the VECTOR will be between the top of the stack and the location of variable Z. Even if F has
a FRAME. the location of ¥ will not be known relative to the FRAME pointer at compile time. ‘Therefore, the

initialization code for F will pre-allocate the stack space for Y.

uring the VAP, each symbaol table entry gets its address field set based on where that variable will be on
the stack. Also nodes for PROGs, REPEATs and MAPF/MAPR FUNCT IONs that have bound variables get
additional information inserted in themselves, This information includes where the SPECIAL variables start

and where the UNSPEC TAL variables start.

5.3.7. The Code Generation Pass

‘The Code Generation Pass (CGP) s probably the most complicated of all the passes. Fortunately, the
Analysis Pass has already refined the model so that the CGP can dispatch immediatcly to the special-purpose
code generators. Besides building a list of assembly-language instructions as output. the CGP keeps track of
the current state of the stack, the contents of the registers. the current state of varinbles {whether they are in

registers or on the stack or both) and the contents of the temporarics.

The gencral dispaich routine during the CGP is called GEMN. Tt takes two arguments: A NODE and a
specification of where Lo leave the result. The second argument can be any of the following:

L. 'The ATOM FLUSHED, meaning that the code will be executed for effect rather than value.

3 The ATOM DONT-CARE, meaning that the caller of GEN is leaving the decision up to the specific
gencrater as to where to leave the result

3. An ohject of type DATUM which specifics a place for the type and value of the result to be left

Type DATUM is of PRIMTYPE LIST and contains two clements, one for the type and the other for the
value. The clements of 3 DATUM may take on a variety of values in different circumstances. ‘These include:
1. A TYPE name. This can only occur in the type slot and it means that the type of the abject is

known at compile timec and this is it. It indicates that the code gencratur need not put the
type-code anywhere.

3 ‘I'he ATOM DONT-CARE. "This means that the caller doesn't care where the result for this field is

The Compiler (Internals) 5.3

v

h.
il

I'he MIM. Programming Environment 99

left.
3.7 The ATOM ANY -ACL. 'This tells the generator to leave the result in any available AC,
4. An object of type AC. 'This tells the gencrator to force the result into a specific AC.

5. An ubject of type ADDRESS :C or ADDRESS : PAIR. Both of these specify addresses on the stack
orin the interpreter.

6. An ohject of type OFFPTR. An OFFPTR has three ficlds: a DATUM, an offsct (a FIX), and a
PRIMTYPE. An OFFPTR tells the generator to leave the resull in the word pointed te by the inner
DATUM and uffset by the offser.

If an element of 3 DATUM is ANY-AC or DONT-CARE. the generator is required to update the DATUM to
reflect the actual location of the result. IF the clement is a TYPE, the generator may change it to an AC which

means that it happened to end up with the TYPE in that AC.

I'he gencrators always return a DATUM specifyving where the result was actually left. unless the caller
wianied the result FLUSHED. “lThere is une special DATUM that can be returned. It is the GVAL of the ATOM
NO-DATUM and it mecans that the specified node will not return a value (that is, it is a RETURN or an AGAIN or

something).

There are six objects of type AC in the compiler, corresponding to ACs 0, A, B, C, 12 and E. AC 0 is special
since it can't be used as a pointer, and it always contains very transient information. It is never used to fll in
an ANY=-AC slot in a DATUM. The other five ACs are in the pool of available ACs. Objects of type AC have
about ten different slots associated with them. “They are used for finding available ACs and gencrating output
code thot uses them. ‘The slots used in AC allocation are as follows:

l. ACLINK. IF this is FALSE, the AC contains no temporary value for the current computation.
Ortherwise, it is a list of active DATUMs that contain it

Bl

. ACAGE. 'T'his is only used when the ACLINK is non-FALSE. It is updated to a higher number at
cach use of the AC and is used in an LLELU algorithm when an active AC must be flushed.

3. ACRESIDUE. If this AC is currently cquivalent to some local variables, this slot contains a list of
the symbol-table entries for these variables. ‘Ihe symbol-table entries themselves have a slot
cialled TNACS thal points back to the ACs that contain its type and/Zor value. They also contain a
slot called STORED that specifies whether the only copy of the variable is in the ACs or it is also in
mMCcmary.

4. ACPROT. This slot is a boolean saying whether this AC is protected or not. 1Fthe AC is protected, it
can't be allocated for any reason, Protection is only invoked for very stretches of code.

5.3 The Compiler (Internals)

|
|

|
|

1

|

I

i

|

|

|

|
|

|

|

|
|

|
|

\
\
\
M

I

100 The M1, Programming Environment

5. ACPREF. This slot says that this AT deserves slightly preferential treatment. It means, all other
things cqual, don't choose this AC.

e AC allucation algorithm consists primarily of trving to find the best possible candidate when an AC is
needed. The routine GE TREG is used to lind an available AC. First it rejects all ACs that are protected (if they
all are protected, the compiler gencrales an internal error since this should never happen). 1f there are one or
more ACs with their ACLINKs FALSE, GETREG will choose from among them. Tt will prefer ACs with no
ACRESIDUE. that are numerically adjacent to another free AC (beeause some PP-10 instructions destroy the
next ACY and which do not have their ACPREFs on. 1f the AC chosen has an ACRESTDUE, code is generated

if nocessary to store any af the variables that are only in ACs.

If no AC exists with an ACLINK that is FALSE. GETREG Mnds the AC with the smallest ACAGE. Code is
generated W store the contents of the AC in a temporary 5o that it iz available. The DATUMS that were in the
ACLINK arc updated to indicate that they arc now puinting to temporaries as opposed o ACs. Thus it is
pussible that a generator could need sub-results in ACs. and after causing vne to be gencrated in an AC, find
that while generating the sccond one the first slipped back into a lempaorary. ‘I'he generator would then have

to generate code to reload an AC from the temporary.

The CGP invokes various special-case optimizations by passing information up and down the tree as code
is gencrated. The gencrators for conditiunal branching FSUBRs like OR, AND and COND employ a predicate
generator whenever pussible. This generator is like GEN cxcept that il takes three additional argumeonis: a
label o branch to, a flag saying whether to branch on truth or falseness, and a flag saying whether this
predicate is being NOTed. The general predicate generator then looks at the predicate node to see if it can
take the additional arguments for predicate generation. 17t can, the general predicate generalor just passes all
the arguments down; otherwise it calls GEN and generates the additional testing and branching code itsclf
Currently AND, OR, COND, ==7, N==7, G7, G=7. L7, L=7, 07, 17, TYPE?, NOT, ASS IGNEDT, MEMQ,
LENGTH? and EMPTY? have special predicate code assuciated with their generators. Others may be added as
the need devclops.

Other optimizations are invoked by simply recognizing common paticrns of M1, code. For instance, the
compiler recognizes <SET X <+ X 1 %% as a PPP-10 AGS instruction and it gencrates very cfficient code
for CREST .X <- <LENGTH .X> 1>>by recognizing the pattern of code.

‘The compiler always takes advantage of as much knowledge as it has about the types gencrated by
particular nodes to gencrate good code. "This is especially the casc when it is handling the code fur NTH, REST

and PUT in structurcs. 1t uscs type information concerning the length of the structure and the amount being

The Compiler {Internals) 53

) b

— ——

—

———— &

The M. Programming Environment 101

RESTed fur the NTH, REST or PUT, to figure out whether or not to generate bounds checks in the compiled
code. 1t also uses information about the current Lype of the slot being read or written to decide whether not to
read or write the wype word. Obviously, a lot of this type information was the sume information obained

during the Analysis Pass of the compilation.

Some code generation routines are capable of changing the order of gencration of the sub-nodes. This is
done to try o get the node requiring the most ACs compiled first so that it won't interfere with any AC
requirements of the current node. This obviously requires that the commuted nodes have no interacting side

effects.

53 The Compiler (Internals)

‘Ihe M. Programming Environment

102

6.0

=;;;=;

|

I'he MIIL Programming Environment 103

6. Making It Run Faster

Once you have a working program, you will ‘probably want it to run fast. The most obvious way of doing
this is to compile it. MDI. provides other ways to speed up code, chicfly by climinating mediated subroutine

calls, and by reducing the size of garbage-collected space.

Mediated subroutine calls (or "MCALLS') are the standard methad of function calling in MpL. ‘They
provide a great deal of information and control during program development and debugging, but the
overhead of an MCALL is superfluous in debugged production prograins. Consequently, several methods exist

for removing this overhead.

A subtle impediment to increased speed in a production program is the amount of time devoted to garbage
collection. As this is proportional to the size of the garbage collected space, it is advantageous to make that
space as small as possible. One way to do this is o purify as many of the static data structures in the MDL as

possible.

One by-product of the procedures mentioned above is that much of the resulting code and structure

becomes pure and therefore shareable between many M. processes.

6.1. GLUE

A facility exists to allow separately compiled and assembled RSUBRs to be ‘glued’ together. “This makes
calls between RSUBRs in the group much Faster, as MCALLS are replaced by PUSHJIs. The many instructions
of an MCALL are replaced by the single PUSHJ, but the mediation provided by MCALL is lost: Mo FRAME is
produced. GLUEing is accomplished by the concatentation of the code and reference VE CTORs of the RSUBRs

being GLUEM, which gives them a common *frame of reference.

