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Gulde to the Manual 1 

Gulde to the Manual 
This document serves both as a reference matl.l8I and u an intlodudion lo Argus. Sections 1 through 

3 present an overview of the language. These sections highlgtt the 88S8f1llal features of Argus. 

Sections 4 through 15 and the appendices form the reference ffllUllal proper. These sections deScr1be 

each aspect of Argus In detail, and discusS the proper use of various fealurff. Appendices I and II 

provide summaries of Argus's syntax and data types. Appendix Ill summarizes eome of the pragmatic 

rules for using Argus. 

Since Argus is based on the programming language CLU, the reader is expected to have some 

familiarity with CLU. Those readers needing an Introduction to CLU might read Llakov, B. and Guttag, J., 

Abstraction and Specification in Program Dev81opmsnt (MIT Press, cambrldge, 1986). A shorter 

overview of CLU appears In the article Uskov, B., et al., •AbllractlOn Mechanilm8 In CLU• (Comm. ACM, 

volume 20, number 8 (Aug. 1977), pages 564-576). Appeldx IV summarizes the changes made to 

Argus that are not upward compatl:>le with CLU. 

An overview and rationale for Argus is presented in l.lskov, B. and Schelfler, R., •Guardians and 

Actions: Linguistic Support for Robust, Dlstl'l>uted Plograml• (ACM Transacflons on Programming 

Languages and Systems, volume 5, number 3 (July 1983), pages 381-.404). 

The Prellmlnary Argus Rflferencfl Manual appeared u Prograt'ffl1ing Methodology Group Memo 39 in 

October 1983. Since that time several new features have been added lo the language; the most 

significant of theae are cloaures (see Section 9.8), a fork .......,. (IN Section 10.4), equate modules 

(see Seclion 12.4), and a more flexble ~ mechanllm ( ... Section 12.6). An ear1ier version of 

this document appeared as Programming Melhodology G1aJP Memo 54 In Matdl 1987; this version is 

essentiaffy identical, except that the locking policy for the bull-In type generator atomlc_array has been 

simplified. 

We would greatly appreciate receiving comments on both the language and this man.ial. Comments 

should be sent to: Professor Barbara Llskov, Laboratory for ~ Science, Massachusetts tnstftute 

of Technology, 545 Technology Square, cant>rtdge, MA 02139. 

The authors thank all the members of the Prograrnmng Methodology group at MIT tor their help and 

suggestions regarding the language and this manual, with special ttwlks going to Elliot KolOdner, 

Deborah Hwang, Sharon Pert, and the authors of the CLU R•ffnnctl Mllnual. 
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Though her unhappy rival was hers to keep 
Queen Juno alao had a troubled mind: 

Gulde to the Manual 

What would Jove tum to next? Better, she thought, 
To gtYe the creature to AreslDr'8 son, 
The frightful Argus whaN unRllural head 
Shone with a tl.lndr9d eyes, a peffect jailer 
For man or bealt: the tuldNcl eyes took turns 
At staring wide awake In ... and IWo 
At falling off to steep; no matter how or 
Where he Stood he gazed at lo; even when 
His back w• turned, he held his prisoner 
In sight and in his care. 

-Ovid, .,,,.~,Book1 
Tra..1111.ted by H. Gregory 

The Viking Preu, Inc., NewYottt, 1958 
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4 overview 

1.2. Assignment and cans 
The basic events in Argus are assignments and calls. The assignment statement x :- E, where x is a 

variable and E Is an expression, causes x to denote the object ntlUltng fn:>m the evaluation of E. The 

object Is not copied. 

A call involves passing argument objects from the caller to the caHed routine and returning result 

objects from the routine to the caller. For local calls, ~ pa&8ing Is defined in tenns of asaignment, 

or call by sharing; for remote calls, cal by value is used. In a local cal, the formal arguments of a IOUtine 

are ex>nslclered to be local variables of the routine and are inltlallzed, by llllignment, to the objects 

resulting from the evaluation of the argument expressions. In a remote cal( .. Section 2.3), a copy of 

the objects resulting from the evaluation of the a,gument expnit81ion8 la made and tranamllted to the 

called handler or creator (see Section 2.4). These copies are then Ul8d to lniliallze the tormaJ arguments 
as before. Local objacls are shared between the caller and a called procedure or Iterator, but 1ocal 

objects are never shared between the caller and a called handler or creator. 

1.3. Type Correctness 
The declaration of a variable apecifie8 the type of the objects which the variable may denote. In a legal 

assignment statement, x :- E, the type of the expression E na,st bt lndt""1t/ in the type of the variable x. 
Type inclusion Is essentially equality of types (see Section 12.6), __. fer ftMlrMt types. (A routine type 

with fewer exceptions Is included in an otherwlle Identical roullM type wilh more exceptions. See 
Section 6.1 for details.) 

Argus Is a type-safe language, in that It Is not poal>le to treat an objld of type Tu I It were an ob;ect 

of some other type S (the one exception II when Tis a routine type and S Includes 7). The type safety of 

Argus, plus the rastrictlon that onty the code in a cluster may convert between the abalnlct type and the 

ex>ncrete representation (see Section 12.3), ensure that the behavior of an obi8Ct can be characterized 

ex>mpletely by the operations of its type. 

1.4. Rules and Guidelines 
Throughout this mat'llal, and especially In the discussions of atomiclly, there are p,agmatic rules and 

guideHnes for the use of the language. Certain properttes that the language WOUid ll<e to gua,anlN, for 

example that atomic actions are really atonic, are dlfflcult or ~alble for the language to guaramee 
ex>mpletely. As In any useful programming language, programmers have enough rope to hang 

themselves. The rules and guidelines noted throughout the manual (and colected In Appenclx IH) try to 
make the responsibilities of the language and the programmer clear. 
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1.5. Program Structure 
An Argus distributed application consists of one or more guardians, defined by guardian modules. 

Guardian modules may in tum use all the other kinds of modules that Argus provides. Argus 

programmers may also write single-machine programs with no stable atate, using Argus as essentlafly a 

"concurrent CLU." Such programs may be used to start up Rl.lli-Qua,dan applicalions. Each module is a 

separate textual unit, and is compiled lndependentty of other nm.des. Coff1>11atlon is discussed in 

Section 3. 
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2. Concepts for Distributed Programs 
In this chapter we present an overview of the new concep11 in Argus that support distributed programs. 

In Section 2.1, we discuss (IUardlans, the module uaed in Af1111 to dlltribute data. Next, in Section 2.2, 

we present atomic actions, which are used to cope with concummcy and failure. In Section 2.3 we 

describe remote calls, the inter-guardian comrru,lcation rnec:hanlam. In Section 2.4 we discuss 

transmissible types: types whose objects can be sent as arguments or results of remote caffs. FmaNy, in 

Section 2.4 we discuss orphans. 

2.1. Guardians 
Distributed appllcaUons are implemented In Argua by one or more modules catled guardians. A 

guardian abatractlon Is a kind of data abstraction, but I dlffets from Ile dala abltractiona supported by 

clustera (u found In CLU). In general, dala abetrac:lona Clnlitt of a set of operations and a set of 

objects. In a cluster the operations are oonlidered to belong to the abllractlon as a whole. However, 

guardian instances are objects and their handlers are their operatfonl. Guadan abstraction Is similar to 

the data abstractions In Simula and Smaltalk-80; gua,dtane.,. ._ Claaa inltances. 

A node is a single physical location, which may have mua.,ae pt9CIIIOl'S. A guardian instance resides 

at a single node, although a node may support several gua,dana. A guan:Jian encapsulates and controls 

access to one or more resources, such as data or devices. Acce88 to the protected resource Is provided 

by a set of operations caNed handlBrs. lnternaNy, a guamlan consieta of a collection of data objects and 
processes that can be used to manipulate those ot,fects. In general, there wil be many processes 

executing cona.,11'8111y in a guardian: a new proce11 la cntllld to__... NCh handler cal, processes 

may be explicitly created, and there may be other 1)R)C81■11 M CIJlfy out background adivly of the 

guardian. 

The data objects encapsulated by a guardian are kal: they cannot be acceaed directly by a p,ocess 

in another guardian. In contrast, gua,dians are globlll objects: a lingle guardian may be shaftld among 

processes at several different guardians. A process wlh a rlference ID a gua,dian can call the guardian's 

handlers, and these handlets can acce• the data obleta inllltl"' gwanlan. Handler calls allow access 
to a guardian's local data, but the guardian controls how that data can be manipulated. 

When a node falls, it crashfJs. A crash is a "clean" failure, as opposed to a "Byzantine" failure. A 

guardian survives crashes of its node (with as high a probabllly as needed). A guardian's state consists 

of stab/fl and volall/e objects. When a guardian's node crashes, al p,ocesw running inside the guardian 

at the time of the crash are loat, along with the gua,dan'a ~ objects, but the guan:lian's stable 

obiacts survive the crash. Upon F8Cl0very of the guardian's node, the guMlian NIii a special recovery 

process to reconstruct itS volatile objacts fff>m Is stable objacla. Since the volatile objacta are lost In a 

crash, they typicaly consist only of redundant data that Is used to impn)Ye pe,formance (for example, an 

Index Into a database). The persistent state of an appllcation should bl kept In stable objects. 

Guardians are implemented by guardian definitions. These define: 



8 Concepts tor Distributed Programs 

1. The creators. These are operations that can be called to create new guardian Instances 
that perform In accordance with the guardian definition. 

2. The guardian's stable and volatile state. 

3. The guardian's handlers. 

4. The background codB. This is code that the guardian executes Independent of any handktr 
calls, for example, to perform some periodic activity. 

5. The recov8f code. This is code that is executed after a crash to restore the volatile objects. 
Guardians and guardian definitions are discussed in Section 13. 

2.2. Actions 
The distributed data in an Argus application can be shared by concumtnt proceuea. A process may 

attempt to examine and transform some objects from their current statas to new states, wfth any number 

of intermediate state changes. Interactions among concurrent proceues can leave data In an 

inconsistent state. Failures (for example, node crashes) can occur during the execution of a p,ocess, 
raising the additional possl>llly that data will be left In an lncon8iltenl inlermedlale state. To support 

applications that need consistent data, Argus permits the programmer to mtM processes atomic. 

We call an atomic process an action. Actions are atomic In that they are both NriaNzable and 

recoverable. By SMlal/zable, we mean that the overall effect of executing ffl.lQ>le concurrenl actions is 

as if they had been executed In some sequential order, even though tt,ey acwally eucute conamently. 
By rea,ve,-,,., we mean that the overall effect of an action la •a1-or-nottt1ng:• 8llher all changes made to 
the data by the action happen, or none of thffe chaftgea happen. An action that completes an its 

changes successfully commits; otherwise It aborts, and objects that It modl1ed are restored to their 

previous states. 

Before an action can commit, new states of ail modified, stable objects rrust be written to stable 

storage 1: storage that survives media crashes with high probability. Argus uses a two-phase oommit 

protocol2 to ensure that either all of the changes made by an action occur or none of them do. if a crash 

occurs after an action modifies a stable ot>;ect, but before the new state has been written to stable 

storage, the action wlU be aborted. 

2.2.1. Nested Actions 
Actions in Argus can be nested: an action may be C0l11)0Sed of several subactlons. Subactions can be 

used to limit the scope of failures and to Introduce concurrency within an action. 

An action may contain any oomber of subacttons, some of which may be performed sequentialfy, some 

1Lampaon, B. W., "AIDrnic Transacliona", in Dilllributed S,,.,.,,.--An:Mlca.H9 and,,,,,,,.,,,.,,,, Lec1ure Noll8 in Compul9r 
Science, volume 105, pagea 2.265. Springer-Verlag, New York, 1981. 

2Gray, J. N., "Nolas on data baa& operating ayatlma", in~ Sys..,,., An.,,._.,.. CcuN, a.,., A., Graham, R. M., 
and Seegmoller, G. (edilors), L8Clln No-. in Comp.,111' Science, volume 80, ,... 31M11. -..-v.tat, New YCMlt, 1971. 
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concurrently. This structure cannot be observed from outside the action; the overall action is still atomic. 

Subactions appear as atomic actions with respect to other subactions of the same parent. Thus, 

subactions can be exeaJted concurrently. 

Subactlons can commit and abort independently, and a subadlon can abort without forcing Its parent 

action to abort. However, the oorrmtt of a subactlon Is condltional: even If a subaction commls, aborting 

its parent action will abort It. 

The root of a trN of nested actions is caled a topaclion. Topadions have no parent; they cannot be 

aborted once they have committed. Since the effects of a subaction can always be undone by aborting 

its parent, the two-phase commit protocol ls used only when tapactlons attempt to commit. 

In Argus, an action (e.g., a handler cal) may retum objects through either a normal return or an 

exception and then abort. The following rule should be tolowed to avoid Ylolating urtallzabllity: a 

subaction that abOrts shouJd not retum any Information obtained from data shared with other concurrent 

actions. 

2.2.2. Atomic Objects and Atomic Types 
Atomicity of actions 18 achieYed Via the data objects shared among 1hose actions. Shared objects m.rst 

be Implemented so that acttone using theffl appear to be atomic. Objects that tuppOft atomicity are 
referred to as alOm/c ol:tjeca. Atomic objects Pl')Yld8 the ~ and recovery needed to ensure 
that actions are atomic. An alom/c 1ype la a type whole obleda.,. all atomic. Some obildS do not need 

to be atomic: for example, objects that are local to a slngfe p,Nll8. Since the synctvonization and 

recovery needed to ensure atomicity may be expensive, we do not require that an types be atomic. (For 

example, Argus provides all the built-In mutable type8 of CLU; theN types are not atomic.) However, it Is 

important to remember that atomic actions must share only alOmic objects. 

Argus provides a number of built-in atomic types and type generalOrS. The built-In scalar types (null, 

node, bool, char, Int, real, and atrtng) are atomic. Parametedzed types can also be atomic. TypicaHy, 

an instance of a type generator will be atomic only I any actual type ~ are allo atomic. The 

built-In Immutable type generators (Nql,MIIICe, atNCt, and OMOI) are atomic If their parameter types are 

atomic. In addition, Argus provides three fflJtable atomic type generators: alomlc_anay, 
atornlc_record, and alOmle_vartant. The operations on tt18le typeS are nea,ty Identical to the nonnal 
anay, racord, and variant types of CLU. Users may alao deftne ll8lr OM\ atomic types (SH Section 15). 

The implementation of the built-In m.rtable atomic type generalOrS la baled on a siqJte locking model. 

There are two kinds of locks: read locks and write locks. When an action calla an eperation on an atomic 

object, the fr11)1ementation acquires a lock on that objaCt In the ~ mode: It acquires a wrtte lock 

if it mutates the object, or a read lock if it only examines the obied- The butt-In types alow nutiple 

concurrent readers, but only a single writer. If necessary, an aalion la fOrced to wal undl It can Obtain the 

appropriate lock. When a write lock on an object ls first obtained ~ an action, the system makes a copy 
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of the object's state in a new WH81on, and the operations calted by the action work on this version3• H, 
ultimately, the action commits, this version will be retained, and 1he old version dllcarded. A atbaction's 

locks are given to Its parent action when it oonvnls. Whan a topacllon commls, its l0ck8 are diacalded 
and Its effects become vlsl>le to other actions. If the action aborts, the action's lod<I and the new version 

will be discarded, and the old version retained (see Figure 2-1). 

Flgu,. 2-1: Locking and Version Management Rules for a Subaction S, on Object X 

Acquiring a read lock: 
All holders of write locks on X must be ancestors of S. 

Acquiring a write Ioele 
AH holders of read and write locks on X must be ancHIOr8 of S. 
H this is the first time S has acquired a write lock on X, 

push a copy of X on the top of Its version stack. 

Commit: 
Ss parent acquns Sa lock on X 
If S hokta a write lock on X, then Ss version becomes Ss parent's version. 

Abort: 
Ss lock and version (If any) are discarded. 

More precisely, an action can obtain a read lock on an object If ev«y action hoking a write lock on that 

object is an ancestor of the requesting action. An action can obtain a wrle lock on an object if every 

action holding a (read or write) lock on that object Is an ancestor. When a subactlon commits, Its locks 

are inherited by its parent and its new versions replace thoN of la pa,wnl; when a 8UbaCtlon aborts, Its 

locks and versions are discarded (lff Figura 2-1). Becal• AlgLll...,....s that parent actions never 

run concurrently with their children, these rules ensure that concurranl actions never hold wrtte locks on 

the same object simultaneously. 

The ancestors of a subactlon are Itself, its parent, Its parent's parent, and so on; a subaclion is a 

descBndant of Its ancestors. A subactlon commits to the IOp If It and all its 811C81tors, inckdng the 

topactlon, oonmlt. A subaction Is a comrnltt8d dtlSCllndant of an ancestor action If the subadlon and all 

intervening ancestors have committed. When a topactlon an ... to convnlt, the two-phase mmmil 

protocol ls used to ensure that the new versions of all objects modlied by lie action and al Its committed 
descendants are copied to stable storage. After the new versions have been recorded stably, the old 

versions are thrown away. 

User-defined atomic types can provide greater conaJrrency than buJlt-ln atomic types". An 

3This operational dellc:riptior'I (Md Olhers in 1h18 manual) is not meant to conatrain implamenas. Howavar, this pancutar 
clesaiption does ratleet ow cum,nt Implementation. 

4An exanple can be found in Weihl, W. and Uakov, B., "lmplemenlaton of FINilent, AIDmic Data Types," ACM T~ an 
Programming l.anguagfls and Sysalms, volume 7, number 2 (April 19815), pages 244-289. 
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implementation of a user-defined atomic type must address several iaues. First, It must provide proper 

synchronization so that concurrent cans of Its operations do not inleffere wlh each other, and so that the 

actions that call Its operations are seriallzed. Second, It mull provide NCOV8t'Y for actions using its 

objects so that aborted actions have no effect. Finally, I must....,. that changes made to Its objects by 

actions that conmlt to the top are recorded property on stable lt0ra88- The bull-in atomic types and the 

mutex type generator are useful in coping with these Issues. User-defined atomic tw,es are discussed 

further in Section 15. 

2.2.3. Nested Topactlona 
In addition to nesting subactions Inside other actions, It is aometlmea UHhd to llaf1 a new topaction 

inside another action. Such a 116Sted IOpacllon, unll<e a subac:llon, hll no special priYlleges relative to its 

"parent"; for ex~. it Is not able to read an atomic objed ma••d by Is "parent". Furthermore, the 

commit of a nealed topaction Is not relative to Its "parent"; Is YenNOf1I.,. written to stable storage, and 

its locks are released, just as for normal topactlons. 

Nested topactions are useful for benevolent side effects that c:tlange the repraentation of an object 

without affecting Its abstract state. For example, In a naming syatem a name look-up may cause 
information to be copied from one location to ano1her, to apeed up IUbHquenl took-up■ of tllll name. 

Copying the data wlhln a neeted topaction that commits ensurea that the changea remain in effect even If 
the "parent" action aborts. 

A nested topaction la used correctly If It is sertallzable before Is "parent". This la true I either the 

nested topaction pe,forma a benevolenl llde effect, or I all commun1catlon between the nNIN topaction 

and Its parent la through alomlc objlds. 

2.3. Remote Cells 
An action l'UMing In one guardian can cause work to be performed at another guaRlan by calling a 

handler provided by the latter guantan. An action can C8IIH a AN ~ to be crNted by calling a 
creator. Hancllar and cnator calls are remote call. Remole calla are elmlar to local ~ catts; for 

example, the calling process waits tor the call to return. Remote call differ from local prooedunt cals In 

several ways, however. 

First, the arguments and results of a remote can are passed by value (see below and also Section 14) 

rather than by sharing. This ensures that the local objects of OM guadan remain local to that guardian, 

even If their values are used as arguments or resuls of remote calls to other gua,dlanl. The only obl8cts 
that are passed by sharing In remote calls are the global obieds: guardians, handlers, creators, and 

nodes. 

Second, any remote call can raise the exceptions failure and unavallable. (Unll<e CLU, not all local 

calls can raise fallurB, see Appendix IV.) The occurrence of w.n meana that the call II UNkely to ever 

succeed, so there Is no point In retrying the call in the future. Utwnlll'1e, on the GIW hand, mew that 
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the call should succeed if retried In the future, but is unlikely to succeed If retried immediately. For 

example, failure can arise because it is iff1>ossl>le to transmit Ile argume,u or resuns of the cal (see 

Section 14); unavailable can arise If the guardian being called has crashed, or I the network is 

partitioned. 

Third, a handler or creator can be called only from inside an action, and the cal MIi • a subaction of 

the caHing action. This en&ur88 that a remote cal succeeds lit mo.I one»: elher a remote cal completes 

successfully and commits, or It aborts and all of Its modifications .,. undone (provided, of courH, that the 

actions involved are truly atomic). Although the effect of a '9l'IIQte cal OCCIM'8 at moll once, the system 
may need to attempt it several times; this is why remote calls are made within actions. 

2.4. Transmissible Types 
Arguments and results of remote calla are puaed by value. This mun1 that the argument and result 

objects must be copied to produce dlltinct objecla. Not an objedl can be copied .. thil; thoN that can 
are called ,,.,,.,.,.... otlJ«;ta, and their types are called ,,..,.,,...,. ,,,__ Only traftsmlNl)le 

objects may be UNd u argume,u and results of a remote call. In addition. llllllge obied& (see Section 

6.6) can contain only~ objects. Parameterized types may be tranamlNlbll In IOffle Instances 
and not in others; for example, inltanllations of the bua..tn type gene.alor8 .,. trarwnilsble onfy I their 
parameter types are transmlaslble. Whtie gua,dans, cnatora, and handlefl are always tranamissl>le, 

procedures and iterators are never transmissible. 

Users can define new transrnissl>le types. For each transrni88tie type T the extsrnal ~ 

type of T must be defined; this descrl>es the fonnat in which obied& of type T .,. tratWnllted. Each 

cluster that irJ1>1ements a transmisalble type T must contain two procec:lurea, ent::tJdfl and dllcode, to 
translate oblects of type T to and from their external repreeentatlDn. More Information about defining 

transmissible types can be found in Section 14. 

2.5. Orphans 
An orphan is an action that has had some ancestor "perish· or has had the pertinent resull of some 

relative action lost in a crash. Orphans can arise in ~ due to crashes and explicit aborts. For 

example, when a parent action is aborted, the active descendenl8 I IHw8 behind become orphans. 
Crashes also cause orphans: when a guardian crashes, all active actions wlh an ancestor at the crashed 
guardian and aH active actions with committed de8cendanls that ran at the craahld guardian become 
orpt,ans5• However, having a deacendent that Is an orphan does not neceuarily imply thal 118 parent ii 

an orphan; as previously desaibed, actions may commit or abort Independently of their IUbactiona. 

Argus programmers can largely ignore orphans. Argus guaranlNS that orphans are aborted t>etore 

'Walcer, E. F., "Orphan Delacllon in lhe Argus Syalem", Masaachu8ens lnatitute of TechnolDgy, Laboralory for Compt.ll8r 
Science, Technical Repon MITA.CSITR-326, June 1984. 
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3. Environment 
The Argus environment ensures complete static type checking of programs. It also supports separate 

compilation and the Independence of guardians. 

3.1. The Library 
Argus modules are compiled in the context of a library that gives meaning to extemal identifiers and 

auows inter-module type checking. The Argus library contatns type infOrmation about abstractions; for 

each abstractton, the 11:>rary contains a dtlscrlpl/on unit, or DU, descrl)lng that abstractton and Its 

implementattons. Each DU has a unique name and these names form the basis of type checking. 

3.2. Independence of Guardian Images 
The cede Ml by a guardian comes from some guadan Image. A guardian image contains all the code 

needed to carry out any locaj aotMty of the guardian; any procean, llerator or ckJster used by that 

guardian will be In lls guardian Image. Any handler calla made by the guanllan, however, are carried out 

at the called guardian, which conlalna the code that performs the call. Tt1.11 a guardian IS Independent of 

the implementations of the guardians It calll and the lmplementatton of a guatdan can be changed 

without affecting the lmplementattons of Its clients. 

3.3. Guardian Creation 
When a guardian ii created, II Is necessary to select the guardian image that wil supply the code run 

by the new guardian. To this end, each guardian has an asaociated crNtlon enviror1nHMlthat specifies 

the guardian images for other guardians It may create. The creation envkonment is a mapping from 

guardian types to infonnlltion that can be used to Nied a gua,dian Image appropriate for each kind of 

node. For greater flexlblllty, this lnformatton can be UIOClated wlh particular creator objects. 

3.4. The Catalog 
Somehow, guardians must be able to find other gualdiane to cal for services. A guardtan usually has a 

reference to any guardian It aeates. Also, I a guan:Nan can cal soma other server guardian, It can team 

about the guardians that the server "knows•, becauae guardians can be passed in remote caas. In 

addition, Argus provides a bull-in subsystem known by al guardians. Thia aubayatem Is called the 

catalog. The catalog provides an atomic mapping from names to traNmilll>le objects. For example, 

when a new guardian is created, I can be catalogued under aome well-known name, 10 that other 

guardians can find It in the future. Since we are currently experimenting wit\ various Interfaces to the 

catalog, we do not lndude an interface specification here. 
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4. Notation 
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is: 

nonterminal ::: alternative 
I alternative 
I ... 
I alternative 

The following extensions are used: 

a' ••• a list of one or more tis separated by commas: ·a• or ·a, a• or •a, a, a" etc. 
{a} a sequence of zero or more a's: • • or ·a· or •a a· etc. 
[a] an optional a: ••or ·a•. 

Nonterminal syrmols appear in normal face. Reserved won:ts appear in bold face. All other terminal 

syrmols are non-~. and appear in normal face. 

FuH productions are not always shown in the body of this manual; often alternatives are presented and 
explained individually. Appendix I contains the complete syntax. 
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5. Lexical Considerations 
A module Is written as a sequence of tokens and separators. A token is a sequence of "printing" ASCII 

characters (values 40 octal through 176 octal) representing a reserved word, an Identifier, a literal, an 

operator, or a punctuation symbol. A separator Is a "blank" character (space, veftlcal tab, horizontal tab, 

carriage return, newline, form feed) or a oonvnent. Any number of separators may appear between 

tokens. 

5.1. Reserved Words 
The following character sequences are reserved word tokens: 

abort 
action 
any 
array 
atomic _array 
atomic reoord 
atomic - variant 
background 
begin 
bind 
bool 
break 
cand 
char 
cluster 
ooenter 
oontinue 
oor 
creator 
creatortype 
cvt 
do 
down 

Tlble 5-1: Reserved Words 

else 
elseif 
end 
enter 
equates 
except 
exl 
false 
for 
foreach 
fork 
guardian 
handler 
handlertype 
handles 
has 
If 
image 
in 
int 
is 
lier 
itertype 

leave 
mutex 
nil 
node 
null 
oneof 
others 
own 
pause 
proc 
process 
proctype 
real 
reoc,nj 

recover 
rep 
resignal 
return 
returns 
seize 
sel 
S8CJJ8nc8 
signal 

signals 
stable 
string 
struct 
tag 
tagcase 
tagtest 
tagwait 
terminate 
then 
topaction 
transmit 
true 
type 
up 
variant 
when 
where 
while 
wilh 
wtag 
yield 
ylefds 

Upper and lower case letters are not distinguished in reserved words. For exafll)le, 'end', 'END', and 

'eNd' are all the same reserved word. Reserved words appear in bold face in this document. 

5.2. ldentHlers 
An idtlfltifier is a sequence of letters, digits, and underscores U that begins with a letter or underscore, 

and that is not a reserved word. Upper and lower case letters are not di8tinguilhed in ldenttfiers. 

In the syntax there are two different nonterminals for idenllters. The non&erminat kin is used when the 

Identifier has scope (see Section 7.1); kins are used for varillblea, paramelel'I, module names, and as 
abbreviations for oonstants. The nonterminal ,,_,,. ii used wllln the idefdlar Is not SIJblee( to soope 

rules; names are used for record and structure selectors, oneof and varianl tags, operation names, and 

exceptional condition names. 
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5.3. Literals 
There are literals for naming objects of the built-in types nun, bool, Int, real, char, and string. Their 

forms are described In Appendix I. 

5.4. Operators and Punctuation Tokens 
The following character sequences are used as operators and punctuation tokens. 

Table 5-2: Operator and Punctuation Tokens 

( [ * < -c -
) ] $ ** II <• --<• 

.. _ 
{ := II + >• -->• & 
} @ I > --> I 

5.5. Comments and Other Separators 
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline 

character, and contains only printing ASCII characters (including blanks) and horizontaf tabs In between. 

For example: 

z :- a(i] + % a comment in an expression 
b[i] 

A separator is a blank character (space, vertical tab, horizontal tab, carriage return, newline, fonn feed) 

or a comment. Zero or more separators may appear bettriieen any two tokens, except that at least one 

separator is required belwNn any two adjacent non-NI-terminating tokenl: reserved words, Identifiers, 

integer literals, and real literals. Thia rule Is neceasary to avoid lexical ambiguities. 
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6. Types, Type Generators, and Type Specifications 
A type consists of a set of objects together with a Ht of operatlonl used to manipulate the ot>;ects. 

Types can be classified according to whether their abiecll .,. nuable or immJtable, and atomic or 

non-atomic. An immutable object (e.g., an Integer) has a value M never varies, whle the value (state) 

of a mutable object can vary over time. Objects of atomic types provide serializabllity and recovery for 

accessing actions. Non-atomic types may provide synctwonizatlon by apecilying that partiaJlar operatiOns 

are executed lndlvlslblyon objects of the type. An operation Is lndiYlllble If no other process may affect or 

observe intermediate states of the operation's execution. lndMsl:>lllty properties will be described for all 

the built-in non-atomic types of Argus. 

A type generator is a parameterized type definition, representing a (usuaHy Infinite) set of related types. 

A partia.ilar type is obtained from a type generator by writing the generator name along with specific 

values for the parameters; for every distinct set of legat va-.S, a dllli11ct type is obtained (see Section 

12.6). For example, the array type generator has a 8ingte parameter that determines the element type; 

array[lnt), array(real], and array{array(IIIID are three dlltlnct typea defined by the array type generator. 

Types obtained from type generators are called ~ types or /nslanlatlon5 of the type 

generator; others are called simple types. 

In Argus code, a type is specilled by a syntactic conatruct called a type_spec. The type specification 

for a s~le type Is just the Identifier (or reserved word) naming the type. For parameterized types, the 

type specification consists of the identifier (or reserved word) naming the type generator, together with the 

actual parameter values. 

To be used as arguments or results of handler and creator calla, or as Image objects (see SectiOn 6.6), 

ot>;ects must be transnissible. Most of the bull-In AlglJ8 types are trarwnissllle, that is, they have 

transmissible objects. However, procedurea and Iterators are never tranlmissl>le. For type generators, 

transmissibiUty of a pa,ticuJar instantiation of the generalor may depend upon transmi8sl:>ilty of any type 

parameters. A transmilst>le type provides the paeudo-operatloli 1ra1111111 and two inlemal operations 

encode and dscot:Je. Generally, encode and deoods are hidden from clenls of the type. They are called 

implicltly during message transmission (SH Section 14) and In creating and decomposing Image objects 

(see Section 6.6). Transmissl>lllly Is dlaculsed fufther In Section 14. 

Argus provides all the bult-in types of CLU u well as some new types and type generators. This 

section gives an informal inlroductlon to the built-in types and type generators provided by Argus. Many 

detaHs are not diBaJIHd here, but a complete deflnllon of each type and type generator is given in 

Appendix II. 
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The binary operations add(+), sub(-), mu/(*), div(/), mod(//), power(**), max, and rrin are provided, as 

weU as unary minus(-) and abs. There are binary COf11)8rilon operatlonS It(<), le(<•), equal(•), 
ge (>•), and at(>). There are two operations, m,m_-, and tl'Om_-,_IYf, for Iterating over a range of 

integers. See Section 11.4 for details. 

6.2.4. Real 
The type real models (a subset of) the mathematical re8' ........,._ The exact subset Is not part of the 

language definition. Reals are invnutable, atomic, and tnnt'fNlible, although transmissiOn of real 
objects between heterogeneous rnadline architectures may not be exact. Real lleral& are written as a 

mantissa with an optional exponent. A manlisaa Is either a NqUlf'IC8 of one or mote decimal digits, or 

two sequences (one of which may be 8"1)ty) joined by a period. The manliHa nut conlakl at least one 

digit. An exponent Is 'E' or ·e·, optionaly followed by'+' or·-·, tolfowed by one or more decimal dlgls. An 

exponent is required if the mantissa does not contain a period. As ks usual, mEx • nf 1 ox. Examples of 

real literals are: 
3.14 3.14EO 314e-2 .0314E+2 3. .14 

As with integers, the operations add(+), sub(-), mul (*), div(/), mod(//), power(**), max, min, 

minus(-), abs, It(<), 18 (<•), equal(•), oe (>-), and gt(>), ant provided. It ii iq,ortln to note that there 

Is no form of lnplclt conversion between types. The l2r operation converta an Integer to a real, r21 n>unds 

a real to an Integer, and trunc truncates a real to an Integer. See Sedton H.5 for detala. 

6.2.5. Char 
The type Char provides the alphabet for text manipuldon. Characters are Immutable, alOmic, 

transmlssl>le, and form an on:fered set. Every lmplemenlation ITIJ8t pn>Yida at least 128, but no more 

than 512, characters; the first 128 characters are the ASCII characters In their standard order. 

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote ('). or 

backslash (\), can be written as that character enclosed in single quotes. Any characler can be written by 

enclosing one of the escape sequences listed in Table ~1 In single quotes. The escape sequences may 

be written using upper case letters, but note that escape sequences of the tonn \&* are case sensitive. A 

table of literals Is given at the end of Appendix I. Ex8fl1)1es of character literals are: 

\7' ·a· "'' '\'" '\" '\B' ,1n· 

There are two operations, i2c and c2i, for converting between integenJ and dlaracters: the smallest 

character corresponds to zero, and the character& are nunt>ered sequentially. Binary co"1)arlson 

operations exist for characters based on this numerical ordering: It(<), 18 (<•), equal(•), ge (>•), and 

gt(>). For details, see Section 11.6. 
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the mutability and atomicity of an any object depend on the rrutablllty and atomicity of the contained 

object. Objects of type any are not transmissible. 

The aeats operation is parameterized by a type: aeate takes a single argument of that type and 

returns an any object containing the argument. The force operation is allo parameterized by a type; it 

takes an any and extracts an object of that type, signalling M'Dnf_ln,e I the contained objlct's type Is 

not included In the parameter type. The Is_ type operation le palllfflllerized by a type and chicks whether 

Its argument contains an ot>;ect whose type is included in the parameter type. The detailed apecification 

is found in Section 11.19. 

6.2.8. Sequence Types 
Sequences are immJtable and they are atomic or tranamissl>le when instantiated with atomic or 

transmissible type paramelers. Although an lndivk:k,al sequence can have any length, the lenglh and 

members of a sequence are fixed when the sequence is aeatld. The elements of a sequence are 

indexed sequentially, starting from one. A sequence type spaclication has the form: 

aequence [ type_actual] 

where a type_aclUa/is a type_spBC, possibly augmented with operation bindings (see Section 12.6). 

The new operation returns an empty sequence. A sequence constructor has the form: 

type_ spec $ [ [ expression I ■■■ ] ] 

and can be used to create a sequence with the given elements. 

Although a sequence, once created, cannot be changed, new aequences can be constructed from 

existing ones by means of the llddh, add/, remh, and rem/ operations. Other operaliona Include fetch, 

replace, top, bottom, size, the elflmt111ls and Index• lterak>IS, and subeeq. Invocations of the f8tch 

operation can be written using a special form: 

q[i] % fetch the element at Index I of q . 

Two sequences with equal elements are equal. The equal(•) operation tests If two sequences have 

equal elements, using the equal operation of the element type. Slmllar tests If two ~s have 

similar elements, using the slmHaroperatlon of the element type. 

All operations are indivisible except for fill_copy, equal, similar, copy, encode, and ci9cods, which are 

divisible at calls to the operations of the type parameter. 

For the detailed specification, see Section 11.8. 

6.2.9. Array Types 
Arrays are one-dimensional, and mutable but not atomic. They are transmissl>te only if their type 

parameter is transmissible. The number of elements in an array can vary dynamicaRy. There Is no notion 

of an •uninitiaHzed'" element. 
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A structure is aeated using a structure constructor. For exa"1)18, assuming that "info" has been 

equated to a structure type: 

info• atl'UCl[last, first, middle: atrlng, age: Int) 

the following Is a legal structure constructor: 
info$ {last: "Scheller", first: "Robert", age: 32, middle: "W.1 

An expressJon must be given for each Nlector, but the order and grouping of Nlectors need not 

resemble the corresponding type specfflcatlon. 

