
ltlT /LC,Sffl..361

TH£ COMPLEXITY Of' .:GIAN• LA¥OUT··• ..

MG CHAflt£L IOUTJM:fte,t0W..St .

This b/a11k page was i11serted to preserve paginatio11.

THE COMPLEXITY OF GRAPH LAYOUT AND CHANNEL ROUTING FOR VLSI

by

SANDEEP NAlJTAM BHATT

S.B. Massachusetts Institute of Technology
(1978)

S.M. Massachusetts Institute of Technology
(1980)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1984

© Massachusetts Institute of Technology 1984

Key Words: VLSI graph layout, Bifurcators, Divide-and-Conquer,
Fault-tolerance, Wire delay, Restructurable design,
Channel routing, density, flux, approximation algorithm

This empty page was substituted for a
blank page in the original document.

Acknowledgements

To Charles Leiserson for his constant encouragement and guidance. Ile taught
me how to express myself, and gave me confidence in my abilities. I was fortunate
to collaborate with Charles and with Tom Leighton, and to share in their boundless
enthusiasm, unrelenting flow of ideas, and friendship. Thanks also to Shafi Goldwasser
for graciously agreeing to serve on my thesis committee at the last minute.

To Ron Rivest for his support and gentle guidance through my years in graduate
school, and for inspiring me to pursue research in algorithms. Mike Sipser and Christos
Papadimitriou stimulated my interest in theory further, Mike with his characteristic
knack of making every argument appear beautiful, and Christos with his natural
ebullience.

Life would have been deadly dull without my fellow sufferers Keshav, Varghese,
and Vinod. Steve Trilling kept up my morale with his endless repertoire of one-liners.
This document would never have been prepared without all his help. Benny Chor,
Stavrcs Cosmadakis and John Mitchell made ever. technical discussions pleasant.
Arline, Andy, Flavia and Ray helped maintain my sanity over the years.

To Inna for her warm and steadfast friendhip, and to Susan Landau and Neil
Immerman who have helped me in so many ways.

It has been my good fortune to be part of so many families. The Schecters and
the Lymans and Mumpuc have been wonderfully supportive and warm. Thank you for
being so special.

To Ravin and Swati who will always be concerned.

To Papaji and Mummy who make everything worthwhile.

TABLE OF CONTENTS

Abstract
Acknowledgements
Table of contents .

1. PERSPECTIVE .
1.1 The complexity of VLSI graph layout
1.2 The complexity of channel routing .
1.3 Overview

2. ISSUES IN VLSI GRAPH LAYOUT
2.1 The layout model
2.2 Elementary bounds on layout area
2.3 Layouts based on separator theorems
2.4 Eight VLSI graph layout problems .

3. LAYOUTS FOR TREES
3 1 T ,;:iymd<: fnr rrnnplete hiri:>.ry trees

3.2 Layouts for arbitrary binary trees
3.3 Planar layouts for trees
3.4 The complexity of minimizing e<lge lengths
3.5 Assembling complete trees
3.6 Collinear layouts and two-color bisectors
3.7 Assembling arbitrary trees

4. THE GENERAL FRAMEWORK
4.1 Combinatorial lemmas
4.2 Decomposition trees and bifurcators

4.2.1 Special cases
4.3 Balanced decomposition trees ..
4.4 Embeddings in the tree of meshes
4.5 Layouts for the tree of meshes ..

5. SOLVING THE LAYOUT PROBLEMS

4

2
3
4

6
8

. 11

. 12

. 13

. 13

. 14

. 15

. 18

. 24

. 25

. 28

. 31

. 35

. 38

. 40

. 43

. 46

. 47

. 51

. 53

. 54

. 56

. 60

. 63

6. THE CHANNEL ROUTING PROBLEM
6.1 Manhattan routing within channels
6.2 Bounds on channel width
6.3 Bounds for other wiring models . . .

7. AN APPROXIMATION ALGORITHM FOR MANHATTAN ROUTING
7.1 Channel flux
7.2 An approximation algorithm for top-to-bottom nets .
7.3 Running time analysis
7.4 The channel routing algorithm

8. CONCLUSIONS, EXTENSIONS AND OPEN PROBLEMS .
8.1 Problems in graph layout .
8.2 Problems in channel routing

BIBLIOGRAPHY

5

. 72

. 73

. 75

. 77

. 79

. 79

. 82

. 89

. 90

. 96

. 97

. 98

100

CHAPTER 1

Perspective

Advances in integrated circuiL technology have had a revolutionary impact on computer

system design. A chip today integrates far greater sophistication and computing power than

ever before. Fabrication processes have progressed rapidly so that chips with one million com

ponents are a reality, and enthusiasts predict chips with upto one hundred million components

within a rler.ade. TndPed, it, is r-x!w,•l,r,d l.hnf. if' iori he~m r-lt·hinr; f,,,,hnir:""" h""om,, vi•ihln

for "printing" chips directly, then minimum feature sizes would drop by a factor of ten, thus

allowing a hundred-fold increase in the number of' components on a chip.

More significantly, the new technology encourages custom design of special purpose rn

tcgrated systems for solving very large scale sophisticated problems. No longer is it necessary

to use a single conventional architecture for solving diverse problems. Instead, the computa

tional structure of a problem may be mapped directly into hardware. This has shifted the

emphasis from searching for algorithms, necei;sarily convoluted to suit a given architecture, to

efTicient hardware design suited to individual problems.

While< this emphasis on greater design flexibiliLy has opened up new directions in cornput-

ing, a number of dilncult problems must be addressed before Lhc emerging technolo1~ies can be

c!Tcctively exploited. Probably t,hc most significant development in casing the awesome task

of designing and implementing large systems has been Uw sLancbrdizntion of design rules and

the widespread use of' standard building blocks. The design methodology expound,,d by Mead

and Conway [55], and the rlevcloprrn,nt of building blocks such ns gate-arrays, PLA's, and

llOM's has helped shift the emphasis in circuit design from the exclusive domain of electronics

to a higher, rnorP functional level, whPre aspects of circuit layout. may be treated in purely

6

PERSPECTIVE 7

geometrical terms.

This thesis examines various aspects ol' the circuit, layout problem. We address que8tions

such a8: why is circuit layout difncult, what properties of a circuit critically determine the

quality of its layout, and what kinds of heurbtics can help solve layout problems efficienlly?

These questions arc motivated by the need for general techniques for laying out very large

circuils. Such basic issues must be addressed before building any automatic or computer-aided

design and layout system.

Although the circuit layout problem is not new, progress has been painfully slow. The

proliferation of diverse technologies and concerns has only exacerbated the layout problem.

On the one hand we desire to minimize layout area, signal delays, and power dissipation, while

on the other hand we need to increase reliability by increased redundancy. In addition we

require that custom circuits be assembled using standard configurable or restructurable chips

as building blocks. It is not at all clear whether these diIIercnt requirements arc compatible or

necessarily contradictory.

Part I presents a general theory for VLSI graph layout. Not only does the theory identify

strncturnl properties of circuits that critically determine the quality of layouts, but also provides

techniques for solving various layout problems. Perhaps the most significant result that emerges

is a general framework for solving diverse problems in a simple and uniform manner. In

particular, the unified framework provides a layout Lcchniquc which is suitable for custom

layout, and at the same time is efiicienL wiLh rcr-;ard to area, delay, and fault-tolerance. Part I

consists of ChapLers 2 through 5.

Part II examines the channel routing problem. Algorithms for channel routing form the

basis of many cxistinr-; auLornatic layouL systenrn. AlLhough this problem has received wide

attention over the last decade and a number of heuristic algorithms have been proposed, none

of these is guaranteed to always dcLermine dlicienL routings. Approaching this problem from

a theoretical viewpoinL, we characterize completely the properties that make chanrwl routing

dif!iculL. Moreover, we provide a novel, lincar-tirr1c algorithm that is always guaranteed Lo find

near-optimal solutions. Chapters 6 and 7 con8titute Part II ol' this thesis.

8 PEHSl'ECTIVE

Although the two parts of' the thesis investigate different problems, they share a common

underlyini; philosophy. We begin with a theoretical characterization of the properties that make

the problems difficult. In the next stcp, algorithmic techniques arc developed for exploiting

these properties to solve the problems. Although the results in their prcs<'nt form arc primarily

theoretical in nature, the techniques provide new insights and approaches for VLS[layout. It

is likely that some of' the techniques can be adapted for use in practice.

The remainder of this chapter discusses the two parts of the thesis m more detail, and

concludes with an outline of the thesis.

1.1. The Complexity of VLSI Graph Layout

In recent years a number of' interconnection networks have been proposed for solving diverse

problems. For example, one- and two-dimensional arrays of processors arc naturally suited to

vector and matrix computations [50]. Binary trees arc particularly attractive because of their

logarithmic depth and have been proposed for a variety of applications including raster graphics

[27], databases [75], and direct execution of applicative programming languages [54]. The

mesh of trees [19, 44, 57] combines arrays and trees in an elegant manner. By virtue of their

sophisticated structure, networks such as the shufne-cxchange network [73], cube-connected

cycles network [63], and fast-fouricr transform network [76], in which recursive algorithms

arc programmed conveniently in a natural manner, arc computationally more V<'rsatile and

powerful than the simpler array structures.

Can we exploit the power of' sophisticated nPlworks in VLSI? This question becomes

increasingly important, as problem sir.cs, and Lhe number of proces:,ors incrc:we. It might

be relatively simple to fit a thousand processor array on one chip, but can we fit a thousand

processor shufllc-exehange network on one chip? Moreover, even if Lhc shufilc-exchange network

fits, will its performance, determined. by the clockperiod or longest delay, be comparable to the

array? To answer such questions, and to compare the relative merits of different networks, it

is necessary to develop a general theory for VLSI graph layout.

Hcsearch in layout theory was initiated by Thompson [79, 80] who proposed a formal model

Tim COMPLEXITY OF GRAPII LAYOUT 9

for VLSI graph layout and investigated area-time tradco!Ts for computing certain functions.

Using inf'ormation-trarrnf'cr arguments, he obtained strong lower bounds on Lhe layout areas of

graphs such as the shuflle-exchangc and cube-connected cycles graphs. Subsequently, Leiserson

[1!J, 50] and Valiant [83], focussing on the problem of minimizing layout area, independently

developed a divide-and-conquer layout strategy for general classes of graphs. Using elegant

combinatorial arguments, Leighton [10, 11] showed that the bounds of Leiserson and Valiant

were the best possible in Lhat each cbss contained graphs for which the bounds were, upto

constant factors, op Li rnal. For some graphs however, the bounds were very weak.

Layout area is not the only consideration in choosing one layout over a multitude of

possible layouts. In practice, we desire to fabricate small, inexpensive, and ea.~ily testable chips

which compute quickly and reliably. A large number of' important engineering issues need to

be considered in fulfilling these (possibly conflicting) requirements.

Propagation delays across long wires critically affect the performance of' a circuit layout. In

pipelined or systolic systems, long delays deterinine the clockperiod and overall performance of

the system. SincC' propagation delay can be reduced by decreasing wire length, it is important to

make Lhe longest wire in the layout as short as possible. Another way to reduce the propagation

delay across a long wire is by increasing the size of' the transistor that drives the wire; by

carefully adjusting transistor sizes to match wire lengths, the clockpcrio<l can be dramatically

reduced. Since wire delays determine the efliciency of' a chip, it is imperative that techniques

to minimize delay be developed within a general theory for VLS[layout.

Fault, tolerance is another important design consideration. Fabrication processes are prone

to errors so that every wafer invariably contains a small number of defects. Even if a wafer

contains a number of defective processors, it may still be possible to use the wafer by configuring

wires around the defective processors. This may, f'or example, b(~ performed by laser restruc

turing techniques [61]. This ability Lo wire together processors sekctively has considerable

impact on sytem design. For example, how should a thousand processor wafer be designed so

that a two-dimensional array can be rcaliwd using all the good processorn, no matter how the

ddcctive processors are distributed?

Another major concern is the problem of assembling large systems. llesearchcrs have

10 l'EltSf'ECTIVE

proposrd networks with as many as one million processing elements [54]. Such systems are

c!Parly too large to fit on a single chip. \'Vhenever any systrm is largrr than a singlP chip,

it is necessary to partition the system among several chips which can be assemb!Pd at the

printed circuit (or chip carrier) level. What is thr most effective way to partition a large

system among several chips? This question is pressing becausr although fabrication technology

has been advancing at a rapid pace, the technology for packaging chips has been crawling in

comparison: current projections indicate as many as one hundred million components per chip

but not more than two hundred off-chip pin connections.

The economics of fabrication technology dictates that it is expensive to make one chip,

but cheap to make many copies. For this reason, manufacturers of custom chips have been

encouraged to make configurable designs such as gate-arrays, ROM's, and PLA's. The entire

chip is manufactured, except for one mask. Given a desired configuration of the chip, a

final layer of metallization connects up the circuitry in that way. Most of the desigr. and

fabrication costs are thus factored over several chips. Similarly, restructuring techniques allow

a chip to be modified after fabrication. For example, "diode-busting" is used to configure

PROM's (programmable read only memory) after fabrication. More recent and exciting is the

prospect of "laser welding" by which connections between wires can be either made or broken

after fabrication by high-intensity laser beams. Such techniques further encourage configurable

design of VLSI chips. Thus, we are led to consider how to design efficient layouts which may

be configured to realize, for example, arbitrary binary trees or arbitrary rectangular arrays.

Motivated by the engineering issues outlined above, Part I develops a general framework for

VLSI graph layout. Within this framework all the diverse concerns mentioned above are dealt

with in an efficient and uniform manner. The framework is based on a divide-and-conquer

strategy for graph layout which differs significantly from the divide-and-conquer strategy of

Leiserson [49, 50] and Valiant [83]. The improved strategy is based on the notion of graph

bifurcators introduced by Leighton [42], and provides universally close bounds on important

cost functions such as layout area and propagation delay. The results of Part I are based on

the papers of Bhatt and Leiserson [8, 9], and Leighton [42]. In addition, the resulta of Chapters

4 and 5 appear in [7].

T!llo; COMPLEXITY OF CIIANNl~L ROUTING l l

1.2. The Complexity of Channel Routing

Although the graph layout problems considered in Part [provide new insights and paradigms

for VLSI layout, they arc nonetheless abstractions of' layout problems encountered in practice.

Part II focuses on a specific problem confronting current automatic layout systems.

Channel routing plays a central role in automated layout systems. Most layout systems

proceed by first placing modules on a chip, and then wiring together terminals on different

modules that should be electrically connected. To solve the latLcr wiring problem, the chip

is heuristically partitioned into a set of rectangular channels, and each channel is assigned a

set of wires which are to pass through it. This effectively reduces a diflicult "global" wiring

problem to a set of disjoint (and presumably easier), "local" channel routing subproblems.

An instance of the channel routing problem is specified by a set of terminals located at

fixeu 1im,iLiuus un Lwo horiwuLai Lrat:k::;. F:ad1 seL 01 Lcrrninals with foe same land constitutes

a net which must be electrically connected by wires running in horizontal tracks and vertical

columns. Figure 1. l shows a channel with six nets. Horizontal and vertical wire segments are

placed on two different layers of interconnect. The objective is to wire up all nets in a way

that minimizes the channel width, which is the number of horizontal tracks used for wiring.

For example, Figure 1.2 shows a minimum width wiring of the channel in Figure 1.1.

The channel routing problem has been intensively studied for over a decade, and many

heuristic algorithms have been proposed for solving the problem [l, 2, ll, 12, 18, 20, 21, 34, 35,

36, 38, 51, 60, 62, 67, 68, 81, 8,1]. RecenLly, Szymanski [77] showed that the general problem is

NP- complete, and with Yannakakis [78] showed thal the problem is NP- complete even when

every wire connects cxacLly two terminals. This might explain why the fast heuristic algorithms

developed t.lrns far either produce arbitrarily bad solutions in many cas~s and/or completely

fail on other instances.

Part II of the thesis presents a linear-time algorithm which always produces a near-optimal

solution. This algorithm is based 011 the key notion of channel flux which is introduced rn

Chapter 7. The algorithm originally appears in a paper by Baker, Bhatt, and Leighton [3].

12 PEl{SPECTIVE

6 2. 3 I '+- s-
I I ' I ' ' ' ' ' I I I I I

I I I I
I I I
I I I I
I I I
I I I I
I I

I I I
I I I I I I • • • • I • .. • • 4 I 6 3 z. 4ss

Figure 1.1: A channel with six nets.

6 2 3 4 5

4 1632..'l-55

Figure 1.2: A minimum width routing.

1.3. Overview

The next four chapters are devoted to VLSI graph layout, and form Part I of the thesis.

Chapter 2 outlines Thompson's model for VLSI layout, reviews previous research, and describes

important layout probl.ems in a formal setting. Chapter 3 focuses on layouts for the simplest

of networks: binary trees. In addition to presenting new layouts with improved bounds on edge

lengths, the complexity of producing optimal layouts is examined. The new layout strategy

motivates the paradigm for general graph layout presented in Chapter 4. Finally, Chapter

5 shows how the new layout paradigm can be used to efficiently solve the important layout

problems of Chapter 2.

Part II of the thesis consists of Chapters 6 and 7. Chapter 6 describes the channel routing

problem, its use in automatic layout systems, and briefly reviews previous research. Chapter 7

introduces the concept of channel flux and presents a linear-time approximation algorithm for

Manhattan routing.

In conclusion, Chapter 8 summarizes the major results of both parts and outlines a number

of important, unresolved problems.

CHAPTER 2

Issues in VLSI Graph Layout

The first three sections of this chapter introduce the layout model developed by Thompson

[79, 80] and briefly review previous research in VLSI graph layout. In particular, we discuss the

layout strategy of Leiserson [,rn] and Valiant [8:3] and note that bounds on layout area based on

separator theorems can be very different from the actual minimum layout area. The remainder

of Lhis chapter is devoted to formalizing a number of layout <}l!Pstions mnt-.iv::itNI hy 1'nti11~Prin~

considerations.

2.1. The Layout Model

In order to cast VLSI layout problems within a mathematical framework, Thompson [79,

80] developed a formal model J'or VLSI graph layout. The model is based on, and is consistent

with, the VLSI design rules e:stablishcd by Mead and Conway [55]. It is also similar Lo the

widely used Manhattan wiring model. In Lhe Thomspon grid model, a layout for a graph is

characterized as an embedding within a two-dimensional grid. A two-dimens£onal grid is a

collection of horizontal and vertical tracks spaced apart at unit intervals. 1\ layout for a graph

C is specified by an embedding which assigns nodes of G to points in the grid where horiwntal

and vertical tracks intersect, together with an (incidcnce-prcsc,rvin1;) as\;ignrncnt of the edges

ol" G to paths in the grid. The paths of the layout arc restricted Lo follow along grid tracks

and arc not allowed to overlap for any distance (alt.houµ;h a vertical palh i,egrnent may cross

a horizontal path segment). !11 addition, the pnths may not cross nodes Lo which they arc not

adjacent.. For obvious reasons, we rest.rid our aUcnLion to graphs in which 110 node has dc!gree

14 ISSUES IN VLSI Cl{Al'll LAYOUT

Figure 2.1: A layout for K 4.

greater than four. As an example, Figure 2.1 shows a layout. for the complete graph on four

nodes.

Remark. The results of this thesis extend to variants and generalizations of the 'Thomspon

grid model. For example, graphs with bounded valence greater than four may be laid out by

mapping each node to a region of the grid, instead of a single grid point. The results are also

applicable to networks with large processors. Techniques for dealing with large processors are

described more fully in Chapter 5.

2.2. Elementary Bounds on Layout Area

Although there are a variety of important engineering considerations in choosing one layout

for a graph over other possible layouts, the best understood, and perhaps the most desirable

cost measure to minimize is layout area. The area of a layout is most naturally defined as

the area of the "bounding-box" around the layout, and equals the product of the number of

vertical tracks and the number of horizontal tracks that contain a node or wire segment of the

graph. For example, the layout of Figure 2.1 has area 15. This is not the minimum possible;

there is another layout with area 9.

How much area does an N-node graph require? Clearly, the area cannot be less than

. the number N of nodes. On the other hand, by embedding nodes at equally spaced intervals

along a line, and using a distinct horizontal track for each edge (as shown in Figure 2.2), it is

clear that the area required for an N-node graph is no greater than O(N2). These bounds are

independent of the structure of the graph and hold for all N-node graphs. In general, however,

the minimum area needed to lay out a graph depends on the graph.

LAYOUTS BASED ON SEl'AllATOlt TIIEOH.EMS 15

l
O(N)

~----O(Nl------

Figure 2.2: Every N -node graph can be laid out in O(N 2)

area.

Thompson [79, 80] identified bisection width as an important property of graphs that affects

minimum layout area. The bisection width of an N-node graph is the minimum num_ber of

edges which must be removed from the graph in order to disconnect it into two subgraphs

each of size at least lN /2J. Thompson showed that, up to a constant factor, the layout area

can be no less than the square o~ the bisection width. Therefore, if the bisection width for

a graph is known, a lower bound on area can be easily computed. By showing that certain

computationally powerful graphs such as the shuffle-exchange graph have large bisection width,

Thompson showed that these graphs require large area. In fact, Thompson extended this

observation to obtain area-time tradeo!Ts for computing certain functions.

Leighton [40, 41] identified crossing number as another general property that affects layout

area. The crossing number of a graph is defined as the minimum number of edge crossings in

any drawing of the graph in the plane. It is easy to see that the crossing number of a graph is a

lower bound on layout area. Using more sophisticated arguments for special graphs, Leighton

also directly obtained lower bounds on total wire length (the sum of the lengths of the wires

in a layout), which of course is a lower bound on layout area. These techniques are heavily

dependent on the recursive structure of the special graphs and are generalized in [7].

2.3. Layouts Based on Separator Theorems

Leiserson [49, 50] and Valiant [83] investigated general properties that provide effective

upper bounds on layout area. They independently developed a divide-and-conquer strategy for

graph layout and showed, for example, that every N-node tree can be laid out in O(N) area

lfi ISSUES IN VLSI GRAl'II LAYOUT

and tbat every N-node planar graph can be laid out in O(N lg2 N) area. Their technique is

based on the notion of separator theorems for graphs.