Additonally, GLUE is interfaced with the compiler such that:

1. The RSUBRs can be run unGLUEd for convenient tracing and debugging. Afier debugging, they
can be GLUE together and run much Faster,

2. An individual FUNCTION can be recumpiled without the overhead of recompiling everything
" GLUEd o its RSUBR. Afer the recompilation, the entire set can be reGLUE,
|

6.1.1. How to Glue
"GLUE" isa PACKAGE and it may be obtained by doing

6.0

|
|

p—

I

|
@

\i
|

|

|

b-

5|

|

|1|

‘i
f

|

|

|

|

I

104 I'he M1, Programming Environment

{USE "GLUE">
‘The call to glue a group of RSUBRS and/or RSUBR-ENTRYS is:

LGROUP-GLUE growp-narealo
substituie: boolean
scriptzchannel
package:string-ar-list
survivors:list
victims: [isi>

where:
group-name is an ATOM as returncd by GROUP-LOAD, and it is the only reguired argument.

ind RSUBR-ENTRYs will be fixed so tha they may still run
s or interrupt handlers are among the
group must be GROUP-DUMPed and

cusbstituie is o Mag: iFit is true, the current RSUBRs.
in the current M. Thisis exponsive but necessary iFrPRINTTYPE
RSUBRs in the group. If the fag is FALSE ur not supplicd. the
reloaded before use.

seript 0F supplicd and a CHANNEL is uscd by GROUP-GLUE tw print oul its Progress through 115 task.
Otherwise, GROUP-GLUE works silently.

~, if provided and non-FALSE. implics PACKAGE maode will be used. This argument should be a
STRING specifying the PACKAGE that is being glucd. In PACKEAGE mode only the ENTRYs af that
PACKAGE will be preserved and all RSUBR-ENTRYs associated with internal functions will be removed.
1his option can also be used by setting the ATOM PRG to the name of the PACKAGE. Package may also be
4 LIST of PACKAGE namcs, in which case the ENTRYs of all the PACKAGES listed will be preserved.

packags

stervivors if provided indicates that SURV IVOR muode will be used. "This argument should be a list of those
RSUBR-ENTRYs to be preserved. All ather RSUBR-EMTRYs will be fushed. This option overrides
PACKAGE mode. This option can also be used by sciting the ATOM SURV Lo the LIST of RSUBR-ENTRYs
being preserved.

4 LIST of those functions which should not

vietims allows ‘survivors™ o be specified by default; that is, it is
to specify than explicit SUTVIVOTS.

survive after GLUE has run. This is sometimes more convenient

There are two advaniages to removing unnceded RSUBR-ENTRYs. The group is made smaller by the absence

of the RSUBR-ENTRYs. Also the code for the group is reduced, as the code for handling MCALLs to those

RSUBR-ENTRYs is removed. In general only the ENTRYs need o be kept for 1 PACKAGE. ‘This can be done

by specifying the PACKAGE using PACKAGE maode. SURVIVOR mode should be used if the user wishes 0

explicitly state which RSUBR -ENTRYs arc to be kepL.

6.1.2. GLUE as a Program
dition to the "GLUE™ PACKAGE, there is a program in which GLUE and PDUMP (scec scction 6.3) are

al arguments W0 GROUP-GLUE, pecrmilting the uscr to

In ad
preloaded. It will prompt for cach of the usy

conveniently GLUE (and PDUMP) several PACKAGES in one session.

GLUE 6.1

the MDI. Progrinming Environment 105

6.2. Glue Bits

GLUE is able o perform its transfomations on compiled or assembled code with the aid ofad

produced during assembly. ‘TThis structure is called the *GLUE Bits',
by this FORM:

<AND <ASSIGHNED? GLUE>
GLUE

<PUT rsubr GLUE glue-bits:uvector>>

ata structure

It is an association placed on the RSUB R

Thus if’ . GLUE is non-FALSE the association will be available o programs wishing to use it

Internally, the GLUE bits consist of two bits for cach word of code in the CODE clement of the RSUBR,

fiMlowed by words specifying calling information. For cach INTERNAL-ENTRY in the code, there is a word

giving the number of arguments it tukes and the offset of the INTERNAL-ENTRY in the CODE UVECTOR.

The two bits for individual instructions are interpreted with the index ficld of the instruction as follows:

Bits 0 implics the instruction is uninteresting;

Index field (M) and bits 1 implics the instruction isa reference to the code itself (a jump, perhaps):

Index field (R) and bits | implics a reference to an impure slot of the RVECTOR (the compiler does not
gencrate such references);

Index ficld (R) and bits 2 implies the instruction is an MCALL;
Index field (R) and bits 3 implics the instruction isa reference o a pure slot of the RVECTOR.

Sce section 7 for more details on the format of MDi Assembly code.

6.3. PDUMP
MDL provides a mechanism for sharing compiled programs among several Ml processes, and for

dynamically moving the compiled code in and out of the virtual address space as space is necded in the

interpreter. This mechanism is described in detail in section 4.2, This section describes how to convert a

compiled program into a sharable version, known asan FBIN {IFast- 13 Mary) version of the program.

First load the group-purificr,

6.2 Glue Bits

106 % e M1, Programming FEnvironment

<USE "PDUMP">
Mext, GROUP-LOAD your group (or groups).

¢GROUP-LOAD binan-file:string>
which returns the group-name of the group. ‘This (and any other groups to be dumped together) is then
passcd [.u the purc-dumper:

SPDUMP group-pgmel :atmn group-name:afom ... 2

"I'his creates several files, only one of which you need be concerned with:

siame; proup-namel FBIN
If given more than one group-name, POUMP will create one FBIN file for cach group. but only a single F IXUP
and a single SAV file containing the fixups and code for all of the groups named. The FIXUP and SAV filcs
are put on the "MUDTMP" dircctory and eventually are inserted in the pure code library, as described in

scction 4.2,

Alternative methods of PDUMPing are to specify that as an option in to the program GLUE (see section

6.1.2Y, or to use its preloaded PDUMP directly after exiting its READER with +35.

A warning about combining GLUE and PDUMP: if you attempl to PDUMP several groups that have been
GLUEd together, you will lose. 'This is because the references to the ‘group-RSUBR® will fall on the wrong

OBLISTs.

PDUMP also produces a structure analogous to the GLUE bits (see section 6.2) produced by the compiler,

but containing only information about the RVECTOR of the RSUBR, for the use of PURIFY (scc section 6.3).

6.4. SUBRFY
SUBRification is a way of getting rid of many of the MCALLs which could not be practically removed using
GLUE. IFa FUNCTION is called by many scparate groups, it is difficult to GLUE it to all the groups or Lo GLUE

all the groups together.

What is really nceded is to be able w allow somcthing te be called with PUSHJ from scparatc groups
without Forcing it to be part of those groups. This is indeed the case with PUSHJ cntries to M. SUBRs (in

the interpreter). A user can make his RSUBRs look like SUBRs in this respect.

SUBRFY lakes a group, which must be in MBIN formal [t purifics the RSUBRs and RSUBR-ENTRYs in the
group and changes them so that they can be called with PUSHJ, It also produces a file, known as the “preload’

file. which can be used by the compiler to generate PUSHJIs to the functions in the SUB Rificd group.

PDUMP 6.3

|
|

i
\
H
\
i

i

u

l
L

|

ﬁ
\

|
1
&lull

|
|
|
|

|

:lllll#

|
i

|
|
!

i |
‘ |
1
1

|

]

The M. Programming Environment 107

SUBRFY should be lvaded before loading the group to be processed. The reason for this is that it
guarantees that GLUE bits stay around. To lvad SUBRFY
<USE "SUBRFY">
You should then GROUP-LOAD the group. Your group should be GLUEd already, since SUBRFY docs not
GLUE the group together.

SUBRFY can then be called in the following manner:

<SUBRFY group aiom
file-name:string
outpuicharnnel>

where
Lropg is the name of the group.

Sile-nepme is the name of the file in which SUBRFY should put the information for the compiler. This defaults
to the name of the input file with seeond name “PRELOD",

endipief 15 an optional argument which specifies a CHANNEL on which to print information about SUBRFY's
progress. ‘The default is not (o print anything.
The file produced by SUBRFY should be FLOADed for compilations where functions in the SUBRificd group

are called. This cau be done by FLOADIng it in the “Ihings to do” part of a COMBAT plan.

Like purification, SUBRification changes the MDL. The only way o preserve the SUBRified group is to
SAVE the MDL. Before SAVEing the ML the "SUBRFY " PACKAGE should be removed. ‘This can be done
by doing a

<KILL-SUBRFY>
followed by a
<GC 0 T>.

SUBRFYing a group implics that the group is not going to change at all frequently, if ever. A now
SUBRF Yed SAVE file may be created at any time, and elements of the group may be recompiled. However, if
the calling sequences of any of the functions in that group change. you invalidate any functions compiled

using the “preload’ file for that group. In short, think twice before tying yourself down with SUBRFY.

6.5. Purification
A facility exists to permit the purification of M. objects. Purificd objects can be shared between MDL
processes and also are not examined by the garbage collector. What follows is a description of how this

facility can be used.

6.4 SUBRFY

108 I'he MIX. Programming Environment

The purification facility in M. is most useful in the ereation of subsystems, Mun-purificd RVECTORs of
REUBRs and tables used by subsystems are kept in garbage collected space. “This means that these objects,
which will never become garbage, are cxamined at cach garbage collection, slowing down the garbage
collection process. Also, if two people are using the same subsystem, they cannmt share the tables and RSUBRs

kept in garbage collected space. By using purification these two problems can be alleviated,

To purify most objects the user can eall the PURIFY SUBR, The object will be purified, and all references
t that object in the M. core image will be changed to point to the new pure object. This simple method
cannot be used in the case of RSUBRs, Purification of RSUBRs is a scveral step process beginning with

compilation.

