
. 4'Jklfl'L4 .. ·· catttwa.!lbA¥¼,,,,;;:);-!lll!la11. ;;s•uM::i1•i~~r,4i!ill~[llllll. ------· ,~.~lvlii .. liJ:MitltAL!1it;;$.. @Jf J£t#ttJt tK u•• *ts .. : : 44W$l4ffll?fll
t' .,;, -

__

.,
L~,.,,,

Drm■ic *"le l1111Lt11,1ll:ln a
Dlstrl1l1f Pt111 r tl■'il-S,,11111■

by

Toby Bloom

• ~••mdt...us Institute of'Teduaolog 1983
Malth 1tl3 '

.,---. ,, ___ ,,.. __ • -~·,,._..;. •. ,. ,,s.li -,·-: ';- -·.:.c-::,,,.,,;, • i'- ~~~'.'."\···. ; ~- ~I+._.... ~":·~· -,.i,.;'-"."_·};',.··~

This research was supportediltpart by ttte· Defaie dft11U1•-t•t11d PIii•• Alf!/lfJ!Y oflle Depaliment. ·
of Defense and was monitored by the Office of Naval Research under Contract No. N00014·7S-C-0661.

. . · . 1--..on,11111•
! .,......, ., ar.,,.,., .• ,,,11 ..
c.Mtdte, ••· rout 1n111 ••

1

Dynamic Module Replacement in a
Distributed Programming System

by

Toby Bloom

Submitted to the
Department of Electrical Engineering and Computer Science
on March 28, 1983 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Abstract

The replacement of parts of software systems is an important aspect of programming
methodology. Most of the research in this area has centered around support for
modular construction and the clear separation of interface from implementation.
The emphasis has been on producing easily modified static program structures.

With the recent increased interest in distributed systems, attention has been
focussed on a class of applications for which ·this approach to modifiability is
insufficient These are applications involving long-running, distributed
computations with long-term, on-line state information.

In the context of the Argus programming system, we examine a method of
supporting dynamic modification of software for this class of applications. We
determine the appropriate granularity of replacement in relation to the module
structure of the language, examine the constraints imposed on dynamic replacement
by the need to ensure behavioral consistency acr~ replacements, and then analyze
functional requirements for a replacement mechanism.

Thesis Supervisor: Barbara H. Liskov
Title: Professor of Computer Science

Keywords: software reconfiguration, dynamic replacement, modifiability,
programming environments, distributed systems, software
reliability

2

Acknowledgments

I would like to thank my advisor, Barbara Liskov, for her technical guidance, editorial advice, and
above all, her patience over the last eight years (and for reading the final draft in one day). David
Reed provided invaluable assistance on the systems aspects of the thesis. I cannot thank John Guttag
and Bill Weihl enough for the time and effort they devoted to helping me develop the fonnal modet

Numerous people contributed to the effort to complete this thesis. In particular, I'd like to thank
Tim Anderson for proofreading the draft, and Tamiko Thiel for lending me her terminal for a much
longer time than she expected.

The women's community at MIT has been an indispensible source of advice, support, and
companionship. My special thanks to Candy Sidner, Jeanne Richard, and Sandy Yulke for their
efforts in building that community and welcoming me into it The many hours of discumon with
other women here, especially Deborah Estrin, Julie Lancaster, Liza Martin, Karen Sollins. and Karen
Wieckert provided valuable political insights, as well as wonderful divmions.

There are many other people who deserve thanks for helping to keep me sane over the last several
years. Stan Zdonik is entirely responsible for my current addiction to bluegrass; any delay that
diversion may have caused in the completion of this thesis was of course worthwhile. Steve Berlin
has done his best to convince me to keep my priorities straight; my apologies to him for making the
task impossible. I could not have maintained the frenetic pace of the last several months without Dan
Brotsky's friendship and support; I truly· appreciate his being around to listen to me gripe. I would
especially like to thank Deborah Estrin for all of her advice, concern, and encouragement

Finally, I'd like to thank my· father for his continued moral, as well as financial, support and for
enduring with such good humor his daughter's perpetual student status.

./

3

Table of Contents

Chapter One: Introduction

1.1 Motivation
1.2 Goals
1.3 Related Work

1.3.1 Dynamic Type Replacement
1.3.2 Dynamic Hardware Reconfiguration

1.4 Plan of Thesis

Chapter Two: Background: The Argus Language and Library

2.1 Argus Modules
2.2 Atomicity
2.3 Communication
2.4 An Example
2.5 Library and Catalog
2.6 Toe Significance for Dynamic Replacement

Chapter Three: The Unit of Replacement

3.1 Selecting the Unit of Replacement
3.2 Subsystem Structures in Argus

3.2.1 Guardian-Based Subsystems with Centralized Interfaces
3.2.2 Guardian-Based Subsystems with Distributed Interfaces
3.2.3 Cluster-Based Subsystems

3.3 Recognizing Subsystem Instances
3.4 Conclusions ·

Chapter Four: Legality of Replacement

4.1 An Intuitive Description of the Problem
4.1.1 Abstraction Replacement
4.1.2 Instance Replacement
4.1.3 Abstraction Extension

4.2 Formalizing Correctness Conditions for Replacement
4.2.1 Basic Definitions
4.2.2 Definition of Correct Replacement

4

7

7
9

11
11
14
14

16

16
19
20
22
25
26 '"'~

34

34
38
40
42
45
48
50

S2

54
54
56
57
61
61
67

4.3 Discussion
4.3.1 Incompatible Implementations
4.3.2 Behavior Restriction from Successive Replacements
4.3.3 Replacement Abstractions in Argus

Chapter Five: User Requirements

5.1 Locating Subsystem Instances
5.1.1 Identifying Subsystems using System Information
5.1.4 Identifying Subsystems by State Information

5.2 Single Guardian Replacement
5.2.1 Code Modification
5.2.2 Modifying State Structure
5.2.3 Internode Replacement

5.3 Multiple Guardian Subsystems
5.4 Subsystem Extension
5.5 Limitations
5.6 Summary

Chapter Six: A Mechanism to Support Replacement

6.1 User Environment
6.2 Locating Guardian Instances
6.3 Managing Guardian Instances during Replacement
6.4 Continuity of Communication
6.5 State Management

6.5.1 State Access Procedures
6.5.2 Implementation Issues in State Management

6.6 Multi-Site Replacements
6.6.1 Remote Replacement Commands
6.6.2 State Relocation

6. 7 Scheduling Replacement
6.8 An Example

• 6.9 Conclusions

Chapter Seven: Conclusions

7.1 Summary and Analysis
7.2 Future Work

5

71
72
74
77

80

81
82
83
84
85
87
88
90
93
93
95

96

96
99

102
106
109
109
111
112
113
116
118
120
124

126

126
129

Table of Figures

Figure 2-1: Structure of a Guardian Definition
Figure 2-2: The Mail System's Static Module Structure
Figure 2-3: Example of a Mail System Instance
Figure 2-4: A DU for the Mailer
Figure 2-5: The Mail System Example
Figure 3-1: Cluster-Based Subsystem
Figure 4· 1: Mail System Interface Events
Figure 5· 1: A Restructured Mail System
Figure 6-1: The Mail System Configuration

6

17
23
23
26
29
46
62
91

121

1.1 Motivation

Chapter One

Introduction

In any software system that exists for a long period of time, it periodically becomes

necessary to make changes to various components of the system. While it has long

been understood that support for software maintenance is an important part of

programming methodology, the proper tools for perfonning that maintenance easily

and correctly are often not available. This thesis examines an aspect of software

modifiability not often addressed: the need to incorporate software changes in long

running programs without losing the current state of those programs, and with

minimal disruption to the programs' users.

There are a number of reasons that might necessitate replacing a currently running

module with a new version. One possible reason is to correct bugs that have become

evident. Another is to improve efficiency. (Often optimizations are made based on.

patterns of use, and these patterns change over time, requiring changes to improve

efficiency.) Another occurrence that would necessitate replacement of a module is a

modification ofthe interface to a module being used. Finally, users' requirements

change over time, and the implementor of a module may decide to accommodate

those changi~g needs by modifying the module. All of these cases are examples of

maintenance problems faced regularly with any large software system that has

existed for a long period of time.

Support for software modifiability can be static or dynamic. Static support involves

aid to the programmer in constructing software that is easy to modify. Much of the

7

work in programming methodology, and language design for reliable software has

centered on this aspect of support [11, 17, 13]. Research efforts to study the

applicability of those methodologies to distributed programming are currently

underway [12]. While we depend on many of the results of these efforts in the work

presented here, we are addressing a different aspect of the problem.

Dynamic modifiability is the ability to incorporate software changes in running

instances of a program. The need for dynamic modification arises primarily from

the existence of long-running programs that maintain long-term, on-line state. If a

program were assumed to run for some relatively short period of time, dynamic

modification would be unnecessary. Modifications could be installed by waiting

until the current "run" ends, and switching to the updated version of the program

before the next run. Similarly, if a continuously running program has no long-term

state, changes can be installed by allowing the current module to continue

executing, but starting the new module in parallel and directing new requests to the

new module.

When the execution of a program is continuous, rather than separated into distinct,

relatively short "runs", and the module has state that must be retained across

requests (as for example in a database system that is always on-line, and handling

concurrent and overlapping requests), the modification techniques described above

no longer suffice. There is no time at which implementations can be switched, and

the new one cannot be started in parallel with the old because of consistency

constraints on the state: the state reflects the history of the module, and if two

instances are running in parallel, neither's state will reflect all of the requests that

have been serviced. In a system that provides robustness and consistency guarantees

on the state values in modules, it is essential that the state be preserved accurately

across updates to the software. Any technique used must install the changes

instantaneously with respect to uses of the module.

8

In this dis~rtation, we will examine how modifications can be incorporated in

continuously running modules that have long tenn, on-line state with consistency

constraints. The context for this work is the Argus programming system [12). The

choice of the Argus system is important for a number of reasons. First, the Argus

language provides the support for static modification mentioned earlier; it therefore

allows us to concentrate on the issues of dynamic modification of software that is

considered "easily modifiable" by current standards. Secondly, Argus is designed to

support the construction of distributed software, thus providing the context for

examining dynamic replacement of modules that span nodes of a distributed system.

Finally, Argus is transaction-oriented. The strong consistency and robustness

guarantees_ on program state provide a clear definition of the state that must be

preserved acr~ replacements.

1.2 Goals

We have several goals in investigating dynamic replacement The first is to examine

the ramifications of dynamic replacement of continuously running modules in the

presence of atomic transactions and consistency constraints on state. The questions

we address here include: when can replacement be performed; under what

conditions is the replacement of one running module with another considered to be

correct; and what constraints should be placed on dynamic replacement to ensure

that the assertions upon which clients of a module depend are not undermined by

the replacement? Our goal is not to provide automatic verification of replacements,

but to define the conditions precisely enough that implementors performing

replacements will understand the issues involved and be able to convince themselves

that a replacement is correct

Our research has shown that the conditions in which replacement can be correctly

9

achieved are (ar more restricted than previously thought. In Chapter 4, we present a

model in which we define those conditions; we also illustrate the cases in which

replacement cannot be performed safely. We believe the analysis of legality

conditions for replacement is one of the primary contributions of this work.

Our other major goal is to determine how dynamic modification can be integrated

into a distributed, transaction-oriented programming system such as Argus. One

important question we address is whether support for dynamic modification can be

incorporated in a system such as Argus without changing the Argus language, or

whether specific language support is warranted, as it is for static modifiability. The

approach we will take here is to design a mechanism assuming no changes to the

language and use that design to evaluate whether any weaknesses could be alleviated

with appropriate language support. Our analysis of the mechanism falls into two

parts. We first analyze the relationship of the module structure provided by Argus

to the modularity requirements of dynamic replacement We determine the units of

replacement to be supported for Argus programs, and the system support needed to

recognize those units. The second aspect of of our work on replacement

mechanisms is the analysis of the functional requirements for performing

replacement, and the design of a mechanism to support those requirements.

There are a number of specific goals that apply to the design of a mechanism to

perform dynamic software modification in the context of Argus. These are

primarily concerned with supporting the overall methodological goals of the Argus

project One of the principles of the methodology on which Argus is based is a clear

separation of abstraction from implementation [11]. Abstractions provide an explicit

interface; the means of implementing the functions provided in that interface are

hidden from clients using the abstraction, and should be irrelevant to correct use.

This principle implies that it should be possible to replace a running module with

another instance that uses a different implementation but provides the same

10

function, and clients should not have to be notified of the change. In general,

replacement should be invisible to clients; all effects should be local to the

module(s) being replaced.

Another objective is to make replacement as generally applicable as possible. Since

modifications are needed regularly, restrictions on the kinds of modules that can be

replaced should be minimized. In keeping with our decision not to change the

language, we have made the assumption that no specific additions need be made to

modules to make them replaceable.

Finally, we must evaluate the impact of dynamic replacement on the reliability of

Argus software. If replacement is to be considered a standard part of the Argus

programming environment, we must determine whether it can be included without

negatively affecting the reliability of Argus programs. As will be seen later, it may

be difficult to allow replacement without introducing additional likelihood of error.

1.3 Related Work

This work draws on a number of similar areas of research, primarily dynamic type

replacement [5], [7], and dynamic hardware reconfiguration (14). This section

discusses the relationship of our work to these other areas. As mentioned earlier,

this work is also strongly grounded in related work in programming methodology

(11) and language design for distributed systems [12).

1.3.1 Dynamic Type Replacement

Both Habermann [7] and Fabry (5) address the dynamic type replacement problem.

The problem is the following. In any system using data abstraction, objects of user

defined types are created and p~ to various modules throughout the system.

11

The type m~nager (or cluster in CLU terminology) knows and depends upon the

internal representation of those data objects. If the implementor of that type wants

to make a change in the type manager, a serious difficulty arises: the operations of

the new type manager will not be able to interpret the representation of the already

existing objects. Furthermore, it is at least expensive, if not impossible, to locate all

of those objects at the time at which the new type manager is installed. The solution

is to place a version number in each object, and when an operation of the type is

invoked on that object, the version number is checked. If it does not correspond to

the current version of the type, a translation routine is called to convert the object to

the new format before the invoked operation is performed. In Fabry's scheme, a

translation routine must exist between every outdated version and the latest version,

since there is no way to know when all pre-existing objects have been accessed and

therefore converted to the new format In Habermann's scheme, routines can be

provided to translate every version to a canonical form and to translate the canonical

form to the latest version. If many versions of objects exist concurrently, the latter

reduces the number of routines needed.

This work has obvious similarities to the thesis problem presented here. Both deal

with the problem of changing implementations of user defined types dynamically,

without losing the values of existing objects. However, (5) and [7] deal with different

aspects of the problem than the ones on which we are concentrating. The first

distinction is that the focus of this dissertation is defining the semantics of

replacement and the conditions under which dynamic replacement can be

performed safely, whereas the focus in both [5] and [7] is on defining the

mechanism.

There are also differences between our work and the earlier work, with respect to

the focus of the mechanism design. The earlier work is concerned with locating all

objects· of the type because the type manager that accesses the representation of

12

those objects)s changing. . The Argus modules with which we are concerned are

more like Simula classes than these type managers: all of the operations that

directly access the module's data are inside the module. Therefore, not all instances

of a given type must be replaced at once. In fact, for most of the cases we have

examined, the implementor will want to change only one instance to a new

implementation. While that instance must be located, the implementor will be

doing that, with the assistance of the replacement system, prior to the replacement

Thus, there is no need to check at each invocation or perfonn translations of objects

as an ongoing system process.

On the other hand, the actual translation routines to change the state from one

format to another will often be much more complex than in the type replacement

case. The construction of those routines is assumed to be trivial in type replacement

and is not addressed at all by Fabry or Habermann. We are concerned with

modules that are more complex; the translation from one format to another will be

nontrivial. Much of the work in this thesis revolves around providing appropriate

user support for writing these translation routines and helping the user to convince

himself or herself that the translation is correct

We also have the additional problem of a distributed system. A substantial amount

of user support is required to provide a straightforward means of accessing and

moving state objects between nodes in the network. We are also working in an

environment in which concurrent processes share access to the state objects. Thus,

the two branches of research are related. The work described here does not deal

with replacing all instances of a given data type acr~ the system. There are cases ii1

which such a replacement is required, and the solutions provided by earlier work

can be used in conjunction with our replacement server.

13

1.3.2 Dynamic Hardware Reconfiguration

The need to replace hardware modules in a running computer without having to

bring down the entire system was recognized long ago. This problem was addressed

by Schell [14). The way in which one hardware module can be swapped for another

bears much similarity to the way in which running software modules must be

replaced, in part because both are active. Schell's work differs from ours in that

there is no · state in the hardware modules that must be carried over to the

replacement and kept consistent In most cases, a new module can be installed while

the old one is still processing requests. Any new requests will be directed to the new

module, while requests in progress can continue in the old module. Thus, there is a

notion of quiescing the replaced module before removing it We are unable to make

use of this approach because we must maintain the consistency constraints on the

long term state in the modules we are replacing. If the state encodes information

about the history of requests, it may not be possible to have the new and old version

running simultaneously at any time; replacement must be instantaneous relative to

use of the module. Schell also spends a great deal of time ensuring that his method

works for replacing the hardware modules that are running the reconfiguration. We

have not addressed that problem. Neither the replacement server nor certain other

parts of the Argus system (in particular the transaction mechanism, see section 2.2)

can be replaced using the mechanism we propose. Since neither carries over state

between transactions, they could be replaced with an algorithm similar to Schell's.

1.4 Plan of Thesis

The remainder of the thesis is organized as follows. Chapter 2 describes the Argus

language and those features of the system with which the reader should be familiar

before the discussion of replacement in the context of Argus. Chapter 3 analyzes

the Argus module structure and decides on the appropriate units of replacement to

14

be supported by a replacement system for Argus. Once the unit of replacement has

been decided upon, we define (in Chapter 4) the meaning of correct replacement

and the scope of substitutions that can be supported for this unit without

undermining the reliability of the Argus system. The relationship that must hold

between the module being replacement and its replacement is examined in detail.

Chapter 5 deals with users' requirements in performing replacements. We

categorize the kinds of changes that will be incorporated using dynamic

replacement, and the support users will need in effecting those replacements.

Chapter 6 presents the basic mechanism that will be needed to support replacement

in Argus. Finally, in Chapter 7 we present our conclusions about the power and

usability of such a mechanism, discuss the implications of our results for

programming languages in general, and suggest several possibilities for improving

support for replacement by extending the language.

15

Chapter Two

Background: The Argus Language and Library

The work described in this dissertation was done in the context of the Argus

distributed programming system [12). Argus is an integrated programming language

and system designed to support construction of well-designed distributed software.

It is based on the CLU programming language [11) and brings from CLU an

emphasis on encouraging a programming methodology that aids in producing

reliable, easily maintainable software. The focus of the Argus development project

has been support for applications that are long-lived and have long-term on-line

data. The system is assumed to run on a geographically distributed network with

heterogeneous nodes. This chapter presents a brief overview of the language, and

describes those features that must be understood to define replacement of modules

in Argus programs. We concentrate on the overall structure of Argus programs,

rather than on specific language constructs. We also describe aspects of the Argus

implementation that are relevant to the design of the replacement mechanism ..

Much of the description given here is taken from [12) and a more detailed

description can be found there.

2.1 Argus Modules

Programs in Argus are composed of modules called guardians. A guardian provides

some service or encapsulates some resource. Internally, a guardian contains a set of

processes and a set of objects. Though many guardians can exist at the same node,

any single guardian exists entirely at one node in the system. Each guardian has an

independent address space; only its processes may directly access the guardian's

16

objects. Guardians communicate with one another solely via message passing.

Hence, a guardian can be thought of as a logical node in the system.

Communication among guardians is location independent: clients of the guardian

need not know at which physical node a guardian resides.

Figure 2-1 shows the general structure of a guardian.

Figure 2-1:Structure of a Guardian Definition

name = guardian [parameter-decls] is creator-names
handles handler-names

{abbreviations}
{ [stable] state-variable-decls-and-inits}

[recover body end]
[background body end]

{ creator-handler-and-local-routine-defn's }

end name

Notation: □ signifies term is optional
{} signifies term can appear O or more times

Handlers are the remotely invocable operations provided by a guardian. Qients (i.e.

other guardians) make use of a guardian by sending an invocation message to one its

handlers. A handler's type specification consists of its name. along with the types of

its arguments and return values.

In addition to the set of handlers, the definition of a guardian type contains a set of

operations called creators. A creator has the effect of bringing a guardian of the

type into existence, in addition to executing the user-defined code in the creator

body. The creator usually performs the function of initializing the guardian's state.

Thus, a guardian's interface to the rest of the system consists of a set of handlers and

17

a set of creators. Associated with each guardian type is a guardian interface type that

is automatically created by the Argus system, and has get_handler operations for

each handler in the guardian interface. (The interface object does not contain the

creators.) Whenever a guardian instance is created, the Argus system creates an

interface object containing the id's of the guardian's handlers. It is this object that

clients of the guardian gain access to.

The state of a guardian is the set of objects in the guardian that can be shared by all

the handlers. There may also be objects that are local to a single process. The state

is divided into stable and volatile objects. The stable objects, i.e. those pointed to by

the stable variables, are guaranteed to survive crashes; consistent copies of this stable

state are written to stable storage [10] upon the commit of atomic actions, which will

be described in section 2.2. Upon recovery from a crash, a copy of the state is

automatically retrieved from stable storage, and all nonstable objects are

reinitialized by the guardian's recovery code. One aspect of guardian state that is

critical to replacement is that the types of state objects used, and the form of stable

data, is entirely implementation dependent Two different implementations of the

same guardian type need not have the same types of stable or volatile state objects.