Definition: A class of graphs which is closed under the subgraph relation is said to have

an J(x)-.~eparator theorem if there exist constants a and b where O < a ~ 1/2 and b > 0

such that every N-node graph in the class can be partitioned (by the removal of at most

bf(N) edges of' the graph) into disjoint subgraphs having a' N and (1 - a')N nodes where

a< a'< 1- a. - -
Given a class of graphs for which a separator theorem is known (e.g., trees have a 1-

separator theorem [52] and planar graphs have a y'x-separator theorem [53]), it is possible to

construct a layout for any N-node graph in the class by using a simple divide-and-conquer

approach. For example, Leiserson [,19, 50] proved the following upper bounds on layout area.

xa-separator theorem

a< 1/2

a= 1/2

a> 1/2

Layout Area

O(N)

O(Nlg2 N)

O(N2o)

Remark. The layout procedure assumes that a complete recursive decomposition of the graph

is {';iven. If a complete decomposition is not given, then there is 110 known polynomial time

algorithm which achieves the upper bounds on area. This severely limits the applicability of

scpawtor-bascd layout strategics to classes of graphs (such as trees or planar graphs) for which

decompositions arc easily computed.

Ilow good are the preceding area bounds? Thompson [7!l, 80] and Leighton [10, H] showed

that none of the bounds can be improved. More precisely, they showed that within each class

there is a graph for which the bo11nd is optimal. But this does not mean that the bounds arc

optimal for every graph within a class. In fact, while the bouHds are existentially optimal,

i,h('y arc not universally optimal. For example, an N-nodc square grid can b(~ laid out in area

linear in N, but since the rninirnum separator theorem /'or lhe class of square grids is ft, the

LAYOUTS BASED ON SEPARATOR Tlllm1rnMs 17

best bound obtainable by separator-based layouts is O(Nlg2 N), which is ofT by a factor of

O(lg2 N) from the optimal. Of course, since N-node graphs require area at least N, Lhc bounds

for graphs wiLh x 0 -scparator Lheorems, o: < 1/2, arc asymptotically universally opLirnal.

For graphs with larger separator Lheorcms, the discrepancy between the minimum layout

area and that given in the Lable can be much worse. Consider, for example, the N-node graph

SN which consists of N / lg N disjoint lg N-node expander graphs. An m-node expander graph

has the property that every subset of k nodes is linked by 0(min(k, m - k)) edges Lo them - k

nodes outside the subset.* The bisection width of such a graph is O(m), and hence Lhc minimum

separator theorem is 0(x). The existence of trivalent graphs that satisfy this defintion has been

known for a long time [28, 31]. In fact, almost all trivalent graphs satisfy this definition. Since

each lg N-node expander graph can be trivially laid out in O(lg2 N) area, the layout area of

SN is no greater than O(NlgN). However, Leighton [12] showed that the minimum separator

theorem for the class of graphs SN exceeds O(x/ lg2 x), so that Lhc area bound frorn the table

above is O(N2 / lg4 N), which is much worse than the optimal bound of O(N lg N).

Remark. Any class of graphs closed under the subgraph relation and containing SN must

also contain expander graphs. Hence, Lhe minimum separator theorem (as defined earlier) for

the class is E-)(x). Instead of defining separator theorems for classes of graphs closed under the

subgraph relation, it is more convenient (and general) Lo define separators for individual graphs

in terms of the subgraphs produced by its recursive decomposition. Using the less restrictive

(but more useful) definition, it is possible to show that SN has an O(N / lg N)-scparator. The

lg N-nodc expander graphs arc split in the upper levels of the decomposition and never appear

intact as subgraphs in the lower levels of' the decomposition. Leighton [12] proved that even

using the rnosL liberal definition, Lhc minimum separator for SN is at least 0(N / lg2 N). Any

bound on layout area for SN based on the minimum separator can Lhcrefore be no less than

O(N 2
/ lg 4 N).

Thus, while the divide-and-conquer strategy based on separator theorems gives existentially

*The original dPflnition of expander graphs is slightly difforent from that r;iven here. We adopt, lhis minor
variant because it, allows nodes of degree no greater than three.

18 ISSUES IN VLS[GRAP!l LAYOUT

optimal bounds, the bounds can be unacceptably poor in a universal sense. IL was the discovery

of such large discrepancies that led to the search for an alternative framework for VLSl layout.

Within the new framework presented in Chapter { we shall sec how these large discrepancies

arc overcome.

2.4. Eight VLSI Graph Layout Problems

As mentioned earlier, there arc many important considerations in choosing one layout over

a multitude of other possible layouts. The problems in this section are motivated by some

engineering concerns fundamental to circuit design and layout. Though not exhaustive, this

list covers most of the theoretical issues studied recently. Many of the problems are known

to be NP-Complete. The emphasis throughout this thesis is the development of a general

unif"ying framework for dealing with diverse issues in a uniform manner. Within the framework,

solutions to some problems are reasonably close to optimal. For other problems, good heuristics

are developed or suggested, and general bounds obtained.

Problem 1. Given a graph G, produce an area-efficient layout for G.

As mentioned before, minimizing area is a critical concern in VLSI circuit layout. In

addition to the work on area-efiicient layouts described in the previous section, Dolcv, Leighton,

and Trickey [22] have shown that determining the minimum layout area of a forest of trees is

NP-Complete.

Problem 2. Given a graph C, produce an area-efficient layout for C with minimax edge

length.

Besides area, speed is anothN critical !'actor in chip performance. Signals do not propagate

instantaneously across wires, and Lhc longer the wire, the longer the propagation delay. In

pipelined or systolic systems, the effect of propagation delays is even more dramatic. The

maximum delay determines the clockperiod, and h<'nce the Lhroughput, of" the system. To

maximize throughput we need to minimize the maximum delay. ln short, we must produce

layouts so that the longest <~dgc is as short as possible. The minimum, over all layouts, of' the

EIGIIT VLSI GRAl'II LAYOUT l'lWBLEMS 19

length of the longest edge is called the minimax edge length.

Paterson, Huzzo and Snyder [59] studied the problem of minimizing edge lengths for

complete binary trees. They showed that the minimax edge length of an N-no<le complete

binary tree is 0(,JR/ lg N). Adopting a difTerent strategy based on separator theorems, the

next chapter presents a general technique for bounding the maximum edge length of arbitrary

trees, while Chapters 4 and 5 exten<l the techniques to general graphs. The next chapter also

shows that minimizing the edge lengths of trees is NP-complete.

Problem 3. Gfoen a graph, produce an area-effici'ent layout m which each wire has

bounded delay in the capacitive model.

Although it is certainly true that propagation delay :i,cross a wire depends on the length

of the wire, there has been little consensus on how fast propagation delay grows as a function

of wire !Pnr:th. Thompson [79, RO] assnrncs prnpap;:d.ion dPhy to lw r•on<:hpt, inr!"!"""dent 0f

wire length. This might seem unreasonable given the ultimate speed-of-light limitation which

indicates that the delay increases linearly with length. The speed-of-light limitation, however,

greatly C'xaggerates the importance of wire delay in determining the speed of circuits. Mead

and Conway [55] take into account some ol' the electrical characLeristics of interconnecLions on

MOS integrated circuits, and emphasize the role of' wire capacitance in determining propagation

delay. Hccent analysis by Bilardi, Pracchi, and Preparata [l O] strongly supports the belief that

capacitive effeds play the predominant !'Ole in determining the speed ol' MOS circuits.

In a capacitive model, each wire is assumed to present a purely capacitive load to the

transistor that drives a signal across the wire. This load is proportional to the length of the

wire plus the area of tlw transistor that receives the signal. The delay is proportional to

this load divided by the area of' the driving transistor. By increasing the size of the driving

transistor it is therefore possible to bound Lhc propagation delay, independent of the length of

the wire. A second well-known techniq11c f'or reducing delay across a long wire is to "ramp"

the wire with a geometrically increasing scri()S or inverters [55]. The rrnmber or intermediate

drivers, and hence the dc,lay, is logarithmic in the length of' the wire, but an attractive feature

is that this process can be carried 011t without the nrl'd to resizr th!' original transistors in the

20 ISSUES IN VLSI GH.APll LAYOUT

circuit.

Of course, increasing the size of one transistor or introducing new transistors might force

some wires to be stretched to avoid the enlarged transistor area. In other words, decreasing

the delay across one wire might force an increase in delay over other wires. Leiserson [17] and

Mehlhorn [56] independently posed the question of whether or not the transistors in a layout

could be resized so that every wire in the layout has constant propagation delay. Harnachandran

[65] investigated the problem of introducing intermediate drivers along long wires to decrease

delays, but under the constraint that the topology of the layout remain unchanged. With the

restriction that wires can not be rerouted, she showed that logarithmic delay can be achieved,

but at the expense of squaring the layout area in the worst case. We allow the layout topology

to be changed, and obtain significantly better results.

Problem 4. Given a graph C, produce a layout for C with few wire cro.~sings.

ju1 untiesirabie feature of iayouts is the presence of a large number of wire crossings.

When two wires cross, they must be on different layers. For faster operation, and less power

dissipation, it is advantageous to maximize the total amount of wiring on a layer of low

resistance, e.g. the metal layer, while minimizing the wiring on a layer of high resistance,

e.g. the polysilicon layer. The net wiring on one layer may be reduced by laying wires on that

layer only just before and after two wires cross. If the number of wire crossings is small, the

number of contact-cuts which connect wire segments on di!Terent layers is small so that the area

of the layout is not blown up by the contact cuts which occupy large area. In addition, long

wires that arc crossed by many other wires arc susceptible to crm,s-talk when all the crossing

wires simultaneously carry the same signal.

The crossi"ng number of' a graph is dd1ned Lo be the minimum number of wire crossings in

any drawing of the graph on the plane. Leighton [10, 1 l] proved upper and lower bounds on

crossing numbers and then used the results to find bounds on layout area. Garcy and Johnson

[29] showed that determining the crossing mimber of bipartite graphs is NP-Complete.

EIGIIT VLSI Gll.APII LAYOUT l'IWBLEMS 21

Problem 5. Given a graph, produce an area-efficient regular layout for the graph.

Some design methodologies, most notably gate-arrays, require that processors be located

at fixed positions on a chip. In gate-arrays the processors arc placed in a grid pattern with

uniform spacing between processors adjacent along every row and column. Such layouts are

said to he regular. An important advantage of this design restriction is its flexibility: even ii'

the size of every processor is increased, the wiring between processors remains unaffected and

the total area remains proportional to the sum of the wire area (as computed with unit-size

processors) and the processor area. This is because only the '-/N' rows and columns containing

the N unit-size processors need to be expanded to accomodate the non-unit-size processors. In

non-regular layouts, every row and column might have to be expanded since there might be a

node in every row and in every column. Increasing the linear dimension of the processors by a

factor of s could result in an 0(s 2
) increase in layout area.

Previous dividc-and-r.onqucr layo11t strategics do not. !)roducc rcgnl~r layo111.s. Tff'ncc1 t.hpy

arc not useful in laying out circuits with non-unit-size processors. A good strategy for producing

regular layouts would solve the nagging problem of how to cope with variable-size processors.

Problem 6. Design area-efficient chips that can be configured to realize a large number

of graphs.

Because it is expensive to make one chip but cheap to make many copies, manufacturers of

custom chips have been encouraged Lo make configurable designs such as gate-arrays, llOM's

and PLA's. In such designs, the entire chip is prefabricated except for one layer. The customer

then specifics a configuration for the chip, and Lhc final layer of' metalization connects up

the circuitry in that particular w:ty. llcncc, rnusL of Lhe design and fabrication costs can be

factored over many custom chips. Similarly, the fast emerging laser-restructuring technology

[6'1] provides another economical way to customize chips after fabrication is complete. Laser

restructuring allows connecLions between wires to be made or broken after the chip has been

fabricated. In either case, it is desirable to design layouts that can be configured f'rom one of

a few basic patterns.

22 ISSUES IN VLSI CH.APlf LAYOUT

Problem 7. On a wafer which ha8 arbitrarily diBtributed defective cel/8, realize a given

graph on the good cell8.

In any fabrication process, it is expected that some of the processing cells will be defective.

In a two-dimensional array of cells on a wafrr in which defective cells arc arbitrarily distributed,

it may still be possible Lo use Lhc wafer by configuring wires around the defective cells. This

may, for example, be performed by laser restructuring techniques [fi1]. Given this ability to

isolate defective cells, it is important to consider how a graph may be realized on the remaining

good cells. This problem has received considerable attention recently [:33, 15, 69]. The problem

is similar to the general graph layout problem in the Thompson model but with the important

restriction that nodes of the circuit can only be mapped Lo a restricted set of nodes in the grid.

Problem 8. Given a graph G, a88emb/e G uBing the minimum number of copies of a

.single chip having Jew external pin connections.

A number of very large networks have been proposed in recent years for implementing

priority queues [18], for searching [5], for direct execution of applicative programming languages

[51], and for recognizing regular cxpresions [26]. Some of these networks arc Loo large to fit

on a single chip. For example, the tree-structured network of [51] is envisioned to contain

as many as one million processing clements. Clearly, such networks must be partitioned over

many interconnected chips, so that each chip realizes a small portion of the network.

The technology for packaging chips severely limits Lhe number of external pin connections

on a chip. While chips with over a million components arc forsecablc in the near future, no one

predicts a chip with over two hundred external pin connections. This poses a pressing problem

in assembling large networks of processors.

Even if a network could be partitioned so thaL each portion has only a few external

connections, it would be economically inf'e:u,ible Lo dcsit~n each chip individually. For insL:u1ce,

it would be prohibitively expensive to design one thousand different chips, each containing a

thousand processing clements, to assemble a network of' one !llillion processors. For this reason,

iL is necessary to assemble large systems using copies of' a f'ew configurabl1) or rcstructurablc

chips. The nexL chapter presents one solution to the problem of' assembling large trc~c structures

EIGIIT VLSI GRAPII LAYOUT PIWBLl~MS 23

using copies of a single, area-efficient, rcstruciurable chip with few external pin connections.

Within the new framework, dlicient solutions arc provided for each of these problems. fn

fact, a single layout simultaneously solves many of these problems elflciently. The framework

provides a two-step strategy for solving these problems. First, the graph to be laid out is

embedded within a very special network called the tree of meshes. For the tree of meshes it is

possible to solve all these problems efliciently. In the second step, therefore, :.t good layout for

the tree of meshes also solves these problems for the embedded graph.

CHAPTER :3

Layouts for Trees

A binary tree may not be the best multiprocessor organization, but it has been proposed by

many researchers for a variety of reasons. For example, a complete binary tree can be the major

component of a priority queue resource [18] and of a smart-memory raster graphics system [27].

A complete binary tree can also serve as a hardware structure for searching [5], for databases

[75], or for direct execution of applicative programming languages [51]. Browning [I 5] proposes

a complete binary tree for general-purpose multiprocessing, and two systems based on her ideas

arc being built at Caltech and Bell Laboratories.

Attention is also directed to binary trees which are not complete. Floyd and Ullman [15]

show that strings described by a regular expression can be recognized by processing elements

organized as the parse tree of the regular expression. Foster and Kung [25] have a similar

scheme based on the simple configurable layout developed by Leiserson [50]. There are other

proposals, for example [58, 71], of machine organizations that, while not trees, are nevertheless

tree-like.

We shall not debate the merits of the various tree machines here, but shall confine oun.;dvcs

to understanding their physical org:rnization. fn this regard trees arc particularly attractive

because of their simple intercorrnection structure. Not only can trees b1: laid out eflicienLly, but

good layouts for Lrees also suggest cflicie:nt ways to lay out general graphs. Moreover, problems

that arc intractable for trees arc also intractable in general. Thus, by investigating layouts for

trees we stand to learn more about general graph layout.

In Lhe following section we examine two well-known layouts for complete binary trees and

present a bcUcr layout which minimizes (asyrnpLoLically) both area as well as maximum edge

24

Figurr 3.1: .-\n 0(11 lgn) nrrn layout of a ro111plr/c bznary
lrrl.

kllgth. ThcsP bounds ,H(' cxl<'tl(kd to arbitrarily ~tructurcd trc<'s in SPc·tion '.t'.2, a!ld lo planar

layouts for trees in Sect.ion 3.:3. Computing the minimum cdge length exactly is shown to be

NP-complete in Section 3.4. Section 3.5 describes Leiserson's [50] assembly of large complete

trees using multiple copies of a single chip with only four external pin connections. Section

3.6 introduces and examines the two-color bisection problrm for arbitrary trees. Section 3.7

presents one way to assemble largr arbitrarily structured trees using the minimum number of

copies of a single restructurabl(' chip with few pins.

3.1. Layouts for Complete Binary Trees

In addition to their usefulness in speeding up computation time by allowing both paral

lelism and pipelining, complete binary trees arc attractive also because they can be laid out

efficiently. Figure 3.1 shows the naive layout of a complete binary tree. Since the height of an

N-leaf tree is lg N, and the N leaves are spread out over a line of length 2N, it follows that

the area of the layout is 2N lg N. Furthermore, the longest edges are at the top level and their

length is ½N.
The familiar H-tree layout in Figure 3.2 was originally proposed by Mead and Rem [55].

In contrast to the naive layout which, in a sense is one-dimensional, this layout exploits both

dimensions symmetrically. If S(N) is the side of the layout, then we have that S(l) = 1 and

more generally,

S(N) = '2S(N /1) + 1,

which yields 8(N) = 2j:J - 1. Con~Pqucnt.ly, the area of the layout is 110 greater than 4N.

The longest edges arc ag:iin at the top ln·el, and thPir length is 110 more than 1../N,

:.!ti 1.AYOl "IS H>H Ill l•:Ls

Figure 3.2: The JJ-tree layout of a complete binary tree.

The H-tree layout asymptotically minimizes area but not maximum edge length. Paterson,

Ruzzo, and Snyder [59] demonstrated a linear-area layout with maximum edge length

O(..,IF: / lg N). In any layout tlllire arc two nod1·~ which arc· distarH:£' ✓'\--; apart: moreover, these

two nodes are connected by a path containing no more than :? lg N tree edges. It follows then

that at least one of these Pdges must have length at lca~t,r5_, /:?lg;\'. Thus, 1 iil' layout of [59]

asymptotically minimizes area as well as maximum edge length. Unfortunately, however, the

layout technique of [59] does not extend to more general graphs. The remainder of this section

demonstrates another layout with asymptotically optimal area and maximum edge length. The

following section generalizes our technique to arbitrary trees and, the next chapter to general

graphs.

To illustrate our technique, consider the layout of Figure 3.3 in which the nodes at the

second and third levels of the tree have been brought closer to the root so that all edges within

the top four levels are of equal length. This "averaging" of edge lengths reduces the maximum

edge length from ½ ✓N to r\ ✓f..i. Of course, the layout is stretched in the middle in order to

accomodate two edges instead of one. This increases the area of the layout, but only slightly,

from 4N to 4N + 6vN.

This averaging operation can be carried out further down the tree so that many levels

arc brought closer tov,·,uds the root. 1n order to space top levels of the trc•p closely together,

we embed these levels wit.bin an ll-charmcl structure shown in Figure 3.4. This structure is

Figure 3.3: The 11- lrer layo11/ u'ith .,hortcr cdgo al the top
levels.

Fig~re 3.4: The H-channel structure.

obtained by taking the H-tree layout of a complete binary tree and blowing up the layout in

both dimensions by a suitable factor. The details of the embedding are described next.

Theorem 3.1. An N -node complete binary tree can be embedded in linear area with maximum

edge length 0(./N / lg N).

Proof. To layout a complete binary tree with N leaves, start with the H-tree layout of

a complete binary tree with lg 2 N leave~ which has area 4 lg2 N and maxim11m edge length

1 Ig N. Dlow up this layout. in either dimension by a factor 0:✓N / lg N, where n is a constant

specified later. The area of the layout becomes 4n 2 N and the longest channel has length

!n✓R.

28 LAYOUTS FOR T!Ums

Next, lay the root at the centre of the II-channel structure and place the second level nodes

at distance {3./N / lg N from the root on either side. Once again, {3 is a constant specified later.

Place lower levels of the tree as shown in Figure 3A, with successive levels spaced equally apart.

At, every corner of the IT-channel structure, bisect the tree so that the subtrees embedded

within the Lwo substructures arc of equal size. Finally, in the lowest level channels lay out the

remaining subtrees in the II-tree manner.

We must ensure that every channel is wide enough to accomodate all the nodes in any

level embedded within it, and also that the ff-tree layouts in the final step fit within the lowest

level channels. To satisfy these conditions, let us first calculate the total number of tree levels

embedded in all but the lowest level channels. The total length of' all channels encountered

from the centre of the layout to the end of a terminal channel docs not exceed the quantity

2a./7V. Since the distance between successive tree levels is {3./N / lg N, the number of tree

levels embedded is bounded by (2a./ {3) lg N. The total number of tree nodes within any one

of these levels is therefore no greater than N 2o.//3. If 2a./ {3 < 1 /2 then the number· of nodes

in any level is asymptotically less than the width of a channel which equals /1./N/ lg N. The

first condition is therefore satisfied by having a. < {3 / 4.

To ensure that the II-tree layouts at the final step fit within the final channel, it suffices

to check that the dimensions of the layout are smaller than the dimensions of the channel.

The size of a subtree embedded within a final-level channel cannot be more than N / lg2 N

bemuse the tree is split into half at each corner. The side of the JI-tree layout is no greater

than 2v'i// lg N. By choosing a > 2, the side of' the channel is guaranteed to be larger than

a side of the II-tree layout. Therefore, by choosing a > 2 and /3 > 4a., we see that the layout

can be completed. Finally, the area is linear in N and the maximum edge length is bounded

by 0(../JV / lg N). I

3.2. Layouts for Arbitrary Binary Trees

One property of complete binary trees crucial to U1P layouL of' Theorem :t I is t.hat a

complete binary trPe can be bisected into two equal size subtrees simply by removing the root.