6.5.1. Purifying RSUBRs
Once your FBIN or NBIN is ready you can actually do purification. 1o do this first
<USE "PURITY">
This PACKAGE contains the routines needed to purify RSUBRs. Then GROUP-LOAD the files you wish Lo
have purified. Once this is done type
CGROUP-PURIFY growpalonm outpui-channel>
This will purify and link all RSUBRs and RSUBR-ENTRYs in the group and will also attempt to purily any
RSUBRs or RSUBR-ENTRYs called by the group. Giving the optional ehannel will cause GROUP-PURIFY to

print information concerning the progress of the purification.

GROUP-PURIFY will only purify RSUBRs and RSUBR-ENTRYs. In order to purify tables, ctc. use the
PURIFY SUBR dircctly. Since purification is an extrenicly expensive aperation, it is recommended that you

coltect together the things you wish 1o purify inte a LIST, VECTOR, cte, and purify that structured object.

Once purification has occurred, several things may be done W recover wasted garbage collected space.
The uscr can get rid of the "PURITY " PACKAGE by doing a
SKILL:PURITY>

The wser can alse remove much of the overhead of keeping a group around by UNMASSIGNing the
group-name. Remuovals of this type should be follwed by an explicit eall 1o the garbage collector invoking the

*hairy’ GC feature, as much of the storage to be regained is pointed to by associations. ‘This can be done by
<GC 0 T>

In order to save a file with purificd M. objects you must SAVE. Restoring a SAVEd file with purified MDL
objects will cause thuse ubjects to share with any uther MibL. RESTOREd from the same SAVE file.

Purification 6.5 |
X L
e — = — - —_ e o .3
R ,,,_—, A MMs
T — — — —:
—_— — R ——————————
— - — = —=
= — — _
—_— — r— —
— — — —n
— - ————— 3
_—N .y
— — — 7*
— = —_— _— —
- — "
—_— = = —_—
— —_— m—
- —_— — — - —— —_— - — — 3
7—j
- —
—= — —— "

(¥

a

A

=

The MDIL. Programming Environment 199

6.5.2. Purifying an Environment

Many subsystemns maintain a list containing pointers to all the static data structurcs built by that
subsystemn: dispatch tables, data bases, and so 01';. The list can be given to PURIFY to move all its components
intoe the pure arca. However, there are other structures in garbage collected space that may be purified; e.g..
the RVECTORs of RSUBRs. RSUBR DECLs, and s0 on.

The "CLEAN" PACKAGE examines these structures, looking for those which may be purified. 1t may also
be used for informational purposes. To get it
<USE "CLEAN">
"CLEAN" has one n’lnjmr ENTRY. CLEANUP, which cxamines every ATOM of cvery OBLIST in the Mpi. [t
muay perform a variety of functions, but it is most often used to make DECLs share storage and to accumulate a
LIST of puriliable structures. All of its arguments are optional.

<CLEANUP primt?:boolean
resel?:boolean
decl?:boalean
pdeci?:boolean
pure?:boolean
check?:boolean
avoid:list-ofoblisis>

print? is by default FALSE. If non-FALSE, information about cach ATOM examined will be printed as
CLEANUP runs. This is a fer of information.

resei? is by default T. Ifnon-FALSE., the LISTs of objects previously collected will be reset before CLEANUP
rins.

decl? is by default T. If non-FALSE, cach DECL clement will be made to exist exactly once in the entire core
image. E g, there will be only one copy of the DECL <LIST [REST FIX]> inthe~ corc image.

gdeci? is by default T. It is similar to decl?, but refers to GDECLs.
pure? tells whether to make a LIST of all the purifiable objects in the core image. It is by default T.

check? tells whether to make LISTs of all the TYPEs, RSUBRs, RSUBR-ENTRYSs, elc. in the core image. Itis
by default T.

avold is a LIST of OBLISTs not to look in: it is by default the OBLISTs associated with "CLEAN™ and
"PURITY"™.

CLEANUP returns (if pure? is non-FALSE) a structure (also stored as the GVAL of PURELST) which may be
given to PURIFY.

The results of unning CLEANUP may be examined by

6.5 Purification

110 The M. Programuning Environment

SPRINT-CLEANUP>
As the object in running CLEANUP is to shrink the size of one’s MDL and its garbage-collecied space, it Is
uscful to be able to remove CLEAN after it has done its work.

<FLUSH-CLEANUP>

removes everything associated with the PACKAGE from the MDL.

6.5.3. Purification Summary
In a simple case, one can purify a “subsystem” of one group maximally by

<USE "PURITY" "CLEAN">
<GHOUP-LOAD " joo“>
<CLEANUP>
<GROUP-PURIFY Jfoo>
<KILL:PURITY>
<FLUSH-CLEANUP>

<GC 0O T>

<SAVE "foo">

6.6. TEMPLATEs
IMe PRIMTYPE TEMPLATE cuts down on the need for storage by allowing the user to specify exactly what

he wants a structured object w contain, similar to “structures’ in PL/1 or C.

To use this feature one must creale a now TYPE of PRIMTYPE TEMPLATE. This can be accomplished by
using the RSUBR TEMPLATE. The procedure for doing so is:
<USE "TEMPLATE">

<TEMPLATE pamerafomn ... JDECE ... #
where mame is the name of the new TYPE and specs are specifications for each clement of the TEMPLATE.
This returns the TYPE name of the TEMPLATE and creates a creator of TEMPLATEs of TYPE name, called

name itsell, which can be applied to arguments to create objects of that TYPE of TEMPLATE.
The specification for the clements can be of several forms. It can be onc of
a TYPE: ryperatom
a2-clement LIST: (rypesatom length:fix)
a 3-clement LIST: (fvperatom length:fix count:fix)

Below are sume examples along with cxplanations:

Purification 6.5

|
|
|

|
|
1

|

1l

|
bl

\
N

IO BENE

1
|
|

ftr(

The MDIL. Programming Environment H

LIST
isan 18 bit LIST pointer.
(FIX 18)
is a halfword FIX (can be both positive and negative and is checked for overflow).
{FLOAT 18)
is an 18 bit FLOAT (which is the left halfword of a *normal” FLOAT and therefore somewhat restricts the
precision).
(FIX n)

{(where n is less than 18) §s a positive F LX of length » bits (is not checked for overflow),
BOOLEAN

is not a Mi3. TYPE, but a one bit FALSE or non-FALSE depending on whether the hit is 0 or 1.
(UVECTOR 18)

is an 18 bit UWECTOR pointer, The UVECTOR is of length #. The smne can be done for VECTORs.
(STRING 36 n)
iz a 36 bit string byte pointer. The STRING is of length
ANY
is not o MDI. TYPE, rather anything can go here. This is relatively incfTicicnt to usc in TEMPLATES as it takes
up 2 words.,

In order to provide more Aexibility in using TEMPLATESs, two other ficlds are allowed, an eptional field
and a rest ficld. "The aprional ficld allows the user 1o create TEMPLATE TYPEs which will have the same basic
structure but which can have optional clements determined when the actual TEMPLATE is created. 'The rest
ficld. like the optional ficld, allows clements to be optional but specifics a pattern for any elements that are

added on. It is analogous to REST in DECLs. Scparation of ficlds is accomplished by the use of the sirings
"REST" and "OPTIONAL™. For example:

<TEMPLATE FOO FIX "OPTIONAL"™ LIST BOOLEAN "REST"™ FLOAT>
This creates a TYPE FOO of PRIMTYPE TEMPLATE which always has a FIX as the first clement, can have a

LIST as a sccond element, can have a onc bit T or #FALSE () as the third element and can have any number

of FLOATs from the fourth element on.

6.6.1. Use of TEMPLATEs

TEMPLATE TYPEs may bec thought of as primitive T‘r:PES:. in that they each have a unigue storage
representation. On the other hand, the TYPEPRIM of any TEMPLATE TYPE is TEMPLATE. A primitive
TEMPLATE (which cannot truly exist in the language) would look like

6.6 TEMPLATEs

i

N

|»

1

|1
»

|

|

"

I
\

*

|

\

|

I
'l

|

|
v

*

,l'

|
|

112 3 The ML Programming Environment

{ element-1 element-2 ... elementn }

{2cal TEMPLATE TYPEs are represented as NEWTY PEs of this primitive TEMPLATE TYPE.

#rovpe-name { ...elemenis... }

‘Ihis method is similar o the usual method in MDIL for representing any new TYPE, in that a RESTed

TEMPLATE will be printed "CHTYPEd to its PRIMTYPE. Mote that a TEMPLATE so printed cannot be read by

READ: a‘primitive TEMPLATE’ cannat exist. It is best to avoid printing RESTed TEMPLATES.

Below arc some cxamples of the usc of TEMPLATES.