For each selector "sel", there is an operation get_ SBI to extract the named component, and an 

operation replace_ S8I to create a new sttucture with the named component replaCed with some other 

object. Invocations of the get operations can be written using a special form: 

st.age % get the 'age' component of st 

As with sequences, two structures with equal components are in fact the same object. The equal(·) 

operation tests if two structures have equal con,:,onents, u8'ng the equal operations of the component 

types. Slrrilar tests if two structures have slmlar components, using the slmllat' operations of the 

component types. 

All operatlonS are individ>le except for equal, slrrilar, copy, llf>OOdtl, and dfJOOde, which are divisl:>le at 

calls to the operationl of the type parameter. 

For the detaHed spectflcatlon, see Section 11.11. 

6.2.11. Record Types 
A record is a nl.ltable collection of one or more named objects. Records are never atomic, and are 

transmissible only if the parameter typeS are all transmisaible. A record type specification has the form: 

record [ field_ spec , ... J 
where (as for structures) 

field_ spec : :: name , ... : type_ actual 

Selectors must be unique within a specification, but the ordering and grouping of Htectora ii unimportant. 

A record is created using a record constructor. For example: 

professor$ {last: "Herlihy"; first: "Maurice", age: 32, middle: "P.1 

For each selector "sel", there Is an operation oet_SBI to extract the named component, and an 

operation sst_Sfll to replace the named component with some other object. Invocations of these 

operations can be wrttten using a special form: 

r.mlddle % get the 'middfe' component of r 
r.age =• 33 % set the 'age' component of r to 33 (by calling sst_B(JB) 

As with arrays, every newly created record has an identity that is diatlnct from all other records; two 

records can have the same components without being the same record object. The Identity of records 
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can be distinguished with the equal(•) operation. The slmllar1 operation tests If two records have equal 

components, using the equal operations of the component types. Slnilartests If two records have similar 

components, using the similar operations of the 00fl1)0l'18f1I types. 

AH operations are indivisible, except similar, simllar1, copy, encoc:JB, and decode, which are divisible at 

calls to operations of the type parameters. 

For the detailed specification, see Section 11.12. 

6.2.12. Oneof Types 
A oneof type is a taolJBd, dlscrim/nat(ld union. A oneof is an lmnUallle labeled object, to be thought of 

as "one of" a set of allematives. The label Is called the tag, and the obtlCt Is called the value. A oneof 

type speciflC&tion has the form: 

oneof ( fleld_spec I ... J 
where (as for structures) 

field_ spec : :: name , ... : type_ actual 

Tags trust be unique within a specification, but the ordering and g«>uplng of tags is unimportant. An 

instantiation is atomic or transmissl>le I and only I aN the type parameters are atomic or transmissible. 

For each tag ,. of a oneof type, there is a rnalce_t operation which takes an object of the type 

associated with the tag, and returns the obied (as a oneof) labeled wllh tag , •. 

To determine the tag and value of a oneof object, one notmaltt ueea the tagt:111 statement (see 
Section 10.14). 

The equal(•) operation tests I two oneofs have the same tag. and I so, tests if the two value 

components are equal, using the equal operation of the value type. Slmllllr telta If two oneota ha¥e the 

same tag, and If so, tests I the two value components.,. llmlar, U8lnO ht .,.,.,.operation of the value 

type. 

AH operations are indivisl>le, except equal, similar, slmllar1, copy, fll'IOOdB, and dfJ<::od6, which are 

divisible at calts to operations of the type parameters. 

For the detailed specification, see Section 11.14. 

6.2.13. Variant Types 
A variant Is a mutable oneof. Variants are never atomic and are tranamllsible If and only If their type 

parameters are aH transrnlssl>le. A variant type spedllcation has the form: 

variant ( field_ spec , ... J 
where (as for oneofs) 

field_spec ::: name , ... : type_actual 
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The state of a variant is a pair consisting of a label calad the tlJt1 and an object called the value. For each 

tag "t" of a variant type, there is a mlllce_t operation whiCh Ilka an obied of the type aslOCiated with the 

tag, and returns the oblect (as a variant) labalad with tag T. In adrllion, lhent ii a ~-t operation, 

which takes an existing variant and an object of the type UIOCllltld wlh T, and changes the state of the 

variant to be the pair oonsllting of the tag T and the given c,bjeet. To Clelarmlne the tag and value of a 

variant object, one normally uses the tagcaN statement (see Section 10.14). 

Every newly created variant has an Identity that Is diatinct flOffl al Gller variants; two variants can have 

the same state without being the same variant object. The ldendty of varianla can be di8tinguished using 

the equal(•) operation. The slmllar1 operation tests if two varianll have the same tag, and 110, tests If 

the two value COf11)0118nts are equal, using the equal operauan of 118 value tp. Slmllllr tests If two 

variants have the same tag, and If so, tests if the two value cr,mpc,nents are stmilar, using the similar 

operation of the value type. 

All operations are indivisi.>le, except similar, similar1, copy, enood6, and d6cocle, which are divisible at 

calls to operations of the type parameters. 

For the detailed specification, see Section 11.15. 

6.2. 14. Procedure and Iterator Types 
Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8). 

They are not transmissl:>le. As the Identity of a procedure or llerator II lmrruable, they can be 

considered to be atomic. However, their atomicity can be violated If a procedure or iterator has own data 

and thus a rn.dable state. The immutabiHly and atomicity of a procedure or aerator wlh own data 

depends on that operation's specified semantics. 

The type specification for a procedure or Iterator contains most of the infonnation stated in a procedure 
or Iterator heading; a procedure type RllfllCIIIC:~tion has the form: 

proctype ( [ type_spec, ... ] ) [ ret ] [signals] 
and an Iterator type specification has the 

ltertype ( [ type - spec .... ] ) [ 
where 

returns ::: returns ( I ■■■ ) 

yields : : = ylelds ( 
signals ::: Ilg,.... ( ex ' ... ) 
exception : :: name [ { I ■■■ ) ] 

The first list of type specifications dllU1r.r1t1as the runber, types, and order of arguments. The returna or 

order of the objects to be returned or yielded. The signals 
clause lists the exceptions raised by the procedure or Iterator; for each exception name, the number, 

types, and order of the objects to be retu is also given. Al names used In a Slgnals clause must be 

unique. The ordering of exceptions is not ant. 
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Procedure and Iterator types have an equal(•) operation. Invocation is not an operation, but a 

primitive In Argus. For the detailed specification of proctype and lleltype, see Section 11.17. 

6.3. Atomic_Array, Atomic_Record, and Atomic_ Variant 
Having de8Cl'l>ed the types that Argus Inherited from CLU, we now descrl>e the new types In Argus. 

The rootable atomic type generators of Argus an, atomlc_anay, IIIOllllc_recon:I, and atomlc_vartant. 
Types obtained from these generators provide the same operatlont as the analogous types oblain8d from 

array, record, and variant, bul they differ In their synchronization and recovery propeftin. Conversion 

operations are provided between each atomic type generator and Is notHltomic partner (for exampte, 

atomlc_array(t]$aa2a converts from an atomic array to a (non-atomic) array). 

An operation of an atomic type generator can be claSsified as a readtlr or wrltllr depending on whether 

it exanines or modifies Its prlnclpa/ argument, that is, the argument or resul objeCt of the operation's 

type. (For binary operations, such as ar_gets_ar, the operation ii classiHed with respect to each 

argument.) lntultlvely, a ,.,,.,., only examines (reads) the state of b pnncipal argument, while a writsr 

modifies (writes) its prkq>al a,gument. Operations that create obtlCla of an atomic type are classified as 

readers. Reader/Writer exclusion Is achieved by locking: read8rl acquint a read lock while writers 

acquire a write lock. The locking rule& are discussed In Section 2.2.2. 

If one or more of the type parameters Is non-atomic, then the muling type is not atomic because 

modlHcatiOnS to component objects are not controlled. However, INdlwrlle locklng still occurs, as 

described above. Thus, an atomic type generator instantiated wlt'I a non-atomic parameter incufl the 

expense of atonic types without gatmng any benefit; such an inltanlilltlon Is unlkefy to be a correct 

solution to a problem. Atomic type generators yield transmllstie tps only If the type parameters are all 

transnissible. 

Special operations are provided for each atomic type generator to test and manipulate the lockS 

associated with reader/writer exclusion. These operations are useful for implemel'Olg uaer--defined 

atomic types (see Section 15). The tagtNt and tagwllll stalernel'III (IM Section 10.15) J)IOVtdl 

additional structured support for atomic_varlanls. The operations can_f'Nd, can_M11e, Tlltll_and_rud, 

and test_and_wrlte provide relatively unstructured access to lock Information. For~ deflnllions of 

these operations, see sections 11.10, 11.13, and 11.16. 

Assuming normal termination, the following operations acquire read locks on their principal arguments 

or the objects that they create. 

atomlc_array: aeate, new, predict, ffH, flll_copy, sizs, ow, high, empty, top, botlOm, Mleh, $lmllar, 
s/tnlar1, copy, oopy1, eltmrfmts, Indexes, test_and_read, a2aa, aa2a, enctlde, 
d«:Dd6 

atomlc_record: aeate, get_, simllar, simllar1, copy, copy1, tesLand_rNd, ar_gels_ar (second 
argument), r2ar, ar2r, enoocle, decode 

atomlc_varlant: males_, is_, value_, av_gels_av (second argument), simllllr, silfflar1, copy, copy1, 
test_ and_read, v2av, av2v, encode, decod8 
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The operations slmllar and slmlar1 acqun read locks on Nth arguments. The operations aopy and 

copy1 acquire a read lock on the value returned as wel • ttl8lr prtncipal argument. Test_and_read is a 

reader only if ii returns true; otherwise It Is neither a reader nor a writer. 

Assuming normal termination, the foflowtng operations acquire write locks on their principal arguments. 

atomlc_array: SBt_low, trim, store, addh, add/, remh, rem/, ttJtJt_and_wrltB 

atomlc_record: set_, ar_gets_ar(flrst argument), _,_and _ _,. 
atomlc_vartant: changB_, av_gets_av(flf8t argument),_,_.., _ _,. 

Test_and_wrlte Is a writer only If It returns true; otherwise It ii nelher a reader nor a writer. 

The equal, can _read, and can_ write operations are neither readers nor writers. 

When an operation of alOffllc array t.minate8 wlh an exception, Is principal al'gllfTleN is never 

modified; however, the atamlc_anay operations listed above• Wfllts always obtain a wrle tad( before 

the principal argument ii examined, hence there are CIN8 In which they wll obtaitl a WIie lod< and only 

read, but not modify their principal argument. For exa,..., ldlllllc_arni,(tJSlrim is a writer when It 

signals bOunds. On the other hand, when an alOllllc_.., operation raises a lignaf becauH of an 

invalid argument, no locks are obtained. For ex.,._, when IIIOllllc_alTllftl]Slrtm lignall fHlllllllv•_sJze, 
it is neither a reader nor a writer since the array's state ii nether examned nor rnodlled (only the Integer 

argument is examined). 

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13; 

and for atomic variants, see Section 11.16. 

6.4. Guardian Types 
Guardian types are user-defined types that are if11)1emented by guaroian definitions (see Section 13). 

A guardian definition has a header of the form: 

idn - guardian [ parms J 1a idn • ... [ handlM ldn .... J [ where 1 
The creators are the operationl named In the Identifier 11st following IS; a creator is a spectal kind of 

operation that can be called to create new guardians thal behave In accordance with the guardian 

definition. Each guardian oplionaly provides handlers that can be called to Interact with It; the names of 

these handlers are listed In the identifier 1st following IIIIIICIIN. (See Section 13 for more details.) 

A guardian definition named g defines a guardian interface type g. An object of the guardian lnterf ace 

type provides an interface to a guardian that behaves in accordance with the guardian definition. An 

Interface object is created whenever a new guardian ii crated. and then the interface object can be used 

to access the guardian's handlers. Interface Objed8 are tranemil1llle, and after tranamluion 1hey still 

give access to the same guardian. In this manuat a "guardan IRl8'faee object" II often called sin1)ly a 
•guaJdian object•. 

The guardian type g for the guardian definition named g has the following operations. 
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1. The creators listed In the la list of the guardian definition. 

2. For each handler name h listed In the IWICIIN Nst, an operation get_h with type: 
proctype (g) retuma (ht,, where ht Is the type of h. 

3. Equal and similar, both of type: proct,pe (g, (/J relUmll (bOol), which return true only If 
both arguments are the same guardian object. 

4. Copy, of type: proctype ((/J return• (g), which &ifT1)fy returns Its argument. 

5. transmit. 
A creator may not be named equal, similar, copy, print, or get_ h where h Is the name of a handler. 

Thus If x is a variable denoting a guardian interface obiect of type g. and h is a handler of g, then 

g$get_h(x) wiU return this handler. As usual with get_ operations, 1h11 cal can be abbAMaled 10 x.h. 

Note that the handlers themselYes are not operations of the guardian Interface type; ttu tJ$h would be 

illegal. 

A guardian interface type is somewhat like a structure type. Its objects are constructed by the creators, 

and decomposed by the get_ operations. Guardian Interface obi8Ctl are lmmJtable and alomlc. 

6.5. Handler and Creator Types 
Creators are operations of guardian types. Handler objects are created as a side-effect of guardian 

creation. Unlike procedures and Iterators, handlers and creators are transmisal)le. 

The types of handlers and creators resen1>le the types of procedurea: 

handleltype ( [ type_spec, ... ] ) [ retums] [ ..... J 
cnatortype < [ type_apec, ... J) I retums J 1--1 

The argument, normal reault, and exception l'8IUlt types ffll8t all be tranamisd>le. The sl(/nlJla 1st for a 

handllrtype or CNIIIOrtype cannot Include either failure or unavallable, • these signals are '"'3IICI in 

the interface of all creators and handlers. 

Handler and creator types provide equal and lllmflar operations which return tn,e I and only I both 

arguments are the same object, and copy operations which_.,., ratum their argument. For the detaled 

specification of handtertype and Cl'Ntol'type, see Section lt.18. 

6.6. Image 
The Image type provides an escape from coff1)11e-tlma type cheddng. The main difference between 

Image and any Is that Image objeds are transmiaaible. An lfflllOe ObleCt can l:Mt thouQN of as a portion 

of an undecoded message or as the Information needed to reaeate an oblect of some type. Image 
objects are inmutable and atomic. 

The create operation Is parameterized by a transmissl)le type; it takes a uve argument of that type 

and encodes it (using the encod8 operation of that type) Into an Image objeet. The force operation Is atso 
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parameterized by a transmiasl>le type; It takes an Image object and decodes It (using the decode 

operation of that type) to an object of that type, 8lgnallng MOIJQ_lp if the encoded object's type is not 

Included in the parameter type. The is_ Ip operation la parameterized bi/ a type and checkl whether its 

argument Is an encoded object of a type Included In the parameter type. See Secdon 11.20 for the 

detaHed specification. 

6.7. Mutex 
Mutex objects are nlJtable containers for information. They are not atomic, but they provide 

synchronization and control of writing to stable storage for their contained object. Mutex ltsel does not 

provide operations for synctvonlzlng the uae of nuex obieCtS- Instead, mutual exclulion is achteved 

using the Nlze statement (see Section 10.16), which aflows a eequence of statements to be executed 

while a process is In exclusive possession of the mutex object. Mutex objects are transmissible If the 

contained object Is transmissl>le. 

The type generator mutax has a single parameter that is the type of the contained object. A rrutex 

type speciflcatton has the fonn: 

mutex (type _actual] 

Mutex types provide operations to create and ~ lftltex obfeets, and to notify the system of 

modifications to the rrutex object or Its contained object. 

The create operation takes a single argument of the parameter type and creates a new mutex object 

containing the argument object. The get_ valull operation oblalnl lie ocnalned obJect from Its mutex 

argument, while •L valw modifies a nuex object bi/ repfaclng Its contained object. As with records, 

these operations can be called UH1g spedal fOl'ffll, for ex.,._: 
m: IIIUIU(lnlJ =• muleX(lnt)Screate (0) 
x: Int=• m.vakle % extract the conlalnld object 
m. value :• 33 % change the contained object 

Set_ valw and get_ value are indivisible. 

Mutexes can be distinguished with the equal(•) operation. There ant no operations that could cause 

or detect sharing of the contained object by two mutexea. SUch sharing is dangerous, Since two 

processes would not be synchronized with each other In thN' use of the contained object if each 
possessed a different mutex. In general, If an object is conlained In a rft.dex object, It should not be 

contained in any other object, nor should it be referred to by a variable except when In a ..._ ssatement 

that has possession of the containing mutex. 

There are some mutex operations that seize the rootex object automatlcalfy. Copy seizes Its single 

argument object. Similar seizes its two argument obilda; the first 811Uffl8nl object is seized fltst and then 

the second. In both cases possession is retained untl the ope,atiorl8 return. Also, when a mutex object 

is encoded (for a message or when making an Image), the object is seized automatlcatly. See Section 

11.21 for the detailed specification of mutex. 
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Mutexes are used primarily to provide process synctvonlzatlon and mutual exclusion on shared data, 

especially to implement user-defined atomic types. In such ~. it is ~ to control 

writing to stable storage. The fTIJtex operation chang«I provides the necnaary control. Chang9d 

informs the system that the calling action requires 1hat the argument Obilct be copied to stable storage 

before the commit of the action's top-level para (topaction). Alff nuex la asynchronous: its OOt'Uined 

object is written to stable storage Independently of objecls that contain that mutex. See Section 15 for 

further discussion of user-defined atomic objects. 

6.8. Node 
Objects of type node stand for physical nodes. The operation twe takas no a,gumera and returns 

the node object that denotes Its caller's node. Equal, slmllar, and copy operations are lllllo provided. 

The main use of node objects is in guardian creation (aee Secllon 13), where they are used to cause a 

newly created guardian to reside at a particular node. Objeds of type node are immutable, atomic, and 

transmissl>le. For the detalled specification, see Section H.2. 

6.9. Other Type SpecHlcatlons 
A type specification for a user-defined type has the fonn of a refrlrenctl: 

reference : :: ldn 

I idn l actuat _parm .... 1 
I reference S name 

where each actual_parm nuat be a COl11)ile-time con1)1Jtab1e conatant (see Section 7.2) or a type_aclua/ 

(see Section 12.6). A Nferenoe 111.111 denote a data atJ81111GtiOn ID be UNCI • a type apecllcatlon; tis 

syntax ts provided for referring to a data abatradlon M fl namld In an equate module (see Section 

12.4). For type generators, actual parameters of the approp,111I typea and number fllJSt be suppled. 

The order of parameters is always significant for user-defined types (see Section 12.5). 

There are two specia! type specifications that are used when lmptemenllng new abllractions: rep, and 

CYt. These fonns may only be used within a clualer; they are dilallNd fullt:ler In Section 12.3. 

Within an implementation of an abstraction, formal paramelerl dlclaNd wlh type can be used • type 

specifications. Flnally, Identifiers that have been equated to type apeclficatlonl can also be UNd as type 

specifications. 
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7. Scopes, Declarations, and Equates 
This section descrl>es how to introduce and use constants and variables, and the scope of constant 

and variable names. Scoping units are descrl>ed first, followed by a dlaa,ssion of variables, and finally 

constants. 

7. 1. Scoping Units 
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an 

associated ·heading''. The scoping units are as follows (see Appendix I for details of the syntax). 
1. From the start of a module to Its end. 

2. From a cluster, proc, lier, equates, guardian, handler, or CNatOr to the matching end. 

3. From a for, do, begin, background, recover, enter, coentar, or Nlze to the matching 
end. 

4. From a then or elN in an If statement to the end of the comtsponding body. 

5. From a tag, wtag, or others in a tagrm, tagWlllt, or tagtNt llatement to the end of the 
corresponding body. 

6. From a when orothera in an except statement to the end of the corresponding body. 

7. From the start of a tn,e_sstto Its end. 

8. From an action or topactlon to the end of the corresponding body. 

The structure of scoping units Is such that I one scoping unit overlaps another scoping unit (textually), 

then one Is fully contained In the other. The contained scope is called a nested scope, and the containing 

scope Is called a surrounding scope. 

New constant and variable names may be introduced In a scoping unit. Names for constants are 

Introduced by equates, which are syntactically restricted to appear grouped together at or near the 

beginning of scoping units (except In type sets). For ex..,ie, equates may appear at the beginning of a 

body, but not after any statements in the body. 

In oontrast, declarations, which introduce new variables, are dowed wherever statements are allowed, 

and hence may appear throughout a scoping unit. Equates and declarations are disalssed In more detail 

in the following two sections. 

In the syntax there are two distinct nontenninals for Identifiers: idn and name. Any identlier introduced 

by an equate or declaratton Is an /dn, as Is the name of the module being defined, and any operattons It 

has. An ldn names a specific type or object. The other kind of ldenlffler Is a name. A name Is generally 
used to refer to a piece of something, and Is always used In context; for example, names are used as 

record selectors. The scope rules apply only to ldns. 

The scope rules are simple: 

1. An kin may not be redefined in its scope. 

2. Any idn that is used as an external reference in a module may not be used for any other 
purpose In that module. 
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Unlike other "block-structured" languages, Argus prohl>itl the redefinition of an Identifier In a nested 

scope. An identifier used as an external reference names a module or 00f'lltant; the reference is resolved 

using the oo"1)11atlon environment. 

7 .1.1. Variables 
Objects are the fundamental itttngs• in the Argus universe; variables are a mechanism for denoting 

(i.e., naming) objects. A variable hu three prope,tJea: •• type, whether I ii stable or not, and the objecl 

that it currently denotes (if any). A variable is satd to be unlnltlallatJ I I does not denote any object. 

Attempts to use uninitialized variables are programming enora and (If not deleded at compile-time) cause 

the guardian to crash. 

There are only three things that can be done with variables: 
1. New variables can be Introduced. Declaratlons pe,form this function, and are described 

below. 

2. An object may be assigned to a variable. After an ll8llgnment the variable denotes the 
ot>;ect assigned. 

3. A variable may be used II an expreuion. The value of a varillble is the object that the 
variable denotes at the time the expression is evaluated. 

7 .1.2. Declarations 
Declaratlons Introduce new variables. The scope of a variable is fft)rn la declaration ID the end of the 

smallest scoping unit containing Its declaration; hence, variables nut be declared before lhey are used. 

There are two sorts of declarations: those wlh initialization, and thole without. Slf11)fe deciaratlons 
(those without Initialization) take the form 

decl ::: ldn, ... : type_spec 

A simple declaration Introduces a list of variables, al havtng the type given by the ,w._spec. Thia type 

determines the types of objects that can be assigned to the variable. The var1lbles lntloducad In a lin1>fe 
declaration initially denote no objeds, I.e., they are uninliallzed. 

A declaration with Initialization combines declarationl and uaignmlnls Into a single statement. A 

declaration with Initialization is entirely ~ to one or more simple declarations followed by an 

assigmlent statement. The two forms of declaratton wlh lnldallzatlon are: 
ldn : type_spec :- expression 

and 

decl1, ... , dec\t :• caH [ @ primary ] 

These are equivalent to (respectively): 

ldn : type_ spec 
ldn :- expression 

and 
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decl1 ... dec'n % declaring ldn1 ... idr\n 
idn1, ... , idf\n :•call[@ primary) 

In the second fonn, the order of the kffls in the aasignment statement is the same as in the original 

declaration with Initialization. (The call must return m objects.) 

7.2. Equates and Constants 
An equate allows an ldentlier to be used as an abbreviation for a conetant, type set, or equate module 

name that may have a lengthy textual representation. An equate lllo permits a mnemonic Identifier to be 

used in place of a frequently used constant, such• a numerical v.abt. We use the term constant In a 
very narrow sense here: conatants, In addition to being Immutable, _,.. be computable at compite•tlme. 

Constants are either types (built-In or user-defined), or objects that are the resulls of evaluating constant 

expressions. (Constant expressions are defined below.) 

The syntax of equates is: 

equate : :: idn • constant 

I idn • type_set 
I idn - reference 

constant::: type_spec 
I expression 

type_set ::: { ldn I ldn has oper_decl, ... {equate}} 

reference : :: idn 
I ldn ( actual _pann , ... ] 
I reference $ name 

References can be used to name equate modules. 

An equated identffler may not be used on the left-hand stde of an assignment statement. 

The scope of an equated identifier Is the smallest sooplng unit surrounding the equate defining It; here 

we mean the entire scoping unit, not just the portion after the 8(Jnlle. AH the equates in a scoping unit 

must appear grouped near the beginning of the scoping unit. The exact placement of equates depends 

on the containing syntactic construct; usuaNy equates appear at the beginnings of bodies. 

Equates may be In any order within the a sooplng unit. Forward references among equates In the 

same scoping unit are allowed, but cyclic dependencies are illegal. For ex8f11)18, 

X•Y 
Y=Z 
z-3 

Is a legal sequence of equates, but 
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8. Assignment and Calls 
The two fundamental activities of Argus programs are calls and assignment of computed obiects to 

variables. 

Argus programs should use mutual exclusion or atomic data to synchfonize aocess to an shared 

variables, because Argus supports concurrency and trus pR)08sses can Interfere with each other during 

assignments. For example, 

i := 1 
j == 2 

is not equivalent to 

i, j :- 1, 2 

in the presence of concurrent assignments to the same variables, because any interteaving of Indivisible 

events is possible in the presence of concurrency. 

Argus is designed to aHow coff1)1ete compile-time type-checking. The type of each variable is known 

by the compiler. Furthermore, the type of objects that could red from the evaluation of any expression 

is known at compile time. Hence, every assignment can be checked at COff1)lle time to ensure that the 

variable is only assigned objects of its declared type. An assignment v =• Eis legal only If the type of E is 

included the type of V. The definition of type Inclusion is given in Section 6.1. 

8.1. Assignment 
Assignment causes a variable to denote an object. Some assignments are 1"1)1icltly performed as part 

of the execution of various mechanisms of the language (In exception handling, and the tagcau, tagtest, 

and tagwal statements). AH assignments, whether lmpliclt or expftclt, are subject to the type inclusion 

rule. 

8.1.1. Simple Assignment 
The sin1>1est fonn of assignment statement is: 

ldn =• expression 

In this case the sxpression is evaluated, and then the resulting object is assigned to the variable named 

by the idn In an indivisible event. Thus no other process may obaerVe a "half-assigned" state of the 

variable, but another process may observe various states during the expression evaluation and between 

the evaluation of the expreuion and the assignment. The expression must retum a single object (whose 

type must be Included In that of the variable). 

8.1.2. Multiple Assignment 
There are two forms of assignment statement that assign to more than one variable at once: 

idn , ... :• expression , ... 

and 
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idn , ... :- caH [ @ primary ] 

The first fonn of mu._. assignment Is a generalization of slq)l8 asstgnment. The first variable is 

assigned the first expression, the second variable the second expt'8tlion, and so on. The expressions 
are all evaluated (from left to right) before any aaslgnmenta are pe,fomlad. The uatgnment of mullple 

objects to multiple variables is an indivlsl)je event, but evaluation of the expreuions ii divial:Jle from the 

actual assignment. The oomber of variables in the list 111.1st equal the l'lffltNH' of expressions, no variable 
may occur more than once, and the type of each variable must inckJde the type of the corresponding 

expression. 

The second fonn of multiple assignment allows one to retain the objects resulting from a call returning 

two or more objects. The first variable is assigned the first object, the second variable the second object, 

and so on, but all the assignments are carried out indivisl>ly. The order of the objects Is the same as in 

the return statement executed in the called routine. The runber of variables must 8(J&8t the number of 

objects returned, no variable may occur more than once, and the type of each variable must include the 

corresponding return type of the called procedure. 

8.2. Local Calls 
In this section we discuss procedure calls; iterator calla are dlacul8ed in Section 10.12. However, 

argument passing is the same for both procedures and Iterators. 

Local calls take the form: 

primary ( [ expression , ... ] ) 

The sequence of activities in performing a local call are as follows: 
1. The primary is evaluated. 

2. The expressions are evaluated, from left to right. 

3. New variables are Introduced corresponding to the formal arguments of the routine being 
called (I.e., a new environment is created for the caled routine to execute in). 

4. The objects resulttng from evaluating the exprt#llllonll (the actual a,guments) are assigned 
to the corresponding new varlablN (the formal argumenll). The ffrlt formal is assigned the 
first actual, the second formal the second actual, and 80 on. The type of each expression 
must be lnckJded in the type of the correaponding formal argument. 

5. Control is transferred to the routine at the start of its body. 

A call is considered legal in exactly those situations where al the (in1>Heit) assignments are legal. 

A routine may assign an ob;ect to a format argument variable; the effect ls jJ8t as If that object were 

assigned to any other variable. From the point of view of the called routine, the only dlferenoe between 

its formal argument variables and its other local variables Is that the formals are inltlallzed by its caller. 

Procedures can tennlnate in two ways: they can terminate normally, returning zero or more objllds, or 

they can terminate exceptlonally, signalling an exceptional condlion. When a procedure terminates 
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normaHy, any result objeda baoome avaffable to the caller, and can be aNigned to variables or passed as 

arguments to other routines. When a procedure termlnalel excepllonafly, the flow of control wiN not go to 
the point of return of the caH, but rather wll go to an excer,,tlon lwtdler (see Section 11 ). 

8.3. Handler cans 
As explained In Section 2 and In Section 13, a handler is an operation that belongs to some guardian. 

A handler call causes an activation of the called handler to nm at the handler's guardian; the activation is 

performed at the called handler's guardian by a new IUbaction created solely for this purpose. Usually 

the handler's guardian is not the same as the one in which the cal occurs, and the called handler's 
guardian is ll<ely to reside at a different node in the network than the oalHng guardian. However, I Is legal 

to caH a handler that belongs to a guardian residing at lie Cllar"s node, or even to cal a handler 

belonging to the caller's guardian. 

Although the form of a handler call looks ll<e a procedure caH: 

primary ( [ expression, ... ] ) 

its meaning is very different. Among other things, a handler is callad remotely, with the arguments and 

results being tranlmilted by value In Pl8818g88, and the cal Is Nn u a Sllbactlon of 11s caling action. 

Below we present an overview of what happens when exeaating a handler call and then a detailed 

description. 

A handler call runs as a subactlon of the calling action. We wll refer to this sc lbactlon u the call IICtion. 

The first thing done by the caH action Is the ttanlfflil8ion of the ~ of the call. Tranamlsslon is 

accomplished by encoding each argument objeet, ualng the .... operation of la type. The a,vuments 
are decoded at the called guardian by a subaction of the call action called the .-. don IICl/on. Each 

argument is decoded by using the d9COdtl operation of Is type. Thi effect of tnlnlmislion is that the 

arguments are passed by value from the caler to the twder dwllllon: new objects come Ink> existence 

at the handler's guardian that are copies of the argument ot,tecls. Object YUJeS are transmitted in such a 

way as to preserve the inlemat sharing structure of each argument c,tJtect Is preaervJ, as wet as any 

sharing structure between the argument objects In a single cal. See Secdon 14 for further dlacussion of 
transmission. 

After the arguments have been transmitted, the activation action performs the handler body. When the 

handler body terminates, by executing a NIUm, llbOl1 ,_., .,._., or abort Signal ltateme,C, the 

resutt objeda are transmitted to the caller by encoding them at the hinder's guardian, and convnlmng or 

aborting the activation action (as it specified). The call action then decodls the reaulta at the caller's 

guardjan. Once the resulls have been transmitted to the caller, the cal acHon commits and execution 

continues In the caller as indicated by the caller's code. (Note that the cal action will commit even I the 

activation action aborts.) 

'This is only slriclly true for lhe built-in types. A uaer-defined type might not pnl88rV9 intamal sharing structure. 
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8.3.1. Semantics of Handler Calls 
In this section we describe the semantics of a handler call In detatl. A handler cal cauaes actiYity at 

both the calling gu&ldian and at the called guaftlan. N. the calling guardian, the S8(Jlen08 of activities in 

performing a handler call ii as follows: 
1. The primary is evaluated. 

2. The argument expn,sslons are evaluated from left to right. 

3. A subactlon, which we will rater to as the call action, 18 CINled tor Iha remote call. All 
~nt actMty on behalf of the cal will be pelfoflnld t,r ltl8 cal action or one of itS 
descendaru. For I to be po•lble to create the CIII aaton, 118 caller RUil already be 
running as an action. Remote caHs by non--actlonl are ~ emn and caul8 the 
cafflng guardian to crash. 

4. A cal message Is constructed. Aa part of 00l'lltNClfll .. fflll1181, MOOde operations 
are petformad on the argument obj1• If -, flf Ill .,. .. ....-,... .m11..._ wflh a 
failure exception, thin the remote cal wiR tennlnall wit\ ttle ... excepllon, and the call 
action wiR be aborted. 

5. The call message ii sent to the guan:llan of the caled handler, and the cal action waits for 
the completion of the call. 

6. If the can message arrives at the node of the target guardian, atld Ill target guardian does 
not exist, then the cal action is aborted with the fallule exception having the atrlnG 
"guardian does not exist" as Its exception reeul. · 

7. If the ayatem determlnea thlll I cannDI comnanlcate wlltl tM called ......-n, II abGfll the 
cal action. The cal action may be retried ........ ~ II 111P 3) in ....... to 
OOIMllnlcllle. I Np-■d ............ t■lu• • ••u,.,.., .,_ IYll■m lboAI ._ 
cal action and OIIUHI .. cal to te,mll!III wlltl91e ........ ....-on. The ayalem wil 
C8ll8e thll kind of termination ~ when I II ~ unllkely that retrying the caH 
Immediately wll succeed. 

8. On:lnarlly, a call complelea when a reply mea•• containing the NtlUla II received. When 
the reply message amvn at the caller, I II decoded Uling tlll d#ICOtM operation for each 
resul obi■Ct- If any decode tennlnale1 wilh a ,,,,.,. ...,._., the cal acllon is lboftad, 
and the call terminates with the same exception. Olherwlle, the cal action commits. 

9. The call wHI terminate normally I the l'8IUI rneesage lrdicllll thlt the handler activation 
returned (Instead of signalled); otherwise It termlnalea wlh whatever exception was 
slgnalfed. 

At the called guardian, the following activities take place. 
1. A subaction of the call action Is created at the target guardian to run the calt. We will refer 

to this subactlon as Ile activation at:llon. Al actlYtly at the ta,get guardian occurs on behalf 
of the activation action or one of its deacendanls. 

2. The call message Is dacon1)088d inlo Its conatlluent CJbtlds. M part of this J>10C8SS 
dBcodtl operationl are performed on each argument. If My """°"" terminatel with a 
fallunl exception, then the activation action ii aborted, and the call terminlt4ts with Ile same 
exception. 

3. The called handler Is called within 1he actlvalk>n action. Thie call ts ll<e a regular procedure 
call. The objects obtained fRMTI deaoding the ffll881G8 n the actual arguments, and they 
are bound to 1h8 formals via in1)llcl aalgrvneru. 

4. H the handler terminates by executing an llbolt ,._ or an -.n slgftlll •ement (see 
Section 11.1), then an oommiled deeclndlnll of the dWlllorl action are lborted. Then 
the reply message is constructed by encoding Ile ,..,. abjlcta, the acllvalion action is 
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aborted, and the reply m&888Qe is sent to the caller. Olherwile, when the hancler 
terminates, the reply message Is constructed by encoding the red objacta, the activation 
action commits, and the reply message Is 88ft ID the callar. If one cl the calll of encode 
terminates with a fa/lute excaplion, than the acttvation adion ii aborted, and the can 
terminates with the same exception. 

When the Argus system terminates a call with the unavallllble exoeption, It is pos&l>le that the 

activation action and/or some of its descendants are actually running. Thll Q;NAct happen, tor .... If 

the netwol1< partitions. These running processes are called ·Olphanl•. Thi Alp system makes sure 
that orphans wiff be aborted before they can view inconsistent data (He Section 2.5). 

8.4. Creator Calls 
Creators are caled to cause new guardians to come ink> exlstenee. Aa part of the caff, the node at 

which the newly created guan:lian wil be located may be specified. If ._ nocll ii not specified, thin the 

new guardian is created at the same node as the caller cl the creator. The torm cl a crealOr cal ii: 

primary ( ( expression, ... ) ) [ @ primary ) 

The primary following the at-sign(@) m.ilt be of type node. 

