
,. ••. , ... 1.,, 111•-"••1·•·••111,••········· , ,, .,.-;:•rtir.iamJtr 1:r
'" - -

.,,. ,, ----

This empty page was substih,ted for a
blank page in the original document.

Table of Coments

1. Overview
1.1. 0bjecta and Vartablle
1.2. AallfllNIII and C.118
1.3. Type con.Gtn••
1.4. Au1e1 and GUldellnN
1.5.PlugnlnStlUClln

Table of Contents

2. Concepts tor Distributed Programs
2.1. Guardlane
2.2. Actions

2.2.1. tllllad Actions
2.2.2. Atomic ObllCta and Atomic Typea
2.2.3. tllllld TapectlOM

2.3.FllmDlacaRe
2A.Tnlllem1Hlflel'ypel
2.5.0rpllllla
2.6. D11dloca

3. Environment
3.1. The L.,,..,
3.2. lrdlpHdera OI Guardian lmagee
3.3. Guardlllll CNlllon
3A. TIie Clltlllog

4. Notation
5. Lexical Conslderallons

5.1. Fl111rved Won:ta
5.2. ldenllftlnl
5.3
5A. Op1 and Punctullllon Tokenl
5.5. Camlnllllaand OllllrS

6. Types, Type Generators, and Type SpecHlcatlona
8.1. Type lncUllon
6.2. The 8equlntllll lulll-111 Typee and~

8.2.1. Nul
6.2.2. Bool
6.2.3. lnl
8.2.4.Real
8.2.5. Char
8.2.8. String
8.2.7. Any
8.2.8. Sequence Types
8.2.9. An'8y Typn
8.2.10. St1UCtln Types
6.2.11.RlcoldTJPN
8.2.12.0neofTJPN
8.2.13.VartanllypN
8.2. 14. Proctdln and lllnllor Typee

6.3. Atomle_Anay, Alollllc_Rleold1 and Atomlc_Varllnt
8A.Guan:IM,.,.,_
6.5. Handler and CNator Types

3
3
4
4
4
5

7
7
8
8
9

11
11
12
12
13

15
15
15
15
15

17
19
19
19
20
20
20
21
22
22
22
22
22
23
23
24
24
25
25
21
'Z1
28
28
29
30
31
32

II

&.&. Image
6.7. Mutex
6.8. Node
6.9. Other Type Specltleatlons

7. Scopes, Declaratlona, and Equates
7 .1. Scoping Unlla

7.1.1. Varlllbles
7.1.2.0eclanltlona

7.2. Eqt181• and COnltantll
7.2.1 • .MIINVIIIIOlta tor 1'YPN
7.2.2. Conltlnl Expa,11110.,.

8. Assignment and calla
8.1.Anlg."llMIII

8.1.1. 8lmple Alelgnm.'lt
8.1.2. lllllllpll Anlgnffllnt

8.2.LocatCIIIIII
8.3. Handler calla

8.3.1. 8emantlce of Handler Cds
8A. CnNllor C.la

8.4.1.8emantlceof CNatorCds
9. Expreaalons

9.1. Uterala
9.2. Varllbln
1.3.,.,........

"·~ Equllecl ldenllflers ·9.5, _...llodulaR~
9.6.Selt
9.7. ProceduN, llerlllor, and CINlor' NamN
9.8. Bind
9.9. ProceduN C8Ha
9.10. Handler calla
9.11.CNIIIIOrcalla
9.12. SIIICIIOn Operallonl

9.12.1. Elllnllll llllctlon
9.12.2. COlllponlnt llllcllon

9.13.~
9.13.1. ~ ConllllUclors
9.13.2. Amiy and Atollllc Amit ConMruclora
9.13.3. 8tlucluN, Rloorcl, and Atomic fllcold Conatructors

9.14. Prefix and lnftx 0plrlllOra
9.15. C8nd and Cor
9.16. PNCldence
9.17. Up and Down

10.Statements
10.1. C.lls
10.2. Update Statements

10.2.1. Elamlnl Update
10.2.2. Component Upc:11111

10.3. Block StalelMnt
10.4. Fork Statement

Table of Contents

32
33
34
34

35
35

• 31
37
38
38

39
38
38
38
40
41
43
44
44
47
47
47
47
47
47
• IO
50
51
11
51
11
II

• SI
52
51
54
M
51

57
57
58
58
58
18
58

,.IJJl(QJV,&/QULJkbtJ!llHll(,Uliilflhi!itXJJY,.1L r· .J,w ,,.,,,.,..,,.7 .-~"'~··"' ... , •.... _,.,"•<.

TlllllotC1M1•

.......... : . ··•••·•
1fU

1·
1&'-'"'··.··.··'Jl • , •. ,.

,,- ·. ,·- ... -., ."

•
• • 11
11 • • • • • • • • • • • • • ,.
• ,. ,. .,,
71

" • ff
11 • .. • .,
• • • • • • • • • • ..
• ., .,
• • -

Iv

15.5. Commuting Openlllons
15.6. Multiple MutexN

Appendix I. Syntax
Appendix II. Bultt-ln Types and Type Generators

11.1. Null
11.2. Nodes
11.3. BoolNna
IIA.lntegerS
11.5. Reals
11.6. Characters
11.7. Strings
11.a. Sequences
11.9. Arrays
11.10. Atomic Arrays
11.11. Struct8
11.12. Aeconls
11.13. Atomic Aecorda
11.14. Oneots
11.15. Variants
11.11. Atomic Variants
11.17. Procedul'N and lteratOra
11.18. HandleN and Creators
11.19. Anya
11.20. Images
11.21.MutUN

Appendix Ill. Rules and Guldellnes for Using Argus
111.1. Sertallublllly and Ac:tlona
111.2. Actions and Excapllona
IU. Stable V....._
111.4. T......,...._,,. and TranamlNlbNlty
IIL5. Mulax
111.6. U•r-Daf■,ed Atomic 0btects
111.7. SUbordlnate WbeN Claulll

Appendix IV. Changes from CLU
IV.1. Exception Handing
IV .2. Type Any
IV.3. Bull-In Typee
IV A. Type 1nc1u81on
IV.5.WINnClll■H
IV .6. Unlnltlllllad Vartablea
IV.7. Lexical Clw1IN
IV .8. Input/Output Chang•

Index

Table of Contents

102
1(M

107
119
120
120
121
121
123
125
121
128
130
133
138
139
141
143
144
146
148
149
150
150
151

153
153
153
154
154
154
1N
157

159
158
158
158
160
160
160
160
160

161

List of Figures v

List of Figures
Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X 10
Figure 13-1: Spooler Guardian 91
Figure 14-1: Partial implementation of table. 95

vi List of Tables

,pJlll!Jd 1$$))flPl',tllMl!U.1 J~&all Uil!iiill.Jll fl Id J JR . Ji ll!IJUl! .tl!J)IUJt kUdkl .. Jl##l MIU JA@#J!il!Uk J$¢41$Ui ,.t&AU $!4QS'.J#i4i@J

LlatofT

Lfllte,fTlbll■

vii

11

• M • 14 • 111

This empty page was substih,ted for a
blank page in the original document.

Gulde to the Manual 1

Gulde to the Manual
This document serves both as a reference matl.l8I and u an intlodudion lo Argus. Sections 1 through

3 present an overview of the language. These sections highlgtt the 88S8f1llal features of Argus.

Sections 4 through 15 and the appendices form the reference ffllUllal proper. These sections deScr1be

each aspect of Argus In detail, and discusS the proper use of various fealurff. Appendices I and II

provide summaries of Argus's syntax and data types. Appendix Ill summarizes eome of the pragmatic

rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some

familiarity with CLU. Those readers needing an Introduction to CLU might read Llakov, B. and Guttag, J.,

Abstraction and Specification in Program Dev81opmsnt (MIT Press, cambrldge, 1986). A shorter

overview of CLU appears In the article Uskov, B., et al., •AbllractlOn Mechanilm8 In CLU• (Comm. ACM,

volume 20, number 8 (Aug. 1977), pages 564-576). Appeldx IV summarizes the changes made to

Argus that are not upward compatl:>le with CLU.

An overview and rationale for Argus is presented in l.lskov, B. and Schelfler, R., •Guardians and

Actions: Linguistic Support for Robust, Dlstl'l>uted Plograml• (ACM Transacflons on Programming

Languages and Systems, volume 5, number 3 (July 1983), pages 381-.404).

The Prellmlnary Argus Rflferencfl Manual appeared u Prograt'ffl1ing Methodology Group Memo 39 in

October 1983. Since that time several new features have been added lo the language; the most

significant of theae are cloaures (see Section 9.8), a fork,. (IN Section 10.4), equate modules

(see Seclion 12.4), and a more flexble ~ mechanllm (... Section 12.6). An ear1ier version of

this document appeared as Programming Melhodology G1aJP Memo 54 In Matdl 1987; this version is

essentiaffy identical, except that the locking policy for the bull-In type generator atomlc_array has been

simplified.

We would greatly appreciate receiving comments on both the language and this man.ial. Comments

should be sent to: Professor Barbara Llskov, Laboratory for ~ Science, Massachusetts tnstftute

of Technology, 545 Technology Square, cant>rtdge, MA 02139.

The authors thank all the members of the Prograrnmng Methodology group at MIT tor their help and

suggestions regarding the language and this manual, with special ttwlks going to Elliot KolOdner,

Deborah Hwang, Sharon Pert, and the authors of the CLU R•ffnnctl Mllnual.