<TEMPLATE BAR-

FIX

"OPTIONAL"™ BOOLEAN

“REST® (FIX 18) (FLOAT 18)>3
BAR

<{BAR 1>3%
#BAR {1}

<BAR 1 T>%
#BAR {1 T)

<BAR 1 <> 1 1.0>%
#BAR {1 #FALSE () 1 1.0}

<SET A <BAR 1 <> 1 1.9 2>>§
#BAR {1 #FALSE () 1 1.8984375 2}

<PUT A 1 B>%
#BAR {6 WFALSE () 1 1.8984375 2}

<PUT .A 4 1.999>S
#BAR (6 #FALSE () 1 1.9960937 2}

{TEMPLATE BAR (STRING 36 4) "REST" ANY>S
#FALSE (~"ALREADY A TEMPLATE")

<TEMPLATE BAR1 (STRING 36 4) "REST" ANY>%
BARL

TEMPLATES 6.6

-

|
|

The M. Programming BEnvironment 113

<SET A <BAR1 "HELP" 2 () <>>>%
#BAR1 ["HELP" 2 () #FALSE ()}

<PUT .A 1 "GOOD">$S
#BAR1 {"GOOD" 2 () #FALSE ()}

<PUT .A 1 "GOOD-BYE">%S

*ERROR™
TEMPLATE-TYPE-VIOLATION
PUT

LISTENING-AT-LEVEL 2 PROCESS 1

G.6.2. Assembly of TEMPLATEs
Once u sel of TEMPLATE TYPEs is created, as for the TYPE definitions of a subsystem, it saves time to

store away the ‘compiled” TEMPLATE generators and not recreate them each time the definitions are to be
used.

The "TEMHAK™ PACKAGE modifics files which define TEMPLATE TYPEs tw contain the TEMPLATE

descriptions and RSUBRs rather than the calls to TEMPLATE. It is only uscful, of course, when the

TEMPLATEs are difined in a file which will not normally be edited, since the new files arc in "NBIN® format
T load this PACKAGE,
<USE "TEMHAK">

The PACKAGE has two cnitrics.
CTEMPLATE-DUMP group-naiiesalonss

takes the group and modifics it such that <USE "TEMPLATE™> bccomes <USE "“TEMHLP">, and all

tep-level invocations of TEMPLATE are replaced by calls to BUILD-TEMPLATE (for the TEMPLATE

descriptions), SETGs of the TEMPLATE-gencrating RSUBRs, and the GLUE bits for the RSUBRs.
<FILE-TEMPLATE jupui-siring ctilpuf string>

takes an énput file and performs the same service, GROUP-DUMPing the result to the optional ewipur file (by

default the same file with second name "NBIN™). This is useful for files which contain nothing but TYPE

definitions, a common practice in large subsystems.

ifthe TEMPLATE TYPEs are defined in a file which will be edited lrequently, a different set of routines is
uscd after creating the TEMPLATE TYPEs:

6.6 TEMPLATES

I

I

1|

1
|

I

”l

I

114 Ihe M. Programming Fnvironment

LDUMP-TEMPLATES girscriptions:siring»

places the TEMPLATE descriptions (nef the RSUBRs) in the specificd descriprions file. It does so for all
TEMPLATE TYPEscurrently defined.
{DUMP-RSUBRS raubrssiring femplafe-fypesaiom .. . »

will perform the sume service for the TEMPLATE-gencrating RSUBRs of the TYPEs given as the second and

later arguments o DUMP-RSUBRS.

There will now be two files, one containing the TEMPLATE descriptions and the other the RSUBRs. These

may now be used to create the TEMPLATE TYPEs without USEing "TEMPLATE". To doso:

<USE "TEMHLP"Z
I'his defines the RSUBRs needed o take the TEMPLATE descriptions and make them useful to MDL.

<FLOAD descriptions:siring>
the file of descriptions (the file created with DUMP-TEMPLATES): this st be loaded before the RSUBRs
file. 1hen louad the RSUBRs file (the file created by DUMP-RSUBRS):

<{FLOAD rsubrs:string>
For maximum convenicnce, it may be necessary to put a FORM in files that creatc TEMPLATEs: if the
TEMPLATE files described here exist, FLOAD them: otherwise, <USE "TEMPLATE"> and creale the
TEMPLATEs from scratch. It is of course possible to manually merge the two TEMPLATE definition fles
(preferably by using GROUP-LOAD and GROUP-DUMP), s0 long as the TEMPLATE descriptions precede the
TEMPLATE RSUBRs.

TEMPLATE RSUBRs arc created with GLUE bits, so it is possible to glue them into groups and to purify

them.
TEMPILATEs 6.6
. o= —
——

il

1l

I‘

{
[

1
i’

1
}

Il

[

i
|

!I!’rll'
i

| lﬂ
1 |

|

i1l

i

i

The M1, Programming Environment 115

7. The Assembler

It is occasionally necessary to write MDL routines in assembly language. usually to interface with a feature
of the operating system not available in the interpreter. The ML assembler (which is also used by the ML

compiler) provides this ability.

7.1. The Assembler
The M. assembler provides the M1 user with a means of writing RSUBRs directly in machine language.
The assembler is also uscd as the object language of the compiler. This section is a description of the

assembler, its use, and some of its pscudo-operations.

7.1.1. General Organization
The Mot assembler is written in MDL. to produce code that runs in the M. cnvironment. [t takes
arguments in the following form

<FILE-ASSEMBLE jypur-file:siring
enifpef-file:siring
quick:boolean>

The arguments are an frpui-file containing ML, assembly code (possibly for several RSUBRs), an optional
aurpur-file in which tw put the binary output (by default the same file as /iuput but with second file name
"NBIN") and an optional third argument which tells whether to use NBIN format output, and which under
normal circumstances should always be T. There are four other optional arguments which are the same as the
seoond through fifth arguments of ASSEMBLE.

<ASSEMBLE pbpdy
locals
IMEesSages
list
symmbols>

(All the arguments arc optional with the exception of bedy.)

bedy may be a CHANNEL, in which case all instructions in the file associated with the CHANME L arc assembled,
or it may be a structured object. in which case all instructions in the object are assembled.

locals specifies the OBLIST 1o wse for Jocal symbol lookup when the body is a CHANNEL. The default is
€1 .0BLIST> when the assembler is called.

messages is 4 CHANNEL to receive error messages, ote. It defaults to . MESSAGE -CHANNEL.
fist is a CHANNEL to reccive an assembly listing. IF [isr is not supplied, no listing is generated. IF fisr is a

non-FALSE non-CHANNEL, and miessages is a CHANNEL, then the messapes CHANNEL will receive the
address of cach label. If fisr is a FALSE, then no listing is produced. “The default is . LINE-CHANNEL

7.0

116 The MIN. Programming Environment

{Initially LINE-CHANMEL is FALSE.)

synrbols indicates if true that a DDT symbol wble of all the labels for use with "RDB " (sce section 7.2) will be
generated. The default is . MAKE-SYM-TABLE (Initinlly MAKE-S5YM-TABLE is FALSE.)

7.1.2. The Assembler as a Program

The assembler also exists as program called ASSEM, which encapsulaies FILE-ASSEMBLE,

7.1.3. Format of Assembler’s Source

The M. assembler’s equivalent of a line of code is a FORM. [t assembles FORMs into instructions in much
the same way that a typical assembler treats lines of source code, ATOMs at the top level {i.e. not in FORMs) are
treated as labels. ‘The FORMs are assembled bused on the TYPE of the GVAL of the first ATOM in the FORM,
The GVALs of ATOMs whose PNAMES are the PIDP-10 instructions are of TYPE OPCODE (PRIMTYPE WORD]
the *value word” has the 36 bit value of the instruction. Fuor example, in

<MOVE A* 1 (B)>

the value of MOVE (in the OF OBLIST) is #OPCODE *200000000000%. 'This FORM is assembled dircctly

inty an instruction.

If the GVAL of the lirst ATOM in a FORM is something applicable (SUBR, FUNCTION. RSUBR cic.) the
FORM is EVALcd and the resulting SPLICE of FORMs is assembled. This is how macros and pscudo-ops are

implemented. Muotice that a pscudo-op or macro may produce no code by returning an cmpty SPLICE.

7.1.4. Instruction Assembly

Having determined that a FORM is going to asscmble into an instruction, the asseinbler basically adds up
the values of all the items in the FORM. In the case of items of TYPE OPCODE, a full 36 bit add is performed.
ltems of TYPE ADDRESS refer to labels in the program. Since the code is all location insensitive and will
move around during garbage collection, references to labels must be indexed by accumulator M, the base
register. Thercfore, label symbaols include an M in the lefl half and must also be added in with a full-word add.
ltems of PRIMTYPE WORD other than OPCODEs and ADDRE SScs arc ANDBed with *77777 7™ before being
added, and the carry from right half to left half is suppressed. When ATOMs are found in FORMs that are being
assembled inw instructions, special lookup rules are in effecl. I the ATOM has a global value, that value is
uscd. IFthe ATOM does not have a global value but has a local value, it is used. ITthe ATOM has neither a local
ur global value, it is assumed to be a local symbaol for this asscmbly. In this case the symbol value is used if it

has already been defined, otherwise it is added to a list ol as yet undefined symbaols.

The Assembler 7.1

i

{

The MDIL. Programming Environment

Objects other than ATOMs or PRIMTYPE WORDs cause the assemibler to take special action.

— LI5Tsarc used to indicate swapping left and right halves. For cxample
<MOVE (1)>

would put the 1 in the index ficld of the MOVE instruction (similar 1o MIDAS).

— A VECTOR indicates a constant, The VECTOR may contain any number of FOR
at the end of the program. For example:

<PUSH TP* [<1 (1)>7]>

Ms o be assembled

pushes a constant containing | in the right and left halves.