Finally, there is a section of the guardian text known as the background code.

Background code runs as a process (or processes) after guardian creation or recovery

(unlike handlers, which run only in response to clients' invocations). It may run for

the life of the guardian, or terminate after performing some specific task. Thus, a

guardian can function as an independent entity in addition to responding to

requests.

In addition to guardians, Argus recognizes all the CLU module types: clusters,

procedures and iterators. However. instances of these types always exist within

guardians in Argus. Different guardians may use different implementations of the

18

same data or procedural abstraction concurrently. Since the guardians communicate

only through message passing. and use an external representation mechanism for

communicating abstract values [9], the use of different implementations at different

guardians creates no problems. In a sense, guardians function as abstract processors,

each having an independent address space and (at least semantically) distinct copies

of all code.

2.2 Atomicity

As mentioned earlier, Argus guarantees that a consistent copy of a guardian's state

will survi_ve crashes. It further guarantees that if an activity of an Argus program

updates data at many guardians, and there are consistency constraints among those

guardians, then consistency can be maintained across all of those guardians' states,

regardless of their locations in the system, and in spite of crashes. All of those states

will be updated in stable storage at completion of the activity, or none of them will

be.

These guarantees are supported in Argus through the use of atomic actions and

atomic objects. Atomicity consists of two properties: indivisibility and

recoverability. Indivisibility means that no other action can see intermediate results

of an atomic action. Recoverability means that an atomic action either runs to

completion and commits, or it aborts prior to completion and there are no visible

effects from the action. Atomic actions are thus similar to transactions in database

systems [6].

Atomic objects, like all abstract objects, may be accessed only through the

operations of their type. The operations of an atomic type provide indivisibility and

recoverability for the calling actions in the following way. F.ach operation of the

19

type is classified as either a read or write operation. Invocation of the operation will

cause the appropriate lock to be acquired and held by the calling action until that

action commits. · All changes to atomic objects are made on a new copy of the object

If the calling action commits, the new copy is retained; if the action aborts, the new

copy is discarded and the previous version of the object is retained. A set of basic

atomic types, corresponding to the basic types in CLU, is provided by Argus. The

example we. provide at the end of this chapter makes use of atomic arrays, for

example. Argus also supports user-defined atomic data objects.

All atomic actions are serializable, i.e. they appear to have run sequentially. A two

phase commit protocol is used to ensure that the participants in an atomic action

uniformly agree to either commit or abort

Finally, actions may be nested. An atomic action can contain any number of

subactions. A subaction can abort without its parent aborting, thus providing a

means of isolating failures. When a subaction commits, its parent action can see the

results from that subaction, but the changes made by the subaction will not be

visible to unrelated actions, and will not become permanent, until the top-level

parent action commits. Abort of a parent will· undo the effects of a committed

subaction. A parent action cannot run concurrently with its subactions, although the

subactions may run in parallel.

2.3 Communication

The primary means of inter-guardian communication in Argus is remote procedure

call. Remote procedure calls invoke handlers of other guardians; they differ from

local procedure calls in that remote calls use call-by-value semantics, whereas local

calls use call-by-sharing (11). Toe invocation occurs as a subaction of the caller's

20

action. Th4s. a handler call will commit or abort, just as other actions do. Upon

receipt of a handler in~ocation, a process is forked in the guardian to execute the

handler's code; the process exists only for the duration of the handler execution.

Creators, like handlers, run as subactions of the calling action. The created guardian

comes into existence immediately, but does not become permanent until the top

level ancestor action of the creator commits. If that action aborts, the guardian will

disappear. Any guardian may also be sent a terminate request Terminate will cause

the guardian to be destroyed when the action requesting terminate is committed.

However, the immediate effect of terminate is to make the guardian appear crashed:

invocations from ancestors of the terminating action will abort; invocations received

from other actions will be delayed until the terminating action completes (either to

top-level, or to an .ancestor of the guardian's creator).

One issue that arises in defining remote procedure call is the transmission of abstract

objects. Different guardians can use different implementations of a data type, and

hence objects of the type in the two guardians will·have different representations. It

is therefore not possible to send an object directly from one guardian to another. In

Argus, if objects of a type are to be passed in messages, the type must be defined to

be transmissible. Transmissible types have a canonical external representation

(xrep) for objects, and user-defined encode and decode operations which translate

from the internal representation to the xrep and vice ve~ respectively [9]. When

an object is passed as an argument in a remote invocation. Argus automatically

invokes the encode operation before transmission, and decode upon receipt of the

object

21

2.4 An Example

To illustrate the form of Argus programs, we include here an example of a simple

mail system based on a program in (12]. We have changed the program structure

somewhat to hide more details of the mail system structure, so that it can be used to

illustrate a wider class of possible modifications. This example will be referred to

throughout the thesis in discussing various kinds of replacements to be performed.

The mail system consists of three guardian types: mailers, registries, and maildrops.

Mailers provide the user interface to the mail system; maildrops store the messages

for each user; registries hold the directory indicating which maildrop holds each

user's messages. The module dependencies between these types are shown in

Figure 2-2. Multiple instances of all three types are possible in any single mail

system instance. Since the registries hold replicated information, using multiple

registries will provide higher availability: if one registry crashes, the directory can be

accessed from another registry. Multiple maildrops will reduce contention for

service. A sample mail system configuration is shown in Figure 2-3. Clients of the

mail system see only the handlers provided by mailer guardians. Registry and

maildrop guardians are used only by the mailer. The user interface thus consists of.

read_mail, send_mail, add_user, and add_mailer handlers. In addition, a new instance

of a mail system is instantiated via a call to the mailer$create operation.

F.ach user has a user_id. To read mail, the user calls the read_mail handler with the

user_id as an argument. A list of messages is returned Those messages are removed

from the maif system state upon reply, so the next read_mail invoked by the user will

not return messages that have already been seen. To send mail to another user, the

send_mail handler is invoked giving the recipient's user_id, and the message, as

arguments. To be added to the system, a user calls add_user and supplies a user_id.

New mailers can be added to an existing mail system by invoking the add.mailer

22

Mailer

registry

Figure 2-2:The Mail System's Static Module Structure

mailer mailer mailer

registry registry

maildrop maildrop

Figure 2· 3:Example of a Mail System Instance

handler. Note that all of these invocations occur as subactions of the caller, and

hence their effects will not be visible to other actions until the ca1Iing action

commits.

The mailer also has several internal handlers, which can be invoked only from

within the mailer guardian, as we11 as an internal creator, and a background process.

The primary function of the background process is to determine when new mai]drop

and registry guardians are needed, and create the new instances of those guardian

types. (We have not specified the algorithm used to make this determination, since

23

we are concerned here with the module structure of the mail system rather than with

the procedures used.)

The internal creator, new, is used only by the add_mailer handler. New differs from

create in that it receives as an argument an existing registry, whereas create

instantiates a new registry. A mailer instantiated via new is joining an existing mail

system and will have access to all existing registries and maildrops.

The internal handlers are add_registry and add_maildrop. These are used by the

background process to add new components to the mail system. Note that the only

handlers in the mailer that have registries or maildrops as arguments or return

values are the internal handlers. Thus, these two component types are invisible to

clients of the mail system; this structure will permit other implementations of the

mail system to use different component types.

The maildrop guardians hold the users' mailboxes: it is here that messages are

actually stored. Each maildrop has mailboxes for some subset of users; there is

exactly one mailbox for each user in the system. The stable variable boxes in each

maildrop points to that maildrop's list of mailboxes. Add.user, read.mail, and

send.mail alter that list

The registry guardian serves as a directory of mailbox locations, as well as a

directory of the registries in the mail system. The registry state is replicated; each

registry contains the list of all users, the location of each user's mailbox, and the li$1

of all registries.

Registries, like mailers, have two creators, one of which is internal. Create is used

by the first mailer to instantiate the first registry in the mail system; new is used to

instantiate a registry with the same state as existing registries.

24

The lookup h~dler is used to locate the maildrop at which a given user's mailbox is

located. Select picks a maildrop at which to place a new mailbox; however. it is the

mailer, and not the registry, which informs the maildrop to add the user.

Add_registries returns to the caller a list of all the current registries. The mailer uses

that list to notify all registries of updates, such as the addition of a user, a maildrop,

or a registry. This notification is accomplished by invocation of the registries'

add_user, add_maildrop, and add_registry commands, respectively. In all cases where

the mailer uses one of these commands, the command is invoked on all registries in

parallel, within an atomic action. so that all of the registries will be updated. or none

of them will be. The mailer thus ensures that the states of all the registries are kept

consistent with one another.

The program text for the mail system is shown in Figure 2-5.

2.5 Library and Catalog

The Argus library maintains information about all user-defined abstractions in the

Argus system. Each abstraction is represented in the library by a description unit

(DU).

A DU contains a number of components. Here we discuss only guardian DU's. An

example of a DU for the mail system is shown in Figure 2-4. The first component is

the type specification for the abstraction. For guardians. the type specification is the

set of handlers and creators. The DU also contains all of the implementations of the

type. An implementation includes the source text of the module. as well as the
com piled code for those processors on which the module can be run. Associated

with each implementation is an association list that defines the bindings between

external references to abstractions used in the implementation and the DU's for

25

those abstractions. DU's for guardians also contain a set of guardian images. The

guardian image contains all of the infonnation needed to construct the load module

for the guardian: all of the code for the guardian, including the code for externally

defined data types and procedures, and bindings to the DU's for the referenced

guardian types.

type spec images

linked code
external
guardian refs

Mailer DU

implementations
Other
Implementations

Other Images

source code ~ registry-du
i--------1~ maildrop-du

association list a---, user-id cluster du

message cluster du

object modules ---._,_
~ nodeA code

nodcBcode
Figure 2-4:A DU for the Mailer

The catalog provides a directory of currently available instances of services. A user

can provide a service name (usually the DU name) to the catalog and obtain a list of

the current instances of that service. For our mail system, the mailer guardians

would be listed in the catalog.

2.6 The Significance for Dynamic Replacement

There are a number of features of Argus that are relevant to our analysis of dynamic

replacement First, the fact that Argus modules have explicit interfaces, and a clear

separation of interface from implementation makes dynamic, as well as static,

modifiability considerably easier. The fact that only the processes within a guardian

26

can directly access its state. and that all clients communicate with a guardian only

through handler calls makes it considerably easier to isolate guardians while changes

are being made. Of course. the fact that the state structure we wish to maintain

across replacements is completely implementation~dependent will make the task of

moving that state value to a new implementation more difficult

Argus' support of atomicity has an important impact on dynamic replacement On

one hand, it increases the constraints on the system. We now guarantee that

permanent state will remain consistent, even across crashes and communications

failures. The effects of committed actions will never be lost Thus, a replacement

facility must ensure that the most recent committed state of a guardian be carried

over to any new version. On the other hand, this transaction facility ensures that the

copy of the permanent state that resides on stable storage is always consistent. and is

the only state to survive crashes. Thus. a guardian is prepared to crash at any tim.e,

and we know exactly what state will survive that crash. A replacement must only

preserve the state that would normally survive crashes. Furthermore, we have a way

to access a consistent copy of that state easily. since a mechanism must exist for

retrieving the stable copy during crash recovery, and we can make use of that

mechanism. Finally. it is important that clients are prepared for crashes of

guardians that they use and will not automatically fail if a service becomes

temporarily unavailable.

Finally, the location independence of inter-guardian communication provides the

ability to redirect handler invocations to different guardians. and even to different

nodes in the network, without having to notify the caller.

In summary, the kind of dynamic replacement we examine in this thesis is closely

tied to the language for which we are considering a mechanism. Some of the

relevant features we mentioned above. such as program modularization and clear

27

separation of interface from implementation are becoming more common in many

languages. Other features, such as Argus' support of atomic actions, are still new to

language designs, but greatly simplify replacement.

28

Figure 2-5:The Mail System Example

Mailer Guardian

mailer = guardian is create
handles send_mail, read_mail, add_user, add_mailer

reg_list = atomic_array[registry]
msgJist = atomic_array(message]

stable some: registry
best: registry

recover
best:= some
end

background
while true do

enter topaction

%type abbreviations

% stable state
% volatile state

% reassign after crash

%run this top-level action periodically

% decide if new registry or maildrop is needed
% if yes, call add_registry, add_maildrop
% select a new best registry, e.g. closest responding
end

end

sleep(...)
end

create = creator() returns (mailer)
some : = registry$create()
best:= some
retum(self)
end create

%creates new instance
%initialize state

%self names interface object for this guardian

new = creator(reg:registry) returns (mailer)
some:= reg %initializes state to point to existing registry.
best:= reg
return(self)
end new

29

read.mail = handler (user: user_id) returns (msgJist)
signals (no_such_user)

return(best.lookup(user).read_mail(user))
resignal no_such_user

end read.mail

% find mai/drop; invoke its read.mail handler:
%return messages
%unless user doesn't exist

send_mail = handler (user: user_id, msg: message) signals (no_such_user)
bestlookup(user).send_mail(user, msg) % send message to maildrop

resignal no_such_user %user doesn't exist
end send.mail

add_user = handler (user: user_id) signals (user.exists)
drop: maildrop : = bestselect() %pick a maildrop

resignal user.exists
all: reg_Iist : = bestall_registries()
coenter

action
drop.add_user(user)

%get all registries
%in parallel
%add user to mai/drop,

action foreach reg: registry in reg_Iist$elements(all)
reg.add_user(user, drop) % and to each registry.

end
end add.user

add.mailer= handler(home: node) returns (mailer)
rcturn(mailerSnew(best)@home) %calls internal creator
end add.mailer

add_maildrop = handler (home:node)
drop: maildrop : = maildrop$create(}@home %create the maildrop
all:reg_list : = bestall_registries()
coenter action foreach reg: registry in reg_list$elements(all)

reg.add_maildrop(drop) %and inform all registries.
end

end add_maildrop

add.registry = handler O
new: registry:= bestnew_registry(home)
all:regJist : = bestall_registries()
coenter action forcach reg: registry in reg_list$elements(all)

reg.add_registry(new)
end

end add_registry
end mailer

Figure 2·S: (continued)

30

Registry Guardian

registry = guardian is create
handles lookup, select, all.registries,

add.user, add_maildrop, add.registry, new.registry

reg.list = atomic_array[registry]
steer_list = atomic_array[steering]
steering = struct[users:userJist, drop:maildrop]
user_list = atomic_array[user_id)

stable regs: reg_list % stable state: all registries and
stable steers: steer_list % all users and maildrops

create = creator O returns (registry)
regs: = reg_list$new()
steers:= steer_list$new()
reg_Iist$addh(regs, selO
return(self)
end create

new = creator(rlist:reg_list, slist:steer_list)%interna/ creator
reg_list$addh(rlist, selO %add self to list of regs
regs : = rlist %initialize state
steers : = slist
return(selt)
end new

%type abbreviations

%initialize state

%add self to list of regs

lookup = handler (user: user_id) returns (maildrop)signals (no.such.user)
for steer: steering in steer_list$elements(steers) do

for usr: user_id in user_list$elements(steer.users) do
ifusr = user then retum(steer.drop) end
end

end
signal no.such.user
end lookup

Figure 2-5: (continued)

31

select = handler (user:uscr_id) returns (maildrop) signals (user.exists)
for steer:steering in steerJist$elements(steers) do

for usr:user_id in userJist$elements(steer.users) do
if usr = user then signal user.exists end
end

end
drop: maildrop : = ... % choose, e.g., maildrop with least users
return(drop)
end select

all_registries = handler O returns (reg,.list)
retum(regs) ·
end all.registries

add_user = handler (user: user_id, drop: maildrop) signals (user.exists)
for steer: steering in steerJist$elements(steers) do

if steer.drop = drop
then userJist$addh(steer.users, user) %append user

end
end add.user

add_maildrop = handler (drop: maildrop)
steerJist$addh(steers, steering${users: userJist$new(), drop: drop})
end add_maildrop

add.registry = handler (reg: registry)
regJist$addh(registries, reg) 96adds new registry to list in stale
end add.registry

new.registry = handler(home:node) returns (registry)
retum(registry$new(re~. steers)@home) ~alls internal creator
end new _registry

end registry

Figure 2-5: (continued)

32

Maildrop Guardian

maildrop = guardian is create
handles send.mail, read.mail, add.user

boxJist = atomic_array[mailbox]
mailbox = struct[mail: msg_Iist, user:user_id]
msgJist = atomic_array[message]

stable boxes: box_Iist : = box_Iist$new()

create = creator O returns (maildrop)
return(self)
end create

send.mail = handler (user: user_id, msg: message) signals(no_such_user)
for box: mailbox in box_list$elcments(boxes) do

if box.user = user
then msg_list$addh(box.mail, msg) append message

return
end

end
end send.mail

read.mail = handler (user: user_id) returns (msgJist)signal (no.such.user)

%search for user's mailbox
for box: mailbox in box_list$elements(boxes) do

if box.user= user
then mail: msgJist : = msg_list$copy(box.mail)

msgJist$trim(box.mail. 1, 0)
retum(mail)

end
end

end read.mail

add.user = handler (user: user.id)

%when found. copy messages

% delete messages from box

box_list$addh(boxes. mailbox${mail: msg_list$new(),user: user}) % add new box to state
end add.user

end maildrop

Figure 2·5: (continued)

33

Chapter Three

The Unit of Replacement

In the previous chapter we described the structure of Argus programs; we must now

determine how dynamic replacement should be used for such structures. Argus

programs contain several kinds of modules: clusters, procedures, iterators, and

guardians. Dynamic replacement could be supported for any of these module types

and conceivably for parts of those modules as well, for example, individual cluster

operations or handlers. In addition, groups of these modules could be replaced

together. In this chapter, we discuss the Argus program units for which we intend to

support dynamic replacement The reasons for our choice are presented. We then

describe the information about those units that is required by a replacement

mechanism to guarantee preservation of the module's interface to clients ac~

replacement

3.1 Selecting the Unit of Replacement

In this section, we determine which Argus module types will be replaceable. While

the basic structuring unit for Argus programs is the guardian, we have two options

other than guardians as possible units of replacement First, guardians contain

procedure an~ cluster implementations, as well as the guardian components, such as

handlers and creators. We could choose to make any of these module types

independently replaceable. Conversely, there are abstractions that are composed of

sets of guardians that cooperate to provide a single service, such as the mail system.

We have determined that guardians should be considered the minimal units of

34

replacement in Argus. There are several reasons for this choice. First, guardians

have a small, well-defined interface to the rest of the system, described by the set of

handlers provided. A guardian forms a stand-alone unit that contains all of the code

that directly accesses any of its state, and (logically) has its own copies of all data

type and procedure implementations. There is thus a strong boundary between a

guardian and the rest of the system that allows the replacement of a single guardian

instance witl}out affecting the rest of the system or even other instances of the same

guardian type, whether at the same or different nodes in the network. This structure

makes it easier to replace the guardian without affecting the rest of the system.

Second, guardians have an explicit permanent state. Since a guardian is expected to

resume execution from that state alone after a crash, it is not unreasonable to assume

the same after a replacement. Thus, a firm limit exists on the state that must be

moved to the new version during a replacement

We have decided against supporting the replacement of units smaller than guardians

for the following reasons. Though a cluster may be used by many different

guardians, each of those guardians may use a different implementation of the

cluster; however only one implementation will exist per guardian. Hence, if a

modification is being made to one implementation, replacement will involve

locating the guardians which use that cluster implementation, and replacing the

code (and possibly state) of those guardians. Replacing the implementation of a

cluster or procedure can therefore be considered a special case of replacing the

entire guardian. Techniques we develop for guardian replacement will apply. If

greater efficiency is sought in replacing these smaller modules, techniques similar to

those developed in [5, 7] can be used.

Finally, even if smaller units of replacement were permitted, the replacement of

guardians as single units would still be necessary. This requirement stems from the

sharing of guardian state among all the guardian's handlers. If the structure of the

35

permanent state changes, all handlers that access the state must be updated at the

same time the state is changed. Thus, the entire guardian must be replaced

indivisibly with respect to handler usage. We therefore will not support

replacement of units smaller than guardians.

The question now arises of whether we wish to provide a mechanism to replace units

larger than guardians. While sets of guardians can cooperate to provide a single

service to clients, the language does not recognize the connection among those

guardians. Thus, while the mail system described in the previous chapter is a service

composed of mailer, registry, and maildrop guardians, there is no way to explicitly

state that those guardians are part of the implementation of a single abstraction. We

refer to these multi-guardian implementations as subsystems.

The ability to replace individual guardians does not provide the power to replace a

subsystem without restricting the replacement to preserving some of the

implementation details of the subsystem along with preserving the interface. When

some of the handlers provided by component guardians are used only by other

components of the subsystem instance, their use is an implementation decision;

other imJlementations of the subsystem might use other types of components that

provide different handlers. Such implementation decisions should be subject to

change during dynamic replacement If each guardian is replaced individually, its

entire interface must be preserved aero~ the replacement, since there is no way to

determine that the only guardians using some of its handlers are being replaced at

the same time. Hence, there is a difference between replacing the set of guardians

comprising a subsystem (requiring that all of their handlers be preserved) and

replacing the subsystem as a single entity. (It is also possible that some of a given

component's handlers are available to clients, while other handlers are used only for

communication within the subsystem. In such cases, the handlers visible to clients

must be preserved, but the component type as a whole need not be.)