LAYOUTS Fem AIWITRAl{Y BINARY TREES 29

At every corner in the I I-channel structure, a forest of complete trees is bisected into two equal

halves, each "growing" in opposite directions. This controls the size of every subgraph at the

final level so that a standard layout fits within a final-level channel.

Arbitrarily structured binary trees arc only slightly harder to bisect. Any N-nodc binary

tree can be separated into Lwo components, each with no more than l~ NJ + 1 nodes, by

removing a single edge [52]. (The worst-case occurs for the four-node tree in which one node is

adjacent to three others.) Either of the Lwo components might be a forest, but the same result

applies Lo forests, so that Lhc binary tree can be ~;plit recursively. Dy recursively splitting the

larger component, a tree can be bisected by cutting at most O(lg N) edges, or by removing

the nodes incident to these edges. The O(lg N) bound follows because the subgraphs decrease

geometrically in size with each cut.

The property that all trees have small bisections was used by Leiserson [19, 50] and Valiant

[8:~] to show that all trees have linear-area layouts. We strengthen this result to show that Lhe

maximum edge length of any N-node tree is bounded by 0(,JR/ lg N). Tlw details of the

layout are described iu the following Theorem.

Theorem 3.3. Every N-node tree can be embedded in linear area with maximum edge

length 0(,JR/ lg N).

Proor. As before, begin with the fl-tree layout of a complete binary tree with lg2 N leaves,

and blow up the lnyout in either dimension by a factor a.v'lV / lg N, where a. is a constant

specified later. The area of' the layout becomes '1a.2 N and the longest channel has length
1 r,;_-
2 av N.

Find a set of' O(lg N) nodes which bisect the tree and locate them at the center of the

layout. Place nodes of' the tree in breadth-first levels starting with the bisector set as the roots

of Lhe search, so that consecutive levels arc distance /3',/N / lg N apart (fJ is a constant specified

later). AL every corner of the II-channel structure, bisect the remaining forest of subtrees so

that the subforests embedded within the two substructures arc of equal size. Add the new

bi,;cdor set Lo Lhe sd of nodes from Lhe previous breadth-first level, as shown in Figure 3.5.

In the new channel, start with the updated set as the root of a breadth-first search and repeal

:rn LAYOL.TS 1·'01{ TltEES

Figure 3.5: /11.~crting ,u II' lnMrlor Mis al rncry rorncr.

the procedure used before. Finally, in the lowest level channels lay out the remaining subtrees

using the standard divide-and-conquer layout uf Leiserson [19, 50] or Valiant [83].

As before, we need to ensure that every channel is wide enough to acromodat.e all the nodes

embedded within any level, and also that the layouts in the final step fit within the lowest level

channels.

Let us first calculate a crude upper bound on the tot.al number of nodes embedded in any

one breadth-first level. This quantity is certainly less than the tot.al number ol' nodes embedded

in all but the final-level channels. To bound the latter quantity, suppose that nodes in each

bisector set within the II-channel structure arc pulled in to the center of the layout, and the

remaining nodes placed in breadth-first levels until the final-level channels. Bringing all the

bisector sets towards the center can only increase the number of nodes in all but the final-level

channels. Since an N-node tree has a bisector of size O(lgN), the total number of nodes within

the union of all bisector sets is bounded by:

(

2lglgN N)
0 i~ 2' lg -~ = O(lg

3
N).

The total length of all channels encountered from the centre of the layout to the end

of a final-level channel docs not exceed 2a.v1!V. Since the distance between successive tree

kvels is /1✓N / lg N, U1<' number of t.rrc kvf'ls f'rniH'ddf'd within the I l-rh:!!111<'1 is boundC'd by

(2a/ /3) lg N. Starting with O(lg 3 N) nodes as the roots of a breadth-first search, the number

of nodes <·r,countcred in ('2n/ (i) 11~ .'\/ levels cannot cxccrd 0(/\' 2"/fJ lg 3 .V). Since every node

cmlwdrl<'d within the 11-ch:inncl must ill' in 011P such breadth-first. level, the previous quantity

PLANAR LAYOUTS FOR TREES :H

also bounds lhc total number of nodes within the II-channel struclure. By choosing 20://3 <
1/2, or a < /3/4, we sec that the width of a channel asymptotically exceeds the number of

nodes in any level wilhin the channel. Therefore, the firsl condilion is salisfied by having

a < /3/4.

To ensure that the layouts at the final step flt within a final-level channel, it suffices to

check that the dimensions of a layout generated by the Lciserson-Valiant strategy arc smaller

than the dimensions of the channel. Their layout of an x-node tree is linear in x, i.e., bounded

by 1 x, for all x and some constant 1 . In the layout described above, the size of a forest

embedded within a final-level channel cannot be more than N / lg2 N because the tree is split

into half at each corner. The side of a layout at the final level is no greater than hJ'l / lg N.

By choosing a > ,/1, the side of the channel is guaranteed to be larger than a side of the II-tree

layout. Therefore, by choosing a > ,/1 and /3 > 4a, we sec that the layout can be completed.

Finally, the area is linear in N and the maximum edge length is bounded by 0(✓N / lg N). I

3.3. Planar Layouts for Trees

It is sometimes necessary to produce layouts in which distinct edges do not cross one

another. Planar layouts have the advantage that only one layer of interconnect is required; by

using a low-resistance metal layer, the resulting circuit is not only faster, but also dissipates less

power. Many current automatic layout systems reserve a single layer of interconnect for special

purposes such as, for example, power and ground connections. In such cases, it is necessary to

find good planar layouts. Needless to say, the underlying connection scheme must be planar.

Planar layouts may require much more area than non-planar layouts. In particular, Valiant

[8:3] demonstrated an N-nodc planar graph for which every planar layout occupies at least

n(N 2
) area and has edges of length n(N). On the other hand, Leiscrson [19, 50] and Valiant

[8:~] showed that every N-nodc planar graph can be laid out in O(N lg2 N) area with edges of

length 0(0Vlg N) in Thompson's layout model, which allows distinct wires to cross.

Valiant [8:3] further show<'d that every tree has a linear-area planar layout. In other words,

the planarity restriction docs not affect Lhe asymptotic area req11iremcnts of trees. But what

about edge length? Intuitively, the len~th of a wire can be reduced by taking a short-cut across

another wire, instead of going around it. So, an important question is whether the planarity

requirement affects the maximum edge length for trees.

Although the layout of Section ;3.2 has linear area, and asymptotically optimal edge length

in the worst-case, it is not guaranteed to be planar. However, lluzzo and Snyder [70] showed

that this layout could be transformed into a planar layout without increasing edge length

asymptotically. The details of their transformation are fairly complicated; in the following

Theorem, we present a simpler transformation.

Theorem 3.4. Every N-node tree has a linear-area planar layout with maximum edge

length 0(../Fi/ lg N).

Proof. The layout proceeds exactly as in the proof of Theorem 3.3, with particular

In particular, if a forest of x nodes has to be separated from an N-node tree, x :S lN /2J,
then it suflices to remove at most fig x l nodes. The key fact is that these nodes can be chosen

from a single path in the tree. This path induces a natural linear ordering on the set of nodes

removed.

To sec this, consider a binary tree rooted at a node of degree either one or two. It is always

possible to choose such a root, and if the remainder of the tree is drawn in levels then every

internal node has at most two sons. Label each node in the tree by the size of the subtree

rooted at that node and below iL. Pick any node whose label is no less than x, and both of

whose sons have labels less than J:. Mark this node. [fits label equals x then we have found a

node whose removal separates a subtree of the required size. Otherwise, one of' its sons must

have a label y 2:: lx/2J, while the other son has label no less than x - y - 1. Recursively

mark nodes in the subtree rooted at the second son so that the removal of the marked nodes

separates a forest ol' size x-y-1. [tis easily seen that the marked nodes lie along a path of the

original tree. Moreover, the removal of all mhrked nodes separates a component of' siw exacL!y

x. Finally, since the first node separates a component of size at least lx/2J + I, it f'ollows Lhat

no more than fig x l nodes ar_e marked. Figure :3.6 illusLratcs this procedure.

PLANAR LAYOUTS FOil Tl?El.~S :~3

Figure 3.6: Three cuts separate a subforest of 19 nodes.

81-SEC. To R SE. T

Figure 3.7: The removed nodes are placed in the order
of occurrence along the path.

Given a tree, use the above procedure to find a set of nodes which bisect the tree, and lie

along a path. Place these nodes at the center of the layout in the same order in which they are

encountered along the common path. Next, find all nodes adjacent to the bisector set and place

them on either side as before. However, Lhe ordering of nodes in these breadth-first levels is

chosen as follows: for each pair of nodes u, v that arc placed next to each other in the bisector

set, if the path connecting them is u, ti, t2, ... , tk, v, then place nodes t 1 and tk next to each

each other in the second level, as shown in Figure 3.7. The orderings of nodes on either side of

the center again satisfy the condition that nodes connected by a path in the forest embedded

on that side appear in the order in which they arc encountered along the common path.

Dy placing nodes in every level in the same order in which they lie along a common path

within the forest still to be embedded, it is easy to guarantee that the layout is planar inside

the channel (sec Figure :3.7). All that remains is to guarantee that the layout can be made

planar at every corner when new bisector sets arc added to a level.

When the end of a channel is reached, the situation is as shown in Figure 3.8. Nodes

u1, n2, ... , u., arc those in the last level of the chan ncl. The subgraph which remains to be

embedded is a forest of subtrees. Then nodes can be grouped according to which subtree they

31 LAYOUTS FOR TH.Tms

X: b,st.c.rov
~ oc:le ~

Figure 3.8: To bisect a forest of trees, only one tree need
be separated.

<l-

Figure 3.9: Nodes in the final level may be connected to
their subtrees without crossovers.

belong to, nodes in the same subtree being adjacent within the ordering. To bisect this forest,

it suffices to split only one of these subtrees: order the subtrees top-down and pick the lowest

one so that the subforcst above it contains at most one-half of all nodes in the forest. Split

the subtree this node belongs to into two components as required so that the original forest is

bisected. Uy laying out the next breadth-first level and the new bisector nodes as in Figure

3.8, we sec that in each of the two lower-level channels the nodes within the same subtree are

ordered in the order in wl1ich they arc encountered along a common path.

Repeating this process further down the II-channel structure, we sec that the layout is free

of wire crossings. To complete the layout., within the linal-lcvel channels we use Valiant's [83]

linear-area planar layouts l'or each remaining subtree. Edges from these subtrees to nodes in

the last breadth-first level of Lhc pcnultimalc channel can be inserted wilhout crossovers as

shown in Figure 3.9. This completes the planar layout. I

Till<; COMl'LEXlTY OF MlNlMIZlNG EDGE Lli:NGTITS :15

3.4. The Complexity of Minimizing Edge Lengths

Thus far we have only showed Lhat every tree can be laid out with maximum edge length

bounded by 0(VN/ lg N). While Lhis bound is asyrnptoLically optimal for some trees such as

the complcLe binary tree, it is way olT for others. For example, a two-ended string with every

node connected only to its immediate neighbors can be trivially laid out with every edge of

length one, independent of the number of nodes.

This motivates the problem: it Given a tree, produce a layout with minimax edge length. In

this section we show that determining the minimax edge length is computationally intractable.

The results are quite discouraging - even the problem of deciding if a given tree can be laid

out with all edges of unit length is NP-complete.

Theorem 3.5. Given a tree T, deciding whether or not T hall a layout with unit length

edgell ill NP-complete.

Proof. Observe that the problem is clearly in NP; it is easy to guess a layout and verify

that no edge has length greater than one. It remains to show that the problem is NP-hard.

The known NP-complete problem used in the reduction is the NOT-ALL-EQUAL 3CNFSAT

problem [29, 72] stated below.

NOT-ALL-EQUAL 3CNFSAT: Given a boolean formula cp in 3CNF (conjunctive

normal form with three literals per clause), docs there exist a truth assignment which satisfies

cp such that each clause contains at least one false literal?

Given a formula cp in 3CNF, we construct a graph G with the property that C can be

laid out with all edges of unit length if! cp is an instance or NOT-ALL-EQUAL 3CNFSAT,

i.e., cp can be satisfied with at least one .false literal per clause. The graph C is constructed

l'rorn elementary components termed "lines" (Figure 3.10). The crucial property or a line is

its rigidity, meaning that in any layouL with unit-length edges, nodes u1, .. . , Un must be lined

up either horizontally or vertically. Figure 3.10 shows how to connect two lines so that the

resulting graph can be laid out in only two ways (ignoring rotations).

Let x 1 , •• • , Xn be the variables, and C,\, ... , Cm be Lhe clauses of cp. The basic "skeleton"

:H; LAYOUTS FOil THEES
C.

a.-+-+--+--+---+---+--+__. l,

(a..) lb) d

Figure 3.10:A "rigid" Lin(with aarlly onr unit-length layout(a).
(b) Two rigid linu r01mcctul a.~ .~hou•11 ran be laid

out in cxartly two way.~.

\Lt U1. U.n-1 11,,.

C3, c;, c;. I

Go.
Ci: c~, c;l ,

c,
I ,

c,: c,. c,1

A Q, Q, o...,

c, ~ c,, c.i1 A+• + II B
C1: ~I Cu

Cj 1/! C3: CJI C.31 •
-:t; :: ~

)
Vi_ V,.., v.,,,_ I

Figure 3.11:The skeleton of the transformation. Each column
represents a variable, while each clause is as
sociated with two rows that are mirror images
with respect to the x-axis.

,U
L

"-;=-~

of G is shown in Figure 3.11. For each j, 1 ~ j ~ m, the distances (number of intermediate

nodes) Qi - C1i, Qi - C:~, are all equal. The line Ui-v, corresponds to variable x,, and the two

ways of embedding it with respect to the A-B axis correspond to assigning x, true or false.

Thus far, there are 2n possible ways of laying out G with unit length edges, each correspond

ing to a truth assignment to the variables of ¢. Next, we encode within G the "structure" of

¢ as described below.

Let clause Ci be denoted l3, V l1, V l1,. If 11, is positive (x 1) add a "striker" at node C1 ,J;•

Otherwise, if l3; is negative (:i:i) add a striker at node C~,
1
,. Finally, for every k -:f- j 1,j2,j3 ,

add strikers both at C1 ,k and at C~,k· For example, if C1 = x 1 V x2 V x3 , the strikers are added

as shown in Figure 3.12.

Think of a node without a striker as a ''hole". The rows C1 and C~ together share three

holes, and 2n - 3 strikers. Because of the boundary constraints at the sides, no more than

n - 1 of these strikers may liP on any side of the A - B axis. In other words, for each clause

A
c/

TllE COMPLEXITY OF Mll\lMIZINC El>CE LENCTIIS :n

----+----t---+---+--~--t---+-----. 8

Figure 3.12:/n any unit-length layout each row contains at
lrn8/ 011c holr; this correspond8 to an instance
of NAR-SCNFSAT.

Figure 3.13:A binary tree which has a unique (upto rota
tions) unit-length layout.

there must be at least one hole on either side of the axis in a unit-length layout. For each

clause, a hole "above" the axis implies a truth assignment which makes the clause true, while

a hole "below" the axis implies at least one false literal within the clause. Therefore, there

is a unit-length layout if and only if the formula is satisfiable with at least one false literal

per clause. In short, G has a unit-length layout iIT ¢ is an instance of NOT-ALL-EQUAL

3CNFSAT. Since the reduction is easily carried out in polynomial time, the theorem follows.

I

In the above reduction, many nodes had degree four. We may strengthen the result to

binary trees with maximum degree 3. A rigid line may be implemented by stringing together

binary trees as shown in Figure 3.13. It is not hard to show that the structure is rigid; the key

property is that the complete binary tree on 31 nodes has a unique (upto rotations) unit-length

layout. This yields the following result.

:38 LAYOUTS FOR TREES

Corollary 3.6. Given a binary tree, deciding whether or not it has a layout with unit

length edges is NP-complete.

3.5. Assembling Complete Trees

Whenever any system is larger than a single chip, it is necessary to partition it among

separate chips which can be assembled at the printed circuit (or chip carrier) level. What is

th,~ most effective way to partition a large binary tree among several chips?

This question is pressing because although integrated circuit technology has been advancing

at a rapid pace, the technology for packaging chips has been crawling in comparison. Packaging

technology severely restricts the number of external connections to an integrated circuit. While

the number of components per chip is expected to reach one hundred million, no one forsees

chips with more than two or three external pin connections.

This section presents Leiserson's scheme [50] for assembling complete binary trees using one

kind of chip with only four external pin connections. This chip has been used in tree-machine

projects at Caltech and Bell Laboratories [16]. We review this scheme here for its simplicity

and because the general scheme developed in Section 3.7 is based on similar ideas.

Figure 3.14 shows how arbitrarily large complete binary trees can be built out of a single

chip that has only four off-chip connections. Each chip contains one internal node of the tree,

and Lhe remainder of the chip is packed as full as possible with an II-tree layout,. The internal

node requires three off-chip connections (denoted F, R, and Lin the figure) for its father, right

son, and left son. The If-tree requires only one off-chip connection (denoted T) to it,s father.

To interconnect two chips, the unconnected internal node of one of the two chips is selected

as Lhe father of the Lwo II-trees. In Figure 3.11 Lhe internal node on the left has been chosen for

this purpose. The R pin on this chip is connected to its own T pin, and Llw L pin is connected

to Lhc T pin on the other chip. Considered as a unit, the combined two chips now have the

same structure as a single chip -- Lhree connections Lo an internal node and one to the root

of a complete binary tree. The pair of chips can be similarly combined with another pair to

produce a quadruple of chips, which can in turn be combined, and so forth. Fi(~lHC 3.15 shows

T

---------1
I
I
I
I
I

•---------•

L F

R

,---------
' I
I
I
I

I
I
I
I
I

•---------•
Figure 3.14:Two chips connected to look like one

R T

L

Figure 3.15:.A large complete binary tree assembled using
many copies of the same chip.

a large complete binary tree which has been wired up in this recursive fashion.

Unlike the assembly for complete trees, configurable or restructurable designs are required

for assembling arbitrary binary trees. The reason is simple: a single fixed chip with N processors

can realize only one N-node binary tree. In order to realize every N-node binary tree, either a

new mask must be dcsignl'd for each trl'e, or else connections on the chip must be restructured

(for example, by lai-er) after fabrication. Given the ability to restructure wires on a chip, we

ask: Is there an ari:a-efficient reslructurable chip with N processors and m pin.~ (m < < N}

which can be u.qed to assemble every binary tree, independent of its size?

,1() LAYOL:Ts 1-'0H TltEES

This quC'stion is affirr11ati\<'ly a11~wcrcd i11 S('ction :t7. Th<' solution d!'pcnds heavily on

tlw rc,,ult~ of the· rwxt ~<·ctiu11 1\li1ch cor1~idc·r~ the problem of' part1t1011i11.e. ;1 l>111,1r_1· trc·P into

siil11'or<·st~ ol' ~1,c .Y ~o tl1;it <'l(f_\ ,-ul>l'orcsl li;1s al r11c1sl U(I~ .\') c·d~cs co1111c1·tcd to 110d('~ i11

othcr ,ubforr•sts. The solution to thi:: probkm leads dircct!y to the r!'structurab!!' chip dPsign

ol' SPct io11 :l.7.

3.6. Collinear Layouts and Two-color Bisectors

This section introduces th<' notion of two-color bisectors for trees. Two-color bisectors

are a natural extension of graph bisectors, and will be critically used in partitioning graphs

for layout. In this section we show how to use two-color bisectors to partition an arbitrary

tree into subforests of size N so that every subforest has at most O(lg N) edges connected to

nodes in other subforests. Bounds on the size of two-color bisectors are obtained from collinear

layouts developed by Bentley and Leiserson [50].

Definition. Suppose that an N -node graph G has b black nodes and w white nodes. A two

color bi.5ector for G is a set of edges whose removal bisects G into two subgraphs each of size

at least lN/2J, and such that each contains at least lb/2j black and lw/2J white nodes.

Theorem 3.7. Every N-node forest of binary trees has a two-color bisector of si'ze no greater

than 2lgN.

Proof. Following Bentley and Leiserson [50], construct a collinear layout for the forest

as follows. By removing one edge, separate the forest into two subforests so that neither

contains no more than ljNJ + 1 nodes [52]. If either component contains more than lN/2J
nodes, separate it into two smaller components using the one-separator theorem again. Next,

recursively construct collinear layouts for each subforest, and place these layouts side-by-side

along the baseline. Finally, as shown in Figure 3.16, connect the two (or three) subforests by

COLLIN£~AR LAYOUTS AND TWO-COLOR BISI•;CTORS 11

. ' .. ••I •••• •• • •i ~ .. • \.

Figure 3.16: The recursive construction of a collinear layout.

routing the separator edges on distinct vertical tracks and along a common horizontal track.

(For two components this is trivial since only edge is routed; for three components, place the

subforcst connected to both other subforests in the middle as shown.) Foi each node there arc

three vertical tracks to accomo<late edges incident to that node.

The height of the layout is determined by a simple recurrence relation. Let h(N) be the

height ot the layout, so that h(l) = U, and in general,

h(N) ~. h(lN /2J) + 1.

A straightforward calculation yields h(N) ~ lg N.

Thus far we have ignored the coloring on the nodes. Suppose there arc b black nodes and

N - b white nodes. Consider a "window" which overlaps lN /2J consecutive nodes, and place

it over the leftmost lN /2J nodes. If more than lb/2J black nodes fall within the window, slide

the window one position to the right. Observe that by sliding the window on position, the

number of black nodes within the window changes by at most one. Furthermore, by sliding

the window all the way to the right, less than lb/2J black nodes would fall within the window.

Consequently, there must be an intermediate placement of the window (sec Figure 3.17) in

which exactly lb/2J black nodes and exactly l(N - b)/2J while nodes arc contained within the

window. (Such a placement can be obtained in linear time.)

Draw vertical lines through the endpoints of the window in the position obtained above.

The edges of the forest intersecting these lines form a two-color bisector of the forest. The size

of this two-color bisector is no more than twice the height of' the layout.; in other words, the

size of the two-color bisector is no more than 2 lg N. I

42 LAYOUTS FOil TliEES

2. 3

Figure 3.17:AI some point, a window of .~iu n /2 slid along
thf baseline must contain half the black and half
the while nodes.