2

Though her unhappy rival was hers to keep
Queen Juno alao had a troubled mind:

Gulde to the Manual

What would Jove tum to next? Better, she thought,
To gtYe the creature to AreslDr'8 son,
The frightful Argus whaN unRllural head
Shone with a tl.lndr9d eyes, a peffect jailer
For man or bealt: the tuldNcl eyes took turns
At staring wide awake In ... and IWo
At falling off to steep; no matter how or
Where he Stood he gazed at lo; even when
His back w• turned, he held his prisoner
In sight and in his care.

-Ovid, .,,,.~,Book1
Tra..1111.ted by H. Gregory

The Viking Preu, Inc., NewYottt, 1958

,-SJ.Ml# .. u JJUtt@iE., 311144 m • .. ,¢tUtJM..JJ&JI J.l. L ... M 1J3litJ#it£@1$l&iQil) i4UlX@Jl bi1¥!¢QikXS;t.tl@lla;.t!JQAM

1 ov.m.w 3

1. OverJt••
Atllll II • ·•-- ... , ... ,_· ·. . . ·· · t - •1•1U1en of
~ '• I . . • · 3 · ·.. . ·•• .

PL... Ill --- -■ -
flNI bllllg L ,tp!I l I·-• . . • lllr,::-· ·-
tlleypi .. :, •··

Gllct .. , IINt,IJ••• ••- :

AIIUSll__,anCUl 1'1 •I\ . . . · ·· ·.· · , ... ,,_, .. llN

_....,. IV). UIII CLU. A1llllll .. H ·• . ■Ill
.......... II ■•.PJ51 .UIPftl· -
__. ••nr a1._ • ._ RIHiilllU 111111114■ llllllt • .· ,. ,
,_ •• •11ar ••••• • • •••t•• •· llllililllt · lit taO.U.
11111!111!1, ,

1.1. -••1_,tliAll!t1
lhallfflll!. 11•--)•ifn••··· ••••• , llf ,Utt ■ ·--••u•
-- ·•• •- ,, • ., 11•1• ttn• H ... , •••. •t•i1 •. t1t.1'tJl:1• 11111•

Ewr, ... flliaa ·••• IIJl ·. U ff •:•1•11111 <--~---j·t~---~t 1141 ill 1•••
.......... 01111 ······-

,. PNI.■ .
......... 1 •••• ,, •.

Tlwe - -· ~. • .
.......... ;# •• 1111 ---,... ~. .

--••••1• •·• --•MC -............... .
2.U)

cw-••IAl•'-- ■ 1 IIJ,Jl-

tt111e allll• • ••• ······.--
PftlGIIIII ---····

V ... _ -
'

•
•t•llll.111 di

, :IJ . n

, 8L!•~,~•'11tnl111.
.\l#i'iJI 111, l litlll. or ·,:, ·:' -, ·. ', ' , .. ,

- [lfllte ••11••·~---
Vadlblll Jn Ndul• ... •1l1ffd 1ta11• •11, ·-----•111

8UMV9 Cl--• IICIIIGn I) --Glllld IIM ttru 11

4 overview

1.2. Assignment and cans
The basic events in Argus are assignments and calls. The assignment statement x :- E, where x is a

variable and E Is an expression, causes x to denote the object ntlUltng fn:>m the evaluation of E. The

object Is not copied.

A call involves passing argument objects from the caller to the caHed routine and returning result

objects from the routine to the caller. For local calls, ~ pa&8ing Is defined in tenns of asaignment,

or call by sharing; for remote calls, cal by value is used. In a local cal, the formal arguments of a IOUtine

are ex>nslclered to be local variables of the routine and are inltlallzed, by llllignment, to the objects

resulting from the evaluation of the argument expressions. In a remote cal(.. Section 2.3), a copy of

the objects resulting from the evaluation of the a,gument expnit81ion8 la made and tranamllted to the

called handler or creator (see Section 2.4). These copies are then Ul8d to lniliallze the tormaJ arguments
as before. Local objacls are shared between the caller and a called procedure or Iterator, but 1ocal

objects are never shared between the caller and a called handler or creator.

1.3. Type Correctness
The declaration of a variable apecifie8 the type of the objects which the variable may denote. In a legal

assignment statement, x :- E, the type of the expression E na,st bt lndt""1t/ in the type of the variable x.
Type inclusion Is essentially equality of types (see Section 12.6), __. fer ftMlrMt types. (A routine type

with fewer exceptions Is included in an otherwlle Identical roullM type wilh more exceptions. See
Section 6.1 for details.)

Argus Is a type-safe language, in that It Is not poal>le to treat an objld of type Tu I It were an ob;ect

of some other type S (the one exception II when Tis a routine type and S Includes 7). The type safety of

Argus, plus the rastrictlon that onty the code in a cluster may convert between the abalnlct type and the

ex>ncrete representation (see Section 12.3), ensure that the behavior of an obi8Ct can be characterized

ex>mpletely by the operations of its type.

1.4. Rules and Guidelines
Throughout this mat'llal, and especially In the discussions of atomiclly, there are p,agmatic rules and

guideHnes for the use of the language. Certain properttes that the language WOUid ll<e to gua,anlN, for

example that atomic actions are really atonic, are dlfflcult or ~alble for the language to guaramee
ex>mpletely. As In any useful programming language, programmers have enough rope to hang

themselves. The rules and guidelines noted throughout the manual (and colected In Appenclx IH) try to
make the responsibilities of the language and the programmer clear.

1.5 Program Structure 5

1.5. Program Structure
An Argus distributed application consists of one or more guardians, defined by guardian modules.

Guardian modules may in tum use all the other kinds of modules that Argus provides. Argus

programmers may also write single-machine programs with no stable atate, using Argus as essentlafly a

"concurrent CLU." Such programs may be used to start up Rl.lli-Qua,dan applicalions. Each module is a

separate textual unit, and is compiled lndependentty of other nm.des. Coff1>11atlon is discussed in

Section 3.

6

2 Concepts for Distributed Programs 7

2. Concepts for Distributed Programs
In this chapter we present an overview of the new concep11 in Argus that support distributed programs.

In Section 2.1, we discuss (IUardlans, the module uaed in Af1111 to dlltribute data. Next, in Section 2.2,

we present atomic actions, which are used to cope with concummcy and failure. In Section 2.3 we

describe remote calls, the inter-guardian comrru,lcation rnec:hanlam. In Section 2.4 we discuss

transmissible types: types whose objects can be sent as arguments or results of remote caffs. FmaNy, in

Section 2.4 we discuss orphans.

2.1. Guardians
Distributed appllcaUons are implemented In Argua by one or more modules catled guardians. A

guardian abatractlon Is a kind of data abstraction, but I dlffets from Ile dala abltractiona supported by

clustera (u found In CLU). In general, dala abetrac:lona Clnlitt of a set of operations and a set of

objects. In a cluster the operations are oonlidered to belong to the abllractlon as a whole. However,

guardian instances are objects and their handlers are their operatfonl. Guadan abstraction Is similar to

the data abstractions In Simula and Smaltalk-80; gua,dtane.,. ._ Claaa inltances.

A node is a single physical location, which may have mua.,ae pt9CIIIOl'S. A guardian instance resides

at a single node, although a node may support several gua,dana. A guan:Jian encapsulates and controls

access to one or more resources, such as data or devices. Acce88 to the protected resource Is provided

by a set of operations caNed handlBrs. lnternaNy, a guamlan consieta of a collection of data objects and
processes that can be used to manipulate those ot,fects. In general, there wil be many processes

executing cona.,11'8111y in a guardian: a new proce11 la cntllld to__... NCh handler cal, processes

may be explicitly created, and there may be other 1)R)C81■11 M CIJlfy out background adivly of the

guardian.

The data objects encapsulated by a guardian are kal: they cannot be acceaed directly by a p,ocess

in another guardian. In contrast, gua,dians are globlll objects: a lingle guardian may be shaftld among

processes at several different guardians. A process wlh a rlference ID a gua,dian can call the guardian's

handlers, and these handlets can acce• the data obleta inllltl"' gwanlan. Handler calls allow access
to a guardian's local data, but the guardian controls how that data can be manipulated.

When a node falls, it crashfJs. A crash is a "clean" failure, as opposed to a "Byzantine" failure. A

guardian survives crashes of its node (with as high a probabllly as needed). A guardian's state consists

of stab/fl and volall/e objects. When a guardian's node crashes, al p,ocesw running inside the guardian

at the time of the crash are loat, along with the gua,dan'a ~ objects, but the guan:lian's stable

obiacts survive the crash. Upon F8Cl0very of the guardian's node, the guMlian NIii a special recovery

process to reconstruct itS volatile objacts fff>m Is stable objacla. Since the volatile objacta are lost In a

crash, they typicaly consist only of redundant data that Is used to impn)Ye pe,formance (for example, an

Index Into a database). The persistent state of an appllcation should bl kept In stable objects.

Guardians are implemented by guardian definitions. These define:

8 Concepts tor Distributed Programs

1. The creators. These are operations that can be called to create new guardian Instances
that perform In accordance with the guardian definition.

2. The guardian's stable and volatile state.

3. The guardian's handlers.

4. The background codB. This is code that the guardian executes Independent of any handktr
calls, for example, to perform some periodic activity.

5. The recov8f code. This is code that is executed after a crash to restore the volatile objects.
Guardians and guardian definitions are discussed in Section 13.

2.2. Actions
The distributed data in an Argus application can be shared by concumtnt proceuea. A process may

attempt to examine and transform some objects from their current statas to new states, wfth any number

of intermediate state changes. Interactions among concurrent proceues can leave data In an

inconsistent state. Failures (for example, node crashes) can occur during the execution of a p,ocess,
raising the additional possl>llly that data will be left In an lncon8iltenl inlermedlale state. To support

applications that need consistent data, Argus permits the programmer to mtM processes atomic.