36

The mail system (Figure. 2-5), is an example of a subsystem in which some

components are not visible in the interface. Only the mailer guardians are visible to

clients of the system; registries and maildrops are not Thus, the same service could

have been implemented with a different set of underlying guardian types. The

difference would not be apparent to clients. In the implementation shown here, the

mailer abstraction is identical to the mail system abstraction; the mailer provides the

client interface to the mail system. In other cases, there is no single guardian

providing the entire subsystem interface.

Unfortunately, Argus cannot distinguish between guardians that are used solely

within a subsystem and those that are available to clients. To Argus, there is no

difference between the mailer guardian and the registry guardian in our mail system

example. The lack of any distinction between visible and hidden guardians in a

subsystem presents a dilemma for the replacement mechanism. One of the

requirements placed on the replacement system is that it support the methodology

associated with CLU and Argus. Thus, it is expected that in keeping with the

principle of strong typing, the replacement mechanism will allow replacements only

between two implementations of the same type. If there is no way to identify those

. guardians that do not contribute to the interface, the replacement system has no

choice but to require that each individual guardian interface be preserved.

On the other hand, the principle· of separating interface from implementation

dictates that changes in the implementation of an abstraction should be invisible to

clients, and therefore implementation details should be subject to modification.

Component guardian types are implementation decisions. Since registries and

maildrops do not contribute to the interface, the replacement system should not

require that they be preserved across replacements.

Hence, the. replacement system will have to support replacement of subsystems as

37

single entities, if it is to ensure type safety without imposing undue restrictions on

the kinds of replacement permitted.

Some explicit support for subsystems will be needed in the system, so that the

replacement mechanism can distinguish between those handlers that must be

preserved across replacement and those that may be eliminated. At this point, we

will not consider adding a subsystem abstraction mechanism to the language as a

method of maintaining this information. Adding another module type to Argus

adds significant complexity. Before such an option can be adopted, the need for

subsystems for uses other than replacement must be explored. The importance of

subsystem entities must be weighed against the need for simplicity in the language.

Instead, we will define subsystems in the Argus library, and maintain the needed

information about subsystem interfaces there.

In the remainder of this chapter we will discuss the forms in which subsystems

appear in Argus programs, what information about those subsystem structures must

be maintained for use by the replacement system, and how that information can be

incorporated in the Argus library.

3.2 Subsystem Structures in Argus

Intuitively, a subsystem is any collection of modules that provides a unified interface

for its clients. The interface can be a set of operations, like a cluster interface, or a

set of handlers, like a guardian interface.

As with guardians, subsystems can have long-term state that survives crashes. While

not all subsystems have robust, long-term state, we are concerned here with those

that do, since the problem of dynamic replacement arises primarily in those cases.

Hence, we will limit the discussion here to subsystems having long-term state. This

38

restriction implies that we will not consider subsystems composed solely of clusters

since clusters do not have their own stable storage; we will consider only those

subsystems composed of guardians or a combination of clusters and guardians.

Although a guardian is the simplest form of a subsystem, for the remainder of this

section we will discu~ only multi-module subsystems, since single guardians need

no additional support.

We first clarify our terminology. The term subsystem refers to an active, executable

module in the system. while the term subsystem definition refers to the textual

definition of the modules used in a subsystem instance. We will use the term

subsystem instance to mean subsystem, when we wish to emphasize the distinction

between the active entity and its definition. At any given time, there may be many

subsystem instances associated with the same subsystem definition.

Unlike individual guardians, subsystems may span nodes in the system. In addition,

since subsystems may be composed of many guardians, they can be built up using

previously defined subsystem and guardian types. Guardians cannot contain other

guardians. Subsystems are thus hierarchically structured in a way that guardians are

not2. One benefit that arises from the greater flexibility of subsystem structures is

that a subsystem may have many handlers of a given type, while a guardian can have

no more than one. In subsystems, multiple handlers of the same type occur

whenever many guardians of the same type are components of the same subsystem

instance. In the mail system example, there will probably be one mailer at each

node and therefore many handlers of each type provided by the subsystem.

Another use of this structure is to maintain separate connections with each client: a

2By hierarchically structured we mean only that subsystems can be built from many other
previously defined subsystem modules. Argus does not provide any block structuring or nesting of
module definitions.

39

new guardian instance is .created each time a new client requires service. That
'?

guardian instance can terminate when the "conversation" with its client ends.

In the remainder of this section, we will discuss the various ways in which

subsystems can be represented in Argus, i.e. the structures that can be used in Argus

programs to provide a unified interface for a set of modules. We start with

subsystems composed solely of guardians, which we call guardian-based subsystems,

and then discuss the reasons why guardians alone may be considered insufficient for

creating the desired structures, and how clusters are used in these cases. Subsystems

composed of combinations of guardians and clusters are referred to as cluster-based,

since, as will be evident later, the clusters appear at the "root" of the subsystem.

For each subsystem form, we examine the additional information about the

psubsystem that the replacement system will need to know to distinguish between

the subsystem interface and the component guardians' interfaces. We also examine

ways in which that information can be derived and maintained. It should be

emphasized that while this classification of subsystem structures is useful for

analyzing the relationship between the structure and its logical interface, there is no

way to distinguish among the various forms from syntactic structure.

3.2.1 Guardian· Based Subsystems with Centralized Interfaces

The most straightforward module structure for a subsystem is that exhibited by the

mail system. The subsystem interface is just the interface to a single guardian type

(here, the mailer). The static module structure for the mail system was shown in

Figure 2-2. In this structure, we can clearly identify the root of the subsystem, i.e.

one guardian type that is the root of the subsystem definition's tree structure(i.e. the

mailer guardian). All communication between client and subsystem instances p~

through a guardian of the root type. Only the root guardians are visible to clients_;

all other components may be unique to a particular implementation.

40

Note that there is a difference between the static module structure, and the structure

of a subsystem instance. An example of a possible configuration for an instance of

the mail system was shown in Figure 2-3. Any number of instances of the root type

may exist, possibly connected to different sets of clients.

If all subsystems had this form, the only information we would need is the identity

of the root guardian type, and the types of the component guardians. With this

information, the replacement system could safely allow component guardians to be

omitted from an instantiation of a new implementation, while ensuring that the root

(and hence the interface) was preserved.

The Argus library has a description unit (DU) for each abstraction defined in the

language (see section 2.5). The necessary subsystem type information can be kept in

the DU for the root guardian type. For each implementation in the DU, we must

add a list of the types of all of the component guardians in the subsystem. We

therefore have a new declaration associated with each implementation in the root's

DU:

includes component_type1, ... , component_typen

For the mail system implementation in Figure 2-5, we would have the following

includes clause associated with the implementation in the mailer DU:

includes registry, maildrop

With this information in the mailer DU, the replacement system can determine that

the mailer interface must be preserved, but that registries and maildrops may be

eliminated by a replacement

41

3.2.2 Guardian· Based Subsystems with Distributed Interfaces

Since other forms of subsystems exist in addition to the simple structure described

above, more complex support is required It is possible for subsystem interfaces to

include, not only the handlers from the root guardian, but handlers from component

guardians as well. There are three ways such a distributed interface can be provided

to users. One is to pass the handlers from component guardians to clients in reply to

invocations of the root's handlers. The second is to store those handlers in the

catalog (see section 2.5). The third is to construct an explicit subsystem interface

type, store the collection of handlers in an object of this type, and return that object

in response to invocation of the root's creator(s).

A simple example of a subsystem with a distributed interface is a slightly different

mail system in which the add_user handler returned the read.mail handler from the

maildrop at which the user's mailbox was located. The user interface to the mail

system would then consist of the mailer's handlers plus 9ne maildrop handler.

Several is.5ues arise in attempting to maintain adequate interface information for

these kinds of subsystem structures. First, unlike the previous case, the interface is

no longer derivable from the root guardian's interface. To explain why, we must

first define the closure of the interface. The closure of a guardian interface is

defined to be the set of handlers reachable from the object(s) returned from the

creator of the guardian. where reachable means the handler is contained in the

object, or can be obtained as the result of invoking a handler in that object, or can

be obtained as the result of invoking another handler reachable from the object 3 In

3If there is more than one creator, the closure is all the handlers reachable from all of the creators.
Tl!is definition is somewhat restrictive in that a given user will most likely have ace~ to the guardian
through one creator only. However, we will be unable to distinguish among different interfaces to a
single guardian.

42

most cases, the interface will be the set of handlers in the closure under handler

invocation of the handlers in the root guardian interface. There are, however, cases

in which the subsystem interface is not the set of handlers in the closure of the root

interface. One case occurs when a handler that is passed to clients in reply to an

invocation is not a handler of the subsystem; in this case, there is a handler in the

interface closure that is not conceptually part of the subsystem interface. The

second exception occurs when, rather than returning a component's handler in reply

to an invocation, the root (or the component itself) stores the handler in the catalog,

to be retrieved from there by clients. In this case the closure of the root interface is

only a subset of the subsystem interface. Hence, we cannot automatically determine

the subsystem interface from the root's interface.

An explicit declaration of the interface will be required in the root DU, along with

the component list. We therefore add the following clause to the DU interface

definition:

subsys_handles <handlerJist>

where handlerJist is a list of the handlers in the subsystem interface. Note that this

clause is needed only once per DU, not once per implementation as for includes_

clauses. For the modified mail system described above, the clause would look like:

subsys_handles add_user, read_mail, send_mail, add_mailer

The replacement system will have to depend upon the correct specification of this

handler list: it should include those handlers provided through the catalog, and

those providep through invocation of other handlers. as well as those in the roofs

handles list.

The subsys_handles clause is distinct from the handles clause in the mailer that

defines the handler interface to the root alone. Ideally, we would like a single

handles list. in the DU that defines the subsystem interface. We would then require

43

that every handler listed be provided by either the root or some other component of

the subsystem. Semantically, there should be no distinction between the handlers

provided by the root and those provided by other components. We cannot

eliminate the syntactic distinction here because the change would involve changing

Argus type definitions. A guardian definition is expected to contain handler

definitions for each of the handlers named in the guardian's handles list.

Another problem that arises from use of distributed interfaces is illustrated by the

example given earlier in which the add_user command returned the read_mail

handler for the maildrop at which that user was placed. The mailer interface still

contains a read_mail handler; the client is free to use either. The type specification

for a handler contains the handler's name (i.e. read_mail), as well as the number and

types of its arguments and return values. Hence, the type of both read_mail handlers

is the same. The fact that they derive from different guardians does not affect the

type. This situation does not pose a problem for the Argus typechecker. From the

client's point of view, both handlers yield the same result. From the point of view of

a dynamic replacement mechanism however, it presents a problem. The

replacement system must know which handlers are in the interface because it must

know which must be preserved across replacements. If only the read_mail handler

of the mailer is in the interface, then the maildrops may be eliminated during a

replacement If it is the maildrops' handlers that are in the interface, the

replacement system cannot allow those handlers to disappear.

Thus, still more information must be maintained for replacement: both the explicit

type specification for the subsystem (i.e. the set of handler type specifications), and

information as to which component guardian provides each of those handlers.

Obviously, more than one component type can be listed for each handler type, and

vice versa. The includes list must be changed to:

44

includes componcnt_type1 ({handlers}),

component_typeo< {handlers})

The component_types are the same as those described in the simpler includes list.

The set {handler names} is zero or more handlers from the interface of

corresponding guardian type that are in the subsystem interface. Every handler

specified in the subsys_handles list must be provided by the root guardian or listed

in includes list. A new mailer structure with the change discussed earlier would have

the following includes list:

includes maildrop(read_mail)

This extended form of the includes clause, along with the subsys_handles interface

specification will enable the replacement system to distinguish between the

subsystem interface and its implementation during replacement.

3.2.3 Ouster· Based Subsystems

We now examine those subsystems for which the implementation is a combination

of guardians and clusters. Cluster-based subsystems are distinguished from

guardian-based systems in that at least some of the operations in the interface are

cluster operations, rather than handlers or guardian creators. (Syntactically, the two

forms of subsystems may be indistinguishable to clients, for example, if the only

cluster operation is a creation operation.) In Argus, all clusters and data objects

reside in guardian instances: the Argus universe is partitioned into guardian addr~

spaces. When we say subsystems are composed of both guardians and clusters, we

mean that there are clusters that function as part of the subsystem, but are

instantiated outside the guardian components of the subsystem. Instead, they are

45

The create operation of the cluster would create both the mailer and registry

guardians and return the handlers for the mail system. This structure would

eliminate the need for an internal creator in the mailer. Since the cluster creates the

registries also, a single creator that talces a registry as an argument is sufficient The

other operations of the cluster are get_handler operations that can be used with the

"." syntactic sugar, as in mailsys.read_mail, for example.

In other cluster-based subsystems, the entire interface is a set of cluster operations.

For example, we could have constructed the mail system with the mailer as a cluster

instead of as a guardian. The registries and maildrops would exist as before. The

function of assigning new users to registries and forwarding read_mail and send_mail

requests would be handled by the mailer cluster. However, the access to a registry,

now stored in the mailer's permanent state, would have to be stored instead in the

catalog (unless it could be ensured that every guardian containing a mailer cluster

stored the mailer's state in its stable storage.) The cluster could store this knowledge

in volatile state as part of its rep. Only in the event of a crash would it have to access

the catalog.

This structure might be used to increase efficiency of the subsystem: clusters are

assumed to be cheaper than guardians, and procedure calls are cheaper than inter

guardian communication. However, the extra overhead attributable to separating

the subsystem implementation from the client cannot be accurately estimated

without more extensive performance evaluation. Even if there are gains in

· efficiency from using a cluster-based structure, there is a clear loss of modularity in

replicating a function at each site of use. Since there is a well-structured way to

implement these subsystems as collections of guardians, we do not think it necessary

to provide special support for replacement of this kind of cluster-based structure. It

will be possible to replace an entire subsystem of this form only by replacing all

client guardians along with the subsystem. While it is a goal of this work to support

47

replacement of as wide a range of subsystems as possible, modifiability is always

dependent on the modularity of the program. There is a tradeoff here between

efficiency and modifiability, and we will be unable to support the full range of

dynamic modifications for subsystems structured as described

Limited support for these cluster-based structures can be provided in the library

without significant additional mechanism. The cluster can be considered the "root"

of the subsystem, and the subsystem information can be included in that cluster's

DU in the library. The subsys.J)rovides clause can be permitted in cluster definitions

as well as guardian definitions, so they may be attached to these interface type

definitions. Includes clauses can be associated with different implementations of the

root cluster, as they are with guardian roots. Replacement will. be possible when

installing changes that do not modify the cluster objects at client sites.

From these descriptions it is apparent that cluster-based subsystems vary

considerably in structure. In particular, parts of the function and data of the

subsystem may be distributed and replicated among clients. In such cases, we lose

the clear boundary of the subsystem afforded by guardians. It becomes difficult or

impossible to replace the subsystem implementation without locating and modifying

all clients as well. For the remainder of this thesis, we will limit discu~ion to

guardian-based subsystems. For those cases of cluster-based subsystems in which

the objects of the cluster do not change value, our results will apply.

3.3 Recognizing Subsystem Instances

Thus far, we have discussed the type information that must be maintained to allow

the replacement system to type check subsystems adequately during replacement

This information relates the subsystem instances in existence to DU's in the library.

We now examine a different aspect of the problem.

48

Many instances of a given subsystem type may exist at any one time. The

replacement system has no information as to which component guardians belong to

which subsystem instances. Thus, if the user wishes to replace a single subsystem

instance, the replacement system has no way to locate the components that comprise

that instance: it must be left to the user to identify each component explicitly. If

the user mistakenly names a component from another subsystem instance, or omits

one from this instance, the replacement system cannot detect the error. In this

section, we examine the facility that would be required to keep track of subsystem

instances and the guardian components belonging to each.

Subsystem structures are not static; guardians can be added or removed from the

subsystem throughout its lifetime. Thus, to maintain the information on the

components of a subsystem instance not only requires knowledge of the creation of

the instance, but knowledge of the creation of components within the instance.

Unlike the interface specifications, the instance information cannot be declared by

the programmer; it must be generated during execution. There are a number of

reasons that such knowledge is difficult to cull automatically from Argus programs.

One problem is recognizing the creation of subsystem components. Guardians·

often create other guardians that are not necessarily part of the same subsystem. We

therefore have no way to determine automatically whether a guardian creation

implies addition of a component to the subsystem. Since, the library has the list of

component types for the subsystem, we could make the judgment that if the

guardian created from within a subsystem is of a component type (or in the closure

of the component list), then it must be a new subsystem component, and otherwise,

the new guardian is assumed to be independent However, this rule is not

completely accurate either. A guardian type might be used both as a subsystem

component and independently. Though it is unlikely that such a structure would

occur, it is feasible, and therefore must be taken into account

49

The only way to maintain subsystem instance information accurately is with

language support. We would not only have to recognize subsystems in the language,

but also distinguish between component creation and independent guardian

creation. We would need two different kinds of guardian creator invocations: one to

create a guardian in the invoker's subsystem and one to create the guardian

independently. The inclusion of such operations would be a major change in the

language semantics, since it introduces the notion of subsystem explicitly.

Because it is not possible to accurately and easily retain the subsystem instance

information needed, we have decided not to maintain the information during

execution. Instead, as part of the replacement mechanism, we will provide support

for users of the replacement system to locate the components that comprise a given

subsystem instance at the time of replacement (Section 6.2). This support will make

it easier for users to identify the components of a subsystem instance correctly.

However, we will be unable to check that the guardians identified by the user

belong to the same subsystem instance, or that all components of the instance have

been found

3.4 Conclusions

From this discussion of subsystem support in Argus, we can draw a number of

conclusions. Our primary reason for examining subsystems in the context of

replacement was that we were faced with a choice between flexibility and safety:

without identifying subsystems explicitly the replacement system would have to

either allow modifications that were unsafe, or disallow certain changes that should

have been possible. We have attempted to compromise by including support for

subsystems in the library without changing the language. That compromise has

been partially successful. It provides the information the replacement system needs

50

to distinguish between the subsystem interface and its component interfaces. The

replacement system now has more information upon which to depend in deciding

whether a modification to subsystem structure is valid. However, we will support

only subsystems that are constructed as sets of guardians; we will not provide special

support for subsystems that have component clusters at client sites.

There are still weaknesses in the type safety of subsystems. However, those

weaknesses appear to be cases of weaknesses already existing ip_ the language; for

example it has always been possible to "violate the abstraction" in CLU and Argus

by passing an internal cluster operation or handler to clients. Such a type violation

is analogous to passing to clients a handler that is not listed in the subsys_handles

list. However, since the subsys_handles list is in the library only,_ rather than in the

program text. there is probably a greater likelihood of unintentionally omitting a

handler from that list than there is of unintentionally passing an internal operation

out of a cluster. Thus, the possibility of user error, rather than intentional

circumvention of the type mechanism, is greater when performing replacement than

when constructing Argus programs. We also will be unable to guard against errors

resulting from incorrectly identifying the set of component guardians in a given

subsystem instance.

51

Chapter Four

Legality of Replacement

In this chapter, we establish criteria for safely replacing one subsystem instance with

another. If the _Argus system is to allow dynamic replacement without undermining

the modularity and reliability of the system, we must ensure that modules can

continue to depend on the correct functioning of the modules they use, regardless of

whether replacements are performed on those modules.

Intuitively, if two modules satisfy the same interface specification, one can be used

in place of the other. When a given abstraction is needed, any implementation of

that abstraction can be used.4 We have found that when dynamic replacement is

possible, it becomes more difficult to determine exactly what this intuitive criterion

means, and when it is satisfied. In some cases, one implementation of an Argus

subsystem abstraction cannot be used to replace another implementation of the

same abstraction. Conversely, an implementation of a different abstraction may

behave appropriately if substituted for that running instance.

In this chapter, we first present some examples to illustrate the complexity of the

issues, and then give an intuitive description of the problems in determining the

legality of a replacement We then present a more formal model of the system that

will enable us to define safety criteria and to characterize more precisely the

situations in which our initial intuitions about the safety of a replacement are likely

4w e do not distinguish between single and multi-guardian subsystems. The ability to distinguish
between the subsystem interface and its component interfaces, as described in the previous chapter, is
assumed. ·

52

to be incorrect. Finally, the fonnal model will make apparent a number of issues

concerning the effects of replacements that were not immediately obvious from the

examples given. Our goal in providing a fonnal model is not to provide support for

automatic verification of replacements, but rather to provide a basis on which

implementors perfonning replacements can reason about the safety of various

modifications.

We first clarify some basic tenninology. When a subsystem instance is running in

the Argus system, clients of that subsystem will see a single module whose execution

may be interrupted by crashes, but whose identity never changes. When dynamic

replacements occur, the code and state within the subsystem change, but its identity

does not. In discussing replacement, we must clearly distinguish between the

client's view and the implementor's view. Hence, we will use the tenn module

throughout this chapter to refer to the continuously-existing subsystem object seen

by clients, and the term instance to refer to the combination of code and state that is

replaced. A module, over its lifetime, is thus comprised of a series of instances, each

picking up the execution from the point at which the previous instance left off. We

will give a more precise definition of instance later in the chapter.

The tenns abstraction, implementation and specification are used as in the

description of the Argus library in Section 2.5. Two implementations implement the

same abstraction if and only if they both satisfy the specification of the abstraction.

