
MIT/LCS/TR-342

FOUNDATIONS OF A THEORY OF SPECIFICATION

FOR DISTRIBUTED SYSTEMS

Eugene W. Stark

This blank page was inserted to presenie pagination.

Foundations of a Theory of Specification
for Distributed Systems

by

Eugene William Stark

B.E.S. The Johns Hopkins University
{1977)

· S.M. Massachusetts Institute of Technology
(1980)

Submitted to the Department of Electrical Engineering
and Computer Science In partial fufflUment

of the requirements for the degree ol

DOCTOR OF PHILOSOPHY

at the

. .
MASSACHUSETTS INST~TUTE OF TECHNOLOGY

August, 1984

~pyright Massachusetts Institute of Technology 1984

Signature of Author ____________________ _

Department of Electrical Engineering and Computer Science
August 24, 1964

Certified by ______________________ _

Prof. Nancy A. Lynch, Thesis Supervisor

· Accepted by, ______________________ _

Prof. Arthur C. Smith, Chairman •• E.E.C.S. Department Committee
on Graduate StudentS

-2-

Foundations of a Theory of Specification for Distributed Systems
by

Abstract

Eugene William Stark

Submitted to the
Department of Electrical Engineering and Computer Science
on August 24, 1984 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy.

This thesis investigates a particular approach, called state-transition specification,
to the problem of describing the behavior of modules in a distributed or concurrent
computer system. A state-transition specification consists of: (1) a state machine,
which incorporates the safety or invariance properties of the module, and (2) validity
conditions on the computations of the machine, which· capture the desired liveness or
eventuality properties. The theory and techniques of state-transition specification are
developed · from first principles to a point at which It is possible to write example
specitications,-to check the specifications tor consistency, and to perform correctness
~f~ I i,1ina thA ~ifi,:~~ ~ utitity of ~ te-:hrnq\199 is ~~..r!!!~ th!'OUgh
examples.

Major contributions.of the thesis include: (1) the definition of a semantic model
that incorporates hierarchy of abstraction and modular decomposition • fundamental
notions; (2) specification and proof techniques that smoothly handle both safety and
liveness properties; (3) techniques that use liveness properties stated In
rely-/guarantee-condition form to. obtain simple proofs of correctness; (4) an interesting
and useful notion of consistency for ~ons involving thleness properties.

Keywords: state-transition specification, verification, concurrency, hierarchy, modularity,
temporal logic, safety, liveness. rely/guarantee conditions

Thesis Supervisor: Nancy A. Lynch

Title: Associate Professor of Computer Science and Engineering

- 3-

Acknowledgements _

I am deeply indebted to my thesis adviser, Nancy Lynch, but for whom this thesis

would likely never have been completed. Nancy read many, many difficult drafts of this

work with enthusiasm and promptness that went far beyond the mere call of duty. She

always seemed to manage not only to identify the most troublesome portions of each

draft, but to make insightful suggestions for improvement as well. I am also grateful to

John Guttag, Barbara Liskov, and Albert Meyer for their suggestions on improving the

presentation. Discussions with Bill Weihl helped to formulate ideas during the early

stages.

In an entirely different category are my parents, Joan S. Stark and William L. Stark,

Jr., who made it seem natural that I should seek and complete graduate education, and

whose love and support during this endeavor I cannot adequately acknowledge. Julian

Stanley of Johns Hopkins made it possible for me to pursue the undergraduate portion

ct m;' cduc3tion 3.t ::m 3ccolcmtcd rote.

Finally, I would like to thank the chessplayers at Au Bon Pain in Harvard Square for

providing a much-needed diversion during the past year.

. 4-

CONTENTS

1. Introduction ... 6

1.1 Scope of the Thesis •.. .. .•.. ..•....•.. ...•... 7
1.2 An Example•........•....•..........•....•..................•...•.••........•... 8
1.3 Outline of the Thesis•....•........•...... 15
1.4 Related" Work •........•.••.•.•••.•••..•..••.•...•.•••..•••.••.••••.•••.••.•••••... 17

2. Framework for a Theory of Specification 38

2.1 Interfaces, Observations, and Behaviors 38
2.2 Abstraction, Decomposition, and Interconnection 41
2.3 Specification, Implementation, and Correctness 43

3. State-Transition Specifications 45

3.1 Subset Specifications•........•.....•••.•...•.. -46
3.2 Machines and Computations .. 48
3.3 Properties of Histories•.......••.... 50
3.4 State-Transition Specifications ... 52
3.5 The Correctnes,s Theorem•..•.........••....•...•..•.............. 54-
3.6 Possibilities Mappings•.••..................•...•...•......•.•...... 58
3.7 Rely-/Guarantee-Conditions .. 80

4. The Synchronizer Implementation•......... 66

4.1 Notation•.• •.... •.•. .. 66
4.2 Specification of the Synchronizer Module 67

i

4.3 Specification of the Synchronizer Component Module ... 69
4.4 Correctness of the Synchronizer Implementation 73

- 5 -

5. Consistency of Specifications 82

5.1 1/O-Systems _ .. 83
5.2 1/O-Behaviors and 1/O-Consistency 87
5.3 Machine Characterization of 1/O-Behaviors 88
5.4 Examples of 1/O-Behaviors ... 97
5.5 Composition of 1/O-Behaviors 107
5.6 Alternative Classes of Computable Behaviors 11 0

6. A Completeness Result 112

6.1 Specification Domains 112
6.2 Locally ,-consistent Subset SpecificaUons 116
6.3 Well-Formedness Properties of Specifications 117
6.4 The Completeness Theorem 120

......

7. Conclusion " 123

7.1 Summary ~ .. 123
7.2 Ideas for Future Work .. 124

Appendix I. Formal Specification and Proof ... 136

1.3 Event/State Algebras 137
1.4 Description of Event/State Algebras 140
1.5 Implementation Algebras 144
1.6 Proof Techniques ... 146
1.7 Rely-/Guarantee-Condition Proof Techniques 149
1.8 1/O-Consistency Proof Technique 150

Appendix II. Additional Examples 152

11.9 A Distributed Resource Management Algorithm 153
11.10 A Message Transmission System 180

Appendix 111. Index of Definitions 202

. 6.

1. Introduction

The purpose of this thesis is to investigate a particular approach, called

state-transition specification, to the problem of describing the behavior of modules in a

concurrent or distributed computer system. In the state-transition approach, the

desired behavior is described in terms of a kind of state machine whose computations

generate records of event occurrences, called observations. A state-transition

specification consists of two parts: (1) the definition of the state machine, which

incorporates the "safety" or invariance properties of the module, and (2) the definition

of some validity conditions on the computations of the machine, whose purpose is to

capture the desired module "liveness" or eventuality properties. A state-transition

specification defines a set of "acceptable" observations, namely the observations

produced by valid computations of the state machine. A module behavior satisfies such

a specification if the module behavior contains only acceptable observations.

The idea of describing module behavior with the help of state machines is not new,

having already been proposed in various forms by other authors, [e.g. Parnas72,

Yonezawa77, Lamport83]. However, previous work seems to be concerned primarily

with how to write module specifications, and how to use proof rules to prove the

correctness of implementations. The important issues pf what constitutes the meaning

of a specification, and what it means for an implementation to be correct, have not

received satisfactory treatment. As a result, it is impossib!e to answer important

questions such as: "What rules are sound for proving the correctness of an

implementation," and "When is a specification consistent?"

This thesis improves upon previous work by systematically developing the theory

and techniques of specification from "first principles" to a point at which it is possible to

write example specifications, to prove implementations correct, and to check

specifications for consistency. The theory incorporates an underlying semantic model

within which one can formulate language-independent definitions of the notions of

"implementation" and "correctness." The meaning of state-transition specifications is

defined in terms of the model, and all proof techniques are shown to be sound with

respect to the model.

. 7.

The major contributions of this thesis are:

(1) The definition of a semantic model that incorporates hierarchy of

abstraction and mopular decomposition as fundamental notions.

(2) Specification and proof techniques that smoothly handle both safety and

liveness properties.

(3) Techniques that use liveness properties stated in rely-lguarantee-condition

form to obtain simple proofs of correctness.

(4) An interesting and useful notion of consistency for specifications involving

liveness properties.

(5) Illustration of the utility of the ideas developed through specifications,

implementations, and correctness proofs for three examples:

(a) a synchronizer module, which is implemented by a ring-structured

network of synchronizer component modules,

(b) a resource management module, which is implemented by a

tree-structured network of local resource manager modules,

(c) a message transmission module, which is implemented by unreliable

transmission line modules, a send protocol module, and a receive protocol module,

which together obey the alternating bit protocol.

1.1 Scope of the Thesis

A specification is a piece of text whose purpose is to describe the desired

operation of a module in a computer system. Specifications form an integral part of a

"top-down" design method in which design proceeds by the successive decomposition

of a module to be implemented into a collection of interacting component modules

[Liskov79, Wirth71]. The purpose of specifications in such an approach is to serve as a

contract between the user and the implementer of a module. This helps to limit

complexity by permitting a system to be decomposed into modules of reasonable size,

such that each module depends only upon the specifications, and not the

implementations, of the modules with which it interacts.

To permit the possibility of rigorous reasoning about specifications, a specification

language should be given a formal semantics in terms of an underlying mathematical

semantic domain. In this thesis, we use the term behavior to refer to the elements of a

semantic domain, since the purpose of these elements is to serve as a mathematical

-8-

model of the behavior of a portion of a real-world computer system. The semantics of a

specification language describe how each specification denotes a set of behaviors that

satisfy the specification. If the semantics of a programming language are defined so

that each important program fragment denotes a behavior, then it is possible to derive

syntactic rules for proving that (the denotations of) program fragments satisfy (the

denotations of) specifications. The purpose of this thesis is not to propose particular

formal specification or programming languages, but rather to investigate a collection of

language-independent semantic concepts upon which particular specification and

programming languages might be based. We therefore assume that specification and

programming languages can have their meanings defined in terms of behaviors, and do

not concern ourselves with the precise method by which this is accomplished.

In this thesis, we are concerned with concurrent or distributed systems. By this we

mean systems that are most naturally viewed as a collection of independent,

communicating. modules, such that effects of concurrent operation of the various

modules form a significant part of the description of system behavior. This thesis is

primAri_ly r.oncerned with thA r.onr.11rrAnr.y "Rraci of distributed r.:ompllting; while the

model and techniques do not rule out the possibility of treating other aspects such as

node crashes and network failures, no special structure to deal with these problems is

included. The techniques of this thesis have been developed primarily with the idea that

they would be applied to the problem of describing and reasoning about distributed

algorithms. The examples presented are of this kind.

1 .2 An Example

In this section, an example specification problem will be used to introduce

informally the fundamental ideas about specification on which this thesis is based.

1.2.1 The Synchronizer Module

Consider the following scenario: A number of processes in a computer system

require the use of a single resource to accomplish their respective tasks; however,

because of limitations inherent in the resource, at most one process can be allowed to

access the resource at any instant of time. To enforce this restriction, a synchronizer

module is introduced, and the processes, which we will refer to as the user processes,

are required to obtain permission from the synchronizer module before accessing the

-9-

resource. It is the job of the synchronizer module to produce correct synchronization of

the user processes' accesses to the resource. Our problem is to describe precisely the

synchronizer module behaviors that are "acceptable" in the sense that they always

produce "correct synchronization." This precise description is the specification of the

synchronizer module.

When a user process desires to access the resource, it issues a try request to the

synchronizer module. The user process is then supposed to wait until it receives a run

response from the synchronizer module.,, When the user process is finished using the

resource, It issues a rest response to the synchronizer module. We can capture these

decisions in diagrammatic form as shown in Figure 1, in which the synchonlzer module

Is depicted as a circle, and the possible requests and respon~ are drawn as arcs

incident on and exiting from the circle. respectively. We assume that there are a total of

N user processes accessing the synchronizer module. and have used a subscripted

process number to distinguish the requests and responses corresponding to different

processes.

Fig. 1. The Synchronizer Module

try 2

try 1
---'---31>►, Synchronizer

run 1

rat 1 > Module

try N rat N

n,n N

• ,

- 10 -

The set of all possible requests and responses for the synchronizer module can be

thought of as an "alphabet" or "syntax" for describing the interaction of the

synchronizer mod~le with its environment. We call this set the inter/ ace of the

synchronizer module, and refer to its elements as events. By observing the

synchronizer module during an execution, we can obtain a record of the events that

occurred during the execution. We call this record of event occurrences an

observation, and assume that it takes the form of a finite or infinite sequence of events.

By fixing the interface of the synchronizer module to be a particular set of events,

we determine a universe of possible observations. We next consider how to describe

which observations in this universe are "acceptable." We must include in our

description the idea that at most one user process at a time may access the resource.

Also, we wish to require that the synchronizer module be fair in the sense that every try

request by a user process is eventually answered by a run response, if it is possible to

do so without violating the mutual exclusion property.

A natural way of describing which observations are acceptable is through the use

of conceptual states. With this technique, we imagine that at any instant of time the

synchronizer is in one of a number of possible internal states. These states may or may

not have anything to do with the actual internal state of the synchronizer module; they

are merely a tool for describing its observable behavior. After defining the set of initial

states, we then describe for each event the preconditions required for that event to

occur, and how the conceptual state of the synchronizer changes as a result of the

occurrence of that event.

The conceptual state of the synchronizer module at any instant of time Is a vector

that tells for each user process what the synchronizer module thinks that user is

currently doing with respect to the resource, based on the requests and responses that

have occurred so far. The possibilities are that the user is either trying to obtain

permission to access the resource (trying), is actively using the resource (running), is

done using the resource (resting), or has failed to correctly follow the protocol (error).

1. The formal definition of observation used in this thesis is slightly more complicated
than a finite or infinite sequences of events (see Chapter 2). This is done for technical
reasons that are unimportant for the present, informal discussion.

Initially, the synchronizer module believes that each user process is resting. The state

changes and preconditions are as follows: a try event for a process causes the state of

that process to change to "trying" if it was previously resting, and to "error" otherwise;

a run event for a process can occur only if that process is trying· and no processes are

currently running, and causes the state for that process to change to "running;" a rest

event for a process causes the state of that process to change to "resting" if it was

previousl_y running, otherwise to "error."

A particular observation for the synchronizer module satisfies the description of

the previous paragraph if to each finite prefix of the observation we can assign a

conceptual state in such a way that each state change satisfies the conditions

enumerated in the previous paragraph. For example, assuming there are only two user

processes, the observation

try1 try2 run 1 rest 1 run2 rest2

satisfies the conditions above since we can assign internal states as follows:

<resting, resting> try
1

<trying, resting> try
2

<trying, trying> run 1 <running, trying>

re,t;t 1 <resting, trying> mn2 <restiriQ, running> re.st
2

<resting, resting>.

However, the observation

try1 try2 run 1 run2 rest
1

rest2

does not represent a correct functioning of the synchronizer module since

<resting, resting> try
1

<trying, resting> try
2

<trying, trying> run 1 <running, trying>

run2 <running, running> rest 1 <resting, running> rest2

<resting, resting>,

which is the only assignment of states that satisfies the state change requirements, has

the property that the precondition for the run
2

event is not satisfied by the state

<ru!1ning, trying>. We will use the term "history" to refer to an observation that has

been annotated with states.

The state-transition description above tells us a significant amount about what are

the correct observations of the synchronizer module, but it does not say everything that

should be said. In particular, the requirement that every request by a user process

should eventually be satisfied, if possible, is not captured by the state-transition

description. Informally, the reason is that a state-transition description captures only

properties of histories that are "local" in the sense that they involve only adjacent

- 12 -

states, whereas the fairness property we would like is a "global" property that involves

possibly widely separated portions of the history. If the conceptual state technique is to

work, we must find some way to state global properties In a form compatible with the

statement of the local properties. In Chapter 4 it will be shown how global properties

can be expressed in the language of temporal logic.

A specification of the synchronizer module via the conceptual state approach

therefore consists of a state-transition description of the local properties that must be

satisfied by acceptable observations, plus a description of additional global properties

satisfied by such observations. A particular synchronizer module behavior is said to

satisfy the synchronizer module specification if it contains only acceptable

observations.

1.2.2 Implementation, Abstraction, and Composition

Now let us consider how the synchronizer module might be implemented. A

possible organization is shown in Figure 2. In Figure 2, the synchronizer module is

shown to be composed of a number of "synchronizer component" modules connected

in a ring-like fashion. Each synchronizer component module interacts with exactly one

user process and with its neighboring synchronizer component modules. The

implementation operates as follows: There is a single
1
conceptual token that circulates

around the ring in the clockwise direction. A synchronizer component module must

possess the token whenever it grants its associated user permission to access the

resource. In addition to the try, run, and rest events with which communication with the

user is accomplished, a synchronizer component module may pass the token to its

clockwise neighbor with a token_out event, may receive the token from its

counterclockwise neighbor with a tokenJn event, may request the token from its

counterclockwise neighbor with a request_out event, and may accept a request from its

clockwise neighbor with a requestJn event.

We resolve the implementation relationship between the synchronizer component

modules and the synchronizer module into two separate operations on systems: a

composition operation, which takes a number of component modules and combines

them into a larger system, and an abstraction operation, which takes the larger system

and throws away internal details that are not of interest in the more abstract view. In the

synchronizer example the composition operation takes a collection of synchronizer

-13-

Fig. 2. Implementation of the Synchronizer Module

,
•
•

•

Synchronizer

Module

component modules and connects them Into a ring network, and the abstraction

operation throws away the details of the Internal communication between the

component modules, saving only the events that make up the Interface with the user

processes.

• 14 •

1.2.3 Correctness of an Implementation

Suppose we are given a specification for the synchronizer module, and

specifications for each of the synchronizer component modules. Each specification

determines a set of behaviors that satisfy it. The implementation is "correct" with

respect to these specifications if, no matter what behaviors we "plug in" for the

synchronizer component modules, as long as each component behavior satisfies its

specification, then the resulting synchronizer module behavior, constructed from the

componerits via the operations of composition and abstraction, satisfies the

synchronizer module specification.

1.2.4 Summary

The ideas presented in this section can be summarized as follows:

(1) Every module in a system has a well defined interface, which is the syntax

with which it interacts with other modules in the system.

(2) An interface defines a universe of observations, which are records of

operation that might be produced by a module with that interface. These observations

constitute the possible "functionings" of the module. The set of all observations that

can be produced by a particular module instance serves as the behavior of that module

Instance.

(3) A module can be specified by describing a set of "acceptable"

observations. A module behavior "satisfies" such a specification if it contains only

acceptable observations.

(4) An implementation of an abstract module in terms of a collection of

component modules consists of a composition operation for combining component

module behaviors to form a "composite" behavior, and an abstraction operation for

deleting information from the composite behavior to obtain a behavior of the abstract

module.

(5) An implementation is correct with respect to given specifications if,

whenever we apply the composition operation of the implementation to a collection of

behaviors that satisfy the component module specifications, and then apply the

abstraction operation of the implementation to the resulting composite behavior, we

obtain a behavior that satisfies the abstract module specification.

• 15 -

1.3 Outline of the Thesis

This thesis is an attempt to elaborate and make more precise the ideas illustrated

informally in the previous section. In particular, an attempt will be made to answer the

questions:

(1) What is an appropriate mathematical framework that adequately captures

the notions of interface, observation, composition, abstraction, implementation,

specification, and correctness discussed above? (Chapter 2)

(2) How can we translate, in a natural and systematic way, an intuitive

understanding of the function to be performed by a module into a precise specification?

(State-Transition Specifications, Chapter 3)

(3) Once we have obtained such a specification, how can we be sure that it

says something meaningful? (Consistency of specifications, Chapter 5)

(4) How can we show, in a systematic way, that a particular implementation of

an abstract module by a collection of component modules is correct with respect to

given specifications? (Correctness Proofs, Chapters 3, 4, Appendix II)

(~) What ~ancial priiiclple& can ·we lcam about how to oryanize specifications

and proofs of correctness? (Rely/Guarantee-Conditions, Chapters 3, 4, Appendix II)

(6) How might the specification and proof techniques developed in this thesis

be formalized to permit the use of mechanical aids? (Event/State Algebras, Appendix I).

This thesis is organized as follows: Chapter 2 introduces formal definitions of the

notions of interface, observation, abstraction, composition, implementation, and

correctness. Some of the modeling choices embodied in these definitions are

discussed.

In Chapter 3, the basic definitions of Chapter 2 are used to define formally the

notion of a state-transition specification. The main result of Chapter 3 Is the

Correctness Theorem (Theorem 3.9), which shows how the structure of state-transition

specifications can be exploited to obtain a systematic method for performing

correctness proofs. Secondary results of Chapter 3 (Lemma 3.11, Lemma 3.12) suggest

how the proof method embodied in the Correctness Theorem can be further

systematized if module liveness specifications are expressed in terms of

re/y-/guarantee-conditions.

· 16 ·

Chapter 4 applies the theory of Chapters 2 and 3 to the synchronizer example.

The complete specifications of the synchronizer and synchronizer component modules

are presented, and the synchronizer implementation is proved correct with respect to

these specifications. The language of temporal logic is used as a notation for

expressing liveness properties.

Chapter 5 is concerned with finding an appropriate notion of consistency of

specifications that include nontrivial liveness properties. Intuitively, a specification

ought to be consistent if and only if it is satisfiable by some behavior. However, if by the

term "behavior" we mean "arbitrary set of observations," then we obtain a notion of

consistency that is much too liberal. To obtain stronger notions of consistency, we must

restrict our attention to "realizable" or "computable" behaviors. Chapter 5 introduces a

particular class of computable behaviors, the "1/0-behaviors," that is based on an

underlying model of asynchronous concurrent computation called "1/0-systems." The

corresponding notion of "1/0-consistency" is found to be useful for distinguishing

between "obviously realizable" and "obviously unrealizable" liveness specifications.

ChaptP.r 5 rlPvP.lop~ A technit11 •e for proving state-transition spe,:!fi,:ations to be

1/0-consistent and applies this technique to examples.

In Chapter 6 a kind of completeness result is proved (the Completeness Theorem,

Theorem 6.4), which gives sufficient conditions under which a correct implementation

has a proof by the Correctness Theorem. The statement and proof of Theorem 6.4 uses

in a crucial way the existence of a "specification domain," which is a class of behaviors,

like the 1/0-behaviors, with certain closure properties.

Finally, Chapter 7 summarizes what has been accomplished and suggests avenues

for future investigation.

Additional important material is contained in Appendices I, II, and Ill. Appendix I

provides a formal semantics for the temporal logic language used informally in Chapters

4-6, and shows the correctness and consistency proof techniques developed in the

thesis can be formalized within this language. Appendix II considers two additional

examples: a distributed resource management system, and a reliable message

transmission system based on the alternating bit protocol. Both of these systems are

specified and proved correct using the techniques developed in the main body of the

thesis. Appendix Ill is an index of definitions.

· 17 ·

1.4 Related Work

The rather large body of work related to this thesis can be divided roughly into the

following categories:

(1) Specification of sequential programs/abstract data types.

(2) Models of distributed/concurrent computation.

(3) Temporal logic specification techniques.

(4) Specification of communication protocols.

(5) Other distributed/concurrent system specification techniques.

Each of these categories will be discussed below. Further discussion is included at

appropriate points in this thesis.

1.4.1 Specification of Sequential Programs/ Abstract Data Types

Work in the area of specification of sequential programs can be classified into two

categories: that concerned with the specification of the function to be performed by a

program or program fragment, and that concerned with the specification of the data

types manipulated by a program.

Sequential Program Function Specification

Specification of the function to be performed by a program or program fragment is

a problem that must be addressed by any work on program correctness. In the

sequential case, the semantics of a programming language assigns to each program

fragment (statement, procedure, etc.) some mathematical object (denotation)

representing the effect of executing that fragment. Typically, (see, e.g. [Jones81]) this

denotation takes the form of a partial function or a binary relation on program states. A

specification for a program fragment consists of some properties that must be satisfied

by the denotation of that fragment.

Often function specifications . are expressed in the form of Floyd/Hoare partial

correctness assertions (PCA's) [Floyd67, Hoare69], consisting of a precondition and a

postcondition, which are predicates on states. A program fragment satisfies a PCA if,

whenever execution of the fragment is begun in a state satisfying the precondition, then

execution will terminate only in a state satisfying the postcondition. Thus, if binary

relations are used as denotations of fragments, a PCA is satisfied by any relation R such

- 18 -

that if <q, r> E R and q satisfies the precondition of the PCA, then r satisfies the

postcondition.

Besides being convenient for specifying the function that must be satisfied by a

program fragment, partial correctness assertions can be used to construct a formal

deductive system for reasoning about the behavior of program fragments. For a good

overview of these "Hoare logics" of programs, see [Apt81].

The partial correctness assertion technique has been generalized with some

success to systems of concurrent processes [e.g. Owicki76]. However these

techniques suffer from a lack of modularity in the sense that there is no notion of the

behavior of a single process in isolation. Thus it is possible to specify the function of a

complete parallel program, but not the behavior of its constituent processes. Although

a logic of partial correctness assertions is used to prove that the behavior of a program

satisfies its specification, the truth of PCA's associated with one process cannot be

determined, except within the context of the PCA's for all other processes.

Partial r:orrectness assertions arA CAp;thlA of Axrre~qjng only SEtfe.ty properti~s ryf

the form: "Whenever control is at point P, then relation R holds on the program

variables. In general, one is interested in liveness specifipations as well. For sequential

programs, often the only liveness specifications of iaterest are statements that the

program is guaranteed to terminate under certain conditions. Liveness properties of

this simple form can be handled by incorporating termination into PCA's, as in Dijkstra's

calculus of "weakest preconditions" [Dijkstra76], or by techniques completely outside

of PCA's, such as Floyd's well-founded set technique [Floyd67]. For distributed or

concurrent programs, it is almost always the case that more general liveness properties

than simple termination are of interest, and these require alternative techniques.

Data Type Specif I cation

The problem of describing the data objects manipulated by a program, especially

the user-defined data objects, is usually referred to as "specification of abstract data

types." There are actually two quite different problems that are addressed in the

literature on abstract data type specification: the specification of immutable abstract

data types, whose objects do not change their state during execution, and the

specification of mutable abstract data types, whose objects have changeable state.

- 19 -

Specification of immutable abstract data types is the problem of describing and

reasoning about static collections of values, functions, and relations. Usually a

collection of interdependent immutable abstract data types is identified with the

mathematical notion of a heterogeneous algebra, and algebras are described either

axiomatically, as in [Guttag78, Goguen78, Kapur80], or via set-theoretic constructions,

as in [AbriaI80]. Specification of mutable abstract data types, on the other hand, can be

thought of as the problem of describing and reasoning about the dynamic behavior of a

collection of objects that can be manipulated using a limited set of procedures

[Guttag80, Wing83]. Berzins [Berzins79] models a mutable abstract data type as a kind

of state machine, which describes how the states of the mutable data objects evolve as

a result of the invocation of the procedures.

The problem of specifying immutable abstract data types is not addressed by this

thesis. In fact, the specification and proof techniques presented in this thesis assume

as a prerequisite the ability to describe heterogeneous algebras and to perform

reasoning about such algebras once they have been described. On the other hand, the

problP.m of sper:ifying mutable Ah~tract d~ta types can be viewed .es a s~la! t.::ase of

the general problem of module specification considered in this thesis, by thinking of a

mutable abstract data type in terms of a "type manager" module, which encapsulates

the objects of the data type and which performs manipulations on these objects in

response to requests by the environment. Viewed in this way, the purpose of a mutable

abstract data type specification is to describe the correct "observations" for the type

manager module. The notion of observation appropriate here is that of a history of

"events," where each event records either a request for the type manager to perform

some manipulation on the objects, or a reply indicating the results of some previously

requested manipulation.

1.4.2 Models of Concurrent Computation

Quite a number of models have been proposed for investigating concurrent and

distributed computer programs [Brock83, Hoare81 b, Hoare81 a, Greif75, Hewitt77,

Kahn74, Keller76, Lynch81, Pratt82, Rounds81]. In this thesis as well, specific

assumptions are made about how to model the behavior of such systems. It is

necessary to make these assumptions to reach a point at which concrete example

specifications can be written and correctness proofs performed. However, a conscious

\

-20-

effort has been made to assume no more structure than is necessary for the results of

this thesis. An attempt has been made to identify a few fundamental concepts that are

required of any m9(:tel, if it is to serve as a semantic foundation for the theory of

specification developed here.

The fundamental concepts identified in this thesis are the notions of interface,

observation, behavior, abstraction, and composition. These concepts, which have

already been informally discussed, are given formal definitions in Chapter 2. In this

section, we will briefly review the features of a number of extant models of concurrency

and attempt to identify the notions of event, interface, observation, behavior,

abstraction, and composition used here with corresponding notions in each of the

models. We will also be interested in whether each model is suitable as a semantic

basis for a specification language -- in particular, whether the .model can model is useful

for specifications involving liveness properties.

Kahn-MacQueen Processes

A rtatin::r eit:Yctl°ll rnodt:,I oi ro11current compuicdion is the stream processing rnodel

of Kahn [Kahn74] and Kahn and MacQueen [Kahn77]. In this model, a process

communicates with its environment through a collection of named channels. A process

uses each channel either as an input channel or an output channel, but never as both.

During execution, a process can read input values from input channels and emit output

values on output channels. We can imagine observing a process throughout an entire

execution and recording the sequence of values transmitted on each channel. Such a

sequence of values, which can be either finite or infinite, is called a stream. A process is

modeled by a continuous function from tuples of input streams to tuples of output

streams. The notion of continuity used here is derived from the fact that streams under

the prefix ordering form a partially ordered set which is complete under limits of

increasing chains. Processes are deterministic in the sense that to each input tuple I,

there is precisely one output tupl~ O that can be produced by a particular process,

when that process is supplied with input /. This Is a consequence of the fact that

processes are modeled by functions.

In the stream processing model, the sets of input and output channels used by a

process serve as the interface of that process. The role of an observation of a process

is played by a pair <I, O>, where / is a tuple of streams corresponding to the input

· 21 ·

channels, and O is a tuple of streams corresponding to the output channels. The usual

identification of a function with its graph permits us to view a process behavior f as the

set of all observations of the form <I, f{I)>.

A process network describes how to compose a collection of processes to form a

composite system. Formally, a process network defines a kind of fixed point

construction that maps a collection of component process behaviors to a behavior for

the composite network. These fixed point constructions comprise the composition

operations. The composition operations used by Kahn and MacQueen include features

of both composition and abstraction as defined here, in the sense that once two

processes have been connected by a communication channel, the stream of values

transmitted over that channel is no longer of interest, and is ignored.

The Kahn/MacOueen model is unsuitable for the purposes of this thesis because

it is incapable of representing processes with nondeterministic behavior.

Nondeterministic Process Nets

There have been several attempts to generalize the stream processing model of

Kahn and MacQueen to incorporate nondeterminism. One such attempt is reported by

Brock in [Brock83] (superseding the earlier version [Brock81] by Brock and

Ackermann), where references to other attempts are given. In [Brock83], It is shown

that the straightforward attempt to generalize the model of Kahn and MacQueen by

permitting process behaviors to be relations, rather than functions, is doomed to failure.

Intuitively, the reason is that the behavior of nondeterministic processes depends, in

general, on the relative orders in which inputs are received and outputs produced. In

essence, Brock's approach is to replace the <I, O> observations used by Kahn and

MacQueen by scenarios. Scenarios Include, in addition to the streams of values

transmitted on each of the channels, a partial ordering that records some of the

information concerning the temporal order in which values were transmitted. The

behavior of a process is defined to be the set of all scenarios that the process can

produce in its various executions. Brock shows how composition operations on

scenario sets can be defined, in analogy to the operations on continuous functions

defined by Kahn and MacQueen.

. 22.

Pratt's [Pratt82] "repackages" Brock's model into a general framework for

modeling processes and their composition, in which the behavior of a process is

represented by the set of all traces (partially ordered multisets of events) it is capable of

producing. As in the models of Kahn/MacOueen and Brock, the interface of a process

can be identified with the set of all events in which the process can participate. The

notion of trace plays the role of an observation. The notion of the restriction of a trace

to a subset of its events is used to define composition of process behaviors. Restriction

mappings on traces play essentially the same role in Pratt's model as decomposition

maps play in the model of this thesis.

The models of Brock and Pratt admit the possibility of infinite scenarios or traces,

and therefore do not a priori rule out the possibility of modeling processes that satisfy

nontrivial liveness properties. However, this possibility is not addressed by either Brock

or Pratt. Since we are interested in modeling processes with liveness properties, the

models of Brock and Pratt are not suitable in their present state of development.

Communicating Sequential Processes

An important class of models of concurrency [Francez79, Hoare81 a, Hoare81 b,

Rounds81] has been developed through attempts to give a formal semantics to the

language of "Communicating Sequential Processes" (CSP) defined in [Hoare78). In

each of these models, the behavior of a process describes the traces (finite sequences

of communication events) in which the process is willing to participate as it executes.

The set of all events in which a process can ever participate plays the role of the

interface of that process. The notion of a trace plays the role of an observation.

Although the particular notion of process behavior is different for different models, each

of the models of CSP contains a collection of algebraic operations on process

behaviors, which are used to define the meaning of the various constructs of CSP. In

particular, each model has some sort of "restriction" or "hiding" operations, which

cause events to be deleted from a proces.~ behavior, and some sort of "relabeling"

operations, which allow events of a process to be renamed. These operations are used

for essentially the same purpose as the abstraction operations used in this thesis. Each

model also has one or more "composition" operations (composition by intersection,

composition by interleaving, or a mixture of the two) corresponding to the composition

operators of this chapter, whose effect is to combine process behaviors in various ways.

-23-

The important considerations for models of CSP derive from a feature peculiar to

that language. A CSP process can refuse to communicate with its environment. If a

CSP process refu~s to perform any of the communications offered by its environment,

then deadlock is the result. The different definitions of process behaviors in the various

models of CSP arise from attempting to deal with (or to ignore) the subtleties of refusals

and nondeterminism.

In [Hoare81b], a process behavior is a prefix-closed set of traces, which can be

viewed equivalently as a behavior of the kind defined in this thesis. There are

operations in (Hoare81 b] for deleting and renaming the events of a process. These

operations are examples of the abstraction operators used in this thesis. Process

behaviors are composed by the parallel composition operator II, which is defined as

follows: If A is the behavior of a process with interface E and B is the behavior of a

process with interface F, then A II 8 is the set of all traces u formed from events in EU F

such that the restriction of u to Eis in A and the restriction of u to Fis in B. This notion

of composition is a particular example of the composition operators defined in this

thMi~.

Hoare, Brookes, and Roscoe [Hoare81a] extend the work of [Hoare81b] to deal

with the problems of refusals and nondeterminism. They do this by permitting behaviors

to be more highly structured objects than just sets of traces. In particular, a behavior Is

a set of pairs <s, X>, wheres is a trace, and Xis a set of events that can be refused by

the process after the trace s has been produced. Although they use a single universal

set of events for all processes, we can imagine designating the set of all events that

actually appear In a process as the interface of that process. As in the model of

[Hoare81 b], traces play the role of observations. There are "concealment" operators

for deleting events, and "inverse image" operators that permit renaming of events.

There are no ''direct image" operators, apparently because they are not as well

behaved as the inverse image operators. Two kinds of parallel composition operations

are defined: composition by intersection, In which events of the component processes

are connected, and composition by Interleaving, in which the events of the components

remain independent.

Rounds and Brookes [Rounds81] attempt to justify and extend the work of

[Hoare81 a] in the following way: A definition of process behaviors Is made that includes

somewhat more information than that of (Hoare81a], and is based on supposedly more

· 24-

fundamental intuitive considerations. A number of algebraic operations, including

composition and abstraction, are defined on behaviors. A notion of "observable

equivalence" of behaviors is defined, and is shown to be a congruence. The quotient of

the algebra of behaviors with respect to this congruence is then shown to be isomorphic

to the model of [Hoare81a], thus providing evidence that this model exactly captures the

externally observable properties of processes.

There seem to be problems associated with the use of models of CSP as a

semantic basis for specification languages. These problems center around the

following two questions: (1) Do traces represent a "complete" record of execution of a

process, or simply some finite portion of such a record? (2) What is the meaning of a

liveness specification such as "eventually event a will occur," if a process can be

placed in an environment that refuses to permit the occurrence of event a?

With respect to question (1), it is difficult to see how the designers of the CSP

models could have intended traces to represent complete observations. This is

because in general a complete observation will be infinite, but the CSP models provide

no method for extracting infinite traces from behaviors. Without a distinction between

complete and incomplete observations, we have no way to determine whether a

particular CSP process satisfies a liveness specification. It is clearly ridiculous to
I

require that a specification such as "eventually event a will occur" be satisfied by all

"incomplete" as well as all "complete" observations.

Question (2) arises from a desire to "assign the blame" for an unsatisfied liveness

specification, either to a process or its environment. If a process can always be placed

in an environment that can prevent the occurrence of event a, then the only reasonable

conclusion we can draw is that the specification "eventually a will occur" is too strong

(i.e. inconsistent). However, it is not clear how to weaken such a specification so that it

can be regarded as consistent.

The above problems associated with the models of CSP have been avoided here

as follows: First, it is assumed here that the observations in a behavior represent

complete records of execution. Second, we accept the obvious conclusion that the

specification "eventually a will occur" is inconsistent with respect to a model (such as

the model of [Hoare81 bl} that admits the possibility of refusals. Instead of trying to find

ways to weaken specifications like this so that they can be regarded as consistent even

-25-

in the face of refusals, though, we construct a model in which refusals are not allowed.

This is the idea behind the 1/0-behaviors constructed in Chapter 5 of this thesis.

Calculus of Communicating Systems

Rather similar to the models of CSP discussed above is the "Calculus of

Communicating Systems," (CCS) of [Milner80]. As in CSP, the notions of a

communication event and a sequence of communication events are the fundamental

concepts for describing the behavior of a process. The role of a process interface is

played, in CCS as in CSP, by the set of communication events in which the process is

capable of participating. The CCS notion of an observation is a sequence of events; in

contrast to CSP, CCS admits the possibility of infinite observations.

To represent the behavior of a process, Milner introduces the notion of a

communication tree whose paths represent all possible complete histories of

communication for a process. In a communication tree there can be multiple arcs

emanating from a single node, labeled with with the same communication event, and

&res can ~ laueit::d with lhe SJ>tK;ictl ~ymbol .,, which represents Hfl initunHi Hciion of a

process not associated with any communication event. Communication trees therefore

contain more information about a process than just a simple set of traces. In fact,

communication trees contain more information about a process than can be detected

through composition with other processes. Milner addresses this problem by defining

several notions of "observable equivalence" of communication trees, and shows that

these relations are congruences for an algebra of processes whose operations include

operations of composition and abstraction. He suggests that the class of process

behaviors be obtained by forming the quotient of the algebra of communication trees

with respect to one of these congruences. He is unable to reach a conclusion, though,

as to which of the congruences is "best," or to give explicit characterizations (not

involving quotient constructions) of the quotient algebras.

Although communication between two processes in CCS, as In CSP, is

synchronized in the sense that it is represented by the simultaneous occurrence of

communication events for the participating processes, communication in CCS is unlike

that in CSP in the sense that a CCS process cannot prevent another process from

performing an event. This is because the definition of the composition operation in CCS

states that, if process A can perform an event a, and process A' can perform the

- 26-

"complementary" event a', then the composition A II A' can perform either a, or a', or

the communication represented by the simultaneous occurrence of both a and a '.

The fact that observations can be infinite in CCS raises the question of whether it

is possible to define CCS processes that satisfy interesting liveness properties.

However, it seems that this possibility is ruled out by Milner's composition operation.

Milner's composition operation is "unfair" in the sense that there are paths in the

communication tree corresponding to the composition of two processes along which

only one of the component processes gets to run. This means that no process can

satisfy a specification of the form: "eventually a will occur," in an environment that has

the capability of producing an infinite observation.

Actors

One of the earlier event-based models of computation is the actor model [Greif75,

Hewitt77]. An actor system consists of a collection of primitive computing agents

(actors), that communicate by passing messages. A computation for an actor system is
'

a .,:,c11 iiciliiy ofdt:,-~ set of event::;, where an event marks the arrivai of H message at its

target. Receipt of a message activates the target actor, and may cause additional

messages to be issued. The partial order represents a kind of temporal "precedes"

relationship between events, formed by taking the transitive closure of the union of the

"causes" relation and the "arrival" ordering, the latter of which linearly orders all events

with the same target. Hewitt and Baker [Hewittn] postulate certain laws that must be

satisfied by the various orders.

The actor model was originally applied [Greif75) to the specification of

synchronization problems such as the mutual exclusion and readers/writers problem.

The specifications are written as axioms that constrain the possible computations of a

system. The language used, although not formally defined, is essentially a propositional

calculus in which the propositions are of the form "e - e '," which means that event e

must precede event e ' in any computation of a system satisfying the specification.

Although no notion of state was used in the specifications, the language has

nevertheless sufficient expressive power to handle several important examples.

Subsequent work concentrated on applying the actor model to the specification of

more complex systems, both distributed and centralized [Yonezawan]. In contrast to

the work ot Greif, Yonezawa's specifications have a decidedly state-transition flavor,

- 27 -

and although proponents of the actor model consistently argue that global state is not a

well-defined notion for distributed systems, the "situations" used in Yonezawa's

correctness proofs appear to be just such global states.

In the actor model, the notion of an actor is generally defined by informal axioms

and description, which are insufficient to answer the question: "What is an actor?" We

must know the answer to this question if we wish to obtain a meaningful notion of the

collection of all actors that satisfy a given specification, and to show the validity of rules

for deriving consequences of specifications of actor systems. The question of what

actors are has only recently been dealt with by Clinger [Clinger81], who defines actors

and their computations directly in terms of set-theoretic constructs. It is interesting to

note that, although actor enthusiasts like to point out that viewing computations as·

partially ordered sets of events captures "true" concurrency better than linearly ordered

computations, Clinger shows that the laws of Hewitt and Baker are in fact equivalent to

the existence of a global linear ordering of events in a computation.

To relate the actor model to the model used in this thesis, we can attempt to

identify notions of interface, observation, behavior, abstraction, and composition in the

actor model. There seems to be no obvious notion of the Interface of an actor. The

notion of a partially ordered set of events plays the role of an observation. Roughly

speaking, Clinger defines the behavior of an actor to be a function that describes the

actor's response (i.e. its state change and message transmissions) to the receipt of a

message. Although we can imagine composing a collection of independent actors into

a composite system, there seems to be no formal notion in the actor model

corresponding to such an operation. As mentioned above, the existence of the arrival

ordering prevents the definition of an abstraction operation.

The actor model has certain defects that render It unsuitable for a theory of

specification. The major difficulty is that the actor model does not support abstraction

of systems in a uniform way. There are notions of an actor and a system of actors, but

no way to view a system abstractly as a single actor. The artificial "arrival ordering,"

imposed on all events that occur at a single actor, is the primary feature that prevents

abstraction from being defined in a reasonable way. Another reason is the fact that

every message must contain the name of its target actor, since this means that it is

never possible to completely suppress the internal structure of an actor system.

- 28-

Lynch/Fischer Processes

In the model of distributed computation proposed by Lynch and Fischer

[Lynch81], the primitive objects are variables and processes, and systems of processes.

A variable is a mailbox-like container for values, and a process is a kind of state machine

that can perform input and output on variables. A system of processes consists of a

collection of processes that communicate through variables. The variables of a system

of processes are partitioned into external and internal variables. There is a kind of

composition operation that combines a collection of systems of processes to form a

larger system. There is also a kind of abstraction operation that transforms some of the

external variables of a system into internal ones.

A correspondence between Lynch and Fischer's model and the model of this

thesis can be established, if the notion of an event is identified with Lynch and Fischer's

notion of a "variable action." A variable action describes the change in the value of a

variable resulting from a single execution step. The interface of a system of processes

is the set of all variable actions it can perform. The behavior of a system of processes is,

as Lynch and Fischer define, the set of all finite arid infinite sequences of variable

actions the system is capable of performing. To view Lynch and Fischer's operation of

composition of systems of processes as a special case of the composition operators

defined here, it is necessary to account for the requirement that the actions on a single

variable in the computation of a system have consistent values. This is easily

accomplished if variables are thought of as active entities with an interface and a

behavior. The interface of a variable is the set of all variable actions that can be

performed on it. The behavior of a variable is the set of all finite and Infinite sequences

of variable actions in which the value read in each variable action equals the value

written in the immediately preceding variable action.

In terms of modeling power, the model of this thesis and that of Lynch and Fischer

appear equivalent. Lynch and Fischer's model is certainly capable of handling

nondeterminism and liveness properties. The main advantage of the model of this

thesis over that of Lynch and Fischer is that the former contains fewer primitive

concepts. It is not necessary to draw distinctions between variables, processes, and

systems of processes, and the definitions of composition and abstraction are simplified

by avoiding these distinctions.

- 29-

1.4.3 Temporal Logic Specification

Several authors [Hailpern80, Lamport83, Schwartz81] have proposed the use of

temporal logic as a specification language and a vehicle for expressing correctness

proofs. The use of temporal logic as a specification language evolved gradually from its

use as an assertion language, that is, as a language for expressing properties of

program executions [Pneuli77, Lamport80]. There is a subtle difference, though,

between the semantics appropriate for temporal logic used as an assertion language

and temporal logic used as a specification language. This difference, which has not

been explicitly addressed in the literature.can be summarized as follows: Whereas

temporal formulas as assertions express properties of single computations of a fixed

program, temporal formulas as specifications express properties of the set of

computations of an undetermined program. Stated another way, whereas a model for a

temporal formula used as an assertion about a fixed program is a single computation of

that program, a model for a temporal formula used as a specification is the set of all

computations that can be produced by some program. This distinction has important

ramifications for whal notion of consistency i~ appropriate in each case. A temporal

formula used as an assertion about the computations of a fixed program is consistent if

and only if there exists a computation of that program that satisfies the formula. A

temporal formula used as a specification is consistent if and only if there exists a

program, all of whose computations satisfy the formula.

Another important issue that is not addressed explicitly In literature on temporal

logic specification is the ability to specify a single module in isolation from particular

program context.1 The notion of a program module satisfying a specification in isolation

must be meaningful if specifications are to effect the beneficial separation between

module use and implementation. Since extant work does not include the notion of the

meaning of a specification in isolation, there has been no discussion of the following

important question: How can we combine independent module specifications to perform

1. Recent work [Barrlnger83], performed independently of the work described in this
thesis, has begun to address some of the same issues, in particular: (1) temporal
specifications express properties of sets of computations, rather than single
computations, (2) specifications should have meaning that is independent of an
enclosing context.

a proof of correctness? In particular, in what common language can the proof of

correctness be expressed. and what deductions in this language are sufficient to imply

the correctness of the implementation?

