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1. Introduction 

The purpose of this thesis is to investigate a particular approach, called 

state-transition specification, to the problem of describing the behavior of modules in a 

concurrent or distributed computer system. In the state-transition approach, the 

desired behavior is described in terms of a kind of state machine whose computations 

generate records of event occurrences, called observations. A state-transition 

specification consists of two parts: (1) the definition of the state machine, which 

incorporates the "safety" or invariance properties of the module, and (2) the definition 

of some validity conditions on the computations of the machine, whose purpose is to 

capture the desired module "liveness" or eventuality properties. A state-transition 

specification defines a set of "acceptable" observations, namely the observations 

produced by valid computations of the state machine. A module behavior satisfies such 

a specification if the module behavior contains only acceptable observations. 

The idea of describing module behavior with the help of state machines is not new, 

having already been proposed in various forms by other authors, [e.g. Parnas72, 

Yonezawa77, Lamport83]. However, previous work seems to be concerned primarily 

with how to write module specifications, and how to use proof rules to prove the 

correctness of implementations. The important issues pf what constitutes the meaning 

of a specification, and what it means for an implementation to be correct, have not 

received satisfactory treatment. As a result, it is impossib!e to answer important 

questions such as: "What rules are sound for proving the correctness of an 

implementation," and "When is a specification consistent?" 

This thesis improves upon previous work by systematically developing the theory 

and techniques of specification from "first principles" to a point at which it is possible to 

write example specifications, to prove implementations correct, and to check 

specifications for consistency. The theory incorporates an underlying semantic model 

within which one can formulate language-independent definitions of the notions of 

"implementation" and "correctness." The meaning of state-transition specifications is 

defined in terms of the model, and all proof techniques are shown to be sound with 

respect to the model. 



. 7. 

The major contributions of this thesis are: 

(1) The definition of a semantic model that incorporates hierarchy of 

abstraction and mopular decomposition as fundamental notions. 

(2) Specification and proof techniques that smoothly handle both safety and 

liveness properties. 

(3) Techniques that use liveness properties stated in rely-lguarantee-condition 

form to obtain simple proofs of correctness. 

(4) An interesting and useful notion of consistency for specifications involving 

liveness properties. 

(5) Illustration of the utility of the ideas developed through specifications, 

implementations, and correctness proofs for three examples: 

(a) a synchronizer module, which is implemented by a ring-structured 

network of synchronizer component modules, 

(b) a resource management module, which is implemented by a 

tree-structured network of local resource manager modules, 

(c) a message transmission module, which is implemented by unreliable 

transmission line modules, a send protocol module, and a receive protocol module, 

which together obey the alternating bit protocol. 

1.1 Scope of the Thesis 

A specification is a piece of text whose purpose is to describe the desired 

operation of a module in a computer system. Specifications form an integral part of a 

"top-down" design method in which design proceeds by the successive decomposition 

of a module to be implemented into a collection of interacting component modules 

[Liskov79, Wirth71]. The purpose of specifications in such an approach is to serve as a 

contract between the user and the implementer of a module. This helps to limit 

complexity by permitting a system to be decomposed into modules of reasonable size, 

such that each module depends only upon the specifications, and not the 

implementations, of the modules with which it interacts. 

To permit the possibility of rigorous reasoning about specifications, a specification 

language should be given a formal semantics in terms of an underlying mathematical 

semantic domain. In this thesis, we use the term behavior to refer to the elements of a 

semantic domain, since the purpose of these elements is to serve as a mathematical 
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model of the behavior of a portion of a real-world computer system. The semantics of a 

specification language describe how each specification denotes a set of behaviors that 

satisfy the specification. If the semantics of a programming language are defined so 

that each important program fragment denotes a behavior, then it is possible to derive 

syntactic rules for proving that (the denotations of) program fragments satisfy (the 

denotations of) specifications. The purpose of this thesis is not to propose particular 

formal specification or programming languages, but rather to investigate a collection of 

language-independent semantic concepts upon which particular specification and 

programming languages might be based. We therefore assume that specification and 

programming languages can have their meanings defined in terms of behaviors, and do 

not concern ourselves with the precise method by which this is accomplished. 

In this thesis, we are concerned with concurrent or distributed systems. By this we 

mean systems that are most naturally viewed as a collection of independent, 

communicating. modules, such that effects of concurrent operation of the various 

modules form a significant part of the description of system behavior. This thesis is 

primAri_ly r.oncerned with thA r.onr.11rrAnr.y "Rraci of distributed r.:ompllting; while the 

model and techniques do not rule out the possibility of treating other aspects such as 

node crashes and network failures, no special structure to deal with these problems is 

included. The techniques of this thesis have been developed primarily with the idea that 

they would be applied to the problem of describing and reasoning about distributed 

algorithms. The examples presented are of this kind. 

1 .2 An Example 

In this section, an example specification problem will be used to introduce 

informally the fundamental ideas about specification on which this thesis is based. 

1.2.1 The Synchronizer Module 

Consider the following scenario: A number of processes in a computer system 

require the use of a single resource to accomplish their respective tasks; however, 

because of limitations inherent in the resource, at most one process can be allowed to 

access the resource at any instant of time. To enforce this restriction, a synchronizer 

module is introduced, and the processes, which we will refer to as the user processes, 

are required to obtain permission from the synchronizer module before accessing the 
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resource. It is the job of the synchronizer module to produce correct synchronization of 

the user processes' accesses to the resource. Our problem is to describe precisely the 

synchronizer module behaviors that are "acceptable" in the sense that they always 

produce "correct synchronization." This precise description is the specification of the 

synchronizer module. 

When a user process desires to access the resource, it issues a try request to the 

synchronizer module. The user process is then supposed to wait until it receives a run 

response from the synchronizer module.,, When the user process is finished using the 

resource, It issues a rest response to the synchronizer module. We can capture these 

decisions in diagrammatic form as shown in Figure 1, in which the synchonlzer module 

Is depicted as a circle, and the possible requests and respon~ are drawn as arcs 

incident on and exiting from the circle. respectively. We assume that there are a total of 

N user processes accessing the synchronizer module. and have used a subscripted 

process number to distinguish the requests and responses corresponding to different 

processes. 

Fig. 1. The Synchronizer Module 

try 2 

try 1 
---'---31>►, Synchronizer 

run 1 

rat 1 > Module 

try N rat N 

n,n N 

• , 
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The set of all possible requests and responses for the synchronizer module can be 

thought of as an "alphabet" or "syntax" for describing the interaction of the 

synchronizer mod~le with its environment. We call this set the inter/ ace of the 

synchronizer module, and refer to its elements as events. By observing the 

synchronizer module during an execution, we can obtain a record of the events that 

occurred during the execution. We call this record of event occurrences an 

observation, and assume that it takes the form of a finite or infinite sequence of events. 

By fixing the interface of the synchronizer module to be a particular set of events, 

we determine a universe of possible observations. We next consider how to describe 

which observations in this universe are "acceptable." We must include in our 

description the idea that at most one user process at a time may access the resource. 

Also, we wish to require that the synchronizer module be fair in the sense that every try 

request by a user process is eventually answered by a run response, if it is possible to 

do so without violating the mutual exclusion property. 

A natural way of describing which observations are acceptable is through the use 

of conceptual states. With this technique, we imagine that at any instant of time the 

synchronizer is in one of a number of possible internal states. These states may or may 

not have anything to do with the actual internal state of the synchronizer module; they 

are merely a tool for describing its observable behavior. After defining the set of initial 

states, we then describe for each event the preconditions required for that event to 

occur, and how the conceptual state of the synchronizer changes as a result of the 

occurrence of that event. 

The conceptual state of the synchronizer module at any instant of time Is a vector 

that tells for each user process what the synchronizer module thinks that user is 

currently doing with respect to the resource, based on the requests and responses that 

have occurred so far. The possibilities are that the user is either trying to obtain 

permission to access the resource (trying), is actively using the resource (running), is 

done using the resource (resting), or has failed to correctly follow the protocol (error). 

1. The formal definition of observation used in this thesis is slightly more complicated 
than a finite or infinite sequences of events (see Chapter 2). This is done for technical 
reasons that are unimportant for the present, informal discussion. 



Initially, the synchronizer module believes that each user process is resting. The state 

changes and preconditions are as follows: a try event for a process causes the state of 

that process to change to "trying" if it was previously resting, and to "error" otherwise; 

a run event for a process can occur only if that process is trying· and no processes are 

currently running, and causes the state for that process to change to "running;" a rest 

event for a process causes the state of that process to change to "resting" if it was 

previousl_y running, otherwise to "error." 

A particular observation for the synchronizer module satisfies the description of 

the previous paragraph if to each finite prefix of the observation we can assign a 

conceptual state in such a way that each state change satisfies the conditions 

enumerated in the previous paragraph. For example, assuming there are only two user 

processes, the observation 

try1 try2 run 1 rest 1 run2 rest2 

satisfies the conditions above since we can assign internal states as follows: 

<resting, resting> try
1 

<trying, resting> try
2 

<trying, trying> run 1 <running, trying> 

re,t;t 1 <resting, trying> mn2 <restiriQ, running> re.st 
2 

<resting, resting>. 

However, the observation 

try1 try2 run 1 run2 rest
1 

rest2 

does not represent a correct functioning of the synchronizer module since 

<resting, resting> try
1 

<trying, resting> try
2 

<trying, trying> run 1 <running, trying> 

run2 <running, running> rest 1 <resting, running> rest2 

<resting, resting>, 

which is the only assignment of states that satisfies the state change requirements, has 

the property that the precondition for the run
2 

event is not satisfied by the state 

<ru!1ning, trying>. We will use the term "history" to refer to an observation that has 

been annotated with states. 

The state-transition description above tells us a significant amount about what are 

the correct observations of the synchronizer module, but it does not say everything that 

should be said. In particular, the requirement that every request by a user process 

should eventually be satisfied, if possible, is not captured by the state-transition 

description. Informally, the reason is that a state-transition description captures only 

properties of histories that are "local" in the sense that they involve only adjacent 
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states, whereas the fairness property we would like is a "global" property that involves 

possibly widely separated portions of the history. If the conceptual state technique is to 

work, we must find some way to state global properties In a form compatible with the 

statement of the local properties. In Chapter 4 it will be shown how global properties 

can be expressed in the language of temporal logic. 

A specification of the synchronizer module via the conceptual state approach 

therefore consists of a state-transition description of the local properties that must be 

satisfied by acceptable observations, plus a description of additional global properties 

satisfied by such observations. A particular synchronizer module behavior is said to 

satisfy the synchronizer module specification if it contains only acceptable 

observations. 

1.2.2 Implementation, Abstraction, and Composition 

Now let us consider how the synchronizer module might be implemented. A 

possible organization is shown in Figure 2. In Figure 2, the synchronizer module is 

shown to be composed of a number of "synchronizer component" modules connected 

in a ring-like fashion. Each synchronizer component module interacts with exactly one 

user process and with its neighboring synchronizer component modules. The 

implementation operates as follows: There is a single
1
conceptual token that circulates 

around the ring in the clockwise direction. A synchronizer component module must 

possess the token whenever it grants its associated user permission to access the 

resource. In addition to the try, run, and rest events with which communication with the 

user is accomplished, a synchronizer component module may pass the token to its 

clockwise neighbor with a token_out event, may receive the token from its 

counterclockwise neighbor with a tokenJn event, may request the token from its 

counterclockwise neighbor with a request_out event, and may accept a request from its 

clockwise neighbor with a requestJn event. 

We resolve the implementation relationship between the synchronizer component 

modules and the synchronizer module into two separate operations on systems: a 

composition operation, which takes a number of component modules and combines 

them into a larger system, and an abstraction operation, which takes the larger system 

and throws away internal details that are not of interest in the more abstract view. In the 

synchronizer example the composition operation takes a collection of synchronizer 
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Fig. 2. Implementation of the Synchronizer Module 

, 
• 
• 

• 

Synchronizer 

Module 

component modules and connects them Into a ring network, and the abstraction 

operation throws away the details of the Internal communication between the 

component modules, saving only the events that make up the Interface with the user 

processes. 



• 14 • 

1.2.3 Correctness of an Implementation 

Suppose we are given a specification for the synchronizer module, and 

specifications for each of the synchronizer component modules. Each specification 

determines a set of behaviors that satisfy it. The implementation is "correct" with 

respect to these specifications if, no matter what behaviors we "plug in" for the 

synchronizer component modules, as long as each component behavior satisfies its 

specification, then the resulting synchronizer module behavior, constructed from the 

componerits via the operations of composition and abstraction, satisfies the 

synchronizer module specification. 

1.2.4 Summary 

The ideas presented in this section can be summarized as follows: 

(1) Every module in a system has a well defined interface, which is the syntax 

with which it interacts with other modules in the system. 

(2) An interface defines a universe of observations, which are records of 

operation that might be produced by a module with that interface. These observations 

constitute the possible "functionings" of the module. The set of all observations that 

can be produced by a particular module instance serves as the behavior of that module 

Instance. 

(3) A module can be specified by describing a set of "acceptable" 

observations. A module behavior "satisfies" such a specification if it contains only 

acceptable observations. 

(4) An implementation of an abstract module in terms of a collection of 

component modules consists of a composition operation for combining component 

module behaviors to form a "composite" behavior, and an abstraction operation for 

deleting information from the composite behavior to obtain a behavior of the abstract 

module. 

(5) An implementation is correct with respect to given specifications if, 

whenever we apply the composition operation of the implementation to a collection of 

behaviors that satisfy the component module specifications, and then apply the 

abstraction operation of the implementation to the resulting composite behavior, we 

obtain a behavior that satisfies the abstract module specification. 
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1.3 Outline of the Thesis 

This thesis is an attempt to elaborate and make more precise the ideas illustrated 

informally in the previous section. In particular, an attempt will be made to answer the 

questions: 

(1) What is an appropriate mathematical framework that adequately captures 

the notions of interface, observation, composition, abstraction, implementation, 

specification, and correctness discussed above? (Chapter 2) 

(2) How can we translate, in a natural and systematic way, an intuitive 

understanding of the function to be performed by a module into a precise specification? 

(State-Transition Specifications, Chapter 3) 

(3) Once we have obtained such a specification, how can we be sure that it 

says something meaningful? (Consistency of specifications, Chapter 5) 

(4) How can we show, in a systematic way, that a particular implementation of 

an abstract module by a collection of component modules is correct with respect to 

given specifications? (Correctness Proofs, Chapters 3, 4, Appendix II) 

(~) What ~ancial priiiclple& can ·we lcam about how to oryanize specifications 

and proofs of correctness? (Rely/Guarantee-Conditions, Chapters 3, 4, Appendix II) 

(6) How might the specification and proof techniques developed in this thesis 

be formalized to permit the use of mechanical aids? (Event/State Algebras, Appendix I). 

This thesis is organized as follows: Chapter 2 introduces formal definitions of the 

notions of interface, observation, abstraction, composition, implementation, and 

correctness. Some of the modeling choices embodied in these definitions are 

discussed. 

In Chapter 3, the basic definitions of Chapter 2 are used to define formally the 

notion of a state-transition specification. The main result of Chapter 3 Is the 

Correctness Theorem (Theorem 3.9), which shows how the structure of state-transition 

specifications can be exploited to obtain a systematic method for performing 

correctness proofs. Secondary results of Chapter 3 (Lemma 3.11, Lemma 3.12) suggest 

how the proof method embodied in the Correctness Theorem can be further 

systematized if module liveness specifications are expressed in terms of 

re/y-/guarantee-conditions. 
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Chapter 4 applies the theory of Chapters 2 and 3 to the synchronizer example. 

The complete specifications of the synchronizer and synchronizer component modules 

are presented, and the synchronizer implementation is proved correct with respect to 

these specifications. The language of temporal logic is used as a notation for 

expressing liveness properties. 

Chapter 5 is concerned with finding an appropriate notion of consistency of 

specifications that include nontrivial liveness properties. Intuitively, a specification 

ought to be consistent if and only if it is satisfiable by some behavior. However, if by the 

term "behavior" we mean "arbitrary set of observations," then we obtain a notion of 

consistency that is much too liberal. To obtain stronger notions of consistency, we must 

restrict our attention to "realizable" or "computable" behaviors. Chapter 5 introduces a 

particular class of computable behaviors, the "1/0-behaviors," that is based on an 

underlying model of asynchronous concurrent computation called "1/0-systems." The 

corresponding notion of "1/0-consistency" is found to be useful for distinguishing 

between "obviously realizable" and "obviously unrealizable" liveness specifications. 

ChaptP.r 5 rlPvP.lop~ A technit11 •e for proving state-transition spe,:!fi,:ations to be 

1/0-consistent and applies this technique to examples. 

In Chapter 6 a kind of completeness result is proved (the Completeness Theorem, 

Theorem 6.4), which gives sufficient conditions under which a correct implementation 

has a proof by the Correctness Theorem. The statement and proof of Theorem 6.4 uses 

in a crucial way the existence of a "specification domain," which is a class of behaviors, 

like the 1/0-behaviors, with certain closure properties. 

Finally, Chapter 7 summarizes what has been accomplished and suggests avenues 

for future investigation. 

Additional important material is contained in Appendices I, II, and Ill. Appendix I 

provides a formal semantics for the temporal logic language used informally in Chapters 

4-6, and shows the correctness and consistency proof techniques developed in the 

thesis can be formalized within this language. Appendix II considers two additional 

examples: a distributed resource management system, and a reliable message 

transmission system based on the alternating bit protocol. Both of these systems are 

specified and proved correct using the techniques developed in the main body of the 

thesis. Appendix Ill is an index of definitions. 
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1.4 Related Work 

The rather large body of work related to this thesis can be divided roughly into the 

following categories: 

(1) Specification of sequential programs/abstract data types. 

(2) Models of distributed/concurrent computation. 

(3) Temporal logic specification techniques. 

(4) Specification of communication protocols. 

(5) Other distributed/concurrent system specification techniques. 

Each of these categories will be discussed below. Further discussion is included at 

appropriate points in this thesis. 

1.4.1 Specification of Sequential Programs/ Abstract Data Types 

Work in the area of specification of sequential programs can be classified into two 

categories: that concerned with the specification of the function to be performed by a 

program or program fragment, and that concerned with the specification of the data 

types manipulated by a program. 

Sequential Program Function Specification 

Specification of the function to be performed by a program or program fragment is 

a problem that must be addressed by any work on program correctness. In the 

sequential case, the semantics of a programming language assigns to each program 

fragment (statement, procedure, etc.) some mathematical object (denotation) 

representing the effect of executing that fragment. Typically, (see, e.g. [Jones81]) this 

denotation takes the form of a partial function or a binary relation on program states. A 

specification for a program fragment consists of some properties that must be satisfied 

by the denotation of that fragment. 

Often function specifications . are expressed in the form of Floyd/Hoare partial 

correctness assertions (PCA's) [Floyd67, Hoare69], consisting of a precondition and a 

postcondition, which are predicates on states. A program fragment satisfies a PCA if, 

whenever execution of the fragment is begun in a state satisfying the precondition, then 

execution will terminate only in a state satisfying the postcondition. Thus, if binary 

relations are used as denotations of fragments, a PCA is satisfied by any relation R such 
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that if <q, r> E R and q satisfies the precondition of the PCA, then r satisfies the 

postcondition. 

Besides being convenient for specifying the function that must be satisfied by a 

program fragment, partial correctness assertions can be used to construct a formal 

deductive system for reasoning about the behavior of program fragments. For a good 

overview of these "Hoare logics" of programs, see [Apt81]. 

The partial correctness assertion technique has been generalized with some 

success to systems of concurrent processes [e.g. Owicki76]. However these 

techniques suffer from a lack of modularity in the sense that there is no notion of the 

behavior of a single process in isolation. Thus it is possible to specify the function of a 

complete parallel program, but not the behavior of its constituent processes. Although 

a logic of partial correctness assertions is used to prove that the behavior of a program 

satisfies its specification, the truth of PCA's associated with one process cannot be 

determined, except within the context of the PCA's for all other processes. 

Partial r:orrectness assertions arA CAp;thlA of Axrre~qjng only SEtfe.ty properti~s ryf 

the form: "Whenever control is at point P, then relation R holds on the program 

variables. In general, one is interested in liveness specifipations as well. For sequential 

programs, often the only liveness specifications of iaterest are statements that the 

program is guaranteed to terminate under certain conditions. Liveness properties of 

this simple form can be handled by incorporating termination into PCA's, as in Dijkstra's 

calculus of "weakest preconditions" [Dijkstra76], or by techniques completely outside 

of PCA's, such as Floyd's well-founded set technique [Floyd67]. For distributed or 

concurrent programs, it is almost always the case that more general liveness properties 

than simple termination are of interest, and these require alternative techniques. 

Data Type Specif I cation 

The problem of describing the data objects manipulated by a program, especially 

the user-defined data objects, is usually referred to as "specification of abstract data 

types." There are actually two quite different problems that are addressed in the 

literature on abstract data type specification: the specification of immutable abstract 

data types, whose objects do not change their state during execution, and the 

specification of mutable abstract data types, whose objects have changeable state. 
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Specification of immutable abstract data types is the problem of describing and 

reasoning about static collections of values, functions, and relations. Usually a 

collection of interdependent immutable abstract data types is identified with the 

mathematical notion of a heterogeneous algebra, and algebras are described either 

axiomatically, as in [Guttag78, Goguen78, Kapur80], or via set-theoretic constructions, 

as in [AbriaI80]. Specification of mutable abstract data types, on the other hand, can be 

thought of as the problem of describing and reasoning about the dynamic behavior of a 

collection of objects that can be manipulated using a limited set of procedures 

[Guttag80, Wing83]. Berzins [Berzins79] models a mutable abstract data type as a kind 

of state machine, which describes how the states of the mutable data objects evolve as 

a result of the invocation of the procedures. 

The problem of specifying immutable abstract data types is not addressed by this 

thesis. In fact, the specification and proof techniques presented in this thesis assume 

as a prerequisite the ability to describe heterogeneous algebras and to perform 

reasoning about such algebras once they have been described. On the other hand, the 

problP.m of sper:ifying mutable Ah~tract d~ta types can be viewed .es a s~la! t.::ase of 

the general problem of module specification considered in this thesis, by thinking of a 

mutable abstract data type in terms of a "type manager" module, which encapsulates 

the objects of the data type and which performs manipulations on these objects in 

response to requests by the environment. Viewed in this way, the purpose of a mutable 

abstract data type specification is to describe the correct "observations" for the type 

manager module. The notion of observation appropriate here is that of a history of 

"events," where each event records either a request for the type manager to perform 

some manipulation on the objects, or a reply indicating the results of some previously 

requested manipulation. 

1.4.2 Models of Concurrent Computation 

Quite a number of models have been proposed for investigating concurrent and 

distributed computer programs [Brock83, Hoare81 b, Hoare81 a, Greif75, Hewitt77, 

Kahn74, Keller76, Lynch81, Pratt82, Rounds81]. In this thesis as well, specific 

assumptions are made about how to model the behavior of such systems. It is 

necessary to make these assumptions to reach a point at which concrete example 

specifications can be written and correctness proofs performed. However, a conscious 
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effort has been made to assume no more structure than is necessary for the results of 

this thesis. An attempt has been made to identify a few fundamental concepts that are 

required of any m9(:tel, if it is to serve as a semantic foundation for the theory of 

specification developed here. 

The fundamental concepts identified in this thesis are the notions of interface, 

observation, behavior, abstraction, and composition. These concepts, which have 

already been informally discussed, are given formal definitions in Chapter 2. In this 

section, we will briefly review the features of a number of extant models of concurrency 

and attempt to identify the notions of event, interface, observation, behavior, 

abstraction, and composition used here with corresponding notions in each of the 

models. We will also be interested in whether each model is suitable as a semantic 

basis for a specification language -- in particular, whether the .model can model is useful 

for specifications involving liveness properties. 

Kahn-MacQueen Processes 

A rtatin::r eit:Yctl°ll rnodt:,I oi ro11current compuicdion is the stream processing rnodel 

of Kahn [Kahn74] and Kahn and MacQueen [Kahn77]. In this model, a process 

communicates with its environment through a collection of named channels. A process 

uses each channel either as an input channel or an output channel, but never as both. 

During execution, a process can read input values from input channels and emit output 

values on output channels. We can imagine observing a process throughout an entire 

execution and recording the sequence of values transmitted on each channel. Such a 

sequence of values, which can be either finite or infinite, is called a stream. A process is 

modeled by a continuous function from tuples of input streams to tuples of output 

streams. The notion of continuity used here is derived from the fact that streams under 

the prefix ordering form a partially ordered set which is complete under limits of 

increasing chains. Processes are deterministic in the sense that to each input tuple I, 

there is precisely one output tupl~ O that can be produced by a particular process, 

when that process is supplied with input /. This Is a consequence of the fact that 

processes are modeled by functions. 

In the stream processing model, the sets of input and output channels used by a 

process serve as the interface of that process. The role of an observation of a process 

is played by a pair <I, O>, where / is a tuple of streams corresponding to the input 
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channels, and O is a tuple of streams corresponding to the output channels. The usual 

identification of a function with its graph permits us to view a process behavior f as the 

set of all observations of the form <I, f{I)>. 

A process network describes how to compose a collection of processes to form a 

composite system. Formally, a process network defines a kind of fixed point 

construction that maps a collection of component process behaviors to a behavior for 

the composite network. These fixed point constructions comprise the composition 

operations. The composition operations used by Kahn and MacQueen include features 

of both composition and abstraction as defined here, in the sense that once two 

processes have been connected by a communication channel, the stream of values 

transmitted over that channel is no longer of interest, and is ignored. 

The Kahn/MacOueen model is unsuitable for the purposes of this thesis because 

it is incapable of representing processes with nondeterministic behavior. 

Nondeterministic Process Nets 

There have been several attempts to generalize the stream processing model of 

Kahn and MacQueen to incorporate nondeterminism. One such attempt is reported by 

Brock in [Brock83] (superseding the earlier version [Brock81] by Brock and 

Ackermann), where references to other attempts are given. In [Brock83], It is shown 

that the straightforward attempt to generalize the model of Kahn and MacQueen by 

permitting process behaviors to be relations, rather than functions, is doomed to failure. 

Intuitively, the reason is that the behavior of nondeterministic processes depends, in 

general, on the relative orders in which inputs are received and outputs produced. In 

essence, Brock's approach is to replace the <I, O> observations used by Kahn and 

MacQueen by scenarios. Scenarios Include, in addition to the streams of values 

transmitted on each of the channels, a partial ordering that records some of the 

information concerning the temporal order in which values were transmitted. The 

behavior of a process is defined to be the set of all scenarios that the process can 

produce in its various executions. Brock shows how composition operations on 

scenario sets can be defined, in analogy to the operations on continuous functions 

defined by Kahn and MacQueen. 
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Pratt's [Pratt82] "repackages" Brock's model into a general framework for 

modeling processes and their composition, in which the behavior of a process is 

represented by the set of all traces (partially ordered multisets of events) it is capable of 

producing. As in the models of Kahn/MacOueen and Brock, the interface of a process 

can be identified with the set of all events in which the process can participate. The 

notion of trace plays the role of an observation. The notion of the restriction of a trace 

to a subset of its events is used to define composition of process behaviors. Restriction 

mappings on traces play essentially the same role in Pratt's model as decomposition 

maps play in the model of this thesis. 

The models of Brock and Pratt admit the possibility of infinite scenarios or traces, 

and therefore do not a priori rule out the possibility of modeling processes that satisfy 

nontrivial liveness properties. However, this possibility is not addressed by either Brock 

or Pratt. Since we are interested in modeling processes with liveness properties, the 

models of Brock and Pratt are not suitable in their present state of development. 

Communicating Sequential Processes 

An important class of models of concurrency [Francez79, Hoare81 a, Hoare81 b, 

Rounds81] has been developed through attempts to give a formal semantics to the 

language of "Communicating Sequential Processes" (CSP) defined in [Hoare78). In 

each of these models, the behavior of a process describes the traces (finite sequences 

of communication events) in which the process is willing to participate as it executes. 

The set of all events in which a process can ever participate plays the role of the 

interface of that process. The notion of a trace plays the role of an observation. 

Although the particular notion of process behavior is different for different models, each 

of the models of CSP contains a collection of algebraic operations on process 

behaviors, which are used to define the meaning of the various constructs of CSP. In 

particular, each model has some sort of "restriction" or "hiding" operations, which 

cause events to be deleted from a proces.~ behavior, and some sort of "relabeling" 

operations, which allow events of a process to be renamed. These operations are used 

for essentially the same purpose as the abstraction operations used in this thesis. Each 

model also has one or more "composition" operations (composition by intersection, 

composition by interleaving, or a mixture of the two) corresponding to the composition 

operators of this chapter, whose effect is to combine process behaviors in various ways. 
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The important considerations for models of CSP derive from a feature peculiar to 

that language. A CSP process can refuse to communicate with its environment. If a 

CSP process refu~s to perform any of the communications offered by its environment, 

then deadlock is the result. The different definitions of process behaviors in the various 

models of CSP arise from attempting to deal with (or to ignore) the subtleties of refusals 

and nondeterminism. 

In [Hoare81b], a process behavior is a prefix-closed set of traces, which can be 

viewed equivalently as a behavior of the kind defined in this thesis. There are 

operations in (Hoare81 b] for deleting and renaming the events of a process. These 

operations are examples of the abstraction operators used in this thesis. Process 

behaviors are composed by the parallel composition operator II, which is defined as 

follows: If A is the behavior of a process with interface E and B is the behavior of a 

process with interface F, then A II 8 is the set of all traces u formed from events in EU F 

such that the restriction of u to Eis in A and the restriction of u to Fis in B. This notion 

of composition is a particular example of the composition operators defined in this 

thMi~. 

Hoare, Brookes, and Roscoe [Hoare81a] extend the work of [Hoare81b] to deal 

with the problems of refusals and nondeterminism. They do this by permitting behaviors 

to be more highly structured objects than just sets of traces. In particular, a behavior Is 

a set of pairs <s, X>, wheres is a trace, and Xis a set of events that can be refused by 

the process after the trace s has been produced. Although they use a single universal 

set of events for all processes, we can imagine designating the set of all events that 

actually appear In a process as the interface of that process. As in the model of 

[Hoare81 b], traces play the role of observations. There are "concealment" operators 

for deleting events, and "inverse image" operators that permit renaming of events. 

There are no ''direct image" operators, apparently because they are not as well 

behaved as the inverse image operators. Two kinds of parallel composition operations 

are defined: composition by intersection, In which events of the component processes 

are connected, and composition by Interleaving, in which the events of the components 

remain independent. 

Rounds and Brookes [Rounds81] attempt to justify and extend the work of 

[Hoare81 a] in the following way: A definition of process behaviors Is made that includes 

somewhat more information than that of (Hoare81a], and is based on supposedly more 



· 24-

fundamental intuitive considerations. A number of algebraic operations, including 

composition and abstraction, are defined on behaviors. A notion of "observable 

equivalence" of behaviors is defined, and is shown to be a congruence. The quotient of 

the algebra of behaviors with respect to this congruence is then shown to be isomorphic 

to the model of [Hoare81a], thus providing evidence that this model exactly captures the 

externally observable properties of processes. 

There seem to be problems associated with the use of models of CSP as a 

semantic basis for specification languages. These problems center around the 

following two questions: (1) Do traces represent a "complete" record of execution of a 

process, or simply some finite portion of such a record? (2) What is the meaning of a 

liveness specification such as "eventually event a will occur," if a process can be 

placed in an environment that refuses to permit the occurrence of event a? 

With respect to question (1 ), it is difficult to see how the designers of the CSP 

models could have intended traces to represent complete observations. This is 

because in general a complete observation will be infinite, but the CSP models provide 

no method for extracting infinite traces from behaviors. Without a distinction between 

complete and incomplete observations, we have no way to determine whether a 

particular CSP process satisfies a liveness specification. It is clearly ridiculous to 
I 

require that a specification such as "eventually event a will occur" be satisfied by all 

"incomplete" as well as all "complete" observations. 

Question (2) arises from a desire to "assign the blame" for an unsatisfied liveness 

specification, either to a process or its environment. If a process can always be placed 

in an environment that can prevent the occurrence of event a, then the only reasonable 

conclusion we can draw is that the specification "eventually a will occur" is too strong 

(i.e. inconsistent). However, it is not clear how to weaken such a specification so that it 

can be regarded as consistent. 

The above problems associated with the models of CSP have been avoided here 

as follows: First, it is assumed here that the observations in a behavior represent 

complete records of execution. Second, we accept the obvious conclusion that the 

specification "eventually a will occur" is inconsistent with respect to a model (such as 

the model of [Hoare81 bl} that admits the possibility of refusals. Instead of trying to find 

ways to weaken specifications like this so that they can be regarded as consistent even 
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in the face of refusals, though, we construct a model in which refusals are not allowed. 

This is the idea behind the 1/0-behaviors constructed in Chapter 5 of this thesis. 

Calculus of Communicating Systems 

Rather similar to the models of CSP discussed above is the "Calculus of 

Communicating Systems," (CCS) of [Milner80]. As in CSP, the notions of a 

communication event and a sequence of communication events are the fundamental 

concepts for describing the behavior of a process. The role of a process interface is 

played, in CCS as in CSP, by the set of communication events in which the process is 

capable of participating. The CCS notion of an observation is a sequence of events; in 

contrast to CSP, CCS admits the possibility of infinite observations. 

To represent the behavior of a process, Milner introduces the notion of a 

communication tree whose paths represent all possible complete histories of 

communication for a process. In a communication tree there can be multiple arcs 

emanating from a single node, labeled with with the same communication event, and 

&res can ~ laueit::d with lhe SJ>tK;ictl ~ymbol .,, which represents Hfl initunHi Hciion of a 

process not associated with any communication event. Communication trees therefore 

contain more information about a process than just a simple set of traces. In fact, 

communication trees contain more information about a process than can be detected 

through composition with other processes. Milner addresses this problem by defining 

several notions of "observable equivalence" of communication trees, and shows that 

these relations are congruences for an algebra of processes whose operations include 

operations of composition and abstraction. He suggests that the class of process 

behaviors be obtained by forming the quotient of the algebra of communication trees 

with respect to one of these congruences. He is unable to reach a conclusion, though, 

as to which of the congruences is "best," or to give explicit characterizations (not 

involving quotient constructions) of the quotient algebras. 

Although communication between two processes in CCS, as In CSP, is 

synchronized in the sense that it is represented by the simultaneous occurrence of 

communication events for the participating processes, communication in CCS is unlike 

that in CSP in the sense that a CCS process cannot prevent another process from 

performing an event. This is because the definition of the composition operation in CCS 

states that, if process A can perform an event a, and process A' can perform the 
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"complementary" event a', then the composition A II A' can perform either a, or a', or 

the communication represented by the simultaneous occurrence of both a and a '. 

The fact that observations can be infinite in CCS raises the question of whether it 

is possible to define CCS processes that satisfy interesting liveness properties. 

However, it seems that this possibility is ruled out by Milner's composition operation. 

Milner's composition operation is "unfair" in the sense that there are paths in the 

communication tree corresponding to the composition of two processes along which 

only one of the component processes gets to run. This means that no process can 

satisfy a specification of the form: "eventually a will occur," in an environment that has 

the capability of producing an infinite observation. 

Actors 

One of the earlier event-based models of computation is the actor model [Greif75, 

Hewitt77]. An actor system consists of a collection of primitive computing agents 

(actors), that communicate by passing messages. A computation for an actor system is 
' 

a .,:,c11 iiciliiy ofdt:,-~ set of event::;, where an event marks the arrivai of H message at its 

target. Receipt of a message activates the target actor, and may cause additional 

messages to be issued. The partial order represents a kind of temporal "precedes" 

relationship between events, formed by taking the transitive closure of the union of the 

"causes" relation and the "arrival" ordering, the latter of which linearly orders all events 

with the same target. Hewitt and Baker [Hewittn] postulate certain laws that must be 

satisfied by the various orders. 

The actor model was originally applied [Greif75) to the specification of 

synchronization problems such as the mutual exclusion and readers/writers problem. 

The specifications are written as axioms that constrain the possible computations of a 

system. The language used, although not formally defined, is essentially a propositional 

calculus in which the propositions are of the form "e - e '," which means that event e 

must precede event e ' in any computation of a system satisfying the specification. 

Although no notion of state was used in the specifications, the language has 

nevertheless sufficient expressive power to handle several important examples. 

Subsequent work concentrated on applying the actor model to the specification of 

more complex systems, both distributed and centralized [Yonezawan]. In contrast to 

the work ot Greif, Yonezawa's specifications have a decidedly state-transition flavor, 
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and although proponents of the actor model consistently argue that global state is not a 

well-defined notion for distributed systems, the "situations" used in Yonezawa's 

correctness proofs appear to be just such global states. 

In the actor model, the notion of an actor is generally defined by informal axioms 

and description, which are insufficient to answer the question: "What is an actor?" We 

must know the answer to this question if we wish to obtain a meaningful notion of the 

collection of all actors that satisfy a given specification, and to show the validity of rules 

for deriving consequences of specifications of actor systems. The question of what 

actors are has only recently been dealt with by Clinger [Clinger81 ], who defines actors 

and their computations directly in terms of set-theoretic constructs. It is interesting to 

note that, although actor enthusiasts like to point out that viewing computations as· 

partially ordered sets of events captures "true" concurrency better than linearly ordered 

computations, Clinger shows that the laws of Hewitt and Baker are in fact equivalent to 

the existence of a global linear ordering of events in a computation. 

To relate the actor model to the model used in this thesis, we can attempt to 

identify notions of interface, observation, behavior, abstraction, and composition in the 

actor model. There seems to be no obvious notion of the Interface of an actor. The 

notion of a partially ordered set of events plays the role of an observation. Roughly 

speaking, Clinger defines the behavior of an actor to be a function that describes the 

actor's response (i.e. its state change and message transmissions) to the receipt of a 

message. Although we can imagine composing a collection of independent actors into 

a composite system, there seems to be no formal notion in the actor model 

corresponding to such an operation. As mentioned above, the existence of the arrival 

ordering prevents the definition of an abstraction operation. 

The actor model has certain defects that render It unsuitable for a theory of 

specification. The major difficulty is that the actor model does not support abstraction 

of systems in a uniform way. There are notions of an actor and a system of actors, but 

no way to view a system abstractly as a single actor. The artificial "arrival ordering," 

imposed on all events that occur at a single actor, is the primary feature that prevents 

abstraction from being defined in a reasonable way. Another reason is the fact that 

every message must contain the name of its target actor, since this means that it is 

never possible to completely suppress the internal structure of an actor system. 
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Lynch/Fischer Processes 

In the model of distributed computation proposed by Lynch and Fischer 

[Lynch81], the primitive objects are variables and processes, and systems of processes. 

A variable is a mailbox-like container for values, and a process is a kind of state machine 

that can perform input and output on variables. A system of processes consists of a 

collection of processes that communicate through variables. The variables of a system 

of processes are partitioned into external and internal variables. There is a kind of 

composition operation that combines a collection of systems of processes to form a 

larger system. There is also a kind of abstraction operation that transforms some of the 

external variables of a system into internal ones. 

A correspondence between Lynch and Fischer's model and the model of this 

thesis can be established, if the notion of an event is identified with Lynch and Fischer's 

notion of a "variable action." A variable action describes the change in the value of a 

variable resulting from a single execution step. The interface of a system of processes 

is the set of all variable actions it can perform. The behavior of a system of processes is, 

as Lynch and Fischer define, the set of all finite arid infinite sequences of variable 

actions the system is capable of performing. To view Lynch and Fischer's operation of 

composition of systems of processes as a special case of the composition operators 

defined here, it is necessary to account for the requirement that the actions on a single 

variable in the computation of a system have consistent values. This is easily 

accomplished if variables are thought of as active entities with an interface and a 

behavior. The interface of a variable is the set of all variable actions that can be 

performed on it. The behavior of a variable is the set of all finite and Infinite sequences 

of variable actions in which the value read in each variable action equals the value 

written in the immediately preceding variable action. 

In terms of modeling power, the model of this thesis and that of Lynch and Fischer 

appear equivalent. Lynch and Fischer's model is certainly capable of handling 

nondeterminism and liveness properties. The main advantage of the model of this 

thesis over that of Lynch and Fischer is that the former contains fewer primitive 

concepts. It is not necessary to draw distinctions between variables, processes, and 

systems of processes, and the definitions of composition and abstraction are simplified 

by avoiding these distinctions. 
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1.4.3 Temporal Logic Specification 

Several authors [Hailpern80, Lamport83, Schwartz81] have proposed the use of 

temporal logic as a specification language and a vehicle for expressing correctness 

proofs. The use of temporal logic as a specification language evolved gradually from its 

use as an assertion language, that is, as a language for expressing properties of 

program executions [Pneuli77, Lamport80]. There is a subtle difference, though, 

between the semantics appropriate for temporal logic used as an assertion language 

and temporal logic used as a specification language. This difference, which has not 

been explicitly addressed in the literature.can be summarized as follows: Whereas 

temporal formulas as assertions express properties of single computations of a fixed 

program, temporal formulas as specifications express properties of the set of 

computations of an undetermined program. Stated another way, whereas a model for a 

temporal formula used as an assertion about a fixed program is a single computation of 

that program, a model for a temporal formula used as a specification is the set of all 

computations that can be produced by some program. This distinction has important 

ramifications for whal notion of consistency i~ appropriate in each case. A temporal 

formula used as an assertion about the computations of a fixed program is consistent if 

and only if there exists a computation of that program that satisfies the formula. A 

temporal formula used as a specification is consistent if and only if there exists a 

program, all of whose computations satisfy the formula. 

Another important issue that is not addressed explicitly In literature on temporal 

logic specification is the ability to specify a single module in isolation from particular 

program context.1 The notion of a program module satisfying a specification in isolation 

must be meaningful if specifications are to effect the beneficial separation between 

module use and implementation. Since extant work does not include the notion of the 

meaning of a specification in isolation, there has been no discussion of the following 

important question: How can we combine independent module specifications to perform 

1. Recent work [Barrlnger83], performed independently of the work described in this 
thesis, has begun to address some of the same issues, in particular: (1) temporal 
specifications express properties of sets of computations, rather than single 
computations, (2) specifications should have meaning that is independent of an 
enclosing context. 



a proof of correctness? In particular, in what common language can the proof of 

correctness be expressed. and what deductions in this language are sufficient to imply 

the correctness of the implementation? 

Among the papers on temporal specification of concurrent program modules. the 

approach developed by Lamport [Lamport83] contemporarily with work on this thesis, 

results in specifications that appear most similar to the state-transition specifications 

described here. In Lamport's approach, a specification consists of three parts: (1) A list 

of state functions, which define salient features of the program state; (2) A list of initial 

conditions, which represent assumptions on the initial values of the state functions; (3) 

A list of properties, which constitute the main body of the specification, and which can 

be viewed as standing for a collection of temporal logic formulas. The properties are of 

two kinds: safety properties and liveness properties. Safety properties describe the 

state transitions that are permissible for a program satisfying the specification, and 

liveness properties describe situations under which transitions are required. 

The way one writes a specification in Lamport's approach is quite similar to the 

way one writes state-transition specifications as described in this thesis. At the 

semantic level, though, Lamport's approach seems rather different. The difference can 

be summed up briefly as follows: In Lamport's work, specifications for program 
I 

modules play the role of assertions about the computations of a complete program in 

which the module appears. Whether or not a particular program module satisfies a 

specification can only be determined in such a context. In the framework presented in 

this thesis, whether a program module satisfies a specification can be determined 

without reference to any contextual information. 

The meaning of the state functions used in Lamport's approach is obscure. 

Lamport says that state functions in a specification "should describe information that 

must be contained in the program state of any real implementation." This statement 

apparently implies that the value of the state functions is part of the observable behavior 

of the module being specified, and in this sense is just as important a part of a module 

specification as the relationship between the arguments passed and results returned 

from an invocation of an operation on the module. Choosing state functions that 

provide too detailed a view of the internal operation of a module can result in 

overspecification, since an implementer wishing to satisfy the specification is 

constrained to include enough information in the state so that the state functions can be 
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defined. 

This thesis resolves the problem of overspecification by introducing the notion of 

an interface. By defining a module interface, one fixes a particular class of module 

instances (i.e. the behaviors of that interface) which serves as a domain of discourse for 

the temporal specifications. In this thesis, a module interface is a set of events. An 

interface does not contain any notion of module state. States are used merely as a 

device for increasing the expressive power of the specification language to permit the 

desired properties of observations to be expressed in a convenient and natural way. 
Since states are not part of the module interface, the state set in a state-transition 

specification can be chosen on the basis of convenience, without danger of 

overspecif ication. 

Schwartz and Melliar-Smith have also proposed the use of temporal logic as a 
specification language. In [SchwartzBO], specifications are developed for the 

alternating bit communication protocol. Appearing in these specifications are 

uninterpreted symbols such as "lnQ" and "OutQ." These symbols, like the state 

functions used by Lamport, are evidently intended to refer to portions of the state that 

must be identifiable in any program satisfying the specifications. Schwartz and 

Melliar-Smith present collections of temporal axioms which they claim completely 

characterize the send and receive processes supporting the alternating bit protocol. 

There is little basis for this claim, since it is impossible to determine what a process is, 

much less determine whether the specifications characterize a particular process or 

class of processes. 