We will give more precise definitions of these terms later as well. We use the term

replacing instance to refer to the instance to be installed in place of the currently

running instance, which we refer to as the replaced instance.

53

4.1 An Intµitive Description of the Problem

There are two separate problems to be examined. One is whether one abstraction

can be used to replace another, and the second is whether a given implementation of

an abstraction can be used in the instance replacing a given running instance.

4.1.1 Abstraction Replacement

The simplest definition of replacement would require that the abstraction remain

unchanged across replacements, ie. that only implementations of an abstraction be

changed during dynamic replacement There are cases, however, in which this

intuitive criterion can be relaxed, while ensuring that the behavior of the module

does not change in any way visible to its clients. There are also cases in which

satisfying the initial abstraction is not sufficient to ensure that a new instance can

replace an existing instance of the same abstraction.

We are interested in relaxing the restriction in two cases. One is when a new

abstraction is designed specifically to replace existing instances and will produce

acceptable behavior in continuing from some non-initial state, but could not handle

some cases that could have arisen prior to replacement The second case is when the

initial abstraction did not contain some operations later determined to be necessary.

We would then like to replace the instance with an instance of an extended

abstraction that will allow existing clients to continue their use of the module, while

allowing newer clients to use the extended set of operations. In the remainder of

this section we first discuss why requiring the same abstraction is insufficient, and

when replacement abstractions with the same interface can be used. We then

discuss the relationship that must hold between the replaced instance and the

replacing instance. Toe extension problem will be addr~d last.

To illustrate the situations that must be examined in determining criteria for legal

54

replacement, we consider an example of a unique-id generator. The specification of

the abstraction states that no id will be repeated for at least X invocations of the

next_id operation. for some large number X. This specification will allow any

sequences of id's to be generated as long as there are no repetitions within the first X

id's. Now suppose that after some number of id's. N. has been generated, we want

to replace the existing instance with a newer implementation (perhaps one with a

faster algorithm). What specification must the replacement satisfy?

Satisfying the original specification alone is not sufficient Not only must the new

instance not repeat the id's it generates, it must also not repeat the id's generated by

its predecessor. Thus the set of allowable sequences of id's is now smaller than that

allowed by the original specification.

On the other hand, clients depend on the module to produce only X id's, since that

was the specification of the module when they originally connected to it Thus, a

replacing instance installed after the generation of N id's actually must guarantee

only X-N unique-id's to satisfy the module's specification on which clients.depend

Hence, in one respect, the specification of the continuation abstraction is stronger

than the original. while in other respects it is weaker. Note that an implementation·

of the original abstraction might satisfy both the original specification and the

continuation specification, but there could be implementations of the original

abstraction that do not satisfy the continuation.specification. (However. it must be

true that any implementation of an abstraction can replace itself, since an instance

could be stopped at any time and replaced with an exact copy of itself.)

It is also evident from this example that a replacing instance does not necessarily

have to produce the same replies to future operations as the replaced instance would

have, had it continued to run. The replacing instance of the unique-id generator

need not produce the same id's in the same order as the replaced instance would

55

have. Since clients can depend only on the specification, the differences will not be

observable if the replacing instance satisfies the continuation specification.

This example suggests several areas that must be considered in defining dynamic

replacement First, we need a way to derive continuation specifications from

original module specifications. We must define what it means for an

implementation to satisfy a continuation specification.

Second, the notions of abstraction and specification change when continuation

abstractions are introduced. Without dynamic replacement, there was an implicit

assumption that instances were always started in an "initial state" defined by the

creator operations, and possibly the arguments and parameters to the creators. A

continuation abstraction assumes that the instance is starting with some state defined

in part by another instance, and in part by the replacement procedure. The

specification of the abstraction's behavior depends on prior events having occurred.

For example, if we replaced the mail system described in Figure 2-5 after msgl had

been sent to user 1, it should be possible to deduce from the continuation

specification that the next read_mail(userl) invocation would return msgl (and

possibly other messages as well). Rather than specifying the behavior of an

abstraction from the time of creation, specifications must now describe the behavior

of abstractions from a given state. In section 4.2, we will use a definition of

abstraction that incorporates this notion. We will also discuss the implications of

this notion for defining whether an implementation satisfies a specification, and

whether a given implementation can be used in replacing a running instance.

4.1.2 Instance Replacement

If an instance of abstractio~1i is to be replaced with an instance of abstractionj, there

are correctness conditions on the instance of abstractionj that must be verified even

56

if it is known that abstractionj meets the correctness criteria for abstraction

replacement These conditions primarily involve the correspondence between the

final state of the replaced instance and the starting state of the replacing instance.

The replacing instance must start in a state corresponding to the state in which the

replaced instance ended. Since the state fonnat itself is implementation dependent,

we must have a notion of preserving the value of the state. For the mail system, that

value is (intuitively) the set of users and their current mail. A new implementation

of the mail system might not store that value in atomic_arrays in registry and

maildrop guardians, but it must store enough infonnation so that future read_mail

and add_user operations, for example, will produce the same results as if a

replacement had not taken place.

4.1.3 Abstraction Extension

Thus far we have described continuation abstractions under the assumption that the

interfaces to those abstractions would be unchanged from their predecessors'

interfaces. In the case of subsystems, we assumed the set of handlers was

unchanged. We now investigate the circumstances in which it should be permissible

to change the interface, as well as the implementation, of a subsystem during

dynamic replacement

Any changes to the interface can be thought of as some combination of adding new

handlers and deleting existing handlers. We can describe situations in which such

changes might be desired: it is realized after a module is in use that some additional

function is required; development on a system is still underway and the

implementors would like to install a service with the option of adding functions as

they become ready; requirements change over time and some new functions are

desired, while some existing ones are no longer used. Furthermore, while we want

57

to provide the extended interface to new clients wishing to use it, we also want to

ensure that clients using the old interface will be able to continue to use the

subsystem through that interface.

We will be concerned here primarily with changes involving only the addition of

handlers. Deleting handlers has the obvious problem of existing clients using those

handlers. Such a change will be invisible to clients only if no clients use the deleted

handlers.

To understand the implications of interface extension, we look at an example.

Suppose we want to add a delete_user handler to the mail system. We would argue

that such an extension is useful. In fact, it is one that would be likely to be made

dynamically, since its omission would not cause immediate problems upon

installation of the subsystem, and so could be forgotten, or just left unimplemented

at first.

Will clients that do not use the new handler be able to detect the replacement? In

this example of extension, there are two ways the extension might be visible to

clients. The first problem is that the mailer contains an add_mailer handler that.

returns an object of the mailer interface type. If a mailer is replaced with an

instance of an extended_mailer type containing a delete_user handler, and the

add_mailer handler in that subsystem definition returns an extended_mailer object,

then clients connected to the original mailer will no longer be able to use the

add_mailer handler because the object returned is not of the type expected. This

problem will arise whenever a handler (but not a creator) of a guardian returns an

object of that guardian's interface type. The problem occurs not only with

subsystem extension but with any replacement using a different replacing

abstraction. The formal model to be presented in the next section will make clear

exactly when this limitation arises. A more precise definition of the cases in which

58

this problem arises, and a discussion of possible solutions, will be presented in

section 4.3.

The second way in which an extension can become visible is as a side-effect of using

the new handler. If no client uses the new handler, the results of invoking read_mail,

send_mail or add_user will be indistinguishable from those prior to replacement

However, as soon as any client makes use of the delete_user handler, the extension

will become visible to other clients. For example, clients might have written

programs that depended on the fact that if a user existed at one point, it existed

forever. Thus, a program that checked for existence bf a user initially, never had to

check again, and the program could have been proved correct Once a delete_user

handler is added, this assertion upon which client programs depended is no longer

valid

Whether an extension will be visible to existing clients will depend on the kinds of

properties that can be specified about an abstraction, and the kinds of assertions that

clients can make based on those specifications. We will not be defining specification

or assertion languages in this dissertation. Instead, we will informally describe

several classes of extensions, and give intuitive explanations of when such extensions

will meet certain safety criteria, so that users wishing to extend a subsystem will have

criteria upon which to evaluate the safety of such an action.

The first class of extensions is the addition of query operations. Since queries are

read-only, they have no effect on the subsystem's state. An example of such an

extension would be the addition of a handler list_mail(username) to the mail system.

Oients with access to only the original, restricted set of operations should not see

any change from the installation of this kind of extension. However, it is true that

clients will now be able to .see more information than they previously could. If the

assertion language as&>ciated with the original specification allowed a client to

59

deduce that the additional information was invisible, this kind of extension would

not be safe either. For example, if it were possible to assert that no one could

determine from whom a user received mail unless they read that mail, then the

addition of a list_mail handler would violate assertions on which existing clients

depend. Another example of an assertion that could be violated by addition of

query operations is an assertion that a certain event occurs only directly following

another event. The introduction of a query operation might change that

relationship.

The second class of extensions is the addition of operations that allow some update

operations but do not affect any values visible through the original set of operations.

The crucial property of this class is that, though the new operations update state, the

extension remains invisible to clients that do not use the extended operations. Such

extensions usually talce the form of adding components to the concrete state and

adding handlers that operate only on those components. An example of such an

extension to the mail system would be the addition of handlers set_last_use and

last_use, which record the date the user last accessed the mailbox and return that

date, respectively. While these handlers affect the state of the subsystem, they are

independent of the other handlers. Again, if it were possible to write assertions

about properties other than the values returned from various invocations, we could

not guarantee invisibility of such an extension. The above two classes fall into a

category we will refer to later as non-interfering extensions.

The third class of extensions is the one for which it may be difficult to guarantee

that the assertions on which existing clients depend will not be violated, although

this class includes many extensions that would be useful. This category involves

adding handlers that interact with the original handlers via the data in the

subsystem. Adding a delete_user handler to the mailer is an example. The

significant property of this class is that if any client· uses the new handlers, the

extension may be visible to clients that use only the original set of handlers.
60

In describing our formalism later, we will define correct replacement for history

independent extensions only We will not forbid either type of extension in the

replacement system described later, but rather, leave it to the implementor to

determine whether an extension is safe.

4.2 Formalizing Correctness Conditions for Replacement

In the previous section we described the situations and relationships that must be

modeled in defining criteria for dynamic replacement We now present more

rigorous definitions of the legality of replacing one subsystem instance with another.

We first present the model of abstractions and implementations that we will be

using, and discuss what it means for an implementation to satisfy an abstraction. 5

We then present the criteria for correctness of continuation abstractions, and finally,

for continuation instances.

4.2.1 Basic Definitions

Associated with any abstraction is a set of events that can occur at the abstraction's

interface. There are different ways of characterizing .those events. We will define

the event set of an abstraction as a set of instantaneous events divided into input and

output events. For subsystems in Argus, the set of events that "cross the interface"

of the subsystem are the handler invocation messages, the replies to those

invocations, transaction commit and abort messages, and messages between the

subsystem's oackground code and the subsystems used by that code. As an

example, Figure 4-1 shows the event set for the mail subsystem.

5Toe model described here was originally derived from a model developed by Stark [1S].

61

Input Events:6

create
VuserEuserid, msgEmessage ,{send_mail(user,msg)}
VuserEuserid{read_mail(user)}
VuserE userid{ add_user(user)}
VnodeEnodeid{add_maiJer(node)}
Commit.Action
Abort.Action

Output Events:

V mait-instanceE mailer{ createreply(mail-instance)}
Varn€ atomic_array[message]{read_mail_reply(am)}
read_mail_signal(no_such_user)
send_mail_replyQ
send_mail_signal(no_such_user)
add_user_replyO
add_user_signal(user.exists)
add_mailer_reply
commit_acknowledge
abort_acknowledge

Figure 4-1:Mail System Interface Events

Note that a handler invocation and the reply to that invocation are two separate

events; the handler executions themselves are internal to the subsystem.

Concurrency within the subsystem will be visible as nondeterminism in the order in

which the events occur. Thus, input and output events are not obviously paired;

several invocation messages could for example enter the subsystem before any

replies occur, and replies to invocations need not occur in the order of the

corresponding invocation messages. For our purposes here, it will not be necessary

to discuss the relationship between input events and output events. (15]

6Every event has associated with it a transaction identifier, though we have left that identifier
implicit in the descriptions here.

62

An abstraction can be represented as a set of abstract states, a set of events, and a

mapping from the states to the sequences of future events that can occur starting

from that state:

abstraction = <AS, E, Futures>

where:
AS = {AbstState}
E = {events}
Futures: AbstState --> { eventseq }

and AbstState, eventseq are sequences over E.

An abstract state is, intuitively, the history of events that have occurred in the past

Futures defines the allowable sequences that can follow that history. Note that our

definition of abstraction incorporates state, for the reasons discussed in the previous

section. Hence, there is no longer an assumed initial state reflecting a null history.

AS defines the possible starting states of an instance of the abstraction.

Similarly, we define an implementation to be a 4-tuple:

<A, CS, AF, lmpD

where:
A is an abstraction
CS = {ConcState}
AF: ConcState--> {AbstState}
CFutures: ConcState --> { eventseq}

AF is the abstraction function that maps the concrete states of the implementation

to the abstract states of the abstraction. The abstraction function maps a concrete

state to a set of abstract states because the implementation may lose some

information about the actual sequence of events that has occurred, and it may be

impossible to distinguish among several abstract states given the information in the

63

concrete state. Two implementations of the same abstraction will have different

abstraction functions. A concrete state defines an equivalence class of abstract states

under possible futures. For simplicity, we do not distinguish between the abstract

and concrete event sets. 7

CFutures maps from a concrete state to the set of event sequences that could occur

in the future if the implementation were started from that concrete state.

We now need a definition of when an implementation satisfies an abstraction.

There are numerous possible interpretations for implementation correctness. We do

not select a single definition here; rather, we discuss some of the possible

interpretations, so that we can determine how the criteria for replacement are

affected by each, and how those criteria must be defined in systems using different

definitions of implementation correctness.

We first define an implementation to be a consistent implementation of its

abstraction as follows:

Conslmpl: implementation--> boolean

Conslmpl(I) =
Ve E CS1 [Va E AF1(c) [CFutures1(c) ~ FuturesA(a)D

Intuitively, an implementation is consistent· with its abstraction if the following

condition holds: the event sequences that can be generated by the implementation

from any given concrete state, must be a subset of the event sequences allowed by

the abstraction from each of the abstract states associated with that concrete state.

7 Stark [15) _ discu~ the relationship between the event sets of the component guardians of a
subsystem and the event set of the subsystem.

64

This definition states only that any action performed by the implementation is

allowed by the abstraction. An implementation that did nothing would satisfy this

predicate.

This criterion could be strengthened in several ways. There are two we have

considered. One is imposing requirements on the sequences of input events

accepted by the implementation. The other is imposing requirements on the set of

starting states of the implementation.

Requirements on the inputs accepted are intended to ensure that the

implementation performs the functions defined by the abstraction, in addition to the

consistency constraint that states that if it performs a function, it does so correctly.

We therefore insist that all inputs accepted by the abstraction are accepted by the

implementation. One way to ensure this property is suggested by Stark (15]. In his

formulation, both abstractions and implementations are constrained to accept any

input event at any point. Hence, the following properties hold on futures:

Admissible_Abst: Abstraction --> Boolean

Admissible_Abst(A) =
Vas E AS A V e E E~put [Vp Eprefix(Futures A (as))

[p•e E prefix(Futures A (as)Il

where prefix({ eventseq}) denotes all event sequences that are prefixes of a sequence

in{eventseq}.

Similarly, we define:

Admissible_Impl: Implementation --> Boolean

Admissible_Impl(I)_ =
vcs E CS1 v e EE~P0 ,v p E prefix(CFutures1(cs))

[p•e E plefix(CFutures1(cs)Il

65

The motivation behind this constraint is that modules have no control over the

senders of input events, and hence the input events will occur even if the module

chooses not to respond to them. Thus, constraints are imposed, not only on

implementations. but on abstractions as well. Since the implementation must now

accept all inputs, and by Conslmpl must respond correctly to those inputs,

implementations that "do nothing" will no longer be considered to satisfy the

abstraction.

An alternative fonnulation leaves it to the abstraction definition to detennine when

input events can occur. and defines implementations to be required to accept input

sequences allowed by the specification. This requirement ensures that any inputs

allowed by the abstraction are handled by the implementation. This constraint

would be expressed as:

lnputConsistent: Implementation --> Boolean

InputConsistent(I) =
vcs E CS [v asE·AF (cs) [CFutures (cs)IEinputs = Futures (as)IEinputsn

I I I A1 A1 A1

where {seq}l{event} is the set of all sequences obtained by taking the sequences in

{ seq} and removing all events not in {event}.

The other possible criteria we consider for an implementation satisfying an

abstraction are requirements on the relationship between the set of concrete states in

the implementation and the abstract states in the abstraction. Our definition of

abstraction, by allowing many possible starting states, complicates the analysis of

this relationship. As stated earlier, without replacement. there is an initial state for

an abstraction, and the implementation must start in that state. We now defme a set

of abstract states, and the future behavior ~ible from each of those states. The

question then arises as to whether an implementation must be able to start in any of

66

those states, i.e. must the abstraction function map onto the abstract states. More

precisely:

Fulllmpl:Implementation --> boolean

Fulllmpl(I) = Vas E AS A [3 cs E csl [as E AF1(cs) D
I

This definition would exclude many implementations that we intuitively consider

correct implementations of an abstraction. In particular, it limits the choices in

implementing non-deterministic specifications. In our unique-id generators, the

implementations we were discussing earlier might not satisfy Fulllmpl, because each

could generate some subset of the possible sequences that satisfied the uniqueness

criterion, but would not generate all such sequences. Therefore, there are abstract

states that certain implementations might never reach. (Recall that an abstract state

is simply the sequence of past events.)

We have presented possible criteria for input acceptance, and one possibility for

defining state completeness. We will not choose among these options here. In the

remainder of this chapter we will use Conslmpl, the least restrictive, to indicate that

an implementation satisfies an abstraction.

4.2.2 Definition of Correct Replacement

In this section we describe the conditions on an abstraction that will allow an

instance of that abstraction to replace a current instance of a possibly different

abstraction. We then define the relationship that must hold between the replaced

instance and the replacing instance, assuming that the conditions on the replacing

abstraction hold. We first examine replacement without allowing extensions to the

abstraction, and then modify our correctness conditions to allow extension.

The intuitive condition for correctness is that the new instance generate only futures

67

that would have been permitted by the replaced abstraction, as continuations from

the state in which replacement occurred. However, as described in section 4.1, at

the time of replacement, we will know only a set of possible abstract states, not a

single state, since we no longer know the exact history that has occurred. We

therefore first characterize the set of futures allowable from a set of abstract states:

ReplFutures: Abstraction, { AbstState} --> { eventseq}

ReplFutures(A, States) = h'E States Futures A (a)

The set of allowable futures after replacement is the intersection of the futures

allowed by any of the possible states. Since we do not know the exact history of the

module, we can only permit those futures that can legally follow from any of the

states.

We can now define the conditions that must be satisfied for an abstraction A2 to

replace an abstraction Al, when Al is known to be in one of a set of abstract states.

AcceptableRepl: abst, {AbstState}, abst--> boolean

AcceptableRepl(Al, States, A2) =

(1) 3 s E AS A2 [Futures Ai(s) ~ReplFutures(Al, States)] and

(2) lnputsOf(FuturesA2(s)) = InputsOf (ReplFutures(Al, States))

where:

lnputsOf: { event.seq} --> { event.seq}
InputsOf(F.s). = F.S IEventsruts

and:

Events;uts is the set of in~ut events that occur in the sequences in F.S.

68

The first condition states that there must be some state of the replacing abstraction

that allows only future sequences that would have been allowed by the replaced

abstraction, had it continued. The important point here is that the starting state of

the replacing abstraction does not have to represent the same history of events that

was represented by the ending state(s) of the replaced abstraction. Intuitively, the

starting state of the new abstraction and ending state of the old abstraction must be

"equivalent" with respect to possible futures, but not necessarily with respect to

possible past sequences.

The first condition thus ensures partial correctness: any action allowed by the

replacing abstraction would have been permitted by the replaced abstraction. It

does not, however, guarantee that the replacing abstraction will permit the same

range of functions. This condition alone is therefore insuff1eient to guarantee that

replacement will be invisible to clients. The second condition ensures that the

replacing abstraction permits the same set of invocations as its predecessor. It states

that all sequences of input events permitted by the replaced abstraction must be

permitted by the replacing abstraction. It does not require that all of the

"replacement futures" (as defined by ReplFutures) be retained; however, the the

two conditions together imply that, for every input sequence, the replacing

abstraction must retain at least one sequence containing that input sequence that

was permitted by the replaced abstraction.

Thus far, we have ignored replacement with extended abstractions. We now modify

the above definitions to allow non-interfering extensions.

AcceptableExt: Abstraction, { AbstStates}. Abstraction

AcceptableExt(Al, States, A2) =
(1) 3 s E AS A2 [Futures A2(s)IE Al ~ ReplFutures(Al, States)] and

(2) lnputsOf (Futures A2(s))IEA1 = lnputsOf(ReplFutures(Al, States))

69

This definition is identical to the definition of acceptable_repl, with the exception

that, when comparing future sequences allowed by the replacing abstraction with

those allowed by the replaced abstraction, we ignore the existence of the new events.

When the future sequences of the replacing abstraction are restricted to the event set

before extension, they must satisfy the conditions for AcceptableRepl.