We call an atomic process an action. Actions are atomic In that they are both NriaNzable and

recoverable. By SMlal/zable, we mean that the overall effect of executing ffl.lQ>le concurrenl actions is

as if they had been executed In some sequential order, even though tt,ey acwally eucute conamently.
By rea,ve,-,,., we mean that the overall effect of an action la •a1-or-nottt1ng:• 8llher all changes made to
the data by the action happen, or none of thffe chaftgea happen. An action that completes an its

changes successfully commits; otherwise It aborts, and objects that It modl1ed are restored to their

previous states.

Before an action can commit, new states of ail modified, stable objects rrust be written to stable

storage 1: storage that survives media crashes with high probability. Argus uses a two-phase oommit

protocol2 to ensure that either all of the changes made by an action occur or none of them do. if a crash

occurs after an action modifies a stable ot>;ect, but before the new state has been written to stable

storage, the action wlU be aborted.

2.2.1. Nested Actions
Actions in Argus can be nested: an action may be C0l11)0Sed of several subactlons. Subactions can be

used to limit the scope of failures and to Introduce concurrency within an action.

An action may contain any oomber of subacttons, some of which may be performed sequentialfy, some

1Lampaon, B. W., "AIDrnic Transacliona", in Dilllributed S,,.,.,,.--An:Mlca.H9 and,,,,,,,.,,,.,,,, Lec1ure Noll8 in Compul9r
Science, volume 105, pagea 2.265. Springer-Verlag, New York, 1981.

2Gray, J. N., "Nolas on data baa& operating ayatlma", in~ Sys..,,., An.,,._.,.. CcuN, a.,., A., Graham, R. M.,
and Seegmoller, G. (edilors), L8Clln No-. in Comp.,111' Science, volume 80, ,... 31M11. -..-v.tat, New YCMlt, 1971.

2.2.1 Nested Actions 9

concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.

Subactions appear as atomic actions with respect to other subactions of the same parent. Thus,

subactions can be exeaJted concurrently.

Subactlons can commit and abort independently, and a subadlon can abort without forcing Its parent

action to abort. However, the oorrmtt of a subactlon Is condltional: even If a subaction commls, aborting

its parent action will abort It.

The root of a trN of nested actions is caled a topaclion. Topadions have no parent; they cannot be

aborted once they have committed. Since the effects of a subaction can always be undone by aborting

its parent, the two-phase commit protocol ls used only when tapactlons attempt to commit.

In Argus, an action (e.g., a handler cal) may retum objects through either a normal return or an

exception and then abort. The following rule should be tolowed to avoid Ylolating urtallzabllity: a

subaction that abOrts shouJd not retum any Information obtained from data shared with other concurrent

actions.

2.2.2. Atomic Objects and Atomic Types
Atomicity of actions 18 achieYed Via the data objects shared among 1hose actions. Shared objects m.rst

be Implemented so that acttone using theffl appear to be atomic. Objects that tuppOft atomicity are
referred to as alOm/c ol:tjeca. Atomic objects Pl')Yld8 the ~ and recovery needed to ensure
that actions are atomic. An alom/c 1ype la a type whole obleda.,. all atomic. Some obildS do not need

to be atomic: for example, objects that are local to a slngfe p,Nll8. Since the synctvonization and

recovery needed to ensure atomicity may be expensive, we do not require that an types be atomic. (For

example, Argus provides all the built-In mutable type8 of CLU; theN types are not atomic.) However, it Is

important to remember that atomic actions must share only alOmic objects.

Argus provides a number of built-in atomic types and type generalOrS. The built-In scalar types (null,

node, bool, char, Int, real, and atrtng) are atomic. Parametedzed types can also be atomic. TypicaHy,

an instance of a type generator will be atomic only I any actual type ~ are allo atomic. The

built-In Immutable type generators (Nql,MIIICe, atNCt, and OMOI) are atomic If their parameter types are

atomic. In addition, Argus provides three fflJtable atomic type generators: alomlc_anay,
atornlc_record, and alOmle_vartant. The operations on tt18le typeS are nea,ty Identical to the nonnal
anay, racord, and variant types of CLU. Users may alao deftne ll8lr OM\ atomic types (SH Section 15).

The implementation of the built-In m.rtable atomic type generalOrS la baled on a siqJte locking model.

There are two kinds of locks: read locks and write locks. When an action calla an eperation on an atomic

object, the fr11)1ementation acquires a lock on that objaCt In the ~ mode: It acquires a wrtte lock

if it mutates the object, or a read lock if it only examines the obied- The butt-In types alow nutiple

concurrent readers, but only a single writer. If necessary, an aalion la fOrced to wal undl It can Obtain the

appropriate lock. When a write lock on an object ls first obtained ~ an action, the system makes a copy

10 Concepla for Dlatrtbuled Ptvgram•

of the object's state in a new WH81on, and the operations calted by the action work on this version3• H,
ultimately, the action commits, this version will be retained, and 1he old version dllcarded. A atbaction's

locks are given to Its parent action when it oonvnls. Whan a topacllon commls, its l0ck8 are diacalded
and Its effects become vlsl>le to other actions. If the action aborts, the action's lod<I and the new version

will be discarded, and the old version retained (see Figure 2-1).

Flgu,. 2-1: Locking and Version Management Rules for a Subaction S, on Object X

Acquiring a read lock:
All holders of write locks on X must be ancestors of S.

Acquiring a write Ioele
AH holders of read and write locks on X must be ancHIOr8 of S.
H this is the first time S has acquired a write lock on X,

push a copy of X on the top of Its version stack.

Commit:
Ss parent acquns Sa lock on X
If S hokta a write lock on X, then Ss version becomes Ss parent's version.

Abort:
Ss lock and version (If any) are discarded.

More precisely, an action can obtain a read lock on an object If ev«y action hoking a write lock on that

object is an ancestor of the requesting action. An action can obtain a wrle lock on an object if every

action holding a (read or write) lock on that object Is an ancestor. When a subactlon commits, Its locks

are inherited by its parent and its new versions replace thoN of la pa,wnl; when a 8UbaCtlon aborts, Its

locks and versions are discarded (lff Figura 2-1). Becal• AlgLll...,....s that parent actions never

run concurrently with their children, these rules ensure that concurranl actions never hold wrtte locks on

the same object simultaneously.

The ancestors of a subactlon are Itself, its parent, Its parent's parent, and so on; a subaclion is a

descBndant of Its ancestors. A subactlon commits to the IOp If It and all its 811C81tors, inckdng the

topactlon, oonmlt. A subaction Is a comrnltt8d dtlSCllndant of an ancestor action If the subadlon and all

intervening ancestors have committed. When a topactlon an ... to convnlt, the two-phase mmmil

protocol ls used to ensure that the new versions of all objects modlied by lie action and al Its committed
descendants are copied to stable storage. After the new versions have been recorded stably, the old

versions are thrown away.

User-defined atomic types can provide greater conaJrrency than buJlt-ln atomic types". An

3This operational dellc:riptior'I (Md Olhers in 1h18 manual) is not meant to conatrain implamenas. Howavar, this pancutar
clesaiption does ratleet ow cum,nt Implementation.

4An exanple can be found in Weihl, W. and Uakov, B., "lmplemenlaton of FINilent, AIDmic Data Types," ACM T~ an
Programming l.anguagfls and Sysalms, volume 7, number 2 (April 19815), pages 244-289.

2.2.2 Atomic Objects and Atomic Types 11

implementation of a user-defined atomic type must address several iaues. First, It must provide proper

synchronization so that concurrent cans of Its operations do not inleffere wlh each other, and so that the

actions that call Its operations are seriallzed. Second, It mull provide NCOV8t'Y for actions using its

objects so that aborted actions have no effect. Finally, I must....,. that changes made to Its objects by

actions that conmlt to the top are recorded property on stable lt0ra88- The bull-in atomic types and the

mutex type generator are useful in coping with these Issues. User-defined atomic tw,es are discussed

further in Section 15.

2.2.3. Nested Topactlona
In addition to nesting subactions Inside other actions, It is aometlmea UHhd to llaf1 a new topaction

inside another action. Such a 116Sted IOpacllon, unll<e a subac:llon, hll no special priYlleges relative to its

"parent"; for ex~. it Is not able to read an atomic objed ma••d by Is "parent". Furthermore, the

commit of a nealed topaction Is not relative to Its "parent"; Is YenNOf1I.,. written to stable storage, and

its locks are released, just as for normal topactlons.

Nested topactions are useful for benevolent side effects that c:tlange the repraentation of an object

without affecting Its abstract state. For example, In a naming syatem a name look-up may cause
information to be copied from one location to ano1her, to apeed up IUbHquenl took-up■ of tllll name.

Copying the data wlhln a neeted topaction that commits ensurea that the changea remain in effect even If
the "parent" action aborts.

A nested topaction la used correctly If It is sertallzable before Is "parent". This la true I either the

nested topaction pe,forma a benevolenl llde effect, or I all commun1catlon between the nNIN topaction

and Its parent la through alomlc objlds.

2.3. Remote Cells
An action l'UMing In one guardian can cause work to be performed at another guaRlan by calling a

handler provided by the latter guantan. An action can C8IIH a AN ~ to be crNted by calling a
creator. Hancllar and cnator calls are remote call. Remole calla are elmlar to local ~ catts; for

example, the calling process waits tor the call to return. Remote call differ from local prooedunt cals In

several ways, however.