The axioms presented by Schwartz and Melliar-Smith involve complicated derived 

temporal operators such as "latches-until," which make the resulting specifications 

quite difficult to understand. The specifications have an ad hoc flavor, and It is difficult 

to obtain insight into how specifications for different examples would be obtained. In 

contrast, the state-transition approach discussed in this thesis suggests a systematic 

way of proceeding from an Intuitive conception of the desired module behavior to a 

precise specification. Schwartz and Melliar-Smith present no proof that their send and 

receive process specifications correctly implement the &ervice specification for the 

alternating bit protocol. Experience gained from the examples presented in this thesis 

suggests that specifications that have not been used in a proof of correctness are quite 

likely to contain errors. 
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Hailpern and Owicki [Hailpern80] propose a style of temporal logic specification 

that is different from the styles of Lamport and of Schwartz and Melliar-Smith. Hailpern 

and Owicki also use the alternating bit protocol as an example to illustrate their 

approach to specification. In addition to symbols representing components of the 

internal states of processes in the system, Hailpern and Owicki introduce the notion of a 

history variable, whose value at any instant of time represents the entire history of 

commun\cation between two processes up until that instant of time. They state 

explicitly that history variables are simply a descriptive tool, and are not intended to be 

implemented. History variables appear to be quite useful for writing high-level, 

nonprocedural specifications. For example, the safety properties satisfied by a 

transmission line could be expressed by stating that the history of messages delivered is 

always a prefix of the history of messages sent. 

The state-transition approach to specification presented in this thesis takes the 

history variable idea to its logical conclusion, by allowing arbitrarily structured history 

information (in the form of states), to be introduced into a specification, together with 

npArati_ons for manipulating this informAtion. This r.an he none diffArently for e1:t.c:.:h 

specification, without change to the underlying semantic model. For example, the 

specification of the reliable transmission module presented in Chapter 6 uses the notion 

of the history of all messages input to the reliable transmission module. In the 

specification of the send protocol module in Chapter 6 it is convenient to define the 

notion of "the history of all messages for which acknowledgements . have been 

received." This history is a subhistory of the history of all messages transmitted by the 

send protocol module, and would not be directly accessible in the model of Hailpern 

and Owicki. 

1.4.4 Specification of Communication Protocols 

The problem of specification of communication protocols has received a good 

deal of attention, and can be viewed as a special case of the more general problem, 

investigated here, of specification of modules in a distributed system. Two surveys of 

the protocol specification literature, written from different vantage points, can be found 

in [Sunshine78] and [Hailpern81]. 
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Of the numerous papers on protocol specification and verification, that of 

Bochmann [Bochmann78] appears to be most directly relevant to this thesis. 

Bochmann models a system as a collection of finite-state machines that affect each 

other through coupled state transitions. This is highly analogous to the definition, given 

here, of composition of behaviors by identifying events. Bochmann also has a notion of 

abstraction by ignoring uninteresting transitions, which matches the concept of 

abstraction of behaviors used here. 

Schwabe [Schwabe81 a, Schwabe81 b] exploits the analogy between the 

instantaneous state of a communication protocol and a value of an abstract data type, 

to translate state-transition specifications of protocols into equational axioms that 

define an abstract data type. This translation enables him to verify correctness 

properties of communication protocols using an automated verifier (AFFIRM) originally 

intended for proving properties of abstract data types. However, only certain kinds of 

correctness properties can be stated and proved using his technique. In particular, 

liveness properties cannot be handled. Schwabe pays little attention to the semantics of 

his specifir:ation~: leaving somP. a.mhigl•ity a!S to what objects satisfy a s~if!caUon, e.nd 

what consitutes correctness of a protocol. 

It is interesting that the notions of hierarchy and modularity of systems, and the 

prerequisite concept of the interface of a system with its environment, are much more 

prominent in the literature on protocol specification than they are in the literature on 

specification in general. In protocol specification, a system is viewed as a nested set of 

layers: the bottom level corresponds to the communication hardware, and each layer 

provides an abstract service to the next higher layer. The top level implements the 

service provided to the "end user." Typically the service provided by a level can be 

viewed as an abstract communication network connecting two users, which often have 

an asymmetric sender/receiver relationship. Higher levels of abstraction are 

implemented by interposing protocol processes between the users and the 

communication service provided by the next lower level. The interface between the 

users and a service comprises the set of operations (e.g. open connection, send 

message), they can perform. A distinction is drawn between the specification of an 

abstract service provided to a user (the service specification) and a description of the 

protocol processes (the protocol specification). 
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There are only a few specific correctness properties of interest for communication 

protocols: freedom from deadlock, completeness (i.e. definedness of the protocol in 

every reachable sta~e), progress, and stability in the face of unexpected perturbations of 

the protocol. These properties are certainly also of interest for more general kinds of 

distributed systems. All verification techniques in the communication protocol literature 

are ultimately based on representing the protocol processes and abstract 

communication media as finite-state machines, constructing a combined 

state-transition graph for the implementation, and performing various analyses on this 

graph. The state-transition approach to specification and verification is a natural 

generalization of this technique. It should be noted, however, that the machines used in 

the state-transition specifications in this thesis are not necessarily finite-state, and that 

reachability analysis of a system is performed by proving predicates to be invariant, 

rather than by explicit construction of the combined state-transition graph. This means 

that the proof techniques discussed in this thesis need not be subject to the 

combinatorial explosion problem often referred to in the literature on protocol 

verification. 

1.4.5 Other Concurrent System Specification Techniques 

Chen [Chen81, Chen82] develops a concurrent system specification language 

called EBS (Event-Based Specification Language), and gives specifications for a 

number of examples, including the alternating bit protocol. The EBS language can be 

thought of as a generalized version of the language used in [Greif75] to specify various 

synchronization problems. An EBS specification expresses properties of an event 

history, which is a partially ordered set of events. The EBS notion of an event history 

corresponds to the notion of an observation used in this thesis. 

Chen's work seems to be motivated by a number of the same concerns that 

motivated this thesis. In particular, Chen discusses the distinction between the user's 

view and the designer's or implementer's view of a system, and introduces a notion of 

interface to capture the way in which a system interacts with its environment. In Chen's 

approach, a module interface consists of a collection of ports. There is a notion of 

module interconnection by identifying ports, which is reminiscent of the composition 

operations used in this thesis. Chen's work does not, apparently, include a notion of 

behavior, or the idea that a module specification has meaning except with respect to a 



-35-

complete program context. Chen does not have a semantic definition of the 

correctness of an implementation from which the soundness of proof techniques can be 

derived. Rather, the notion of correct implementation seems to be identified with the 

notion of logical consequence. 

An interesting property of Chen's specifications is that they tend to be 

"orthogonal." An orthogonal specification is a specification that is composed of a 

collection of independent subspecifications. For example, Chen defines a number of 

different properties of a reliable transmission system, such as "no loss of messages," 

"no duplication of messages," and "no erroneous messages." It is not obvious how the 

state-transition technique presented in this thesis could support the writing of 

specifications with a comparable orthogonality property. 

The Gypsy system [Good79, Good82] has some capability for the specification and 

verification of distributed systems. In the Gypsy model, a distributed system is viewed as 

a collection of independent processes that communicate through message buffers. 

Specifications of the communication function performed by a process are expressed in 

terms of properties of "buffer histories," which represent the sequences of messages 

transmitted on, or received from message buffers. Gypsy seems capable of handling 

only safety properties. 

Correctness proofs in Gypsy are performed by deriving a collection of verification 

conditions from annotated program text, and then proving the validity of these 

verification conditions using a semi-automatic theorem prover. Evidently the validity of 

the verification conditions is taken as the definition of correctness; the literature shows 

no attempt to justify the sufficiency of the verification conditions in terms of any 

fundamental model of computation. Reasoning about the behavior of a system of 

processes in Gypsy is done in terms of relationships between buffer histories. The 

approach appears similar to Hailpern and Owicki's history variable approach. 

An outgrowth of the Gypsy work is the work of DiVito [DiVito82], which is 

concerned with the description and mechanical verification of communication 

protocols. DiVito's specifications contain liveness properties only, and are expressed in 

a decision table style that captures much the same information as the definitions of 

state-transition relations presented in this thesis. The purpose of DiVito's work seems to 

be to quickly reach a point at which experimentation with mechanical verification is 
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possible. His focus is primarily on linguistic issues, rather than their semantics. 

Lansky and Owicki [Lansky83] have developed a language, called GEM, for the 

specification and verification of properties of concurrent systems. The underlying 

model of computation is an event-oriented model similar to the actor model [Greif75, 

Hewitt77], in which a computation of a system is represented as a set of events plus 

various relations on this set. The enable relation captures the notion of necessary 

temporal precedence, or causality, between events. The element partial ordering 

captures the notion of incidental temporal precedence, where one event precedes 

another because they happen to occur at the same point in space. The temporal partial 

ordering is the transitive closure of the union of the enable relation and the element 

ordering. Besides the notion of an event and the relations on events discussed above, 

GEM includes a number of additional primitive notions. An element corresponds to a 

locus of activity or point in space. A group is a set of elements and other groups, which 

is used to collect semantically related objects. History sequences are certain increasing 

sequences of computation prefixes, and are used as a domain of interpretation for 

tAmporal lnoir. formulas. ThrARds ar~ A mechanism for dyn~mir:al!~, grouping a 

sequence of related events. 

The issues considered by GEM seem largely orthogonal to those examined in this 
I 

thesis. The design of GEM seems to have been motivated primarily by a desire to 

describe, within a common framework, the semantics of a number of primitives of 

concurrent programming languages. For example, monitors and the CSP 

communication primitives are discussed. In contrast, this thesis is not concerned with 

the description of prc;>gramming language primitives, although this is a problem that 

must ultimately be addressed. A GEM specification describes constraints on 

computations of a single program, whereas in this thesis a specification is viewed as 

describing constraints on the entire set of computations of an undetermined program. 

GEM apparently does not include any notion of behavior, composition, or abstraction. 

Yonezawa [Yonezawa77] develops techniques for the specification and 

verification of parallel programs, based on the actor model of computation. The central 

concepts used in these techniques are the notions of a conceptual state, and a 

situation. A conceptual state is a summary of the past communication history of an 

actor, and corresponds closely to the conceptual states used in the state-transition 

specifications of this thesis. A situation assigns a conceptual state to each actor in a 
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system, and is used in verification in much the same way as the state of the "composite 

machine" is used in this thesis (see Chapter 3). The notion of an implementation 

invariant appears i'1 Yonezawa's work, and plays roughly the same role there as it does 

in this thesis. Yonezawa's model seems to incorporate a notion of hierarchy of 

abstraction, in the sense that it is possible to view a system both at a more detailed level, 

where there is a larger collection of events and more detailed states, and at a less 

detailed level, where only a subset of the events is considered and less information is 

contained in the states. 

Yonezawa's specifications look very much like the definitions of state-transition 

relations used here, in the sense that a specification describes, for each possible event, 

a precondition on the state that must hold for an event to occur, and a postcondition 

that describes the state that results after the event occurrence. The semantics of the 

event/precondition/postcondition triples used by Yonezawa seems to differ from their 

counterparts in this thesis, in the sense that if the precondition of an event ever holds, 

then that event must eventually occur. Thus, Yonezawa's formalism appears, to a 

r-.P.rtRin P.xtent, to he capable of Axpressino liv~nP,~~ rvoperties. 

There are three major deficiencies with Yonezawa's work, which are improved 

upon in this thesis: 

(1) The semantics of Yonezawa's specifications are defined informally in terms 

of the actor model, whose precise definition is somewhat obscure. It is therefore not 

possible to address rigorously the question of what constitutes correctness in 

Yonezawa's model, and to show that his proof techniques suffice to prove correctness. 

(2) The actor model lacks a useful notion of modular decomposition. In 

particular, there is no reasonable way to view a system of actors as a single actor. 

(3) Yonezawa's techniques can handle only a very limited form of liveness 

property in specifications and proofs; namely, those of the form: "If the precondition of 

an event holds, then eventually that event must occur." 
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2. Framework for a Theory of Specification 

The purpose of this chapter is to construct a framework of definitions that is 

suitable as a foundation for a theory of specification. We present and motivate formal 

definitions of the notions, discussed informally in Chapter 1, of "interface," 

"observation," "abstraction," "decomposition," "implementation," and "correctness." 

2.1 lnte.rfaces, Observations, and Behaviors 

An event is an observable instantaneous occurrence during the operation of a 

computer system. If one were to examine a particular computer system in microscopic 

detail, the events of a system could be identified with physical events, such as voltage 

changes on signal lines. However, we are generally not interested in such a large 

amount of detail, and instead regard large classes of physical events as equivalent and 

indistinguishable. Examples of such equivalence classes are: the event in which 

process A submits a message to a transmission system for delivery to process B, the 

event in which the variable x is set to three, and the event in which the synchronizer 

module receives a try request from user process p. 

The first step in modeling a particular system is to identify and classify the 

interesting instantaneous occurrences. As a result of this procedure, we associate with 

each system and each particular level of abstraction at which the system is to be 

viewed, an "interface," which represents the set of all possible instantaneous 

occurrences of interest at the given level of abstraction, plus a single element A, which 

represents all uninteresting occurrences. Lower levels of abstraction (those that 

incorporate more detail) are characterized by larger interfaces, corresponding to finer 

classifications of the instantaneous occurrences, whereas higher levels of abstraction 

are associated with smaller interfaces, corresponding to coarser classifications. 

Definition - An interface is a structure <E, Ac, ... >, where Eis a set whose elements are 

called events, AE Is a distinguished element of E called the null event, and the ellipsis 

indicates that further structure may be present. I 

We use the symbol E to denote both the entire structure and the underlying set of 

events. When the interface E is clear from the context, we will omit subscripts, writing A 

instead of AE. 
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In general, an interface E will have additional structure besides the distinguished 

element "J\E" For example, in Chapter 5 we will be concerned with interfaces of the form 

<E, "J\E' lnE, OutE>' where lnE and OutE are subsets of E called the sets of "input events" 

and "output events," respectively. Except for the material in Chapter 5, the only 

structure required is the existence of the distinguished null event >..E. 

If Eis an interface, then let E• denote the set of all finite strings, and EfX) the set of 

all finite and infinite strings, on the alphabet E - {>..EJ. It is convenient to view E as a 

subset off• and ffX), where the element >..E of Eis identified with the unique string of 

length zero, and each non-"J\ element e of Eis identified with the corresponding string e 

of length one. 

In the synchronizer example, the interfaces are defined as follows. Let Proc be the 

set of user processes. The synchronizer module has interface ESM = {tryP, runP, restP: p 

€ Proc) U {>..). A synchronizer component module has interface Esc = {"J\, try, run, 

rest, token_in, token_out, request_in, request_out}. 

To rtP.sr.ribP. the functioning nf a ~~te.m dl•ring A ~ingle ev~1_1tion. we postulate 

the existence of an omniscient observer, outside of the system under consideration. 

The observer is able to watch the operation of the system and compile a complete 

record of the events that occur, along with their time of occurrence. We refer to this 

record, the structure of which will be precisely defined below, as an "observation." An 

observation is a function that maps each instant of time t in the interval (0, ex:>) to the 

event that occurs at time t. 

We assume that at most finitely many non->.. events can occur in any bounded 

interval. This assumption, which is used to permit inductive reasoning about 

observations, seems reasonable if we think of a computer as executing in discrete steps 

taken at a finite rate. The fact that an observation is a (single-valued) function implies 

that at most one event occurs at each instant of time. This is not to be interpreted as a 

fact about real-world systems, but rather as part of the definition of the term "event." 

That is, by definition no more than one event occurs at any instant. To model a situation 

in which a number of primitive occurrences can happen simultaneously, we must use an 

interface that contains one event for each possible combination of primitive 

occurrences. 
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The reason why we define observations as functions from (0, oo) to events rather 

than simply as sequences of events (and in Chapter 3 define computations on [0, oo) as 

well), is a technic~I one. We shall often be interested in composing a collection of 

observations, one for each component module in a system of modules, to obtain a 

single observation of the composite system. If observations are defined to be 

sequences of events, then composition of observations corresponds (in the special 

case that the component modules do not interact) to interleaving of sequences. For 

example, if a module M 1 can produce the sequence of events ab and module M2 can 

produce the sequence of events cd, then the composite system consisting of modules 

M1 and M2 can produce the interleaved sequence of events acbd. The feature of 

interleaving that is inconvenient for our purposes Is the fact that the indices of events 

change under interleaving. That is, the event b appears as the second event in the 

sequence ab, but as the third event in the sequence acbd. The definitions of 

observation and composition we use have the more convenient property that an event 

appearing at time t in an observation for module in isofation always corresponds to the 

event appearing at time t in a composite observation. 

Definition - An observation over an interface Eis a function x: [0, 00) - E, such that 

x(t) '¢- X for at most finitely many t in each bounded interval. I 

Let A denote the identically X observation, and let Obs(E) denote the set of all 

observations over E. If x E Obs(E), and a € [0, 00), then let [x] denote the function that 

maps each t € [0, 00) to the the (finite) string of non-X events that occur during the 

interval [0, t) in x. Let suffix
8
(x) be the observation y € Obs(E) such that y(t) = x(t + a) 

for all t € [0, 00). 

By collecting the set of all observations that can be produced by a system in 

various environments, we obtain the "behavior" of that system. 

Definition - A behavior of interface Eis a subset of Obs(E). 

Let Beh(E) be the set of all behaviors of interface E. 
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2.2 Abstraction, Decomposition, and Interconnection 

In this section, we show how the concepts of hierarchy of abstraction and modular 

decomposition can be captured through the use of certain mappings between 

interfaces, which we call "translations, 11 and the corresponding mappings they induce 

on observations. 

Definition - A translation from an interface E to an interface F is a function h: E - F 

such that h(AE) = '>..F. A translation h from E to F extends in a natural way to a function 

h: Obs(E) - Obs(F), under the definition h{x) = h•x. I 

The concept of an "interconnection, 11 defined below, is the formal notion 

corresponding to a diagram like Figure 2. Intuitively, an interconnection consists of of 

an "abstraction map, 11 which captures the relationship between a more concrete and a 

more abstract view of a system, and a "decomposition map," which captures the 

relationship between a composite system and its component modules. An abstraction 

map is simply a translation from the interface corresponding to the concrete view, to the 

interface corresponding to the abstract view. A decomposition map is a collection of 

translations that shows how the events for the composite system are decomposed into 

events for the component modules. 

Definition - An interconnection is a pair , = <a', <B/>,e>, where a3: E' - o' is a 

translation, I is a finite index set, and each al: E3 - F/ is a translation. The interfaces Fl 
are the component interfaces of ,, the interface E' Is the composite interface of ,, and 

the interface o' is the abstract interface of,. The translation a' is the abstraction map 

of ,, and the vector <B!>;Ei is the decomposition map of,. I 

In the sequel, underlining will be used to denote a vector of objects; thus we write 4' for 

the vector <a;>,€,. 

The synchronizer implementation yields an example of an interconnection. The 

content of Figure 2 is formalized by the interconnection <aSM1, .d SM'>, where ESM1, aSM1: 

ESM1 - ESM and a:-41: fSMI - Esc, p E Proc, are defined below. 

The composite interface for the synchronizer module implementation is ESM' = 

{tryP, runP, restP, tokenP, requestP: p E Proc} U {'>..}. 
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The decomposition map ~ SM, projects or decomposes each event for the 

composite interface into corresponding events for the synchronizer component 

modules. The events tryP, runP, and restP in ESM1 decompose to try, run, and rest events 

of the pth synchronizer component module. The events tokenP and requestP of ESM1 

represent interaction between the pth synchronizer component module and its 

neighbors in the ring. Specifically, the event tokenP represents the joint occurrence of a 

token_out event for the pth synchronizer component module, and and a token_jn event 

for the p + 1st synchronizer component module. Similarly, the event requestP represents 

the joint occurrence of a request_out event for the pth synchronizer component module 

and a request_Jn event for the p-1 st synchronizer component module. Formally, 

6SM1(e) = try, if e = try p p 

= run, if e = runP 

= rest, if e = restP 

= token_in, if e = tokenP-1 

= token_out, if e = token P 

= request_ln, if e = requestP + 1 

= request_out, if e = requestP 

= >., otherwise. 

The abstraction map aSM1 preserves events in which the system of synchronizer 

component modules interact with the user processes, but deletes (i.e. maps to >.) events 

corresponding to internal interaction 

Formally, 

between synchronizer component modules. 

aSM1(e) = e, if e E {tryP, runP, restP: p E Proc}, 

if e E {tokenP, requestP: p E Proc} U {>.}. 

We assign intuitive significance to some of the operators on behaviors that are 

naturally induced by abstraction and decomposition maps. 

The direct image operator associated with an abstraction map takes a behavior of 

a system viewed at a more concrete level, and produces the corresponding behavior of 

that system viewed at a more abstract level. 

Definition - The abstraction operator associated with a translation a: E - D, is the 

function, also denoted by a, that maps each behavior B E Beh(E) to the direct image 

a(B) E Beh(D). We refer to the behavior a(B) as the abstraction of B under a. I 
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The inverse image operator induced by a decomposition map models the 

operation of composing a collection of component module behaviors to produce the 

corresponding behavior of the composite system. Intuitively, if S is a system consisting 

of component modules <M
1
),Et' then S can produce all and only those observations x 

that, when decomposed, match observations that each M1 can produce. 

Definition - The composition operator associated with the vector i of translations is 

the function, denoted by i ·1, that maps a vector <B;>,E,• where B1 E Beh(F) for each i E /, 

to a behavior a·1c.a) € Beh(E), under the definition: 

&·1(li) = {x E Obs(E): 81(x) Es, for all/ E /}. 

Thus, the set i ·1w_) contains an observation x E Obs(E) iff 81(x) € B1 for all i E /. We call 

this set the composition of a. under 4 . I 

2.3 Specification, Implementation, and Correctness 

In practice a specification will take the form of a string of symbols in a formal 

specification language, since it must be possible to write down a specification. 

However, since this thesis is not concerned with the details of a particular formal 

language in which specifications are to be expressed, it is convenient to adopt a more 

liberal view: A specification is any mathematical object that denotes, in a well-defined 

way, an interface and a set of behaviors of that interface. 

Definition - A specification language is a triple <Specs, g, 5>, where Specs is a set of 

specifications, g is a mapping that assigns an interface C(S) to each specification S E 

Specs, and ~ is a mapping that assigns a set 5(5) ~ Beh(S(S)) to each specification S E 

Specs. We say that S is a specification of interlace S(S), and that each 8 E ~(S) satisfies 

S. I 

An interconnection describes the pattern of interaction between modules in a 

system in analogy to the way a program scheme describes the flow of control between 

uninterpreted statements. It makes no sense to speak of an interconnection as 

"correct" or "incorrect," since an interconnection Includes no information about the 

behaviors of the component or abstract modules. However, if we provide an 

interpretation for the modules by augmenting an interconnection with specifications of 

the abstract and component module interfaces, it does become meaningful to speak of 

correctness. We use the term "implementation" for an interconnection augmented with 
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specifications. 

Definition - An implementation is a tuple (3, Saba' <S,>;E;>' where 3 is an 

interconnection, Sabs is a specification of interface o3, and S1 is a specification of 

interface F;, for each i € /. I 

An implementation is correct if, whenever acceptable behaviors are plugged in for 

the component modules, then the resulting abstract module behavior is also 

acceptable. The composition and abstraction operators associated with the 

interconnection formalize the notion of "plugging In." 

Definition - An implementation <3, Sabs, <S;>,€;> is correct If a30~ 3)·1(li ) € ~(Sabs), 

whenever 81 E ~(S) for each IE/. I 
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3. State-Transition Specifications 

In this chapter, we will investigate a particular approach, called "state-transition 

specification," to the derivation of module specifications. In this approach, we imagine 

that at any instant of time a module can be thought of as being in one of a number of 

conceptual states. Associated with each conceptual state is a collection of events that 

can occur in that state, and a description of the state change that results from the 

occurrence of each of those events. Thus, a state-transition specification describes the 

desired functioning of a module in terms of a kind of machine that generates an 

observation as it executes. It is important to note that the conceptual states in a 

state-transition specification are merely a tool for describing the desired functioning, 

and need not have anything to do with the "real" state present in any particular module 

instance that satisfies the specification. 

The properties captured by the state-transition technique discussed here are 

divided into two classes: "local" properties, which concern the relationship between an 

event and the conceptual state of the module immediately preceding and immediately 

following the occurrence of that event, anc! "global" properties, which relate events and 

states perhaps distant from each other in time. Local properties are of the form: "An 

event e can occur only if the state of the module satisfies P, and if e occurs, then the old 

state and new state of the module are related by the binary relation R." Examples of 

global properties are "eventuality" conditions of the form: "If the module is now in a 

state with property P, then eventually event e will occur." Local properties are specified 

by a machine as mentioned above. Global properties are specified by defining a set of 

"validity conditions" on computations of the machine. The set of computations that 

satisfy the validity conditions is called the set of "valid" computations. 

The reason for investigating state-transition specifications is that they appear to 

provide a natural, straightforward strategy for turning an intuitive understanding of the 

desired function of a module into a formal specification. This strategy consists of the 

following steps: 

(1) Define an appropriate set of conceptual states. For example, in the 

specification of the abstract synchronizer module, a state is a vector that tells for each 

user process whether the synchronizer module thinks that process is trying, running, 

resting, or in error. 

(2) Define a set of initial states, in which the module begins execution. For the 
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synchronizer module, there is a single initial state in which all user processes are 

resting. 

(3) Defin~. for each event, the conditions required on the state for the 

occurrence of that event to be possible, and the state changes associated with an 

occurrence of that event. For example, a "run" event for process p can occur only if p 

is trying and no other process is currently running. Occurrence of a "run" event causes 

the state of p to change to "running" and leaves the states of all other processes 

unchanged. 

(4) Define the desired global properties for the module. For the synchronizer 

module, we wish to require that every user request eventually result in a corresponding 

reply, if possible. 

Besides serving as a natural vehicle for formalizing specifications, the 

state-transition approach also provides a strategy for performing correctness proofs. 

The Correctness Theorem (Theorem 3.9) gives sufficient conditions for correctness that 

exploit the machine structure of the specifications. 

This chapter is organized as follows: In Section 3.1 the notion of "subset 

specifications," of which state-transition specifications are an example, is introduced. 

In Section 3.2 the machines used in state-transition specifications are defined, and in 

section 3.3 some tools for reasoning about their computations are developed. The 

notion of a state-transition specification is defined in Section 3.4. In Section 3.5 the 

Correctness Theorem, which is the main result of this chapter, is proved. Section 3.6 

shows that the Correctness Theorem is a natural generalization of the "possibilities 

mapping" proof technique of Lynch [Lynch83] and Goree [Goree81]. Section 3.7 

shows how the proof technique suggested by the Correctness Theorem can be further 

systematized in the case of state-transition specifications whose sets of valid 

computations have been defined by "rely-/guarantee-conditions." 

3.1 Subset Specifications 

As discussed in Chapter 2, a specification S of interface E defines a set ~(S) of 

behaviors of interface E. In general, we might look for specification techniques that are 

capable of expressing arbitrary properties of behaviors. However, in practice it appears 

that the properties of behaviors we wish to express in a specification are nearly always 

of a special form. That is, it is nearly always the case that we wish to express universal 
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properties of the observations in a behavior, of the form: "Every observation x in 8 has 

property P," where Pis a property of observations. This means that in practice it is 

usually not necessary to have a specification technique that is powerful enough to 

express arbitrary properties of behaviors. Rather, a less powerful technique, which is 

capable only of expressing properties of observations, suffices. The state-transition 

specification technique introduced in this chapter is of this less powerful variety. 

Definition - A specification S of interface Eis a subset specification if there exists a set 

O(S) ~ Obs(E) such that ~(S) = {8 E Beh(f): 8 ~ O(S)}. I 

For the rest of this thesis we will be concerned only with subset specifications. To 

see what we give up by restricting our attention to subset specifications, let us consider 

some examples. Examples of properties of behaviors that can be expressed as subset 

specifications, that is, as universal statements about observations in a behavior 8, are 

the following: 

- Every observation in 8 contains at most finitely many occurrences of non->. 

events (that is, computation always quiesces). 

- In every observation in 8, either each occurrence of a try event for process p 

is ultimately followed by a run event for process p, or else there is a point in time after 

which some process is in the "running" state forever. 

Examples · of properties of behaviors that cannot be expressed as subset 

specifications, and hence cannot be captured by the state-transition approach 

discussed here are: 

- There exists an observation in 8 that contains at most finitely many 

occurrences of non->. events (there exists a quiescing computation). 

- If xis an observation in B and t E [O, 00), such that [x](t) = u, then there is an 

observation y E 8 and a t ' E [O, 00) such that [y](t ') = ue. (if the module is capable of 

doing u, then it is also capable of doing ue). 

- If x is an observation in 8, and f is an order-isomorphism from [O, 00) to 

(0, 00), then x0 f is also an observation in 8 (the module is asynchronous, or 

timing-independent). 

Because the properties of behaviors defined by subset specifications are really 

just "lifted" properties of observations, the definition of correctness of an 

implementation that involves subset specifications has an equivalent statement in terms 



-48-

of observations. 

Lemma 3.1 - Suppose that<,, Sabs' <S;>;E;> is an implementation, where S8bs and each 

S; is a subset specification. Then<-', Sabs' S, > is correct iff a' 0 (.d ')"1((0(S1)>;Ei) ~ O(Sabs). 

Proof - =>Suppose<,, Sabs' S. > is correct. Suppose that x E Obs(E') is such that B;(x) 

E O(S;) for each; E /. Then the behavior {x} is the compo~tion under .d' of the vector of 

behaviors <{8;(x)}>;Ei• and the behavior {a'(x)} is the abstraction under a' of the 

behavior {x}. Since the behavior {8;(x)} satisfies S1 for each i E /, it follows by 

correctness that the behavior {a'(x)) satisfies Sabs' Thus a'(x) E O(Sab
8
). 

< = Suppose that a' 0 {,d ')"1(<0(S;)>,E,) ~ O{S8bs). For each i E /, suppose that B1 is 

behavior that satisfies Sr Then B; ~ O(S;). Let Babs = a' 0 (.d '>"1(L! ). Then Babs is a 
subset of O(S

8
bs) by hypothesis, and hence Hence Baba satisfies Sabe· I 

3.2 Machines and Computations 

In this section, we detine a kind of nondeterministic machine that generates an 

observation in each of its computations. 

Definition - A nondeterministic event machine (or just rmachine" for short) M consists 

of: 

- An interface E,., 

- A set o,., of states. 

- A nonempty set I nit,., ~ QM of Initial states. 

- A relation Trans,.,~ Steps(E,.,, O,.,) = Q,., x EM x QM' called the 

state-transition relation, such that for all q € O,.,, the null step <q, A, q> E Trans,.,. I 

If E,., = E, then we say that Mis a machine of interface E. 

The state-transition relation Trans"' of a machine M has a natural extension 

Trans,.,• that applies to strings of events, rather than just single events. Formally, define 

Trans./ ~ QM x E,/ x QM to be the least relation containing Trans"', and having the 

following closure property: If <q, u, r> E Trans"'• and <r, v, s> E Trans"'•, then <q, uv, s> 
E Trans,.,•. (Recall from Section 2.1 that we identify the null event AE with the empty 

string.) 
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Definition - A state q E QM is reachable by M if there exists a state q0 E lnitM and a 

string u E EM• such that <q0, u, q> E TransM •. 

Suppose that R ~ QM' Then R is inductive for M if 

(1) lnitM ~ R. 

(2) For all <q, e, r> E Transu, if q ER then r € R. 

We say that R is invariant tor M if it contains all reachable states of M. The following 

extremely important induction principle is a standard technique (see, e.g. [Keller76]) for 

proving properties of reachable states. 

Lemma 3.2 (Induction Principle) - Suppose Mis a machine, and that R ~ QM. If R is 

inductive for M then R is invariant for M. 

Proof - Straightforward. I 

Ordinarily, a computation of a machine might be defined to be a pair consisting of 

a state sequence%• q1, ... , and an event sequence e0, e1, ... , such that each step 

(qi(, e I(' qi(+,> s~tisfies the state-transition relation. Intuitively, q1c and q1c + 1 repreeent the 

states "just before" and "just afterl' the occurrence of the event e,c, respectively. To 

define a computation in which the notion of an event sequence has been replaced by 

that of an observation, we generalize the notion of a state sequence to that of a "state 

function," which assigns a state to each nonnegative real number, in such a way that 

the notion of state "just before" and "just after" each point t € [O, 00) is meaningful. 

Definition - A state function over a set of states Q Is a function f: [O, 00) ➔ Q such that 

for all t € [O, 00), there exists t
1 
> 0 such that f is constant on the intervals [t-e,, t] n 

[O, 00) and (t, t + t
1
]. I -

We write f(t +) as an abbreviation for the constant value of f on the interval (t, t + e1), 

which intuitively represents the state "just after" time t. The state at and also "just 

before" time tis represented by the ~alue f(t). 

Definition - A history over an interface E and state set Q is a pair X = <Obsx, Statex>, 

where Obsx is an observation over E, and Statex is a state function over Q. Let 

Hist(£, Q) denote the set of all histories over interface f and state set Q. I 
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If XE Hist(E, Q) and t E (0, oo), then define the step occurring at time tin X by: 

Stepx(t) = <Statex(t), Obsx(t), Statex(t+)>. 

The generalization of the ordinary definition of a computation is now 

straightforward. 

Definition - A computation of a machine Mis a history XE Hist(EM' QM) such that 

{1) Statex(0) E lnitM. 

(2) Stepx(t) E TransM for all t E [0, oo). 

Let Comp(M) denote the set of all computations of M. I 

If V is a set of computations of M, then define Obs(V), the set of all observations 

generated by V, by Obs(V) = {Obsx: X € V}. 

3.3 Properties of Histories 

The purpose of this section is to develop some machinery for passing back and 

forth between histories and "history skeletons," which are sequences of steps plus 

timing information. Each history skeleton naturally defines a unique history. 

Conversely, given a history X we can extract (though not in a unique way) a history 

skeleton by restricting Stepx to a suitable subset T of [0, oo). Whereas histories have 

convenient behavior under projection, history skeletons are more useful for performing 

computational induction arguments. 

Definition - A skeletal sequence is a monotone increasing sequence t0 < t1 < ... of 

elements of [0, oo), such that t0 = 0 and tit-+ oo ask - oo. A skeletal sequence T = 

<t,?1i€.Xspans a history X if for each k E .'4~ Obsx is identically A and Statex is constant on 

the interval (t11 , tit+ 1). I 

Note that by the properties of a state function, if Statex is constant on the open interval 

(t11 , tit+ 1), then Statex is also constant on the right-closed interval (t11 , t11 + 1]. 

Lemma 3.3 - Suppose X is a history. Then there exists a skeletal sequence that spans 

X. 

Proof - Let T = XU {t E [0, oo): Stepx(t) is nonnull}. The proof that T is a skeletal 

sequence that spans X uses the defining properties of observations and state functions, 
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plus the compactness property of the closed, bounded subsets of [O, oo). The details 

are omitted. I 

Corollary 3.4 - Suppose <X;>;E, is a finite collection of histories. Then there is a 

skeletal sequence T that spans all the x,. 

Proof - For each i E /, let T; be a skeletal seQuence that spans X1, and define T = u,E:, Tr 

The finiteness of I implies that T has order type w, and is hence a skeletal sequence. It is 

obvious that Tspans each x,. I 

Definition - A history skeleton over an interface E and a state set Q is a function f: T -

Steps(E, 0), where T = <t,?1iE:xis a skeletal sequence, such that if f(t11 ) = <q11 , e11 , r11> for 

each k € Jf, then r,.. = q 11 + 1 for all k E Jf. The history skeleton f spans a history X if T 

spans X and f is the restriction of Stepx to T. I 

Lemma 3.5 - Suppose that f is a history skeleton over E and o. Then there is a unique 

history X over E and O such that f spans X. 

Proof - Suppose f: T - Steps(£, 0), where T = <t11>11 E:.N' Suppose f(t"') = <q11 , el<, q"' + 1>. 
The requirement that f spans X defines X uniquely: 

Obsx(t) = e11 , if t = ti< 

= A, otherwise. 

Statex(t) = q0, if t = O 

= qlt+1' iftE(tH,t1<+11• 

It is easy to see that Xis a history. I 

Lemma 3.6 - Suppose Xis a history over E and Q. If T = <t,?1tE:Jfis a skeletal sequence 

that spans X, then the restriction of Stepx to Tis a history skeleton that spans X. 

Proof - Let f denote the restriction of Stepx to T, and suppose that f(t11 ) = <q1i, e
11

, r11>. If f 

is a history skeleton, then f spans X by definition. To see that f is a history skeleton, we 

must show that r"' = q 1i + 1 for all k E .K. Fix k E Jr. By definition of a state function, we 

can select e > O such that Statex is constant on the interval (t11 , t11 + eJ. Then '1c = 

Statex(t,.. + e). Since Statex is constant on the interval (t11 , t1c + 1) by the fact that T is a 

skeletal sequence of X, it follows that '1c = q
11 

+ ,. I 
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The following consequence of Lemma 3.3 and Lemma 3.6 says that every state 

appearing in a computation is reachable. 

Corollary 3.7 - Suppose X is a computation for a machine M. Then Statex<t) is 

reachable for M, for all t E [O, oo). 

Proof - Use Lemma 3.3 to obtain a skeletal sequence T = <t,?1iEX that spans X. By 

Lemma 3.6, the restriction of Stepx to T is a history skeleton that spans X. The result 

follows by an inductive proof that the constant value of Statex on each set {t0}, (t1, t2], 

(t2, t3), ... is reachable for M. The details are straightforward, and are omitted. I 

3.4 State-Transition Specifications 

Definition - A state-transition specification S of interface Eis a pair <Ms, Vs>, where Ms 

is a machine of interface E and Vs is a set of computations of Ms, which we call the set 

of valid computations. I 

!f S is a state-transition specification of interface E, then the eet of behav!crn that 

satisfy S is defined as follows: 

~(S) = {8 E Beh(E): B ~ Obs(Vs)} 

It is clear from this definition that state-transition specifications are subset 

specifications. 

As a concrete example of a state-transition specification, consider the 

specification for the synchronizer module. The interface for the synchronizer module is 

defined by: 

£SM = {>.} u {tryP, nmP, restP: p E Proc}. 

The state set 0 5M for the synchronizer module specification is defined by 

oSM = npEProc {trying, running, resting, error}. 

Thus each element of the state set oSM is a vector that tells, for each process p E Proc, 

what the synchronizer module thinks that process is currently doing. If q E oSM and p € 

Proc, then let q(p) denote the component of q corresponding to process p. If v € 

{trying, running, resting, error), then let q(vlp] denote the stater E oSM that is identical 

to q except that r(p} = v. 
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Next, we define the initial state set lnitSM and state-transition relation TransSM for 

the synchronizer specification. The initial state set lnitSM consists of the single state q 

that assigns the value "resting" to each p € Proc. The state-transition relation TransSM 

contains a step <q, e, r> iff either e = A and q = ,, or one of the conditions (try), (run), or 

(rest) below is satisfied for some p € Proc: 

(try) e = try p' and either 

q(p) = resting and, = q[trying/p], or 

q(p) ~ resting and r = q[errorlp). 

(run) e = runP, q(p) = trying, q(p ')~running for all p '€ Proc-{p}, 

and, = q[running/p]. 

(rest) e = restP, and either 

q(p) = running and, = q[resting/p], or 

q(p) ~ running and r = q[errorlp). 

We have defined the machine M8M = <ESM, OSM, lnitSM, TransSM> for the 

synchronizer module specification. To complete the state-transition specification of the 

synchronizer module, we must define the set vSM of valid computations of MSM. The 

intuitive property we wish to capture by this definition is that the synchronizer must 

eventually grant all requests, if possible. The qualification "if possible" is required since 

if one user process remains In the "running" state forever, then it will be impossible for 

the synchronizer module to grant any further requests, without violating the mutual 

exclusion property. We can informally state the defining property of vSM as follows: "If, 

for all user processes p, every instant of time at which p Is running is eventually followed 

by an instant of time at which p is not running, then, for all p, every instant of time at 

which p is trying is eventually followed by an instant of time at which p is running." 

The validity condition for the synchronizer module is relatively simple, but already 

the locutions used to precisely define this condition are somewhat awkward. To deal 

with more complex specifications, we require a more compact notation that can be 

systematically applied, as opposed to the ad hoc approach taken above. Such a 

notation is developed in the next chapter, where the constructs of temporal logic are 

used to express properties of histories. 
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3.5 The Correctness Theorem 

In this section we consider the problem of how to prove the correctness of an 

implementation with respect to state-transition specifications. The fundamental result 

of this section is the Correctness Theorem. This theorem shows how the correctness of 

an implementation follows from certain properties of a composite machine, which is a 

kind of a kind of product of the machines for the component module specifications and 

the machine for the abstract module specification. Associated with this product 

construction are projection maps that take each computation for the composite 

machine to a corresponding computation for the abstract module machine and for each 

component module machine. 

The Correctness Theorem states that, for an implementation to be shown correct, 

it suffices to show that two conditions hold for the composite machine. We call these 

conditions the "maximality" condition and the "validity" condition. The maximality 

condition concerns the relationship between the state-transition relations of the 

component module machines and the state-transition relation of the abstract module 

machine. The validity condition concerns the relationship between the set of valid 

computations for the component modules and the set of valid computations for the 

abstract module. 

If the inclusion of the machine from the abstract module specification as a part of 

the composite machine seems somewhat strange, consider the following analogy: In 

proofs of concurrent program correctness using Hoare-like deductive systems [Apt81, 

Owicki76], it is well known that it is sometimes necessary to introduce "ghost 

variables," which have no effect on the execution of the program, but merely serve to 

capture information about the state of program execution not reflected in the values of 

the program variables. The abstract module part of the composite machine serves_the 

same function as ghost variables: namely to capture information about the history of 

system execution possibly not reflected in the states of the component module 

machines. 

The proof technique suggested by the Correctness Theorem seems closely related 

to the "data refinement proofs" of [Jones81]. Jones shows how the correctness of 

implementations of data abstractions can be performed via "representation relations," 

which relate the states of abstract data objects to states of their concrete 
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representations. Representation relations capture the same information as the 

"implementation invariants" defined below, and the "possibilities mappings" of Lynch 

[Lynch83] and Gor~ [Goree81] (see Section 3.6). 

We now define precisely the notion of the composite machine for an 

implementation. Suppose <,, Sabs' <S?,e;> is an implementation, where Sabs = 

<Mabs' Vaba> and S1 = <M1, V;>, for each i €/,are state-transition specifications. 

Definition - The composite machine M for the implementation <J, Sabs and S. > is 

defined as follows: 

EM = E3 

QM = QM X n,e, QM. 
abs / 

Let "abs and ,,,, be the canonical projection maps from the cartesian product Q"' onto 

the factors Q"' and Q"' , for each ; € I. 
abs / 

lnitM = lnitM x n,e, lnit"'. abs / 
Trans"' = {<q, e, r> € Steps(E1,1, Q"'): 

{,rab6(q), a(e), "•(r)> € Trans" and -{,r1(q), B1(e), w1(r)> E Trans"' for all IE/}. I 
I . 

Suppose that X € Hist(E"', QM). Then associated with Xis its canonical projection 

x<abs) onto Hist(E"' , Q"' ), defined by 
abs abs 

Obsx<abs) = «oObsx 

Statex(abs) = .. abs •Statex· 

In a similar way, we associate with X its canonical projection x<i) onto Hist(E M, Q"' ), 
I I 

defined by 

= B1•0bsx 

= •,•Statex· 

It is easily verified that the projections x<•bs> and x<I) defined above are, in fact, 

histories. Also, it is easily checked that if x is a computation of M, then x<abs) is a 

computation of Ma, and x<I) is a computation of M1, for each i E /. 

Next, we state the conditions that are shown by the Correctness Theorem to be 

sufficient for<.,, Sabs, S. > to be correct. Intuitively, the maximality condition states that 

the abstract machine can perform any event that can be performed by the system of • 

component module machines. The validity condition states that a computation that Is 
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valid for each of the component modules is also valid for the abstract module. 

Definition - The maximality condition holds for the implementation <J, Sabs' S. > if for all 

states q reachable for the composite machine M, and all e € E, If 81(e) is enabled for M1 in 

state w;(q) for each i EI, then a(e) is enabled for M
8

bs in state ,rabs(q). I 

Definition - An implementation invariant for the implementation <J, Sabs' S. > is a set Inv 

~ 01,1, such that Inv is inductive for the composite machine M. I 

Note that an implementation invariant is indeed invariant for M by the Induction 

Principle (Lemma 3.2). 

Since an implementation invariant contains all reachable states of the composite 

machine, it is sufficient to use "q € Inv, where Inv is an implementation invariant," in 

place of "q reachable for the composite machine," in proving that the maximality 

condition holds; 

Definition - The validity condition held~ for the implementation <-', Sabs' S. > if: 
Whenever X is a computation for the composite machine M with the property that x<I) € 

v, for all ; E ;, then x<abs> E v.bs as well. I 

We now come to the main technical lemma (Lemma 3.8 below) used to prove the 

Correctness Theorem. The intuitive content of this lemma is as follows: Suppose we are 

given a collection X of computations for the component module machines, which are 

"coherent" In the sense that there is a single observation x € Obs(E) such that each 

Obsx is the image of x under the mapping a,. The vector X of computations can be 
I 

thought of as a computation of the system of machines, obtained by juxtaposing the 

machines for the component module specifications, and "interconnecting" their events 

as specified by the decomposition map I. . Lemma 3.8 asserts that, if the maximality 

condition holds, then it is possible to construct a computation X for the composite 

machine M, such that Obsx = x, and furthermore, such that the projections x<11 of the 

computation X are the given original computations x,. Since x<abs) must be a 

computation of the abstract module machine (because every computation of M projects 

to a computation of Mabs)' it follows that every coherent collection!. of computations for 

the component module machines, "simulates" some computation of the abstract 

module machine. 
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Formally, suppose that X. is a computation of M., for each i E I. Given an 
I I 

observation x E Obs(£), we say that the collection K is x-coherent if Obsx = B;(x) for 
; 

each i E /. The point of this definition is that a vector K cannot be used to form a 

computation X of M unless the observations of each of the X; are in agreement. 