We have now provided the definitions for legal abstraction replacement The next

st~p is to determine the conditions under which one subsystem instance can replace

another. We define an instance to be a pair (implementation, ConcState>. The pair

<I, cs> can be mapped to the set of event sequences denoted by CFutures1(cs).

For one instance to correctly replace another, the state in which the replacing

instance starts must "correspond" to the state in which the replaced instance

stopped.

LegalStartState: instance, { eventseq} --> boolean

assume i2 = <12, cs2>

LegalStartState(i2, ES) =
3 a2 E AF1i(cs2) [Futures A (a2)1EventsES c FS]

12

This definition states that the starting state of an instance is a legal starting state with

respect to a set of event sequences, ES, if there is some abstract state associated with

the starting s_tate, from which all allowable future sequences are in FS. If the

implementation associated with the instance is consistent (as defined by Conslmpl),

and the starting state of the instance is a legal starting state, it follows that every

event sequence that can be generated in the instance is contained in FS: Conslmpl

states that, from any concrete state, the implementation can allow only future

sequences in the intersection of the sequences allowed by the associated abstract

70

states. Hence if the Futures of any one of the abstract states is contained in ES, the

sequences generated by the implementation must be in ES.

We now define the correctness of replacing one instance with another as follows:

InstanceRepl: Instance, ConcState, Instance --> boolean

Assume:
il = <11, csl>, 11 = <Al, CSl, AFl, CFuturel>, Al = < ASl, El, Futurel>
i2 = <12, cs2>, 12 = <A2, CS2, AF2, CFuture2>, A2 = < AS2, E2, Future2>

lnstanceRepl(il, cs, i2) =

(1) Conslmpl(I2) and
(2) AcceptableExt(Al, AFl(cs), A2) and
(3) LegalStartState(i2, ReplFutures(Al, AFl(cs)))

Intuitively, an instance of abstraction A2 can replace an instance of abstraction Al in

concrete state cs, if the new instance is a correct implementation of A2, A2 is a

correct replacement of Al, and finally, the state in which the new instance is started

"corresponds" to the state in which the old instance ended (i.e. both concrete states

map to the same set of allowable futures).

4.3 Discussion

The formal model presented in this chapter enables us to characterize more

precisely those cases described in section 4.1 that do not concur with our initial

intuitions about the safety of replacements. In addition, the model brings to light

several issues regarding the semantics of replacement that were not previously clear.

In the first subsection to follow, we discuss the anomaly, exemplified by the unique

id generator, in which two correct implementations of an abstraction are not

replacement compatible, i.e. one cannot be used to replace the other dynamically. In

71

the second section we describe a problem that becomes apparent in examining our

definitions for acceptable replacements: successive replacements in a module may

restrict the allowable future behaviors further than the restrictions imposed by past

events alone. Finally, we discuss the use of abstraction replacement in Argus, and

some limitations of abstraction replacement not immediately obvious from our

earlier discussion.

4.3.1 Incompatible Implementations

The examples of the unique-id generators presented earlier illustrated that two

correct implementations of the same abstraction might not be "replacement

compatible", i.e. it might not be possible to replace an instance of one with an

instance of the other. With the formal model presented earlier, we can characterize

the properties of subsystems that give rise to these counter-intuitive situations.

The criteria for instance replacement (lnstanceRepl) indicate when one

implementation will be able to replace another implementation of the same

abstraction. There were three conditions in InstanceRepl: the implementation had

to satisfy its abstraction, the abstraction had to be a valid replacement abstraction.

and the state in which the implementation was started (defined by the instance of

the implementation) had to concur with the ending state of the previous instance.

Since we are assuming here that the abstraction is unchanged (and an abstraction is

always a valid replacement of itself). and that the implementation is correct, then if

one implementation cannot replace another, there must be no legal starting state for

the replacing implementation. There are two ways in which this situation can arise.

First, it is possible for one implementation of an abstraction to end in a state that

another implementation could never reach; there may then be no state in the second

implementation's set of concrete states that maps to only legal future sequences.

72

The second situation arises when so much history information has been lost from

the concrete state that we cannot derive a legal starting state for a different

implementation.

Whether one implementation can reach a state not reachable by another

implementation, and under what circumstances that situation will arise, are

dependent upon the definition of an implementation satisfying an abstraction. If we

use the definition Fulllmpl, which insists that every abstract state in the abstraction

is reachable in any implementation of the abstraction, this state incompatibility

cannot happen. The state in which the replaced instance ended will correspond to

some abstract state as, and the new implementation must have some concrete state

cs that maps to as. By Conslmpl, the futures from cs will satisfy the abstraction.

If by contrast, we insist only on Conslmpl, then obviously there can be states that

the new implementation will not reach, since that implementation need not perform

any of the abstraction's allowable behavior. If in addition to Conslmpl, we require

lnputConsistent, the analysis becomes more interesting. Now the implementation

must accept all input sequences allowed by the abstraction from each of the

implementation's possible starting states. Hence there is some legal behavior it will·

perform given any sequence of inputs. Now if we examine how one implementation

can arrive at a state unreachable from another implementation, we see that this

situation will only arise when there are two legal futures from a given state that have

the same input sequence, i.e. when the abstraction is nondeterministic. In Argus,

where concurrency control is handled automatically by the system, nondeterminism

due to concurrency will not cause this situation: all implementations will be able to

reach all states possible from reorderings and concurrent execution of handlers.

One implementation will be able to reach a state unreachable from another only

when the abstraction allows different possible replies to a given invocation occurring

in a given ·abstract state. In our unique-id generator, the specification we gave

73

allowed any number of possible id's to be generated next, given any past sequence.

Thus, the nondeterminism allows one implementation to generate sequences of id's

that would not be generated by another implementation. Since the second

implementation would not have generated that sequence, there may be no point at

which it could start running and ensure that no duplicate id's would be generated.

The other property that may lead to implementation incompatibility is the mapping

of a concrete state to a set of abstract states, rather than a single abstract state. The

larger the set of abstract states, the smaller the set of legal futures may become, since

ReplFutures is dependent on the intersection of the futures from each of the states.

It may be possible that two implementations could both reach the same state (i.e.

same past history), but that there is no concrete state in the second that will generate

only futures legal for all of the abstract states associated with the final state of the

first instance. We discuss this situation further in the following subsection.

4.3.2 Behavior Restriction from Successive Replacements

Another aspect of replacement that our formal model enables us to evaluate is the

limitation on module behavior caused by successive replacements. There are two

ways in which successive replacements cause additional restrictions on behavior:

one is the subsetting allowed in replacing abstractions; the other is that the

abstraction function may map to wider sets of abstract states because it must take

into account all possible starting states of the instance, and all possible ways to have

reached each starting state.

The subsetting in replacement abstractions occurs because AcceptableRepl allows

the replacing abstraction to permit subsets of the legal futures (ReplFutures). Thus,

some legal continuation sequences will be eliminated, not only from this replacing

instance, but from all future replacements as well. Obviously, successive

74

------------~--- -- -----

replacements can eliminate increasing numbers of futures allowable according to the

module specification. Note that attempting to eliminate this problem by requiring

replacing abstractions to permit all sequences in ReplFutures will reduce the set of

acceptable replacements.

The second way in which replacement narrows the set of possible futures is due to

history information lost from the concrete state. There are two kinds of lost

information: information about the actual event sequence that occurred in the

instance, and information about prior instances in the module and the concrete state

in which this instance started.

The abstraction function of an implementation maps to a set of possible abstract

states rather than a single state. The legal futures are then limited to those

sequences allowed from any of the states in that set. The larger the set to which the

abstraction function maps a concrete state, the more restricted the future behavior.

Successive replacements compound this problem in the following way. If several

replacements have already occurred, and the starting state of the instance is not

known at the time of replacement, the set of histories that could have led to a given

· concrete state becomes much larger. The reason for the increase is that, if the

starting state is unknown, the abstraction function must take into account ways of

reaching the current concrete state from any possible starting state of the

implementation. Thus, the set of histories may be much larger than actually could

have occurred in this instance. By retaining information about the replacement

history of a module, we can reduce the set of states to which any concrete state is

mapped and thereby increase the set of possible replacing instances.

The unique-id generator exemplifies this situation. Suppose we have two

implementations of the unique-id generator described earlier. one of which

generates numbers in increasing sequence, and the other in decreasing sequence. If

75

the current implementation is generating ids in increasing order, an implementation

using decreasing order can replace it by starting at a uid that is larger than the last

uid by at least X, if we know that no prior replacements have occurred If we have no

information about prior replacements, it is possible that the replaced instance itself

replaced an earlier instance, which may have been generating larger id's. Hence, we

can perform no replacements, because too much history information has been lost

Maintaining a replacement history about the past instances in a module, along with

their starting and ending states would be necessary to alleviate this problem.

Finally, the set of futures may be narrowed because different implementations

generate different subsets of the abstraction's allowable futures. The set of futures

the new implementation can generate from the state in which the old

implementation stopped might be smaller than the set possible if the same instance

continues to run.

For example, suppose from a given abstract state, the sequences abbb, cbbb, and .
cddd are allowed. The replaced implementation generates only abbb and cbbb, the

replacing implementation only cddd. If the sequence ab has been generated prior to

replacement, the replacing implementation can produce no legal futures. Hence.

there is no instance of the replacing implementation that will satisfy

InstanceRepl(replaced_instance, ab, replacing_instance)

where ab is the concrete state of the replaced instance that corresponds to the

sequence ab liaving occurred

It is unclear how often these situations will actually result in more restricted future

behavior. In our mail system, for example, it is true that not knowing the starting

state of an instance will admit many more event sequences leading to a given

76

concrete state. However. no information critical to determining possible future

sequences has been lost from that concrete state. Consequently, the possible futures

from any of those event sequences is the same: the intersection will not narrow the

set of legal futures. Almost all of the problems are due to nondeterminism in the

abstraction. Theoretically, however, it is possible that successive replacements will

limit behavior substantially and may be undesirable for that reason.

4.3.3 Replacement Abstractions in Argus

In the previous section, we discussed the limitations of replacing one

implementation of an abstraction with another. Here, we examine the problems of

replacing one abstraction with another in Argus. The conditions for abstraction

replacement are straightforward: a second abstraction is acceptable if it allows only

futures that would have been allowed by the replaced abstraction, from the abstract

state in which the second is to be started. However, in analyzing how this criterion

meshes with Argus abstractions, we find there are considerable practical restrictions

on when abstraction substitution is possible. Our model allows more complex

relationships among abstractions and implementations (and implicitly

specifications) than the Argus type system and library structure permit

An abstraction in Argus is represented by a type, and objects of one type can never

be assigned to variables of another type. Recall from Chapter 2 that each guardian

type has associated with it an automatically generated guardian interface type; the

guardian objects given to clients are objects of this interface type. If an abstraction

is replaced by a different abstraction, then new guardian interface objects generated

will be of a different type than previously distributed interface objects. (In practice,

this situation is unlikely to arise; a change in abstraction will probably occur only

when the interface is to be extended.)

77

This discrepancy has the following effects. Clients already holding the interface

objects of the replaced abstraction can be accommodated because replacement does

not involve reassigning those objects to objects of the new type. (The individual

handlers can be automatically reassigned since they do not change type.) The

problem arises when one of those clients tries to obtain a new interface object from

the subsystem it believes is an instance of the replaced type. In the mail system. for

example, the add_mailer handler returns a mailer object If the type changes during

replacement. the add_mailer handler will return an interface object of the new type.

The client is expecting an instance of the replaced interface type. and an object of

the replacing interface type cannot be accepted as the return value. according to

Argus type rules. (Although. since type checking is performed only at compile time.

it is unclear what the effect of such an invocation will be.)

This situation arises whenever a client expects to. receive an object of a replaced

subsystem type. It is evident in our formal model in that acceptable replacement

abstractions must only allow event sequences allowed by the replaced abstraction.

In the case of our mailer, the add_maile(reply event will change, since the new

mailer type will return a different type of object Thus, no sequence containing that

event can be permitted by a replacing abstraction. Replacements of the mail system

will .therefore be limited to implementation changes (or abstraction changes in

which the new type still creates mailer guardians of the original type). This

restriction will hold whenever a handler (not a creator) of a guardian returns an

object of the guardian's interface type.

Invoking creators is a slightly different problem. Under what conditions can clients

that are compiled knowing of one guardian type invoke creators of a replacing type?

Again, Argus typing problems arise; the client must know the type to invoke the

creator and it would require support in the language to allow substitution of the

replacing abstraction's creator automatically. (In addition, the replacing abstraction

must be an acceptable replacement from the initial state.)
78

Replacements with extending abstractions encounter still other problems. We

referred to this issue in Section 4.1. Here. not only is the interface type different in

name, but it contains a different set of handlers as well. To allow any handler to be

added to the mail system requires being able to bind interface objects of the

extended type to variables of the original type. This raises numerous language

issues, such as whether binding in the other direction would then be possible. The

meaning of types in Argus would have to be extended to accommodate the notion of

"type compatibility". In this dissertation, we disallow extensions that change the

original event set in addition to adding events.

Overall, replacement of one abstraction with another in Argus will be limited to the

case in which the interface type does not appear in the interface of any of the

guardian's handlers. Furthermore, new clients will have to know the new

abstraction type, and old and new clients will not be able to communicate values of

the interface types to one another.

79

Chapter Five

User Requirements

Thus far, we have discussed the requirements imposed on dynamic replacement by

the need for type safety and correctness. In this chapter we focus more directly on

the mechanism needed to perform replacement in the Argus system. We examine in

detail the actions that must be performed to effect a replacement, and the kind of

support users require in the course of performing a replacement We distinguish

between those actions that can be performed automatically and those that require

user intervention.

Because subsystem instances are not identifiable in the running system, the actual

replacement mechanism will have to manipulate guardians individually. This

limitation is reflected here in the descriptions of the actions to be performed; the

functions described are for single guardians rather than subsystems.

We first address the problem of identifying the guardian instances to be replaced

and locating those instances in the Argus network. This problem is the first one

encountered by a user attempting to perform a replacement While it is not a

problem unique to replacement(for example, it arises in debugging also), it must be

handled if replacement is to be accomplished. Because the problem is only

tangentially related to replacement and much overhead is involved in supporting a

full solution to the problem, we provide only a minimal solution here.

We then examine each aspect of a single guardian subsystem that may be changed

during replacement, and the actions needed to accomplish that kind of change.

These include changes to program text, state structure, and finally location. We

80

then go on to discuss issues that arise in replacing multi-guardian subsystems as

single entities.

This chapter deals only with enumerating the requirements of the replacement

system's users. In chapter 6, we will propose a mechanism for supporting these

requirements.

5. t Locating Subsystem Instances

Identifying the subsystem instances to be replaced and locating their components is

a major difficulty facing the user at the start of replacement This section identifies

the properties of subsystem instances that distinguish one instance from another and

might influence whether or not a given instance should be replaced. From this

information, it is possible to determine the set of functions that must be provided to

allow the user to locate the instances needed

One of the characteristics of Argus that complicates this problem is that neither

guardians nor subsystems have any user-meaningful names. These modules are

created by other subsystems dynamically, and are distinguished from one another

wi~in the Argus system only by the fact that different clients hold the handler

·names for different instances, and that the states of various instances are different at

any given time.

This situation presents two problems. First, given that several subsystem instances

exist, how does the user determine which it is that must be replaced? The first

function of the replacement server therefore must be to give users a means of

distinguishing between instances of subsystems in existence. The second problem is

how the user can locate the components of a given subsystem instance if the system

cannot identify that set of components as a unit

81

5.1.1 Identifying Subsystems using System Information

A user entering the replacer must first be given some method for finding out what

subsystem instances exist In providing the subsystem location facilities for the

replacement server, we must know what information users will need to be able to

make this decision, and incorporate in the replacement mechanism the means to

obtain that data. Certainly the first piece of information users need in

differentiating .between subsystem instances is the type of those subsystems: the

user is interested in replacing a subsystem instance of a given type with another

instance of that subsystem. Thus, the replacement system will need to provide some

method of locating instances of a given type; the catalog provides one such method.

In addition to the type of the subsystem, users will generally be interested in finding

instances using a particular implementation. For example, if the replacement is

taking place to fix a bug, then the instances in which the user is interested are those

using the incorrect implementation.

Aside from the type information for a subsystem or guardian instance, the other

obvious piece of information that is readily provided by the system is location of a

guardian. (Since subsystems may span nodes, the location is meaningful only with.

respect to individual guardians.) Whether a subsystem needs to be replaced may

depend on the node(s) at which its components reside. For example, we might want

to relocate a maildrop if it is "too far away" from most of its users, given the current

network topology.

Thus, the type, the implementation (including bindings to externally defined types),

and the location are the pieces of data known to the system that are most likely to be

used in identifying a subsystem or guardian instance for replacement

82

5.1 .2 Identifying Subsystems by State Information

Another requirement arises in attempting to locate subsystems for replacement

Whether a subsystem should be replaced may depend on the value of its state.

Removing all instances of that type to examine their state may cause significant

disruption to the system. It would therefore be desirable to provide a way to

examine such state without stopping the guardian in question. Suppose for

example, in our mail system, we wanted to replace maildrops having more than a

given number of users with new versions allowing faster access. It may have been

decided that it was not worth replacing maildrops with fewer users since the benefits

would not be as significant

Toe ability to examine state in this manner serves two other purposes as well. First,

it will aid in locating subsystem components, since those components may be static

components of the root's state (or some other component's state). The second case

for which examining state is useful is locating components of subsystems with

cluster roots. In this case, there is no root guardian to search for, and finding all the

components of a single subsystem instance may require accessing a client's state. To

avoid disrupting clients for replacement, users should be able to access the state

while the client guardian is running.

lnfonnation obtained while a guardian is running cannot be time dependent in any

way that will affect the decision on whether to replace the guardian. Since the

guardian is still running, it can be participating in transactions and the state value

may change between the time the state is examined and the time the replacement is

actually started. The user must know that needed state information is static or that

the effect of the interceding transactions will not be significant in the decisions made

based on the data. If the state value were time dependent, exclusive access to the

guardian's state would be needed until replacement started or a decision was made

not to replace.

83

In our maildrop replacement. for example, while the number of users may change

over time, once it has reached the specified number, it will not be reduced. Hence,

there is no semantic reason to stop use of all maildrops while their states are

examined. On the other hand, stopping user access to all maildrops will disrupt

service.

In summary, to locate subsystem instances in the running system, we require that

information be available as to the guardian instances in existence at each node,

along with the identity of their types and implementations. Furthermore, while not

absolutely necessary, it is helpful to be able to examine the permanent state of a

guardian without disrupting its availability.

5.2 Single Guardian Replacement

This section examines the tasks users will have to perform to replace a single

guardian subsystem. To identify those tasks, we analyze the various changes likely to

be made to module definitions in the library, and the corresponding modifications

that must be made to active instances of those modules to incorporate such changes

dynamically. The set of changes that can be made is limited by the legality

constraints in Chapter 4. By enumerating these classes of changes, we can derive the

set of functions that must be provided to users of the replacement system. In the

first two subsections we describe the functions required to modify guardians at the

user's site. In the final subsection, we discuss relocation of guardians and the

management of replacements at remote sites.

84

5.2.l Code Modification

One of the simplest kinds of changes that requires dynamic replacement is a

modification to the code of a single guardian with permanent state. If the code

change does not affect the· representation or value of the permanent state objects,

that state need not be modified. Before replacement starts, the user must install the

new implementation and external binding information in the library (see section

2.5). The replacement mechanism is used to convert running instances to the new

implementation. Such a conversion requires the following to occur: the new code

must be loaded; the existing stable state must be associated with the new instance;

and a mapping must be defined from handlers of the replaced guardian to handlers

of the new guardian, so that messages can be automatically redirected to the new

guardian. The old instance must of course be removed from !ifVice. The replacer

should be checking that the new handlers and state are of correct type before

allowing the replacement to proceed Finally the new guardian must be made

available to clients. Since we are only transferring the stable state to the new

guardian, we are making the assumption that the new guardian is " returned to

service" as if the guardian were recovering from a crash the recovery code must be

invoked to reinitialize the volatile state.

An illustration of this kind of replacement can be seen using the mail subsystem

defined in Figure 2-5. Suppose for instance that the user wished to change the

procedure used to select a maildrop for a new user. (This is the select handler in the
"l

registry.) Note that only a registry guardian, not the entire mail system, must be

replaced to make this modification.

No modifications are being made to the state of the registry. However, the

replacement mechanism must ensure that the state value is correctly transferred to

the new instantiation. The state that must be moved to the new instance is only that

portion declared to be stable, i.e. steers and regs.

85

This case illustrates why we cannot use the replacement method of starting the new

version in parallel with the old one, and transferring clients over gradually. The new

version must start with the current regs and steers values from the old instance. If

the old instance continues to run after the new one starts, the two instances will be

making independent changes to their separate copies of the state. Thus, one will be

recording the results of some transactions while the other will be recording results

from other transactions. When the old instance is finally removed, the history it

recorded that had not been transferred to the new instance will be lost Hence, the

switch from the old to new instance must be performed atomically with respect to

clients of the guardian.

The replacement mechanism must ensure that all handler names for the old instance

must be associated with the new instance, so that clients holding those handler .

names need not be aware of the replacement Thus, for example, the all_regs

handler from the old instance must be bound to the all_regs handler from the new

instance. In general, clients should be unaware of the replacement; the only visible

effect should be the unavailability of the mailer for some period of time. Clients can

continue to send messages to the handlers they have invoked in the past; the

rerouting should be handled automatically.