Among the papers on temporal specification of concurrent program modules. the

approach developed by Lamport [Lamport83] contemporarily with work on this thesis,

results in specifications that appear most similar to the state-transition specifications

described here. In Lamport's approach, a specification consists of three parts: (1) A list

of state functions, which define salient features of the program state; (2) A list of initial

conditions, which represent assumptions on the initial values of the state functions; (3)

A list of properties, which constitute the main body of the specification, and which can

be viewed as standing for a collection of temporal logic formulas. The properties are of

two kinds: safety properties and liveness properties. Safety properties describe the

state transitions that are permissible for a program satisfying the specification, and

liveness properties describe situations under which transitions are required.

The way one writes a specification in Lamport's approach is quite similar to the

way one writes state-transition specifications as described in this thesis. At the

semantic level, though, Lamport's approach seems rather different. The difference can

be summed up briefly as follows: In Lamport's work, specifications for program
I

modules play the role of assertions about the computations of a complete program in

which the module appears. Whether or not a particular program module satisfies a

specification can only be determined in such a context. In the framework presented in

this thesis, whether a program module satisfies a specification can be determined

without reference to any contextual information.

The meaning of the state functions used in Lamport's approach is obscure.

Lamport says that state functions in a specification "should describe information that

must be contained in the program state of any real implementation." This statement

apparently implies that the value of the state functions is part of the observable behavior

of the module being specified, and in this sense is just as important a part of a module

specification as the relationship between the arguments passed and results returned

from an invocation of an operation on the module. Choosing state functions that

provide too detailed a view of the internal operation of a module can result in

overspecification, since an implementer wishing to satisfy the specification is

constrained to include enough information in the state so that the state functions can be

• 31 •

defined.

This thesis resolves the problem of overspecification by introducing the notion of

an interface. By defining a module interface, one fixes a particular class of module

instances (i.e. the behaviors of that interface) which serves as a domain of discourse for

the temporal specifications. In this thesis, a module interface is a set of events. An

interface does not contain any notion of module state. States are used merely as a

device for increasing the expressive power of the specification language to permit the

desired properties of observations to be expressed in a convenient and natural way.
Since states are not part of the module interface, the state set in a state-transition

specification can be chosen on the basis of convenience, without danger of

overspecif ication.

Schwartz and Melliar-Smith have also proposed the use of temporal logic as a
specification language. In [SchwartzBO], specifications are developed for the

alternating bit communication protocol. Appearing in these specifications are

uninterpreted symbols such as "lnQ" and "OutQ." These symbols, like the state

functions used by Lamport, are evidently intended to refer to portions of the state that

must be identifiable in any program satisfying the specifications. Schwartz and

Melliar-Smith present collections of temporal axioms which they claim completely

characterize the send and receive processes supporting the alternating bit protocol.

There is little basis for this claim, since it is impossible to determine what a process is,

much less determine whether the specifications characterize a particular process or

class of processes.

The axioms presented by Schwartz and Melliar-Smith involve complicated derived

temporal operators such as "latches-until," which make the resulting specifications

quite difficult to understand. The specifications have an ad hoc flavor, and It is difficult

to obtain insight into how specifications for different examples would be obtained. In

contrast, the state-transition approach discussed in this thesis suggests a systematic

way of proceeding from an Intuitive conception of the desired module behavior to a

precise specification. Schwartz and Melliar-Smith present no proof that their send and

receive process specifications correctly implement the &ervice specification for the

alternating bit protocol. Experience gained from the examples presented in this thesis

suggests that specifications that have not been used in a proof of correctness are quite

likely to contain errors.

-32-

Hailpern and Owicki [Hailpern80] propose a style of temporal logic specification

that is different from the styles of Lamport and of Schwartz and Melliar-Smith. Hailpern

and Owicki also use the alternating bit protocol as an example to illustrate their

approach to specification. In addition to symbols representing components of the

internal states of processes in the system, Hailpern and Owicki introduce the notion of a

history variable, whose value at any instant of time represents the entire history of

commun\cation between two processes up until that instant of time. They state

explicitly that history variables are simply a descriptive tool, and are not intended to be

implemented. History variables appear to be quite useful for writing high-level,

nonprocedural specifications. For example, the safety properties satisfied by a

transmission line could be expressed by stating that the history of messages delivered is

always a prefix of the history of messages sent.

The state-transition approach to specification presented in this thesis takes the

history variable idea to its logical conclusion, by allowing arbitrarily structured history

information (in the form of states), to be introduced into a specification, together with

npArati_ons for manipulating this informAtion. This r.an he none diffArently for e1:t.c:.:h

specification, without change to the underlying semantic model. For example, the

specification of the reliable transmission module presented in Chapter 6 uses the notion

of the history of all messages input to the reliable transmission module. In the

specification of the send protocol module in Chapter 6 it is convenient to define the

notion of "the history of all messages for which acknowledgements . have been

received." This history is a subhistory of the history of all messages transmitted by the

send protocol module, and would not be directly accessible in the model of Hailpern

and Owicki.

1.4.4 Specification of Communication Protocols

The problem of specification of communication protocols has received a good

deal of attention, and can be viewed as a special case of the more general problem,

investigated here, of specification of modules in a distributed system. Two surveys of

the protocol specification literature, written from different vantage points, can be found

in [Sunshine78] and [Hailpern81].

-33-

Of the numerous papers on protocol specification and verification, that of

Bochmann [Bochmann78] appears to be most directly relevant to this thesis.

Bochmann models a system as a collection of finite-state machines that affect each

other through coupled state transitions. This is highly analogous to the definition, given

here, of composition of behaviors by identifying events. Bochmann also has a notion of

abstraction by ignoring uninteresting transitions, which matches the concept of

abstraction of behaviors used here.

Schwabe [Schwabe81 a, Schwabe81 b] exploits the analogy between the

instantaneous state of a communication protocol and a value of an abstract data type,

to translate state-transition specifications of protocols into equational axioms that

define an abstract data type. This translation enables him to verify correctness

properties of communication protocols using an automated verifier (AFFIRM) originally

intended for proving properties of abstract data types. However, only certain kinds of

correctness properties can be stated and proved using his technique. In particular,

liveness properties cannot be handled. Schwabe pays little attention to the semantics of

his specifir:ation~: leaving somP. a.mhigl•ity a!S to what objects satisfy a s~if!caUon, e.nd

what consitutes correctness of a protocol.

It is interesting that the notions of hierarchy and modularity of systems, and the

prerequisite concept of the interface of a system with its environment, are much more

prominent in the literature on protocol specification than they are in the literature on

specification in general. In protocol specification, a system is viewed as a nested set of

layers: the bottom level corresponds to the communication hardware, and each layer

provides an abstract service to the next higher layer. The top level implements the

service provided to the "end user." Typically the service provided by a level can be

viewed as an abstract communication network connecting two users, which often have

an asymmetric sender/receiver relationship. Higher levels of abstraction are

implemented by interposing protocol processes between the users and the

communication service provided by the next lower level. The interface between the

users and a service comprises the set of operations (e.g. open connection, send

message), they can perform. A distinction is drawn between the specification of an

abstract service provided to a user (the service specification) and a description of the

protocol processes (the protocol specification).

-34-

There are only a few specific correctness properties of interest for communication

protocols: freedom from deadlock, completeness (i.e. definedness of the protocol in

every reachable sta~e), progress, and stability in the face of unexpected perturbations of

the protocol. These properties are certainly also of interest for more general kinds of

distributed systems. All verification techniques in the communication protocol literature

are ultimately based on representing the protocol processes and abstract

communication media as finite-state machines, constructing a combined

state-transition graph for the implementation, and performing various analyses on this

graph. The state-transition approach to specification and verification is a natural

generalization of this technique. It should be noted, however, that the machines used in

the state-transition specifications in this thesis are not necessarily finite-state, and that

reachability analysis of a system is performed by proving predicates to be invariant,

rather than by explicit construction of the combined state-transition graph. This means

that the proof techniques discussed in this thesis need not be subject to the

combinatorial explosion problem often referred to in the literature on protocol

verification.

1.4.5 Other Concurrent System Specification Techniques

Chen [Chen81, Chen82] develops a concurrent system specification language

called EBS (Event-Based Specification Language), and gives specifications for a

number of examples, including the alternating bit protocol. The EBS language can be

thought of as a generalized version of the language used in [Greif75] to specify various

synchronization problems. An EBS specification expresses properties of an event

history, which is a partially ordered set of events. The EBS notion of an event history

corresponds to the notion of an observation used in this thesis.

Chen's work seems to be motivated by a number of the same concerns that

motivated this thesis. In particular, Chen discusses the distinction between the user's

view and the designer's or implementer's view of a system, and introduces a notion of

interface to capture the way in which a system interacts with its environment. In Chen's

approach, a module interface consists of a collection of ports. There is a notion of

module interconnection by identifying ports, which is reminiscent of the composition

operations used in this thesis. Chen's work does not, apparently, include a notion of

behavior, or the idea that a module specification has meaning except with respect to a

-35-

complete program context. Chen does not have a semantic definition of the

correctness of an implementation from which the soundness of proof techniques can be

derived. Rather, the notion of correct implementation seems to be identified with the

notion of logical consequence.

An interesting property of Chen's specifications is that they tend to be

"orthogonal." An orthogonal specification is a specification that is composed of a

collection of independent subspecifications. For example, Chen defines a number of

different properties of a reliable transmission system, such as "no loss of messages,"

"no duplication of messages," and "no erroneous messages." It is not obvious how the

state-transition technique presented in this thesis could support the writing of

specifications with a comparable orthogonality property.

The Gypsy system [Good79, Good82] has some capability for the specification and

verification of distributed systems. In the Gypsy model, a distributed system is viewed as

a collection of independent processes that communicate through message buffers.

Specifications of the communication function performed by a process are expressed in

terms of properties of "buffer histories," which represent the sequences of messages

transmitted on, or received from message buffers. Gypsy seems capable of handling

only safety properties.

Correctness proofs in Gypsy are performed by deriving a collection of verification

conditions from annotated program text, and then proving the validity of these

verification conditions using a semi-automatic theorem prover. Evidently the validity of

the verification conditions is taken as the definition of correctness; the literature shows

no attempt to justify the sufficiency of the verification conditions in terms of any

fundamental model of computation. Reasoning about the behavior of a system of

processes in Gypsy is done in terms of relationships between buffer histories. The

approach appears similar to Hailpern and Owicki's history variable approach.

An outgrowth of the Gypsy work is the work of DiVito [DiVito82], which is

concerned with the description and mechanical verification of communication

protocols. DiVito's specifications contain liveness properties only, and are expressed in

a decision table style that captures much the same information as the definitions of

state-transition relations presented in this thesis. The purpose of DiVito's work seems to

be to quickly reach a point at which experimentation with mechanical verification is

. 36.

possible. His focus is primarily on linguistic issues, rather than their semantics.

Lansky and Owicki [Lansky83] have developed a language, called GEM, for the

specification and verification of properties of concurrent systems. The underlying

model of computation is an event-oriented model similar to the actor model [Greif75,

Hewitt77], in which a computation of a system is represented as a set of events plus

various relations on this set. The enable relation captures the notion of necessary

temporal precedence, or causality, between events. The element partial ordering

captures the notion of incidental temporal precedence, where one event precedes

another because they happen to occur at the same point in space. The temporal partial

ordering is the transitive closure of the union of the enable relation and the element

ordering. Besides the notion of an event and the relations on events discussed above,

GEM includes a number of additional primitive notions. An element corresponds to a

locus of activity or point in space. A group is a set of elements and other groups, which

is used to collect semantically related objects. History sequences are certain increasing

sequences of computation prefixes, and are used as a domain of interpretation for

tAmporal lnoir. formulas. ThrARds ar~ A mechanism for dyn~mir:al!~, grouping a

sequence of related events.

The issues considered by GEM seem largely orthogonal to those examined in this
I

thesis. The design of GEM seems to have been motivated primarily by a desire to

describe, within a common framework, the semantics of a number of primitives of

concurrent programming languages. For example, monitors and the CSP

communication primitives are discussed. In contrast, this thesis is not concerned with

the description of prc;>gramming language primitives, although this is a problem that

must ultimately be addressed. A GEM specification describes constraints on

computations of a single program, whereas in this thesis a specification is viewed as

describing constraints on the entire set of computations of an undetermined program.

GEM apparently does not include any notion of behavior, composition, or abstraction.

Yonezawa [Yonezawa77] develops techniques for the specification and

verification of parallel programs, based on the actor model of computation. The central

concepts used in these techniques are the notions of a conceptual state, and a

situation. A conceptual state is a summary of the past communication history of an

actor, and corresponds closely to the conceptual states used in the state-transition

specifications of this thesis. A situation assigns a conceptual state to each actor in a

-37 •

system, and is used in verification in much the same way as the state of the "composite

machine" is used in this thesis (see Chapter 3). The notion of an implementation

invariant appears i'1 Yonezawa's work, and plays roughly the same role there as it does

in this thesis. Yonezawa's model seems to incorporate a notion of hierarchy of

abstraction, in the sense that it is possible to view a system both at a more detailed level,

where there is a larger collection of events and more detailed states, and at a less

detailed level, where only a subset of the events is considered and less information is

contained in the states.

Yonezawa's specifications look very much like the definitions of state-transition

relations used here, in the sense that a specification describes, for each possible event,

a precondition on the state that must hold for an event to occur, and a postcondition

that describes the state that results after the event occurrence. The semantics of the

event/precondition/postcondition triples used by Yonezawa seems to differ from their

counterparts in this thesis, in the sense that if the precondition of an event ever holds,

then that event must eventually occur. Thus, Yonezawa's formalism appears, to a

r-.P.rtRin P.xtent, to he capable of Axpressino liv~nP,~~ rvoperties.

There are three major deficiencies with Yonezawa's work, which are improved

upon in this thesis:

(1) The semantics of Yonezawa's specifications are defined informally in terms

of the actor model, whose precise definition is somewhat obscure. It is therefore not

possible to address rigorously the question of what constitutes correctness in

Yonezawa's model, and to show that his proof techniques suffice to prove correctness.

(2) The actor model lacks a useful notion of modular decomposition. In

particular, there is no reasonable way to view a system of actors as a single actor.

(3) Yonezawa's techniques can handle only a very limited form of liveness

property in specifications and proofs; namely, those of the form: "If the precondition of

an event holds, then eventually that event must occur."

-38-

2. Framework for a Theory of Specification

The purpose of this chapter is to construct a framework of definitions that is

suitable as a foundation for a theory of specification. We present and motivate formal

definitions of the notions, discussed informally in Chapter 1, of "interface,"

"observation," "abstraction," "decomposition," "implementation," and "correctness."

2.1 lnte.rfaces, Observations, and Behaviors

An event is an observable instantaneous occurrence during the operation of a

computer system. If one were to examine a particular computer system in microscopic

detail, the events of a system could be identified with physical events, such as voltage

changes on signal lines. However, we are generally not interested in such a large

amount of detail, and instead regard large classes of physical events as equivalent and

indistinguishable. Examples of such equivalence classes are: the event in which

process A submits a message to a transmission system for delivery to process B, the

event in which the variable x is set to three, and the event in which the synchronizer

module receives a try request from user process p.

The first step in modeling a particular system is to identify and classify the

interesting instantaneous occurrences. As a result of this procedure, we associate with

each system and each particular level of abstraction at which the system is to be

viewed, an "interface," which represents the set of all possible instantaneous

occurrences of interest at the given level of abstraction, plus a single element A, which

represents all uninteresting occurrences. Lower levels of abstraction (those that

incorporate more detail) are characterized by larger interfaces, corresponding to finer

classifications of the instantaneous occurrences, whereas higher levels of abstraction

are associated with smaller interfaces, corresponding to coarser classifications.

Definition - An interface is a structure <E, Ac, ... >, where Eis a set whose elements are

called events, AE Is a distinguished element of E called the null event, and the ellipsis

indicates that further structure may be present. I

We use the symbol E to denote both the entire structure and the underlying set of

events. When the interface E is clear from the context, we will omit subscripts, writing A

instead of AE.

-39-

In general, an interface E will have additional structure besides the distinguished

element "J\E" For example, in Chapter 5 we will be concerned with interfaces of the form

<E, "J\E' lnE, OutE>' where lnE and OutE are subsets of E called the sets of "input events"

and "output events," respectively. Except for the material in Chapter 5, the only

structure required is the existence of the distinguished null event >..E.

If Eis an interface, then let E• denote the set of all finite strings, and EfX) the set of

all finite and infinite strings, on the alphabet E - {>..EJ. It is convenient to view E as a

subset off• and ffX), where the element >..E of Eis identified with the unique string of

length zero, and each non-"J\ element e of Eis identified with the corresponding string e

of length one.

In the synchronizer example, the interfaces are defined as follows. Let Proc be the

set of user processes. The synchronizer module has interface ESM = {tryP, runP, restP: p

€ Proc) U {>..). A synchronizer component module has interface Esc = {"J\, try, run,

rest, token_in, token_out, request_in, request_out}.

To rtP.sr.ribP. the functioning nf a ~~te.m dl•ring A ~ingle ev~1_1tion. we postulate

the existence of an omniscient observer, outside of the system under consideration.

The observer is able to watch the operation of the system and compile a complete

record of the events that occur, along with their time of occurrence. We refer to this

record, the structure of which will be precisely defined below, as an "observation." An

observation is a function that maps each instant of time t in the interval (0, ex:>) to the

event that occurs at time t.

We assume that at most finitely many non->.. events can occur in any bounded

interval. This assumption, which is used to permit inductive reasoning about

observations, seems reasonable if we think of a computer as executing in discrete steps

taken at a finite rate. The fact that an observation is a (single-valued) function implies

that at most one event occurs at each instant of time. This is not to be interpreted as a

fact about real-world systems, but rather as part of the definition of the term "event."

That is, by definition no more than one event occurs at any instant. To model a situation

in which a number of primitive occurrences can happen simultaneously, we must use an

interface that contains one event for each possible combination of primitive

occurrences.

-40-

The reason why we define observations as functions from (0, oo) to events rather

than simply as sequences of events (and in Chapter 3 define computations on [0, oo) as

well), is a technic~I one. We shall often be interested in composing a collection of

observations, one for each component module in a system of modules, to obtain a

single observation of the composite system. If observations are defined to be

sequences of events, then composition of observations corresponds (in the special

case that the component modules do not interact) to interleaving of sequences. For

example, if a module M 1 can produce the sequence of events ab and module M2 can

produce the sequence of events cd, then the composite system consisting of modules

M1 and M2 can produce the interleaved sequence of events acbd. The feature of

interleaving that is inconvenient for our purposes Is the fact that the indices of events

change under interleaving. That is, the event b appears as the second event in the

sequence ab, but as the third event in the sequence acbd. The definitions of

observation and composition we use have the more convenient property that an event

appearing at time t in an observation for module in isofation always corresponds to the

event appearing at time t in a composite observation.

Definition - An observation over an interface Eis a function x: [0, 00) - E, such that

x(t) '¢- X for at most finitely many t in each bounded interval. I

Let A denote the identically X observation, and let Obs(E) denote the set of all

observations over E. If x E Obs(E), and a € [0, 00), then let [x] denote the function that

maps each t € [0, 00) to the the (finite) string of non-X events that occur during the

interval [0, t) in x. Let suffix
8
(x) be the observation y € Obs(E) such that y(t) = x(t + a)

for all t € [0, 00).

By collecting the set of all observations that can be produced by a system in

various environments, we obtain the "behavior" of that system.

Definition - A behavior of interface Eis a subset of Obs(E).

Let Beh(E) be the set of all behaviors of interface E.

- 41 •

2.2 Abstraction, Decomposition, and Interconnection

In this section, we show how the concepts of hierarchy of abstraction and modular

decomposition can be captured through the use of certain mappings between

interfaces, which we call "translations, 11 and the corresponding mappings they induce

on observations.

Definition - A translation from an interface E to an interface F is a function h: E - F

such that h(AE) = '>..F. A translation h from E to F extends in a natural way to a function

h: Obs(E) - Obs(F), under the definition h{x) = h•x. I

The concept of an "interconnection, 11 defined below, is the formal notion

corresponding to a diagram like Figure 2. Intuitively, an interconnection consists of of

an "abstraction map, 11 which captures the relationship between a more concrete and a

more abstract view of a system, and a "decomposition map," which captures the

relationship between a composite system and its component modules. An abstraction

map is simply a translation from the interface corresponding to the concrete view, to the

interface corresponding to the abstract view. A decomposition map is a collection of

translations that shows how the events for the composite system are decomposed into

events for the component modules.

Definition - An interconnection is a pair , = <a', ,e>, where a3: E' - o' is a

translation, I is a finite index set, and each al: E3 - F/ is a translation. The interfaces Fl
are the component interfaces of ,, the interface E' Is the composite interface of ,, and

the interface o' is the abstract interface of,. The translation a' is the abstraction map

of ,, and the vector <B!>;Ei is the decomposition map of,. I

In the sequel, underlining will be used to denote a vector of objects; thus we write 4' for

the vector <a;>,€,.

The synchronizer implementation yields an example of an interconnection. The

content of Figure 2 is formalized by the interconnection <aSM1, .d SM'>, where ESM1, aSM1:

ESM1 - ESM and a:-41: fSMI - Esc, p E Proc, are defined below.

The composite interface for the synchronizer module implementation is ESM' =

{tryP, runP, restP, tokenP, requestP: p E Proc} U {'>..}.

- 42 -

The decomposition map ~ SM, projects or decomposes each event for the

composite interface into corresponding events for the synchronizer component

modules. The events tryP, runP, and restP in ESM1 decompose to try, run, and rest events

of the pth synchronizer component module. The events tokenP and requestP of ESM1

represent interaction between the pth synchronizer component module and its

neighbors in the ring. Specifically, the event tokenP represents the joint occurrence of a

token_out event for the pth synchronizer component module, and and a token_jn event

for the p + 1st synchronizer component module. Similarly, the event requestP represents

the joint occurrence of a request_out event for the pth synchronizer component module

and a request_Jn event for the p-1 st synchronizer component module. Formally,

6SM1(e) = try, if e = try p p

= run, if e = runP

= rest, if e = restP

= token_in, if e = tokenP-1

= token_out, if e = token P

= request_ln, if e = requestP + 1

= request_out, if e = requestP

= >., otherwise.

The abstraction map aSM1 preserves events in which the system of synchronizer

component modules interact with the user processes, but deletes (i.e. maps to >.) events

corresponding to internal interaction

Formally,

between synchronizer component modules.

aSM1(e) = e, if e E {tryP, runP, restP: p E Proc},

if e E {tokenP, requestP: p E Proc} U {>.}.

We assign intuitive significance to some of the operators on behaviors that are

naturally induced by abstraction and decomposition maps.

The direct image operator associated with an abstraction map takes a behavior of

a system viewed at a more concrete level, and produces the corresponding behavior of

that system viewed at a more abstract level.

Definition - The abstraction operator associated with a translation a: E - D, is the

function, also denoted by a, that maps each behavior B E Beh(E) to the direct image

a(B) E Beh(D). We refer to the behavior a(B) as the abstraction of B under a. I

-43-

The inverse image operator induced by a decomposition map models the

operation of composing a collection of component module behaviors to produce the

corresponding behavior of the composite system. Intuitively, if S is a system consisting

of component modules <M
1
),Et' then S can produce all and only those observations x

that, when decomposed, match observations that each M1 can produce.

Definition - The composition operator associated with the vector i of translations is

the function, denoted by i ·1, that maps a vector <B;>,E,• where B1 E Beh(F) for each i E /,

to a behavior a·1c.a) € Beh(E), under the definition:

&·1(li) = {x E Obs(E): 81(x) Es, for all/ E /}.

Thus, the set i ·1w_) contains an observation x E Obs(E) iff 81(x) € B1 for all i E /. We call

this set the composition of a. under 4 . I

2.3 Specification, Implementation, and Correctness

In practice a specification will take the form of a string of symbols in a formal

specification language, since it must be possible to write down a specification.

However, since this thesis is not concerned with the details of a particular formal

language in which specifications are to be expressed, it is convenient to adopt a more

liberal view: A specification is any mathematical object that denotes, in a well-defined

way, an interface and a set of behaviors of that interface.

Definition - A specification language is a triple <Specs, g, 5>, where Specs is a set of

specifications, g is a mapping that assigns an interface C(S) to each specification S E

Specs, and ~ is a mapping that assigns a set 5(5) ~ Beh(S(S)) to each specification S E

Specs. We say that S is a specification of interlace S(S), and that each 8 E ~(S) satisfies

S. I

An interconnection describes the pattern of interaction between modules in a

system in analogy to the way a program scheme describes the flow of control between

uninterpreted statements. It makes no sense to speak of an interconnection as

"correct" or "incorrect," since an interconnection Includes no information about the

behaviors of the component or abstract modules. However, if we provide an

interpretation for the modules by augmenting an interconnection with specifications of

the abstract and component module interfaces, it does become meaningful to speak of

correctness. We use the term "implementation" for an interconnection augmented with

-44-

specifications.

Definition - An implementation is a tuple (3, Saba' <S,>;E;>' where 3 is an

interconnection, Sabs is a specification of interface o3, and S1 is a specification of

interface F;, for each i € /. I

An implementation is correct if, whenever acceptable behaviors are plugged in for

the component modules, then the resulting abstract module behavior is also

acceptable. The composition and abstraction operators associated with the

interconnection formalize the notion of "plugging In."

Definition - An implementation <3, Sabs, <S;>,€;> is correct If a30~ 3)·1(li) € ~(Sabs),

whenever 81 E ~(S) for each IE/. I

- 45 -

3. State-Transition Specifications

In this chapter, we will investigate a particular approach, called "state-transition

specification," to the derivation of module specifications. In this approach, we imagine

that at any instant of time a module can be thought of as being in one of a number of

conceptual states. Associated with each conceptual state is a collection of events that

can occur in that state, and a description of the state change that results from the

occurrence of each of those events. Thus, a state-transition specification describes the

desired functioning of a module in terms of a kind of machine that generates an

observation as it executes. It is important to note that the conceptual states in a

state-transition specification are merely a tool for describing the desired functioning,

and need not have anything to do with the "real" state present in any particular module

instance that satisfies the specification.

The properties captured by the state-transition technique discussed here are

divided into two classes: "local" properties, which concern the relationship between an

event and the conceptual state of the module immediately preceding and immediately

following the occurrence of that event, anc! "global" properties, which relate events and

states perhaps distant from each other in time. Local properties are of the form: "An

event e can occur only if the state of the module satisfies P, and if e occurs, then the old

state and new state of the module are related by the binary relation R." Examples of

global properties are "eventuality" conditions of the form: "If the module is now in a

state with property P, then eventually event e will occur." Local properties are specified

by a machine as mentioned above. Global properties are specified by defining a set of

"validity conditions" on computations of the machine. The set of computations that

satisfy the validity conditions is called the set of "valid" computations.

The reason for investigating state-transition specifications is that they appear to

provide a natural, straightforward strategy for turning an intuitive understanding of the

desired function of a module into a formal specification. This strategy consists of the

following steps:

(1) Define an appropriate set of conceptual states. For example, in the

specification of the abstract synchronizer module, a state is a vector that tells for each

user process whether the synchronizer module thinks that process is trying, running,

resting, or in error.

(2) Define a set of initial states, in which the module begins execution. For the

-46-

synchronizer module, there is a single initial state in which all user processes are

resting.

(3) Defin~. for each event, the conditions required on the state for the

occurrence of that event to be possible, and the state changes associated with an

occurrence of that event. For example, a "run" event for process p can occur only if p

is trying and no other process is currently running. Occurrence of a "run" event causes

the state of p to change to "running" and leaves the states of all other processes

unchanged.

(4) Define the desired global properties for the module. For the synchronizer

module, we wish to require that every user request eventually result in a corresponding

reply, if possible.

Besides serving as a natural vehicle for formalizing specifications, the

state-transition approach also provides a strategy for performing correctness proofs.

The Correctness Theorem (Theorem 3.9) gives sufficient conditions for correctness that

exploit the machine structure of the specifications.

This chapter is organized as follows: In Section 3.1 the notion of "subset

specifications," of which state-transition specifications are an example, is introduced.

In Section 3.2 the machines used in state-transition specifications are defined, and in

section 3.3 some tools for reasoning about their computations are developed. The

notion of a state-transition specification is defined in Section 3.4. In Section 3.5 the

Correctness Theorem, which is the main result of this chapter, is proved. Section 3.6

shows that the Correctness Theorem is a natural generalization of the "possibilities

mapping" proof technique of Lynch [Lynch83] and Goree [Goree81]. Section 3.7

shows how the proof technique suggested by the Correctness Theorem can be further

systematized in the case of state-transition specifications whose sets of valid

computations have been defined by "rely-/guarantee-conditions."

3.1 Subset Specifications

As discussed in Chapter 2, a specification S of interface E defines a set ~(S) of

behaviors of interface E. In general, we might look for specification techniques that are

capable of expressing arbitrary properties of behaviors. However, in practice it appears

that the properties of behaviors we wish to express in a specification are nearly always

of a special form. That is, it is nearly always the case that we wish to express universal

· 47 •

properties of the observations in a behavior, of the form: "Every observation x in 8 has

property P," where Pis a property of observations. This means that in practice it is

usually not necessary to have a specification technique that is powerful enough to

express arbitrary properties of behaviors. Rather, a less powerful technique, which is

capable only of expressing properties of observations, suffices. The state-transition

specification technique introduced in this chapter is of this less powerful variety.

Definition - A specification S of interface Eis a subset specification if there exists a set

O(S) ~ Obs(E) such that ~(S) = {8 E Beh(f): 8 ~ O(S)}. I

For the rest of this thesis we will be concerned only with subset specifications. To

see what we give up by restricting our attention to subset specifications, let us consider

some examples. Examples of properties of behaviors that can be expressed as subset

specifications, that is, as universal statements about observations in a behavior 8, are

the following:

- Every observation in 8 contains at most finitely many occurrences of non->.

events (that is, computation always quiesces).

- In every observation in 8, either each occurrence of a try event for process p

is ultimately followed by a run event for process p, or else there is a point in time after

which some process is in the "running" state forever.

Examples · of properties of behaviors that cannot be expressed as subset

specifications, and hence cannot be captured by the state-transition approach

discussed here are:

- There exists an observation in 8 that contains at most finitely many

occurrences of non->. events (there exists a quiescing computation).

- If xis an observation in B and t E [O, 00), such that [x](t) = u, then there is an

observation y E 8 and a t ' E [O, 00) such that [y](t ') = ue. (if the module is capable of

doing u, then it is also capable of doing ue).

- If x is an observation in 8, and f is an order-isomorphism from [O, 00) to

(0, 00), then x0 f is also an observation in 8 (the module is asynchronous, or

timing-independent).

Because the properties of behaviors defined by subset specifications are really

just "lifted" properties of observations, the definition of correctness of an

implementation that involves subset specifications has an equivalent statement in terms

-48-

of observations.

Lemma 3.1 - Suppose that<,, Sabs' <S;>;E;> is an implementation, where S8bs and each

S; is a subset specification. Then<-', Sabs' S, > is correct iff a' 0 (.d ')"1((0(S1)>;Ei) ~ O(Sabs).

Proof - =>Suppose<,, Sabs' S. > is correct. Suppose that x E Obs(E') is such that B;(x)

E O(S;) for each; E /. Then the behavior {x} is the compo~tion under .d' of the vector of

behaviors <{8;(x)}>;Ei• and the behavior {a'(x)} is the abstraction under a' of the

behavior {x}. Since the behavior {8;(x)} satisfies S1 for each i E /, it follows by

correctness that the behavior {a'(x)) satisfies Sabs' Thus a'(x) E O(Sab
8
).

< = Suppose that a' 0 {,d ')"1(<0(S;)>,E,) ~ O{S8bs). For each i E /, suppose that B1 is

behavior that satisfies Sr Then B; ~ O(S;). Let Babs = a' 0 (.d '>"1(L!). Then Babs is a
subset of O(S

8
bs) by hypothesis, and hence Hence Baba satisfies Sabe· I

3.2 Machines and Computations

In this section, we detine a kind of nondeterministic machine that generates an

observation in each of its computations.

Definition - A nondeterministic event machine (or just rmachine" for short) M consists

of:

- An interface E,.,

- A set o,., of states.

- A nonempty set I nit,., ~ QM of Initial states.

- A relation Trans,.,~ Steps(E,.,, O,.,) = Q,., x EM x QM' called the

state-transition relation, such that for all q € O,.,, the null step <q, A, q> E Trans,.,. I

If E,., = E, then we say that Mis a machine of interface E.

The state-transition relation Trans"' of a machine M has a natural extension

Trans,.,• that applies to strings of events, rather than just single events. Formally, define

Trans./ ~ QM x E,/ x QM to be the least relation containing Trans"', and having the

following closure property: If <q, u, r> E Trans"'• and <r, v, s> E Trans"'•, then <q, uv, s>
E Trans,.,•. (Recall from Section 2.1 that we identify the null event AE with the empty

string.)

-49-

Definition - A state q E QM is reachable by M if there exists a state q0 E lnitM and a

string u E EM• such that <q0, u, q> E TransM •.

Suppose that R ~ QM' Then R is inductive for M if

(1) lnitM ~ R.

(2) For all <q, e, r> E Transu, if q ER then r € R.

We say that R is invariant tor M if it contains all reachable states of M. The following

extremely important induction principle is a standard technique (see, e.g. [Keller76]) for

proving properties of reachable states.

Lemma 3.2 (Induction Principle) - Suppose Mis a machine, and that R ~ QM. If R is

inductive for M then R is invariant for M.

Proof - Straightforward. I

Ordinarily, a computation of a machine might be defined to be a pair consisting of

a state sequence%• q1, ... , and an event sequence e0, e1, ... , such that each step

(qi(, e I(' qi(+,> s~tisfies the state-transition relation. Intuitively, q1c and q1c + 1 repreeent the

states "just before" and "just afterl' the occurrence of the event e,c, respectively. To

define a computation in which the notion of an event sequence has been replaced by

that of an observation, we generalize the notion of a state sequence to that of a "state

function," which assigns a state to each nonnegative real number, in such a way that

the notion of state "just before" and "just after" each point t € [O, 00) is meaningful.

Definition - A state function over a set of states Q Is a function f: [O, 00) ➔ Q such that

for all t € [O, 00), there exists t
1
> 0 such that f is constant on the intervals [t-e,, t] n

[O, 00) and (t, t + t
1
]. I -

We write f(t +) as an abbreviation for the constant value of f on the interval (t, t + e1),

which intuitively represents the state "just after" time t. The state at and also "just

before" time tis represented by the ~alue f(t).

Definition - A history over an interface E and state set Q is a pair X = <Obsx, Statex>,

where Obsx is an observation over E, and Statex is a state function over Q. Let

Hist(£, Q) denote the set of all histories over interface f and state set Q. I

-50-

If XE Hist(E, Q) and t E (0, oo), then define the step occurring at time tin X by:

Stepx(t) = <Statex(t), Obsx(t), Statex(t+)>.

The generalization of the ordinary definition of a computation is now

straightforward.

Definition - A computation of a machine Mis a history XE Hist(EM' QM) such that

{1) Statex(0) E lnitM.

(2) Stepx(t) E TransM for all t E [0, oo).

Let Comp(M) denote the set of all computations of M. I

If V is a set of computations of M, then define Obs(V), the set of all observations

generated by V, by Obs(V) = {Obsx: X € V}.

3.3 Properties of Histories

The purpose of this section is to develop some machinery for passing back and

forth between histories and "history skeletons," which are sequences of steps plus

timing information. Each history skeleton naturally defines a unique history.

Conversely, given a history X we can extract (though not in a unique way) a history

skeleton by restricting Stepx to a suitable subset T of [0, oo). Whereas histories have

convenient behavior under projection, history skeletons are more useful for performing

computational induction arguments.

Definition - A skeletal sequence is a monotone increasing sequence t0 < t1 < ... of

elements of [0, oo), such that t0 = 0 and tit-+ oo ask - oo. A skeletal sequence T =

<t,?1i€.Xspans a history X if for each k E .'4~ Obsx is identically A and Statex is constant on

the interval (t11 , tit+ 1). I

Note that by the properties of a state function, if Statex is constant on the open interval

(t11 , tit+ 1), then Statex is also constant on the right-closed interval (t11 , t11 + 1].

Lemma 3.3 - Suppose X is a history. Then there exists a skeletal sequence that spans

X.

Proof - Let T = XU {t E [0, oo): Stepx(t) is nonnull}. The proof that T is a skeletal

sequence that spans X uses the defining properties of observations and state functions,

- 51 -

plus the compactness property of the closed, bounded subsets of [O, oo). The details

are omitted. I

Corollary 3.4 - Suppose <X;>;E, is a finite collection of histories. Then there is a

skeletal sequence T that spans all the x,.

Proof - For each i E /, let T; be a skeletal seQuence that spans X1, and define T = u,E:, Tr

The finiteness of I implies that T has order type w, and is hence a skeletal sequence. It is

obvious that Tspans each x,. I

Definition - A history skeleton over an interface E and a state set Q is a function f: T -

Steps(E, 0), where T = <t,?1iE:xis a skeletal sequence, such that if f(t11) = <q11 , e11 , r11> for

each k € Jf, then r,.. = q 11 + 1 for all k E Jf. The history skeleton f spans a history X if T

spans X and f is the restriction of Stepx to T. I

Lemma 3.5 - Suppose that f is a history skeleton over E and o. Then there is a unique

history X over E and O such that f spans X.

Proof - Suppose f: T - Steps(£, 0), where T = <t11>11 E:.N' Suppose f(t"') = <q11 , el<, q"' + 1>.
The requirement that f spans X defines X uniquely:

Obsx(t) = e11 , if t = ti<

= A, otherwise.

Statex(t) = q0, if t = O

= qlt+1' iftE(tH,t1<+11•

It is easy to see that Xis a history. I

Lemma 3.6 - Suppose Xis a history over E and Q. If T = <t,?1tE:Jfis a skeletal sequence

that spans X, then the restriction of Stepx to Tis a history skeleton that spans X.

Proof - Let f denote the restriction of Stepx to T, and suppose that f(t11) = <q1i, e
11

, r11>. If f

is a history skeleton, then f spans X by definition. To see that f is a history skeleton, we

must show that r"' = q 1i + 1 for all k E .K. Fix k E Jr. By definition of a state function, we

can select e > O such that Statex is constant on the interval (t11 , t11 + eJ. Then '1c =

Statex(t,.. + e). Since Statex is constant on the interval (t11 , t1c + 1) by the fact that T is a

skeletal sequence of X, it follows that '1c = q
11

+ ,. I

-52-

The following consequence of Lemma 3.3 and Lemma 3.6 says that every state

appearing in a computation is reachable.

Corollary 3.7 - Suppose X is a computation for a machine M. Then Statex<t) is

reachable for M, for all t E [O, oo).

Proof - Use Lemma 3.3 to obtain a skeletal sequence T = <t,?1iEX that spans X. By

Lemma 3.6, the restriction of Stepx to T is a history skeleton that spans X. The result

follows by an inductive proof that the constant value of Statex on each set {t0}, (t1, t2],

(t2, t3), ... is reachable for M. The details are straightforward, and are omitted. I

3.4 State-Transition Specifications

Definition - A state-transition specification S of interface Eis a pair <Ms, Vs>, where Ms

is a machine of interface E and Vs is a set of computations of Ms, which we call the set

of valid computations. I

!f S is a state-transition specification of interface E, then the eet of behav!crn that

satisfy S is defined as follows:

~(S) = {8 E Beh(E): B ~ Obs(Vs)}

It is clear from this definition that state-transition specifications are subset

specifications.

As a concrete example of a state-transition specification, consider the

specification for the synchronizer module. The interface for the synchronizer module is

defined by:

£SM = {>.} u {tryP, nmP, restP: p E Proc}.

The state set 0 5M for the synchronizer module specification is defined by

oSM = npEProc {trying, running, resting, error}.

Thus each element of the state set oSM is a vector that tells, for each process p E Proc,

what the synchronizer module thinks that process is currently doing. If q E oSM and p €

Proc, then let q(p) denote the component of q corresponding to process p. If v €

{trying, running, resting, error), then let q(vlp] denote the stater E oSM that is identical

to q except that r(p} = v.

-53-

Next, we define the initial state set lnitSM and state-transition relation TransSM for

the synchronizer specification. The initial state set lnitSM consists of the single state q

that assigns the value "resting" to each p € Proc. The state-transition relation TransSM

contains a step <q, e, r> iff either e = A and q = ,, or one of the conditions (try), (run), or

(rest) below is satisfied for some p € Proc:

(try) e = try p' and either

q(p) = resting and, = q[trying/p], or

q(p) ~ resting and r = q[errorlp).

(run) e = runP, q(p) = trying, q(p ')~running for all p '€ Proc-{p},

and, = q[running/p].

(rest) e = restP, and either

q(p) = running and, = q[resting/p], or

q(p) ~ running and r = q[errorlp).

We have defined the machine M8M = <ESM, OSM, lnitSM, TransSM> for the

synchronizer module specification. To complete the state-transition specification of the

synchronizer module, we must define the set vSM of valid computations of MSM. The

intuitive property we wish to capture by this definition is that the synchronizer must

eventually grant all requests, if possible. The qualification "if possible" is required since

if one user process remains In the "running" state forever, then it will be impossible for

the synchronizer module to grant any further requests, without violating the mutual

exclusion property. We can informally state the defining property of vSM as follows: "If,

for all user processes p, every instant of time at which p Is running is eventually followed

by an instant of time at which p is not running, then, for all p, every instant of time at

which p is trying is eventually followed by an instant of time at which p is running."

The validity condition for the synchronizer module is relatively simple, but already

the locutions used to precisely define this condition are somewhat awkward. To deal

with more complex specifications, we require a more compact notation that can be

systematically applied, as opposed to the ad hoc approach taken above. Such a

notation is developed in the next chapter, where the constructs of temporal logic are

used to express properties of histories.

. 54.

3.5 The Correctness Theorem

In this section we consider the problem of how to prove the correctness of an

implementation with respect to state-transition specifications. The fundamental result

of this section is the Correctness Theorem. This theorem shows how the correctness of

an implementation follows from certain properties of a composite machine, which is a

kind of a kind of product of the machines for the component module specifications and

the machine for the abstract module specification. Associated with this product

construction are projection maps that take each computation for the composite

machine to a corresponding computation for the abstract module machine and for each

component module machine.

The Correctness Theorem states that, for an implementation to be shown correct,

it suffices to show that two conditions hold for the composite machine. We call these

conditions the "maximality" condition and the "validity" condition. The maximality

condition concerns the relationship between the state-transition relations of the

component module machines and the state-transition relation of the abstract module

machine. The validity condition concerns the relationship between the set of valid

computations for the component modules and the set of valid computations for the

abstract module.

If the inclusion of the machine from the abstract module specification as a part of

the composite machine seems somewhat strange, consider the following analogy: In

proofs of concurrent program correctness using Hoare-like deductive systems [Apt81,

Owicki76], it is well known that it is sometimes necessary to introduce "ghost

variables," which have no effect on the execution of the program, but merely serve to

capture information about the state of program execution not reflected in the values of

the program variables. The abstract module part of the composite machine serves_the

same function as ghost variables: namely to capture information about the history of

system execution possibly not reflected in the states of the component module

machines.

The proof technique suggested by the Correctness Theorem seems closely related

to the "data refinement proofs" of [Jones81]. Jones shows how the correctness of

implementations of data abstractions can be performed via "representation relations,"

which relate the states of abstract data objects to states of their concrete

-55-

representations. Representation relations capture the same information as the

"implementation invariants" defined below, and the "possibilities mappings" of Lynch

[Lynch83] and Gor~ [Goree81] (see Section 3.6).

We now define precisely the notion of the composite machine for an

implementation. Suppose <,, Sabs' <S?,e;> is an implementation, where Sabs =

<Mabs' Vaba> and S1 = <M1, V;>, for each i €/,are state-transition specifications.

Definition - The composite machine M for the implementation <J, Sabs and S. > is

defined as follows:

EM = E3

QM = QM X n,e, QM.
abs /

Let "abs and ,,,, be the canonical projection maps from the cartesian product Q"' onto

the factors Q"' and Q"' , for each ; € I.
abs /

lnitM = lnitM x n,e, lnit"'. abs /
Trans"' = {<q, e, r> € Steps(E1,1, Q"'):

{,rab6(q), a(e), "•(r)> € Trans" and -{,r1(q), B1(e), w1(r)> E Trans"' for all IE/}. I
I .

Suppose that X € Hist(E"', QM). Then associated with Xis its canonical projection

x<abs) onto Hist(E"' , Q"'), defined by
abs abs

Obsx<abs) = «oObsx

Statex(abs) = .. abs •Statex·

In a similar way, we associate with X its canonical projection x<i) onto Hist(E M, Q"'),
I I

defined by

= B1•0bsx

= •,•Statex·

It is easily verified that the projections x<•bs> and x<I) defined above are, in fact,

histories. Also, it is easily checked that if x is a computation of M, then x<abs) is a

computation of Ma, and x<I) is a computation of M1, for each i E /.

Next, we state the conditions that are shown by the Correctness Theorem to be

sufficient for<.,, Sabs, S. > to be correct. Intuitively, the maximality condition states that

the abstract machine can perform any event that can be performed by the system of •

component module machines. The validity condition states that a computation that Is

-56-

valid for each of the component modules is also valid for the abstract module.

Definition - The maximality condition holds for the implementation <J, Sabs' S. > if for all

states q reachable for the composite machine M, and all e € E, If 81(e) is enabled for M1 in

state w;(q) for each i EI, then a(e) is enabled for M
8

bs in state ,rabs(q). I

Definition - An implementation invariant for the implementation <J, Sabs' S. > is a set Inv

~ 01,1, such that Inv is inductive for the composite machine M. I

Note that an implementation invariant is indeed invariant for M by the Induction

Principle (Lemma 3.2).