Lemma 3.8 •Let<-', Sabs' <S;>;c,> be an implementation, where S8bs = <Mabs' Vab?' and 

that S; = <M1, V?, for each i E I are state-transition specifications. Suppose that the 

maximality condition holds for<-', Sabs' S >. Suppose that x E Obs(£'), and that x, is a 

computation of M1 for each i E /, such that the collection K is x-coherent. Then there 

exists a computation X of the composite machine M such that Obsx = x I and such that 

x<il = x, for each i E /. 

Proof - By Corollary 3.4, there exists a skeletal sequence T = <t,?11Exthat spans each 

of the x,. We assume without loss of generality that T includes all points t for which x(t) 

'¢ A, Let e11 = x(t11) for each k. We will use the maximality condition to construct a 

sequence qO, q1, ... of elements of Ou such that tr1(q11) = Statex_(t11 ) for all i EI and all k E 
I 

~r a--d S"Ch .... -,. (q e q ' C Trans for al',_. E ... ra..-- .., __ ...... ,_, /· .... .,,, .. .., , ... ,.u 1<' 11 , 11 + r' M , " - .11. 11c:,11 u ,c:, ,u11"'uu11 • , -

Steps(EM, OM) that takes ti< to <qi<, e11 , q 11 + 1> is a history skeleton for M. By Lemma 3.5 

there is a unique history X for M such that f spans X. It is easy to see that X is a 

computation of M with Obsx = x and x<,) = x, for each i EI. 

The q11 are constructed by induction on k. At the kth stage of the construction (k > 
0), we assume that q• has been constructed so that q11 is reachable and ..-1(q•) = 

Statex,C,11) for all i E /. We construct q 11 + 1 so that ..-1(q• + 1) = Statexp1i + 1) for all i EI and 

so that <q", e11 , q1i+ 1> E TransM. It follows by definition of reachability that q• + 1 Is 

reachable. 

Basis: Let q0 be an arbitrary element of {q E lnitM: w1(q) = Statex (O) for all i E /}. Note 
I 

that this set is nonempty since it is a cartesian product of nonempty sets. Clearly % E 

Inv and ,,,,(qJ = Statex (0) for all i EI. 
I 

Induction: Suppose, for some k E .N', that q• has been defined so that q" E Inv and .,,,(q") 

= Statex_(t11) for all i EI. Since x, is a computation for M1, for each i EI, we know that 
I 

B,(e11 ) is enabled for M1 in state .,,,(q"), for each ; E /. Since q11 is reachable for M, the 

maximality condition implies that a(e.) is enabled for M
8
bs in state wabs(q

11
). Hence 
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{q E QM: <q1c, e1c, q> E TransM and w;(q) = Statex_<t1c+ 1) for all; E /} is nonempty. Let q1c+ 1 
I 

be an arbitrary element of this set. I 

The Correctness Theorem is an easy consequence of the preceding lemma. 

Theorem 3.9 (Correctness Theorem) - If the maximality and validity conditions hold for 

an implementation, then the implementation is correct. 

Proof - Suppose<,, Sabs' <S,>;E;> is an implementation, where Sabs = <Mabs' V8bs> and 

that S; = <M;, v;> for each i E / are state-transition specifications. Suppose that the 

maximality and validity conditions hold. Let M be the composite machine. Suppose that 

x E Obs(E) is such that 61(x) E 0{S;) for all i E /. By Lemma 3.1, it suffices to show that 

a(x) € 0(Sabs>· Since 61(x) E 0(S1) for each i E /, we know that for each i E / there is a 

computation x, E v,, such that Obsx = «';(x). Since the collection K is x-coherent, by 
f 

Lemma 3.8 there exists a computation X for the composite machine M, such that Obsx 

= x and such that x<I) = x, for all; E /. Using the validity condition, we then conclude 

that x<abs) E V abs" It follows that a(x) = a(Obsx> € O(Saba)' as required. I 

3.6 Possibilities Mappings 

In this section we show that the Correctness Theorem is a natural generalization of 

the "possibilities mapping" proof technique proposed by Lynch [Lynch83] and Goree 

[Goree81]. 

Lynch and Goree define a possibilities mapping to be a function that assigns a set 

of abstract module machine states to each vector of states for the component module 

machines, in such a way that the initial state set and state-transition relation are 

preserved. The fact that each vector of component module states is mapped to a set of 

abstract states, rather than to a single abstract state, means that possibilities mappings 

are a generalization of the usual notions of simulation or machine homomorphism. 

Intuitively, the value of the simulation mapping on a vector of component states is the 

set of "possible" abstract states that correspond to the given component states -

hence the name "possibilities mapping." 

Lynch and Goree's proof technique can be stated as follows: "If there exists a 

possibilities mapping for an implementation, then the implementation is correct." 

Interpreted in the framework of this thesis, Lynch and Goree's technique applies only to 
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implementations that involve state-transition specifications <M, V> tor which V = 

Comp(M). For such implementations, the validity condition required by the Correctness 

Theorem is vacuous. Theorem 3.1 O below shows that the existence of a possibilities 

mapping is equivalent to the maximality condition required by the Correctness Theorem, 

and thus the Correctness Theorem includes Lynch and Goree's proof technique as a 

special case. 

To define the notion of a possibilities mapping, suppose <J, Sabs' <S;>;r_,> is an 

implementation. Suppose S
8
bs = <Mabs' V abs> and S1 = <M1, V,>, tor each i € /. Let M be 

the composite machine. 

Definition - A possibilities mapping tor the implementation <J, Sabs' <S,>,E,> is a function 

t: n;Ei QM - ~QM ), with the following properties: 
I abs 
(1) lnitMabs ~ t(<q,>,E,) whenever q1 € lnitM

1 
for all/€/. 

(2) For all q E QM' if" abs(q) E f(<w1(q)>,E), then: 

(a) Whenever r € QM and e € EM are such that <q, e, r> E TransM, then "abs(r) 

€ f((.,,!(r)>1€1). 

(b) For all e € EM' it 81(0) is enabled in state w1(q) for each ; € I, then a(e) is 

enabled for Mabs in state,, abs(q). I 

Theorem 3.10 - Suppose that <J, Sabs' <S,>,E,> is an implementation, where Sabs and S1 

for each i E I are state-transition specifications. Then the following are equivalent: 

(1) There exists a possibilities mapping for <J, S.._, S. >. 

(2) The maximality condition holds for <J, Saba, S. >. 

Proof - Suppose that S
8

bs = Wabs' V
8
bs>, and that S1 = <M1, v,>, for each i € I. Let M be 

the composite machine for the implementation 0, s., S>. 

(1) = > (2): Suppose that f is a possibilities mapping for J, Sabs and S. Define 

Inv = {q € QM: "abs(q) E t(<w1(q)>,E1)}. 

Condition (1) in the definition of a possibilities mapping implies that lnitM ~ Inv. 

Condition (2)(a) in the definition of a possibilities mapping implies that Inv Is inductive, 

and hence by lemma 3.2 contains all states reachable for M. The maximality condition 

now follows from condition (2)(b) in the definition of a possibilities mapping. 

(2) = > (1 ): Conversely, suppose that the maximality condition holds. Define f: n,E, 01 -
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Qabs as follows: f(<q;>;E,) is the set of all q
8
bs E Q

8
bs such that there exists a reachable 

state q for M with ,, abs(q) = q
8
bs and w1(q) = q; for all i E /. We claim that f is a 

possibilities mapping. 

Condition (1) in the definition of a possibilities mapping holds, since given <q,>;Et E 

n;E1 lnitM;' then every qabs E lnitMabs yields a state <qabs' <q,>;E,> that is in lnitM and hence 

is reachable for M. 

To show that condition (2) holds, suppose that q is a state of M such that w abs(q) E 

t(<w;(q)>,E,). Then q is reachable for M by definition off. To see that (2)(a) holds, note 

that if <q, e, r> E TransM' then r is reachable by definition of reachability, and hence 

.,, abs(r) E f(<w;(r)>,E,). The maximality condition implies that condition (2)(b) holds. I 

3. 7 Rely-/Guarantee-Conditions 

In this section we will see how state-transition specifications whose sets of valid 

computations are defined by rely-/guarantee-conditions can be used to perform the 

va!idity part o! a proof of correctne~. The principle of roly /_;u::::-:::r.tcc cor.dltlor.:; 

states that the set of valid computations v in a state-transition specification S = <M, V> 

should be defined in the form: "Rely implies Guar," where Rely expresses the properties 

that the module being specified relies on Its environment to provide, and Guar 

expresses the properties that the module guarantees to provide in return. 

For the synchronizer module, we wish the validity conditions to capture the idea 

that every user's request should eventually result in a response, if possible. The tricky 

part is the precise formulation of the "if possible" condition. Clearly if some user goes 

into the running state and remains in that state forever, then It will never be possible to 

allow any other user in the trying state to go to the running state, without violating the 

mutual exclusion property. This condition can be stated in rely-/guarantee-condition 

form as follows: "If every user process obeys the requirement that, once in the running 

state, it will eventually leave the running state, then the synchronizer module guarantees 

that every user in the trying state will eventually lea"e the trying state (and hence 

advance to the running state.)" 

We have two results, Lemma 3.11 and Lemma 3.12 below, that describe 

techniques for using rely-/guarantee-condition specifications in proofs of correctness. 

In both of these techniques, we are required to prove: 
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(*) Each component module's rely-condition is implied by the conjunction of the 

abstract module's rely-condition and the guarantee-conditions for some subset of the 

component module~. 

Although the exact form taken by condition (*) is different for the two techniques, a 

proof by either of the techniques is simplest when the rely- and guarantee-conditions for 

the component modules are chosen so that the truth of condition(*) is obvious. Thus, 

rely- and guarantee-conditions serve to "cut" the interdependence of modules on each 

other, analogously to the way in which a loop invariant cuts the dependence of one 

iteration of a loop on the previous iteration. This observation is strong motivation for the 

suggestion that module specifications ought not to be derived In isolation, but rather 

with a proof of correctness in mind in which those specifications are used. 

A correctness proof that makes use of Lemma 3.11 or Lemma 3.12 is rather 

different from one in which eventuality conditions (such as termination) are verified by 

the well-founded set techniques of [Floyd67, Keller76] and others. Proofs by the latter 

techniques tend to take the form of reasoning about the structure of a computation, 

whArARs proofs by I amma 3.11 arid Lemma 3.12 tent.:« to be argum~nts baeed on the 

communication structure of the modules in the system. Experience gained from the 

examples presented in this thesis suggests that arguments based on communication 

structure are simpler and more natural. 

The use of rely- and guarantee-conditions has been proposed for safety 

specifications in [Jones83]. Independently of this thesis, Barringer and Kuiper 

[Barringer83] have proposed the use of liveness specifications that are partitioned into 

an "environment part," which captures assumptions made about the environment, and 

a "component part," which captures commitments made by the module being specified. 

Jones, as well as Barringer and Kuiper, exploit the refy-/guarantee-condition structure 

of specifications by defining inference rules for process composition that seem closely 

related to Lemma 3.11. Barringer and Kuiper's environment/component division seems 

essentially the same as the rely/guarantee division used in this thesis, except that 

Barringer and Kuiper apply the environment/component division to state-transition 

properties, as well as liveness properties. 

Misra and Chandy (Misra81] have also used a kind of rely/guarantee distinction to 

develop proof techniques for safety properties. In that paper, a process his specified by 

an assertion of the form rlhls, where, ands are predicates on finite sequences (called 
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traces) of communication events. Such an assertion is interpreted as: "The predicate s 

holds of the empty trace, and for all traces t that can be produced by process h, if r 

holds for all proper prefixes oft, thens holds for all prefixes (both ·proper and improper) 

of t. The predicates r and s can be thought of as roughly analogous to rely- and 

guarantee-conditions, respectively, although the former are properties of finite prefixes 

of traces rather than properties of infinite computations. Misra and Chandy's proof 

technique is a "Theorem of Hierarchy," which gives conditions under which 

specifications of a collection of components can be used to infer a specification of the 

network formed by interconnecting the components. Their proof technique can be 

stated as follows: To show that the specification ROIHISO for the network H is a 

consequence of the specifications r )h)s1 (i E /) for the components, it suffices to show 

that: 

(1) S Implies SO, 

(2) RO and S implies R, 

where Rand S denote the conjunction of the r1 ands,, respectively. These conditions 

are syntactically similar to the conditions (1) and (2) of Lemma 3.11, although their 

meaning is quite different. The proof of Misra and Chandy's Theorem of Hierarchy Is by 

induction on computation prefixes, whereas the proof of Lemma 3.11 is by structural 

induction using a well-founded dependency relation. 

In [Misra82], the techniques of (Misra81] are extended to encompass a weak form 

of liveness specification in which an additional predicate q is used to state conditions 

under which a process trace is guaranteed to be extended. The Theorem of Hierarchy 

is augmented with additional conditions to permit its application to these more general 

specifications. The additional conditions do not appear to relate In a simple way to any 

conditions used in this thesis. 

To state Lemma 3.11 and Lemma 3.12, the following notation is convenient: If R 

and Gare subsets of a universe U, then define R -u G (read R implies Gin U) to be the 

subset (U - R) U G of u. In applications of Lemma 3.11 and Lemma 3.12, the set U will 

be the set Comp(M) of computations of a machine M, and Rand G will be the sets of 

computations of M that satisfy rely-conditions and guarantee-conditions, respectively. 

Lemma 3.11 below says that to prove that the validity condition holds, it suffices to 

prove: 

(1) The abstract module's guarantee condition is implied by the conjunction of 
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the guarantee conditions for the component modules. 

(2) There exists a well-founded partial ordering (a "depends on" relation) of 

the component modules in the system, such that each component module's 

rely-condition is implied by the conjunction of the abstract module's rely-condition and 

the guarantee-conditions for the modules on which the component depends. 

Lemma 3.11 - (Rely/Guarantee Technique I) - Suppose U is a set and that Rabs' Gabs' 

and R1, G1 tor each ; E / are subsets of U. Suppose Vabs = Rabs -u Gabs and v, = 

R1 - u G 1, tor each i E /. Suppose 

(1) n,E, G, {; Gabs' 

(2) There exists a well-founded partial order < on I such that for all i E /, 

Rabs n (ni<I G,) {; Rr 

Then n,Et V1 {; Vabs' 

Proof - Suppose X E R
8
bs n (n,E, V1). Suppose further, to obtain a contradiction, that X 

f Gaba· Then by hypothesis (1) we know that X f G1 for some i0 € /. 
0 

Since X f G1 , and since XE V1 by assumption, It must be the case that X f R1 • By 
0 0 0 

hypothesis (2) and the assumption that X E Raba' there exists i1 < i0 such that X ( G1 • 1 
Repeating this argument yields an infinite descending sequence i

0 
> 11 > ... , In 

contradiction with the well-foundedness of <. I 

An example of the use of Lemma 3.11 can be found in the proof of correctness of 

the transmission module implementation in Appendix II. 

The existence of the "depends on" ,-elation required to satisfy hypothesis (2) of 

Lemma 3.11 is a rather stringent condition. In some cases, for example the 

synchronizer implementation, all of the component modules in the system are 

symmetric In their relationship to each other, and it is hard to see how a suitable 

dependency relation might be found. Lemma 3.12 below shows that an alternative 

"acyclicity" condition can be used, in case the component module rely- and 

guarantee-conditions can be factored in a certain way. Specifically, Lemma 3.12 

assumes that the rely-condition for module ; can be expressed as the conjunction of 

what module ; relies on the external environment and on each component module i to 

provide, and that the guarantee-condition for module i can be expressed as the 

conjunction of what module i guarantees to the external environment and to each 
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component module j. 

In Lemma 3.12 below, one should think of Rabs' Gabs as the rely- and 

guarantee-conditions for the abstract module, and of R1, G1 as the rely- and 

guarantee-conditions for component module i. The hypotheses of Lemma 3.12 require 

us to find {RG;i i, i E / + {abs}}. {RG stands for "rely/guarantee.") Intuitively, if i, i E /, 

then RG .. expresses what module i guarantees to module j, and also what module i 
IJ 

relies on module; to provide. RGabsj expresses what the external environment of the 

entire system guarantees to component module j, and also what module J relies on the 

external environment to provide. RG,.abs expresses what component module i 

guarantees to the external environment, and also what the external environment relies 

on module ito provide. 

Condition (1 )(a) and (1 )(b) in Lemma 3.12 state, intuitively, that the abstract 

module's rely-condition implies what each of the component modules rely on the 

external environment to provide, and that the abstract module's guarantee condition is 

implied by the conjunction of what each of the component modules guarantees to 

provide to the external environment. Condition (2)(a) states that each component 

module's rely-condition is implied by the conjunction of what that component relies on 

the external environment to provide and on what that component relies on the 

component modules in the system to provide. Condition (2)(b) states that . the 

guarantee-condition for component module ; implies what module ; guarantees to the 

external environment and what module; guarantees to each of the component modules 

in the system. Condition (3) in Lemma 3.12 is an acyclicity condition, which states that 

there can be no unbroken cyclic dependency between component modules. 

If / is a set, then define a cycle of I to be a nonempty subset of / X / of the form: 

{<i0, i1>, <i1, i2>, ... , <in_1, in>}, such that in= i0• 

Lemma 3.12 (Rely/Guarantee Technique II) - Let I be a finite index set. Suppose that 

U is a set and that Rabs' Gabs' and R1, G; for each ; E / are subsets of U. Suppose Vabs = 

Rabs -u Gabs and v, = R1 -u G;, for each; E /. If there exists, for each i, J E / + {abs}, a 

set RG1j ~ U such that (1)-(3) below hold, then n,€, V1 ~ vlbs. 

(1)(a) R8bs ~ ni€t RGabsJ' 

(b) n,E, RGi,abs ~ Gabs' 

{2){a) n,E, + {abs} RG ij {;; Ri' for all i E /. 



-65-

(b) G; ~ n}E/+ {abs} RGij' for all;€,. 

(3) Whenever {<i
0

, i?, <i1, i2>, ... , <in_1, in>) is a cycle of/, then 

u = u:-1
0 RG; , • 

= k' 11+1 

Proof - Suppose (1)-(3). Suppose further, to obtain a contradiction, that there exists X 

€ u n Rabs n (n;E, V1) such that x (l Gabs. We perform an inductive construction to 

obtain a _cycle {<im, im+1>, •.. I (in' ;n+1>l of I such that X ( uz:1m RG,k,111+1 This 

contradicts hypothesis (3). 

As the induction hypothesis at stage k of the construction, we assume that 

i1, i2, ... , i11 have been constructed so that X ( R
1

, and that X ( u1
11-~ RG

1 
,1 • 

II "' 1/+1 

Basis: From (1)(a) and the assumption that XE Rabs' we know that XE RGabsJ for all i E /. 

Since X ( Gabs' by {1}(b) we know that X ( RG1 ,abs for some i1 E I. By (2)(b) we know 
1 

that X ( G1 , and from the assumption that XE V1 , we conclude X ( R1 • 
1 . 1 1 

Induction: Assume the induction hypothesis holds for some k ~ 1. By (2)(a) we know 

that X t RG; ,1 for some I._ 1 EI. If i.. 1 =; for some m with 1 < m < k, then we have 
II 11+1 ,.+ n+ m - -

obtained the desired cycle and the construction terminates. Otherwise, by (2)(b) we 

know that X ( G1 , and from the assumption that X € V1 , we conclude that X ( 
11+1 11+1 

R. . This establishes the induction hypothesis fork+ 1. 
111+ 1 

Since the set I is finite by hypothesis, we cannot extend the sequence i1, 12, ... , lk 

indefinitely without creating a cycle. I 

Examples of the use of Lemma 3.12 can be found in the proof of correctness of the 

synchronizer implementation in Chapter 4, and in the proof of correctness of the 

resource manager implementation in Appendix II. 
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4. The Synchronizer Implementation 

In this chapter, the theory developed in Chapter 3 is applied to obtain complete 

specifications and a proof of correctness for the synchronizer example. In Section 4.1 

we review the synchronizer module specification which has already been developed. It 

is shown how the set of valid computations for this specification can be given a concise 

definition using the language of temporal logic. In Section 4.2, the synchronizer 

component module specification is presented. In Section 4.3, the definition of the 

synchronizer module implementation is reviewed. In Section 4.4, the Correctness 

Theorem is used to prove the correctness of the synchronizer implementation. 

4.1 Notation 

This section introduces the notation we will use to express state-transition 

specifications, and in particular, the temporal logic notation we use to define the sets of 

valid computations. We use this notation in this chapter in a highly informal fashion, 

and do not concern ourselves with precise syntax and semantics. The reader who is 

interested in a careful treatment of the notation we use is referred to Appendix I. 

To define a state-transition specification S, we first define the interface Es and 
I 

state set Os of the machine Ms· As discussed in detail in Appendix I, we regard these 

two sets as two distinguished sorts Events and States in a many-sorted algebra As· We 

associate a first-order language L(S) with the algebra As in the usual way. The 

language L(S) is used to define the initial state set /nits and the state-transition relation 

Transs of the machine Ms. In this chapter, we often use constructions that are not part 

of a first-order language. Appendix I shows how the use of these constructions can be 

justified. 

From the first-order language L(S), we obtain a temporal language ~S) by 

augmenting L(S) with the temporal operators □ (read "henceforth") and ◊ (read 

"eventually"), which are applied to formulas to obtain new formulas. In addition, three 

new atomic terms are added to the language: Now and After, which behave 

syntactically like constant symbols of sort States, and Occura, which behaves like a 

constant symbol of sort Events. The meanings of the symbols Now, Occurs, and After 

depend upon the particular instant of time under consideration, and thus are altered by 

the action of temporal operators □ and◊ in a way that is detailed below. Intuitively, if 
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the particular instant of time under consideration is t, then Occurs denotes the event 

that occurs at time t, Now denotes the state at time t, and After denotes the state "just 

after" time t. 

The semantics of the temporal language associated with a specification S = 

<M, V> · are captured by the binary relation t= (read "satisfies"), which tells when a 

formula of the temporal language is satisfied by a particular history over E,., and QM. To 

assert that the history X satisfies a particular temporal formula ,p, we write X I= cp. 

Satisfaction is defined informally as follows: If ,p is a formula that contains no 

occurrences of temporal operators, then X t= ,p iff cp holds in the usual sense of 

first-order logic, with the symbols Now, Occurs, and After interpreted as Statex{0), 

Obsx(0), and Statexco•), respectively. If,,, is a formula of the form □+, then X t= cp iff 

suffix,(X) t= + for all t € [0, 00). If ,,, is of the form ◊I/,, then X t= cp iff suffix1(X) I= "1 for 

some t E [0, 00). Note that the semantics we use are essentially the "linear time" 

semantics of [Lamport80], and hence the ◊ operator is equivalent to the compound 

operator -,o-,, 

We say that a formula cp is a consequence of a set of formulas v, written v I= ff', if 

X t= cp whenever X I= 1/, for all + e: v. A formula ,,, is valid, written t== rp, if it Is a 

consequence of the null set of formulas. 

The temporal language ~S) of a specification S = <M5, Vs> contains an important 

sentence to which we shall refer extensively. This is the sentence 

Comps= lnits(Now) A □Transs(Now, Occurs, After). 

Intuitively, X I= Comp5 iff X Is a computation for the machine Ms· 

4.2 Specification of the Synchronizer Module 

In this section, we review the state-transition specification sSM = <MSM, VSM> of 

the synchronizer module, which has _already been developed in Chapter 3. 

Let Proc be a finite set of user processes. 

Interface: 

ESM = p.J u {tryP, runP, restP: p € Proc}. 

In anticipation of Chapter 5, we classify each event in the synchronizer module interface 
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as either an input event, an output event, or both (the null event ). is the only event that 

is both an input and an output event). 

lnSM = {1'} u {tryP, restP: p € Proc} 

OutSM = {>.} U {runP: p € Proc}. 

Although our theoretical framework so far draws no formal distinction between input 

and output, in Chapter 5 such a distinction is introduced to obtain a useful test for 

consister_tcy of liveness specifications. Input events should be thought of intuitively as 

stimuli that are applied to a module by its environment, and output events as responses 

applied by a module to its environment. A module does not have the capability of 

regulating the application of input stimuli to It. 

Machine: 

The state set for the synchronizer module machine is defined by 

QSM = flp€Proc {trying, running, resting, error}. 

To ease later discussion, let us say that process p is resting (resp. trying, running, In 

error) in state q if q(p) = resting (resp. trying, running, error). 

The set of initial states for the synchronizer module machine is defined by 

lnitSM = {q € QSM: q(p) = resting for all p € Proc}. 

A step <q, e, r> is in the state-transition relation TransSM for the synchronizer 

module machine iff either e = A and q = r, or one of the conditions (try), (run), or (rest) 

below is satisfied for some p € Proc. 

A try event for process p can occur at any time. If process p was previously resting then 

it advances to the trying state, otherwise to the error state. The states of all other 

processes are unaffected. 

(try) e = try P' and either 

q(p) = resting and r = q[trying/p], or 

q(p) * resting and r = q[errorlp]. 

A run event for process p can occur only if process p is trying, and no other processes 

are currently· running. Process p advances to the running state, and the states of all 

other processes are unaffected. 

(run) e = runP, q(p) = trying, q(p ')*running for all p 'E Proc-{p}, 

and r = q[running/p]. 
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A rest event for process p can occur at any time. If process p was previously running, 

then it advances to the resting state, otherwise to the error state. The states of all other 

processes are unaffected. 

(rest) e = restP, and either 

Validity Conditions: 

q(p) = running and r = q[resting/p), or 

q(p) ,,,_ running and r = q[errorlp]. 

We wish the validity condition for the synchronizer module to capture the idea that 

every user's request should eventually result in a response, if possible. This condition 

can be stated in the rely-/guarantee-condition form as follows: "If every user process 

obeys the requirement that, once in the running state, it will eventually leave the running 

state, then the synchronizer module guarantees that every user in the trying state will 

eventually leave the trying state (and hence advance to the running state)." We can 

express this condition concisely as a temporal sentence. 

ValidSM = RelySM - GuarSM 

where 

RelySM = □(VpEProc)(Now(p) == running - ◊{Now(p) ,,,_ running)) 

GuarSM = □(VpEProc){Now(p) = trying - ◊{Now(p),:,: trying)). 

4.3 Specification of the Synchronizer Component Module 

A synchronizer component module communicates with an associated user 

process via the try, run, and rest events, with its neighboring synchronizer component 

module in the clockwise direction via token_out and request_in events, and with its 

neighboring synchronizer component module in the counterclockwise direction via 

token_in and request_out events. The conceptual state of the module contains a count 

of the number of tokens the module possesses, plus information concerning the state of 

the associated user process. The synchronizer component module can allow the user 

process to enter the running state only if it possesses a token, and must retain a token 

throughout the entire period during which the user is in the running state. We would 

like the synchronizer component module to be "fair" in the sense it eventually grants 

each user request, if possible, and eventually responds to each request for the token by 

its clockwise neighbor in the ring, if possible. 
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The specification of the synchronizer component module is parameterized by the 

number of tokens it possesses in the initial state. Thus the specification presented 

below actually is a specification schema that represents a family {SC": k € .N) of related 

specifications, where SC" is the specification for the synchronizer component module 

with k tokens in the initial state. The only place the initial number of tokens appears in 

the specifiqation is in the definition of the initial state set. 

Interface: 

The first task in the construction of the synchronizer component module 

specification is the description of its interface. 

Esc = {A, try, run, rest, token_in, token_out, requesLin, requesLout}. 

The sets of input and output events are defined by: 

lnSC 

OutSC 

Machine: 

= {A, try, rest, token_in, request_in} 

= {X, run, token_out, request_out}. 

A state for the synchronizer component module contains a "token" component, 

whose value represents the number of tokens the module possesses, and a "ustate" 

component, which tells what state the synchronizer component module thinks the user 

process is In. 

asc = token: .KX ustate: {trying, running, resting, error}. 

The "tags" token and ustate are used as selectors; If q € asc, then q(token) denotes the 

token component of q and q(ustate) denotes the ustate component. 

In an initial state the synchronizer component module SC11 has k tokens and the 

user process is resting. 

lnit8C1c = {q E osc: q(token) = k "q(ustate) = resting}. 

A step <q, e, r> is in the state-transition relation TransSM for the synchronizer 

component module machine iff either e = A and q = r, or one of the conditions (try), 

(run), or (rest), (token_in), (token_out), (requesLin), (request_out) below is satisfied: 

A try event can occur at ahy time. If the user process was previously resting, then it 

advances to the trying state, otherwise to the error state. 

(try) e = try and either 
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q(ustate) = resting and r = q(trying/ustate], or 

q(ustate) * resting and r = q(error/ustate]. 

A run event can occur only if the user process is trying and the synchronizer component 

module currently possesses a token. The user process advances to the running state. 

(run) e = run, q(ustate) = trying, q(token) * 0, and r = q[running/ustate]. 

A rest event can occur at any time. If the user process was previously running, then it 

advances to the trying state, otherwise to the error state. 

(rest) e = rest and either 

q(ustate) = running and r = q[resting/ustate], or 

q(ustate) * running and r = q(error/ustate]. 

A token_jn event can occur at any time, and causes the number of tokens possessed by 

the synchronizer component module to be increased by one. 

(token_in) e = token_in and r = q(q(token) + 1 /token] 

A token_out event can occur only if the user process is currently not running, and the 

synchronizer component module possesses at least one token. The number of tokens 

possessed is decremented. 

(token_out) e = token_out, q(ustate) * running, q(token) * O, and 

r = q[q(token)-1/token] 

A request_jn event can occur at any time, and has no direct effect on the state. The way 

in which a requesLin event induces the synchronizer component module to eventually 

respond with a token_out event is captured by the validity conditions. 

(requesUn) e = requesLin and r = q 

A request_out event can occur only if the synchronizer component module currently 

does not possess a token. Occurrence of such an event has no effect on the state. 

(requesLout) e = requesLout, q(token) = 0, and r = q 

Validity Conditions: 
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We would like the synchronizer component module validity conditions to capture 

the following two ideas: 

(1) A synchronizer component module always eventually satisfies a user's 

request, if possible. 

(2) A synchronizer component module always responds to requests for the 

token issued by its clockwise neighbor, if possible. 

We can state this in rely-/guarantee-condition form as foHows: If all requests issued by 

the synchronizer component module to its counterclockwise neighbor are eventually 

granted, and the user process never remains forever in the running state, then all user 

requests and all requests for the token from the clockwise neighbor, will eventually be 

granted. Formally, 

Validsc = Relysc - GuarSC, 

where 

Rely8C = D(Now(ustate) = running - ◊(Now(ustate) -:1: running)) A 

□(Occurs = requesLout - ◊(Now(token) -:1: 0)) 

Guar5C = D(Now(ustate) = trying - ◊(Now(ustate) ;t trying)) A 

□(Occurs = request_in - ◊(Occurs • token_out)) 

4.3.1 The Synchronizer Implementation 

To be able to describe and reason about the synchronizer implementation we must 

formalize the idea that the set Proc is a "ring-structured set of processes with a 

distinguished process." We assume that the set Proc is the set of integers modulo N for 

some N, and that zero is a distinguished process, which will be the process that initially 

possesses the token. 

We first define the synchronizer interconnection 
eSMI _ (ESMI SMI (6SMI} ) 
" - 1 a ' p pEProc · 

The abstract interface 0SM1 is the synchronizer module interface ESM, and the pth 

component interface F~1 is the synchronizer component module interface Esc. 

by: 

The composite interface for the synchronizer module implementation is defined 

ESM1 = {A} + {tryP, runP, restP, tokenP, requestP: p € Proc}. 

lnSM1 = {A} + {tryP, restP: p € Proc} 

OutSM1 = {A} + {runP, tokenP, requestP: p € Proc}. 
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The tryP, runP, and restP events in the composite interface correspond under the 

decomposition map to try, run, and rest events for synchronizer component module p, 

and under the ab~traction map to try P' run P' and rest P events for the synchronizer 

module. A token P event represents the transmission of a token from synchronizer 

component module p to synchronizer component module p + 1 (i.e. in the clockwise 

direction around the ring), and a "request" event represents the transmission of a 

request from synchronizer component module p to synchronizer component module 

p-1 (i.e. in the counterclockwise direction). We capture this information formally by 

defining the abstraction map aSM1 and decomposition map i SM,_ 

aSM1(e) = e, if e € {tryP, runP, restP: p € Proc}, 

= >., if e € {tokenP, requestP: p € Proc} U {>.}. 

B:,11(e) = try, if e = tryP 

= run, if e = runP 

= rest, if e = restP 

= token_in, if e = tokenP-1 

= luktt11_oul, if t1 = tokt:mP 

= request_in, if e = requestp+ 1 

= request_out, if e = requestP 

= A, otherwise. 

To complete the description of the synchronizer implementation <,SM,, S!:, S. SM'>, 

we must define the specifications s=: and S:,11 for each p € Proc. The specification 

s:= is the synchronizer module specification sSM. The specification s:,:~ is the 

specification ssc1 of the synchronizer component module with one initial token, and for 

all p € Proc - {zero}, s~' is the speciticatron · ssco of the synchronizer component 

module with no initial tokens. 

4.4 Correctness of the Synchronizer Implementation 

In this section, we use the techniques of Chapter 3 to show the correctness of the 

synchronizer implementation. Most of the proof consists of straightforward case 

analyses. The interesting content of the proof is contained in the use of Lemma 3.12 to 

prove that the validity condition holds. 
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4.4.1 Implementation Invariant 

To prove the correctness of the synchronizer module implementation, we first 

need to find an implementation invariant that provides enough information about the 

reachable states of the composite machine so that we can prove the maximality 

condition. The implementation invariant will also be useful in the proof that the validity 

condition holds, and so in this section we define an implementation invariant that is 

strong enough for both the maximality and validity proofs. 

For a set Inv to be an implementation invariant for an implementation means that it 

is inductive for the composite machine for the implementation. Formally, if M is the 

composite machine and E the composite interface, we must show: 

(Basis) (\JqEOM)(q E lnitM - q E Inv)) 

(Induction) ('lq,rEQ11, e E E)(<q, e, ,> E Trans11 - (q E Inv - , E Inv)). 

It is generally convenient to define an implementation invariant Inv by a predicate 

lnv(q) = Rep{q) /\ Abs(q), 

wheie R~p is called the reprtJSf:nlatiuti i11vc11ia11t and Abs is calleJ the absiraciion 

relation. A representation invariant describes a relationship that must hold at all times 

between the states of component modules In an implementation. Representation 

invariants serve roughly the same purpose here as what is called the "data type 

invariant" in the literature on abstract data types [e.g. Jones81, Jones83]. An 

abstraction relation describes the correspondence between the states of the 

component modules and the state of the abstract module. The abstraction relation 

plays the same role here as the ''retrieve functions" of [Jones81], and the 

"representation functions" of [Hoare72]. 

The implementation invariant lnvSM1 for the synchronizer implementation is defined 

as follows: 

lnvSM1{q) = RepSM1(q) /\ AbsSM1(q), 

The abstraction relation AbsSM1 holds of state q iff in state q, the abstract synchronizer 

module's view of the state of the pth user process is identical to the pth synchronizer 

component module's view, for each p in Proc. Stated another way, the abstract 

synchronizer module state corresponding to a given collection of synchronizer 

component module states is obtained by throwing away all information, except for the 

ustate component, in the states of the component modules. Formally, 
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AbsSMl(q) = ApEProc<qabs(p) = qP(ustate)), 

where we have used the notations qabs' qP as abbreviations for "abs(q), "P(q), 

respectively. 

The representation invariant RepSM1 is defined by: 

RepSM1(q) s Mutex(q) "Token(q). 

Mutex(q) states that if a user process is in the running state, then the corresponding 

synchronizer component module must possess a token. Formally, 

Mutex(q) = ApEProc<qiustate) = running - qP(token) ':I: 0). 

Token(q) asserts that the total number of tokens in the system at any time is precisely 

one. 

Token(q) s IpEProc qP(token) = 1. 

The proof that lnvSM1(q) is in fact an implementation invariant for the synchronizer 

implementation is a straightforward induction. 

Basis: It follows directly from the initial state sets that if lnit8M1(q) holds, then 

q
8
bs(p) = resting for all p € Proc 

Qzero = <token: 1, ustate: resting> 

qP = <token: O, ustate: resting> for all p € Proc-{zero}. 

It is easily checked that these three conditions imply. that AbsSM1(q), Mutex(q), and 

Token(q) all hold. We conclude that lnvSM1(q) holds for all q € lnitSM1, as required. 

Induction: We must show that for all <q, e, r> € TransSM1, if lnvSM1(q) holds then lnvSM1(r) 

does, too. Suppose that <q, e, r> E TransSM1 and lnvSM1(q) holds. 

First of all, note that if e = X, then q = rand hence lnvSM1(r) follows trivially from 

lnvSM1(q). We therefore assume in what follows that e * A. We consider separately the 

proofs of AbsSM1(r), Mutex(r), and Token(,). 

To prove that AbsSM1(r) holds, there are two cases: (1) e E {tokenP, requestP: p E 

Proc}; and (2) e € {tryP, runP, restP: p E Proc}. Case (1) is disposed of quickly by noting 

that if e = tokenP, or e = requestP for some p € Proc, then r abs(p ') = qabs(p ') and 

rP .(ustate) = qP .(ustate) for all p' € Proc. Thus in this case AbsSM1(r) follows directly 

from AbsSM1(q). Case (2) is handled by a straightforward enumeration of the cases: e = 

tryP, e = runP, e = restP, and verifying that in each case, ttie occurrence of e results in 

identical values for r abs(p ') and r P .(ustate), for each p ' E Proc. 
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We now consider the proof that Mutex(r) holds. Suppose not, then it must be the 

case that ,P(ustate) = running and 'itoken) = 0 for some p € Proc. By a case analysis 

one it is straightfory.,ard to check that the only way this can happen is if either qP(ustate) 

= running and e = tokenP, or qP(token) = 0 and e = runP. Examination of the 

specification of the synchronizer component module shows that it is impossible for a 

tokenP event to occur if qP(ustate) = running, and also for a runP event to occur if 

qP(token) = 0. 

Finally, we wish to show that Token(,) holds. A case analysis on e shows that the 

only events that affect the number of tokens in the system are those of the form tokenP 

for some p E Proc. Examination of the specifications shows that, when such an event 

occurs, ,P(token) = qP(token) - 1, 'P+ 1(token) = qP+ 1(token) + 1, and 'P~token) = 

qP .(token) for all p' E Proc - {p, p + 1 }. Thus :IP '€Proc rP ,(token) = IP 'EProc qP ,(token), 

and hence Token(,) holds. 

4.4.2 Proof of Maximality 

We must show that for all q E QSM1 and e E ESM1, if /m,SM1(q) holds and 6~1(e) is 

enabled in state qP for all p E Proc, then aSM1(e) is enabled in state qabs' 

Suppose /nv8M1(q) holds and that c5:""11(e) is enabled in state qP for all p € Proc. 

There are two cases: (1) e = run P tor some p E Proc; and (2) e is not of this form. 

Examination of the synchronizer module specifications shows that case (2) is trivial, 

since a(e) is enabled in any state unless e = runP for some p E Proc. 

Now consider case (1 ). Since .S:"'41(e) is enabled in state qP, from the synchronizer 

component module specification we know that 

(A) qP(ustate) = trying and qP(token);,: O. 

The assumption that lnv8M1(q) holds implies that Token(q), Mutex(q), and AbsSM1(q) all 

hold. From (A) and AbsSM1(q) we infer that q
8
bs(p) = trying. From (A) and Token(q) we 

know that QP,{token) = 0 for all p '. € Proc-{p}. From this and Mutex(q) we infer that 

qP ,(ustate) ¢ running for all p' E Proc-{p}. From this and AbsSM1(q), we conclude that 

qabs(p 1 ~ running for all p' E Proc-{p}. We have shown that 

(B) qab9(p) = trying A (AP '€Proc-{p} qab1(p 1 ¢ running). 

holds. Examination of the synchronizer module specifications shows that (B) implies 

that aSM1(e) is enabled in state qabs' as desired. 
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4.4.3 Proof of Validity 

To express the proof that the validity condition holds for the synchronizer 

implementation, we associate a temporal language ~sSM') with the composite 

specification sSM• = <MSM1, VSM'> in the same way as temporal languages were 

associated with the synchronizer module and synchronizer component module 

specifications. In addition, we must have some way of taking the temporal sentences, 

each expressed in its own temporal language, that define the sets of valid computations 

for the synchronizer module and synchronizer component module specifications, and 

"lifting" them to the common language ~SSM1). This can be accomplished by a simple 

syntactic translation, which we now define. 

To each formula cp of ~SSM) we associate a corresponding "lifted" version (cp]abs 

of ~SSM1
), by replacing each occurrence of the symbol Now by the term Now abs' each 

occurrence of After by the term After abs' and each occurrence of Occurs by the term 

aSM1{0ccurs}. Similarly, to each formula cp of 'S(Ssc) and each p € Proc, we associate a 

corresponding formula (cp)P € '5(SSM1), by replacing each occurrence of Now by Now,, 

each occurrence of After by After,, and each occurrence of Occurs by Br41{0ccurs). 

The precise relationship between a formula arid its lifted version is captured by 

Lemma 1.2 in Appendix I. Informally, if rp € '5(SSM), then a history X for the composite 

machine MSM1 satisfies the formula &cpBabs € ~ASM1) iff the canonical projection x<abs) of X 

satisfies the formula cp. Similarly, if cp € ~Ssc), then a history X for MSM1 satisfies HCJ>Dp iff 

x<il satisfies q,. An analogous result is stated in [Wolper82], where the process of 

"lifting" specifications of individual processes to obtain specifications of a system of 

processes is called "relativization." 

In the proof that the validity condition holds for the synchronizer Implementation, 

we must have some way of making use of the information contained in the 

state-transition relation of the composite machine. We do this by using the 

implementation invariant according to the following rule of inference: If Inv has been 

shown to be invariant, then 

Comp t= Dlnv(Now) 

holds. This rule, whose validity follows from Corollary 3.7, will be used extensively in our 

correctness proofs. 
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To show that the validity condition holds for the synchronizer implementation, we 

must show that: 

CompSMI I= l\cProc ffValid8
CDP - nvalidSMDabs" 

In light of Lemma 3.12 it suffices to find, for each i, ; E Pree + {abs}, a temporal 

sentence RG;j such that conditions (SMl1 )-(SMl3) below hold. 

(SMl1)(a) CompSM1 I= ffRelySMBabs - /\/EProc RGabsJ 

(SMl1){b) CompSM1 I= /\1EProc RG,,abs - ffGua.-SMJabs 

(SMl2)(a) CompSMI I= /\/EProc (/\;EProc + {abs} RG;J - ffRelyscD,) 

(SMl2)(b) CompSMI I= A,EProc (HGuarSCD, - /\;EProc+{abs} RG,} 

(SMl3) Whenever {<i0 , i1>, <i1, i;>, ... , <i,,_1, in>) is a cycle of Proc, then 

CompSMI I= vn-1 RG . 
11 =0 111.,11+1 

The sentences RG1J express what is relied/guaranteed between each pair of 

synchronizer component modules or between a synchronizer component module and 

the external environment of the entire system. The synchronizer component module 

specifications have been chosen in such a way that the sentences RG;1 can be obtained 

simply by "lifting·" the synchronizer component module rely-/guarantee-conditions to 

the temporal language of the composite machine. The formal definitions are as follows: 

For all i,; E Proc, 
1 

RGi,abs = D(Now;(ustate) = trying - ◊(Now,(ustate) $ trying)) 

RGabsJ = □(Now1(ustate) = running - ◊(Now1(ustate) $ running)) 

For all ; E Proc, 

RG;-1,; = □{8~1{Occurs) = request_out - ◊(Now,(token) ~ 0)) 

For all i,; E Proc such that ; + 1 ~ /, 

RG1J = true 

Next, we verify (SMl1 )-(SMl3). Assume CompSM1 throughout the remainder of the 

proof. The interesting intuitive content of the validity proof is contained in the proof that 

(SMl3) holds. The remaining cases are practically automatic. 

Intuitively, hypothesis (SMl1 )(a) says that the abstract module rely condition 

implies what each component module relies on the external environment to provide. 

Hypothesis (SMl1 )(b) says that the conjunction of what each component module 

guarantees to the external environment implies the abstract module 

guarantee-condition. Formally, we must show: 
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(SMl1 )(a) HRelySMflabs - ApEProc RGabs,p 

(SMI 1 )(b) ApEProc RGp,abs - ff Gua~abs 
We show (SMl1 )(a), condition (SMl2)(b) is equally straightforward. From the 

synchronizer module specifications, we know that 

[RelySMDabs = OApEProc(Now abs(p) = running - ◊(Now abs(p) ~ running)) 

Suppose that ffRelySMDabs holds. By the invariance of the abstraction relation AbsSM1, we 

infer 

OApEProc(Now P(ustate) = running - ◊(Now iustate) -,1; running)). 

Interchanging the D and conjunction yields 

ApEProc RGabs,p' 
as desired. 

Intuitively, hypothesis (SMl2)(a) says that each component module's rely-condition 

is implied by the conjunction of what is guaranteed to it by the external environment and 

by each other component module. Hypothesis (SMl2)(b) says that each component 

module's guarantee-condition implies what the external environment and each other 

component module rely on it to provide. Formally, we must show: 

(SMl2)(a) A,EProc + {abs} RG1,p - [Rely891P, for all p E Proc 

(SMl2)(b) [Guar8CDP - A/EProc+{abs} RGPJ' for all p E Proc. 

To show condition (SMl2)(a) is completely straightforward. Let p E Proc be fixed. It 

suffices to show that RGabs,p A RGP-1.P - [Rely89P. By definition 

RGabs,p = □(Now P(ustate) = running - ◊(Now P(ustate) -,1; running)) 

RGP-1.P = □(6:-41(Occurs) = requesLout - ◊(Now P(token) ~ 0)). 

The conjunction of these two sentences is easily seen to be equivalent to ff Rely89P by 

inspection of the synchronizer component module specifications. 