Thus, in summary, we can identify several requirements imposed on a replacement

mechanism by the need to make changes in the program text of modules on-the-fly.

These are;

- The modification must be atomic with respect to clients.

- The stable state must be transferred to the new instance.

- If state transfer is to be limited to stable state, it must be possible to
invoke the recovery code when guardians are restarted after
replacement

86

- The handler connections must be transferred to the new instance.

5.2.2 Modifying State Structure

The problem becomes more complex when the changes to the implementation

involve changing the form of the permanent state in the guardian. For example,

consider the maildrop guardian in the mailer. Suppose the user decided that

accessing the userlist was too slow. One possible improvement would be to

alphabetize the list and use a binary instead of linear search technique for locating

users. Such a change would involve not only changing the implementation of the

maildrop's handlers, but (if we are to preserve the current state information) sorting

the list of mailboxes (boxes) that already exists. The former change can be

performed statically by inserting a new implementation in the library. The latter

change must be performed by the replacement service. Notice that this change is

entirely a change in implementation. The interface to the maildrop remains the

same. To be able to perform this replacement, the implementor must be able to

access the state (i.e. boxes) at the time of replacement and change its form (to the

alphabetized list). This change should be invisible to clients of the guardian since

the abstract value of the state is unchanged. It will be legal according to the criteria

from Chapter 4, since the result of any input event, and the set of allowable future

sequences, are unchanged by alphabetizing the list.

It is clear from the above example, however, that the change in the state is

application dependent The replacer could not automatically transform the state;

the user must explicitly sort the old list. Thus, one requirement for the replacer is

that the user be able to invoke arbitrary procedures on the state. This requirement

raises reliability issues. The user is modifying state on which consistency constraints

exist and for which the transaction system has guaranteed robustness. An incorrect

transformation is possible, and the result of such an error will be the loss of state

87

consistency. Hence, we .cannot ensure that our instance replacement criteria

(Section 4.2) are satisfied without verifying the translation procedure. The only

reliability checking we can perform is type checking; we can guarantee that the

objects stored in the new state are of the types expected and that any procedures

used to modify the state are type-correct.

Another point evident from this last example is that a replacement needed for one

instance of a guardian definition might not be useful for all instances. Different

maildrops in the mailer might have different usage characteristics, for instance some

having more users or heavier load characteristics. It might be important to have

different implementations for different instances. For example, it might only be

worth changing to sorted lists for those maildrops that have many users and

frequent access. Otherwise, the overhead of sorting becomes unnecessary.

Hence, we add another functional requirements for the replacement mechanism:

- The ability to invoke user-defined transformation procedures on state
objects.

5.2.3 Internode Replacement

There are two aspects to intemode replacement of single guardian subsystems:

relocating the guardian to a different node in the network. and controlling

replacement of guardians at sites other than the one at which the user is located

If a guardian must be moved to a different node. but its state must be retained. the

move can be accomplished by replacing the guardian with another guardian of the

same type at the new location. Such a replacement would be necessary if. for

instance. a site were about to be removed from the network for an undetermined

period of time and there were services at that site that had to be kept available.

88

Alternatively, usage patterns may change in a way that makes it useful to have the

module closer to others in a different location. For instance, if maildrops didn't

exist at every node and one of them was originally placed at a node that had few

users, it might speed up mail delivery and reduce network traffic to move the

maildrop to the location where most of its users were.

The first problem that arises in supporting this kind of replacement is that the state

needs to be moved to the new location, but the objects that comprise the state may

not be transmissible (see section 2.3). If the values in the state never need to be

transmitted during the normal operation of the guardian, there would have been no

need to use types with encode and decode operations for the state objects. Hence, it

will be necessary to provide some mechanism whereby the user performing

replacement can transform the state objects into transmissible ones, so that the

needed values can be moved. At the new site, the transmitted values will have to be

transformed into objects of the types used by the new instance.

The second problem arising in guardian relocation is one we refer to as type

incompatibility. Because of the requirements of node autonomy in the Argus

system, there is no assurance that types that exist at one node will have

implementations for other nodes in the network. Therefore, relocating a guardian

may require changing the implementation, as well as moving the state. There may

be types in the original implementation's state that do not exist at the new site, and

conversely, the types used in the new state structure may not exist at the old site.

Even if the state objects are transmissible, they cannot be sent to the new site if that

site does not recognize their types. The objects will have to be translated at their

existing site into a form that is both transmissible and recognized at both sites.

Again, at the new site, yet another translation may be required to derive the objects

for the new state.

89

Controlling replacement at remote sites, even when the guardians are not being

relocated, involves many of the same problems. It may be necessary to translate the

state of the replaced guardian into a new format It is inconvenient to first move

that state to the user's site to be manipulated locally because of nontransmissibility

or type incompatibility. Therefore, the user must have the ability to specify

commands and procedures to be invoked at the guardian's site. This ability differs

from remote procedure call in that the results are not to be returned to the user's

site; rather they are used at the site of the invocation. Thus, facilities are needed for

naming and storing these values at the guardian's site, and then accessing them in

later invocations. These requirements arise in relocating guardians between two

remote sites as well. In Chapter 6, we will have to define replacement environments

that support these functions.

Thus, the following additional mechanism is needed to support intemode

replacement:

- Toe user must have the ability to manipulate state objects and invoke
procedures at remote sites during replacement

- It must be possible to store and access temporary values at remote sites
during replacement

5.3 Multiple Guardian Subsystems

The next category of changes involves multiple-guardian subsystems. The library

information about subsystems will provide information about the interfaces to those

subsystems. As with single guardians, only the interface must remain unchanged

across a replacement All implementation details should be modifiable. Users

should be free to change any such details, including such major changes as the types

of the component guardians. It should not matter if those guardians are the same

90

types as those in the earlier version, as long as the handlers in the subsystem

interface are provided by the new set of guardian. The handlers used internally in

the subsystem need not stay the same. Similarly, although the abstract value of the

state must remain unchanged across a replacement, the state information may be

redistributed among the components of the subsystem in a completely different

configuration than in the old version. Unfortunately, we will not be able to meet

this goal entirely: the root guardian type will not be permitted to change. This

restriction is due in part to the system of storing the subsystem information in the

root guardian, and in part to requirements of the Argus typechecker.

One such change would be to replace the mail system with one having mailers and a

new type of guardian called mailsite, where mailsites perform all the functions of

both registries and maildrops. The structure for the mailsite type, and the new

mailer implementation are sketched in Figure 5-1.

mailsite = guardian is create
handles add_mailsite, add.user, read.mail, send.mail, select, aJJ_sites

steering = struct[site:mailsite, users:userlist]

steeringlist = atomic_array[steering)
site.list = atomic_array(mailsites]

stable steers: steering.list

add_mailsite = handler(home:node) returns (mailsite)
add.user=
read.mail=
send.mail=
select=
all.sites=

end mailsite

handler(usr: user.id)
handler(usr: user_id) returns (msg_list)
handlel(usr: user_id, msg:message) signah(no_such_user)
~andler() returns (mailsite)
handler() returns (site.list)

Figure S-1: A Restructured Mail System

91

The user interface to the mailer is unchanged; however, the internal handlers of the

mailer are different. Add_maildrop and add_registry are replaced by the single

handler add_mailsite. In addition, the state of the mailer now points to a mailsite

rather than a registry, and the code for all of the mailer's handlers is different, since

mailsite handlers must now be invoked inst~d of registry and maildrop handlers.

All of the handlers of the registries and maildrops must be permanently removed.

The state in(ormation from the maildrops must be moved into the mailsites. It will

be the user's responsibility to ensure that the set of mailsites instantiated during

replacement start with the correct knowledge of the other mailsites. In addition, the

steeringJist will have to be reconstructed using the old steering_list and the

information as to which maildrop states were moved to which new mailsites. The

user must decide explicitly which registry and maildrop instances have state moved

to which mailsites. Since these instances are at various sites in the network, some of

the state information will have to be moved to the sites of the new mailsites.

Performing this replacement would obviously be time consuming, as it involves

every component of the mail system, which we assume to be network-wide.

Whenever a subsystem structure involves replicated data. or has consistency

constraints among large numbers of components, replacements will also frequently

involve large numbers of components, since the internal consistency constraints

must be maintained.

Performing this kind of replacement requires combinations of the actions required

for the various kinds of single guardian replacements. Little new power is required.

It now must be possible to rebind some handlers from a guardian to one new

guardian instance, and other handlers from the same guardian to another instance.

The two new instances might not even be at the same node. Similarly. it might be

necessary to move various state components of the same instance to different

locations. The same problems of state relocation arise when multi-guardian

92

replacements span nodes as anse m guardian relocation. Other than these

generalizations of previous requirements, the only special support needed for

multiple guardian subsystems is the library support described in Chapter 3.

5.4 Subsystem Extension

Finally, there will be cases in real systems in which it is discovered after a subsystem

is running that some needed function has been omitted. As discussed in

section4.l.l, type extension will be permitted. The replacement system, however,

will not distinguish between non-interfering extensions and more general

extensions. The user performing an extension must be aware of the implications of

extension as described in section 4.1.3. The only checking that can be performed is

to ensure that the guardian type being replaced does not appear in the handler

interface of that guardian type, as discussed in Section <SpecsLimit>. The main

functional requirement for extension is that the user be allowed to create an instance

of the extended type and rebind existing handlers to some of the handlers of that

instance, while allowing the others to be newly created.

5.5 Limitations

There are also cases of replacements that would be considered legal according to our

criteria, but which are particularly difficult to accomplish. As stated in Chapter 3,

subsystem information is distributed between the clients and the subsystem's

guardian components. Information that is replicated in every client cannot be

changed without locating each of those clients. Thus. the more information residing

in the guardian components of a subsystem. the greater the range of possible

replacements. Thus, replacement of cluster-based subsystems that affect data

residing at client sites is particularly difficult

93

There is one kind of legal. replacement that requires locating the clients when the

only information they hold is the handler names for the subsystem. This is the

situation in which some clients are to be reconnected to one handler and others to

another handler: in other words, when a subsystem is being split. If, for example,

in the mail subsystem, we decided that a maildrop had become too large, we might

want to split it into two maildrops. Half the users currently in that maildrop could

remain. However, the other half would now be in the new maildrop. The state in

each registry has a maildrop listed for each user. If two maildrops were being

combined, the handlers for both could be rebound to the same handlers. The

steerlists would not have to be updated in each registry. Only the two maildrops in

question would have to be accessed during replacement In this situation, the

registries are in some sense the clients for the maildrop subsystems. The merging of

two maildrops could be performed without locating those clients. However, to split

a maildrop into two would require updating each registry's steerlist explicitly. There

is no way for the underlying message forwarding system to determine automatically

which messages for the split maildrop were to be delivered to which of its

replacements.

One function that seems useful, but which we do not provide, is the ability to locate

and replace all instances network-wide. The reason for this omission is that it is

difficult to define the meaning of such a command. Not all nodes may be available

at any given time. New nodes may be added while the command is in progress.

New instances of the subsystem type in question may be added to those nodes prior

to entry into lhe network. Thus, no accurate listing of the instances is attainable.

Furthermore, if we then replace all those instances, we cannot assure that some new

node entering the network does not have an instance of a subsystem satisfying the

criteria for replacement Theoretically. to allow this kind of command would

require the ability to check every node entering the network for an indefinite period

94

of time into the future to ensure that no such instances existed. (It might not need

to be forever, if we could ensure after some period of time that the type no longer

existed or if the definition of the library ensured that a new node entering the

network could not have access to such types.) While providing network-wide

replacement is an important issue, it is not addressed here. The problem bears

similarity to issues raised in [4].

5.6 Summary

We have identified a number of functions required for locating subsystems to be

replaced, as well as for performing the actual replacements. In summary,

performing a replacement requires not only the ability to substitute a new instance

for an existing one, but also the ability to modify and transfer the state information

between instances and to move data between nodes. This last requirement implies

that it also must be possible to manipulate state objects at remote sites before or

after moving them. Furthermore, users must be able to state the association

between the handlers from replaced guardians, and those from newly installed

guardians, so that communication with clients can continue uninterrupted

95

Chapter Six

A Mechanism to Support Replacement

The previous chapter discussed the expressive power requirements for perfonning

replacements of subsystem instances in Argus. In this chapter, we propose a

mechanism to provide that power. We will examine not only the specific set of

commands needed, but also the semantic and implementation issues that arise in

defining those commands.

The description of the mechanism is divided into several parts. . First, we describe

the replacement system environment and namespace in which the replacement

commands are invoked and executed. We then describe several sets of commands

needed for perfonning single site replacements, including commands for: locating

subsystem instances, creating and deleting guardian objects, transferring handlers,

and transferring state values. We then discuss the handling of inter-site

communication during replacement and perfonnance of multi-site replacements.

Lastly, we discuss the issues involved in providing replacement as an atomic action

in the Argus system.

6.1 User Environment

Due to the complex nature of the tasks that must be performed during the course of

replacement, the replacement system must support a fairly extensive user

environment There are several aspects of dynamic replacement that require special

support.

96

In addition to the set of replacement commands that will be provided, the

environment will need to support invocation of user-defined procedures for state

transformation, as well as local variable declaration and assignment for storing

intermediate values when complicated transformations require many steps. When a

user enters the replacement system, a local environment is created. Each user has an

independent environment Initially the namespace in that environment contains

only the Argus basic types and the replacement commands. The replacement

system can access the library and install other types, given type and implementation

information. Hence, other types and procedures can be loaded as needed. All types

used in any guardian named for replacement are loaded automatically.

Since we are concerned here primarily with presenting the semantics of a dynamic

replacement mechanism, we will not address the issues of providing a friendly user

interface. A higher-level interface and full replacement language can be constructed

using the basic commands and environment described here. In the examples given

in this chapter, we use Argus syntax. An actual user interface for a replacement

mechanism would probably be more interactive.

One necessary feature of the environment is that it be fully typechecked. Since we·

are performing replacement in a strongly typed system, we must be able to type

check replacement functions and intermediate results to ensure type consistency at

the conclusion of the replacement However, the type checking we will be assuming .
in the specification of the commands must be performed dynamically (at the time of

invocation) because it depends on the implementations, as well as the types, of the

subsystems in use.

Because the function of the replacement system is to manage the changeover from

one implementation of a type to another, types and multiple implementations of a

type must be dealt with explicitly; the simultaneous use of multiple

97

implementations of a type is a necessity. The user environment therefore cannot be

described as a set of Argus procedures, because types are not considered objects in

Argus and hence cannot be manipulated as data. Furthermore, the Argus system

does not deal with multiple implementations of a type in the same address space.

The replacement mechanism must depend on the availability of symbol table and

binding information about modules being replaced. Since a dynamic debugger [2]

will require this information also, we will assume the information exists and can be

accessed by the replacement system. When an invocation of a cluster operation

occurs within the replacement environment, the appropriate implementation of the

operation can be selected based on the implementations associated with the

argument of appropriate type. If the operation has two arguments of the type, and

they are of different implementations, the operation will fail. 8 If the implementation

cannot be identified (for example if there are no arguments to the operation), the

user will be asked to identify the implementation. When new guardians are created

during replacement, the guardian_image to be used is provided explicitly by the

user.

Thus, the replacement system provides an interactive user environment that allows

invocation of Argus procedures and replacement commands, performs type

checking and version management, and maintains a set of local objects and

variables. In section 6.6, we discuss how this environment can be extended for

multi-site replacements.

81t will be left to the user to coerce the two objects to the same implementation, for instance by
using the encode and decode operations of the type.

98

6.2 Locating Guardian Instances

When a user enters the- replacement system, the first task is to locate the subsystem

instance to be replaced. As discussed in Section 3.3, we are unable to maintain

instance information dynamically. Hence it is left to the user to locate all

components of a subsystem at the time of replacement Here we discuss the basic

set of commands we provide to aid users in locating guardian and subsystem

instances in the Argus network.

Perhaps the most direct way to locate guardians is through the catalog. As

mentioned in Chapter 2, Argus provides a catalog of services.available in the system.

Handlers for those service subsystems are listed in the catalog under a "service

name" (usually the DU name). Requests to the catalog will ·return the set of

handlers for each subsystem instance associated with the service name supplied

(The catalog may allow other properties to be specified as well, for example

location.)

To perform replacement, the user will need the unique identifier, or gname, for the

instance, rather than its handlers. (This requirement stems from the fact that all of

the handlers for a subsystem may not be connected to the same guardian.) Toe

gname can be obtained via the command: get_gname(handler_id), which returns the

gname of the guardian with which that handler is associated..

For those subsystems not listed in the catalog, the replacement system provides its

own commands. The command:

all_instances(typename, impl_id, node_id) returns (seq[gname])

returns a sequence that contains the identities of all guardian instances of the given

type and implementation that exist at the node given. The typename identifies the

99

DU in the library and any parameters, if the guardian type is parameterized. Hence

to obtain the mail system's instances at the user's node, the following command

would be used:

all_instances(mailertype, impl, home)

Note that since subsystems are not entities understood by Argus, the replacer can

only find guardian instances, not subsystem instances. We therefore had to request

instances of the root guardian for the mail system.

A problem arises here in that new instances of the subsystems in question may be

created during or after a search is made for those subsystems. Therefore, by the

time the user starts replacing instances, the information about existing ones may be

inaccurate. (Instances may also be terminated but this presents less of a problem.)

If all instances at a node are to be changed we do not want new instances being

created during replacement The replacement system itself cannot control creation

of new instances. It must depend upon the existence of an Argus system command

that suspends the ability to instantiate (i.e. load) instances of a type. The user can

then make the appropriate types or implementations unavailable for creation until_

after replacement The existence of this command is one requirement that the

replacement mechanism must place on other parts of the Argus system.

We have provided no command for locating all instances of a guardian type

network-wide (only node-by-node) for a similar reason. We cannot control entry

into the network of new nodes that can instantiate guardians of a type being

replaced while replacement is taking place. We therefore require that users name

each node explicitly. so that instantiation can be stopped at that node prior to

replacement· We discuss this issue in Chapter 7.9

9Tuis probiem is similar to the "phantom" problem discussed in (4).

100

The user may also need to examine the state of a guardian under consideration for

replacement, or possibly examine the state of client guardians to determine which

instance of the service those clients are using.

To provide a mechanism to return a copy of a state object requires cooperation from

the stable storage system. Without replacement, stable storage is read only during

recovery, when the guardian is inactive. However, stable storage is never updated in

place, so it should be possible to read the last copy even while a new copy is being

written. We therefore can modify the stable storage interface to allow a request to

read the last copy without locking the primary copy in volatile storage. The form of

the command we provide is:

examine[t](gname, string) returns (t)
signals (wrong_type, no_such_variable)

where the string argument contains the name of a stable variable in the guardian

named by the first argument and t is the type of the object named by that stable

variable. Note that this command can be properly typechecked dynamically. but

not statically. The type t depends on the type and implementation of the guardian

named by gname. Neither of those pieces of information are available at compile

time. Note also that if two consecutive examines are performed on the same

guardian, they may not provide a consistent version of the state, since the guardian

has continued to execute. Examine provides access to each stable variable

independently, instead of copying the entire state, because we believe users will

often need only part of the state, and copying all of a large state would introduce

unnecessary overhead. However. for simplicity, we assume the entire state

reachable from the stable variable will be copied. (Depending on the

implementation of stable storage, it may be possible to optimize this. copying atomic

objects only as they are used)

101

It should be noted that the commands presented here depend upon certain

information being available in the system at the time of replacement This

information includes the list of guardian instances currently existing at a node, along

with the type and implementation associated with each guardian instance. The

guardian management in Argus will keep the list of guardian instances along with

the connection to stable state and to a copy of the load module for each. These are

needed for recovery purposes. As mentioned earlier, the type and implementation

information is kept for debugging, as well as replacement How efficient commands

like all_instances are depends heavily on how easily accessible this information is.

Keeping the type and version information in the guardian manager's state rather

than in each guardian will make implementation considerably easier.

6.3 Managing Guardian Instances during Replacement

This section discusses the functions required to manage collections of guardians

during replacement The user must be able to indicate which guardians are actually

to be replaced. When a subsystem is being replaced, the subsystem root must be

indicated so that appropriate checking can be performed. The command:

replace(typename, typename) signals(no_such_type)

states that a subsystem of the type specified by the first argument is to be replaced

by an instance of the type given by the second argument. The second typename

must be the same as the first, or the type it names must be a legal extension of it

(section 4.1.3). As discussed in section 4.3, if the two are not identical, the guardian

type may not appear in the interface of any of the handlers. The replacement

mechanism will compare the subsys_handles clauses in the two DU's to ensure

compatibility.

102

The replace command is intended to inform the replacement mechanism that the

interface to the subsystem, rather than the interfaces to individual components.

should be used for typechecking the replacement The replacer will then allow

handlers that are not identified in the subsys_handles list of the replaced type to be

eliminated during replacement

The replace command also has the effect of starting the replacement transaction.

All actions performed between execution of the replace command and the

end.replace command (described later) occur as a single atomic action with respect

to clients of the replaced modules. Interruption of replacement by a node crash or

explicit abort will cause all effects of the transaction to be discarded. It should be

noted that the replacement commands described in the remainder of this chapter are

not handlers. and their invocation will not initiate nested actions.