Since an implementation invariant contains all reachable states of the composite

machine, it is sufficient to use "q € Inv, where Inv is an implementation invariant," in

place of "q reachable for the composite machine," in proving that the maximality

condition holds;

Definition - The validity condition held~ for the implementation <-', Sabs' S. > if:
Whenever X is a computation for the composite machine M with the property that x<I) €

v, for all ; E ;, then x<abs> E v.bs as well. I

We now come to the main technical lemma (Lemma 3.8 below) used to prove the

Correctness Theorem. The intuitive content of this lemma is as follows: Suppose we are

given a collection X of computations for the component module machines, which are

"coherent" In the sense that there is a single observation x € Obs(E) such that each

Obsx is the image of x under the mapping a,. The vector X of computations can be
I

thought of as a computation of the system of machines, obtained by juxtaposing the

machines for the component module specifications, and "interconnecting" their events

as specified by the decomposition map I. . Lemma 3.8 asserts that, if the maximality

condition holds, then it is possible to construct a computation X for the composite

machine M, such that Obsx = x, and furthermore, such that the projections x<11 of the

computation X are the given original computations x,. Since x<abs) must be a

computation of the abstract module machine (because every computation of M projects

to a computation of Mabs)' it follows that every coherent collection!. of computations for

the component module machines, "simulates" some computation of the abstract

module machine.

- 57 -

Formally, suppose that X. is a computation of M., for each i E I. Given an
I I

observation x E Obs(£), we say that the collection K is x-coherent if Obsx = B;(x) for
;

each i E /. The point of this definition is that a vector K cannot be used to form a

computation X of M unless the observations of each of the X; are in agreement.

Lemma 3.8 •Let<-', Sabs' <S;>;c,> be an implementation, where S8bs = <Mabs' Vab?' and

that S; = <M1, V?, for each i E I are state-transition specifications. Suppose that the

maximality condition holds for<-', Sabs' S >. Suppose that x E Obs(£'), and that x, is a

computation of M1 for each i E /, such that the collection K is x-coherent. Then there

exists a computation X of the composite machine M such that Obsx = x I and such that

x<il = x, for each i E /.

Proof - By Corollary 3.4, there exists a skeletal sequence T = <t,?11Exthat spans each

of the x,. We assume without loss of generality that T includes all points t for which x(t)

'¢ A, Let e11 = x(t11) for each k. We will use the maximality condition to construct a

sequence qO, q1, ... of elements of Ou such that tr1(q11) = Statex_(t11) for all i EI and all k E
I

~r a--d S"Ch -,. (q e q ' C Trans for al',_. E ... ra..-- .., __ ,_, /·,,,, , ... ,.u 1<' 11 , 11 + r' M , " - .11. 11c:,11 u ,c:, ,u11"'uu11 • , -

Steps(EM, OM) that takes ti< to <qi<, e11 , q 11 + 1> is a history skeleton for M. By Lemma 3.5

there is a unique history X for M such that f spans X. It is easy to see that X is a

computation of M with Obsx = x and x<,) = x, for each i EI.

The q11 are constructed by induction on k. At the kth stage of the construction (k >
0), we assume that q• has been constructed so that q11 is reachable and ..-1(q•) =

Statex,C,11) for all i E /. We construct q 11 + 1 so that ..-1(q• + 1) = Statexp1i + 1) for all i EI and

so that <q", e11 , q1i+ 1> E TransM. It follows by definition of reachability that q• + 1 Is

reachable.

Basis: Let q0 be an arbitrary element of {q E lnitM: w1(q) = Statex (O) for all i E /}. Note
I

that this set is nonempty since it is a cartesian product of nonempty sets. Clearly % E

Inv and ,,,,(qJ = Statex (0) for all i EI.
I

Induction: Suppose, for some k E .N', that q• has been defined so that q" E Inv and .,,,(q")

= Statex_(t11) for all i EI. Since x, is a computation for M1, for each i EI, we know that
I

B,(e11) is enabled for M1 in state .,,,(q"), for each ; E /. Since q11 is reachable for M, the

maximality condition implies that a(e.) is enabled for M
8
bs in state wabs(q

11
). Hence

-58-

{q E QM: <q1c, e1c, q> E TransM and w;(q) = Statex_<t1c+ 1) for all; E /} is nonempty. Let q1c+ 1
I

be an arbitrary element of this set. I

The Correctness Theorem is an easy consequence of the preceding lemma.

Theorem 3.9 (Correctness Theorem) - If the maximality and validity conditions hold for

an implementation, then the implementation is correct.

Proof - Suppose<,, Sabs' <S,>;E;> is an implementation, where Sabs = <Mabs' V8bs> and

that S; = <M;, v;> for each i E / are state-transition specifications. Suppose that the

maximality and validity conditions hold. Let M be the composite machine. Suppose that

x E Obs(E) is such that 61(x) E 0{S;) for all i E /. By Lemma 3.1, it suffices to show that

a(x) € 0(Sabs>· Since 61(x) E 0(S1) for each i E /, we know that for each i E / there is a

computation x, E v,, such that Obsx = «';(x). Since the collection K is x-coherent, by
f

Lemma 3.8 there exists a computation X for the composite machine M, such that Obsx

= x and such that x<I) = x, for all; E /. Using the validity condition, we then conclude

that x<abs) E V abs" It follows that a(x) = a(Obsx> € O(Saba)' as required. I

3.6 Possibilities Mappings

In this section we show that the Correctness Theorem is a natural generalization of

the "possibilities mapping" proof technique proposed by Lynch [Lynch83] and Goree

[Goree81].

Lynch and Goree define a possibilities mapping to be a function that assigns a set

of abstract module machine states to each vector of states for the component module

machines, in such a way that the initial state set and state-transition relation are

preserved. The fact that each vector of component module states is mapped to a set of

abstract states, rather than to a single abstract state, means that possibilities mappings

are a generalization of the usual notions of simulation or machine homomorphism.

Intuitively, the value of the simulation mapping on a vector of component states is the

set of "possible" abstract states that correspond to the given component states -

hence the name "possibilities mapping."

Lynch and Goree's proof technique can be stated as follows: "If there exists a

possibilities mapping for an implementation, then the implementation is correct."

Interpreted in the framework of this thesis, Lynch and Goree's technique applies only to

-59-

implementations that involve state-transition specifications <M, V> tor which V =

Comp(M). For such implementations, the validity condition required by the Correctness

Theorem is vacuous. Theorem 3.1 O below shows that the existence of a possibilities

mapping is equivalent to the maximality condition required by the Correctness Theorem,

and thus the Correctness Theorem includes Lynch and Goree's proof technique as a

special case.

To define the notion of a possibilities mapping, suppose <J, Sabs' <S;>;r_,> is an

implementation. Suppose S
8
bs = <Mabs' V abs> and S1 = <M1, V,>, tor each i € /. Let M be

the composite machine.

Definition - A possibilities mapping tor the implementation <J, Sabs' <S,>,E,> is a function

t: n;Ei QM - ~QM), with the following properties:
I abs
(1) lnitMabs ~ t(<q,>,E,) whenever q1 € lnitM

1
for all/€/.

(2) For all q E QM' if" abs(q) E f(<w1(q)>,E), then:

(a) Whenever r € QM and e € EM are such that <q, e, r> E TransM, then "abs(r)

€ f((.,,!(r)>1€1).

(b) For all e € EM' it 81(0) is enabled in state w1(q) for each ; € I, then a(e) is

enabled for Mabs in state,, abs(q). I

Theorem 3.10 - Suppose that <J, Sabs' <S,>,E,> is an implementation, where Sabs and S1

for each i E I are state-transition specifications. Then the following are equivalent:

(1) There exists a possibilities mapping for <J, S.._, S. >.

(2) The maximality condition holds for <J, Saba, S. >.

Proof - Suppose that S
8

bs = Wabs' V
8
bs>, and that S1 = <M1, v,>, for each i € I. Let M be

the composite machine for the implementation 0, s., S>.

(1) = > (2): Suppose that f is a possibilities mapping for J, Sabs and S. Define

Inv = {q € QM: "abs(q) E t(<w1(q)>,E1)}.

Condition (1) in the definition of a possibilities mapping implies that lnitM ~ Inv.

Condition (2)(a) in the definition of a possibilities mapping implies that Inv Is inductive,

and hence by lemma 3.2 contains all states reachable for M. The maximality condition

now follows from condition (2)(b) in the definition of a possibilities mapping.

(2) = > (1): Conversely, suppose that the maximality condition holds. Define f: n,E, 01 -

-60-

Qabs as follows: f(<q;>;E,) is the set of all q
8
bs E Q

8
bs such that there exists a reachable

state q for M with ,, abs(q) = q
8
bs and w1(q) = q; for all i E /. We claim that f is a

possibilities mapping.

Condition (1) in the definition of a possibilities mapping holds, since given <q,>;Et E

n;E1 lnitM;' then every qabs E lnitMabs yields a state <qabs' <q,>;E,> that is in lnitM and hence

is reachable for M.

To show that condition (2) holds, suppose that q is a state of M such that w abs(q) E

t(<w;(q)>,E,). Then q is reachable for M by definition off. To see that (2)(a) holds, note

that if <q, e, r> E TransM' then r is reachable by definition of reachability, and hence

.,, abs(r) E f(<w;(r)>,E,). The maximality condition implies that condition (2)(b) holds. I

3. 7 Rely-/Guarantee-Conditions

In this section we will see how state-transition specifications whose sets of valid

computations are defined by rely-/guarantee-conditions can be used to perform the

va!idity part o! a proof of correctne~. The principle of roly /_;u::::-:::r.tcc cor.dltlor.:;

states that the set of valid computations v in a state-transition specification S = <M, V>

should be defined in the form: "Rely implies Guar," where Rely expresses the properties

that the module being specified relies on Its environment to provide, and Guar

expresses the properties that the module guarantees to provide in return.

For the synchronizer module, we wish the validity conditions to capture the idea

that every user's request should eventually result in a response, if possible. The tricky

part is the precise formulation of the "if possible" condition. Clearly if some user goes

into the running state and remains in that state forever, then It will never be possible to

allow any other user in the trying state to go to the running state, without violating the

mutual exclusion property. This condition can be stated in rely-/guarantee-condition

form as follows: "If every user process obeys the requirement that, once in the running

state, it will eventually leave the running state, then the synchronizer module guarantees

that every user in the trying state will eventually lea"e the trying state (and hence

advance to the running state.)"

We have two results, Lemma 3.11 and Lemma 3.12 below, that describe

techniques for using rely-/guarantee-condition specifications in proofs of correctness.

In both of these techniques, we are required to prove:

- 61 ·

(*) Each component module's rely-condition is implied by the conjunction of the

abstract module's rely-condition and the guarantee-conditions for some subset of the

component module~.

Although the exact form taken by condition (*) is different for the two techniques, a

proof by either of the techniques is simplest when the rely- and guarantee-conditions for

the component modules are chosen so that the truth of condition(*) is obvious. Thus,

rely- and guarantee-conditions serve to "cut" the interdependence of modules on each

other, analogously to the way in which a loop invariant cuts the dependence of one

iteration of a loop on the previous iteration. This observation is strong motivation for the

suggestion that module specifications ought not to be derived In isolation, but rather

with a proof of correctness in mind in which those specifications are used.

A correctness proof that makes use of Lemma 3.11 or Lemma 3.12 is rather

different from one in which eventuality conditions (such as termination) are verified by

the well-founded set techniques of [Floyd67, Keller76] and others. Proofs by the latter

techniques tend to take the form of reasoning about the structure of a computation,

whArARs proofs by I amma 3.11 arid Lemma 3.12 tent.:« to be argum~nts baeed on the

communication structure of the modules in the system. Experience gained from the

examples presented in this thesis suggests that arguments based on communication

structure are simpler and more natural.

The use of rely- and guarantee-conditions has been proposed for safety

specifications in [Jones83]. Independently of this thesis, Barringer and Kuiper

[Barringer83] have proposed the use of liveness specifications that are partitioned into

an "environment part," which captures assumptions made about the environment, and

a "component part," which captures commitments made by the module being specified.

Jones, as well as Barringer and Kuiper, exploit the refy-/guarantee-condition structure

of specifications by defining inference rules for process composition that seem closely

related to Lemma 3.11. Barringer and Kuiper's environment/component division seems

essentially the same as the rely/guarantee division used in this thesis, except that

Barringer and Kuiper apply the environment/component division to state-transition

properties, as well as liveness properties.

Misra and Chandy (Misra81] have also used a kind of rely/guarantee distinction to

develop proof techniques for safety properties. In that paper, a process his specified by

an assertion of the form rlhls, where, ands are predicates on finite sequences (called

-62-

traces) of communication events. Such an assertion is interpreted as: "The predicate s

holds of the empty trace, and for all traces t that can be produced by process h, if r

holds for all proper prefixes oft, thens holds for all prefixes (both ·proper and improper)

of t. The predicates r and s can be thought of as roughly analogous to rely- and

guarantee-conditions, respectively, although the former are properties of finite prefixes

of traces rather than properties of infinite computations. Misra and Chandy's proof

technique is a "Theorem of Hierarchy," which gives conditions under which

specifications of a collection of components can be used to infer a specification of the

network formed by interconnecting the components. Their proof technique can be

stated as follows: To show that the specification ROIHISO for the network H is a

consequence of the specifications r)h)s1 (i E /) for the components, it suffices to show

that:

(1) S Implies SO,

(2) RO and S implies R,

where Rand S denote the conjunction of the r1 ands,, respectively. These conditions

are syntactically similar to the conditions (1) and (2) of Lemma 3.11, although their

meaning is quite different. The proof of Misra and Chandy's Theorem of Hierarchy Is by

induction on computation prefixes, whereas the proof of Lemma 3.11 is by structural

induction using a well-founded dependency relation.

In [Misra82], the techniques of (Misra81] are extended to encompass a weak form

of liveness specification in which an additional predicate q is used to state conditions

under which a process trace is guaranteed to be extended. The Theorem of Hierarchy

is augmented with additional conditions to permit its application to these more general

specifications. The additional conditions do not appear to relate In a simple way to any

conditions used in this thesis.

To state Lemma 3.11 and Lemma 3.12, the following notation is convenient: If R

and Gare subsets of a universe U, then define R -u G (read R implies Gin U) to be the

subset (U - R) U G of u. In applications of Lemma 3.11 and Lemma 3.12, the set U will

be the set Comp(M) of computations of a machine M, and Rand G will be the sets of

computations of M that satisfy rely-conditions and guarantee-conditions, respectively.

Lemma 3.11 below says that to prove that the validity condition holds, it suffices to

prove:

(1) The abstract module's guarantee condition is implied by the conjunction of

-63-

the guarantee conditions for the component modules.

(2) There exists a well-founded partial ordering (a "depends on" relation) of

the component modules in the system, such that each component module's

rely-condition is implied by the conjunction of the abstract module's rely-condition and

the guarantee-conditions for the modules on which the component depends.

Lemma 3.11 - (Rely/Guarantee Technique I) - Suppose U is a set and that Rabs' Gabs'

and R1, G1 tor each ; E / are subsets of U. Suppose Vabs = Rabs -u Gabs and v, =

R1 - u G 1, tor each i E /. Suppose

(1) n,E, G, {; Gabs'

(2) There exists a well-founded partial order < on I such that for all i E /,

Rabs n (ni<I G,) {; Rr

Then n,Et V1 {; Vabs'

Proof - Suppose X E R
8
bs n (n,E, V1). Suppose further, to obtain a contradiction, that X

f Gaba· Then by hypothesis (1) we know that X f G1 for some i0 € /.
0

Since X f G1 , and since XE V1 by assumption, It must be the case that X f R1 • By
0 0 0

hypothesis (2) and the assumption that X E Raba' there exists i1 < i0 such that X (G1 • 1
Repeating this argument yields an infinite descending sequence i

0
> 11 > ... , In

contradiction with the well-foundedness of <. I

An example of the use of Lemma 3.11 can be found in the proof of correctness of

the transmission module implementation in Appendix II.

The existence of the "depends on" ,-elation required to satisfy hypothesis (2) of

Lemma 3.11 is a rather stringent condition. In some cases, for example the

synchronizer implementation, all of the component modules in the system are

symmetric In their relationship to each other, and it is hard to see how a suitable

dependency relation might be found. Lemma 3.12 below shows that an alternative

"acyclicity" condition can be used, in case the component module rely- and

guarantee-conditions can be factored in a certain way. Specifically, Lemma 3.12

assumes that the rely-condition for module ; can be expressed as the conjunction of

what module ; relies on the external environment and on each component module i to

provide, and that the guarantee-condition for module i can be expressed as the

conjunction of what module i guarantees to the external environment and to each

-64-

component module j.

In Lemma 3.12 below, one should think of Rabs' Gabs as the rely- and

guarantee-conditions for the abstract module, and of R1, G1 as the rely- and

guarantee-conditions for component module i. The hypotheses of Lemma 3.12 require

us to find {RG;i i, i E / + {abs}}. {RG stands for "rely/guarantee.") Intuitively, if i, i E /,

then RG .. expresses what module i guarantees to module j, and also what module i
IJ

relies on module; to provide. RGabsj expresses what the external environment of the

entire system guarantees to component module j, and also what module J relies on the

external environment to provide. RG,.abs expresses what component module i

guarantees to the external environment, and also what the external environment relies

on module ito provide.

Condition (1)(a) and (1)(b) in Lemma 3.12 state, intuitively, that the abstract

module's rely-condition implies what each of the component modules rely on the

external environment to provide, and that the abstract module's guarantee condition is

implied by the conjunction of what each of the component modules guarantees to

provide to the external environment. Condition (2)(a) states that each component

module's rely-condition is implied by the conjunction of what that component relies on

the external environment to provide and on what that component relies on the

component modules in the system to provide. Condition (2)(b) states that . the

guarantee-condition for component module ; implies what module ; guarantees to the

external environment and what module; guarantees to each of the component modules

in the system. Condition (3) in Lemma 3.12 is an acyclicity condition, which states that

there can be no unbroken cyclic dependency between component modules.

If / is a set, then define a cycle of I to be a nonempty subset of / X / of the form:

{<i0, i1>, <i1, i2>, ... , <in_1, in>}, such that in= i0•

Lemma 3.12 (Rely/Guarantee Technique II) - Let I be a finite index set. Suppose that

U is a set and that Rabs' Gabs' and R1, G; for each ; E / are subsets of U. Suppose Vabs =

Rabs -u Gabs and v, = R1 -u G;, for each; E /. If there exists, for each i, J E / + {abs}, a

set RG1j ~ U such that (1)-(3) below hold, then n,€, V1 ~ vlbs.

(1)(a) R8bs ~ ni€t RGabsJ'

(b) n,E, RGi,abs ~ Gabs'

{2){a) n,E, + {abs} RG ij {;; Ri' for all i E /.

-65-

(b) G; ~ n}E/+ {abs} RGij' for all;€,.

(3) Whenever {<i
0

, i?, <i1, i2>, ... , <in_1, in>) is a cycle of/, then

u = u:-1
0 RG; , •

= k' 11+1

Proof - Suppose (1)-(3). Suppose further, to obtain a contradiction, that there exists X

€ u n Rabs n (n;E, V1) such that x (l Gabs. We perform an inductive construction to

obtain a _cycle {<im, im+1>, •.. I (in' ;n+1>l of I such that X (uz:1m RG,k,111+1 This

contradicts hypothesis (3).

As the induction hypothesis at stage k of the construction, we assume that

i1, i2, ... , i11 have been constructed so that X (R
1

, and that X (u1
11-~ RG

1
,1 •

II "' 1/+1

Basis: From (1)(a) and the assumption that XE Rabs' we know that XE RGabsJ for all i E /.

Since X (Gabs' by {1}(b) we know that X (RG1 ,abs for some i1 E I. By (2)(b) we know
1

that X (G1 , and from the assumption that XE V1 , we conclude X (R1 •
1 . 1 1

Induction: Assume the induction hypothesis holds for some k ~ 1. By (2)(a) we know

that X t RG; ,1 for some I._ 1 EI. If i.. 1 =; for some m with 1 < m < k, then we have
II 11+1 ,.+ n+ m - -

obtained the desired cycle and the construction terminates. Otherwise, by (2)(b) we

know that X (G1 , and from the assumption that X € V1 , we conclude that X (
11+1 11+1

R. . This establishes the induction hypothesis fork+ 1.
111+ 1

Since the set I is finite by hypothesis, we cannot extend the sequence i1, 12, ... , lk

indefinitely without creating a cycle. I

Examples of the use of Lemma 3.12 can be found in the proof of correctness of the

synchronizer implementation in Chapter 4, and in the proof of correctness of the

resource manager implementation in Appendix II.

-66-

4. The Synchronizer Implementation

In this chapter, the theory developed in Chapter 3 is applied to obtain complete

specifications and a proof of correctness for the synchronizer example. In Section 4.1

we review the synchronizer module specification which has already been developed. It

is shown how the set of valid computations for this specification can be given a concise

definition using the language of temporal logic. In Section 4.2, the synchronizer

component module specification is presented. In Section 4.3, the definition of the

synchronizer module implementation is reviewed. In Section 4.4, the Correctness

Theorem is used to prove the correctness of the synchronizer implementation.

4.1 Notation

This section introduces the notation we will use to express state-transition

specifications, and in particular, the temporal logic notation we use to define the sets of

valid computations. We use this notation in this chapter in a highly informal fashion,

and do not concern ourselves with precise syntax and semantics. The reader who is

interested in a careful treatment of the notation we use is referred to Appendix I.

To define a state-transition specification S, we first define the interface Es and
I

state set Os of the machine Ms· As discussed in detail in Appendix I, we regard these

two sets as two distinguished sorts Events and States in a many-sorted algebra As· We

associate a first-order language L(S) with the algebra As in the usual way. The

language L(S) is used to define the initial state set /nits and the state-transition relation

Transs of the machine Ms. In this chapter, we often use constructions that are not part

of a first-order language. Appendix I shows how the use of these constructions can be

justified.

From the first-order language L(S), we obtain a temporal language ~S) by

augmenting L(S) with the temporal operators □ (read "henceforth") and ◊ (read

"eventually"), which are applied to formulas to obtain new formulas. In addition, three

new atomic terms are added to the language: Now and After, which behave

syntactically like constant symbols of sort States, and Occura, which behaves like a

constant symbol of sort Events. The meanings of the symbols Now, Occurs, and After

depend upon the particular instant of time under consideration, and thus are altered by

the action of temporal operators □ and◊ in a way that is detailed below. Intuitively, if

-67 ·

the particular instant of time under consideration is t, then Occurs denotes the event

that occurs at time t, Now denotes the state at time t, and After denotes the state "just

after" time t.

The semantics of the temporal language associated with a specification S =

<M, V> · are captured by the binary relation t= (read "satisfies"), which tells when a

formula of the temporal language is satisfied by a particular history over E,., and QM. To

assert that the history X satisfies a particular temporal formula ,p, we write X I= cp.

Satisfaction is defined informally as follows: If ,p is a formula that contains no

occurrences of temporal operators, then X t= ,p iff cp holds in the usual sense of

first-order logic, with the symbols Now, Occurs, and After interpreted as Statex{0),

Obsx(0), and Statexco•), respectively. If,,, is a formula of the form □+, then X t= cp iff

suffix,(X) t= + for all t € [0, 00). If ,,, is of the form ◊I/,, then X t= cp iff suffix1(X) I= "1 for

some t E [0, 00). Note that the semantics we use are essentially the "linear time"

semantics of [Lamport80], and hence the ◊ operator is equivalent to the compound

operator -,o-,,

We say that a formula cp is a consequence of a set of formulas v, written v I= ff', if

X t= cp whenever X I= 1/, for all + e: v. A formula ,,, is valid, written t== rp, if it Is a

consequence of the null set of formulas.

The temporal language ~S) of a specification S = <M5, Vs> contains an important

sentence to which we shall refer extensively. This is the sentence

Comps= lnits(Now) A □Transs(Now, Occurs, After).

Intuitively, X I= Comp5 iff X Is a computation for the machine Ms·

4.2 Specification of the Synchronizer Module

In this section, we review the state-transition specification sSM = <MSM, VSM> of

the synchronizer module, which has _already been developed in Chapter 3.

Let Proc be a finite set of user processes.

Interface:

ESM = p.J u {tryP, runP, restP: p € Proc}.

In anticipation of Chapter 5, we classify each event in the synchronizer module interface

-68-

as either an input event, an output event, or both (the null event). is the only event that

is both an input and an output event).

lnSM = {1'} u {tryP, restP: p € Proc}

OutSM = {>.} U {runP: p € Proc}.

Although our theoretical framework so far draws no formal distinction between input

and output, in Chapter 5 such a distinction is introduced to obtain a useful test for

consister_tcy of liveness specifications. Input events should be thought of intuitively as

stimuli that are applied to a module by its environment, and output events as responses

applied by a module to its environment. A module does not have the capability of

regulating the application of input stimuli to It.

Machine:

The state set for the synchronizer module machine is defined by

QSM = flp€Proc {trying, running, resting, error}.

To ease later discussion, let us say that process p is resting (resp. trying, running, In

error) in state q if q(p) = resting (resp. trying, running, error).

The set of initial states for the synchronizer module machine is defined by

lnitSM = {q € QSM: q(p) = resting for all p € Proc}.

A step <q, e, r> is in the state-transition relation TransSM for the synchronizer

module machine iff either e = A and q = r, or one of the conditions (try), (run), or (rest)

below is satisfied for some p € Proc.

A try event for process p can occur at any time. If process p was previously resting then

it advances to the trying state, otherwise to the error state. The states of all other

processes are unaffected.

(try) e = try P' and either

q(p) = resting and r = q[trying/p], or

q(p) * resting and r = q[errorlp].

A run event for process p can occur only if process p is trying, and no other processes

are currently· running. Process p advances to the running state, and the states of all

other processes are unaffected.

(run) e = runP, q(p) = trying, q(p ')*running for all p 'E Proc-{p},

and r = q[running/p].

-69-

A rest event for process p can occur at any time. If process p was previously running,

then it advances to the resting state, otherwise to the error state. The states of all other

processes are unaffected.

(rest) e = restP, and either

Validity Conditions:

q(p) = running and r = q[resting/p), or

q(p) ,,,_ running and r = q[errorlp].

We wish the validity condition for the synchronizer module to capture the idea that

every user's request should eventually result in a response, if possible. This condition

can be stated in the rely-/guarantee-condition form as follows: "If every user process

obeys the requirement that, once in the running state, it will eventually leave the running

state, then the synchronizer module guarantees that every user in the trying state will

eventually leave the trying state (and hence advance to the running state)." We can

express this condition concisely as a temporal sentence.

ValidSM = RelySM - GuarSM

where

RelySM = □(VpEProc)(Now(p) == running - ◊{Now(p) ,,,_ running))

GuarSM = □(VpEProc){Now(p) = trying - ◊{Now(p),:,: trying)).

4.3 Specification of the Synchronizer Component Module

A synchronizer component module communicates with an associated user

process via the try, run, and rest events, with its neighboring synchronizer component

module in the clockwise direction via token_out and request_in events, and with its

neighboring synchronizer component module in the counterclockwise direction via

token_in and request_out events. The conceptual state of the module contains a count

of the number of tokens the module possesses, plus information concerning the state of

the associated user process. The synchronizer component module can allow the user

process to enter the running state only if it possesses a token, and must retain a token

throughout the entire period during which the user is in the running state. We would

like the synchronizer component module to be "fair" in the sense it eventually grants

each user request, if possible, and eventually responds to each request for the token by

its clockwise neighbor in the ring, if possible.

- 70-

The specification of the synchronizer component module is parameterized by the

number of tokens it possesses in the initial state. Thus the specification presented

below actually is a specification schema that represents a family {SC": k € .N) of related

specifications, where SC" is the specification for the synchronizer component module

with k tokens in the initial state. The only place the initial number of tokens appears in

the specifiqation is in the definition of the initial state set.

Interface:

The first task in the construction of the synchronizer component module

specification is the description of its interface.

Esc = {A, try, run, rest, token_in, token_out, requesLin, requesLout}.

The sets of input and output events are defined by:

lnSC

OutSC

Machine:

= {A, try, rest, token_in, request_in}

= {X, run, token_out, request_out}.

A state for the synchronizer component module contains a "token" component,

whose value represents the number of tokens the module possesses, and a "ustate"

component, which tells what state the synchronizer component module thinks the user

process is In.

asc = token: .KX ustate: {trying, running, resting, error}.

The "tags" token and ustate are used as selectors; If q € asc, then q(token) denotes the

token component of q and q(ustate) denotes the ustate component.

In an initial state the synchronizer component module SC11 has k tokens and the

user process is resting.

lnit8C1c = {q E osc: q(token) = k "q(ustate) = resting}.

A step <q, e, r> is in the state-transition relation TransSM for the synchronizer

component module machine iff either e = A and q = r, or one of the conditions (try),

(run), or (rest), (token_in), (token_out), (requesLin), (request_out) below is satisfied:

A try event can occur at ahy time. If the user process was previously resting, then it

advances to the trying state, otherwise to the error state.

(try) e = try and either

· 71 ·

q(ustate) = resting and r = q(trying/ustate], or

q(ustate) * resting and r = q(error/ustate].

A run event can occur only if the user process is trying and the synchronizer component

module currently possesses a token. The user process advances to the running state.

(run) e = run, q(ustate) = trying, q(token) * 0, and r = q[running/ustate].

A rest event can occur at any time. If the user process was previously running, then it

advances to the trying state, otherwise to the error state.

(rest) e = rest and either

q(ustate) = running and r = q[resting/ustate], or

q(ustate) * running and r = q(error/ustate].

A token_jn event can occur at any time, and causes the number of tokens possessed by

the synchronizer component module to be increased by one.

(token_in) e = token_in and r = q(q(token) + 1 /token]

A token_out event can occur only if the user process is currently not running, and the

synchronizer component module possesses at least one token. The number of tokens

possessed is decremented.

(token_out) e = token_out, q(ustate) * running, q(token) * O, and

r = q[q(token)-1/token]

A request_jn event can occur at any time, and has no direct effect on the state. The way

in which a requesLin event induces the synchronizer component module to eventually

respond with a token_out event is captured by the validity conditions.

(requesUn) e = requesLin and r = q

A request_out event can occur only if the synchronizer component module currently

does not possess a token. Occurrence of such an event has no effect on the state.

(requesLout) e = requesLout, q(token) = 0, and r = q

Validity Conditions:

- 72-

We would like the synchronizer component module validity conditions to capture

the following two ideas:

(1) A synchronizer component module always eventually satisfies a user's

request, if possible.

(2) A synchronizer component module always responds to requests for the

token issued by its clockwise neighbor, if possible.

We can state this in rely-/guarantee-condition form as foHows: If all requests issued by

the synchronizer component module to its counterclockwise neighbor are eventually

granted, and the user process never remains forever in the running state, then all user

requests and all requests for the token from the clockwise neighbor, will eventually be

granted. Formally,

Validsc = Relysc - GuarSC,

where

Rely8C = D(Now(ustate) = running - ◊(Now(ustate) -:1: running)) A

□(Occurs = requesLout - ◊(Now(token) -:1: 0))

Guar5C = D(Now(ustate) = trying - ◊(Now(ustate) ;t trying)) A

□(Occurs = request_in - ◊(Occurs • token_out))

4.3.1 The Synchronizer Implementation

To be able to describe and reason about the synchronizer implementation we must

formalize the idea that the set Proc is a "ring-structured set of processes with a

distinguished process." We assume that the set Proc is the set of integers modulo N for

some N, and that zero is a distinguished process, which will be the process that initially

possesses the token.

We first define the synchronizer interconnection
eSMI _ (ESMI SMI (6SMI})
" - 1 a ' p pEProc ·

The abstract interface 0SM1 is the synchronizer module interface ESM, and the pth

component interface F~1 is the synchronizer component module interface Esc.

by:

The composite interface for the synchronizer module implementation is defined

ESM1 = {A} + {tryP, runP, restP, tokenP, requestP: p € Proc}.

lnSM1 = {A} + {tryP, restP: p € Proc}

OutSM1 = {A} + {runP, tokenP, requestP: p € Proc}.

- 73-

The tryP, runP, and restP events in the composite interface correspond under the

decomposition map to try, run, and rest events for synchronizer component module p,

and under the ab~traction map to try P' run P' and rest P events for the synchronizer

module. A token P event represents the transmission of a token from synchronizer

component module p to synchronizer component module p + 1 (i.e. in the clockwise

direction around the ring), and a "request" event represents the transmission of a

request from synchronizer component module p to synchronizer component module

p-1 (i.e. in the counterclockwise direction). We capture this information formally by

defining the abstraction map aSM1 and decomposition map i SM,_

aSM1(e) = e, if e € {tryP, runP, restP: p € Proc},

= >., if e € {tokenP, requestP: p € Proc} U {>.}.

B:,11(e) = try, if e = tryP

= run, if e = runP

= rest, if e = restP

= token_in, if e = tokenP-1

= luktt11_oul, if t1 = tokt:mP

= request_in, if e = requestp+ 1

= request_out, if e = requestP

= A, otherwise.

To complete the description of the synchronizer implementation <,SM,, S!:, S. SM'>,

we must define the specifications s=: and S:,11 for each p € Proc. The specification

s:= is the synchronizer module specification sSM. The specification s:,:~ is the

specification ssc1 of the synchronizer component module with one initial token, and for

all p € Proc - {zero}, s~' is the speciticatron · ssco of the synchronizer component

module with no initial tokens.

4.4 Correctness of the Synchronizer Implementation

In this section, we use the techniques of Chapter 3 to show the correctness of the

synchronizer implementation. Most of the proof consists of straightforward case

analyses. The interesting content of the proof is contained in the use of Lemma 3.12 to

prove that the validity condition holds.

• 74 -

4.4.1 Implementation Invariant

To prove the correctness of the synchronizer module implementation, we first

need to find an implementation invariant that provides enough information about the

reachable states of the composite machine so that we can prove the maximality

condition. The implementation invariant will also be useful in the proof that the validity

condition holds, and so in this section we define an implementation invariant that is

strong enough for both the maximality and validity proofs.

For a set Inv to be an implementation invariant for an implementation means that it

is inductive for the composite machine for the implementation. Formally, if M is the

composite machine and E the composite interface, we must show:

(Basis) (\JqEOM)(q E lnitM - q E Inv))

(Induction) ('lq,rEQ11, e E E)(<q, e, ,> E Trans11 - (q E Inv - , E Inv)).

It is generally convenient to define an implementation invariant Inv by a predicate

lnv(q) = Rep{q) /\ Abs(q),

wheie R~p is called the reprtJSf:nlatiuti i11vc11ia11t and Abs is calleJ the absiraciion

relation. A representation invariant describes a relationship that must hold at all times

between the states of component modules In an implementation. Representation

invariants serve roughly the same purpose here as what is called the "data type

invariant" in the literature on abstract data types [e.g. Jones81, Jones83]. An

abstraction relation describes the correspondence between the states of the

component modules and the state of the abstract module. The abstraction relation

plays the same role here as the ''retrieve functions" of [Jones81], and the

"representation functions" of [Hoare72].

The implementation invariant lnvSM1 for the synchronizer implementation is defined

as follows:

lnvSM1{q) = RepSM1(q) /\ AbsSM1(q),

The abstraction relation AbsSM1 holds of state q iff in state q, the abstract synchronizer

module's view of the state of the pth user process is identical to the pth synchronizer

component module's view, for each p in Proc. Stated another way, the abstract

synchronizer module state corresponding to a given collection of synchronizer

component module states is obtained by throwing away all information, except for the

ustate component, in the states of the component modules. Formally,

- 75-

AbsSMl(q) = ApEProc<qabs(p) = qP(ustate)),

where we have used the notations qabs' qP as abbreviations for "abs(q), "P(q),

respectively.

The representation invariant RepSM1 is defined by:

RepSM1(q) s Mutex(q) "Token(q).

Mutex(q) states that if a user process is in the running state, then the corresponding

synchronizer component module must possess a token. Formally,

Mutex(q) = ApEProc<qiustate) = running - qP(token) ':I: 0).

Token(q) asserts that the total number of tokens in the system at any time is precisely

one.

Token(q) s IpEProc qP(token) = 1.

The proof that lnvSM1(q) is in fact an implementation invariant for the synchronizer

implementation is a straightforward induction.

Basis: It follows directly from the initial state sets that if lnit8M1(q) holds, then

q
8
bs(p) = resting for all p € Proc

Qzero = <token: 1, ustate: resting>

qP = <token: O, ustate: resting> for all p € Proc-{zero}.

It is easily checked that these three conditions imply. that AbsSM1(q), Mutex(q), and

Token(q) all hold. We conclude that lnvSM1(q) holds for all q € lnitSM1, as required.

Induction: We must show that for all <q, e, r> € TransSM1, if lnvSM1(q) holds then lnvSM1(r)

does, too. Suppose that <q, e, r> E TransSM1 and lnvSM1(q) holds.

First of all, note that if e = X, then q = rand hence lnvSM1(r) follows trivially from

lnvSM1(q). We therefore assume in what follows that e * A. We consider separately the

proofs of AbsSM1(r), Mutex(r), and Token(,).

To prove that AbsSM1(r) holds, there are two cases: (1) e E {tokenP, requestP: p E

Proc}; and (2) e € {tryP, runP, restP: p E Proc}. Case (1) is disposed of quickly by noting

that if e = tokenP, or e = requestP for some p € Proc, then r abs(p ') = qabs(p ') and

rP .(ustate) = qP .(ustate) for all p' € Proc. Thus in this case AbsSM1(r) follows directly

from AbsSM1(q). Case (2) is handled by a straightforward enumeration of the cases: e =

tryP, e = runP, e = restP, and verifying that in each case, ttie occurrence of e results in

identical values for r abs(p ') and r P .(ustate), for each p ' E Proc.

- 76-

We now consider the proof that Mutex(r) holds. Suppose not, then it must be the

case that ,P(ustate) = running and 'itoken) = 0 for some p € Proc. By a case analysis

one it is straightfory.,ard to check that the only way this can happen is if either qP(ustate)

= running and e = tokenP, or qP(token) = 0 and e = runP. Examination of the

specification of the synchronizer component module shows that it is impossible for a

tokenP event to occur if qP(ustate) = running, and also for a runP event to occur if

qP(token) = 0.

Finally, we wish to show that Token(,) holds. A case analysis on e shows that the

only events that affect the number of tokens in the system are those of the form tokenP

for some p E Proc. Examination of the specifications shows that, when such an event

occurs, ,P(token) = qP(token) - 1, 'P+ 1(token) = qP+ 1(token) + 1, and 'P~token) =

qP .(token) for all p' E Proc - {p, p + 1 }. Thus :IP '€Proc rP ,(token) = IP 'EProc qP ,(token),

and hence Token(,) holds.

4.4.2 Proof of Maximality

We must show that for all q E QSM1 and e E ESM1, if /m,SM1(q) holds and 6~1(e) is

enabled in state qP for all p E Proc, then aSM1(e) is enabled in state qabs'

Suppose /nv8M1(q) holds and that c5:""11(e) is enabled in state qP for all p € Proc.

There are two cases: (1) e = run P tor some p E Proc; and (2) e is not of this form.

Examination of the synchronizer module specifications shows that case (2) is trivial,

since a(e) is enabled in any state unless e = runP for some p E Proc.

Now consider case (1). Since .S:"'41(e) is enabled in state qP, from the synchronizer

component module specification we know that

(A) qP(ustate) = trying and qP(token);,: O.

The assumption that lnv8M1(q) holds implies that Token(q), Mutex(q), and AbsSM1(q) all

hold. From (A) and AbsSM1(q) we infer that q
8
bs(p) = trying. From (A) and Token(q) we

know that QP,{token) = 0 for all p '. € Proc-{p}. From this and Mutex(q) we infer that

qP ,(ustate) ¢ running for all p' E Proc-{p}. From this and AbsSM1(q), we conclude that

qabs(p 1 ~ running for all p' E Proc-{p}. We have shown that

(B) qab9(p) = trying A (AP '€Proc-{p} qab1(p 1 ¢ running).

holds. Examination of the synchronizer module specifications shows that (B) implies

that aSM1(e) is enabled in state qabs' as desired.

-77 -

4.4.3 Proof of Validity

To express the proof that the validity condition holds for the synchronizer

implementation, we associate a temporal language ~sSM') with the composite

specification sSM• = <MSM1, VSM'> in the same way as temporal languages were

associated with the synchronizer module and synchronizer component module

specifications. In addition, we must have some way of taking the temporal sentences,

each expressed in its own temporal language, that define the sets of valid computations

for the synchronizer module and synchronizer component module specifications, and

"lifting" them to the common language ~SSM1). This can be accomplished by a simple

syntactic translation, which we now define.

To each formula cp of ~SSM) we associate a corresponding "lifted" version (cp]abs

of ~SSM1
), by replacing each occurrence of the symbol Now by the term Now abs' each

occurrence of After by the term After abs' and each occurrence of Occurs by the term

aSM1{0ccurs}. Similarly, to each formula cp of 'S(Ssc) and each p € Proc, we associate a

corresponding formula (cp)P € '5(SSM1), by replacing each occurrence of Now by Now,,

each occurrence of After by After,, and each occurrence of Occurs by Br41{0ccurs).

The precise relationship between a formula arid its lifted version is captured by

Lemma 1.2 in Appendix I. Informally, if rp € '5(SSM), then a history X for the composite

machine MSM1 satisfies the formula &cpBabs € ~ASM1) iff the canonical projection x<abs) of X

satisfies the formula cp. Similarly, if cp € ~Ssc), then a history X for MSM1 satisfies HCJ>Dp iff

x<il satisfies q,. An analogous result is stated in [Wolper82], where the process of

"lifting" specifications of individual processes to obtain specifications of a system of

processes is called "relativization."

In the proof that the validity condition holds for the synchronizer Implementation,

we must have some way of making use of the information contained in the

state-transition relation of the composite machine. We do this by using the

implementation invariant according to the following rule of inference: If Inv has been

shown to be invariant, then

Comp t= Dlnv(Now)

holds. This rule, whose validity follows from Corollary 3.7, will be used extensively in our

correctness proofs.

· 78 ·

To show that the validity condition holds for the synchronizer implementation, we

must show that:

CompSMI I= l\cProc ffValid8
CDP - nvalidSMDabs"

In light of Lemma 3.12 it suffices to find, for each i, ; E Pree + {abs}, a temporal

sentence RG;j such that conditions (SMl1)-(SMl3) below hold.

(SMl1)(a) CompSM1 I= ffRelySMBabs - /\/EProc RGabsJ

(SMl1){b) CompSM1 I= /\1EProc RG,,abs - ffGua.-SMJabs

(SMl2)(a) CompSMI I= /\/EProc (/\;EProc + {abs} RG;J - ffRelyscD,)

(SMl2)(b) CompSMI I= A,EProc (HGuarSCD, - /\;EProc+{abs} RG,}

(SMl3) Whenever {<i0 , i1>, <i1, i;>, ... , <i,,_1, in>) is a cycle of Proc, then

CompSMI I= vn-1 RG .
11 =0 111.,11+1

The sentences RG1J express what is relied/guaranteed between each pair of

synchronizer component modules or between a synchronizer component module and

the external environment of the entire system. The synchronizer component module

specifications have been chosen in such a way that the sentences RG;1 can be obtained

simply by "lifting·" the synchronizer component module rely-/guarantee-conditions to

the temporal language of the composite machine. The formal definitions are as follows:

For all i,; E Proc,
1

RGi,abs = D(Now;(ustate) = trying - ◊(Now,(ustate) $ trying))

RGabsJ = □(Now1(ustate) = running - ◊(Now1(ustate) $ running))

For all ; E Proc,

RG;-1,; = □{8~1{Occurs) = request_out - ◊(Now,(token) ~ 0))

For all i,; E Proc such that ; + 1 ~ /,

RG1J = true

Next, we verify (SMl1)-(SMl3). Assume CompSM1 throughout the remainder of the

proof. The interesting intuitive content of the validity proof is contained in the proof that

(SMl3) holds. The remaining cases are practically automatic.

Intuitively, hypothesis (SMl1)(a) says that the abstract module rely condition

implies what each component module relies on the external environment to provide.

Hypothesis (SMl1)(b) says that the conjunction of what each component module

guarantees to the external environment implies the abstract module

guarantee-condition. Formally, we must show:

- 79-

(SMl1)(a) HRelySMflabs - ApEProc RGabs,p

(SMI 1)(b) ApEProc RGp,abs - ff Gua~abs
We show (SMl1)(a), condition (SMl2)(b) is equally straightforward. From the

synchronizer module specifications, we know that

[RelySMDabs = OApEProc(Now abs(p) = running - ◊(Now abs(p) ~ running))

Suppose that ffRelySMDabs holds. By the invariance of the abstraction relation AbsSM1, we

infer

OApEProc(Now P(ustate) = running - ◊(Now iustate) -,1; running)).

Interchanging the D and conjunction yields

ApEProc RGabs,p'
as desired.

Intuitively, hypothesis (SMl2)(a) says that each component module's rely-condition

is implied by the conjunction of what is guaranteed to it by the external environment and

by each other component module. Hypothesis (SMl2)(b) says that each component

module's guarantee-condition implies what the external environment and each other

component module rely on it to provide. Formally, we must show:

(SMl2)(a) A,EProc + {abs} RG1,p - [Rely891P, for all p E Proc

(SMl2)(b) [Guar8CDP - A/EProc+{abs} RGPJ' for all p E Proc.

To show condition (SMl2)(a) is completely straightforward. Let p E Proc be fixed. It

suffices to show that RGabs,p A RGP-1.P - [Rely89P. By definition

RGabs,p = □(Now P(ustate) = running - ◊(Now P(ustate) -,1; running))

RGP-1.P = □(6:-41(Occurs) = requesLout - ◊(Now P(token) ~ 0)).

The conjunction of these two sentences is easily seen to be equivalent to ff Rely89P by

inspection of the synchronizer component module specifications.

To show (SMl2)(b) is not completely trivial because of the fact that what

component module p guarantees to module p + 1 is not exactly what module p + 1 relies

on module p to provide. Specifically, module p guarantees always to eventually send

the token in response to a request from module p + 1. However, module p + 1 relies not

on the eventual occurrence of a token_jn event, but rather on the eventual setting of the

token component of its state to a nonzero value. The nontrivial portion of the proof is to

use the state-transition relation for module p + 1 to show that occurrence of a token_jn

event for that module implies the eventual setting of the token component of its state to

a nonzero value.

-80-

Formally, to prove (SMl2)(b) it suffices to show that (Gua,.SCJP - RGp,abs A

RG 1, since RG J = true by definition unless; = abs or; = p + 1. By definition p,p+ p

RGp,abs = □(Now P(ustate) = trying - ◊(Now P(ustate) * trying))

RGp,p+ 1 = D(t5~1
1(Occurs) = requesLout- ◊(Nowp+ 1(token) * 0)).