To show (SMl2)(b) is not completely trivial because of the fact that what 

component module p guarantees to module p + 1 is not exactly what module p + 1 relies 

on module p to provide. Specifically, module p guarantees always to eventually send 

the token in response to a request from module p + 1. However, module p + 1 relies not 

on the eventual occurrence of a token_jn event, but rather on the eventual setting of the 

token component of its state to a nonzero value. The nontrivial portion of the proof is to 

use the state-transition relation for module p + 1 to show that occurrence of a token_jn 

event for that module implies the eventual setting of the token component of its state to 

a nonzero value. 
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Formally, to prove (SMl2)(b) it suffices to show that (Gua,.SCJP - RGp,abs A 

RG 1, since RG J = true by definition unless; = abs or; = p + 1. By definition p,p+ p 

RGp,abs = □(Now P(ustate) = trying - ◊(Now P(ustate) * trying)) 

RGp,p+ 1 = D(t5~1
1(Occurs) = requesLout- ◊(Nowp+ 1(token) * 0)). 

By inspection of the synchronizer component module specifications, we have 

f GuarSCJP = □(Now iustate) = trying - ◊(Now P(ustate) * trying)) A 

O(t5r1(0ccurs) = request_in - O(t5:-41(0ccurs) = token_out)). 

Assume ffGuar8CJ . Then RG abs follows immediately from the first conjunct of p P, 

f Guar8CJP. To show that the second conjunct of 8Guar8CJP implies RGP.P + 1, note the 

definition of the state-transition relation for synchronizer component module p implies 

that 

O(c5~1
1(Occurs) = token_in - O(Nowp+t * 0)). 

From the second conjunct of ff Gua,.SCJP, using the definition of the decomposition map 

4 SMI, we obtain 

□(8~11 (Occurs) = request_out - 0(8::\(0ccurs) = token_in)). 

Combining the preceding two sentences and applying temporal reasoning shows 

RGP.P ;p as desired. 

The most interesting part of the proof is the proof that (SMl3) holds. To show 

(SMl3), we must show that 

CompSMI I== yn-1 RG 
le• 1 111111 + 1 

holds for every cycle {<i0, 11>, ... 1 <in-1• ii} from Proc. The only nontrivial case is the 

cycle { <zero, zero + 1>, <zero + 1, zero + 2>, ... , <zero + N-1, zero>} that traverses the 

entire ring in the clockwise direction, since every other cycle from Proc contains a link 

<i, j> for which RG,J = true by definition. Suppose, to obtain a contradiction, that 

(SMl3) fails for this cycle. Then for all p E Proc, the sentence RGP-1.P does not hold. 

This means that 

Ap€Proc O(B:-41(Occurs) = request_out A □(NowP(token) = 0)). 

That is, for each p E Proc, eventually a point is reached at which synchronizer 

component module p issues a request_out event, but never has the token after that 

point. This implies that 

ApEProc O□(Now P(token) = 0). 

Since Proc is a finite set, it is valid to interchange the conjunction and ◊ operator in the 

preceding formula, concluding that 

◊ ApEProc□(Now itoken) = 0). 
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This asserts that there is some point after which no synchronizer component module 

ever possesses a token. This is a contradiction with the invariance of Token, which 

states that the total number of tokens in the system is always precisely one. I 
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5. Consistency of Specifications 

In Chapter 3 it is suggested that module specifications ought to be expressed in 

rety-/guarantee-condition form, and that the rely- and guarantee-conditions for the 

component modules in a system ought to be selected so that each component module 

guarantees precisely the conditions relied upon by its neighbors in the system. In 

Chapter 4 the synchronizer example illustrates how adherence to this principle can 

result in a simple proof of the validity condition required by the Correctness Theorem. 

In practice, there seems to be considerable flexibility In the choice of rely- and 

guarantee-conditions. Often significant simplifications in a correctness proof can be 

effected simply by adjusting the component module specifications. 

The apparent flexibility in the choice of rely- and guarantee-conditions in 

specifications raises the following somewhat disturbing question: What is to prevent us 

from writing component module specifications with extremely weak rely-conditions (e.g. 

true), and ridiculously strong guarantee-conditions (e.g. false), in order to simplify the 

proof of correctness? An implementation whose component module validity conditions 

are all of the form "true - false" makes the validity part of a correctness proof 

extremely simple, but also vacuous. We can also consider more subtle, but still 

problematic specifications in which a module "guarantees" the application of some 

input to it -- something that seems to contradict our intuitive notion of what it means to 

be an input. 

Since a specification of the form "true - false," or a specification that guarantees 

the application of input ought to be regarded as meaningless, we should have some way 

of distinguishing these specifications from others that are meaningful. The theory we 

have set up so far provides no formal criteria for making such a distinction. What we 

require is a suitable notion of consistency of specifications, with respect to which 

obviously unrealizable specifications such as "true - false" are inconsistent, and 

apparently reasonable specifications, such as the synchronizer component module 

specification, are consistent. 

In mathematical logic, a theory is consistent iff it has a model. Since the "models" 

of specifications are behaviors, it seems reasonable to define a specification to be 

consistent iff there is a behavior that satisfies it. If we take the term "behavior" in this 

definition to mean "arbitrary behavior," though, we do not obtain a stringent enough 
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notion of consistency. For example, every subset specification is consistent in this 

sense, since the empty behavior 0 satisfies every subset specification. To obtain more 

stringent notions of consistency, we must restrict our interpretation of the term 

"behavior" to mean "realizable" or "computable" behavior. 

In this chapter, we examine a notion of consistency based on a model of 

concurrent computation called "1/0-systems." An 1/0-system models a collection of 

concurrent processes that interact through coupled events. By viewing 1/0-systems at 

various levels of abstraction we obtain the "1/0-behaviors," which we take as our class 

of computable behaviors. A specification is defined to be "1/0-consistent" iff there 

exists an 1/0-behavior that satisfies it. The notion of 1/0-consistency seems to be quite 

useful for distinguishing between meaningful and meaningless eventuality 

specifications. We develop a technique for proving state-transition specifications to be 

1/0-consistent and apply this technique to show the 1/0-consistency of the 

synchronizer component module specification. 

5.1 1/0-Systems 

This section defines a model of asynchronous concurrent computation called 

"1/0-systems." An 1/0-system is a system of nondeterministic processes that interact 

through coupled events. The nonnull events in which each process can participate are 

partitioned into "input events" and "output events." An input event for a process 

represents the stimulation of the process by its environment, and an output event for a 

process corresponds to the process responding to Its environment. A process can 

choose whether or not it will produce output, but does not have the ability to control the 

application of input to itself. If a process wishes to produce output, then it cannot be 

prevented from doing so, although a process has no control over precisely when the 

output will be produced. 

The coupling of the processes in an 1/0-system is described by a "system 

interface," the elements of which are "system events." Each system event is a vector 

with one component for each process In the system, and represents a possible 

simultaneous occurrence in the computation of the system. No system event contains 

more than one component output event, modeling the idea that at most one process can 

produce an output at any instant of time. 
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To describe the execution of an 1/0-system, it is helpful to imagine the existence 

of a "scheduler," who controls the path of execution of the system. For each step of the 

system, the scheduler chooses a system event from the system interface. All processes 

then simultaneously take steps corresponding to the chosen system event. By the 

constraint that there is at most one output component of each system event, at most one 

process produces an output event in each step, and the other processes perform input 

steps or null steps. We are only interested in computations of an 1/0-system that are 

"fair" in the sense that the scheduler selects each process to perform output steps 

often enough. 

We now give a formal definition of 1/0-systems. We first define the notion of an 

1/0-interface, which is an interface whose non-;\ events are partitioned into input events 

and output events. 

Definition - An l/O-interface is an interface <E, ">..E, lnE, Out,?, where lnE ~ E is a set of 

input events and OutE ~ E is a set of output events, such that the sets lnE, OutE, {">..E} 

partition E. I 

We next define the "asynchronous product" of a collection of 1/0-interfaces. 

Intuitively, the asynchronous product ®;Et F1 of the collection <F,),E, of 1/0-interfaces 

represents the set of all possible simultaneous occurrences in a system of processes 

where process ; has interface Fr Each element of the asynchronous product interface is 

a vector of events from the component interfaces, such that at most one of the events in 

the vector is an output event. The fact that at most one event in each vector is an output 

event means that at most one process produces an output event at a time. This 

restriction is typical of asynchronous, interleaved execution models, and this is why the 

asynchronous product has been so named. 

Definition - The asynchronous product ®iEt F1 of a collection <F;>,E, of 1/0-interfaces is 

the interface F defined as follows: 

F = {l E n,E, F1: at most one f; is an output event} 

AF = ('),.F,>iE/ 

lnF = {l E F: t :it ">.F and no f1 is an output event} 

OutF = {l E F: exactly one f; is an output event}. 

The maps 111: ®,E, F1 - F1, for i E /, that take a vector l to its ith component, are called the 

canonical projections associated with ®iEt Fr I 
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In general, a system interface will not be the entire asynchronous product of the 

process interfaces, but rather only a sub-interface of the asynchronous product. The 

reason for using a ~ub-interf ace of the asynchronous product as the system interface is 

to capture possible coupling of events between processes. One kind of coupling that 

can be modeled in this way is the identification of events of distinct processes. For 

example, if the output event out for process one is to be identified with the input event in 

for process two, then we would include in the system interface the vector <out, in>, in 

which process one performs an out event at the same time as process two performs an 

in event, but we would exclude from the system interface the event <out, A), in which 

process one performs an out event while process two does nothing, and the event <A, 

in>, in which process two performs an in event while process one does nothing. Other 

kinds of coupling can also be modeled. For example, if the input event in for process 

two always occurs along with an output event out for process one, but the event out for 

process one need not occur along with an in event for process two, then the system 

interface would include the events <out, in> and <out, A>, but would exclude the event 

<A, in). 

Our only requirement on the system interface is that to each event of a component 

process there is some system event that contains the given event as a component. This 

requirement ensures that each observation over a process interface has a faithful 

representation as an observation over the system interface. 

Definition - An embedding of an 1/0-interface E into an 1/0-interface F is an injective 

translation y: E - F such that y(lnE) ~ lnF and y(OutE) ~ OutF. I 

(Recall that the fact y is a translation implies that y(AE) = AF.) 

Definition - A system interface for a collection <F;>,€, of 1/0-interfaces is an 

1/0-interface E ~ ®,€, F1 such that 

(1) The inclusion map y: E :-+ ®,€, F1 is an embedding. 

(2) Each map ", 0 .., is onto F1, where <v,>,€, are the canonical projections 

associated with ® ,E, F,. 

The collection of maps <v, 0 ..,>,€, is called the canonical decomposition map associated 

with E. I 
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Each process in an 1/0-system is represented by an "1/0-machine," which is a 

machine that cannot prevent the occurrence of input events. The 1/0-machines in an 

1/0-system are required to be "explicit" in the sense that each nonnull step results in 

the occurrence of some non->. step. This assumption is justified because we think of an 

1/0-system as being a detailed, low-level modef, in which all steps taken by processes 

result in explicit observable events. Later we will apply abstraction maps to the 

behavior$ of 1/0-systems to obtain less detailed, higher-level views of system behavior, 

in which steps can be taken that do not result in observable events. 

Definition - An l/0-machine of l/0-interface Eis a machine M of interface E that is 

input-cooperative in the following sense: For all q € Q11 and e E lnE, there exists r E QM 

such that <q, e, r> E Trans"'. An 1/0-machine M of interface Eis explicit if every step 

<q, >., r> E Trans11 has r = q. I 

Definition - An 1/0-system is a tuple'!= <E, <M;>;E;>' where I is a finite, nonempty set of 

process indices, E ~ ®,E, F1 Is a system interface, and each M1 is an explicit 1/0-machlne 

of intarf ;:u~e F . I . , 

We associate with an 1/0-system '! = <E, <M;>,E;>, a system machine M defined as 

follows: 

EM = E 

Q"' = n,E, Q", 

lnit11 = n,E, lnit11_ , 
Trans11 = {<a., e, ,>: <q1; 61(e), r;> € TransM,tor alli E /}, 

where <8;>,E, is the canonical decomposition map associated with E. I 

Definition - A computation for an 1/0-system is just a computation for its system 

machine. I 

A computation X for an 1/0-system projects to computations x<I') for each of its 

constituent machines in the obvious way. 

We will be interested only in the "fair" computations of an 1/0-system. To formally 

define the notion of fairness, suppose '! = <E, <M,>,E;> is an 1/0-system and M is the 

system machine. Suppose a. € QM is a system state. We say that process i runs in a 

step <a., e, ! > E Trans"' if 81(e) is an output event for process i. We say that process i is 
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enabled in system state a if there is a step <a , e, ! > E TransM in which process i runs. 

Suppose Xis a computation for M. Process i is repeatedly enabled in X if for all t E 

[O, 00) there exists t' E [t, 00) such that process ; is enabled in Statex(t). Process i 

repeatedly runs in X if for all t E [O, oo) there exists t' E [t, 00) such that process i runs in 

Stepx<t>-

Definition - A computation X for an 1/0-system is fair it for each process i in the 

system, if process i is repeatedly enabled in X, then process i repeatedly runs in x. I 

5.2 1/0-Behaviors and 1/0-Consistency 

Each computation of an 1/0-system produces an observation over the system 

interface. We call the set of all observations that are produced in fair computations of 

an 1/0-system the "primitive behavior" of the system. This behavior is called 

"primitive" because it contains complete detail about the events that occur during a 

computation of the system. 

Definition - The primitive behavior PBeh(1) of a system of 1/0-processes :r is the set of 

all Obsx where Xis a fair computation for'!. I 

By applying abstraction maps to the primitive behaviors, we obtain additional 

(nonprimitive) behaviors. We call any behavior that Is the abstraction of a primitive 

behavior an "l/0-behavior." An abstraction map can suppress information in a behavior 

by mapping two distinct events of the same type (either input or output) to the same 

event, or by mapping an output event to A. To ensure that an abstraction map faithfully 

preserves the input/output structure of a behavior, we require that an abstraction map 

never map an input event to A, and never map an input event and an output event to the 

same event. Furthermore, we require that each abstract input event be the image of 

some concrete input event. 

Definition • An 1/0-abstraction map from the 1/0-interface E to the 1/0-interface D is a 
translation a: E - D with the following properties: 

I 

(1) a(OutE) c; Out0 U {AD}. 

(2) a(lnE) c; ln0 • 

(3) a is onto In 
0

• 

(a preserves outputs) 

(a strictly preserves inputs) 
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Definition - A behavior a E Beh(0) is an /ID-behavior of interlace D iff there exists a 

system ':! of I/O-processes with system interface E and an 1/O-abstraction map a: E -+ D 

such that a = a(P~eh(:t)). I 

The following result shows that the class of 1/O-behaviors is a kind of completion 

under 1/O-abstraction of the class of primitive behaviors. 

Theorem 5.1 - The class of 1/O-behaviors contains all primitive behaviors and is closed 

under 1/O-abstraction operators. 

Proof - Obvious from the definition of an 1/O-behavior and the facts: 

(1) Identity translations are 1/O-abstraction maps. 

(2) If a: F - E and fJ: E -+ D are 1/O-abstraction maps, then /J O a is an 

1/O-abstraction map. I 

By taking the 1/O-behaviors as our class of realizable or computable behaviors, we 

obtain the notion of "1/O-consistency" of specifications. 

Definition - A specification S of 1/O-interface D is I10-consistent if there exists an 

1/O-behavior a of interface D such that a satisfies S. I 

5.3 Machine Characterization of 1/0-Behavlors 

To obtain techniques for proving the 1/O-consistency of state-transition 

specifications, it is convenient to have a direct characterization, not involving 

1/O-abstraction maps, of the 1/O-behaviors of interface E. Such a characterization is 

provided by Theorem 5.4 below. Theorem 5.4 states that the 1/O-behaviors are exactly 

the sets of observations produced by "productive step machines," which are 

1/O-machines plus some scheduling information. 

Definition - A productive step set for an 1/O-machine M of interface E is a set Prod ~ 

TransM n Steps(OutEU{AE}, OM) that contains no null steps. I 

\ 
Definition - A productive step machine (PS-machine} of 1/O-interface E is a tuple 

<M, <Prod;>,E;>, where M is an 1/O-machine of interface E and <Prod;>,0 is a finite, 

nonempty collection of productive step sets for M, such that u,E, Prod, ~uals the set of 

all nonnull steps <q, e, r> E TransM n Steps(OutEup.E}, OM). I 
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Suppose that <M, <Prod;>,E,> is a PS-machine. The notions of the productive step 

set Prod. being enabled in a state of Mand running in a step of Mare defined in the , 
obvious way. A computation X for Mis fair if for each i E /, if Prod, is repeatedly enabled 

in X then Prod, repeatedly runs in X. Define the behavior Beh(M, <Prod1>,E,) of the 

PS-machine <M, <Prod;>;E,> to be the set of all Obsx where Xis a fair computation of M. 

The following lemma states that every PS-machine has the same behavior as a 

PS-machine whose productive step sets are pairwise disjoint. 

Lemma 5.2 - If <M, <Prod;>,E,> is a PS-machine of interface E, then there exists a 

PS-machine <M ', <Prod1 '>,E,> of interface E such that the collection <Prod1 '>,E, is 

pairwise disjoint and such that Beh(M ', <Prod, '>,E,) = Beh(M, <Prod,>,E1). 

Proof - The idea of the proof is to include a dummy "tag" component in the state of M ', 

so that steps in Prod,' write ; into the tag component. This ensures disjointness, since if 

i * ;, then steps in Prod, and Prodi write different values into the tag component. 

Fnrrn~lly, define 

QM, = QM XI 

lnitM, = lnitM X I 

TransM. = {«q, k>, e, <r, m»: (1)-(3) below all hold} 

(1) <q, e, r> E TransM 

(2) If (q, e, r> E u,E, Prod,, then <q, e, r> E Prodm. 

(3) If <q, e, r> ( u,E, Prod,, then m = k. 

Prod,' = {«q, k>, e, <r, 1)> E TransM .: <q, e, r> E Prod,} 

It is straightforward to check that M' is an 1/0-machine of interface E and that the 

collection <Prod, '>,E, is pairwise disjoint. 

To show that <M ·, <Prod,'>,€,> is a PS-machine, we must show that the Prod,' 

cover the non null output or A-steps in TransM ,. If «q, k>, e, <r, m» is a non null output 

or A-step in TransM ., then either m -:t:- k or <q, e, r> is a nonnull output or A-step in 

TransM. If m -:t:- k, then <q, e, r> E u,E, Prod, by part (3) of the definition of TransM. and 

hence <q, e, r> E Prodm by part (2) of the definition of TransM .. By definition of Prodm ', 

we have that «q, k>, e, <r, m» E Prodm '. If <q, e, r> is a nonnull output or A-step in 

TransM' then <q, e, r> E u,E, Prod, because the Prod, cover the nonnull output or A-steps 

in TransM. By part (2) of the definition of TransM ., we know that <q, e, r> E Prodm' and 
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hence «q, k>, e, <r, m» E Prodm 'by definition of Prodm ', 

We claim that Beh(M ', <Prod; ');Et) = Beh{M, <Prod;>,E,). 

Each computation X' of <M ', <Prod; '>,E,> defines a computation X of 

<M, <Prod;>;E,>, which we obtain simply by deleting the tag information from X. Suppose 

X ' is fair and that Prod; is repeatedly enabled in X. It is easy to see from the definition of 

Prod;' that if Prod; is enabled at time tin X, then Prod;' is enabled at time tin X '. Hence 

Prod1 ' is repeatedly enabled in X ', and thus repeatedly runs in X' by the assumption 

that X' is fair. If Prod;' runs at time t in X ', then by definition of Prod;' it follows that 

Prod1 runs at time tin X, so that Xis fair. 
' 

Case Beh(M, <Prod,>/E/) {;; Beh{M ', <Prod, '>,Et): 

Given a fair computation X of <M, <Prod
1
.>,E,>, we wish to construct a fair 

computation X 'of <M ', <Prod; '>,E,> that generates the same observation. We construct 

X ' from X simply by filling in appropriate tag information to match the occurrence of 

productive steps in X, however we must do this in such a way that X ' is fair. 

To construct X ', let f: T - Steps{E, QM) be a history skeleton that spans X, where T 

= <t,.>icE)(' Suppose Stepx(t11) = <q11 , e11 , q11 + 1> for each k € X By a straightforward 

inductive construction involving fair scheduling of the elements of I, we can obtain a 

sequence <m11>11Exof elements of I such that «q., m11>, e., <q •• 1, mk+ 1» E Trans", for 

all k € J(, and such that if <qt<' e11 , r11> € Prod, for infinitely many k € J(, then m• = I tor 

infinitely many k E X The history skeleton f' that maps t11 to the step «q11 , m11>, e11 , 

<q 11 + 1, m 11 + 1» then defines the desired fair computation X 'of M '. I 

The lemma below shows that the class of behaviors of PS-machines is closed 

under 1/0-abstraction. 

Lemma 5.3 - Given a PS-machine <M, <Prod,>,E,> of interface E, and an 1/0-abstraction 

map a: E - D, there exists a PS-machine ~M ', <Prod, '>,E,> of interface D such that 

Beh(M ', <Prod, '>;E,) = a(Beh(M, <Rrod,>,e~). . 

Proof - The basic idea of the proof is simple: M' and the Prod.' are defined by taking 
I 

the images of Mand the Prod
1 

under a. There is one problem with the straightforward 
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execution of this idea: the Prod.' might contain null steps. We solve this problem by 
I 

introducing into the state of M ' an "idling counter," which is a boolean component 

whose only purpo~ is to change state upon execution of productive steps. 

Formally, define <M ', <Prod; '>;E,> as follows: 

QM, = QM X {0, 1} 

lnitM. = lnitM X {O, 1} 

TransM. = {«q, b>, a{e), <r, c»: (1) and (2) below both hold} 

(1) <q, e, r> E TransM 

(2) If <q, e, r> E U;E:, Prod,, then c = 1 -b, otherwise c = b. 

Prod;' = {«q, b>, a(e), <r, c>> E TransM .: <q, e, r> E Prod,}. 

We claim that M ' is an 1/0-machine. It is clear that lnitM. is nonempty. Part (2) of 

the definition of TransM, does not prevent Trans,.,, from containing all null steps, since 

no such step can be in u,E:, Prod,. Thus M' is a machine. To show that M' is 

input-cooperative, suppose <q, b> E QM. and d E ln0 . Since a is onto ln0 and preserves 

outputs, there exists e E lnE with a(e) = d. By the input-cooperative property of M, there 

exists r with <q, e, r> E TransM. Since <q, e, r> ( u,E:, Prod, by the fact that e is an input 

event, it follows that «q, b>, d, <r, b» E TransM .. 

We next show that <M ', <Prod; '>,E,> is a PS-machine. By definition Prod, ' ~ 

TransM. for all i E /. Since each step in Prod, is an output or A-step and a preserves 

outputs, it follows that each step in Prod,' is an output or A-step. Each Prod,' contains 

no null steps because the idling counter is complemented in each step in Prod,'. To see 

that every output or A-step in TransM, is in some Prod, ', note that because a strictly 

preserves inputs, each output or A-step in Trans...,, cannot be the image of an input step 

in TransM' and therefore must be the image of an output or A-step in TransM. Since the 

Prod, cover all output or A-steps of TransM, it follows that the Prod,' must cover all 

output or A-steps of TransM '. 

We claim that Beh(M ', <Prod1 '>,E:,) = a(Beh(M, <Prod,.>1€1)). 

Each computation x of M maps in an obvious way (by taking the image of the 

observation part under a, and deleting the idling counter from the state part) to a 

computation X' of M ', such that Obsx. == a(Obsx>· It suffices to show that if X is fair, 
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then so is X '. Suppose that Xis fair. Fix; E /, and suppose that Prod1' is repeatedly 

enabled in X '. We claim that Prod, ' repeatedly runs in X '. By definition, Prod, ' is 

enabled in state q iff Prod
1 

is enabled in state q. It follows that Prod1 is repeatedly 

enabled in X, and hence by fairness of X, that Prod, repeatedly runs in X. By definition of 

Prod,', if Stepx(t) E Prod,, then Stepx ,(t) E Prod,'. Thus Prod
1 
'repeatedly runs in X '. 

Case Be~(M ', <Prod, '>,E,) ~ a(Beh(M, <Prodl,E,)): 

Suppose that x' E Beh(M ', <Prod1 '>,E1), and let X' be a fair computation of M' in 

which the observation x ' is generated. We will construct a fair computation X of M, 

such that a(Obsx> = x '. The idea is simply to choose inverse images under a of the 

steps in X ', however this must be done carefully to ensure fairness. 

Let T = <t,?HX be a skeletal sequence that spans X '. Suppose Stepx ,(t11) = 

«q1t, bit>' d1t, <r1t, c11» for each k EX 

For each k, since «q1t, bit>, dlt, <r11 , c11» € TransM'' we can select e11 such that dlt = 
a(e/() and <q1t, e,., r11> € TransM. Because a might map two different e's to the same d, we 

can't necessarily select the e11 in such a way that for each;€/, the step <q11 , e11 , r11> € 

Prod, iff «q11 , b1?, dlt, <rlt, c 11» € Prod1 '. However, by making sure that we don't 

persistently neglect some Prod,', we can select the e
11 

in such a way that for each i E /, if 

«q11 , bit>, dlt, <r11 , c,,_» E Prod,' for infinitely many k, then <q
11

, e,,_, ,,,,> E Prod, for infinitely 

manyk. 

The function f that takes tit to the step <q,,_, e1t, ,,,,> is a history skeleton over EM and 

QM. By Lemma 3.5 there is a unique history X such that f spans X. It is easily verified 

that Xis a computation of M, with a(Obsx> = x '. To show fairness, fix; E / and suppose 

that Prod, is repeatedly enabled in X. We claim that Prod
1 
repeatedly runs in X. From the 

definition of Prod1 ' we know that Prod1 ' is repeatedly enabled in X '. By the fairness of 

X' we know that Prod1' repeatedly runs in X '. This implies that <q,,_, d,,_, r,,_> E Prod,' for 

infinitely many k, and hence by construction that <q,,_, e,,,, ,,,,>€Prod, for infinitely many k. 

It follows that Prod1 repeatedly runs in X. I 

The following theorem is our desired characterization of the 1/0-behaviors: a 

behavior is an 1/0-behavior iff it is the behavior of a PS-machine. 

Theorem 5.4 - Suppose D is an 1/0-interface. Then a behavior 8 E Beh(D) is an 
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1/0-behavior of interface D iff B = Beh(M, <Prod,);€,) for some PS-machine <M, 

<Prod;>;E,> of interface D. 

Proof - = > Since the class of behaviors of PS-machines is closed under 

1/0-abstraction by Theorem 5.1, it suffices to show that every primitive behavior B is the 

behavior of a PS-machine. Suppose B = PBeh(:f), where '! = <E, <M,);E,> is an 

1/0-system. We associate a PS-machine <M, <Prod,>;e:,> with 'J as follows: The machine 

M is the system machine for '!. The set Prod; is the subset of TransM in which process i 

runs. Since a step in which process; runs is always an output step, it is clear that Prod, 

is a productive step set for M. Since every nonnull output or A-step in TransM is in fact 

an output step for some process i E /, and hence is in Prod;, it follows that the Prod, sets 

cover the nonnull output or A-steps in TransM. 

It is obvious that the set of fair computations of the system 'J is exactly the set of 

fair computations of the PS-machine <M, <Prod,>,€,>' and thus PBeh(:f) = 

Beh(M, <Prod,>1€1). 

< = Suppose that <M, <Prod,>,€,> is a PS-machine of interface D. We construct an 

1/0-system '! = <E, <M,>;E,> and an 1/0-abstraction map a: E - D, such that 

Beh(M, <Prod,>,€,) = a(PBeh(:f)). 

Without loss of generality we make the following three assumptions about 

<M, <Prod,>,€,>: 

(1) The set lnitM of initial states for M contains exactly one state q0• 

(2) For all q € QM and all e E ln0, there is a unique, E QM such that <q, e, r> E 

TransM. 

(3) Prod, n Prodi = 0 for;~;. 

A PS-machine <M ', <Prod, '>,e:,> that does not have these three properties can easily be 

transformed, without changing its behavior, into a PS-machine <M, <Prod,>;€,> that does 

have these properties. We first obtain properties (1) and (2) by buffering input events in 

an input queue in the order that they occur so that the change of state associated with 

an input event is just to append the event to the end of the input queue. All 

nondeterministic choice, including the choice between multiple initial states, is 

absorbed into the output steps. 
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Formally, we transform the PS-machine <M ', <Prod; '>;e,> into a PS-machine 

<M ", <Prod; ">;e,> by defining StateM .. to consist of all pairs <q, u>, where q is either an 

element of StateM. 9r the distinguished symbol .1., and u E Inf•. The single initial state 

of M" is the state <.1., A>. The transition relation TransM .. consists of all steps «q, u>, e, 
<,, v> > such that 

- If e E Inf then r = q and v ::: ue. 

- If e E Outf U {>\f}, then v = A, and either 

(a) <q, ue, r> is in TransM.•• or 

(b) q = .1. and <s, ue, r> E Trans,...• for some s in I nit,_. .. 

The set Prod;" consists of all steps «q, u>, e, <r, v» E TransM .. such that for some state 

s of M ', the step <s, e, r> E Prod;', and in addition, either q -= .1. and the step <q, u, s> is 

in TransM .•, or q = .1. and for some q 'E lnitM, the step <q ', u, s> is in Trans,..,•. 

Once <M ", <Prod;''>;e,> with properties (1) and (2) is obtained, it can be 

transformed into <M, <Prod?,e.,> with all three properties by an application of Lemma 5.2. 

We now proceed to the construction of '!. The idea is as follows: The system '! will 

contain one process for each ; E I. The processes in '! perform a lock-step simulation of 

the machine M. The interface for each of the processes in the system '! consists of the 

null event, the input events of D, and the set of all productive steps for M. The input 

events for process i will be the input events of D and the steps in u1e,-c,1 Prod/' The 

output events for process i will be the steps in Prodr Each process keeps track of the 

current simulated state of M, and permits an output event to occur only if the event 

corresponds to a step of M from the current simulated state of M. To ensure that the 

input-cooperative property holds, process i imposes no requirements on the state from 

which a step in Prod; can occur, if j -= i. 

Formally, define the 1/0-interfaces F1 as follows: 

F1 = {AF,} + ln0 + u,e, Prod1 
lnF, = ln0 + {U;EI-{,} Prodl 

OutF = Prod, 
I 

Define the system interface E ~ F = ®,e, F1 as follows: 

E = {l E F: f1 = t1 for all i, i E /) U {A,} 

Af = AF 
Inf =En lnF 
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OutE = E n OutF 

It is easy to see that the inclusion map y: E - F is an embedding. For each f E Inf, the 
I 

identically f vector <t>,E, is in E. By the assumption that the Prod; are pairwise disjoint, it 

follows that the identically f vector <f>,E, is in E tor each f E OutF. as well. This shows that 
I 

.,,, 0 'Y is onto F1, where the,,,, are the canonical projections associated with F. 

Define a: E - D to be the translation that behaves in the following way on the 

identically f vector <t>,E, E E: 

- If f E ln0, then a(<t>,E,) = f. 

- If f = <q, d, r> E Prod, for some i E /, then a(<t>,Et) = d. 

We claim that a is an 1/0-abstraction map. It is clear that a is onto ln0. The map a 

preserves outputs because if the identically f vector is an output event of E, then f E 

Prod, for some i and hence f is an output or A-step. To show that a strictly preserves 

inputs, suppose the identically f vector <f>,E, is an input event of E. Then f E ln0, so 

a(<f>,E,) = f € lno· 

The machines M1 are defined as follows: 

EM = F1 
I • 

QM = QM 
I 

lnitM = lnitM = {q0} 
I 

TransM = {<q, f, r>: one of (1)-(4) below holds} 
I 

(1) f = AF and, = q, 
I 

(2) f E ln0 and <q, f, r> E TransM. 

(3) f = <q',d,r>EProd
1
forsomeJ;ti. 

(4) f = <q, d, r> € Prod, 

Obviously M1 is a machine and every step <q, AF, r> E TransM has r = q. To see that M, 
I I 

is input-cooperative, suppose q E QM, and f E lnF,' Then either f E ln0 or f E Prod; for 

some/ ;t i. If f E ln0 then f is enabled in state q by part (2) of the definition .of TransM. 
I 

because Mis input-cooperative. If f = <q ', d, r> E Prod; for some j ;ti, then f is enabled 

in state q by part (3) of the definition of TransM. 
I 

A straightforward induction establishes that if a is a reachable state of the system 

'J, then q1 = qi tor all i, / E /. This argument uses the assumed uniqueness of the initial 

state of M, plus the assumption that a state q and an event e E lnE uniquely determine a 

stater such that <q, e, r> E TransM. Intuitively, since the processes in 'J do not interact 
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with each other during input steps, the uniqueness assumptions are needed to ensure 

that all processes reach the same new state in each such step. 

There is an obvious correspondence between the steps of the machine Mand the 

steps of the system 'J. Specifically, each steps = <q, d, r> of M determines a steps' = 

<g , e, !. > of 'J under the definitions: 

• g is the identically q vector 

• !. is the identically r vector 

- e = AE' if s is null 

= <d>;E1' if d E lno 

= <s>;Ei•· ifs is a nonnull output or A-Step. 

It easy to see that a step s of M is enabled in state q of M iff the corresponding step 

s ' is enabled for the system '! in state <q>,E.r The correspondence between the steps of 

M and the steps of 'J therefore defines a bijection between the set of computations of M 

and the set of computations of 'J, such that if X ' is a computation of 'J and X is the 

corresponding computation of M, then Obsx = a(Obsx .). Furthermore, a step s of M is 

in Prod, iff process; runs in the corresponding steps' of 'J, so that fairness is preserved 

in both directions of this correspondence. It follows that a(PBeh(1)) = 

Beh(M, <Prod,>,E,). I 

The following two properties of 1/0-behaviors are easily derived from the 

PS-machine characterization. 

Corollary 5.5 If 8 is an 1/0-behavior of interface E, then B -:1: 0. 

Proof - Suppose B = Beh{M, <Prod,>;€/). It suffices to show that there is a fair 

computation of M. We construct a sequence q0, q1, ... of states of M, and a sequence 

e0 , e1, ... of events of E, such that the following properties hold: 

(1) <q11 , e11 , q11 ♦ ,> € TransM for all k € .H', 

(2) For each;€/, either Prod, is enabled in only finitely many of the q11 , or else 

the step <q11 , e11 , q11 +,>is in Prod, for infinitely many k. 

Letting t11 = k tor each natural number k and applying Lemma 3.5 yields a fair 

computation of M. 
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To construct the q
11 

and e
11

, first let q
0 

€ lnitM be chosen arbitrarily. We maintain a 

running assignment of priorities to the elements of A so that at each stage of the 

construction i is mo.re urgent than j iff a step in Prod, has been chosen less recently than 

a step in Prodr At stage k, where k > 0, we choose ek and qk + 1 so that <q,,,, e11 , qk +? € 

Prod1, where i is the most urgent element of I such that Proc:f1 is enabled in state q
11

• If no 

Prod1 is enabled in state q,,,, then we let e,,, = >.. and qk + 1 

A behavior B is asynchronous if whenever x € 8 and f: [0, oo) -+ [0, oo) is an 

order-isomorphism, then x O f € a. 

Corollary 5.6 - 1/O-behaviors are asynchronous. 

Proof - Straightforward from the observation that if X is a fair computation of a 

PS-machine <M, <Prod,>,E,> and f: [0, oo)-+ [0, oo) is an order-isomorphism, then X O f is 

also a fair computation of <M, <Prod,>,E;>. I = qk. I 

5.4 Examples of 1/0-Behavlors 

In this section we give two examples of 1/O-behaviors and an example of a 

behavior that is not an 1/O-behavior. 

Example 1: An 1/0-Behavlor: 

As an example of how 1/O-behaviors can be used to model a system capable of 

satisfying eventuality requirements, imagine that we wish to model the behavior of a 

"black box" to which input stimuli can be applied by pressing a single button: and from 

which output can be observed by flashes of a single light bulb. The black box has the 

property that every press of the button is later followed by a flash of the light bulb, and 

no flashes of the bulb occur unless the button has been pressed at least once since the 

time of the most recent previous flash. 

The interface of such a black box is the 1/O-interface E with E = p., button, flash}, 

lnE = {button] and OutE = {flash}. The behavior of the black box is defined by a 

PS-machine M of interface E. Intuitively, a push of the button sets a flag in the state of M 

to true. A flash of the light can occur only when the flag is true, and causes the flag to 

be reset to false. There is one productive step set Prod, which contains exactly those 

steps in which flashes occur. 



Formally, 

EM 
QM 

lnitM 

=E 
= {true, false} 

= {false} 
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Trans" = {<q, button, r>: r = true} U (<true, flash, false>} U 

{(q, A, q): q € QM}. 

Prod = {<q, flash, r> € TransM} 

That <M, Prod> is a PS-machine of interface Eis easily checked. 

Let B = Beh(M, Prod), so that Bis an 1/0-behavior. Through analysis of the fair 

computations of M it can be shown that an observation x E Obs(E) is in B iff there is a 

surjective total function f: {t E [O, oo): x(t) = button} - {t' E [O, oo): x(t 1 = flash} such 

that for all t E [O, oo), f(t) is the least t' E (t, oo) such that x(t ') = flash. That is, an 

observation xis in B provided that in x, every push of the button "causes" a future flash 

of the light, and every flash of the light is caused by some collection of recent past 

pushes of the button. 

Exampfe 2: Two Productive Step Seta 

We can give an example of an 1/0-behavior that is not the behavior of a 

PS-machine with one productive step set. Let the interface E be defined by: E = 

{A, button, flash1, flash2}, where lnE = {button} and OutE = {flash1, flash2}. Let B be 

the set of all x E Obs(E) such that the following properties hold: 

(1) Occurrences of flash 1 appear only between the 2kth and 21< +1st 

occurrences of button, where k EX. 

(2) Occurrences of flash2 appear only between the 21< + 1st and 2(k + 1 )st 

occurrence of flash. 
' 

(3) x contains infinitely many occurrences either of flash 1 or flash2 

(4) If x contains infinitely many occurrences of button, then it contains infinitely 

many occurrences of both flash 1 and flash2. 

It is straightforward to show that B is the behavior of a PS-machine of interface E with 

two productive step sets, one that governs the occurrence of flash 1 events and one that 

governs the occurrence of tlash2 events. 
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Suppose B is the behavior of a PS-machine <M, Prod> with one productive step 

set. Construct a computation of M by repeating the following procedure: Run M until a 

flash 1 event is produced, then run M for two steps containing a button input. It is always 

possible to obtain the flash 1 events in this construction, since otherwise we could 

construct a fair computation in which only finitely many flash 1 events and no flash2 

events occur. It is always possible to run the button events by the input-cooperative 

property of M. 

The above construction yields a computation X of M that must be fair, since it 

contains infinitely many steps in which the output event flash 1 occurs, and which must 

be in the single productive step set Prod because Prod contains all output steps of M. 

However, X generates an observation in which infinitely many button events occur, but 

no flash2 events occur. 

Example 3: A Non-1/0-Behavlor 

We can also give an example of a set that is demonstrably not a 1/0-behavior. 

DE:fine the 1/0-interf ace E as fullows: 

E = {"-, button, flash} 

lnE = {button} 

OutE = {flash}. 

Let the behavior B E Beh{E) be the set of all x E Obs(E) such that x contains an infinite 

number of occurrences of flash, and such that either the number of occurrences of 

button in x is finite or (#flashes in x on the interval [O, t))/ (#buttons in x on the interval 

[O, t)) - Oas t - oo. 

We argue that B is not an 1/0-behavior of interface E. Suppose <M, <Prod,>,E,> is a 

PS-machine of interface E, whose behavior is 8. Construct a computation X for M by 

repeating the following procedure: Run M without input until a flash event is produced, 

then run M tor one step with a button input. We can run M until a flash event is 

produced by always trying to take steps in which flash events are produced, if possible, 

otherwise taking some other productive step. During this construction, we make sure to 

use a fair scheduling algorithm to determine which of the Prod, should be executed at 

each step. We can never reach a state in which no productive steps are enabled, 

otherwise we could construct a fair computation in which only finitely many flash events 

are produced. We can run M at any time with a button input by the input-cooperative 
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property of M. 

The above construction yields a computation X of M that must be fair, since the fair 

scheduling of the Prod; ensures that every repeatedly enabled Prod; will be repeatedly 

run. However, computation X generates an observation x that contains infinitely many 

occurrences of button events, and in which the ratio of the density of flash events to 

button events approaches one in the limit, rather than zero. This contradicts the 

assumption that Beh(M, <Prod,:>,e,> = B. 

5.4.1 Proving 1/0-Consistency 

From the PS-machine characterization of the 1/O-behaviors we obtain the 

following test for 1/O-consistency of subset specifications. 

Theorem 5. 7 - Suppose that S is a subset specification of 1/O-interface E. Then S is 

1/O-consistent iff there exists a PS-machine <M, <Prod,:>,e;> of interface E such that 

Beh(M, <Prod,:>,e,) ~ O(S). 

Proof• Obvious. I 

If S = <M, V> is a state-transition specification, then to show the 1/O-consistency 

of S, it suffices to define a collection of productive step sets for M, such that every fair 

computation of M is in the set V of valid computations. 

Corollary 5.8 - Suppose that S = <M, V> is a state-transition specification of 

1/O-interface E. Suppose that <M, <Prod,:>,e;> is a PS-machine of interface E. If every 

fair computation of M is in V, then S is 1/O-r..onsistent. 

Proof - Since <M, <Prod,:>,e;> is a PS-machine of interface E, it follows that 

Beh(M, <Prod,:>,e,> is a 1/O-behavior of interface E. Since fNery fair computation of M is 

in V, we know that Beh(M, <Prod,:>;e,~ ~ 0(S). By Theorem 5.7, Sis 1/O-consistent. I 

To illustrate the use of this result, we apply it to a simple example specification: A 

neuron is a module with a s:ngle input event in, and a single output fNent out. The state 

set for the neuron is the set {ff, tt}. At any instant of time, if the state of the neuron is tt, 

then the neuron is said to be excited, otherwise the neuron is said to be inhibited. 

Initially the neuron is excited. An in event can occur at any time, and causes the neuron 
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to become inhibited. If the neuron is excited, then it can fire, producing an out event, 

and then becoming inhibited. The neuron should satisfy the condition, "If the neuron 

becomes excited and remains that way, then eventually it will fire." 

The neuron module description can be formalized as a state-transition 

specification. 

ENEU = {X, in, out} 

rnNEu = {in} 

OutNEU = { out} 

QNEU : {ff' tt} 

lnitNEU = {tt} 

A step <q, e, r> E TransNEu iff either e = X and, = q or one of the conditions (in), (out) 

below holds: 

(in) e = in and , = ff 

(out) e = out and q = tt 

The neuron module validity condition is defined by: 

ValidNEU = □(□(Now = tt) - ◊{Occurs = out)), 

To show the 1/0-consistency of the neuron specification, we define a single 

productive step set ProdNEU as follows: 

<q, e, r> E ProdNEu iff e = out, q = tt, and , = ff. 

It is clear by inspection that ~Eu is input-cooperative, and that ProdNEU is a productive 

step set for ~eu. To show the 1/0-consistency of the neuron specification, we must 

show that every fair computation of ~eu is valid. That is, 

where 

CompNEU A Fair-Neut- ValidNeu, 

FairHEU = O◊EnabledNEU{Now) - D◊ProdNEU(Now, Occurs, After) 

EnabledNEU{q) a: (3eEENEU, r E oNEU) ProdNEU(q, e, r). 

We claim the stronger property 

FairHEU p= ValidNEU. 

To show this, we use the neuron module specification and the definition of ProdNEu to 

expand the term FairHEu. From the definition of ProdNEu we obtain 
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and hence that 
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FairNEu = □◊(Now = tt) - □◊(Now = tt /\ Occurs = out/\ After = ff). 
By straightforward temporal and propositional reasoning it is now easy to see that 

□◊(Now = tt) - D◊(Now = tt /\ Occurs = out/\ After = ff) 
I= □(□(Now = tt) - ◊(Occurs = out)), 

That is, if we suppose that 

(1) whenever the state repeatedly takes on the value one then it is also 

repeatedly the case that an out event occurs (which takes the state from one to zero), 

then we are entitled to conclude that 

(2) whenever the state is persistently one after some instant, then there is a 

later instant at which an out event occurs. 

We can use the PS-machine characterization of the I/O-behaviors to show the 

1/O-inconsistency of a slightly stronger version of the neuron specification, obtained by 

using the stronger validity condition 

Va!id:Eu; □(New = tt -- ◊(Occur: = out)). 

This condition states that if the neuron is ever excited for a single instant, then it must 

eventually fire. Suppose there is a PS-machine <M, <Prod,>,€;> of interface ENEU such 

that Beh{M, <Prod,>,€,>) satisfies the strong neuron specification. Construct a 

computation of Mas follows: Run M for one step with input in, and then repeatedly run 

productive steps of M if possible, otherwise null steps, being sure to schedule the 

occurrences of Prod, fairly. The result is a fair computation X of M. 

Since the observation x = Obsx satisfies the strong neuron specification, there 

must exist a valid computation X' of MNEU such that Obsx. = x. In X ', the neuron 

module is excited at time 0, an in event occurs at time 0, and no input events occur after 

time O. Consequently, the neuron module is inhibited after time 0, and thus no out 

events can appear in x because X ' is a computation of ~EU. Thus, in the computation 

X' of MNEu, the neuron module is excit&d at time O but no out events subsequently 

occur. This means that the computation X 'of ~Eu fails to satisfy the validity condition 

Valid:Eu, a contradiction. We conclude that the PS-machine <M, <Prod,>,€;> cannot 

exist and the strong neuron specification is 1/O-inconsistent. 
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5.4.2 1/O-Consistency of the Specification SC 

As an extended example of an 1/0-consistency proof, we prove the 

1/0-consistency of the synchronizer component module specification. For the 

productive step sets, we use the sets Prodrun' Prodtoken_out' and Prodrequest_out' defined 

as follows: 

Prodrun(q, e, r) 

Prodtoken ou,(q, e, r) 

= e = run A TransSC{q, e, r) 

= e = token_out "TransSC(q, e, r) 

Prod (q e r) -= e = request_out A TransSC(q, e, r). request_out ' ' 
It is easily checked that <M8c, <Prodrun' Prodtoken_out' ProdrequesLou.>> is a PS-machine of 

interface Esc. 