A creator call caUNI two aclivlies to take place. First, a new QUMllafl ii created at the Indicated 

node. Second, the creator is called U a handler at the~ CNllld guardian. This handler call has 
basically the same semantics as the regular handler calf de8crl)ed above. 

The Argus system may also cause a creator can to abort with the fal/un, or unavailable exceptions. 

The reasons for such terminations are the same as those for handler calla, and the meanings are the 

same: the failure exception means that the Cllf should not be relried. while the unavailable exception 

means that the caH should not be retried immediately. 

8.4.1. Semantics of Creator Cella 
The actMties carried out In exea,ting a creator call are as follows. 

1. The (first) primary Is evaluated. 

2. The argument exprsssions are evaluated from left to right. 

3. The optional primary foUowing the at-sign Is evaluated ID obtain a node object. If this 
primary is missing, the node at which the cal Is taking place is used. 

4. A subactlon, which we will refer to as the call acllon, ii created. Al aubsequent activity 
takes place within this subactlon. As was the cue tor handler call, creators can be caN8d 
only from within actions. A aeator can by a non-action is a ~ error and causes 
the calling guardian to crash. 

5. A new guardian Is created at the Indicated node. The creator obtained in llep 1 wiN Indicate 
the type of thl8 guanlan. The selection of a particular load Image for this type will occur as 
discussed In Section 3.3. 

6. As was the case for handler calls, if the system cannot 00fflfflUfll£a1 wilh the indicated 
node, the creator cal will terminate with the unavailable exceplton. If the system is unable 
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to determine what lff1)1ementation to load, or if there ii no fl1)1ementation of the type that 
can run on the Indicated node, or If the manager of the node ntfu•• to allow the new 
guardfan to be created, the creator call wll terminate wlh the failure exception. In either 
case the call action will be aborted. 

7. A remote caH is now performed lo the aeator. Thia call hU the same semantics as 
descrtbed for handler calls above In steps 4 through 9 of Ill actMtiea at the calling node 
and also steps 1 through 4 of actlYliel at the Clllled node . .....,..., I ellher the call action 
or the activation action aborts, the newly created r,ua,dan wfl be deab'o)'ed. 

For exaff1)1e, suppose we execute the creator call 

x: G :• G$create(3) @ n 

where G is a guardian type, n denotes an object of type node, and aeate has header 

aeate • crutor (n: Int) relUl'ne (G) llgnala (not_poulble(llltng)) 
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The system will select an ifT1)lementatio of G that ii suitable for use at node n, and wtl then create a 
guardian at node n running that lmplemerutlon. Next a.a (3) ii performed as a handler call at that 

new guardian. If asate returns, then the assignment to x wll oocur, causing x to refer to the new 
guardian that aeate retumed; now we can call the twders p,oYlded by G. The exceptiona that can be 

signalled by this call are not_possble, failure, and unav,,,,,,,,.. An example of a call that handles all 
these exceptions is: 

x: G :• GScreate (3) @ n 
except when not_poasl>le (s: string): ... 

when fatb'e (s: llrlng): ... 
when unavalfable (s: string): ... 
end 

Creators are desaibed In more detaff In Section 13. 
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9. Expressions 
An expression evaluates to an object in the Argus universe. This object Is said to be the rnult or value 

of the expression. Expressions are used to name the object to which they evaluate. The s1"1)1est fonns 

of expressions are Hterals, variables, parameters, equated lderdlers, equate module references, 

procedure, Iterator, and creator names, and Nlf. These forms directly name their result object. More 

complex expressions are bull up out of nested p,ocedure calls. The result of such an expression is the 

value returned by the outermost caH. 

9.1. Literals 
Integer, real, character, string, boolean and null literals are expressions. The type of a literal 

expression Is the type of the object named by the Nteral. For example, true is of type bOol, "abc" is of 

type string, etc. (see the end of Appendix I for details). 

9.2. Variables 
Variables are Identifiers that denote objeds of a given type. The type of a variable Is the type given in 

the declaration of that variable. An attempt to use an unlnlttafized variable as an expression is a 

programming error and causes the guardian to crash. 

9.3. Parameters 
Parameters are Identifiers that denote constants suppUecl when a parameterized module Is instantiated 

(see Section 12.5). The type of a parameter is the type given In the declaration of that parameter. Type 

parameters cannot be used as expressions. 

9.4. Equated Identifiers 
Equated identifiers denote constants. The type of an equated fdentller Is the type of the constant 

which It denotes. Identifiers equated to types, type_ sets, and equate modules cannot be used as 

expressions. 

9.5. Equate Module References 
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an 

equate module • an expression, one writes: 

reference $ name 

where 

reference : :: idn 

I idn I actuat_parm .... 1 
I reference $ name 

The type of a rt1ffNfJIIC6 is the type of the constant which II denotes. Identifiers equated to types, 
type_ sets, and equate modules cannot be used as expressions. 
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The evaluation of a bind expression proceeds by first evaluating the entity and then evaluating, from 

left to right, any blnd_args that are expressions. The MIity may evaluate to a procedure, Iterator, 

handler, or creator object. Suppose that the entity Is a procadure or ileralor object. (Creator and handler 

bindings are discussed below.) Then the result Is formed by binding the argument objects to the 

corresponding tonnals of the entity to fonn a closure; note that the p,ocedure or iterator is not called when 

the bind expression is evall aated. When the closure is caled, lhe objlct denoted by the entity is passed 

au the bound obieCtS and any actual arguments supplied In the cal, alt In the corresponding argument 

positions. 

For exa"1)1e, suppose we have: 

P • proc(x: T, y: Int, w: S) returns(R) algnal8(too_btg) 

Then 

q :- bind p(*, 3 + 4, *) 

produces a procedure whose type is proctype( T, S) NIUl'M(R) algnalS(too _ big) and assigns it to q. A 

can of q(a. b) is then equivalent to the caH p(,a. 7, b). 

Bound routines will be stored In stable storage if they are accnsl>le from a stable variable (see 

Section 13.1). In this case the entity and the blnd_lltfJS should denote IIIOmic objecta. 

There Is only one Instance of a routine's own data for each parameterization; thus an the bindings of a 

routine share its own data, if any (see Section 12.7). Each binding is general)' a new objeot; thus the 

relevant BqUBI operation may treat syntactically Identical bindings u distinct. 

The semantics of binding a creator or handler are similar to binding a procedure or iterator; the 

differences arise from argument transmlNion. Encoding of bound argument objects happens when the 

bind expression is evaluated and sharing ts only preserved among obi8d8 bound at the same time (see 

Section 14). In more detaH, the evaluation of a bind expresaton proceed8 by first evaluating the sntlty 

and then evaluating, from left to rtghl, any blnd_lll'fJS that are expressions. Then the aigument objects 

are encoded, from left to right, preserving sharing among these objects. The result is formed by binding 

the encoded argument objects to the corraspondtng formals of the entity to form a closure. Note that the 

entity is not called when the bind expression is evaluated. 

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the 

bound objects) and then the cau to the entity is Initiated. Decoding of the arguments at the called 

guardian is done In reverse of the order of encoding; that ts, other argumern are decoded before bound 

arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding 

only among groups of bound arguments and among the other arguments, not between groups. 
Thereafter the call proceeds as normally. 

For exa"1)1e, if we execute 

h1 :• bind h(x, y, *) 
h1(z) 
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then sharing of objects between x and y wlH be preserved by transmllslon, but sharing will not be 

preserved between x and z or y and z. 

Closures can be used in equates, provided au the expressions are constants (see Section 7.2.2). 

However, a handler cannot appear In an equate, since It Is not a constant. 

9.9. Procedure cans 
Procedure calls have the form: 

primary ( [ expression , ... ] ) 

The primary Is evauated to obtain a procedure obl&Ct, and Ulen the expesaionl are evaluated left to right 

to obtain the Mgl.lffl8ft objecl&. The procedure Is called wit\ tl'8l8 arguments, and the obiect returned Is 

the result of the entire expression. For more diaaJ88ion see Section 8. 

Any procedure call p(E1, ••• E,J roost satisfy two constrM1tS to be UNd • an expression: the type of p 

must be of the form: 

proctype (T1, ... , TrJ 1'81Uma (R) signals( ... ) 

and the type of each expression i:j roost be lnckJded in the corresponding type 7j. The type of the entire 

call expression Is given by R. 

9.1 o. Handler cans 
Handler calla have the form: 

prlma,y ( [ expression, ... ] ) 

The primary Is evalualed to obtain a handler object, and then the expreaalon8 are evaluated left to right to 

obtain the argument objects. The handler la then clllld wllh tt181e arguments as disall88d In Section 

8.3. The following expressions are exaff1)188 of handler calla: 
h(x) 
lnlo _guard.who_ Is_ user(")ohn•, ·doe; 
dow Jones.lnfo("XYZ Corporatlonj 

Any handler can h(E 1, ••• E,,) roost satisfy the foflowlng constraints when used as an expression. The 

type of h roost be of the form: 

handl8ltype (T1, .•. Tn) retuma (R) algmla ( ... ) 

and the type of each expression q m.,st be lncu:led in the corresponding type 7j. The type of the entire 

cal expression Is given by R. 

As explained in Section 8.3, the execution of a handler cal at811s by creating a subactlon. Therefore 

an attempt to can a handler from a Pft)C888 that Is not running an actton la a pn:,gramming error and wilt 

cause the calling guan:fian to crash. This craah occurs a1ter al of the ~ expressions have been 

evaluated. 
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9.11. Creator Calls 
Creator calls have the form: 

primary ( [ expression, ... ) ) [ 0 primary ) 

The first primary Is evalualed to obtain a cnJator oblecl, the argument expressions are evaluated left to 

right to obtain the argument objeets, and then the pr/mllty follrMlng the at-lign (@), I p1988nt, Is 

evaluated to obtakl a node object. If 1he prlm/lly folowtna ttlt ...,. ii omilted, then node$here() Is 

used. The guardian 18 then created at that node, and the ere_,. called, as dllCUl8ed in Section 8.4. The 

foffowtng are exaff1)1es of crealOr cals: 

mailer$creale() 0 n 
spooler{devtype)Screate() 

A creator call c(E 1, ••• ,E,JOn m.ist satisfy the foHowlng conatraints when used as an expression. The 

type Of C must be of the fonn: 

creatonype (T1, ... ,T.,) l'tllUl1IS (R) llgnlla ( ... ) 

where each 7j includes the type of the corresponding expreuk>n fj. N must be of type node. The type 
of the entire cal expression Is given by R. 

As with handler calls, an atte"1)t to call a creator from a process that Is not ruming an action will cause 

the calHng guardian to crash after al~ exp,8lliona have been evaluated. 

9.12. Selection Operations 
Selection operations pnwtde ICCNI to the lndMdual Nt'l'l8fU or con.,onenta of a c:olection. Simple 

notations are provided for callng the ffllch operatlona of .,,.,... --. and the f1111operationl of recotd

ll<e types. In addition, these "syntactic suga,tngs• for Nlectton opendionl may be ueed for user-defined 

types with the appropriate pR)pel'tles. 

9.12.1. Element Selection 
An element Nlaction expression has the form: 

primary ( expreaalon J 
This form la jult ~ augar for a cal of a fflleh ope,atton, and 18 computationally equiYalent to: 

T$fetch(prlmary, expreuk)n) 

where T ii the type of the primary. T nut p,ovlde a proceduN operation named flltch, which takes two 

arguments whose types include the types of primary and .,,,._.,,,, and which returns a single result. 

9.12.2. Component Selection 
The co"1)0n8nt selection expression has the form: 

primary • name 

This form Is just syntactic sugar tor a cau of a get_ nams operation, and is computationally equivalent to: 

T$get_ name(prlmary) 

where T is the type of primary. T rl'IJst provide a proceduN operation named {/(It_ name, that takes one 
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argument and returns a single result. Of course, the type of the procedure's argument must tnckJde the 

type of the primary. 

9.13. Constructors 
Constructors are expressions that enable users to create and lnlUalize sequences, arrays, atomic 

arrays, structures, records, and atomic records. There are no constructors tor user-defined types. 

9.13.1. Sequence Constructors 
A sequence constNc:tor has the fonn: 

type - spec $ [ [ expression I ■H ] ) 

The type_spec must name a sequence type: -.,.nce(7). Thia Is the type of the oonatrucled sequence. 
The expressions are evaluated to obtain the 818ments of the sequence. They correspond (left to right) to 
the indexes 1, 2, 3, etc. For a sequence of type -.,.nce(7], the type of each element expreulon In the 

constructor rrust be Included In T. 

A sequence constructor la 00ff1)Utationally equivalent to a ~ flllW operation, followed by a 

number of sequence addh operations. 

9.13.2. Array and Atomic Array Constructors 
An array or atomic array constructor has the form: 

type_ spec $ ( [ expression : ) [ expression , ... ] J 
The type_spec must name an array or atomic array type: array(7) or atomlc_array(7}. This is the type of 

the constructed array. The optional expression precedlrV the colon(:) nwt evaluate to an Integer, and 

becomes the low bound of the c:onatructed array or atomic anay. H thil expression Is omitted, the low 

bound Is 1. The optional list of expressions Is evaluated to obtain the elements of the array. These 

expressions correspond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an 

array or atomic array of type array(7) or atomlc_array(7), the type of each element expression In the 

constructor rrust be included In T. A constructor of the form ana,[7JIU has a low bound of 1 and no 

elements. 

An array constructor is computationally equivalent to a C781Jte operation, followed by a nunmer of addh 

operations. 

9.13.3. Structure, Record, and Atomic Record Constructors 
A structure, record, or atomic record constructor has the form: 

type_spec $ { fleld, ... } 

where 

field::: name, ... : expression 
Whenever a fleld has more than one name, it is equivalent to a sequence of fields, one for each name. 

Thus, if R • ~ a: Int, b: Int, c: Int J, then the following two constructors are equlYalent: 
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R${a, b: p(), c: 9} 
R${a: p(), b: p(), c: 9} 
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In the following we discual only record conatrucl0t8; structure and atomic record oonstructors are 

similar. In a record constructor, the type apeclflcallon nut rwne a record type: ~S1:T1, ... , Sn:T,J. 

This is the type of the con&IIUCted record. The 00ff1JOl18l'II 1WR11 In bt field lilt nut be exactly the 

names S1, ••• , s,,, although these names may appear In any Ofdar. The expressions are evaklated left to 

right, and there is one evaluation per componenl name evan I llvetal co,,.,onent names are grouped 

with the same expression. The type of the expression for ~ S; rrust be lnckJded In r,. The 

results of these evaJuatlons form the components of a newly construdad record. This record is the value 

of the entire constructor expression. 

9.14. Prefix and Infix Operators 
Argus allows prefix and Infix notation to be used as a shorthand for the operationa listed In Table 9-1. 

The table shows the shorthand fonn and the ~ equivalenl expanded fonn for each 

operation. For each operation, the type r Is the type of the filst operand. 

Table 9-1: Prefix and Infix Operators: shottNnd8 and expansions 

Shorthand form 

expr 1 .. expr 2 
expr 1 11 expr 2 
expr 1 / expr 2 
expr 1 • expr 2 
expr 1 II expr 2 
expr t + expr 2 
expr 1 - expr 2 
expr 1 < expr 2 
expr t <• expr 2 
expr 1 • axpr 2 
expr, >• expr2 
expr 1 > expr 2 
expr1 ""< expr2 
expr1 ~<• expr2 
expr1 .... expr2 
expr 1 "">- expr 2 
expr t ""> expr 2 
expr 1 & expr 2 
expr1 I expr2 

-expr 
... expr 

Expansion 

TSpower(expr 1 • expr 2> 
T$mod{expr 1• expr 2> 
TSdlY(expr1, axpr2) 
TSnu(expr1, expr2) 
TSooncal(expr ,, expr2) 
T$add(expr,. uprz> 
T$1ub(expr 1• ••a> 
T$11(expr t• expra) 
T$1e(expr 1 • 8XP't> 
~-· 1• exprf) 
TSge(up,1, uprz) 
T'Sgl(expr,, upr2) 
... (expr1 < exprz) 
... ( expr 1 <• expr 2> 
... (expr1 • expr2) 
... (expr 1 >- expr z) 
... (expr 1 > aprz) 
T$and(expr,, ••a> 
TSor{ex,r .... z> 
T$mnul(excw) 
TSnot(e., 

Operator notation is uSed most heavily for the bullt-in types, but may be used for user-defined types as 

well. When these operations are provided for user-defined types, they Should be free of side-effects, and 
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they should mean roughly the same thing as they do for the built-in types. For ex8ff1)le, the ex>"1)8rison 

operations should only be used for types that have a natural partial or total order. Usually, the 

comparison operations (It, le, equal, ge, gr, wlN be of type 

proctype (T, T) returns (bool) 

the other binary operations (e.g., add, sub) wlli be of type 

proctype (T, T) retuma (T) algnala ( ... ) 

and the unary operations will be of type 

proctype (T) NIUffll (T) 81gnal8 ( ... ) 

9.15. Cand and Cor 
Two additional binary operators are provided. These are the condltlonal and operator, cand, and the 

conditional oroperalor, cor. The resun of evak.lating: 

expression1 cand expresslon2 
is the boolean and of expresslon1 and express~. However, If e,cpnt1Sion1 Is fal•. expre~ Is 

never evaluated. The NSUI of evaluating: 

expression1 core~ 

is the boolean or of expression1 and ~. but ex~ Is not evatuated unless expression1 is 

fal•. For both cand and cor, expr9ssion1 and •~ f1'Ult have type bool. 

Because of the conditional expression evaluation involved, uees of cand and cor are not eqwvalent to 

any procedure call. 

9.16. Precedence 
When an expression is not fully parenthesized, the proper l'INling of subexpreuions might be 

ambiguous. The folowtng pracedence rulN are used to reaolve 11.tCh ambiguity. The prececlence of 

each Infix operator Is given in the table below. Higher pracedence operations are performed first. Prefix 

operators always have precedence over Infix operators. 

Precedence 

5 

4 

3 

2 

1 

0 

Table 9-2: Precedence for Infix Operalors 

Operators 

•• 

• I II 

+ - II 

& cand 

cor 
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The order of evaluation for operators of the same precedence is left to right, except for **, which is right 

to left. 

9.17. Up and Down 
There are no implicit type conversions in Argus. Two forms of expression exist for explicit conversions. 

These are: 

up ( expression ) 
doWn ( expression ) 

Up and down may be used only within the body of a duster operation (see Section 12.3). Up changes 

the type of the expression from the representation type of the clutter to the abstract type. Down converts 

the type of the expression from the abstract type to the represet1atk>n type. 
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10.2. Update Statements 
Two special statements are provided tor updating components of record and array-ll<e objects. In 

addition they may be used with user-defined types with the appropriate properties. These statements 

resemble assignments syntactically, but are actually can statements. 

10.2.1. Element Update 
The element update statement has the fonn: 

primary ( expression1 ] :- expression2 

This form is merely syntactic sugar for a can of a store operation; It Is equiYalent to the caU statement: 

T$store(prlmary I expression1 I expressio"2) 
where Tis the type of the primary. T rnust provide a procedure named store that takes three arguments 

whose types include those of primary, expresslon1, and Bxpresslon2- respectively. 

10.2.2. Component Update 
The coq,onent update statement has the form: 

primary • name :• expression 
This form Is syntactic sugar for a call of a seL operation whose name Is tormed by attaching set_ to the 

name given. For exaq,18, If the name Is f, then the atatement aboYe Is equivalent to the cal statement: 

T$set_f(primary, expression) 

where T is the type of the primary. T must provide a procedure operation named S8t_f, where f is the 

name given in the component update statement. This procedure must take two argumeru whose types 

include the types of primary and expression, respectively. 

10.3. Block Statement 
The block statement permits a sequence of statements to be grouped together into a single statement. 

Its fonn Is: 

begin body end 

Since the syntax already permits bodies inside control statements, the main use of the block statement is 

to group statements together for use with the except statement (see Section 11 ). 

10.4. Fork Statement 
A fork statement creates an autonomous process. The fork statement has the fonn: 

fork primary ( [ expression, ... ] ) 

where the primary Is a procedure object whose type has no results or signals (see Section 12.1). The 

type of each actual exprnsion must be Included in the type of the corresponding formal. 

Execution of the fork statement starts by evaluating the primary and actual argument expressions from 

left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the 

fork statement. H no exceptions are raised, then a new process is created and execution resumes after 
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the fork statement in the old process. The new process starta by calting the given procedure with the 

argument objects. This new process terminates I and when the Pft)08dure calf does. However, if the 

guardian crashes the process goes Nay (lb any other process). 

Note that the new process does not run In an action, although the procedunt called can start a 

topactlon if desired. There Is no mechanism for waiting for the termination of the new process. The 

procedure called In a fork atatement cannot retum any N8Uh or 8ignll any exceptions. 

10.5. Enter Statement 
Sequential actionl 819 cretHd by means of the - Slatemant, which has two forms: 

enter topaCtlOn bOdy end 

and 

enter action bOdy end 

The topactlon quaJifler cauw the body to execute as a new top.level action. The action quallfter 

causes the body to execute u a IUbacliOn of the cunent IICllon; an •"'1l to uecule an emer action 
statement in a process that la not executing an action la a prognlffllllif'I enor and ca,aes the guardian to 

crash. When the bOdy tarminatea, It does so ellher by commltllng or aborting. Normal completion of the 

body results in the action comnltdng. Statements that tnlnlfet c:onlNI out of the enter atatment (exit, 

leave, break, continue, NIUm, 8"1111, and Nllgl'IIII) normally C01mll Ill action unle11 are prefixed 
wllh llbOrt (e.g., llbOlt ult). Two-phue comnll of a tapadloll may faB, in which case the enter 
topaCtlOn statement raises an unavailable exception. 

10.6. Coenter Statement 
Concurrent actions and proceun are created by means of the coenter ataternent: 

coenter coann { coarm } end 

where 

ooarm : := armtag [ lorNcll decl , ... In can ] 
body 

armag ::: action 

I topactlOn 

I procesa 

Execution of the coenlel' starts by creating al of the coarm procNW, sequentially, In teXlual order. A 

toreach clause indicates that rraJltipte ilstancel of the ooarm wil be created. The caH In a IOreach 

clause must be an lleralor call. At each yield of the tleralor, a new ooarm process la created and the 
obieCtS yielded are assigned to newly dlcfared vat1ables In 1h11 pn,oaa. (This lmpllcl Ullgnment mJst 

be legal, see Section 6.1.) Each coarrn pn)C8S8 has separate, local inatancea of the variables declared in 

the fOnNICh clause. 
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The process executing the coenter is suspended untlf after the eoenter is finished. Once all coarm 

processes are created, they are started siltllltaneously as COl'1CUIT8ft ltiings. Each coarm instance runs 
in a separate process, and each coarm with an armtao of topactlOn or IICtlon executes within a new 
top-level action or subadlon, respectively. An attempt to execute a coenler with a PlaCNI coarm when 

in an action, or to execute a coenaer with an action coarm when not in an action is an effOr and will 

cause the guardian to crash (see Table 10-1). 

Table 10-1: Legallly of coenler statemenla. 

process executing the coenlel' ii: 
armtag 

action 
topactlon 
process 

not In an action running an action 

not legal 
legal 
legal 

A sirt1)1e example making use of for8llch Is: 
coenter action foruch I: Int In lnt$from_to (1, 5) 

p (i) 
end 

legal 
legal 
not legal 

which creates five processes, each with a local variable/, having the value 1 in the first process, 2 in the 

second process, and so on. Each process runs in a newly created IUbaction. This statement is legal 

only if the process exeaJting It is running an action. 

A cx,arm may tenninate without tenninating the entire coenter (and d>ling coarms) either by normal 

oompletion of Its body, or by exeaJtlng a leave statement (see Seclion 10.7). The commit of a coarm 

declared as a topaction may terminate in an unavallatH exception If two-phase commit falls. Such an 
exception can only be handled outside the coenler st~. and thus wll torce lennination of the entJre 

coenter ( as explained below). 

A coarm may also terminate by transferring control outside the coenter statement. When such a 

transfer of contR>I occurs, the 1oliowing steps take place. 
1. Any containing statementa are tenninaled cllYlaibly, to the outennost level of the cx,arm, at 

which point the coarm becomes the controlllng coarm. 

2. Once there Is a controlling coarm, every other active coann will be terminated (and abort if 
declared as an action) as soon as It leaves all..._ statements; the controllfng coarm is 
suspended until al other coarms terminate. 

3. The controlling coarm then commits or aborts I declared • an action; if declaNd n a 
topaction and the two-phase commit falls, an unav.,,_,. excepdon ii raised by the coenter 
statement. 

4. AnaHy, the entire coenter terminates, and control flow cx,ntinues outside the coenter 
statement. 

Divisible termination implies, for instance, that a nested topaction may commit while its parent action 

aborts. 
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A sl"1)1e axa111>le of earty tennination is reading trom a replicated database. where any copy can 

supply the necessary Information: 

coenter action foreach db: database In an replicas ( ... ) 
return( database$read (db)) -
end 

When one of these coarms 00111>1etes first, It tries to commit ltlel and abort the others. The aborts take 

place Immediately (since there are no ..._ statements); I Is not ---••'Y for the handler cans to finish. 

It Is possible that some descendants of an aborted coarm may be running at remote sites when the coarm 

aborts; the Argus system 81'11Ures that such orphanl will be aborted before they can make their presence 

known or detect that they are In fact orphanl (IH Section 2.5). 

10.7. Leave Statement 
The leave statement has the form: 

[abon) leave 

Executing a leave statement tenninates the Innermost ...., llllement or coentw coarm in which it 

appears. If the process terminated Is an action, then ii commll8 unle• the lbort quallffer Is present, in 
which case the action aborts. The abort qualifier can only be used textually wtthin an entw statement or 

within an action or topaCtlon coarm of a coenter statement. 

Note that unlb the other conlrol flow statements, leave does not affect concurrent sl>lings In a 

coenter (see Section 10.6). 

10.8. Retum Statement 
The form of the ral\m statement Is: 

[ abort ) return [ ( expression , ... ) ] 

The 1'81Um atatement termlnlltea execution of the contaJnlng routine. If the l'8IUm statement occurs In an 

iterator no l'NUlta can be l'9tul'Md. If the l'IIIUffl ....,,...,. ii 1ft a pn:aclunt, hander, or cnator the type 

of each expression must be ~ In the correeponcllng reun type of the routine. The expressions (if 

any) are evaluated from left to right, and the objects obtained become lie resuls of the rouMne. 

H no abort qualifier is present, then aJI containing acuo,,. (I any) terminated by thil stalement are 

committed. If the abort qualifier Is present, then all tenninated aaiGnl are aborted. Note ttlll unlike the 

leave statement, return wil abort concurrent sl>llngs If exea.ited wllhln a coarm of a coenter statement 

(see Section 10.6). The abort quallfler can onty be used textually wllNn an enter statement, an action or 

topactlon ooarm of a coenter statement, or the body of a handler or creator. 

Within a handler or creator, the resul objects are encoded just before the activation action terminates, 

but after all control flow and nested action termination. If encoding Of any result obied tftlrNNdes in a 

failure exception, then the activation action aborts and the handler or creator terminates with the same 

exception. 
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10.9. Yield Statement 
The form of a yield statement is: 

yield [ ( expression , ... ) ] 

Statements 

The ylelc:t statement may occur only In the body of an Iterator. The effect of a ylelcl statement is to 
suspend execution of the lerator invocation, and return control to the callng for ataNmant or foreach 

clause. The VUJel oblained by evaluating the npNNCM (left to rtght) .. puNCI back to the caler. 

The type of each expression nut be included in the comtapondlng yteld 1)1)8 of the Iterator. Upon 

resumption, execution of the iterator continues at the statement fallowing the yleld statement. 

A yield statement cannot appear textualy inside an enter, coenter, or..._ statement. 

10.1 o. Conditional Statement 
The form of the conditional stalement Is: 

If expression then body 

{ el88lf expre•lon then body } 
(e1Nbody) 
end 

The ""P'flSS/OnS must be of type bool. They are evaluated aucceuivefy until one is found to be true. 
The body corresponding to the firat true exprwaton ia executed. and tt'8 exec:utlon of 118 N atatement 

then terminates. ff there is an.._ clause and I none of the -,:,,1•'0.tll la tnle, then the body in the 

8188 clause Is executed. 

10.11. While Statement 
The whlle statement has the form: 

while expression do body end 

Its effect is to repeatedly execute the body as long as the expression remains true. The express/On m.ist 

be of type bool. If the vatua of the expresalon Is true, the bady ia executed, and then the erCira while 
statement is executed again. When the expression evaluates to falae, exaanfon of the wlllle statement 

terminates. 

10.12. For Statement 
An lerator (see Section 12.2) can be called by a far statement. The iterator produces a sequence of 

itlltnS (where an Item is a group of zero or more ot)Jectl) one lem al a time; the body of the for atatement 
is executed for each Item In the sequence. 

The tor statement has the form: 

for [ c1ec1 .... ] In can do body end 

or 

for [ idn .... ] In can do body end 
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The caH must be an iterator can. The second form (with an kJn list) uses distinct, previously declared 

variables to serve as the loop variables, while the first form (with a dflcl list) tonn introdl,lces new 
variables, local to the tor statement, for this purpose. In either case, the type of each variable must 

include the corresponding yield type of the called Iterator (see Section 12.2) and the nurmer of variables 

must also match the yield type. 

Execution of the tor statement begins by calling the Iterator, which efther yields an Item or terminates. 

If It yields an Item (by executing a yleld statement), Its execuUon ii tefl1)orartly suspended, the objects in 

the item are assigned to the loop variables, and the body of the tor ltalement la executed. The next 

cycle of the loop is begun by resuming execution of thl lleralDf after the yield ataaement which 

suspended It. Whenever the iterator terminates, the entn tor statement terminates. 

10.13. Break and Continue Statements 
The break statement has the form: 

[ abort ) bnNlk 
Its effect is to terminate execution of the smallest for or while loop statement in which It appears. 

Execution contlrues with the statement following that loop. 

The continue statement has the form: 

[ aboft ) continue 

Its effect Is to start the next cycle (If any) of the smallest tor or while loop statement in whiCh • appears. 

Terminating a cycle of a loop may also terminate one or more coruintng actions. If no abort qualfier 

is present, then au thase terminated actions (If any) .,. commlled. If the abort qualifier Is preNnt, then 

all of the terminated actiOns are aborted. Unll<e INve, bNlk and continue wilt abort concumtnt sl>llng 

actions when control flow leaves a containing coenter (see Section 10.6). 

The abon qualifier can only be used textually within an ....,. statement or an action or topactlon 

ooarm of a coenter statement. 

10.14. Tagcase Statement 
The tagcue statement can be used to decompose oneof and vartant objects; IIIOllllc_ variant objects 

can be decomposed with the tagtest or tagwall statements. The ~Ion is indMatie for variant 

objects; thus, use of the tagcue statement for variants is not equivalent to using a conditional statement 

in combination with Is_ and valw _ operations (see Section 11.15). 

The form of the tagcau statement is: 

tagcaae expression 

tag_arm { tag_arm } 
[ others : body ] 

end 

where 
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tag_arm : :: tag name .... ( ( ldn: type_spec ) ) : body 

The sxpn,sslon must evaluate to a OMOI or vartanl object. The tag of this object Is then matched 

against the names on the tag_arms. When a match Is found, if a declaration (kin: type_sp,q exists, the 

value component of the object 18 assigned to the new local variable ldn. The matching body Is then 

executed; kin is defined only in that body. If no match Is found, the body In the Olhlre arm Is executed. 

In a syntactically COff'ect tagcaee statement, the following three conatrai'lts are satisfied. 
1. The type of the exprtlSllion mJSt be some OMOf or vartant type, T. 

2. The tags named in the tag_anns ITIJst be a subset of the tags of T, and no tag may occur 
more than once. 

3. If an tags of Tare present, there is no othenl ann; otherwiae an others arm must be 
present. 

On any tag_arm containing a declaration (ldn: typs_spsq, typs_,pec must include the type(s) of T 

corresponding to the tag or tags named in that tag_ ann. 

10.15. Tagtest and Tagwait Statements 
The tagt88I and tagwall statements are provided for~ alOlnlc_ variant objeda, permitting 

the selection of a body baaed on the tag of the object to be made lndMsl>ly wlh the testing or acc:psttlon 

of specHled locks. 

10.15.1. Tagtest Statement 
The form of the tagtNt statement Is: 

tagtest expression 

where 

atag_ arm { atag_ arm } 
[ others : body ] 

end 

atag_arm ::: tag_klnd name, ... [ ( ldn: type_spec) J : body 

tag_ kind : :: tag 

I wtaa 
The expression must evaluate to an IIIOmlc_varlant obleet- If a read lock could be obtained on the 

atomic_ variant object by the current action, then the tag of the object is matched against the names on 
the ataQ_a,ms; otherwile the ot.,.. arm, If presenl, Is exeooted. If a ffllltdllnQ name ii found, then the 

tag_ kind Is oonsldered. 
• If the tag_kindis tag, a read lock Is obtained on the object and the match Is complete. 

• If the tag_klnd Is wtag and the current action can obtain a wrle lock on the obied, then a 
wrle lock Is obtained and the match Is complete. 

When a colll)lete match is found, If a declaration (ttn: typs_speq exists, the value C0"1)0nent of the 

object is assigned to the new local variable kin. The matching body Is then ex8Qlted; /dn is defined only 

in that body. The entire matching process, inckJdlng testing and a<:quldion of locks, Is indivl&l>le. 
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If a complete match is not found, or the object was not readable by the action, then the othera arm (if 

any) is exeQJted; If there is no otherS arm, the lagl8lt statement terminates. If no complete match is 

found, then no locks are acqlHred. 

The tagtNt statement will only obtain a lock if it Is possible to do so without "waiting•. For example, 

suppose that the internal state of the atomic_ vartant lndlcllM that soma previous action acquired a 

conflicting lock. This action may have since aborted, or may have commlted up to an ancestor of the 

action executing the taglNt, but determining such facts may require system-level communiCatlon to other 

guardians. In this case the taQte11 statement may give rnilleadlng information, because It may not 

Indicate a match. Apparent anomalies In testing locks may oc:cur even I the action exacuUng the tagtest 

"knows· that the lock can be acquired, so that the use of tagtell to avoid deadlocks or long delays may 

result in excessive aborts. 

10.15.2. Tagwalt Statement 
The form of the tagwall statement is: 

tagwall expression 
atag_ann { atag_arm} 
and 

Execution of the tagwatt statement proceeds as for the tagl9llt statement, but if no complete match Is 

found, or If the object ii not readable by the ci,rrent action, then the entire matching pnx:111 is repeated 

(after a system-controlled delay), untl a complete match II found. Allhough there ii no ...,. arm In a 

tagwalt statement, all tag names do not have to be listed. 

10.15.3. Common Constraints 
Tagtat and tagwall statements may be exeQJted only wlhln an action. An atteff1)t to exeade a 

tagtHt or taQWlllt atat8f1181W In a process that is not executing an action is an error and will cause the 

guardian to crash after evaluating the exprHlllon. 

In a syntactically correct tagtNt or tagWIIII statement, the following ttvee constraints are satisfied. 
1. The type of the express/On m.,st be some atomic_ vartanl type, T. 

2. The tags named In the atag_arms must be a subset of the tags of T, and no tag may occur 
more than once. 

3. Finally, on any atag_srm containing a declaration (ldn: tn,e_spec), typs_llPIIC must lndude 
the type(s) specified as corresponding In Tto the tag or tags named In the atag_arm. 

A si~e example of a tagteat statement is garbage collecting the elements of an array that are In the 

dequeuBd state: 
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10.18. Terminate Statement 
The tannlnale statement may occur only within a guanlan dlftnlion (see Sect 13). The form of a 

terminate statement Is: 
terminate 

When executed within an action, 118 &fleet ii IO cauee ._ evenlUll dllttucllon of the guanlan after the 

enclosing action conwnlla to the top. If a pn:J08II .IIH!ptl lo ••-- ........_ while not Nming an 
action, a topacllon ii created to execute the t1nn111• and ••-.t1•"1 cornml. 

Let A be the action that la executing the ttrmlnlll. The lltlCt of Iii 8'at8mlnl II lie tolowtng: 
1.AcdonAlftlllwatluntltlleldlot1McnllldlltJU•IMII 111nldl1dr1l .. ll>A. In 

the caee of. pemtll ................... , ... ti Jllldlt .......... be no 
wal, but tor a ,.;11"11; Cllllllal .. IIIA ... 1111r be•--· 

2. If ~ pn,c:111• n 11111.pllng to exealle -•• 1111,rnaru, at moat one at at 
time may proceed to .. next 118p. 

3. If A comml8 ID the lap, ht.,.... wil be dlMJld •-- _, llplction Clfflfflit. 
If some ancNIOr of A---....._, .., •--.... u1•u1111t. n. .,.111n 11 
allo unahctad GM1110 .. llffll ..._.. A •Ulilll la 1• • and A---• to the 
top. 