For our purpose the foil owing variant of two-color bisectors is appropriate. Suppose each

node of an N-node forest is assigned a weight from a bounded set {1, 2, ... , k} of weights. We

wish to bisect the forest into two equal-size su bforests whose total weights differ by at most k.

How many edges need be cut? Adapting the argument for two-color bisectors to this variant

in a straightforward manner shows again that 2 lg N cuts suffice.

Having obtained bounds on the size of two-color bisectors for forests, we wish to use them

for partitioning an arbitrary binary tree into subforests of size at most N so that every subforest

has O(lg N) edges connected to nodes in other subforests. This result is established in the

following Theorem.

Theorem 3.8. Every N -node binary tree can be partitioned into f N / Ml subforests, each of

size at most M, such that no subforest has more than 4lgM + 8 edges connected to nodes

in other subforests.

Proof. First bisect the tree into two subforests, each of size at least lN /2J, by cutting

no more than lg N edges. Split each subforest recursively as follows: For each node in a

recursively split component of size m assign a weight equal to the number of edges incident

to that node and which were cut at a previous level. Since the degree of a node is at most

three, the weight assigned to a node is at most 2. From th<' argument. following Theorem 3.7,

there is a weighted bisector of size no greater than 2 lg m for the component. This weighted

bisector divides the number of external connections almost equally (the di/Terence is at most

two) between the subcomponents of sizes lm/2J and f m/21, As seen in Figure 3.18, the number

ASSEMIILINC AIWITliAll.Y TliEES 43

0
½ ((2 ..) .t2. l ==:::::;;;t::..

Figure 3.18:To hep th£ ri,nnbn of rxternal connr:rtion.~ to
all subcompon(nts .~mall when a component is
biuctcd, the extrrnal connections must be evenly
divided bdwecn the subcomponents.

of external connections into either of thP new subcomponents is no more than the size of the

weighted bisector plus one-half the number of external connections into the component just

split (plus two). This recursive decomposition terminates when each component has size at

most M. Letting c (m) be the number of external connections into any component of size m,

we have c(N) = 0, and

c(m) ::; ~ c(2m) + 2 lg(2m) + 2.

A little calculation shows that c(m) ::; 4 lg m + 8. This means that every subforcst of size

m in the recursive decomposition has at most 4 lg m + 8 external edges to other subforests.

Substituting M for m, the result follows. I

3. 7. Assembling A rbit ra ry Trees

The recursive decomposition of Theorem 3.8 leads directly to the design of an efficient

restructurable chip which can assemble all trees. Observe that the layouts developed in earlier

sections cannot be used for configurable or restructurable design because the locations at which

nodes are embedded are determined by the structure of the tree and are not the same for all

trees. The only way to have nodes at fixed locations, independent of the tree structure, is by

predetermining the tracks along which edges arc routed.

We can predetermine the tracks ·along which edges arc routed by using restructurable

permuters. A permuter Pk has k terminals on each side of a rectangle and can realize any

one-to-one connection between the terminals. The switch shown in Figure 3.19 implements a

permuter. It has dimensions 2k X k, with the terminals along the longer sides.

·H LAYOlJ'l'S FOH THEES

?

3
4
5

'-f
3
I
r;
2

Figure 3.19:/1 perm utcr ran rcali.u any sc t of on(-to- one
connections between thr terminals on its two
sides.

Figure 3.20:A restructurable chip which can assemble ar
bitrarily large binary trees.

The construction of the restructurable ·chip is recursive and follows the recursive decom

position of Theorem 3.8. We shall use Rm to denote a level of the recursive layout with m

nodes, and let RM denote the restructurable chip of M nodes itself. Figure 3.20 shows how

the chip RM is constructed from four copies of RM 14 , four copies of P4 1g M, and two copies of

P4IgM+ 4 · Letting S(M) be the length of the side of the layout, we have S(l) = 1 and,

S(M) ~ 2S(M /4) + O(lg M),

which yields S(M) = 0(./M), so that the area is linear in M. The number of pins on RM is

4 lg M + 8. We now show that every large tree can be assembled using RM·

ASSl~MBLlNG AIWITII.ARY TIWES 1/i

Theorem 3. 9. Suppose each restrncturable chip contains M nodes. Then any N-node

binary tree can be assembled using r NI Ml chips, the minimum possible.

Proof. Following Theorem :1.8, decompose the tree into r N / ,Ml components, each of size

at most M and having no more than 1 lg M + 8 external edges to other components. l~ach of

the r N / Ml components can be realized on a single chip RM. To sec this, USC Theorem :3.8 to

recursively decompose each component into single nodes. fn this decomposition each subforcst

of size m has at most 1 lg m + 8 external edges. This decomposition may now be mapped

directly onto the chip, using the permutcrs to route edges between diITcrcnt subcomponents.

Since the number of external edges at any level is no greater than the size of the permuters at

that level, the permutcrs can realize the desired routing. Nodes of the tree arc embedded at

fixed posi Lions in the lowest level perm u tcrs l'i. Finally, each chip has enough pin connections

so that the assembly can be completed off-chip by connecting the chips together as required

directly.) I

The constant factors on area can be improved if one uses the smaller restructurable

permutcr 1\ with dimensions (k+O(v'k)) X (k+O(v'k)) that follows from the channel routing

algorithm ol' Part II of this thesis. Whereas the simpler permuter from Figure 3.19 requires

only two welds to make a connection, the dem,e layout might require as many as k welds f'or

each connection. Although the total number of welds required by either scheme is O(AI), the

number per wire is O(lg 1'vl) if' the simpler switch is used and O(lg2 M) if' the channel-routing

pcrrnutcr is used.

fn related work, Rosenberg [69] has also considered pcrrnutcrs to obtain a degree of

configurability in layouts.

CHAPTER 1

The General Framework

This chapter presents a new framework for general graph layout. Like previous approaches

to graph layout, the new framework is based on the divide-and-conquer paradigm. Instead of

using a separator theorem to recursively partition a graph, the new framework uses graph

bifurcators. The notion of a graph bifurcator was introduced by Leighton [12] to overcome the

fipficiPnry of sq1:ir:il.or t.hPorPrns. ,\ll.ho1J~h th" difTPrPn""" hetwc"n Hf1!r'.'.3t0rs :u~<l ~cp:!r:ltor

theorems will be elaborated in this chapter, there arc two primary advantages of bifurcators over

separator theorems. First, unlike separator theorems, bifurcators may be efiiciently computed

using either a good graph partitioning heuristic, or from a layout with small area. Second,

bifurcators can be used, as in the next chapter, to produce layouts that.arc eflicienL in a variety

of respects, not layout area alone.

The techniques for general graph layout closely parallel those in Chapter 3 for efficient

tree layout. Section 1.1 examines multi-colored bisectors for two-ended strings and forests of

complete binary trees, and generalizes the results of Section 3.6 to more than two colors.

Section 1.2 introduces decomposition trees and bif"urcators as generalizations of separator

theorems. Section 4.3 considers the problem of' balancing decomposition trees, just as Section

3.6 considered the problem of decomposing a tree while balancing the number of external edges

arnt>ng split components. Section ·1.'l introduces the tree of me.~hes which is a generalization

of the restructurable chip of Section :3.7, and investigates techniques !"or embedding general

graphs within the tree of meshes, given a balanced decomposition tree for Lhe graph. Section

4.5 concludes by devcl,)pinl:!; good layouts for the tree of meshes.

Taken together, an embedding; of' a graph within Lhc tree of' meshes, and a good layout for

'16

COMIHNATOIUAL 1,1<;MMAS 17

the tree of meshes induce a good layout for the embedded graph. The strategy for laying out a

general graph, given a decomposition tree is: balance the decomposition tree, embed the graph

within the tree of' meshes, and lay out the tree ol' meshes. In Chapter 5 we will sec how this

strategy can be used to efl1cicntly solve all the layout problems described in Chapter 2.

4.1. Combinatorial Lemmas

This section contains three combinatorial lemmas which provide the foundation for the

framework presented in the next section.

Lemma 4.1. Consider any two-ended string of n colored pearls of k different colors, and

let ni be the number of pearls which are color i for l s; i s; k. For any integer r ~ 2,

the pearls can be partitioned into two sets by cutting the string in no more than 9rk places

such that the total number of pearls in each set is l n/2 J or f n/21, the number of pearls of

color 1 in each set is lni/2 J or r ni/21, and Stlch that the number of pearls of color i > l

in each set lies between f(½ - z'r)nil and l(½ + 2\)niJ•

Proof. Let i be a number between 1 and k and let T(i) denote the number of cuts necessary

to divide the set of all pearls into two sets that satisfy the constraints of the theorem for colors

1, 2, ... , i. Other than requiring that the total number of pearls be split in half by the cuts, we

have made no constraints on the distribution of pearls with colors greater than i. We wish to

find a good bound on T(i) in the worst case, i.e., over all choices of' n, k ~ i, and all possible

colorings. In what follows, we will show that T(I) = 2 and that

T(i) s; rT(i - 1) + 1r + 7

for i > 1. As a consequence, we can solve the recurrence to coIJcludc that T(i) s; 9ri - 15 for

r ~ 2. Thus for i = k, at most 9rk cut.s arc required, as claimed.

For i = 1, Lhc argument used in Theorem ;3.7 shows that two cuts surlicc. Consider a

"window" of size ln/2J positioned at the left end of' the string. Without loss of generality,

48 TIii~ GENERAL FHAMEWORK

assume that the window covers less than l n i/2 J of the pearls colored 1. Move the window to

the right, one pearl at a time until the window covers ln1/2J pearls of color l. Since the right

half of the string contains more than one-half of all pearls of color 1, there must, by continuity,

exist a placement when the window covers exactly one-half of all pearls of color 1. By cutting

the string at the endpoints of the window, the portion of the string under the window will

contain half of the total number of pearls and hall' of the pearls colored l. Hence T(l) = 2, as

claimed.

For a given i > 1, break the string into r segments S3, 1 ::; j ::; r, (making r - 1 cuts) so

that each segment contains at least lni/r J pearls of color i. Next split each S3 into two subsets

S3o and 831 (making a total of rT(i - I) cuts) so that each split satisfies the theorem locally

for colors l, 2, ... , i - 1.

vVithout loss of generality, assume that S30 contains no fewer pearls of color i than S31,

At this stage, we divide the set C of all pearls into two subsets C 1 and C? as follows. Initially.

let C1 = LJ 830, If C1 contains more than l(½ + f;)nij pearls of color i, remove 810 from Ct

and add S11 . Repeat this procedure, successivdy switching 820 with 821, 830 with 8;11, and so

on until the first time C1 has at most l(½ + 2\)niJ pearls of color i. Such a stage must occur

since the number of' pearls of color i in C 1 will eventually fall below r ni/21 if C1 and C2 arc

completely interchanged. The number of pearls of color i in C 1 after the final switch cannot

be less than ro - :.lr)nil - 2 since every SJ contains no more than r ni/r l pearls of color i. If

the number of pearls of color i in C1 is ro - d,:)nil - l or r(½ - 2\)nil- 2, then move either

one or two pearls of color i from C 2 to C 1 , making no more than four cuts.

\Ve also have to ensure that the total set of pearls and the pearls ol' the first i - 1 colors are

divided as required. The pearls with colors between 2 and i - 1 arc divided correctly because

they were divided correctly at the recursive step. The counts of' pearls of color 1 in C1 and C2

may difTer in size by r, however. To balance the number of pearls with color 1 in each set, we

need only remove up to lr /2 J rwar!s colored 1 from the excess set (rnaki ng at most r cu ts) and

put them in the deficient set. To balance the difTcrence in the overall sizes of the sets (which

now might be as large as 2r + 1), we need only extract up to r + 2 pearls from the larger set

(making no more than 2r + 1 cuts) and put them in the smaller set. Of' course, these pearls

COMBINATOIUAL LEMMAS 10

must be chosen carefully so that each set retain-.' ,,.-, , ,juirccl minimum number of pearls of

each color. Since pearls are extracted only from the larger set, it is clear that this requirement

may be easily satisfied.

The total number of cuts made by the procedure is rT(i - 1) + 4r + 7, as claimed. I

Using an elegant topological argument, Goldberg and West [:!2] recently proved that k cuts

suffice to divide the pearls of each color exactly in half. This clrarnatically reduces the number

of cuts, and makes our analysis signincantly less cumbersome. All of our layout results may,

however, be proved with the weaker Lemma 4.1. Doth results are implernent,ablc in polynomial

time when the number of colors is fixed, as is the case throughout this thesis.

Lemma 4.2. Consider any two-ended string of n pearls, ni of which are coiored i, 1 ::;

i ::; k. By cutting the string in k places it i.~ po8sible to divide the pearls into two sets so

that each set has a total of ln/2J or r n/21 pearls, and lni/2J or r ni/21 pearls of color i

for all i, I ::; i ::; k.

In the following, we recast Lemma 4.2 in terms of' complete binary trees, which will be

particularly useful since the recursive decomposition of a graph may be viewed as a tree. The

height of' a tree is the length of the longest path from the root to a leaf, while the height of a

forest is the maximum height of a tree in the forest. Finally, the level of a node in the forest

is defined Lo be the height of' the forest minus the length of' the longest path from the node to

a leaf'. (Note that the top level is level zero.)

Lem.ma 4.3. Consider a forest of complete binary trees whose n leaves are colored

arbitrarily with k colors. Let ni be the number of leaves colored i for l ::; i ::; k. By

removing no more than k nodes (a.'J well as all incident edges) from each internal level of

the forest, it is pos1Jible to produce a new forest of complete binary trec.'J, some subset of

which contains ln/2J or fn/21 leaves, and lni/2J or fni/21 nodeB of color i for each i,

1 < i < k.

50 TIIE Gl•:NEllAL FllAMEWOl{K

,,, C;o.:~. A

(bl

(C)

I 2 2 3 I: I 2 3! 3 I :2 3 I I I
I I I
I I I

\break1. __,,

~:f2A.A
I 2 2 3 I : I 2 3: 3 I : 2 3 I I I

AA.:. /\:/\:A. A
I 2 2 3 I: I 2 3: 3 I : 2 3 I I I

I
I

Figure 4.1: An illustration of the procedure in Lemma 4-9.

Proof. Draw the trees in the canonical manner and place them side-by-side, in any order,

so that the leaves of all trees are placed along a line. By applying Lemma 4.2 to the induced

left-to-right ordering on the leaves of the forest, it is possible to break the ordering in no more

than k places such that the union of the leaves contained in every other segment contains the

desired total number of leaves and the desired number of leaves of each color.

For each break, remove the nodes (and incident edges) which are simultaneously ancestors

of the leaf immediately to the left of the break and the leaf immediately to the right of the

break. It is easily seen that at most one node is removed from each internal level of the forest

for each break. Therefore, no more than k total nodes are removed from each internal level.

In addition, the removal of the common ancestors of the leaves neighboring a break divides

the associated tree into two or more complete binary trees, at least one on each side of the

break. Thus the removal of all such nodes produces a forest of complete binary trees, subsets

of which correspond precisely to the sets of leaves between pairs of adjacent break points. Thus

the union of the subsets of trees corresponding to every other segment of leaves contains the

desired number of leaves of each color. Figure 4.1 illustrates this procedure. I

DECOM!'OSITION TH.EES AND IHFlillCATOH.S 51

G

/~f'!~:\
'tac-- [::> GOt Gio~Gi,

'F / \ 'F ' I I i
I I

G~ GOii /
'F2 •• . .

c;,_,
empty graph or / \
Isolated node •

---~-T<r+"- G,_11 IF,

Figure 4.2: An (Fo, Fi, ... , F,.)-decomposition tree

4.2. Decomposition Trees and Bifu rcators

The recursive decomposition of a graph into smaller and smaller subgraphs may be viewed

as a decomposition tree. In particular, we say that a graph Chas an (P0 , F1 , •• • , F,)-decomposition

tree if G can be decomposed into two subgraphs Go and C 1 by removing no more than Fo edges

from C, and, in turn, both Co and C 1 can br decomposed into smaller subg;aphs by removing

no more than F1 edges from each, and so on until each subgraph is either empty or an isolated

node. Figure 4.2 illustrates this recursive decomposition.

As one might expect, the decomposition of a graph by separator theorems may be viewed

as a decomposition tree. It follows by definition that if a class of graphs has an f(x)-separator

theorem, then there are constants a and /3 such that each graph in the class has a decomposition

tree of the form (/3J(N), /3J(aN), /3J(a 2 N), ... , /3!(1)). The converse is not necessarily true.

Subgraphs generated at each step of a decomposition by a separator theorem are constrained

to be proportional in size, whereas decomposition trees need not satisfy this constraint. Of

course, if the decomposition tree has precisely lg N levels, then subgraphs at each level must

be equal in size.

We shall be particularly interested· in a special class of decomposition trees, namely bifur

cators, that is distinct from the class of separators.

Definition. An N-nodc graph has an a-bifurcator of size F (more simply, an (F, a)

bijurcator) ifit has an (F,F/a,F/0: 2
, ... , 1)-dccomposition tree.

52 TIIE GENEIUL FRAMEWORK

Of particular interest is the class of y'2-bifurcators. By the definition, we know that an

N-node graph has a y'2-bif'urcator of size F if and only if it, has an (F, F/v'2, F /2, ... , 1)

dccomposition tree. The depth of' this tree is no greater than 2 lg F'. Tn order to completely

decompose an N-node graph into indivi<lual nodes, the height of' any decomposition tree cannot

be less th:-tn the lg N. Thus, F must always be at least ..,/R. On the other hand, F is always

less than 2N since every N-node graph with maximum node degree four has at most 2N edges.

If a class of' graphs has an x°'-separator theorem, where a ~ 1/2, and the corresponding

decomposition is balanced in that every graph is always decomposed into equal-size subgraphs,

then it is straightforward to show that every N-nocle graph in the class has a y'2-bifurcator of

size 0(.../N). Similarly, if a class of graphs has a balanced separator theorem of size x°' with

a > 1/2, then every N-node graph in the class has a y'2-bifurcator of size 0(N°').

The converse is not true even if we consider only bifurcators whose corresponding decorn-

example, the N-nodc graph SN defined in Section 2.3 has a balanced y'2-bifurcator of size

0(✓ N lg N) but the smallest separator for this class of graphs is O(x/ lg2 x).

When translated into bounds on layout area, this seemingly minor difference between

bifurcators and separators is greatly magnified. Graphs with small l~yout area always have

small ../2-bifurcators, but do not always have small separators. This is formalized in the

following lemma. Later on we will prove the converse: graphs with small y'2-bifurcutors always

have small layout area.

Lemma 4.4. If a graph G can be laid out in area A, then G has a (\/'A, ✓'i)-bifurcator.

Proof. Consider a vertical cut of length ✓7(through the center of the layouL. Next, cut

each of the sublayouts horizontally through the center. Continuing this sequence of' alternating

vertical and horizontal cuts, it, is easy to sec that at the ith step no more than ✓-;{/2li/ 2 J edges

arc cut from each subgraph. This sequ<)nce of cuts yiP!ds a { ✓if, v'2)-bif'urcator f'or G. I

SPECIAL CASES 5:J

4.2.1. Special Cases

Many graphs have decomposition trees in which the number of cuts decreases very slowly

as we go lower down the tree. [n such cases the number of cu Ls aL higher levels of' the tree may

be very small. On the other hand, in decomposition trees corresponding to bifurcaLors, the

number of cuts permitted decreases smoothly as we go down Lhe tree. ft is conceivable then,

Lhat Lhe bifurcaLor permits far more cuLs aL higher levels than arc necessary. For example,

N-node binary Lrces have decomposition trees of height O(lg N) in which no more Lhan 1 cut

is required at every level. Since the minimum bif'urcator is at least ./Fi, the decomposition

tree corresponding to the bifurcaLor allows far more cuts at the top levels than needed.

Similarly, some graphs have decomposition trees in which many cuts are required at the

Lop levels, but this number decreases very quickly as we go down the decomposition tree. In

such cases, the minimum bifurcator is large so that decomposition trees corresponding to the

do greatly overestimate the number of cuts at lower levels.

IL is useful Lo separate such extreme cases from a general discussion. Of course, general

upper bounds are valid for graphs with extreme decompositions, but they may overestimate

the true bound. A particularly important reason for separating these classes is that many

computationally useful graphs such as binary trees fall into the first category while cubc

connected-cycles and multidimensional meshes fall into the second category.

An N-nodc graph is defined Lo have a type A -/2-bifurcator if it has an (0(~), -/2)

bifurcator such that no more than O((N /2i)o:) cuts, a < I /2, are required for each partition

at the ith level ol' the associated decomposition tree. Observe that at the higher levels of the

tree, i <<lg N, the number of cuts is far less Lhan the O(y'JV/2i/2
) cuts allowed by the usual

bif'urcator.

Similarly, an N-nodc graph is defined to have a type JJ ✓i-bifurcator ii' it has an (O(N<>), -/2)

bifurcator, a> 1/2, such that only O((N /2i)<>) edges arc cut in any partition at the ith level.

Observe that f'or the lower levels of the tree, i > > l, this quantity is l'ar smaller than the

O(Nu /2i/ 2) cuts allowed by the usual bif'urcaLor.

For simplicity, we will prove results only for general -/2-hifurcators in this thesis. llowevcr,

54 TIIE GENERAL FRAMI~WORK

whenever there is a significant difference, results for the special cases are stated separately. The

proofs for these special cases are e:u;ily worked out, and closely follow the proofs for the general

cases.

4.3. Balanced Decomposition Trees

Of particular interest to the layout results reported in this thesis are decomposition trees

where at each step of the decomposition, the two subgraphs arc nearly equal in size. This section

considers such balanced decompositions and gives an effective procedure for transforming an

arbitrary decomposition tree into one that is balanced.