First, the arguments and results of a remote can are passed by value (see below and also Section 14)

rather than by sharing. This ensures that the local objects of OM guadan remain local to that guardian,

even If their values are used as arguments or resuls of remote calls to other gua,dlanl. The only obl8cts
that are passed by sharing In remote calls are the global obieds: guardians, handlers, creators, and

nodes.

Second, any remote call can raise the exceptions failure and unavallable. (Unll<e CLU, not all local

calls can raise fallurB, see Appendix IV.) The occurrence of w.n meana that the call II UNkely to ever

succeed, so there Is no point In retrying the call in the future. Utwnlll'1e, on the GIW hand, mew that

12 Concepts tor Distributed Programs

the call should succeed if retried In the future, but is unlikely to succeed If retried immediately. For

example, failure can arise because it is iff1>ossl>le to transmit Ile argume,u or resuns of the cal (see

Section 14); unavailable can arise If the guardian being called has crashed, or I the network is

partitioned.

Third, a handler or creator can be called only from inside an action, and the cal MIi • a subaction of

the caHing action. This en&ur88 that a remote cal succeeds lit mo.I one»: elher a remote cal completes

successfully and commits, or It aborts and all of Its modifications .,. undone (provided, of courH, that the

actions involved are truly atomic). Although the effect of a '9l'IIQte cal OCCIM'8 at moll once, the system
may need to attempt it several times; this is why remote calls are made within actions.

2.4. Transmissible Types
Arguments and results of remote calla are puaed by value. This mun1 that the argument and result

objects must be copied to produce dlltinct objecla. Not an objedl can be copied .. thil; thoN that can
are called ,,.,,.,.,.... otlJ«;ta, and their types are called ,,..,.,,...,. ,,,__ Only traftsmlNl)le

objects may be UNd u argume,u and results of a remote call. In addition. llllllge obied& (see Section

6.6) can contain only~ objects. Parameterized types may be tranamlNlbll In IOffle Instances
and not in others; for example, inltanllations of the bua..tn type gene.alor8 .,. trarwnilsble onfy I their
parameter types are transmlaslble. Whtie gua,dans, cnatora, and handlefl are always tranamissl>le,

procedures and iterators are never transmissible.

Users can define new transrnissl>le types. For each transrni88tie type T the extsrnal ~

type of T must be defined; this descrl>es the fonnat in which obied& of type T .,. tratWnllted. Each

cluster that irJ1>1ements a transmisalble type T must contain two procec:lurea, ent::tJdfl and dllcode, to
translate oblects of type T to and from their external repreeentatlDn. More Information about defining

transmissible types can be found in Section 14.

2.5. Orphans
An orphan is an action that has had some ancestor "perish· or has had the pertinent resull of some

relative action lost in a crash. Orphans can arise in ~ due to crashes and explicit aborts. For

example, when a parent action is aborted, the active descendenl8 I IHw8 behind become orphans.
Crashes also cause orphans: when a guardian crashes, all active actions wlh an ancestor at the crashed
guardian and aH active actions with committed de8cendanls that ran at the craahld guardian become
orpt,ans5• However, having a deacendent that Is an orphan does not neceuarily imply thal 118 parent ii

an orphan; as previously desaibed, actions may commit or abort Independently of their IUbactiona.

Argus programmers can largely ignore orphans. Argus guaranlNS that orphans are aborted t>etore

'Walcer, E. F., "Orphan Delacllon in lhe Argus Syalem", Masaachu8ens lnatitute of TechnolDgy, Laboralory for Compt.ll8r
Science, Technical Repon MITA.CSITR-326, June 1984.

:ua1_ a tU 1.au 1u1v»1t.uL1M111ua;;JM&44111tlfl■ •1J11111ftl 1 J!l.LU$lll aasttwszz;: tJUkl,.uu;;; .. -' -w ,u tJ#Mtw:g;:;;a,;;;;:;;;;
;·-•·-·"·•·· - ." - .

2.SOrpbaM 13

Oley can vlllf ••111111• -. llll••• -•• • ■ •• ,.., _, ••••--••• :-.,
.. ..._ Almale OIIII ... tlltor _, 1•••-•1••-•1tJIIM. r,1111• :

............. ·-··-·····••1•11•1••·····
OqMII ,.., , .. ,,

av•••;III•••~•---•••••••• , 11) .., , ------•1•J•··'·•,·", '.·,. ,. ,,,, .. ,.:... •,,,.uu ,., •• IJ ill .Ullltl:Olili"IIJl'fll11fj(i''1fll111K1 ,11110,. by
2.&.D1M1•1I•

MIIOlll llt"'-----I IHMI 11111111 _.,- .. > .lllL •. 1~,r--A:la 1■••--•lllllllllll
llllotdl•-111■•••• ••·•••--- .• ,,_.,,-.,tua111fsN
.., , .. ,.. ---• 1r•11• nr 1r F•- -- .u11iffl••·••• • •
-. .. , u1.1•1•111e.110••• · .. - ·1111•----••• 1,.,,

IM,, ,11 A II ... ••ruu·•• •. ••u• .IMJlftlf ., JJp•· ... ·- II-C

tpa). ·----*-' ■L 12···• ·•··•·;j •• g{IIJIIICffl• _. I

14

3 Environment 15

3. Environment
The Argus environment ensures complete static type checking of programs. It also supports separate

compilation and the Independence of guardians.

3.1. The Library
Argus modules are compiled in the context of a library that gives meaning to extemal identifiers and

auows inter-module type checking. The Argus library contatns type infOrmation about abstractions; for

each abstractton, the 11:>rary contains a dtlscrlpl/on unit, or DU, descrl)lng that abstractton and Its

implementattons. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images
The cede Ml by a guardian comes from some guadan Image. A guardian image contains all the code

needed to carry out any locaj aotMty of the guardian; any procean, llerator or ckJster used by that

guardian will be In lls guardian Image. Any handler calla made by the guanllan, however, are carried out

at the called guardian, which conlalna the code that performs the call. Tt1.11 a guardian IS Independent of

the implementations of the guardians It calll and the lmplementatton of a guatdan can be changed

without affecting the lmplementattons of Its clients.

3.3. Guardian Creation
When a guardian ii created, II Is necessary to select the guardian image that wil supply the code run

by the new guardian. To this end, each guardian has an asaociated crNtlon enviror1nHMlthat specifies

the guardian images for other guardians It may create. The creation envkonment is a mapping from

guardian types to infonnlltion that can be used to Nied a gua,dian Image appropriate for each kind of

node. For greater flexlblllty, this lnformatton can be UIOClated wlh particular creator objects.

3.4. The Catalog
Somehow, guardians must be able to find other gualdiane to cal for services. A guardtan usually has a

reference to any guardian It aeates. Also, I a guan:Nan can cal soma other server guardian, It can team

about the guardians that the server "knows•, becauae guardians can be passed in remote caas. In

addition, Argus provides a bull-in subsystem known by al guardians. Thia aubayatem Is called the

catalog. The catalog provides an atomic mapping from names to traNmilll>le objects. For example,

when a new guardian is created, I can be catalogued under aome well-known name, 10 that other

guardians can find It in the future. Since we are currently experimenting wit\ various Interfaces to the

catalog, we do not lndude an interface specification here.

16

4 Notation 17

4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:

nonterminal ::: alternative
I alternative
I ...
I alternative

The following extensions are used:

a' ••• a list of one or more tis separated by commas: ·a• or ·a, a• or •a, a, a" etc.
{a} a sequence of zero or more a's: • • or ·a· or •a a· etc.
[a] an optional a: ••or ·a•.

Nonterminal syrmols appear in normal face. Reserved won:ts appear in bold face. All other terminal

syrmols are non-~. and appear in normal face.

FuH productions are not always shown in the body of this manual; often alternatives are presented and
explained individually. Appendix I contains the complete syntax.

18

s Lexlcal Considerations 19

5. Lexical Considerations
A module Is written as a sequence of tokens and separators. A token is a sequence of "printing" ASCII

characters (values 40 octal through 176 octal) representing a reserved word, an Identifier, a literal, an

operator, or a punctuation symbol. A separator Is a "blank" character (space, veftlcal tab, horizontal tab,

carriage return, newline, form feed) or a oonvnent. Any number of separators may appear between

tokens.

5.1. Reserved Words
The following character sequences are reserved word tokens:

abort
action
any
array
atomic _array
atomic reoord
atomic - variant
background
begin
bind
bool
break
cand
char
cluster
ooenter
oontinue
oor
creator
creatortype
cvt
do
down

Tlble 5-1: Reserved Words

else
elseif
end
enter
equates
except
exl
false
for
foreach
fork
guardian
handler
handlertype
handles
has
If
image
in
int
is
lier
itertype

leave
mutex
nil
node
null
oneof
others
own
pause
proc
process
proctype
real
reoc,nj

recover
rep
resignal
return
returns
seize
sel
S8CJJ8nc8
signal

signals
stable
string
struct
tag
tagcase
tagtest
tagwait
terminate
then
topaction
transmit
true
type
up
variant
when
where
while
wilh
wtag
yield
ylefds

Upper and lower case letters are not distinguished in reserved words. For exafll)le, 'end', 'END', and

'eNd' are all the same reserved word. Reserved words appear in bold face in this document.

5.2. ldentHlers
An idtlfltifier is a sequence of letters, digits, and underscores U that begins with a letter or underscore,

and that is not a reserved word. Upper and lower case letters are not di8tinguilhed in ldenttfiers.

In the syntax there are two different nonterminals for idenllters. The non&erminat kin is used when the

Identifier has scope (see Section 7.1); kins are used for varillblea, paramelel'I, module names, and as
abbreviations for oonstants. The nonterminal ,,_,,. ii used wllln the idefdlar Is not SIJblee(to soope

rules; names are used for record and structure selectors, oneof and varianl tags, operation names, and

exceptional condition names.