In older to avoid Nrializalion p,dalaml, CIMllon or di 111u11on of a guMlan must be aynch,onized 

with uae of that QUMtlan WI IIIDmlc obiada ll.ldl M ltW o•III c-e 8NIIDn 3.4). 
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11. Exception Handling and Exits 
A routine is designed to perform a certain task. However, in some cases that task may be impossible 

to perform. In such a case, Instead of retumlng normally (which would ln1)ly suocessful performance of 

the intended task), the routine should notify Its caller by signalllng an exception, consisting of a descriptive 

name and zero or more resul objects. 

The exception handling mechanism consists of two parts: signalling exceptions and handling 

exceptions. Signalling is the way a routine notifies its caller of an exceptlonaf condition; handling Is the 

way the caller responds to such notification. A signaled exception always goes to the lnwnediate caller, 

and the exceptJon ITIJ8t be handled In that caller. When a souttne signals an exception, the current 

activation of that routine terminates and the comtaponding cal (In ttle Gller') ii said to ralH the exception. 

When a call r.._. an exception, comol lmmedlately tranafefs to the ctoseat appllcabte exception 

handler. Exceplion handler& are attached to statements; when execution of the exception handler 

completes, control passes to the statement fotlowlng ht one to which the excepllon hancler Is attached. 

For brevity, exception handlers will be called "handlers• In this chapter; 111188 should not be confused with 

the remote cal handlers of gu8l'dians (see Section 13). 

11.1. Signal Statement 
An exception Is signaled with a llgnal statement, which has the fonn: 

[ abol1 ] atonal name [ ( expression , ... ) ] 

A 81gnal statement may appear anywhere In the body of a rouline. The execution of a 8lgnal atatement 
begins with evaluation of the expreuions (If any), fn,m left to right. to pt9dl,ce a list of (ll(()ffJlkJlt lWUlts. 

The activation of the routine ii then termtnated. Exeulon conunues 1n the caller u Glelataed 1n Section 

11.2 below. 

The exception name must be one of the exception names listed In the routine heading. If the 

corresponding exception specfflcation In the heading has the toffll: 

name(T1, ... , Tn) 

then there must be exactly n expressions in the algnal statement, and the type of the Ith expression must 

be Included In 7j. 

If no abon qualifier Is present, then all containing actions (I any) terminated by this statement are 
committed. If the abort quaHHer is present, then an terminated actioftl are aborted. Unlike the leave 
statement, algnal wil terminate (abort) concurrent IMrlgs If UNUtld wltliFl a e11..- statement (see 

Section 10.6). The abort qualifier can only be uaed textuallr wlhln an .,..., statement, an action or 
topactlon coarm of a coenter statement, or the body of a hancler or eteater. 

Within a handler or creator, the result objects are enooded juet before the actMation action terminates, 

but after termination of al control flow and neated adiona. If encoding of any mull object terminates in a 

failure exception, then the activation action aborts and the harder or aeator terminates with the failure 

exception. 
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11.2. Except Statement 
When a routine activation terminates by slgnalling an exception, the cal1ed routine is said t9 .raiss that 

exception. By attaching exception handlers to stat.,,.._, the caler can apeclfy the action to be taken 

when an exception is raised by a cal wlhin a statement or by the atatefflllnt bel. 

A statBrnentwlth handlers attached Is called an except statement, and has the tonn: 

statement except { when_handler} 
[ others_ handler ] 
end 

where 

when_handler ::: when name, ... [ ( decl, ... ) ] : body 

I when name, ... (*):body 

others_handler ::: athera [ ( lcSn: string)]: body 

Let S be the stakimfmt to which the handlers are attached, and let X be the entire except statement. 

Each when _handler specifies one or more exception names and a body. The body Is executed if an 

exception with one of those names Is raised by a cal In S. Each of the names listed in the 

when_handlers roost be distinct. The optional ollWs_handlflr is used to handle al exceptions not 

explicitly named In the when_ handlers. The statement Scan be MV form of ltal8ment, and can even be 

another except statement. As an example, consider the following...,. statement: 

m.send_maH(user, my_rnessage) 
except when no _such_user: ... % body 1 

when unavailable, failure (s: 8111ng): ... % body 2 
When Olh8ra (ename: etrtng): ... % body 3 
encl 

This statement handles exceptions arisilg from a remote call. If the call raises a no_such_lJS8f 

exception, then "body 1 • wlll be executed. If the call rai8e8 a fallunl or unavallable exception, then "body 

~ wiH be executed. Any other exception will be handled by "body 3.• 

If, during the exea.ttion of S, some call In S raises an exception E, control transfers to the texaually 

closest handler for E that Is attached to a statement containing the cal. When execution of the handler 

completes, control passes to the statement followlng the one to which the handler Is attachad. TM I the 

ciosest handler Is attached to S, the statement following Xis executed next. If execution of S completes 

without raising an exception, the attached handlers are not executed. 

An exception raised lnlkte a handler Is treated the same • any other exceptk>n: contn>J passes to the 

closest handler for that exception. Note that an exception raised In some handler attached to S camot be 

handled by any handler attached to S; the exception can be handled wtlhln the handler, or • can be 

handled by some handler attached to a statement containing X For exaf11)1e, in the folowlng except 

statement: 
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times3 _plus 1 ( a) 
except when limits: 

a:-a+a 
when overflow: ... % body 2 
end 

71 

any overflow signal raised by the expression a + a will not be handled in "body 2, • because this overflow 

handler Is not in an except statement attached to the U8ignment llatement a :- a + a. 

We now consider the forms of exception handlers in more detail. The torm: 

when name , ... [ ( decl , ... ) ] : body 

Is used to handle exceptions with the given names when the eXC8fJtiOn results are of interest. The 

optional declared variables, which are local to the hancler, are aaigned the exception rnultl before the 

body Is executed. Every exception potenlialy handled by this form muat have the same runber of results 

as there are declared variables, and the types of the variablea must lnckJde the types of the results. The 

form: 

when name , ... ( • ) : body 

handles all exceptions with the given names, regardless of whether or not there are exception results; any 
actual results are discarded. Using this form, exceptions with differing num:>ers and types of results can 

be handled together. 

The form: 

others [ ( ldn : atrtna ) J : body 

Is optional, and must appear last in a handler Ust. This form handles any exception not handled by other 

handlers in the list. If a variable Is declared, It must be of type airing. The variable, which Is local to the 

handler, Is assigned a lower case string ~Ing the actual excepllon name; 8lfl/ resutls are 
discarded. 

Note that number and type of exception reBUlts are ignor.ct when matching exceptions to handlers; 

only the names of exceptions are used. Thus the folowing ii lllagal, in that lnt$dlvsignals zero_dlvide 

without any resuHs (see Section 11.4), but the closest handler has a declared variable: 
begin 

y: Int :-o 
x: Int:- 3/y 

except when zero_ divide (z: Int): return end 
end 

except when zero_divide: return end 

A call need not be surrounded by except statements that hancle all potential exceptions. In many 

cases the programmer can prove that a particular exception wtN not arise; tor •~. the call 
lnt$dw(x, 7) will never signal zero_divide. However, If some cal raises an exception for which there Is no 

handler, then the guardian crashes due to this error&. 

9-n,e implementation of lie Argus ahould log unhanded eXC8f)4ic:N in aome faahion, lo aid i..r debuggwig. During debugging, 
an unhandled ell08plion would be trapped by fl8 debugger befont the aash. 
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11.3. Resignal Statement 
A l'Nlgnal statement Is a syntactically abbreviated form of exception handffng: 

statement [ abOrt ) l'Nlgnal name , ... 

Each name listed must be distinct, and each must be one of the condllion names H8ted in the routine 

heading. The l'Hlgnal statamert acts like an ucept staemant COf1afning a handler for each condition 
named, where each harder si"1)ly signal8 that exception with ...., Ille ume l'flUls. Ttl.lS, I the 

resignal clause names an exception wlh a speclicalion In the IOUlkl8 tleadlng of the form: 

name(T1, ... , T,J 

then effectively there is a handler of the form: 

when name (x1: T1, ... , xn: T,J: (llbolt) algnal name(x1, ... , x.J 
which has an abort qualifier I and only I the ....,. ••ment did. M for an explloil handier of this 

form, every excepllon potenUally ~ by this impllcl handler must have the same fU'nber of results 
as declared In the exception specificatJon, and the types of 118 reatll fflU8t be lnck,cjed In the types listed 

in the exception specification. 

H no abort quallfler is present, then au coruinlng actions (If any) terminated by this statement are 

comnitted. H the abort qua1iHer is present, then all terminlted 8Gtion8 are aborted. UA11ke the INVe 
statement, ......... will abort concurrert sl>lngt I execulect wlNn a OCllllllr IIIIIIFMN (188 Section 

10.6). The abOrt qu•ler can only be UNd textualy wllHn an..., stallffllft, an ICllon or topllC1lon 

coarm of a coenter statement, or the body of a handler or creator. 

11.4. Exit Statement 
An ult statement has the form: 

[ abort ] •xii name [ ( expreasion , ... ) ] 

An Ult statement Is almllar to a llgftlll statement except that ...,. the ...,.. atatement slgnllls an 

exception to the calllng routine, the UII atatement ,_,.. ht exctpllon dlrecd,- In the current aouttne. 
Thus an ult cauw a tranlfer of contn>f wlhin a routine but doN not terminate ttl8 routine. An 

exception raised by an ult statement must be handled expllclly by a~ uctipl ltalemll1 wlh a 
handler of the form: 

when name, ... [(decl, ... )] :body 

As usual, the types of the expressions In the Ult statement must be included In the types of the vanabAes 

declared In the handler. The handler must be an explicit one, I.e., axis to the impllcll handlers of realgnal 

statements are Hlegal. 

If no abort qualifier Is present, then an containing actions (If any) terminated by the ul statement are 

committed. H the lbOrt qualtfier is present, then au t8fffln81ed acUons are aborted. ~• the leave 

statement, exit will abort concurrent slJHngs when contft>I flow leaves a OOdalning --- s&lllment 

(see Section 10.6). The abort qualifier can only be used textually wlhln an - llatement or an acllOn 

or topaetlon coarm of a coenter statement. 
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The uh statement and the algnal statement mesh nicely to fonn a uniform mechanism. The signal 

statement can be viewed s~y as terminalilag a routine activation; an ext is then performed at the point 

of invocation in the caller. (Because this exit is impliclt, It is not lllblect to 1he restrictions on exits listed 

above.) 

11.5. Exceptions and Actions 
A new actlon Is created by a handler cal, creator can, 8l'lllr statement, or actlOn or topaetlon ann ot a 

coenter statement. In addition, the recov• code of a guardian runs as an action. When COIWl'OI flows 

out of an action, that action ii commlted unles8 action la taken to prwent Is commiltlng. To abort an 
action, It is necessary to qually control flow statements IUCh as al, IJIONII, l'NIQMI, and....,. with the 

keyword abort (see Section 10). 

However, there Is an additional compllcation. Not only wil e,cplicit termination of actions by extt, 

signal, and l'Nlgnal statements commit actlonl, but 11110 lnplclt termination by flow of control out of an 

action body when an acepllon raised within that ~ la handled OUlllde the action's body. Thus, If an 

exception which la raised by a cal within an acdon II not to commit the action, then It II necessary to 

catch the exception within the action. Thia Is parttcufarly lff1X)l1ant When dealing with topactlons. A 

common desire is to catch al "unexpected" exceptions, but stll have the topaction abort. In this case, the 

catch-all exception handler RIJ8t be placed Inside the topaction. However, an unavallabltl handJer rrust 

stil be placed outside the topactlon, since the two-phase oommll may tal. 

An action or topactlon ooarm of a ~ statement wilt not abort Its oonc:urrent sibUngs when ii ends 

In either normal COJ11)1etlon of Its body or by a INve statement. However, I control flows othelwise out of 

the coenter statement from within one of the coarms, the entire coenter la termlnalad as delcrtbed In 

Section 10.6. Thus, a coenter statement should RIJ8t be used caretuUy to ensure the proper behavior in 

case of exceptions. There may be ~ where a aeparate exception handler wtl have to be 

used for each coarm to ensure the proper behavior, even when the exception handling Is Identical for 

eachcoarm. 

11.6. Failure Exceptions 
Argus responds to unhandled exceptions dlferentty than CLU. In CLU, an unhandled exception in 

some routine causes that routine to terminate wlh the failure exception. In Argus, however, an 
unhandled exception causes the guardian that Is running the routine 10 crash. Our motiYaic>n for this 

change is that an unhandled exception is typically a symptom of a programming enor that cannot be 

handled by the caHlng routine. Furthermore, crashing the guardian llmits the damage that the 

programming error can cause. 

Procedures and iterators in Argus no longer have an implicit failure exception associated wfth them. 

Instead, such a routine may 1st failure explicitly in Its signals clause and failure may have any number 

(and type) of exception results. Failure should be used to indicate an unexpected (and possibly 
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catastrophic) f ailura of a lower-level abltractJon, tor example, when there ta a lallure in a type parameter"s 

routines (for instance In slmllaror oopyoperallonl). Anottw --- ta WMn ltllf'e II an UfWtlflted lktl 
effect, such as a bounds exception In ..-a,fl)I....,. CIUNd by a ,..lion of 118 array -,;iument. 

Various operations of the built-In typea ligna lalu8 &.lld8f' IIICh cin::llmllancel. 

For handlers and creatora, fallurtl Is ul8d to indicate 1111 a ,.... OIi hll fallld; ttu the uoepUon 

failur,(lllrlng) la ~ In the type of.,.,.,.....,. ...... i:,r ( ... INllon 13.5). WNn a remole call 

termnates with the failure exception, this muns that not only haa tNa cal fallld, but that the call Is 

unlkely to succeed I 111f)Hted. 
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12. Modules 
Besides guaroian modules, Argus has procedure, Iterator, cluster, and equate modules. 

module::: {equate} guardian 

I { equate } procedure 
I { equate } 1tetator 
I { equate } c1uater 
I { equate } equates 

Guardians are disaJssed in Section 13, the rest are described below. 

12.1. Procedures 
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A procedure perfonns an action on zero or more arourmmts, and when It terminates it returns zero or 

more results. A procedure implements a procedural abstractiOlr. a mapping from a set of argument 

objects to a set of result objects, with possl:>le modification of aome of the argument objects. A procedure 

may terminate In one of a nurrt>er of condlllons; one of theae is the notma/ condition, while others are 

exceptional conditions. Differing nunt>ers and types of ntaults may be returned In the different conditions. 

The fonn of a procedure Is: 

idn • proc [ pa,ms ] args [ ntturns ] [ signals ] [ where ] 

routine - body 
and icln 

where 

args 
returns 
signals 

exception 
routine_ body 

::: ( [ decl, ... ] ) 

: :: naturna ( type _spec , ... ) 

: : = •onats ( exceptfon ' ... ) 
::: name ( ( type_spec , ... ) ) 
:::{ 8(JJate} 

{ own_var} 
{ statement } 

In this section we discuss non-parameterized procedures, In which the parms and where clauses are 

missing. Parameterized modules are dlscu8sed In Section 12.5. Own variables are discussed In Section 
12.7. 

The heading of a procedure describes the way In which the procedure COfMl.lnicates with its caller. 

The args clause apeclies the nunt>er, order, and types of a,gumeres required to call the procedure, while 

the returns clause specffles the number, order, and types of resuJts returned when the procedure 

tenntnates normally (by ex8Qlting a NIUm statement or reaching the end of its body). A miUing returns 

clause Indicates that no resuls are returned. 

The signals clause names the exceptional conditions In which the procedure can terminate, and 

specifies the number, order, and types of result objects returned In each condition. Alt names of 
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exceptions in the signals clause must be distinct. The idn folk>wing the end of the procedure rrust be the 

same as the kJn naming the procedure. 

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is 

derived from the procedure heading by removing the procedure name, rewl1ting the formal argument 

declarations with one icJn per dBcl, deleting the klnll of aH fonnat argumenls, and flnaly, replacing proc by 

proctype. 

The call of a procedure causes the Introduction of the formal variables, and the actual arguments are 

assigned to these variables. Then the procedure body Is executed. Exea.tdon terminates when a NIIUrn 

statement or a 8lglllll ~ is executed, or when the textual end of the body is reached. If a 

procedure that should return ntlUls reaches the textual end of the body, 1he guan:tlan crashes due to this 

error. Al. termination the result objects, if any, are passed back to the caller of the procedure. 

12.2. Iterators 
An Iterator COJl1)Utes a sequence of Items, one item at a time, where an item is a group of za,o or more 

objects. In the generation of such a sequence, the COfT1)Utation of each lem of the sequence is usuaHy 

controlled by information about what previou& llema have been praducec:I. Such Information and the way 
it controls the production of ltema is local to the Iterator. The user of the Iterator is not concerned wlh 

how the items are produced, but li"1)ly uses them (through a for ltalement) as they are produced. Thus 

the Iterator abstracla tn,rn the c:letala of how the p,oducdon of the llems ii COl'tlft)lled; for this reatOn, we 

consider an Iterator to Implement a conbOI abltractlon. llenllors .,. parti0ularty uaetul • operations of 

data abstractions that are collacllonB of objects (e.g., sets), aince they may p«>duce the objects in a 

coflec:llon without revealing how the colledlon Is rapresenled. 

An iterator has the form: 

idn • lier [ panns ] args [ yields ] ( signals ] [ where ] 

routine - body 
end ldn 

where 

yields::= yields ( type_spec' ... ) 

In this section we dilcuss non-parameterized Iterators, in which the ,-ms and _,.,.. claules are 

missing. Parameterized modules are dlecuued in Section 12.5. Own variables are dlacuaed In Section 

12.7. 

The form of an iterator Is similar to the form of a procedure. There are only two dlferences: 
1. An iterator hu a yields Clau8e In Ila heading In place of the,__ ... of a p,ocedufe. 

The ylfllds claule apecliN the rllJIMer, onler, and typae of .,.. )'111Nd each time the 
iterator produces the next Item In the sequence. If zem objNtl • )'hlldld, then the ~ 
clause is omitted. The kin following the end of the lerator rruat be the same as the lt1n 
naming the Iterator. 

2. Within the iterator body, the yleld statement Is used to present the caller with the next item 
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in the sequence. An Iterator terminates in the same manner as a procedure, but it may not 
return any results. 

n 

An Iterator is an object of some Iterator type. For a non-parameterized aerator, thiS type is derived from 

the Iterator heading by removing the Iterator name, rewrtting the formal a,gument declarations with one 
idn per dee/, ctetettng the /tins of al format a,guments,. and finally, ,wplacing .., by ltertype. 

An Iterator can be called only by a for statement or by a lorWII clause in a c:oenler statement. 

12.3. Clusters 
A cluster is used to implement a new data type, di8tinct fn,m any other built-in or user-defined data 

type. A data type (or data abstraction) conlilts of a NI of obfect8 and a Nt of prtmllve operallons. The 

primitive operatlonS provide the most bale ways of mMlpulaltng the oblldS; ultmatety every 

computation that can be performed on the objects rNllt be expretNd In tem1S of the primitive operations. 

Thus the primitive operations define the lowest level of ob8ervable object behavfor10• 

The form of a cluster is: 

kin • cluater [ parms ] 18 opidn , ... [ where ] 

cluster_ body 
end ldn 

where 

opidn : :: ldn 

I tran11111t 

cluster_body ::: {equate} rap• type_spec { 9CJJate} 
{ own_var} 
routine { routine } 

routine : :: procedure 

I iterator 
In this section we discuss non-parameterized clusters, in which the parms and whsrs clauses are 

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section 

12.7. 

The primitive operations are named by the list of opldns following the reserved word 18. All of the 

opidns In this list must be distinct. The idn following the end of the cmter rrust be the same as the kin 

naming the cluster. 

To define a new data type, It is necessary to choose a concrt118 reprtJS#HJtalion tor the objectS of the 

type. The special equate: 

1°Readera not familis will the concept of data abslraclion might 198d Uskov, B. and Gulag, J., AbllnlCtio,7 and Speciflclltion in 
Program DtNe#opmtlnt, MIT Presa, Cambridge, 1986. 
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rap - type - spec 
within the cluster body identifies the typs_spec as the concrete representation. Within the cluster, rep 

may be used as an abbreviation tor this type_ spec. 

The Identifier naming the ctuater II available for use In the cluster body. Use of this identifier wlhln the 

cluster body pennits the definition of recursive types. 

In addition to giving the representation of ot,fects, the cluster must tn,,lemant the primitive operations 

of the type. One exception to this, however, is the tranlffllt operation. The transmit operation Is not 

directly implemented by a cluster; Instead, the cluster ffll8t ~ two operations: """"'1#1 and 

decode (see Section 14 for details). The primliYe opendions may bl eilher procem,raJ or conllOI 

abstractions; they are lmplemerud by procadurel and tleralors, respecttvety. Any addllional routines 

implemented within the ckJ8ter are hidden: they are private to the duller and may not bl named directly 

by US8fS of the abstract type. All the routines rrust be named by dl8Unct ldendfiers; the scope of these 

identifiers is the entire cluster. 

Outside the cluster, the type's obieCtS may only be treated abatractly (I.e., manipulated by using the 

primitive operations). To Implement the operations, however, I la usually necessary to ~te the 

objects In terms of their concnae rept'8181'11a1i. It Is also convenilJt tomatimes 10 manipulate the 

objects abstractly. Therefore, inlidl the cluster I Is poaatie to w,w the type's Obi8Ctl either lbltractly or 

in terms of their representation. The syntax la daftned to specify unamblguou8fy, tor each vanable that 

refers to one of the type's objects, which view Is being taken. TM, Inside a clusler named T, a 

declaration: 

v:T 

indicates that the object referred to by v Is to be treated abstractly, while a d8claration: 
w:rap 

indicates that the object referred to by w Is to be treated concretefy. Two prtmltiYes, up and dawn, are 

available for converting betwNn ttlne two_. of view. The UN of u, pa,mla a ty,e NP objed to be 

viewed abstractly, while -- penntll -~ abltlac:t obied to be Yilwed DOflCNtet)'. For .... given 
the declarationa above, the lollowtng two ......,...,., ... legal: 

V :•up{W) 
w :- clOWn(v) 

Only IOUtinea lnaide a duster may use up and dOWn. Note that up and Clown are used merely to infGlm 

the compiler that the obfect Is going to be vtewed ab8tractty or~. ~-

A common place where the view of an obtect chanQN is at the ---. to one of the type's 

operations: the user, of course, views the object abltraclly, while lnli:le the operation, the object is 

viewed concretely. To facilitate thil usage, a epecial type apeclk:allon, _., Is provided. The UH of cvt 

Is restricted to the IIT(JS, returns, ylelds and ""1M/S clauael of routtnes Ni:le a cutler, and may be used 

at the top level only (e.g., arraY(cvt) is Illegal). When UNd lnaide the .,,. clauN, It means that the view 

of the argument object changes from abstract to concrete when I ii assigned to the tormal argument 

variable. When cvt is used in the returns, y/Blds, or .,,,,.. ctause, It means the view of the resull object 
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changes from concrete to abstrad as It Is returned (or yielded) to the caller. Thus cvt means abstract 

outside, concrete Inside: when constructing the type of a IOUtine, cvt Is equivalent to the abstract type, 

but when type-checking the body of a routine, cvt Is equivalent to the representation type. The type of 

each routine Is derived from its heading in the usual manner, excepl that each occurrence of cvt is 

replaced by the abstract type. The cvt form does not introduce any new ablllly over what Is provided by 

up and down. It Is merely a shorthand for a common case. 

Inside the cluster, it Is not necessary to use the compound form (type_spe4op_name) for naming 

locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines. 

12.4. Equate Modules 
An equate module provtdes a convenient way 10 define a a set of equates for later use by other 

modules. 

The form of an equate module Is: 

idn • equal• [ panns [ where J ) 
equate { equate } 

encl ldn 

The usual scope rules apply. The idn following the end of the equate module lft.l8t be the same as the 

idn naming the equate module. 

In this sealon we dtscuss non-parameterized 8(JJ8te modules. Parameterized modules are dilcussed 

in Section 12.5. 

An equate module defines a set of equates, that Is, It defines a set of named conataru. The set of 

equates Is alsO a conatant, afthough It Is not an obied- Thul the IWIII of an 8(Jlllle module oan be used 
in an equate, but an equate module cannot be wlQMd to a Yllrllbll. The equates ddMd by IA 9CfJ8l8 
module E may be referenced U8ing the same IYN8X • tor naming the operations of a duller. For 
example, an object or type named n In equate module E can be rwfetred to as E$n. If equate modules 

contain equates that give names 10 other equate modules, compound names can be used. For exafl1)1e: 
A(lnt)$8$C$name 

where A, B, and Care equate modules Is legal. 

As always, equates to type specifications do not define new types but merely abbreviations for types. 
For example, In the follOwing: 

my_ types - equat88 
ai • array(lnt] 
float- real 
end my_ types 

the types my_typss$al and array(lnt) are equivalent. 
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12.5. Parameterized Modules 
Procedures, iterators, clusters, guardians (see Section 13), and equate modules may al be 

parameterized. Parameterization permits a set of related abltraction8 to be defined by a single rnockM. 

In each module heading there Is an optional pamw clauae and an opUonll ...,. clause (see Appendix I). 

The presence of the psrms clause indicates that the module II pararnelellHd; the wtwe clause declares 

the types of any operation parameters that are expaded to accompany the tonnal type parameters. 

The form of the parms clause is: 

[parm, ... J 
where 

parm ::: idn, ... : type_spec 
lictn, ... :type 

Each parm declares some runber of 1orma1 parameters. Only the tolowtng types of parameters can be 

decfared In a parms clause: Int, twal, bool, char, atrtng, null, and type. The declaratiOn of operation 

parameters associated with type parameters is done In the where claa, • dilcllll8d bek>w. The actual 

values for parameters are recpred to be oonstanll that ctan be computed at comple·tlme. This 

requirement ensures that aH types are known at ~. and peffllll COff1)lete con1)fle-drne type. 

checking. 

tn a parameterized module, the acope rules permit the parameters to be UMd throughout the module. 

Type parameters can be uted freely • type speclflcationl, and al other parameters (lncklding the 

operations parameters specffled In the whsre clause) can be uted freely • pP19181ons. 

A parameterized module implements a set of refatad abltractlons. A program must lntiltanliJlte a 

parameterized module before I can be used; that Is, It rTlJ8t provide aclUat, constart values for the 

parameters (see Section 12.6). The result of an instantiation Is a procedure, llerator, type, guardan, or 

equate module that may be used just Ike a non-parameterized module of the same kind. Each distinct 

Ust of actual parameters produces a distinct procedure, iterator, type, gwm:llan, or equate module (see 

Section 12.6 for details). 

The meaning of a parameterized module is given by binding the actual parameters to the formal 

parameter names and deleting the parms clause and the wlWt9 clauae. That ii, in an an instantialion of a 
parameterized module, each formal parameter name denotes the corretpGnding actual parameter. The 

resuttlng module is a regular (non-parameterized) module. In the case of a ckiater eome of the operations 

may have additional parameters; further bindings take place when these operalione are Instantiated. 

In the case of a type parameter, one can atso declaf9 what operation parameters must aocompany the 

type by using a where clause. The whtlre clause also specifles the type of each recJJired operation 

parameter. The where clause constrains the parameterized moclJle as wel: the only operations of the 

type parameter that can be used are those listed in the whtwe clause. 
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The form of the wh8re clause Is: 

where : :: where restriction , ... 

restriction : :: kin haa aper _decl , ... 

I km 1n1ype_set 
oper_decl ::: name, ... : type_spec 

I tranamN 
type_set ::: { kin I km haa oper_decl, ... {~ate}} 

I ldn 
I reference $ name 
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There are two forms of restrictions. In both forms, the initial kin muat be a type parameter. The has 

form Nsts the set of required operation parameters directly, by means of opllf _ dfldll. The l)JHI _ sp« in 

each oper_ d«:I mJst be a proctype, ltertype, or cre•Drtype (He Appendx I). The In form requires that 

the actual type be a rnerrt>er of a type_SBI, a set of typea with the NqUlred operalionl. The two Identifiers 

in the type_set ITll8t match, and the notation ii read like set notation; for example, 

{t It hat: ... } 
means ihe set of aH types t such that t ha f ... ". The scope of the Identifier Is the type_ set. 

The In form Is useful because an abbreviation can be given for a type_ set via an equate. If I Is he_,,u, 

to introduce some abbreYtatlona in defining the typfl _NI, theae are given In the optlonaf ~ within 

the type_set. The ICOP8 of these equates Is the entire type_a.t. 

A routine in a parameterized ctuater may have a .,.,. dal,ae In Its heading, and can place further 

constraints on the cluster parameters. For exaff1)18, any type II permiul:lle for the a,ray element type, 

but the array slrnlar operation requires that the element type have a almllar operation. Thll means that 

array( 7) exists for any type T, but that lfflly( 7]$slmlar exists only when an adUal operation parameter is 

provided for T$sknllar (SN Section 12.6). Note that a routine need not include In h where clause any of 

the restrictions Included In the cluster where clause. 

12.6. Instantiations 
To instantiate a parameterized module, constants or type specifications are provided as actual 

parameters: 

actual_parm : :: constant 

I type_actual 

type_actual ::: type_spec [ With { opbindlng, ... } ] 

opbinding : := name , ... : primary 

If the parameter is a type, the module's where clause may require that some routines be passed as 

parameters. These routines can be passed lmplicilly by omitting the wlhclause; the routine selected as a 

default wHI be the operation of the type that has the same name as that used in the where clause. 
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Routines may also be passed expliclly by using the with clauae, overrlclng the default. In this case, the 

actual routine parameter need not have the same name as is requlnld In the where clause, and need not 

even be one of the type's primitive operations. 

The syntactic sugar that allows default routines to be aetecled lmpllclly WOfka as tollowa. H a generator 

requires an operation named op fft>m a type panlfflller, and I the QOffll~ type_llDIUIII, TS wllll { 

... }, has no explicit binding tor op, then Argue lltdl an opblndlttg of • • TSlop. (It wlU be an enor I 

TS$op Is not defined.) Thus one only has to provide an expllcll opblndlttg I the defa&JI II unsatisfactory. 

For exafl1)1e, suppose a procedure generator named sort has the follalWtng heading: 

sort • proc(t: type](a: array(tD whll'e t ._ gt: proctype(t,t) NIUrlll(bc,ol) 

and consider the three instantiations: 

sort[lnt Wldl {gt: lnt$gt} ] 
sort[lnt] 
sort[lnt with {It: lnl$lt} J 

The first two instantiations are equivalent; in the first the routine lnl$Qt Is passed explicitly, while in the 

second it is passed Implicitly as the default. In the third in8tanliat1on, however, Int$# is passed In place of 

the default. An three instantlatlOnB result In a routine of type: 

proctype (array(lntl) 

and so each could be called by passing It an array(lnt) • an 8f1LN118111. However a caR of the third 

instantiation wUI sort Its array argument In the oppolile order fflN!t'I a call of ellher the first or second 

instantiation. 

Within an Instantiation of a parameterized mocllte, an operation of a type parameter named &Sop 
denotes the actual R>Utlne parameter bound to op In the ln8tantlation of that mocllle. For example, 

suppose we make the cal: 

sort[lnt wllh {gt: lnlSlt}) (my_ints) 

where my_ lnts is an array of Integers. If, in the body of sort, there is a recuraive call: 

sort[t with {gt: 1$gl}] {a, i, j) 

then t denotes the type Int, and l$gt denotes the routine Int$#, so that the recursive sort happens In the 

correct oroer. 

A cklster generator may lncklde routines with WMre cl■aaes that place addlional requirements on the 

cluster's type parameters. A convnon example Is to require a a,py opendlon only within the cklster's 

copy if11)1ementation. 

set • clusler(t: type) la ... , copy 
..... t ... equal: proctype(t,t) 1'8tUmS(bool) 

rap • affllY(t) 
... 
copy • proc(s: cvt) retuma(cvt) ....,. t hM copy: proctype(t) NIWtle(t) 

nllum{NP$c0py(s)) 
end copy 

The Intent of these subordinate where clauses is to allow more operaUonl lo be defined I the actual type 

parameter has the addllonal required operationl, but not to make the llddllo.,al operattons an llblolute 
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requirement for obtaining an instance of the type generalor. For exaff1)1e, with the above definition of set, 
se4any) would be defined, but SB(any)Sa,py would not be defined because any does not have a copy 
operation. We shall call the routine parameters required by subol'dlnate whtlre clauses optional 

parameters. 

Like regular required parameters, optional parameters can be provtded when the ckJster aa a whole is 

instantiated and can be provided explicitly or by default. For -, ~ parameter op that is not 

provided explicitly by the typs_actual, TS with { ... }, we add an opblndlng of op to TS$op I T.9Sop exists; 

otherwise the opb/ndlng is not added. The resulting c"8ter COl'Cainl just those operations for which 

opblndlngs exist for an the required routine parameters. For ex.,., as mentioned above, set(anyJ 

would not have a cx,pyoper■Jon becauN anyScopy does not uilt and therefore the needed opblndlng Is 

not present. On the other hand, aet(lnl) does haw a copy operation bec•IN lnt$a>py does exist. 

FlnaHy, se(any with {copy. fool), where foo Is a procecln that takes an any as an argumert and returns 

an any as a result, would have a copy operation. 

For an Instantiation to be legal It nut type check. Type checking la done after the syructlc sugars are 

applied. The types of constant parameters must be included in the declared type, type actuall rBllt be 

types, and the typea of the actual routine parametera flllll be ln£luded in the proetypes, lertypes, or 

creatortypes declared in the appropriate whMe clauses. Of COUIH, the runber of parameters declared 

roost match the number of actuals passed and wlh each type _,., parameter thent mJSt be an 

opblncling for each required routine parameter. If the genenlOr ii a Cluller, then opblndlnos m.tSt be 

provided for all operations required in the duster's where clauN; opblndlngs can (but need not) be 

provided for optional parameters. Extra actual routine paramaten ant Illegal. 

Because the meaning of an instantiation may depend on the aclUal routine parameters, type equality 

makes instances with different actual routine parameters diltinct types. For example, consider the set 
type generator again; the Instance 

set[ array(lnt] with {equal: anay(lnt)SequaQ J 
is not equal 1o 

se1( array(lnt) with {equal: array(lnt)$slmllar) ] 

Intuitively these Instances should be unequal because the two equal procedures define different 

equivalence classes and therefore the abstract behaviors of the two instances are different. However, 
optional parameters do not affect type equality. For example, 

se1(array(lnt] with {copy: lnt$copy} J 
and 

set[arraY(lnt] wlh {copy: rny_copy} J 
are equal types. This is intuitively justlled because in each case set objects behave the same way even 

though different sets are prociJced when sets are copied in the two C818S. 

Thus we have the following type equality rufe, which defines when two type_sp«:S denote equal types 

(after syntactic sugars are applied). A similar notion is also needed tor routine equality. A fonnal type 
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identffler is equal only to ltsel for type checking purposes. OthetWIH. two type names denote equal 

types If they denote the same ~ion Unit (DU).11 Simllafty. Argus COff1)8t'88 the names of IOUline 

formals or the DUs of routines, or checks that they are the same operation In equal types. To decide the 

equality of two type generator Instantiations: 

T[t1 with {op1: act1, ... opm: actnJ, ... , tn with{ ... }] 
and 
T'[t1' With {op1: act1 ', ... opm: act.,, 1 , ... , tn' with{ ... }] 

Argus first checks whether: 
1. Tand r denote the same DU, and whether 

2. they have the same nunt>er of type_acluals, and t1 is equal to t1 ', etc. 
Second, any optional parameter opblndlngs In either instantiation are deleted. After this step, Argus 

checks that for each corresponding type_actual there is the same number of opblndlngs and that each 

corresponding opblndlng is the same. (That ia, the correapondlng actual n:,utines are equal.) The order 

of the actual routine parameters does not matter, since Argus matches opblndlngs by operation names. 

(The definition of routine equality for Instantiations of routine generatorB ta similar.) This definlion, for 

example, tells us that 

set( array(lnt] with {equal: 81T8Y(lnt]$ecJJal} J 
is different from 

set( array(lnt) With {equal: array(lnt)$slmilar1 J , 
(assuming sst requtrea an equal operation from its type parameter). It allo tels us that: 

set( Int with {equal: foo, copy: bar) ] 

and 

set( Int with {equal: too, copy: xerox} J 
are equal (assuming copy is required only by the se(lnt)Sa)pyoperatlon). 