Formally, a decomposition tree for a graph C is balanced if each subgraph Cw in the tree

is the father of two subgraphs Cwo and Cw 1 such that the number of nodes in the subg;raphs

differ by at most 1. In addition, we say that a decomposition tree is fully balanced if it is

baianced, and if for every subgraph Ow in the tree, the set of edges conncctmg {J - <iw to Ciw

is divided into two subsets of nearly equal size by the partition of Cw into Cwo and Cwt· {Here

we allow the number of edge connections in the two subgraphs to differ by a small constant,

say 5. For the purposes of simplicity, however, we shall often ignore such small di!Tcrcnces and

asHumc that the nodes and connections are split evenly between the two subgraphs.)

Somewhat surprisingly, any decomposition tree may be transformed into a fully balanced

one at litLlc or no cost. We prove this in the following theorem which generalizes earlier results

in [9, 40, 41, ,12].

Theorem 4.5. Let C be any N -node graph with an (Po, F1 , •.. , f,'r)-decomposition tree

T. Then Chas a fully balanced Wo, Fi, ... , f\,,N)-dccomposition tree, such that for O _::;

i _::; lg N,
r

F'-=6'°"F ' L...., s

Proof. Ld I' be a forest <>f cornplctc biuary trees consisting initially of the decomposition

tree T. Color the leaves of 7' with two colors accordinµ; to whether or not the subgraph of C

BALANCED DECOMl'OSITION Tln:1,:s 55

assoc1at.rd with the leaf' is empty. Apply Lemma 4.3 (k = 2) tor, removing the indica!Pd nodes

,llld Pdge,- ol' T. Each r1odP of'/' cnrrespo11ds naturally to a sPL of Pdges of G, n,imely the Pdgrs

whose rernon1I ;.;plit~ th<· ,is~ot·i,llPd ~;ubgraph in two. He1r1ovi11g a 11od<' of ·r corrcsponds to

rrmovi11g this rutsrt. of Pdges from (,'. Si11c·p no morP th:rn 2 11odes arc' removed from each level

of r, t.hr number of (•dgrs rrmovrd from C in applying Lemrna 4.:~ does not C'XCPPd 2 I::c_-Q Fs,

which is less than F;l.

Further 11ote that G is divided into two disjoint subgraphs of nearly-equal-size by the

removal of these edges. Each subgraph, in turn, corresponds in a natural way to a subforest

of complete binary trees in r. Consider one such subgraph G 0 and color the leaves of the

associated forest of complete binary trees r O u,;ing six colors as follows:

If the leaf corresponds to an empty subgraph, color the leaf with color 1. Otherwise, if the

single node corresponding to the leaf is incident to exactly j edges of G removed earlier,

0 :S .i :S 4, then color the leaf with color j + 2.

By applying Lemma 4.3 (k = 6) to fa, it is clear that Go can be decomposed into two

disjoint subgraphs Goo and Go 1 of nearly-equal-size such that the number of edges from G-Go

to Goo is nearly-equal to the number of edges from G - G0 to G 01 . Since at most 6 nodes were

removed from each level of r O and since r O does not contain the root of T, we can conclude

that no more than 6 I::=l Fs = F~ edges were removed from G 0 •

By applying the above argument recursively, the desired fully-balanced decomposition tree

is obtained. With each application of Lemma 4.3, the total number of leaves in each forest

is cut in half at each step so that the biggest tree in any forest corresponding to a subgraph

decreases in height by at least one. Also, lg N + 1 levels suffice since the size of each subgraph

is also halved at each step. I

Theorem 4.6. Every graph with a ,/2-bifurcator of size F has a fully balanced ,/2-bifurcator

of size 6(2 + v2)F.

Proof. Immediate from Theorem 4.5, since I:,~o 2-•/2 < 2 + ,/2. I

56 TllE CE!\ii':IU\L l•liAMEWOHK

Figure 4.3: The 4 X 4 tree of meshes T4.

Remark. The procedure described in Theorems 4.5 and 4.6 can be implemented in polynomial

time.

4.4. Embeddings in the Tree of Meshes

Leighton [40, 41] introduced the tree of meshes as an example of a planar graph that cannot

be laid out in linear area. He also showed that every N-node planar graph can be embedded in

an O(N lg N)-node tree of meshes. In this section, we define the tree of meshes and describe a

general strategy for embedding a graph in the tree of meshes.

The tree of meshes is formed by replacing each node of a complete binary tree with a mesh

and each edge by several edges which connect meshes at consecutive levels. More precisely, the

root of the complete binary tree is replaced by an n X n mesh (it is assumed that n is a power

of 2), the nodes at the second level are replaced by n X n/2 meshes, those at the third level

by n/2 X n/2 meshes, and so on until the leaves of the tree are replaced by 1 X 1 meshes. As

shown in Figure 4.3, each edge of the tree is replaced with edges connecting nodes on one side

of the higher-level mesh to the top row of the mesh at the lower level. The resulting graph is

called then X n tree of meshes Tn. It is not difficult to see that Tn, has N = 2n2 lgn + n 2

nodes.

In many cases, we use only the top levels of the tree of meshes. The subgraph consisting

of levels O, 1, ... , p (p s;; 2 lg N) of Tn is called a truncated tree of meshes Tn,p·

J•;MBEDDINGS IN Tim TlrnE Oli' MESlll<:S 57

Theorem 4. 7. There is a constant c such that every N -node graph G with an (F, v'2)

bijurcator can be embedded in 1:F, 2 Ig J- · Moreover} the embedding is regular in the sense

that F 2
/ N nodes of C are embedded in a regular fashion each of the N 2

/ F 2 bottom-level

meshes of TcF, 2 lg lf. ·

Proof. We first use Theorem 1.6 Lo corn;trnct a fully-balanced /2-bifurcaLor of size 6(2 +
v'2)F for G. We then use the internal meshes of TcF 21g !:!_ to route the edges that were removed

' F

in the upper 2 lg lJ.- levels of the fully balanced decomposition tree for C. The imbgraphs in

the (2 lg 5:{)th level of the decomposition tree (each of which has lF 2
/ NJ or I F 2

/ Nl nodes) arc

then embedded in the meshes on the bottom level of the truncated tree of meshes.

The internal meshes arc used as rcstructurablc pcrmutcrs. As we saw in Section 3.7,

terminals on opposite sides of a mesh can be connected in any order through the mesh. In

general, if the number of wires routed through a mesh does not exceed any side-length of

embedded in a 11\:f X 1M mesh with nodes placed in a regular fashion.

Consider only the Lop 2 lg 1J. + 1 levels of a fully balanced decomposition tree for G. Each

of the subgraphs at level 2 lg lJ.- of the decomposition tree has N(l/2) 21g ft.- = fi' 2 / N nodes.

(For simplicity we shall assume that F 2 / N is an integer.) Furthermore, if Ei is the maximum

number of edges between C - Ci and Ci, where Ci is a subgraph in the decomposition tree at

level i, then it is easy to sec that E0 = 0 and by Theorem 1.6, that

for 1 s; i s; 2 lg 1J.. Solving the above recurrence, we obtain:

and thus

58 TIii<; GENEllAL FIU\Ml•:WORK

We now embed G in TcF, 2 lg f.- . First, embed c:,,.,1i of the (2 lg J)-level subgraphs of the

decomposition tree in the boLLorn level meshes. This can be done if the side of each mesh at

level 2 lg r; exceeds 1F2 / N. This is true provided

/
.tn2lg'f 2 /

cF v2 2 1.F N.

For c 2 1, this inequality is easily satisfied.

Next embed the additional edges through the upper-level meshes in the natural way. No

more than 2Ei+t edges pass through any ith level mesh. Thus the routing can be performed

if the smaller side of the ith level meshes exceeds 2Ei+l· In other words, we must have:

A simple calculation shows that the inequality is satisfied f'or sufliciently large c. I

Remark. Throughout the thesis, we express bounds using the term lg J. For all practical

purposes, F is much smaller than N and this term is greater than one. Should the value of

P be larger, however, we shall still dcflne lg~ to be at least one. Similar interpretations arc

assumed for lg lg J and for lg lg lg ljf,. The conventions avoid the annoying (and trivial) cases

when F is very large without complicating the analysis further.

In I.he preceding embedding, all the nodes of C were mapped to meshes at the bottom level

of the truncated tree of meshes. Thus, edges between nodes in different meshes might have to

be routed through as many as 1 lg z;? meshes. Such long edges arc undesirable f'or a variety of

reasons. [t is natural to ask whether an embedding can be f'ound in which each edge can be

routed through fewer intermediate meshes. This is answered in the following theorem.

EMBEDDINGS IN TIIE Tl?EE OF MESHES 59

Theorem 4.8. There exist constants c and k such that every N -node graph C with an

(P, ✓'i)-bifurcator can be embedded in 1~F,2111 1 and such that no edge is routed through

more than k intermediate meshes.

Proof. We adopt a slight variant of Lhc strategy used in the previous theorems. The

balancing and embedding arc done simultaneously an<l in the same manner as before, except

at levels 0, k, 2k, :3k, ... (where k is a constant specified later). At these levels, we embed the

nodes LhaL arc incident to edges previously cut, and we cut the previously uncut edges incident

Lo these nodes. Of course, this could triple the number of cut edges every k levels but if k is

sufnciently large, this happens infrequently and is not harmful. AL all other levels the procedure

is the same as before, using 6 colors and Lemma 3 to partition the dccornposi Lion tree. The

process terminates after 2 lg 1jf. levels.

As before, the embedding is accomplished by using meshes as switching boxes for routing

side lengths of the mesh. The calcuiation is the same as before except that the number of cut

edges is tripled at every kLh level. Thus the recurrence for E, is

Herc, we have (without loss of generality) increased number of cut edges by a factor of ;3 initially

and by a factor of 3t/k at each level instead of increasing the number of cuts by a factor of 3

at every kLh level. Solving the recurrence, we find

For k 2:: 4, the sum converges Lo a constant. The remaining analysis 1s the same as in the

previous theorems except that the constants are larger. I

Remark. It is worthwhile Lo point out here that Theorems 7 and 8 could also have been

proved using Lemma 1.1 instead of Lemma ,1.2. The nodes of C would still be balanced in

Lhe decomposi Lion tree but the cut edges could only be split I /:3 2/:3 at each decomposition.

60 THE GENEllAL Fl{AMEWOHK

4 4 0 4

-
0 0 0

t 0 4 t

-
1t ~ t~

Figure 4.4: The H-layout of the tree of meshes

While this increases the value of the sum, it still converges to a constant. (This is because, for

sufficiently large k, ¥3t/k < 1.) Hence, k and c would be larger but the statements of the

theorems remain the same.

4.5. Layouts for the Tree of Meshes

Thus far we have considered only the problem of embedding graphs in the tree of meshes.

How do we lay out the tree of meshes efficiently? Clearly, any layout for the tree of meshes

also gives a layout for every graph that can be embedded within the tree of meshes. In this

section we develop two different layouts for the tree of meshes.

The first layout is a straightforward modification of the "H-tree" layout for complete binary

trees [55]. The modified layout is obtained by expanding each node of the complete binary tree

into a mesh of the appropriate size. Figure 4.4 shows this layout. It is easy to see that if S(F)

denotes the side of the layout for TF, then S(l) = 1, and

S(F) S 2S(F/2) + O(F),

which gives S(F) = O(F lgF). This means that the area of the layout for TF is bounded by

O(F2 lg2 F). As shown in [40, 41], this bound is optimal.

For truncated trees of meshes, such as considered in Theorems 4.7 and 4.8, a similar result

holds.

LAYOUTS FO!t THE TH.EE OF MESHES 61

Theorem 4.9. The truncated tree of meshes TF ,2 ls ;,- has a layout of area 0(F 2 lg2 1/,).

Proof. ThP obvious r<'striction of the> JI-layout to the top !Pvcls suffices. I

Although the mesh edges in the layout shown in Figure 4.4 have length 1, the c>dges between

meshes can be quite long (nearly half the side of the layout). By pulling in meshes closer towards

the top level, we can reduce the length of the longest edge considerably. This technique was

introduced in Chapter 3 to produce minimax edge length layouts for trees, and generalizes to

graphs with known bifurcators. This layout will later be used to find layouts with short edges

for graphs embedded within the truncated tree of meshes.

Theorem 4.10. The truncated tree of meshes TF, 2 !gl(,- can be laid out in area O(F 2 lg 2
~)

so that mesh edges have length 1 and edges between meshes have length at most O(F lg ~/lg lg~).

Proof. Consider the H-tree layout of a complete binary tree of height 2 lg lg lg tj,-, and

having (lg lg~)2 leaves. Expand each linear dimension by a factor f] = 0(F lg 1 / lg lg~), so

that each edge of the II-tree layout becomes a channel of width (3 and each node becomes a

f] X /3 square. The resulting area is (/3 lg lg If,)2 = 0(F 2 lg 2 1J.).

Since the channels are much wider than the side of any mesh, we can stack many meshes

within one channel. In particular, as seen in Figure 4.5, we embed the top level mesh at the

center of the layout with the second-level meshes on either side. In the first stage of the layout,

the meshes in the top levels are placed together in a breadth-first manner. Meshes at successive

levels are equally spaced at distance 0(F lg 1J. / lg lg 1J.) apart.

We need to ensure that every channel is wide enough to accomodate the meshes stacked

within it. To this end, let us suppose that all meshes embedded in the first stage are stacked

together in the same channel. Of course, this is a gross overestimate, but suffices for our

argument. Since the path from the root to a leaf in the original (lg lg If,)2-leaf H-layout has

length 0(lg lg~), a total of c lg lg ·1; levPls of TF, 2 lg f are embedded in the first stage. The

value of the constant c depends on the values of the other constants in the 8-terms and can

be made as small as necessary.

The total number of meshes embedded in the first stage is no more than 21+clglg¥_ Each

TIIE Gl~NEllAL FHAMEWOIU(

____________ ...J

-
--- ----- -------,

Figure 4.5: An improved layout for the tree of meshes.

mesh has side length no greater than F, so to stack all these meshes within one channel of side

/3, it suffices to have:

F21+clglg~ < o(Flg~)
- !gig~ '

which is easily satisfied when c ::; 1/2. Hence every channel has sufficient width to stack all

the ith level meshes across the channel for any i ::; clg lg I{,-.

In the second stage, we embed the remaining meshes in the /3 X /3 squares. A total of

(lg ~)c /(lg lg~)2 copies of an O(lg ~) level (lg ,f)c/ 2 X (lg !)' 12 truncated tree of meshes must

be embedded in each of the (lg lg~)2 /3 X /3 regions to accomplish this. Using the layout

described in Theorem 4.9 for each copy, the total area required in each region is

This is precisely the amount of area available in each /3 X /3 region. Hence the embedding is

possible.

It remains to verify that the edges between meshes have length O(F lg~/ lg lg~). This

1s easily done since meshes in adjacent levels were spaced distance B(F lg~/ lglg ~) apart in

· the first stage, and since meshes in adjacent· levels were located in the same /3 X /3 region in

the second stage. I

CIIAPnm 5

Solving the Layout Problems

Using the framework described in the previous section, we are now ready to present general

solutions to the dght problems posed in Chapter 2. The layout framework of Chapter 1 applies

directly to most of these problems, supporting our belief that the divide-and-conquer strategy

based on bifurcaLors is an efficient paradigm for VLSI grnph layout. In particular, the tree of

meshes emerges as an extremely versatile network for graph layout. \Vhile specific instances

of' some problems might be better solved using di!Terent techniques, the framework. provides

a novel and uniform approach for VLSI layout which c!Tectively addresses various unrelated

issues. The solutions presented in this section arc evaluated by comparing Lhern with known

lower bounds.

Problem 1. Given a graph C, produce an area-efficient layout for C.

By Theorem 4.7, every N-node graph with an (F, ✓2)-bifurcator can be embedded in the

truncated tree of meshes To(F), 2 lg)}' Next, by Theorem 1.9, the truncated tree of mcsher, can

be laid out in O(F2 lg2 1;;'.") area. Therefore, every N-nodc graph with an (P, v'2)-bifurcator

can be laid out in O(F'2 lg2
~) area.

As a consequence of Lemma ,1.1, every N-nodc graph whose smallest v'2-bifurcator is F,

must occupy at least F 2 area. l ◄'or otherwise the graph would have a ✓2-bifurcator strictly

smaller than F. Therefore, for every graph Lhe upper bound is at most. a factor of' O(lg2
")})

worse than optimal, i.e., the area bound is univer.sally close to optimal.

The bounds are also exi.stentially optimal. Lc~ighton [7, 42] has shown the existence of

N-nodc graphs with minimum v'2-bifurcator f,' which rPquirc area at least O(Nlg2 1;:£-). In

61 SOLVING TIii<'. LAYOUT l'IWBLISMS

other words, no strategy based on bifurcators alone can asymptotically improve upon the

divide-and-conquer framework.

Special Cases. Graphs with (F, v'2)-bifurcators with either of the special forms described

in Section 1.2.l have 0(F 2)-area layouts. Thus, for example, N-node trees have 0(N)-area

layouts.

Problem 2. Gi'ven a graph G, produce an area-efficient layout for G with minimax edge

length.

From Theorem 4.8 we know that every N-no<le graph with an (F, v'2)-bifurcator can be

embedded in the truncated tree of meshes 'l'o(F), 2 Ig If so that no edge passes through more than

a constant number of intermediate meshes. Furthermore, the layout for the truncated tree of

meshes given in Theorem 1. LO guarantees that every edge between meshes has length bounded

theorems, we sec that every N-nodc graph with an (F, v'2)-bif'urcator has an O(F2 lg2 ~}area

layout with maximum edge length bounded by O(F lg lj, / lg lg 5f).
This bound, too, is existentially optimal [7]. In other words, there exist N-nodc graphs

with minimum v'2-bifurcator F whose minimax edge length is fl(F lg lj, / lg lg 5f).
Unfortunately, the bounds are not universally close to optimal. The only general lower

bound on minimax edge length for N-node graphs whose minimum y'2-bil\1rcator is F, is

0(F 2
/ N). This general lower bound is also existentially optimal.

The problem of minimizing maximum edge length appears to quite difficult. Although the

preceding bounds arc disappointingly weak, they are the best known. Recall that in Chapter

3 we showed that even determining if a tree can be laid out with minimax edge length one, is

NP-complete.

Special Cases. The minimax edge length bounds for graphs with special (P, ✓2)-bif11rcators

arc 0(✓Ff/ lg N) for type A v'2-bifurcators and O(F) for type 13 v'2-bifurcators.

SOLVING TIIE LAYOUT PIWIH,EMS fl5

Problem 3. Given a graph, produce an area-efficient layout zn which each wire has

bounded delay in the capacitive model.

First we formalize some details of' Lhc model. As usual, a µ;raph describes a conncdion of

processors, with an edge corresponding Lo a bidirectional link between two processors. Each

node is a processing element which contains one driver and one receiver for each incident edge.

Every transistor in a processing clement has the same size. Thus, in our layouts, a node may

be represented by a long and skinny box of constant thickness, with length equal to the area

of an internal transistor. Since each node has bounded degree, a box will be just big enough

to contain all the transistors in the corresponding processor. Note that di!Tcrent nodes in the

layout will have di!Tcrcnt lengths, but the same thickness. We assume that Lhe grid spacing is

adjusted so that nodes and edges have unit thickness and may be laid along grid lines. Although

wires arc allowed to cross, we will not allow nodes to cross; this corresponds to transistors not

length l driven by a transistor of area D with capacitive load 1\ is proportional to (l + A)/ D.

The capacitive load presented to a transistor equals the sum of incident wire lengths and areas

of adjacent transistors.

Theorem 5.1. Every N-node graph G with an (F, ✓'i)-bifurcator has a bounded-delay

layout of area 0(F2 lg2 i).

Proof. As in Theorem 4.8, emb()d Gin a tree of' meshes so that adjacent nodes arc mapped

to meshes no more than a constant. number of levels apart. Since the dimensions of meshes at

successive levels, as well as the lengths of edges connecting adjacent meshes in the layout of

Theorem 4.9, decrease at the same geometric rate, we know that the length of an edge of G is

proportional to the side lengths of' the meshes Lhat contain Lhe corresponding nodes. Assign Lo

each node an area that is proportional Lo the side lengths of' Lhe mesh in which it is embedded.

Thus, the capacitive load on any node, which equals the sum of the areas of' all the incident

edges and adjacent nodes, is proportional to the area of the node. In other words, every wire

in Lhe layout has bounded delay.

ti6 SOLVING TllE LAYOUT l'IWBLEMS

0(Fi1 I
0(Fj) ,-..

Figure 5.1: Laying out expanded nodes in a mesh.

We need to ensure that each enlarged node can be accomodated in its assigned mesh

without blowing up the area of the layout by more than a constant factor. This can be done

by increasing the dimensions of each mesh by a constant factor, and laying out the nodes and

incident edges as shown in Figure 5.1. Notice that the nodes do not overlap other nodes or

wires. The area of each node remains proportional to the side lengths of the mesh containing

it, and thus the delay across every wire is bounded. I

Special Cases. Similarly, graphs with special (F, v'2)-bifurcators have O(F2)-area bounded

delay layouts. Thus, for example, every N-node tree has an O(N)-area bounded-delay layout.

Theorem 5.1 implies that the area bounds for bounded-delay layouts are no worse than

the best known general area bounds for Problem 1. However, it is not known whether or not

there exists a graph for which any bounded-delay layout requires asymptotically greater area

than the minimum area layout. In the following corollary, we show that any increase in area

need not be large.

Corollary 5.2. Any layout of area A for an N-node graph can be transformed into a bounded

delay layout of area O(A lg2 '{f-).

Proof. By Lemma 4.4, an area A layout yields a (vA, v'2)-bifurcator which can be quickly

found. Next, by Theorem 5.1, a bounded-delay layout of area O(A lg 2 ¾1) can be easily

constructed. Observe that this transformation is effective. I

SOLVING THE LAYOUT PROBLEMS 67

Problem 4. Given a graph C, produce a layout for C with few wire crossings.