We must show that each fair computation is valid; that is, 

Comp8C11 A Fai~ A Fair~en_out A Fair~uesLout I== Validsc, 

where 

Fai~ e O◊Enabled~(Now) -
O◊Prod~(Now, Occurs, After) 

Fai~en_out = O◊Enabled~en_out(Now)-
O◊Prod~8n_out(Now, Occurs, After) 

Fai~uesLout e O◊Enabled~uesLout(Now) -
O◊Prod~uesLout(Now, Occurs, After) 

and each Enabledf(q), where i E {run, token_out, request_out}, is a formula that 

expresses the conditions under which Prodr is enabled in state q. Using the 

definitions of the Prod; given above, we derive the following expressions for Enabledrun' 

Enabled1oken_out' and EnabledrequesLout: 

Enabledrun(q) = q(ustate) = trying A q(token) ~ 0 

Enabled10ken_out(q) 

Enabled,equest_out(q) 

To show 

e q(ustate} ~ running A q(token) ~ O 

= q(token) = O 

Compsc11 A Fai~ A Fair~en_out A Fai~uest_out I== Validsc, 

we assume Compsc11, Retysc, -,Gua,.SC, Fairrun, Fair1oken_out' and FairrequesLout' and 

derive a contradiction. That Is, we consider a fair computation in which the 

synchronizer component module rely-conditions are satisfied, but in which the 

guarantee-conditions are not satisfied. If -,Gua,.SC holds, then either 

(A) -,o(Now(ustate) = trying - ◊(Now(ustate) ~ trying)) 
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or 

(B) -,□(Occurs = request_in) - ◊(Occurs = token_out)). 

Thus the proof can be split into two cases, one headed by assumption (A), and the other 

by assumption (B). 

Case (A): Suppose that (A) holds. Then by temporal reasoning, we have 

◊(Now(ustate) = trying A D(Now(ustate) = trying)) 

(*) ◊D(Now(ustate) = trying) 

That is, it is persistently the case that the user process is trying. By definition of 

Trans8c, the following is valid: 

Comp8c1< I= □(Occurs = run - After(ustate) ¢ trying) 

and thus, using the temporal tautology I= D(cp(After) - ◊cp(Now)), that 

Comp8C1< I= ◊D(Now(ustate) = trying) - ◊□(Occurs¢ run). 

Intuitively, since occurrence of run results in the user process leaving the trying state, if 

the user process is persistently trying, then it must be the case that a run event 

persistently does not occur. Applying this to formula(*) yields 

• ◊□(Occurs~ run;, Nuw(u::1late) = trying) 

That is, it is persistently the case that the user process is trying but a run event never 

occurs. Using the definition of Prod,un' we conclude 

◊0(-,Prod,un(Now, Occurs, After) A Now(ustate) = trying). 

By applying of the hypothesis that Fair run holds, we obtain 

◊0(-,Enabledrun(Now) A Now(ustate) = trying). 

Using the expression for Enabled,un obtained above, we have 

◊0(Now(token) = 0 " Now(ustate) = trying). 

That is, it is persistently the case that the synchronizer component module possesses 

no tokens, and the user process is trying. Using the hypothesis that Fair,equest_out holds, 

we obtain 

□◊(Occurs = request_out) A ◊O(Now(token) = 0). 

That is, it is repeatedly the case that request_out occurs, but persistently the case that 

the synchronizer component module possesses no tokens. Applying the hypothesis 

that Rety5C holds, we conclude 

D◊(Now(token) -:1: 0) " ◊D(Now(token) = O). 

That is, it is repeatedly the case that the synchronizer module possesses a token, but 

persistently the case that the synchronizer module possesses no tokens. This is a 

contradiction, and we conclude that case (A) is impossible. 
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Case (8): Suppose that (8) holds. Then by temporal reasoning, we have 

◊(Occurs = request_in A □(Occurs* token_out)). 

That is, eventually there is a point at which a request for the token is received, but no 

token is ever sent in response. Using the definition of Prodtoken_out' and temporal 

reasoning, we obtain 

o□-,Prod10ken out(Now, Occurs, After). 

Application of the hypothesis that Fairtoken out holds, we have 

o□-,Enabled1oken_out(Now). 
That is, it is persistently the case that a token_out event is not enabled. Using the 

expression for Enabledtoken_out obtained above yields 

(• •) ◊D(Now(ustate) = running v Now(token) = 0). 

Thus, it is persistently the case that either the user process is running or the 

synchronizer component module possesses no token. We now use the temporal 

tautology I= ◊O(cp v 1/,) - (O◊cp v ◊Di/,). Intuitively, this says that if It is persistently 

the case that cp v 1/, holds, then either cp holds repeatedly, or else 1/, holds persistently. 

Application of this tautology to (**)gives 

O◊(Now(ustate) = running) v ◊D(Now(token) = 0). 

That is, either the user process is repeatedly running, or the synchronizer component 

module persistently has no token. We now split the proof into two subcases, depending 

upon whether 

(81) D◊(Now(ustate) = running) 

or 

(82) ◊D(Now(token) = O) 

holds. 

Subcase (81 ): Suppose that (81) holds. Application of the hypothesis that Rely5c holds 

gives 

O◊(Now(ustate) = running) A D◊(Now(ustate) * running). 

Next, we use the temporal tautology 

I= (O◊cp(Now) A OO-,tp(Now)) - O◊(cp(Now) A -,cp(After)). 

Intuitively, if it is repeatedly the case that cp holds of the current state, and it is repeatedly 

the case that -,cp holds of the current state, then it must repeatedly be the case that a 

point is reached where cp holds of the current state and -,cp holds of the "next" state. 

Application of this tautology in the present situation gives 
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D◊(Now(ustate) = running/\ After(ustate) * running). 

In addition, we need the following invariance property: 

Comp8c11 t= □(Now(ustate) = running - Now(token) ;t O). 

The validity of this sentence can easily be shown by Corollary 3.7, and the details are 

omitted. Using this, plus the fact that 

t= (Vq,rEState, eEEvent)((Trans8C(q, e, r) /\ q(ustate) = running 

/\ r{ustate) :at running) - ,(token) = q(token)), 

which is verified by case analysis on e, we obtain 

D◊(After(ustate) ~ running/\ After(token) ;t 0). 

Let us examine the intuitive content of the preceding steps. If the user process is 

running in the current state and not running in the "next" state, then the following must 

be true: Since the synchronizer component module must possess a token whenever the 

user process is running, and no event that takes the user process out of the running 

state can affect the number of tokens possessed, It must be the case that the 

synchronizer component module possesses a token in the next state as well. 

Another use of the temporal tautology t= □{,p{After)-+ ◊cp{Now)), we obtain 

D◊(Now(ustate) ;t running /\ Now(token) :at 0), 

which Is a contradiction with formula r•). We conclude that subcase (81) is 

Impossible. 

Subcase (82): Suppose that (82) holds, that Is 

◊D{Now{token) = 0). 

Then by definition of Enabled,equest.out we have 

◊OEnabled,equesLout{Now), 

and thus by the hypothesis that Fair request.out holds, we infer 

□◊(Occurs = request_out). 

That is, it is repeatedly the case that request_out events occur. By the hypothesis that 

Rely8c holds, we conclude 

D◊(Now(token) * 0) 

a contradiction with (82). We conclude that subcase (82) is impossible, and hence that 

case (B) is impossible. 
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Since both cases (A) and (8) have been shown to be impossible, we conclude that 

the original hypotheses are contradictory, and thus the synchronizer component 

module specification is 1/0-consistent. 

5.5 Composition of 1/0-Behaviors 

We have previously shown that the class of 1/0-behaviors is closed under the 

abstraction operators associated with the 1/0-abstraction maps. In this section, we 

define the class of .. 1/0-decomposition maps," and show that the class of I/0-behaviors 

is also closed under the composition operators associated with these maps. 

5.5.1 1/0-Decomposition Maps 

When we defined the notion of a system interface above, we noted that there is a 

canonical decomposition map (and hence a composition operator) associated with 

each system interface. We would now like to extend the notion of composition 

associated with system interfaces so that we can view behaviors of non-system · 

interfaces as a composition of component behaviors. The most natural way to do this is 

to require that the the domain of a decomposition map be a system interface only up to 

isomorphism. 

Definition - An isomorphism from the 1/0-interface E to the 1/0-interface D is a 

bijective translation y: E - D such that y and y·1 are embeddings. I 

Definition - An 1/0-decomposition map from the 1/0-interface E to the collection of 

1/0-interfaces <F,>;Ei is a vector <6;>/E/ of translations, where 81: E - F;, with the following 

property: There exists a system interface E' ~ ®,E, F1 and an isomorphism y: E - E ', 

such that 61 = 61 ' 0 y for all i € /, where <61 '>,E, is the canonical decomposition map 

associated with E '. I 

From this definition, we can immediately derive a number of properties of the 

1/0-decomposition maps. 

Lemma 5.9 • If <6,>,E, is an 1/0-decomposition map from E to <F;>,E,, then 

(1) e -:1:- e 'implies 6;(e) * 6
1
(e ') for some; EI. (4 is injective) 

(2) 61(1nE) ~ lnF, U {XFi for all; E /. (4 preserves inputs) 



- 108-

(3) If e E OutE then B;(e) E OutF
1 
for some i EI. (4 strictly preserves outputs) 

(4) 6:1(0utF) n 8:1(0utF) = 0 whenever; :1: ;. (Compatible Coupling Property) 
I I I I 

(5) 6; is onto F1 for all; E /. 

Proof - Straightforward. I 

5.5.2 Closure Proof 

We can now prove that the class of 1/0-behaviors is closed under the composition 

operators associated with 1/0-decomposition maps. 

Theorem 5. 1 O • Suppose <B?,E, is an 1/0-decomposition map, where 81: E - F,. If a, is 

an 1/0-behavior of interface F
1 
for each i € I, then i ·1ca,) is an 1/0-behavior of interface 

E. 

Proof - Suppose that for each i € I, <M1, <Prod,,.>aEA,> is a PS-machine of interface F1, 

such that Beh(M1, <Prod, .• > aEA,) = a,. We construct a PS-machine <M, <Prod,.• '>,E,.aEA,> 

of interface E such that Beh(M, <Prod1,a ')/El,aEA,) = 4 "1(a. ). 

Let M be defined as follows: 

QM = Il/E/QM 
I 

lnitM = n1E, lnltM 
I 

TransM = {<a., e, r >: such that <q1, 61(e), r? € TransM for all i € /}. 
I 

It is easy to check that lnitM is nonempty and that <a., >., Q. > € TransM for all Q. € QM. 

Thus M is a machine. To show that Mis an 1/0-machine, we must show that it is 

input-cooperative. Suppose Q. € QM and e € lnE. Since i preserves input, it follows that 

61(e) € lnF, U {>-Fi for each i € /. Since each M1 is input-cooperative, for each ; E I we 

can get r1 such that <q1, 61(e), r? E TransM. It follows that (Q., e, c. > E TransM. 
I 

For each;€ I, and a E A1, define 

Prod,..' = {<a., e, c. > € TransM: <q" 61(e), r,> € Prod,.. and e ( lnE}. 

It is clear that each Proo,..' is a productive step set for M. To show that 

<M, <Proo, .• '>m.-EA.> is a PS-machine, we must show that the sets Prod,..' cover the set 
I 

of non null output or >.-steps in TransM.. Suppose <a. , e, r > is such a step. Then <q1, 

61(e), r? is a nonnull output or >.-step for M1 for some i € /, by the fact that i strictly 

preserves outputs. Since the collection <Proo, .• > aEA, covers the nonnull output or 



-109 · 

A-steps for M1, we know that <q;, 81(e), r;> E Prod,.• for some a E Ar Hence <a, e, c. > E 

Prod,,8 '. 

We claim thatHeh(M, <Prodi,a '>m.aEA,) = j "1(<Beh(M1, <Prod1,8 ) 8 EA,)>,EJ. 

Case Beh(M, <Prodi,a '>,E,,aEA,) ~ ~ ·1(1;L ): 

Each computation X of M maps in an obvious way (by taking the image of the 

observation part under 81, and the canonical projection of the state part) to a 

computation x, of M1, for each i E /. Suppose that Xis fair. Let i E / and a E A1 be fixed. 

We show that if Prod,.a is repeatedly enabled in x,, then Prod,.• repeatedly runs in Xr 

Suppose Prod48 is repeatedly enabled in x,. 

We first show that, given a E State,.,, if Prod,,a is enabled in state q1, then Prod
48 

' is 

enabled in state a. If Prod1.• is enabled in state q1, then there exists 11 E OutF, U {AF) and 

,, E 0,.,
1 
such that <q1, e1, r;> E Prod,.•· Since 81 is onto OutF/ we we can get e E OutE U 

{AE} with 81(e) = fr By the compatible coupling property of i, we know that 61(e) E lnF
1 

U {Ar} for all j E /- {i}. For each j E /- {i}, by the input-cooperative property of M1, we 
I 

can get ';' such that <q1, 81(e), ,1 '> E TransM/ It follows that <a , e, ! '> E Prod,,8 ', and 

thus Prod,,
8

' is enabled in state a. 

Since Prod48 is repeatedly enabled in x, by hypothesis, and Prod,.• enabled in state 

q1 implies Prod1,a' enabled in state a, we know that Prod,.•' is repeatedly enabled in X. 

By the fairness of X, it follows that Prod1,a 'repeatedly runs in X. By definition of Prod,.•', 

if Stepx(t) E Prod48 ', then Stepxp> E Prod,.•· This implies that Prod1,a repeatedly runs in 

x,. 

Case j "1(fi) ~ Beh(M, <Prod,,8 '>,E,.af.A
1
): 

Suppose that 61(x) € Beh(M1, <Prod,,11>.EA,), for all i € /. For each i E /, let x, be a fair 

computation of M1 in which the observation 81(x) is generated. We construct a fair 

computation X tor M, such that Obs~ = x. 

Without loss of generality we assume that the x, have the following property: For 

all t E [O, 00), if a productive A-step runs at time tin X. for some i €/,then the step that 
I . 

runs at time t in x1 is null for all j E / - {i}. If we are given a collection <X1 '>,E, for which 

this property does not hold, then it is a simple matter to construct order-isomorphisms 11: 
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(0, oo) - [O, oo) such that if x, = x,' 0 fl' then Obsx = Obsx , for all i and the desired 
I I 

property holds for the collection <X;>,E,. Since the property of being a fair computation 

is preserved under stretching of [O, oo) by an order-isomorphism, it follows that each X1 

is a fair computation for M,. 

We now define X by letting Obsx = x and Statex(t) = <Statex (t)>,E,. It is easy to 
I 

see that Xis a computation for M. 

To show that X is fair, suppose that Prod,,•' is repeatedly enabled in X. Since 

Prod;,a' enabled in state g, implies Prod,.• enabled in state q1, it follows that Proo, .• is 

repeatedly enabled in x,. Since x, is fair, we know that Prod;,• repeatedly runs in x,. We 

claim that if Stepx (t) E Prod. then Stepx(t) € Prod, ' as well, and hence Prod,..' 
I ,a ~• 

repeatedly runs in X. 

By definition of Prod,.. ', if Stepx
1
(t) E Prod,,

8 
then Stepx(t) E Prod,,

8 
', except in case 

Obsx(t) € lnE. But if Obs,c(t) E ln(E), then the fact that 61 preserves inputs and Prod,.. 

contains only output and >.-steps implies that Stepx (t) = <q1, >., r;> € Prod,. •. Since .4 is 
I 

injecti>1e and pr~serves input=:;, it musi be the case that Obsx (t) € lnF for some i € I - {i}, 
I I 

and hence Stepx (t) is non null. This contradicts our assumption that if a productive 
I 

>.-step runs at time tin x,, then the step occurring at time; In x1 is null for all i E /-{i}. I 

5.6 Alternative Classes of Computable Behaviors 

The class of 1/0-behaviors is by no means the only class of "computable" 

behaviors that it is interesting to consider. By replacing the fairness requirement for 

computations of 1/0-systems with that of "weak fairness," in which a process is 

required to repeatedly run only if it is persistently enabled, rather than repeatedly 

enabled, we obtain the class of weak 1/P-behaviors (Wl/0-behaviors). It can be shown 

that every Wl/0-behavior is an 1/0-behavior, but not every 1/0-behavior is a 

Wl/0-behavior. The notion of Wl/0-consistency is therefore strictly more stringent 

than 1/0-consistency. 

Besides the fairness assumption, the definition of the class of 1/0-behaviors 

embodies several other choices that might have been made differently: 

(1) (Asynchrony) - The 1/0-systems model is an asynchronous model of 

computation. We might have chosen a timing-dependent model of computation instead. 
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(2) (Input/Output Structure) - Instead of focusing on interfaces with 

input/ output structure, we might have chosen additional or alternative structure, such 

as interfaces in which events include information about the physical location at which 

- they occur. 

(3) (Simultaneity) - The definition of an 1/0-system permits at most one 

process to perform an output at any instant of time. We might imagine a more general 

model in which any number of processes can perform an output at once. 

An interesting avenue for future research is to try to discover additional classes of 

behaviors and associated notions of consistency by modifying one or more of the above 

assumptions. 

/ 
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6. A Completeness Result 

A reasonable question to ask about the sufficient correctness conditions required 

by the Correctness Theorem is whether these conditions are also necessary. That is, is 

it the case that the maximality and validity conditions hold for every correct 

implementation involving state-transition specifications? In this chapter we show that in 

general the maximality and validity conditions need not hold for every correct 

implementation. However, it is possible to impose some well-formedness conditions on 

the state-transition specifications involved in the implementation, which are sufficient to 

ensure that correctness implies maximality and validity. The Completeness Theorem 

(Theorem 6.4) is the formal statement of this result. Although Theorem 6.4 is probably 

not the strongest result of this kind it is possible to prove, it nevertheless sheds some 

light on the limitations of the Correctness Theorem, and serves to motivate some 

well-formedness properties of state-transition specifications. 

6.1 Specification Domains 

The statement and proof of Theorem 6.4 depends crucially on the existence of a 

collection of interfaces, behaviors, abstraction maps, and decomposition maps with 

closure properties like those of the 1/0-interfaces, 1/0-behaviors, 1/0-abstraction maps, 

and 1/0-decomposition maps defined in Chapter 5. The definition of a "specification 

domain" below summarizes these properties, which seem like fundamental properties 

that are likely to be shared by other interesting models. 

Informally, a specification domain ~ contains four pieces of data: the 

"Cl-interfaces," the "~-behaviors," the .. ,.abstraction maps," and the "~-decomposition 

maps." The Cl-interfaces are interfaces with structure particular to the domain Cl. For 

example, the 1/0-interfaces are those whose non-A events are partitioned into input and 

output events. For each ,-interface E, the 9-behaviors of interface E represent a class 

of "realizable" or "computable" behaviors of interface E. Just as the definition of 

1/0-behavior depends upon the input/output structure of an 1/0-interface, whether or 

not a behavior of ,-interface Eis a ~-behavior of interface E will depend, in general, on 

the particular structure of the interface E. The ~-abstraction and ~-decomposition maps 

represent meaningful ways to abstract and decompose systems modeled by 

~-behaviors. In general, these maps will have certain preservation properties with 
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respect to the particular structure of the interfaces, just as the 1/0-abstraction and 

1/0-decomposition maps preserve input/output structure in various ways. 

The definition of a specification domain requires that the class of 9-behaviors be 

closed under the abstraction and composition operators associated with the 

'3-abstraction and '3-decomposition maps. In addition to the properties of closure under 

abstraction and composition discussed above, we require a third regularity property of 

the '3-behaviors. This property, called "nondegeneracy," rules out the empty behavior 

as a '3-behavior of any interface. lntutively, the empty behavior does not model any real 

system, since it is always possible to obtain an observation of a real system, even if that 

observation is only the null observation A. 

Definition - A specification domain 9 consists of the following: 

- A class Interfaces, of interfaces, called the ':I-interfaces. 

- For each pair E, DE Interface&:,, a set AbsMaP9GJ(E, O) of translations from E 

to D, called the set of '3-abstraction maps from E to D. 

- For each pair E, <F;>~,, where I is a finite index set and E and each F, are 

elements of lnterface5g, a set DecMap93(E, f) called the set of 9-decomposition maps 

from E to E. Each element of DecMap&._J(f, f) is a vector <&;>,e,• where 8; is a translation 

from Eto F,-

• For each interface E E lnterfac85':J, a set Behavior5g(E) of behaviors of 

interface E, called the set of 9-behaviors of interface E. 

In addition, ':J is required to have the following properties: 

(1) (Nondegeneracy) - For all '3-interfaces E, the empty behavior 0 is not in 

Behavio~(E). 

(2) (Abstraction Closure) - For all '3-interfaces E, D, if a E AbsMal)SGJ(f, O) and 

8 E Behavior&._J(f), then a(B) E Behaviorsg(O). 

(3) (Composition Closure) - For all '3-interfaces E, <F;>,e,• if i E DecMap5g(E, 

E) and E! = <B;>;e, is such that B; € Behavio~(FJ for each ; E /, then i ·1m. ) E 

BehaviOr8t:J(f). I 

A rather simple example of a specification domain is the domain "CSP," where we 

define every interface to be a CSP-interface, every translation a to be a CSP-abstraction 

map, every finite vector .d of translations with a common domain to be a 

CSP-decomposition map, and define the CSP-behaviors of interface E to be exactly 

those behaviors of interface E that are nonempty, asynchronous, and 
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truncation-closed.1 We call this specification domain CSP because it is closely related 

to the "trace model" for CSP defined in (Hoare81b]. In that paper, process behaviors 

are modeled by nonempty, prefix-closed subsets of E*, where E is an alphabet of 

process events. To each nonempty, prefix-closed subset of E*. there naturally 

corresponds a nonempty, asynchronous, and truncation-closed behavior of interface E. 

Thus, for each of Hoare's processes, there is a CSP-behavior that contains the same 

information. Hoare defines operations of parallel composition, concealment, and 

alphabet transformation on processes. Under the natural correspondence described 

above, Hoare's concealment and alphabet transformation operations are special cases 

of the CSP-abstraction operators defined here, and Hoare's parallel composition 

operation is a special case of the CSP-composition operators defined here. Since no 

truncation-closed behavior can satisfy a specification with nontrivial eventuality 

properties, the specification domain CSP is not particularly useful for the analysis of 

such specifications. 

As a consequence of Theorem 5.1, Corollary 5.5, and Theorem 5.10, the 

1/O-ir.teifaces, I/O-behavi·ors, 1/O-abstraction maps, and 1/O-decornpc,sltiun ma.:,s also 

define a specification domain, which we call "l/O." 
, 

We can generalize the definition of 1/O-consiste")CY to an arbitrary specification 

domain 9. 

Definition • A specification S of 9-interface E is 9-consistent if ${S) n Behavior5g(E) ~ 

0. I 

We define relativized notions of interconnection, implementation, and correctness 

with respect to a specification domain ~ as follows: An interconnection , is a 

!I-interconnection if the interfaces o'. E', and Fl for each ; E I are 9-interfaces, the 

abstraction map a' is a 9-abstraction map from E' to o', and the decomposition map ~ ' 
is a 9-decomposition map from E' to E '· An implementation <J, Sabs' S > is a 

9-implementation if , is a 9-interconnection. We say that the 9-implementation 

1. If x is an observation and t € [0, oo), then the t-truncation of x is the observation x ' 
such that x 'Ct ') = x(t ') for all t' E [0, t), and x 'Ct') = A for all t' E [t, oo). A behavior B is 
truncation-closed i_f whenever x E 8 and t E [0, oo), then the t-truncation of x is also in B. 
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<,, sabs' S,) is 9-correct if a' 0
(~ 'r1ca.) E ':!(Sabs)nB; E ~(S;)nBehavior~(Fl> for ea~h i € 

I. 

Every ~-implementation that is correct in the sense of Chapter 2 is also 9-correct, 

and thus the Correctness Theorem can be used to prove ~-correctness. However, in 

general there will be 9-correct implementations that are not correct in the sense of 

Chapter 2. 

Lemma 6.1 - If a 9-implementation is correct, then it is 9-correct. 

Proof - Suppose <,, Sabs' <S,>;E,> is a correct 9-implementation. For each i € /, let 81 be 

an arbitrary 9-behavior of interface F7 that satisfies Sr Let Babs = a' 0
(~ 'r1<.a ). Then 

since~ is closed under abstraction and composition, it follows that Babs is a 9-behavior 

of interface o'. By the assumption of correctness, Babs satisfies Sabs' Since the 81 were 

arbitrary, it follows that<,, Sabs' S. > is 9-correct. I 

We next define the notion of an "evolutionary" specification domain. Intuitively, if 

an evoiut1onary specification domain ~ contams a behavior B that models what a system 

S can do starting from time o, and if we observe S produce a certain prefix of an 

observation over the interval [O, t), then 9 will also contain a "future" behavior B ', which 

models what S is capable of doing, starting from time t. Probably any reasonable 

specification domain will be evolutionary (as is the specification domain 1/0) although 

this property does not seem quite fundamental enough to be included as part of the 

definition of a specification domain. 

To define the evolutionary property precisely, we require some additional notation. 

If x and y are observations and a € (0, 00), then we write x = • y if x(t) = y(t) for all t € 

[O, a). If 8 is a behavior of interface E, x € Obs(E) is an observation, and t E [O, 00), then 

define the future of B with respect to x and t as follows: 

futurex,t(B) = {suffixt(y): y E 8, y =, x). 
Intuitively, if a behavior 8 models what a system can do if we begin watching at time t = 
0, then futurex.,(B) models what the system can do after we have already observed the 

initial segment of x on the interval (0, t). 
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Definition - A specification domain~ is evolutionary if, whenever B is a 9-behavior of 

9-interface E, x € 8, and t € (0, oo), then future ,(B) is also a 9-behavior of 9-interface E. 
JI, 

I 

For the remainder of this chapter, we assume that an evolutionary specification 

domain 9 (such as the domain CSP or 1/0) has been fixed. 

6.2 Locally 9-Consistent Subset Specifications 

This section introduces the notion of a "locally CJ-consistent" subset specification, 

and obtains some properties of such specifications that will be used in the proof of 

Theorem 6.4. Intuitively, local 9-consistency of a subset specification S means that O{S) 

contains no isolated observations that cannot be realized in some 9-behavior satisfying 

s. 

Definition - A subset specification S of 9-interface E Is locally 9-consistent if for all x € 

O(S) there exists a 9-behavior B of interface E such that x € B t; O{S). I 

Note that if S is locally ,-consistent, and in addition O(S) ~ 0, then S is 9-consistent. 

lemma 6.2 below states that if the component module specifications in a 

9-implementation are locally 9-consistent, then the necessary and sufficient conditions 

for correctness provided by Lemma 3.1 for implementations involving subset 

specifications, are also necessary and sufficient for 9-correctness. 

Lemma 6.2 - Suppose <J, Sabs' <S;>;E;> is a 9-lmplementation, where Sabs and each S1 

are subset specifications. Suppose that each S1 is locally 9-consistent. Then <J, Saba' 

<S,>,E;> is 9-correct iff a' 0 (.d ')"1(<0(S;)>;E:,) t; O(S..,.). 

Proof - = > follows directly from Lemma 3.1 and Lemma 6.1, and actually does not 

require the assumption of local 9-consistency. To show<=, suppo~ <,, Sabs' <s;>,E;> is 

9-correct. It suffices to show that if x € Obs(E) is such that a? (x) € O{S1) for each ; € I, 

then a'(x) € O(S
8
bs). Because each O(S;) is assumed locally 9-consistent, given x E 

Obs(E) such that &!(x) € O(S;) for each ; € I, then for each ; € I there exists a 9-behavior 

B; of interface Fl such that a/(x) € B; t; O(S,). Thus a'(x) € s.bs : a'0 <i 'r1ca. ), which is 

a 9-behavior because 9 is closed under abstraction and composition. By the 

assumption of 9-correctness, it follows that Babst; O{S
8
bs)' and hence a'(x) E O(Sabs>· I 
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The proof of Theorem 6.4 requires Lemma 6.3 below, which expresses a special 

property of locally 9-consistent subset specifications in an evolutionary specification 

domain Cl. 

Lemma 6.3 - Suppose that 9 is an evolutionary specification domain, and that S is a 

locally ~-consistent subset specification of 9-interface E. Then future ,(0(S)) contains a 
JI, 

9-behavior of ,-interface E whenever x E 0(S) and t E [0, 00). 

Proof - The local 9-consistency of S means that, given x E 0(S) there exists a 

~-behavior B of interface E such that x E a ~ 0(S). Since Cl is evolutionary, it follows 

that futurex_,(B) is a ~-behavior contained in futurex_,(0(S)). I 

6.3 Well-Formedness Properties of Specifications 

This section defines three properties of state-transition specifications, which are 

used in the statement of Theorem 6.4. These properties are: regularity, 

quasi-determinacy, and orthogonality. The original motivation for these definitions was 

technical, in the sense that they were sufficient to permit the proof of Theorem 6.4 to go 

through. However, it was surprising to find that these properties could be thought of as 

well-formedness properties that should be satisfied by "good" state-transition 

specifications. In a regular state-transition specification, whether or not a computation 

is valid depends only upon the observation that is produced, and not upon the particular 

choice of states. In a quasi-determinate specification, the fact that the state-transition 
I 

relation permits choices between states is inessential, since a choice of state made at 

time t can have no effect on the portion of the observation produced subsequent to time 

t. Orthogonality is related to the correct partitioning of "local" and "global" properties 

between the state-transition relation and the validity conditions of a specification. 

We first consider regularity. Intuitively, the requirement of regularity amounts to 

the assumption that whether a computation is valid does not depend upon the states 

appearing in the computation, but rather only the observation produced. 

Definition - A state-transition specification S = <M, V> is regular if, for all computations 
• 

X and Y of M, if Obsx = Obsy, then X € V iff Y € V. I 
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To motivate the somewhat technical definition of quasi-determinacy, it is 

convenient to first examine the stronger, but more simply defined notion of 

"determinacy." 

Definition - A machine Mis determinate if lnitM is a singleton set, and for all q E QM and 

all e E EM, there is at most oner E o., such that <q, e, r> E TransM. A state-transition 

specification S = <M, V> is determinate if M Is determinate. I 

A determinate specification is automatically regular, since a determinate 

specification can have at most one computation that produces a given observation. The 

importance of the determinacy property is that each observation generated by a 

determinate machine is produced in exactly one computation of that machine. Thus, if 

S = <M, V> is a determinate specification, x E O(S), and Xis a computation of M with 

Obsx = x, then it is automatically the case that X € V, since no other computation of M 

can produce the observation x. 

To show that the maximality condition holds for a correct implementation, it 

ilµµea,-s lo ue nec&$sary to as:sume lhat son~ fJIOi,t:1 ly similar to dt,itmninacy hoids for 

the abstract module specification. To see why, consider the following example: We are 

attempting to implement an abstract module whose function is to produce a finite 

number of occurrences of a single event e. (Think of a "black box" with a single light 

bulb on top, and let e be an event corresponding to a flash of the light bulb.) This 

module can be specified in two different ways: 

(Determinate): The state set of the specification consists of a single state•. The event 

e is enabled in state •, and obviously cannot produce any state change. The constraint 

that e should appear only finitely many times is captured by the validity condition. 

(Indeterminate): The state set for the specification is the set of natural numbers. Every 

state is an initial state. The event e is enabled in state k iff le * O, and the occurrence of 

e causes the state to be decremented. Every computation is valid. In this specification, 

the requirement that e occurs only finitely often is captured by the indeterminate choice 

of initial state. 

Let Sdet be the determinate specification and let S1nd be the indeterminate specification. 

Clearly O(Sdet) = O(S1nd). 
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Now consider an interconnection, = <a', B'>, where the abstract interface o', the 

single component interface F', and the composite interface E' are all the same interface 

p., e}, and the abstraction map a' and the decomposition map 6' are the identity 

translation. Clearly both of the implementations <,, Sdet' Sine? and <,, Sind' Sdet> are 

correct. However, the maximality condition does not hold for the implementation 

<,, Sind' Sde?· To see this, note that any pair <k, •> is an initial state for the composite 

machine, and is hence reachable for that machine. Furthermore, the event e is always 

enabled for the component machine. For maximality to hold, it would have to be the 

case that e is enabled for the abstract machine no matter what the value of k is. But e is 

not enabled for the abstract machine if k = O. 

In certain situations, for example the transmission line module specification in 

Appendix II, the use of indeterminate specifications is quite natural. However, the 

preceding example shows that unless we are careful, it may not be possible to use the 

Correctness Theorem to prove the correctness of Implementations when such a 

specification is used as the specification for the abstract module. 

The proof of the Completeness Theorem actually does not require that the 

abstract module specification S
8

bs be determinate, but rather the somewhat weaker 

assumption that Sabs be regular and "quasi-determinate." Intuitively, the set of future 

observations that can be produced by a quasi-determinate machine is independent of 

the choice of states made on the initial segment [O, t]. 

To define quasi-determinacy precisely, we extend to histories the = a notation 

defined above for observations. If X and Y are histories, then we write X = a Y if Obsx(t) 

= a Obsy(t) and Statex<t) = Statey(t) for all t E (0, a) (and hence for all t E [0, a] by the 

properties of state functions). 

Definition · A machine M is quasi-determinate if for all computations X and Y for M, and 

all t E [O, oo), if Obsx =, Obsr then there exists a computation Z of M such that Z =, X 

and Obs2 = Obsy. A state-transition specification S = <M, V> is quasi-determinate if M 

is quasi-determinate. I 

If a state-transition specification is determinate, then it can also be seen to be 

quasi-determinate by choosing Z = Y in the above definition. Determinacy implies that 

State2 can be defined in exactly one way on the interval [O, t], thus showing that X =, Z. 
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We next consider orthogonality. Intuitively, in an orthogonal specification, every 

computation agrees for an arbitrarily long time with a valid computation. Orthogonality 

is related to the correct partitioning of "local" and "global" properties between the 

state-transition relation and the validity conditions of a specification. Roughly, 

orthogonality means that the validity conditions contain no information that could have 

been expressed by strengthening the machine part of the specification. 

Definition • A state-transition specification S = <M, V> is orthogonal if for all 

computations X of Mand all t E [O, oo), there exists YE V such that X == t Y. 

6.4 The Completeness Theorem 

We can now state and prove the Completeness Theorem. 

Theorem 6.4 (Completeness Theorem) - Let g be an evolutionary specification domain. 

Suppose that <3, Sabs' <s;>,E;> is a cJ-implementation, where Sabs and S1 for each i €/are 

state-transition specifications. Suppose that Sabs is regular and quasi-determinate, and 

that S; is orthogonal and locally ,-consistent for each i E /. If <3, Sabs' <S;>,E;> is 

,-correct then the maximality and validity conditions hold. 

I 

Proof· Suppose that Sabs = <Mabs' Vabs>, and that S1 = <M1, v;>, tor each i E /. Let M be 

the composite machine. Note that the assumption that each S1 is locally ,-consistent 

together with the assumption of !I-correctness implies, by Lemma 6.2, that 

a-' 0
~ -')"

1((0(S1)>,E,) ~ O(S
8
t,). 

(Validity): To see that the validity condition holds, suppose that Xis a computation for M, 

such that x<11 E v, for each i E /. Then s;(Obsx) E O(S1) for each i E /. It therefore follows, 

by the previous paragraph, that a 3{0bsx> € O(Sab
5
). This means that there exists a 

computation Xabs of Mabs' such that Xabs E Vabs and Obsx = a 3(0bsx>· Since S8 bs is 
abs 

assumed regular, and Obsx<•bs) = Obsx , it follows that the computation x<abs) is also 
abs 

in Vabs' as required. 

(Maximality): To prove maximality, suppose q E o., is reachable, and that e EE_, is such 

that s;(e) is enabled for M1 in state •,(q), for each i E /. We wish to show that a-'(e) is 

enabled for Mabs in state" abs(q). 
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The proof is of necessity somewhat roundabout, since the assumption of 

9-correctness is the only information we have at our disposal concerning the 

relationship betw~n the computations of Mabs and those of the M,- The idea is as 

follows: We first obtain a computation X of M that arrives at state q at time n, and such 

that no non-A events occur on the interval [n, oo). Let x = Obsx. For each i E /, we can 

modify x<i) to obtain a computation x, for M;, by letting the event 8;(e) occur at time n. Of 

course, we do not yet know that we can modify x<•bs> in a similar way -- this is what we 

are trying to show. 

We next use the orthogonality assumption on the S; to obtain, for each i E /1 a valid 

computation Y1 that "looks like" X; on the initial segment [O, n + 1 ). Each Y1 produces an 

cbservation y1 E 0(S;) that looks like 6/(x) on the interval [O, n + 1 ). We do not know that 

there is a single observation y such that y1 = a;(y) for all; E /. However, we can use 

Lemma 6.3, plus the composition closure property of the specification domain 9 to 

obtain an observation z such that, for all; € /, a;(z) E 0(S
1
) and 8

1
(z) looks like y1 on the 

interval [O, n + 1 ). 9-correctness implies that a'{z) E 0{Sabs). 

Since a'(z) E 0(Sab
8
}, we can obtain a computation Zabs for Mabs' such that Obsz 

abs 

= a'(z). Now, event a'(e) occurs at time n in Z
8
bs. If we knew that Statez (n} = 

abs 

,, abs(q), then this would show that a'(e} is enabled for Mabs in state ,,, abs(q}. Although it 

need not be the case that Statez (n) = w abs(q}, the quasi-determinacy of Saba lets us 
abs 

replace the [O, n] segment of Statez with the corresponding segment of Statex<abs), 
abs 

with the result still a computation of Mabs. Since Statex<abs)(n) = ,,, abs(q}, this will 

complete the proof. 

Formally, since q is reachable for M, by definition of reachability there exist 

q0, q1, ... , qn E QM and e0, e1, ... , en_1 E EM, such that q0 € lnitM' qn = q, and <q"-' e"-, 

q"-+ 1> € TransM for all k € {O, 1, ... , n-1 }. 

Let f: Jf - Steps(E M' QM) be de_fined by: 

f(k) = <q"-' e"-' q"-+ 1>, if 0 < k < n 
= <q n' A, q n>, otherwise. 

Then f is a history skeleton and by Lemma 3.5 there is a unique history X such that f 

spans X. Let x = Obsx· It is easy to see that Xis a computation of M. 
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Since B;(e) is enabled for M1 in state tr1(q), for each ; €/we can choose,, E QM
1 

such that <w,(q), B!(e), r;> E TransM,' It follows that for each i EI, the history x,, where X1 

= x<11 and n 

Obsx (t) = BJ(e), fort = n 
I 

== A, fort E (n, oo) 

Statex (t) = ,,, fort E [n, oo) 
. I 

is a computation for M .. Let x. = Obsx for each;€/. 
I I I 

By the assumption that each S1 is orthogonal, we can obtain computations Y1 E V1 

such that Y1 = n + 1 x,. Let y1 = Obsy. Then y1 E O(S1) and y1 = n + 1 x,. 
I 

Since each S1 is locally ,-consistent, and the the specification domain , is 

evolutionary, we can apply Lemma 6.3 to show that futurey,.n+ 1(0(S)) contains a 

9-behavior B1 of interface FJ for each ; E /. Let a = (.4 '>·1ca ). Then since the 

specification domain 9 is closed under composition, it follows that B Is a 9-behavior of 

interface E'. Since 9-behaviors are nonempty by the nondegeneracy property of 9, it 

follows that we can choose an element z ' of B. Let z be the observation defined by the 

properties: 

Z =n X 

z(n) = e 

z(t) = A, for t E (n, n + 1) 

suffixn+ 1(z) = z '. 

Then by construction, BJ(z) € O(S1) for each;€/. As shown in the first paragraph of the 

proof, it follows by 9-correctness that a'(z) € O(S.._). 

Since a'(z) E O(Sabs), there exists a computation z. for Mab& with Obsz = 
abs 

a'(z). By construction, Obs1abs = a'(z) = n a'(x) = Obsx<abs). Since Sabs is 

quasi-determinate, there exists a computation z.' such that zabs' = n x<•bs> and 

Obsz , = Obsz . Since Zabs' = n x<•bs>, we know that State1 ~n) = "•bs(q). Since 
abs abs abs 

a'(e) occurs at time n in z.bs ', it follows that a'(e) is enabled for Mabs in state w abs(q), as 

desired. I 
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7. Conclusion 

7.1 Summary 

The important accomplishments of this thesis are the following: 

1. Formal Framework - A major accomplishment of this thesis is that it sets 

up a formal framework within which it is possible to formulate precisely a large number 

of interesting and important questions about specifications and correctness proofs, and 

to obtain rigorous answers to these questions. The framework includes the notions of 

interface, observation behavior, composition, and abstraction, as primitive. These 

primitive notions are used to give precise, language-independent definitions of the 

notions of implementation, correctness, and consistency. 

2. State-Transition Specifications - The thesis shows how module 

behaviors can be conveniently and naturally described in terms of a machine that 

generates an observation as it executes, plus some validity conditions on the 

computations of that machine. Specifications stated in such a form lend themselves to 

e systematic method fer performing correctncs3 proofs. 

3. Rely- and Guarantee-Conditions - The concept of rely- and 

guarantee-conditions is shown to be useful for organizing eventuality specifications and 

proofs of correctness involving such specifications. The use of rely- and 

guarantee-conditions seems to result in simple proofs based on the communication 

structure of a system, rather than in proofs based on the structure of computations. 

4. Consistency of Specifications - The 1/0-behavior model provides an 

interesting and useful notion of consistency for eventuality specifications. The thesis 

obtains a technique for proving the 1/0-consistency of state-transition specifications. 

The investigation of state-transition specification performed in this thesis has 

resulted in some practical insights that can be tentatively expressed in the form of the 

following procedure for refinement of an abstract module into a system of component 

modules: 

(1) Determine the interconnection of component modules that will be used to 

implement t.he abstract module. 

(2) Identify the implementation invariant and the rely-/guarantee-conditions 

required for the proof of correctness. 

(3) "Localize" the rely-/guarantee-conditions to each component module. 
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Introduce sufficient information into the component module states to permit the 

localized conditions to be conveniently expressed. 

(4) Define the state-transition relations for each component module. 

(5) Check the completed component module specifications by proving their 

consistency. 

(6) Use the component module specifications to perform a complete proof of 

correctness for the implementation. 

The resource manager example in Appendix II illustrates the use of this procedure. 

It has unfortunately been possible in this thesis to investigate only a tiny fraction of 

the questions that could conceivably be formulated using the framework developed 

here. The remainder of this chapter lists a number of questions that have not been 

addressed, but should be. Hopefully the answers to these questions can provide further 

practical insights into the problem of design, and ultimately contribute to more useful 

and reliable distributed/concurrent systems. 

7 .2 Ideas for Future Work 

The basic framework set up in this thesis can serve as a starting point for a number 

of interesting extensions. The discussion below is concerned with the following broad 

possibilities for investigation: 

(1) Specification Domains 

(2) Semantic Properties of State-Transition Specifications 

(3) Organizing Principles for Specifications and Proofs 

(4) Formal Specification and Proof 

(5) Non-State-Transition Specifications 

7 .2.1 Specification Domains 

The concept of a specification domain appears to offer considerable possibilities 

for theoretical investigation. There are two broad directions for future investigation of 

specification domains. The first direction is concerned with developing the general 

theory of specification domains, and relating this theory to domain theory as used in . 
programming language semantics. The second direction is to construct additional 

example specification domains that model systems with interesting properties. 
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Plausible steps toward a general theory of specification domains might include the 

following: 

(1) The definition of a specification domain should be generalized so that the 

particular structure of an observation is not specified. The assumption of the particular 

structure of translations between interfaces would also have to be removed. A 

reasonable approach might be to assume that the interfaces and translations comprise 

the objects and morphisms of a category. The relationship between interfaces and 

observations would take the form of a functor defined on the category of interfaces, 

which maps each interface E to the set Obs(E) of observations over E, and which maps 

each translation a: E - F to a function on observations. 

(2) The notion of a behavior should be generalized so that a behavior 

determines, but is not identified with, a set of observations. This would permit behaviors 

such as the "futures processes" of [Rounds81] to be used, as well as correspondingly 

more general abstraction and composition operations. There still should be some 

constraints on the effect of abstraction and composition operations with respect to the 

set of observations determined by a behavior. It is not immediately obvious what those 

constraints should be. 

(3) An attempt should be made to try to identify the correct set of regularity 

assumptions for abstraction and composition operations. The results of Chapter 6 

required no such assumptions, however it seems reasonable that the classes of 

abstraction and decomposition maps ought to be closed under function composition 

and include the identity translations. The 1/0-abstraction maps and 1/0-decomposition 

maps certainly have these properties. 

(4) The specification domain 1/0 seems to provide motivation for a kind of 

duality between abstraction and decomposition, in the sense that abstraction and 

decomposition maps seem to have complementary preservation properties with respect 

to input and output. It would be very interesting if abstraction and decomposition maps 

could be unified, so that they are just dual instances of a single underlying notion of 

translation, or "interface morphism." One way this might be accomplished is by 

assuming the existence of a kind of conjugation operation on interfaces. Intuitively, the 

conjugate of a module interface would be the interface of the module's environment. 