20 Lexical Conalderatlons

5.3. Literals
There are literals for naming objects of the built-in types nun, bool, Int, real, char, and string. Their

forms are described In Appendix I.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

([* < -c -
)] $ ** II <• --<•

.. _
{ := II + >• -->• &
} @ I > --> I

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters (including blanks) and horizontaf tabs In between.

For example:

z :- a(i] + % a comment in an expression
b[i]

A separator is a blank character (space, vertical tab, horizontal tab, carriage return, newline, fonn feed)

or a comment. Zero or more separators may appear bettriieen any two tokens, except that at least one

separator is required belwNn any two adjacent non-NI-terminating tokenl: reserved words, Identifiers,

integer literals, and real literals. Thia rule Is neceasary to avoid lexical ambiguities.

6 Types, Type Generators, and Type Speclflcatlona 21

6. Types, Type Generators, and Type Specifications
A type consists of a set of objects together with a Ht of operatlonl used to manipulate the ot>;ects.

Types can be classified according to whether their abiecll .,. nuable or immJtable, and atomic or

non-atomic. An immutable object (e.g., an Integer) has a value M never varies, whle the value (state)

of a mutable object can vary over time. Objects of atomic types provide serializabllity and recovery for

accessing actions. Non-atomic types may provide synctwonizatlon by apecilying that partiaJlar operatiOns

are executed lndlvlslblyon objects of the type. An operation Is lndiYlllble If no other process may affect or

observe intermediate states of the operation's execution. lndMsl:>lllty properties will be described for all

the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a (usuaHy Infinite) set of related types.

A partia.ilar type is obtained from a type generator by writing the generator name along with specific

values for the parameters; for every distinct set of legat va-.S, a dllli11ct type is obtained (see Section

12.6). For example, the array type generator has a 8ingte parameter that determines the element type;

array[lnt), array(real], and array{array(IIIID are three dlltlnct typea defined by the array type generator.

Types obtained from type generators are called ~ types or /nslanlatlon5 of the type

generator; others are called simple types.

In Argus code, a type is specilled by a syntactic conatruct called a type_spec. The type specification

for a s~le type Is just the Identifier (or reserved word) naming the type. For parameterized types, the

type specification consists of the identifier (or reserved word) naming the type generator, together with the

actual parameter values.

To be used as arguments or results of handler and creator calla, or as Image objects (see SectiOn 6.6),

ot>;ects must be transnissible. Most of the bull-In AlglJ8 types are trarwnissllle, that is, they have

transmissible objects. However, procedurea and Iterators are never tranlmissl>le. For type generators,

transmissibiUty of a pa,ticuJar instantiation of the generalor may depend upon transmi8sl:>ilty of any type

parameters. A transmilst>le type provides the paeudo-operatloli 1ra1111111 and two inlemal operations

encode and dscot:Je. Generally, encode and deoods are hidden from clenls of the type. They are called

implicltly during message transmission (SH Section 14) and In creating and decomposing Image objects

(see Section 6.6). Transmissl>lllly Is dlaculsed fufther In Section 14.

Argus provides all the bult-in types of CLU u well as some new types and type generators. This

section gives an informal inlroductlon to the built-in types and type generators provided by Argus. Many

detaHs are not diBaJIHd here, but a complete deflnllon of each type and type generator is given in

Appendix II.

:.;p:J!J#S$@lt,Jk!J&JL,-~ .. ! .Aiiii4$4.ML! L U!Z:242£MJ!4UU■ .. LUJU#, lQUlL!ESMJJ]i4LiAW .. itJ.@L,£!!!1$ 4QJ) M .!$l#l$L 'CL. ISi

22 .,...TJl)t.11 IIIIIIN. ... ,..lplD■HtrON

n.--•-1ei,,, ... 9 Q.tl,,

.., 11,11111 a1111•,••~· ... J1,ati11•111•• 0•1,,-. ••••--•• • ._.,.....,, •n•. ~• ftllD'lli .. ••••·· ■1d1n._ • ...,. for,..... ... amt~•· IIL ·••1111• ... ' lU II V.

.. ••••--u'911, asra•••··· NIIIIL• 1• •t•• .. _.,, ,, .:•t1•1·

.,,.... • ¥

............. ,.1 i11r•w1r
•1111111111•••:•i•••n• · · .··

p:
Cl:: ·-· ·~. , ,.

\-•-111••· -•:••····---
- INlll.14,__M ___ llrilf • 1111J Wt JM.P:-q•--

U. 1111 a. •tlll Ir.I . . · , .. ,.
•---CLU. 11111_,Eftl 11•

............. .., ···••·•---•~t
m1•111._ ll.llt 111 tt ·•-- .

,;, .·.•. ' . , .. , ,.,., ..•
-· ., 1., - ----......
1.2.1.Null

'1111- ,_ JI 1111; - Ill I 11$.lt...., 11111.0·1 •••-,--- ii -- N
lfUII.PIHUt. a. 81 Ill• ll.1111 d Fl I

u.&.llool
~-litltU:111 .,,............ . - . - ----- • TIii

.., .. , :i .. , · .· .l

._, •, nfadlL --ltfl'.__.11111111, .. . , ..

I.I.I.Int
lbe· tJPlt II& m1•111 C- ti} la •• II Pllld N181!1f. ... : .. , .. ti flll - el ..

'"• •• ••• •JI: •••-'; • 11u _,u,11~ 111 J i\ _;.· · ·· ·--· •- · ·· ·
n•tfl• •--• •II • I ,. :... .

-·••it••
.• ,. ... 11,)

6.2.3 Int 23

The binary operations add(+), sub(-), mu/(*), div(/), mod(//), power(**), max, and rrin are provided, as

weU as unary minus(-) and abs. There are binary COf11)8rilon operatlonS It(<), le(<•), equal(•),
ge (>•), and at(>). There are two operations, m,m_-, and tl'Om_-,_IYf, for Iterating over a range of

integers. See Section 11.4 for details.

6.2.4. Real
The type real models (a subset of) the mathematical re8',._ The exact subset Is not part of the

language definition. Reals are invnutable, atomic, and tnnt'fNlible, although transmissiOn of real
objects between heterogeneous rnadline architectures may not be exact. Real lleral& are written as a

mantissa with an optional exponent. A manlisaa Is either a NqUlf'IC8 of one or mote decimal digits, or

two sequences (one of which may be 8"1)ty) joined by a period. The manliHa nut conlakl at least one

digit. An exponent Is 'E' or ·e·, optionaly followed by'+' or·-·, tolfowed by one or more decimal dlgls. An

exponent is required if the mantissa does not contain a period. As ks usual, mEx • nf 1 ox. Examples of

real literals are:
3.14 3.14EO 314e-2 .0314E+2 3. .14

As with integers, the operations add(+), sub(-), mul (*), div(/), mod(//), power(**), max, min,

minus(-), abs, It(<), 18 (<•), equal(•), oe (>-), and gt(>), ant provided. It ii iq,ortln to note that there

Is no form of lnplclt conversion between types. The l2r operation converta an Integer to a real, r21 n>unds

a real to an Integer, and trunc truncates a real to an Integer. See Sedton H.5 for detala.

6.2.5. Char
The type Char provides the alphabet for text manipuldon. Characters are Immutable, alOmic,

transmlssl>le, and form an on:fered set. Every lmplemenlation ITIJ8t pn>Yida at least 128, but no more

than 512, characters; the first 128 characters are the ASCII characters In their standard order.

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote ('). or

backslash (\), can be written as that character enclosed in single quotes. Any characler can be written by

enclosing one of the escape sequences listed in Table ~1 In single quotes. The escape sequences may

be written using upper case letters, but note that escape sequences of the tonn \&* are case sensitive. A

table of literals Is given at the end of Appendix I. Ex8fl1)1es of character literals are:

\7' ·a· "'' '\'" '\" '\B' ,1n·

There are two operations, i2c and c2i, for converting between integenJ and dlaracters: the smallest

character corresponds to zero, and the character& are nunt>ered sequentially. Binary co"1)arlson

operations exist for characters based on this numerical ordering: It(<), 18 (<•), equal(•), ge (>•), and

gt(>). For details, see Section 11.6.

~nt•11:1ua,.w,m•x11Mw1t a 11,a,azz1 ,.... UL a,zuau4aew1,.# .. @1.eucwau;;;u 1.: e 11:::uzq;;:aaatt tttu;;::M@M:;444

....... ,. ,.
\\

"' 't
1>
I)

" \v ,-
YI"*
V"*
\I*
\I*

8.U.lltlng

.,..••= ow, •. 111111111,,,1 .,,..

1118 , ·, ,11
••11• ---•-•11nd JI, -····••11flr .,,1111. A.._...,•r•• ..• :a11id1•;
HISJ I fltlll (-TII.II t,..1). • •11111t .. 9UfUfl,

TM :a I.I. lfl-Sl■lit\ •:118 lll, •·•• • 1 • n •--•

--• ■-■11 -■IIIWJiltk~ ~ !l_!ilJt\. JI/I.,. ----•---
._ _, ,111• ••••• , •••••• 11:lll(ffitliltBiliJ' Ill U

Two , 11.711 •. 'h' - . ·· . -- .!llfll(...
.. •• , ., ... u ••. ,. •
alQAlltlell 11-·Jill- · .. · ... · NllllMlltt•• -••••re ,_ •-• •·•••11r(1'1,1• · ·
,e(,-J. _,.,C>J. ,_ ••••••11·~i1k?.

u.1.-,
tCIJ••· •• .,,, ,, > ·.· • ,.,_

--•11111• GM. ·•llfllal ·•••--•,. ... , ... _... ·~. '·. ·:
111111a naen1r•11•••· ,
GISI ·••·•··• R!ilf•II: _ .. 11.1._, .. , ; ·,·.