The layouts for the lruncated tree of meshes in Theorems 1.9 and 1.10 do not have any edge

crossings. Since every N-nodc graph G with an (F, \/'2)-bifurcator can be embedded within the

truncated tree of meshes 1o(F),2 lg i, this means that the number of crossings in the layout for

G cannot exceed the number of nodes in Ta(F), 2 lg lj.-· In other words, the number of crossings

in the layout for G is bounded by O(F 2 lg i).
Once again, this bound too is existentially optimal [7]. Moreover, if the minimum \/'2-

bifurcator F of an N-nodc graph is asymptotically greater than ,JR, the number of crossings

in the layout for G is no more than a l'acLor O(lg J) times optimal.

Special Cases. Graphs with special (F, \/'2)-bifurcators can be laid out with O(F2
) crossings.

Problem 5. Given a graph, produce an area-efficient regular layout for the graph.

In Theorem 4.7, we showed how to embed any N-nodc graph G with an (F, \/'2)-bifurcator

rn 1:F,2 lg Ff for some constant c. Moreover, the nodes of G were divided evenly amoni~ the

N 2
/ F 2 bottom-level meshes of TcF, 2 lg !f. and in each bottom-level mesh, the nodes of G were

embedded in a regular l'ashion. Thus to produce an O(F2 Ig 2 J)-area layout for G that is

regular, we need only produce a layout for Tc/, 2 lg lJ for which the nodes at the (2 lg -i)th level

arc located in a regular fashion. In fact, we can do much better, as we show in the following

theorem.

Theorem 5.3. The truncated tree of meshes Ta(F), 2 lg lJ can be laid out in O(P2 lg2 i)
area so that, for every level i, all node.~ with£n ith level meshes are placed in a regular

fashion.

Proof. The first step is to construct a 8(lg J)-laycr three-dimensional layout [,tn] of' the

truncated tree of meshes. Fold the connections bcLwecn the root of the tree of meshes and

each of its two sons so that the sons fit. naturally on a second layer over the root mesh. Fold

Lhc connections to each of' Lhc meshes al Lhe next lower level so they fiL, on Lhe Lhird layer,

directly over the meshes on Lhc second layer, and so forth. This generates a lg 'j.-laycr three-

68 SOLVING TIIE LAYOUT PIWBL[i;MS

dimensional layout, with each layer occupying linear area. By projecting the three-dimensional

layouL onLo the plane in Lhe manner of Thompson [80, pp. :rn<18], the resulL follows. (The

same layout can be constructed by interleaving the meshes aL each level.) I

Special Ca8e8. The O(F2)-area layouts for graphs with special \/'2-bifurcators arc also regular.

Problem 6. DeBign area- efficient chipB that can be configured to realize a large number

of graphs.

In Theorem 4.7 we showed that every N-node graph with an (F, \/'2)-bifurcaLor can be

embedded in a truncated tree of meshes such thaL the nodes of the graph arc embedded in a

regular fashion in the bottom-level meshes of TcF, 2 lg If· In fact, the nodes can be mapped to

fixed positions within the meshes. Therefore, if we lay out the truncated tree of meshes on a

chip with processors at these fixed positions, we have a configurable chip for all graphs with

for conflgurablc layouts are the same as for unrestricted layouts.

Theorem 5.4. Every N-node graph with an (F, \!'2)-bifurcator haB a configurable layout

of area O(F 2 lg2
~).

Proof. Simply make the connections in the meshes after the rest of the chip has been

fabricated. Recall that we used the meshes as crossbar switches in Theorem 4.7. I

Special Ca8es. Similarly, graphs with special bifurcators have O(F 2)-area configurable layouts.

The O(N)-arca rcsLructurablc tree layout of Chapter 3 is such an example.

Problem 7. On a wafer which ha8 arbitrarily distributed defective cells, realize a given

graph on the good cells.

Theorem 4.7showcd how to embed any N-nnde graph G with an (F, \/'2)-bif11rcator in the

truncated tree of' meshes 'f'o(F), 2 lg 1;!-· The embedding had the property that nodes of the graph

could be mapped Lo fixed positions within the meshes at the boUorn level. Accordingly, we

fixed processors at each of' these positions.

SOLVING THE LAYOUT l'lWBLEMS 69

Faulty processors on a wafer thcrPfore rorrc'spond to faulty procc'ssors in the truncated tree

of meshes, the correspondence being induced \'ia thP layout for the tree of meshes. 11 is clearly

n<1 longPr possib!P to r!'alizP C in the faulty t rep of meshes. llowPvPr, it is possible to rPalize a

smallPr graph with a similar structure' using only thP functioning processors.

More formally. considcr a class of graphs for which any N-node graph in the class has a

J2-bifurcator of size 0(1(1\i)) where the function J is such that f(I)/ Jr is nondecreasing for

increasing x. For example, J(x) = ../x for the class of square meshes (as well as for the class of

trees or the class of planar graphs). In what follows, we will show how to embed any M-node

graph from the class in any Tcf(N), 2 lg ri\l that has M functioning processors where N 2 M

and c is a sufficiently large constant.

In particular, we will show how to embed Tf(M) 21g _ At in the faulty tree of meshes. By
' JTM!

applying Theorem 4. 7 to the smaller tree of meshes embedded within the faulty one, this will

prove our claim. Thus the layout strategy developed in Chapter 4 is impervious to the existence

of faulty processors. This result substantially generalizes and simplifies a similar result proved

by Leighton and Leiserson for embedding meshes around faults in [45].

Theorem 5.5. Given the preceding constraints on N, M, c and J, a completely functioning

truncated tree of meshes Tf(M) 21g ___M_ with M processors can be embedded in any partially
' f(M)

functioning truncated tree of meshes Tcf(N), 2 Ig J/Nl with N processors {M of which are

functioning) so that the processors of the former are mapped onto the functioning processors

of the latter.

Proof. Label the functioning processors in each tree of meshes from 1 to M by counting

from left, to right across the bottom level of each graph. (Recall that the processors are

evenly distributed on the bottom level.) Map the kth processor of Tf(M) 21g .,1 onto the
' J(M)

kth functioning processor of Tcf(N), 2 Ig' J{"-.l. Route the edges of the former graph through the

meshes of the latter in the usual way, at the same time embedding meshes of the former in

blocks within the meshes of the latter.

It remains to show that the capacity of each mesh in Tcf(N) 21g --A.. is sufficient for the
' J(SJ

70 SOLVING TIIE LAYOUT l'IWl!LEMS

embedding. Consider a mesh X on Lhe ith level of 1~f(N) Z lg -1:L. This mesh has side lengths
' f(N)

cf(N)/2i/ 2 and at most N /2i functioning processors below it in the bottom level of the

graph. The only meshes and edges of Tf(M) 21 g __M__~ Lhat arc embedded in X arc those that
' f(M)

correspond to roots of the f'orest of complete binary trees f'orrncd by removing the corresponding

interval of (at most N /2i) processors in Tf(M) 21g -M_. These roots are identified by splitting
' f(M)

Tf(M) 21 g ~"f__ (as in Lennna 4.:3) at the two endpoints of the interval. There arc at most two
' f(M)

roots at each level in the resulting forest and the sum of their side lengths (a geometrically

decreasing sum) is proportional to J(M)/2il 2 where j is such that M /2i ~ N /2i. (Remember

that there arc at most N /2i processors in the leaves of the forest so that the height of the

largest complete binary tree in the forest is j where M /2i ~ N /2i .) Thus the sum of the side

lengths of the meshes embedded in X is o(1},Wv'i) which, for sufficienUy large c, is less

than cf(N)/2i/2 (this is the side length of X), since N ~Mand f(x)/,/x is a nondecreasing

function. Hence X is large enough and the embedding is possible. I

Special Cases. A similar argument works for graphs with special bifurcators.

Problem 8. Given a graph G, assemble (J using the minimum number of copies of a

single chip having few external pin connections.

Suppose that we wish to assemble N-node graphs with (F, v'2)-bifurcators but that each

chip contains only m nodes, where m < N. Consider a chip consisting of a truncated tree

of meshes 'f'a(~·),O(lg ✓i:EJ' with them processors divided equally :.imong the bottom-level

meshes, and external pin connections to the top of the top level mesh. Two copies of this chip

may be wired together to form a truncated tree of meshes with 2m processors .. Thus, graphs

with twice as many processors can be assembled with two chips than can be assembled on a

single chip. More generally, we have the following result.

SOLVING TIii<: LAYOUT PIWBLEMS 71

Theorem 5.6. There i8 a univer8al re.~tructurable chip with m proce880r8 and 0(7N)
external pin8, occupying area 0(F:Vm lg2 ~;;;;P"), 8uch that every N-node graph with an

(F, v'2)-bifurcator can be a8,sembled U8i·ng multiple copie8 of the univer8al chip. Furthermore,

the number of chip8 u8ed in the a88embly i8 the minimum po88ible.

Proof. Consider the top lg N - lg m levels of a fully balanced decomposition tree of

G. Each of the subgraphs at level lg N - lg m has N /21g N-lg m = m nodes, and has a y'2-

bifurcator of size O(~). By Theorem 4.7, each of these subgraphs can be realized with a

single universal chip consisting ol" a truncated tree of meshes 7'a(~f),O(lg Y\:-r:-!..) whose area is

bounded by 0(F-";Jn lg2 ~), and which has O(~) external pin connections. To complete

the assembly, the chips arc wired up by making connections between pins on different chips as

given by the decomposition tree. I

has 0(.Jin) pins, which is independent of the size of the network to be assembled. This is the

best possible. To realize networks with larger bif'urcators, the parameters of the restructurable

chip depend Oil the size of the network assembled.

Special Ca8e8. For graphs with special bif"urcators, the same is true except that only O(F 2
)

area is used on each chip. For type A \/1-bifurcators, the number of pins needed is much lower.

For example, N-node trees require only 0(lg m) pins per chip (Theorem 3.U). As is the case for

all planar graphs, the number of pins docs not depend on the number of nodes. This is because

N-no<le planar graphs have y'2-bif'urcaLors of size 0(v'N).)

CHAPTER 6

The Channel Routing Problem

While Lhe layout problems considered in Part I provide new insigbLs and paradigms for

VLSI graph layout, they are nevertheless abstractions of problems encounLered by current

automatic layout systems. In this second part (Chapters 6 and 7) we shall study the widely en

countered channel routing problem which forms the basis of a popular pnradigrn for automatic

lavout.

The typical routing problem is characterized by a set of rcctangul:u modules with terminals

at fixed positiolls along module boundaries. Labels on the terminals specify the required

connections -- all tcrrnillals with Lhc same label must he electrically connected. The problem is

to wire togcLher all terminals that have Lbc same label.

Most layout systems proceed in two phases: placement and routing. [n the placement phase

the modules arc located aL nxed posiLions, and the required connections arc later made in the

routing phase by running wires around and in between Lhc modules. Of course, the two phases

go hand-in-hand; a placeme!lt for which a complete routing is impcrnsible is of little use. The

intractability of obtaining optimal solutions in either phase demands that efficient heuristics

be developed for practical use.

Introduced by IIashirnoLo and Stevens in 1971 [3,1], channel routing has become a very

popular and successful heuristic for routing inLegrated circuits. As illusLraLed in Figure 6.1,

afLcr Lhc modules have been placed, Lhc chip is heurisLically partitioned i11Lo a sC'I. of rectangular

channels, and each channel is assigned a set of wires which a.re Lo pass through iL. This

c/Tc•ctively reduces a difliculL "global" wiring problem to a set of disjoint (and presumably

easier), "local" channel rout.ing subproblems.

72

MANHATTAN IWUTING WITIIIN CHANNELS 73

Figure 6.1: Reducing the global wiring problem into a set
of channel routing subproblems.

The performance of the overall strategy is largely determined by the algorithm used to solve

the individual channel routing subproblems. For this reason, the channel routing problem has

been intensively studied for over a decade, and many heuristic algorithms have been proposed

for solving the problem [1, 2, 11, 12, 18, 20, 21, 34, 35, 36, 38, 51, 60, 62, 67, 68, 81, 84].

Although many of these heuristics have proved reasonably successful in practice, there are

instances (albeit theoretical) when the heuristics either produce arbitrarily bad solutions or

fail to produce any solution. · Chapter 7 presents a fast approximation algorithm which is

guaranteed to produce a solution close to optimal. The remainder of this chapter, however,

poses the problem in a formal framework and briefly reviews some of the previous work on

channel routing.

6.1. Manhattan Routing Within Channels

The channel routing problem may be described as follows. A channel consists of a two-layer

rectangular grid of columns and tracks (rows). Terminals are located on the top and bottom

tracks at grid points. The number of tracks between the top and bottom tracks is the width of

the channel. Each set of terminals to be electrically connected constitutes a net, and distinct

nets are disjoint. A ncL with r terminals is called an r-point net. The width may be varied

by moving the tracks vertically; however, the tracks are not allowed to slide horizontally. In

other words, the columns arc fixed. We also assume that there are no trivial nets (two-point

74 TIIE CIJANNEL IWUTING l'IWBLEM

3 s 1'2. -; 'i lt
I
I

Figure G.2: Manhattan routing within a channel. Vertical
cuts measure channel density.

nets with both terminals in the same column).

The objective of the channel routing problem is to wire together all terminals in each net

in a way which minimizes channel width. Wires may be routed on either layer, along any

track between the top and bottom tracks, and along any column. There is no restriction on

the number of columns at either end. Electrically disjoint wires may cross at grid points on

different layers, but may not overlap for any distance even on different layers. A wire may

change layers at a grid point, in which case no other electrically disjoint wire may pass through

that grid point on either layer.

In the Manhattan wiring model, these constraints are satisfied by restricting all horizontal

wire segments to lie on one layer, and all vertical segments to lie on the other layer. For a wire

to turn a corner it has to change layers, which requires a contact cut. Clearly, distinct wires

cannot share a corner since that would violate the constraint that only one wire may change

layers at any point. For obvious reasons, Manhattan routing is also referred to as layer per

direction or reserved layer routing. Figure 6.2 illustrates an example of Manhattan routing in

a channel.

Remark. The channel routing problem described above is a simpler version of switch box routing

in which terminals arc located on all s·ides of a rectangular channel. In many instances, such

as when two large mod ulcs arc placed next to each other, terminals lie only along two opposite

sides of a channel. For this reason, and because switchbox routing problem is much more

difficult, engineers have focussed attention primarily on the simpler channel routing problem.

BOUNDS ON CIIANNEL WlDTII 75

6.2. Bounds on Channel Width

Consider a vertical cuL which slices the channel in two (sec Figure f>.2). Every net which

has a terminal on both sides of Lhe cut is said to be split by the cut. Since aL least one wire

must cross the verLical cut f'or each split ncl, it follows that at every point the channel must

be at least as wide as the number of nets split by a vertical cut through that point. In short,

channel width can be no less than channel density, which is defined as the maximum number

of nets split by a vertical cut. For example, Lhe channel of Figure f>.2 has density three.

Can every channel wiLh density cl be routed in O(d) tracks? In practice, mosL channels can

be routed in d plus two or three tracks. In general however, this is far from the truth. Brown

and RivesL [11] gave examples of two-point net channels, with n terminals, whose density is

one, but for which channel width can be no less than ,/'in. Since we shall employ an identical

argument later, their result is rederived below.

Theo-rem 6.1 (Brown-Rivest). Consider the two-point, n-net {shift-one} channel in

which terminal i is located in column i on the top track, and in column i + l on the bottom

track. Any Manhattan routing for this channel must have width at least ./'in - 1.

Proof. Suppose that a routing of width w is given. Since the top and bottom terminals

of any net lie in difTerent columns, each wire in the routing must use a horizontal track to

change columns at least once. Now, if a wire changes from column i to column j along track y

(1 < y < n) then either the vertical segment (j,.y-1)-(j,y) or the segment (j,y)-(j,y+ 1)

can not have a wire laid on it. Otherwise, as seen in Figure f>.3, two different nets will overlap

at point (j,y).

In other words, whenever a wire changes columns within the channel, it must change to a

blank column, one which has no wire in one incident vertical segment. A wire may also change

columns by exiting across a side of' the channel along a horizontal track.

Ilow many wires can change columns along the first horizontal track? Since all grid points

on the top track arc occupied, a wire can change columns only by exiting the chanr1cl. But,

since segment overlaps arc prohibited, at most two wires can change columns in this way.

7G THE CHANNEL IWLJTING PHOBLEM

t 2..

. - - '\.

Figure 6.3: A wire can only turn into a blank spot.

Observe that whenever a wire exits the channel, one blank segment is created along a column.

The number of wires that can change columns on any horizontal track is bounded by

the number of blank vertical segments incident to that track, plus two (for wires that exit the

channel). If 2 wires change columns on the first horizontal track, this creates two empty vertical

segments incident to the second track, so that 4 wires can change columns on the second track,

and so on. In general, it is easy to see that the number of wires that can change columns on •
track y is at most 2y when y::; lw/2J and at most 2(w + 1 - y) otherwise.

Summing over all horizontal tracks, the total number of wires that can change columns is

consequently no greater than

Lw/2J+1

which is always less than ½(w + 1) 2 . Finally, since every wire connecting a net has to change

columns, we have

½(w + 1)2 2 n,

or, w 2 ../2n - 1, thus proving the result. I

An obvious question that arises is: Can every channel be quickly routed in minimum width?

Unfortunately, the general problem is NP-complete [77], and remains NP-complete even for

two-point nets [77, 78]. This might help explain why none of the current heuristics is even

guaranteed to find solutions that are close to optimal.

BOUNDS FOH. OT! IEH. WIHING MODELS 77

'l..

l 2.
Figure 6.4: In the knock-knee wiring model, two wires may

share a corner a$ long as they remain on different
layers.

6.3. Bounds for Other Wiring Models

While Manhattan wiring rules ease the task of mask fabrication, less restrictive wiring

models are also occasionally used. For example, some manufacturers may permit wires to

change direction within a layer, or may allow non-rectilinear wiring. Similarly, other manufac

turers may provide more than two layers of interconnect. It is important to consider how

variations-in the wiring rules affect the routability of channels.

In the knock-knee wiring model, wires are allowed to change direction within a layer, and

wires on different layers may share a grid point as long as neither one changes layers at that

point. The routing illustrated in Figure 6.4 is permissible in the knock-knee model, but not

in the Manhattan model. Channel density of course remains a lower bound on channel width.

Rivest, Baratz, and Miller [67] investigated the channel routing problem under the knock-knee

wiring model. They showed that every two-point net channel with density d can be routed in

width 2d - 1, independent of the number of nets. In view of Theorem 6.1, this implies that

the knock-knee wiring model is more powerful than the Manhattan wiring model. Leighton

[43] gave a construction for channels with density d which cannot be routed in less than 2d-1

tracks, so that the Rivest, Baratz, and Miller algorithm is optimal in the worst case. For

multi-point net channels, their algorithm guarantees a routing of width at most 4d - 1.

Preparata and Lipski [62] consider the channel routing problem under the knock-knee

model, but with three layers of interconnect instead of only two. With this extra layer, they

guarantee that every two-point net channel with density d can be optimally routed using exactly

d tracks. Moreover, this routing can be accomplished quickly. For multi-point net channels,

78 THE CHANNEL IWUTING l'IWBf,EM

their algorithm guarantees a routing of width no great,,, than 2d.

The problem of' "river routing," which is single-layer channel routing, has also received

considerable aLlcntion [21, 23, 51, 81]. Under Lhe single-layer restriction, there exist fast

algorithms for channel routing. In particular, Leiscrson and Pinter [51] also examine the

problem of' placing movable modules along the top and bottom tracks so as to minimize the

horizontal "spread" and width of a channel. Pinter [u l] also studies the problem of river routing

within polygonal regions with terminals along the perimeter of the polygon. Finally, LaPaugh

[39] studies the problem of wiring terminals placed along the perimeter of a rectnngular module

where the wires arc on two layers, but arc restricted to lie outside the module.

CJ[APTER 7

An Approximation Algorithm for Manhattan Routing

Brown an<l llivcst's lower bound for the one-shift example indicates that channel density is

not the only fundamental limitation on channel width. Motivated by their argument, Section

7.1 introduces the concept of channel flux, which provides another fundamental limitation

on channel width. Unlike density, flux is a local phenomenon and captures the amount of

"congestion" within a channel.

Flux and density together completely characterize the difliculty of Manhattan routing.

Section 7.2 presents a linear-time algorithm which routes every two-point net channel in width

proportional to its flux and density. This settles a conjecture of Brown and Rivest that their

lower bounds arc tight to within a constant factor. Moreover, in practice, Hux is extremely

small so that the algorithm for two-point nets uses no more than a constant number of tracks

more than density. Section 7.3 analyzes the running time of the algorithm, while Section 7.4

extends the algorithm to multi-point net channels.

7 .1. Channel Flux

While channel density provides a fundamental limitation on channel width, it fails to

capture the local congestion inside a channel. For example, while the one-shift channel has

low density, the channel width must nevertheless be large to overcome congestion within the

channel. This cong<>slion arises from the fact that every column in the top track contains a

terminal whose mate lies in a different column along the bottom track. Since wires in adjacent

columns may not both "turn right" along a common track without colliding;, many horizontal

70

80 AN APP!lOXIMATION ALGOIUTIIM FO!i MANHATTAN ROUTING

2. 3 4

Figure 7.1: The modified one-shift channel can be routed

in width two.

tracks are needed to complete the wiring.

In striking contrast, consider modifying the one-shift channel by making every alternate

column blank. While this channel is globally similar to the one-shift, it can be routed using

only two horizontal tracks as shown in Figure 7 .1. This channel is not locally congested because

the empty columns enable many wires to simultaneously turn along the same horizontal track.

We now introduce the concept of channel flux to measure congestion. Although there are

a variety of ways to measure congestion, we choose here a simple definition which permits a

clean analysis. In Section 7.4 we vary the definition slightly to obtain better bounds.

Suppose that instead of making vertical cuts in the channel, we instead make a horizontal

cut which isolates a set of contiguous columns from one track. Observe that we can vary the

size of a cut (measured by the number of columns within the cut) as well as its position. As

before, we say that a net is split by a horizontal cut if it contains terminals both within the

cut and outside. For any given position of a cut we can measure the number of distinct nets

split by the cut.