— A FORM is simply EVALed and the value returned is used.,

7.1.5. Initial Symbols
‘The OBLIST structure in effect du ring assembly is
(eop medl DEFAULT local root)

Fhe OBLIST op is nuined OF and containg the PIP-10 opcodes, the My, accumulatos definitions (in both

accumulator and address ficlds), and the peeudo-ops. The QBLIST md is nomed MUDDLE and contains values

of many labels in the interpreter. “This enables programs to do things like <JRST FINIS>. the standard way

to exit from an RSUBR. When an instruction is assembled using a symbol from the MUDDLE OBL IST, a fixup

is also generated so that, if the symhbol gets a different value in a new M - the code can be fixed up when it is

loaded. Local is the user's local symbol OBLIST and rool is the ROOT OBLIST.

As stated earlier, every asccumulator has two symbols associated with it, one for the address ficld and one

for the accumulator ficld. This is because there is no syntax o specify which field is intended. The address
symbol is simply the accumulator's name, and the accumul

appended to it e.g., A versus A®,

atar symbol is the nume with an asterisk (*)

7.1.6. Macro Writing
Whenever an clement or subelement of an instruction is a FORM
AFPLICABLE GVAL, the FORM is evaluated and the re

and the first element of the FORM has an
sult (unlessitis a SPLICE) is re-evaluated as if it were
In place of the FORM. This feature constitutes the assembler's macro facility.

For compatibility between ‘top-level’ macros, which genecrate whole instructions, and macros which

Eencrate parts of an instruction. top-level macros may wish to return several instructions. ‘I'o indicate that

what is returned is several instructions, it is necessary (o return an object of type SPLICE (PRIMTYPE L IST).

I'he elements of the SPLICE are treated as individual instructions. An cmply SPLICE may be returncd from

7.1 The Assembler

117

118 : ‘I'he M1, Programming Environment

a macro which is part of an instruction, and the cffect is as if a 0 were returned. "This is the only SPLICE

which may be returned from a macro which is a part of an instruction.

7.1.7. Pseudo Operations
The next part of this document will deseribe pseudo-ops available in the MpDL. assembler, There is no

difference between a pscudo-op and macro in the assembler except that the pseudo-operations are supplied
by the system.

STITLE pomersiring?
Iis is about the only required pscudo-op. It must be the first instruction to be assembled. It takes one
argument. the name of the RSUBR being assembled. If additional TITLEs are found in a file being
assembled, they are assumed to both end the previous RSUBR and begin the nexl. “The assembler prints cach
TITLE un the messiges CHANNEL ais it is encountered.

{SUB~-ENTRY guincarom decl>
‘This pscudo-op is used o define additional RSUBR-ENTRYs for the RSUBR heing assembled. The emrry
argument is the name of the RSUBR-ENTRY and the optional decf argument is a DECL for the entry.

CINTERNAL-ENTRY ecnincatom gresfix>
is used w create an INTERNAL-ENTRY for a GLUEable RSUBR. Its arguments are the name of the
INTERNAL-ENTRY and the number of arguments that will have been pushed on the stack for it when it is
cilled. Seec also section 7.1.9 for details on writing GLUEable RSUBRs.

{DECLARE ("VALUE" decl decl decl)>
is used w supply declarntions for the RSUBR named in the TITLE. It must occur before any code-gencrating
instructiuns. DECLARE takes a LIST as its one argument. The format of the LIST is as described in [3]. The
siring "VALUE " is optional; if supplied it causes the first dec! to declare the TYPE of the value of the RSUBR.
Each additional decl is associated with one argument Special STRINGS may also appear in the LIST with the

following meanings:
*"QUOTE " The next argument is QUOTEd (not EVALcd).
“OPTIONAL™ The rest of the arguments are optional (the RSUBR must supply any defaults for these).

"CALL™ If this appears, it must be directly after the "VALUE " decl. It says there is one argument and it is the
FORM generating the eall (see "CALL ™ for FUNCT IONs in [3]).

"ARGS"™ T'his must be the last STRING. [t says treat the rest of the arguments in the FORM as a LIST and
pass it as the argument (see "ARGS"™ for FUNCT IONs in [3]).

“TUPLE" EVAL the rest of the arguments and pass them.

The Assembler 7.1

ERRRRRRR R R RE R L S

The MIM. Programming Environment 119

<END>
indicates the end of an RSUBR or group of RSUBRs. Only the text between TITLE and END pseudo-ops will
be processed by the assembler. This makes it possible to intermix assembler source code and normal MDL
source code in the same file (although assembly must be done before compilation in such cases).

<TYPE-CODE jpyperarom>
allows references to the internal TYPE codes for both system and user defined TYPEs. It takes one argument,
the M. TYPE name. For example:

<MOVSI A* <TYPE-CODE FIX>>
puis the TYPE code for FIX into the left half of accumulator A.

{TYPE-WORD pfypooafom any ... »
generates a reference o a word containing the TYPE code for fpe in the lefl half and puossibly other junk in
the right hulf. “The first argument is the TYPE name and the rest of the arguments are optional but ifsupplied
are added inter the right half, IF the TYPE is an initial TYPE and no right half is generated, a reference (o the
"$Toype location in the interpreter is generated, For example,

<PUSH TP* <TYPE-WORD FIX>>
<PUSH TP* [0]>

would push a FIX 0 on the stack,
<GETYP m fvpesglom>
has the same form as a PIDP-10 instruction. It gets the TYPE code for vpe into the right half of its
accumulator from its address. This is done by generating an approprinte LDB (load byte) instruction.
<MQUOTE oblectany>
allows the RSUBR to reference garbage collected space. It adds its argument to the RVECTOR (if it isn't
already there} and evaluates o an address of the form offSer(R). poi nting to the value word for object.
<PQUOTE phjecriany>
is identical to <<MQUOTE objecirany> -1 Le. it points to the type-word, not the value-word. ‘This is a more
consistent way to look at things.
CIQUOTE gblecizany fabel-atom®
is like PQUOTE except that this will add a new element o the reference VECTOR cach time called. The
optional /abel if given defines the ATOM to be a label referring to that clement. “This is the only way to refer to
that element again.
<PSEUDD gresar

eviluates its argument for its side effects and assembles no code.

7.1 The Assembler

'FfrHFr*lﬂ'FIVH'*"H‘#L!#!IHI‘}P*u

120 I'he ML Programming Environment

¢SIXBIT siring>
mukes SIXBIT of the legal characters of string.
¢SQUOZE gsiring sqbits:word>
makes SQUOZE of the legal characters of siring and sticks the low-order four bits of the optional sgbits in the

high-order four bits of the value. See the MIDAS Manual [4] for an explanation of the SQUOZE code.

<BYTE boundarv:fix byie-size:fix location>
Example: <BYTE 1 35 (C) 1> islike ¢(*014300*) (C) 1>
CARG grguum:fix>
islikc <(AB) <= 2 <- .argnum 1>>>. ARG should not be used in GLUE able code.

¢STACK svml:afom sym2:atom symi:atom ... 2
makes syd a symbol for <{TB) 0>, sm2 a symbol for <(TB) 25, spnd a symbol for <(TB) 4%, clc.

STACK should not be used in GLUEable code.

<DPUSH gc arzs>
<DPOP a¢ gres>

<DMOVE gc gres>
<DMOVEM gc args>

are the double-word PDP-10 instructions. For cxample,
<DPUSH ac args>

expands into
#SPLICE (<PUSH ac args> <PUSH ac args 1>)

<UNDEFT? svnbol:afom>

if the synbol has previously in the code been used as a symbol. but has not been

evaluates to truc only

defined.
£IF-NEEDED muwnbolatom instruclions --- *

If CUNDEF? spmbol> evaluates to trug, then all the instructions are inserted at the current location, otherwise

they are not.

<*INSERT file-specisiring?

takes a file and reads instructions from it and inseris the instructions read at the current place.

7.1.8. The Type RSUBR
An RSUBR is a MDI. object of PRIMTYPE VECTOR. ‘The first clement of an RSUBR is always of TYPE

CODE (ur PCODE). CODE is of PRIMTYPE UVE CTOR, consisting of words or instructions. The second clement

of an RSUBR is an ATOM which is the RSUBR's name. If the RSUBR has declarations they arc the third

clement ‘The rest of the RSUBR contains M DL objects which must be referenced by the code

The Assembler 71

|

|

u,

L

M

L

g

1

|

1|

|

|

h

t

I

|

|

[
l
{1

|

!

[

|
|

I

The MDI. Programming Environment - 121

An RSUBR-ENTRY is a VECTOR of two or three items. ‘The first jitem is cither an RSUBR or an ATOM
whise GVAL is an RSUBR, the second is an ATOM which is the entry’s name and the third is a DECL for the
entry. e difference between an BSUBR ;mdrun RSUBR-ENTRY is that an RSUBR always starts running at
the beginning of the code when it is called while an RSUBR-ENTRY usually starts running somewhere in the
middle of the code.