6.2.7 Any 25

the mutability and atomicity of an any object depend on the rrutablllty and atomicity of the contained

object. Objects of type any are not transmissible.

The aeats operation is parameterized by a type: aeate takes a single argument of that type and

returns an any object containing the argument. The force operation is allo parameterized by a type; it

takes an any and extracts an object of that type, signalling M'Dnf_ln,e I the contained objlct's type Is

not included In the parameter type. The Is_ type operation le palllfflllerized by a type and chicks whether

Its argument contains an ot>;ect whose type is included in the parameter type. The detailed apecification

is found in Section 11.19.

6.2.8. Sequence Types
Sequences are immJtable and they are atomic or tranamissl>le when instantiated with atomic or

transmissible type paramelers. Although an lndivk:k,al sequence can have any length, the lenglh and

members of a sequence are fixed when the sequence is aeatld. The elements of a sequence are

indexed sequentially, starting from one. A sequence type spaclication has the form:

aequence [type_actual]

where a type_aclUa/is a type_spBC, possibly augmented with operation bindings (see Section 12.6).

The new operation returns an empty sequence. A sequence constructor has the form:

type_ spec $ [[expression I ■■■]]

and can be used to create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new aequences can be constructed from

existing ones by means of the llddh, add/, remh, and rem/ operations. Other operaliona Include fetch,

replace, top, bottom, size, the elflmt111ls and Index• lterak>IS, and subeeq. Invocations of the f8tch

operation can be written using a special form:

q[i] % fetch the element at Index I of q .

Two sequences with equal elements are equal. The equal(•) operation tests If two sequences have

equal elements, using the equal operation of the element type. Slmllar tests If two ~s have

similar elements, using the slmHaroperatlon of the element type.

All operations are indivisible except for fill_copy, equal, similar, copy, encode, and ci9cods, which are

divisible at calls to the operations of the type parameter.

For the detailed specification, see Section 11.8.

6.2.9. Array Types
Arrays are one-dimensional, and mutable but not atomic. They are transmissl>te only if their type

parameter is transmissible. The number of elements in an array can vary dynamicaRy. There Is no notion

of an •uninitiaHzed'" element.

fi!lU un 1w2 .. me 01. tsn.•11uJ: 14um ;;1 u:;at::ua ta . J tJJIIXJUtiAZl#itzt;t.&ZJltl!JUUtlttJ 1u uztrLc ss;:.4;;;.v •• &!i!J@i::n¥!l;;

28 ~.~II Ill •• ,. •. ,.. .. ,,ma1n,.

The.,.._,•-- •1tl1 f111r••··•--•-.. ••· ... lf ll<lf ,.,
•••· 111t1111 ••• a,rn1,,,,,1.Q11ttu1u.,....,.,., ..
•----••----···•··• .. ·1M.1i1J' .. 1[·•1fll IIAt,_ ..
tonn: ...,, ... _
,,.. 11111,ot lt-•---................ , ---

opeJ1111ft-. • .. znt •••--•·• ,11.liHlllil(Jtllit'1Jllii~IHI,:•-•--•
• ,,. ,1, 1 ••~•--.;a111dl1t1111·111111 ·u~l• ••• •Jflliilt:i• • di v. ., • .,.,
inlllt tbua• ,_ ••• •·

.. ,-:1.1.a.4
•••••1111_. ,1,■JIL

···••·• ••••-.. •••__,,1 ... Jwt • 1111f•a111n••

---••11111nraa.._ u••.,..•••tll4111l._ _.ru111••-. .., ,, • ..,. ..• ,,._.,_. · ··••····' · ·· ·· >Olllt•:n•••--
,...,._ •_,_ •11, .. 11r11 ••· . liA I•----
• tt .••• , ,, •• ti u. • ···-·•-•1•1 .•.
..,...., ••••dMlf----1 . . . ·. . -- . ~ . ·..,.._.,_

- --- $j -· -·,.._ •••n --••r••t.'IJJ ··;•..., ,. ,,.. . . .,
•u1u•••·

Al QIII ·•• • •• 11111: --,.._ 1.11 • t •1. IJHPf. -· • Ill 11. _, -•·• --•
•·1111 •--• • 1 1 •••--- • r1111 u•i.

&L18.11Ju._ .. _
A•••••• ltt If 11111 RIIJ•lll ·.

•• 1 II•-•· . •. . . llli : •.•
a , •••• ,_ nu I · 11:11,uh.■r
.......... iffl!l.l . · .. ;

................. J
MdJPIC ==-- I - :

••111 •••er•--•
.. ',,;:.H:181111••

·•taM·--- A

•••---•1 1w2 -••1••11 1.•-•••• ••••1r111,.w<1t111Sd1:,1aw11111 ,,,....

6.2.10 Structure Types 27

A structure is aeated using a structure constructor. For exa"1)18, assuming that "info" has been

equated to a structure type:

info• atl'UCl[last, first, middle: atrlng, age: Int)

the following Is a legal structure constructor:
info$ {last: "Scheller", first: "Robert", age: 32, middle: "W.1

An expressJon must be given for each Nlector, but the order and grouping of Nlectors need not

resemble the corresponding type specfflcatlon.

For each selector "sel", there is an operation get_ SBI to extract the named component, and an

operation replace_ S8I to create a new sttucture with the named component replaCed with some other

object. Invocations of the get operations can be written using a special form:

st.age % get the 'age' component of st

As with sequences, two structures with equal components are in fact the same object. The equal(·)

operation tests if two structures have equal con,:,onents, u8'ng the equal operations of the component

types. Slrrilar tests if two structures have slmlar components, using the slmllat' operations of the

component types.

All operatlonS are individ>le except for equal, slrrilar, copy, llf>OOdtl, and dfJOOde, which are divisl:>le at

calls to the operationl of the type parameter.

For the detaHed spectflcatlon, see Section 11.11.

6.2.11. Record Types
A record is a nl.ltable collection of one or more named objects. Records are never atomic, and are

transmissible only if the parameter typeS are all transmisaible. A record type specification has the form:

record [field_ spec , ... J
where (as for structures)

field_ spec : :: name , ... : type_ actual

Selectors must be unique within a specification, but the ordering and grouping of Htectora ii unimportant.

A record is created using a record constructor. For example:

professor$ {last: "Herlihy"; first: "Maurice", age: 32, middle: "P.1

For each selector "sel", there Is an operation oet_SBI to extract the named component, and an

operation sst_Sfll to replace the named component with some other object. Invocations of these

operations can be wrttten using a special form:

r.mlddle % get the 'middfe' component of r
r.age =• 33 % set the 'age' component of r to 33 (by calling sst_B(JB)

As with arrays, every newly created record has an identity that is diatlnct from all other records; two

records can have the same components without being the same record object. The Identity of records

28 Types, Type Generlltors, and Type Specifications

can be distinguished with the equal(•) operation. The slmllar1 operation tests If two records have equal

components, using the equal operations of the component types. Slnilartests If two records have similar

components, using the similar operations of the 00fl1)0l'18f1I types.

AH operations are indivisible, except similar, simllar1, copy, encoc:JB, and decode, which are divisible at

calls to operations of the type parameters.

For the detailed specification, see Section 11.12.

6.2.12. Oneof Types
A oneof type is a taolJBd, dlscrim/nat(ld union. A oneof is an lmnUallle labeled object, to be thought of

as "one of" a set of allematives. The label Is called the tag, and the obtlCt Is called the value. A oneof

type speciflC&tion has the form:

oneof (fleld_spec I ... J
where (as for structures)

field_ spec : :: name , ... : type_ actual

Tags trust be unique within a specification, but the ordering and g«>uplng of tags is unimportant. An

instantiation is atomic or transmissl>le I and only I aN the type parameters are atomic or transmissible.

For each tag ,. of a oneof type, there is a rnalce_t operation which takes an object of the type

associated with the tag, and returns the obied (as a oneof) labeled wllh tag , •.

To determine the tag and value of a oneof object, one notmaltt ueea the tagt:111 statement (see
Section 10.14).

The equal(•) operation tests I two oneofs have the same tag. and I so, tests if the two value

components are equal, using the equal operation of the value type. Slmllllr telta If two oneota ha¥e the

same tag, and If so, tests I the two value components.,. llmlar, U8lnO ht .,.,.,.operation of the value

type.

AH operations are indivisl>le, except equal, similar, slmllar1, copy, fll'IOOdB, and dfJ<::od6, which are

divisible at calts to operations of the type parameters.

For the detailed specification, see Section 11.14.

6.2.13. Variant Types
A variant Is a mutable oneof. Variants are never atomic and are tranamllsible If and only If their type

parameters are aH transrnlssl>le. A variant type spedllcation has the form:

variant (field_ spec , ... J
where (as for oneofs)

field_spec ::: name , ... : type_actual

6.2.13 Variant Types 29

The state of a variant is a pair consisting of a label calad the tlJt1 and an object called the value. For each

tag "t" of a variant type, there is a mlllce_t operation whiCh Ilka an obied of the type aslOCiated with the

tag, and returns the oblect (as a variant) labalad with tag T. In adrllion, lhent ii a ~-t operation,

which takes an existing variant and an object of the type UIOCllltld wlh T, and changes the state of the

variant to be the pair oonsllting of the tag T and the given c,bjeet. To Clelarmlne the tag and value of a

variant object, one normally uses the tagcaN statement (see Section 10.14).