The duality between abstraction and decomposition might then be captured by stating 

that a decomposition map is an abstraction map defined on conjugate Interfaces. 
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To help motivate the correct general definitions, further specific examples of 

specification domains should be constructed and studied. Ideas for constructing 

further examples of specification domains might be as follows: 

(1) Different notions of obiervation might be used to construct a number of 

interesting specification domains. One example is to replace the assumption that 

observations contain only finitely many events in any finite interval with some less 

restrictive topological assumption, and to attempt to construct corresponding classes of 

behaviors. If the machine approach to defining behaviors is to be used, then there is the 

problem of how to define a machine that permits infinitely many events to occur in a 

finite interval. Examples of such "machines" already appear in the theory of dynamical 

systems. For example, if one is willing to assume that an observation is a continuous, 

differentiable function on [O, oo), then the correct notion of machine is that of a 

differential equation. 

(2) Different special assumptions on behaviors can be made to model systems 

with particular properties. For example, it would be interesting to find a class of 

behaviors that includes non-asynchronous behaviors, corresponding to sets of 

observations that are not necessarily closed under stretching of the time axis. These 

behaviors would model timing-dependent syStems. If observations contain space 

coordinates, In addition to time coordinates, then it might be possible to construct a 
I 

class of behaviors with the property that information doesn't travel "too quickly" from 

one place to another. This specification domain could be used to investigate the 

problem of what can be observed by one module about the operation of another in a 

distributed system. Another idea might be to try to characterize a class of "atomic" 

behaviors, like the atomic data types of [Weihl84]. The observations in these behaviors 

would have certain serializability properties. 

(3) An attempt should be made to deal correctly with simultaneity. It should be 

possible to do this within the specification domain framework as follows: Introduce 

additional structure on interfaces to model the intuitive idea that some events represent 

the simultaneous occurrence of more primitive events. For example, it might be 

assumed that the events in an interface form a complete lower semilattice with >. at the 

bottom, and with the semilattice operation u representing the operation of 

"simultaneous occurrence." The main problem with this approach is how to introduce 

the notions of input and output so that an assignment of behaviors that is 

nondegenerate and closed under composition can be defined. 
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7 .2.2 Semantic Properties of State-Transition Specifications 

In Chapter 6 three semantic properties of state-transition specifications were 

identified (determinacy, regularity, orthogonality) and it was suggested that these might 

be properties characteristic of "well-formed" specifications. The idea of finding 

semantic well-formedness properties of specifications also appears in [Jones81], where 

the notion of an "unbiased" specification is discussed. It is interesting and useful to try 

to identify such properties, since they can possibly serve as guidelines in the design 

process. An important extension to this thesis would be to try to examine more closely 

the properties identified in Chapter 6, to develop techniques for proving that 

specifications have these properties, and to try to develop additional well-formedness 

properties. 

7 .2.3 Organizing Principles for Specifications and Proofs 

The development of organizing principles for specifications and proofs appears to 

be a promising area of investigation. The rely- and guarantee-condition approach to 

writing specifications and performing correctness proofs is an example of the kind of 

results one might try to obtain. The way to proceed in this area is to perform example 

specifications and correctness proofs, and then try to abstract from these examples 

something in the way of general methods that would be applicable to other examples. 

This is difficult, because the examples take a long time to do, and it is hard to abstract 

general methods from a few examples. 

Rely-/Guarantee-Conditions: 

Rely- and guarantee-conditions were used in this thesis in the statement of the 

validity condition portion of a specification only. This is in contrast to the work of other 

researchers, for example [Jones81 ], in which rely- and guarantee-conditions can be 

used for state-transition properties only. For the examples in this thesis it did not seem 

particularly helpful to use rely- and guarantee-conditions for the state-transition portion 

of a specification. One possible exception might be the synchronizer and synchronizer 

component module specifications, in which the use of rely- and guarantee-conditions in 

the state-transition part of the specification might obviate the need for an error state. 
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Determinate vs. Indeterminate Specifications: 

Both determinate and indeterminate specifications seem to be useful. From a 

strictly theoretical standpoint, determinate specifications are more convenient to work 

with than indeterminate specifications. From a practical point of view, though, there are 

cases (such as the transmission line specification of Appendix II) in which the use of 

indeterminate specifications is quite natural, and in which an equivalent determinate 

specification would have to be stated in a much more convoluted fashion. Perhaps a 

result could be proved which shows that determinate and indeterminate specifications 

are equivalent in expressive power, in the sense that every indeterminate specification 

could be stated equivalently as a determinate specification. Such a result would permit 

the theory of specification to deal only with the more convenient determinate 

specifications, while permitting indeterminate specifications to be used in examples 

where they seem natural. 

Parallel Specifications: 

In ce,,1ain exarnpt~, though .-,ui i,1 a.-,y of the ones con&id~,~ in this thesis, it i::1 

convenient to describe the desired functioning of a module in terms of a collection of 

loosely interacting concurrent processes. This process structure is a logical one used 

for descriptive purposes only, and may or may not bear any relation to the structure of 

an implementation of the module. It would be nice to be able to write specifications that 

reflect such a logical decomposition. State-transition specifications as described in this 

thesis are an inherently sequential form of description, since they include only a single 

machine. Perhaps the state-transition technique could be extended by permitting 

specifications to include a collection of machines that execute in parallel, and whose 

state sets are mostly independent of each other. To perform correctness proofs with 

this kind of specification would require a modified version of the Correctness Theorem. 

Differential vs. Integral Form: 

There is a certain amount of flexibility in whether state-transition properties are 

expressed in "differential," state-transition form, or in "integral," Invariant form. In 

general, given a statement of the invariant form, "for all reachable states q, property 

P(q) holds," an equivalent expression in state-transition form can be obtained by a 

simple syntactic transformation analogous to differentiation, e.g. "Property P holds of 
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all initial states, and a state transition from q to r can occur only if P(q) implies P(r)." 

There is apparently no general method for "integration," that is, for obtaining equivalent 

statements in invariant form, given a statement in state-transition form. 

In this thesis, the policy was adopted that all local properties would be expressed 

in state-transition form, rather than in invariant form. One reason for this is that, in 

general, invariants for the composite machine for an implementation cannot be proved 

directly from invariants for the component machines. Rather, it is necessary to first 

"differentiate" the invariants for the components, to obtain corresponding 

preconditions for event occurrences, and then use these preconditions in an inductive 

proof of the desired invariant for the composite machine. In certain circumstances, 

though, it seems natural to express specifications in invariant, rather than 

state-transition form. For example, in the synchronizer module specification it is 

perhaps more natural to state explicitly that "at most one user process can be running 

at any instant," rather than the more indirect approach taken here, where we use the 

precondition "a run event can occur only if there are no users currently running." 

Further invAstigRtion into th~ relation~hip between state-tran~!Uon 2nd !nvariant 

specifications seems needed. 

7 .2.4 Formal Specification and Proof 

For the specification and proof techniques developed in this thesis to be useful for 

practical examples, the development of mechanical aids for manipulating specifications 

and assisting in correctness proofs is essential. Appendix I takes the first steps toward 

this goal by showing how all of the proof techniques developed in this thesis can be 

formalized within an appropriate temporal language. Further steps should be taken 

along the following lines: 

(1) A practical method should be devised for describing heterogeneous 

algebras and for associating with each description a reasonably powerful, sound 

deductive system for deducing properties of the described algebra. In spite of the large 

amount of work that has been done in this area (specification of abstract data types), a 

completely satisfactory method is still lacking. 

(2) Tools are needed for enumeration and checking of cases in inductive 

proofs of invariance. In the correctness proofs performed in this thesis, once the 

implementation invariant is devised, the proof that it is inductive is a tedious case 
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analysis that ought to be easily mechanizable. 

(3) Mechanical aids for checking proofs in temporal logic are needed. Such a 

proof checker wou!d probably not be capable of performing complete proofs by itself, 

but rather would serve to fill in intermediate steps in a proof generated by a human 

verfier. 

7 .2.5 Non-State-Transition Specifications 

It would be interesting to use the framework of definitions set up in Chapter 2 to 

investigate specification languages not based on the state-transition approach. One 

obvious example is to investigate specification languages based on some kind of 

generalized regular expression. Preliminary experience with this kind of specification 

seems to indicate that the regular expression approach seems to produce shorter 

specifications for trivial examples, but for more complex examples it is much more 

difficult to express the desired properties. Interesting questions are what sort of 

deductive system, if any, could be used to derive consequences from specifications 

~tAt~ in r1:>a•.tlar ~xpressiori form, and what form the Correctness Theorem wo!Jld take 

for such specifications. 
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Appendix I - Formal Specification and Proof 

The purpose· of this appendix is to outline the way in which the informal 

state-transition specification and proof techniques used in this thesis can be formalized, 

perhaps to permit mechanically-assisted specification and verification. The major new 

concepts introduced to permit this formalization are those of an "event/state algebra" 

and an "implementation algebra." An event/state algebra is a heterogeneous algebra 

that embeds the machine part of a state-transition specification. An "implementation 

algebra" is a special kind of event/state algebra, which embeds the composite machine 

for an implementation, and which contains among its operations the abstraction and 

decomposition map for the implementation. 

The utility of event/state algebras and implementation algebras derives from the 

fact that associated with each event/state algebra A (and hence each implementation 

algebra as well) is a temporal logic language ~A), within which can be expressed 

properties of the computations of the embedded machine. Each of the proof techniques . 
presented in this thesis has the property that its hypotheses can be formalized in terms 

of the validity of verification conditions, which are sentences expressed in the temporal 

language of an appropriate event/state algebra. The problem of formalizing proofs that 

use the techniques of this thesis is thereby reduced to the following two problems: 

(1) Find a convenient method for describing event/state algebras. 

(2) Find a general method whereby the description of an event/state algebra A 

can be used to obtain a formal deductive system for deriving a large number of true 

statements about A, where these statements are expressed in the temporai language 

~A). 

In this appendix, the following tasks are accomplished: 

(1) The notions of event/state algebra and implementation algebra are 

defined. 

(2) Precise semantics are given for the temporal language ~A) associated with 

an event/state algebra A. 

(3) An approach, based on set theory, for describing event/state algebras is 

sketched. It is indicated how, from the description of an event/state algebra A, an 

A-sound deductive system for the language ~A) might be obtained. 

(4) It is show how the various proof techniques presented in this thesis can be 
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formalized in the language ':J{A) for an appropriate A. 

1.3 Event/State Algebras 

Definition - An event/state algebra A is a heterogeneous algebra whose signature is of 

the form: <EventsA, StatesA' lnltA, TransA' >.A' ... >, where >.A is a distinguished constant 

of sort Events A so that <EventsA, >.A> is an interface, and <EventsA, StatesA, lnitA, TransA> 

is a machine, which we call the embedded machine and which we denote by Mach A. I 

When there is only one event/state algebra under consideration, we will omit the 

identifying subscripts. The ellipsis in the signature of A indicates that A is permitted to 

contain additional sorts, relations, and functions besides those explicitly listed. The 

reason for permitting A to contain these additional sorts, relations, and functions, is to 

provide a mechanism by which the temporal language ,CA) can be made as expressive 

as desired. 

We now define precisely the syntax and semantics of the temporal language ':J{A) 

uf an eve11t/state algebra A. Let l:A be the signature of A. The signature l:A is required 

to contain distinguished sorts Events and States. In addition, we assume that 

corresponding to each sort of IA is a countably infinite collection of variables which we 

use to range over values of that sort. The language ':J{A) contains syntactic categories 

of "terms," "atomic formulas," and "formulas," which are defined by induction as 

follows: 

Terms: 

(1) The distinguished symbols Now and After are terms of sort States. 

(2) The distinguished symbol Occurs is a term of sort Events. 

(3) If v is a variable of sort S, then v is a term of sort S. 

(4) If t1, .... tn are terms of sorts S1, .... Sn, respectively, and f is an n-ary 

function symbol of type S1 X ... X Sn - S, then f(t1 ••• tJ is a term of sort S. 

Atomic Formulas: If t1, ... , tn are terms of sorts S1, ... , Sn, respectively, and R is an n-ary 

relation symbol of type S 1 X •.. X Sn' then R(t 1 ... t J is an atomic formula. 

Formulas: 

(1) An atomic formula is a formula. 
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(2) If q, and 1" are formulas, and vis a variable of sort S, then -,fl', q, v i/1, and 

(3vES)q, are formulas. 

(3) If q, is a formula, then Oq, is a formula. 

The sets of terms, atomic formulas, and formulas of ~{A) are the least sets with the 

properties listed. 

The first-order language L(A) is the sublanguage _ of 'a{A) obtained by omitting 

formation rules (1) and (2) under "Terms," and formation rule (3) under "Formulas." 

We treat the additional logical connectives A, -, -, 't/ as abbreviations in the usual 

way. In addition, the temporal operator◊ is regarded as an abbreviation for -,o-,. 

We use the notation t(v 1 ••. v n> to denote a term t whose variables are a subset of 

the set {v1, ••• , vn}, and the notation ip(v1 •.• vn> to denote a formula whose free variables 

are a subset of {v1, ••. , vn}. The notations t(t,tv1 ••• t/vn) and q,(t,tv1 ... tn/vn) denote 

the result of substituting the terms t1, ... , tn for free occurrences of the variables v1, ... , 

v n int and q,, respectively. 

Next, we dAfine the semantics of ~A). If Sis a symbol (sort nAmA, f11nr.tinn symhol: 

or relation symbol) in the signature of A, then we use SA to represent the denotation (set, 

function, or relation) assigned by A to the symbol S. Define an interpretation for a 

sequence v1, ... , vn of variables of sorts S1, ••• , Sn' respettively, to be a sequence a1, ••• , 

an of elements of A, where each a11 is of sort S11 • The semantics of 'a{A) are defined in two 

parts. First, given an intepretation a1, .•• , an for the free variables v1, ... , vn, a term 

t(v1 .••• vn) of sort S denotes a function t[a,tv1 ... anlvJ from Steps(EventsA, StatesA) to 

SA, whose value on the steps = <q, e, r> is defined as follows: 

{1) If tis Now, then t[a,tv1 ••• anlvn](s) = q. 

If tis After, then t[a,tv1 ••• anlvJ(s) = r. 

(2) If t is Occurs, then t[a ,tv 1 ••• anlv n](s) = e. 

(3) If tis the variable v11 , then t[a,tv1 ... anlvn](s) = a11 • 

(4) If tis f(t1 •.• tn), then t[a,tv1 ••• anlvn](s) = fA(b 1 ... bn), 

whereb11 = t11 [a,tv1 ••• an/vJ(s)foreachk. 

The second part of the definition of the semantics of 'a{A) is concerned with when a 

formula cp(v1 ... vn) is satisfied by a history X E Hist(EventsA, StatesA), and an 

intepretation a1, ••• , an for v1, ... , vn. We abbreviate this as X ~ A cp[a,tv1 ... anlvn], or, 

when the algebra A is clear from the context, as simply X ~ cp(a,tv1 ... anlvJ. 
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Atomic Formulas: If cp is the atomic formula R(t1 ••. tm), where the free variables of each 

ti< are in the set {v1, ••• , vn}, then X t= cp[a/v1 ••• anlvn] iff <b1, ••• , bn> ERA, where b11 = 

tl<[a,Jv1 ••• an/vn](Stepx(0)) for each k. 

Formulas: If cp is a formula, but not an atomic formula, then 

(1) If cp is-,"'• "' v x, or (3vES)'f, then satisfaction for cp is defined by induction 

in the usual way. 

(2) If cp is □"'• then X t= cp[a/v1 ••• anlvn) iff suffix1{X) t= cp[a/v1 ••• anlvn] for 

all t E (0, oo). 

Suppose that cp(v 1 ••. v n> is a formula of S{A) and that 'I' is a set of formulas of S{A), 

the free variables of which are a subset of {v1, ••• vn}. We say that cp is a consequence 

of 'I' in A, written + t= A cp, if whenever a 1, ... , an is an interpretation for the variables v 1, 

•.. , vn, and X E Hist(EventsA, StatesA) is such that X ..,_ 1',[a,Jv1 ••• anlvn] for all "1 in -+, 
then X t= cp[a,Jv1 ••• a/vn] as well. The formula cp is said to be valid in A, abbreviated 

I= A cp, if cp is a consequence in A of the null set of formulas. A sentence of S{A) is a 

formula of S{A) that has no free variables. If cp is a sentence and "1 is a formula, then it is 

easily verified that cp t= A 'f iff I= A cp -+ ti,. 

The following result makes explicit the relationship between the preceding 

definitions and the usual semantics of first/order logic. 

Lemma 1.1 - Suppose that cp(v0 ••• vn> is a formula of S{A), containing no occurrences of 

□. Suppose that A is an event/state algebra, that X € Hist(EventsA, StatesA), and that 

a1, .•• , an is an interpretation for the variables v1, ••. , vn. Suppose X(0) = <q, e, r>. Then 

X t=A cp(a,Jv1 ••• anlvn] 

iff 

t=A cp[a/v1 ... anlvn' q/Now, e/Occurs, ,/After], 

where the latter is defined in the usual sense of first-order logic. 

Proof - Straightforward. I 

We recall here the definitions, given in Chapter 4, of the sentence Comp of S{A}. 

Comp= lnit(Now) A □Trans{Now, Occurs, After) 

Intuitively, X t= Comp iff Xis a computation for the embedded machine Mach A. 
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We conclude this section with the following definition: Suppose that A is an 

event/state algebra, and Valid is a sentence of ~A). Then the state-transition 

specification defined by the pair <A, Valid> is the state transition specification S = 

<M, V>, where M = Mach A, and V = {XE Hist(EventsA, StatesA): X t= Comp A Valid}. 

1.4 Description of Event/State Algebras 

In this section, we consider the problem of describing event/state algebras in such 

a way that a sound deductive system for ~A) can be obtained from a description of the 

event/state algebra A. It should be noted that this problem has already received a good 

deal of attention in the research literature under the heading of "Specification of 

Abstract Data Types." In spite of the effort that has been expended on this problem, 

there still does not seem to be an available description method that is convenient for the 

purposes of this thesis. Hopefully this situation will be rectified in the near future. 

The description technique we use here can be summarized as follows: We assume 

fixed in advance a standard "primitive" or "core" algebra with a sufficiently expressive 

first-order theory. Let C be the core algebra, and let T be its complete first-order theory, 

expressed in the language t{C). An event/state algebra is described by writing a 

collection of first-order axioms U in an extension L of L{C), that define an extension by 

definition of T. Such a collection of axioms defines a unique extension of the core 

algebra C to a model A of T U U. 

We wish to obtain an A-sound deductive system for the language .t.(A) { = .t.). 

Since we wish our description method to be powerful enough to describe algebras such 

as <.K, 0, 1, +, •>, which cannot be completely axiomatized, it seems unreasonable to 

expect the core theory T to be axiomatizable. If we fix in advance a deductive system 

that axiomatizes a usefully large fragment of T, though, then by augmenting this 

deductive system with the defining axioms u, we can hopefully obtain an axiomatization 

of a usefully large fragment of the complete first-order theory of A. In this thesis, we 

assume as the core theory some suitable variant of the theory of sets. Set theory is 

highly expressive, and this makes it easy to describe desired event/state algebras. 

However, if machine-assisted verification is a goal, then set theory might not be the most 

appropriate: it seems quite possible that some less expressive core theory would be 

more amenable to mechanization. 
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We next consider the problem of deduction in ~A). Given an event/state algebra 

description, which, as discussed above, we regard as denoting an extension by 

definition of an underlying set theory, we wish to be able to deduce a large class of 

A-valid formulas of ~{A). Suppose we could somehow transform an arbitrary sentence cp 

of ~A) into a sentence cp' of t(A) such that I== A " ... cp '. In other words, suppose that 

we could axiomatize the temporal operator □ and special symbols Now, Occurs, and 

After, in terms of the set theoretic notions oft. Then the problem of showing t== A 9', 

where cp E ~A), would be reduced to the problem of showing that TI== cp ' 1 where cp' E 

t(A) is the transformed version of cp. 

, It seems likely that the reduction described the preceding paragraph can actually 

be carried out, since the idea seems essentially the same as that used in the proofs 

[Harel78] of the "arithmetic completeness" of deductive systems for dynamic logics. 

Assuming that this idea works for the temporal logics ~A), this would give us a way of 

deducing all valid formulas of ~A), assuming we have available the complete theory of 

some model of set theory. Although we can never obtain a complete axiomatization of 

Mt theory, it seems likely that any of thA usual collections of axiom~ fnr ~t thAnry wn1_1lrl 

provide us with a deductive system for ~A) that is powerful enough to be useful in 

practice. 

In practice, to write down explicitly the collection of defining axioms that describe 

an event/state algebra A is cumbersome. It is convenient to introduce some notation 

for common constructions. We do this with the understanding that descriptions 

expressed in this notation stand for collections of first-order defining axioms. In 

general, the description of an event/state algebra can be divided into two parts: one, 

the definition of new sorts, and two, the definition of new function and relation symbols. 

We define new sorts by a set of defining equations that define the new sorts in 

terms of more primitive components. These equations take the form: 

S = g(S1, ••• , Sn)' 

where Sis the new sort being defined, S1' ... , Sn are the names of previously-defined 

sorts, and s is an expression within which various set-theoretic constructions can 

appear. These defining equations are analogous to the domain equations used in the 

denotational definition of the semantics of a programming language [Gordon79]; 

however, to ensure that a set of equations can be regarded as denoting a collation of 

defining axioms, we do not permit here the use of recursive equations. The 
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set-theoretic constructions (cartesian product, disjoint union, etc.) that appear on the 

right-hand sides of the defining equations introduce implicitly various "built-in" 

functions and relati9ns (projection, injection, etc.). The constructions we use, and their 

associated built-in functions and relations are listed below. 

Once the equations that define the new sorts have been given, we can use these 

sorts and their built-in function and relations to define additional functions and 

relations, in particular the initial state and state-transition relations for the embedded 

machine. These additional functions and relations are defined by writing defining 

axioms in the usual way. 

1.4.1 Set-Theoretic Constructions Used In Defining Equations 

1. (Enumeration) • The expression {a1, ••. , an} denotes the n-element set 

whose elements are the constants a1, ... , an. 

2. (Disjoint Union) - If A and B are sets, then the expression [tA: A + t8 : BJ 

denotes the disjoint unlon D of the sets A and B. The tags tA and t8 are used to denote 

the injection operations associated with the disjoint union. That Is, if a€ A and b € B, 

then tA:a denotes the image of a, and t8:b the image of b, In D. 

3. (Cartesian Product) - The expression [tA: A x t8: B] denotes the cartesian 

product C of the sets A and B. Associated with an element c of C are its projections c(t A) 

and c(t8 ) onto the sets A and B, respectively. Given a€ A and b EB, then the expression 

<tA: a, t8: b> denotes the ordered pair with components a and b. If c EC and a EA, then 

the notation c[a/tA] denotes the element c' of C which is identical to c except that its tA 

component has the value a. To reduce clutter in expressions, tags will be omitted from 

both the disjoint union and cartesian product constructions when this is unlikely to 

cause confusion as to the intended meaning. 

4. (Function Space) - If A and B are sets, then the notation [A - BJ denotes 

the set of all functions with domain A and range B. We use the usual notation t(a) for the 

application of f to the argument a, and the notation f[b/a] for the function that is 

identical to f except that it has value b for argument a. 

5. (Finite Powerset) - The notation Set[A] denotes the set of all finite subsets 

of the set A. Ifs E Set[A] and a EA, then the expression aEs is true iff a is an element of 

the sets. The expression Isl denotes the cardinality of the set s. We also use the usual 

operations u, n, and - on Set[A]. The notation MSet[A] denotes the set of all finite 
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multisets of elements of A. We use the same notation for operations on multisets as for 

sets, however, the meaning appropriate for multisets is assumed in this case. 

6. (Finite Sequences) - The notation Seq[A] denotes the set of all finite 

sequences (i.e. strings) of elements of A. If u, v € Seq[A], then lul denotes the length of 

u, uv and u•v denote the concatenation of u and v, and if n € Nat, then u(n) denotes the 

n + 1st element of u. 

1.4.2 Definition of the State-Transition Relation 

Manipulation of the state-transition relation is sometimes more convenient if its 

defining axioms are factored into a collection of pairs, each of which consists of a 

precondition, and a next-state predicate. The precondition defines the class of events 

to which the pair applies, and defines conditions on the current state that must be 

satisfied before an event in that class can occur. The next-state predicate determines 

the relation that must hold between the current state and the new state that results from 

an occurrence of such an event. 

Although the basic idea of precondition/next-state predicate pairs is fairly simple, 

some subtleties arise in actual use, especially associated with the interpretation of free 

variables common to the two predicates. This problem is similar to that which arises in 

the interpretation of free variables in the pre- and post-conditions used to specify 

sequential programs. We must therefore be somewhat more careful about the precise 

form and meaning of the pairs. A pair takes the form: <Pre(q. e, K ), Next(q, r, 1. )>, where 

e is a variable of sort Events, q and rare variables of sort States, and i. is a vector of free 

variables of sorts S, where S can be chosen arbitrarily for each pair. A finite collection 

<Pre1, Next1>, ... , <Pren, Nextn>, where the l<th pair contains free variables 1. 11 of sorts 

S 11 , determines the defining axiom for the state transition relation Trans according to the 

following definition: 

Trans(q, e, r) = V~ ,. 0(31. 11 €S 11)(Pre11(q, e, 1. 11)" Next11(q, ,, 1. 11)), 

where Pre0(q, e, it Jae = >. and Nex1c,(q, r, l J E , = q. What the above definition 

says is that a step <q, e, r> satisfies the state transition relation Trans iff there exists a 

pair <Pre11 , Next,? (0 S k < n), and an interpretation of the free variables of that pair, 

such that the precondition and next state predicate hold for that pair. 
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A useful convention we will follow, which simplifies the maximality part of 

correctness proofs, is to define the preconditions Pre(q, e, i) and next state predicate 

Next(q, ,, !. ) in each pair so that they satisfy the following relationship: 

F (VqEStates, eEEvents, !. ES. )(Pre(q, e, !. ) - (3rEStates)Next(q, r, i )). 

That is, whenever the precondition is satisfied by a state q, an event e, and an 

interpretation!. for the free variables, then there must be a new stater such that q, rand 

!. satisfy the next state predicate. 

1.4.3 Parameterized Descriptions 

Quite often one wishes to write parameterized descriptions of event/state 

algebras, where the parameters may be values, as In the case of the synchronizer 

component module, where the number of initial tokens Is given as a parameter, or 

perhaps sets or some other kind of object. In this thesis, we view a parameterized 

event/state algebra description as a schema. for the construction of a family of related 

descriptions. This way of treating parameters is satisfactory as long as there is no need 

to perform rei:1soning abo•Jt parameters with infinitary structure. .A. more general 

treatement of parameters requires extensions to the event/state algebra formalism, and 

is outside the scope of this thesis. 

1.5 Implementation Algebras 

We have previously discussed the notion of an event/state algebra, which is a 

formal structure that embeds the machine part of a state-transition specification. The 

purpose of an event/state algebra is to provide semantics for the associated temporal 

language. The temporal language, in turn, serves as a vehicle for the formal statement 

of properties of histories, among which are the validity conditions for a specification. 

Augmented with a sound deductive system, the temporal language can also serve to 

express derivations of consequences of a specification. 

Just as we can use the temporal language associated with a specification to 

express and derive consequences of that specification, we would like to associate with 

an implementation a language suitable for the expression and derivation of the 

conditions required for the correctness of that implementation. However, taken 

separately, none of the temporal languages associated with any of the modules involved 

in an implementation suffices for this purpose. To solve this problem, we define below 
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the notion of an "implementation algebra," which is a kind of "composite" event/state 

algebra whose associated temporal language is powerful enough to permit the 

expression of corre~tness conditions. 

Let us say that an algebra A embeds an algebra 8 if there exists a signature 

morphism 1 , from the signature of 8 to the signature of A such that, for each sort S 

(resp. function symbol f, relation symbol R) of 8, the interpretation of S (resp. f, R) in B is 

the same as the interpretation of ,(S) (resp. ,(f), ,(R)) in A. If A embeds 8 1 then since we 

might as well think of 8 as a subalgebra of A, we will omit mention of the signature 

morphism, when no confusion can arise. 

Suppose A
8
bs is an event/state algebra (corresponding to an abstract module to 

be implemented), and le~ A = <A1, ... , An> be a finite-length vector of event/state 

algebras (corresponding to the component modules). 

Definition - An implementation algebra for Aabs and A is an event state algebra A with 

the following properties: 

(1) A e,nb~s A abs anu 1::acii A1, with i ~ ; ::; n. For each ~• i u, oper aiion S of 

A
8

bs (resp. A;}, we write sabs (resp. S') for the corresponding sort or operation of A. 

(2) A contains distinguished functions 

a: Events - Events8t>s 

81: Events - Events', for 1 < ; < n 

.,, abs: States - States•bs 

",: States - States', for 1 :S; < n, 
such that: , A = <a, i > is an interconnection, called the embedded interconnection, 

MachA is the composite machine for 'A' MachAabs and <MachA,>~ .. 1; and "abs and the", 

are the canonical projections from the cartesian product States to the factors States8bs 

and States1, respectively. I 

1. A function, mapping each sort, function symbol, and relation symbol of the signature 
of 8 to a corresponding sort, function, symbol, or relation symbol of the signature of A, 
that preserves relevant structure such as the -arity of the symbols. 
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Since an implementation algebra is a particular kind of event/state algebra, it has 

an associated temporal language. Furthermore, the temporal language ~A) associated 

with an implementation algebra A contains the temporal languages c:J{A
8
bs) and each 

~A;) as sublanguages. This property is what makes an implementation algebra useful 

for expressing correctness conditions. 

The description of an implementation algebra is performed in the same way as for 

ordinary ·event/state algebras. The meanings of many the symbols are fixed by the 

definition of an implementation algebra, and in practice It is convenient to omit their 

defining axioms. For example, the definition of the sort States is fixed by the 

requirement that it be the cartesian product of the sorts Statesk: 

States = ["abs: States•bs X ,r1: States1 X ... X wn: States"]. 

Other examples of symbols whose meanings are fixed . by the definition of an 

implementation algebra are the initial state relation lnit, and state-transition relation 

Trans for the composite machine. Definitions must always be explicitly given for the sort 

Events, the abstraction map a and the components 8; of the decomposition map. 

1.6 Proof Techniques 

1.6.1 Formal Correctness Theorem 

In this section we reduce the problem of proving the correctness of an 

implementation to the problem of showing the validity of a set of verification conditions, 

which are expressed in the temporal language associated with the implementation 

algebra. There are three verification conditions in the technique introduced here. The 

"invariance" verification condition expresses that the predicate Inv is an 

implementation invariant. The "maximality" verification is a straightforward 

formalization of the the maximality condition required by the Correctness Theorem, 

except that the phrase "q is reachable for the composite machine" is replaced by 

"/nv{q) holds." The "validity" verification condition is the formalization of the validity 

condition required by the Correctness Theorem. 

Recall that the validity condition required by the Correctness Theorem states that, 

if X is a computation for the composite machine that projects, under the canonical 

projections associated with the composite machine, to a valid computation for each 

component machine, then X projects to a valid computation for the abstract machine as 
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well. This condition cannot be formalized directly as a sentence in the temporal 

language of the implementation algebra, since that language has no constructs for 

dealing directly with histories and functions on histories. However, the language does 

contain the function symbols a, <B;>;Er "abs' and <w;>;f.t' which denote the abstraction 

map, components of the decomposition map, and canonical projections on the state 

set, respectively. 

To formalize the validity verification condition, we need some way of taking the 

sentences that express the conditions required for a computation of the abstract 

machine or a component machine to be valid, and "lifting" these sentences to 

sentences that express the corresponding properties on computations of the composite 

machine. In Chapter 4 we defined a syntactic translation that accomplished this lifting 

in the case of the synchronizer implementation. We now define this translation in 

general, and state a lemma that summarizes its useful properties. 

Suppose that A is an implementation algebra for Aabs and <A,>,Er Given a formula 

cp of ~Aabs>• define fcp]abs to be the formula of ~A) obtained by replacing each 

occurrence of the symbol Now by the term ,, abs(Now), each occurrence of After by the 

term.,, abs(After), and each occurrence of Occurs by the term a(Occurs). Similarly, for 

each i E /, given a formula cp of ~A,), define (cp); be the formula of ~A) obtained by 

replacing each occurrence of Now by ";(Now), each occurrence of After by ,,,(After), 

and each occurrence of Occurs by 81(Occurs). 

The precise relationship between a formula and its translation is captured by 

Lemma 1.2 below. An analogous result is stated in [Wolper82], where process of 

"lifting" specifications of processes to obtain specifications of a system of processes is 

catled "relativization." 

Lemma 1.2 (Translation Lemma) - Suppose that A is an implementation algebra for A
8
bs 

and <A;>,E.r Suppose that cp(v0 ••• v m> is a formula of '!T(Aabs) (resp. ~A;), for some i E /), 

that a0, ••• , am is an interpretation of the variables v0, ... , v m• and that X is a history over 

Events A and StatesA. Then 

X l==A lff>Babs[aofv0 ••• amlvm] iff x<abs) ,-A cp[a0/v0 ... amlvm]. 
abs 

(resp. X l==A (,pB;[aafv0 ... amlvm] iff x<I) t=A, .,[a0/v0 ... amlv,J.) 

Proof - Straightforward induction on formulas, based on the precise syntax and 
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semantics of ~A) given above. I 

In the sequel, to make formulas in the language ~A) of an implementation algebra 

A easier to read, we will often abbreviate the application of the functions • abs' and ,,, 11 to 

a variable or constant by simply affixing an appropriate subscript to that variable or 

constant. Thus, if q is a variable of sort States, then qabs and q11 abbreviate "abs(q) and 

,,, 
11
(q), respectively. 

We can now give a formalized version of the Correctness Theorem. Roughly 

speaking, this result says that to prove the correctness of an implementation defined by 

an implementation algebra A, it suffices to perform the following three steps: 

(1) Determine the implementation invariant /nv(q) expressed in the first-order 

language L(A) and containing the single free variable q of sort States. Show the validity 

of two sentences of L(A), which assert that Inv is inductive. 

(2) Show the validity of a sentence of L(A) which implies that the maximality 

condition holds. This sentence is obtained by formalizing the maximality condition of 

the Correctness Theorem in the obvious way. 

(3) Show the validity of a sentence of ~A) that asserts that the validity 

condition holds. This sentence is formed from the sentences that describe the sets of 

valid computations for the abstract and component machines, through the use of the 

translation operation discussed above. 

Lemma 1.2 (Formal Correctness Theorem) - Suppose that A is an implementation 

algebra for Aabs and <A,>,Er Suppose that Valid
8

bs is a sentence of S{A
8

b
9
), and for each 

i, Valid, is a sentence of S{A1). Let Sabs be the state-transition specification defined by 

the pair <Aabs' Validabs>, and for each i, let S1 be the state-transition specification defined 

by the pair <A1, Valid,). Suppose that lnv(q) is a formula of L(A), with one free variable q 

of sort States, such that the verification conditions below hold. Then <,A, Sabs' S. > is 

correct. 

(Invariance): 

(Basis) 

(Induction) 

(Maximality): 

I= (VqEStates)(lnit(q) - lnv(q)) 

I= (Vq,rEStates, eEEvents)(Trans(q, e, r) - (lnv(q) - lnv(r))) 

I= (VqEStates, eEEvents)((lnv(q) " A,€, Enabled1(q, e)) - Enabled8bs(q, e)). 

(Validity): 
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Enabledabs(q, e) = (3rEStates)Trans8 b5(q
8
bs' a(e), r a> 

Enabled;(q, e) = (3rEStates)Trans1(q1, a,(e), r). 

Proof - The basis part of the invariance verification condition states that Inv is true for 

all initial states, and the induction part of the invariance verification condition states that 

Inv is preserved under state transitions, and hence the truth of these two conditions 

implies that Inv is inductive. 

From the definition of the predicates Enabledabs and Enabled,, we know that 

Enabled
8
bs(q, e) is true of a state q and event e iff a(e) is enabled for Mach A in state 

abs 
qabs' and similarly, Enabled1(q, e) is true iff a,(e) is enabled for MachA, in state q,. The 

maximality verification condition therefore says that whenever q is a state such that 

lnv(q) holds, and a,(e) is enabled for Mach A. in state q1 for each; with 1 <; < n, then a(e) 
. I 

is enabled for MachA in state qabs. This implies the maximality condition required by 
abs 

the Correctnes.q Theorem. 

By the Translation Lemma, we know that ffValid
8
tJabs is satisfied by a computation 

X of MachA iff Validabs is satisfied by the computation x<abs) of MachA . Similarly, for 
abs 

each; we know that HValid1B, is satisfied by a computation X of Mach A iff Valid, is satisfied 

by the computation x<I) of Mach A • Since a history X satisfies Comp iff X is a computation 
I 

of Mach A, we see that the validity verification condition is the formal statement of the 

validity condition required by the Correctness Theorem. 

Since the truth of the verification conditions above implies that the hypotheses of 

the Correctness Theorem are satisfied, an application of the Correctness Theorem 

shows the correctness of the implementation <JA, s., S. >. I 

1.7 Rely-/Guarantee-Condition Proof Techniques 

In this section we give the formalized versions of the rely-/guarantee-condition 

proof techniques stated in Chapter 3. The first result formalizes Lemma 3. 11. 

Corollary 1.4 (Formal Rely/Guarantee Technique I) - Suppose that A is an 

implementation algebra for Aabs and <A,>;E.r Suppose that Validabs = Relyabs - Guarabs 
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is a sentence of 9{A b ) and that Valid. = Rely1 - Guar. for each i E I is a sentence of as , , 

9{A;). Suppose that 

(1) Comp I= (,";E, ffGuar1Il;) - ffGuarabsBabs' and 

(2) There exists a well-founded partial order < on I such that for all ; € I, 

Comp I= llRelyabsDabs /\ (/\;<; ffGuariDi) - (Rely,);. 

Then Comp I= (/\E, nvalid,D,) - nvalidabsDabs' 

Proof - Straightforward from Lemma 3.11. I 

The next result formalizes Lemma 3.12. 

Corollary 1.5 (Formal Rely/Guarantee Technique II) - Suppose that A is an 

implementation algebra for Aab& and <A;>K,. Suppose that Validabs = Relyabs - Guarabs 

is a sentence of ':J(Aabs) and that Valid, = Rely1 - Guar, for each ; EI is a sentence of 

~A,). Suppose that for each I,;€ I U {abs}, we have determined a sentence RG1j of 

~A), such that properties (1 )-(3) below hold. 

(1 )(a) Comp I= (Rely absDabs - A;f.1 RGabsJ 

(b) Comp I= /\1f.1 RG,,abs - ff Guar ai.lam 

(2){a) Comp I= RGabsj /\ A,E, + {abs} RG1J - fRely;Jr for all j € / 

(b) Comp I== I Guar;J1 - RG1,abs /\ A1f., + {abs} ~G,1, for all i € / 

(3) (Acyclicity) - Whenever {<i1, 12>, <i2, i;>, ... , <in, in+?} is a cycle of I, then 

Comp 1== v::\ RG
111

J
11 

+ 
1

• 

Then Comp I= (/\If./ ff Valid,D,) - IValidatJabs' 

Proof - Straightforward from Lemma 3.12. I 

1.8 1/0-Consistency Proof Technique 

The result below formalizes the technique for proving 1/0-consistency expressed 

by Corollary 5.8. 

Corollary 1.6 - Suppose that S is the state-transition specification of 1/0-intertace E 

defined by the pair <A, Valid>, where the sets of inputs and outputs of E are defined by 

the unary relations In and Out of type Events in A. Suppose that the event/state algebra 

A includes among its operations the finite collection of relations <Prod;>,f.,• where Prod, 

is of type States X Events x States. If the following sentences of «:J(A) are valid, then S is 
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92-consistent. 

(1) t= A,E, (Vq,rEStates, eEEvents)(Prod,(q, e, r) - Trans(q, e, r)) 

(2) t= (VqEStates, eEEvents)(ln(e) - (3rEStates)Trans(q, e, r)) 

(3) t= {Vq,rEStates, eEEvents)(Trans(q, e, r) A {OUt(e) v e = A) -

v,E, Prod,(q, e, ,)) 

(4). Comp t= (A,E, Fair,) - Valid, 

where 

Fair, 

Enabled1(q) 

= O◊Enabled1{Now) - D◊Prod1(Now, Occurs, After). 

= (3rEStates, eEEvents) Prod1(q, e, r) 

Proof - Straightforward from Corollary 5.8. Hypothesis (1) says that the Prod, are 

subsets of Trans. Hypotheses (2) states that Mach A is input-cooperative. Hypothesis (3) 

states that the Prod11 cover the set of nonnulf output or A-steps in Trans. Hypothesis (4) 

formalizes the requirement that every fair computation of Mach A is valid. I 
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Appendix II - Additional Examples 

In this appendix the specification and- verification techniques introduced in the 

thesis will be further illustrated through two additional examples. The first example 

concerns the specification and implementation of a resource manager module whose 

function is to allocate resources in response to requests from user processes. The 

resource· manager is implemented in a highly distributed fashion by a tree-structured 

system of local resource manager modules that communicate with each other to 

determine where resources should be sent. In the second example, a reliable message 

transmission service is specified, and an implementation by an unreliable message 

transmission substrate is given. Reliability is achieved through the use of a 

fault-tolerant protocol: the alternating bit protocol [Bartlett69]. The alternating bit 

protocol example has been examined by several other researchers [Chen82, 

Hailpern80, Lamport83, Schwartz81 ], and has become somewhat of a standard for 

evaluating specification and verification techniques for concurrent systems. 

The major purpose of the additional examples given here is to lend support to the 

following assertion: Essentially the same techniques as were used to obtain 

specifications and a correctness proof for the synchronizer implementation, can be 

applied in a reasonably systematic way to achieve similar results on other nontrivial 

examples. Thus, the ideas of state-transition specification, rely- and 

guarantee-conditions, and the proof technique embodied In the Correctness Theorem, 

are not ad hoc concepts useful for a single example, but serve as generally applicable 

guiding principles. 

A second point illustrated by the examples of this chapter is that more elegant 

specifications can result if one first imagines the structure of a proof of correctness in 

which the specifications will be used, and then derives the module specifications in an 

attempt to satisfy the requirements imposed by the proof structure. The difference 

between specifications obtained via this approach and those resulting from the "specify 

first, prove later" approach can be seen by comparing the validity conditions given here 

for the send and receive protocol modules with the liveness properties given by Lamport 

[Lamport83J for these modules. The specifications and proof given below are to a large 

extent independent of the precise assumptions on the behavior of the unreliable 

transmission medium. Lamport's presentation does not make this independence quite 
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so explicit. 

The observation that a proof of correctness can be used to derive component 

module specifications suggests the following general method for designing a correct 

implementation of a given abstract module: 

(1) Decide on the communication structure of the system of component 

modules (e.g. tree or ring structure). 

(2) For each pair of component modules that can possibly communicate, 

express informally the properties that each relies on/guarantees to the other to provide. 

These rely- and guarantee-conditions will serve to "cut" the interdependence of the 

component modules in a fashion similar to the way in which a loop invariant cuts the 

dependence of one iteration on preceding and succeeding iterations. 

(3) Select event and state sets for the component modules in such a way that 

the temporal language of the resulting implementation algebra is powerful enough to 

formally express the informally stated rely- and guarantee-conditions. 

(4) "Localize" the rely- and guarantee-conditions so that they are expressed in 

the temporAI language of each component module event/state AIQAhrA. Th~ rf2.ly- and 

guarantee-conditions of a resulting component module specification will be the 

conjunction of the localized rely- and guarantee-conditions, respectively. 

The examples in this appendix will be presented using the notation of Appendix I. 

11.9 A Distributed Resource Management Algorithm 

In this section, we consider the specification and implementation of a resource 

manager module RM, whose function Is to allocate resources to a set of clients In 

response to requests from those clients. We will see how the resource manager can be 

implemented by a tree-structured network of local resource manager (LRM) modules, 

each of which communicates with a single client. Initially each local resource manager 

starts out with some subset of the resources. As client requests arrive and are filled at a 

particular site, though, the locally available set of resources might be exhausted. An 

LRM that is deficient in resources must then attempt to obtain additional resources from 

other sites. The Interesting part of the implementation is concerned with how the local 

resource managers communicate with each other to determine where the resources 

should be sent. The strategy by which this is accomplished is essentially the 

'"DYNAMIC-MATCH" strategy of [Fischer83], although this stategy is explained here in a 
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slightly different and hopefully simpler way than in that paper. 

The resource manager example is presented here as a nontrivial exercise in the 

use of rely-/guaran"tee-conditions and an associated correctness argument as a basis 

for the derivation of specifications for the local resource manager modules. The use of 

rely-/guarantee-conditions as a guiding principle permits us to derive, in a reasonably 

systematic fashion, essentially the same specification for the local resource manager 

module as the node algorithm presented in [Fischer83]. The primary difference 

between the specification derived here and the algorithm of [Fischer83] is that we are 

not concerned here with the way in which an LRM resolves choices as to the pattern in 

which excess requests are forwarded to its neighbors. In (Fischer83], it is assumed that 

choices are resolved according to a specific probability distribution, and a large portion 

of the paper is concerned with probabilistic analysis of the consequences of this 

assumption. Here we concern ourselves only with showing that every request from a 

client is eventually satisfied, if possible. The argument provided in [Fischer83] of this 

basic correctness property is more of a proof sketch than a proof, and is somewhat 

unsatisfar.tory for this reason. 

11.9.1 Specification of the Resource Manager Module 

The function of the resource manager module RM can be described as follows: Let 

Clients be a set that_contains the names of the clients with which the resource manager 

communicates, and let Resources be a set that contains the names of the resources to 

be managed. A client c requests a resource from the resource manager by issuing a 

request event request:c. The resource manager allocates a resource r to client c by 

issuing a reply event reply:<c, r>. In this example, a resource that has been allocated to 

a client is never returned to the resource manager. 