This type equality rule allows prograrrmers to control what requirements affect type equality by 

choosing whether to put them on a cluster or on each operation. A NqUlrement on the cluater should be 

used whenever the actuaJs make some difference in the abltractlon. For example, In the set cluster, the 

type parameter's equal operation should be requintd by the duster as a whole, since using different 

equality tests for a set's objects causes the set's behavior to change. 

One can require that a type parameter, say t, be transrnlsll>le by stating the requirement: 

t has tranamlt 

This requirement ia regarded as a formal parameter declaration for a special iransm1t actuar, but Argus 

does not provide syntax for passing It expldlly. The "lranlmlt actual" ii pueed '"1>lleltly just when the 

actual type parameter is transmis8ible and the generator requires It. 

11Tois is name equality unleu lhe type environment haa synonyms for types. 
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12. 7. Own Variables 
Occasionally It is desirable to have a module that retains information Internally between calls. Without 

such an abiffly, the infonnation would elher have to be r800IIIINCted at every call, which can be 

expensive (and may even be lmpoasl>le if the information dependl on previous calla}, or the information 

would have to be passed in through argumet'B, which is undesirable becauae the lnlormdon ii then 

subject to uncontrolled modification in other nm.des (but see allo the binding mechanism dNcrl>ad in 

Section 9.8). 

Procedures, iterators, handlers, creators, and cluater8 may al rlllain lnlormation through the use of 

own variables. An own variable Is similar to a normal variable, except that It eDltS tor the •• of the 

program or guardian, rather than being bound to the .. of an, ,...._, IOUlifle adivation. Syntadlcalfy, 

own variable deClarations muat appear lnvnedlately after the equallS In a routine or cluster body; they 

cannot appear In bodies nested within statemenlS. Declaratlons of own vartables have the form: 

own_var ::: own decl 

I own idn : type _spec =• expression 

I own decl , ... =• call ( O primary ] 

Note that lnitlaltzatton Is optional. 

The own variables of a module are aeatecl when a guardian begins execution or reoowrs 1rom a 
crash, and they always start out uninitialized. The awn varllblN of a routine (Including Cluster 

operations) are initialized In textual onier as part of the first cal of an operallon of that routine (or the first 

such can after a crash), betont any atatementa in 118 body of lie fOUlirl8 are executed. CUiier own 

variables are lniUallzecl In textual order as part of lhl ftnlt cal of ._ 1lrlt clulller operation to be called 

(even I the operaUon does not UN the own variables). Cl.titer own variablel are lnlialized before any 

operation own variablea .,. lnlllaflzed. A,gus inlLlfH that ofttt/ one Pft)CIII can execute a ca,ster's or a 

routine's own varlabte lnltlalzatlons. 

Aside 1rom the placement of their declarations, the time of their iniUallzation, and their lletime, own 

variables act jult ll<e nonnat varilblN and can be UNd in al lie ... places. Aa with normal variables, 
an attempt to use an unlnltlallzecl own vattable (I not dltecled at con.,ae time) wll cw the guarclan to 

crash. 

Declarations of own variables In different modules alwaye Nfer to dltinct own variables, and dtsUr1ct 

guardians never share own variables. Furthemlot'e, own vadlbll d9clllrllltona wlhin a parameterized 

module produce diltlnct own variables tor each diltlncl NtanlllllOII of the mocUe. For a given 
instantiation of a parameterized cluster, al lns&anllatloM of the type's operattona share the same set of 

cluster own variables, but distinct Instantiations of paramete,tzed operatlonl have distinct routine own 
variables. 

Declarations of own variables cannot be enclosed by an except ltalemeN, so care must be exefCised 

when writing Initialization expressions. If an exception is railed by an fnftiallzation expression, I will be 
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treated as an exception raised, but not handled, in the body of the routine whose call caused the 

initialization to be attempted. Thus, the guardian will crash due to this error. 
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stable buffer: atomlc_array[lnt) :• atomlc_lffllYPnl)$new () 
cache: arrar[lntJ =• anay(lntJ$new ( ) 

Guardians 

then the atomic_array object denoted by buffer would survive a guardian crash, but the array ot>;ect 
denoted by cache would not. See Section 13.3 for more delals of crash recovery. Volatile variables can 

be assigned wherever an assignment statement is legal. However, able variables may only be 

assigned by an Initialization when declared or In the body of a creator. The lnltializationl of both stable 

and volatile variables are exea.ated within an action, as deacrl>ed below. However, the stable variables 

are not reinitialized upon crash recovery, whereas volatile variables are reinlllalized upon crash recovery. 

Stable variables should denote resilient objects (see Section 15.2), because only resHient data objects 

(reachable from the s&able variat:Ns) are written to stable storage when a topaction CIOfflffllts. (Thil can 

be ensured by having stable variables only denote objects of an atomic type or objeds protected by 

mutex.) Non-reslltn objects stored In stable variables are only Wfttten to stable storaQe once, when the 

guardian is created. Furthennore, the stable variables shoutd usually denote alomic obied&, because the 

stable variables are potentially shared by all the actions In a guardian. 

13.2. Creators 
A guardian definllon must p,ovtde one or more creators. The names of theN creators must be listed 

in the guardian header (Internal a.ato,s are not allowed); HCh suc:tl name fflJst coneapond to a single 

creator definition appearing In the body of the guardian definition. 

A creator definition has the same form u a procedure definition. except that creators cannot be 

parameterized, and the reserved word CNlllOr la used In place of pn,,c: 

idn •creator<[ a,gs ]> [returns] [signals] 
routine - body 
end ldn 

The initial idn names the creator and must agree with the final lcJn. The types of al arguments and all 

results (normal and exceptional) must be transmissible. 

A creator is an ot)Ject of some creator type. This type Is derived from the creator heading by removing 

the creator name, rewriting the fonnal argument declarations with one kin per dee/, deleting the lc1nl of aH 

formal atgUments, deleting any failure or unavallabl#I signals, and finally, replacing CINIOI' by 

creatonype. The signals failure(atrtng) and unava/lable(11rtng) are lmpficl in every creator type (since 

they can arise from any creator cal). However, If these stgnats are raised explicitly by a creator, they 

must be listed in the signals clause with atrtng result types. 

The semantics of a creator call are explained in Sectiem 8.4. Typically, the body of a creator will 

initialize some stable and volatile variables. It can also retum the name of the guanlan being created 

using the expression Nlf. Since the creator (and the state lnltlallzation) runs as an action, the creator 
tenninates by committing or aborting. If It aborts, the guatdian Is destroyed. If It commits, the guardian 

begins to accept handler calls, and runs the background code, If any (Ne below). If an ancestor of the 

creator aborts, the guardian is destroyed. If the creator and all Its ancestors commit, the guardian 

becomes permanent, and will survive subsequent crashes. 
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13.3. Crash Recovery 
Once a guardian beeomes permanent, It will be reaeated automatically after a crash with its stable 

variables initialized to the same state they were In • the last topactton commit before the crash. The 

volatile variables are then lnlllalized (in declaration order) by a topaction. To aid In thtS reinitialization, the 

guardian definition can provide a f'8COV8r SBCtlon: 

recover body end 

to be run, as part of this topaction, after the Initializations attached to the volatile variable declarations are 

performed. The recover section commits when conlrOf reaches the enc:t of the body, or when a return 

statement is exeaJted. The recover section may abort by 8K8CUlnr, an abort rellLlm statement or as a 

result of an unhandled exception. The guardian crashes if the recover section aborts. 

13.4. Background Tasks 
TaskS that must be performed periodically, independent of handler caHs, can be defined by a 

background sectlorr. 

background body end 

The system creates a p,ocess to run this body as 10011 as creation or recove,y convnls successfully. 

The body of the background section does not run as an actton; typlcalty I wlll per1orm a sequence of 

topactiona. 

lf the background proceu tinlahea executing II body(...., by reaching the end of the block or by 

returning), the process tenninates, but the gualdlan ccnnaes to uecu&e tncomlng handler cans. 

13.5. Handlers and Other Routines 
Typically, the principal purpose of a guardian Is to execute Incoming handler calls. A guardian accepts 

handler calls as soon as creation or recovery commits. 

The guan::Uan header lists the names of the extemally available handlers. Each handler listed must be 

defined by a handler deflnltJon. Additional handler deflnfflonl may alto be given, but these handlers can 
be named only within the guan:tian to which they belong. 

A handler definition has the same form as a procedure definition, except that handlers cannot be 

parameterized, and the reserved word handler ls used in place of pn,c: 

ldn • handler <[ args ]> [ returns J [ signals ] 

routine - body 
end idn 

The Initial idn names the handler and 111.Jst agree with the final idn. The types of all arguments and all 

results (nonnal and exceptt0nal) must be transmissible. 

A handler is an object of some handler type. This type Is derived from the handler heading by 

removing the handler name, rewriting the fonnal argument daclaraliDna wlh one kJn per dee/, deteting the 
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consumption. The spooler provides an operation for adding (object, consumer) pairs, and tor destroying 

the guardian. 

Flgl.ft 13-1 : Spooler Guarolan 

spooler • guardian (t: type) la create handlN enq, finish 
wherethMtranamll 

utype - handlertype (t) 
entry • atruct(obieet: t, consumer: utype) 
queue • semiqueue(entry) 

stable state: queue :• queue$create() 

background 
whlle true do 

entartopactlon 
e: entry:• queue$deq(state) 
e.oonsumer(e.obleet) 

except wllln unavailable (•): abort ..,. end 
end ........ failure, unavallble r): .... 

end 
end 

create • CNlltor () IWIUma (spooler(tD 
return(Nlf) 
end create 

enq • handler (Item: t, user: utype) 
queue$enq(state, enlry$(object: Item, consumer: user}) 
endenq 

finish - handler () 
tennlnate 
end finish 

end spooler 

The spooler guardian is parameterized by the type Of object to be stored. The enq handler takes an 

object of this type, and a handler tor sending the oblect to the c:or-..mer, and adds thi8 information to the 

stable state of the spooler. Thia state is an object of the ..,,,._. lbllrad data type 12. Each entry in 

the semlqueue Is a structure containing a stored object and II oorreapondlng consumer handler. The 

background code of the guardian runs an lnflnle loop that ltll1I a topaction, removes an entry from the 

queue, and sends the object using the associaled handler. 

Note that an unavailablB exception arising from this handler can la caught Inside the topaction, so that 

an explicit abort can be perfonned. H the exoeplfon were caughl oullide the topac:tion, It would cause the 

12see W. Weihl and B. Liskov, "lmpemenllltlon of Realient, Alomic Dalll Tw,es", in ACM T,..,...,. on ~ 
~ands,,..,,., volume 7, nwnber 2, (April 1986), pagee 244-218. 
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topaction to commit, and the entry would be removed without being consumed. Note also that failure is 

caught outside the topaction, since If an encode were to fall, or II the gualdlan did not exist, the 

background process might aimlessly loop forever, because it would not be able to remove that entry. 

A more extended example of a dlstrtbuted system appears In the paper Llskov, B. and Scheifler, R., 

"Guardians and Actions: Linguistic Support for Robust, Dlatrtbuled Programs," ACM Transacllons on 

Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404. 
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14.3. Transmit for Abstract Types 
The type implemented by a cluster is transmissl>le If the reserved WOl'd tranamlt appears in the la-list 

at the head of the cluster. Unlke the other operations provided by a type, the traMmlt operation camot 

be called directly by users, and In fact la not implemlNld dlrectly in the camter. lnltead, tranemtt Is 

implemented indiredty in the following way. Each transmlaal:>4e type la given a canontcal representation, 

called its external fflfJl'NM1lalJo t)pe. The external ~ type of an absttlct type T is any 
conventent transmilal>le type XT. Thia type can be another abltract type If desired; there is no 
requirement that XT be a bu•-tn type. lntultivety, the meaning of lie utemal repreeentation la that 

values of type XT will be used in masaages to reprasett vaklel of type T. The choice of extemal 

representation type is made for the abstract type aa a whole and nm tM UNd in evety ~ of 

that type. (There are cummtty no provisions for changing the external representation of a type once It 

has been established in the 11:>rary .) 

Each i"l)lementatlon of the abstract type T must provide two operations to map between values of the 

abstract type and values of the external representation type. There Is an operation 

encode• proc (a: T) returns (XT) [ algnala (fallure(atrtng))] 

to map from Tvalues to XTvalues (for sending messages) and an operation 

decode • proc (x: XT) retuma (T) [ slgnala (fallure(atrlng)) ] 

to map from XT values to T values (for receMng messagea). The trananft operation for Tis defined by 

the following Identity: 

T$tranamtt (x) • T$decode (XT$transmlt (TSencode(x))) 

Intuitively, the correctness requirement for encode and decode is thll they preserve the abltract Tva,es: 

encode maps a value of type T Into the XT value that represents I, while dflOOde pet"fom1s the reverse 
mappmg14_ 

Encode and dfJCOCIB are called impllcltly by the Argus system during handler and creator calls. ff 

encode and dscode do not appear In the cluster's ls-list, then they wtl be ICCH8ible to the Argus system. 

but may not be named directly by users of the type. A fdlre excaptlon railed by one of these operations 

will be caught by the A,gus system and resignalled to the caller (see Seotlon 8.3). 

An abstract type's encode and decode operations should not cause any side effects. This is because 

the number of calls to encocle or dflcode is unpredictable, since a,gumenta or resuls may be encoded 

and decoded several times as the system tries to establilh COfflfl'Ulicati. In addition. ve,tfying the 

oorreclness of trwmia8ion is easier I MJCOdtJ and dllOOdtl are lilq)ly tranafomlatlons to and fn:,m the 

external representation. 

When defining a parameterized module (see SectlOn 12.5), it may be necessary to require a type 

parameter to be transmissl>le. A special type restrletion: 

1"Hertihy, M. and Liskov, 8., "A Value Transmlsaion Method for Abanct Oala Types•, ACM T,.,.,,r:titi,M on ,,,_,,.,,,,,.,, 
,....,._ands,.,.,., volume 4, number"· (Oct 1982), pagN 527-551. 
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haa transmit 

is provided for this purpose. To permit instantiation only wilh transmissble type parameters, this 

restriction should appear In the where clause of the cluster. Allemattvely, by placing Identical Where 

clauses In the headings of encode and decode procedures, one can eran that an instantiation of the 

cluster is transmissible only If the type parameters are transmtsal>le (see Section 12.5). 

As an example, Figure 14-1 shows part of a ctusterdeflning a l<e~ table that stores pairs of values, 

where one value (the key) Is used to retrieve the other (the ltetn}. The key-lem \able type hal operations 

for creating empty tables, lnseftlng pairs, nttrleving the Item paired with a given key, deleting pairs, and 

Iterating through al key-Item pairs. The table Is ~ by a sorl8d bklary tree, and its extemal 
representation Is an array of key-Item pairs. The table type Is transmlssl>le only If both type parameters 

are transmissible. 

Figure 14-1: Partial Implementation of table. 

table - cluater [key, Item: type) ta create, Insert, lookup, .,_., delete, transmit, ... 
where key._,: plUClp {key, key),_,,.. (boot), 

equal: proctype (key, key) ..,.,. {boot) 

pair- record(k: key, i: lem) 
nod• NCOl'd(k: key, I: lem, left, right: table{key, llem)] 
rep • vartant(eff1)1y: null, soma: nod) 
xrep • arm,[pakl % the external rapntNntatlon type 

% The internal representatk>n Is a aorted binary trH. All pairs in the table 
% to the left (right) of a node have keys INI than (greater tlwl) the key in 
%that node. 

% ... other operations omitted 

encode• proc (t: table(key, Item]) r8IUma (xrep) 
....,. key._ tranMIII, lem haa tnlnaftlt 

xr: xrep :- xreplnew{) % create an llf'1IY array 
% use alpail to extrad the pan fft>m the trN 
for p: pair In allpan(t) do 

% Add the pair to the high and of the array. 
xntp$addh(xr,p) 
end 

return(xr) 
end encode 

decode• proc (xtbl: xrep) returns (table(key, item]) 
Where key haetranamll, Item._...,.... 

t: table(key, item) :- create() "CNate empty table 
for p: pair In xrapSalementl(xr) do 

% xrepSelements yields all elements of array xr 
lnsert(t, p.key, p.item) % enler pair in table 
end 

return(t) 
enddeoode 

endtable 
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14.4. Sharing 
When an object of structured built-in type is encoded and decoded, sharing among the object's 

components is preserved. For exaq:,18, let a be an array( 7) object such that 11{1} and afJJ refer to a single 

object of type T. H a2 Is an array( 7) object created by transmlling a, then a2[IJ and a2/JJ also name a 

single object of type T. 

All sharing is preserved among an components of rrullple objects of built-In type when those obiedS 
are encoded together. Thus, sharing is preserved tor obtacts that are ...,ments of the ume remote call 

or are results of the same remote cal, unleaa the argumenl8 .,. encodld at dlflef8nt times (see the 

discussion of the bind expression in Section 9.8). For exaff1)1e, let • and b be am1,C7] objects such that 

a[i] and b{jJ refer to a single object of type T. If 112 and "2 are anya created by sending • and b as 

arguments in a single handler cal, then a2{1] and b2(JJ also refer to a single object. 

Whether an abstract type's trlnlmll operation preserves sharing is part of that type's specificatlofl. but 

sharing should usually be preserved for abstract types. In the key-lem table ~ion of FIQUFS 

14-1, there are two types of sharing that ahould be preserved: sharing of keys and l9ffl8 among ~ 
tables sent in a single message, and sharing of ltema bOuncl to the ume key In a single table. The 

key-item table ex~ shows how to irnplemerj an abstract type whoN tranamlssiOn preaerves sharing 

by choosing an extemal representation type whose tranaml operation preaerves sharing. 

Care must be taken when the refentnces among objects to be tranamlted are cyclic, as in a circular 

list. Decoding such objects can result In a failure excepdon unle8a fll1CtJ8 and d«:odB are ~ad 
In one of two ways: 

1. the internal and external representation types are identical and MCOde and d«:ode return 
their argument object wilhout modJfylng It or ICCell1ng lta c:orr.-,nerca, or 

2. the external representation object must be free of cycles. 
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15. Atomic Types 
In Argus, atomicity is entorced by the objects shared among actions, rather than by the individual 

actions themselves. Types whose objects enaure atomlcly of the acUona 8harlng them are caled atomic 

typss; objects of atomic types are caUecl atomic Ob}llds. In thil chapter we define what It means for a 
type to be atomic and descrl>e the mechanism& provided by Argus to support the implementatiOn of 

atomic types. 

Atomicity consists of two properties: serializabillty and recoverability. An atomic type's objects rrust 

synchronize actions to ensure that the actions are sertallzable. An atomie type's objeets must also 

recover from actiOns that abort to ensure that actions appear to execute either completely or not at alt 

In addition, an atomic type rrust be resiliflnt the type must be ~mented so that its objectS can be 

saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an 

action that commits, as do al of its ancestors) wll survive crashes. 

This chapter provides definitiOns of the mechanisms used for ueer-dlfinld types In Argus. For 

example implementations, see Weihl, W. and Liakov, B., • ....,,.,_ion of Resliert, Atomic Data 

Types," ACM Transactions on Programming Laf'l(JUll(Jlla anti 8yatBms, volume 7, number 2 (April 1985), 

pages 244-269. 

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present 

the details of the mechanisms. SectiOn 15.1 focusea on synchronization and recovery of actions, while 

Section 15.2 deals prlmarlly wlh resilence. In Sealon 15.3, we dllcl111 aome gui:telnes to keep in mind 

when using the mechanisms detcrtJ8d in Section 15.1 and Section 15.2. In Sedk>nl 15.4 and 15.5, we 

define more precisely what it means for a type to be atomic. Finally, In 15.6, we dlacusa some details that 

are important for user-defined atomic types that are ~menled using mul~ rnutexes. 

15.1. Action Synchronization and ----~very 
In this section we descrl>e the mechlnllma provided.,.. Algt.18 to aupport synchR>nization and recov.ry 

of actions. These mechanisms are designed spec:tRcally to auppo,t i~ of alomic types that 

allow highly concurrent 80C888 to objects. 

Like a non-atomic type, an atomic type Is ~ by a ckl8ter that def111e1 a representation for the 

ot>;ects of the type, and an iff1)1ementatlon for each operation of the type In terms of that repNMfllatlon. 

However, the implementation of an atomic type rruat solve aome problems that do not occur tor o«Jinary 

types, namely: synchronizing concurrent actions, making Wll,le to other actions the effects Of committed 

actions, hiding the effects of aborted actions, and providing resllence agaillSt crashes. 

An implementatiOn of a user-defined atonic type ITIJ8t be able to find out about the commits and aborts 

of actions. In Argus, if'11)1ernentatna 1118 objecl8 Of bull-In atumlc types for this purpese. The 

representatiOn of a user-defined atomic type is typlcafly a combination of atomic and non-atomic objects; 
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changed • proc (m: mulex(T]) 

is provided for notifying the system that an existing nlJtex object should be wrlUen to stable storage. 
caning this operation wilt cause the object to be wrlllerl to_,.-. (assuming It Is ._..l>le) by 

the time the action thal execued the chanQed operation oomnlla to the top. Sometime after the action 

calls changed, and before Its top-levet ancestor oommlta, the system wit copy the nuex object to stable 

storage. Changed roost be called from a pn:,cess running an action. 

Mutex objects also define how fflJCh Information roost be written to stable storage. Copying a fflJtex 

object involves copying the contained object. By choo8lng the plQp8I' graoolarty of mu&ax objects the 

user can contn:>J how rooch data roost be wrtlten to stable 110rage al a time. For exa111)11, a large data 

base can be broken tnlD partitions that are written to stable SIOrage lndependendy by dMdtng I among 

several mutex objects. Such a division can be used to Hmlt the amount of data wrllten to stable storage 
by caUing changed only for those partitions actually modlied by a oomrnilting action. 

In copying a mutex object, the system wHI copy au objects reachable from it, excluding other mutex or 

built-in atomic objects. A contained mutex or built-In atomic object wit be copied only If necesaary; that is, 

only if it is: 
• a mutex object for which (a descendant of) the completing action called the changed 

operation, 

• a built-in atomic object that was modified by the action, or 

• a newly acceulble obj9ct for which no IUlble copy exlata. 

Furthermore, the component II copied independenUy of the CCNUin1nQ mutex object; they may be copied 

In either on:fer (or slmultaneoualy), subject to the constraint that the system cannot copy a mutex object 

without first gaining possession of It. 

Finally, mutex objects can be used to ensure that information la In a consistent state when I is written 

to stable storage. The system wilt gain pot88lslon of a lftJtex object before WIiing It to lhlble storage. 
By making al modifications to mutex obfedS inside .... statements, the user's code can prevent the 

system from copying a rrutex Oblect when It is In an lnconalstent state. 

Some details of the effect of changed are Important for atomic types that are implemented as multiple 

mutexes. These details are presented in Section 15.6. 

15.3. Guidelines 
This section di8curm some guidelines to be followed when implementlng atomic types. There are 

additional guidelines to follow when mullple m.atexes are used to lff1)lement an atomic type; those 

guidelines are discussed In Section 15.6. 

An Important concepl for desctting the rasilience of user-defined atomic types II~- An object 

is synchronous If It Is not possl>le to oblerve that any portion of the object II copild to llatlle IIOrage at a 

dlfferant time from any other portion. For exa,._, an object of type ll'l'Q(mulml(lnt)J woukf not be 
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synchronous, because elements of the array can be copied at different times: A type is synchronous If all 

of its objects are synchronous. Whether a type Is synctifOnous or not ii an iff1)ot1ant property of Its 

behavior and should be stated In Its specification. The buill·ln atomic types are synchronous; user• 

defined types must also be synchronous If they are to be atomic. 

To ensure the reslUence and serlallzabillly of a user-defined atomic. type Independently of how it is 

used, the fonn of the rep for an atomic type should be one of the follDwfng poul,lltes. 
1. The rep is Itself atomic. Note that 111111n ii not an atomic type. 

2. The rep Is rnutex(~ where t Is a synchronous type. For .,.... t could be atomic, or It 
could be the t'8p'988N8lion of an atomic type, I the operlliDM on the this flcllUoul atomic 
type are coded In-line so that the entire type behave8 atomicaly. 

3. The rep is an atomic collection of mutex types containing synchronous types. 

4. The rap is a mutable collection of synchronous types, and objllctl of the representation 
type are never modified after they are lnlllalized. That Is, mulllll8n ffll1 be Ul8d to create 
the Initial state of such an object, but once this has been done the abject nlJlt never be 
modified. 

When using mutex objects, there are a few rutes to remember. First, d1anO«/ roost be called after the 

last modification (on behalf of some action) to the contained object. This Is true becau8e the Argus 

system Is free to copy the mutex to stable storage as soon as dltlfJ(/«l hal been called. 

In addition, changsd should be called even I the object Is not accesatie from the stable vartables of a 

guardian. In part this rule Is just an ex.,. of ..,.UO,, of concenw: lhe ~ of the atomic 

type should be done Independently of any ~ about how the objlCt w11 be used. Therefore the 

type should be 1111)1enWted as If Ila obieCta were acceSll:Jla from the ltable varilbles of some guardian. 

However, In addition, I this rule Is not followed, I Is poall)le that stable alorage wil not be updated 

properly. This situation can occur I an object was accesatie, then becomes lnaccessl:>le, and later 

becomes accessible again. The system guarantees that no problems arise I chang«/ is always called 

after the last modification to the object. 

Mutex objects should not share data with one another, unless the shared data is atomic or mutex. 

One reason for this rule is that in copying mutex objects to stable storage Argus does not preHfV8 this 

kind of sharing. 

A final point about mutex objects is that It is unwise to do any actlvly that is likely to take a long time 

inside a Nlze statement. For example, a handler call should not be d0ne from k1lide a ..._ statement I 
possible. Also, It is unwise to wait for a lock Inside a _,_ unle• the pn:igrammer can be certain that the 

lock Is available or wiN be soon. Otherwise, a deadlock may occur. An exaq,18 of whent waiting for a 

lock in a nested Nlze statement II sate II where at pR)C8t888 seize the two nuex obieCl8 In the same 

order. 
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15.4. A Prescription for Atomicity 
In this section, we discuss how to decide how mJCh concurrency ii poa1lble in ~Ing an atomic 

type. In writing apeclfications for atomic type■, we have found I ....., to pin down the behavior of the 

operations, initially assuming no concurrency and no fallurea, and to deal wlh concurrency and failures 

later. In other words, we Imagine that the objecl8 wilt exist In an enYk0nment In which aN actions are 

executed sequentially, and in which actions never abort. 

Although a sequential specification of thi8 sort does not say ~ expllcl about pemlilslble 

concurrency, It does Impose llmlt1 on how nu:h COflCUf'NMICV can IN ~-~ can 
differ In how l1IJCh conaJrrency Is provided, but no implementalon can exCNd theN limlla. Thenlfore, it 

Is important to understand what the limits are. 

This section and the following section together provide a precise definition of permlsalble concurrency 

for an atomic type. This definition la bued on two facll about Argus anct the way It supports 

implementations of atomic type. First, in ~ an IIIOmic type, It ts only neceaury to be 

concerned about active actions. Once an IICllon has committed lo ._ top, I ii net poul)le tor it to be 

aborted later, and 118 changel to atomic objects become YIIIN to other adionl. So, for example, an 

implementation of an atomic type needs to prevert one ICllon m:,m oblervlng the modtftcalloAI of other 

actions that are still active, but I doel not have to preyent an ICtiDn from oblerYing modllcations by 

actions that have already committed. Second, the only melhod avail._ to an llOmlc type for oonm:,lllna 

the activities of actions la to delay actions white they are exflCUlinl operations ol the type. An atomic type 

cannot prevent an adJon fn:,m calling an operation, alt,ough I CM Pl'Wlfll that cal flom proceeding. 

AISo, an atomic type cannot prevent an action that preyiou8ly flniltled a cal of an opendlon from 

completing either by commiHlng or by abor11ng. 

Given the sequential specification of the operations of a type, thale facta lead to two oonstrainla on the 

concurrency permitted among actions using the type. 'Mlle an ~ can allow no more 

concurrency than perrnllted by the8e conaaralnls, some ~. Ike that for the bull-in type 

generator atomlc_array (&ee Section 11.10), may allow lea concurrency than permlltect by their 

sequential specifications and our concurrency COlllllalnts. 

The first constraint la that 
• an action can observe the effects of other actions only I those acttons convnilted relatfve to 

the first action. 

This constraint Implies that the results returned by operaions exemed by one action can reftect changes 

made by operations ex&QJted by other actions only I h>le aclonl commll«I NlallYe to the first action. 
For example, In an atomic array a, I one action pe,fonftl a stonll(a, 3, 7), a IICOftd (unNlated) action can 

receive the answer "T from a call of fe&11(a, 3) onty I lhe tnt a&tton commlted to 1he lap. If the first 

action is stll active, the saoond action nust be delayed untl 1he flrlt actiOn C0111)1etes. This first 

constraint supports recoverability since I eneures that "'8cts ol abolted actforll cannot be oourveet by 

other actions. It also supports serlalizabllly, since I prevenll concunnl actkN fn>m oblerYing one 

another's changes. 
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However, more is needed for serializablUty. Thus, we have our second constraint: 
• operations exea.rted by one action cannot invalidate the results of operations executed by a 

concurrent action. 

For exafr1)1e, suppose an action A executes the size operation on an atomic array object, receiving n as 

the result. Now suppose another acllon 8 is permitted to execute add,. The addh operation wll increa&e 

the size of the array to n + 1, Invalidating the results of the sin operalion executed by A Since A 

observed the state of the array before 8 executed addh, A must pnade 8 In any sequenlal exea.dlon of 

the actions (since sequential exeaJtlo,. muat be COt'lliltent wlh the .....,.ial apeclficationl of the 

objects). Now suppose that B commits. By __.Ion, A cannot I» prevented fft)m tNtng the .nects of 

8. If A observes any effect of B, I wtl have to follow Bin arr, ....... euculon. Since A cannol both 

precede and follow B In a sequenllal execution, 88f1altzabll, woulcU>e Yiallled. Th.ls, once A aec:utes 

Size, an action that calls addh muat be delayed until A cornpletea. 

15.5. Commuting Operations 
To state our requirements more precisely, consider a simple siluatlon Involving two conaurent actions 

each executing a single operation on a shared atomic object X. (The actions may be executing 

operations on other shared objectS also, but in Argus each object muat lndlvktlally enaure the atomicity of 

the actions using it, so we tocus on the operations involving a alngle object.) A falrty .,.. condlion that 

guarantees seriallzabillty Is the following. Suppose X is an object of type T. X has a current state 

determined by the operations performed by prevfoualy comrnllted actions. Suppose 0 1 and 02 are two 

executions of operations on Xln Its current state. (01 and 02 might be aecutlonl of the same operation 

or different operations.) If 0 1 has been executed by an action A Md A has not yet commllted or aborted, 

02 can be pertormad by a concurrenl action 8 ~ If O 1 and 0 2 GOmfflUte: given the current lta1e of X, 

the effect (as descrt>ed by the 18CJJ811tial apeciftCatlon of 7) of pertomllng 0 1 on X followed by 02 Is the 

same as performing 02 on X folowed by 0 1• It Is .,.,,.ant to realize that when we say ·ettect· we 

incute both the resub returned and any modllcations to the state of X. 

The Intuitive explanation of why the above concllion works Is 18 folows. Suppose 0 1 and 02 are 
performed by concurrent actions A and Bat X If o, and o,CC>flfflde, then the order In which A and B 

are serialized globally does not matter at X. If A is serialized before S.1hen the local effect at Xis aa If 0 1 

were performed before 0a, while If 8 is serialized before A, the local affect Is 18 if 0 2 were performed 

before o,. But these two effects are the same since 0 1 and 02 comn,te. 

The common method of dividing operations Into readers and writers and using readlwf1le locking works 

because it allows operations to be executed by~ actions only when the operations COffl1111te. 

More concurrency is posd)le wlh our cormadatiYlty condition than wlf1 raaderllwrtters becauN the 

meaning of the Individual operations and the argumeru of the calla can be considered. For example, 

calls of the atomic array operation addh always conmute wlh calll of add, yet bath the8e operatiOnl are 
writers. As anotherexa"1)le, store(X, /, e1) and store(X,J, •J conm.,te If/¢/. 

We require only that 0 1 and 02 comrrute when they ant executed starting in the current atate. 
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Consider a bank account object, with operations to deposit a aum of money, to wlhdraw a sum of money 

(with the possl>le result that it signals IMullldMt fln:f8 I the Qlffltf\t balance II 1888 than the sum 
requested), and to exam&ne the current balance. Two withdraw operations, say tor amounlS m and n, do 

not comnute when the cumtnt balance is the maxim.Im of m and n: elher operation when executed in 

this state wlll succeed In wilhdrawing the requested sum, but 118 other operation l1IJSt signal /nflulfic/ent 

funds II executed In the resulting state. They do comnue whaMY« the current blllan0e ii at least the 

sum of m and n. Thus I one action has executed a withdraW aperadon, our conclllon allows a second 

action to execute another withdraw operation while the titlt actton is still active as long u there are 

sufficient funds to satisfy both withdrawal n,quests. 

Our condition must be extended to cover two additionm cases. First, there may be more than two 

concurrent actions at a time. Suppose A 1, ... ,An are concurrent action&, each pertormtng a single 

operation execution O1, ... ,o,,. respectMtly, on X. (As before, ltl8 concurrent acdons may be sharing 

other objects as well.) Since A 1, ... .An are permitted to be concumN1t at X. there la no local conlfOI over 

the order In which they may appear to occur. Therelore, al po111M Oldlr'I RIJlt have the aame effect at 

X This Is true provided that al pemuatlonl of O ,. ... ,On have the same effect when executed in the 

current state, where effect includes both results obtained and modllcaliona to X. 

The second extension ac:knowledges that actlonl can pertorm NqUenCeS of operation exeoutions. 

Consider concurrent adlona A 1, ... ,A,, each petformlng a NCi11,W s,. ... ,S,,. reepec:tlYely, of operation 

executions. This is permlld>le If all NqUenCeS S11, ... ,s.,, C'blalnld by concatenating lhe sequences 
S1, ... ,s,,. in some order, produce the same effect. For ..,.., 1UppoN action A executed addh 

followed by remh on an array. This sequence of operatlonl has no net elect on the array. It Is then 

pennissible to allow a concurrent action B to execute size on the same array, provided the answer 

returned is the size of the array before A executed addh or after it 8X8QJted remh. 

Note that in requiring certain sequences of operallonl to have the same effect, we are considering the 

effect of the operations as delcribed by the spacification of the type. Thus we are concerned with the 

abstract state of X, and not with the concrete atate Of 18 storage representation. Therefore, we may allow 

two operations (or sequences of operations) that do commute in terma of their effect on the abstract state 

of X to be performed by concurrent actions, even though they do not comrrute In terms of their effect on 

the representation of X. This distinction between an abstraction and Its Implementation Is crucial in 

achieving reasonable performance. 

It is important to realize that the constraints that are ~ by atomicity based on the sequential 

specification of a type are onfy an upper bound on the conamency that an iq>lementation may provide. 
A specification may contain additional constrak1ts that ful1her C0l'1ltrain Implementations; these 

constraints may be essential for showing that actions using the type do not deadlock. or for showing other 

kinds of termination properties. For exa111)1e, the specfflcadon of the bulll-in atomic types explicitly 

describes the locking rules used by their iq>lemenlatlons; ...-. of these types are guanlf1eed that the 

built-in atomic types wil not perml more ooncurrency than abt1ed by these rules (for lnltance, actions 

writing different components of an array, or different fields of a reco,d, cannot do so ooncummtty). 
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15.6 Multlple Mutexes 

1. Before that crash, s also committed to the top. tn this case the data read back from stable 
storage is, in fact, consistent, since it must reflect Bs changes to both the first and s«xJnd 
semlqueues. 

2. s aborted or had not yet commilted before the crash. In either cue, 8 abolts. Therelore, 
the changes made to the first semiqueue by 8 wll be hidden by the semiqueue 
Implementation: at the abstract level, the two aemlqueues do have the same state. 

105 

The point Of the above ex&nl)le is that If the objects being wrlten to stable storage are atomic, then the 

fact that they are written lncrernentaHy causes no problems. 