7.1.9. Writing Gluable RSUBRs

Certain conventions must be followed when writing hand coded RSUBRs in order to get the most benefit
from GLUEing. If the RSUBR (or RSUBR-ENTRY) has "TUPLE" in jis DECL. it is alrcady in the best shape
possible. In all ather cases, the code after the TITLE or SUB-ENTRY pscudo-operation should simply push
the arguments onto the TP stack and PUSHJI P* o one of the internal entries based on the number of items
on the stack. Afier the PUSHYI it should do a <JRST FINIS>. An internal entry is set up by using the
INTERNAL-ENTRY pscudo-op which takes twa argumcents: an afeon and a ffx. The aress acts as iF it wore a
label on the next instruction and may be used as a label. The fix specifies how many items (typoe-value pairs)
arc on the stack at this internal entry. In the simple case where there are no optional arguments, only one
internal entry exists and its number argument is exactly the required number of arguments. I aptional

arguments exist, sume kind of dispatch will have o be done.

In the rest of the body of the RSUBR. no references to AB or TB {through the ARG or STACK pscudo-ops or
direcily) can be made, because after GLUEing their cuntents may be meaningless. All references to the TP
stack must be indexed by TP, The usual precautions concerning the possible movement of code if an INTGOD
or MCALL is done also apply (i.c. the use of <SUBM M= {P)> at the beginning and <JRST MPOPJI> at the
end of the code are essentially mandatory).

7.2. Debugging Binary Code
Binary code produced by the Ml assembler or the MDi. compiler may be debugged with DDT, like any
other binary code. However, an interface botween that code and the DDT environment must exist, That
interface is the "RDB™ PACKAGE. Itis abtainced by
<USE "RDB">»
The symbol table aptionally produced by the assembler can be passed o DDT and at the same time the

RSUBR frozen (moved out of normal garbage-collected space) by:

7.1 The Assembler

T

|

i

ﬂﬂ

122 ‘Ihe MI1I1. Programming Environment

¢RFREEZE nomeof rsybratony>

Mote that nanie-of rsubr may also refer to an RSUBR-ENT RY.

¢RBREAK ngme-of rsubroatoms

is similar. but in addition causcs DDT to put a breakpoint at the first instruction of the RSUBR.

If there is no symbol table, RFREEZE and REBREAK merely frecse the RSUBR and pass up symbuols for the

RSUBR name and any sub-cntries.

In all coses the symbols passed up are made up of the legal SQUOZE characiers (letters, digits, 185, I1V%,
1%, .}y of the name, up to six characters, For cxample the ATOM FOQ-*BLECH becomes the symbol FOOBLE.
<ADR ebjeci:gny>

returns the address of object as a F1X. For example, cADR rsubry would return the location of the rsubr in

COre,
CRUNBREAK nane-gf-rsubegiom>

clears the breakpoini(s) at the beginning of the RSUBR and of any of its sub-cntries.

Z.3. Unassembling Binary Code

Converting compile | or assembled hinary code back into something resembling the original assembler
source code is an operation that is performed primarily in one situation: tracking down a ML compiler bug.
It is. however, almost invaluable in that situation. "The PACKAGE cuntining the unassembler is "UNASSM™.
‘I'he main entry is

<UNASSEMBLE codeorsubror-group

autpui:channel-or-string
glue?:boolean>

code is the object being unassembled. Itis cither an RSUBR (not an RSUBR-ENTRY, notc), or an ATOM whose
LVAL is a group (as created by GROUP- LOAD).

oufput is where W put the output; ifitis a STRING, then the output is put in a file with that name. [cufpul is
a CHANNEL. then output is done on that CHANNEL. ‘e file is "code UNASSM™ by default.

glue? (by default T) tells whether there are glue bits for the code lnaded. If there are none, this argument
should be given as a FALSE.

The output produced by UNASSEMELE is like the MDI. compilers assembler input, with the addition of
comments which give code and stack offsets for stack slots referenced. “This information is useful in tracing
exactly what is going on in the code, but it is not always accurate, since the compiler’s stack model is

sometimes two complex for the unassembler to understand.

Debugging Binary Code 7.2

I'he M. Programming Environment 123

ML compiler bug reports are expected to contain ML source and UNASSEMBLEd

compiled code if
possible.

7.3 Unassembling Binary Code

b S

I'he MIDI. Programming Environment

124

8.0

The M. Programming FEnvironment o3

, 8. Informational Aids
‘This chapter discusses a few programs, most written in assembly language rather than MDL, which are
nonetheless of use 1o MDL programmers. Most are informational aids of one sort or another. They include:

MUDCOM, a program for comparing versions of a Mbi. program. It is used by COMBAT (sce section 5.2) to aid
in the prepuration of compiler plan files. 1t has several useful aliascs.

| MaT, the MDL *atsign” program. produces listings, indexes and cross-reference files for M programs. B8, a
similar program which is not MDI-specific, will perform approximately the same tasks.

MUDING is an interface to the I'TS IPC device and is therefore a means of interncting with any M. that has
the 1PC device enabled. 1t has an alias, STATUS, which is particularly useful for determining the progress
uf compilations.

8.1. File Comparison and Checking with MUDCOM

MuCoM is an assembly language program (not written in MDL), which nonetheless understands the
gyniax of Ml programs. It is used for comparing two versions of the same program, and also {under the
name MupCnk) for checking the syntax of MiN. source files more rapidly than they can be loaded into a

MpL, MupcoM is not interactive; all instructions must be passed on the jof line.

Mupcom understands the following MDILL structures at top level:

FUNCT IONs <DEFINE FOO >

MACROs <DEFMAC BAR>

GVALS <SETG MUMBLE>

LVALs <SET MUMBLE >

MANIFEST

PACKAGE

ENTRY

ENDPACKAGE

MSETG <MSETG FOO 1> is<SETG FOO 1> <MANIFEST FOO>

The jelf for MUDCOM in the simplest case is filenamel |, filename2. MubDcom will compare the two files and
print out information concerning those structures it understands which have been removed. changed, or
inserted.

MupcoM has a number of switches which can be set. They are given as /swirch, where swirch is the name
of the switch. Currently the following switches are uschful:
T prints tutals at the end of the comparison.

L prints all FUNCT I0Ns and GVALS in the file.

8.0

126 T'he M1, Programming Environment

C checks the file given for syntax (only one file name at a time).

M checks the files for changed MACROs and MANIFESTs In this mode, Muncosm will make a second pass
through the first file given in the jel. looking for all occurrences of calls to changed MACROs and
MANIFESTs Muncos will consider FUNCT 10Ns making such calls as having been “changed” and will tell
which MACRO or MANIFEST caused the “change’.

The following other jef is understood by MUDCOM:

{aterm . ..)appecaring before the file names in the je! will cause MUDCOM 1o think that those FUNCT IONs
have been changed and will print them as such.

* filename® appearing anywhere in the jef causes commands to be read from that file until the end-of-file is
reached.

{filename ... } isused o specify files to scarch in ealls to MUIHND (see below).
Aliascs of MUDCOM:

1. MUBICII K. MUDCHK fHename checks a file for MDI syntax errors. This is the same as

MUDCOM sC filename

2. MU ST. MUDLST filename lists all FUNCT 10Ns and GVALSs found in the file. This is the same as
MUDCOM SL filename
3. MUDIND. :MUDFND aiom ... {file file} scarches files for FUNCT IONs/GVALs called afons. 1t
can be used for fMinding a FUNCTION in a haystack. This is the same as
MUDCOM (atom atem) {file file}

Since typing this can be tedious, it is casier to use the "filename™ convention and have a disk
file containing the files to be scarched (surrounded by {}s). Thus,

MUDFND FOO BAR BLETCH "MARC;ZORK FILES"
will look for the typical FUNCT ION namecs in the files specified in MARC ; ZORK FILES.

8.2. The MDL Listing Program MAT
MAT is a program for producing listings of MDL programs on the Xerox Graphics Printer (XGP) or a

lineprinter. {MAT is short for *MDiI. Atsign’, after the gencral listing program named &).

Bicsides a listing of the program itself, MAT includes a symbol table -- a list of defined vbjects (arguments to
DEF1ME, SETG, ctc.) and optionally a cross-reference listing - a list of every place in the program cach ATOM
is used. MAT can also a produce a record fie, so that the next time MAT is run on the same program, only pages

that have changed will be printed. ‘

File Comparison and Checking with MUDCOM 8.1

The ML Programming Environment * 127

MAT is invoked with a jcf line in the following format:
MAT lrec=oulputinput-files . ., /swilches ...
Muore specifically. it takes any number of inpur files (scparated on the jof line by commas) and produces a
listing of them in the cuiput file, with options specified by the swirches (cach preceded by a /., and optionally a

record file frec (sece section 8.2.4).

The euiput file name defaults on I'TS o xuname: inpui B or BXGP depending on whether the X switch is

used. and on Tenex/TOPS-20 to input . MAT or inpui. XGP in the connected directory.

8.2.1. MAT Switches
The specific sorts of options available in MAT are controlled by a variety of switches which determine such

things as whether to produce a cross-reference listing, whether to use the XGP as the output device, and so
on. The following switches arc implemented:

/C
causes a cross-reference listing to be produced. This is a mble showing cach reference to cach ATOM (other
than SUBRs, FSUBRs, and locals) in the inpur files.

SO file-name]
specifies file-name as the file containing the user's definitions. Definitions are discussed in detail below.

AF[texi-font, header-font , convnent-font]
specifies the XGP fonts w use in the swrpur file. They are respectively the font to use for the program iisclf,
the font for subtitles and other headers, and the font for M1y, COMMENTS and twp-level STRINGs. The
defuult directory is FONTS and the default second file name is K5T. The default font is 20FG. /F also causes
a /X to be performed.