The state of the resource manager can be thought of as consisting of a pair 

<pending, free>, where pending is a multiset of clients that represents the collection of 

unfilled requests and free is the set of available resources. The pending component is a 

multiset since we permit more than one request from a single client to be outstanding at 

one time. Receipt of a request from client c by the resource manager causes an 

instance of c to be added to the pending multiset. The event reply:<c, r> can occur only 

if the client c is in the pending multiset and the resource r is in the free set. Occurrence 

of this event causes an instance of c to be removed from the pending set and the 
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resource r to be removed from the free set. It is clear from this description that no 

resource is allocated more than once and no more than one resource is allocated in 

response to each request. In addition, we would like the resource manager to respond 

eventually to every request, as long as the set of free resources has not been exhausted. 

To derive a more precise specification from the preceding informal description, we 

begin by defining the resource manager event/state algebra. Our description has the 

following·as parameters: 

Clients: a finite set of clients 

Resources: a finite set of resources 

The interface of the resource manager is defined as follows: 

EventsRM = {X} + [request: Clients + reply: (Clients x Resources)]. 

lnRM = {X} + (request: Clients] 

OutRM = {X} + [reply: (Clients x Resources)] 

The state set for the resource manager is defined by: 

StatesRM = [free: Set[Resources] x pending: MSet[Clients]]. 

In an initial state, the multiset of pending requests is empty, and all resources are 

free. 

lnitRM(q) = q(free) = Resources /\ q(pending) = 0. 

The state-transition relation TransRM is defined by precondition/next-state 

predicate pairs as follows: 

A request event for client c can occur at any time, and causes c to be added to the 

pending set. 

(request) Prerequest(q, e, c) 

Nextrequest(q, r, c) 

a e = request:c 

= r = q[(q(pending)U{c})/pending] 

A reply event with resource res for client c can occur only if res is in the free set and c is 

in the pending multiset. It causes res to be removed from the free set and an instance of 

c to be removed from the pending multiset. 

(reply} Prerep1y(q, e, c, res} a e = reply:<c, res>" c € q(pending) /\ 

Nextrep1yCq, ,, c, res) 

res E q(free} 

= r == q[(q(pending)-{c})/pending, 

(q(free}-{res))/free] 
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The validity conditions for the resource manager module can be stated in 

rely-/guarantee-condition form as follows: ValidRM = RetyRM - GuarRM, where 

RelyRM = □(INow(free)I ~ fNow(pending)I) 

GuarRM = D(VcEClients)(c E Now(pending) -

◊(3rEResources}(Occurs = reply:<c, r>)). 

Thus, if the number of outstanding requests never exceeds the number of available 

resources, then the resource manager module guarantees that every request will 

eventually receive a reply. 

11.9.2 Implementation of the Resource Manager 

Our plan is to implement the resource manager module by a tree-structured 

network of local resource manager modules as depicted in Figure 3. Each local 

resource manager is responsible for filling requests originating from a single client. If 

the set of resources locally available is exhausted, the the LRM must try to obtain 

additional resources from elsewhere in the system. If an LRM has a surplus of 

r~sourlje!9-, then it must be willing to give ·out resources to other LRM's ·1,Nhose resources 

have already been allocated. 

To guide us in our derivation of the components that will be needed as part of an 
I 

LRM state, let us first obtain a rough statement of the validity conditions that an LRM is 

to satisfy. We organize these conditions into properties the LRM relies on its 

environment to provide, and properties that an LAM guarantees to its environment in 

return. An LAM relies on: 

children. 

(1) No special properties on the part of the client. 

(2) The eventual elimination of resource debts owed to the LRM by its parent. 

(3) The eventual elimination of resource debts owed to the LRM by each of its 

In return for these properties, an LAM guarantees that: 

(1) Every client request eventually receives a reply. 

(2) Resource debts owed by the LAM to its parent will eventually be eliminated. 

(3) Resource debts owed by the LRM to each of its children will eventually be 

eliminated. 
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Fig. 3. Resource Manager Implementation 
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To obtain formal statements Of the preceding conditions, we must first obtain a 
precise definition of the notion of an LRM having a "resource debt" to one of its 

neighbors, and we must describe the mechanics of how such debts are incurred and 

eliminated. The introduction of the various components of the LAM state below can be 

viewed as providing us with enough expressive power In the language '{A..,.., of the 

LRM event/state algebra, to permit the formalization of the undefined quantities in the 
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above statement of the LAM validity conditions. 

A significant feature of the validity conditions stated above is the complementary 

form of the rely- and guarantee-conditions. The conditions above have been selected in 

such a way that ultimately, in the resource manager implementation, the conditions 

relied upon by an LAM ; from its neighboring LAM j will be precisely the conditions that 

LAM j guarantees to provide to LAM i. This symmetric statement of the validity 

conditions will be seen below to result in a rather simple and pleasant proof of 

correctness. 

With the above validity conditions in mind, we now attempt to identify the various 

events of the LAM interface and the components of the LAM state. We can identify 

immediately several kinds of events that must be in the interface of the LAM. 

Communication with the client requires the existence of a request event request, which 

represents the receipt of a request from the client, and a reply event of the form reply:,, 

in which resource r is allocated to the client in response to a prior request. 

Furthermore, the interface of an LAM must contain events corresponding to the transfer 

of resources between an LAM and its neighbors in the system. Let Resources be the set 

of names of all the resources that the LAM might be called upon to handle. For each,€ 

Resources, the LAM interface includes the event parent_jn:r, which represents the 

receipt of resource r from an LRM's parent in the tree, and parent_out:r, which 

represents the delivery of resource r by an LAM to Its parent. Let Children be a set of 

names used to index the children of the LAM. For each c € Children and r E Resources 

the interface of the LAM includes the event child_out:<c, r>, which represents the 

transfer of resource r from the LAM to child c, and the event child_jn:<c, r>, which 

represents the receipt of resource r by the LAM from child c. 

To describe the conditions under which transmission of resources between LRM's 

and between a client and an LAM is permitted, we include in the state of each LAM a set 

free, which represents the resources locally available at the LAM, and a nonnegative 

Integer pending, which counts the number of unfilled requests that originated at the 

client associated with the LAM. A request event causes pending to be incremented. A 

reply:r event can occur only if pending is nonzero and r € tree, and causes pending to 

be decremented and r to be removed from free. The resource transmission events 

parent_jn:r and chi/d_jn:r cause r to be added to the set free. The events parent_out:r 

and child_out:<c, r> can occur only if r E free, and cause r to be removed from free. 
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We have thus settled the issue of how and when requests and replies are 

transmitted betweeen an LRM and its client, and how resources are shuttled between 

LRM's. However, we have not yet determined how and when an LAM should request 

resources from one of its neighbors, or when an LAM should issue resources to a 

neighboring LRM. To describe the conditions governing the transmission of resources 

between LRM's, we introduce a few more components into the state of an LRM. The 

state of each LAM contains a component p_t,alance, and a component c_t,alance:c for 

each child c. The component p_t,alance represents the instantaneous "balance of 

payments" between the LRM and its parent, and c..balance:c represents a similar 

balance of payments between the LRM and child c. A positive balance represents a 

number of resources owed to the LAM by its neighbor, and a negative balance 

represents a number of resources owed by the LAM to its neighbor. These balances will 

be maintained so that the following relation is invariant: If pis an LAM with child c, then 

the c..balance:c component of the state of LAM p is always the negative of the 

p_balance component of the state of LAM c. This reflects the idea that resources owed 

by p to c can be viewed as a debit from the point of view of p, or as a credit from the 

point of view of c. These balances will be updated appropriately as requests are 

forwarded, and as resources travel between LRM's in payment of debts. An LRM will 

transmit resources to its neighbor in an attempt to reduce its indebtedness. 

To represent the forwarding of requests between LAM's we introduce the 

following additional kinds of events into the LAM interface: A forward_in event 

represents the receipt by the LRM of a forwarded request from its parent. Similarly, a 

forward_out:c event corresponds to the forwarding of a request by the LRM to child c. 

The event reject_out represents the forwarding of a request by the LRM to its parent, 

and the event rejectJn:c represents the receipt of a forwarded request by the LAM from 

child c. We use the terminology reject for the forwarding of requests upward in the tree 

to emphasize the asymmetry inherent in the parent/child relationship. 

In determining the conditions under which forwarding and rejection events should 

be permitted to occur, we must attempt to avoid the following two bad situations: (1) 

We must avoid the deadlock situation in which two LAM's are stubbornly requesting 

resources from each other, while each of their resource requirements could be fulfilled 

by resources from elsewhere in the system. (2) We must avoid the "livelock" situation 

in which a request is continually shuttled back and forth in the system without ever 
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reaching an LRM with available resources. Our proposal for resolving these difficulties 

is to have each LRM keep estimates of the number of surplus resources available in the 

subtree headed by_ each of its children. These estimates are to be optimistic in the 

sense that the estimate held by an LRM for child c is at all times an upper bound on the 

number of surplus resources actually available in the subtree headed by c. Situation (1) 

is avoided by having an LRM request resources from its parent only in the case that it 

has no resources locally available and there are no surplus resources left in any of the 

subtrees headed by its children. Situation (2) is avoided by requiring that an LRM only 

send a request to a child c if it estimates that there is a surplus of resources in the 

subtree headed by c. The effect of these two requirements is to ensure that the 

following invariant holds: If an LRM p owes resources to its child LRM c, then the 

number of resources owed by p to c is a lower bound on the instantaneous amount by 

which pending requests exceed available resources in the subtree headed by c. Thus p 

never owes more resources to c than are actually required by e's subtree. 

The balances of payments between an LAM and each of its neighbors can be 

~ombinP.d with the numMr of pP.nding re<111e~t~ And locally avAilAhle resnurces to 

produce a quantity PBalance, which represents the projected net number of resources 

(positive = surplus, negative = deficit) that would be left at the LRM after all debts are 

paid. The quantity PBa/ance, defined formally below, is informally the number of free 

resources, plus the net number of resources owed to the LRM by its neighbors, minus 

the number of pending requests. The forwarding and rejection of requests by an LRM 

to its neighbors is done with the goal of "getting in the black;" that is, reducing the 

projected deficit. 

The remaining components we need as part of the LAM state are the following: 

For each child c, the state of an LRM contains a component c_estim{c) which is an 

integer that represents the optimistic estimate made by the LRM, of the projected 

number of resources that would be available in the subtree headed by child c, once all 

debts have been paid. If c is an LRM whose parent is p, then the state of c also contains 

a component p_estim, which is a local copy of the c_estim(c) component of the state of 

LRM p. Thus, not only does an LRM keep estimates of the projected number of 

resources remaining in the subtrees headed by each of its children, but it also keeps 

track of what its parent must currently estimate as the projected number of resources 

remaining in the subtree headed by the LRM. We permit p_estim and c_estim{c) to take 
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on arbitrary integer values, although it can be shown that if an LAM is used only in a 

system of other LAM's in the way we envision, then p_estim and c_estim(c) are 

invariantly nonnegative. 

The important points of the preceding discussion of the LAM events and states 

can be summarized as follows: 

(1) The LAM interface contains events corresponding to requests from and 

replies to the client, transferring of resources from/to its neighbors, and forwarding and 

rejection of requests. 

(2) An LAM state contains a set free of locally available resources and a count 

pending of outstanding requests from the client, to ensure that every request receives a 

response and that no resource is allocated more than once. 
(3) An LAM state contains a record of its "balance of payments" with each of 

its neighbors. Transfer of resources and requests between LAM's is performed to 

reduce indebtedness. If p and c are neighboring LAM's, then the balance kept by p tor 

c is the negative of the balance kept by c for p. 

(4) An LAM statP. cnntainR an 1:tStimate of th'3 projected net number of 

r~sources that would remain, once all_debts have been paid, in the subtrees headed by 

each of its children. This information is used to control the forwarding and rejection of 

requests. If p is the parent of c, then c maintains a local copy of p's estimate of the 

projected number of resources remaining in the subtree headed by c. 

11.9.3 Local Resource Manager Specification 

From the informal discussion of the preceding section, we can derive a precise 

local resource manager specification. In the informal discussion above, we made no 

distinction between the root LAM and the other LAM's in the system. Although similar in 

many respects, the precise specifications of these two kinds of LAM's will be slightly 

different since a root LAM has no parent. To avoid redundancy, the specifications of 

the two kinds of LAM will be presented simultaneously, with differences pointed out 

along the way. 

The parameters of the LAM are the following: 

Children: a finite set of children 

Resources: a finite set of resources 

I Resources: the subset of Resources held initially by the LAM 
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{estimc: c E Children}: initial estimates of the number 

of resources in the subtrees headed by 

each of the children. 

The set Children is a set of names used to identify the children of the LAM. The set 

Resources is a set of names for all of the resources that the LAM might have to deal 

with. This set includes the names of all resources initial!~ held by the LAM, as well as all 

resources that might be transmitted to the LAM at some later instant by its neighbors. 

The set !Resources is a subset of Resources that represents the set of resources initially 

available at the LAM. For each c E Children, the parameter estimc is a nonnegative 

number which the LAM uses as its initial estimate of the projected number of resources 

remaining in the subtree headed by child c. Since there will be no debts in an initial 

state, correct use of an LAM requires that each estimc equal the actual number of 

resources initially available in the subtree headed by child c. 

The interface of a node LAM is defined as follows: 

where 

and 

EventsNLRM = {A} + [CEvent + SEvent] 

lnNLkM = {A} + [CIEvent + SIEvent] 

OutNRLM = {A} + [COEvent + SOEvent], 

CEvent = CIEvent + COEvent 

SEvent = SIEvent + SOEvent 

CIEvent = (request} 

COEvent = [reply: Resource] 

SIEvent = [reject_in: 

forward_in 

parenLln: 

child_in: 

Children + 

+ 

Resource+ 

[Children x Resource]] 

SOEvent = [reject_out: + 

forward_out: Children + 

parenLout: Resource + 

child_out: [Children x Resource]] 
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The events listed above have the following intuitive meanings: Client events are 

those in which the LAM communicates with the client, whereas system events are those 

in which the LAM ~ommunicates with other LAM's. The client events are classified into 

request events, in which a request is received from the client, and reply events, in which 

a resource is sent to the client in response to a prior request. The system events are 

classified into: forwarding events (forward_out, forward_in), in which a request is 

forwarded from' an LAM to one of its children; rejection events (rejecLout, rejecLin), in 

which a request is rejected from an LAM to its parent; and resource transfer events 

(parenLout, parenLin, child_out, child_in), in which a resource is transferred from an 

LAM to one of its neighbors. The "_in" and "_out" suffixes denote the direction in 

which resources or requests flow; thus, forward_out:c is the event in which a request is 

forwarded from an LAM to child c, whereas forward_in is the event in which a forwarded 

request is received by an LAM from its parent. 

The interface EventsRLRM of a root LAM is obtained by omitting the forward_in, 

parenLout, rejecLout, and parenLin events. 

The state set for both a node and a root LAM is defined as follows: 

StatesLRM = [tree: Set[Aesource], 

pending: Nat, 

p_balance: Int, 

c_balance: [Children - Int], 

p_estim: Int, 

c_estim: [Children - Int]]. 

The set free is the set of resources currently available at the LAM. The number pending 

is a counter that records the number of outstanding requests. The quantity p..balance 

records the net number of resources that the LAM either is promised by its parent, or 

promises to send to its parent. If p..balance > o. then the LAM is promised resources by 

its parent; if p..balance < 0, then the LAM promises to send resources to its parent. The 

mapping c..balance records similar information for each of the children. The mapping 

c_estim records the estimate of the projected number of remaining resources in the 

subtree headed by each child. The quantity p_estim is the LAM's local copy of its 

parent's estimate for the subtree headed by the LAM, as discussed above. 
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The initial state relation for the LRM is defined below. Recall that we view a finite 

multiset over a given universe as a function that assigns a finite multiplicity to each 

element of the universe. Lambda-notation has been used below as a shorthand for 

denoting particular multisets. 

lnifRM(q) = q = <free: 

pending: 

p_balance: 

c_balance: 

p_estim: 

c_estim: 

I Resources, 

0, 

0, 

(>.cEChildren)(0) 

IIResourcesl + l:c€Children estimc, 

(>.cEChildren)(estimc)> 

Thus, in the initial state, all resources in !Resources are free, no requests are pending, 

no resources are promised by/promised to any of the neighbors, and the estimated 

surplus of resources in the subtree headed by the LRM is the sum of the number of free 

resources initially at the LRM, plus the sum of all the initial estimates for the subtrees 

headed by each of the children of the LRM. 

We can now give the formal dP.finition of the qu~ntity PBalance discussed above. 

PBalance(q} = lq(free}I - q(pending} + q(p_balance) + 

l:c€Chlldren q(c_balance)(c). 

As discussed above, given a state q, PBalance(q) represents the net number of 

resources (positive = surplus, negative = deficit) that would be left at the LRM after all 

debts are paid. 

The state-transition relation TransNLRM for a node LRM is defined as follows: 

An incoming request from a client gets recorded as pending. 

(request} Prerequest(q, e) 

Nextrequest(q, r) 

a e = request 

= r = q[(q(pending) + 1)/pending] 

A resource res can be sent to the client if there is at least one pending request, and res 

Is in the set of free resources. The resource res is removed from the set of free 

resources, and the number of pending requests is decremented. 

(reply) Prerep1y(q, e, res) E e = reply:res " res € q(free) A 

q(per.ding) > 0 
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Next,ep1yCq, ,, res) = r = q[(q(free)-{res))/free, 

(q(pending)-1 )/pending] 

Receipt of a forwarded request from the parent means that the LAM promises to send 

one more resource to the parent, and consequently, that the LAM estimates a surplus of 

one fewer in its own subtree. 

(forward_in) Pre,orward_in(q, e) 

Next,o,ward in(q, r) 

= e = forward_in 

= r = q((q(p_balance)-1 )/p_balance, 

(q(p_estim)-1 )/p_estim] 

A request can be forwarded to child c only if the LAM currently is "in the red" and 

estimates a surplus of resources in the subtree headed by child c. As a result of 

forwarding the request, the number of resources promised by child c is incremented, 

and the estimated number of resources in the subtree headed by c must be 

decremented. 

(forward_out) Pre,orward out(q, e, c) = e = forward_out:c A 

PBalance(q) < O A q(c_estim)(c) > 0 

Next,orward_out(q, r, c) = r = q[(q(c_balance)(c) + 1)/c_balance(c), 

(q(c_estim)(c)-1)/c_estim(c)] 

Receipt of a rejected request from child c means that child c promises to send one 

fewer resource (or requires one more resource) than it did before, and thus the quantity 

c...ba/ance(c) must be decremented. In addition, the fact that a request has been 

rejected by c means that the resources in the subtree headed by c have been 

exhausted, and thus c_estim(c) should be set to zero. 

(rejecLin) Pre,eiecLin(q, e, c) 

Next,eiecUn(q, r, c) 

= e = rejecLin:c 

= r = q[(q(c_balance)(c)-1)/c_balance(c), 

0/c_estim(c)] 

A request can be rejected to the parent only if the LAM is "in the red" and there is no 

projected surplus in any of the subtrees headed by children of the LRM. By rejecting a 

request, the LAM promises one fewer resource to its parent, and hence reduces its 

projected deficit. In addition, p_estim must be zeroed to maintain the invariant equality 



- 166-

between p_estim and the corresponding c_estlm component of the parent LAM. 

(reject_out) Prereiect_out(q, e) = e = reject_out A PBalance(q) < 0 A 

(VcEChildren)(q(c_estim)(c) < 0) 

Nextreject_out(q, r) = r = q[(q(p_balance) + 1)/p_balance, 0/p_estim] 

The various resource transfer events occur when an LAM owes a debt and has an 

available ·resource. Their effect is to cancel out some of the debt. 

(parent_in) PreparenUn(q, e, res) = e = parenLln:res 

NextparenUn(q, r, res)= r = q[(q(free)U{res})/free, 

(q(p_balance)-1 )/p_balance] 

(parent_out) Preparent_out(q, e, res) a e = parent_out:res) A res E q(free) 

A q(p_balance) < 0 

(child_in) 

Nextparent_out(q, r, res) 

Prechild_in(q, e, c, res) 

Nextchild_in(q, r, c, res) 

= r = q[(q(free)-{res})/free, 

(q(p_balance) + 1 )/p_balance] 

= e = child_in:<c, res> 

= r = q((q(free)U{res})/free, 

(q(c_balance)(c)-1)/c_balance(c)] 

(child_out) Prechild_ou1(q, e, c, res) = e = child_out:<c, res> A 

Nextchitd_ou,(q, r, c, res) 

res E q(free) A q(c_balance)(c) < O 

a r = q[(q(free)-{res})/free, 

(q(c_balance)(c) + 1)/c_balance(c)] 

The definition of the state-transition relation TransRLRM for a root LAM is obtained 

by deleting the pairs above for the forwardJn, parent_out, and parentJn events, and 

replacing the pair for reject_out events by the following pair for A-events: 

(A) PreA(q, e) = e = A A PBalance(q) < 0 A 

(VcEChildren)(q(c_estim)(c) :S 0) 

Next A (q. r) = r = q[ (q(p_balance) + 1 )/p_balance, 0/p_estim] 

The A-transitions permitted by this pair are necessary for the consistency of the root 

LAM specification: if the reject_out pair were simply deleted as were the torwardJn, 
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parent_out, and parent_in pairs, then there would be no way for a root LRM to change 

the value of p_balance and the rely-condition Rely_externa1RLRM defined below would be 

vacuous. 

To complete the specification of the local resource manager, it remains to define 

the validity conditions. As outlined in the informal discussion above, the validity 

conditions for the node and root LRM's can be expressed in rely-/guarantee-condition 

form as follows: 

ValidNLRM = RelyNLRM _ GuarNLRM 

ValidRLRM = RelyRLRM - GuarRLRM. 

As was done in the informal discussion, it is convenient to factor the rely- and 

guarantee-conditions into what the LRM relies on each of its neighbors and the external 

environment to provide, and what the LRM guarantees in turn to each of its neighbors 

and the external environment. 

The rely- and guarantee-conditions for the node LRM are defined by 

RAlyNLRM 

GuarNLRM 

= RP.ly_pArantNLRM "(VcEChifdren)Rely_('hil,jLRM{~) 

= Guar _clienfRM " Guar _paren~RM " 

(Ve EChildren)Guar _childLRM(c). 

The rely- and guarantee-conditions for the root LAM are defined by 

AelyRLRM = Aely_externa1RLRM" (VcEChildren)Aely_childLRM(c) 

GuarRLRM = Guar_clienfRM" (VcEChildren)Guar_childLRM(c). 

A node LAM relies on the eventual payment of debts owed to the LAM by its 

parent. 

Aely_parentNLRM = D(D(Now(p_balance) > 0) -

◊(3rEAesources)(Occura = parenLin:r)) 

Although a root LAM has no parent, the intuitive significance of a positive value for 

p..balance in the case of a root LAM is that the total number of requests in the entire tree 

exceeds the total number of available resources. Since we cannot expect a system of 

LAM's to eventually satisfy all requests under such circumstances, a root LAM relies on 

the external environment to ensure that p..balance is invariantly nonpositive. 

Aely_externa1RLRM = □(Now(p_balance) < 0) 

Both kinds of LAM rely on each of their children to eventually eliminate debts owed to 

the LAM, either by the transmission of resources, or by the rejection of requests. 
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Aely_childLRM(c) = □(D(Now(c_balance)(c) > 0) -

◊((3rEAesources)(Occurs = child_in:<c, ,>) v 

(Occurs = reject_in:c))) 

A node or root LAM guarantees to its client that pending requests will eventually 

receive a reply. 

Guar_clientLRM = D(Now(pending) > o
◊(3rEAesource)(Occurs = reply:,)) 

A node LRM guarantees eventually to eliminate debts owed to its parent, either by 

actual transmission of resources, or by rejecting requests. 

Guar _parentNLRM = □(D(Now(p_balance) < 0) -

◊((3rEAesources)(Occurs = parent_out:r) v 

(Occurs = reject_out))) 

Both kinds of LAM guarantee eventually to pay debts owed to their children. 

Guar_childLRM(c) = □(D(Now(c_balance)(c) < 0) -

◊(3r€Aesources)(Occurs = child_out:<c, r>)) 

In devising the validity conditions for the local resource manager module, it was 

necessary to choose between two possible forms in which to state the rely- and 

guarantee-conditions. Since we are often faced with1 such choices in practice, it is 

useful to examine the motivation for the particular choice made here. As an example, 

consider the definition of Guar_parentNLRM, which was stated above in the form 

(1) Guar _parentNLRM = □(D(Now(p_balance) < 0) -

◊((3r€Resources)(Occurs = parent_out:r) v 

(Occurs = reject_out))) 

This guarantee-condition states that either .a parent_out or a reject_out will occur if 

there is the condition p_balance < 0 holds persistently (i.e. forever after some point). 

We might also have chosen the apparently stronger alternative form 

(2) Guar _parentNLRM = □(Now(p_balance) < 0 -

◊((3r€Aesources)(Occurs = parent_out:r) v 

(Occurs = reject_out))). 

which requires the occurence of a parent_out or reject_out event in the case that the 

condition p...balance < O occurs at a single instant. In fact, we claim these two 

sentences are equivalent in the context of the LAM specification. More precisely, we 

claim CompLRM P: (1) ++ (2). Clearly (2) implies (1) by temporal reasoning alone. To see 
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that CompLRM I= -,(2) implies -,(1 ), suppose CompLRM and -,(2). Then 

(*) ◊(Now(p_balance) < 0 A D((VrEResources)(Occurs * parenLout:r) A 

(Occurs* rejecLout))). 

That is, eventually there is a point at which p..balance < 0 holds, but after which no 

parent_out or reject_out events ever occur. Inspection of the state-transition relation for 

the LRM shows that the only events that can cause p..balance to be increased are 

parent_out and reject_out events. This means that, if no parent_out or reject_out events 

occur, then p..balance < 0, once established, holds forever. Applying this result to (*) 

shows that 

(* *) ◊(D(Now(p_balance) < 0) /\ 

□((VrEResources)(Occurs * parent_out:r)" 

(Occurs~ reject_out))). 

But{**) is precisely the negation of (1) above, and thus {1) and (2) are equivalent. 

In this example, where form (1) and form (2) are equivalent, we chose form {1) over 

form (2) because form (1) is more convenient for the proof of correctness. Once we 

haui0 noclrlr.orl "'n form (1 \ for thn ,.., , ... r ..... +nn """"d1'+icn Gunr !'\~rcn•NLRM 1.••c mu"r.:t u~n th::i •• •- "°"""" ,..,,._.,~ - 11 • t/ 11.., ::t'._..._. ............ V VVII 1,t I _,_,,,... IL I.,., - -- -

same form for the complementary rely-condition Rely_childLRM(c). Similar arguments 

apply to Guar_childLRM(c) and Rely_parentNLRM. 

11.9.4 The Resource Manager Implementation Algebra 

In this section we define the resource manager implementation algebra ARMI. Let 

the following be given as parameters: 

Clients: a finite set of clients. 

root: a disti.nguished element of Clients 

Children: Clients - Set[Clients] maps each client to a set of children 

Resources: a finite set of resources 

{Resourcesc: c € Clients}: the initial partitioning of Resources. 

We require that <Clients, root, Children> be a rooted tree. Let parent: (Clients - {root}) 

- Clients be the function that maps each c € Clients to its parent. Define the function 

PDesc: Clients - Set[Clients], which takes an element c of Clients to the set of all 

proper descendants of c, in terms of the function Children in the obvious way. Define 

Desc(c) = {c} U PDesc(c) for all c E Clients. 
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The set Clients will be the index set for the interconnection; that is, there will be 

one LAM corresponding to each element of Clients. Define the embedded algebras A
8

bs 

and {AP: p E Clients) as follows: 

A
8

bs: is the resource manager event/state algebra ARM, with parameters 

Clients, Resources instantiated as Clients, Resources, respectively. 

Aroot: is the local resource manager event/state algebra ALAM, with 

parameters Resources, !Resources, Children, {estimc: c E Children(root)} 

instantiated as Resources, Resourcesroot' Children(root), {IdEOesc(c:) 

IResourcesi c E Children(root)}, respectively. 

AP: where p € Clients - {root}, is the local resource manager event/state 

algebra ALAM, with parameters Resources, !Resources, Children, {estimc: c 

€ Children(p)} instantiated as Resources, _ResourcesP, Children(p), 

{IdEDesc(c:) IResourcesdl: c E Children(p)}, respectively. 

Let the composite interface for the resource manager interconnection be defined 

as follows: 

Event~AMI = {~} + [rAf111P.St: 

reply: 

forward: 

reject: 

down: 

up: 

= {X} + [request: 

Cli~nts + 

(Clients x Resources) + 

(Clients - {root}) + 

Clients+ 

((Clients - {root}) x Resources) + 

((Clients - {root}) x Resources)] 

Clients] lnAMI 

QutAMI = {X} + (EventsAMI - lnRM1). 

Intuitively, the event request:p corresponds to the receipt of a request by LAM p 

from its client, and reply:(p, r> corresponds to the allocation of resource r by LAM p to 

its client. The event forward:p represents the simultaneous occurrence of a forward_jn 

event for LAM p, and a forward_out:p event for LAM parent(p). The event reject:p 

represents the simultaneous occurrence of a reject_out event for LAM p and a 

reject_jn:p event for LAM parent(p). The event down:<p, r> represents the simultaneous 

occurrence of a parent_in:r event for LAM p and a child_out:(p, r> event for LAM 

parent(p). Finally, the event up:(p, r> represents the simultaneous occurrence of a 

parent_out:r event for LAM p and a chi/d_jn:(p, r> event for LAM parent(p). Formally, 

these relationships are captured by the following definitions of the abstraction map aRMI, 
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and the decomposition map i RMI = <BRM1> . • p p€Cbents' 

aRM1(e) = request: c if e = request: c 

= reply:<c, r> 
=A 

BRM1(e) = request 
p 

= reply:, 

= forward_in 

= forward_out:c 

= rejecLout 

= rejecLin:c 

= child_in:<c, r> 
= child_out:<c, r> 
= parenLout:, 

= parenLin: r 

=A 

11.9.5 Proof of Correctness 

if e = reply:<c, r> 
otherwise. 

if e = request:p 

if e = reply:<p, r> 
if e = forward:p 

if e = forward:c and p = parent(c) 

if e = reject:p 

if e = reject:c and p = parent(c) 

if e = up:<c, r> and p = parent(c) 

if e = down:<c, r> and p = parent(c) 

If e = up:<p, r> 
if e = down:(p, r> 
otherwise. 

In this section we prove the correctness of the implementation <,ARMI, Sabs' 

<Sc> cEClients>, where Sabs Is defined by <Aabs, ValidRM>, Sroot is defined by 

<Aroot' ValidRLRM>, and Sc for c E Clients- {root} is defined by <Ac, ValidNLRM>. 

Implementation Invariant: 

As usual, we factor the implementation invariant lnvRM1(q) for the resource 

manager implementation into an abstraction relation AbsRM1(q) and a representation 

invariant RepRM1(q). The abstraction relation simply states that the set of free resources 

for the abstract resource manager module is just the union of the sets of free resources 

for each of the component LRM's, and that the multiset of pending requests for the 

abstract RM assigns to each client a multiplicity equal to the value of the state variable 

pending for the corresponding LAM. 

AbsRMl(q) = qabs(free) = uc€Clients qc(free) A 

Q
8
bs(pending) = (AcEClients)(qc(pending)) 
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It is convenient to factor the representation invariant into several conjuncts: 

AepRM1{q) = Disjoint(q) " Neighbor{q) " Owed(q) A Optim(q). 

The conjunct Disjoint{q) states that the sets of free resources possessed by two distinct 

LAM's are disjoint. 

Disjoint(q} = Ac,c 'EClients<c -¢. c ' - qc(free} n QC ,(free) = 0). 

The conjunct Neighbor(q} expresses the consistency constraints that hold between the 

values of the state variables for neighboring LRM's. 

Neighbor(q) = '\EClients,cEChildren(p){(qc(p_balance) = -qpCc_balance}(c})" 

(qc(p_estim} = qP(c_estim){c))} 

The conjunct Owed(q) states that an LAM can be owed resources by its parent only if 

the LAM estimates no surplus in the subtree of which it is the root. 

Owed(q} = /\pEClients(qip_balance} > o-
PBalance(qP) + IcEChildren(p) qP(c_estim)(c) < 0) 

The conjunct Optim(q) states that the estimate p_estim held by an LRM p is optimistic in 

the sense that it is an upper bound on the actual projected number of resources 

remaining in the subtree of which p is the root, assuming that each estimate c_estim(c) 

held by pis an upper bound for the subtree rooted at c. 

Optim(q} = /\pEClients(qP(p_estim) ~ 

PBalance(qP} + IcEChlldren(p) qic_estim){c)}. 

To show the inductiveness of lnvRM1{q), first note that the basis step, i.e. that 

lnitRM1(q) - lnvRM1(q) holds for all q E States, is easily checked. A complete formal proof 

of the induction step, namely, that TransRM1{q, e, r)-+ (lnvAM1(q) - lnvRM1(r)}, would be 

performed by case analysis on the event e. Such a complete proof would be quite 

tedious to read, and will not be included here. Rather, we will remark on the cases that 

are not quite trivial. Assume that TransRM1(q, e, r) and lnvRM1(q) holds, to show lnvRM1(r). 

We consider each of the conjuncts of lnvAM1(r) in turn. 

AbsRM1(r): The truth of this predicate depends upon the values of rc(free) and 

, c(pending), for each c E Clients, as well as , abs(free) and r abs(pending). The events e 

that affect the pending components of the state are request:c and reply:c. The effect of 

request:c is to add one instance of c to the multiset q
8
bs(pending), and to increment the 
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value of qc(pending) by one. Clearly this preserves the desired invariant relationship. 

The case of e = reply:<c, res>, is similar. The events e that affect the free components 

of the state are up:<c, res>, down:<c, res>, and reply:c. Because of the fact that each 

up:<c, res> or down:<c, res> is participated in only by LRM c and its parent, and the 

effect on the states of these two modules is complementary, it is easily verified that 

UcEClients rc{free) = UcEClients qc{free), holds fore = down:<c, res> or up:<c, res>. The 

case e = reply:<c, res> is slightly more troublesome, since to show that UcEClients rc(free) 

= (UcEClients qc(free)) - {res), we need to make use of the inductive assumption that 

Disjoint(q) holds. From this we know that if res E qc(free), for some c € Clients, then res 

<l. qc ,(free) for all c' * c, and hence deleting res from qc(free) in fact deletes it from the 

union of the free sets for all the component modules. 

Disjoint(,): The truth of this predicate depends only upon the values of rc(free) for each 

c E Clients. These components of the state are affected only by events of the form 

reply:<c, res>, up:<c, res>, and down:<c, res>. In case e = reply:<c, res>,.we have that 

rc(free) = qc(free) - {res} and 'c·(free) = qc,(free) for all c' € Clients with c' * c. In 

case e = up;<c, res>, and c E Chilu,1::m(µ), we have that rP(irtrej = qP(ireej U {res}, 

rc(free) = qc(free)- {res), and 'c ,{free) = qc ,{free) for all c' C Clients with c' E Clients

{c, p}. In case e = down:<c, res>, and c € Children(.o), we have that rP(free) = qP(free) 

- {res}, rc(free) = qc(free) + {res}, and 'c ,(free) = qc ,(free) for all c' € Clients with c '€ 

Clients - { c, p J. In each of these cases it is easily checked that Oisjoint(r) holds. 

Neighbor(,): Note that the predicate Neighbor(,) depends upon the values of 

rc(p_balance), rc(c_balance), rc(p_estim), and rc(c_estim), for each c € Clients. 

Enumeration of cases shows that the only events that affect the values of these 

components of the state are the events reject:c, forward:c, down:<c, res>, and 

up:<c, res>. However, examination of the definition of the LRM state-transition relation 

and the definition of the decomposition map i RMI shows that each change in the state 

of a participant in one of these events is accompanied by a compensating change in the 

state of the other participant. For example, if c E Children(p), then occurrence of an 

event of the form reject:c makes rc(p_balance) = qc(p_balance) + 1, but also makes 

rP(c_balance)(c) = qP(c_balance){c)-1. Thus the predicate Neighbor is preserved. 

Owed(r): Assuming that Owed(q) holds, the only way for Owed(r) to be false is for an 

event e to occur that increments qP(p_balance) when it is zero, or increments 
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PBalance(qP) + l:cEChildren(p) qP(c_estim)(c) when it is zero. The only events that might 

have this property are e = reject:p, and up:<p, res>. In case e = reject:p, PBalance(qP) 

+ IcEChildrenCP> qP(c_estim)(c) is incremented, but the precondition for this event 

requires that this quantity be less than zero, so Owed(,) holds. In case e = up:<p, res>, 

the quantity qP(p_balance) is incremented, but the precondition fore requires that this 

quantity be strictly negative, and hence Owed(r) holds. 

Optim(r): Assuming that Optim(q) holds, the only way for Optim(r) to be false is for the 

quantity qc(p_estim) to be decreased below the quantity PBalance(qc) + l:dEChildren(c) 

qc(c_estim)(d), or for the latter quantity to be increased above the former. The only 

events that could possibly have this effect are lorward:c and reject:c. If e = lorward:c, 

then qc(p_estim} is decremented, but so is PBalance(qc) + IdEChildren(c) qc(c_estim)(d). 

If e = reject:c, then PBalance(qc) + Id€Children(c) qc(c_estim}(d) is incremented and 

qc(p_estim) is set to zero. However, the precondition for e requires that the former 

quantity be negative. This fact implies that PBalance(rc) + l:dEChildren(c) rc(c_estim)(d) < 
0 and rc(p_estim) = 0, and Optim{r) holds. 

From the invariance of Owed, Neighbor, and Optim, we can derive the 

fundamental property of estimates upon which the ,correctness of the resource 

management system crucially depends. This property Is expressed by Lemma 11.1 

below, which states that if an LRM; is owed resources by its parent, then the amount it 

is owed by its parent is a lower bound on the total instantaneous deficit in the subtree of 

which; is the root. To express this result formally, we introduce the quantity /Balance(q) 

where q is an LRM state, defined as follows: 

IBalance(q) = lc,(free)l -q(pending). 

Whereas the quantity PBalance(q) introduced previously represents the total projected 

balance of resources at an LRM, after all debts have been paid, the quantity /Ba/ance{q) 

represents the total instantaneous balance of resources at an LRM, where the amount 

of indebtedness is not taken into account. 

Lemma 11.1 - The following is invariant for the resource manager implementation: 

ApEClients(qP(p_balance) > o-
qP(p_balance) < -IcEDescCP) IBalance(qc)) 

Proof - From their definitions, it is easily seen that the quantities PBalance(q) and 

/Balance(q) are related by the following identity, expressed in the language L(ALRM) of 
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the LRM event/state algebra: 

PBalance(q) = IBalance{q) + q(p_balance) + :tcEChildren q(c_balance)(c). 

From this identity, a simple induction on the height of a node i € Clients in the tree 

<Clients, root, Children>, shows the truth of the following identity for all i € Clients: 

(1) :t;EDesc(i) PBalance(q;) = q;(p_balance) + :t,Eeesc(p) IBalance(q). 

That is, the total projected balance in the subtree of which; is the root is equal to the 

total instantaneous balance in that subtree, plus the net number of resources promised 

to be exchanged with the parent of i. 

The invariance of Owed(q) means that the following is invariant: 

(2) AiEClients{q;(P_balance) > 0 -

PBalance(q1) + :t;EChik:tren(,J q;(c_estim){/) S 0). 

That is, if an LRM i is owed resources by its parent, then it must estimate no surplus of 

resources in the subtree of which ; is the head, based on the estimates it has for each of 

iit; t;hildren. 

The invariance of Neighbor(q) implies that the following is invariant: 

(3) A,Ectients(ViEChildren(i))(q1(c_estim)(J) = qI(p_estim)). 

Substitution of (3) into (2) shows the invariance of 

(4) A,Eclients(q;(p_balance) > 0 -+ 

PBalance(q;) + :tiEChildren(i) qI(p_estim) < 0). 

Using the invariant Optim(q) to substitute for q1(p_estim) in (4) shows that 

(5) A,EClients(q,(p_balance) > 0 -

PBalance(q1) + :t;EChik:tren(i) (PBalance(q;) + 

:tllEChildren(i) q,(c_estim)(k)) S 0). 

is invariant. Repeating this argument to eliminate all occurrences of c_estim yields the 

invariance of 

(6) A,Ectients(q1(p_balance) > 0 - :t;EOesc(,J PBalance(q) S 0), 
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which states, intuitively, that if LAM; is owed resources by its parent, then there can be 

no projected surplus of resources in the subtree of which ; is the root. 

By using (1) to eliminate PBalance in favor of !Balance in (6), we obtain the 

invariance of 

(7) A;ECtients(q;(p_balance) > 0 -

q;(p_balance) + l:iEDesc{i) IBalance(qi) S 0), 

which is equivalent to the desired result. I 

Proof of Maximality 

The maximality verification condition is: 

t== (VqEStates, eEEvents){lnvRMl(q) /\ AcEClientsEnabledc(q, e) 

- Enabled8bs(q, e)). 

The proof of this assertion is most easily performed by a case analysis on the event e; 

making use of the fact that the module specifications define the state-transition relation 

by precondition/next-state predicate pairs. If e = forward:c, reject:c, down:<c, r>, or 

up:<c, f), the.-, a~M1(a) = A, aru.i he::ri<.;e Em:dJh:~d
8
bs(q, e) = true. We therefore need 

consider only the cases e = request:c and e = reply:<c, r>. If e = request:c, then 

aRM1(e) = request:c, and hence Enabled
8
bs(q, e) = true. 

We are left with the case e = reply:<c, r>. In this case, we obtain the following 

from the module specifications: 

Enabled8 bs(q, e) = r E q
8

b
5
(free) Ac E qab

5
(pending) 

Enabledc(q, e) = r E qc(free) A qc(pending) > 0 

Enablediq, e) = true, if p E Clients-{c}. 

Assume lnvRM1(q), and hence AbsRM1(q), holds. Assume further that ApEClients 

EnabledP(q, e) holds. From Enabledc(q, e) we know that r E qc(free) A qc(pending) > 0 

holds. From this and AbsRMl(q) we infer that r E q
8
bs(free) Ac E q

8
b

8
(pending) holds, as 

desired. 

Proof of Validity 

To prove that the validity verification condition holds for the resource manager 

implementation, we use Corollary 1.5. To apply Corollary 1.5, we must find, for each ;, j, € 

Clients + {abs), a sentence RG .. of ~ARMt) such that the following hold: 
IJ 



(RMI1)(a) 

(RMl1)(b) 

(RMl2)(a) 

(root) 

(node) 

(RMl2)(b) 
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CompRMI t= (RelyRMDabs - ";€Clients RGabsj 

CompRMI t= ",e:clients RGI.abs - (GuarRMJabs 

CompRMI t= (A,EClients+{abs} RG,,,oot - ffRelyRLRMBroot> 

CompRMI t= ";EClients-{root} (A;EClients+{abs} AG,, - ffRelyNL~,) 

(root) CompRMI t= (llGuarRLRMJ,oot - /\/€Clients+ {abs} RGroot,;) 

(node) CompRMI t= ",EClients-{root} (llGua,-NLRMB, - "/€Clients+ {abs} RG,} 

(RMl3) Whenever {<i0, i1>, <i1, ii, ... , <in_1, in>} is a cycle of Clients, then 

CompRMI t= yn-1 RG • 
le"' 0 '11J1c + 1 

The sentences RG1j bear a particular relationship, formalized in Lemma 11.2 below, 

to the various conjuncts appearing in the local resource manager validity conditions. 

Lemma 11.2 states in essence, that the local resource manager validity conditions are 

"localized" versions of the sentences AG;J· Part (a) of Lemma 11.2 states that the 

sentence RG,.parent(,J captures exactly what LAM ; guarantees to Its parent and exactly 
um~♦ I Pt.A n~r0 nt1,;\ r01ies on ; .,.,. nrov"1d"' o ... r+ (b) ,.ta•es th--t th" __ ... ,.. .... e nr.-
••• ·--· -· .... ,..... ..... \ lj ...,.. • •• ..., .., '-'• I .... ,. -,ii ' u I C --",,I ,,iw, IW I ''-'parent(/)J 

captures exactly what LAM j relies on its parent to provide, and exactly what LAM 

parent(/) guarantees to provide to j. Part (c) states that the sentence RGabs,root captures 

exactly what the root LAM relies on the external environment of the system of LAM's to 

provide. Part (d) states that the sentence RG,,abs captures exactly what LAM i 

guarantees to provide to the external environment of the system of LRM's. 

The sentences RG,, are defined as follows: 

AGroot,abs = □(Now root(pending) > 0 -
◊(3r€Resources)(B~!(Occurs) = reply:,)) 

RGabs,root = □(Now root(p_balance) < 0) 

For all ;, i E Clients - {root}: 

AGi,abs = □(Now,(pending) > o
◊(3r€Resources)(8:,™1(0ccurs) = reply:,)) 

AGabsJ = true. 

For all ; E Clients - {root}: 

AG,,parent(i) = D(D(Now,{p_balance) < 0)-+ 

◊((3rEAesources)(8fM1(0ccurs) = parenLout:r) v 

(8fM1(0ccurs) = rejecLout)) 
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RGparent(,),i = □(□(Now parent(i)(c_balance)(i) < 0) _. 

◊(3rEResources)(B:!:!mtciOccurs) = child_out:<i, r>)) 

For all i,; E Clients such that neither ; = parent(/) or; = parent(,): 

RG;J = true. 

Lemma 11.2 - The following are valid for the resource manager implementation: 

(a) For all i E Clients- {root}, 

CompRMI I= RGi,parent(I) -

(Guar _parentNLRMJ, ++ 

(Rely_childLRM(,)lparent(I} 

(b) For all i E Clients - {root}, 

CompRMI I= RGparent(i)J ++ 

(Rely_parentNLRMJ
1 

-

ftGuar _childLRM(/)Jparent(I) 

(c) CompRMI I= RGabs,root - ftRely_externaIRLRMJroot 

(d) For all i E Clients, 

Compql~t I= RG,,abs - ff Guar _clientLR>.4),. 