On the other hand, when an atomic type is Implemented wtlh a representation consisting of several 

mutex objects, the programmer must be aware that thele objlcls are wrilen to stable storage 

incrementally, and care rra,st be taken to ensure that the~ Invariant Is atl preserved and 

that information is not lost In spite Of lncremeral wrlUng. If the ~ of a type requires that one 

mutex object (call it M1) be written to atable storage before another (call I 112), then the wrlle of M1 roost 

be contained in an action that oormits to the top before the action that writes M2 is run. 
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operation ··- creator ··-
handler 
routine 

routine ··- procedure ··-
Iterator 

procedure ··- idn • proc [ parms ] args [ returns ] [ signals ] [ where ] ■■-

routine_ body 

end kin 

iterator ··- idn - lier [ parms ] args [ yields ] [ signals ] [ where ] ■■-

routine - body 
end ldn 

creator ··- idn - Cl'NIOr a,gs [ returns ] [ signals ] ■■-

routine - body 
end ldn 

handler ··- ldn • handler args [ retums ] [ signals ] ··-
routine - body 
end ldn 

routine body ··- {equate} ··-
{ own_var} 
{ statement } 

parms ··- [ parm' ... ] ··-
parm ··- idn .... :type ··-

idn , ••• : type _spec 

args ··- ([decl, ... ]) ··-
decl ··- idn , ... : type_ spec ··-
returns ··- returns ( type_spec, ••• ) ··-
yields ··- yleldS ( type - spec .... ) ··-
signals ··- algnals ( exception , ... ) ··-
exception ··- name [ ( type_spec .... ) ] ··-
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opidn ··- ldn ··-
tranamlt 

where ··- where restriction , ... ··-
restriction ··- ldn ha oper_decl .... ··-

idn In type - set 

type_set ··- ( idn I k:tn ha oper _ decl , ... { equate } } ··-
ldn 

reference $ name 

oper decl ··- name , ... : type _spec ··-
tranamlt 

constant ··- expression ··-
type_spec 

state_decl ··- [8111b1e]decl ··-
[ .... ) lcln : type_spec :- expression 
(alabll)decl, ... :-cal 

equate ··- ldn - constant ··-
idn•type_set 

ldn - reterence 

own_var ··- own deCI ··-
own idn : type_ spec :• expression 
own deCI , ... :• caH ( @ primary] 
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statement 

enter_stmt 

idn : type_ spec :- expression 
decl I ■■■ :- cal [ 0 primary ] 
idn I ■■■ :- cal ( 0 primary ] 
idn , ••• :- expression , ••• 

primary • name =• expression 
primary I expression l :- expression 
call ( @ primary ] 
fork call 

seize expression do body end 
pause 
tenntnate 
enter_stmt 

coentw coann { coann } end 
[ abort ] leave 
whlle expression do body end 
for_stmt 
if_stmt 

tagcase_stmt 
tagtest_ stmt 
tagwalt_stn 

[abort) NtUrn [ ( expression , ... ) ) 
yield [ ( expression ' ... ) ] 

[ abort ] lllgnal name [ ( expression , ... ) ] 
[ abort ] uN name [ ( expression , ... ) ] 
[ abort ] break 
[ abort ] continua 

begin body 111d 

statement ( abOrt ] IMIQnal name , ... 
statement except { when_handler } 

[ others_handler] 

end 

: :: enter topactlon body end 
enter actlOn body and 

Syntax 
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coarm 

armtag 

for_stmt 

if_stmt 

: == armtag [ foreach decl ' ... In call ] body 

::: action 

topaCtton 

procen 

: :: for [ decl , ... ] In call dO body end 
for [ ldn , ... ] In call dO body end 

: :: u expression then body 

{ ....,, expression then body } 

( ... body) 

end 

tagcase _stmt : :: tagc:111 expression 

tag_ ann { tag_ ann } 
[ OI,_. : body ] 

end 

tagtest_stmt ::: tagtNt expresalon 
atag_a,m { atag_arm } 

( --- : body] 
end 

tagwait_stmt ::: tagwalt expresalon 
atag_ arm { atag_ arm } 
end 

tag_arm ::: tag name, ... ( ( idn: type_spec)]: body 

atag_ arm : :: tag_ kind name , ... [ ( idn : type_ spec ) ] : body 

tag_ kind : :: tag 

wtag 

when_handler ::: when name, ... [ ( decl, ... >]: body 

when name , ... ( * ) : body 

others_handler ::: others [ ( ldn: type_spec)]: body 

body : :: { equate } 

{ statement } 

111 
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type_spec 

field_spec 

reference 

actual_parm 

type_actual 

opblnding 

::: null 

node 

bool 
Int 
raal 

char 

string 
any 

Image 
rep 
cvt 
sequence [ type_ actual 1 
array [ type_actual J 
atomlc_array [ type_actual] 

atl\lCt [ field_spec I•■- J 
raconl [ fleld_spec I •·• J 
atomic_ record [ field _spec .... J 
oneof [ field_spec I • ■- J 
variant [ field _spec I •·• 1 
atomic_ variant [ field_ spec , ... 1 
proctype ( [ type _spec I ■H J ) [ returns ] [ signals J 
ltertype ( [ type_spec I ... ] ~ [yields] [ signals l 
CIWIIID,type ( [ type_lS)eC. -~-)) I returns) [ signals J 
hanclleltype ( ( type_apec , ~ .. J ) ( nttums) (signals) 
mulU ( type_aetual J 
reference 

: :: name , ... : type_ actual 

::: idn 
kin [ actual_parm , ... 1 
refentnce $ name 

: :: constant 

type _actual 

: :: type_ spec [ wtth { where opbtnding , ••• } ) 

: :: name , ... : primary 

Syntax 
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expression ··- primary ··-
call @ primary 

( expression ) 
.. expression %6 (precedence) 

- expression %6 
expression •• expression % 5 
expression // expression % 4 
expression / expression % 4 
expression • expression % 4 

expression II expression % 3 
expression + expression % 3 
expreaslon - expression % 3 
expression < expression % 2 

expression <• expression % 2 

expression• expreaslon % 2 

expression >• expression % 2 
expression > expression % 2 
expression --< expression % 2 

expreuion --<• expression % 2 
expreaslon ... expression % 2 

expression "'>• expre8lion % 2 
expreaslon .. > expression % 2 
expression & elCJ)Atlllon % 1 
expreaslon cancl expreaslon % 1 

expreulon f exp,uaion % 0 
expression cor expression % 0 

primary ··- entity ■■-

call 

primary • name 
primary [ expression J 

can ··- primary ( [ expression , ... J ) ··-
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entity ··- nil ··-
true 

false 

int literal 

real literal 

char literal 

string_literal 

self 

reference 

entity • name 

entity [ expression] 

bind entity ( [ bind_arg, ••• ] ) 

type_spec $ { field , ••• } 

type_spec $ [ [expression:] [expression, ••• ] ] 

type_ spec$ name [ [ actual_parm , ••• ] ] 

up ( expression ) 

down ( expression ) 

field ··- name , ••• : expression ··-
bind_arg ··- * ··-

expression 
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Comment a sequence of characters that begins with a percent sign (%), ends with a newline 

character, and contains only printing ASCII characters and horizotUf 1abs In between. 

SeparalDr. a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed) or 

a comment. Ze,o or mont aepanllors may appear between any two tokens, except that at least one 

separator is required between any two adjaoent non-self-temtinatlng tokens: reserved words, identifiers, 

integer literals, and real literals. 

Reserved word: one of the Identifiers appearing In bold face In the syntax. Upper and lower case 

letters are not distinguished in reserved words. 

Name, kin: a sequence of letters, digits, and underscores that begins with a letter or underscore, and 

that is not a reserved word. Upper and IOwer case letters are not distinguished In names and ktns. 

lnt_literat. a sequence of one or more decimal digits (0-9) or a backsla8h (\) followed by any number of 

octal digits (0-7) or a backslash and a sharp sign(\#) folowed by any nutmer of hexadecimat digits (0-9, 

A-F in upper or lower case). 

Real_literal: a mantissa with an (optional) exponent. A ~ Is either a sequence of one or more 

decimal digits, or two sequences (one of which may be eff1)ty) joined by a period. The mantissa rft.lst 

contain at least one digit. An exponent Is 'E' or 'e', opUonaly 1olowed by '+' or • -·, followed by one or 

more decimal digits. An exponent Is required If the mantfssa does not contain a period. 

Char_tlterat. a character representation other than single quote, enclosed in single quotes. A 

character representation Is elher a prtn1tng ASCH character (oelal value "40 through 176) other than 

backslash, or an escape sequence conaisting of a baclatlh (\) followed one to three printing characlers 

as shown in Table 6-1 or Table 1-1 below. 

String_ litsrat. a sequence of zero or more character represerutionl other than double quote, enclosed 

in double quotes. 

Table 1-1 shows most of the character literals supported by Argus, except for the higher numbered octa! 

escape sequences. For each character, the COf1'88pOf1ding octat lleral, hexadecimal Hteral, and normal 

literal(s) are shown. Upper or lower case letters may be used In eacape sequences of the torm vr•, \"*, 
,r. \b, \t, \n, \v, ',p, and v. Note that an Implementation need not support 256 characters, in which case 

only a subset of the lllerals lated wll be legal. 
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Table 1-1: Character Escape Sequences 

'\000' '\#00' '\"@' '\ 100' '\#40' '@' '\200' '\HO' '\IO' '\300' '\#CO' '\&@' 
'\001' '\#01' V·A' '\101' '\#41' 'A' '\201' '\181' '\IA' '\301' '\IC1' '\&A' 
'\002' '\#02' \119' '\ 102' '\#42' '8' '\202' "82' '\IB' '\302' '\#C2' '\&8' 
'\003' '\#03' '\"0' '\ 103' '\#43' 'O' '\203' '\#83' '\IC' '\303' '\#C3' '\&O' 
'\004' '\#04' '\"0' '\ 104' '\144' 'D' '\204' '\184' '\ID' '\304' '\l.04' '\&0' 
'\005' '\#05' '\"E' '\ 105' '\#45' 'E' '\205' '\185' '\IE' '306' '\.#CS' '\IE' 
'\006' '\#06' '\"P '\106' '\#46' 'P '\206' '\186' '\IF' '\308' '\#08' '\IP 
'\007' '\#07' '\"G' '\107' '\#47' 'G' '\207' 'Vl8T '\IG' '\307' 'VIC7' '\&G' 

'\01 O' '\#08' '\"H' '\b' '\ 110' '\#48' 'H' '\210' '\188' '\IH' '\310' '\tC8' '\&H' 
'\011' '\#09' '\111' '\t' '\ 111 ' '\#49"1' '\211' '\NI' '\H' '\311' "'°9' '\&I' 
'\012' '\#OA' '\IIJ' '\n' '\ 112' '\#4A"J' '\212' '\IIA' '\U' '\312' 'VICA' '\IJ 
'\013''\#0B''\11K''\v' '\ 113' '\MB' 'I(' '\213' '\#88' '\IK' '\313' 'VICB' '\&K' 
'\014' '\#OC' '\11L' '\p' '\ 114' '\#40' 'L' '\214' '\MC' '\IL' '\314' '\tOO' '\IL' 
'\O 15' '\#00' '\11M' '\r' '\ 115' '\#40' 'M' '\215' '\180' '\IM' '\315' 9'ICO' '\&M' 
'\016' '\#OE' '\11N' '\ 118' '\#4E' 'N' '\218' '\#IE' '\IN' '\318' '\ICE' '\&N' 
'\017' '\#OP '\"()' '\11r '\MP ·o· '\217' '\NP '\IC)' '\317''\tCF''\lO' 

'\020' '\#10' '\11P' '\120' '\#50' 'P' '\220' '\#90' '\IP' '\320' '\#DO' '\IP' 
'\021' '\#11' '\IIQ' '\121· '\#51' ·a· '\221' '\#91' '\IQ' '\321' '\#01' '\IQ' 
'\022' '\#12' '\11R' '\ 122' '\#52' 'R' '\222' '\#912' '\IR' '\322' '\t02' '\&R' 
'\023' '\#13' '\11S' '\123' '\153' 'S' '\223' '\193' '\IS' '\323' '\103' '\IS' 
'\024' '\#14' '\111' '\124' '\164' 'T' '\224' ...... '\IT' '\324' '\,#04' '\&l' 
'\025' '\#15' '\11U' '\125' '\#55' ·u· '\225' '\#95' '\IU' '\325' '\tO&' '\&U' 
'\026' '\#16' '\11V' '\ 126' '\#56' 'V' '\226' '\#96' '\IV' '\328' "«>6' '\IV' 
'\027' '\#17' '\11W '\127' '\157' W '\227' \#97' '\IW' '\327' '\107' '\&W 

'\030' '\#18' '\11X' '\ 130' '\#58' 'X' '\230' '\198' '\IX' '\330' "'°8' '\&X' 
'\031' '\#19' '\11Y' '\ 131' '\#59' 'Y' '\231' '\#99' '\IV' '\331' '\109' '\& Y' 
'\032' '\#1 A' '\11'1: '\ 132' Ft.JISA' ''Z '\232' '\#IA' '\IZ' '\332' '\IOA' "\l'Z: 
'\033' '\#18' '\"{' '\ 133' '\#58' l' '\233' '\#98' '\f '\333' '\IDB' '\&(' 
'\034' '\#10' '\11\' '\134' '\#60' '\\' '\234' '\19C' '\I\' '\334' '\#DC''\&\' 
'\035' '\#1 o· '\11)' '\135' '\#50' 1' '\235' '\#90' '\Q' '\335' '\#DD' '\&]' 
'\038' '\#1 E' '\1111 ' '\ 138' '\ISE' '11 ' '\236' "9E' '\I"' '\338' "\#OE' '\&"' 
""37' '\#1 P '\II I '\137' '\ISP I I '\237' '\l9F' '\I_' '\337' '\#OF''\&_. 

'\040' '\#20' I t '\140' '\16()' '" '\240' 'VIAD' '\& ' '\340' 'VIEO' '\&" 
'\041' '\#21' 'I' '\141' '\#61' 'a' '\241' 'VIA1' '\&r '\341' '\#E1' '\la' 
'\042' '\#22' ... '\ .. '\142' '\#62' 'b' '\242' 'VINZ '\& • '\342' '\tE2' '\lb' 
'\043' '\#23' '#' '\143' '\183' 'c' '\243' 'IJ#A3' '\&#' '\343' \#£3' '\&c' 
'\044' '\#24' '$' '\144' '\164' 'd' '\244' '\JIM' '\&$' '\3M' \#£4' '\Id' 
'\045' '\#25' ''%' '\145' '\al65' ••• '\245' '\#AS' '\&%' '\345' 'VIES' '\le' 
'\046' \#26' '&' '\ 146' '\#66' 'f' '\246' 'VIM''\&&' '\348' '\IE8' '\&f 
'\04 7' '11127 '\" '\147 '\#67' 'g' '\247' '\#A7' '\&" '\347' \#£7' '\&g' 

'\050' '\#28' '(' '\150''\168''h' '\250' 'VIM' '\&(' '\350' '\IE&' '\&h' 
'\051' '\#29' ')' '\ 151' '\#69' 'i' '\251' 'VIA9' '\&)' '\351' '\IE9' '\&I' 
'\052' "2A' .• , '\152' '\#6A' 'j' '\252' 'VIM''\&*' '\352' '\#EA' '\&j' 
'\053' '\#28' '+' '\ 153' '\168' 'k' '\253' 'VIAS' '\&+' '\353' 'VIEB' '\lk' 
'\054' '\#20' ',' '\154' '\#60' 'I' '\254' 'IJ#AC' '\&,' '\364' 'VIEC' '\&I' 
'\055' '\#20' I•' '\ 155' '\#60' 'm' '\255' 'VIAD' '\&-' '\3li' '\IED' '\Im' 
'\056' '\#2E' I• I '\ 156' '\#6E' 'n' '\256' 'VIM:.' '\&.' '\356' '\#EE' '\In' 
'\057' '1112P 'f '\ 157' '\#6F' 'o' '\257' "V#AP '\&f '\357' '\#EP '\&o' 



tJWLJXX _!!XL .. s ss•U1m1u11: .. eiuus m;;rntL 1. .. zx .. a12t .... 2:;xuaa;g:;a2@@1L"u. ;;: :1i .. ;µM :a:.1;:yua:M•,;;;.:;+qz; __ u,;( 

\OIO'WIG''O' 
·•·W1·'1" ........... ... ~ ... .......... ~ ...,....,.., ........... ..,...,.,..,. 
...,,,.__. ... 
'\071'Vlt'T 
'Vrtr ""'" •,: 
"Yln'\1118''-: 
W/1--,;r'"' "01I"...,. . ., ........... 
"077''\tlF'T 

'\1W .... "V 
\Mt'VW'ft ,.,,.,.., , .. ..,.., ,..,,...,. ,.,.,v , . ..,..., 
\1rW7'W 

\1Jl'VWY 
'\17'rVlll'Y 
'1WWII~ ,.,.,. 
'\tV,_,T ,...,,_,T ,. . ..., .... 
'\17r 'V/llr""' 
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Appendix II 
Bullt-ln Types and Type Generators 

The following sections specify the built-in types and the type, poalC8d by the built-in type generators 

of Argus. For each type and for each Instance of each type generator, the objects of the type are 

characterized, and al of the operations of the type are deflnad. (An implemertation may provide 
additional operations on the built In types, as long as these are operations that could be Implemented in 

terms of those described in this section.) 

All the built-in types (except for any) are transmissl:>le. Al instances of the built-in type generators 

(except for proetype and llertype) are transmlssl:Jle If all their type parameters are transmissible. 

Transmission of the built-In types preserves value 8(Jlallly, except for objects of type real. However, In a 

homogeneous environment, reals can be transmitted without app,oxlmatlons. In a homogeneous 

environment, the only possible encode or decode falures are exceeding the representation Hmlts of an 

Image, mutating the size of an anay or atomlc_llTIY whle I Is betng encoded or decoded, and 

improper decoding of cyclic objects (see Section 14.4). 

AU operations are indivisible except at caHs to subsidiary operations (such as lnt$simllar within 

array(lnt)$simllal), at yields, and while waiting for locks. 

The specifications given below are informal and are adapted from the bOok Abstraction and 

Specification in Program Oew,lopmenf (Uakov, B. and Guttag, J., MIT Press, 1986). A specification starts 

out by giving a list of the operatlonl and declaralion8 of any formal parametn for the type. This is 

followed by an overvlaw, which gives an introduction 10 the type and If neceaaa,y deftnea a way of 

describing the type's obi8Ct& and their values. Following 1h11 the tncMm.181 operations are dHCrlbed. For 

each operation there Is a heading and a statement of the operation's etfeds. In the heading, the return 

values may be given names. The .,.... l8Ction delcll>el the noffll8I and exoeptional behavior of the 

operation. The effects given are abstract, that Is they are deacrlMNt ueing the \IOC8bulary (or model) 

defined in the overview section. For example, objedl of type lnl n datcrl>ad LINlQ mathematical 

integers. Tt.Js arithmetic expressionl and ~ uNd in detlNng lnl operattens are to be 

computed over the domain of mathematical lrtegers. 

An operation that (abstractly) nutates one of its arguments lilta the a,gumente that It nullles in the 

clause following the WOid mocllflN. An operation Is not &lowed ID nulle any objecll, ucept tc,r thole 

listed in the mocltlM clauae. (For the built-in fflltlble atomic type generators, fllGdlcation eAty referl to 
the sequential stale; I c:loe8 not refer to changes In the locking lnfotnlllffoll kept tor eadl object.) When 

an argument, say a, la nuatad, it la often neceuary to delcrlle la ltlll at the .._ of ttw cal• well as 

its final state at the end of the cal. We UN the notatton a,,. for ~• ltale at the start of the eal and the 

notation 8s,o.t for Its state at the end of the cal. 

Some operations of the bull in type generators are only defined I the type genera,r la passed 

appropriate actual routine parameters (see Sedion 12.6). For example, the copy operation et the array 
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type generator, Is only defined if there Is an actual parameter passed (explicitly or implicitly) for the type 

parameter's copy operation. Thus array[lnl)$oopy Is defined but ana,(any]$copy Is not defined. These 

requirements are stated in a requlrN clause that precedes the delatpttort of the operation's effect. The 

type of the expected routine Is also described; remember that the actual operation parameter can have 

fewer signals (see Section 6.1 and Section 12.6). 

By convention, the order In which exceptions are listed In the operation type Is the on:ler in which the 

various conditions are checked. 

Operations with the same semantics (for example, null$equal and null$slmllBI) or that can be 

described in the same way (for exafl1)1e, lnl$add and ~ are grouped IOgether to save apace. 

In defining the built-in types, we do not depend on usens satisfying any constraints beyond thoee that 

can be type-checked. This deciskM1 leads to more col'f1)llcated speclicallons. For example, the behavior 

of the elements Iterator for arrays Is defined even when the loop modlte& the array. 

11.1. Null 
nun • data type Is copy, equal, similar, transmn 

Overview 

The type null has exactly one, immJtable, atomic object, represented by the llleral nll. NH is 
generally used as a place hokter in type definitions using oneofa or variants. 

Operations 

equal • proc (n1, n2: null) naturns (bool) 
similar • proc (n1 , n2: null) natums (bool) 

effects Returns true. 

copy • proc (n: null) l9IUln8 (null) 
transmtt • proc (n: nul) returns (null) 

effacta Returns nll. 

11.2. Nodes 
node• data type Is here, copy, equal, similar, transmn 

Overview 

Objects of type node are imrrutable and atomic, and stand for physical nodes. lmplemerutions 
should provide some mechanism for translating a node •address· into a node object and vice 
versa. (However, these do not have to be operations of type noc:11.) 

Operations 

here • proc () Nturns (node) 
effecta Returns the node object for the caller's node. 

equal-proc(n1,n2:node)return9(bool) 
similar • proc (n1, n2: node) Nlurna (bool) 

effecta Returns true If and only If n1 and n2 are the same node. 
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transmit • proc (x: Int) IIIIUme (y: Int) alg1'11111(faill.we(alftnG)) 
effecta Retuma y such that x - y or slgnal& fllllure If x cannot be represented In the 

implementation on the receiving end. 

11.5. Reals 
real. data type 18 add, sub, minus, rrul, div, power, abs, max, min, exponent, mantissa, 12r, r21, 

trunc, parse, unparse, It, le, ge, gt, equal, similar, copy, tnlnamlt 

Overview 

The type real models a subset of the mathematical numbera. It is used for approximate or floating 
point arithmetic. Reals are lmmJtable and atomic, and are written as a mantissa wlh an optional 
exponent. See Appendix I for the format of real llterala. 

Each lnl>lementatlon represents a subHt of the real runbets In: 
D • {-real_max,-real_min} U {0} U {real_mln, real_max} 

where 
o < real min < 1 < real max 

Numbers In D are approximated by the implementation with a precision of p decimal digits such 
that: 

Vr e D Approx(r) e Real 
Vr e Real Approx(r) • r 
Vr e D- {0} I (Approx(r)- r)lt1 < 101-P 
Vr,s e D r s s ==t Approx(r) s Approx(s) 
Vr E D Approx(-r) • -Approx(r) 

We define Max _width and Exp_ wldlh to be the 8fflalllll integerl such that every nonzero elemenl 
of ,_. can be represented in "standard" form (exaclly one digl. not zero, before the decimal 
point) with no more than Max_ width digits of manti8aa and no more than Exp_ wldlh digits of 
exponent. 

Real operations signal an exception If the resul of a COff1)U1atlon Hes OUISide of D; overflow 
occurs if the magnitude exceeds real_ max, and underflow occurs If the magnitude Is less than 
real_mln. 

Operations 

add• proc (x, y: ,...) retuma (,...) algnale (overflow, underflow) 
effecta Computes the sum zof x and y; signals e>WJrllDw or underflow it z Is outside of D, as 

explained earlier. 0lherwu retume an~ 8UCh that: 
(x,y 2: 0 v x,y s 0) =-t add(x, y) • Applo~x + y) 
add(X, y) • (1 + E)(X + y) 1£1 < 10 -p 
add(x, 0) • X 
add(x, y) • add(y, x) 
x s x' ::::> add(x, y) s add(x', y) 

sub• proc (X, y: l'NI) NIUffl8 (l'\MI) algnall (fflNflow, underflow) 
effecta Comput91 X - Y, the reaul II Identical to ~X, -)"). 

minus • proc (x: real} raturna (l'NI) 
effects Returns -x. 

mul • proc (x, y: real) ratume (NIii) algnala (overflow, undetflow) 
effects Returns ~._.n; signals ovenlowor underlfowlf ._.yls outside of D. 

div• proc (x, y: reel) returns (NIii) 91g..,. (zero divide, OYefflow, underflow) 
effects "y • 0, signals zero_dlvlde. Olherwtle retums approx(x/y); signals overflow or 

underflow If x/y Is outside of 0. 
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power - proc (x, y: ,_) N&ume (,_., 
...... (DR>_dlvtde, oomplex_reeult, 0VefflcM, undefflow) 

effKt8 If X • 0 and Y < 0, tlgnals ZllfO_dNJdtl. If X < 0 and y is nonirHgral, sJgnals 
complex_lNUlt. atwwlN Nluml an IPPft)Ull8llon IO 1', good to p llgnllcant digits; 
signals overlJowor und9rllow I 1' ii oul8lde of D. 

abs• proc (x: l'NI) ....,,_ (l'NI) 
effecta Retuml the ablolute Valle of X. 

max • proc (x, y: l'NI) ,..,_ (NIii} 
effects If X :.i? y, then retum8 X, otherwise returns y. 

min - proc (x, y: l'NI) Nluma (...,} 
effects If XS y, then returns X, otherwiH retuffll y. 

exponent • proc (x: ...,) ....,. (Int) ..,,,.. (undeftned) 
effects If x • 0, signafl undetlnad. OlhltLUII retLn1 U. -,onent that would be U1l8d In 

repreaenllng x • a lterlll In ltandn foml, ttlllt la. fRlffll 
max ((11 aba(x) :.i? 1d}) 

mantissa• proc (x: ...,) NIUmS (l'INII) 
8ffecta Returns the rnanllua of X when repreaerud in standard form, that is, returns 

a,:pD~x/10-,, where 8 • apo,Mnt(~. If X • 0.0, retuma 0.0. 

i2r • proc (i: Int) retums (NIii) Ilg_.. (overflow) 
effects Returns ~~; atgnale overflow I I ii not In D. 

r2i - proc (x: l'NI) retuma (1111) ....... (overflow) 
effects Rounds x to the nearest inleger and towa«t ze,o In case of a tie. Signals ovMllow if 

the result lies 01daidl the rapresented range of integers. 

trunc • proc (x: ,_) Nkna (lnQ algnlll ('IMlflow) 
effects Truncat• x towM:J zero; lignala OWf1law • the result would be outside the 

represented range of lnlegers. 

parse• proc (s: strirQ IIIIWIII (111111) llgnal1 (bad_....,,...._., underflow} 
eHecta Re""'8 ~Z) ..... zil Ill_... ,..IIIIIIIIIIIJIII t&rtng •{Ne AppendiK I}. 

s nua repre1ent a real or lnleger ..,.. wlll • 1111M1 lllllng pll.ll or mirlls sign; 
otherwtae slgnala l»d_amat. Signals ~-OAilr:,wl Zil not In 0. 

unparse - proc (x: NIii) NIUm8 (ltring) 
effKt8 Reluma area, Hleral such that ptllN(~~) • x. The general form of the tleraf 

is: 
[-] l_flflld.l lHMt( e± x_fekt) 

Leading zeros In 1_ ""1 and tralling zeR>S in t_flflld are suppressed. If x Is integral and 
within the range of AIPl'llnlN kHgera. lllt'I f_fJl!ltland .. uponenl .. ta preNAI. If 
x can be NPrHlnled bJ • nw llasa <JI no ,,.. ttwt 11M _. cllgitl and no -,onent 
(that 18, If -1 s ~-vi) < ,,,_ Mlllflt, ,- ie ......,. 18 not present. 
Otherwise the lleral 18 tn ltandard form, wiii Exp_wltMl clglll of exponent. 

It • proc (x, y: real} ,..... (llool) 
le • proc (x, y: l'NI) NIUme (boot) 
ge.proc(x,y:1'1111)--(NOI) 
gt• proc {x, y: Nat),._ (bool) 

elleela These are the llandald ordering relations. 

equal• proc (x, y: l'NI) ,.... (bool) 
similar• proc (x, y: NIii) relUffla (bool) 

eff8cta Returns tnle Ix and y are the same IUTlber; Ntuml fllllle otherwiH. 
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II. 7. Strings 
string • data type la c2S, concat, append, substr, rest, size, empty, feldl, chars, lndexs, indexc, 

s2ac, ac2s, s2se, sc2s, It, le, ge, gt, equal, similar, copy, tranemll 

Overview 

Type string is used for representing text. A string is an imnlllable and atomic lupfe of zero or 
more characters. The characlers of a string are Indexed uquenllally starting from one. Strings 
are lexicographically ordered based on the order'a1g tor charactera. 

A string literal Is written • a sequence of zero or more ctunder representations enclosed in 
double quotes. See Appendix I for a delcripllon of ltlt olwacltt' __. sequences that can be 
used within string •era11. No string can have a size ...., than lnl_max; however, an 
implementation may Nlltlct string lengths to a vatue lell Ula tw_fflM. N the l'NUI of a ltring 
operation would be a strtng containfng more than the ffllKfmum fl.lfflber of characters, the 
operation signals llrnlls. 

Operatlona 

c2s • proc (c: char) rellna (ab'tng) 
ettecla Returns a string conlalnlng CH Ila only character. 

concat. proc (s1, 12: .,..) ..... (r: 8lflng) ...,. .. (llmls) 
effecla Retums the concatenation of st and d. Thal II, l(t-•114 tor/ an Index of st and 

t(sln{s1)+4-&tlJ tor I an Index of s2. Stgnal8 ,,,. I , would be too large tor the 
Implementation. 

append • proc (a: atr1ng, c: char) ralUm8 (r: atrtng) 9lgnala (limls) 
effects Returns a new string having the charaders of • In order followed by c. That is, 

t(slzs(s)+ 1 J - c. Signals llmllB • the new string would be too la,ge for the Implementation. 

substr - proc (s: atr1ng, at: Int, cnt: Int) NIUrrl8 (alflng) algnala (bounds, negative size) 
affecta If cnt < o, ligrNIII Mgdve_s/ze. I at< 1 or at> IIN(s,+1, _... """""8-

0lherwise retums a string having the charactens s("4. a(a1+1J, ... In that order; the new 
string contains mln(cnt, slze-at+1) characters. For ex.,., 

substr (•abcdef", 2, 3) • "bod" 
substr (•abcdef", 2, 7) • "bcxSer 
substr (•abcdef", 7, 1). -

Note that If mln.cnt, slz&-at+1) -o, .,_,,.returns the empty string. 

rest • proc (s: atr1ng, I: lnl) relUma (r: etrtng) ...,... (bounds) 
effecla Signals bounds If / < o or / > sln(s) + 1; otlWwlN ratums a llrtng whose first 

character Is s(IJ, whose second Is s(/+1), ... ,and...., Blzl(t)th character is s(size(s)J. 
Note that If /. slnl(s)+ 1, rest returns the empty string. 

size • proc (s: atrlng) returns (Int) 
effecla Returns the runber of characters In s. 

empty• proc (s: atrtng) Nluma (bool) 
effecla Returns tNe If sis empty (contains no characters); othet'wiae returns fal•. 

fetch - proc (s: atrlng, I: Int) retuma (Char) llgnata (bounds) 
effect• Signals bounds if i < 0 or I> slze(S,; otherwise returns the th character of s. 

chars • lter (s: atltng) ylelda (char) 
affecta Yields, In order, each character of s (I.e., s(1), 8(2], ... ). 
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lndexs • proc (s1, s2: atltng) retuma (Int) 
effecta If s1 occura • a subetring in s2, retume the least index at which s1 occurs. Returns 

O If s1 does not occur In 112, and 1 I s1 ll the empty string. For exan,>le, 
lndexs("abc", "abcbe1 • 1 
lndexl("bc", •abcbcj • 2 
lndexs(-, •abode, -1 
lndexs("bcb", •abcde1 • O 

lndexc- proc (c: clW, s: atrtng) NIUffla (lnl) 
effects If c occurs In s, relum8 the least Index at which c occurs; returns O If c does not 

occur ins. 

s2ac • proc (s: atrtng) l'8IUIM (anay{char)) · 
effects Stores the ctwac.tlHa of • • elements CIC a new array of chanlcterl, a. The low 

bound of the array ll 1, the size la alze(8), and ... Ah elameR of the array is the lh 
character of s, tor 1 s is slze(8). 

ac2s - proc (a: array(charJ) Nturna (atrtng) 
effecta Thie ii the h'werle of ll2ac. The f8IUlt Is a llring with c:haracters in the same order 

as In a. That is, the th character of the siring la the (l+array(charJSlow(a)-1 )th element 
of a. 

s2sc - proc (s: atrtng) returns (SlqUll'IC8[CharJ) 
effects Transforms a string Ink> a sequence of c:haracters. The size of the sequence Is 

slzB(S). The lh element of the sequence Is the Ah character of s, tor 1 s ; s slzB(s). 

SC2s - proc (s: SlqUll'IC8[cmr)) returne (atrlng) 
effects This is the invW of dac. The rtlUII ii a airing wilh characters In the same order 

as in s. That Is, the lh chanlcter of the string ll 1he Ah element of s. 

It • proc (11, s2: airing) ...... (bool) 
le • proc (81, 82: alltng) ....... (bool) 
ge - proc (111 82: ..... ) NIUml (bool) 
gt • proc (81, 82: lb'IIIO) .... (bOOI) 

effecla Thau are the uaual lexicographic ordering relatiOns on strings, based on the 
ordering or c:haracters. For example, 

"abc" < "aca• 
·abc· < "abca· 

equal-proc (s1, s2: airing) llllurna (bool) 
similar • proc (s1, 82: ltllng) NIUml (bool) 

effects Returns tnae I s1 and 112 are the same string; otherwise returns talM. 

copy• proc (81: atrlng) relUma (atrtng) 
eflecla Returns S1. 

transmit • proc (s1: atrtng) Ntuma (atttng) ...,... (falunt(lllflng)) 
effects Returns s1. Signals failure only If s1 Is not repreaelUble on the receiving end. 
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11.8. Sequences 
sequence-data type [t: type) la new, e2s, fll, fll_copy, replace, addh, addl, remh, reml, concat, 

subseq, size, eq,Cy, falch, bottom, top, elemel'U, indexes, a2s, s2a, 
equal, similar, copy, 11'81'1111111 

Overview 

SecpJences represent lmn'lllable tuples of objects of type t. The elements of the sequence can be 
indexed sequentially ffOm 1 up to the size of the S9(JJ81'1C8. Alhough a sequence Is IIMuable, 
the elementS of the sequence can be nuable ObfeC)II. The lb1lle of IUCh nl.ltable elements may 
change; thus, a sequence oblect Is atomic only if la elemeru ant alllo alOmlc. 

Sequences can be created by calling sequence operations and by means of the sequence 
constructor, see Section 6.2.8. 

Any operation calf that attempts to access a sequence wilh an Index that Is not within the defined 
range terminates with the boln:J8 exception. The lfze of a aequence can be no ta,ger than the 
largest poellYe 1111 (mt_mu), but an lmplementallon ma, fNlttct ......-- to a smaller upper 
bound. An atten1JI to conallUct a sequence which Is too .,.. ANIUII In a lmlls exoeptlon. 