A T Lfile-name]
specifies a file which contains the names of input files, This is in licu of typing them all in cach time MAT is
run. uscful for large subsystems incorporating many files. The input files listed should be scparated by
commas or carriage-refurns.

’N
causes output of only the symbol tables and eross-reference listing (if specified). Mo heading or title pages are
produced.

/P
On ITS, VALRETsa : PROCED to DDT and continues, Useful for long MAT runs.

8.2 The ML Listing Program MAT

128 I'he M. Programming Environment

fQ [message]

prints message at the bottom of cach page. The default is a copyright message.
p

creates a record file (this is automatic if “frec=" is used). Sce below for details about record files.
i

outputs cach file in a multiple file listing scparately.
ST namelf nanel]

specifics names to use on the title page (in licu of the file names of first impur Fle).
sU

prints a separate symbaol 1able for cach type of defined item in the depur file{s) (c.g. FUNCT ION. GVAL, ctc.).
FX

declares that output is to be for the XGP. This changes the default pwrput file sccond name o @XGP. IF /F s

uscd, /X is done automatically.

8.2.2. Subtitles
Subtitles can be used by including STRINGs in an input file which begin with the word SUBTITLE, The
remainder of the STRING will be used as part of the header of each vulput page until another subtitle is

found. The STRING need not be a COMMENT. Subtitles may have a maximum of 79 characters.

Any file containing subtitles will hiave a table of contents at the beginning of the listing.

8.2.3. MAT Definition
The facility exists in MAT to cause user specified actions to occur at the time a specific ATOM is about to be
cross-referenced. The most important use of this is for functions which define things which the user would

like MAT to recognize, for example, a function one of whose side-cffects is to SETG one of its argumenis.

When MAT encounters an invocation of the function FOO, where FOO has been defined to MAT, it runs

code generated by the user’s Mar definition for FOO, which causes various actions to be performed.

Mar definitions are always located in o disk file which is specified by the /7D switch. Each definition must
be of the form:
[name argf argd arg? ...]
where namie s the name of the item which is being deflined and the args are action specifications as described

below.

The MDL. Listing Program MAT 82

The MDL. Programming Environment a9

The syntax of a MaT definition is somewhat complex. Basically, there are two types of actions which can

take place: ‘sctting” an ATOM 1o be equivalent o a specified type (i.c.. FUNCTION, MACRO, ctc.) or

‘eross-referencing” the ATOM {i.c., making it z!ppf::'ﬂl“ in the cross-reference listing).

The actual definition for an ATOM is a string of MAT action specifications, one for cach argumoent in a call
w that ATOM, For example, defining FOO to be

[FDO SETG SKIP SETG]
implics at least three arguments to FOO, the first and third of which should be treated as if they were SETGed.
Thus, if

<FO0 FROB 1 MUMBLE>
were encountered in an input file, it would be treated as though

<S5ETG FROB amy>

<5ETG MUMBLE any>
had been encountered. The symbol table would then point tw the line on which the application of FOOD

appearcd as the location of the definitions of FROB and MUMBLE.
The following tokens are meaningful action specifications:
CREF mcans to cross-reference this ATOM,
SKIP means to do nothing with this argument (a place holder).
REST means that the rest of the action specifications may be repeated for the rest of the arguments.

narnie {where pame is the name of a M1 SUBR which causcs some action to be routinely performed) means to
act as though the ATOM had had that SUBR applicd w it. For example, SETG will cause MAT Lo treat the

item as if a SETG had been performed on it Similarly, MANIFEST will cause MAT to believe it
MANIFESTed.

ALS0 means to do another thing tw this ATOM. Thus, [SETG ALSO MANIFES T] specifics that the argument
should be treated as though it were both SETGed and MANIFESTed.

=xy where xj are two characters, causes a user defined symbol type to be created. In the cross-reference, this
will appear as xp in front of the name of the ATOM.

Any of the preceding tokens may have | —oblisr added. This means that instead of the ATOM being st o
the specified type, arom |~ obliss will be ser. “Thus, for cxample,
REST SETGI-FLAGS

might specify a function which takesa LIST of ATOMs and performs

82 The MDL Listing Program MAT

——

“MN

J

|

|

|

MI

130 ‘ The M. Programming Environment ‘

CSETG <INSERT aiom <GET FLAGS OBLIST>> am>
on ecach of them.

[SPEC xy manwe] specifics name to be the expansion of xy for purposes of the symbol table. Name cannot |
have spaces in iL

Since not all items to be recognized within a function call are at top level, there is a facility for telling MAT
to recognize siructures. This is done by inserting the correct bracket {which MAT will encounter) around the
part of the action specification referring to a structure. For cxample, a definition for GDECL (which is
handled internally, however) might be

REST (REST GDECL) SKIP
which specifies that the arguments are alternaicly a LIST of things o GDECL and an argumont which is

unimportant

A special case of bracketing is when the location of the structure is not known. In this case, bracker!

means ‘find the next object that starts with this bracket’. An example later demuonstrates this.

What follows are some examples from a real definition file,
[NEWSTRUC NEWTYPE SKIP REST SETG SKIP]
NEWSTRUC takes an ATOM which becomes the name of a NEWTYPE, the DECL for that TYPE (which is not
interesting to Ma7T) and an arbitrary number of pairs of ATOMs (names of offsets in the structure) and their
DECLs (again, not interesting).
[FLAGWORD REST SETG]
FLAGWORD takecs an arbitrary number of ATOMs and SE TGs them something.

[SPEC PG Pure-Gwval]
[SPEC 0B Object]
[SPEC AC Action]
[SPEC VB Verb]
[SPEC 05 Object-Synonym]
[SPEC AD Adjective]
These define the long descriptions for the newly defined symbol types created in the examples.
[PSETG =PG]
PSETG takes an ATOM and a value and SETGs the ATOM (also putting it in a LIST of ATOMS 1o purify).

[GET-0BJ “"CREF"]
GET-0B8J takes a STRING PNAME of an ubject and returns the object. This definition allows "objeci™ to be
cross-referenced here, Mote that CREF is in gquotes because the clement being dealt with is a STRING.

The MDL. Listing Program MAT 82

I

il

i

|

lfi

!l

|

lflll

The ML Programming Environment 131

[OBJECT ["=0B" REST "=05"] [REST "=AD"]]
OBJECT creates objects which are referenced by GET-08J. OBJECT first takes a VECTOR of STRINGs, the
first of which is the truc object specifier (0B) and the rest of which are synonyms (05). The sccond argument
isa VECTOR of STRINGs, which arc PNAMEs of adjectives referring to the object (AD),

[ADD-ACTION "=AC!-ACTIOMNS" SKIP REST [[!"=VB!-WORDS" SKIP]]]
ADD-ACT ION creates “verbs”. The name of the verb is the first argument, which is a STRING. ADD-ACTION
SETGs siring! ~ACTIONS to an item of type ACT ION (AC}). The sccond argument is not interesting. The rest
uf the arguments are VECTORs, somewhere in which is a VECTOR of 3 STRING and an uninteresting object,
ADD-ACTION SETGs this latter STRING (the PNAME of an ATOM in the WORDS OBLIST) to somcthing of
type verb (VB). "This is about as complicated as a MaT type specification is likely to geL

[1ADD-ACTION "=AC!-ACTIONS ALSO =VB! -WORDS"™]
1ADD-ACT ION takes as its first arguwment a STRING which is SETGed buth in the ACTIONS DBLIST and in
the WORDS OBLIST. toan ACTION (AC) and a verh (VB), respectively,

8.2.4. MAT Record Files

Listing Record (or LREC) files, akin o @ LREC files, can be produced in MAT by including file= in the jol
line. Use of an LREC file has the advantage that future invocations of MAT using it necd only output the
changed pages of the listing. The LREC file produced will be placed in file and contains all relevant el
information, so that future calls to MAT for comparrison listings need only have fife= in the jof line, Additional
Jel may then be appended. There is, however, no way o turn off flags once set up. Therefore, if a
cross-reference file is to be used only occasionally, leaving the cruss-reference (/C) fag off for the initial

listing and appending it at other times is preferable.

An alternate way of creating a Listing Record file is to use /R which is cquivalent to
inpui-file-firse-fife-name LREC=

in the jel. Obviously, /R is not sufficient for future comparisons.

8.3. The MDL-IPC Device Interface MUDINQ

MUIING is a small program that Formulates, sends, and receives messages o and from Mi3s over the ITS
IPC ("Inter-process Communication®) device. I'he user specifics a target M. process by its uname and jname,
cither on the jef line or o Muming directly. He then inputs the messuge w be sent to that Mii. The message
sent is enclosed in an invisible protective shicld (an ERROR handler and sa forth) to prevent it from
interfering in the operation of the target. The message is PARSEd and EVALed by the target, and the result
put in a file which is printed by MUDING when it appears.

8.2 The MIDL. Listing Program MAT

132 I'he M. Programming Environment

e most common use of this program is o answer the queston "What could my compilation (or

whatever) be doing after all this time?” The answer may be obtained by MUDINGing a <FR&> or <FRAMES>
at it ‘

Inquiring after the state of a compilation is such a common use of MUDING Lhat there is an alias of it

SraTUS. which MUIMNGs a <STATUS?> (sce section 5.1.1) at a compiler process and waits for a response.
Finally, an alias of MUDING called Witon lists those MDL jobs listening on the [PC device.

For more details on the operation of the M. 1PC interface, scc [3].