Because replacement requires exclusive access to the guardian instances. those

instances will have to be removed from service before replacement can continue.

This is done via the command:

remove(gname)

There are numerous options for scheduling this removal relative to client

transactions requiring service. These will be discu~d later in this chapter (Section

6.7). The guardian removed should be of a type named in a previous replace

command or in the includes list of a previously removed guardian.

The remove command has the effect of terminating the guardian. By the semantics

of guardian termination in Argus. the guardian is permanently destroyed only if the

transaction that executed the terminate command commits. If the transaction is

interrupted by a crash. the guardian is restarted. Though a guardian that has been

103

removed will appear to clients to be crashed, the Argus system must be able to

differentiate between crashed and removed guardians for two reasons. One is that

crashed guardians can be replaced, while guardians that have already been removed

for replacement must be unavailable to future replacement transactions. The second

reason for the distinction is that crashed guardians can be automatically restarted by

the system, while removed guardians cannot be.

Once the guardians to be replaced have been identified, the new subsystem

instances and their components must be created. This can be done using the

function:

new[t](gimage) returns(gname. t)

The parameter t is the type of the guardian to be created. for example mailer. The

object of type t returned is the guardian interface object of the newly created

guardian; gname is the unique identifier of the new guardian. The gname returned

could be derived from the interface object However. both will be needed during

replacement, and since Argus allows multiple return values from procedure

invocations. returning both values will save an additional invocation. Gimage is the

name of the guardian image in the DU fort

New creates a new instance of the guardian. without running any creator. The

module is loaded, and its handlers are created No volatile or permanent state is

written. It is the user's responsibility to write the permanent state. The replacement

mechanism will ensure that all state components are initialized before allowing the

replacement transaction to commit As with creators, guardians instantiated via the

new command will become recoverable upon commit of the transaction. If the

replacement aborts. the newly created guardians will disappear. (Unlike creators,

guardians created by new are not immediately available to clients.)

104

If a guardian has been removed via the replace command but is to be restarted

without being replaced, a

restart(gname) signals (modified)

command is provided. This procedure may be necessary if some data is needed

from the state and cannot be retrieved via the examine (perhaps because it is

mutable). The effect of restart is to start the guardian as if it were recovering from a

crash; hence the recovery code is invoked. Because there may be consistency

constraints between these guardians and the replaced or new ones. restart will not

take effect until commit of the transaction. Similarly. an explicit terminate

command is used if for some reason a new guardian is not to be installed at the end

of replacement

Normally, all new guardians will be restarted automatically, and all removed

guardians terminated at the end of replacement The end_replace command

performs this function. End_rep/ace is invoked by the user to inform the replacer

that the construction of the new subsystem is finished, and that subsystem may be

started in place of the one removed from service. The status of the removed

guardians must then be changed to terminated. so that they will be permanently

destroyed upon commit of the replacement transaction. The Argus system must be

informed that the new guardians have "crashed". so that they will then be

"recovered" when replacement commits (thereby retrieving the newly created state

from stable storage, and initializing volatile state.)

End_replace will refuse to commit the transaction if certain conditions on the state

and handlers of the guardians have not been met We discuss those conditions is

sections 6.4 and 6.5.

10S

The counterpart to the end_replace command is abort_replace. In this case, the

replacement mechanism ensures that all guardian instances revert to their status

prior to the replacement New guardians are destroyed. Removed guardians will

resume execution as if recovering from a crash (unless they were in a crashed state at

the start of replacement, in which case they remain crashed)

6.4 Continuity of Communication

One primary criterion we have imposed on the replacement system is that clients

need not be notified of a replacement To avoid such notification, messages for

handlers of replaced guardians must be forwarded to the corresponding new

handlers automatically. The user performing the replacement must explicitly define

the mapping from old to new handlers using the command:

rebind[structtype] (gname, structtype) signals (incomplete, bad_handler)

where gname is the name of the replaced guardian, and the structtype is either a

struct{handlers] or a guardian interface object The struct[handlers] must have

fieldnames and components corresponding to the handler names and handler types·

in the old guardian. The component values are the handlers to which the

corresponding old handlers are to be rebound It need not contain all the handlers

from the old guardian, if some of those handlers are not in the subsys_handles list.

The fieldnam~ in the structtype are used to determine which handlers in the old

guardian are to be rebound. A handler in the old guardian will be rebound to the

component of the struct[handlers] with the fieldname corresponding to the handler's

name. Old handlers with no corresponding fieldname in the struct[handler] will not

be rebound. Rebind will signal incomplete and the rebinding will not be performed

if such a handler is in the subsys_handles list. Internal handler names may appear in

106

the struct[handlers}. The names of new handlers for extended types need not

appear, as they have no old handlers rebound to them. Only handler names that

appear in the subsys_handles clause of the old guardian may be in the

struct[handlers}; otherwise, bad_handler is signalled.

The second argument can also be an interface object; there is a simple

correspondence between a system-defined guardian interface type and a

struct[handler]. This option is provided because it is far easier to describe single

guardian replacements using the interface type directly. As with the basic

struct[handler], the handler types in the interface object must correspond to

handlers in the old guardian, and all old handlers covered by the subsys_handles

clause of the subsystem must be rebound. The rebind command must be executed

exactly once for each removed guardian of the type named in the replace command,

and for each guardian named in the subsys_handles clause of a guardian that has

been rebound. Thus, if a mailer named old.mailer is to be replaced by a new mailer

instance, the following commands might be used:

mailemame:gname, new_mailer:mailer: = new[mailer](mailer_image)

rebind[mailer](old.mailer, new _mailer)

The asymmetry in the rebind command exists for the following reason. All of the

handlers of each removed guardian must be explicitly rebound, except for those

handlers internal to the subsystem that are not used by the new implementation. On

the other hand, the handlers bound to a new guardian may come from several

different replaced guardians. By insisting that all of the old guardian's handlers are

rebound at once, we make it less likely that the user will forget to rebind one.

Furthermore, a check can be performed at the time of the rebind to ensure that all

handlers from the guardian that are in the subsystem interface are being rebound.

107

A problem. arises in using rebind when handlers not in the handles list of the
.~.':

guardian are nonetheless passed to clients. Since these internal handlers are in the

guardian's interface, they must be rebound; however, they are not in the guardian's

interface object and are not returned by the get_handlers operation. An operation

get_handler[t](gname) returns (t) signals (no_such_handler)

is therefore needed to retrieve the handlers. Here, t is the handler type. The

handler must be explicitly included in the set of handlers comprising the second

argument to rebind. The internal handler of that name will be automatically

retrieved from the guardian named as the first argument of rebind. Note that this

problem arises only with handlers that are internal to a guardian. Handlers that are

in the handles list of any replaced guardian can be accessed without this special

command.

Any number of existing handlers may be rebound to the same handler. Thus, in our

example, if three maildrops were to be merged, they could all be rebound to the

same handler, by performing three rebinds with the same second argument.

The handler_id of the destination handler remains distinct from that of any of the

handlers rebound to it. If equal(handler 1, handler2) was false before replacement, it

will remain so after replacement, even if handler! and handler2 are rebound to the

same handler. Because of the difference in handler_ids across a replacement, there

will be cases in which the occurrence of a replacement is visible to clients of the

replaced subsystem. These cases arise when a client acquires the id for the same

handler twice. If the guardian to which that handler belongs is replaced between the

two acquisitions, a comparison of the two acquired identifiers will reveal the

replacement If no replacement had occurred, the id acquired each time would have

been the same, whereas an intervening replacement will cause a change in the id. In

108

the standard ~ase, clients invoke handlers but never examine the handler_id; hence,

replacement is not visible. However, as long as clients have access to an equal

operation on handlers, it is not possible to completely hide the occurrence of a

replacement (Note that this situation is not evident in our formal model, as the

distinction between handler id and handler definition is not made.) .

The implementation of rebind is dependent on the implementation of the

underlying message distribution system. Rebind cannot be performed unless a level

of indirection exists between the handler name given to clients and the handler

address. The Argus message transmission mechanism must be able to redirect

messages. As part of a replacement, this message distribution subsystem must be

notified of the change in location.

6.5 State Management

6.5.1 State Access Procedures

Once a guardian has been removed from service, the user may access its permanent_

state via the state manipulation commands. For the single node case, when state

information is not being transferred between nodes, we have two basic commands:

get_state[rtKgname) returns (rt) signals (wrong_state_type)

and

put_state[rtKgname, rt) signals (wrong_state_type)

In these interface specifications, rt is the record type corresponding to the state

object of gname. (Specifically, the field names of rt correspond to the stable

109

variable names in the state of gname, and the component types correspond to the

types of the objects associated with those stable variables.)

Since the state transfer cannot be performed automatically, the put_state must be

explicit even when no change has occurred. For those cases in which the state must

be transformed during replacement, some translation operations will be called

between the get and put operations. It is for this reason that the replacer's user

environment must allow arbitrary procedure calls.

The type correctness of the get_state and put_state operations cannot be determined

by static typechecking. Whether rt corresponds to the state type of gname depends

not just on the guardian type of gname, but on the implementation instantiated

The replacer must check the implementation of gname explicitly, and retrieve the

state type information from the library or debugger's database.

A put_state operation must be invoked for every guardian instantiated during

replacement (that is not explicitly terminated prior to end_replace). End.replace will

not permit the transaction to commit until this condition is satisfied.

We have provided only operations to access and store the entire stable state of a

guardian, because it seems likely that state transfer during replacement will require

use of the entire state value. There is no difficulty ~iated with providing

operations to access individual state components (as demonstrated by the examine

comm~d). Such component access operations could be included in a more

extensive user environment In addition, the implementation of these operations

can be optimized to retrieve atomic objects from stable storage only as they are used,

and possibly, to avoid copying the state from stable storage at all, if it is being

transferred directly from the old to the new guardian, without any translation. How

this optimization can be performed, and how much can be optimized depends

110

extensively on the implementation of stable storage. We therefore cannot provide

the details of such optimizations here.

6.5.2 Implementation Issues in State Management

The major problem related to state manipulation is performing replacements when

transactions have prepared data in the guardian. Guardians might be removed from

service when prepared transactions still hold locks. Therefore, the replacer must

have the ability to handle the case in which some part of the state is prepared at the

time of the get_state operation.

A number of approaches to handling prepared state are possible. The simplest is to

refuse get_state operations until the transactions involving the state complete. Note

that stable storage is still accessible to the transaction system, though the guardian

has been removed from service. Hence, the transactions will eventually commit or

abort. If the replacement system refuses the get_state, rather than blocking it until

the transactions finish, users can continue with other parts of the replacement

An alternative method of handling prepared transactions is selection of a scheme

that accomplishes as much of the replacement as possible before the prepared

transactions complete. One such scheme would translate the guardian state once for

each combination of possible commits or aborts of prepared transactions. If only

one prepared transaction existed, then two translations would be required. If a long

delay in resolving the transaction state were expected. such an approach would allow

replacement to complete as soon as the transaction finished, instead of having to

perform the translation at that time. This approach is derived from [Montgomery).

The solution is exponential in the number of prepared transactions. Whether it

actually reduces delay depends upon the average number of prepared transactions

expected at a guardian at any given time, the average delay in the second phase of

111

commit, and· the amount of processing power available to perform state translations

while waiting for the transactions to resolve. A detailed performance evaluation

would be required to determine the efficacy of this scheme. The technique might

prove useful in appropriate circumstances; we do not have the performance data

available to determine its usefulness at this time.

The following is a less expensive solution that reduces delay in most but not all

cases. (It is based on the assumption that most atomic actions, once prepared, will

commit; if this assumption is false the system will make no progress.) This

algorithm will reduce the delay in returning replaced guardians to service when the

transactions that prepared the data commit. Rather than translating the state for all

possible combinations of commits and aborts of outstanding transactions, we make

the optimistic assumption that all of those transactions will commit. In response to a

get_state command, the replacement system retrieves the state values that will result

if the transactions commit, and performs the translation on these values. The

replacement transaction will not commit until the prepared transactions resolve. If

any one of those transactions aborts, the replacement transaction will have to abort.

Thus, if prepared transactions usually commit, we can reduce the time guardians are

out of service for commit, but we risk having to redo part of the replacement if a

prepared transaction aborts.

6.6 Multi-Site Replacements

As discussed· in Section 5.2.3, management of multi-site replacements involves

directing the manipulation of state objects and invocation of replacement

commands at remote nodes. Due to nontransmissibility and type incompatibility (as

defined in section 5.2.3), state values cannot always be moved to the user's node

without first performing a translation at the remote site. In the worst case,

lU

complicated replacements may involve relocating data from one remote site to

another. Here, we examine the facilities users will need to direct such replacements.

6.6.1 Remote Replacement Commands

Some of the replacement functions described thus far must deal with multiple sites

as part of their function. For ex.ample, since a single rebind command is used for all

of the handlers of a removed guardian, it must be able to perform the rebinding

across nodes automatically: not all of the handlers of a removed guardian will

necessarily be rebound to handlers at the same site. Similarly, we will assume the

replace command need be executed only once, although components of the

subsystem type specified may span the network. The all_instances command

explicitly takes a node_id as an argument All other commands, however, involve

only a single node. In this section we describe a multi-site user environment that

pennits invocation of replacement functions at remote sites.

Users must be able to perform the standard replacement commands, such as

remove, get.state, put_state, and new, at remote sites. In particular, get_state returns

a value; that value cannot be returned to the user, since it may not be transmissible.

Therefore, the user must be able to state where the return value is to be stored. In a

complicated transformation, it may be necessary to invoke a series of procedures at a