Intuition suggests that the greater the number of distinct nets split by a cut, the greater

the congestion is within the cut. Moreover, the larger the size of a congested cut, the larger

the channel width, because if the region of local congestion is very large, then so is the overall

global congestion of the channel. This intuition is formalized below. As mentioned earlier, we

restrict attention only to channels which do not contain any trivial nets.

Definition. The flux of a channel is the largest integer f for which there exists a horizontal

cut of size 2f2 which splits at least 2f2 - f nontrivial nets.

CHANNEL FLUX 81

For example, the one-shift channel has flux 0(✓n) because a horizontal cut of size n which

isolates the top track splits n nets. Similarly, the modified one-shift of Figure 7.1 has flux one.

For the fiux to equal two there must be a cut of size 8 which splits at least 6 nets, but since

every alternate column in either track is blank no such cut exists.

Using Brown and Hivest's argument for the one-shift channel, we next show that flux is

indeed a lower bound on channel width.

Theorem 7.1. Every channel with density d and flux f requzre5 channel width at least

max(d, f).

Proof. Find a horizontal cut of the channel which spans 2J2 columns and splits at least

2f2
- f nontrivial nets. For each nontrivial net split by the cut, choose any two terminals

from different columns that lie on opposite sides of the cut.

Consider the channel formed by the set of chosen terminals, i.e., assume that all columns

which do not contain a chosen terminal are blank. This new channel consists of at least 212 - f

nontrivial two-point nets. Moreover, at most f of the 2f2 columns spanned by the original cut

may be empty. By the same argument used to prove Theorem 6.1, no more than f + 2 of the

nontrivial nets can be routed into the correct column on the first track: f into empty columns

and one out each side of the cut. After the first track, there are at most f + 2 empty columns,

the extra two having possibly been created by wires exiting across the side of the cut in the

first track. Thus, at most f + 4 nontrivial nets can be routed into the correct column on the

second track. In general, at most f + 2i nontrivial nets can be routed into the correct column

on the ith track.

Let w be the minimum width for which a wiring exists. By the preceding argument, the

total number of nets that can change columns anywhere in the channel is no greater than

E~= 1(J + 2i) = wf + w(w + 1). But since at least 212
- f nontrivial nets must eventually

be routed, it follows that wf + w(w + 1) 2 2j2 - f, or w 2 f. Thus the original problem

requires a channel of width at least f. Finally, since the density d also is a lower bound on

channel width, the Theorem follows. I

82 AN APPIWXIMATION ALGORITllM Fon MANIIATTAN IWUTING

Flux is negligibly small in practice, and for all purposes never exceeds Uiree or four. One

explanation for this is that terminals arc movable; it is good engineering practice to leave

enough empty space so that if' the channel is congested, then the terminals can be moved

slighlly Lo allow a better wiring. Moreover, many columns contain less than two terminals,

and a large fraction of' nets contain terminals that are close together on the same side of the

channel. These arc precisely the conditions that make fiux small. Finally, unlike density, flux

is a local phenomenon and is less likely to grow with the size of' a channel or the total number

of' nets. As an example, Deutsch's "difficult problem" [20] has 72 nets, 171 columns and density

19, but the flux is just 3.

7.2. An Approximation Algorithm for Top-to-bottom Nets

In this section we present a linear-time approximation algorithm for routing channels with

two-point nets. It is assumed that each net is nontrivial and has exactly two terminals, one each

on the top and bottom tracks. The next section extends this algorithm to general multi-point

net channels.

The input to the algorithm may be presented in one of two ways. It might consist of a list

of columns, each entry describing the terminals in the top and bottom tracks in that column

(possibly none). A more compact representation is a list of nets, each net itself being a list

describing the positions of terminals in that net. The algorithm outputs a detailed wiring of

the channel. The leng;th of the output is proportional to the total wire area used to route the

channel.

Tlw running Lime of the algorithm will be measured as a function of the shortest possible

output. This is more reasonable than measuring time as a function of the length of the input

because the length of the output is always at least as large as the length of' the input. In fact,

the output is generally much longer than the length of the input.

With this convention !'or measuring the running time, iL is straightforward to sec that either

input representation described above may be converted to the other in linear time. Moreover,

if' the total number of' columns in the channel is c, aTtd if the channel has flux / and density d,

l
I
i

AN APl'IWXIMATION ALGOHITHM FOi{ TOl'-TO-BOTTOM NETS 83

p O{k)

o(k)
o(I<)

O(K)

Figure 7.2: The regions routed in each phase.

the minimum area required to route the channel is at least O(c(d + J)). The running time of

our algorithm is bounded above by O(c(d + J)), so that it is a linear-time algorithm.

The algorithm proceeds in four phases. Figure 7 .2 sketches the regions routed within the

different phases. The first two phases distribute empty columns uniformly across the channel,

thereby dividing the channel into blocks each containing a small number of empty columns.

This creates a new channel routing problem with possibly higher density, but with reduced

flux. The third phase, the heart of the algorithm, routes the correct number of wires between

blocks, without worrying about which columns within a block these wires lie in. Finally, the

fourth phase routes the wires within each block into the correct column. The empty columns

within each block allow a block to be wired independently of other blocks, so that every block

is wired simultaneously on the same horizontal tracks.

The Top-to-bottom Channel Routing Algorithm

Phase 1: Partition the channel into groups.

Find the least integer k such that the channel can be partitioned into groups of k2

consecutive columns, each group containing at Jc,ast 3k empty grid points in both the top

and bottom tracks. (An empty grid point is one at which no terminal is placed.) This

can be accomplished by trying successive values for k (starting with 1, 2, 3, ...) until the

constraint is satisfied.

84 AN APPROXIMATION ALGOIUTl!M Fem MANHATTAN ROUTING

The definition of flux guarantees that k does not exceed 6(! + 1). For, suppose that

k = 6(! + l) does not satisfy the constraint. Then some group of 36(! + 1)2 columns

contains less than 18(! + 1) empty grid points on one track. If wr partition this group

into 18 blocks, each of size 2(! + 1) 2 , then one of them must have less than (J + 1) empty

grid points on one track. But this means that the flux is at least f + 1 -- a contradiction.

Phase 2: Distribute empty points uniformly.

Divide each group of k2 columns into k blocks of k columns each. Route wires from the

first 3 points (if non-empty) on the top track of each block into columns that are empty

on the top track. Since each group has at least 3k empty points on the top track, this

routing can be easily accomplished using no more than 3k horizontal tracks. Repeat the

same for the bottom track, so that the original channel is reduced to one which can be

partitioned into blocks of size k such that the leftmost 3 columns of each block are empty.

The significance of having 3 empty points in each block will be made clear in the detailed

interblock routing of Phase 3. Observe that although the density of the resulting channel

may be greater than the density d of the original channel, it can be no greater than d + 6k.

Phase 3: Route wires between blocks.

This phase routes the correct number of wires between different blocks: if x nets have one

terminal in the top track of block A and the second terminal in the bottom track of block

B, then route x wires from the top track of block A to the bottom track of block B. It is

not necessary that the wires be routed into the correct columns, but only that the correct

number are routed between blocks. This phase is relatively complicated and forms the core

of the overall strategy. At most d + 3k horizontal tracks are used. Details are descibed

later in this section.

Phase 4: Route wires within each block:

At the end of Phase 3, all that remains is the problem of routing within each block. Each

block has at most k nets and at least three empty columns. The location of each net is

determined in Phases 2 and 3. Each net may be routed entirely within its block using,

AN Al'l'IWXIMATION ALGOIUTIIM FOR TOP-TO-BOTTOM NETS 85

for example, the algorithm of Kawamoto and Kajitani [3G], which uses no more than

1k horizontal tracks. Mor<'over, every block can be simultaneously routed on the same

horizontal tracks, so that this phase uses at most ~k tracks.

Specifically, the ncl,s arc routed one per track: the order of routing is determined by

constraints caused by a top terminal for one net lying above a bottom terminal of another

net. When a cycle of constraints occurs, one net of the involved cycle is temporarily routed

into an empty column to eliminate one constraint, and routed to its other terminal after

the other nets in the cycle have been routed. Two tracks are used Lo route the last net in

each such cycle of constraints. I

Next, we present the detailed routing of Phase 3. Each net is first classified into one of

three categories. If both terminals of a net lie in the same block then the net is said to be a

vertical net. OthNwise, if U1e i.Prmin~ls MP in difTNPnt hlo<>lq, :ind if th" top t,,rmin"l i" to th~

left of the bottom terminal, then the net is called a falling net. Finally, if the terminals are in

different blocks and if the top terminal is to the right of the bottom terminal, then the net is

called a risi'ng net.

The interblock routing procedure performs a left to right scan across the channel, routing

each block completely before proceeding to the next block. Between any two consecutive blocks,

the rising nets run along the upper horizontal tracks, the falling nets run along the lower tracks,

ar:d every empty horizontal track lies between the tracks containing the rising and falling nets.

In some cases a wire must be routed through previously routed blocks on the left before

it can proceed to the right. This requires that space be maintained for wires to backtrack

(pun intended) when necessary. By keeping the empty tracks between the rising and !'ailing

nets within each block, we can coalesce .the empLy tracks in consecutive blocks to form the

pyramid shown in Figure 7.3. Pyramids are crucial to backtracking; as an example, Figure 7.3

illustrates how a "blocked" wire can backtrack through Uw pyramid on its way right. After a

wire backtracks through the pyramid, the pyramid is updated as shown.

The following outline describes the interblock routing procedure in detail. Each of the

steps is illustrated in Figure 7.4. Figure 7.1a shows the initial situation just before a new

86 AN APPIWXIMATION ALGORITHM FOil MANHATTAN HOUTING

1···-~·--~--- ..
' '
' . ~- - ··:· ····:· .. ~----

r- -~ •-: -- -;----~----
. . ' . . __ -:-·•·-;- ·--~--- ,----
' . ' ••' ···-··· , .. -..

i '
:. .. -~. --~ -....... . : -----

Initial

,
'

, .. ··:-··· ···-
. . ·:·--~ .. -~ -

----~· - ~--- "";' ·•· •· • 00 HO ;----;--- . .. :··. ·• ...
/ .. --- . --

'

Backtracking

Figure 7 .3: Maintaining a pyramid for backtracking.

___ J_J -
__ J r· --
.,..,

Updating

block is entered. The arrows on the tracks indicate whether the net is a rising/falling net that

terminates within the block, or whether the net terminates in a different block on the right.

The empty tracks are contained within the pyramid shown. In the case when the block to be

routed is the leftmost block, the pyramid contains all horizontal tracks and extends to the left

of the channel.

The Interblock Routing Procedure

Step 1: Ending nets.

Nets with one terminal in a block on the left and the other in the current block are called

ending nets. By moving the lowest ending rising net upward and the highest ending falling

net downward wherever possible, the ending nets can be routed in a staircase pattern as

shown in Figure 7.4b.

Step 2: Continuing nets.

Nets with one terminal in a block on the left and the other terminal in a block to the right

of the current block are called continuing nets. Route the rising (falling) continuing nets

AN APPROXIMATION ALGORITIIM FOR TOP-TO-BOTTOM NETS 87

1st column

/ ofblock

♦--

♦--
Ending - ♦--

net •::
}

Rising

Pyramid

♦--

•-

•-•--
♦--
♦--

nets

} Empty
tracks

}
Falling

nets

7 . .l/o B,fore routing ,tart. (eradirag ra,t, are marked with arr01AJi).

Blocked
column

/
X

'7. L.J C Routing contirau1ng nda in Step 2.

•--- 1=-- ----------- - --- - -- -- ----•-- - ------------. -- - - - - ----
:~~it--=~=~:;_=~~~~ . - ,, - -·
:········~ --· ..

···Ff:-~:::_::~~ ·:: . ·:. .: _______ _
, _ -· ----
- ---- ---

♦ - ---. - ---. - ---
♦ - - --

.._...
Remaining
rising nets

(back tr-Jckcd)

Rouhng f(}1101n1n9 slarh"9 """9 ,.,i,, ,,. Step 4.

Upualcu
pyramu.l

7. 1./b Routing eradirag ,icu ira Step!.

/ ~ empty columns

xx . --[~- -.. f _ ---------. -- - - - .. - - - - - - - - - -
• -- - - 1 .. - - - - - - - -
♦-- rl,. ------------ - -- ... •-- .. -- _ _. •-,+::~

:. .. :
--- -- ... •-

Starting
/ rising nets

:: l------------•- •------------
xx
'-- 1 empty columns

7, "-f cl Bala,ici,ig co,umn, in St,p 3.

Starting
falling

nets
Additional

empty column

\~

7.~f 1

Ro.,.t,n9 &tarting falling n,t.s "'St,p 4.

3 c:mpty column, -----.

7.J.fh

88 AN Al'l'IWXIMATION ALGOIUTIIM FOH. MANIIATTAN lWUTING

Lhrough Lhe block by shifLing them up to higher (lower) Lracks in a staircase pattern that

fits Lhc sLaircasc paLLcrn of' the ending ncts.

As shown in Figure 7.1c, the sLaircase patLcrn of the continuing ncLs blocks one grid point

in the top track as well as in the botLorn track (unless the block has no ending nets). In

other words, no net can begin at the grid points shown. 1 [owever, remember that Phase

2 provides at least 3 empty grid points on either track in each block. Since we arc free

to place these empty grid points in any position, we still have at least two empty points

remaining on either track.

Step 9: Balancing.

Suppose the number of ending rising nets is greater than the number of ending falling

nets. Balance the diITerence by routing some Blarting rising nets (those which originate in

the block) as shown in Fi~urc 7.1d. In case there are more ending falling nets than ending

rising nets, follow a symmetrically oppo:,;ite procedure.

Tn order to ensure that every empty column remains between the rising and falling nets it

may be necessary to force one more empty grid point on the botLom track. Similarly, one

grid point in the top track is forced to be empty because it is blocked by the rightmost

starting rising net. At the end of thi:,; step, observe that the pyramid may be updated as

shown in Figure 7.4e.

Step 4: Starting netB.

Suppose again that the number of ending rising nets is greater than the number of ending

falling nets. After balancing the columns in Step 3, route all the starting !'ailing nets as

shown in Figure 7.1f. Observe that one more grid poinL on the bottom track is blocked,

and therefore must be crnpLy. Follow a symmetric procedure in the opposite case.

Step 5: Remaining netB.

At this stage either starting rising ncts or starting falling nds remain to be wired. Suppose

that some starting rising nets remain. l{oute these nets as shown in Figure 7.1g, making

RUNNING TIME ANALYSIS 89

use of' the pyramid to backtrack whenever necessary. In case the number of' remaining

starling nets equals the number of' starling falling nets routed in Step 4, then route the

last starting rising net using the empty column from Step 3.

Step 6: Vertical nets.

Houle Lhe vertical nets in the natural way as shown in Figure 7.4h. Note that no extra

empty points are required. I

Figure 7.1h shows the complete routing for the block, as well as the updated pyramid

structure. Observe that the initial conditions arc satisfied for routing the next block on the

right. Furthermore, note that no more than 3 points on any track are required to be empty, so

that Phase 2 of' the main algorithm distributes sufficiently many empty grid points throughout

the channel.

::;ince every endmg net is routed before every starting net, the total number or horizontal

tracks used is no greater than d + Gk, the density of' the resulting channel at the end of Phase

2. Consequently, the number of' horizontal tracks used by the main algorithm is at most

d + 15k = d + 0(1).

7.3. Running Time Analysis

To analyze the running time of' lhe algorithm we shall calculate the running time of each

phase separately. Suppose that a channel has c columns, density d, and flux f. Then, as shown

earlier, O(c(d + f)) is a lower bound on the minimum area needed to wire the channel. As

shown below, this is also an upper bound on the running time of' the algorithm.

The first phase computes the smallest integer k for which the channel can be divided into

groups of k2 coiumns each such that every group has at least 3k empty grid points in both

the top and bottom tracks. The value of k is computed by successively trying every integer

(starling with 1, 2, ...) until the condition is satisfied. For any possible value i, the size of each

group is i 2 and there are c/i2 · groups in all. The required condition can easily be checked for

each group in time O(i2
) so !.hat the total Lime is O(c). The total time for Phase l is therefore

00 AN APPIWXIMATION ALGOIUTIIM FOR MANHATTAN ROUTING

no more than O(ck). But, since k :S 6(! + 1), this is no neater than O(cf).

In Lhe second phase, empty columns are evenly distributed among the di/Terent blocks

within each group. Each wire runs along one horizontal track so that the time is no more than

the Lota! length of wire laid out. Since no more than 3k tracks arc used, the total wire length

docs not exceed O(ck) = O(cf).

Phase :3 is slightly more complicated to analyze. As long as wires do not change direction,

the time to lay them out is never more than the length of wire laid. However, whenever a

wire must turn a corner or backtrack, the time requirements can potentially increase. A priori,

it seems that maintaining the pyramid strucLure is time consuming; furthermore, the time to

update the pyramid each time can be significant,ly large.

Fortunately, however, the pyramid is only an aid in understanding why the algorithm works

corrccLly; there is no need to explicitly maintain the pyramid at all. Any time a wire must

backtrack, all we really have to do is to simultaneously backtrack along the uppermost and

lowermost empty tracks until a column, which is empty between the two tracks, is encountered.

In fact, following this procedure gives the same routing as with the pyramid. It is relatively

straightforward to argue that, with the modified strategy, the total time spent in Phase 3 is

no more than O(c(d + k)) = O(c(d + f)).

Finally, Phase 1 requires no more than O(c/) time. Each channel routing subproblem of

size k can be routed in time O(k) using O(k) tracks. The total Lime over all subproblems is

therefore O(ck) = O(cf).

Summing up, we conclude that the running time of the algorithm is dominated by Phase

3, and docs not exceed O(c(d + J)), which is linear in the area of the minimum area routing.

7 .4. The Channel Routing Algorithm

The algorithm of Section 7.3 routed two-point nets which had one terminal in the top

track and the other in the bottom track. This scdion extends the algorithm Lo multi-point

nets. As before, the algorithm is divided into four phases. Once again, we assume that the

channel has no trivial two-point nets, and has density d and flux J.

TIIE CIIANNEL ROUTING ALGOIUTIIM !Jl

The General Channel Routing Algorithm

Phase 1: Partition the channel into groups.

Find the least integer k for which the channel can be partitioned into groups of' k 2

consecutive columns, such that a horizontal cut of size k2 which isolates either the Lop or

bottom track of any group splits at most k 2 - 3k nets. The value of k may be found by

trying successive values (starting with 1, 2, ...) until the required condition is satisfied.

As before, it may be verified that the value of k is bounded by O(f), where f is the flux

of the channel.

Phase 2: Distribute empty points uniformly.

For each track within a group count the number p of empty points. If p 2 3k, then

distribute the empty points as before. If p < 3k then there are at least 3k - p duplicate

terminals within the group and on the same track. Choose any :1k-p duplicated terminals

and connect these Lo other terminals from the same net using one horizontal track for each

such net.

Next, pick one representative terminal for each duplicated net connected above. The

duplicate terminals, being already connected, may be ignored so that each group now has

at least 3k empty points on either track. Distribute these empty points uniformly as before

so that each block of size k has at least 3 empty points. Observe that the total number of

horizontal tracks used is O(k) = O(J).

Phase 3: Route wires between blocks.

Although the basic strategy is the same as before, the major difference is that a net

may have representative terminals in many different blocks. (Within a block choose any

one representative terminal, if it exist:,, on each track.) The modified interblock routing

procedure is described later in this section, and Ui>CS no more than 2d + O(f) tracks.

02 AN APPROXIMATION ALGOIUTIJM FOR MANHATTAN lWUTING

Phase 4: Route wires within each block.

This phase remains essentially unchanged. The only difTerence is that within each block

the representative terminal of any net should be connecLed Lo all its duplicates. Although

Lhe choice of representatives dderrnines the number of horizontal tracks used, this never

exceeds 0(/). I

Next, we present the detailed inLerblock routing of Phase 3. Each net is first classified into

one of four categories. A net whose leftmost terminal on the top track lies in Lhc same block as

its left.most terminal on the bottom track is called a vertical net. If the leftmost top terminal

(i.e., on the top track) of a net falls in a block to the left of the block containing Lhe leftmost

bottom terminal (i.e., on the bottom track) of the net then the net is said to be a falling net.

Conversely, if the block containing the leftmost top terminal of a net is to the right of the

block cont,:i.inin£1: thP ldLrnost hot.1,orn trrmin:il "f UH' 11.et. l;hcn the n"f !" ""ll"d 1>_ ,,.;~~·,,,_1 r>,et.

Finally, if all terminals of a net lie on the same track (either top or boUom) then the net is

called a same-side net.

In additioa, each net is divided into a rising portion and a falling portion. The rising

portion of a net links the block containing the leftmost terminal to the blocks containing

terminals in the top track of the channel. The falling portion of a net links the block containing

the leftmost terminal to the blocks containing terminals in the bottom track of the channel.

The intcrblock routing procedure connects the top terminals with the bottom terminals using

a single connection crn<~rging from the block containing the leftmost terminal. Figure 7.5

illustrates the rising and falling portions of a net and where the connection is made. Observe

that not every net is required to have both a rising as well as a falling portion.

As before, the procedure ensures that between consecutive blocks tracks containing rising

portions of nets are above every empty Lrack and that every empty track is above the tracks

containing falling portions of nets. This allows us to once again maintain a pyramid structure

for backtracking.

The routing proceeds b!o{:k-by-block from left to right in Lhc middle 2d + O(f) tracks of

the channel. Each block is routed in seven steps described below. The steps arc numbered to

THE CHANNEL ROUTING ALGOH.ITHM 93

FAL LINEf PoP..l1otJ
-- - . :Y. - _. - --- -

t ' ' I "L '2. 2.-

Figure 7.5: Dividing net.~ into rising and falling portions.
Some nets may have only a falling/rising por
tion.

coincide with the algorithm of Section 7 .3. Figure 7 .6 shows a complete routing of a block.

The lnterblock Routing Procedure

Step 1: Ending nets.

Route the ending nets (those which do not have a terminal to the right of the current

block) in staircase patterns at the left end of the block.

Step 2: Continuing nets.