The MDL-IPC Device Interface MUDING 8.3

1S

|

|

|

UL

N

133 The M. Programming Environment

References

(1]

Edward H. Black.

Lising M DI s Calico User Interface.

Technical Report SYS.11.21, MIT LCS Programming T'cchnology Division, 1976,
[2]

Richard M. Stallman.

EMACS,

Technical Report 519, MIT Al Laboratory, August, 1979,
[3]

5. W. Galley and Greg Pfister.

Fhe MBI Programming Fanguage.

MLLT. Laboratory for Computer Science, 1979,
[4]

Peter Samson.

MIDAS.,

Technical Report 80, MIT Al Laboratory, October, 1965,
[5]

P. IDavid Lebling, R, V. Baron and Rruce K. Daniels.
RMQDE: A Real-time FEdit Facility,
Technical Report SYS.04.07-1, MIT 1.CS Programming T'echnology Division, October, 1977,

Table of Contents

i
|

Kl)
n

|
i
|

(|
I

|

Table of Contents

I'he ML, Programming Environment

135

Index

"LCOMBT TAILOR= 91
"CHOL.SV:>" T4
"CMDL>FIXUP.FILE™" 73
T{MDL>SAV .FILE= 73
“LMDLLIB>= 73
“ADDED FILES" 74
SCLEAN® 109
“CRITIC= 55
“DEBUGR= 41
"DELETE FIXUPS™ 73
“"DELETE SAvVS™ 73
"EDIT"® 19 .
SFINDATOM™ 50
"FRMSP 19

*GLUE= 103
"GRLOAD® 39

L= &9

“LUP™ T1
“MOMITOR™ 3D, 46
THUDMAN® 3
“"MUDRST= 74
"MUDSAV.FIXUP FILE= 73
“"HUDSAV:SAV FILE" 73
"HUDTHP® 73, 106
“FOUMP™ 106

“"PEG"= 10

"PP™ 15

*PRELOD" 107
"PURITY" 108
"RDB" 116,121
"RECORD" B8O
"SUBRFY= 107
“TEMHAK™ 113
*TEMHLP™ 113
*TEMPLATE™ 110
“TRACE™ 44
“UNASSM® 122
“UNLINK™ 54

& 18,21

&1 18

&LIS 18

-~ 22

=INSERT 120

LNULL 15

LOUTCHAN 15

T 22

T 22

ADDRESS 116

ADR 122

ALREADY-USED-ELSEWHERE 12

ARG 120
ASSEM 1156
ASSEMBLE 115
ASSIGNEDT 49
B 23

BA 29

Table of Contents

The MIJL, Prograomming Environment

BK 29

BLOCK 9 40
BOOLEAN 111
BOUNDT 49

BREAKR 29
BUILD-TEMPLATE 113
BYTE 120

c 25

C: X

CAN-NOT-BE-DUMPED 15
CAREFUL 82, 87
CHANMEL <0
CLEAN-MONITORS 49
CLEANUP 109
CLISTF 74

COMBAT 79, 83, BS. 90
COMMENMT 15, 16
COMPILE 79, 92,93
COMPILE-TUNCTION 93
CRITIC 35
CRITIC-NOTES 35
cu 28

D 24

DBEHMAIN 74,76
DEBUG 4]
DEBUG-COMPILE BL 85
DEBUGR 15
DECLARE 118
DEFER=-FIND 70
DEFINE 41

DELETE 75

DL 23

DMOVE 120

DMOVEM 120

Do X7

DPOP 120

DPUSH 120

DR 23

DROP 10, 13
DUMP=-RSUBRS 114
DUMP-TEMPLATES 114
E-PKG 20
E-VERBOSE 25

EDIT 15, 19,41
EDIT-TABLE 31
END 118

ENDELOCK 9
ENDPACKAGE 10, 13
ENTRY 10, 12,63
ENTRY-FIND TO
ENY 61

EPRIN1 17

EPRINT 17

ERRET 38
EVAL-WHEN &1
EXPERIMEMTAL 85
EXFFLOAD 41,82 BT

|

I

I

i

(i

|

137 ‘The ML Programming Environment

OUT-FAST 44 55U 27
DUT-PRINT 45 SUB-ENTRY 118
OUT-UNIQUE 44 SUBRFY 104, 107
OUTCHAN 59 # SuURY 104

P 25 sw 27

PA 29 TEMPLATE 110
FACKAGE 10,11, 12, 14, 63 TEMPLATE-DUMP 113
PACKAGE-FIND 70 TEMPMAME B81. B6
PACKAGE-MODE Bl B6 TITLE 118

PC 29 TRACE 15 44, 45
PCODE 76 TRAMSLATE &7
PCOMP 79, 90 TRANSLATIONS &7
PDUMP 104, 106 TYPE-CODE 119
PHAME 14 TYPE-WORD. 119
PPRINF 186 U 24

PPRINT 15 uc 28

POUDTE 119 uL 24
PRECOMPILED 81,88 UM 10

PRIN1 17 UNASSEMBLE 122
PRINT-CLE AN 110 UNDEF? 120
PSEUDO 119 UNLTHE 354

PT 25 UNPURIFY 354

PO 25 UNPURIFY-PAGE | -~ TUNLINK 54
PURET 54 UNTRACE 45
PURELST 109 UNTRANSLATE &7
PURIFY 107 ug 24

Qg 22 USE 10, 12, 13 14,63
QR 22 USE-DATLNA 10,13, 14
QUICKPRINT 156 USE-DEFER 66

R 23 USE-TOTAL &6
ROREAE 122 ur 23
READI-INTERRUPTS 45 v 11,25
REASONABLE 82 87 VALUE 40
REDEFINE 16 VYERBOSE 45
REDD 81, 86 VERTICAL 16
RENTRY 12 WM 31

REPAIR 42 WRITE!-INTERRUPTS 46
RETRY 39 X 27

RFREEZE 121 TA 42

RM 131 tE 42

ROOT 12 TF 22

RPACKAGE 12 tH 42

RUNBREAK 122 0 42

RVECTOR 107 42

AW 30 TR 42

5 24 tS 23

SAV T 106

SAVE 108 Mat 126
SELF-FAST 44 Muncnk 126
SHORT-PRINT 29 Munoom 86, 125
SIXBIT 119 Muinnmn 126

SL 24 Munmg 131
SOURCE BI1, 87 Munst 126

SPEC-FIND 75
SPECIAL B1,87
SQUOZE 120,122
SR 24

STACKE 120
STATUS 75, 80

Table of Contents

|||H1|ﬂ|

(il

il

e

136

EXPSPLICE 41,82 BY
EATERMAL 13

F 23

FBIN T2 105

FCOMP 80, BS
FEATURET 61
FEATURES 61
FILE-ASSEMBLE 115
FILE-COMPILE 79
FILE-TEMPLATE 113
FIND-FILE 735
FINDATOM 50
FIXUP 15,721, 106
FLIST 75

FLOAD 14,107
FLUSH-CLLANUP 110
FORM-FAST 44

FR& 18 37

FREP 19

FRAVAL 19

'FRAMES 18,37

FRATM 19

FRLVAL 19,37

FRM 18, 20

FRTYPE 19

G 25

GET-FILE 75

GETYP 119

GLUE 82 87, 103, 104, 107, 121
GO 23

GROUP-DUMP 3%, 104, 113
GROUP-GLUE 104
GROUP-LOAD 26, 39, 82, 106, 107, 108
GROUP-PURIFY 108
HAIRY-ANALYSIS B3
HELP 43

I 25

I 2%

Iz 5

IF-NEEDED 120

16 26

IN-BREAK 44

IN-PRINT 45

INCHAN 59

INDERT-DIF 43
INDENT-INC 43

INDENT -R00 43
IMITIAL 14 65
IMTERMAL-EMTRY 118, 121
IQUOTE 119

IT 27

K 25

K: X7

KB 30

KC 23

KEEP-FIXUPS 135 16,41
KILL-ALL-MONITORS 49
KILL-MOMITOR 49
EILL-SUBRFY 107

Table of Contents

The MIJ. Programming Environment

KILL:PURITY 108
KT 30

L 23

L=ALWAYS- INQUIRE &8
L-COUNTE &9
L-COUNTP 69

L-FILE &9

L-FIND &9

L-LISTE &9
L-LISTP &9
L-LISTPE 70
L-LOAD &9
L-NO-DEFER 66, 68
L-NO-MAGIC &8
L-NOISY 68

L-0BL TD

L-PATH 7D
L-SEARCH-PATH 64, 68, 69
L-SECOND-NAMES &4, 65, 68
L-TRANSLATIONS &7
L-UNUSE 10,13
L-WHERE &%
LAST-QUT 42
LIB-BC T2

LIBMUD &4
LINE-CHANMEL 115
LISTF 74

LOAD 14

LOOKAHEAD 16
LUP-ACT T1
LUP-ADD-DATLM T2
LUP-DCT 71
LUP-DEL 72
LUP-MOVE 72

M 27

MACRO B&
MACRO-COMPILE &2, B7
MACRO-FLUSH B2 87
MAGIC-RSUBR 4D
MAKE -5YM-TABLE 116
MANIFEST B5
MAX-SPACE 82 B7
MCALL 103

MONITOR 47
MOMITORS 49
MONOBJ 48, 49
MONSPEC 49

MOQUOTE 119

MUDDLE 117

NEWVAL 43

OPCODE 116

QUT-BREAE 45

R ER LR R LR