Every newly created variant has an Identity that Is diatinct flOffl al Gller variants; two variants can have

the same state without being the same variant object. The ldendty of varianla can be di8tinguished using

the equal(•) operation. The slmllar1 operation tests if two varianll have the same tag, and 110, tests If

the two value COf11)0118nts are equal, using the equal operauan of 118 value tp. Slmllllr tests If two

variants have the same tag, and If so, tests if the two value cr,mpc,nents are stmilar, using the similar

operation of the value type.

All operations are indivisi.>le, except similar, similar1, copy, enood6, and d6cocle, which are divisible at

calls to operations of the type parameters.

For the detailed specification, see Section 11.15.

6.2. 14. Procedure and Iterator Types
Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).

They are not transmissl:>le. As the Identity of a procedure or llerator II lmrruable, they can be

considered to be atomic. However, their atomicity can be violated If a procedure or iterator has own data

and thus a rn.dable state. The immutabiHly and atomicity of a procedure or aerator wlh own data

depends on that operation's specified semantics.

The type specification for a procedure or Iterator contains most of the infonnation stated in a procedure
or Iterator heading; a procedure type RllfllCIIIC:~tion has the form:

proctype ([type_spec, ...]) [ret] [signals]
and an Iterator type specification has the

ltertype ([type - spec]) [
where

returns ::: returns (I ■■■)

yields : : = ylelds (
signals ::: Ilg,.... (ex ' ...)
exception : :: name [{ I ■■■)]

The first list of type specifications dllU1r.r1t1as the runber, types, and order of arguments. The returna or

order of the objects to be returned or yielded. The signals
clause lists the exceptions raised by the procedure or Iterator; for each exception name, the number,

types, and order of the objects to be retu is also given. Al names used In a Slgnals clause must be

unique. The ordering of exceptions is not ant.

30 Types, Type Genwators, and Type Specifications

Procedure and Iterator types have an equal(•) operation. Invocation is not an operation, but a

primitive In Argus. For the detailed specification of proctype and lleltype, see Section 11.17.

6.3. Atomic_Array, Atomic_Record, and Atomic_ Variant
Having de8Cl'l>ed the types that Argus Inherited from CLU, we now descrl>e the new types In Argus.

The rootable atomic type generators of Argus an, atomlc_anay, IIIOllllc_recon:I, and atomlc_vartant.
Types obtained from these generators provide the same operatlont as the analogous types oblain8d from

array, record, and variant, bul they differ In their synchronization and recovery propeftin. Conversion

operations are provided between each atomic type generator and Is notHltomic partner (for exampte,

atomlc_array(t]$aa2a converts from an atomic array to a (non-atomic) array).

An operation of an atomic type generator can be claSsified as a readtlr or wrltllr depending on whether

it exanines or modifies Its prlnclpa/ argument, that is, the argument or resul objeCt of the operation's

type. (For binary operations, such as ar_gets_ar, the operation ii classiHed with respect to each

argument.) lntultlvely, a ,.,,.,., only examines (reads) the state of b pnncipal argument, while a writsr

modifies (writes) its prkq>al a,gument. Operations that create obtlCla of an atomic type are classified as

readers. Reader/Writer exclusion Is achieved by locking: read8rl acquint a read lock while writers

acquire a write lock. The locking rule& are discussed In Section 2.2.2.

If one or more of the type parameters Is non-atomic, then the muling type is not atomic because

modlHcatiOnS to component objects are not controlled. However, INdlwrlle locklng still occurs, as

described above. Thus, an atomic type generator instantiated wlt'I a non-atomic parameter incufl the

expense of atonic types without gatmng any benefit; such an inltanlilltlon Is unlkefy to be a correct

solution to a problem. Atomic type generators yield transmllstie tps only If the type parameters are all

transnissible.

Special operations are provided for each atomic type generator to test and manipulate the lockS

associated with reader/writer exclusion. These operations are useful for implemel'Olg uaer--defined

atomic types (see Section 15). The tagtNt and tagwllll stalernel'III (IM Section 10.15) J)IOVtdl

additional structured support for atomic_varlanls. The operations can_f'Nd, can_M11e, Tlltll_and_rud,

and test_and_wrlte provide relatively unstructured access to lock Information. For~ deflnllions of

these operations, see sections 11.10, 11.13, and 11.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments

or the objects that they create.

atomlc_array: aeate, new, predict, ffH, flll_copy, sizs, ow, high, empty, top, botlOm, Mleh, $lmllar,
s/tnlar1, copy, oopy1, eltmrfmts, Indexes, test_and_read, a2aa, aa2a, enctlde,
d«:Dd6

atomlc_record: aeate, get_, simllar, simllar1, copy, copy1, tesLand_rNd, ar_gels_ar (second
argument), r2ar, ar2r, enoocle, decode

atomlc_varlant: males_, is_, value_, av_gels_av (second argument), simllllr, silfflar1, copy, copy1,
test_ and_read, v2av, av2v, encode, decod8

6.3 Atomlc_Array, Atomlc_Record, and Atomlc_Vartant 31

The operations slmllar and slmlar1 acqun read locks on Nth arguments. The operations aopy and

copy1 acquire a read lock on the value returned as wel • ttl8lr prtncipal argument. Test_and_read is a

reader only if ii returns true; otherwise It Is neither a reader nor a writer.

Assuming normal termination, the foflowtng operations acquire write locks on their principal arguments.

atomlc_array: SBt_low, trim, store, addh, add/, remh, rem/, ttJtJt_and_wrltB

atomlc_record: set_, ar_gets_ar(flrst argument), _,_and _ _,.
atomlc_vartant: changB_, av_gets_av(flf8t argument),_,_.., _ _,.

Test_and_wrlte Is a writer only If It returns true; otherwise It ii nelher a reader nor a writer.

The equal, can _read, and can_ write operations are neither readers nor writers.

When an operation of alOffllc array t.minate8 wlh an exception, Is principal al'gllfTleN is never

modified; however, the atamlc_anay operations listed above• Wfllts always obtain a wrle tad(before

the principal argument ii examined, hence there are CIN8 In which they wll obtaitl a WIie lod< and only

read, but not modify their principal argument. For exa,..., ldlllllc_arni,(tJSlrim is a writer when It

signals bOunds. On the other hand, when an alOllllc_.., operation raises a lignaf becauH of an

invalid argument, no locks are obtained. For ex.,._, when IIIOllllc_alTllftl]Slrtm lignall fHlllllllv•_sJze,
it is neither a reader nor a writer since the array's state ii nether examned nor rnodlled (only the Integer

argument is examined).

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13;

and for atomic variants, see Section 11.16.

6.4. Guardian Types
Guardian types are user-defined types that are if11)1emented by guaroian definitions (see Section 13).

A guardian definition has a header of the form:

idn - guardian [parms J 1a idn • ... [handlM ldn J [where 1
The creators are the operationl named In the Identifier 11st following IS; a creator is a spectal kind of

operation that can be called to create new guardians thal behave In accordance with the guardian

definition. Each guardian oplionaly provides handlers that can be called to Interact with It; the names of

these handlers are listed In the identifier 1st following IIIIIICIIN. (See Section 13 for more details.)

A guardian definition named g defines a guardian interface type g. An object of the guardian lnterf ace

type provides an interface to a guardian that behaves in accordance with the guardian definition. An

Interface object is created whenever a new guardian ii crated. and then the interface object can be used

to access the guardian's handlers. Interface Objed8 are tranemil1llle, and after tranamluion 1hey still

give access to the same guardian. In this manuat a "guardan IRl8'faee object" II often called sin1)ly a
•guaJdian object•.

The guardian type g for the guardian definition named g has the following operations.

32 Types, Type Generalors, and Type Specifications

1. The creators listed In the la list of the guardian definition.

2. For each handler name h listed In the IWICIIN Nst, an operation get_h with type:
proctype (g) retuma (ht,, where ht Is the type of h.

3. Equal and similar, both of type: proct,pe (g, (/J relUmll (bOol), which return true only If
both arguments are the same guardian object.

4. Copy, of type: proctype ((/J return• (g), which &ifT1)fy returns Its argument.

5. transmit.
A creator may not be named equal, similar, copy, print, or get_ h where h Is the name of a handler.

Thus If x is a variable denoting a guardian interface obiect of type g. and h is a handler of g, then

g$get_h(x) wiU return this handler. As usual with get_ operations, 1h11 cal can be abbAMaled 10 x.h.

Note that the handlers themselYes are not operations of the guardian Interface type; ttu tJ$h would be

illegal.

A guardian interface type is somewhat like a structure type. Its objects are constructed by the creators,

and decomposed by the get_ operations. Guardian Interface obi8Ctl are lmmJtable and alomlc.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handler objects are created as a side-effect of guardian

creation. Unlike procedures and Iterators, handlers and creators are transmisal)le.

The types of handlers and creators resen1>le the types of procedurea:

handleltype ([type_spec, ...]) [retums] [..... J
cnatortype < [type_apec, ... J) I retums J 1--1

The argument, normal reault, and exception l'8IUlt types ffll8t all be tranamisd>le. The sl(/nlJla 1st for a

handllrtype or CNIIIOrtype cannot Include either failure or unavallable, • these signals are '"'3IICI in

the interface of all creators and handlers.

Handler and creator types provide equal and lllmflar operations which return tn,e I and only I both

arguments are the same object, and copy operations which_.,., ratum their argument. For the detaled

specification of handtertype and Cl'Ntol'type, see Section lt.18.