remote site. The arguments to those procedures may be results of previous

commands at that site, or values received from other sites participating in the

replacement For example, if we are combining the maildrop at node A with the

~~~~&~~~~~~A~be~to~a~a 

procedure invoked there to combine the states of the two guardians. The user may 

be controlling this replacement from node C. 

We therefore need a mechanism that allows variables to be declared and assigned 

113 



values at remote sites, as .well as allowing procedure invocation with those local 

variables as the arguments and targets for return values. Finally, the mechanism 

must support transfer of abstract values between nodes. 

We propose the following mechanism. In section 6.1, we described a local 

replacement environment. We now propose that that environment be extensible to 

a distributed environment with parts at remote sites as well. While we would like a 

single unified environment, for the purposes of our description here, we make one 

simplifying assumption. To avoid the problem of a distributed namespace with 

globally unique user-defined identifiers, we will assume that names are unique only 

to their local site. Variables may be assigned to or used as argument to invocations 

only at the site at which the variable is declared. Values must be explicitly moved 

between sites. 

The user's site serves as "coordinator" of the replacement It maintains a list of all 

guardians removed and created during the replacement, along with the sites of those 

guardians. The replacement mechanism at each site must transmit to the 

coordinator information about replace, remove, and new commands executed at 

remote sites. Hence. the replacement mechanism has the information to type check· 

across nodes (for example, to ensure that aJl removed guardians are in the closure of 

the root's includes list.) End.replace will check with the replacement system at each 

participating node to ensure that all handlers in the subsystem interface have been 

rebound. that all new guardians' states have been initialized, etc. Movement of 

values between sites will have to be explicit 

We present here a minimal set of commands to direct actions in these remote 

environments, and move values between them. First, we provide a command to 

enter a remote environment Once opened, an environment exists for the duration 

of the replacement The command is: 

114 



connect(node_id) 

If the user already has an environment at that site, the replacement system 

reconnects to that environment If no such environment exists at the named site, 

one is created. Functionally, connect causes all statements entered within its scope 

to be executed within the replacement system at node_id. The only objects that may 

be named, for example as arguments to procedure invocations, are those assigned to 

variables declared in that local environment 

End_connect leaves the connect scope, and returns to the environment that was in 

use prior to connect Connects may be nested 

To access a variable declared at another site, the command 

retrieve[t](node_id, string) returns (t) 
signals(no_such_ variable, 
non_transmissible) 

is used. The string argument must contain the name of a variable in the user's 

environment at the node named by the first argument. The command is executed 

from the site to which the value of variable name is to be moved. Only values stored 

in local variables at node_id can be retrieved. Therefore, if a state value is to be 

moved, the user will have to connect to its current site, perfonn the getstate there, 

then return to the destination site, and execute the retrieve command. (Obviously, a 

higher-level user interface could provide a single operation that retrieved a 

transmissible state value.) If, for example, a user at node C wanted to transfer the 

list of mailboxes in a maildrop state from node A to node B, the following command 

sequence would be needed (assume maildropstate = record[boxes:box_list]): 

replace(mailer, mailer) 
connect(node_A) 

remove(maildropA) 

%no change in type 
~state is at node.A 
%stop guardian and 
%then retrieve stable state 

115 



boxes: boxJist : = get_state[maildropstatc](maildropA).boxes 
end_connect' 

connect(node_B) %want to move value to node_B 
boxes:boxJist: = retrieve[ boxJist](node_A, "boxes") 
%perform rest of replacement 
end_connect 

Note that the variable names need not be unique across nodes. Thus, the connect 

scope, and retrieve commands provide the minimal function necessary to control 

multi-site replacements. 

6.6.2 State Relocation 

We now have a replacement environment that provides a way for the user to 

connect to remote nodes and perform replacement tasks there.· In addition, the 

retrieve command allows the user to move objects among the various sites to 

support guardian relocation. There are however, two problems the user faces during 

the course of such replacements for which the replacer can provide only minimal 

support: type incompatibility and nontransmissibility (see section 5.2.3). In either 

of these cases it will be the user's responsibility to convert the data to a form that can 

be relocated. This section discusses the actions required to perform a multi-node 

replacement, and the structure imposed on such replacements by our choice of 

primitive internode operations. 

There are several possible ways to move objects that are not transmissible to a new 

location. One is to transform the objects into objects of types that are transmissible. 

If the Argus library supports type extension for clusters. the object can be coerced to 

an extended type that provides encode and decode. If data type extension is not 

directly supported, the user will need access to the object's representation (rep), i.e. 

the objects of lower-level types used to define the abstract type. In Argus, the 

operations up and down that convert between the rep type and abstract type are 

allowed inside cluster operations only. We provide the analogous operations: 

116 



up[rep, abstract](rep) returns (abstract) signals (bad_type) 
down[rep, abstract](abstract) returns (rep) signals (bad_type) 

The rep type itself may be transmissible, in which case the user simply needs to 

invoke down, relocate the object, then invoke up. If the same representation is not 

used at both sites, some translation may be needed before invoking up. Down can 

be invoked repeatedly to get to lower-level types. If the rep is not transmissible, an 

alternative is to down the object, then use up to coerce it to an extended type with 

encode and decode operations. 

Use of these operations will be checked to ensure that the rep and abstract type 

match in the implementation of the type used for that argument, and that the 

argument is of appropriate type. Obviously, the existence of these commands again 

provides the opportunity for misuse of the replacement mechanism. 

One special case exists in which nontransmissible objects can be moved to a new 

node without user intervention. If the same version of the type exists at both nodes 

and the processors are the same type, then the base representations of the objects are 

identical at both locations. In this case, the replacement mechanism could transfet 

the object using the copy operation used by the garbage collector.10 (See [MPH] 

for a discussion of using this method for transmitting abstract objects.) Whether this 

case is common enough to warrant the special implementation will not be clear 

without data on usage patterns. 

The above solutions will work as long as the types of the objects in the old state exist 

at the new location, regardless of whether those types are actually used in the new 

version. If the types used in the new state are available at the old node, the state 

1G.rJiis operation is known as gcdump. 

117 



transformation can be performed before transmission. Otherwise. some type 

common to both nodes will have to be found in which to represent the state 

information. 

6. 7 Scheduling Replacement 

The issue of scheduling primarily involves the synchronization of remove commands 

relative to clients' handler invocations. At any given time. clients may be running 

handlers of the guardians. or some of the guardian's state objects may be locked by 

transactions that have not yet completed. The most straightforward method of 

removing a guardian for replacement would be to gain exclusive access to it via a 

standard locking mechanism. This method requires exclusive and shared locks on 

guardian objects. Replacement would be scheduled by requesting an exclusive lock 

on the guardian and waiting in a queue. along with other actions requesting 

guardian access, until the lock arbitrator granted the lock request Handler 

invocations would then have to acquire shared locks. If scheduling of replacements 

could be performed in this manner, no additional scheduling mechanism would be 

needed specifically for replacement This simplicity in both semantics and 

implementation would be a strong advantage. In addition. this method has the 

advantage of minimizing disruption to the rest of the system, since it uses standard 

system priorities. 

However. this method also has several disadvantages. First. the locking strategy 

currently being used in Argus would have to be modified. While locks exist for 

guardian objects, they are used only to prevent conflicting writes ( e.g. termination 

before creation commits). No lock is required for invoking a handler. Thus, a 

change in language semantics to require such locks would be needed to use this 

118 



scheme.11 

Another disadvantage is that a human user is controlling replacement interactively 

and that user will be forced to wait while the replacer acquires all the needed locks. 

The length of the wait will depend, not only on how busy the guardian is, but on 

how the Argus locking scheme arbitrates requests. Another disadvantage is that 

replacements often involve many guardians. If some guardians are acquired 

immediately. and it is necessary to wait for others, those acquired first will be out of 

service for a longer period of time, thus increasing disruption in service. 

The possibility of deadlocks between replacement and other transactions using the 

guardian is yet another issue. A transaction might first acquire a read lock for 

guardian A. and then request one for guardian B, while the replacer gets a write lock 

on guardian B and then tries to obtain one for guardian A. Thus, the replacement 

system can introduce deadlock into a subsystem that may have been proven to be 

deadlock free under normal operation. This presents semantic as well as 

performance problems. 

An alternative is to have replacement preempt transactions using the guardian. In 

this case, the remove command will cause all handler executions in progress to be 

aborted. Toe guardian will be made inactive: its pr~ are killed and messages 

to its handlers will be blocked. Furthermore, all read and write locks on the 

guardian's state that are held by unprepared transactions must be broken. Only 

locks from "prepared" transactions remain. Therefore, all unprepared actions that 

held locks will be aborted. 

11Toere were a number of reasons for the decision made regarding the locking protocol for 
handler invocation. It is beyond the scope of this thesis to evaluate the tradeoffs between those 
reasons and the requirements cited here. 

119 



This preemptjon method has the advantage of giving priority to human users; the 

person performing the replacement will not have to wait inordinate amounts of time 

for each of the guardians being replaced to be seized by the replacer. In addition. 

since each guardian is removed from service as soon as requested. the average time 

during which a guardian is unavailable to clients is smaller than in the previous case. 

The best method of scheduling of replacements therefore depends in part on the 

characteristics of the particular system. If it is important that running transactions 

not be aborted, the first alternative might be considered superior. The decision on 

which to use could be left for the user to decide at the time of the replacement. so 

that characteristics of the individual subsystem being replaced may be taken into 

account. In a system with varying subsystem characteristics, or in which the 

necessary performance information is unavailable. the second option. preemption. 

appears to be the best alternative. It will on average cause the least disruption to the 

system as a whole, and the best service to users performing replacement 

6.8 An Example 

In the previous chapter we gave an example of a restructured mail system that used 

only mailer and mailsite guardians. Here, we show how an instance of our original 

mail system could be replaced with an instance of the new structure. Suppose the 

old instance is configured as in Figure 6-1. Assume that only nodeA and nodeB are 

in the network. Toe mailers can be found through the catalog. but the identity of 

the registries· and maildrops must be found through a mailer's state. There is a 

registry at nodeB, and maildrops at nodeB and nodeA. Toe new instance is to have 

a mailsite at nodeA only, and mailers at each site. 

The first step is to obtain the mailers from the catalog. From the mailer's state. the 

120 



Mailer 
maildrop 

registry 

Figure 6-1:The Mail System Configuration 

registry named by some is obtained. With access to a registry we can locate all of the 

maildrops and other registries. The following commands wilI start the replacement 

of the mail system, remove a mailer, and locate the registry named in the mailer's 

state. We assume the user has access to the node names at the start of this 

replacement session. 

rstate = record[regs: reg_Iist, steers: steer_list] 
mstate = record[some:rcgistry] 
dstate = record[boxes:box_list] 
sitcstate = dstate 
newmailstate = record[site:mailsite] 

replace(mailer, mailer) 

mailerA:mailer : = catalog.find[mailer](nodeA) 
mailerB:mailer: = catalog.find[mailer]@(nodeB) 

Remove(mailerA) 
r:registry : = get_state[mstate](mailerA).some 
rname:gname: = get_gnamc(r.lookup) 
rloc:node_id: = get_node(rname) 

%type abbreviations 

%infonn syslem oflype being replaced 

%find the mailers 

%get one mailer 
%get registry from state 
%pick any handler 
%find registry's node; note: r/oc = nodeB 

The next step is to connect to the node at which the registry exists and retrieve its 

stable state. (Note that the user can determine at this time that the registry is at 

Ul 



nodeB, and the commands executed after this point make use of this fact.) Since the 

user does not know how many other registries or maildrops there are, the commands 

are written to loop over any number of registries and maildrops. First, the list of 

users and their mailbox locations (the steerlist) is searched to find all the maildrops. 

We then test whether each drop is at nodeB or nodeA. If is at nodeB, it is removed; 

its mailboxes are retrieved and appended to a list of all mailboxes. (We assume the 

concat procedure has been loaded.) If the drop is from nodeA, its name is recorded, 

so that nodeA can be provided with a list of the drops to be accessed. This code 

takes advantage of the knowledge that only two nodes exist. The next step is to 

iterate over the list of registries, removing them if they are at nodeB, recording their 

names if from nodeA. The state of these registries need not be accessed, since 

registry states are redundant and we have already obtained one copy. 

connect(nodeB) %connect to registry's node 
mame:gname: = retrieve(nodeA, "mame") %get the registry's gnamefrom nodeA 
remove(mame) %remove registry from service. 
state:rstate : = get_state(state](mame) %get the state 
allboxes:box_Iist : = boxJist$create() %array for storing maildrop state 
ADrops:array(gname): = array(gname)$create() %maildropsfrom other node 

for st:steering in steer_list$e1ements(state.steers) do %look/or all maildrops 
drop:gname: = get_gname(stdrop.read_mail) %get gnamefrom interface object 
dnode:node_id : = get.node( drop) %find location of drop 
if dnode = nodeB %if its here then 

then remove(drop) %remove it from service and 
concat(box_list)(allboxes, get_state(dstate)(drop).boxes) %add mailboxes to common lisL 

else array(gname)$addh(ADrops, drop) %if not here. save name for nodeA 
end%if 

end %for 

ARegs:array[gname) : = array(gname]$create() %list of regs at other node 
for nextreg:registry in reg_list$elements(state.regs) do %look for all registries 

nrname:gname: = get_gname(nextreg.lookup) %get gnamefrom interface object 
if get_node(nmame)-= nodeB %if reg isn't at this node then 

then array(gname)$addh(ARegs, nmame) %save name in list/or node.A 
elseif reg - = rname then remove(nrname) %if not yet removed, remove it 
end%if 

end %for 
end.connect 

122 



Control is th~n returned to nodeA. At nodeA, the user must obtain the values 

computed at nodeB: the list of mailboxes retrieved thus far, the list of nodeA's 

registries, and the list of nodeA's maildrops. The second list is empty. The user 

then removes the maildrop, and concatenates its list of mailboxes to the existing list. 

%back at NodeA 

ARegs:array[gname] : = retrieve(nodeB, "aregs") 

allboxes:boxJist : == retrieve(nodeB, "allboxes") 
ADrops:array[gname]: = retrieve(nodeB, "ADrops") 

%get list ofnodeA's regs 

for nmame:gname in array[gname]$elements(ARegs) do %in this case, ARegs is empty 
remove(nmame) %Don't need other registries: remove them 
end %for 

for d:gname in array[gname]$elements(ADrops) 
remove(d) 
concat{boxJist]( all boxes, get_state[ dstate]( d).boxes) 
end %for 

%ADrops contains one maildrop 
%remove it 

%combine box lists 

The final step is to create the new guardians. A mailsite is created; its state will be 

the list of boxes from all the maildrops. A mailer is then created at each node; the 

state of each is a pointer to the new mailsite. Replacement is then completed. 

sitename:gname, site:mailsite : = new[mailsite](siteimage) %create new mailsite at nodeA 
put_state[sitestate](sitename, sitestate${boxes:allboxes}) %initialize state 

%create new mailer for nodeA 
mname:gname, new_mailer:mailer: = new[mailer](image_using_mailsite) 
put_state[ newmailstate K newmailstate${ site:site}) 

%create new mailer at nodeB 
connect(nodeB) 

site: mailsite : = retrieve(nodeA, "site") 
mname:gname, new_mailer:mailer : = new[mailer](image_using_mailsite) 
put_state(newniailstate](newmailstate${ site:site}) 
end_connect 

end_replace 

123 



6.9 Conclusions 

This chapter presents the basic set of commands needed to accomplish subsystem 

replacements in Argus. The set of commands itself is small and reasonably 

straightforward. These include a statement to define the type of the subsystem 

being replaced, a command to remove guardians from service, commands to retrieve 

and install stable state, and end replacement The complex part of the replacement 

system is the ·user environment it must support 

One principle difficulty in designing the replacement mechanism stems from the 

need to handle types and implementations of types explicitly. Since types are not 

objects in Argus, and multiple implementations are entirely a library notion, the 

mechanism cannot be defined in Argus terms, and replacement cannot be run as 

Argus procedures. 

The commands presented in this chapter are sufficient to express the replacements 

necessary, and to describe the semantics of replacement in the Argus system. 

However, it is clear from examination of the example in the previous section that 

this minimal mechanism is insufficient as a user-level service. Replacement is a 

complicated process for which it is difficult to ensure correctness. It is therefore 

important to develop a methodology for performing replacements, and a language 

to support that methodology, that will provide the user with a higher-level view of 

replacement and aid in expr~ing the replacement tasks accurately. 

The need for another addition should be evident as well. While we have provided 

the mechanism to replace a single subsystem instance, we have provided no 

additional support should the user wish to replace all instances of a subsystem or 

version of a given subsystem type. Obviously, such a task could be performed by 

repeating · the set of commands explicitly for each instance. In an actual user 

124 



environment, however, there should be suppo11 for writing "replacement 

procedures", or "command files" that can be invoked repeatedly for different 

instances. 

125 



Chapter Seven 

Conclusions 

This dissertation has examined a number of aspects of the problem of dynamic 

modification of software modules in a distributed system. Our research focused on 

modules with long tenn, on-line state. The approach taken was to incorporate a 

facility in the programming system, but not in the language, to allow replacement of 

running modules with new implementations. 

7.1 Summary and Analysis 

We have identified the appropriate unit of replacement in Argus as the subsystem, a 

unit not recognized in the language. The principal reason for this decision was that 

choosing the smaller unit of guardian would not have provided sufficient power for 

many kinds of replacements we believe to be useful. Among the categories of 

modifications that would have been omitted are changes in the module structure of 

abstraction implementations involving more than one guardian. Without 

recognizing su.bsystems as a unit of replacement, a new subsystem implementation, 

which makes use of a different set of component guardian types than an existing 

instance of the subsystem could not be substituted for that existing instance. The 

problem is of particular concern because Argus recognizes no module types that 

cross node boundaries; hence, for services that span nodes, only multi-guardian 

implementations are ~ible. If subsystem entities were not recognized, the 

implementor would not have the power to create implementations that were easily 

replaceable. 

126 



Recognizing subsystems as entities without changing the Argus language, and 

without compromising the type safety of the language, necessitates extending the 

function of the library. Sufficient information can be added to the library to allow 

the replacement mechanism to handle most of the modifications we would like to 

support. There are still weaknesses in both power and safety, primarily due to the 

inability to identify subsystem instances dynamically; however, many type errors 

can be caugh.t with our library scheme. 

We encountered another limitation in the module structure of Argus that we were 

unable to rectify without language support. The mail system example used here was 

derived from an example in (12]. The original example allowed very little 

modification because the underlying component structure was visible to clients: the 

commands to add maildrops and registries appeared in the mailer's interface. It 

was, in fact, difficult to change that example to one in which the module structure 

was hidden from clients. The implication of this fact is that it may be difficult to 

create subsystems that are modifiable, either statically or dynamically. The weakn~ 

appears to be that, in reality, there are different classes of clients using different 

subsets of the subsystem interface, but the Argus type mechanism cannot recognize 

that fact In the original mail system, it is likely that the clients using create, 

add-mailer, add-maildrop, and add-registry, are different from those using 

send - mail, read - mail and add- user. There is no way the replacement 

mechanism could allow changes to one subset of the interface, along with its clients, 

without affecting the other clients (and still guarantee type-safety). This ability 

would depend on language support for multiple interfaces to a type. (We discu~ 

this possibility briefly in the following section.) 

Chapter 4 examined the conditions for correct replacement of subsystems. Those 

conditions indicate that performing replacements dynamically will be more complex 

than expected. One result shown in this chapter is that there may be two 

ll7 



implementations associated with the same abstraction, both of which correctly 
' 

implement the specification of the abstraction, and yet it may be impossible to 

substitute the second for the first dynamically. Either implementation could of 

course be used to create new instances. This situation arises when the specification 

allows nondeterminism. Conversely, it may be possible for one subsystem instance 

to correctly replace another when that instance could not be used to create new 

instances of the subsystem type. In this case, the new instance does not satisfy the 

specification that the original instance does; however it satisfies a continuation 

specification. Chapter 4 also analyzes the conditions under which a subsystem 

instance can be replaced by an instance of an extension of the subsystem type. 

These results do not apply uniquely to Argus, but rather to any strongly typed 

language. The notion of data type has been a static one; static type checking, and 

the association of a type with a static module definition (for example, in the Argus 

library) places limitations on dynamic modifiability that are unrelated to the 

constraints necessary to ensure continuity of behavior. Section 4.3 shows, for 

example, that in many cases replacement of one abstraction by another in Argus will 

violate Argus type checking rules, though correctness conditions could be satisfied if 

abstractions were not statically associated with a type name in the library. Similarly, 

specifications for abstract data types have considered only modules that are assumed 

to start in a specific initial state, and whose behavior is defined from that state. If 

continuously-running subsystems are to be permitted to evolve gracefully over time, 

we will have to reexamine the static notion of type definitions in programming 

languages. 

Finally, we have described the functional requirements of a mechanism to perform 

dynamic replacement in Argus. and discussed the semantics of such a mechanism. 

The mechanism defined is powerful enough to allow the desired range of 

replacements and perform the type checking possible given the constraints of the 

128 



library support described in Chapter 3. However, a higher-level user interface is 

needed. While the mechanism serves to illustrate how dynamic replacement can be 

implemented, and gives a more concrete form to the requirements outlined in 

Chapter 5, the operations provided are at too low a level to be easy to use, or to 

support a methodology for performing replacements. 

7.2 Future Work 

There are several research directions that may follow from this work. One path is 

extension of the mechanism; we have already mentioned several areas in which our 

mechanism is limited. Another area requiring further exploration is the 

development of a testing mechanism for the replacement system. Finally, several 

language design issues have come to light as a result of this research, and these 

require further investigation. 

There are several possible extensions to the replacement mechanism defined in 

Chapter 6. One area that requires further work is the design of a higher-level user 

interface. In particular, such an interface should provide more structure for 

organizing the replacement task, and provide better support for replacement of 

multiple instances of a subsystem type, with such facilities as command files. 

Another area in which the mechanism could be extended is in recording the history 

of replacements. We showed in Chapter 4 that successive replacements could restrict 

the changes pos&ble in the future. We can limit this effect by retaining information 

about the replacement history. Some obvious information to retain is the sequence 

of implementations that preceded the current instance, along with the final state of 

each of those instances (and possible the starting state). How useful such 

information is in increasing the flexibility of replacement must be evaluated 

Furthermore, since the user performing replacement must be able to interpret that 

129 



information in constructing the new instance's state, the form in which that 

information should be kept must also be determined. Network-wide replacement is 

another extension that should be investigated. Finally, we noted earlier that our 

mechanism can only support replacement of guardian-based subsystems. 

Mechanisms to support more general subsystem replacement should be studied. 

Another area still requiring study is a testing mechanism to use in conjunction with 

dynamic replacement There are numerous ways in which errors can occur during 

the course of replacement Of particular concern, however, is the user-defined 

process for translating between state representations. This process is probably the 

most complicated task required during replacement If an error occurs during the 

translation, state inconsistencies can result. Hence, a method of testing the 

translation procedure to ensure that the state values before and after translation are 

"equivalent" would be useful. 

Given the transaction mechanism available in Argus, several approaches suggest 

themselves. We believe it worth exploring a mechanism that allowed test 

transactions to be run in parallel on the old and new implementations. This 

approach would allow the user to test the translation procedure in conjunction with 

the replaced and replacing implementations to ensure that the procedure is 

generating a state that will produce proper behavior in the new implementation. 

Recall from Chapter 4 that state equivalence is relative to the two implementations 

(because it depends upon the abstraction functions of the implementations). It 

might even be possible to run the test transactions in the actual running system, to 

test interaction with other subsystems. The transactions could then be aborted to 

prevent permanent effects on the system. 

Another approach to dynamic replacement that deserves examination is the 

incorporation of support for replacement into the programming language. In Argus, 

130 



this approach would require adding subsystems to the language, as well as adding 

specific support for replacing subsystems. The impact of these changes on the rest 

of the language would have to be studied as well. 

There are a number of choices for including subsystems in the language. The basic 

features we need from such a mechanism are the following. First, clients should see 

only subsystem interfaces, not guardian interfaces. A single guardian is a special 

case of a subsystem; however, clients should not expect all handlers derived from an 

interface object to reside at the same guardian, or even at the same node. It should 

be possible to provide automatically created interface objects that contain handlers 

attached to several guardians. If such subsystem support were provided, it would 

eliminate the need to maintain the root guardian type during _replacement, thus 

increasing the range of allowable replacements. 

Another possible form of language support would be constructs to allow a 

subsystem to prepare for its own replacement One approach to examine is whether 

a canonical state representation can be introduced, along with user-defined 

operations to translate between the local representation and the canonical form. 

This approach is analogous to the Argus approach to abstract value transmission, in 

which transmissible types must have a canonical representation and user-defined 

encode and decode operations. This method allows abstract data values to be 

transmitted between guardians using different implementations of the data type. 

Here we wish to transmit the subsystem state value between two implementations of 

the subsystem. We believe that incorporating support for dynamic replacement in 

the language, rather than just in the system, will lead to a higher-level, less ad hoc 

replacement mechanism. It also has the advantage of returning to the module 

control over direct access to the module's state, whereas in the current mechanism, a 

process outside the module is gaining direct access to the module's private state. 

131 



We mentioned earlier in .this chapter that the single, unified view of a module 

interface did not accurately model usage of subsystem modules. One possible 

solution worth investigating is the notion of multiple views of a data type. This 

approach would allow different subsets of a type's operations to be declared as 

different views, with clients binding to a view of the type, rather than the entire 

interface. The work on multiple views of databases is probably relevant here (3, I]. 

This structure would allow greater flexibility in modifying subsystems, while hiding 

changes from clients that are not affected by those changes. 

Finally, we have noted conflicts between the requirements of dynamic modifiability 

and those of static type definitions, as they currently exist in strongly typed 

languages. We believe the meaning of types in these languages, and the methods 

used for defining types and performing static type checking. should be re-evaluated 

in the context of dynamic replacement The meaning of correctness of a type 

definition, and specification methods for abstract types must also be extended to 

allow for dynamic updates. 

In conclusion, as continuously running software with long-term state becomes more 

common, the importance of supporting modifiability for these systems will increase.

This dissertation represents a first step in providing support for evolving systems, in 

which software is expected to change gradually over time, without disruption to the 

system; further support will require integration of the notion of dynamically 

changing modules into the languages in which those modules are defined. 

132 



References 

1. Chamberlin, D., J. Gray, and I. Traiger. Versions. Authorization, and Locking in 
a Relationship Database System: Proceedings of the National Computer Conference' · 
(May,1975). 

2. Chiu, Sheng-Yang. Debugging Distributed Computations in a Nested; 
Transaction System. Ph.D. Thesis. M.I.T. Laboratory for Computer Science,_ 
forthcoming 

3. Dayal, U. On the Updatability of Relational Views. Proceedings of the· 
International Conference on Very Large Databases (September 1978). 

4. F.swaran, K.P., J.N. Gray,R.A. Lorie, and I.L. Traiger. On the Notions of 
Consistency and Predicate Locks in a Relational Database System. Communlcatloni 
ACM (November 1976). 

5. Fabry, R. How to Design A System In Which Modules Can Be Changed On The· 
Fly. Proceedings of the Second International Conference on Software Engineering, 
IEEE, October, 1976. ·. 

6. Gray, J.N. Lecture Notes in Computer Science. Vol 60: Notes on Data Bast 
Operating Systems. Springer-Verlag, Berlin, 1978. 

7. Habermann, N. Dynamically Modifiable Distributed Systems. Proceedings of 
the Distributed Sensor Net Workshop, Carnegie-Mellon University, Pittsburgh PA~, 
December, 1978. 

8. Henderson, Cecilia. Locating Migratory Objects in an Internet Master Th., MIT 
Laboratory for Computer Science, January, 1982. 

9. Herlihy, Maurice, and B. Liskov. A Value Transmission Method for Abstract 
Data Types. ACM Transactions on Programming Languages and Systems (October 
1982). 

10. Lampson, Butler and H. Sturgis. Crash Recovery in a Distributed Data Storage 
System. Xerox PARC, April 1979. 

11. Liskov, Barbara et al. Lecture Notes in Computer Science. Vol 114: CLU 
Reference Manual Springer-Verlag, Berlin, 1981. 

12. Liskov, Barbara. and R. Scheifler. Guardians and Actions: Linguistic Support 
for Robust Distributed Programs. Proceedings of Principles of Programming 
Languages Conference, ACM-SIGPLAN, 1982. 

133 



13. Pamas, D.L. On the Criteria for Decomposing Systems into Modules. 
Communications ACM (December 1972). 

14. Schell, Roger. Dynamic Reconfiguration in a Modular Computer System. 
Tech. Rep. TR-86, Mit Laboratory for Computer Science, 1971. 

15. Stark, Eugene. Foundations of a Theory of Specification for Distributed 
Systems. Ph.D. Thesis, M.I.T. Laboratory for Computer Science, forthcoming 

16. Weihl, William and B. Liskov. Specification and Implementation of Resilien~ 
Atomic,Da~ Types. M.I.T. Laboratory for Computer Science, Cambridge, MA, .. 
forthcomingi 

. , . . \,,_/ 

17. Wulf, W. A., and M. Shaw. Abstraction and Verification in ALPHARI): 
Introduction to Language and Methodology. Carnegie Mellon University and USC 
Information Sciences Institute, 1976. 

134 