Proof - Straightforward, using the invariance of Neighbor and the definition of the 

decomposition map 4 RMt. I 

Lemma 11.3 - Under the definitions given above for the sentences RG;J• conditions 

(RMI 1 )-(RMl3) hold for the resource manager implementation. 

Proof- Assume CompRM1• 

To prove that (RMI 1 )(a) holds, we must show 

IRelyRMBabs _. A,EClient RGabs,/ 

Suppose that ftRelyRMJabs holds. It suffices to prove that RGabs.root holds, since RGabsJ = 
true for all; E Clients- {root}. fRelyRMDabs is defined by: 

(RelyRMjabs = □(!Now abs(free)I > INow abs(pending)I). Using this and the 

invariance of the predicate AbsRMt, we infer the truth of □(I;eCUents (INow,(free)I -

Now;(pending)) > 0), which is equivalent to 

(A) □(l::iEClients IBalance(Now) > 0). 
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From Lemma 11.1 and the fact that Desc(root) = Clients, we infer that 

□(Now root(p_balance) > 0 - Now root(p_balance) < -IiEClients IBalance(Now;)). From 

this and (A), we conclude that □(Now root(p_balance) S 0), which is precisely the 

statement that RGabs,root holds. 

To prove (RMl1)(b), we must show 

A;EClients RGi,abs - ff GuarRMJabs 

Suppose that A,Eclients RG,,abs holds. From the definition of RGi,abs we know that 

A;EClients □(Now,(pending) > 0 - ◊{3r€Resources)(B::™'(Occurs) = reply:,)) 

holds. From the invariance of AbsRMI and the definition of the abstraction map aRMI we 

infer that 

A,EClients □(i E Now abs(pending) -

◊(3rEResources)(aRMl(Occurs) = reply:<i,r>)) 

holds: This is precisely the statement that HGuarRMJlabs holds. 

We next prove (RM12){a). In case {root), we must show 

(root) A,EClients + {abs} RGi,root - f RetyRLRMBroot" 

From the root LAM specifications we know that 

ffRely_externa1RLRMlroot" AiEChildren(root) ffRely_childLRM(,)Droot ++ ffRelyRLRMDroot' 

Using Lemma 11.2 (a) and (c) we infer that 

RGabs,root /\ A;EChildren(root)RG,,root ++ ff RelyRLRMDroot• 

which implies formula (root). 

In case (node) we must show that for all i € Clients, 

(node) A,Eclients+{abs} RG;J - (RelyNLAMJr 

Fix i to be an arbitrary element of Clients. From the node LAM specifications we know 

that 

HRely_parentNLRMD, " A,€Children(i)HRely_childLRM(,)D, - (RelyNLRMDr 

Using Lemma 11.2 (a) and (b) we infer that 

RGparent(i)J " AiEChildren(/)RG;J ++ IRelyNLRMJ,, 
which implies formula (node). 

We next show (RM12)(b). In case (root) we must show 

(root) IGuarRLRMBroot - A/€Clients+{abs} RGrootJ' 

From the root LAM specifications we have 

DGuarRLRMDroot ++ IGuar_clientLRMJroot A A;EChildren(root) &Guar_chUdLRMC,)Droot 

Using Lemma 11.2 (b) and (d), we infer 
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(Gua,-RLRMJ!root ++ RGroot,abs A A/€Children(root}RGrootJ' 

This implies formula (root), since RGrootJ = true unlessj = abs or j € Children(root). 

In case (node) we must show that, for all;€ I: 

(node) ffGuarNLRMJ, - A/Ectients+{abs} RG,J. 

Let i be an arbitrary element of Clients, and assume (Gua~LRMJ,. From the node LAM " 

specifications we have 

(GuarNLRMD, ++ f Guar _clienfRMJ, " (Guar _parentNLRMJ, A 

A/EChildren(I) (Guar _childLRM(/))1 

Using Lemma 11.2 (a), (b), and (d), we infer 

ffGua~LRMB, ++ RGi,abs" AGi,parent(,)" (Vj€Children(i))RG,r 

This implies formula (node), since RG1J = true unless j = abs, j = parent(,). or j € 

Children(,). 

To prove (RMl3) it suffices to show that RG,,parent(,) v RGparent(i),; holds for all i € 

Clients - {root}. This is because every cycle {<i0, 11>, ... , <in_,. in>} of Clients either 

contains a link <i,,_, i,,_.,> for which AG, J = true by definition, or else contains both 
,,, ,,, + 1 

link:; <i, parent{,)> and <parent(i), r> for some; C Clients- {root}. 

To show RG,,parent(I} v RGparent(,)J holds for all i € Cl!ents - {root}, let i be arbitrarily 

fixed, and suppose that -,RG,,parent(I} holds, to show th,t RGparent('1, holds. By definition 

of RG,.parent(I) we know that ◊D(Now,(p_balance) < 0) holds. By the invariance of 

Neighbor, we infer that ◊□(Now parent(,1(c_balance){,) > 0) holds. This implies that 

RGparent(l)J holds. I 

11.10 A Message Transmission System 

In this section we consider the specification and implementation of a message 

transmission module TM, whose function is to reliably deliver messages input by one 

user, called the sender, to another user, called the receiver. Messages should be 

delivered in the order in which they are sent, and should not be subject to loss or 

duplication. The message transmission module therefore behaves as a FIFO buffer 

between the sender and the receiver. The interesting part of this example is how the 

reliable FIFO buffer behavior of the message transmission module is Implemented by a 

transmission module implementation TMI, which consists, in part, of unreliable 

transmission line components. This is accomplished through the use of a send protocol 

module and a receive protocol module, which together implement the alternating bit 
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protocol [Bartlett69]. 

The alternating bit protocol is a standard example for which correctness proofs in 

varying styles have been given by other researchers. Most analyses treat only safety 

properties, however the proofs given by Hailpern and Owicki [Hailpern80] and Lamport 

[Lamport83] treat liveness properties of the protocol in addition to safety properties. 

The major deficiency of Hailpern and Owicki's treatment is the unstructured and 

apparently ad hoc nature of the specifications and the correctness proof. It is difficult to 

discern from their work very much in the way of a general method (with the exception of 

their use of history variables, which can be seen as a special case of the state-transition 

approach espoused here) likely to be applicable to other examples. In contrast, the 

specifications and correctness proof given below are an instance of a general strategy, 

which is embodied in the state-transition approach to specification, the use of rely- and 

guarantee-conditions, and the Correctness Theorem. 

Of the extant proofs of the correctness of the alternating bit protocol, that of 

Lamport [Lamport83] is perhaps the most similar to the one given here. The modules 

are specified in a state-transition style quite like that proposed here. It is possible to 

identify portions of Lamport's proof that correspond to the proof of invariance of tha 

abstraction relation and implementation invariant given below. The major difference 

between Lamport's proof and the one given here is in the statement and proof of the 

liveness (i.e. validity) properties. Lamport's liveness specifications for the send protocol 

module take the form: "If the send protocol module has an unprocessed message, then 

it will eventually give a packet containing that message to the unreliable transmission 

medium for transmission to the receive protocol module;" "If a correct 

acknowledgement is received by the send protocol module, then eventually the protocol 

will progress to the next unprocessed message;" etc. These are ''low-level" 

specifications that can be thought of as essentially a set of assertions that might appear 

in an assertional proof that a particular program satisfies the specification. In contrast, 

the specifications given here are of the form: "If the send protocol module can rely on 

the fact that sufficiently many transmissions of packet p will eventually result in the 

receipt of an acknowledgement for packet p, then it guarantees eventually to process 

every message given to it as input." This is a "higher-level" specification that states 

what the send protocol module accomplishes without detailing a chain of intermediate 

steps by which it is. accomplished. 
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A feature that distinguishes the proof presented here from previous proofs, is that 

the proof here is to a great extent independent of the precise assumptions on the 

reliability of the transmission line components. The specifications of the transmission 

line module are expressed in the form: "If a message m is transmitted according to 

certain conditions Xmit(m), then eventually m will be delivered according to conditions 

Dlvr(m)." For concreteness, we use "m is transmitted repeatedly, without intervening 

transmission of any different message m '" for Xmit(m}, and a symmetric condition for 

Dlvr(m}. However, Xmit(m) and Dlvr(m) can easily be replaced with alternative 

conditions without change to the proof structure. 

11.10.1 Specification of the Message Transmission Module 

The interface of the message transmission module TM consists of two kinds of 

events: those of the form TMJn:m, in which message mis presented to the transmission 

module by the sender, and events of the form TM_out:m, in which message m is 

delivered by the transmission .module to the receiver. We wish to state that the 

tr;:in43rnis~ion modL•le ctelivers m'?ssages in FIFO order without loss "'r duplication. We 

can think of the state of the transmission module as a sequence of the messages input 

by the sender but not yet delivered to the receiver. Equivalently, and for our purposes 

more conveniently, the state of the transmission module can be thought of as a pair 

<inq, outq> of sequences of messages, where inq represents the entire history of 

messages that have ever been input to the transmission module by the sender, and outq 

represents the entire history of messages that have ever been output to the receiver by 

the transmission module. The sequence of messages sent but not yet delivered by the 

transmission module is represented, in this alternative state set, by the sequence 

inq-outq. 

Based on this selection of state set, let us now derive a precise specification of the 

transmission module. 

Let Values be a finite set of message values, given as a parameter. The interface of the 

transmission module is defined as follows: 

Events™ = {>.} + [TM_in: Values + TM_out: Values]. 

In TM = {>.} + [TM_in: Values] 

Out™ = {>.} + [TM_out: Values]. 

The state set for the transmission module is defined by: 



-183 · 

States™ = [inq: Seq[Values] x outq: Seq[Values]]. 

If q E States™, then we write q{inq-outq) as an abbreviation for q(inq) -q(outq). 

In an initial state for the transmission module, the queue is empty. 

lnitTM(q) = q(inq) = q(outq). 

The state transition relation TransTM is defined by precondition/next-state 

predicate pairs as follows: 

An input event with message m can occur at any time, and causes message m to be 

appended to the end of inq. 

(TM_in) PreTM • .in(q, e, m) = e = TM_in:m 

= r = q[(q(inq))•m/inq] 

An output event with message m can occur only if there is a message that has been sent 

but not yet delivered, and mis the first such message. The effect is to append m to the 

end of outq. 

rr• A "'' ,+, o..... (q c m) 
' • • • ,_....,.,,.. "1 • • '-'TM_out ' ' = a ::: TM_out:m "q(outq) < q(lnq) A 

m = (q(inq-outq)(O) 

= r = q[(q(outq))•m/outq]. 

We wish the validity condition for the transmission module to capture the 

requirement that every message sent is eventually delivered. This is captured by the 

definition below, which states that, given any prefix s of inq, there is eventually a later 

time at which sis also a prefix of outq. 

Valid™ = Rely TM - Guar TM 

where 

Rely™ = true 

Guar™ e □{VsESeq[Values])(s < Now(inq) - ◊{s S Now{outq))). 

11.10.2 Implementation of the Transmission Module 

Figure 4 shows the implementation of the transmission module by a send protocol 

module SP, a receive protocol module RP, a sender-to-receiver transmission line 

module SRTL, and a receiver-to-sender transmission line module RSTL. Messages 

received from the sender by the send protocol module (an "in" event) are placed in a 

queue for transmission to the receive protocol module. When this queue is nonempty, a 
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packet consisting of the first message in the queue and a current boolean sequence 

number is transmitted (via a "pkt_out" event) by the send protocol module SP over the 

transmission line SRTL. In contrast to the reliable transmission module specified in the 

preceding section, the transmission line module is inherently unreliable, and might lose 

or duplicate messages. We require, however, that the transmission line not reorder 

messages. Since messages might be lost, in general it will be necessary for the send 

protocol .module to transmit the same packet a number of times before it is delivered to 

the receive protocol module. Thus the send protocol module continues to send the 

packet until an acknowledgement for the sequence number it contains is received (an 

"ack._in" event) over the transmission line module RSTL. Receipt of a correct 

acknowledgement by the send protocol module causes the first message to be removed 

from its queue. In addition the send protocol module complements its sequence 

number. 

When a packet arrives at the receive protocol module (via a "pkt_in" event), it is 

checked to see if its sequence number is current. If the sequence number is current, 

then th.e message is extrar:tP.rl Rnrt pl-R~e.rf in A q1_1e1.1e of messeges to be delivered to the 

receiver. Also, the sequence number expected by the receive protocol module is 

complemented. The receive protocol module ignores packets that do not contain the 

current sequence number. The receive protocol module transmits acknowledgem'3nts 

for the most recently received packet over the transmission line module RSTL (via 

"ack_out" events). Whenever the queue of messages to be delivered to the receiver is 

nonempty, then a message can be removed and sent to the receiver (via "out" events). 

11.10.3 Specification of the Transmission Line Module 

The interface of the transmisssion line module contains events of the form 

TL_Jn:m, which correspond to the presentation of message m for transmission, and of 

the form TL_out:m, which correspond to the delivery of message m to its destination. 

Thus, the interface of the transmission line module TL is isomorphic to that of the 

message transmission module. The difference between the two modules lies in the fact 

that, whereas the transmission module guarantees to deliver each message exactly 

once, the transmission line module is permitted to lose or duplicate messages any 

number of times. We require, however, that the transmission line module not reorder 

messages. Also, we require that repeated input of messages to the transmission line 
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Fig. 4. Transmission Module Implementation 

Sender 

Transmission 

Module 

module will eventually cause messages to be delivered. 

We will use the same state set for the transmission line specification as ~ used for 

the transmission module specification. However, the int\llti~ meani~gs of the 

components lnq and outq of the state are significantly changed, as Is the state-transition 

relation and validity condition. For the transmission line module, the sequence lnq 

represents a sequence of messages, each of which is destined to be delivered at least 

once. However, each message in lnq might be delivered more than once. The 

sequence outq represents the messages in inq, each of which has already had all its 

copies delivered, and will therefore never be delivered again. The state transition 

relation is modified to permit message loss and duplication as follows: The possibility of 

message loss Is captured by the fact that input events are permitted either to produce 

no state change (corresponding to the loss of the associated message) or to append the 

message exactly once to the end of inq (indicating that the message is destined to be 

delivered eventually at least once). The possibility of message duplication is captured 

by the fact that output events are permitted either to ~uce no state change 

(corresponding to the duplication of the message just delivered) or to add the message 
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to outq (corresponding to the delivery of the final copy of the message). 

Note that the preceding description is only one of many possible ways of 

presenting the same transmission line specification. For example, we could have 

captured the possibility of message loss or duplication by stating that the occurrence of 

a TL.Jn:m event causes the message m to be appended k times to inq, where k is a 

nondeterministically chosen natural number. Occurrence of a TL_out:m event would 

then be possible only if m is the first element of inq not also in outq. and would cause m 

to be appended precisely once to outq. The transmission line specification is an 

example of an indeterminate specification (see Section 6.2), which means that a single 

observation can be produced in more than one computation. Although we could give a 

determinate transmission line specification equivalent to the indeterminate version used 

here, the use of an indeterminate specification seems more natural . 

. We now make the above informal specification more precise. As in the case of the 

transmission module specification, let Values be a finite set of message values, given as 

a parameter. Define the interface of the transmission line module as follows: 

Events'L = p.J + [TL_in: Values+ TL_out: Values]. 

In TL = {A} + [TL_in: Values] 

OutTL = {A} + [TL_out: Values] 

Define the state set of the transmission line module by: 

States TL = [inq: Seq[Values] X outq: Seq[Values]]. 

In an initial state, the transmission line queue is empty. 

lnitTL(q) = q(inq) = q(outq). 

The state-transition relation Trans TL is defined as follows: 

An input event with message m can occur at any time, and either causes no change in 

state (the message is lost) or appends the message to the end of the queue (the 

message is destined to be delivered). 

(TL_in) PreTL..in(q, e, m) = e = TLin:m 

NextTL..in(q, ,, m) = r = q v, = q[(q(inq))•m/inq] 

An output event with message m can occur only if there is a message that has been sent 

but for which the last copy has not yet been delivered, and m is the first such message. 

The message mis either appended to outq (corresponding to the last copy of m being 
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delivered), or there is no state change (corresponding to the duplication of m). 

(TL_out) PreTLout(q, e, m) = e = TL_out:m "q(outq) < q(inq) A 

m = (q(inq-outq))(O) 

NextTL_001(q, ,, m) = r = q v, = q[(q(outq))•m/outq]. 

The validity condition for the transmission line module should express the 

requirement that, for each message m, if the transmission of m satisfies certain minimal 

conditions (e.g. that m is transmitted repeatedly, without intervening transmission of 

other messages), then the transmission line module will ensure that m will eventually be 

delivered according to certain conditions (e.g. m will eventually be delivered repeatedly, 

without intervening transmission of other messages). Formally, 

ValidTL = RelyTL - GuarTL 

Rely TL a true 

GuarTL = □(VmEValues)(XmitTL(m) - ◊OtvrTL(m)), 

where XmitTL(m) describes the conditions required on the transmission of message m 

and OlvrTL(m) describes the corresponding conditions according to which m will be 

deliver~. Aside from the reri11irAmP.nt th;:tt the re.suiting sp13Cification be consistent, 

there is a reasonable amount of flexibility in the choice of the conditions XmitTL(m) and 

DlvrTL(m). We will see tater that the particular choice of conditions does not 

significantly affect the proof of correctness of the transmission module implementation, 

as tong as the conditions XmitTL(m) and DlvrTL(m) interact properly with corresponding 

conditions appearing in the specifications for the send and receive protocol modules. 

For concreteness though, we make the following definitions: 

XmitTL(m) = □◊(Occurs = TL_in:m)" 

□(Vm '€Values)(Occurs =. TLin:m ' - m' = m). 

DlvrTL(m) a □◊(Occurs = TL_out:m) A 

D(Vm '€Values)(Occurs = TL_out:m' - m' = m). 

Intuitively, the condition XmitTL(m) states that the message mis transmitted repeatedly, 

without any transmission of other messages m '. The condition DtvrTL(m) states that the 

message m is delivered repeatedly, without any delivery of other messages m '. 
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11.10.4 Specification of the Send Protocol Module 

The send protocol module SP interfaces between the sender and the SRTL and 

RSTL transmission line modules. Its function is to implement one half of the alternating 

bit transmission protocol. The interface of the send protocol module consists of three 

kinds of events: SP Jn:m, which represents the receipt of message m from the sender, 

SP _pkt_out:p, which represents the transmission of packet p over the unreliable 

transmission line SRTL, and SP _ack_in:b, which represents the receipt of an 

acknowledgement for sequence number b from the unreliable transmission line RSTL. 

The state of the send protocol consists of three components: a sequence inq of all 

messages that have ever been received from the sender, a sequence outq of all 

messages that have been acknowledged by the receive protocol module, and a boolean 

component sn, which records the current sequence number. Choosing outq to be the 

sequence of acknowledged messages, rather than the sequence of all messages 

transmitted to the SRTL transmission line, allows us to obtain a simpler correctness 

proof than that presented by Hailpern and Owicki [Hailpern80]. In that paper, the use of 

the actual history of messages transmitted requires the correctness proof to define and 

reason about certain functions whose purpose is essentially to extract the history of 

acknowledged messages from the history of all transmitted messages. 

Informally, the send protocol module behaves as follows: Occurrence of a 

SP Jn:m event causes the message m to be appended to inq. When there is a message 

to be sent, and processing of all previous messages has been completed, the message 

is paired with the current sequence number to form a packet p, which is then given to 

the unreliable transmission line SRTL to be transmitted to the receive protocol module. 

The send protocol module continues to transmit the packet p until an acknowledgement 

for its current sequence number arrives over the unreliable transmission line RSTL. 

When a correct acknowledgement arrives, the message acknowledged is appended to 

outq, signifying that it has been successfully delivered, and the current sequence 

number is complemented. 

More precisely, let Values be a finite set of message values, given as a parameter. 

The interface of the send protocol module is defined as follows: 

EventsSP = {>,} + [SP _in: Values + SP _pkLout: Pkts + SP _ack_in: Bool] 

lnSP = {>.} + [SP _in: Values + SP _ack_in: Bool] 
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OutSP = {>.} + [SP _pkt_out: Pkts] 

Pkts = [msg: Values x sn: Bool], 

where Pkts is the set of packets. The state set for the send protocol module is defined 

by: 

States5P = [inq: Seq[Values] x outq: Seq[Values] x sn: Bool]. 

In an initial state, the queue is empty, and the sequence number is false. 

lnitSP(q) = q(inq) = q(outq) /\ q(sn) = false. 

The state-transition relation TransSP is defined as follows: 

An SP Jn:m event can occur at any time, and causes the message m to be appended to 

lnq. 

(SP_ln) PreSP in(q, e, m) 

Nextgp ln(q, r, m) 

= e = SP_in:m 

= r = q[(q(inq))•m/inq] 

An SP _pkt_out:p event can occur only If there is a message that has been received from 

the sender but not yet successfully transmitted to the receiver, p(msg) is the first such 

message, and p{sn) is the current sequence number. There is no effect on the state. 

{SP _pkt_out) PreSP__pkLout(q, e, p) = e = SP _pkt_out:p /\ q{outq) < q{inq) /\ 

p{msg) = {q{inq-outq)){O) /\ p{sn) = q(sn). 

NextSP__pkLout{q, '• P) =' = q. 

An SP _ack_in event for acknowledgment b can occur at any time. If b does not match 

the current sequence number, or if there is no message currently being transmitted, 

then there is no change in state. If b does match the current sequence number and 

there is a message currently being transmitted, then this indicates that the message has 

been successfully transmitted. In this case, the current message is appended to outq, 

and the sequence number is complemented. 

(SP _ack_in) PreSP_ack..in{q, e, b) = e = SP _ack_in:b 

Nextgp_ack..in{q, ,, b) = ({q(inq) = q{outq) vb ~ q(sn)) -+ r = q) /\ 

((q{outq) < q{inq) /\ b = q(sn)) -+ 

r = q[ ,(q(sn))/sn, 

(q{ outq)) •q{inq-outq)(O) I outq]). 
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With the validity condition for the send protocol module, we would like to capture 

the following: If the send protocol can rely on the fact that repeated transmissions of a 

packet eventually result in the repeated receipt of acknowledgements for that packet, 

then it guarantees that every message appearing in inq will eventually also appear also 

in outq. This requirement is stated in rely-/guarantee-condition form as follows: 

Valid8P = RelySP - Guar8P 

RelySP = □(VpEPkts)(XmitSP(p) - ◊Dlvr8P(p(sn))) 

Guar8P = D(VsESeq(Values])(s < Now(inq) -+ ◊(s < Now(outq))), 

where the formula XmitSP(p) is the formalization of the statement: "packet p is 

transmitted repeatedly, without any transmissions of other packets," and the formula 

Dlvr8P(b) is the formalization of "acknowledgements for sequence number b are 

received repeatedly, without receipt of any other acknowledgements." These formulas 

must be defined to be compatible (in a way that is made precise by Lemma 11.6 below) 

with the formulas XmitTL(m) and DlvrTL(m) in the transmission line specification. Thus, 

XmitSP(p) = □◊(Occurs = SP _pkt_out:p) A 

D(Vp 'EPkts)(Occurs = SP _pkLout:p' -+ p' = p) 

Dlvr8P(b) = □◊(Occurs = SP _ack..ln:b) A 

□(Vb 'EBool)(Occurs = SP_ack_in:b ' - b' = b). 

11.10.5 Specification of the Receive Protocol Module 

The receive protocol module interfaces between the SRTL and RSTL transmission 

lines, and implements the complementary half of the transmission protocol. It operates 

as follows: The state of the receive protocol module consists of two sequences, inq and 

outq, of messages, and a boolean sequence number sn. The sequence inq records the 

history of valid messages (with duplications removed) that have been received from the 

unreliable.transmission line SRTL. The sequence outq records the history of messages 

that have been delivered to the receiver. Initially the sequence number sn in the receive 

protocol module's state matches the sequence number in the state of the send protocol 

module. The receiver waits for packets to be delivered by the SRTL transmission line. If 

a received packet has a sequence number that does not match the current sequence 

number, then it is ignored. If a received packet has a sequence number that matches 

the current sequence number, then the message Is extracted from the packet and 

placed at the end of inq. In addition, the current sequence number is complemented. 

At any time, the receive protocol module can transmit acknowledgements for the 
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complement of its current sequence number (i.e. for the sequence number of the last 

valid packet received). 

As in the previous specifications, let the finite set Values be given as a parameter. 

Define the interface of the receive protocol module as follows: 

EventsRP = {A} + [RP _pkt_in: Pkts + RP _out: Values + RP _ack..out: Bool] 

lnRP = {A} + [RP _pkLin: Pkts] 

OutRP = {A} + [RP _out: Values + RP _ack_out: Bool] 

Plds = [msg: Values X sn: Bool]. 

Define the state set by: 

StatesRP = [inq: Seq[Values] x outq: Seq[Values] x sn: Bool]. 

In an initial state, both queues are empty, and the sequence number is false. 

lnitRP(q) = q(inq) = q(outq) A q(sn) = false 

The pairs that define the state transition relation TransRP are given below. 

A RP _pkLin event with packet p can occur at any time. If the sequence number in p 

does not match the current sequence number, then there is no effect on the state. If the 

sequence number in p does match the current sequence number, then the message 

contained in p is appended to inq, and the current sequence number is complemented. 

(RP _pkt_in) PreRP..PkUn(q, e, p) = e = RP _pkLin:p 

NextRP ..PkLin(q, ,, p) = (p(sn) ~ q(sn) - r = q) " 

(p(sn) = q(sn) - r = q[-,q(sn)lsn, 

(q(inq))• p(msg)/inq]) 

A RP _ack_out event can occur only for the complement of the current sequence 

number. There is no effect on the state. 

(RP _ack..out) PreRP _ack..out(q, e) = e = RP _ack..out:(-,q(sn)) 

Nex~P..ack..out(q, r) a r = q 

An RP _out event with message m can occur only if there is a message in inq that has not 

yet appeared in outq, and m is the first such message. The effect is to append m to 

outq. 

(RP_out) 

Nextou1(q, r, m) 

= e = RP _out:m /\ q(outq) < q(inq) A 

m = (q(inq-outq))(0) 

= r = q[(q(outq))•m/outq] 
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The validity condition for the receive protocol module should capture the following 

two requirements: (1) If packet p is received repeately, then eventually 

acknowledgements. for the sequence number contained in that packet will be 

transmitted repeatedly; and (2) Every message that appears in inq will eventually appear 

in outq. Formally, 

ValidRP = RelyRP - GuarRP 

RelyRP = true 

GuarRP = □(VpEPkts)(DlvrRP(p) - ◊XmitRP(p(sn))) A 

□(VsESeq[Vafues])(s < Now(inq) - ◊(s < Now(outq))), 

where, as in the previous specifications, DlvrRP(p) formalizes the statement, "Packet p is 

received repeately, without any receipt of other packets" and XmitRP(b) formalizes the 

statement, "Acknowledgement b is transmitted repeately, without any transmission of 

other packets." These formulas are defined as follows: 

DlvrRP(p) = □◊(Occurs = RP _pkLin:p) A 

□(Vp '€Pkts)(Occurs = RP _pkUn:p' - p' = p) 

XmitRP(b) = □◊(Occurs = RP _ack_out:b) A 

□(Vb '€Bool)(Occurs = RP _ack_out:b' - b' = b) 

11.10.6 The Transmission Module Implementation Algebra 
I 

In this section we define the transmission module implementation algebra A™1• 

Let the finite set Msgs of message values be given as a parameter. Define 

Pkts = [msg: Msgs x sn: Bool]. 

The index set for the interconnection is the set {SP, RP, SRTL, RSTL}, corresponding to 

the send protocol, receive protocol, send-protocol-to-receive-protocol transmission 

line, and receive-protocol-to-send-protocol transmission line component modules. 

Define the embedded algebras A abs, ASP, ARP' ASRTL' and ARSTL as follows: 

A abs: is the message transmission module event/state algebra A™, with the 

parameter set Values instantiated as the set Msgs. 

ASP: is the send protocol module event/state algebra ASP, with parameter 

Values instantiated as the set Msgs. 

ARP: is the receive protocol module event/state algebra ARP, with 

parameter Values instantiated as the set Msgs. 

ASRTL: is the transmission fine module event/state algebra A1L, with 

parameter Values instantiated as the set Pkts. 
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is the transmission line module event/state algebra ATL, with 

parameter Values instantiated as the set Bool. 

Let the composite interface for the transmission module interconnection be 

defined as follows: 

Events ™1 = {A) + [in: Msgs + out: Msgs + pkt_out: Pkts + pkt_in: Pkts + 

fn™1 

Out™' 

ack_out: Bool + ack_in: Bool] 

= {A) + [in: Msgs] 

= {A) + (Events™1-ln™1) 

Intuitively, events in:m and out:m represent, respectively, the receipt of message m from 

the sender and the delivery of message m to the receiver. Events pkt_out:p and pkt.Jn:p 

represent, respectively, the presentation of packet p by the send protocol module to the 

SRTL transmission line and the receipt of packet p by the receive protocol module from 

the SRTL transmission line. Events ack_out:b and ack.Jn".b represent, respectively, the 

presentation of acknowledgement b by the receive protocol module to the RSTL 

transmission line and the receipt of acknowledgement b by the send protocol module 

tram the RSTL tranernief:ion !!ne. 

Define the abstraction map a ™1, and the decomposition map~™' as follows: 

a™1(e) = TM_in:m if e = in:m 

= TM_out:m if e = out:m 

= A otherwise. 

8~1(e) = SP_in:m If e = in:m 

= SP _pkt_out:p if e = pkt_out:p 

= SP _ack_in:b If e = · ack_in :b 

=A otherwise. 

8~1(e) = RP_out:m if e = out:m 

= RP _pkt_in:p if e = pkt_in:p 

= RP _ack_out:b if e = ack_out:b 

=A otherwise. 

8~~L(e) = TL_in:p if e = pkt_out:p 

= TL_out:p if e = pkt_in:p 

=A otherwise. 



8~~L(e) = TL_in:b 

= TL_out:b 

=A 

11.10.7 Proof of Correctness 
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if e = ack_out:p 

if e = ack_in:p 

otherwise. 

In this section we prove the correctness of the implementation 

(jATMI, sabs' <S;>;E{SP,RP,RSTL,SRTL}>' where sabs is defined by <Aabs' Valid™>, and SSP, 

SRP' SRSTL' SsRTL are defined by <ASP, ValidSP>, <ARP' ValidRP>, <ARSTL' ValidTL>, and 

<ASRTL' Valid1L>, respectively. 

Invariance 

The correctness of the transmission module implementation depends only on the 

invariance of the following: 

(1) q
8

b5(inq) = qSP(inq) /\ q
1
bs(outq) = qRP(outq) 

(2) q8p(outq) < qRP(inq) S q8p(inq). 

(.;()ndition (1) is the abstraction relation AbsTMi(q), and states that the abstract 

transmission module's inq is identical to the inq for the send protocol module, and that 

the abstract transmission module's outq is identical to the outq for the receive protocol 

module. Condition (2) is Lemma 11.4 below, and says that the receive protocol module's 

inq is always an extension of the send protocol module's outq and a prefix of the send 

protocol module's inq. 

Condition (2) is not inductive as stated, and must be strengthened to permit an 

inductive proof of invariance. We therefore define the implementation invariant 

lnv™1(q) by 

lnv™1(q) = Rep™1(q) /\ Abs™1(q), 

where Rep™1(q) is the representation invariant and Abs™1(q) is the abstraction relation. 

The abstraction relation is: 

Abs™1(q) = q8bs(inq) = q8p(inq) /\ qabs(outq) = qRP(outq). 

The representation invariant Rep™1(q) is defined as follows: 

Rep™1(q) = Queue(q) "(Start(q) V Send(q) V Flip(q) V Ack(q)), 

where 
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and the formal definitions of Start, Send, Flip, and Ack will be given below. This 

invariant says that, at any instant of time, the histories inq and outq tor the send and 

receive protocol mc;>dules satisfy certain prefix relationships captured by the predicate 

Queue. In addition, the transmission system is always in one of four kinds of states, 

corresponding to the four predicates Start(q), Send(q), Flip(q), and Ack(q). The 

situations covered by these four predicates, and how they evolve during execution, will 

now be described. 

In a state that satisfies Start, the send and receive protocol modules have the same 

sequence number, the send protocol module's outq and the receive protocol module's 

inq are identical, and no new packets or acknowledgements are currently in transit over 

the transmission lines. The predicate Start is satisfied by all initial states. 

States satisfying Start give rise to states satisfying Send when there is an 

unprocessed message at the send protocol module that has been output to (but 

possibly lost by) the transmission line RSTL. In a state that satisfies Send, the send and 

receive protocol modules have the same current sequence number, the outq of the send 

protocol module and the inq of the receive protocol module are identical, there is an 

unprocessed message at the send protocol module, there may be packets containing 

this message in transit over the transmission line SRTL, and there are no new 

acknowledgements in transit over RSTL. 

States satisfying Send give rise to states satisfying Flip when the first packet 

containing an unprocessed message arrives at the receive protocol module. In a state 

that satisfies Flip, the send and receive protocol modules have complementary current 

sequence numbers, the inq of the receive protocol module is equal to the outq of the 

send protocol module with the newly arrived message appended, and all packets in 

transit over SRTL or acknowledgements in transit over RSTL are old in the sense that 

they are for a sequence number that is not the one currently expected by the send 

protocol module. 

States satisfying Flip give rise to states satisfying Ack when the first 

acknowledgement for the newly arrived packet is transmitted over RSTL. In a state 

satisfying Ack, the send and receive protocol modules have complementary current 

sequence numbers, the inq of the receive protocol module is equal to the outq of the 

send protocol module with the still-unacknowledged message appended, all packets in 
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transit over SRTL are old, but there may be new acknowledgements in transit over 

RSTL. 

To complete the cycle, states satisfying Ack give rise to states satisfying Start 

when the first new acknowledgement is received by the send protocol module. 

For the formal statement of these predicates, it is convenient to define some 

auxiliary predicates, which describe possible states of the transmission lines SRTL and 

RSTL. 

The predicate SRTL_old is true of a state iff all packets in the SRTL transmission line are 

old, in the sense that they are for the opposite sequence number than the one currently 

expected by the receive protocol module. 

SRTL_old(q) = {Vn< lqSRTL{inq-outq)l}(qSRTL{inq-outq){n){sn) * qRP{sn)) 

Similarly, the predicate RSTL_old is true of a state iff all acknowledgements in the RSTL 

transmission line are old, in the sense that they are for the opposite sequence number 

thAn th~ one expect~ by the ~nc:f p.r,:,tocol module. 

RSTL_old{q) = {Vn < lqRSTL {inq-outq)l)(qRSTL {inq-outq)(n){sn) * qSP{sn)) 

The predicate SRTL_new is true of a state iff the SRTL transmission line queue consists 

of a (possibly empty) sequence of old packets, followed by a (possibly empty) sequence 

of new packets, each of which contains the first unprocessed message held by the send 

protocol module. 

SRTL_new{q) = (3m < lqSRTL(inq-outq)l)(Vn < l<lSRrL{inq-outq)I) 

((n < m - qSRTL {inq-outq)(n)(sn) * qRP(sn)) A 

{n > m - qSRTL(inq-outq)(n) = 

<msg: qSP(inq-outq)(O), sn: qRP(sn)>)) 

Similarly, the predicate RSTL_new is true of·a state iff the RSTL transmission line queue 

currently consists of a {possibly empty) sequence of old acknowledgments, followed by 

a (possibly empty) sequence of new acknowledgements. 

RSTL_new(q) = (3m < lqRSTL{inq-outq)l)(Vn < lqRSTL(inq-outq)I) 

((n < m - qRSTL (inq-outq)(n) * qSP(sn)) A 

(n > m - qRSTL {inq-outq){n) = qSP(sn))). 
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The formal definitions of the predicates Start, Send, Flip, and Ack are as follows: 

Start(q) = q5p(sn) = qRP(sn) " qsp(outq) = qRP(inq) A 

SRTL_old(q) " RSTL_old(q) 

Send(q) = qSP(sn) = qRP(sn) "q8p(outq) < q8p(inq) "qSP(outq) = qRP(inq) A 

SRTL_new(q) A RSTL_old(q) 

Flip(q) = qSP(sn) * qRP(sn) A Qgp(outq) < qSP(inq) A 

(qgp(outq))qSP(inq-outq)(O) = qRP(inq) A 

SRTL_old(q) A RSTLold(q) 

Ack(q) = q8p(sn) -:1: qRP(sn) " qsp(outq) < qSP(inq) " 

(qSP(outq))q8p(inq-outq)(O) = qRP(inq) A 

SRTL_old(q) A RSTL_new(q). 

We now consider the proof that lnv™1(q) is invariant. 

(Basis): F (\'qEStates™1)(1nit™1(q) - lnv™1(q)). 

If q is an initial state then all queues are empty and the sn components of the state of 

both the send protocol module and the receive protocol module have value false. It Is 

easily verified from this that Abs1M1(q) "Queue(q) "Start(q) holds. 

(Induction): F (\'q,rEStates™', eEEvents™1)(Trans™1(q, e, r) - (lnv™1(q) - lnv™1(r))). 

Suppose that lnv™1(q) holds and that Trans™1(q, e, r) holds. 

We first examine the problem of showing that Abs ™1(,) holds. Abs™'(,) is easily 

seen to be true, since the only events that affect components of the state upon which 

Abs™' depends are the events in:m and out:m. Comparison of the definitions of 

Trans™, Trans8P, and TransRP shows that the events in:m and out:m maintain the 

desired correspondence between the abstract module state and the states of the send 

and receive protocol modules. 

To see that Queue(,) holds, note that the definitions of TransSP and TransRP imply 

that the inq and outq components of the states of the send and receive protocol 

modules can only change in one of the following two ways: 
- A new message is appended to the end of inq. 

- The first element of inq-outq is appended to the end of outq. 

Neither of these two kinds of changes can cause outq not to be a prefix of inq, and thus 

Queue(,) must hold. 
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To show that Start(,) v Send(,) v Flip(,) v Ack(r) holds, we claim that all events 

preserve the truth of the predicates Start, Send, Flip, and Ack, except in the following 

cases: 

- If Start(q) is true and e = pkt_out:p, then Send(r) is true. 

- If Send(q) is true and e = pkt_in:p, with p(sn) = qRP(sn), then Flip(,) is true. 

- If Flip(q) is true and e = ack_out:b, then Ack(r) is true. 

- If Ack(q) is true and e = ack_in:b, with b = qSP(sn), then Start(,) is true. 

It is a straightforward, but tedious process to verify the truth of this claim by exhaustive 

case analysis. 

The following consequence of the invariance of Inv TM1(q) is the crucial fact used in 

the maximality and validity proofs below. 

Lemma 11.4 - The following are invariant for the transmission module implementation: 

(a) qsp(outq) S qRP(inq) 

(b) qRP(inq) s qSP(inq) 

Proof - The invariance of Start(q) v Send(q) v Flip{q) v Ack(q) implies the invariance of 

(1) qRP(inq) = qSP(outq) v 

(qgp(inq) > q6p(outq) A qRP(inq) = (.qSP(outq))qSP(inq-outq)(0)). 

Suppose the first disjunct of (1) holds, that is qSP(outq) = qRP(inq). Then (a) is 

immediate. The invariance of Oueue(q) implies that q8p(outq) < qSP(inq), thus yielding 

(b). Now suppose that the second disjunct of (1) holds. It is a fact about finite 

sequences that if s, s' are finite sequences, and s > s ', then s > s 'm, where m = 

(s - s ')(0). This fact permits us to conclude, from the second disjunct of (1 ), that 

qSP(inq) > (qSP(outq))qSP(inq-outq)(0) = qRP(inq) > qSP(outq), yielding (a) and (b). I 

Maximality 

The maximality verification condition is: 

I= (VqEStates™1, eEEventsTM1)(1nv™1(q) A EnabledSP(q, e) A EnabledRP(q, e) A 

EnabledSRTL(q, e) A EnabledRSTL(q, e) 

- Enabled8bs(q, e)). 

Examination of the definition of Trans™ shows that Enabledabs(q, e) is identically true 

unless e = out:m. Thus it suffices to show that, for all q E States™' and all m € Msgs, if 

lnv™1(q) and EnabledRP(q, out:m) hold, then Enabledabs(q, out:m) holds as well. 
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Suppose now that lnvTM1(q) and EnabledRP(q, out:m) hold. It suffices to show that 

(1) qSP(inq) > qRP(outq) 

holds, for then the assumption that lnv™1(q) (and hence Abs™1(q)) holds implies that 

q
8

b
5
(inq) > q

8
b

5
(outq) holds, which in turn implies that Enabledabs(q, out:m) holds. 

By definition of EnabledRP(q, out:m), we know that 

(2) qRP(outq) < qRP(inq) A qRP(inq-outq)(0) = m 

holds. Informally, if e = out:m, then m must be the first message in the receive protocol 

module's inq, that has not yet been transferred to its outq. The truth of (1) follows from 

(2) and Lemma 11.4 (b). I 

Validity 

To prove that the validity verification condition holds for the transmission module 

implementation, we use Corollary 1.4. We use the well-founded partial ordering < on the 

set {SP, RP, RSTL, SRTL} that includes exactly the pairs SRTL < SP, RP< SP, and 

RSTL < SP. Under this ordering, hypotheses (1) and (2) of Corollary 1.4 are as follows: 

{fMil) · CompTMI t= ffGuai-SrJSP A (GuarR::-MRP A ffGuarTLJSRTL A IGuarTLJRsn -

(Guar™Jabs 

(TMl2) Comp™' I= (GuarTLlsRTL A ffGuarRPjRP A (GuarTLIRsTL - [RetySP)SP. 

These two conditions capture abstractly the important relationships between the validity 

conditions of the various modules. 

We now· prove that (TMl1) and (TMl2) are consequences of the module 

specifications. 

Lemma 11.5 - Condition (TMl1) holds for the transmission module implementation. 

Proof - Assume Comp™' and (Guar8'iSP and (GuarA'iRP' Using the definition of 

IGuar8PjSP, we have 

D(VsESeq[Msgs])(s < NowSP(inq) - ◊(s < NowSP(outq))). 

From this and Lemma 11.4 (a), we obtain 

D(VsESeq[Msgs])(s ~ NowSP(inq) - O(s < NowRP(inq))). 

Using the assumption (GuarRP]RP gives 

D{VsESeq[Msgs]){s < NowSP(inq) - O(s < NowRP(outq))). 

From an application of the invariance of AbsTMr, we conclude 
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□(VsESeq[Msgs])(s < Now abs(inq} - ◊(s :s; Now abs(outq))). I 

The proof of condition (TMl2} makes use of the following lemma, which expresses 

the principle that guided our choices for the definitions of the various Xmit and Dlvr 

formulas in the specifications above. 

Lemma 11.6 - The following hold for the transmission module implementation: 

t= ffXmitSP(p}ffSP ... ffXmit1L(p}DSRrL 

t= ff0Ivr5P(b)B8P - ffDlvr1L(b)DRsTL 

t= ffXmitRP(b}DRP - ffXmit1L(b}BRsTL 

t= ffDlvrRP(p}DRP - (DlvrTL(p})SRTL' 

Proof - Straightforward from the module specifications and the definition of the 

decomposition map .4 ™1• I 

Lemma II. 7 - Condition (TMl2} holds for the transmission module implementation. 

Pro"'f ~upp~o thot CompTMI "ValidTLu tr\/ar...iRPll ..,"d tr\/-,li,.fTL11 held • - • "'"' --.- • .,. ' u. " »SRTL' ll 11 ,l..1 iRP• .... U • ...... ,.. .IIRSTL ' 
Suppose, to obtain a contradiction, that -iffRelys~SP holds. From the definition of 

(Rely8PDsP' we know that 

(1) ◊(3p€Pkts)((XmitSP(p)D8P A O-iffDlvr5P(p(sn)))SP) 

holds. That is, eventually a point is reached after which the packet p is transmitted 

infinitely often, without intervening transmission of other packets, but infinitely many 

acknowledgements for the sequence number contained in p are not received by the 

send protocol module. From (1) and Lemma 11.6 we infer 

(2) ◊(3p€Pkts)(RXmit1L(p))SRTL A o-i10Ivr8P(p(sn)))SP). 

From (2) and the assumption that ffValid1LBSRrL holds, we deduce 

(3) ◊(3p€Pkts)(llDlvr TL(p)BSRTL A O-i(Dlvr5P(p(sn)))s,J. 

That is, packet p is delivered infinitely often to the receive protocol module, without 

intervening delivery of other packets, but infinitely many acknowledgements for the 

sequence number contained in p are not received by the send protocol module. From 

(3), another application of Lemma 11.6 shows 

(4) ◊(3pEPkts)(IDlv.-RP(p)DRP A □-i(Olvr5P(p(sn))JSP). 

From this, an application of BValidR~RP shows 

(5) ◊(3p€Pkts)(IXmitRP(p(sn})DRP A □-i(otvr5P(p(sn))J~-

That is, an acknowledgement for the sequence number contained in packet p is 
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repeatedly transmitted by the receive protocol module, but infinitely many 

• acknowledgements for p are not received by the send protocol module. Applying 

Lemma 11.6, [ValidTL]RSTL' and Lemma 11.6 again, shows that 

(6) ◊(3pE:Pkts)([Dlvr8P(p(sn))] 8p /\ O,[DlvrSP(p(sn))]
8

p). 

This is a contradiction, and we conclude that (TMl2) must hold. I 
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correct 44 
!-correct 114 

Correctness Theorem 58 
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!I-decomposition map 113 
canonical decomposition map 85 
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quasi-determinate 119 

embedding 85 
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event 38 

input event . 84 
null event 38 
output event 84 

event/state algebra 137 
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