By inspection of the synchronizer component module specifications, we have

f GuarSCJP = □(Now iustate) = trying - ◊(Now P(ustate) * trying)) A

O(t5r1(0ccurs) = request_in - O(t5:-41(0ccurs) = token_out)).

Assume ffGuar8CJ . Then RG abs follows immediately from the first conjunct of p P,

f Guar8CJP. To show that the second conjunct of 8Guar8CJP implies RGP.P + 1, note the

definition of the state-transition relation for synchronizer component module p implies

that

O(c5~1
1(Occurs) = token_in - O(Nowp+t * 0)).

From the second conjunct of ff Gua,.SCJP, using the definition of the decomposition map

4 SMI, we obtain

□(8~11 (Occurs) = request_out - 0(8::\(0ccurs) = token_in)).

Combining the preceding two sentences and applying temporal reasoning shows

RGP.P ;p as desired.

The most interesting part of the proof is the proof that (SMl3) holds. To show

(SMl3), we must show that

CompSMI I== yn-1 RG
le• 1 111111 + 1

holds for every cycle {<i0, 11>, ... 1 <in-1• ii} from Proc. The only nontrivial case is the

cycle { <zero, zero + 1>, <zero + 1, zero + 2>, ... , <zero + N-1, zero>} that traverses the

entire ring in the clockwise direction, since every other cycle from Proc contains a link

<i, j> for which RG,J = true by definition. Suppose, to obtain a contradiction, that

(SMl3) fails for this cycle. Then for all p E Proc, the sentence RGP-1.P does not hold.

This means that

Ap€Proc O(B:-41(Occurs) = request_out A □(NowP(token) = 0)).

That is, for each p E Proc, eventually a point is reached at which synchronizer

component module p issues a request_out event, but never has the token after that

point. This implies that

ApEProc O□(Now P(token) = 0).

Since Proc is a finite set, it is valid to interchange the conjunction and ◊ operator in the

preceding formula, concluding that

◊ ApEProc□(Now itoken) = 0).

- 81 -

This asserts that there is some point after which no synchronizer component module

ever possesses a token. This is a contradiction with the invariance of Token, which

states that the total number of tokens in the system is always precisely one. I

-82-

5. Consistency of Specifications

In Chapter 3 it is suggested that module specifications ought to be expressed in

rety-/guarantee-condition form, and that the rely- and guarantee-conditions for the

component modules in a system ought to be selected so that each component module

guarantees precisely the conditions relied upon by its neighbors in the system. In

Chapter 4 the synchronizer example illustrates how adherence to this principle can

result in a simple proof of the validity condition required by the Correctness Theorem.

In practice, there seems to be considerable flexibility In the choice of rely- and

guarantee-conditions. Often significant simplifications in a correctness proof can be

effected simply by adjusting the component module specifications.

The apparent flexibility in the choice of rely- and guarantee-conditions in

specifications raises the following somewhat disturbing question: What is to prevent us

from writing component module specifications with extremely weak rely-conditions (e.g.

true), and ridiculously strong guarantee-conditions (e.g. false), in order to simplify the

proof of correctness? An implementation whose component module validity conditions

are all of the form "true - false" makes the validity part of a correctness proof

extremely simple, but also vacuous. We can also consider more subtle, but still

problematic specifications in which a module "guarantees" the application of some

input to it -- something that seems to contradict our intuitive notion of what it means to

be an input.

Since a specification of the form "true - false," or a specification that guarantees

the application of input ought to be regarded as meaningless, we should have some way

of distinguishing these specifications from others that are meaningful. The theory we

have set up so far provides no formal criteria for making such a distinction. What we

require is a suitable notion of consistency of specifications, with respect to which

obviously unrealizable specifications such as "true - false" are inconsistent, and

apparently reasonable specifications, such as the synchronizer component module

specification, are consistent.

In mathematical logic, a theory is consistent iff it has a model. Since the "models"

of specifications are behaviors, it seems reasonable to define a specification to be

consistent iff there is a behavior that satisfies it. If we take the term "behavior" in this

definition to mean "arbitrary behavior," though, we do not obtain a stringent enough

-83-

notion of consistency. For example, every subset specification is consistent in this

sense, since the empty behavior 0 satisfies every subset specification. To obtain more

stringent notions of consistency, we must restrict our interpretation of the term

"behavior" to mean "realizable" or "computable" behavior.

In this chapter, we examine a notion of consistency based on a model of

concurrent computation called "1/0-systems." An 1/0-system models a collection of

concurrent processes that interact through coupled events. By viewing 1/0-systems at

various levels of abstraction we obtain the "1/0-behaviors," which we take as our class

of computable behaviors. A specification is defined to be "1/0-consistent" iff there

exists an 1/0-behavior that satisfies it. The notion of 1/0-consistency seems to be quite

useful for distinguishing between meaningful and meaningless eventuality

specifications. We develop a technique for proving state-transition specifications to be

1/0-consistent and apply this technique to show the 1/0-consistency of the

synchronizer component module specification.

5.1 1/0-Systems

This section defines a model of asynchronous concurrent computation called

"1/0-systems." An 1/0-system is a system of nondeterministic processes that interact

through coupled events. The nonnull events in which each process can participate are

partitioned into "input events" and "output events." An input event for a process

represents the stimulation of the process by its environment, and an output event for a

process corresponds to the process responding to Its environment. A process can

choose whether or not it will produce output, but does not have the ability to control the

application of input to itself. If a process wishes to produce output, then it cannot be

prevented from doing so, although a process has no control over precisely when the

output will be produced.

The coupling of the processes in an 1/0-system is described by a "system

interface," the elements of which are "system events." Each system event is a vector

with one component for each process In the system, and represents a possible

simultaneous occurrence in the computation of the system. No system event contains

more than one component output event, modeling the idea that at most one process can

produce an output at any instant of time.

-84-

To describe the execution of an 1/0-system, it is helpful to imagine the existence

of a "scheduler," who controls the path of execution of the system. For each step of the

system, the scheduler chooses a system event from the system interface. All processes

then simultaneously take steps corresponding to the chosen system event. By the

constraint that there is at most one output component of each system event, at most one

process produces an output event in each step, and the other processes perform input

steps or null steps. We are only interested in computations of an 1/0-system that are

"fair" in the sense that the scheduler selects each process to perform output steps

often enough.

We now give a formal definition of 1/0-systems. We first define the notion of an

1/0-interface, which is an interface whose non-;\ events are partitioned into input events

and output events.

Definition - An l/O-interface is an interface <E, ">..E, lnE, Out,?, where lnE ~ E is a set of

input events and OutE ~ E is a set of output events, such that the sets lnE, OutE, {">..E}

partition E. I

We next define the "asynchronous product" of a collection of 1/0-interfaces.

Intuitively, the asynchronous product ®;Et F1 of the collection <F,),E, of 1/0-interfaces

represents the set of all possible simultaneous occurrences in a system of processes

where process ; has interface Fr Each element of the asynchronous product interface is

a vector of events from the component interfaces, such that at most one of the events in

the vector is an output event. The fact that at most one event in each vector is an output

event means that at most one process produces an output event at a time. This

restriction is typical of asynchronous, interleaved execution models, and this is why the

asynchronous product has been so named.

Definition - The asynchronous product ®iEt F1 of a collection <F;>,E, of 1/0-interfaces is

the interface F defined as follows:

F = {l E n,E, F1: at most one f; is an output event}

AF = ('),.F,>iE/

lnF = {l E F: t :it ">.F and no f1 is an output event}

OutF = {l E F: exactly one f; is an output event}.

The maps 111: ®,E, F1 - F1, for i E /, that take a vector l to its ith component, are called the

canonical projections associated with ®iEt Fr I

-85-

In general, a system interface will not be the entire asynchronous product of the

process interfaces, but rather only a sub-interface of the asynchronous product. The

reason for using a ~ub-interf ace of the asynchronous product as the system interface is

to capture possible coupling of events between processes. One kind of coupling that

can be modeled in this way is the identification of events of distinct processes. For

example, if the output event out for process one is to be identified with the input event in

for process two, then we would include in the system interface the vector <out, in>, in

which process one performs an out event at the same time as process two performs an

in event, but we would exclude from the system interface the event <out, A), in which

process one performs an out event while process two does nothing, and the event <A,

in>, in which process two performs an in event while process one does nothing. Other

kinds of coupling can also be modeled. For example, if the input event in for process

two always occurs along with an output event out for process one, but the event out for

process one need not occur along with an in event for process two, then the system

interface would include the events <out, in> and <out, A>, but would exclude the event

<A, in).

Our only requirement on the system interface is that to each event of a component

process there is some system event that contains the given event as a component. This

requirement ensures that each observation over a process interface has a faithful

representation as an observation over the system interface.

Definition - An embedding of an 1/0-interface E into an 1/0-interface F is an injective

translation y: E - F such that y(lnE) ~ lnF and y(OutE) ~ OutF. I

(Recall that the fact y is a translation implies that y(AE) = AF.)

Definition - A system interface for a collection <F;>,€, of 1/0-interfaces is an

1/0-interface E ~ ®,€, F1 such that

(1) The inclusion map y: E :-+ ®,€, F1 is an embedding.

(2) Each map ", 0 .., is onto F1, where <v,>,€, are the canonical projections

associated with ® ,E, F,.

The collection of maps <v, 0 ..,>,€, is called the canonical decomposition map associated

with E. I

-86-

Each process in an 1/0-system is represented by an "1/0-machine," which is a

machine that cannot prevent the occurrence of input events. The 1/0-machines in an

1/0-system are required to be "explicit" in the sense that each nonnull step results in

the occurrence of some non->. step. This assumption is justified because we think of an

1/0-system as being a detailed, low-level modef, in which all steps taken by processes

result in explicit observable events. Later we will apply abstraction maps to the

behavior$ of 1/0-systems to obtain less detailed, higher-level views of system behavior,

in which steps can be taken that do not result in observable events.

Definition - An l/0-machine of l/0-interface Eis a machine M of interface E that is

input-cooperative in the following sense: For all q € Q11 and e E lnE, there exists r E QM

such that <q, e, r> E Trans"'. An 1/0-machine M of interface Eis explicit if every step

<q, >., r> E Trans11 has r = q. I

Definition - An 1/0-system is a tuple'!= <E, <M;>;E;>' where I is a finite, nonempty set of

process indices, E ~ ®,E, F1 Is a system interface, and each M1 is an explicit 1/0-machlne

of intarf ;:u~e F . I . ,

We associate with an 1/0-system '! = <E, <M;>,E;>, a system machine M defined as

follows:

EM = E

Q"' = n,E, Q",

lnit11 = n,E, lnit11_ ,
Trans11 = {<a., e, ,>: <q1; 61(e), r;> € TransM,tor alli E /},

where <8;>,E, is the canonical decomposition map associated with E. I

Definition - A computation for an 1/0-system is just a computation for its system

machine. I

A computation X for an 1/0-system projects to computations x<I') for each of its

constituent machines in the obvious way.

We will be interested only in the "fair" computations of an 1/0-system. To formally

define the notion of fairness, suppose '! = <E, <M,>,E;> is an 1/0-system and M is the

system machine. Suppose a. € QM is a system state. We say that process i runs in a

step <a., e, ! > E Trans"' if 81(e) is an output event for process i. We say that process i is

-87 -

enabled in system state a if there is a step <a , e, ! > E TransM in which process i runs.

Suppose Xis a computation for M. Process i is repeatedly enabled in X if for all t E

[O, 00) there exists t' E [t, 00) such that process ; is enabled in Statex(t). Process i

repeatedly runs in X if for all t E [O, oo) there exists t' E [t, 00) such that process i runs in

Stepx<t>-

Definition - A computation X for an 1/0-system is fair it for each process i in the

system, if process i is repeatedly enabled in X, then process i repeatedly runs in x. I

5.2 1/0-Behaviors and 1/0-Consistency

Each computation of an 1/0-system produces an observation over the system

interface. We call the set of all observations that are produced in fair computations of

an 1/0-system the "primitive behavior" of the system. This behavior is called

"primitive" because it contains complete detail about the events that occur during a

computation of the system.

Definition - The primitive behavior PBeh(1) of a system of 1/0-processes :r is the set of

all Obsx where Xis a fair computation for'!. I

By applying abstraction maps to the primitive behaviors, we obtain additional

(nonprimitive) behaviors. We call any behavior that Is the abstraction of a primitive

behavior an "l/0-behavior." An abstraction map can suppress information in a behavior

by mapping two distinct events of the same type (either input or output) to the same

event, or by mapping an output event to A. To ensure that an abstraction map faithfully

preserves the input/output structure of a behavior, we require that an abstraction map

never map an input event to A, and never map an input event and an output event to the

same event. Furthermore, we require that each abstract input event be the image of

some concrete input event.

Definition • An 1/0-abstraction map from the 1/0-interface E to the 1/0-interface D is a
translation a: E - D with the following properties:

I

(1) a(OutE) c; Out0 U {AD}.

(2) a(lnE) c; ln0 •

(3) a is onto In
0

•

(a preserves outputs)

(a strictly preserves inputs)

-88-

Definition - A behavior a E Beh(0) is an /ID-behavior of interlace D iff there exists a

system ':! of I/O-processes with system interface E and an 1/O-abstraction map a: E -+ D

such that a = a(P~eh(:t)). I

The following result shows that the class of 1/O-behaviors is a kind of completion

under 1/O-abstraction of the class of primitive behaviors.

Theorem 5.1 - The class of 1/O-behaviors contains all primitive behaviors and is closed

under 1/O-abstraction operators.

Proof - Obvious from the definition of an 1/O-behavior and the facts:

(1) Identity translations are 1/O-abstraction maps.

(2) If a: F - E and fJ: E -+ D are 1/O-abstraction maps, then /J O a is an

1/O-abstraction map. I

By taking the 1/O-behaviors as our class of realizable or computable behaviors, we

obtain the notion of "1/O-consistency" of specifications.

Definition - A specification S of 1/O-interface D is I10-consistent if there exists an

1/O-behavior a of interface D such that a satisfies S. I

5.3 Machine Characterization of 1/0-Behavlors

To obtain techniques for proving the 1/O-consistency of state-transition

specifications, it is convenient to have a direct characterization, not involving

1/O-abstraction maps, of the 1/O-behaviors of interface E. Such a characterization is

provided by Theorem 5.4 below. Theorem 5.4 states that the 1/O-behaviors are exactly

the sets of observations produced by "productive step machines," which are

1/O-machines plus some scheduling information.

Definition - A productive step set for an 1/O-machine M of interface E is a set Prod ~

TransM n Steps(OutEU{AE}, OM) that contains no null steps. I

\
Definition - A productive step machine (PS-machine} of 1/O-interface E is a tuple

<M, <Prod;>,E;>, where M is an 1/O-machine of interface E and <Prod;>,0 is a finite,

nonempty collection of productive step sets for M, such that u,E, Prod, ~uals the set of

all nonnull steps <q, e, r> E TransM n Steps(OutEup.E}, OM). I

-89-

Suppose that <M, <Prod;>,E,> is a PS-machine. The notions of the productive step

set Prod. being enabled in a state of Mand running in a step of Mare defined in the ,
obvious way. A computation X for Mis fair if for each i E /, if Prod, is repeatedly enabled

in X then Prod, repeatedly runs in X. Define the behavior Beh(M, <Prod1>,E,) of the

PS-machine <M, <Prod;>;E,> to be the set of all Obsx where Xis a fair computation of M.

The following lemma states that every PS-machine has the same behavior as a

PS-machine whose productive step sets are pairwise disjoint.

Lemma 5.2 - If <M, <Prod;>,E,> is a PS-machine of interface E, then there exists a

PS-machine <M ', <Prod1 '>,E,> of interface E such that the collection <Prod1 '>,E, is

pairwise disjoint and such that Beh(M ', <Prod, '>,E,) = Beh(M, <Prod,>,E1).

Proof - The idea of the proof is to include a dummy "tag" component in the state of M ',

so that steps in Prod,' write ; into the tag component. This ensures disjointness, since if

i * ;, then steps in Prod, and Prodi write different values into the tag component.

Fnrrn~lly, define

QM, = QM XI

lnitM, = lnitM X I

TransM. = {«q, k>, e, <r, m»: (1)-(3) below all hold}

(1) <q, e, r> E TransM

(2) If (q, e, r> E u,E, Prod,, then <q, e, r> E Prodm.

(3) If <q, e, r> (u,E, Prod,, then m = k.

Prod,' = {«q, k>, e, <r, 1)> E TransM .: <q, e, r> E Prod,}

It is straightforward to check that M' is an 1/0-machine of interface E and that the

collection <Prod, '>,E, is pairwise disjoint.

To show that <M ·, <Prod,'>,€,> is a PS-machine, we must show that the Prod,'

cover the non null output or A-steps in TransM ,. If «q, k>, e, <r, m» is a non null output

or A-step in TransM ., then either m -:t:- k or <q, e, r> is a nonnull output or A-step in

TransM. If m -:t:- k, then <q, e, r> E u,E, Prod, by part (3) of the definition of TransM. and

hence <q, e, r> E Prodm by part (2) of the definition of TransM .. By definition of Prodm ',

we have that «q, k>, e, <r, m» E Prodm '. If <q, e, r> is a nonnull output or A-step in

TransM' then <q, e, r> E u,E, Prod, because the Prod, cover the nonnull output or A-steps

in TransM. By part (2) of the definition of TransM ., we know that <q, e, r> E Prodm' and

. 90.

hence «q, k>, e, <r, m» E Prodm 'by definition of Prodm ',

We claim that Beh(M ', <Prod; ');Et) = Beh{M, <Prod;>,E,).

Each computation X' of <M ', <Prod; '>,E,> defines a computation X of

<M, <Prod;>;E,>, which we obtain simply by deleting the tag information from X. Suppose

X ' is fair and that Prod; is repeatedly enabled in X. It is easy to see from the definition of

Prod;' that if Prod; is enabled at time tin X, then Prod;' is enabled at time tin X '. Hence

Prod1 ' is repeatedly enabled in X ', and thus repeatedly runs in X' by the assumption

that X' is fair. If Prod;' runs at time t in X ', then by definition of Prod;' it follows that

Prod1 runs at time tin X, so that Xis fair.
'

Case Beh(M, <Prod,>/E/) {;; Beh{M ', <Prod, '>,Et):

Given a fair computation X of <M, <Prod
1
.>,E,>, we wish to construct a fair

computation X 'of <M ', <Prod; '>,E,> that generates the same observation. We construct

X ' from X simply by filling in appropriate tag information to match the occurrence of

productive steps in X, however we must do this in such a way that X ' is fair.

To construct X ', let f: T - Steps{E, QM) be a history skeleton that spans X, where T

= <t,.>icE)(' Suppose Stepx(t11) = <q11 , e11 , q11 + 1> for each k € X By a straightforward

inductive construction involving fair scheduling of the elements of I, we can obtain a

sequence <m11>11Exof elements of I such that «q., m11>, e., <q •• 1, mk+ 1» E Trans", for

all k € J(, and such that if <qt<' e11 , r11> € Prod, for infinitely many k € J(, then m• = I tor

infinitely many k E X The history skeleton f' that maps t11 to the step «q11 , m11>, e11 ,

<q 11 + 1, m 11 + 1» then defines the desired fair computation X 'of M '. I

The lemma below shows that the class of behaviors of PS-machines is closed

under 1/0-abstraction.

Lemma 5.3 - Given a PS-machine <M, <Prod,>,E,> of interface E, and an 1/0-abstraction

map a: E - D, there exists a PS-machine ~M ', <Prod, '>,E,> of interface D such that

Beh(M ', <Prod, '>;E,) = a(Beh(M, <Rrod,>,e~). .

Proof - The basic idea of the proof is simple: M' and the Prod.' are defined by taking
I

the images of Mand the Prod
1

under a. There is one problem with the straightforward

· 91 •

execution of this idea: the Prod.' might contain null steps. We solve this problem by
I

introducing into the state of M ' an "idling counter," which is a boolean component

whose only purpo~ is to change state upon execution of productive steps.

Formally, define <M ', <Prod; '>;E,> as follows:

QM, = QM X {0, 1}

lnitM. = lnitM X {O, 1}

TransM. = {«q, b>, a{e), <r, c»: (1) and (2) below both hold}

(1) <q, e, r> E TransM

(2) If <q, e, r> E U;E:, Prod,, then c = 1 -b, otherwise c = b.

Prod;' = {«q, b>, a(e), <r, c>> E TransM .: <q, e, r> E Prod,}.

We claim that M ' is an 1/0-machine. It is clear that lnitM. is nonempty. Part (2) of

the definition of TransM, does not prevent Trans,.,, from containing all null steps, since

no such step can be in u,E:, Prod,. Thus M' is a machine. To show that M' is

input-cooperative, suppose <q, b> E QM. and d E ln0 . Since a is onto ln0 and preserves

outputs, there exists e E lnE with a(e) = d. By the input-cooperative property of M, there

exists r with <q, e, r> E TransM. Since <q, e, r> (u,E:, Prod, by the fact that e is an input

event, it follows that «q, b>, d, <r, b» E TransM ..

We next show that <M ', <Prod; '>,E,> is a PS-machine. By definition Prod, ' ~

TransM. for all i E /. Since each step in Prod, is an output or A-step and a preserves

outputs, it follows that each step in Prod,' is an output or A-step. Each Prod,' contains

no null steps because the idling counter is complemented in each step in Prod,'. To see

that every output or A-step in TransM, is in some Prod, ', note that because a strictly

preserves inputs, each output or A-step in Trans...,, cannot be the image of an input step

in TransM' and therefore must be the image of an output or A-step in TransM. Since the

Prod, cover all output or A-steps of TransM, it follows that the Prod,' must cover all

output or A-steps of TransM '.

We claim that Beh(M ', <Prod1 '>,E:,) = a(Beh(M, <Prod,.>1€1)).

Each computation x of M maps in an obvious way (by taking the image of the

observation part under a, and deleting the idling counter from the state part) to a

computation X' of M ', such that Obsx. == a(Obsx>· It suffices to show that if X is fair,

. 92.

then so is X '. Suppose that Xis fair. Fix; E /, and suppose that Prod1' is repeatedly

enabled in X '. We claim that Prod, ' repeatedly runs in X '. By definition, Prod, ' is

enabled in state q iff Prod
1

is enabled in state q. It follows that Prod1 is repeatedly

enabled in X, and hence by fairness of X, that Prod, repeatedly runs in X. By definition of

Prod,', if Stepx(t) E Prod,, then Stepx ,(t) E Prod,'. Thus Prod
1
'repeatedly runs in X '.

Case Be~(M ', <Prod, '>,E,) ~ a(Beh(M, <Prodl,E,)):

Suppose that x' E Beh(M ', <Prod1 '>,E1), and let X' be a fair computation of M' in

which the observation x ' is generated. We will construct a fair computation X of M,

such that a(Obsx> = x '. The idea is simply to choose inverse images under a of the

steps in X ', however this must be done carefully to ensure fairness.

Let T = <t,?HX be a skeletal sequence that spans X '. Suppose Stepx ,(t11) =

«q1t, bit>' d1t, <r1t, c11» for each k EX

For each k, since «q1t, bit>, dlt, <r11 , c11» € TransM'' we can select e11 such that dlt =
a(e/() and <q1t, e,., r11> € TransM. Because a might map two different e's to the same d, we

can't necessarily select the e11 in such a way that for each;€/, the step <q11 , e11 , r11> €

Prod, iff «q11 , b1?, dlt, <rlt, c 11» € Prod1 '. However, by making sure that we don't

persistently neglect some Prod,', we can select the e
11

in such a way that for each i E /, if

«q11 , bit>, dlt, <r11 , c,,_» E Prod,' for infinitely many k, then <q
11

, e,,_, ,,,,> E Prod, for infinitely

manyk.

The function f that takes tit to the step <q,,_, e1t, ,,,,> is a history skeleton over EM and

QM. By Lemma 3.5 there is a unique history X such that f spans X. It is easily verified

that Xis a computation of M, with a(Obsx> = x '. To show fairness, fix; E / and suppose

that Prod, is repeatedly enabled in X. We claim that Prod
1
repeatedly runs in X. From the

definition of Prod1 ' we know that Prod1 ' is repeatedly enabled in X '. By the fairness of

X' we know that Prod1' repeatedly runs in X '. This implies that <q,,_, d,,_, r,,_> E Prod,' for

infinitely many k, and hence by construction that <q,,_, e,,,, ,,,,>€Prod, for infinitely many k.

It follows that Prod1 repeatedly runs in X. I

The following theorem is our desired characterization of the 1/0-behaviors: a

behavior is an 1/0-behavior iff it is the behavior of a PS-machine.

Theorem 5.4 - Suppose D is an 1/0-interface. Then a behavior 8 E Beh(D) is an

-93-

1/0-behavior of interface D iff B = Beh(M, <Prod,);€,) for some PS-machine <M,

<Prod;>;E,> of interface D.

Proof - = > Since the class of behaviors of PS-machines is closed under

1/0-abstraction by Theorem 5.1, it suffices to show that every primitive behavior B is the

behavior of a PS-machine. Suppose B = PBeh(:f), where '! = <E, <M,);E,> is an

1/0-system. We associate a PS-machine <M, <Prod,>;e:,> with 'J as follows: The machine

M is the system machine for '!. The set Prod; is the subset of TransM in which process i

runs. Since a step in which process; runs is always an output step, it is clear that Prod,

is a productive step set for M. Since every nonnull output or A-step in TransM is in fact

an output step for some process i E /, and hence is in Prod;, it follows that the Prod, sets

cover the nonnull output or A-steps in TransM.

It is obvious that the set of fair computations of the system 'J is exactly the set of

fair computations of the PS-machine <M, <Prod,>,€,>' and thus PBeh(:f) =

Beh(M, <Prod,>1€1).

< = Suppose that <M, <Prod,>,€,> is a PS-machine of interface D. We construct an

1/0-system '! = <E, <M,>;E,> and an 1/0-abstraction map a: E - D, such that

Beh(M, <Prod,>,€,) = a(PBeh(:f)).

Without loss of generality we make the following three assumptions about

<M, <Prod,>,€,>:

(1) The set lnitM of initial states for M contains exactly one state q0•

(2) For all q € QM and all e E ln0, there is a unique, E QM such that <q, e, r> E

TransM.

(3) Prod, n Prodi = 0 for;~;.

A PS-machine <M ', <Prod, '>,e:,> that does not have these three properties can easily be

transformed, without changing its behavior, into a PS-machine <M, <Prod,>;€,> that does

have these properties. We first obtain properties (1) and (2) by buffering input events in

an input queue in the order that they occur so that the change of state associated with

an input event is just to append the event to the end of the input queue. All

nondeterministic choice, including the choice between multiple initial states, is

absorbed into the output steps.

-94-

Formally, we transform the PS-machine <M ', <Prod; '>;e,> into a PS-machine

<M ", <Prod; ">;e,> by defining StateM .. to consist of all pairs <q, u>, where q is either an

element of StateM. 9r the distinguished symbol .1., and u E Inf•. The single initial state

of M" is the state <.1., A>. The transition relation TransM .. consists of all steps «q, u>, e,
<,, v> > such that

- If e E Inf then r = q and v ::: ue.

- If e E Outf U {>\f}, then v = A, and either

(a) <q, ue, r> is in TransM.•• or

(b) q = .1. and <s, ue, r> E Trans,...• for some s in I nit,_. ..

The set Prod;" consists of all steps «q, u>, e, <r, v» E TransM .. such that for some state

s of M ', the step <s, e, r> E Prod;', and in addition, either q -= .1. and the step <q, u, s> is

in TransM .•, or q = .1. and for some q 'E lnitM, the step <q ', u, s> is in Trans,..,•.

Once <M ", <Prod;''>;e,> with properties (1) and (2) is obtained, it can be

transformed into <M, <Prod?,e.,> with all three properties by an application of Lemma 5.2.

We now proceed to the construction of '!. The idea is as follows: The system '! will

contain one process for each ; E I. The processes in '! perform a lock-step simulation of

the machine M. The interface for each of the processes in the system '! consists of the

null event, the input events of D, and the set of all productive steps for M. The input

events for process i will be the input events of D and the steps in u1e,-c,1 Prod/' The

output events for process i will be the steps in Prodr Each process keeps track of the

current simulated state of M, and permits an output event to occur only if the event

corresponds to a step of M from the current simulated state of M. To ensure that the

input-cooperative property holds, process i imposes no requirements on the state from

which a step in Prod; can occur, if j -= i.

Formally, define the 1/0-interfaces F1 as follows:

F1 = {AF,} + ln0 + u,e, Prod1
lnF, = ln0 + {U;EI-{,} Prodl

OutF = Prod,
I

Define the system interface E ~ F = ®,e, F1 as follows:

E = {l E F: f1 = t1 for all i, i E /) U {A,}

Af = AF
Inf =En lnF

-95-

OutE = E n OutF

It is easy to see that the inclusion map y: E - F is an embedding. For each f E Inf, the
I

identically f vector <t>,E, is in E. By the assumption that the Prod; are pairwise disjoint, it

follows that the identically f vector <f>,E, is in E tor each f E OutF. as well. This shows that
I

.,,, 0 'Y is onto F1, where the,,,, are the canonical projections associated with F.

Define a: E - D to be the translation that behaves in the following way on the

identically f vector <t>,E, E E:

- If f E ln0, then a(<t>,E,) = f.

- If f = <q, d, r> E Prod, for some i E /, then a(<t>,Et) = d.

We claim that a is an 1/0-abstraction map. It is clear that a is onto ln0. The map a

preserves outputs because if the identically f vector is an output event of E, then f E

Prod, for some i and hence f is an output or A-step. To show that a strictly preserves

inputs, suppose the identically f vector <f>,E, is an input event of E. Then f E ln0, so

a(<f>,E,) = f € lno·

The machines M1 are defined as follows:

EM = F1
I •

QM = QM
I

lnitM = lnitM = {q0}
I

TransM = {<q, f, r>: one of (1)-(4) below holds}
I

(1) f = AF and, = q,
I

(2) f E ln0 and <q, f, r> E TransM.

(3) f = <q',d,r>EProd
1
forsomeJ;ti.

(4) f = <q, d, r> € Prod,

Obviously M1 is a machine and every step <q, AF, r> E TransM has r = q. To see that M,
I I

is input-cooperative, suppose q E QM, and f E lnF,' Then either f E ln0 or f E Prod; for

some/ ;t i. If f E ln0 then f is enabled in state q by part (2) of the definition .of TransM.
I

because Mis input-cooperative. If f = <q ', d, r> E Prod; for some j ;ti, then f is enabled

in state q by part (3) of the definition of TransM.
I

A straightforward induction establishes that if a is a reachable state of the system

'J, then q1 = qi tor all i, / E /. This argument uses the assumed uniqueness of the initial

state of M, plus the assumption that a state q and an event e E lnE uniquely determine a

stater such that <q, e, r> E TransM. Intuitively, since the processes in 'J do not interact

. 96.

with each other during input steps, the uniqueness assumptions are needed to ensure

that all processes reach the same new state in each such step.

There is an obvious correspondence between the steps of the machine Mand the

steps of the system 'J. Specifically, each steps = <q, d, r> of M determines a steps' =

<g , e, !. > of 'J under the definitions:

• g is the identically q vector

• !. is the identically r vector

- e = AE' if s is null

= <d>;E1' if d E lno

= <s>;Ei•· ifs is a nonnull output or A-Step.

It easy to see that a step s of M is enabled in state q of M iff the corresponding step

s ' is enabled for the system '! in state <q>,E.r The correspondence between the steps of

M and the steps of 'J therefore defines a bijection between the set of computations of M

and the set of computations of 'J, such that if X ' is a computation of 'J and X is the

corresponding computation of M, then Obsx = a(Obsx .). Furthermore, a step s of M is

in Prod, iff process; runs in the corresponding steps' of 'J, so that fairness is preserved

in both directions of this correspondence. It follows that a(PBeh(1)) =

Beh(M, <Prod,>,E,). I

The following two properties of 1/0-behaviors are easily derived from the

PS-machine characterization.

Corollary 5.5 If 8 is an 1/0-behavior of interface E, then B -:1: 0.

Proof - Suppose B = Beh{M, <Prod,>;€/). It suffices to show that there is a fair

computation of M. We construct a sequence q0, q1, ... of states of M, and a sequence

e0 , e1, ... of events of E, such that the following properties hold:

(1) <q11 , e11 , q11 ♦ ,> € TransM for all k € .H',

(2) For each;€/, either Prod, is enabled in only finitely many of the q11 , or else

the step <q11 , e11 , q11 +,>is in Prod, for infinitely many k.

Letting t11 = k tor each natural number k and applying Lemma 3.5 yields a fair

computation of M.

-97 •

To construct the q
11

and e
11

, first let q
0

€ lnitM be chosen arbitrarily. We maintain a

running assignment of priorities to the elements of A so that at each stage of the

construction i is mo.re urgent than j iff a step in Prod, has been chosen less recently than

a step in Prodr At stage k, where k > 0, we choose ek and qk + 1 so that <q,,,, e11 , qk +? €

Prod1, where i is the most urgent element of I such that Proc:f1 is enabled in state q
11

• If no

Prod1 is enabled in state q,,,, then we let e,,, = >.. and qk + 1

A behavior B is asynchronous if whenever x € 8 and f: [0, oo) -+ [0, oo) is an

order-isomorphism, then x O f € a.

Corollary 5.6 - 1/O-behaviors are asynchronous.

Proof - Straightforward from the observation that if X is a fair computation of a

PS-machine <M, <Prod,>,E,> and f: [0, oo)-+ [0, oo) is an order-isomorphism, then X O f is

also a fair computation of <M, <Prod,>,E;>. I = qk. I

5.4 Examples of 1/0-Behavlors

In this section we give two examples of 1/O-behaviors and an example of a

behavior that is not an 1/O-behavior.

Example 1: An 1/0-Behavlor:

As an example of how 1/O-behaviors can be used to model a system capable of

satisfying eventuality requirements, imagine that we wish to model the behavior of a

"black box" to which input stimuli can be applied by pressing a single button: and from

which output can be observed by flashes of a single light bulb. The black box has the

property that every press of the button is later followed by a flash of the light bulb, and

no flashes of the bulb occur unless the button has been pressed at least once since the

time of the most recent previous flash.

The interface of such a black box is the 1/O-interface E with E = p., button, flash},

lnE = {button] and OutE = {flash}. The behavior of the black box is defined by a

PS-machine M of interface E. Intuitively, a push of the button sets a flag in the state of M

to true. A flash of the light can occur only when the flag is true, and causes the flag to

be reset to false. There is one productive step set Prod, which contains exactly those

steps in which flashes occur.

Formally,

EM
QM

lnitM

=E
= {true, false}

= {false}

-98-

Trans" = {<q, button, r>: r = true} U (<true, flash, false>} U

{(q, A, q): q € QM}.

Prod = {<q, flash, r> € TransM}

That <M, Prod> is a PS-machine of interface Eis easily checked.

Let B = Beh(M, Prod), so that Bis an 1/0-behavior. Through analysis of the fair

computations of M it can be shown that an observation x E Obs(E) is in B iff there is a

surjective total function f: {t E [O, oo): x(t) = button} - {t' E [O, oo): x(t 1 = flash} such

that for all t E [O, oo), f(t) is the least t' E (t, oo) such that x(t ') = flash. That is, an

observation xis in B provided that in x, every push of the button "causes" a future flash

of the light, and every flash of the light is caused by some collection of recent past

pushes of the button.

Exampfe 2: Two Productive Step Seta

We can give an example of an 1/0-behavior that is not the behavior of a

PS-machine with one productive step set. Let the interface E be defined by: E =

{A, button, flash1, flash2}, where lnE = {button} and OutE = {flash1, flash2}. Let B be

the set of all x E Obs(E) such that the following properties hold:

(1) Occurrences of flash 1 appear only between the 2kth and 21< +1st

occurrences of button, where k EX.

(2) Occurrences of flash2 appear only between the 21< + 1st and 2(k + 1)st

occurrence of flash.
'

(3) x contains infinitely many occurrences either of flash 1 or flash2

(4) If x contains infinitely many occurrences of button, then it contains infinitely

many occurrences of both flash 1 and flash2.

It is straightforward to show that B is the behavior of a PS-machine of interface E with

two productive step sets, one that governs the occurrence of flash 1 events and one that

governs the occurrence of tlash2 events.

. 99.

Suppose B is the behavior of a PS-machine <M, Prod> with one productive step

set. Construct a computation of M by repeating the following procedure: Run M until a

flash 1 event is produced, then run M for two steps containing a button input. It is always

possible to obtain the flash 1 events in this construction, since otherwise we could

construct a fair computation in which only finitely many flash 1 events and no flash2

events occur. It is always possible to run the button events by the input-cooperative

property of M.

The above construction yields a computation X of M that must be fair, since it

contains infinitely many steps in which the output event flash 1 occurs, and which must

be in the single productive step set Prod because Prod contains all output steps of M.

However, X generates an observation in which infinitely many button events occur, but

no flash2 events occur.

Example 3: A Non-1/0-Behavlor

We can also give an example of a set that is demonstrably not a 1/0-behavior.

DE:fine the 1/0-interf ace E as fullows:

E = {"-, button, flash}

lnE = {button}

OutE = {flash}.

Let the behavior B E Beh{E) be the set of all x E Obs(E) such that x contains an infinite

number of occurrences of flash, and such that either the number of occurrences of

button in x is finite or (#flashes in x on the interval [O, t))/ (#buttons in x on the interval

[O, t)) - Oas t - oo.

We argue that B is not an 1/0-behavior of interface E. Suppose <M, <Prod,>,E,> is a

PS-machine of interface E, whose behavior is 8. Construct a computation X for M by

repeating the following procedure: Run M without input until a flash event is produced,

then run M tor one step with a button input. We can run M until a flash event is

produced by always trying to take steps in which flash events are produced, if possible,

otherwise taking some other productive step. During this construction, we make sure to

use a fair scheduling algorithm to determine which of the Prod, should be executed at

each step. We can never reach a state in which no productive steps are enabled,

otherwise we could construct a fair computation in which only finitely many flash events

are produced. We can run M at any time with a button input by the input-cooperative

-100-

property of M.

The above construction yields a computation X of M that must be fair, since the fair

scheduling of the Prod; ensures that every repeatedly enabled Prod; will be repeatedly

run. However, computation X generates an observation x that contains infinitely many

occurrences of button events, and in which the ratio of the density of flash events to

button events approaches one in the limit, rather than zero. This contradicts the

assumption that Beh(M, <Prod,:>,e,> = B.

5.4.1 Proving 1/0-Consistency

From the PS-machine characterization of the 1/O-behaviors we obtain the

following test for 1/O-consistency of subset specifications.

Theorem 5. 7 - Suppose that S is a subset specification of 1/O-interface E. Then S is

1/O-consistent iff there exists a PS-machine <M, <Prod,:>,e;> of interface E such that

Beh(M, <Prod,:>,e,) ~ O(S).

Proof• Obvious. I

If S = <M, V> is a state-transition specification, then to show the 1/O-consistency

of S, it suffices to define a collection of productive step sets for M, such that every fair

computation of M is in the set V of valid computations.

Corollary 5.8 - Suppose that S = <M, V> is a state-transition specification of

1/O-interface E. Suppose that <M, <Prod,:>,e;> is a PS-machine of interface E. If every

fair computation of M is in V, then S is 1/O-r..onsistent.

Proof - Since <M, <Prod,:>,e;> is a PS-machine of interface E, it follows that

Beh(M, <Prod,:>,e,> is a 1/O-behavior of interface E. Since fNery fair computation of M is

in V, we know that Beh(M, <Prod,:>;e,~ ~ 0(S). By Theorem 5.7, Sis 1/O-consistent. I

To illustrate the use of this result, we apply it to a simple example specification: A

neuron is a module with a s:ngle input event in, and a single output fNent out. The state

set for the neuron is the set {ff, tt}. At any instant of time, if the state of the neuron is tt,

then the neuron is said to be excited, otherwise the neuron is said to be inhibited.

Initially the neuron is excited. An in event can occur at any time, and causes the neuron

· 101 •

to become inhibited. If the neuron is excited, then it can fire, producing an out event,

and then becoming inhibited. The neuron should satisfy the condition, "If the neuron

becomes excited and remains that way, then eventually it will fire."

The neuron module description can be formalized as a state-transition

specification.

ENEU = {X, in, out}

rnNEu = {in}

OutNEU = { out}

QNEU : {ff' tt}

lnitNEU = {tt}

A step <q, e, r> E TransNEu iff either e = X and, = q or one of the conditions (in), (out)

below holds:

(in) e = in and , = ff

(out) e = out and q = tt

The neuron module validity condition is defined by:

ValidNEU = □(□(Now = tt) - ◊{Occurs = out)),

To show the 1/0-consistency of the neuron specification, we define a single

productive step set ProdNEU as follows:

<q, e, r> E ProdNEu iff e = out, q = tt, and , = ff.

It is clear by inspection that ~Eu is input-cooperative, and that ProdNEU is a productive

step set for ~eu. To show the 1/0-consistency of the neuron specification, we must

show that every fair computation of ~eu is valid. That is,

where

CompNEU A Fair-Neut- ValidNeu,

FairHEU = O◊EnabledNEU{Now) - D◊ProdNEU(Now, Occurs, After)

EnabledNEU{q) a: (3eEENEU, r E oNEU) ProdNEU(q, e, r).

We claim the stronger property

FairHEU p= ValidNEU.

To show this, we use the neuron module specification and the definition of ProdNEu to

expand the term FairHEu. From the definition of ProdNEu we obtain

EnabledNEU(q) = q = tt,

and hence that

• 102 -

FairNEu = □◊(Now = tt) - □◊(Now = tt /\ Occurs = out/\ After = ff).
By straightforward temporal and propositional reasoning it is now easy to see that

□◊(Now = tt) - D◊(Now = tt /\ Occurs = out/\ After = ff)
I= □(□(Now = tt) - ◊(Occurs = out)),

That is, if we suppose that

(1) whenever the state repeatedly takes on the value one then it is also

repeatedly the case that an out event occurs (which takes the state from one to zero),

then we are entitled to conclude that

(2) whenever the state is persistently one after some instant, then there is a

later instant at which an out event occurs.

We can use the PS-machine characterization of the I/O-behaviors to show the

1/O-inconsistency of a slightly stronger version of the neuron specification, obtained by

using the stronger validity condition

Va!id:Eu; □(New = tt -- ◊(Occur: = out)).

This condition states that if the neuron is ever excited for a single instant, then it must

eventually fire. Suppose there is a PS-machine <M, <Prod,>,€;> of interface ENEU such

that Beh{M, <Prod,>,€,>) satisfies the strong neuron specification. Construct a

computation of Mas follows: Run M for one step with input in, and then repeatedly run

productive steps of M if possible, otherwise null steps, being sure to schedule the

occurrences of Prod, fairly. The result is a fair computation X of M.

Since the observation x = Obsx satisfies the strong neuron specification, there

must exist a valid computation X' of MNEU such that Obsx. = x. In X ', the neuron

module is excited at time 0, an in event occurs at time 0, and no input events occur after

time O. Consequently, the neuron module is inhibited after time 0, and thus no out

events can appear in x because X ' is a computation of ~EU. Thus, in the computation

X' of MNEu, the neuron module is excit&d at time O but no out events subsequently

occur. This means that the computation X 'of ~Eu fails to satisfy the validity condition

Valid:Eu, a contradiction. We conclude that the PS-machine <M, <Prod,>,€;> cannot

exist and the strong neuron specification is 1/O-inconsistent.

-103 ·

5.4.2 1/O-Consistency of the Specification SC

As an extended example of an 1/0-consistency proof, we prove the

1/0-consistency of the synchronizer component module specification. For the

productive step sets, we use the sets Prodrun' Prodtoken_out' and Prodrequest_out' defined

as follows:

Prodrun(q, e, r)

Prodtoken ou,(q, e, r)

= e = run A TransSC{q, e, r)

= e = token_out "TransSC(q, e, r)

Prod (q e r) -= e = request_out A TransSC(q, e, r). request_out ' '
It is easily checked that <M8c, <Prodrun' Prodtoken_out' ProdrequesLou.>> is a PS-machine of

interface Esc.

We must show that each fair computation is valid; that is,

Comp8C11 A Fai~ A Fair~en_out A Fair~uesLout I== Validsc,

where

Fai~ e O◊Enabled~(Now) -
O◊Prod~(Now, Occurs, After)

Fai~en_out = O◊Enabled~en_out(Now)-
O◊Prod~8n_out(Now, Occurs, After)

Fai~uesLout e O◊Enabled~uesLout(Now) -
O◊Prod~uesLout(Now, Occurs, After)

and each Enabledf(q), where i E {run, token_out, request_out}, is a formula that

expresses the conditions under which Prodr is enabled in state q. Using the

definitions of the Prod; given above, we derive the following expressions for Enabledrun'

Enabled1oken_out' and EnabledrequesLout:

Enabledrun(q) = q(ustate) = trying A q(token) ~ 0

Enabled10ken_out(q)

Enabled,equest_out(q)

To show

e q(ustate} ~ running A q(token) ~ O

= q(token) = O

Compsc11 A Fai~ A Fair~en_out A Fai~uest_out I== Validsc,

we assume Compsc11, Retysc, -,Gua,.SC, Fairrun, Fair1oken_out' and FairrequesLout' and

derive a contradiction. That Is, we consider a fair computation in which the

synchronizer component module rely-conditions are satisfied, but in which the

guarantee-conditions are not satisfied. If -,Gua,.SC holds, then either

(A) -,o(Now(ustate) = trying - ◊(Now(ustate) ~ trying))

- 104-

or

(B) -,□(Occurs = request_in) - ◊(Occurs = token_out)).

Thus the proof can be split into two cases, one headed by assumption (A), and the other

by assumption (B).

Case (A): Suppose that (A) holds. Then by temporal reasoning, we have

◊(Now(ustate) = trying A D(Now(ustate) = trying))

(*) ◊D(Now(ustate) = trying)

That is, it is persistently the case that the user process is trying. By definition of

Trans8c, the following is valid:

Comp8c1< I= □(Occurs = run - After(ustate) ¢ trying)

and thus, using the temporal tautology I= D(cp(After) - ◊cp(Now)), that

Comp8C1< I= ◊D(Now(ustate) = trying) - ◊□(Occurs¢ run).