Operations 

new - proc ( ) returne (....-,ce(t)) 
effeCta Retums the empty sequence. 

e2s • proc (elem: t) NIUml (aequenc:e[t)) 
effeCta Returns a one element sequence having elent • tta only elemert. 

fiN • proc (cnt: Int, elem: t) ..,,. (.......-(t)) 11p111 (neglllWe_llze, Umlta) 
ettecta If cnt < O, slgnala negatlve_slze. If art Is lafger ttwl tt'8 muimJm sequence size 

supported by the iqJlemetutlon, ...,.... ,,,._ Olherwfle reluml a sequence having 
cnt elemel'U each of which Is .,,,_ 

flll_copy • proc (cnt: Int, elem: t) Ntumll (llqUIIICl(t)) 
Slgnala (negative_size, llmb, falufe(llf1n0)) 

requllN t hu copy: PftlClype (t) ---(t) ....... (tdn(lltl'lng) 
effect• H cnt < 0, tigrl8la negllllwl_lia. N ant Is bigger thin the maximum size of 

sequences that the lrq>lementation suppo,11, ..,.11 llmlts. Otherwise retums a new 
sequence having cnt elements uch of which is a copy of tlltlm, ae made by 1$copy. Note 
that ~Y is caled cnt times. Any fllllure 8lgnal railed by l$oopy Is lrnmedlately 
resignalled. This operation does not originate any lallure signals by Itself. 

replace • proc (s: aequence[t), I: Int, elem: t) retuma (llqUIIICl(t)) Slgnale (bounds) 
effecte If ; < 1 or I> h~II). signaf8 bounda. Otherwise relUml a sequence with the same 

elements as •• except that elem ii In the Ah potlion. For ..ample, 
replace(NqUellCl(lntJ$[2,5), 1, 8) .. ~. 5) 

addh • proc (s: aequence(t), elem: t) ...... (r: Nqllela(tl} lllgnall (lmits) 
effecte Returns a sequence wllh the same elements u • tolDwed by one addlionat 

element, elem. That is, 1(1)-s(Q for; an Index of s. and ,(alze(.IJ+1)-4Nm. If the ruulling 
sequence would be larger than the ~ion suppo,ta, signals lmlls. 

addl - proc (s: NqUIIICl(t), elem: t) ...,. (r: 11qU1nClflD llgnlle (llmlts). 
effeCta Returns a aequence having Mn u 1tll flnlt elamlnl folawad by the elemenll of • 

In order. That II, 1(1)-elem and lfM#-1) for I• 2, ... , lllzfl(r). I the resulting sequence 
would be larger than the inplemenladon auppo,ts, signals llmlts. 

remh • proc (s: NqUellCl(t]) l1IIUm8 (r: NCII....PD llgnlll (bounds) 
effecte If s is e1111tY, aignals bounds. Other.llila retuma a sequence having aH elements of s 

In order, except the last one. That is, slzll(r)-slze(s)-1 and 44◄4 for 1. 1, ... , slze(s)-1. 
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copy• proc (s: aquence(tD ..,. (.........,D -••• (fallure(Slrlng)) 
raqu1,_ t has copy: PftlClype (t) WM (t) _,... (fallure(llrlng)) 
effecla Returns a sequence haw,g • elementa coplN of the elements of s. The effect Is 

equivalent to that of the totlowing ~ body: 
qt•aquence(t) 
y: qt :- ql$new() 
tor e: t In ql$elements(s) do 

y : .. ql$addh(y, t$copy(e)) ......,.. failure 
end 

return (y) 

transmit - proc (s: NqUenCl(t]) retume (NqU8IICl[t]) ...,,_ {fallure(alrlng)) 
requlnNlthaslWI 
etfecta Returns a sequence having as elemenla tnlnlffllltld coplet of the elements of s In 

the same omer. Stwing among elements is prN8Mld. Slgrlldl tallure I ttlil cannot be 
represented on the receiving end and allo ntelgnala lfff tailulel from ..,...... 

11.9. Arrays 
array. data type [t: type] la create, new, predict, fll, fiH_oopy, addh, addl, remh, reml, 

Overview 

set_low, trtm, store, faleh, bottom, top, en,,ty, size, low, high, elements, indexes, 
equal, similar, slmilar1, copy, copy1, tranemlt 

Arrays are lllltable objects that represent tuples of elemenla of type t that can grfNI and shrink 
dynamically. Each array's state conai8tl of thla tuple of elemlcu and a low bound (or index). The 
elements are Indexed sequentially, starting from the low bound. Each array also has an identity 
as an object. 

Arrays can be created by calling array operations Ct'Nte, new, 1111, ffl_ copy, and ptfldlct. They can 
also be created by means of the array CORltNCIOr, wNch specllea the array low bound, and an 
arbitrary nurrmer of lnitlm elements, see Section 6.2.9. 

Operations low, high, and size return the current low and high bounds and size of the array. For 
array a, sizB(a) Is the runber of elements In a, which Is ze,o If a la empty. These are rebded by 
the equation: hlg~a) - low(a) + size(a) - 1. 

For any index /between the low and high bound of an array, there Is a defined element, a(4. The 
bounds exception is raised when an attempt is made to 100888 an elemeft outside the defined 
range. Any array must have a low bound, a high bound, and a .,_ which are al legal Integers. 
An Implementation may restrict theee to some smaller range of lnlegers. A can that would lead to 
an array whose low or high bound or size is outside the defined range tenninates wllh a llmlts 
exception. 

Operations 

create • proc (lb: Int) '9IUml (array(t]) algnala (limits) 
effecta Returns a new, empty array with low bound /b. Limits occurs If the resulting array 

would not be supported by the lmplemenlation. 

new = proc ( ) returns (array(tD 
ettecta Returns a new, empty array with low bound 1. Equivalent to create(1 ). 
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store - proc (a: array(t), i: Int, elem: t) algnale (bounds) 
modlflN a. 

Built-In Typu and Type Generators 

effeCts If I< bw(a) or;> h~a). signals bounds; otherwise makes elem the element of a 
with Index /. 

fetch • proc (a: array(t], I: Int) .....,... (t) atgMla (bounds) 
effectS H I< low(a) or I > ~a). slgnall bount/8; otharwile returns the element of a with 

index i. 

bottom • proc (a: array(t)) Ntuma (t) ....,. (bounds) 
effKta If a Is empty, signals bounds; otherwlae returns a(low(a)). 

top ... proc (a: affllY[tD ...... (t) ...,... (bounds) 
effects If a is lf11llY, &tgnala bounds; otherwise returns ~~a)]. 

empty• proc (a: array(t)) MIUma (beol) 
effec'la Retum8 uue ff a cortalns no elemenla; otherwlle re1uml talae. 

size - proc (a: array(tD .....,. (Int) 
ettecta Relums a counl of the number of elements of a. 

low - proc (a: array[t]) NIUm8 (Int) 
ettecta Returns the tow bound of a. 

high • proc (a: array(t]) N1111M (Int) 
ettecta Returns the high bound of a. 

elements•..,. (a: arra,(t]) ylalde (t) algnala (faluN(81rtng)) 
effKta Yields the elemenla of a, eaaly once tor Ndl Index, trom the tow bound to the high 

bound (I.e., bolmn(~ .... , IOp(a,,.)). Thi elemenls.,. fetched one at a time, UM1Q 
the lndexea ttlllt were legal at the start of the call. I, ... ttle lleratlon, a II rnedlNed IO 
that fetching at a previously legal Index ligla bculdl. then the lerator lignall failure 
with the string "bounds•. The lerator II dtvlll>le at ylelde. 

indexes• lier (a: llffllYltD ylelda (Int) 
•Hecta Yields the Indexes of a from the tow bound of a,.. to the high bound of a..- Note 

that lndexa Is unaffected by any modfflcations done by the loop body. It is dtvlsl>le at 
yields. 

equal • proc (a1, 82: array(t)) nttums (boOI) 
eflecl8 Returns true I a1 and a2 refer to the same array object; otherwise returns false. 

similar • proc (a1, 82: array(tD Ntuma (boot) 11Q11111a (falluN(lllrlng)) 
requll'N that similar: pn,ctype (t, t) ....... (1IOol) ...., ... (failure(all'lng)) 
eflecl8 Returns true If a1 and 112 have the NIM tow and hlgtl bounda and If their elements 

are pahwise aimlar as determined by ..,,,.,_ Thie elect of 1h11 operation Is equivalent 
to the following procedure body (except that this operation Is only divtaible at calls to 
t$simllafJ: 

at - array(tJ 
H at$1ow(a1) ... at$1ow(a2) cor at$size(a1) ... at$size(a2) 

then Ntum (fal•) 
end 

for I: Int In at$kldexes(a1) do 
If --t$aimltar(a1 [IJ, a2{l)) then Ntum (talae) encl 

l'Nlglllll fllure 
except wtlen bounds: algnal falure(9bounds·) end 

end 
r8IUm (tNe) 
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similar1 - proc (a1, a2: ana,ftD ....... (NOi) 111gr1■1■ (falunt(llltng)) 
requlrN t hu equal: praclype (t, t) ...,,. (bool) ....... , (faim(atrtng)) 
ettecta Returns true if a1 and a2 have ht aame law and high bounds and if lheir elements 

are pakwlN equal aa determnld by •eqc• Thia operation wol'ks the same way as 
similar, except that ,stlqUlli ii used lnltt■cl at...,__ 

copy • proc (a: anaw(tD ,_,. (b: llffllVltD IIQll■le (fabe(llrtng)) 
requlrN thas copy: praclype (t) ...... (t) ....... (falue(atrtng)) 
etlects Retume a new array b wlh lhe .... low and higtl bounda u • and IUCh that each 

element 1114 COl1alrll ~1(4). The elect of tNI operation ii equlvaktnt to the 
following body (except.,.. la only ..... at call to~: 

b: ~ :- ••a,ftJScop,1(8) 
tor i: Int In _,.,,}SlndexN(a) do 

b(q :- tScopy(a(i)) 
....... ,allure 
•XCIPI when bounda: alOnll fallure("bounds•) end 

end 
return (b) 

copy1 • proc (a: array(tD returns (b: array(t]) 
effects Returns a new array b with the same low and hJgh bounds u a and such that each 

element t(4 contains the same elalNn aa a(4. 
transmit• proc (a: array[tJ) ratuma (b: arrayt:t)) algnala (fallure(atl1ng)) 

Nquk'N t has tranlffllt 
effecta Retuml a new array b wtth the same low and high bounds u a and such that each 

element t(4 coralnl a tranamlned copy of 41(4- a.,tng among the eterneru of a Is 
preserved In b. SIQnall fallure I I) cannot be NPflllnlld on .. f8C8ivtng end or if 
fetching an element at a legal Index of a,.. CIUIII a bounds exception and reslgnafs any 
fallur8 signals raised by ......... 

11.1 o. Atomic Arrays 
atomlc_array • clllta type (t: type) 18 create, new, predict, ffll, fll_COP'I, addh, addl, ntmh, reml, 

set_low, trim, atont, fetch, bottom, top, -.,ty, lize, low, high, elements, indexes, 
aa2a, a2aa, equal, sknlar, slmllar1, copy, 00PJ1, -•• 
test_and_read, test_and_wrlte, can_,.ad, can_wrtte, read_loc::k, wrtte_lock 

overview 

Atomic_ arrays are mutable atomic objects that represent tuples of elements of type t that can 
grow and shrink dynamically. Each atomic_array'S (HI\IUl.-a) lllle ccnilts of 1h11 tuple of 
elements and a low bound (or index). The elamera are lndeud sequet'Ctlfty, stal'ting from the 
low bound. Each atomic_ array also has an ldenlly • an object. 

Atomic_ arrays can be cnated by calling atomic array operations aeate, new, f#I, fl#_ copy, and 
predict. They can also be created by means of iie atomic_ array consttUctor, which specifies the 
array low bound, and an arbltfary ruTlber of inlJal elements, see Sedion 6.2.9. 

Operations low, high, and size lftlffl the a.wrent low and high bounds and size of the 
atomic_array. For an atomlc_array a, slzB(a) Is the number of 8'ement8 in a. which Is zero if a is 
en,,ty. These are related by the equation: ~a) - bll(a) + slzB(a) - 1. 
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For any index ; between the low and hllh bound et ., ___ lft'llY, there ii a ddned element, 
a(4. The bocn/8 exception ii ralNd wtNtft an -- ii ffllldl to aac1u an ellmllt GUllide the 
defined range. Arr, atomlc_array fflUlt .... 11w--. ........ and ... which .. aN 
legal integerl. An lmpllmatllltion may Nltltct .... to - 111111,r .... of Integers. A call 
that would lead to an .,__array whole low or high bound ot • II OUllide the defined range 
terminates with a llmilll exception. llmlts exception. 

Atorric_arrays use readlwrlte loddng to achieve alomlclly. The locking rules are descrl>ed in 
Section 2.2.2. It Is an enor If a proceaa that II not In an aGlion 111""'8 lo teat or obtain a lock; 
when this happens the guardian I\IMlng the Pft)CIII wll cratl. Aa dlRned below, the only 
operation that (In the normal cue) does not attempC to teat oroblllrl a lock la the equal operation. 

Operations 

create • proc (I>: Int) NtUme (a:atamlc ~tJ) llgllllls (llmll) 
eff8cta Retuma a new, 8f11JlY _._...., • wllh low bound "· Limits oocurs if the 

resuling atornc_array would not be auppor1ec1 by Ill tmplementation. The caler obtains 
a read lock on a. 

new • proc ( ) NlUffl8 (IIIOffllc_array(tJ) 
eff8cta Equivalent to crute(1 ). 

predict • proc (lb, cnt: Int) ....,_ (a: IIIOllllc_llftlY(tl) ll9n1l1 (llmla) 
effect• Retums a new, ~ atomk::_array • wltt low bound "· The caller obtalnl a read 

lock on a. Thia II eu■ntlalt)' 118 ... •••lit, -- 1h11 the abeolutl value of cnt 
Is a prediction of haw many -,. or .,.. .,. 11'8\f to be pelfGmlld OR WI new 
atomie_array. I ont > o, lllldlfl .. ...-a~......__. .. upected. These 
operalona may execute falter ttlarl I the IIOmlc ,,,,., had __. p,aducad by calt,g 
asa.. Lim#s OCCUfl I the NIUlllng llofflic in, would not be IIIPP()Ftfd by the 
implementation becaule of Its lnilial low bouiia' (not bec:ailN of b predict«t size or 
because of the predcted high or low bound). 

fiU • proc (lb, cnl: Int, elem: t) ,.._ (llaMlc_lllTIIJN) 1111111 (f11111N9_alze, lmill) 
eftecta If mt< 0, ..-neollw_lJla. Altuffll •-_._.,._.._ ballllit l>ancl 

size onl, and wlltl --• IICh .mett; ltllll ... ___ lfflf wauldMII Ill aupporled 
by the lmplemantatlon, liQrM """'· The oalter ollllN a read IDd< on the reeult. 

fHl_copy. proc (I>, cnt: 1111, elem: t) ...... {alGllllc_■fllf(IJ) 
•••• (negative_lize, llmlla, failln(llttng)) 

requllN lhu cop/:,..,.. (t) ...... (t) -•■t■ ~)) 
eftecta The elect II .. • .__ tllat .,.,,, ii oepied l!lft ..... If a,t < 0, IQflals 

negative_... ~ retuml • 111W ..., wlll - ...., • .., .. mt ... wlh 
each ...,._nt a copy of..,,,,•~-..,_ Tiil Cllll'tlllllna a,..,... 
the result. Any failure 8fgnal railed bf .., 11 ..... 1111)7 fHfanll1d. Thia QPINIIDn 
doe8 not originate any ,_,,. lignall by llel. If l,e 111W __, amot bl ,.....,._ by 
the~ sigr1811/lm#s. 

acldh • proc (a: lllOmlc_ana,(t), elem: t) slgnalll (lmlta) 
modfflNa. 
effecla Obtains a wrfle lock on a. If extending a on the high end would cause the high 

bound or lize of• to be outside ttle range auppe,llld.-, .. ~. then lignafl 
//mlls. 0therwtae extends • ~ 1 In Ill high dlNclloft. and -- .,_,, u the new 
element. That ii, ~hi'J(a,,.)+11. elem. 
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addl • proc (a: IIGIRIC_ana,(t}. elem: t) 11111111 (lmils) 
modllN .1. 
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..._ 0blainl a WIii iock on a. If extending••• IOw end would C8111N tl'tl low bound 
or m of a to be outlidl the,... •IPPlud llr-. ••men1■•ffl. 1hln.,.... Im/ts. 
0lherwile txlllldl aby 1 lnthe lol.r clN Dttan. 1111 ..... elem• lie new.,_.._ That 
la, 8,aJIIM(a,..)-1) • """"· 

remh • pn,c (a; atclnlc_arra,ttD ...,_ (t) ....... (baundl) 
111:DIIIII ,t. 
.,.... Oblall• a wrle lock on a. If a II ernpey, •• bot.llds. 0lherwlN shnnkl a by 

removing II high 11aman1, and relUml ht......., 1111118N. That II, high(-,_) -
high(a,..)-1. 

reml • p,oc (a: IIOIIIIC_llffllY(Q) ....,. (t) •• (boUnde) 
m_..11.1. 
effeCta Obtalnl a wrle look on a. If a II empty. -- &lo&lldl. OIMlwlll •J.nkl a by 

nN1'IOVlng .. low ......... and AUnl ..... ,. ......... Thal la, law(-,_) -
low(-..>+ 1. 

set_low • proc (a: lilOllllc_lffllY(tJ, I>: Int) lllflala (lmlla) 
modllNa. 
..,_ Oblalrll a wrill lock on a. If 1111119W law tor lllgt$ bound would not be auppo,tfld by 
the~. then ..... .,._ °"8Mtll, ••11 .. IDw lRdflllltllounds of 
a; the new low bound of a II IJ and ttll ,... hlgtl bound II "i't(a,...) • 
~y+l>-lowCa,,.)-

trim • proc (a: alOllllc_arra,(tl. I>, en: Int} 11gn• (.....,._ .. , bounc:11) 
madltlN a. 
eftecta Jf cnt< o, lignall fNl(Jdve_,_..., dDM ftllobllttl-, locka. Olher1••• GbtalS a 

wtlelockona. lflJ<Ql(a)or6>,_._1,dlfl••• Olwwlee.me•11aby 
removinO ......... WIil Index< • ., ... , ... Of ..... to ..... ftlW low 
bound ii IJ. For tu .. I a• 11Hall.,..l!v11IJII .t.U.4.11, 111ft: . 

... z. 2) ................ ,,,._ ......... : 2, 31 
trim(a, 4, 3) ANIUII In a ttaw11 W11111> ••11•_..,Jill)t(-4: 4, 5J 

store • P1UC (a: IIOllllc_arnlftl). I: Int, elem: t) ■1111111 .fboUndl) 
modllll& 
efll- Obtalrll a wrlll look on a. I I < iM(a) OI I> ltrlgll(a), signall bounds; othelWlse 

makes ..,,, the element of a wlh fndlx /. 

fetch • proc (a: IIGMlc_llfllll(IJ. I: Int) -- (t) ..... et,ouncll) 
elllcta If / < bil(a) or I> flWICa), •-- lloullll; ...,.. retuma lie ..... of a with 

Index/. Alw8VI--. a read toclkon a. 
bottom -proc (a: lllolnlc_--,(1)) ..... (I) 1111&111 (baundl) 

...._ If a ii ..,_, str,M IJoundl; Gllwwill Mtuml ll(low(a)J. M#aya obta6nl a read 
loakona. 

top• P10C (a: ldOllllc_--,PD NJIUffll (t) -■11 (boulldl) 
..... If a la._, lignall bounds;---.,._. t(~. Always~ a read 

lockon a. 

empty• proc (a: IIG■lc_--,(1)) ..... (Nol) 
enecta Aeluml 111111 I a contalnl no elemtnls, AIIUml llllle ollerwlae. In either case 

obl8inl a read lad( on a. 

size - proc (a: ••_ana»N) -- (Int) 
...._ Returns a count of lhl num.,er of elaffllftll of a. oblairll a read lock on •· 
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low= proc (a: atomlc_amiy[tD ...,. (Int) 
effects Returns the low bound of a, obtains a read lock on a 

high• proc (a: atomlc_anay(ID N1UrM (Int) 
effects Retuma the high bound of a, obtains a read lock on a. 

elements • .., (a: atomlc_arni,ft:D ylelda (t) alglllla (talunl(lll'tlll)) 
effectl Oblalna a read lock on • and yieldl "' 1l1fflllllll of a, each exactly once for each 

Index, fR>m the low bound to U. high boLN (Le •• lllatmC-..,.>, ... , ,ap(a,._)). The 
elemanl8 are felchld one at a lime, Ullftg 1111 ...._ 1111..,. legal at U..,. of the 
call. If, during 1he llerlllion, a II moclfled 10 1h11 felclJng II a prevtouely legal Index 
signals bounds, then the lerator slgnat8 faJlun# wlh lie llltng "bounds•. The lerator Is 
divisible at yields. 

indexes• lter (a: atomlc_arra,[tJ) ylelde (Int) 
effectl Otulns a read lock on a, thin yieldl 1118 Index• of • fftMII I'll tow bound of a,.. to 

the high bound Of ~- NM that indfMN II unafllcted .. "'1 fflOdlicalionl done by the 
loop body. It la dlYiil>le at yields. 

aa2a • proc: (aa: atomlc_llffllY(t)) NlltlM (lffllY(tD 
ettecta Obtains a read lock on aa and retums an array a wlh the same (sequential) state. 

a2aa - proc (arra,CtJ) retume (aa: a1a1111c_--,PD 
effects Returns an atomic_..., aa with the same Slate as a. Otuins a read lock on aa. 

equal - proc (a1, a2: atomlc_arra,lt)) .... (l:lool) 
effects Returns we I a1 and a2 nder to the ume atornlc_anay object; otherwise retums 

falN. No loclka are oblatned. 

similar• proc (a1, 82: atomic_~) ,..,,.. (boot) 11tn111 (falure(8b'lng)) 
raqulrN t has sJmllar: ProctvPt (t, t) NIIA'M (NOi) 111n111 (tllu9(atrlng)) 
effects Returns true I a1 and .a have .. Nffll low and hlOh bound■ and I their 8'ements 

are pairwiae llmlar u cletermlNd by ..,__ lee lh8 ~ of the llmJlar 
operation of ..., for an equivalent bOdJ of ODCII. Thia operalion ii clvlll)le at calla to 
£Ssim#lar. Read loc:kl are obtained on a1 and a2, in ttlll Older. 

slmilar1 • proc (a1, a2: IIIOlnlc _arrav(tD .... (bNI) •11•11 (talunt(llrlng)) 
raqulrN t has 1C1,.181: ProctvPt (t, t) --...., ....... (falue(alltng}) 
effects Returns true I a1 Md a2 ha,e tit ... tow and lliglt talndl n I their -.ments 

are pat,wtae ..,. aa ....... by • ..,,.. Thll op10'lldon works the same way as 
slmllar, except that •equal II Ul8d inlllld of ...... React loc:ka are oblainad on a1 
and a2, in that otder. 

copy • proc (a: atomlc_lll'l'IIY(t)) Nllllffll {b: atomlc_lffllYltD llpll1 (falure(atrlng)) 

raqullw 'has copy:,,..,.. (1) ...... (t) -··· (faMln(alltng)) 
etrecta Retuma a new.,_ ~ b wllh tbe l8ffll m n lllgh bounds as• and such 

that each element t44 ~ ~a(4). See._ de•IMI of the CDPJ< opa,atton of 
array for an ~•rt body of code. Thill operallon ii clwial)la at calll to !Sa,py, and 
obtains read locks on a and b. 

copy1 • proc (a: alOmle_anay(t)) ..... (b: IIIOffllc_--,(t)) 
effects Retuml a new IIDmlc_array b wlh tt,e .... tow and high bounds a a and IUCh 

that each elemffl t44 conlalnB the ume el8'118nt • a(4. Read locks are obtained on a 
andb. 
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transmit • proc (a: atomic IIITIIY(t)) NIUmS (b: atomic anay(tJ) algnala (failure(atrlng)) 
requll'N t has trananl -
affects Returns a new anay b with the same low and high bounds as a and such that each 

element 1(4 corulnl a transmitted copy of alt. Read locks 8f8 obtained on a and b. 
Sharing among the elemelu of a .. prel8Md in b. Slgl\8II failure I b cannot be 
represented on the recaMng end or I fetching an elemert at a legal index of a,.. causes 
a bounds exception and resignats any fa/lunJ 1iQn111 raised by ....... 

test_and_react-proc (aa: IIIOmlc_llffllY(tD ...... (bool) 
affects Tries to obtain a read lock on aa. If the lock ii cb&alned, ratuma true; othefWi8e no 

lock Is obtained and the op8flltion Nturnl ..._, Tltl OJl8flllion dDes not -war for a lock. 
Even I 1he executing aclon "knows• that a .- could be ___,, ..._ may be 
returned. Even I ,.._ ii returned, a 8Ubee(JJet1 alt8ff1'I to obtain a read lock might 
succeed without waiting. 

test_and_write • proc (aa: IIIOffllC_anaytt)) Ntuma (boot} 
effects Tries to obtain a wrle look on aa. It the lock ii otuinad, retums true; othefwile no 

lock Is obtained and the operation reuna ,.._, TIie ope,alion does not "W8I" tor a lock. 
Even I 1he executing aclon "knows• 1h11 a IDdt could be obealnld, ..._ may be 
returned. Even I 1111N ii lftlffl8d, a subeequenl attempt to obtain a wrle lock might 
succeed without waling. 

can_read • proc (aa: atomle_llfflly(t)) NIUffll (boOI) 
effeCls Retums true If a read lock could be obtained on aa wlhout wailing, ethetWise 

returns fllllll. No lock is actualy obtained. Even I the executing action ,.._., that a 
lock could be oblalned, ... may be relUmld. Since 101'118 concurrent adloft may obtain 
or releale a lock on an alQmlc_array at "'I IRl8,.,. lnlom:A1l1r; rlfumld ii unrallble: 
even I true ii relumed, a tubaequent...,. to__, lie lod< ma,,..,.. welinl; and 
even I fltlN is returned, a alblequenl .._ to oMaln a read lock fflilhl succeed 
without waiting. 

can_write • proc (aa: IIIOmle_array(t)) NIUme (boot) 
affects Returns true I a write lock could be obtained on aa without waiting, otherwise 

returns flllN. No lock ii dJ8ly obtained. Even I the executing action "knows• that a 
lock could be olltulld, ..... may be returned. Since - COflCUlNf1C action may obtain 
or releale a lock on an alDmic _ _,., at lllflJ lime, Ill inroRllatlon ,...,_ ii unntlable: 
even I true ii Ntumed, a aubeeql• allfffll lo elllllalR lie lock~,.._ wailtf'II; and 
even I falee ii retumed, a tublecpar1 llllenipt to oblailt a write lock might succeed 
without waiting. 

read_lock • proc (aa: alollllc_array(tD 
effects Obtains a read lock on aa. 

wrlte_tock • proc (aa: lllomlc_array(t)) 
effects Obtains a write lock on aa. 
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similar • proc (s1, s2: st) NIUma (IN,ol) ...... (falHe(llflnG)) 
requtree each ~has slmltar: practype (~. tt>,.... (Nol) llgnala (failure(alrlnG)) 
effects Returns true tf st and S2 co,_.. limllat' ~ tor each OOf1'10t18Al • determined 

by the ~ operations. Arf'/ fallure algnal II ffl"MClately resignalled. This operation 
does not itsel originate any lallure signal. The ~ ii done In lexicographic order 
of the selectors; I any comparison retume ,.._, flllle ii returned Immediately. 

copy - proc (s: st) '9IUlna (st) llgnlll (falkn(Mrlng)) 
requlrN each t, has copy: practype <tt> ...... (tt> ...... (failure(ltrlng)) 
effects Returns a stft.ld containing a copy of each 00fq)Ofllnt of s; copies are obtained by 

calling the t,a,py operations. ArP/ Win signal ii lnlfflldltely resignalled. This 
operation does not lt8el originate any falure signm. Copying is done In lexicographic 
order of the selectors. 

tranamN - proc (s: st) ratuma (at) algllllla (1ailure(ltrlng)) 
raqulrN each t1has tranlffllt 
effects Returns a stNC:t containing a trwmlHed COPr of each component of •· Sharing is 

preserved among the componenll of s. Mt ,..... signal from ~It is 
immediately resignalled. Thia operation does not .... originate ,,,, fllllutw slgnaf. 

11.12. Records 
record• data type (n1: t1, ... , I'\= ttJ la r_gats_r, r_gats_s, sat_n1, ... , set_'\, get_n1, •.• , get_'\, 

equal,slrnllar, limHar1' copy, copy1' ........ 

Overview 

A NCOl'd ii a mutable collection of one or mont IWMd objNta. The namN are calld ~ 
and the objects are called oomponenls. DNferenl componanl8 may have different types. A record 
also has an Identity as an object. 

An Instantiation of record has the form: 
racord [ fleld_spec , ... ] 

where 
field spec : :: name, ... : type actual 

(see Appencifx I). Selectors fftJ8t be wikJ,e wlhin an instantiation (Ignoring capltaization), but the 
ordering and grouping of selectors Is unlrr1)0ftant. For exaq,le, the following name the same 
type: 

record(last, first, middle: atrlng, age: Int] 
racord[last: atrlng, age: Int, first, middle: string) 

A record is created using a record constructor, see Section 8.2.11. 

For purposes of the certain operations, the ttll rws of the 11l1elofs .. o«terec:t 
lexlcographically. Lexicographic ordert.,g of the NleCIDrl ii tt'8 alphabaUc Oldarlr,g of the selector 
names wrtlten In lower case (based on the ASCII ordering of charlctera). 

In the following definitions of record operations, let rt - ~n1: t1, ... , f\: ~). 
Operations 

r_gets_r • proc (r1, r2: rt) 
modltlea ,1. 
effeCla Sets each oo~nt of r1 to be the corresponding oo"1)0nent of r2. 
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11.13. Atomic Records 
atomlc_record • data type [n1 : t1, ... , '\: ttJ ■ ar....r,eta_ar, let_n1, ... , Nt_f\, get_n1, ... , oet_f\, 

ar2r, r2ar, equal,limiiar, llmllar1, ~. ~1 .......... . 
test_and_read, test_and_wrtte, can_read, can_wrile, read_lock, wrtte_lock 

overvtew 

An atomlc_record Is a rruable atomic collecllon of one or more named objects. The names are 
called SBleclors, and the objects a,e called c:onp,nenl8. Dlfetenl components may have dlferent 
types. An atonic _ recoro alao has an ldenllty as an otJieCt. 

An Instantiation of IIIOmlc _ reconl has the form: 
atomlc_record [ fleld_spec, ... J 

where 
tield_apec : :: name, ... : type ~ 

(see Appendix I). Selectors nut be.,......,.• 1n1 .. llllian tiln&MUIIJ aaplallaten), but the 
oroertng and grouping of l8lectors le unimportant. For exan,,18, the followtnQ name the same 
type: 

atomic - record[IUt, flnlt, middle: """'· age: lnlJ 
atomlc_record[last: atrtng, age: Int. firlt, middle: lllrlng] 

An atomic_record is created using a atomic_record constructor, see Section 6.2.11. 

For purposes of the certain operations, the the l'Wft88 of the selectors are oRiered 
lexicographically. Lexicogrlphic ordering of tl'l8 11l101Dra Is the alphabetic oldering of the sefedor 
names written In tower case (baaed on the ASCH ofttering of characters). 

Atomic_ records uae read/write locking to ac:hNMt atomlcly. The locking rules are described in 
Section 2.2.2. It is an em,r I a l)R)C888 that Is not In an action attefl1>t8 to test or obtain a lock; 
when this happens the gua,dan running the pR>CIII wil c:nah. All defined below, the only 
operation that (In the normal case) does not altenipl to lNt • oblaln a lock is the equal operation. 

In the following, let art• atomlc_NCOrd(n1: t1, ..• , '\: tJ. 
OperatlOna 

ar_gets_ar • proc (r1, r2: art) 
modlflee rt. 
effect8 Obtains a write lock on rt and a read lock on r2, then sets each OOl11>()f18flt of rt to 

be the oorresponding component of r2. 

get_"i • pn,c (r: arl) l9IUffll (It) 
effect8 Obtains a read lock on , and returns the 00"1)C)nant of r whose setector is n, There 

is a get_ operation for each seleclOr. 

set_ni • proc (r: art, e: \) 
modlflNr. 
effeCls ~ a write lock on , and modifies , by making the component whose selector is 

n1be •· There Is a BBi_ operation for each seleclor. 

ar2r • proc (ar: art) NIUrM (r: art) 
effeCla Oblalns a read lock on ar and retums a record ,with the same state. 

r2ar • proc (r: art) Nklffl8 (ar: art) 
effecls returns an atomic_reoord arwtth the same state aa ,. Obtains a read lock on a,. 
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equal - proc (r1, r2: art) natuma (bool) 
ettecta Returns tNe if ,1 and r2 are the very same atomic_reoord object; othelWise returns 

falN. No locks are obtained. 

similar - proc (r1' r2: art) natume (bool) ........ (faHure(atrtng)) 
requlrea each t; has similar: practype <'-~ ..... (...,) _,... (failure(atrlng)) 
effecta Obtan a read lock on r1, then a read lock on 12'. ""' ~ correaponding 

components from ,1 and r2 uelng the t~ oplflllDnl. Any tllllure aigrl8( is 
immediately resignalled. Thia opetadon does not llNlf odgiNde Int fallule llgnal. The 
comparison is done In lexicographic order of ......... ; • ..,, comparilon returns 
falN, falal ls returned lmmedlately. If al~ A11Um tnle, returns true. 

simllar1 • proc (r1, r2: art) ~ (boot) 91g,_ (falln(....,.)) 
requtrea each ~ has equat: ptQCtype (\, ft) -- (NOi) 111gn111 (failure(atrtng)) 
ettecta This operation is the same • almllar, except 1111 ~ is Ul8d inltead of 

'~-
copy• proc (r: art) retuma (res: art) algnala (faflure(atrtng)) 

require■ each t1has copy: p,octJpe (ti)--~ ....... (fallure(lbtng)) 
ettecta Obtalna a read lock on ,, then ...,. a naw IIOffllc_record ,. obtained by 

pe,forming copy1(,, and then replacing eactl ~--wlh a copy of the corresponding 
component of ,. Copies are oblained by callngtlie ..,,......,_._ Ant ,.,,_ lignal 

is Immediately resignallld. Thie operation does not ........... """"" ..... 
Copying la done In lexicographic order of 118 MlaclOfs. A read lock 18 ateo obtained on 
the new atomic_ record ,._ 

copy1 • proc (r: art) NIUl'M (res: art) 
ettecta Obtains a read lock on ,, then retuma a new IIIOmlc record ,_ conalninO the 

components of , as h components. A read lock ta alllo obtained on the new 
atomlc_record fN. 

transmit - proc (ar: art) Nluma (art) IIQtlllla (falltra(ltflna)) 
Nqulrea each ,, has tnlMllllt 
effecta Returns a new tllDl'ric_record ~ a traAlmllted copy of each component of 

ar. Sharing ii pr888Mld among fie components of •· A read lock Is otJ&ained on • and 
the new atonic_array. Any failure signal tn,m --•--- ta immediately Naignaled. 
This operation does not Itself originate any failure algnal. 

test_and_read • proc (ar: art) natum■ (bool) 
effects Trtes to obtain a read lock on ar. If the lock is obtained, returns true; othatwiN no 

lock is obtatnec:t and the operation ratuma ,..__ The operation does not 'Wal" for a lock. 
Even If the exeaJting action "knows• that a lock _. be oblalned, 1111111 fMY be 
returned. Even If falN Is re1umed, a subsequent attempt to obtain a read lock migl1 
succeed without waiting. 

test_and_write • proc (ar: art) retuma (boot) 
effects Trtes to obtain a wrte lock on ar. If the lock ii oblainld, retuma tNe; otherwf8e no 

lock Is obtatnec:t and the operation retums falN. The opM'llllon does not "'Wd" for a lock. 
Even If the exea,tlng action "lcnowa. that a lock could be Gbtalnld, ,.._ may be 
returned. Even If fale8 Is returned, a subNcpMlt ..__ to obtain a write lock might 
succeed without waiting. 
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value_'1j • Pf'OC (o: ot) nllUme (tt> ...,_ (wrong_tag) 
effecta If the tag of o is n,. returns the value of o: otherwise signals wrong_tag. There Is a 

value_ operation for each selector. 

o2v - proc (o: ot) returns (vt) 
effecta Here vt Is a variant type with the same seleGtors and types as ot. Returns a new 

variant object with the same tag and value as o. 
v2o • proc (v: vt) retuma (ot) 

effecta Here vt Is a variant type wlh the ume setectora and types as ot. Returns a oneof 
object with the same tag and value as v. 

equal • proc (o1, 02: ot) ..... (bOol) ....... (falkn(llltllg)) 
requlrea each t, has equal: proctype (\, \),.... (NOi) ....... (fd.n(ltrlng)) 
effecta Returns.,..• 01 anct oa hMt-. .... - ... .,.. va1uM • •-•tmlMd b¥ the 

equal operation of their dlla pa,t'I type. M/ .... IIIMI ll illlm11 .. •1•r 111 .. llcl. 
This operation does not IINlf ortglnate llnf ,..,,_ ..... TNe opellllon ii dlvlllJle at the 
call of ,,equal. 

simHar • proc (o1, o2: ot) ...,_ (bool) __.. (falute(atrtng)) 
NqUlrN each t, has llmilar: proctvpe (\, tt> ..... (IINI) ..... (failure(lll'lng)) 
lffecla Retuml 11119 If 01 and o2 have the l8ffll - and limllar Yafuel M detefmined by 

the sinilllr operation of thetr value's type. Any ,.... .... II Immediately reslgnaled. 
This operation does not itself originate any failure signal. This operation Is dMllble at the 
can of t~lar. 

copy - proc (o: ot) l'8tUml (ot) algnata (falure(8lrlng)) 
requll'N each ,, has copy: proctype (\) retwna (ft> ....... (failure(atrlnl)) 
effects Returns a oneof object wlh the same tag as o and CON8inlng as a vaJue a copy of 

<is value; the copy la made Uling the copy operation of the value's type. Any flllJure 
signal Is lrnmedlately reaignalled. Thill ..,.._. dDN not ltaelf ortglnate any fa/lure 
signal. This operation la dlvlsl>le at the call of ~-

transmit• proc (o: ot) retume (ot) •tallllla (fallure(8tl'tng)) 
requires each t; has tf'81'1811111 
lffecla Returns a oneof objed with the same tag as o and containing as a value a 

transmitted copy of <is vabe. Afr/ fllllure signal la Immediately reslgnaled. This 
operation does not itself originate any fa/lure signal 

11.15. Variants 
variant• data type [n1: t1, ... , I\: ttJ 18 make_n1, ... , make_'\, change_n1, ... , change_nk, 

is_n1, ... , is_l\, value_n1, ... , value_'\, v_JIIJta_v, v_gets_o, 
equal, simHar, slmilar1, copy, copy1 , tranemN 

Overview 

A variant Is a mutable, tagged, discriminated union. Its state is a oneof, that Is, a labeled object, 
to be thought of as ·one at- a set of altematwes. The label Is calld 118 IIIQ part, and the object ii 
called the vall.NI (or data part). A variant al8o has an iclenlly as an obfect. 