Route the continuing nets (those with a terminal in a block to the right of the current

block) in staircase patterns nestled against those generated in Step 1. If a continuing net

also has a representative terminal in the current block, then place the terminal to the right

of the staircase and make a connection as shown in Figure 7.6.

Step 2.5: Starting same-side nets.

Route every same-side net whose leftmost terminal lies in the current block in a staircase

fashion, bringing wires from the bottom (top) track to the lowest (highest) available empty

track.

Step 9: Balancing.

If more columns have been used at the top of the channel than at the bottom, make up

the difference by routing the rising portions of some starting rising nets. If the opposite

case holds, follow the symmetric procedure.

!l4 AN APPROXIMATION ALGOR.ITIIM FOR MANIIATTAN ROUTING

Step 4
,....,._.

-- -----... -11- ------i -- ---- ------- --
1:: : : -

11
t~t -~ :: : : :: Rising ponions

• :: ¥---- i- r.::: :: of nets -- •-- -------
-- ---··::: +--(Step5)

Back tracking { If -- Empty track
region ._ _ __ _ _: }- (Step 5)

1- - - -.___ --:: fh ..,t:. :1:: :: : : Falling portions
♦ • • IJ: ---- · - of nets
♦ :: • ··f·:;: :j::: _ :: ::-- - - -- -- . - - - - - - -- --
• = = -- _:::::::::::

E~ --.---

1

___,I+ :V~rtical ne_t (Step 6)
nets g R1smg n~t with

(Step I l backtracking (Step 5)
Rising nets for

balancing (Step))

Same-side nets (Step 2.5)

Connections to (Step 2)
cont1nu1ng nets

Figure 7.6: Complete Phase 9 routing within a block.

Step 4: Starting nets.

Route the falling portions of starting falling nets (or the rising portions of starting rising

nets depending on which was in excess in Step 3).

Step 5: Remaining nets.

Route Lhe remaining rising portions of starting rising nets (or the falling portions of remain

ing starting falling neLs), using the pyramid for backtracking if necessary. Furthermore,

route the falling portions of starting rising nets and Lhe rising portions of starting falling

nets in the straightforward way using empty tracks.

Step 6: Vertical nets.

Route the vertical nets in empty columns as before. I

THE CHANNEL ROUTING ALGORITHM 95

Since the rising and falling portions of each net are effectively separated, the interblock

routing procedure requires no more than 2d + O(f) horizontal tracks. As before, it can be

argued that the overall algorithm runs in linear time, and routes a channel of density d and

flux f in width 2d + O(J). To summarize, we have shown the following.

Theorem 7.2. Every multi-point net channel with density d and ffox f can be routed in width

no greater than 2d + O(J) in linear time.

Furthermore, if every net is a same-side net or only has a rising portion or a falling portion

(but not both) then the number of tracks used is d + O(J). In particular, for two-point net

channels we have the fallowing result.

Theorem 7.3. Every two-point net channel with density d and flux f can be routed in width
~

d + O(f) in linear time.

CHAPTER 8

Conclusions, Extensions and Open Problems

This thesis was motivated by the need for a clearer understanding of various issues in

circuit layout. The techniques developed provide new insights and approaches for VLSI layout.

Although the results in their present form are theoretical in nature, it is likely that some of

the techniques can be adapted for use in practice.

The two parts of the thesis share a common underlying methodology. First, the critical

properties that determine the quality of a layout are identified. In the next step, these properties

are effectively exploited to obtain good layouts. Thus, for example, the minimum bifurcator

of a graph gives a lower bound on layout area, and good layouts can be found quickly if a

decomposition is available. Similarly, flux and density give lower bounds on channel width;

they also provide the basis for a fast, provably good channel routing algorithm.

The strategy for VLSI graph layout in Part I provides a simple and uniform technique for

solving a variety of layout problems efficiently. The unified framework is suitable for custom

layout, and at the same time is efficient with regard to area, delay, and fault-tolerance. The

tree of meshes, in particular, emerges as a surprisingly versatile and powerful network for

circuit layout. A priori, there is no reason to believe that such diverse concerns can be handled

simultaneously in a compatible manner, let alone within a common framework.

Approaching the channel routing problem from a theoretical viewpoint, Part II charac

terizes the properties that make Manhatta11 routing diificult. These properties then form the

basis of a new, linear-time approximation algorithm that is guaranteed to always find a near

optimal routing. In contrast, although the problem had been studied intensively for over a

decade from an engineering viewpoint, all previous heuristics could be made to perform ar-

9(;

l'IWBLEMS Jf\i GH.Al'IJ LAYOUT 97

bitrarily poorly on certain inputs.

These results notwithstanding, a number of problems are left unresolved in this thesis.

The following sections mention somr of thr morr import.ant open problems, and also sketch

extensions to the results reported. More details on specific problems may be found in [7].

8.1. Problems in Graph Layout

The divide-and-conquer strategy based on graph bifurcators has also bern successfully ap

plied by Leighton and Rosenberg [46] to the study of three-dimensional VLSI circuit layout.

In addition, the techniques and results are also applicable to graph and data-structure embed

dings, and also provide bounds on one- and two- dimensional bandwidth minimization.

Question 1. How much area is required to lay out an N-node planar graph? The best

universal upper bound is O(N lg2 N) [49, 83] while the best existential lower bound (for

the tree of meshes) is O(N lg N) [40, 41].

Question 2. Is there a polynomial time algorithm for laying out trees with edges not much

longer than the minimax edge length? The best tree layout algorithm (Chapter 3) produces

layouts with edges of length 6(.JR/ lg N). Although this is optimal for some trees, it is

way off for othert.

Question 3. Is there a better way to realize a network in an environment that contains

defective processors? The results of Chapter 5 guarantee that any graph can be realized

using the good processors provided the "channels" have width 0(JR lg 1J.) in a regular

layout. Although this bound is optimal for some networks [7], it is not known to be

optimal for simpler networks such as two-dimensional arrays.

Question 4. Is there a provably good heuristic for graph bisection? Any such heuristic

could be used to find efficient decomposition trees and bifurcators, which, in turn, could

be used to produce good layouts [7, 42]. There are many heuristics which do very well in

practice [13, 17, 24, 37, 66, 71]. Analyzing these or developing new heuristics along similar

lines is likely to have an impact on VLSI layout.

98 CONCLUSIONS, EXTENSIONS AND OPEN PROBLEMS

Question 5. Can the framework be extended to deal with processors of variable size and

shape? While it is relatively easy to deal with equal-si,,e processors, any progress toward

the general problem would be very interesting.

8.2. Problems in Channel Routing

While the algorithms of Chapter 7 are fast and are guaranteed to produce near-optimal

routings, the analysis of the constant factors leaves much room for improvement. In particular,

the actual number of tracks used by the algorithm may be much less than the upper bounds

indicate.

For example, if the empty grid points are already uniformly distributed to begin with,

then Phase 2 needs to perform only a minor redistribution of empty points. Consequently, the

upper bound of 6k :::;; 36(! + 1) tracks to redistribute empty points, is a gross overestimate. On

the other hand, if the empty points are not uniformly distributed, but are bunched together in

groups, then the actual lower bound is underestimated by flux. To see this, observe that along

a horizontal track at most two wires can turn into a blank column inside a bunch of empty

columns. However, the lower bound argument for flux does not take the density /frequency of

blank points into consideration. Since flux underestimates the true bound in this case, once

again, we see that the performance of the algorithm is much better in relation to the actual

value than what the bounds indicate.

In addition, it is possible to obtain tighter bounds more directly, by redefining the notion of

flux. Rather than making horizontal cuts in the channel, it is better to employ the argument to

"windows," i.e., groups of contiguous columns. This is the idea adopted by Brown and Rivest

in their lower bound arguments. The advantage of this lower bound strategy is that if many

wires are forced to change columns within the window, then the lower bound is very high. On

the other hand, if many wires exit across the sides of the window, then the width must again

be large since at most two wires can exit the window along a horizontal track. Is it possible

to redefine the notion of flux to capture some of these bounds? What is the best definition for

flux? Finally, do multi-point nets really require 2d + O(f) tracks, or will d + O(J) suffice?

PROBLEMS IN CHANNEL ROUTING

At a more general level, it would be intereniq to invettipte the applicability or flux to

other wiring problems, such u, for example, the ~ ,......._. In conclusion, we mention

that Baker, Bhatt, and Leighton (3) extend the raulta c,f' the ~ wiring model to· the

cue where contact cut, are larpr than wir-. In tint ... it t--• that lu ia never more
(... . .

. th~ a con1tant, ao that dentity ii the ·aote limiting fader .cm width.

Bibliography

[l] S. Alford, DYCIIAR: A Channel Router which uses dynam£c channel a.~.~ignment, S.B.
thesis, Dept. of Electrical Engineering and Computer Science, M. I. T., (l980).

[2] T. Asano, T. I<itahashi, and K. Tanaka, "On a method of realiiing minimum width
wiring," Electronics and Communications in Japan Vol. J59-A, 2 (l97f>).

[3] B. S. Baker, S. N. Bhatt, and F. T. Leighton, "An approximation algorithm for Manhattan
routing," Fifteenth Annual Symposium on Theory of Computing (l98:l).

[4] B. S. Baker and H. Y. Pinter, "An algorithm for the optimal placement and routing of a
circuit within a ring of pads," Twenty fourth Annual IEEE Symposium on Foundations

of Computer Science (1983).
[5] J. Bentley and H. T. Kung, "A tree machine for searching problems," Proceedings of the

1979 International Conference on Parallel Processing, IEEE (l979).
[6] S. N. Bhatt and S. Cosmadakis, "The complexity of minimizing wire lengths in VLSI

Layouts," unpublished manuscript, M.J.T., (1982).
[7] S. N. Bhatt and F. T. Leighton, "A framework for solving VLSI graph layout problems,"

JCSS (to appear).
[8] S. N. Bhatt and C. E. Lciserson, "Minimizing the longest edge in a VLSI layout," M.I.T.

VLSI Memo 82-SH, (1982).

[9] S. N. Bhatt and C. E. Leiserson, "How to assemble tree machines," Fourteenth Annual
ACM Symposium on Theory of Computing (1982).

[10] G. Bilardi, M. Pracchi, and !◄'. Preparata, "A critique and appraisal of VLSI models of
computation," Proceedings CMU Conference on VLSI Systems arid Computations {1981).

[11] T. Bolognesi, A Channel Routing Algorithm Bounding Channel Width and Maximum Wire
Length, M.S. thesis, (1982).

[12] T. Bolognesi and D. Brown, "A channel routing algorithm with bounded wire length,"
unpublished manuscript, (1982).

[13] M. A. Breuer, "Min-cut placement," Journal of Design Automation and Fault Tolerant

Computing Vol. 1, No. 4, (October 1977), 313-362.
[14] D .. J. Brown and H. L. Rivest, "New lower bounds on channel width," Proceedings CMU

Conference on VLSI Systems and Computations (1981).
[15] S. Browning, The Tree Machine: A Highly Concurrent Computing Environment, Ph.D.

thesis, Dept. of Computer Science, California Institute of Technology, (rn80).
[16] S. Browning, "private communication," (April, 1981).
[17] T. Bui, On Bisecting Random Graphs, S.M. thc~sis, Dept. of Electrical Engineering and

Computer Science, (UJ8:3). Also appears as M.l.T. LCS Technical Heport 287.
[18] M. Burtstein and H. Pelavin, "llierarchical channel router," IJJAf Research Report Vol.

RC 9715 (42907), (1982).

100

BIBLIOGRAPHY 101

[Ill] P. R. Cappello and K. Stciglitz, "Arca-efficient VLSI structures for multiplying at clock

rate," Technical IicporL 289, Department or El~CS, J>ri nceLon U nivcrsity, (1981).
[20] D. N. Deutt-ich, "A 'Dogleg' channel router," Proceedings 13th. IEEE Design Automati"on

Conference (UJ76).
[21] D. Dolev, K. Karplus, A. Siegel, A. Strong, and .J. Ullman, "Optimal wiring between

rectangles," Proceeding,q 13th ACM Symposium on Theory of Computing (I 98 I).

[22] D. Dolev, F. T. Leighton, and H. Trickey, "Planar embeddings or planar graphs," M.f.T.

LCS Technical Memo 237, (HJ83).
[23] D. Dolev and A. Siegel, "The separation for general single-layer wiring barriers," Proceedings

CMU Conference on VLSI Systems and Computations (1981).
[2,1] C. M. Fiduccia and H,. M. Mattheyses, "An almost linear algorithm for partitioning

networks," 11np11blishcd manuscript, (I 982).
[25] M. Foster and lL T. Kung, "Recognize regular languages with programmable building

blocks," VLSI 81, J. Cray, ed., Academic Press, New York, (1981).
[26] R. Floyd and .J. Ullman, "The compilation of regular expressions into integrated circuits,"

Twenty-Fir.qt Annual IEEE Symposimn on Foundations of Computer Science (1980).

[27] II. l•'uchs, .J. Poulton, A. Paeth, and A. Bell, "Developing pixel-planes, a smart memory
based raster graphics system," Proceedings, MIT Conference on Advanced Research in

VLSI P. Pen field, ed.,, (I 1)82).
[28] 0. Cabber and Z. Gali!, "Explicit constructions of linear size superconcentrators," Proceedings

20th Annual IEEE Symposium on Foundations of Computer Science (11)79), :364-370.

[29] M. R. Garey and D . .Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman and Company, San Francisco, {1979).

[:10] M. R. Carey and D. S . .Johnson, "Crossing number is NP-complete," unpublished

manuscript, (1982).
[:H] J. R. Gilbert, Graph Separator Theorems and Sparse Gau.s.sian Elimination, Ph.D. thesis,

Dept. of Computer Science, Stanford University, (rn80).
[32] C. Goldberg and D. \Vest, "Bisection of of circle colorings," unpublished manuscript,

(1982).
[:33] J. Greene and A. El Carnal, "Area and delay penalties in resl,ructurnble wafer-scale

arrays," Third Caltech Conference on VLSI R. Bryant, ed., Computer Science Press,

(198:3).
[:H] A. Hashimoto and J. Stevens, "Wire routing by optimizing channel assignment within

large apcrtur<)s," Proceedings 8th. jEEE Design Automation Workshop (1971).

[3f>] D. Ilightowcr, "The interconnection problem - a tutorial," Computer Vol. 7, 1 (1971).

[36] T. Kawamoto and Y. Kajitani, "The minimum width routing of a 2-row 2-layer polyccll

layout," Proceedings 16th. IH8E Design Automation Conference (1979).

[:H] B. W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning graphs,"
The Bell Sy.stern Technical Journal (1970), 291-307.

102 BIBLIOGIUL'IIY

[38] B. Kernighan, D. Schweikert, and G. Persky, "An oplirnal channel-routing algorithm

for polyccll layouts of intcgralcd circuits," Proceedings 10th. IEEE Design Automation

Workshop (19n).
[:rn] A. S. LaPaugh, Algorithms for Integrated Circuit Layout: an Analytic Approach, Ph.D.

thesis, Dept. of l•:lectrical Engineering and Computer Science, M. I. T., (1980).

[10] F. T. Leighton, Layouts for the Shuffle-Exchange Graph and Lower Bound Techniques for
VLSI, Ph.D. Lhesis, Dept. of Mathematics, MassachuseLt,s lnslitute of Technology, (l98 l).

A revised version appears as Complexity Issues in VLSI, Foundations of Computing Series,

M.f.T. Press (1983).
[11] F. T. Leighton, "New lower bound techniques for VLSI," Twenty-Second Annual Symposium

on Foundations of Computer Science, IEEE (1981).

[42] F. T. Leie,hton, "J\ layout strategy for VLSI which is provably good," Fourteenth Annual
ACM Symposium on Theory of Computing (1982).

[,rn] F. T. Leighton, "New lower bounds for channel routing," M. I. T. VLSI Memo 82-71,
(1981).

[41] F. T. Leighton, "Parallel computation using meshes of trees," Proceedings 1983 Osnabruck
Workshop on Graph theoretic Concepts in Computer Science (1983).

f45] F. T. Leip;hton and C. E. Lciserson, "Wafer-scale inlegration of svstolic arravs." Twenty
Third Annual IEEE Symposium on Foundations of Computer Science (1982).

[16] F. T. Leighton and A. L. Rosenberg, "Three dimensional circuit layouts," M.I.T. VLSI

Memo 102, (I 982).

[47) C. E. Leiserson, "A mode! for VLSI computation," Thesis proposal, CMU, (1979).

[48] C. E. Leiserson, "Systolic priority queues," Proceedings of the Caltech Conference on Very

Large Scale Integration, C. Seilz, ed., California Institute of Technology, (1979).
[19] C. E. Lciscrson, "Arca-efficient layouts (for VLSr)," Twenty-First Annual Symposium on

Foundations of Computer Science, IEEE (1980).

[50] C. E. Lciserson, Area-Efficient VLSI Computation, Ph.D. thesis, Dept. of Computer

Science, Carnegie-Mellon University, (1981). Also published by M.I.T. Press 1983.

[51] C. I<.:. Leiscrson and IL Y. Pinter, "Optimal placement for river routing," Proceedings

CMU Conference on VLSI Systems and Computations (l 981).

[52] P. M. Lewis, H. E. Stearns, and J. I!artmanis, "Memory bounds for recognition of context

free and context-sensitive languages," IEEE Symposium on Switching Circuit Theory and
Logical Design (l 9G5).

[53] H. J. Lipton and H. K Tarjan, "A separator theorem for planar graphs," A Conference
on Theoretical Computer Science, University of Waterloo, (l 977).

[51] G. A. Mago, "A network of microprocessors to execute reduction languages, Parts I and

II," International Journal of Computer and Information Sciences (December, 1979).

[55] C. Mead and L. Conway, Introduction to VLSI Sy:ltems, Addison-Wesley, (1980).

[56] K. Mchlhorn, "personal ·communication," (1982).

BIBLIOGRAPHY 103

[57] D. Nath, S. N. Maheshwari, and P. C. P. Bhatt, "Efficient VLSI networks for parallel
processing based on orthogonal trees," IEEE Transactions on Computers (July 1983).

[58] T. A. Ottmann, A. L. Rosenberg, and L. J. Stockmeyer, "A dictionary machine (for
VLSI)," IEEE Transactions on Computers Vol. C-31, (1982).

[59] M. Paterson, W. Ruzzo, and L. Snyder, "Bounds on minimax edge length for complete
binary trees," Thirteenth Annual ACM Symposium on Theory of Computing (1981).

[60] G. Persky, D. Deutsch, and D. Schweikert, "A minicomputer-based system for automated
LSI layout," Journal of Design Automation and Fault-Tolerant Computing Vol. 1, 3
(1977).

[61] R. Y. Pinter, "On routing 2-point nets across a channel," Proceedings of the 19th IEEE
Design Automation Conference (1982).

[62] F. Preparata and W. Lipski, "Three layers are enough," Proceedings Twenty third Annual

IEEE Symposium on Foundations of Computer Science (1982).
[63] F. Preparata and J. Vuillemin, "The cube-connected cycles: a versatile network for parallel

computation," Twentieth Annual IEEE Symposium on Foundations of Computer Science

(1979).
[64] J. Raf'fel, "On the use of nonvolatile programmable links for restructurable VLSI," Proceedings

of the Caltech Conference on Very Large Scale Integration (1979).
[65] V. Ramachandran, "On driving many long lines in a VLSI layout," Proceedings Twenty

third Annual IEEE Symposium on Foundations of Computer Science (1982).
[66] R. L. Rivest, "The "PI" (Placement and Interconnect) System," Proceedings 19th. IEEE

Design Automation Conference (1982).
[67] R. L. Rivest, A. Baratz, and G. L. Miller, "Provably good channel routing algorithms,"

Proceedings CMU Conference on VLSI Systems and Computations (1981).
[68] R. L. Rivest and C. M. Fiduccia, "A greedy channel router," Proceedings 19th. IEEE

Design Automation Conference (1982).
[69] A. Rosenberg, "Routing with permuters: toward reconfigurable and fault-tolerant net

works," Technical Report CS-1981-13, Duke University, (1981).
[70] W. Ruzzo and L. Snyder, "Minimum edge length planar embeddings of trees," Proceedings

CMU Conference on VLSI Systems and Computation (1981).
[71] A. Sangiovanni-Vincentelli, L. Chen, and L. Chua, "An efficient heuristic cluster algorithm

for tearing large-scale networks," IEEE Transactions on Circuits and Systems Vol. CAS-
24, No. 12, (1977), 709-717.

[72] T. J. Schaefer, "The complexity of satisfiability problems," Proceedings 10th Annual ACM

Symposium on Theory of Computing (1978).
[73] J. T. Schwartz, "Ultracomputers," ACM Transactions on Programming Languages and

Systems Vol. 2, (1980).

[74] C. Sequin, A. Despain, and D. Patterson, "Communication in X-tree, a modular multi
processor system," ACM 78 Proceedings {1978).

10,1 ll!BLIOGHAPHY

[75] S. Song, "A highly concurrent tree machine for database applications," 1980 International

Conference on Parallel Processing (1980).

[7fi] II. Stone, "Parallel processing with the perfect shuffle," IEEE Transactions on Computers

Vol. C-20, (1971).

[77] T. Szymanski, "Dogleg channel routing is NP-Complete," unpublished manuscript,

(1981).

[78) T. Szymanski and M. Yannakakis, personal communication, (1982).

[79] C. D. Thompson, "Area-time complexity for \!'LSI," Eleventh Annual ACM Symposium

on Theory of Computing (1979).

[80] C. D. Thompson, A Complexity Theory for VLSI, Ph.D. thesis, Dept. of Computer

Science, Carnegie-Mellon University, (1980).

[81] :tvL Tompa, "An optimal solution to a wire-routing problem," Proceedings 12th. ACM

Symposium on Theory of Computing (1980).

[82] J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, (1983).

[83] L. G. Valiant, "Universality considerations in VLSI circuits," IEEE Transactions on

Computers (February, 1981).

[84] T. Yoshimura and E. Kuh, "Efficient algorithms for channel routing," U. C. Berkeley

Electronics Research Laboratory Memo. M80/43, (1980).