Intuitively, since occurrence of run results in the user process leaving the trying state, if

the user process is persistently trying, then it must be the case that a run event

persistently does not occur. Applying this to formula(*) yields

• ◊□(Occurs~ run;, Nuw(u::1late) = trying)

That is, it is persistently the case that the user process is trying but a run event never

occurs. Using the definition of Prod,un' we conclude

◊0(-,Prod,un(Now, Occurs, After) A Now(ustate) = trying).

By applying of the hypothesis that Fair run holds, we obtain

◊0(-,Enabledrun(Now) A Now(ustate) = trying).

Using the expression for Enabled,un obtained above, we have

◊0(Now(token) = 0 " Now(ustate) = trying).

That is, it is persistently the case that the synchronizer component module possesses

no tokens, and the user process is trying. Using the hypothesis that Fair,equest_out holds,

we obtain

□◊(Occurs = request_out) A ◊O(Now(token) = 0).

That is, it is repeatedly the case that request_out occurs, but persistently the case that

the synchronizer component module possesses no tokens. Applying the hypothesis

that Rety5C holds, we conclude

D◊(Now(token) -:1: 0) " ◊D(Now(token) = O).

That is, it is repeatedly the case that the synchronizer module possesses a token, but

persistently the case that the synchronizer module possesses no tokens. This is a

contradiction, and we conclude that case (A) is impossible.

-105 ·

Case (8): Suppose that (8) holds. Then by temporal reasoning, we have

◊(Occurs = request_in A □(Occurs* token_out)).

That is, eventually there is a point at which a request for the token is received, but no

token is ever sent in response. Using the definition of Prodtoken_out' and temporal

reasoning, we obtain

o□-,Prod10ken out(Now, Occurs, After).

Application of the hypothesis that Fairtoken out holds, we have

o□-,Enabled1oken_out(Now).
That is, it is persistently the case that a token_out event is not enabled. Using the

expression for Enabledtoken_out obtained above yields

(• •) ◊D(Now(ustate) = running v Now(token) = 0).

Thus, it is persistently the case that either the user process is running or the

synchronizer component module possesses no token. We now use the temporal

tautology I= ◊O(cp v 1/,) - (O◊cp v ◊Di/,). Intuitively, this says that if It is persistently

the case that cp v 1/, holds, then either cp holds repeatedly, or else 1/, holds persistently.

Application of this tautology to (**)gives

O◊(Now(ustate) = running) v ◊D(Now(token) = 0).

That is, either the user process is repeatedly running, or the synchronizer component

module persistently has no token. We now split the proof into two subcases, depending

upon whether

(81) D◊(Now(ustate) = running)

or

(82) ◊D(Now(token) = O)

holds.

Subcase (81): Suppose that (81) holds. Application of the hypothesis that Rely5c holds

gives

O◊(Now(ustate) = running) A D◊(Now(ustate) * running).

Next, we use the temporal tautology

I= (O◊cp(Now) A OO-,tp(Now)) - O◊(cp(Now) A -,cp(After)).

Intuitively, if it is repeatedly the case that cp holds of the current state, and it is repeatedly

the case that -,cp holds of the current state, then it must repeatedly be the case that a

point is reached where cp holds of the current state and -,cp holds of the "next" state.

Application of this tautology in the present situation gives

-106-

D◊(Now(ustate) = running/\ After(ustate) * running).

In addition, we need the following invariance property:

Comp8c11 t= □(Now(ustate) = running - Now(token) ;t O).

The validity of this sentence can easily be shown by Corollary 3.7, and the details are

omitted. Using this, plus the fact that

t= (Vq,rEState, eEEvent)((Trans8C(q, e, r) /\ q(ustate) = running

/\ r{ustate) :at running) - ,(token) = q(token)),

which is verified by case analysis on e, we obtain

D◊(After(ustate) ~ running/\ After(token) ;t 0).

Let us examine the intuitive content of the preceding steps. If the user process is

running in the current state and not running in the "next" state, then the following must

be true: Since the synchronizer component module must possess a token whenever the

user process is running, and no event that takes the user process out of the running

state can affect the number of tokens possessed, It must be the case that the

synchronizer component module possesses a token in the next state as well.

Another use of the temporal tautology t= □{,p{After)-+ ◊cp{Now)), we obtain

D◊(Now(ustate) ;t running /\ Now(token) :at 0),

which Is a contradiction with formula r•). We conclude that subcase (81) is

Impossible.

Subcase (82): Suppose that (82) holds, that Is

◊D{Now{token) = 0).

Then by definition of Enabled,equest.out we have

◊OEnabled,equesLout{Now),

and thus by the hypothesis that Fair request.out holds, we infer

□◊(Occurs = request_out).

That is, it is repeatedly the case that request_out events occur. By the hypothesis that

Rely8c holds, we conclude

D◊(Now(token) * 0)

a contradiction with (82). We conclude that subcase (82) is impossible, and hence that

case (B) is impossible.

-107 -

Since both cases (A) and (8) have been shown to be impossible, we conclude that

the original hypotheses are contradictory, and thus the synchronizer component

module specification is 1/0-consistent.

5.5 Composition of 1/0-Behaviors

We have previously shown that the class of 1/0-behaviors is closed under the

abstraction operators associated with the 1/0-abstraction maps. In this section, we

define the class of .. 1/0-decomposition maps," and show that the class of I/0-behaviors

is also closed under the composition operators associated with these maps.

5.5.1 1/0-Decomposition Maps

When we defined the notion of a system interface above, we noted that there is a

canonical decomposition map (and hence a composition operator) associated with

each system interface. We would now like to extend the notion of composition

associated with system interfaces so that we can view behaviors of non-system ·

interfaces as a composition of component behaviors. The most natural way to do this is

to require that the the domain of a decomposition map be a system interface only up to

isomorphism.

Definition - An isomorphism from the 1/0-interface E to the 1/0-interface D is a

bijective translation y: E - D such that y and y·1 are embeddings. I

Definition - An 1/0-decomposition map from the 1/0-interface E to the collection of

1/0-interfaces <F,>;Ei is a vector <6;>/E/ of translations, where 81: E - F;, with the following

property: There exists a system interface E' ~ ®,E, F1 and an isomorphism y: E - E ',

such that 61 = 61 ' 0 y for all i € /, where <61 '>,E, is the canonical decomposition map

associated with E '. I

From this definition, we can immediately derive a number of properties of the

1/0-decomposition maps.

Lemma 5.9 • If <6,>,E, is an 1/0-decomposition map from E to <F;>,E,, then

(1) e -:1:- e 'implies 6;(e) * 6
1
(e ') for some; EI. (4 is injective)

(2) 61(1nE) ~ lnF, U {XFi for all; E /. (4 preserves inputs)

- 108-

(3) If e E OutE then B;(e) E OutF
1
for some i EI. (4 strictly preserves outputs)

(4) 6:1(0utF) n 8:1(0utF) = 0 whenever; :1: ;. (Compatible Coupling Property)
I I I I

(5) 6; is onto F1 for all; E /.

Proof - Straightforward. I

5.5.2 Closure Proof

We can now prove that the class of 1/0-behaviors is closed under the composition

operators associated with 1/0-decomposition maps.

Theorem 5. 1 O • Suppose <B?,E, is an 1/0-decomposition map, where 81: E - F,. If a, is

an 1/0-behavior of interface F
1
for each i € I, then i ·1ca,) is an 1/0-behavior of interface

E.

Proof - Suppose that for each i € I, <M1, <Prod,,.>aEA,> is a PS-machine of interface F1,

such that Beh(M1, <Prod, .• > aEA,) = a,. We construct a PS-machine <M, <Prod,.• '>,E,.aEA,>

of interface E such that Beh(M, <Prod1,a ')/El,aEA,) = 4 "1(a.).

Let M be defined as follows:

QM = Il/E/QM
I

lnitM = n1E, lnltM
I

TransM = {<a., e, r >: such that <q1, 61(e), r? € TransM for all i € /}.
I

It is easy to check that lnitM is nonempty and that <a., >., Q. > € TransM for all Q. € QM.

Thus M is a machine. To show that Mis an 1/0-machine, we must show that it is

input-cooperative. Suppose Q. € QM and e € lnE. Since i preserves input, it follows that

61(e) € lnF, U {>-Fi for each i € /. Since each M1 is input-cooperative, for each ; E I we

can get r1 such that <q1, 61(e), r? E TransM. It follows that (Q., e, c. > E TransM.
I

For each;€ I, and a E A1, define

Prod,..' = {<a., e, c. > € TransM: <q" 61(e), r,> € Prod,.. and e (lnE}.

It is clear that each Proo,..' is a productive step set for M. To show that

<M, <Proo, .• '>m.-EA.> is a PS-machine, we must show that the sets Prod,..' cover the set
I

of non null output or >.-steps in TransM.. Suppose <a. , e, r > is such a step. Then <q1,

61(e), r? is a nonnull output or >.-step for M1 for some i € /, by the fact that i strictly

preserves outputs. Since the collection <Proo, .• > aEA, covers the nonnull output or

-109 ·

A-steps for M1, we know that <q;, 81(e), r;> E Prod,.• for some a E Ar Hence <a, e, c. > E

Prod,,8 '.

We claim thatHeh(M, <Prodi,a '>m.aEA,) = j "1(<Beh(M1, <Prod1,8) 8 EA,)>,EJ.

Case Beh(M, <Prodi,a '>,E,,aEA,) ~ ~ ·1(1;L):

Each computation X of M maps in an obvious way (by taking the image of the

observation part under 81, and the canonical projection of the state part) to a

computation x, of M1, for each i E /. Suppose that Xis fair. Let i E / and a E A1 be fixed.

We show that if Prod,.a is repeatedly enabled in x,, then Prod,.• repeatedly runs in Xr

Suppose Prod48 is repeatedly enabled in x,.

We first show that, given a E State,.,, if Prod,,a is enabled in state q1, then Prod
48

' is

enabled in state a. If Prod1.• is enabled in state q1, then there exists 11 E OutF, U {AF) and

,, E 0,.,
1
such that <q1, e1, r;> E Prod,.•· Since 81 is onto OutF/ we we can get e E OutE U

{AE} with 81(e) = fr By the compatible coupling property of i, we know that 61(e) E lnF
1

U {Ar} for all j E /- {i}. For each j E /- {i}, by the input-cooperative property of M1, we
I

can get ';' such that <q1, 81(e), ,1 '> E TransM/ It follows that <a , e, ! '> E Prod,,8 ', and

thus Prod,,
8

' is enabled in state a.

Since Prod48 is repeatedly enabled in x, by hypothesis, and Prod,.• enabled in state

q1 implies Prod1,a' enabled in state a, we know that Prod,.•' is repeatedly enabled in X.

By the fairness of X, it follows that Prod1,a 'repeatedly runs in X. By definition of Prod,.•',

if Stepx(t) E Prod48 ', then Stepxp> E Prod,.•· This implies that Prod1,a repeatedly runs in

x,.

Case j "1(fi) ~ Beh(M, <Prod,,8 '>,E,.af.A
1
):

Suppose that 61(x) € Beh(M1, <Prod,,11>.EA,), for all i € /. For each i E /, let x, be a fair

computation of M1 in which the observation 81(x) is generated. We construct a fair

computation X tor M, such that Obs~ = x.

Without loss of generality we assume that the x, have the following property: For

all t E [O, 00), if a productive A-step runs at time tin X. for some i €/,then the step that
I .

runs at time t in x1 is null for all j E / - {i}. If we are given a collection <X1 '>,E, for which

this property does not hold, then it is a simple matter to construct order-isomorphisms 11:

- 110-

(0, oo) - [O, oo) such that if x, = x,' 0 fl' then Obsx = Obsx , for all i and the desired
I I

property holds for the collection <X;>,E,. Since the property of being a fair computation

is preserved under stretching of [O, oo) by an order-isomorphism, it follows that each X1

is a fair computation for M,.

We now define X by letting Obsx = x and Statex(t) = <Statex (t)>,E,. It is easy to
I

see that Xis a computation for M.

To show that X is fair, suppose that Prod,,•' is repeatedly enabled in X. Since

Prod;,a' enabled in state g, implies Prod,.• enabled in state q1, it follows that Proo, .• is

repeatedly enabled in x,. Since x, is fair, we know that Prod;,• repeatedly runs in x,. We

claim that if Stepx (t) E Prod. then Stepx(t) € Prod, ' as well, and hence Prod,..'
I ,a ~•

repeatedly runs in X.

By definition of Prod,.. ', if Stepx
1
(t) E Prod,,

8
then Stepx(t) E Prod,,

8
', except in case

Obsx(t) € lnE. But if Obs,c(t) E ln(E), then the fact that 61 preserves inputs and Prod,..

contains only output and >.-steps implies that Stepx (t) = <q1, >., r;> € Prod,. •. Since .4 is
I

injecti>1e and pr~serves input=:;, it musi be the case that Obsx (t) € lnF for some i € I - {i},
I I

and hence Stepx (t) is non null. This contradicts our assumption that if a productive
I

>.-step runs at time tin x,, then the step occurring at time; In x1 is null for all i E /-{i}. I

5.6 Alternative Classes of Computable Behaviors

The class of 1/0-behaviors is by no means the only class of "computable"

behaviors that it is interesting to consider. By replacing the fairness requirement for

computations of 1/0-systems with that of "weak fairness," in which a process is

required to repeatedly run only if it is persistently enabled, rather than repeatedly

enabled, we obtain the class of weak 1/P-behaviors (Wl/0-behaviors). It can be shown

that every Wl/0-behavior is an 1/0-behavior, but not every 1/0-behavior is a

Wl/0-behavior. The notion of Wl/0-consistency is therefore strictly more stringent

than 1/0-consistency.

Besides the fairness assumption, the definition of the class of 1/0-behaviors

embodies several other choices that might have been made differently:

(1) (Asynchrony) - The 1/0-systems model is an asynchronous model of

computation. We might have chosen a timing-dependent model of computation instead.

• 111 •

(2) (Input/Output Structure) - Instead of focusing on interfaces with

input/ output structure, we might have chosen additional or alternative structure, such

as interfaces in which events include information about the physical location at which

- they occur.

(3) (Simultaneity) - The definition of an 1/0-system permits at most one

process to perform an output at any instant of time. We might imagine a more general

model in which any number of processes can perform an output at once.

An interesting avenue for future research is to try to discover additional classes of

behaviors and associated notions of consistency by modifying one or more of the above

assumptions.

/

• 112 •

6. A Completeness Result

A reasonable question to ask about the sufficient correctness conditions required

by the Correctness Theorem is whether these conditions are also necessary. That is, is

it the case that the maximality and validity conditions hold for every correct

implementation involving state-transition specifications? In this chapter we show that in

general the maximality and validity conditions need not hold for every correct

implementation. However, it is possible to impose some well-formedness conditions on

the state-transition specifications involved in the implementation, which are sufficient to

ensure that correctness implies maximality and validity. The Completeness Theorem

(Theorem 6.4) is the formal statement of this result. Although Theorem 6.4 is probably

not the strongest result of this kind it is possible to prove, it nevertheless sheds some

light on the limitations of the Correctness Theorem, and serves to motivate some

well-formedness properties of state-transition specifications.

6.1 Specification Domains

The statement and proof of Theorem 6.4 depends crucially on the existence of a

collection of interfaces, behaviors, abstraction maps, and decomposition maps with

closure properties like those of the 1/0-interfaces, 1/0-behaviors, 1/0-abstraction maps,

and 1/0-decomposition maps defined in Chapter 5. The definition of a "specification

domain" below summarizes these properties, which seem like fundamental properties

that are likely to be shared by other interesting models.

Informally, a specification domain ~ contains four pieces of data: the

"Cl-interfaces," the "~-behaviors," the .. ,.abstraction maps," and the "~-decomposition

maps." The Cl-interfaces are interfaces with structure particular to the domain Cl. For

example, the 1/0-interfaces are those whose non-A events are partitioned into input and

output events. For each ,-interface E, the 9-behaviors of interface E represent a class

of "realizable" or "computable" behaviors of interface E. Just as the definition of

1/0-behavior depends upon the input/output structure of an 1/0-interface, whether or

not a behavior of ,-interface Eis a ~-behavior of interface E will depend, in general, on

the particular structure of the interface E. The ~-abstraction and ~-decomposition maps

represent meaningful ways to abstract and decompose systems modeled by

~-behaviors. In general, these maps will have certain preservation properties with

- 113-

respect to the particular structure of the interfaces, just as the 1/0-abstraction and

1/0-decomposition maps preserve input/output structure in various ways.

The definition of a specification domain requires that the class of 9-behaviors be

closed under the abstraction and composition operators associated with the

'3-abstraction and '3-decomposition maps. In addition to the properties of closure under

abstraction and composition discussed above, we require a third regularity property of

the '3-behaviors. This property, called "nondegeneracy," rules out the empty behavior

as a '3-behavior of any interface. lntutively, the empty behavior does not model any real

system, since it is always possible to obtain an observation of a real system, even if that

observation is only the null observation A.

Definition - A specification domain 9 consists of the following:

- A class Interfaces, of interfaces, called the ':I-interfaces.

- For each pair E, DE Interface&:,, a set AbsMaP9GJ(E, O) of translations from E

to D, called the set of '3-abstraction maps from E to D.

- For each pair E, <F;>~,, where I is a finite index set and E and each F, are

elements of lnterface5g, a set DecMap93(E, f) called the set of 9-decomposition maps

from E to E. Each element of DecMap&._J(f, f) is a vector <&;>,e,• where 8; is a translation

from Eto F,-

• For each interface E E lnterfac85':J, a set Behavior5g(E) of behaviors of

interface E, called the set of 9-behaviors of interface E.

In addition, ':J is required to have the following properties:

(1) (Nondegeneracy) - For all '3-interfaces E, the empty behavior 0 is not in

Behavio~(E).

(2) (Abstraction Closure) - For all '3-interfaces E, D, if a E AbsMal)SGJ(f, O) and

8 E Behavior&._J(f), then a(B) E Behaviorsg(O).

(3) (Composition Closure) - For all '3-interfaces E, <F;>,e,• if i E DecMap5g(E,

E) and E! = <B;>;e, is such that B; € Behavio~(FJ for each ; E /, then i ·1m.) E

BehaviOr8t:J(f). I

A rather simple example of a specification domain is the domain "CSP," where we

define every interface to be a CSP-interface, every translation a to be a CSP-abstraction

map, every finite vector .d of translations with a common domain to be a

CSP-decomposition map, and define the CSP-behaviors of interface E to be exactly

those behaviors of interface E that are nonempty, asynchronous, and

· 114 ·

truncation-closed.1 We call this specification domain CSP because it is closely related

to the "trace model" for CSP defined in (Hoare81b]. In that paper, process behaviors

are modeled by nonempty, prefix-closed subsets of E*, where E is an alphabet of

process events. To each nonempty, prefix-closed subset of E*. there naturally

corresponds a nonempty, asynchronous, and truncation-closed behavior of interface E.

Thus, for each of Hoare's processes, there is a CSP-behavior that contains the same

information. Hoare defines operations of parallel composition, concealment, and

alphabet transformation on processes. Under the natural correspondence described

above, Hoare's concealment and alphabet transformation operations are special cases

of the CSP-abstraction operators defined here, and Hoare's parallel composition

operation is a special case of the CSP-composition operators defined here. Since no

truncation-closed behavior can satisfy a specification with nontrivial eventuality

properties, the specification domain CSP is not particularly useful for the analysis of

such specifications.

As a consequence of Theorem 5.1, Corollary 5.5, and Theorem 5.10, the

1/O-ir.teifaces, I/O-behavi·ors, 1/O-abstraction maps, and 1/O-decornpc,sltiun ma.:,s also

define a specification domain, which we call "l/O."
,

We can generalize the definition of 1/O-consiste")CY to an arbitrary specification

domain 9.

Definition • A specification S of 9-interface E is 9-consistent if ${S) n Behavior5g(E) ~

0. I

We define relativized notions of interconnection, implementation, and correctness

with respect to a specification domain ~ as follows: An interconnection , is a

!I-interconnection if the interfaces o'. E', and Fl for each ; E I are 9-interfaces, the

abstraction map a' is a 9-abstraction map from E' to o', and the decomposition map ~ '
is a 9-decomposition map from E' to E '· An implementation <J, Sabs' S > is a

9-implementation if , is a 9-interconnection. We say that the 9-implementation

1. If x is an observation and t € [0, oo), then the t-truncation of x is the observation x '
such that x 'Ct ') = x(t ') for all t' E [0, t), and x 'Ct') = A for all t' E [t, oo). A behavior B is
truncation-closed i_f whenever x E 8 and t E [0, oo), then the t-truncation of x is also in B.

- 115 •

<,, sabs' S,) is 9-correct if a' 0
(~ 'r1ca.) E ':!(Sabs)nB; E ~(S;)nBehavior~(Fl> for ea~h i €

I.

Every ~-implementation that is correct in the sense of Chapter 2 is also 9-correct,

and thus the Correctness Theorem can be used to prove ~-correctness. However, in

general there will be 9-correct implementations that are not correct in the sense of

Chapter 2.

Lemma 6.1 - If a 9-implementation is correct, then it is 9-correct.

Proof - Suppose <,, Sabs' <S,>;E,> is a correct 9-implementation. For each i € /, let 81 be

an arbitrary 9-behavior of interface F7 that satisfies Sr Let Babs = a' 0
(~ 'r1<.a). Then

since~ is closed under abstraction and composition, it follows that Babs is a 9-behavior

of interface o'. By the assumption of correctness, Babs satisfies Sabs' Since the 81 were

arbitrary, it follows that<,, Sabs' S. > is 9-correct. I

We next define the notion of an "evolutionary" specification domain. Intuitively, if

an evoiut1onary specification domain ~ contams a behavior B that models what a system

S can do starting from time o, and if we observe S produce a certain prefix of an

observation over the interval [O, t), then 9 will also contain a "future" behavior B ', which

models what S is capable of doing, starting from time t. Probably any reasonable

specification domain will be evolutionary (as is the specification domain 1/0) although

this property does not seem quite fundamental enough to be included as part of the

definition of a specification domain.

To define the evolutionary property precisely, we require some additional notation.

If x and y are observations and a € (0, 00), then we write x = • y if x(t) = y(t) for all t €

[O, a). If 8 is a behavior of interface E, x € Obs(E) is an observation, and t E [O, 00), then

define the future of B with respect to x and t as follows:

futurex,t(B) = {suffixt(y): y E 8, y =, x).
Intuitively, if a behavior 8 models what a system can do if we begin watching at time t =
0, then futurex.,(B) models what the system can do after we have already observed the

initial segment of x on the interval (0, t).

- 116 -

Definition - A specification domain~ is evolutionary if, whenever B is a 9-behavior of

9-interface E, x € 8, and t € (0, oo), then future ,(B) is also a 9-behavior of 9-interface E.
JI,

I

For the remainder of this chapter, we assume that an evolutionary specification

domain 9 (such as the domain CSP or 1/0) has been fixed.

6.2 Locally 9-Consistent Subset Specifications

This section introduces the notion of a "locally CJ-consistent" subset specification,

and obtains some properties of such specifications that will be used in the proof of

Theorem 6.4. Intuitively, local 9-consistency of a subset specification S means that O{S)

contains no isolated observations that cannot be realized in some 9-behavior satisfying

s.

Definition - A subset specification S of 9-interface E Is locally 9-consistent if for all x €

O(S) there exists a 9-behavior B of interface E such that x € B t; O{S). I

Note that if S is locally ,-consistent, and in addition O(S) ~ 0, then S is 9-consistent.

lemma 6.2 below states that if the component module specifications in a

9-implementation are locally 9-consistent, then the necessary and sufficient conditions

for correctness provided by Lemma 3.1 for implementations involving subset

specifications, are also necessary and sufficient for 9-correctness.

Lemma 6.2 - Suppose <J, Sabs' <S;>;E;> is a 9-lmplementation, where Sabs and each S1

are subset specifications. Suppose that each S1 is locally 9-consistent. Then <J, Saba'

<S,>,E;> is 9-correct iff a' 0 (.d ')"1(<0(S;)>;E:,) t; O(S..,.).

Proof - = > follows directly from Lemma 3.1 and Lemma 6.1, and actually does not

require the assumption of local 9-consistency. To show<=, suppo~ <,, Sabs' <s;>,E;> is

9-correct. It suffices to show that if x € Obs(E) is such that a? (x) € O{S1) for each ; € I,

then a'(x) € O(S
8
bs). Because each O(S;) is assumed locally 9-consistent, given x E

Obs(E) such that &!(x) € O(S;) for each ; € I, then for each ; € I there exists a 9-behavior

B; of interface Fl such that a/(x) € B; t; O(S,). Thus a'(x) € s.bs : a'0 <i 'r1ca.), which is

a 9-behavior because 9 is closed under abstraction and composition. By the

assumption of 9-correctness, it follows that Babst; O{S
8
bs)' and hence a'(x) E O(Sabs>· I

- 117 -

The proof of Theorem 6.4 requires Lemma 6.3 below, which expresses a special

property of locally 9-consistent subset specifications in an evolutionary specification

domain Cl.

Lemma 6.3 - Suppose that 9 is an evolutionary specification domain, and that S is a

locally ~-consistent subset specification of 9-interface E. Then future ,(0(S)) contains a
JI,

9-behavior of ,-interface E whenever x E 0(S) and t E [0, 00).

Proof - The local 9-consistency of S means that, given x E 0(S) there exists a

~-behavior B of interface E such that x E a ~ 0(S). Since Cl is evolutionary, it follows

that futurex_,(B) is a ~-behavior contained in futurex_,(0(S)). I

6.3 Well-Formedness Properties of Specifications

This section defines three properties of state-transition specifications, which are

used in the statement of Theorem 6.4. These properties are: regularity,

quasi-determinacy, and orthogonality. The original motivation for these definitions was

technical, in the sense that they were sufficient to permit the proof of Theorem 6.4 to go

through. However, it was surprising to find that these properties could be thought of as

well-formedness properties that should be satisfied by "good" state-transition

specifications. In a regular state-transition specification, whether or not a computation

is valid depends only upon the observation that is produced, and not upon the particular

choice of states. In a quasi-determinate specification, the fact that the state-transition
I

relation permits choices between states is inessential, since a choice of state made at

time t can have no effect on the portion of the observation produced subsequent to time

t. Orthogonality is related to the correct partitioning of "local" and "global" properties

between the state-transition relation and the validity conditions of a specification.

We first consider regularity. Intuitively, the requirement of regularity amounts to

the assumption that whether a computation is valid does not depend upon the states

appearing in the computation, but rather only the observation produced.

Definition - A state-transition specification S = <M, V> is regular if, for all computations
•

X and Y of M, if Obsx = Obsy, then X € V iff Y € V. I

- 118 -

To motivate the somewhat technical definition of quasi-determinacy, it is

convenient to first examine the stronger, but more simply defined notion of

"determinacy."

Definition - A machine Mis determinate if lnitM is a singleton set, and for all q E QM and

all e E EM, there is at most oner E o., such that <q, e, r> E TransM. A state-transition

specification S = <M, V> is determinate if M Is determinate. I

A determinate specification is automatically regular, since a determinate

specification can have at most one computation that produces a given observation. The

importance of the determinacy property is that each observation generated by a

determinate machine is produced in exactly one computation of that machine. Thus, if

S = <M, V> is a determinate specification, x E O(S), and Xis a computation of M with

Obsx = x, then it is automatically the case that X € V, since no other computation of M

can produce the observation x.

To show that the maximality condition holds for a correct implementation, it

ilµµea,-s lo ue nec&$sary to as:sume lhat son~ fJIOi,t:1 ly similar to dt,itmninacy hoids for

the abstract module specification. To see why, consider the following example: We are

attempting to implement an abstract module whose function is to produce a finite

number of occurrences of a single event e. (Think of a "black box" with a single light

bulb on top, and let e be an event corresponding to a flash of the light bulb.) This

module can be specified in two different ways:

(Determinate): The state set of the specification consists of a single state•. The event

e is enabled in state •, and obviously cannot produce any state change. The constraint

that e should appear only finitely many times is captured by the validity condition.

(Indeterminate): The state set for the specification is the set of natural numbers. Every

state is an initial state. The event e is enabled in state k iff le * O, and the occurrence of

e causes the state to be decremented. Every computation is valid. In this specification,

the requirement that e occurs only finitely often is captured by the indeterminate choice

of initial state.

Let Sdet be the determinate specification and let S1nd be the indeterminate specification.

Clearly O(Sdet) = O(S1nd).

· 119-

Now consider an interconnection, = <a', B'>, where the abstract interface o', the

single component interface F', and the composite interface E' are all the same interface

p., e}, and the abstraction map a' and the decomposition map 6' are the identity

translation. Clearly both of the implementations <,, Sdet' Sine? and <,, Sind' Sdet> are

correct. However, the maximality condition does not hold for the implementation

<,, Sind' Sde?· To see this, note that any pair <k, •> is an initial state for the composite

machine, and is hence reachable for that machine. Furthermore, the event e is always

enabled for the component machine. For maximality to hold, it would have to be the

case that e is enabled for the abstract machine no matter what the value of k is. But e is

not enabled for the abstract machine if k = O.

In certain situations, for example the transmission line module specification in

Appendix II, the use of indeterminate specifications is quite natural. However, the

preceding example shows that unless we are careful, it may not be possible to use the

Correctness Theorem to prove the correctness of Implementations when such a

specification is used as the specification for the abstract module.

The proof of the Completeness Theorem actually does not require that the

abstract module specification S
8

bs be determinate, but rather the somewhat weaker

assumption that Sabs be regular and "quasi-determinate." Intuitively, the set of future

observations that can be produced by a quasi-determinate machine is independent of

the choice of states made on the initial segment [O, t].

To define quasi-determinacy precisely, we extend to histories the = a notation

defined above for observations. If X and Y are histories, then we write X = a Y if Obsx(t)

= a Obsy(t) and Statex<t) = Statey(t) for all t E (0, a) (and hence for all t E [0, a] by the

properties of state functions).

Definition · A machine M is quasi-determinate if for all computations X and Y for M, and

all t E [O, oo), if Obsx =, Obsr then there exists a computation Z of M such that Z =, X

and Obs2 = Obsy. A state-transition specification S = <M, V> is quasi-determinate if M

is quasi-determinate. I

If a state-transition specification is determinate, then it can also be seen to be

quasi-determinate by choosing Z = Y in the above definition. Determinacy implies that

State2 can be defined in exactly one way on the interval [O, t], thus showing that X =, Z.

-120-

We next consider orthogonality. Intuitively, in an orthogonal specification, every

computation agrees for an arbitrarily long time with a valid computation. Orthogonality

is related to the correct partitioning of "local" and "global" properties between the

state-transition relation and the validity conditions of a specification. Roughly,

orthogonality means that the validity conditions contain no information that could have

been expressed by strengthening the machine part of the specification.

Definition • A state-transition specification S = <M, V> is orthogonal if for all

computations X of Mand all t E [O, oo), there exists YE V such that X == t Y.

6.4 The Completeness Theorem

We can now state and prove the Completeness Theorem.

Theorem 6.4 (Completeness Theorem) - Let g be an evolutionary specification domain.

Suppose that <3, Sabs' <s;>,E;> is a cJ-implementation, where Sabs and S1 for each i €/are

state-transition specifications. Suppose that Sabs is regular and quasi-determinate, and

that S; is orthogonal and locally ,-consistent for each i E /. If <3, Sabs' <S;>,E;> is

,-correct then the maximality and validity conditions hold.

I

Proof· Suppose that Sabs = <Mabs' Vabs>, and that S1 = <M1, v;>, tor each i E /. Let M be

the composite machine. Note that the assumption that each S1 is locally ,-consistent

together with the assumption of !I-correctness implies, by Lemma 6.2, that

a-' 0
~ -')"

1((0(S1)>,E,) ~ O(S
8
t,).

(Validity): To see that the validity condition holds, suppose that Xis a computation for M,

such that x<11 E v, for each i E /. Then s;(Obsx) E O(S1) for each i E /. It therefore follows,

by the previous paragraph, that a 3{0bsx> € O(Sab
5
). This means that there exists a

computation Xabs of Mabs' such that Xabs E Vabs and Obsx = a 3(0bsx>· Since S8 bs is
abs

assumed regular, and Obsx<•bs) = Obsx , it follows that the computation x<abs) is also
abs

in Vabs' as required.

(Maximality): To prove maximality, suppose q E o., is reachable, and that e EE_, is such

that s;(e) is enabled for M1 in state •,(q), for each i E /. We wish to show that a-'(e) is

enabled for Mabs in state" abs(q).

• 121 ·

The proof is of necessity somewhat roundabout, since the assumption of

9-correctness is the only information we have at our disposal concerning the

relationship betw~n the computations of Mabs and those of the M,- The idea is as

follows: We first obtain a computation X of M that arrives at state q at time n, and such

that no non-A events occur on the interval [n, oo). Let x = Obsx. For each i E /, we can

modify x<i) to obtain a computation x, for M;, by letting the event 8;(e) occur at time n. Of

course, we do not yet know that we can modify x<•bs> in a similar way -- this is what we

are trying to show.

We next use the orthogonality assumption on the S; to obtain, for each i E /1 a valid

computation Y1 that "looks like" X; on the initial segment [O, n + 1). Each Y1 produces an

cbservation y1 E 0(S;) that looks like 6/(x) on the interval [O, n + 1). We do not know that

there is a single observation y such that y1 = a;(y) for all; E /. However, we can use

Lemma 6.3, plus the composition closure property of the specification domain 9 to

obtain an observation z such that, for all; € /, a;(z) E 0(S
1
) and 8

1
(z) looks like y1 on the

interval [O, n + 1). 9-correctness implies that a'{z) E 0{Sabs).

Since a'(z) E 0(Sab
8
}, we can obtain a computation Zabs for Mabs' such that Obsz

abs

= a'(z). Now, event a'(e) occurs at time n in Z
8
bs. If we knew that Statez (n} =

abs

,, abs(q), then this would show that a'(e} is enabled for Mabs in state ,,, abs(q}. Although it

need not be the case that Statez (n) = w abs(q}, the quasi-determinacy of Saba lets us
abs

replace the [O, n] segment of Statez with the corresponding segment of Statex<abs),
abs

with the result still a computation of Mabs. Since Statex<abs)(n) = ,,, abs(q}, this will

complete the proof.

Formally, since q is reachable for M, by definition of reachability there exist

q0, q1, ... , qn E QM and e0, e1, ... , en_1 E EM, such that q0 € lnitM' qn = q, and <q"-' e"-,

q"-+ 1> € TransM for all k € {O, 1, ... , n-1 }.

Let f: Jf - Steps(E M' QM) be de_fined by:

f(k) = <q"-' e"-' q"-+ 1>, if 0 < k < n
= <q n' A, q n>, otherwise.

Then f is a history skeleton and by Lemma 3.5 there is a unique history X such that f

spans X. Let x = Obsx· It is easy to see that Xis a computation of M.

-122-

Since B;(e) is enabled for M1 in state tr1(q), for each ; €/we can choose,, E QM
1

such that <w,(q), B!(e), r;> E TransM,' It follows that for each i EI, the history x,, where X1

= x<11 and n

Obsx (t) = BJ(e), fort = n
I

== A, fort E (n, oo)

Statex (t) = ,,, fort E [n, oo)
. I

is a computation for M .. Let x. = Obsx for each;€/.
I I I

By the assumption that each S1 is orthogonal, we can obtain computations Y1 E V1

such that Y1 = n + 1 x,. Let y1 = Obsy. Then y1 E O(S1) and y1 = n + 1 x,.
I

Since each S1 is locally ,-consistent, and the the specification domain , is

evolutionary, we can apply Lemma 6.3 to show that futurey,.n+ 1(0(S)) contains a

9-behavior B1 of interface FJ for each ; E /. Let a = (.4 '>·1ca). Then since the

specification domain 9 is closed under composition, it follows that B Is a 9-behavior of

interface E'. Since 9-behaviors are nonempty by the nondegeneracy property of 9, it

follows that we can choose an element z ' of B. Let z be the observation defined by the

properties:

Z =n X

z(n) = e

z(t) = A, for t E (n, n + 1)

suffixn+ 1(z) = z '.

Then by construction, BJ(z) € O(S1) for each;€/. As shown in the first paragraph of the

proof, it follows by 9-correctness that a'(z) € O(S.._).

Since a'(z) E O(Sabs), there exists a computation z. for Mab& with Obsz =
abs

a'(z). By construction, Obs1abs = a'(z) = n a'(x) = Obsx<abs). Since Sabs is

quasi-determinate, there exists a computation z.' such that zabs' = n x<•bs> and

Obsz , = Obsz . Since Zabs' = n x<•bs>, we know that State1 ~n) = "•bs(q). Since
abs abs abs

a'(e) occurs at time n in z.bs ', it follows that a'(e) is enabled for Mabs in state w abs(q), as

desired. I

- 123-

7. Conclusion

7.1 Summary

The important accomplishments of this thesis are the following:

1. Formal Framework - A major accomplishment of this thesis is that it sets

up a formal framework within which it is possible to formulate precisely a large number

of interesting and important questions about specifications and correctness proofs, and

to obtain rigorous answers to these questions. The framework includes the notions of

interface, observation behavior, composition, and abstraction, as primitive. These

primitive notions are used to give precise, language-independent definitions of the

notions of implementation, correctness, and consistency.

2. State-Transition Specifications - The thesis shows how module

behaviors can be conveniently and naturally described in terms of a machine that

generates an observation as it executes, plus some validity conditions on the

computations of that machine. Specifications stated in such a form lend themselves to

e systematic method fer performing correctncs3 proofs.

3. Rely- and Guarantee-Conditions - The concept of rely- and

guarantee-conditions is shown to be useful for organizing eventuality specifications and

proofs of correctness involving such specifications. The use of rely- and

guarantee-conditions seems to result in simple proofs based on the communication

structure of a system, rather than in proofs based on the structure of computations.

4. Consistency of Specifications - The 1/0-behavior model provides an

interesting and useful notion of consistency for eventuality specifications. The thesis

obtains a technique for proving the 1/0-consistency of state-transition specifications.

The investigation of state-transition specification performed in this thesis has

resulted in some practical insights that can be tentatively expressed in the form of the

following procedure for refinement of an abstract module into a system of component

modules:

(1) Determine the interconnection of component modules that will be used to

implement t.he abstract module.

(2) Identify the implementation invariant and the rely-/guarantee-conditions

required for the proof of correctness.

(3) "Localize" the rely-/guarantee-conditions to each component module.

-124-

Introduce sufficient information into the component module states to permit the

localized conditions to be conveniently expressed.

(4) Define the state-transition relations for each component module.

(5) Check the completed component module specifications by proving their

consistency.

(6) Use the component module specifications to perform a complete proof of

correctness for the implementation.

The resource manager example in Appendix II illustrates the use of this procedure.

It has unfortunately been possible in this thesis to investigate only a tiny fraction of

the questions that could conceivably be formulated using the framework developed

here. The remainder of this chapter lists a number of questions that have not been

addressed, but should be. Hopefully the answers to these questions can provide further

practical insights into the problem of design, and ultimately contribute to more useful

and reliable distributed/concurrent systems.

7 .2 Ideas for Future Work

The basic framework set up in this thesis can serve as a starting point for a number

of interesting extensions. The discussion below is concerned with the following broad

possibilities for investigation:

(1) Specification Domains

(2) Semantic Properties of State-Transition Specifications

(3) Organizing Principles for Specifications and Proofs

(4) Formal Specification and Proof

(5) Non-State-Transition Specifications

7 .2.1 Specification Domains

The concept of a specification domain appears to offer considerable possibilities

for theoretical investigation. There are two broad directions for future investigation of

specification domains. The first direction is concerned with developing the general

theory of specification domains, and relating this theory to domain theory as used in .
programming language semantics. The second direction is to construct additional

example specification domains that model systems with interesting properties.

-125-

Plausible steps toward a general theory of specification domains might include the

following:

(1) The definition of a specification domain should be generalized so that the

particular structure of an observation is not specified. The assumption of the particular

structure of translations between interfaces would also have to be removed. A

reasonable approach might be to assume that the interfaces and translations comprise

the objects and morphisms of a category. The relationship between interfaces and

observations would take the form of a functor defined on the category of interfaces,

which maps each interface E to the set Obs(E) of observations over E, and which maps

each translation a: E - F to a function on observations.

(2) The notion of a behavior should be generalized so that a behavior

determines, but is not identified with, a set of observations. This would permit behaviors

such as the "futures processes" of [Rounds81] to be used, as well as correspondingly

more general abstraction and composition operations. There still should be some

constraints on the effect of abstraction and composition operations with respect to the

set of observations determined by a behavior. It is not immediately obvious what those

constraints should be.

(3) An attempt should be made to try to identify the correct set of regularity

assumptions for abstraction and composition operations. The results of Chapter 6

required no such assumptions, however it seems reasonable that the classes of

abstraction and decomposition maps ought to be closed under function composition

and include the identity translations. The 1/0-abstraction maps and 1/0-decomposition

maps certainly have these properties.

(4) The specification domain 1/0 seems to provide motivation for a kind of

duality between abstraction and decomposition, in the sense that abstraction and

decomposition maps seem to have complementary preservation properties with respect

to input and output. It would be very interesting if abstraction and decomposition maps

could be unified, so that they are just dual instances of a single underlying notion of

translation, or "interface morphism." One way this might be accomplished is by

assuming the existence of a kind of conjugation operation on interfaces. Intuitively, the

conjugate of a module interface would be the interface of the module's environment.

The duality between abstraction and decomposition might then be captured by stating

that a decomposition map is an abstraction map defined on conjugate Interfaces.

-126 -

To help motivate the correct general definitions, further specific examples of

specification domains should be constructed and studied. Ideas for constructing

further examples of specification domains might be as follows:

(1) Different notions of obiervation might be used to construct a number of

interesting specification domains. One example is to replace the assumption that

observations contain only finitely many events in any finite interval with some less

restrictive topological assumption, and to attempt to construct corresponding classes of

behaviors. If the machine approach to defining behaviors is to be used, then there is the

problem of how to define a machine that permits infinitely many events to occur in a

finite interval. Examples of such "machines" already appear in the theory of dynamical

systems. For example, if one is willing to assume that an observation is a continuous,

differentiable function on [O, oo), then the correct notion of machine is that of a

differential equation.

(2) Different special assumptions on behaviors can be made to model systems

with particular properties. For example, it would be interesting to find a class of

behaviors that includes non-asynchronous behaviors, corresponding to sets of

observations that are not necessarily closed under stretching of the time axis. These

behaviors would model timing-dependent syStems. If observations contain space

coordinates, In addition to time coordinates, then it might be possible to construct a
I

class of behaviors with the property that information doesn't travel "too quickly" from

one place to another. This specification domain could be used to investigate the

problem of what can be observed by one module about the operation of another in a

distributed system. Another idea might be to try to characterize a class of "atomic"

behaviors, like the atomic data types of [Weihl84]. The observations in these behaviors

would have certain serializability properties.

(3) An attempt should be made to deal correctly with simultaneity. It should be

possible to do this within the specification domain framework as follows: Introduce

additional structure on interfaces to model the intuitive idea that some events represent

the simultaneous occurrence of more primitive events. For example, it might be

assumed that the events in an interface form a complete lower semilattice with >. at the

bottom, and with the semilattice operation u representing the operation of

"simultaneous occurrence." The main problem with this approach is how to introduce

the notions of input and output so that an assignment of behaviors that is

nondegenerate and closed under composition can be defined.

· 127 -

7 .2.2 Semantic Properties of State-Transition Specifications

In Chapter 6 three semantic properties of state-transition specifications were

identified (determinacy, regularity, orthogonality) and it was suggested that these might

be properties characteristic of "well-formed" specifications. The idea of finding

semantic well-formedness properties of specifications also appears in [Jones81], where

the notion of an "unbiased" specification is discussed. It is interesting and useful to try

to identify such properties, since they can possibly serve as guidelines in the design

process. An important extension to this thesis would be to try to examine more closely

the properties identified in Chapter 6, to develop techniques for proving that

specifications have these properties, and to try to develop additional well-formedness

properties.

7 .2.3 Organizing Principles for Specifications and Proofs

The development of organizing principles for specifications and proofs appears to

be a promising area of investigation. The rely- and guarantee-condition approach to

writing specifications and performing correctness proofs is an example of the kind of

results one might try to obtain. The way to proceed in this area is to perform example

specifications and correctness proofs, and then try to abstract from these examples

something in the way of general methods that would be applicable to other examples.

This is difficult, because the examples take a long time to do, and it is hard to abstract

general methods from a few examples.

Rely-/Guarantee-Conditions:

Rely- and guarantee-conditions were used in this thesis in the statement of the

validity condition portion of a specification only. This is in contrast to the work of other

researchers, for example [Jones81], in which rely- and guarantee-conditions can be

used for state-transition properties only. For the examples in this thesis it did not seem

particularly helpful to use rely- and guarantee-conditions for the state-transition portion

of a specification. One possible exception might be the synchronizer and synchronizer

component module specifications, in which the use of rely- and guarantee-conditions in

the state-transition part of the specification might obviate the need for an error state.

· 128 -

Determinate vs. Indeterminate Specifications:

Both determinate and indeterminate specifications seem to be useful. From a

strictly theoretical standpoint, determinate specifications are more convenient to work

with than indeterminate specifications. From a practical point of view, though, there are

cases (such as the transmission line specification of Appendix II) in which the use of

indeterminate specifications is quite natural, and in which an equivalent determinate

specification would have to be stated in a much more convoluted fashion. Perhaps a

result could be proved which shows that determinate and indeterminate specifications

are equivalent in expressive power, in the sense that every indeterminate specification

could be stated equivalently as a determinate specification. Such a result would permit

the theory of specification to deal only with the more convenient determinate

specifications, while permitting indeterminate specifications to be used in examples

where they seem natural.

Parallel Specifications:

In ce,,1ain exarnpt~, though .-,ui i,1 a.-,y of the ones con&id~,~ in this thesis, it i::1

convenient to describe the desired functioning of a module in terms of a collection of

loosely interacting concurrent processes. This process structure is a logical one used

for descriptive purposes only, and may or may not bear any relation to the structure of

an implementation of the module. It would be nice to be able to write specifications that

reflect such a logical decomposition. State-transition specifications as described in this

thesis are an inherently sequential form of description, since they include only a single

machine. Perhaps the state-transition technique could be extended by permitting

specifications to include a collection of machines that execute in parallel, and whose

state sets are mostly independent of each other. To perform correctness proofs with

this kind of specification would require a modified version of the Correctness Theorem.