An instantiation of variant has the form: 
variant [ field_ spec , ... ) 

where 
field_spec ::: name, ... : type_actual 

(see Appendix I). Tags l1IJ8t be unique within an instantiation (Ignoring capitalzation), but the 
ordering and grouping of tags Is unimportant. 
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Although there are variant operations for ~ variant objects, they are usually 
decomposed via the tagcaae statement, which la dllCll888d In Section 10.14. 

In the following let vt • varlant(n1 : t1, ... , F\: 1-J. 
Operations 

make_"• proc (e: ti) returne (vt) 
effects Re1uml a new varlln obieCt wittl tag n1 and vHMt s. There Is a make_ operation for 

each selector. 

change_" • proc (v: vt, e: \) 
rnodlflN v. 
effeCt8 Modifies v to have tag n1 and value e. There is a changB_ operation for each 

selector. 

is_n1 • proc (v: vt) rwtume (boOI) 
effeCt8 Returns true If the tag of v Is n~ otherwise returns falN. There Is an is_ operation 

for each Nlector. 

value_" • proc (v: vt) returns (ti) slgnala (wrong_tag) 
ettacts If the tag of v is n; retuma the value of v, otherwise signals wrong_tag. There is a 

value_ operation for each selector. 

v_gets_v • proc (v1, v2: vt) 
moclltlN vf. 
effeCt8 Modifies v1 to contain the same tag and Yak.Mt • v2. 

v_gets_o • proc (v: vt, o: ot) 
modNIN V. 
effeCt8 Here ot Is the oneof type with 1he same sel8ctorB and types as vt. Modifies v to 

contain 1he same tag and value as o. 
equal • proc (v1, v2: vt) Nlln8 (boot) 

eflecls Retuma true I vf and v2 are the same variant oblect-
slmllar • proc (v1, v2: vt) ...,. (boOI) slgnal8 (faue(lll'tn1)) 

...... uch ~ has lilnltar:....,.. Cit,~ ..... ,_., ....... (fallufe(...,.)) 
eltlCla Retuml true I vf - wl ... Ill ---.,. ..... _,.. M dlllnninad by the 

similar operation ot 1helr vaue·a tp. MY ,..,. .... 11 ...,.. .. ,., ,111t11t111i:1. This 
operation does not .... onglNlle any ,.,,.. ..... Thie operation. clvilt,le at the caH 
oft~. 

similar1 • proc (v1, v2: vt) NIUml (boOI) algnlla (falkn(tltftllg)) 
requ1,.. each ,, has equal: practype Ctt, \) ...... (bOol) ...... (failure(8111ng)) 
effecta Same as aimllar, except that ~la UNd lnltlad Of t~mllar. 

copy • proc (v: vt) NtUme (vt) ...,... (failure(atrlng)) 
raqulnNa eac11 ~ has copy: pn,ct,Pe <-.> --N 111•1■ (falure{1tttng)) 
effects Returns a va,tant obi8CI wlh the llffll Ill • v and ODrllaining as a Yliue a copy of 

V'I vakJe; the copy is made ualng the ct/11'1.,.,..._ of 1t1I value's type. Any fa/lure 
signal Is lmmediatety reeignaled. Thta openllfoil\ d0ea not Itself originate any failure 
signal. Thia operation is dMll>le at the call of ~-

copy1 • proc (v: vt) NIUm8 (vt) 
effec.t8 Returns a new variant object with the same tag as v and COJCainlng V's value as Its 

value. 
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transmit • proc (v: vt) returne (vt) •IGnata (f ailure(8trlng)) 
requlnla each t1 has tranamlt 

Bullt-ln TypN and Type Generators 

eff8Cl8 Returns a variant object with the same tag • v and containing as a value a 
transmitted copy of ~s wwe. Aff/ flllltn signal ii Immediately resignalled. This 
operation does not belf originate any fallure algnal. 

11.16. Atomic Variants 
atomlc_varlant • data type (n1: t1, ···• I\= \118 make_n1, ... , make_f\, change_n1, ••• , change_'\, 

av_gets_av, ls_n1, ... , is_'\, vakle_n1, ... , vlbt_l\, IN2v, v2av, 
equal, similar, slmHar1, copy, copy1, ,,.,..., 
test_and_read, test_and_write, can_read, can_wrtte, read_lock, wrlle_lock 

Overview 

An atomic_varlant is a mutable, atomic, tagged, dilCriminaled liN'llln. lls ltllte II a oneof, that II, a 
labeled object, to be thougtt of u "One of' a at of d1rnaa.1. llle label Is called the taQ part, 
and the obi8Ct Is called the vlllw (or data part). An alOmic_variant alao has an iderdy as an 
obiecl 

An instantiation of atomic_ variant has the form: 
atomle_vartant ( field_spec t ■■■ J 

where 
field spec::: name, ••• : type_actual 

(see Appendix I). Tags fTIJ8t be unique wlhin an Instantiation (Ignoring capitalization), but the 
ordering and grouping of tags Is unimportant. 

Although there are atomlc_variant operatiDna for decompoulg atomic_variant objects, they are 
usually decomposed via the tagtNt statement or ~ atalement, which are dl&aJssed in 
Section 10.15. 

In the following, let avt • atomle_varlant[n1: t1, ... , '\: t,J. 

Operation• 

make_ni • proc (e: ti) MIUme (av: avt) 
etfecla Returns a new atomic_ variant object av with tag n1 and value e. Obtains a read lock 

on av. There is a make_ operation for each Nlector. 

change_ni • proc (v: avt, e: \) 
modltlN v. 
effacts aulns a write lock on v, then modlles v 1o have tag n1 and valle e. There Is a 

change_ operation for each selector. 

av _gets_ av • proc (v1, v2: avt) 
mocHftN V1. 
eff8Cl8 Obtains a read lock on v2 and then a write lock on v1, then modifies v1 1o contain 

the same tag and vak.le as v2. 

is_rlj - proc (v: avt) Ntuma (bool) 
effects Obtains a read lock on v, then retums true I the tag of v Is n~ othefwise returns 

falN. There Is an is_ operation for each selector. 

value_11i • proc (v: avt) ratume (ft) lllgnale (wrong_tag) 
effects Obtains a read lock on v. Then, I the tag of v la n" returns the value of v; otherwise 

signals wrong_tag. There is a value_ operation for each selector. 
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av2v • proc (av: avt) retuma (v: vt) 
effects Here vt Is a variant type wilh the same 11l1ctora and types as avt. Obtains a read 

lock on av and returns a variant vwlth the same state. 

v2av • proc (v: vt) ,..,_ (av: avt) 
effects Here vt Is a variant type wlh the same Nlldors and types • avt. Returns an 

atomic_ variant avwlh the same Slate • v. Obtains a read lock on av. 

equal • proc (v1, v2: avt) relUma (bool) 
eflecls Returns tnle I v1 and v2 are the same atomic_varianl object. No locks are 

obtained. 

similar• proc (v1, v2: avt) ,_..,,. (boOI) ........ (falure(tlltnl)) 
raqulnls each t; has similar: pn,ctype (~. tt> ...... (IINI).....,. (fal.tre(1trtn1)) 
effecta Obtainl read lodc8 on v1 and va, In Olller, .., 1111'1 _,..... the objects; returns 

true If v1 and v2 have the same tag and ..... -- as dllemlinld br the lllmllar 
operation of their type. Ant fltHute lignal II lmm1rl•Ifi ........... Thll oplflllton does 
not Itself originate any fallurfl signal. Thia operation la dlYl8IJle at the caN of t~. 

simllar1 • proc (v1, v2: avt) Ntuma (bool) ...,,... (fallUra( .... )) 
raqulnls each t; has equal: pn,ctype {\, 1t) ..... ...., ...... (fallure(ltrtng)) 
effecta Same as similar, except that ~ la UNd lnltead of t~mllar. 

copy • proc (v: avt) NIUffla (avt) llgllall (fallunl(....,) 
requires NCh t1haa copy: pnactype Cit) ....... (It) ....... (faln(lll1ng)) 
effecta Oblalnl a read lock on v, then ,..,,. ., IIOmlc_ vartant obied with the same tag as 

v and cor1alntng as a value a copy of lla value; the copy ii made Uling the copy 
operation of the value's type. Jtny fallurfl lignal II lmmldllltely resignalled. This 
operation does not bel originate any fallurfl aignal. Thia operation is dMalM at the call 
of ,,a,py. A read lock 18 obtained on the ....,.. 

copy1 • proc (v: avt) retums (avt) 
effects Obtains a read lock on v, then returns a new atomic_variant object wtth the same tag 

as v and containing v's value as Its value. A read lock Is obtained on the resul. 

transmit• proc (v: avt) NIUrnll (avt) elgftlla (failure(ltflna)) 
raqulnls each t, has tranamlt 
effects Returns an atomic_ variant object wllh the ume tag as v and containing as a value a 

transmill8d copy of "'' vaue. Q)taltw a read lock on v. Ant failure s1gna1 1& Immediately 
resignalled. Thia operation does not .... o,tginate any failure Signal. 

test_and_read • proc (av: avt) relUml (boOI) 
effects Tries to otJlaln a read lock on av. If the lock Is obtained, nttums true; otherwise no 

lock is obtained and the operation reluffll ...... The operation doel not wr tor a lock. 
Even If the executing action "knows. that a lock could t,e o11t11ned, ... may be 
returned. Even I flllN Is returned, a alblequeftl atlempt to obtain a read lock mighl 
succeed without waling. 

test_and_wrtte-proc (av: avt) relUma (bool) 
effects Tries to obtain a wrle lock on av. ff the lock ii obtained, retuma true; othefwtae no 

lock Is obtained and the operation retuml ...... The operation ... not "War tor. lock. 
Even I the exea.ttlng acdon "knowa. that a lock could be oblained, flllN may be 
returned. Even If ,.. i8 returned, a IUblequent ..... to obtain a wrte lock might 
succeed without waling. 
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can_ read• proc (av: avt) ...... (bOol) 
8ffec1s Aeluml UU. I a l'Nd tock could be a&:IIIIIMd 0A IN willout waiting, olwwiN 

retuml flllle. No lock II lml8" oblllnld. Even I tht •n•CIUIIIW ac1to1'1 "knows• ttlllt a 
lock oouldbe olJlllinld. 1111e mar bl Nllumld. .__.....,...,,. mav obeul 
or relHII a lock on an ... _..._.•-,-. .. -.11111n ,..,,.. II unrelrtte: 
even I 11119 II MUfflld, a•• .. •• ••1•••--lletoak •.: "'"" wrlfng; and 
even I flllle II retumed, a ■....- 111 • tr:> .... a ,_, lock fflfGl'1t IUC089d 
wlhout wab'lg. 

can_ write • pn,c (av: 1M) .... (Nol) 
.,,_. Aeums ... I a Wftte tock cauld be obllllnld on ,w wltl0Ut waiting, ...,.. 

retume ..... No lodl r •·alJ ol3SlfnN. e.n I llt ..u1ng .._ "kncMl8 l'llt a 
lockcauldl»ot:Jlllnld. .... mayberelumld. ___ .....,...., m■,lllllaln 

orf'll1•1aloClkonan.,.. _ _...._, ..... .,, 111M1an,.,11'1t11•w111l1bte: 
evenltnaell....,_,111•11.-1•11111 ........... _, ............ 
even If fllle II l9lumld, , ••-•• ••r• • .... a_.. leek mlQN IUCONd 
wlhout walling. 

read_lock • proc (av: avt) 
.,._.. Cbalnl a INd lock on av. 

write_ lock • PNC (av: avt) 
eflecla 0blains a wrle lock on av. 

11.17. ProcedurN and Iterators 
proctype ---.,... ............ copy 
ttertype ... .,.. ...... ,..,,capy 

Overview 

Procedures anCII lleratonl are objlct8 cnated by ttle Alp ay••m. TIii l)IP8 ~ tor a 
procedunt or l8rator corDll1I ,.. of the inklmtlJll11111..., In a,..... or..._ hNdlng; a 
procea,19 ............ to,m: 

proctype ( [ type_apec' ... ) ) [returns) [ .... ) 
and an Iterator type apec:llcatton haa 119 tDrm: 

...,.,. ( [ type_spec' ... ) ) [ ytefdl J [ --J 
where 

returns ::: Ntuma (type_apec, ... ) 

yields ::: ,.... (type_spec I -■■) 

signals ::: ...,... (exception , ... ) 

exception ::: t'WM [ (type_apec, ... ) ] 

(see Appendic I). The flrlt lat of type Ill._. d11r:1lll11 .. IUllber, typN. _,_.., of ~- Tht,...,..,....,. ..... ,..., ..................... lo .. 
ratumedor,111r11c1. 1111 ,. • ..,.. .... n u1tin1_..._,.,,..H•••....,;for 
each exoeplOn ..,., tt11nu•n, .... _....,., ... •11J••••-•--•a11t..,_ 
Al nam81 UNdaa 111■ 111 .... ........... 1111 ••n•• ·-··• ■- •·••nt. For..,..,balhor•••-•••• .. •• .... ,.., •• _...,.., .. ...,. 

proctype (ltl'tllg, - 11111) fl- (Ill .. •·•• (llltll- •1,1IJ1_11ze) 
pn,ctype( ............................... _ ... ,IJCu'tdl) 
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Procedure and Iterator objecta are created by compllng nmJIN (and by the bind upression, 
see Section 9.8). Procecln and lleralor types are not nnem1111,1e and are COfllidered to be 
immutable and atomic In nonnaf UN. However. eome UNI of own data (see Section 12. 7) In 
procedures and iterators can violate this usumption. 

In the following operation descriptions, t stands for a proctype or lertype. 

Operations 

equal - proc (x, y: t) returns (bool) 
similar • proc (x, y: t) relUmS (bool) 

effacts These operations return tn,e if and only I x and y are the same i"l)lementation of 
the same abstraction, with the same parameters (see Section 12.6). 

copy• proc (x: t) returns (t) 
effects Returns X. 

11.18. Handlers and Creators 
handlertype - ... type .. equal, limllar, copy, t,....... 
creatortype • ctata type le equal, similar, copy,.,...... 

Overview 

Handlers and aeators are created by the A9J8 system. The type specJHcatton for a handler or 
creator contains moat of the information stated In a handler or creator heading; a handler type 
specification has the torm: 

handlertype ( [ type_ spec , ... ] ) [ returns ] ( signals ] 

and a creator type specification has the form: 

Cl'8IIIOrlype ( [ type_spec , ... ] ) [ returns] [ signals ] 

where 

returns ::: returns (type_spec, ... ) 

signals ::: slgnale (exception, ... ) 

exception ::: name [ (type_spec , ... ) ] 

(see Appendix I). The first 11st of type speclicaUonl clNcrbN the number, types, and order of 
argumanta. The NIUma clule ...... number, types, 8ftd Older' of the ... 1G be returned. 
The alslnallclw Ila lhe ___,. ralNdbylhehWllr0tCNt11LW; IGtNCh ~ name, 
the number, typel, and order of the obilda to be NtUIMd Ma IIIIO QHM. Al ,_,_ UNd in a 
Slgnala ctauae RI.Ill be unlcJ,e; none can be UfflMllbe,«f or fd.ft, which have a pre-defined 
meaning for ,emote calls (see Section 8.3). The on:ta,tng of excepUons Is not in,,o,tant. 

Creators are created by ~ modules, and handlers are created as a side-effect of guardian 
creation. Handlers and creators are transmisst,le and are COl'llid8red to be inVnutable and atomic 
in normal use. Certain uses of own data In handlers can violate this 88Sllff1)tlon. 

In the following operation descriptions, t stands for a handlertype or aeatortype. 

Operations 

equal - proc (X, y: t) ntturns (bool) 
similar • proc (x, y: t) relUmS (bool) 

effects These operations return true if and only I x and y are the same object (see Section 
12.6 for an exact definition for the case of creators In guardian generators). 
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copy • proc (x: t) ......,. (t) 
tranaml - proc (x: t) l'8IUm8 (t) 

effects Returns x. 
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11.19. Anya 
any• data type Is create, force, is_type 

Overview 

An object of type any contains a type T and an object of type T. M't8 are lmnUable and are not 
transmlssl>le. Anys are atomic only If their contained Obi8Ct Is atomic. 

Operations 

create - proc[T: type) (contents: T) ratuma (any) 
effects Returns an any object containing contsnts and the type T. 

force • proc(T: type) (thing: any) returns (T) slgnala (wrong_type) 
effects ff thing 00Ralr1I an object of a type lncUded In type T, then that object Is returned; 

otherwise M'DnO_tn» Is elgr.alad. 

is_type - proc(T: type) (thing: any) ......,.. (bool) 
effects If thing contains an object of a type Included In type T, then true is returned; 

otherwise, ..... is returned. 

11.20. Images 
Image - data type Is create, force, ls_type, copy, transmit 

Overview 

An object of type Image Is the value of an arbitrary transmlSsl>le type. See Section 14 for more 
detaHs. Images ant immulable, atomic, and transmilllJle. 

Operations 

create • proc[T: type) (contents: T) l'8IUml (llnage) _,.... (fab9atrlng) 
requllM T ,_ tranMIII 
eflect8 Returns an Image object obtained from contMts Yia the encods operation of T. 

Reslgnals any fllllunllignal railed by rs MtDOdeape,ation. 

force • prac:(T: type) (thing: --, ..... (T) atgllllla (wrong_type, fallure(atrtng)) 19qu1,_r._..,_. 
effects If thing encodes an object of a type lncbted In type T, then that object is extracted 

using the d«XJdtl operation of T and retumed. Oltwir:1118 wrong_typtJ Is signaled. 
RestgnaJs any failure 8ignal ralNd by r, dtlt'Jodtl aperatlon. 

is_type-proc(T: type] (1tling: Image) l'8IUml (bool) ,..._T,_...._.. 
effects If thing encodes an object of a type Included In type T, then true is returned; 

othetwtae, ..... ii returned. 

copy - proc (thing: Image) ..... (lnlllge) 
tranemlt - proc (thing: ..... ) NIUl'III (llrtage) 

effects Returns thing. 
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11.21. Mutexea 
mutex- data type(t: type) la create, set_value, get_value, changed, equal, similar, copy, transmit 

Overview 

A mutex is a mutable container for an object of type t. A ITIJlex also has an Identity as an object. 

An object of type IIIUIU(t) provides mulJal uctuslon tor plOC8l8 synctwonlzatlon, and allows 
explicit control over how Information contained In the nuex Is written to stable storage (see 
Section15.1). 

The NIZe statement is used In order to gain posseaalon of a mutex. See section 6. 7. 

Although rrutex objects are mutabia, sharing among nuex objects is usualy wrong, because the 
contained object should only be IICCHIIJle hough ttl9 nlJlex. Hence there II no copy1 
operation, 8ince this would lrCn:,cu:e lhaftnQ. and ...,_ II no lllmllar1 operation to check for 
sharing (see Section 6.7). 

OpenltlOM 

create - proc (thing: t) NIUma (rnutu[t)) 
effecta Returns a MW lft.HX obied conlainlng thing. 

set_ value • proc (corulner: IIIUIIX(tJ, contenls: t) 
IIIOdlflN cont.,.,. 
effect8 Modifies amtalnM by replacing Its contaJned obfect with contems. 

get_value • Pf'OC (container: mut8[t}) NIUma (t) 
effect8 Returns the object conlalned In oonllllnflr. 

changed • proc (container: ll'IUIH(t)) 
efleCl8 lnforml the A,g&,a l}'ltem that the calling MIion requires the contents of containsrto 

be copied to stable storage by the time 118 ldon con111118, plOYlded oonllliner is 
accessllle from a stable variable. I II a ,_.,..11111ng em,, I a pn,ceu that Is not 
running an action calls this operationa, and ff ttlil II dDtl8 the guardian wll crash. 

equal • proc (m1, m2: IIIUla(t]) ratuma (bOol) 
effect8 Returns true if and only if m1 and m2 are the same object. 

similar • proc (m1, m2: mutex(tD relWM (bool) ...- (falln(Mt'lng}) 
19qulres t has similar: pn,ctype(t, t) ..........., ...... (falure(8btnG)) 
effects Seizes m1, then selzea m2. and calla ••mfarto dltermlnl II result; any fallurB 

signal is immediately reslgnaled. ~seallon of both n.atexea is retained until 1$sirri/ar 
terminates. 

copy • proc (m1: mutex[t)) Ntuma (m2: mutex(tJ) 8lgllllle (failwe(llrlng)) 
requlrea t has copy: pn,ctype(t) NIIUIM(t) .... (failuN(ltllng)) 
effecla Seizea m1, then calls ,scopyto make a OOPV wNctl I places in the new nuex object 

m2. Any failure signal is invnediately resignaled. Possession of m1 is Attained until 
l$copy termlnales. 

tranamlt - proc (m1 : IIIUlex[tD ratums (mulex[t)) ...,... (failure(atrtng)) 
requ1,- t has tranamll 
effecla Seizes m1, and returns a new nutex conlalnlng a transmitted copy of the contained 

object. Any fllilunl signal is Immediately reaignalled. Possession of m 1 is retained until 
1$tranlfflll terrnklatea. 
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Ap~dlx Ill 
Rules and Guldellnn for Using Argus 

This appendix colledl the rules and guldelnel that lhould be tolowed when programming in Argus. 

Following these rules makes Nlze statements meaningful, actions atomle, and so on. In some rare 

cases there may be valid reasons for violating these guidelines, but doing so greatly Increases the 

difficulty of building, debugging, and running the resulting system. 

All of the rules listed in this appendix are based on Information appearing elsewhere in the manual. 

Each rule is followed by a brief rationale, including a reference to the section of the manual from which it 

is drawn. 

111.1. Serlallzability and Actions 
• Actions should share only atomic objects. 

Rationale: Actions that share non-atomic data are not necessarily serlallzable. [Section 2.2.2) 

• A subaclion that aborts should not retum any tnlormation olllained from data shared with other 

concurrent actions. 

Rationale: Returning such data may violate serializabllty. (Section 2.2.1) 

• A nested topactlon should be serlalizable before ltS parent. Thia ii true If either 
1. the nested topactlon pet'fonns a benevotent side effect (a change to the state of the 

representation that does not affect the abltlact state), or 

2. all communication between the nested topactton and h parent ts through atomic objects. 

Rationale: Other uses may violate sertalizabllly. [Section 2.2.3) 

• The creation or destruction of a guardian rrust be synchronized with the use of that guardian via 

atomic objects such as the catalog. 

Rationale:Otherwise serializability may be violated. [Section 10.18) 

111.2. Actions and Exceptions 
• H an exception raised ~ a cal should not comml an action, the exception rruat be handled within 

that action. 

Rational6: If an exception raised within an action body is handled outside the action, the tmplicit flow of 

control outside of the action will commit the action. (Section 11.5) 
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111.3. Stable Variables 
• Stable variables should denote resilient data objects. 

Rationals: Only data objects that are (reachable from the stable variables and) resilient are written to 

stable storage when a topaction commh. (This can be enatNd by hawing ltable variables only denote 

objects of an atomic type or obieds protected by IIIUleX.) Non-l'9llllalt objeds stored in stable variables 

are only written to stable storage when the guardian Is created. (Section 13.1) 

• H a bound procedure or lerator will be acceaetie from a stable variable, 
1. the procedure or iterator being bound l'l'Lllt be atomic and 

2. only atomic objects should be bound as argumenta. 

Rationa/8: The bound procedure or Iterator may be stored in stable storage, and non-atomic data Is 

only written to stable storage once. [Section 9.8) 

111.4. Transmission and Tranamlaslblllty 
• An abstract type's encode and deeode operations should not cause side effects. 

Rationa/8: The number of cans to an enoodfl or decod'1 operaUon Is ~. since arguments or 

results may be encoded and decoded several times • the tystem tnll to eatablah COfflR1Uflk:ati. In 

addition, verifying the correctne88 of tranemluion II ....., If MCt:N» and d«:odfl are simply 

transformations to and from the external ,..._reation. (Saallon 14.3) 

• H the naming relatlon among objecta to be tranamltled Is cycllc (e.g., a ciraJlar list) then 6flCOCHI and 

decode must be implem8nt8d in one of two ways: 
1. The lntemal and external ,......,., types must be ldenttcal, and encode and decode 

return their argument wlhout modifying or acceuing I, or 

2. The external representation obfect must be acycUc. 

Rationals: A ciraJlar external representation may cause decode to fail. [Section 14.41 

• Objects that share other obieets should be bound Into a handler or creator in the same bind 

expression. 

Rationale: Sharing Is only preserved among obieets bound at the same time. [Section 9.8) 

111.5. Mutex 
• Mutual exclusion or atomic data shouJd be used to synchronize access to an shared objects. 

Rationale: In the presence of concurrency, any Interleaving of lndMltie events ia possible. Without 

synchronization mechanisms, this concurrency will be Yisl>le to p,ograms, significantly complicating 

coding and testing. [Section 8) 
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• AH modifications to mutex objects should be made inside ...,.. statements. 

Rationale: The system witl gain possession of a fft.llex object betore writing It to 81able 9'0rage; thus, 

seizing a nuex In oroer to modly It wll prevent the syatem nm copying a nuex object when It is In an 

Inconsistent state. This allo prevents other proce1N1 fl'Om 8Nlng lnconllltent data [Section 15.2 and 

Section 15.1) 

• Nested seizes should be avoided when pauae Is used, and ,.,.. must be avoided when nested 

seizes are used. 

Rationale: A pauaa in a nested seize does not actually release possession of the rrutex object. 

[Section 10.17] 

• If an object is referred to by a mutex object, It lhouJd not be referred to by any other object, nor 

shOuld It be denoted by a variable except when In poeaeuion of the containing mutex. 

Rationale: If an object contained In a nuex can be reached by a method other than seizing the nuex, 

the mutual exclusion property of the rrutex is undermined. [Section 6. 7] 

• No activity that is ll<ely to take a long time should be pelformed while in a Nlza statement. In 

particular, programs should not make handler call or wait for loclca on lll0mlc objectS whle In possession 

of a mutex. 

Rationale: Waiting tor a lock while In a lftJtex is lkely to cause a deadlock wtth other actions or 

between the action holding the rrutex and the Argus system. [Section 15.3) 

• Mutex objects should not share data with one another, unteea the shared data Is atomic or rnulex. 

Rationale: Sharing of non-atomic objects between mutex objects Is not preserved when the rrutexes 

are written to stable storage. (Section 15.3) 

• Mutex[t)$changed rrust be called after the last modification (on behalf of some action) to the 
contained object of a mutex. 

Rationale: The Argus system Is tree to copy the mutex to stable storage as soon as IIIUl8X[4$Chlln08d 

has been called. Changes after the last cal to mulex(~ but before topaction commit may not 
be written to stable storage. (Section 15.3) 

• Mulex[4$ChanOfJd should be called even If the mutex object changed Is not aocessble fff>ffl the 

stable variables. 

Rationale: In a scenario where the object was accessible, becomes lnaccelllble, then becomes 

accessible again, It Is poaslJle that stable storage would not be updated prope,ty If th6s rule were not 
followed. The system guarantees that no problems wfth updlltil~ stable ltorlg8 wll arise If 

mutex(t)$dlangectls at.vays called after the last modllcatton to the objlct. (Section 15.3) 
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• An atomic type implemented with a representation conaisllng of several rrutex obiedS should use 

separate topactions to ensure that the rootexes are written to stable storage In an o«ser that preserves 
the correctness of the representation. 

Rationale: Mutexes are written to stable storage Incrementally. Sonwtlmes, subtle timing problems 

can be caused by Incremental writing If this rule is not folowed. (Section 15.3] 

111.6. User-Defined Atomic Objects 
• If an atomic object X of type Tp,ovldes operations 0 1 and ~. and action A has executed 0 1 but not 

yet committed, then operation ~ can be performed by a ooncurrenl action 8 only if 01 and ~ CX>IJ'Jll'IUte: 

given the current state of X, the effect (as described by the sequenllal ~ Gf 7) of perto,ming 

0 1, then ~ is the same as performing 0 2, then 0 1. •Effect" lndlldes both resula returned and the 

(abstract) state modified. 

Rationale: There are two concurrency constrains for uaer-deflned atomic obieda: 
1. An action can obserVe the effects of other action8 only I thoN actions conmitted relative to 

the first action. 

2. Operations executed by one action cannot invalidate the results of operations ex&alted by 
a concurrn action. 

Two operations {or sequences of operation&) that cornrrue In their effect on the abstract state of X may 
be permitted to run concurrentty, even I they do not COlfflllle In their effect on the representation of x 
This dtstinction between an abstraction and Its Implementation la CfUCial In achleYlng reasonable 

performance. (Section 15.4) 

• H a user-defined atomic object is accesal>le from the stable variables of some guafdtan, it should be 

written to stable storage whenever an action that modifies It commll8 to the top. 

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit wHI not 
be resilient. [Section 15.2) 

• The form of the Np for a user-defined atomic type should be one of the following poul>illties. 
1. The rap is Itself atonic. Note that mutu is not an atomic type. 

2. The rap Is muteX(4 where t Is a synchn)nous type. For exan,,18, t COUid be atomic, or It 
could be the represerution of an atomic type, • the ope,aUona on the this ficdtious atomic 
type are COded In-line ao that the entire type behaYel a&omlcaly. 

3. The Np Is an atomic oollectton of nuex types oontainng synchronouS types. 

4. The rap is a rootable colectlon of synchronouS types, and ob;lda of the representation 
type are never modified after they are lnlilllzed. That Is, ffUlltlon may be UNCt lo crNl8 
the initial state of such an object, but once this has been done the obied ffllSt never be 
modified. 

Rationale: In any other case it wHI be Impossible to guarantee the rNlllence or serlalizabillty of the 

type's objects Independently of how they are used. [Section 15.3) 
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111.7. Subordinate Where Cl8UNS 
• A 'Where clause requirement on a cluster as a whole should be used whenever the actual parameters 

make some difference in the abltraetlon. For example, In a Nt cluster, the type parameter's equal 
operation l'1'IJSt be required by the clutlter as a whole, In order to preserve type safety and the 

representation Invariant. 

Rationals: Argus a11Umes that requirements that are not plloec::I on the cluster as a whole do not 

affect the semantics of the abstraction or the rapreserutton. (Section 12.6) 
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This appendix lists the changes made to Argus that .,. not upwa,d compatible with CLU, that Is, those 

which are not merely additions to CLU and that would cause a CLU program to be lltegal or to run 

differently. 

IV .1. Exception Handling 
Unlike CLU, which propagated unhandlecl exceptions (by turning them into failure exceptions) and gave 

the failure exception special status, unhandlecl exceptions in Argus are considered errors and always 

cause a crash of the guarolan, and failure Is not given speciaj llatus. All exceptions signaled in a 

procedure, Iterator, handler, or creator rrust be declared in the routine's hetlder, and there are no implicit 

resignals of failure exceptions. See Section 11.6 for details. 

IV .2. Type Any 
The type any II now a type lite any other type, with parameterized routfnes fo#w, aeate, and is_type. 

Thus the CLU manual's notion of "type inclullon" is no longer l'llCHl&ry (but there Is a new notion of type 

inclusion in Argus, IN Section 6.1). The any$folC8 routine only signals "Wftmg_type• if the any ot>;ect's 

underlying type is not Included in the type parameter given, but the type of the resul of any$force is its 

type parameter. The any$is_type routine returns.._ I the any obfect's underlying type Is not lncludBd 

in the type parameter given. The CLU reserved won:t "force" was aliminated from Argus, and the creation 

of an any object is never implicit in an assignment in Argus. 

IV .3. Built-In Types 
Several changes to the interfaces of the built-in types went necessitated by the changes to exception 

handling. Specltically, the following changes were made to the bull~ types. 
1. The atrlng operations ooncat, append, s2ac, Ids, s2ac. and ds, can now al signal llrnlts. 

A string •era1 that would be too large to r&pl98M wll not be complled. 

2. The aequence operations•• fll_oopy, addh, add, and concatcan now all signal limits. A 
sequence constructor that would be too large to repntNnl wll not be compled. 

3. The array (and atomlc_array) operations create, pr«llct. •t_low, fil, flll_oopy, addh, and 
add/ can now all signal limllll. An array oonetn.tetor ttlll camot be legally rapraeerud wil 
either not be compled (If this can be dlt8cled at con.,11 time) or wll aignal llmlts. 

4. The copy operations of the structured bull-kl type generators, and the llll_copyoperatk>nl 
of NqUenCe and .., (and alOmlc_.,,.,,, allow the copy operations of their type 
parameters to have a fallure(alrlng) exception. They will ,..... IUCh a fllilure exceplion. 
(Note that the type Inclusion rule allows a type parameter to be used even If its copy 
operation does not have exceptions.) 

5. The similar operations of the built-in structured type generators allow the similar operations 
of their type parameters to have a fallure(atrtng) exception. They wil resignal such a failure 
exception. 

6. The equal operations of the type generators eequence, stnlet, and oneof, and the simllart 
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operations of the type generators array, NCORt, and variant (and their atomic 
counterparts), allow the .,_ opetdon of their type parameters to have a fallunl(atltng) 
exception. They wil resignal such a failure exception. 

7. The elemflnts Iterator and the similar and almllllr1 p,ocemns of the type generator array 
(and atomlc_sray) wll rai8e a fallur8(11btng) exceptlorl If ttle llffllY argument is nuated In 
such a way as to cause a bounds exceplon when an element II fetctled. 

IV.4. Type Inclusion 
Type inclusion (the new notion, see Section 6.1) Is used In al contexts, lncludlng the dBCls of except 

and tagcaae statements, where CLU had previously recpred type~-

IV .5. Where Clauses 
CLU had syntax in the whare clause (specifically the production for op_ name) that affowed one to 

require an instantiation of a type parameter's generator. This llltle uaed feature has been superseded by 

the mechanism descrl>ed in Section 12.6. 

IV.6. Uninitialized Variables 
An uninitialized variable refeNnce error Is defined to ca,ae a crash of the guardian, rather than raising 

a fa/lure exception, which could concelvably be caugte. 

IV. 7. Lexlcal Changes 
Several new reserved words were added. In addition, the semicolon(;) was banished from the syntax. 

IV .8. Input/Output Changes 
The Input/output data types (flle_name, stream, and lstream) and the ll>rary procedures dnctlJed in 

appendix Ill of the CLU manual are not furnished by the Algus syetem. Our current irnplemen&atJon of 

Argus provides a ksyt,oan:J cluster for Input and a pstream ckl8ler for output. In addition, most of the 

built-in types currently have print operations defined, tor praay~ ot,tacts onto pstreams. These VO 

mechanisms, however, are still experimental, and ao are not documenled In this reference manual. 
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