Differential vs. Integral Form:

There is a certain amount of flexibility in whether state-transition properties are

expressed in "differential," state-transition form, or in "integral," Invariant form. In

general, given a statement of the invariant form, "for all reachable states q, property

P(q) holds," an equivalent expression in state-transition form can be obtained by a

simple syntactic transformation analogous to differentiation, e.g. "Property P holds of

I

· 129-

all initial states, and a state transition from q to r can occur only if P(q) implies P(r)."

There is apparently no general method for "integration," that is, for obtaining equivalent

statements in invariant form, given a statement in state-transition form.

In this thesis, the policy was adopted that all local properties would be expressed

in state-transition form, rather than in invariant form. One reason for this is that, in

general, invariants for the composite machine for an implementation cannot be proved

directly from invariants for the component machines. Rather, it is necessary to first

"differentiate" the invariants for the components, to obtain corresponding

preconditions for event occurrences, and then use these preconditions in an inductive

proof of the desired invariant for the composite machine. In certain circumstances,

though, it seems natural to express specifications in invariant, rather than

state-transition form. For example, in the synchronizer module specification it is

perhaps more natural to state explicitly that "at most one user process can be running

at any instant," rather than the more indirect approach taken here, where we use the

precondition "a run event can occur only if there are no users currently running."

Further invAstigRtion into th~ relation~hip between state-tran~!Uon 2nd !nvariant

specifications seems needed.

7 .2.4 Formal Specification and Proof

For the specification and proof techniques developed in this thesis to be useful for

practical examples, the development of mechanical aids for manipulating specifications

and assisting in correctness proofs is essential. Appendix I takes the first steps toward

this goal by showing how all of the proof techniques developed in this thesis can be

formalized within an appropriate temporal language. Further steps should be taken

along the following lines:

(1) A practical method should be devised for describing heterogeneous

algebras and for associating with each description a reasonably powerful, sound

deductive system for deducing properties of the described algebra. In spite of the large

amount of work that has been done in this area (specification of abstract data types), a

completely satisfactory method is still lacking.

(2) Tools are needed for enumeration and checking of cases in inductive

proofs of invariance. In the correctness proofs performed in this thesis, once the

implementation invariant is devised, the proof that it is inductive is a tedious case

- 130-

analysis that ought to be easily mechanizable.

(3) Mechanical aids for checking proofs in temporal logic are needed. Such a

proof checker wou!d probably not be capable of performing complete proofs by itself,

but rather would serve to fill in intermediate steps in a proof generated by a human

verfier.

7 .2.5 Non-State-Transition Specifications

It would be interesting to use the framework of definitions set up in Chapter 2 to

investigate specification languages not based on the state-transition approach. One

obvious example is to investigate specification languages based on some kind of

generalized regular expression. Preliminary experience with this kind of specification

seems to indicate that the regular expression approach seems to produce shorter

specifications for trivial examples, but for more complex examples it is much more

difficult to express the desired properties. Interesting questions are what sort of

deductive system, if any, could be used to derive consequences from specifications

~tAt~ in r1:>a•.tlar ~xpressiori form, and what form the Correctness Theorem wo!Jld take

for such specifications.

- 131 -

References

(Abrial80] Abrial, J.R., "The Specification Language Z: Syntax and Semantics,"
Programming Research Group, Oxford University, 1980.

(Apt81] Apt, K., "Ten Years of Hoare's Logic: A Survey - Part I," TOPLAS 3, 4(1981), pp.
431-483 ..

[Barringer83] Barringer, H., Kuiper, R., "A Temporal Logic Specification Method
Supporting Hierarchical Development," Manuscript, University of Manchester
Department of Computer Science, November, 1983.

[Bartlett69] Bartlett, K.A., et al. "Note on Reliable Full Duplex Transmission on Half
Duplex Links," CACM 12, 5(May 1969), pp. 260-261.

[Berzins79] Berzins, V.A., "Abstract Model Specifications for Data Abstractions,"
MIT /LCS/TR-221, 1979.

[Bochmann78] Bachmann, G. V., "Finite State Description of Communication
Protocols," Computer Networks 2(1978), pp. 361-372.

[Brock81] Brock, J.D., Ackermann, W.B., "Scenarios: A Model of Non-determinate
Computation," Proc. Peniscola Colloquim, Springer LNCS 107, 1981.

[Brock83] Brock, J.D., "A Formal Model of Non-Determinate Dataflow Computation,"
MIT /LCS/TR-309.

[Chen81] Chen, B., Yeh, R.T., "Event Based Behavior Specification of Distributed
Systems," IEEE Symposium on Reliability in Distributed Software and Database
Systems, July, 1981.

[Chen82] Chen, B., "Event-Based Specification and Verification of Distributed
Systems," PhD Dissertation, University of Maryland, 1882.

[Clinger81] Clinger, W. "Foundations of Actor Semantics," MIT /AI/TR~633, May, 1981.

[Dijkstra76] Dijkstra, E.W., A Piscipline o1 Programming, Prentice Hall, 1976.

[DiVito82] DiVito, B.L., "Verification of Communications Protocols and Abstract Process
Models," Institute for Computing Science TR-25, University of Texas at Austin, 1982.

[Fischer83] Fischer, M.J., Griffeth, N.D., Guibas, L.J., Lynch, N.A., "Probabilistic
Analysis of a Network Resource Allocation Algorithm," submitted for publication.

-132-

[Floyd67] Floyd, R.W., "Assigning Meanings to Programs," in Mathematical Aspects Qf
Computer Science. American Math. Soc., 1967.

[Francez79] Francez, N., et. al., "Semantics of Nondeterminism, Concurrency, and
Communication JCS$ 19(1979), pp. 290-308.

[Goguen78] Goguen, J.A., Thatcher, J.W., Wagner, E.G., "Initial Algebra Approach to
the Specification, Correctness, and Implementation of Ab~:dract Data Types," in Current
Trends in Programming Methodology, YQh ~ Qata Structuring. R.T. Yeh, ed.,
Prentice-Hall, 1978.

[Good79] Good, 0.1., Cohen, R.M., Keeton-Williams, J., "Principles of Proving
Concurrent Programs in GYPSY," 6th POPL, 1979.

[Good82] Good, 0.1., "The Proof of a Distributed System in GYPSY," Technical Report
30, University of Texas at Austin, September 1982.

[Gordon79] Gordon, M.J.C., "The Denotational Description of Programming
Languages," Springer-Verlag, 1979.

fGoree81l Goree, J.A., "Internal Consistency of a Distributed Transaction System with
Orphan Detection," MIT /LCS/TR-286, Mass. Institute of Technology, 1981.

[Greif75] Greif, I. "Semantics of Communicating Parallel Processes," MIT /LCS/TR-154,
September, 1975. 1

[Guttag78] Guttag, J.V., Horowitz, E., Musser, D.R., "Abstract Data Types and Software
Validation," CACM 21, 12(Dec. 1978), pp. 1048-1064.

[Guttag80] Guttag, J., Homing, J., "Formal Specification as a Design Tool," 7th POPL,
1980, pp. 251-261.

[Hailpern80] Hailpern, B.T., Owicki, S.S., "Verifying Network Protocols Using Temporal
Logic," Technical Report No. 192, Computer Systems Laboratory, Stanford University,
June, 1980.

[Hailpem81] Hailpern, B.T., Owicki, S.S., "Modular Verification of Computer
Communication Protocols," IBM Research Report RC8726, March, 1981.

[Harel78] Harel, D., "Logics of Programs: Axiomatics and Descriptive Power," MIT LCS
TR-200, May, 1978.

[Hewitt??] Hewitt, C., Baker, H., "Laws for Communicating Parallel Processes," IFIP n,
Toronto, August, 1977.

-133 ·

[Hoare69] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," CACM, Vol.
21, October, 1969.

[Hoare72] Hoare, C;A.R., Proof of Correctness of Data Representations, Acta
Informatica 1, 4(1972) pp. 271-281.

[Hoare78] Hoare, C.A.R., "Communicating Sequential Processes," CACM, Vol. 21,
August, 1978.

[Hoare81a] Hoare, C.A.R., Brookes, S.D., Roscoe, A.W., "A Theory of Communicating
Sequential Processes," Technical Monograph PRG-22, Oxford University Computing
Laboratory, May, 1981.

[Hoare81b] Hoare, C.A.R., "A Model for Communicating Sequential Processes,"
Technical Monograph PRG-22, Oxford University Computing Laboratory, June, 1981.

[Jones81] Jones, C.B., "Development Methods for Computer Programs Including a
Notion of Interference," Wolfson College, June, 1981.

[Jones83] Jones, C.B., "Specification and Design of (Parallel) Programs, .. IFIP 83.

[Kahn74] Kahn, G., "The Semantics of a Simple Language for Parallel Processing," IFIP
74, pp. 471-475.

[Kahn77] Kahn, G., MacQueen, D.8., "Coroutines and Networks of Parallel Processes,"
IFIP 77, pp. 993-998.

[Kapur80] Kapur, D., "Towards a Theory for Abstract Data Types," MIT /LCS/TR-237,
May, 1980.

[Keller76] Keller, R.M., "Formal Verification of Parallel Programs," CACM 19,?{July
1976), pp. 371-384.

[Lamport80] Lamport, L., "'Sometime' is Sometimes 'Not Never': On the Temporal Logic
of Programs, .. ACM POPL 1980.

[Lamport83] Lamport, L., "Specifying Concurrent Program Modules," TOPLAS, 1983.

[Lansky83] Lansky, A.L., Owicki, S., .. GEM: A Tool for the Description of Concurrency
Primitives and Verification of Concurrent Programs," PODC 83.

[Liskov79] Liskov, B.H., "Modular Program Construction Using Abstrac~ions," MIT
Computation Structures Group Memo 184, September, 1979.

[Lynch81] Lynch, N.A., Fischer, M.J., "On Describing the Behavior and Implementation

· 134 ·

of Distributed Systems," Theoretical Computer Science 13(1981), pp. 17-43.

[Lynch83] Lynch, N.A., "Concurrency Control for Resilient Nested Transactions," ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, Atlanta, March, 1983.

[Milner80] Milner, R., A Calclulus o1 Communicating Systems. Springer Lecture Notes in
Computer Science 92, 1980.

[Misra81] Misra, J., Chandy, K.M., "Proofs of Networks of Processes," IEEE TOSE, Vol.
SE-7, No. 4, July 1981.

[Misra82] Misra, J., Chandy, K.M., Smith, T., "Proving Safety and Liveness of
Communicating Processes with Examples," ACM PODC 1982.

[Owicki76] Owicki, S., Gries, D., "Verifying Properties of Parallel Programs: An
Axiomatic Approach," CACM 15, 5(1976).

[Parnas72] Parnas, D.L., "A Technique for Software Module Specification with
Examples," CACM 15, 5(May, 1972), pp. 330-336.

[Pneuli77] Pnueli, A., "The Temporal Logic of Programs," FOCS 1977.

[Pratt82] Pratt, V.R., "On the Composition of Processes," ACM POPL 1982.

[Rounds81] Rounds, W.C., Brookes, S.D., "Possible Futures, Acceptances, Refusals,
and Communicating Processes," FOCS 1981.

[Schwabe81 a] Schwabe, D., "Formal Techniques for the Specification and Verification
of Protocols," Report No. CSD-810401, UCLA Computer Science Department, April,
1981.

[Schwabe81 b] Schwabe, D., "Formal Specification and Verification of a
Connection-Establishment Protocol," USC-ISi Tech. Apt. ISI/RR-81-91, April, 1981.

[Schwartz81] Schwartz, R.L., Melliar-Smith P.M., "Temporal Logic Specification of
Distributed Systems," Second International Conference on Distributed Systems, INRIA,
April, 1981.

[Sunshine78] Sunshine, C.A., "Survey of Protocol Definition and Verification
Techniques," Computer Networks 2(1978), pp. 346-350.

[Weih184] Weihl, W.E., "Specification and Implementation of Atomic Data Types," PhD
Thesis, MIT, March, 1984.

[Wing83] Wing, J.M., "A Two-Tiered Approach to Specifying Programs,"

-135 •

MIT /LCS/TA-299, 1983.

[Wirth71] Wirth, N., "Program Development by Stepwise Refinement," CACM 14, 4(April
1971), pp. 221-227.

[Wolper82] Wolper, P., "Specification and Synthesis of Communicating Processes
Using an Extended Temporal Logic," ACM POPL 1982.

[Yonezawa77] Yonezawa, A., "Specification and Verification Techniques for Parallel
Programs Based on Message Passing Semantics," MIT /LCS/TA-191, December, 1977.

- 136-

Appendix I - Formal Specification and Proof

The purpose· of this appendix is to outline the way in which the informal

state-transition specification and proof techniques used in this thesis can be formalized,

perhaps to permit mechanically-assisted specification and verification. The major new

concepts introduced to permit this formalization are those of an "event/state algebra"

and an "implementation algebra." An event/state algebra is a heterogeneous algebra

that embeds the machine part of a state-transition specification. An "implementation

algebra" is a special kind of event/state algebra, which embeds the composite machine

for an implementation, and which contains among its operations the abstraction and

decomposition map for the implementation.

The utility of event/state algebras and implementation algebras derives from the

fact that associated with each event/state algebra A (and hence each implementation

algebra as well) is a temporal logic language ~A), within which can be expressed

properties of the computations of the embedded machine. Each of the proof techniques .
presented in this thesis has the property that its hypotheses can be formalized in terms

of the validity of verification conditions, which are sentences expressed in the temporal

language of an appropriate event/state algebra. The problem of formalizing proofs that

use the techniques of this thesis is thereby reduced to the following two problems:

(1) Find a convenient method for describing event/state algebras.

(2) Find a general method whereby the description of an event/state algebra A

can be used to obtain a formal deductive system for deriving a large number of true

statements about A, where these statements are expressed in the temporai language

~A).

In this appendix, the following tasks are accomplished:

(1) The notions of event/state algebra and implementation algebra are

defined.

(2) Precise semantics are given for the temporal language ~A) associated with

an event/state algebra A.

(3) An approach, based on set theory, for describing event/state algebras is

sketched. It is indicated how, from the description of an event/state algebra A, an

A-sound deductive system for the language ~A) might be obtained.

(4) It is show how the various proof techniques presented in this thesis can be

-137 •

formalized in the language ':J{A) for an appropriate A.

1.3 Event/State Algebras

Definition - An event/state algebra A is a heterogeneous algebra whose signature is of

the form: <EventsA, StatesA' lnltA, TransA' >.A' ... >, where >.A is a distinguished constant

of sort Events A so that <EventsA, >.A> is an interface, and <EventsA, StatesA, lnitA, TransA>

is a machine, which we call the embedded machine and which we denote by Mach A. I

When there is only one event/state algebra under consideration, we will omit the

identifying subscripts. The ellipsis in the signature of A indicates that A is permitted to

contain additional sorts, relations, and functions besides those explicitly listed. The

reason for permitting A to contain these additional sorts, relations, and functions, is to

provide a mechanism by which the temporal language ,CA) can be made as expressive

as desired.

We now define precisely the syntax and semantics of the temporal language ':J{A)

uf an eve11t/state algebra A. Let l:A be the signature of A. The signature l:A is required

to contain distinguished sorts Events and States. In addition, we assume that

corresponding to each sort of IA is a countably infinite collection of variables which we

use to range over values of that sort. The language ':J{A) contains syntactic categories

of "terms," "atomic formulas," and "formulas," which are defined by induction as

follows:

Terms:

(1) The distinguished symbols Now and After are terms of sort States.

(2) The distinguished symbol Occurs is a term of sort Events.

(3) If v is a variable of sort S, then v is a term of sort S.

(4) If t1, tn are terms of sorts S1, Sn, respectively, and f is an n-ary

function symbol of type S1 X ... X Sn - S, then f(t1 ••• tJ is a term of sort S.

Atomic Formulas: If t1, ... , tn are terms of sorts S1, ... , Sn, respectively, and R is an n-ary

relation symbol of type S 1 X •.. X Sn' then R(t 1 ... t J is an atomic formula.

Formulas:

(1) An atomic formula is a formula.

· 138 ·

(2) If q, and 1" are formulas, and vis a variable of sort S, then -,fl', q, v i/1, and

(3vES)q, are formulas.

(3) If q, is a formula, then Oq, is a formula.

The sets of terms, atomic formulas, and formulas of ~{A) are the least sets with the

properties listed.

The first-order language L(A) is the sublanguage _ of 'a{A) obtained by omitting

formation rules (1) and (2) under "Terms," and formation rule (3) under "Formulas."

We treat the additional logical connectives A, -, -, 't/ as abbreviations in the usual

way. In addition, the temporal operator◊ is regarded as an abbreviation for -,o-,.

We use the notation t(v 1 ••. v n> to denote a term t whose variables are a subset of

the set {v1, ••• , vn}, and the notation ip(v1 •.• vn> to denote a formula whose free variables

are a subset of {v1, ••. , vn}. The notations t(t,tv1 ••• t/vn) and q,(t,tv1 ... tn/vn) denote

the result of substituting the terms t1, ... , tn for free occurrences of the variables v1, ... ,

v n int and q,, respectively.

Next, we dAfine the semantics of ~A). If Sis a symbol (sort nAmA, f11nr.tinn symhol:

or relation symbol) in the signature of A, then we use SA to represent the denotation (set,

function, or relation) assigned by A to the symbol S. Define an interpretation for a

sequence v1, ... , vn of variables of sorts S1, ••• , Sn' respettively, to be a sequence a1, ••• ,

an of elements of A, where each a11 is of sort S11 • The semantics of 'a{A) are defined in two

parts. First, given an intepretation a1, .•• , an for the free variables v1, ... , vn, a term

t(v1 .••• vn) of sort S denotes a function t[a,tv1 ... anlvJ from Steps(EventsA, StatesA) to

SA, whose value on the steps = <q, e, r> is defined as follows:

{1) If tis Now, then t[a,tv1 ••• anlvn](s) = q.

If tis After, then t[a,tv1 ••• anlvJ(s) = r.

(2) If t is Occurs, then t[a ,tv 1 ••• anlv n](s) = e.

(3) If tis the variable v11 , then t[a,tv1 ... anlvn](s) = a11 •

(4) If tis f(t1 •.• tn), then t[a,tv1 ••• anlvn](s) = fA(b 1 ... bn),

whereb11 = t11 [a,tv1 ••• an/vJ(s)foreachk.

The second part of the definition of the semantics of 'a{A) is concerned with when a

formula cp(v1 ... vn) is satisfied by a history X E Hist(EventsA, StatesA), and an

intepretation a1, ••• , an for v1, ... , vn. We abbreviate this as X ~ A cp[a,tv1 ... anlvn], or,

when the algebra A is clear from the context, as simply X ~ cp(a,tv1 ... anlvJ.

-139-

Atomic Formulas: If cp is the atomic formula R(t1 ••. tm), where the free variables of each

ti< are in the set {v1, ••• , vn}, then X t= cp[a/v1 ••• anlvn] iff <b1, ••• , bn> ERA, where b11 =

tl<[a,Jv1 ••• an/vn](Stepx(0)) for each k.

Formulas: If cp is a formula, but not an atomic formula, then

(1) If cp is-,"'• "' v x, or (3vES)'f, then satisfaction for cp is defined by induction

in the usual way.

(2) If cp is □"'• then X t= cp[a/v1 ••• anlvn) iff suffix1{X) t= cp[a/v1 ••• anlvn] for

all t E (0, oo).

Suppose that cp(v 1 ••. v n> is a formula of S{A) and that 'I' is a set of formulas of S{A),

the free variables of which are a subset of {v1, ••• vn}. We say that cp is a consequence

of 'I' in A, written + t= A cp, if whenever a 1, ... , an is an interpretation for the variables v 1,

•.. , vn, and X E Hist(EventsA, StatesA) is such that X ..,_ 1',[a,Jv1 ••• anlvn] for all "1 in -+,
then X t= cp[a,Jv1 ••• a/vn] as well. The formula cp is said to be valid in A, abbreviated

I= A cp, if cp is a consequence in A of the null set of formulas. A sentence of S{A) is a

formula of S{A) that has no free variables. If cp is a sentence and "1 is a formula, then it is

easily verified that cp t= A 'f iff I= A cp -+ ti,.

The following result makes explicit the relationship between the preceding

definitions and the usual semantics of first/order logic.

Lemma 1.1 - Suppose that cp(v0 ••• vn> is a formula of S{A), containing no occurrences of

□. Suppose that A is an event/state algebra, that X € Hist(EventsA, StatesA), and that

a1, .•• , an is an interpretation for the variables v1, ••. , vn. Suppose X(0) = <q, e, r>. Then

X t=A cp(a,Jv1 ••• anlvn]

iff

t=A cp[a/v1 ... anlvn' q/Now, e/Occurs, ,/After],

where the latter is defined in the usual sense of first-order logic.

Proof - Straightforward. I

We recall here the definitions, given in Chapter 4, of the sentence Comp of S{A}.

Comp= lnit(Now) A □Trans{Now, Occurs, After)

Intuitively, X t= Comp iff Xis a computation for the embedded machine Mach A.

-140-

We conclude this section with the following definition: Suppose that A is an

event/state algebra, and Valid is a sentence of ~A). Then the state-transition

specification defined by the pair <A, Valid> is the state transition specification S =

<M, V>, where M = Mach A, and V = {XE Hist(EventsA, StatesA): X t= Comp A Valid}.

1.4 Description of Event/State Algebras

In this section, we consider the problem of describing event/state algebras in such

a way that a sound deductive system for ~A) can be obtained from a description of the

event/state algebra A. It should be noted that this problem has already received a good

deal of attention in the research literature under the heading of "Specification of

Abstract Data Types." In spite of the effort that has been expended on this problem,

there still does not seem to be an available description method that is convenient for the

purposes of this thesis. Hopefully this situation will be rectified in the near future.

The description technique we use here can be summarized as follows: We assume

fixed in advance a standard "primitive" or "core" algebra with a sufficiently expressive

first-order theory. Let C be the core algebra, and let T be its complete first-order theory,

expressed in the language t{C). An event/state algebra is described by writing a

collection of first-order axioms U in an extension L of L{C), that define an extension by

definition of T. Such a collection of axioms defines a unique extension of the core

algebra C to a model A of T U U.

We wish to obtain an A-sound deductive system for the language .t.(A) { = .t.).

Since we wish our description method to be powerful enough to describe algebras such

as <.K, 0, 1, +, •>, which cannot be completely axiomatized, it seems unreasonable to

expect the core theory T to be axiomatizable. If we fix in advance a deductive system

that axiomatizes a usefully large fragment of T, though, then by augmenting this

deductive system with the defining axioms u, we can hopefully obtain an axiomatization

of a usefully large fragment of the complete first-order theory of A. In this thesis, we

assume as the core theory some suitable variant of the theory of sets. Set theory is

highly expressive, and this makes it easy to describe desired event/state algebras.

However, if machine-assisted verification is a goal, then set theory might not be the most

appropriate: it seems quite possible that some less expressive core theory would be

more amenable to mechanization.

• 141 ·

We next consider the problem of deduction in ~A). Given an event/state algebra

description, which, as discussed above, we regard as denoting an extension by

definition of an underlying set theory, we wish to be able to deduce a large class of

A-valid formulas of ~{A). Suppose we could somehow transform an arbitrary sentence cp

of ~A) into a sentence cp' of t(A) such that I== A " ... cp '. In other words, suppose that

we could axiomatize the temporal operator □ and special symbols Now, Occurs, and

After, in terms of the set theoretic notions oft. Then the problem of showing t== A 9',

where cp E ~A), would be reduced to the problem of showing that TI== cp ' 1 where cp' E

t(A) is the transformed version of cp.

, It seems likely that the reduction described the preceding paragraph can actually

be carried out, since the idea seems essentially the same as that used in the proofs

[Harel78] of the "arithmetic completeness" of deductive systems for dynamic logics.

Assuming that this idea works for the temporal logics ~A), this would give us a way of

deducing all valid formulas of ~A), assuming we have available the complete theory of

some model of set theory. Although we can never obtain a complete axiomatization of

Mt theory, it seems likely that any of thA usual collections of axiom~ fnr ~t thAnry wn1_1lrl

provide us with a deductive system for ~A) that is powerful enough to be useful in

practice.

In practice, to write down explicitly the collection of defining axioms that describe

an event/state algebra A is cumbersome. It is convenient to introduce some notation

for common constructions. We do this with the understanding that descriptions

expressed in this notation stand for collections of first-order defining axioms. In

general, the description of an event/state algebra can be divided into two parts: one,

the definition of new sorts, and two, the definition of new function and relation symbols.

We define new sorts by a set of defining equations that define the new sorts in

terms of more primitive components. These equations take the form:

S = g(S1, ••• , Sn)'

where Sis the new sort being defined, S1' ... , Sn are the names of previously-defined

sorts, and s is an expression within which various set-theoretic constructions can

appear. These defining equations are analogous to the domain equations used in the

denotational definition of the semantics of a programming language [Gordon79];

however, to ensure that a set of equations can be regarded as denoting a collation of

defining axioms, we do not permit here the use of recursive equations. The

· 142 -

set-theoretic constructions (cartesian product, disjoint union, etc.) that appear on the

right-hand sides of the defining equations introduce implicitly various "built-in"

functions and relati9ns (projection, injection, etc.). The constructions we use, and their

associated built-in functions and relations are listed below.

Once the equations that define the new sorts have been given, we can use these

sorts and their built-in function and relations to define additional functions and

relations, in particular the initial state and state-transition relations for the embedded

machine. These additional functions and relations are defined by writing defining

axioms in the usual way.

1.4.1 Set-Theoretic Constructions Used In Defining Equations

1. (Enumeration) • The expression {a1, ••. , an} denotes the n-element set

whose elements are the constants a1, ... , an.

2. (Disjoint Union) - If A and B are sets, then the expression [tA: A + t8 : BJ

denotes the disjoint unlon D of the sets A and B. The tags tA and t8 are used to denote

the injection operations associated with the disjoint union. That Is, if a€ A and b € B,

then tA:a denotes the image of a, and t8:b the image of b, In D.

3. (Cartesian Product) - The expression [tA: A x t8: B] denotes the cartesian

product C of the sets A and B. Associated with an element c of C are its projections c(t A)

and c(t8) onto the sets A and B, respectively. Given a€ A and b EB, then the expression

<tA: a, t8: b> denotes the ordered pair with components a and b. If c EC and a EA, then

the notation c[a/tA] denotes the element c' of C which is identical to c except that its tA

component has the value a. To reduce clutter in expressions, tags will be omitted from

both the disjoint union and cartesian product constructions when this is unlikely to

cause confusion as to the intended meaning.

4. (Function Space) - If A and B are sets, then the notation [A - BJ denotes

the set of all functions with domain A and range B. We use the usual notation t(a) for the

application of f to the argument a, and the notation f[b/a] for the function that is

identical to f except that it has value b for argument a.

5. (Finite Powerset) - The notation Set[A] denotes the set of all finite subsets

of the set A. Ifs E Set[A] and a EA, then the expression aEs is true iff a is an element of

the sets. The expression Isl denotes the cardinality of the set s. We also use the usual

operations u, n, and - on Set[A]. The notation MSet[A] denotes the set of all finite

-143 •

multisets of elements of A. We use the same notation for operations on multisets as for

sets, however, the meaning appropriate for multisets is assumed in this case.

6. (Finite Sequences) - The notation Seq[A] denotes the set of all finite

sequences (i.e. strings) of elements of A. If u, v € Seq[A], then lul denotes the length of

u, uv and u•v denote the concatenation of u and v, and if n € Nat, then u(n) denotes the

n + 1st element of u.

1.4.2 Definition of the State-Transition Relation

Manipulation of the state-transition relation is sometimes more convenient if its

defining axioms are factored into a collection of pairs, each of which consists of a

precondition, and a next-state predicate. The precondition defines the class of events

to which the pair applies, and defines conditions on the current state that must be

satisfied before an event in that class can occur. The next-state predicate determines

the relation that must hold between the current state and the new state that results from

an occurrence of such an event.

Although the basic idea of precondition/next-state predicate pairs is fairly simple,

some subtleties arise in actual use, especially associated with the interpretation of free

variables common to the two predicates. This problem is similar to that which arises in

the interpretation of free variables in the pre- and post-conditions used to specify

sequential programs. We must therefore be somewhat more careful about the precise

form and meaning of the pairs. A pair takes the form: <Pre(q. e, K), Next(q, r, 1.)>, where

e is a variable of sort Events, q and rare variables of sort States, and i. is a vector of free

variables of sorts S, where S can be chosen arbitrarily for each pair. A finite collection

<Pre1, Next1>, ... , <Pren, Nextn>, where the l<th pair contains free variables 1. 11 of sorts

S 11 , determines the defining axiom for the state transition relation Trans according to the

following definition:

Trans(q, e, r) = V~ ,. 0(31. 11 €S 11)(Pre11(q, e, 1. 11)" Next11(q, ,, 1. 11)),

where Pre0(q, e, it Jae = >. and Nex1c,(q, r, l J E , = q. What the above definition

says is that a step <q, e, r> satisfies the state transition relation Trans iff there exists a

pair <Pre11 , Next,? (0 S k < n), and an interpretation of the free variables of that pair,

such that the precondition and next state predicate hold for that pair.

- 144-

A useful convention we will follow, which simplifies the maximality part of

correctness proofs, is to define the preconditions Pre(q, e, i) and next state predicate

Next(q, ,, !.) in each pair so that they satisfy the following relationship:

F (VqEStates, eEEvents, !. ES.)(Pre(q, e, !.) - (3rEStates)Next(q, r, i)).

That is, whenever the precondition is satisfied by a state q, an event e, and an

interpretation!. for the free variables, then there must be a new stater such that q, rand

!. satisfy the next state predicate.

1.4.3 Parameterized Descriptions

Quite often one wishes to write parameterized descriptions of event/state

algebras, where the parameters may be values, as In the case of the synchronizer

component module, where the number of initial tokens Is given as a parameter, or

perhaps sets or some other kind of object. In this thesis, we view a parameterized

event/state algebra description as a schema. for the construction of a family of related

descriptions. This way of treating parameters is satisfactory as long as there is no need

to perform rei:1soning abo•Jt parameters with infinitary structure. .A. more general

treatement of parameters requires extensions to the event/state algebra formalism, and

is outside the scope of this thesis.

1.5 Implementation Algebras

We have previously discussed the notion of an event/state algebra, which is a

formal structure that embeds the machine part of a state-transition specification. The

purpose of an event/state algebra is to provide semantics for the associated temporal

language. The temporal language, in turn, serves as a vehicle for the formal statement

of properties of histories, among which are the validity conditions for a specification.

Augmented with a sound deductive system, the temporal language can also serve to

express derivations of consequences of a specification.

Just as we can use the temporal language associated with a specification to

express and derive consequences of that specification, we would like to associate with

an implementation a language suitable for the expression and derivation of the

conditions required for the correctness of that implementation. However, taken

separately, none of the temporal languages associated with any of the modules involved

in an implementation suffices for this purpose. To solve this problem, we define below

-145-

the notion of an "implementation algebra," which is a kind of "composite" event/state

algebra whose associated temporal language is powerful enough to permit the

expression of corre~tness conditions.

Let us say that an algebra A embeds an algebra 8 if there exists a signature

morphism 1 , from the signature of 8 to the signature of A such that, for each sort S

(resp. function symbol f, relation symbol R) of 8, the interpretation of S (resp. f, R) in B is

the same as the interpretation of ,(S) (resp. ,(f), ,(R)) in A. If A embeds 8 1 then since we

might as well think of 8 as a subalgebra of A, we will omit mention of the signature

morphism, when no confusion can arise.

Suppose A
8
bs is an event/state algebra (corresponding to an abstract module to

be implemented), and le~ A = <A1, ... , An> be a finite-length vector of event/state

algebras (corresponding to the component modules).

Definition - An implementation algebra for Aabs and A is an event state algebra A with

the following properties:

(1) A e,nb~s A abs anu 1::acii A1, with i ~ ; ::; n. For each ~• i u, oper aiion S of

A
8

bs (resp. A;}, we write sabs (resp. S') for the corresponding sort or operation of A.

(2) A contains distinguished functions

a: Events - Events8t>s

81: Events - Events', for 1 < ; < n

.,, abs: States - States•bs

",: States - States', for 1 :S; < n,
such that: , A = <a, i > is an interconnection, called the embedded interconnection,

MachA is the composite machine for 'A' MachAabs and <MachA,>~ .. 1; and "abs and the",

are the canonical projections from the cartesian product States to the factors States8bs

and States1, respectively. I

1. A function, mapping each sort, function symbol, and relation symbol of the signature
of 8 to a corresponding sort, function, symbol, or relation symbol of the signature of A,
that preserves relevant structure such as the -arity of the symbols.

- 146-

Since an implementation algebra is a particular kind of event/state algebra, it has

an associated temporal language. Furthermore, the temporal language ~A) associated

with an implementation algebra A contains the temporal languages c:J{A
8
bs) and each

~A;) as sublanguages. This property is what makes an implementation algebra useful

for expressing correctness conditions.

The description of an implementation algebra is performed in the same way as for

ordinary ·event/state algebras. The meanings of many the symbols are fixed by the

definition of an implementation algebra, and in practice It is convenient to omit their

defining axioms. For example, the definition of the sort States is fixed by the

requirement that it be the cartesian product of the sorts Statesk:

States = ["abs: States•bs X ,r1: States1 X ... X wn: States"].

Other examples of symbols whose meanings are fixed . by the definition of an

implementation algebra are the initial state relation lnit, and state-transition relation

Trans for the composite machine. Definitions must always be explicitly given for the sort

Events, the abstraction map a and the components 8; of the decomposition map.

1.6 Proof Techniques

1.6.1 Formal Correctness Theorem

In this section we reduce the problem of proving the correctness of an

implementation to the problem of showing the validity of a set of verification conditions,

which are expressed in the temporal language associated with the implementation

algebra. There are three verification conditions in the technique introduced here. The

"invariance" verification condition expresses that the predicate Inv is an

implementation invariant. The "maximality" verification is a straightforward

formalization of the the maximality condition required by the Correctness Theorem,

except that the phrase "q is reachable for the composite machine" is replaced by

"/nv{q) holds." The "validity" verification condition is the formalization of the validity

condition required by the Correctness Theorem.

Recall that the validity condition required by the Correctness Theorem states that,

if X is a computation for the composite machine that projects, under the canonical

projections associated with the composite machine, to a valid computation for each

component machine, then X projects to a valid computation for the abstract machine as

- 147 -

well. This condition cannot be formalized directly as a sentence in the temporal

language of the implementation algebra, since that language has no constructs for

dealing directly with histories and functions on histories. However, the language does

contain the function symbols a, <B;>;Er "abs' and <w;>;f.t' which denote the abstraction

map, components of the decomposition map, and canonical projections on the state

set, respectively.

To formalize the validity verification condition, we need some way of taking the

sentences that express the conditions required for a computation of the abstract

machine or a component machine to be valid, and "lifting" these sentences to

sentences that express the corresponding properties on computations of the composite

machine. In Chapter 4 we defined a syntactic translation that accomplished this lifting

in the case of the synchronizer implementation. We now define this translation in

general, and state a lemma that summarizes its useful properties.

Suppose that A is an implementation algebra for Aabs and <A,>,Er Given a formula

cp of ~Aabs>• define fcp]abs to be the formula of ~A) obtained by replacing each

occurrence of the symbol Now by the term ,, abs(Now), each occurrence of After by the

term.,, abs(After), and each occurrence of Occurs by the term a(Occurs). Similarly, for

each i E /, given a formula cp of ~A,), define (cp); be the formula of ~A) obtained by

replacing each occurrence of Now by ";(Now), each occurrence of After by ,,,(After),

and each occurrence of Occurs by 81(Occurs).

The precise relationship between a formula and its translation is captured by

Lemma 1.2 below. An analogous result is stated in [Wolper82], where process of

"lifting" specifications of processes to obtain specifications of a system of processes is

catled "relativization."

Lemma 1.2 (Translation Lemma) - Suppose that A is an implementation algebra for A
8
bs

and <A;>,E.r Suppose that cp(v0 ••• v m> is a formula of '!T(Aabs) (resp. ~A;), for some i E /),

that a0, ••• , am is an interpretation of the variables v0, ... , v m• and that X is a history over

Events A and StatesA. Then

X l==A lff>Babs[aofv0 ••• amlvm] iff x<abs) ,-A cp[a0/v0 ... amlvm].
abs

(resp. X l==A (,pB;[aafv0 ... amlvm] iff x<I) t=A, .,[a0/v0 ... amlv,J.)

Proof - Straightforward induction on formulas, based on the precise syntax and

· 148 ·

semantics of ~A) given above. I

In the sequel, to make formulas in the language ~A) of an implementation algebra

A easier to read, we will often abbreviate the application of the functions • abs' and ,,, 11 to

a variable or constant by simply affixing an appropriate subscript to that variable or

constant. Thus, if q is a variable of sort States, then qabs and q11 abbreviate "abs(q) and

,,,
11
(q), respectively.

We can now give a formalized version of the Correctness Theorem. Roughly

speaking, this result says that to prove the correctness of an implementation defined by

an implementation algebra A, it suffices to perform the following three steps:

(1) Determine the implementation invariant /nv(q) expressed in the first-order

language L(A) and containing the single free variable q of sort States. Show the validity

of two sentences of L(A), which assert that Inv is inductive.

(2) Show the validity of a sentence of L(A) which implies that the maximality

condition holds. This sentence is obtained by formalizing the maximality condition of

the Correctness Theorem in the obvious way.

(3) Show the validity of a sentence of ~A) that asserts that the validity

condition holds. This sentence is formed from the sentences that describe the sets of

valid computations for the abstract and component machines, through the use of the

translation operation discussed above.

Lemma 1.2 (Formal Correctness Theorem) - Suppose that A is an implementation

algebra for Aabs and <A,>,Er Suppose that Valid
8

bs is a sentence of S{A
8

b
9
), and for each

i, Valid, is a sentence of S{A1). Let Sabs be the state-transition specification defined by

the pair <Aabs' Validabs>, and for each i, let S1 be the state-transition specification defined

by the pair <A1, Valid,). Suppose that lnv(q) is a formula of L(A), with one free variable q

of sort States, such that the verification conditions below hold. Then <,A, Sabs' S. > is

correct.

(Invariance):

(Basis)

(Induction)

(Maximality):

I= (VqEStates)(lnit(q) - lnv(q))

I= (Vq,rEStates, eEEvents)(Trans(q, e, r) - (lnv(q) - lnv(r)))

I= (VqEStates, eEEvents)((lnv(q) " A,€, Enabled1(q, e)) - Enabled8bs(q, e)).

(Validity):

where

-149-

Enabledabs(q, e) = (3rEStates)Trans8 b5(q
8
bs' a(e), r a>

Enabled;(q, e) = (3rEStates)Trans1(q1, a,(e), r).

Proof - The basis part of the invariance verification condition states that Inv is true for

all initial states, and the induction part of the invariance verification condition states that

Inv is preserved under state transitions, and hence the truth of these two conditions

implies that Inv is inductive.

From the definition of the predicates Enabledabs and Enabled,, we know that

Enabled
8
bs(q, e) is true of a state q and event e iff a(e) is enabled for Mach A in state

abs
qabs' and similarly, Enabled1(q, e) is true iff a,(e) is enabled for MachA, in state q,. The

maximality verification condition therefore says that whenever q is a state such that

lnv(q) holds, and a,(e) is enabled for Mach A. in state q1 for each; with 1 <; < n, then a(e)
. I

is enabled for MachA in state qabs. This implies the maximality condition required by
abs

the Correctnes.q Theorem.

By the Translation Lemma, we know that ffValid
8
tJabs is satisfied by a computation

X of MachA iff Validabs is satisfied by the computation x<abs) of MachA . Similarly, for
abs

each; we know that HValid1B, is satisfied by a computation X of Mach A iff Valid, is satisfied

by the computation x<I) of Mach A • Since a history X satisfies Comp iff X is a computation
I

of Mach A, we see that the validity verification condition is the formal statement of the

validity condition required by the Correctness Theorem.

Since the truth of the verification conditions above implies that the hypotheses of

the Correctness Theorem are satisfied, an application of the Correctness Theorem

shows the correctness of the implementation <JA, s., S. >. I

1.7 Rely-/Guarantee-Condition Proof Techniques

In this section we give the formalized versions of the rely-/guarantee-condition

proof techniques stated in Chapter 3. The first result formalizes Lemma 3. 11.

Corollary 1.4 (Formal Rely/Guarantee Technique I) - Suppose that A is an

implementation algebra for Aabs and <A,>;E.r Suppose that Validabs = Relyabs - Guarabs

· 150 -

is a sentence of 9{A b) and that Valid. = Rely1 - Guar. for each i E I is a sentence of as , ,

9{A;). Suppose that

(1) Comp I= (,";E, ffGuar1Il;) - ffGuarabsBabs' and

(2) There exists a well-founded partial order < on I such that for all ; € I,

Comp I= llRelyabsDabs /\ (/\;<; ffGuariDi) - (Rely,);.

Then Comp I= (/\E, nvalid,D,) - nvalidabsDabs'

Proof - Straightforward from Lemma 3.11. I

The next result formalizes Lemma 3.12.

Corollary 1.5 (Formal Rely/Guarantee Technique II) - Suppose that A is an

implementation algebra for Aab& and <A;>K,. Suppose that Validabs = Relyabs - Guarabs

is a sentence of ':J(Aabs) and that Valid, = Rely1 - Guar, for each ; EI is a sentence of

~A,). Suppose that for each I,;€ I U {abs}, we have determined a sentence RG1j of

~A), such that properties (1)-(3) below hold.

(1)(a) Comp I= (Rely absDabs - A;f.1 RGabsJ

(b) Comp I= /\1f.1 RG,,abs - ff Guar ai.lam

(2){a) Comp I= RGabsj /\ A,E, + {abs} RG1J - fRely;Jr for all j € /

(b) Comp I== I Guar;J1 - RG1,abs /\ A1f., + {abs} ~G,1, for all i € /

(3) (Acyclicity) - Whenever {<i1, 12>, <i2, i;>, ... , <in, in+?} is a cycle of I, then

Comp 1== v::\ RG
111

J
11

+
1

•

Then Comp I= (/\If./ ff Valid,D,) - IValidatJabs'

Proof - Straightforward from Lemma 3.12. I

1.8 1/0-Consistency Proof Technique

The result below formalizes the technique for proving 1/0-consistency expressed

by Corollary 5.8.

Corollary 1.6 - Suppose that S is the state-transition specification of 1/0-intertace E

defined by the pair <A, Valid>, where the sets of inputs and outputs of E are defined by

the unary relations In and Out of type Events in A. Suppose that the event/state algebra

A includes among its operations the finite collection of relations <Prod;>,f.,• where Prod,

is of type States X Events x States. If the following sentences of «:J(A) are valid, then S is

.
· 151 ·

92-consistent.

(1) t= A,E, (Vq,rEStates, eEEvents)(Prod,(q, e, r) - Trans(q, e, r))

(2) t= (VqEStates, eEEvents)(ln(e) - (3rEStates)Trans(q, e, r))

(3) t= {Vq,rEStates, eEEvents)(Trans(q, e, r) A {OUt(e) v e = A) -

v,E, Prod,(q, e, ,))

(4). Comp t= (A,E, Fair,) - Valid,

where

Fair,

Enabled1(q)

= O◊Enabled1{Now) - D◊Prod1(Now, Occurs, After).

= (3rEStates, eEEvents) Prod1(q, e, r)

Proof - Straightforward from Corollary 5.8. Hypothesis (1) says that the Prod, are

subsets of Trans. Hypotheses (2) states that Mach A is input-cooperative. Hypothesis (3)

states that the Prod11 cover the set of nonnulf output or A-steps in Trans. Hypothesis (4)

formalizes the requirement that every fair computation of Mach A is valid. I

-152 •

Appendix II - Additional Examples

In this appendix the specification and- verification techniques introduced in the

thesis will be further illustrated through two additional examples. The first example

concerns the specification and implementation of a resource manager module whose

function is to allocate resources in response to requests from user processes. The

resource· manager is implemented in a highly distributed fashion by a tree-structured

system of local resource manager modules that communicate with each other to

determine where resources should be sent. In the second example, a reliable message

transmission service is specified, and an implementation by an unreliable message

transmission substrate is given. Reliability is achieved through the use of a

fault-tolerant protocol: the alternating bit protocol [Bartlett69]. The alternating bit

protocol example has been examined by several other researchers [Chen82,

Hailpern80, Lamport83, Schwartz81], and has become somewhat of a standard for

evaluating specification and verification techniques for concurrent systems.

The major purpose of the additional examples given here is to lend support to the

following assertion: Essentially the same techniques as were used to obtain

specifications and a correctness proof for the synchronizer implementation, can be

applied in a reasonably systematic way to achieve similar results on other nontrivial

examples. Thus, the ideas of state-transition specification, rely- and

guarantee-conditions, and the proof technique embodied In the Correctness Theorem,

are not ad hoc concepts useful for a single example, but serve as generally applicable

guiding principles.

A second point illustrated by the examples of this chapter is that more elegant

specifications can result if one first imagines the structure of a proof of correctness in

which the specifications will be used, and then derives the module specifications in an

attempt to satisfy the requirements imposed by the proof structure. The difference

between specifications obtained via this approach and those resulting from the "specify

first, prove later" approach can be seen by comparing the validity conditions given here

for the send and receive protocol modules with the liveness properties given by Lamport

[Lamport83J for these modules. The specifications and proof given below are to a large

extent independent of the precise assumptions on the behavior of the unreliable

transmission medium. Lamport's presentation does not make this independence quite

- 153 ·

so explicit.

The observation that a proof of correctness can be used to derive component

module specifications suggests the following general method for designing a correct

implementation of a given abstract module:

(1) Decide on the communication structure of the system of component

modules (e.g. tree or ring structure).

(2) For each pair of component modules that can possibly communicate,

express informally the properties that each relies on/guarantees to the other to provide.

These rely- and guarantee-conditions will serve to "cut" the interdependence of the

component modules in a fashion similar to the way in which a loop invariant cuts the

dependence of one iteration on preceding and succeeding iterations.

(3) Select event and state sets for the component modules in such a way that

the temporal language of the resulting implementation algebra is powerful enough to

formally express the informally stated rely- and guarantee-conditions.

(4) "Localize" the rely- and guarantee-conditions so that they are expressed in

the temporAI language of each component module event/state AIQAhrA. Th~ rf2.ly- and

guarantee-conditions of a resulting component module specification will be the

conjunction of the localized rely- and guarantee-conditions, respectively.

The examples in this appendix will be presented using the notation of Appendix I.

11.9 A Distributed Resource Management Algorithm

In this section, we consider the specification and implementation of a resource

manager module RM, whose function Is to allocate resources to a set of clients In

response to requests from those clients. We will see how the resource manager can be

implemented by a tree-structured network of local resource manager (LRM) modules,

each of which communicates with a single client. Initially each local resource manager

starts out with some subset of the resources. As client requests arrive and are filled at a

particular site, though, the locally available set of resources might be exhausted. An

LRM that is deficient in resources must then attempt to obtain additional resources from

other sites. The Interesting part of the implementation is concerned with how the local

resource managers communicate with each other to determine where the resources

should be sent. The strategy by which this is accomplished is essentially the

'"DYNAMIC-MATCH" strategy of [Fischer83], although this stategy is explained here in a

-154 ·

slightly different and hopefully simpler way than in that paper.

The resource manager example is presented here as a nontrivial exercise in the

use of rely-/guaran"tee-conditions and an associated correctness argument as a basis

for the derivation of specifications for the local resource manager modules. The use of

rely-/guarantee-conditions as a guiding principle permits us to derive, in a reasonably

systematic fashion, essentially the same specification for the local resource manager

module as the node algorithm presented in [Fischer83]. The primary difference

between the specification derived here and the algorithm of [Fischer83] is that we are

not concerned here with the way in which an LRM resolves choices as to the pattern in

which excess requests are forwarded to its neighbors. In (Fischer83], it is assumed that

choices are resolved according to a specific probability distribution, and a large portion

of the paper is concerned with probabilistic analysis of the consequences of this

assumption. Here we concern ourselves only with showing that every request from a

client is eventually satisfied, if possible. The argument provided in [Fischer83] of this

basic correctness property is more of a proof sketch than a proof, and is somewhat

unsatisfar.tory for this reason.

11.9.1 Specification of the Resource Manager Module

The function of the resource manager module RM can be described as follows: Let

Clients be a set that_contains the names of the clients with which the resource manager

communicates, and let Resources be a set that contains the names of the resources to

be managed. A client c requests a resource from the resource manager by issuing a

request event request:c. The resource manager allocates a resource r to client c by

issuing a reply event reply:<c, r>. In this example, a resource that has been allocated to

a client is never returned to the resource manager.

The state of the resource manager can be thought of as consisting of a pair

<pending, free>, where pending is a multiset of clients that represents the collection of

unfilled requests and free is the set of available resources. The pending component is a

multiset since we permit more than one request from a single client to be outstanding at

one time. Receipt of a request from client c by the resource manager causes an

instance of c to be added to the pending multiset. The event reply:<c, r> can occur only

if the client c is in the pending multiset and the resource r is in the free set. Occurrence

of this event causes an instance of c to be removed from the pending set and the

-155 ·

resource r to be removed from the free set. It is clear from this description that no

resource is allocated more than once and no more than one resource is allocated in

response to each request. In addition, we would like the resource manager to respond

eventually to every request, as long as the set of free resources has not been exhausted.

To derive a more precise specification from the preceding informal description, we

begin by defining the resource manager event/state algebra. Our description has the

following·as parameters:

Clients: a finite set of clients

Resources: a finite set of resources

The interface of the resource manager is defined as follows:

EventsRM = {X} + [request: Clients + reply: (Clients x Resources)].

lnRM = {X} + (request: Clients]

OutRM = {X} + [reply: (Clients x Resources)]

The state set for the resource manager is defined by:

StatesRM = [free: Set[Resources] x pending: MSet[Clients]].

In an initial state, the multiset of pending requests is empty, and all resources are

free.

lnitRM(q) = q(free) = Resources /\ q(pending) = 0.

The state-transition relation TransRM is defined by precondition/next-state

predicate pairs as follows:

A request event for client c can occur at any time, and causes c to be added to the

pending set.

(request) Prerequest(q, e, c)

Nextrequest(q, r, c)

a e = request:c

= r = q[(q(pending)U{c})/pending]

A reply event with resource res for client c can occur only if res is in the free set and c is

in the pending multiset. It causes res to be removed from the free set and an instance of

c to be removed from the pending multiset.

(reply} Prerep1y(q, e, c, res} a e = reply:<c, res>" c € q(pending) /\

Nextrep1yCq, ,, c, res)

res E q(free}

= r == q[(q(pending)-{c})/pending,

(q(free}-{res))/free]

- 156-

The validity conditions for the resource manager module can be stated in

rely-/guarantee-condition form as follows: ValidRM = RetyRM - GuarRM, where

RelyRM = □(INow(free)I ~ fNow(pending)I)

GuarRM = D(VcEClients)(c E Now(pending) -

◊(3rEResources}(Occurs = reply:<c, r>)).

Thus, if the number of outstanding requests never exceeds the number of available

resources, then the resource manager module guarantees that every request will

eventually receive a reply.

11.9.2 Implementation of the Resource Manager

Our plan is to implement the resource manager module by a tree-structured

network of local resource manager modules as depicted in Figure 3. Each local

resource manager is responsible for filling requests originating from a single client. If

the set of resources locally available is exhausted, the the LRM must try to obtain

additional resources from elsewhere in the system. If an LRM has a surplus of

r~sourlje!9-, then it must be willing to give ·out resources to other LRM's ·1,Nhose resources

have already been allocated.

To guide us in our derivation of the components that will be needed as part of an
I

LRM state, let us first obtain a rough statement of the validity conditions that an LRM is

to satisfy. We organize these conditions into properties the LRM relies on its

environment to provide, and properties that an LAM guarantees to its environment in

return. An LAM relies on:

children.

(1) No special properties on the part of the client.

(2) The eventual elimination of resource debts owed to the LRM by its parent.

(3) The eventual elimination of resource debts owed to the LRM by each of its

In return for these properties, an LAM guarantees that:

(1) Every client request eventually receives a reply.

(2) Resource debts owed by the LAM to its parent will eventually be eliminated.

(3) Resource debts owed by the LRM to each of its children will eventually be

eliminated.

-157 •

Fig. 3. Resource Manager Implementation

Qlent
c,

~

L.
C11

Qlent

C12

Qlent
C2

Resource Manager Module

Qlent
Ck

To obtain formal statements Of the preceding conditions, we must first obtain a
precise definition of the notion of an LRM having a "resource debt" to one of its

neighbors, and we must describe the mechanics of how such debts are incurred and

eliminated. The introduction of the various components of the LAM state below can be

viewed as providing us with enough expressive power In the language '{A..,.., of the

LRM event/state algebra, to permit the formalization of the undefined quantities in the

-158-

above statement of the LAM validity conditions.

A significant feature of the validity conditions stated above is the complementary

form of the rely- and guarantee-conditions. The conditions above have been selected in

such a way that ultimately, in the resource manager implementation, the conditions

relied upon by an LAM ; from its neighboring LAM j will be precisely the conditions that

LAM j guarantees to provide to LAM i. This symmetric statement of the validity

conditions will be seen below to result in a rather simple and pleasant proof of

correctness.

With the above validity conditions in mind, we now attempt to identify the various

events of the LAM interface and the components of the LAM state. We can identify

immediately several kinds of events that must be in the interface of the LAM.

Communication with the client requires the existence of a request event request, which

represents the receipt of a request from the client, and a reply event of the form reply:,,

in which resource r is allocated to the client in response to a prior request.

Furthermore, the interface of an LAM must contain events corresponding to the transfer

of resources between an LAM and its neighbors in the system. Let Resources be the set

of names of all the resources that the LAM might be called upon to handle. For each,€

Resources, the LAM interface includes the event parent_jn:r, which represents the

receipt of resource r from an LRM's parent in the tree, and parent_out:r, which

represents the delivery of resource r by an LAM to Its parent. Let Children be a set of

names used to index the children of the LAM. For each c € Children and r E Resources

the interface of the LAM includes the event child_out:<c, r>, which represents the

transfer of resource r from the LAM to child c, and the event child_jn:<c, r>, which

represents the receipt of resource r by the LAM from child c.

To describe the conditions under which transmission of resources between LRM's

and between a client and an LAM is permitted, we include in the state of each LAM a set

free, which represents the resources locally available at the LAM, and a nonnegative

Integer pending, which counts the number of unfilled requests that originated at the

client associated with the LAM. A request event causes pending to be incremented. A

reply:r event can occur only if pending is nonzero and r € tree, and causes pending to

be decremented and r to be removed from free. The resource transmission events

parent_jn:r and chi/d_jn:r cause r to be added to the set free. The events parent_out:r

and child_out:<c, r> can occur only if r E free, and cause r to be removed from free.

- 159-

We have thus settled the issue of how and when requests and replies are

transmitted betweeen an LRM and its client, and how resources are shuttled between

LRM's. However, we have not yet determined how and when an LAM should request

resources from one of its neighbors, or when an LAM should issue resources to a

neighboring LRM. To describe the conditions governing the transmission of resources

between LRM's, we introduce a few more components into the state of an LRM. The

state of each LAM contains a component p_t,alance, and a component c_t,alance:c for

each child c. The component p_t,alance represents the instantaneous "balance of

payments" between the LRM and its parent, and c..balance:c represents a similar

balance of payments between the LRM and child c. A positive balance represents a

number of resources owed to the LAM by its neighbor, and a negative balance

represents a number of resources owed by the LAM to its neighbor. These balances will

be maintained so that the following relation is invariant: If pis an LAM with child c, then

the c..balance:c component of the state of LAM p is always the negative of the

p_balance component of the state of LAM c. This reflects the idea that resources owed

by p to c can be viewed as a debit from the point of view of p, or as a credit from the

point of view of c. These balances will be updated appropriately as requests are

forwarded, and as resources travel between LRM's in payment of debts. An LRM will

transmit resources to its neighbor in an attempt to reduce its indebtedness.

To represent the forwarding of requests between LAM's we introduce the

following additional kinds of events into the LAM interface: A forward_in event

represents the receipt by the LRM of a forwarded request from its parent. Similarly, a

forward_out:c event corresponds to the forwarding of a request by the LRM to child c.

The event reject_out represents the forwarding of a request by the LRM to its parent,

and the event rejectJn:c represents the receipt of a forwarded request by the LAM from

child c. We use the terminology reject for the forwarding of requests upward in the tree

to emphasize the asymmetry inherent in the parent/child relationship.

In determining the conditions under which forwarding and rejection events should

be permitted to occur, we must attempt to avoid the following two bad situations: (1)

We must avoid the deadlock situation in which two LAM's are stubbornly requesting

resources from each other, while each of their resource requirements could be fulfilled

by resources from elsewhere in the system. (2) We must avoid the "livelock" situation

in which a request is continually shuttled back and forth in the system without ever

-160-

reaching an LRM with available resources. Our proposal for resolving these difficulties

is to have each LRM keep estimates of the number of surplus resources available in the

subtree headed by_ each of its children. These estimates are to be optimistic in the

sense that the estimate held by an LRM for child c is at all times an upper bound on the

number of surplus resources actually available in the subtree headed by c. Situation (1)

is avoided by having an LRM request resources from its parent only in the case that it

has no resources locally available and there are no surplus resources left in any of the

subtrees headed by its children. Situation (2) is avoided by requiring that an LRM only

send a request to a child c if it estimates that there is a surplus of resources in the

subtree headed by c. The effect of these two requirements is to ensure that the

following invariant holds: If an LRM p owes resources to its child LRM c, then the

number of resources owed by p to c is a lower bound on the instantaneous amount by

which pending requests exceed available resources in the subtree headed by c. Thus p

never owes more resources to c than are actually required by e's subtree.

The balances of payments between an LAM and each of its neighbors can be

~ombinP.d with the numMr of pP.nding re<111e~t~ And locally avAilAhle resnurces to

produce a quantity PBalance, which represents the projected net number of resources

(positive = surplus, negative = deficit) that would be left at the LRM after all debts are

paid. The quantity PBa/ance, defined formally below, is informally the number of free

resources, plus the net number of resources owed to the LRM by its neighbors, minus

the number of pending requests. The forwarding and rejection of requests by an LRM

to its neighbors is done with the goal of "getting in the black;" that is, reducing the

projected deficit.

The remaining components we need as part of the LAM state are the following:

For each child c, the state of an LRM contains a component c_estim{c) which is an

integer that represents the optimistic estimate made by the LRM, of the projected

number of resources that would be available in the subtree headed by child c, once all

debts have been paid. If c is an LRM whose parent is p, then the state of c also contains

a component p_estim, which is a local copy of the c_estim(c) component of the state of

LRM p. Thus, not only does an LRM keep estimates of the projected number of

resources remaining in the subtrees headed by each of its children, but it also keeps

track of what its parent must currently estimate as the projected number of resources

remaining in the subtree headed by the LRM. We permit p_estim and c_estim{c) to take

· 161 ·

on arbitrary integer values, although it can be shown that if an LAM is used only in a

system of other LAM's in the way we envision, then p_estim and c_estim(c) are

invariantly nonnegative.

The important points of the preceding discussion of the LAM events and states

can be summarized as follows:

(1) The LAM interface contains events corresponding to requests from and

replies to the client, transferring of resources from/to its neighbors, and forwarding and

rejection of requests.

(2) An LAM state contains a set free of locally available resources and a count

pending of outstanding requests from the client, to ensure that every request receives a

response and that no resource is allocated more than once.
(3) An LAM state contains a record of its "balance of payments" with each of

its neighbors. Transfer of resources and requests between LAM's is performed to

reduce indebtedness. If p and c are neighboring LAM's, then the balance kept by p tor

c is the negative of the balance kept by c for p.

(4) An LAM statP. cnntainR an 1:tStimate of th'3 projected net number of

r~sources that would remain, once all_debts have been paid, in the subtrees headed by

each of its children. This information is used to control the forwarding and rejection of

requests. If p is the parent of c, then c maintains a local copy of p's estimate of the

projected number of resources remaining in the subtree headed by c.

11.9.3 Local Resource Manager Specification

From the informal discussion of the preceding section, we can derive a precise

local resource manager specification. In the informal discussion above, we made no

distinction between the root LAM and the other LAM's in the system. Although similar in

many respects, the precise specifications of these two kinds of LAM's will be slightly

different since a root LAM has no parent. To avoid redundancy, the specifications of

the two kinds of LAM will be presented simultaneously, with differences pointed out

along the way.

The parameters of the LAM are the following:

Children: a finite set of children

Resources: a finite set of resources

I Resources: the subset of Resources held initially by the LAM

• 162 •

{estimc: c E Children}: initial estimates of the number

of resources in the subtrees headed by

each of the children.

The set Children is a set of names used to identify the children of the LAM. The set

Resources is a set of names for all of the resources that the LAM might have to deal

with. This set includes the names of all resources initial!~ held by the LAM, as well as all

resources that might be transmitted to the LAM at some later instant by its neighbors.

The set !Resources is a subset of Resources that represents the set of resources initially

available at the LAM. For each c E Children, the parameter estimc is a nonnegative

number which the LAM uses as its initial estimate of the projected number of resources

remaining in the subtree headed by child c. Since there will be no debts in an initial

state, correct use of an LAM requires that each estimc equal the actual number of

resources initially available in the subtree headed by child c.

The interface of a node LAM is defined as follows:

where

and

EventsNLRM = {A} + [CEvent + SEvent]

lnNLkM = {A} + [CIEvent + SIEvent]

OutNRLM = {A} + [COEvent + SOEvent],

CEvent = CIEvent + COEvent

SEvent = SIEvent + SOEvent

CIEvent = (request}

COEvent = [reply: Resource]

SIEvent = [reject_in:

forward_in

parenLln:

child_in:

Children +

+

Resource+

[Children x Resource]]

SOEvent = [reject_out: +

forward_out: Children +

parenLout: Resource +

child_out: [Children x Resource]]

-163-

The events listed above have the following intuitive meanings: Client events are

those in which the LAM communicates with the client, whereas system events are those

in which the LAM ~ommunicates with other LAM's. The client events are classified into

request events, in which a request is received from the client, and reply events, in which

a resource is sent to the client in response to a prior request. The system events are

classified into: forwarding events (forward_out, forward_in), in which a request is

forwarded from' an LAM to one of its children; rejection events (rejecLout, rejecLin), in

which a request is rejected from an LAM to its parent; and resource transfer events

(parenLout, parenLin, child_out, child_in), in which a resource is transferred from an

LAM to one of its neighbors. The "_in" and "_out" suffixes denote the direction in

which resources or requests flow; thus, forward_out:c is the event in which a request is

forwarded from an LAM to child c, whereas forward_in is the event in which a forwarded

request is received by an LAM from its parent.

The interface EventsRLRM of a root LAM is obtained by omitting the forward_in,

parenLout, rejecLout, and parenLin events.

The state set for both a node and a root LAM is defined as follows:

StatesLRM = [tree: Set[Aesource],

pending: Nat,

p_balance: Int,

c_balance: [Children - Int],

p_estim: Int,

c_estim: [Children - Int]].

The set free is the set of resources currently available at the LAM. The number pending

is a counter that records the number of outstanding requests. The quantity p..balance

records the net number of resources that the LAM either is promised by its parent, or

promises to send to its parent. If p..balance > o. then the LAM is promised resources by

its parent; if p..balance < 0, then the LAM promises to send resources to its parent. The

mapping c..balance records similar information for each of the children. The mapping

c_estim records the estimate of the projected number of remaining resources in the

subtree headed by each child. The quantity p_estim is the LAM's local copy of its

parent's estimate for the subtree headed by the LAM, as discussed above.

-164 ·

The initial state relation for the LRM is defined below. Recall that we view a finite

multiset over a given universe as a function that assigns a finite multiplicity to each

element of the universe. Lambda-notation has been used below as a shorthand for

denoting particular multisets.

lnifRM(q) = q = <free:

pending:

p_balance:

c_balance:

p_estim:

c_estim:

I Resources,

0,

0,

(>.cEChildren)(0)

IIResourcesl + l:c€Children estimc,

(>.cEChildren)(estimc)>

Thus, in the initial state, all resources in !Resources are free, no requests are pending,

no resources are promised by/promised to any of the neighbors, and the estimated

surplus of resources in the subtree headed by the LRM is the sum of the number of free

resources initially at the LRM, plus the sum of all the initial estimates for the subtrees

headed by each of the children of the LRM.

We can now give the formal dP.finition of the qu~ntity PBalance discussed above.

PBalance(q} = lq(free}I - q(pending} + q(p_balance) +

l:c€Chlldren q(c_balance)(c).

As discussed above, given a state q, PBalance(q) represents the net number of

resources (positive = surplus, negative = deficit) that would be left at the LRM after all

debts are paid.

The state-transition relation TransNLRM for a node LRM is defined as follows:

An incoming request from a client gets recorded as pending.

(request} Prerequest(q, e)

Nextrequest(q, r)

a e = request

= r = q[(q(pending) + 1)/pending]

A resource res can be sent to the client if there is at least one pending request, and res

Is in the set of free resources. The resource res is removed from the set of free

resources, and the number of pending requests is decremented.

(reply) Prerep1y(q, e, res) E e = reply:res " res € q(free) A

q(per.ding) > 0

· 165 ·

Next,ep1yCq, ,, res) = r = q[(q(free)-{res))/free,

(q(pending)-1)/pending]

Receipt of a forwarded request from the parent means that the LAM promises to send

one more resource to the parent, and consequently, that the LAM estimates a surplus of

one fewer in its own subtree.

(forward_in) Pre,orward_in(q, e)

Next,o,ward in(q, r)

= e = forward_in

= r = q((q(p_balance)-1)/p_balance,

(q(p_estim)-1)/p_estim]

A request can be forwarded to child c only if the LAM currently is "in the red" and

estimates a surplus of resources in the subtree headed by child c. As a result of

forwarding the request, the number of resources promised by child c is incremented,

and the estimated number of resources in the subtree headed by c must be

decremented.

(forward_out) Pre,orward out(q, e, c) = e = forward_out:c A

PBalance(q) < O A q(c_estim)(c) > 0

Next,orward_out(q, r, c) = r = q[(q(c_balance)(c) + 1)/c_balance(c),

(q(c_estim)(c)-1)/c_estim(c)]

Receipt of a rejected request from child c means that child c promises to send one

fewer resource (or requires one more resource) than it did before, and thus the quantity

c...ba/ance(c) must be decremented. In addition, the fact that a request has been

rejected by c means that the resources in the subtree headed by c have been

exhausted, and thus c_estim(c) should be set to zero.

(rejecLin) Pre,eiecLin(q, e, c)

Next,eiecUn(q, r, c)

= e = rejecLin:c

= r = q[(q(c_balance)(c)-1)/c_balance(c),

0/c_estim(c)]

A request can be rejected to the parent only if the LAM is "in the red" and there is no

projected surplus in any of the subtrees headed by children of the LRM. By rejecting a

request, the LAM promises one fewer resource to its parent, and hence reduces its

projected deficit. In addition, p_estim must be zeroed to maintain the invariant equality

- 166-

between p_estim and the corresponding c_estlm component of the parent LAM.

(reject_out) Prereiect_out(q, e) = e = reject_out A PBalance(q) < 0 A

(VcEChildren)(q(c_estim)(c) < 0)

Nextreject_out(q, r) = r = q[(q(p_balance) + 1)/p_balance, 0/p_estim]

The various resource transfer events occur when an LAM owes a debt and has an

available ·resource. Their effect is to cancel out some of the debt.

(parent_in) PreparenUn(q, e, res) = e = parenLln:res

NextparenUn(q, r, res)= r = q[(q(free)U{res})/free,

(q(p_balance)-1)/p_balance]

(parent_out) Preparent_out(q, e, res) a e = parent_out:res) A res E q(free)

A q(p_balance) < 0

(child_in)

Nextparent_out(q, r, res)

Prechild_in(q, e, c, res)

Nextchild_in(q, r, c, res)

= r = q[(q(free)-{res})/free,

(q(p_balance) + 1)/p_balance]

= e = child_in:<c, res>

= r = q((q(free)U{res})/free,

(q(c_balance)(c)-1)/c_balance(c)]

(child_out) Prechild_ou1(q, e, c, res) = e = child_out:<c, res> A

Nextchitd_ou,(q, r, c, res)

res E q(free) A q(c_balance)(c) < O

a r = q[(q(free)-{res})/free,

(q(c_balance)(c) + 1)/c_balance(c)]

The definition of the state-transition relation TransRLRM for a root LAM is obtained

by deleting the pairs above for the forwardJn, parent_out, and parentJn events, and

replacing the pair for reject_out events by the following pair for A-events:

(A) PreA(q, e) = e = A A PBalance(q) < 0 A

(VcEChildren)(q(c_estim)(c) :S 0)

Next A (q. r) = r = q[(q(p_balance) + 1)/p_balance, 0/p_estim]

The A-transitions permitted by this pair are necessary for the consistency of the root

LAM specification: if the reject_out pair were simply deleted as were the torwardJn,

- 167 -

parent_out, and parent_in pairs, then there would be no way for a root LRM to change

the value of p_balance and the rely-condition Rely_externa1RLRM defined below would be

vacuous.

To complete the specification of the local resource manager, it remains to define

the validity conditions. As outlined in the informal discussion above, the validity

conditions for the node and root LRM's can be expressed in rely-/guarantee-condition

form as follows:

ValidNLRM = RelyNLRM _ GuarNLRM

ValidRLRM = RelyRLRM - GuarRLRM.

As was done in the informal discussion, it is convenient to factor the rely- and

guarantee-conditions into what the LRM relies on each of its neighbors and the external

environment to provide, and what the LRM guarantees in turn to each of its neighbors

and the external environment.

The rely- and guarantee-conditions for the node LRM are defined by

RAlyNLRM

GuarNLRM

= RP.ly_pArantNLRM "(VcEChifdren)Rely_('hil,jLRM{~)

= Guar _clienfRM " Guar _paren~RM "

(Ve EChildren)Guar _childLRM(c).

The rely- and guarantee-conditions for the root LAM are defined by

AelyRLRM = Aely_externa1RLRM" (VcEChildren)Aely_childLRM(c)

GuarRLRM = Guar_clienfRM" (VcEChildren)Guar_childLRM(c).

A node LAM relies on the eventual payment of debts owed to the LAM by its

parent.

Aely_parentNLRM = D(D(Now(p_balance) > 0) -

◊(3rEAesources)(Occura = parenLin:r))

Although a root LAM has no parent, the intuitive significance of a positive value for

p..balance in the case of a root LAM is that the total number of requests in the entire tree

exceeds the total number of available resources. Since we cannot expect a system of

LAM's to eventually satisfy all requests under such circumstances, a root LAM relies on

the external environment to ensure that p..balance is invariantly nonpositive.

Aely_externa1RLRM = □(Now(p_balance) < 0)

Both kinds of LAM rely on each of their children to eventually eliminate debts owed to

the LAM, either by the transmission of resources, or by the rejection of requests.

- 168-

Aely_childLRM(c) = □(D(Now(c_balance)(c) > 0) -

◊((3rEAesources)(Occurs = child_in:<c, ,>) v

(Occurs = reject_in:c)))

A node or root LAM guarantees to its client that pending requests will eventually

receive a reply.

Guar_clientLRM = D(Now(pending) > o
◊(3rEAesource)(Occurs = reply:,))

A node LRM guarantees eventually to eliminate debts owed to its parent, either by

actual transmission of resources, or by rejecting requests.

Guar _parentNLRM = □(D(Now(p_balance) < 0) -

◊((3rEAesources)(Occurs = parent_out:r) v

(Occurs = reject_out)))

Both kinds of LAM guarantee eventually to pay debts owed to their children.

Guar_childLRM(c) = □(D(Now(c_balance)(c) < 0) -

◊(3r€Aesources)(Occurs = child_out:<c, r>))

In devising the validity conditions for the local resource manager module, it was

necessary to choose between two possible forms in which to state the rely- and

guarantee-conditions. Since we are often faced with1 such choices in practice, it is

useful to examine the motivation for the particular choice made here. As an example,

consider the definition of Guar_parentNLRM, which was stated above in the form

(1) Guar _parentNLRM = □(D(Now(p_balance) < 0) -

◊((3r€Resources)(Occurs = parent_out:r) v

(Occurs = reject_out)))

This guarantee-condition states that either .a parent_out or a reject_out will occur if

there is the condition p_balance < 0 holds persistently (i.e. forever after some point).

We might also have chosen the apparently stronger alternative form

(2) Guar _parentNLRM = □(Now(p_balance) < 0 -

◊((3r€Aesources)(Occurs = parent_out:r) v

(Occurs = reject_out))).

which requires the occurence of a parent_out or reject_out event in the case that the

condition p...balance < O occurs at a single instant. In fact, we claim these two

sentences are equivalent in the context of the LAM specification. More precisely, we

claim CompLRM P: (1) ++ (2). Clearly (2) implies (1) by temporal reasoning alone. To see

-169-

that CompLRM I= -,(2) implies -,(1), suppose CompLRM and -,(2). Then

(*) ◊(Now(p_balance) < 0 A D((VrEResources)(Occurs * parenLout:r) A

(Occurs* rejecLout))).

That is, eventually there is a point at which p..balance < 0 holds, but after which no

parent_out or reject_out events ever occur. Inspection of the state-transition relation for

the LRM shows that the only events that can cause p..balance to be increased are

parent_out and reject_out events. This means that, if no parent_out or reject_out events

occur, then p..balance < 0, once established, holds forever. Applying this result to (*)

shows that

(* *) ◊(D(Now(p_balance) < 0) /\

□((VrEResources)(Occurs * parent_out:r)"

(Occurs~ reject_out))).

But{**) is precisely the negation of (1) above, and thus {1) and (2) are equivalent.

In this example, where form (1) and form (2) are equivalent, we chose form {1) over

form (2) because form (1) is more convenient for the proof of correctness. Once we

haui0 noclrlr.orl "'n form (1 \ for thn ,.., , ... r +nn """"d1'+icn Gunr !'\~rcn•NLRM 1.••c mu"r.:t u~n th::i •• •- "°"""" ,..,,._.,~ - 11 • t/ 11.., ::t'._..._. V VVII 1,t I _,_,,,... IL I.,., - -- -

same form for the complementary rely-condition Rely_childLRM(c). Similar arguments

apply to Guar_childLRM(c) and Rely_parentNLRM.

11.9.4 The Resource Manager Implementation Algebra

In this section we define the resource manager implementation algebra ARMI. Let

the following be given as parameters:

Clients: a finite set of clients.

root: a disti.nguished element of Clients

Children: Clients - Set[Clients] maps each client to a set of children

Resources: a finite set of resources

{Resourcesc: c € Clients}: the initial partitioning of Resources.

We require that <Clients, root, Children> be a rooted tree. Let parent: (Clients - {root})

- Clients be the function that maps each c € Clients to its parent. Define the function

PDesc: Clients - Set[Clients], which takes an element c of Clients to the set of all

proper descendants of c, in terms of the function Children in the obvious way. Define

Desc(c) = {c} U PDesc(c) for all c E Clients.

-170-

The set Clients will be the index set for the interconnection; that is, there will be

one LAM corresponding to each element of Clients. Define the embedded algebras A
8

bs

and {AP: p E Clients) as follows:

A
8

bs: is the resource manager event/state algebra ARM, with parameters

Clients, Resources instantiated as Clients, Resources, respectively.

Aroot: is the local resource manager event/state algebra ALAM, with

parameters Resources, !Resources, Children, {estimc: c E Children(root)}

instantiated as Resources, Resourcesroot' Children(root), {IdEOesc(c:)

IResourcesi c E Children(root)}, respectively.

AP: where p € Clients - {root}, is the local resource manager event/state

algebra ALAM, with parameters Resources, !Resources, Children, {estimc: c

€ Children(p)} instantiated as Resources, _ResourcesP, Children(p),

{IdEDesc(c:) IResourcesdl: c E Children(p)}, respectively.

Let the composite interface for the resource manager interconnection be defined

as follows:

Event~AMI = {~} + [rAf111P.St:

reply:

forward:

reject:

down:

up:

= {X} + [request:

Cli~nts +

(Clients x Resources) +

(Clients - {root}) +

Clients+

((Clients - {root}) x Resources) +

((Clients - {root}) x Resources)]

Clients] lnAMI

QutAMI = {X} + (EventsAMI - lnRM1).

Intuitively, the event request:p corresponds to the receipt of a request by LAM p

from its client, and reply:(p, r> corresponds to the allocation of resource r by LAM p to

its client. The event forward:p represents the simultaneous occurrence of a forward_jn

event for LAM p, and a forward_out:p event for LAM parent(p). The event reject:p

represents the simultaneous occurrence of a reject_out event for LAM p and a

reject_jn:p event for LAM parent(p). The event down:<p, r> represents the simultaneous

occurrence of a parent_in:r event for LAM p and a child_out:(p, r> event for LAM

parent(p). Finally, the event up:(p, r> represents the simultaneous occurrence of a

parent_out:r event for LAM p and a chi/d_jn:(p, r> event for LAM parent(p). Formally,

these relationships are captured by the following definitions of the abstraction map aRMI,

- 171 -

and the decomposition map i RMI = <BRM1> . • p p€Cbents'

aRM1(e) = request: c if e = request: c

= reply:<c, r>
=A

BRM1(e) = request
p

= reply:,

= forward_in

= forward_out:c

= rejecLout

= rejecLin:c

= child_in:<c, r>
= child_out:<c, r>
= parenLout:,

= parenLin: r

=A

11.9.5 Proof of Correctness

if e = reply:<c, r>
otherwise.

if e = request:p

if e = reply:<p, r>
if e = forward:p

if e = forward:c and p = parent(c)

if e = reject:p

if e = reject:c and p = parent(c)

if e = up:<c, r> and p = parent(c)

if e = down:<c, r> and p = parent(c)

If e = up:<p, r>
if e = down:(p, r>
otherwise.

In this section we prove the correctness of the implementation <,ARMI, Sabs'

<Sc> cEClients>, where Sabs Is defined by <Aabs, ValidRM>, Sroot is defined by

<Aroot' ValidRLRM>, and Sc for c E Clients- {root} is defined by <Ac, ValidNLRM>.

Implementation Invariant:

As usual, we factor the implementation invariant lnvRM1(q) for the resource

manager implementation into an abstraction relation AbsRM1(q) and a representation

invariant RepRM1(q). The abstraction relation simply states that the set of free resources

for the abstract resource manager module is just the union of the sets of free resources

for each of the component LRM's, and that the multiset of pending requests for the

abstract RM assigns to each client a multiplicity equal to the value of the state variable

pending for the corresponding LAM.

AbsRMl(q) = qabs(free) = uc€Clients qc(free) A

Q
8
bs(pending) = (AcEClients)(qc(pending))

- 172 -

It is convenient to factor the representation invariant into several conjuncts:

AepRM1{q) = Disjoint(q) " Neighbor{q) " Owed(q) A Optim(q).

The conjunct Disjoint{q) states that the sets of free resources possessed by two distinct

LAM's are disjoint.

Disjoint(q} = Ac,c 'EClients<c -¢. c ' - qc(free} n QC ,(free) = 0).

The conjunct Neighbor(q} expresses the consistency constraints that hold between the

values of the state variables for neighboring LRM's.

Neighbor(q) = '\EClients,cEChildren(p){(qc(p_balance) = -qpCc_balance}(c})"

(qc(p_estim} = qP(c_estim){c))}

The conjunct Owed(q) states that an LAM can be owed resources by its parent only if

the LAM estimates no surplus in the subtree of which it is the root.

Owed(q} = /\pEClients(qip_balance} > o-
PBalance(qP) + IcEChildren(p) qP(c_estim)(c) < 0)

The conjunct Optim(q) states that the estimate p_estim held by an LRM p is optimistic in

the sense that it is an upper bound on the actual projected number of resources

remaining in the subtree of which p is the root, assuming that each estimate c_estim(c)

held by pis an upper bound for the subtree rooted at c.

Optim(q} = /\pEClients(qP(p_estim) ~

PBalance(qP} + IcEChlldren(p) qic_estim){c)}.

To show the inductiveness of lnvRM1{q), first note that the basis step, i.e. that

lnitRM1(q) - lnvRM1(q) holds for all q E States, is easily checked. A complete formal proof

of the induction step, namely, that TransRM1{q, e, r)-+ (lnvAM1(q) - lnvRM1(r)}, would be

performed by case analysis on the event e. Such a complete proof would be quite

tedious to read, and will not be included here. Rather, we will remark on the cases that

are not quite trivial. Assume that TransRM1(q, e, r) and lnvRM1(q) holds, to show lnvRM1(r).

We consider each of the conjuncts of lnvAM1(r) in turn.

AbsRM1(r): The truth of this predicate depends upon the values of rc(free) and

, c(pending), for each c E Clients, as well as , abs(free) and r abs(pending). The events e

that affect the pending components of the state are request:c and reply:c. The effect of

request:c is to add one instance of c to the multiset q
8
bs(pending), and to increment the

- 173 -

value of qc(pending) by one. Clearly this preserves the desired invariant relationship.

The case of e = reply:<c, res>, is similar. The events e that affect the free components

of the state are up:<c, res>, down:<c, res>, and reply:c. Because of the fact that each

up:<c, res> or down:<c, res> is participated in only by LRM c and its parent, and the

effect on the states of these two modules is complementary, it is easily verified that

UcEClients rc{free) = UcEClients qc{free), holds fore = down:<c, res> or up:<c, res>. The

case e = reply:<c, res> is slightly more troublesome, since to show that UcEClients rc(free)

= (UcEClients qc(free)) - {res), we need to make use of the inductive assumption that

Disjoint(q) holds. From this we know that if res E qc(free), for some c € Clients, then res

<l. qc ,(free) for all c' * c, and hence deleting res from qc(free) in fact deletes it from the

union of the free sets for all the component modules.

Disjoint(,): The truth of this predicate depends only upon the values of rc(free) for each

c E Clients. These components of the state are affected only by events of the form

reply:<c, res>, up:<c, res>, and down:<c, res>. In case e = reply:<c, res>,.we have that

rc(free) = qc(free) - {res} and 'c·(free) = qc,(free) for all c' € Clients with c' * c. In

case e = up;<c, res>, and c E Chilu,1::m(µ), we have that rP(irtrej = qP(ireej U {res},

rc(free) = qc(free)- {res), and 'c ,{free) = qc ,{free) for all c' C Clients with c' E Clients

{c, p}. In case e = down:<c, res>, and c € Children(.o), we have that rP(free) = qP(free)

- {res}, rc(free) = qc(free) + {res}, and 'c ,(free) = qc ,(free) for all c' € Clients with c '€

Clients - { c, p J. In each of these cases it is easily checked that Oisjoint(r) holds.

Neighbor(,): Note that the predicate Neighbor(,) depends upon the values of

rc(p_balance), rc(c_balance), rc(p_estim), and rc(c_estim), for each c € Clients.

Enumeration of cases shows that the only events that affect the values of these

components of the state are the events reject:c, forward:c, down:<c, res>, and

up:<c, res>. However, examination of the definition of the LRM state-transition relation

and the definition of the decomposition map i RMI shows that each change in the state

of a participant in one of these events is accompanied by a compensating change in the

state of the other participant. For example, if c E Children(p), then occurrence of an

event of the form reject:c makes rc(p_balance) = qc(p_balance) + 1, but also makes

rP(c_balance)(c) = qP(c_balance){c)-1. Thus the predicate Neighbor is preserved.

Owed(r): Assuming that Owed(q) holds, the only way for Owed(r) to be false is for an

event e to occur that increments qP(p_balance) when it is zero, or increments

- 174-

PBalance(qP) + l:cEChildren(p) qP(c_estim)(c) when it is zero. The only events that might

have this property are e = reject:p, and up:<p, res>. In case e = reject:p, PBalance(qP)

+ IcEChildrenCP> qP(c_estim)(c) is incremented, but the precondition for this event

requires that this quantity be less than zero, so Owed(,) holds. In case e = up:<p, res>,

the quantity qP(p_balance) is incremented, but the precondition fore requires that this

quantity be strictly negative, and hence Owed(r) holds.

Optim(r): Assuming that Optim(q) holds, the only way for Optim(r) to be false is for the

quantity qc(p_estim) to be decreased below the quantity PBalance(qc) + l:dEChildren(c)

qc(c_estim)(d), or for the latter quantity to be increased above the former. The only

events that could possibly have this effect are lorward:c and reject:c. If e = lorward:c,

then qc(p_estim} is decremented, but so is PBalance(qc) + IdEChildren(c) qc(c_estim)(d).

If e = reject:c, then PBalance(qc) + Id€Children(c) qc(c_estim}(d) is incremented and

qc(p_estim) is set to zero. However, the precondition for e requires that the former

quantity be negative. This fact implies that PBalance(rc) + l:dEChildren(c) rc(c_estim)(d) <
0 and rc(p_estim) = 0, and Optim{r) holds.

From the invariance of Owed, Neighbor, and Optim, we can derive the

fundamental property of estimates upon which the ,correctness of the resource

management system crucially depends. This property Is expressed by Lemma 11.1

below, which states that if an LRM; is owed resources by its parent, then the amount it

is owed by its parent is a lower bound on the total instantaneous deficit in the subtree of

which; is the root. To express this result formally, we introduce the quantity /Balance(q)

where q is an LRM state, defined as follows:

IBalance(q) = lc,(free)l -q(pending).

Whereas the quantity PBalance(q) introduced previously represents the total projected

balance of resources at an LRM, after all debts have been paid, the quantity /Ba/ance{q)

represents the total instantaneous balance of resources at an LRM, where the amount

of indebtedness is not taken into account.

Lemma 11.1 - The following is invariant for the resource manager implementation:

ApEClients(qP(p_balance) > o-
qP(p_balance) < -IcEDescCP) IBalance(qc))

Proof - From their definitions, it is easily seen that the quantities PBalance(q) and

/Balance(q) are related by the following identity, expressed in the language L(ALRM) of

· 175 •

the LRM event/state algebra:

PBalance(q) = IBalance{q) + q(p_balance) + :tcEChildren q(c_balance)(c).

From this identity, a simple induction on the height of a node i € Clients in the tree

<Clients, root, Children>, shows the truth of the following identity for all i € Clients:

(1) :t;EDesc(i) PBalance(q;) = q;(p_balance) + :t,Eeesc(p) IBalance(q).

That is, the total projected balance in the subtree of which; is the root is equal to the

total instantaneous balance in that subtree, plus the net number of resources promised

to be exchanged with the parent of i.

The invariance of Owed(q) means that the following is invariant:

(2) AiEClients{q;(P_balance) > 0 -

PBalance(q1) + :t;EChik:tren(,J q;(c_estim){/) S 0).

That is, if an LRM i is owed resources by its parent, then it must estimate no surplus of

resources in the subtree of which ; is the head, based on the estimates it has for each of

iit; t;hildren.

The invariance of Neighbor(q) implies that the following is invariant:

(3) A,Ectients(ViEChildren(i))(q1(c_estim)(J) = qI(p_estim)).

Substitution of (3) into (2) shows the invariance of

(4) A,Eclients(q;(p_balance) > 0 -+

PBalance(q;) + :tiEChildren(i) qI(p_estim) < 0).

Using the invariant Optim(q) to substitute for q1(p_estim) in (4) shows that

(5) A,EClients(q,(p_balance) > 0 -

PBalance(q1) + :t;EChik:tren(i) (PBalance(q;) +

:tllEChildren(i) q,(c_estim)(k)) S 0).

is invariant. Repeating this argument to eliminate all occurrences of c_estim yields the

invariance of

(6) A,Ectients(q1(p_balance) > 0 - :t;EOesc(,J PBalance(q) S 0),

-176-

which states, intuitively, that if LAM; is owed resources by its parent, then there can be

no projected surplus of resources in the subtree of which ; is the root.

By using (1) to eliminate PBalance in favor of !Balance in (6), we obtain the

invariance of

(7) A;ECtients(q;(p_balance) > 0 -

q;(p_balance) + l:iEDesc{i) IBalance(qi) S 0),

which is equivalent to the desired result. I

Proof of Maximality

The maximality verification condition is:

t== (VqEStates, eEEvents){lnvRMl(q) /\ AcEClientsEnabledc(q, e)

- Enabled8bs(q, e)).

The proof of this assertion is most easily performed by a case analysis on the event e;

making use of the fact that the module specifications define the state-transition relation

by precondition/next-state predicate pairs. If e = forward:c, reject:c, down:<c, r>, or

up:<c, f), the.-, a~M1(a) = A, aru.i he::ri<.;e Em:dJh:~d
8
bs(q, e) = true. We therefore need

consider only the cases e = request:c and e = reply:<c, r>. If e = request:c, then

aRM1(e) = request:c, and hence Enabled
8
bs(q, e) = true.

We are left with the case e = reply:<c, r>. In this case, we obtain the following

from the module specifications:

Enabled8 bs(q, e) = r E q
8

b
5
(free) Ac E qab

5
(pending)

Enabledc(q, e) = r E qc(free) A qc(pending) > 0

Enablediq, e) = true, if p E Clients-{c}.

Assume lnvRM1(q), and hence AbsRM1(q), holds. Assume further that ApEClients

EnabledP(q, e) holds. From Enabledc(q, e) we know that r E qc(free) A qc(pending) > 0

holds. From this and AbsRMl(q) we infer that r E q
8
bs(free) Ac E q

8
b

8
(pending) holds, as

desired.

Proof of Validity

To prove that the validity verification condition holds for the resource manager

implementation, we use Corollary 1.5. To apply Corollary 1.5, we must find, for each ;, j, €

Clients + {abs), a sentence RG .. of ~ARMt) such that the following hold:
IJ

(RMI1)(a)

(RMl1)(b)

(RMl2)(a)

(root)

(node)

(RMl2)(b)

-177 -

CompRMI t= (RelyRMDabs - ";€Clients RGabsj

CompRMI t= ",e:clients RGI.abs - (GuarRMJabs

CompRMI t= (A,EClients+{abs} RG,,,oot - ffRelyRLRMBroot>

CompRMI t= ";EClients-{root} (A;EClients+{abs} AG,, - ffRelyNL~,)

(root) CompRMI t= (llGuarRLRMJ,oot - /\/€Clients+ {abs} RGroot,;)

(node) CompRMI t= ",EClients-{root} (llGua,-NLRMB, - "/€Clients+ {abs} RG,}

(RMl3) Whenever {<i0, i1>, <i1, ii, ... , <in_1, in>} is a cycle of Clients, then

CompRMI t= yn-1 RG •
le"' 0 '11J1c + 1

The sentences RG1j bear a particular relationship, formalized in Lemma 11.2 below,

to the various conjuncts appearing in the local resource manager validity conditions.

Lemma 11.2 states in essence, that the local resource manager validity conditions are

"localized" versions of the sentences AG;J· Part (a) of Lemma 11.2 states that the

sentence RG,.parent(,J captures exactly what LAM ; guarantees to Its parent and exactly
um~♦ I Pt.A n~r0 nt1,;\ r01ies on ; .,.,. nrov"1d"' o ... r+ (b) ,.ta•es th--t th" __ ... ,.. e nr.-
••• ·--· -· ,..... \ lj ...,.. • •• ..., .., '-'• I ,. -,ii ' u I C --",,I ,,iw, IW I ''-'parent(/)J

captures exactly what LAM j relies on its parent to provide, and exactly what LAM

parent(/) guarantees to provide to j. Part (c) states that the sentence RGabs,root captures

exactly what the root LAM relies on the external environment of the system of LAM's to

provide. Part (d) states that the sentence RG,,abs captures exactly what LAM i

guarantees to provide to the external environment of the system of LRM's.

The sentences RG,, are defined as follows:

AGroot,abs = □(Now root(pending) > 0 -
◊(3r€Resources)(B~!(Occurs) = reply:,))

RGabs,root = □(Now root(p_balance) < 0)

For all ;, i E Clients - {root}:

AGi,abs = □(Now,(pending) > o
◊(3r€Resources)(8:,™1(0ccurs) = reply:,))

AGabsJ = true.

For all ; E Clients - {root}:

AG,,parent(i) = D(D(Now,{p_balance) < 0)-+

◊((3rEAesources)(8fM1(0ccurs) = parenLout:r) v

(8fM1(0ccurs) = rejecLout))

- 178 -

RGparent(,),i = □(□(Now parent(i)(c_balance)(i) < 0) _.

◊(3rEResources)(B:!:!mtciOccurs) = child_out:<i, r>))

For all i,; E Clients such that neither ; = parent(/) or; = parent(,):

RG;J = true.

Lemma 11.2 - The following are valid for the resource manager implementation:

(a) For all i E Clients- {root},

CompRMI I= RGi,parent(I) -

(Guar _parentNLRMJ, ++

(Rely_childLRM(,)lparent(I}

(b) For all i E Clients - {root},

CompRMI I= RGparent(i)J ++

(Rely_parentNLRMJ
1

-

ftGuar _childLRM(/)Jparent(I)

(c) CompRMI I= RGabs,root - ftRely_externaIRLRMJroot

(d) For all i E Clients,

Compql~t I= RG,,abs - ff Guar _clientLR>.4),.

Proof - Straightforward, using the invariance of Neighbor and the definition of the

decomposition map 4 RMt. I

Lemma 11.3 - Under the definitions given above for the sentences RG;J• conditions

(RMI 1)-(RMl3) hold for the resource manager implementation.

Proof- Assume CompRM1•

To prove that (RMI 1)(a) holds, we must show

IRelyRMBabs _. A,EClient RGabs,/

Suppose that ftRelyRMJabs holds. It suffices to prove that RGabs.root holds, since RGabsJ =
true for all; E Clients- {root}. fRelyRMDabs is defined by:

(RelyRMjabs = □(!Now abs(free)I > INow abs(pending)I). Using this and the

invariance of the predicate AbsRMt, we infer the truth of □(I;eCUents (INow,(free)I -

Now;(pending)) > 0), which is equivalent to

(A) □(l::iEClients IBalance(Now) > 0).

-179-

From Lemma 11.1 and the fact that Desc(root) = Clients, we infer that

□(Now root(p_balance) > 0 - Now root(p_balance) < -IiEClients IBalance(Now;)). From

this and (A), we conclude that □(Now root(p_balance) S 0), which is precisely the

statement that RGabs,root holds.

To prove (RMl1)(b), we must show

A;EClients RGi,abs - ff GuarRMJabs

Suppose that A,Eclients RG,,abs holds. From the definition of RGi,abs we know that

A;EClients □(Now,(pending) > 0 - ◊{3r€Resources)(B::™'(Occurs) = reply:,))

holds. From the invariance of AbsRMI and the definition of the abstraction map aRMI we

infer that

A,EClients □(i E Now abs(pending) -

◊(3rEResources)(aRMl(Occurs) = reply:<i,r>))

holds: This is precisely the statement that HGuarRMJlabs holds.

We next prove (RM12){a). In case {root), we must show

(root) A,EClients + {abs} RGi,root - f RetyRLRMBroot"

From the root LAM specifications we know that

ffRely_externa1RLRMlroot" AiEChildren(root) ffRely_childLRM(,)Droot ++ ffRelyRLRMDroot'

Using Lemma 11.2 (a) and (c) we infer that

RGabs,root /\ A;EChildren(root)RG,,root ++ ff RelyRLRMDroot•

which implies formula (root).

In case (node) we must show that for all i € Clients,

(node) A,Eclients+{abs} RG;J - (RelyNLAMJr

Fix i to be an arbitrary element of Clients. From the node LAM specifications we know

that

HRely_parentNLRMD, " A,€Children(i)HRely_childLRM(,)D, - (RelyNLRMDr

Using Lemma 11.2 (a) and (b) we infer that

RGparent(i)J " AiEChildren(/)RG;J ++ IRelyNLRMJ,,
which implies formula (node).

We next show (RM12)(b). In case (root) we must show

(root) IGuarRLRMBroot - A/€Clients+{abs} RGrootJ'

From the root LAM specifications we have

DGuarRLRMDroot ++ IGuar_clientLRMJroot A A;EChildren(root) &Guar_chUdLRMC,)Droot

Using Lemma 11.2 (b) and (d), we infer

-180 ·

(Gua,-RLRMJ!root ++ RGroot,abs A A/€Children(root}RGrootJ'

This implies formula (root), since RGrootJ = true unlessj = abs or j € Children(root).

In case (node) we must show that, for all;€ I:

(node) ffGuarNLRMJ, - A/Ectients+{abs} RG,J.

Let i be an arbitrary element of Clients, and assume (Gua~LRMJ,. From the node LAM "

specifications we have

(GuarNLRMD, ++ f Guar _clienfRMJ, " (Guar _parentNLRMJ, A

A/EChildren(I) (Guar _childLRM(/))1

Using Lemma 11.2 (a), (b), and (d), we infer

ffGua~LRMB, ++ RGi,abs" AGi,parent(,)" (Vj€Children(i))RG,r

This implies formula (node), since RG1J = true unless j = abs, j = parent(,). or j €

Children(,).

To prove (RMl3) it suffices to show that RG,,parent(,) v RGparent(i),; holds for all i €

Clients - {root}. This is because every cycle {<i0, 11>, ... , <in_,. in>} of Clients either

contains a link <i,,_, i,,_.,> for which AG, J = true by definition, or else contains both
,,, ,,, + 1

link:; <i, parent{,)> and <parent(i), r> for some; C Clients- {root}.

To show RG,,parent(I} v RGparent(,)J holds for all i € Cl!ents - {root}, let i be arbitrarily

fixed, and suppose that -,RG,,parent(I} holds, to show th,t RGparent('1, holds. By definition

of RG,.parent(I) we know that ◊D(Now,(p_balance) < 0) holds. By the invariance of

Neighbor, we infer that ◊□(Now parent(,1(c_balance){,) > 0) holds. This implies that

RGparent(l)J holds. I

11.10 A Message Transmission System

In this section we consider the specification and implementation of a message

transmission module TM, whose function is to reliably deliver messages input by one

user, called the sender, to another user, called the receiver. Messages should be

delivered in the order in which they are sent, and should not be subject to loss or

duplication. The message transmission module therefore behaves as a FIFO buffer

between the sender and the receiver. The interesting part of this example is how the

reliable FIFO buffer behavior of the message transmission module is Implemented by a

transmission module implementation TMI, which consists, in part, of unreliable

transmission line components. This is accomplished through the use of a send protocol

module and a receive protocol module, which together implement the alternating bit

• 181 •

protocol [Bartlett69].

The alternating bit protocol is a standard example for which correctness proofs in

varying styles have been given by other researchers. Most analyses treat only safety

properties, however the proofs given by Hailpern and Owicki [Hailpern80] and Lamport

[Lamport83] treat liveness properties of the protocol in addition to safety properties.

The major deficiency of Hailpern and Owicki's treatment is the unstructured and

apparently ad hoc nature of the specifications and the correctness proof. It is difficult to

discern from their work very much in the way of a general method (with the exception of

their use of history variables, which can be seen as a special case of the state-transition

approach espoused here) likely to be applicable to other examples. In contrast, the

specifications and correctness proof given below are an instance of a general strategy,

which is embodied in the state-transition approach to specification, the use of rely- and

guarantee-conditions, and the Correctness Theorem.

Of the extant proofs of the correctness of the alternating bit protocol, that of

Lamport [Lamport83] is perhaps the most similar to the one given here. The modules

are specified in a state-transition style quite like that proposed here. It is possible to

identify portions of Lamport's proof that correspond to the proof of invariance of tha

abstraction relation and implementation invariant given below. The major difference

between Lamport's proof and the one given here is in the statement and proof of the

liveness (i.e. validity) properties. Lamport's liveness specifications for the send protocol

module take the form: "If the send protocol module has an unprocessed message, then

it will eventually give a packet containing that message to the unreliable transmission

medium for transmission to the receive protocol module;" "If a correct

acknowledgement is received by the send protocol module, then eventually the protocol

will progress to the next unprocessed message;" etc. These are ''low-level"

specifications that can be thought of as essentially a set of assertions that might appear

in an assertional proof that a particular program satisfies the specification. In contrast,

the specifications given here are of the form: "If the send protocol module can rely on

the fact that sufficiently many transmissions of packet p will eventually result in the

receipt of an acknowledgement for packet p, then it guarantees eventually to process

every message given to it as input." This is a "higher-level" specification that states

what the send protocol module accomplishes without detailing a chain of intermediate

steps by which it is. accomplished.

-182 -

A feature that distinguishes the proof presented here from previous proofs, is that

the proof here is to a great extent independent of the precise assumptions on the

reliability of the transmission line components. The specifications of the transmission

line module are expressed in the form: "If a message m is transmitted according to

certain conditions Xmit(m), then eventually m will be delivered according to conditions

Dlvr(m)." For concreteness, we use "m is transmitted repeatedly, without intervening

transmission of any different message m '" for Xmit(m}, and a symmetric condition for

Dlvr(m}. However, Xmit(m) and Dlvr(m) can easily be replaced with alternative

conditions without change to the proof structure.

11.10.1 Specification of the Message Transmission Module

The interface of the message transmission module TM consists of two kinds of

events: those of the form TMJn:m, in which message mis presented to the transmission

module by the sender, and events of the form TM_out:m, in which message m is

delivered by the transmission .module to the receiver. We wish to state that the

tr;:in43rnis~ion modL•le ctelivers m'?ssages in FIFO order without loss "'r duplication. We

can think of the state of the transmission module as a sequence of the messages input

by the sender but not yet delivered to the receiver. Equivalently, and for our purposes

more conveniently, the state of the transmission module can be thought of as a pair

<inq, outq> of sequences of messages, where inq represents the entire history of

messages that have ever been input to the transmission module by the sender, and outq

represents the entire history of messages that have ever been output to the receiver by

the transmission module. The sequence of messages sent but not yet delivered by the

transmission module is represented, in this alternative state set, by the sequence

inq-outq.

Based on this selection of state set, let us now derive a precise specification of the

transmission module.

Let Values be a finite set of message values, given as a parameter. The interface of the

transmission module is defined as follows:

Events™ = {>.} + [TM_in: Values + TM_out: Values].

In TM = {>.} + [TM_in: Values]

Out™ = {>.} + [TM_out: Values].

The state set for the transmission module is defined by:

-183 ·

States™ = [inq: Seq[Values] x outq: Seq[Values]].

If q E States™, then we write q{inq-outq) as an abbreviation for q(inq) -q(outq).

In an initial state for the transmission module, the queue is empty.

lnitTM(q) = q(inq) = q(outq).

The state transition relation TransTM is defined by precondition/next-state

predicate pairs as follows:

An input event with message m can occur at any time, and causes message m to be

appended to the end of inq.

(TM_in) PreTM • .in(q, e, m) = e = TM_in:m

= r = q[(q(inq))•m/inq]

An output event with message m can occur only if there is a message that has been sent

but not yet delivered, and mis the first such message. The effect is to append m to the

end of outq.

rr• A "'' ,+, o..... (q c m)
' • • • ,_....,.,,.. "1 • • '-'TM_out ' ' = a ::: TM_out:m "q(outq) < q(lnq) A

m = (q(inq-outq)(O)

= r = q[(q(outq))•m/outq].

We wish the validity condition for the transmission module to capture the

requirement that every message sent is eventually delivered. This is captured by the

definition below, which states that, given any prefix s of inq, there is eventually a later

time at which sis also a prefix of outq.

Valid™ = Rely TM - Guar TM

where

Rely™ = true

Guar™ e □{VsESeq[Values])(s < Now(inq) - ◊{s S Now{outq))).

11.10.2 Implementation of the Transmission Module

Figure 4 shows the implementation of the transmission module by a send protocol

module SP, a receive protocol module RP, a sender-to-receiver transmission line

module SRTL, and a receiver-to-sender transmission line module RSTL. Messages

received from the sender by the send protocol module (an "in" event) are placed in a

queue for transmission to the receive protocol module. When this queue is nonempty, a

-184 ·

packet consisting of the first message in the queue and a current boolean sequence

number is transmitted (via a "pkt_out" event) by the send protocol module SP over the

transmission line SRTL. In contrast to the reliable transmission module specified in the

preceding section, the transmission line module is inherently unreliable, and might lose

or duplicate messages. We require, however, that the transmission line not reorder

messages. Since messages might be lost, in general it will be necessary for the send

protocol .module to transmit the same packet a number of times before it is delivered to

the receive protocol module. Thus the send protocol module continues to send the

packet until an acknowledgement for the sequence number it contains is received (an

"ack._in" event) over the transmission line module RSTL. Receipt of a correct

acknowledgement by the send protocol module causes the first message to be removed

from its queue. In addition the send protocol module complements its sequence

number.

When a packet arrives at the receive protocol module (via a "pkt_in" event), it is

checked to see if its sequence number is current. If the sequence number is current,

then th.e message is extrar:tP.rl Rnrt pl-R~e.rf in A q1_1e1.1e of messeges to be delivered to the

receiver. Also, the sequence number expected by the receive protocol module is

complemented. The receive protocol module ignores packets that do not contain the

current sequence number. The receive protocol module transmits acknowledgem'3nts

for the most recently received packet over the transmission line module RSTL (via

"ack_out" events). Whenever the queue of messages to be delivered to the receiver is

nonempty, then a message can be removed and sent to the receiver (via "out" events).

11.10.3 Specification of the Transmission Line Module

The interface of the transmisssion line module contains events of the form

TL_Jn:m, which correspond to the presentation of message m for transmission, and of

the form TL_out:m, which correspond to the delivery of message m to its destination.

Thus, the interface of the transmission line module TL is isomorphic to that of the

message transmission module. The difference between the two modules lies in the fact

that, whereas the transmission module guarantees to deliver each message exactly

once, the transmission line module is permitted to lose or duplicate messages any

number of times. We require, however, that the transmission line module not reorder

messages. Also, we require that repeated input of messages to the transmission line

-185 ·

Fig. 4. Transmission Module Implementation

Sender

Transmission

Module

module will eventually cause messages to be delivered.

We will use the same state set for the transmission line specification as ~ used for

the transmission module specification. However, the int\llti~ meani~gs of the

components lnq and outq of the state are significantly changed, as Is the state-transition

relation and validity condition. For the transmission line module, the sequence lnq

represents a sequence of messages, each of which is destined to be delivered at least

once. However, each message in lnq might be delivered more than once. The

sequence outq represents the messages in inq, each of which has already had all its

copies delivered, and will therefore never be delivered again. The state transition

relation is modified to permit message loss and duplication as follows: The possibility of

message loss Is captured by the fact that input events are permitted either to produce

no state change (corresponding to the loss of the associated message) or to append the

message exactly once to the end of inq (indicating that the message is destined to be

delivered eventually at least once). The possibility of message duplication is captured

by the fact that output events are permitted either to ~uce no state change

(corresponding to the duplication of the message just delivered) or to add the message

-186 ·

to outq (corresponding to the delivery of the final copy of the message).

Note that the preceding description is only one of many possible ways of

presenting the same transmission line specification. For example, we could have

captured the possibility of message loss or duplication by stating that the occurrence of

a TL.Jn:m event causes the message m to be appended k times to inq, where k is a

nondeterministically chosen natural number. Occurrence of a TL_out:m event would

then be possible only if m is the first element of inq not also in outq. and would cause m

to be appended precisely once to outq. The transmission line specification is an

example of an indeterminate specification (see Section 6.2), which means that a single

observation can be produced in more than one computation. Although we could give a

determinate transmission line specification equivalent to the indeterminate version used

here, the use of an indeterminate specification seems more natural .

. We now make the above informal specification more precise. As in the case of the

transmission module specification, let Values be a finite set of message values, given as

a parameter. Define the interface of the transmission line module as follows:

Events'L = p.J + [TL_in: Values+ TL_out: Values].

In TL = {A} + [TL_in: Values]

OutTL = {A} + [TL_out: Values]

Define the state set of the transmission line module by:

States TL = [inq: Seq[Values] X outq: Seq[Values]].

In an initial state, the transmission line queue is empty.

lnitTL(q) = q(inq) = q(outq).

The state-transition relation Trans TL is defined as follows:

An input event with message m can occur at any time, and either causes no change in

state (the message is lost) or appends the message to the end of the queue (the

message is destined to be delivered).

(TL_in) PreTL..in(q, e, m) = e = TLin:m

NextTL..in(q, ,, m) = r = q v, = q[(q(inq))•m/inq]

An output event with message m can occur only if there is a message that has been sent

but for which the last copy has not yet been delivered, and m is the first such message.

The message mis either appended to outq (corresponding to the last copy of m being

-187 -

delivered), or there is no state change (corresponding to the duplication of m).

(TL_out) PreTLout(q, e, m) = e = TL_out:m "q(outq) < q(inq) A

m = (q(inq-outq))(O)

NextTL_001(q, ,, m) = r = q v, = q[(q(outq))•m/outq].

The validity condition for the transmission line module should express the

requirement that, for each message m, if the transmission of m satisfies certain minimal

conditions (e.g. that m is transmitted repeatedly, without intervening transmission of

other messages), then the transmission line module will ensure that m will eventually be

delivered according to certain conditions (e.g. m will eventually be delivered repeatedly,

without intervening transmission of other messages). Formally,

ValidTL = RelyTL - GuarTL

Rely TL a true

GuarTL = □(VmEValues)(XmitTL(m) - ◊OtvrTL(m)),

where XmitTL(m) describes the conditions required on the transmission of message m

and OlvrTL(m) describes the corresponding conditions according to which m will be

deliver~. Aside from the reri11irAmP.nt th;:tt the re.suiting sp13Cification be consistent,

there is a reasonable amount of flexibility in the choice of the conditions XmitTL(m) and

DlvrTL(m). We will see tater that the particular choice of conditions does not

significantly affect the proof of correctness of the transmission module implementation,

as tong as the conditions XmitTL(m) and DlvrTL(m) interact properly with corresponding

conditions appearing in the specifications for the send and receive protocol modules.

For concreteness though, we make the following definitions:

XmitTL(m) = □◊(Occurs = TL_in:m)"

□(Vm '€Values)(Occurs =. TLin:m ' - m' = m).

DlvrTL(m) a □◊(Occurs = TL_out:m) A

D(Vm '€Values)(Occurs = TL_out:m' - m' = m).

Intuitively, the condition XmitTL(m) states that the message mis transmitted repeatedly,

without any transmission of other messages m '. The condition DtvrTL(m) states that the

message m is delivered repeatedly, without any delivery of other messages m '.

-188-

11.10.4 Specification of the Send Protocol Module

The send protocol module SP interfaces between the sender and the SRTL and

RSTL transmission line modules. Its function is to implement one half of the alternating

bit transmission protocol. The interface of the send protocol module consists of three

kinds of events: SP Jn:m, which represents the receipt of message m from the sender,

SP _pkt_out:p, which represents the transmission of packet p over the unreliable

transmission line SRTL, and SP _ack_in:b, which represents the receipt of an

acknowledgement for sequence number b from the unreliable transmission line RSTL.

The state of the send protocol consists of three components: a sequence inq of all

messages that have ever been received from the sender, a sequence outq of all

messages that have been acknowledged by the receive protocol module, and a boolean

component sn, which records the current sequence number. Choosing outq to be the

sequence of acknowledged messages, rather than the sequence of all messages

transmitted to the SRTL transmission line, allows us to obtain a simpler correctness

proof than that presented by Hailpern and Owicki [Hailpern80]. In that paper, the use of

the actual history of messages transmitted requires the correctness proof to define and

reason about certain functions whose purpose is essentially to extract the history of

acknowledged messages from the history of all transmitted messages.

Informally, the send protocol module behaves as follows: Occurrence of a

SP Jn:m event causes the message m to be appended to inq. When there is a message

to be sent, and processing of all previous messages has been completed, the message

is paired with the current sequence number to form a packet p, which is then given to

the unreliable transmission line SRTL to be transmitted to the receive protocol module.

The send protocol module continues to transmit the packet p until an acknowledgement

for its current sequence number arrives over the unreliable transmission line RSTL.

When a correct acknowledgement arrives, the message acknowledged is appended to

outq, signifying that it has been successfully delivered, and the current sequence

number is complemented.

More precisely, let Values be a finite set of message values, given as a parameter.

The interface of the send protocol module is defined as follows:

EventsSP = {>,} + [SP _in: Values + SP _pkLout: Pkts + SP _ack_in: Bool]

lnSP = {>.} + [SP _in: Values + SP _ack_in: Bool]

•

- 189-

OutSP = {>.} + [SP _pkt_out: Pkts]

Pkts = [msg: Values x sn: Bool],

where Pkts is the set of packets. The state set for the send protocol module is defined

by:

States5P = [inq: Seq[Values] x outq: Seq[Values] x sn: Bool].

In an initial state, the queue is empty, and the sequence number is false.

lnitSP(q) = q(inq) = q(outq) /\ q(sn) = false.

The state-transition relation TransSP is defined as follows:

An SP Jn:m event can occur at any time, and causes the message m to be appended to

lnq.

(SP_ln) PreSP in(q, e, m)

Nextgp ln(q, r, m)

= e = SP_in:m

= r = q[(q(inq))•m/inq]

An SP _pkt_out:p event can occur only If there is a message that has been received from

the sender but not yet successfully transmitted to the receiver, p(msg) is the first such

message, and p{sn) is the current sequence number. There is no effect on the state.

{SP _pkt_out) PreSP__pkLout(q, e, p) = e = SP _pkt_out:p /\ q{outq) < q{inq) /\

p{msg) = {q{inq-outq)){O) /\ p{sn) = q(sn).

NextSP__pkLout{q, '• P) =' = q.

An SP _ack_in event for acknowledgment b can occur at any time. If b does not match

the current sequence number, or if there is no message currently being transmitted,

then there is no change in state. If b does match the current sequence number and

there is a message currently being transmitted, then this indicates that the message has

been successfully transmitted. In this case, the current message is appended to outq,

and the sequence number is complemented.

(SP _ack_in) PreSP_ack..in{q, e, b) = e = SP _ack_in:b

Nextgp_ack..in{q, ,, b) = ({q(inq) = q{outq) vb ~ q(sn)) -+ r = q) /\

((q{outq) < q{inq) /\ b = q(sn)) -+

r = q[,(q(sn))/sn,

(q{ outq)) •q{inq-outq)(O) I outq]).

· 190 ·

With the validity condition for the send protocol module, we would like to capture

the following: If the send protocol can rely on the fact that repeated transmissions of a

packet eventually result in the repeated receipt of acknowledgements for that packet,

then it guarantees that every message appearing in inq will eventually also appear also

in outq. This requirement is stated in rely-/guarantee-condition form as follows:

Valid8P = RelySP - Guar8P

RelySP = □(VpEPkts)(XmitSP(p) - ◊Dlvr8P(p(sn)))

Guar8P = D(VsESeq(Values])(s < Now(inq) -+ ◊(s < Now(outq))),

where the formula XmitSP(p) is the formalization of the statement: "packet p is

transmitted repeatedly, without any transmissions of other packets," and the formula

Dlvr8P(b) is the formalization of "acknowledgements for sequence number b are

received repeatedly, without receipt of any other acknowledgements." These formulas

must be defined to be compatible (in a way that is made precise by Lemma 11.6 below)

with the formulas XmitTL(m) and DlvrTL(m) in the transmission line specification. Thus,

XmitSP(p) = □◊(Occurs = SP _pkt_out:p) A

D(Vp 'EPkts)(Occurs = SP _pkLout:p' -+ p' = p)

Dlvr8P(b) = □◊(Occurs = SP _ack..ln:b) A

□(Vb 'EBool)(Occurs = SP_ack_in:b ' - b' = b).

11.10.5 Specification of the Receive Protocol Module

The receive protocol module interfaces between the SRTL and RSTL transmission

lines, and implements the complementary half of the transmission protocol. It operates

as follows: The state of the receive protocol module consists of two sequences, inq and

outq, of messages, and a boolean sequence number sn. The sequence inq records the

history of valid messages (with duplications removed) that have been received from the

unreliable.transmission line SRTL. The sequence outq records the history of messages

that have been delivered to the receiver. Initially the sequence number sn in the receive

protocol module's state matches the sequence number in the state of the send protocol

module. The receiver waits for packets to be delivered by the SRTL transmission line. If

a received packet has a sequence number that does not match the current sequence

number, then it is ignored. If a received packet has a sequence number that matches

the current sequence number, then the message Is extracted from the packet and

placed at the end of inq. In addition, the current sequence number is complemented.

At any time, the receive protocol module can transmit acknowledgements for the

• 191 -

complement of its current sequence number (i.e. for the sequence number of the last

valid packet received).

As in the previous specifications, let the finite set Values be given as a parameter.

Define the interface of the receive protocol module as follows:

EventsRP = {A} + [RP _pkt_in: Pkts + RP _out: Values + RP _ack..out: Bool]

lnRP = {A} + [RP _pkLin: Pkts]

OutRP = {A} + [RP _out: Values + RP _ack_out: Bool]

Plds = [msg: Values X sn: Bool].

Define the state set by:

StatesRP = [inq: Seq[Values] x outq: Seq[Values] x sn: Bool].

In an initial state, both queues are empty, and the sequence number is false.

lnitRP(q) = q(inq) = q(outq) A q(sn) = false

The pairs that define the state transition relation TransRP are given below.

A RP _pkLin event with packet p can occur at any time. If the sequence number in p

does not match the current sequence number, then there is no effect on the state. If the

sequence number in p does match the current sequence number, then the message

contained in p is appended to inq, and the current sequence number is complemented.

(RP _pkt_in) PreRP..PkUn(q, e, p) = e = RP _pkLin:p

NextRP ..PkLin(q, ,, p) = (p(sn) ~ q(sn) - r = q) "

(p(sn) = q(sn) - r = q[-,q(sn)lsn,

(q(inq))• p(msg)/inq])

A RP _ack_out event can occur only for the complement of the current sequence

number. There is no effect on the state.

(RP _ack..out) PreRP _ack..out(q, e) = e = RP _ack..out:(-,q(sn))

Nex~P..ack..out(q, r) a r = q

An RP _out event with message m can occur only if there is a message in inq that has not

yet appeared in outq, and m is the first such message. The effect is to append m to

outq.

(RP_out)

Nextou1(q, r, m)

= e = RP _out:m /\ q(outq) < q(inq) A

m = (q(inq-outq))(0)

= r = q[(q(outq))•m/outq]

-192-

The validity condition for the receive protocol module should capture the following

two requirements: (1) If packet p is received repeately, then eventually

acknowledgements. for the sequence number contained in that packet will be

transmitted repeatedly; and (2) Every message that appears in inq will eventually appear

in outq. Formally,

ValidRP = RelyRP - GuarRP

RelyRP = true

GuarRP = □(VpEPkts)(DlvrRP(p) - ◊XmitRP(p(sn))) A

□(VsESeq[Vafues])(s < Now(inq) - ◊(s < Now(outq))),

where, as in the previous specifications, DlvrRP(p) formalizes the statement, "Packet p is

received repeately, without any receipt of other packets" and XmitRP(b) formalizes the

statement, "Acknowledgement b is transmitted repeately, without any transmission of

other packets." These formulas are defined as follows:

DlvrRP(p) = □◊(Occurs = RP _pkLin:p) A

□(Vp '€Pkts)(Occurs = RP _pkUn:p' - p' = p)

XmitRP(b) = □◊(Occurs = RP _ack_out:b) A

□(Vb '€Bool)(Occurs = RP _ack_out:b' - b' = b)

11.10.6 The Transmission Module Implementation Algebra
I

In this section we define the transmission module implementation algebra A™1•

Let the finite set Msgs of message values be given as a parameter. Define

Pkts = [msg: Msgs x sn: Bool].

The index set for the interconnection is the set {SP, RP, SRTL, RSTL}, corresponding to

the send protocol, receive protocol, send-protocol-to-receive-protocol transmission

line, and receive-protocol-to-send-protocol transmission line component modules.

Define the embedded algebras A abs, ASP, ARP' ASRTL' and ARSTL as follows:

A abs: is the message transmission module event/state algebra A™, with the

parameter set Values instantiated as the set Msgs.

ASP: is the send protocol module event/state algebra ASP, with parameter

Values instantiated as the set Msgs.

ARP: is the receive protocol module event/state algebra ARP, with

parameter Values instantiated as the set Msgs.

ASRTL: is the transmission fine module event/state algebra A1L, with

parameter Values instantiated as the set Pkts.

-193 -

is the transmission line module event/state algebra ATL, with

parameter Values instantiated as the set Bool.

Let the composite interface for the transmission module interconnection be

defined as follows:

Events ™1 = {A) + [in: Msgs + out: Msgs + pkt_out: Pkts + pkt_in: Pkts +

fn™1

Out™'

ack_out: Bool + ack_in: Bool]

= {A) + [in: Msgs]

= {A) + (Events™1-ln™1)

Intuitively, events in:m and out:m represent, respectively, the receipt of message m from

the sender and the delivery of message m to the receiver. Events pkt_out:p and pkt.Jn:p

represent, respectively, the presentation of packet p by the send protocol module to the

SRTL transmission line and the receipt of packet p by the receive protocol module from

the SRTL transmission line. Events ack_out:b and ack.Jn".b represent, respectively, the

presentation of acknowledgement b by the receive protocol module to the RSTL

transmission line and the receipt of acknowledgement b by the send protocol module

tram the RSTL tranernief:ion !!ne.

Define the abstraction map a ™1, and the decomposition map~™' as follows:

a™1(e) = TM_in:m if e = in:m

= TM_out:m if e = out:m

= A otherwise.

8~1(e) = SP_in:m If e = in:m

= SP _pkt_out:p if e = pkt_out:p

= SP _ack_in:b If e = · ack_in :b

=A otherwise.

8~1(e) = RP_out:m if e = out:m

= RP _pkt_in:p if e = pkt_in:p

= RP _ack_out:b if e = ack_out:b

=A otherwise.

8~~L(e) = TL_in:p if e = pkt_out:p

= TL_out:p if e = pkt_in:p

=A otherwise.

8~~L(e) = TL_in:b

= TL_out:b

=A

11.10.7 Proof of Correctness

-194-

if e = ack_out:p

if e = ack_in:p

otherwise.

In this section we prove the correctness of the implementation

(jATMI, sabs' <S;>;E{SP,RP,RSTL,SRTL}>' where sabs is defined by <Aabs' Valid™>, and SSP,

SRP' SRSTL' SsRTL are defined by <ASP, ValidSP>, <ARP' ValidRP>, <ARSTL' ValidTL>, and

<ASRTL' Valid1L>, respectively.

Invariance

The correctness of the transmission module implementation depends only on the

invariance of the following:

(1) q
8

b5(inq) = qSP(inq) /\ q
1
bs(outq) = qRP(outq)

(2) q8p(outq) < qRP(inq) S q8p(inq).

(.;()ndition (1) is the abstraction relation AbsTMi(q), and states that the abstract

transmission module's inq is identical to the inq for the send protocol module, and that

the abstract transmission module's outq is identical to the outq for the receive protocol

module. Condition (2) is Lemma 11.4 below, and says that the receive protocol module's

inq is always an extension of the send protocol module's outq and a prefix of the send

protocol module's inq.

Condition (2) is not inductive as stated, and must be strengthened to permit an

inductive proof of invariance. We therefore define the implementation invariant

lnv™1(q) by

lnv™1(q) = Rep™1(q) /\ Abs™1(q),

where Rep™1(q) is the representation invariant and Abs™1(q) is the abstraction relation.

The abstraction relation is:

Abs™1(q) = q8bs(inq) = q8p(inq) /\ qabs(outq) = qRP(outq).

The representation invariant Rep™1(q) is defined as follows:

Rep™1(q) = Queue(q) "(Start(q) V Send(q) V Flip(q) V Ack(q)),

where

-195-

and the formal definitions of Start, Send, Flip, and Ack will be given below. This

invariant says that, at any instant of time, the histories inq and outq tor the send and

receive protocol mc;>dules satisfy certain prefix relationships captured by the predicate

Queue. In addition, the transmission system is always in one of four kinds of states,

corresponding to the four predicates Start(q), Send(q), Flip(q), and Ack(q). The

situations covered by these four predicates, and how they evolve during execution, will

now be described.

In a state that satisfies Start, the send and receive protocol modules have the same

sequence number, the send protocol module's outq and the receive protocol module's

inq are identical, and no new packets or acknowledgements are currently in transit over

the transmission lines. The predicate Start is satisfied by all initial states.

States satisfying Start give rise to states satisfying Send when there is an

unprocessed message at the send protocol module that has been output to (but

possibly lost by) the transmission line RSTL. In a state that satisfies Send, the send and

receive protocol modules have the same current sequence number, the outq of the send

protocol module and the inq of the receive protocol module are identical, there is an

unprocessed message at the send protocol module, there may be packets containing

this message in transit over the transmission line SRTL, and there are no new

acknowledgements in transit over RSTL.

States satisfying Send give rise to states satisfying Flip when the first packet

containing an unprocessed message arrives at the receive protocol module. In a state

that satisfies Flip, the send and receive protocol modules have complementary current

sequence numbers, the inq of the receive protocol module is equal to the outq of the

send protocol module with the newly arrived message appended, and all packets in

transit over SRTL or acknowledgements in transit over RSTL are old in the sense that

they are for a sequence number that is not the one currently expected by the send

protocol module.

States satisfying Flip give rise to states satisfying Ack when the first

acknowledgement for the newly arrived packet is transmitted over RSTL. In a state

satisfying Ack, the send and receive protocol modules have complementary current

sequence numbers, the inq of the receive protocol module is equal to the outq of the

send protocol module with the still-unacknowledged message appended, all packets in

· 196 ·

transit over SRTL are old, but there may be new acknowledgements in transit over

RSTL.

To complete the cycle, states satisfying Ack give rise to states satisfying Start

when the first new acknowledgement is received by the send protocol module.

For the formal statement of these predicates, it is convenient to define some

auxiliary predicates, which describe possible states of the transmission lines SRTL and

RSTL.

The predicate SRTL_old is true of a state iff all packets in the SRTL transmission line are

old, in the sense that they are for the opposite sequence number than the one currently

expected by the receive protocol module.

SRTL_old(q) = {Vn< lqSRTL{inq-outq)l}(qSRTL{inq-outq){n){sn) * qRP{sn))

Similarly, the predicate RSTL_old is true of a state iff all acknowledgements in the RSTL

transmission line are old, in the sense that they are for the opposite sequence number

thAn th~ one expect~ by the ~nc:f p.r,:,tocol module.

RSTL_old{q) = {Vn < lqRSTL {inq-outq)l)(qRSTL {inq-outq)(n){sn) * qSP{sn))

The predicate SRTL_new is true of a state iff the SRTL transmission line queue consists

of a (possibly empty) sequence of old packets, followed by a (possibly empty) sequence

of new packets, each of which contains the first unprocessed message held by the send

protocol module.

SRTL_new{q) = (3m < lqSRTL(inq-outq)l)(Vn < l<lSRrL{inq-outq)I)

((n < m - qSRTL {inq-outq)(n)(sn) * qRP(sn)) A

{n > m - qSRTL(inq-outq)(n) =

<msg: qSP(inq-outq)(O), sn: qRP(sn)>))

Similarly, the predicate RSTL_new is true of·a state iff the RSTL transmission line queue

currently consists of a {possibly empty) sequence of old acknowledgments, followed by

a (possibly empty) sequence of new acknowledgements.

RSTL_new(q) = (3m < lqRSTL{inq-outq)l)(Vn < lqRSTL(inq-outq)I)

((n < m - qRSTL (inq-outq)(n) * qSP(sn)) A

(n > m - qRSTL {inq-outq){n) = qSP(sn))).

-197 ·

The formal definitions of the predicates Start, Send, Flip, and Ack are as follows:

Start(q) = q5p(sn) = qRP(sn) " qsp(outq) = qRP(inq) A

SRTL_old(q) " RSTL_old(q)

Send(q) = qSP(sn) = qRP(sn) "q8p(outq) < q8p(inq) "qSP(outq) = qRP(inq) A

SRTL_new(q) A RSTL_old(q)

Flip(q) = qSP(sn) * qRP(sn) A Qgp(outq) < qSP(inq) A

(qgp(outq))qSP(inq-outq)(O) = qRP(inq) A

SRTL_old(q) A RSTLold(q)

Ack(q) = q8p(sn) -:1: qRP(sn) " qsp(outq) < qSP(inq) "

(qSP(outq))q8p(inq-outq)(O) = qRP(inq) A

SRTL_old(q) A RSTL_new(q).

We now consider the proof that lnv™1(q) is invariant.

(Basis): F (\'qEStates™1)(1nit™1(q) - lnv™1(q)).

If q is an initial state then all queues are empty and the sn components of the state of

both the send protocol module and the receive protocol module have value false. It Is

easily verified from this that Abs1M1(q) "Queue(q) "Start(q) holds.

(Induction): F (\'q,rEStates™', eEEvents™1)(Trans™1(q, e, r) - (lnv™1(q) - lnv™1(r))).

Suppose that lnv™1(q) holds and that Trans™1(q, e, r) holds.

We first examine the problem of showing that Abs ™1(,) holds. Abs™'(,) is easily

seen to be true, since the only events that affect components of the state upon which

Abs™' depends are the events in:m and out:m. Comparison of the definitions of

Trans™, Trans8P, and TransRP shows that the events in:m and out:m maintain the

desired correspondence between the abstract module state and the states of the send

and receive protocol modules.

To see that Queue(,) holds, note that the definitions of TransSP and TransRP imply

that the inq and outq components of the states of the send and receive protocol

modules can only change in one of the following two ways:
- A new message is appended to the end of inq.

- The first element of inq-outq is appended to the end of outq.

Neither of these two kinds of changes can cause outq not to be a prefix of inq, and thus

Queue(,) must hold.

- 198-

To show that Start(,) v Send(,) v Flip(,) v Ack(r) holds, we claim that all events

preserve the truth of the predicates Start, Send, Flip, and Ack, except in the following

cases:

- If Start(q) is true and e = pkt_out:p, then Send(r) is true.

- If Send(q) is true and e = pkt_in:p, with p(sn) = qRP(sn), then Flip(,) is true.

- If Flip(q) is true and e = ack_out:b, then Ack(r) is true.

- If Ack(q) is true and e = ack_in:b, with b = qSP(sn), then Start(,) is true.

It is a straightforward, but tedious process to verify the truth of this claim by exhaustive

case analysis.

The following consequence of the invariance of Inv TM1(q) is the crucial fact used in

the maximality and validity proofs below.

Lemma 11.4 - The following are invariant for the transmission module implementation:

(a) qsp(outq) S qRP(inq)

(b) qRP(inq) s qSP(inq)

Proof - The invariance of Start(q) v Send(q) v Flip{q) v Ack(q) implies the invariance of

(1) qRP(inq) = qSP(outq) v

(qgp(inq) > q6p(outq) A qRP(inq) = (.qSP(outq))qSP(inq-outq)(0)).

Suppose the first disjunct of (1) holds, that is qSP(outq) = qRP(inq). Then (a) is

immediate. The invariance of Oueue(q) implies that q8p(outq) < qSP(inq), thus yielding

(b). Now suppose that the second disjunct of (1) holds. It is a fact about finite

sequences that if s, s' are finite sequences, and s > s ', then s > s 'm, where m =

(s - s ')(0). This fact permits us to conclude, from the second disjunct of (1), that

qSP(inq) > (qSP(outq))qSP(inq-outq)(0) = qRP(inq) > qSP(outq), yielding (a) and (b). I

Maximality

The maximality verification condition is:

I= (VqEStates™1, eEEventsTM1)(1nv™1(q) A EnabledSP(q, e) A EnabledRP(q, e) A

EnabledSRTL(q, e) A EnabledRSTL(q, e)

- Enabled8bs(q, e)).

Examination of the definition of Trans™ shows that Enabledabs(q, e) is identically true

unless e = out:m. Thus it suffices to show that, for all q E States™' and all m € Msgs, if

lnv™1(q) and EnabledRP(q, out:m) hold, then Enabledabs(q, out:m) holds as well.

-199-

Suppose now that lnvTM1(q) and EnabledRP(q, out:m) hold. It suffices to show that

(1) qSP(inq) > qRP(outq)

holds, for then the assumption that lnv™1(q) (and hence Abs™1(q)) holds implies that

q
8

b
5
(inq) > q

8
b

5
(outq) holds, which in turn implies that Enabledabs(q, out:m) holds.

By definition of EnabledRP(q, out:m), we know that

(2) qRP(outq) < qRP(inq) A qRP(inq-outq)(0) = m

holds. Informally, if e = out:m, then m must be the first message in the receive protocol

module's inq, that has not yet been transferred to its outq. The truth of (1) follows from

(2) and Lemma 11.4 (b). I

Validity

To prove that the validity verification condition holds for the transmission module

implementation, we use Corollary 1.4. We use the well-founded partial ordering < on the

set {SP, RP, RSTL, SRTL} that includes exactly the pairs SRTL < SP, RP< SP, and

RSTL < SP. Under this ordering, hypotheses (1) and (2) of Corollary 1.4 are as follows:

{fMil) · CompTMI t= ffGuai-SrJSP A (GuarR::-MRP A ffGuarTLJSRTL A IGuarTLJRsn -

(Guar™Jabs

(TMl2) Comp™' I= (GuarTLlsRTL A ffGuarRPjRP A (GuarTLIRsTL - [RetySP)SP.

These two conditions capture abstractly the important relationships between the validity

conditions of the various modules.

We now· prove that (TMl1) and (TMl2) are consequences of the module

specifications.

Lemma 11.5 - Condition (TMl1) holds for the transmission module implementation.

Proof - Assume Comp™' and (Guar8'iSP and (GuarA'iRP' Using the definition of

IGuar8PjSP, we have

D(VsESeq[Msgs])(s < NowSP(inq) - ◊(s < NowSP(outq))).

From this and Lemma 11.4 (a), we obtain

D(VsESeq[Msgs])(s ~ NowSP(inq) - O(s < NowRP(inq))).

Using the assumption (GuarRP]RP gives

D{VsESeq[Msgs]){s < NowSP(inq) - O(s < NowRP(outq))).

From an application of the invariance of AbsTMr, we conclude

• 200-

□(VsESeq[Msgs])(s < Now abs(inq} - ◊(s :s; Now abs(outq))). I

The proof of condition (TMl2} makes use of the following lemma, which expresses

the principle that guided our choices for the definitions of the various Xmit and Dlvr

formulas in the specifications above.

Lemma 11.6 - The following hold for the transmission module implementation:

t= ffXmitSP(p}ffSP ... ffXmit1L(p}DSRrL

t= ff0Ivr5P(b)B8P - ffDlvr1L(b)DRsTL

t= ffXmitRP(b}DRP - ffXmit1L(b}BRsTL

t= ffDlvrRP(p}DRP - (DlvrTL(p})SRTL'

Proof - Straightforward from the module specifications and the definition of the

decomposition map .4 ™1• I

Lemma II. 7 - Condition (TMl2} holds for the transmission module implementation.

Pro"'f ~upp~o thot CompTMI "ValidTLu tr\/ar...iRPll ..,"d tr\/-,li,.fTL11 held • - • "'"' --.- • .,. ' u. " »SRTL' ll 11 ,l..1 iRP• U • ,.. .IIRSTL '
Suppose, to obtain a contradiction, that -iffRelys~SP holds. From the definition of

(Rely8PDsP' we know that

(1) ◊(3p€Pkts)((XmitSP(p)D8P A O-iffDlvr5P(p(sn)))SP)

holds. That is, eventually a point is reached after which the packet p is transmitted

infinitely often, without intervening transmission of other packets, but infinitely many

acknowledgements for the sequence number contained in p are not received by the

send protocol module. From (1) and Lemma 11.6 we infer

(2) ◊(3p€Pkts)(RXmit1L(p))SRTL A o-i10Ivr8P(p(sn)))SP).

From (2) and the assumption that ffValid1LBSRrL holds, we deduce

(3) ◊(3p€Pkts)(llDlvr TL(p)BSRTL A O-i(Dlvr5P(p(sn)))s,J.

That is, packet p is delivered infinitely often to the receive protocol module, without

intervening delivery of other packets, but infinitely many acknowledgements for the

sequence number contained in p are not received by the send protocol module. From

(3), another application of Lemma 11.6 shows

(4) ◊(3pEPkts)(IDlv.-RP(p)DRP A □-i(Olvr5P(p(sn))JSP).

From this, an application of BValidR~RP shows

(5) ◊(3p€Pkts)(IXmitRP(p(sn})DRP A □-i(otvr5P(p(sn))J~-

That is, an acknowledgement for the sequence number contained in packet p is

- 201 -

repeatedly transmitted by the receive protocol module, but infinitely many

• acknowledgements for p are not received by the send protocol module. Applying

Lemma 11.6, [ValidTL]RSTL' and Lemma 11.6 again, shows that

(6) ◊(3pE:Pkts)([Dlvr8P(p(sn))] 8p /\ O,[DlvrSP(p(sn))]
8

p).

This is a contradiction, and we conclude that (TMl2) must hold. I

· 202-

Appendix Ill - Index of Definitions

abstraction map 41
~-abstraction map 113
1/0-abstraction map 87

abstraction operator 42
asynchronous 97
asynchronous product 84
behavior 40

9-behavior 113
1/0-behavior 88
primitive behavior 87

canonical projection 55,84
coherent 57
Completeness Theorem 120
compatible coupling property 108
composite machine 55
composition operator 43
computation 50

valid computotlon 52
consistent

9-consistent 114
1/0-consistent 88
locally 9-consistent 116

correct 44
!-correct 114

Correctness Theorem 58
cycle 64
decomposition map 41

!I-decomposition map 113
canonical decomposition map 85
1/0-decomposition map 107

determinate 118
quasi-determinate 119

embedding 85
enabled 86
event 38

input event . 84
null event 38
output event 84

event/state algebra 137
evolutionary 116
explicit 86

-203-

fair 87
future 115
history 49
history skeleton 51
1/0-system 86
implementation 44

~-implementation 114
implementation algebra 145
implementation invariant 56
Induction Principle 49
inductive 49
input-cooperative 86
interconnection 41

9-interconnection 114
embedded interconnection 145

interface 38
abstract interface 41
component interface 41
composite interface 41
~-Interface 113
1/0-interface 84
system interface 85

initial state set 48
invariant 49
isomorphic 107
maximality condition 56
machine 48

embedded machine 137
1/0-machine 86
PS-machine 88
system machine 86

null step 48
observation 40
orthogonal 120
possibilities mapping 59
preserves 87

strictly preserves 87
productive step set 88
reachable 49
regular 117
rely-/ guarantee-conditions 60
repeatedly 87
runs 86
satisfies 43
skeletal sequence 50

- 204 -

spans 50,51
specification 43

state-transition specification 52
subset specification 47

specification domain 113
specification language 43
state function 49
state-transition relation 48
translation 41
Translation Lemma 147
truncation 113
truncation-closed 113
validity condition 56