6.6. Image
The Image type provides an escape from coff1)11e-tlma type cheddng. The main difference between

Image and any Is that Image objeds are transmiaaible. An lfflllOe ObleCt can l:Mt thouQN of as a portion

of an undecoded message or as the Information needed to reaeate an oblect of some type. Image
objects are inmutable and atomic.

The create operation Is parameterized by a transmissl)le type; it takes a uve argument of that type

and encodes it (using the encod8 operation of that type) Into an Image objeet. The force operation Is atso

&.& Image 33

parameterized by a transmiasl>le type; It takes an Image object and decodes It (using the decode

operation of that type) to an object of that type, 8lgnallng MOIJQ_lp if the encoded object's type is not

Included in the parameter type. The is_ Ip operation la parameterized bi/ a type and checkl whether its

argument Is an encoded object of a type Included In the parameter type. See Secdon 11.20 for the

detaHed specification.

6.7. Mutex
Mutex objects are nlJtable containers for information. They are not atomic, but they provide

synchronization and control of writing to stable storage for their contained object. Mutex ltsel does not

provide operations for synctvonlzlng the uae of nuex obieCtS- Instead, mutual exclulion is achteved

using the Nlze statement (see Section 10.16), which aflows a eequence of statements to be executed

while a process is In exclusive possession of the mutex object. Mutex objects are transmissible If the

contained object Is transmissl>le.

The type generator mutax has a single parameter that is the type of the contained object. A rrutex

type speciflcatton has the fonn:

mutex (type _actual]

Mutex types provide operations to create and ~ lftltex obfeets, and to notify the system of

modifications to the rrutex object or Its contained object.

The create operation takes a single argument of the parameter type and creates a new mutex object

containing the argument object. The get_ valull operation oblalnl lie ocnalned obJect from Its mutex

argument, while •L valw modifies a nuex object bi/ repfaclng Its contained object. As with records,

these operations can be called UH1g spedal fOl'ffll, for ex.,._:
m: IIIUIU(lnlJ =• muleX(lnt)Screate (0)
x: Int=• m.vakle % extract the conlalnld object
m. value :• 33 % change the contained object

Set_ valw and get_ value are indivisible.

Mutexes can be distinguished with the equal(•) operation. There ant no operations that could cause

or detect sharing of the contained object by two mutexea. SUch sharing is dangerous, Since two

processes would not be synchronized with each other In thN' use of the contained object if each
possessed a different mutex. In general, If an object is conlained In a rft.dex object, It should not be

contained in any other object, nor should it be referred to by a variable except when In a ..._ ssatement

that has possession of the containing mutex.

There are some mutex operations that seize the rootex object automatlcalfy. Copy seizes Its single

argument object. Similar seizes its two argument obilda; the first 811Uffl8nl object is seized fltst and then

the second. In both cases possession is retained untl the ope,atiorl8 return. Also, when a mutex object

is encoded (for a message or when making an Image), the object is seized automatlcatly. See Section

11.21 for the detailed specification of mutex.

34 Types, Type Generators, and Type Specifications

Mutexes are used primarily to provide process synctvonlzatlon and mutual exclusion on shared data,

especially to implement user-defined atomic types. In such ~. it is ~ to control

writing to stable storage. The fTIJtex operation chang«I provides the necnaary control. Chang9d

informs the system that the calling action requires 1hat the argument Obilct be copied to stable storage

before the commit of the action's top-level para (topaction). Alff nuex la asynchronous: its OOt'Uined

object is written to stable storage Independently of objecls that contain that mutex. See Section 15 for

further discussion of user-defined atomic objects.

6.8. Node
Objects of type node stand for physical nodes. The operation twe takas no a,gumera and returns

the node object that denotes Its caller's node. Equal, slmllar, and copy operations are lllllo provided.

The main use of node objects is in guardian creation (aee Secllon 13), where they are used to cause a

newly created guardian to reside at a particular node. Objeds of type node are immutable, atomic, and

transmissl>le. For the detalled specification, see Section H.2.

6.9. Other Type SpecHlcatlons
A type specification for a user-defined type has the fonn of a refrlrenctl:

reference : :: ldn

I idn l actuat _parm 1
I reference S name

where each actual_parm nuat be a COl11)ile-time con1)1Jtab1e conatant (see Section 7.2) or a type_aclua/

(see Section 12.6). A Nferenoe 111.111 denote a data atJ81111GtiOn ID be UNCI • a type apecllcatlon; tis

syntax ts provided for referring to a data abatradlon M fl namld In an equate module (see Section

12.4). For type generators, actual parameters of the approp,111I typea and number fllJSt be suppled.

The order of parameters is always significant for user-defined types (see Section 12.5).

There are two specia! type specifications that are used when lmptemenllng new abllractions: rep, and

CYt. These fonns may only be used within a clualer; they are dilallNd fullt:ler In Section 12.3.

Within an implementation of an abstraction, formal paramelerl dlclaNd wlh type can be used • type

specifications. Flnally, Identifiers that have been equated to type apeclficatlonl can also be UNd as type

specifications.

7 Scopes, Declaratlona, and Equates 35

7. Scopes, Declarations, and Equates
This section descrl>es how to introduce and use constants and variables, and the scope of constant

and variable names. Scoping units are descrl>ed first, followed by a dlaa,ssion of variables, and finally

constants.

7. 1. Scoping Units
Scoping units follow the nesting structure of statements. Generally, a scoping unit is a body and an

associated ·heading''. The scoping units are as follows (see Appendix I for details of the syntax).
1. From the start of a module to Its end.

2. From a cluster, proc, lier, equates, guardian, handler, or CNatOr to the matching end.

3. From a for, do, begin, background, recover, enter, coentar, or Nlze to the matching
end.

4. From a then or elN in an If statement to the end of the comtsponding body.

5. From a tag, wtag, or others in a tagrm, tagWlllt, or tagtNt llatement to the end of the
corresponding body.

6. From a when orothera in an except statement to the end of the corresponding body.

7. From the start of a tn,e_sstto Its end.

8. From an action or topactlon to the end of the corresponding body.

The structure of scoping units Is such that I one scoping unit overlaps another scoping unit (textually),

then one Is fully contained In the other. The contained scope is called a nested scope, and the containing

scope Is called a surrounding scope.

New constant and variable names may be introduced In a scoping unit. Names for constants are

Introduced by equates, which are syntactically restricted to appear grouped together at or near the

beginning of scoping units (except In type sets). For ex..,ie, equates may appear at the beginning of a

body, but not after any statements in the body.

In oontrast, declarations, which introduce new variables, are dowed wherever statements are allowed,

and hence may appear throughout a scoping unit. Equates and declarations are disalssed In more detail

in the following two sections.

In the syntax there are two distinct nontenninals for Identifiers: idn and name. Any identlier introduced

by an equate or declaratton Is an /dn, as Is the name of the module being defined, and any operattons It

has. An ldn names a specific type or object. The other kind of ldenlffler Is a name. A name Is generally
used to refer to a piece of something, and Is always used In context; for example, names are used as

record selectors. The scope rules apply only to ldns.

The scope rules are simple:

1. An kin may not be redefined in its scope.

2. Any idn that is used as an external reference in a module may not be used for any other
purpose In that module.

36 Scopes, Declaratlona, and Equates

Unlike other "block-structured" languages, Argus prohl>itl the redefinition of an Identifier In a nested

scope. An identifier used as an external reference names a module or 00f'lltant; the reference is resolved

using the oo"1)11atlon environment.

7 .1.1. Variables
Objects are the fundamental itttngs• in the Argus universe; variables are a mechanism for denoting

(i.e., naming) objects. A variable hu three prope,tJea: •• type, whether I ii stable or not, and the objecl

that it currently denotes (if any). A variable is satd to be unlnltlallatJ I I does not denote any object.

Attempts to use uninitialized variables are programming enora and (If not deleded at compile-time) cause

the guardian to crash.

There are only three things that can be done with variables:
1. New variables can be Introduced. Declaratlons pe,form this function, and are described

below.

2. An object may be assigned to a variable. After an ll8llgnment the variable denotes the
ot>;ect assigned.

3. A variable may be used II an expreuion. The value of a varillble is the object that the
variable denotes at the time the expression is evaluated.

7 .1.2. Declarations
Declaratlons Introduce new variables. The scope of a variable is fft)rn la declaration ID the end of the

smallest scoping unit containing Its declaration; hence, variables nut be declared before lhey are used.

There are two sorts of declarations: those wlh initialization, and thole without. Slf11)fe deciaratlons
(those without Initialization) take the form

decl ::: ldn, ... : type_spec

A simple declaration Introduces a list of variables, al havtng the type given by the ,w._spec. Thia type

determines the types of objects that can be assigned to the variable. The var1lbles lntloducad In a lin1>fe
declaration initially denote no objeds, I.e., they are uninliallzed.

A declaration with Initialization combines declarationl and uaignmlnls Into a single statement. A

declaration with Initialization is entirely ~ to one or more simple declarations followed by an

assigmlent statement. The two forms of declaratton wlh lnldallzatlon are:
ldn : type_spec :- expression

and

decl1, ... , dec\t :• caH [@ primary]

These are equivalent to (respectively):

ldn : type_ spec
ldn :- expression

and

7.1.2 Daclaratlons 37

decl1 ... dec'n % declaring ldn1 ... idr\n
idn1, ... , idf\n :•call[@ primary)

In the second fonn, the order of the kffls in the aasignment statement is the same as in the original

declaration with Initialization. (The call must return m objects.)

7.2. Equates and Constants
An equate allows an ldentlier to be used as an abbreviation for a conetant, type set, or equate module

name that may have a lengthy textual representation. An equate lllo permits a mnemonic Identifier to be

used in place of a frequently used constant, such• a numerical v.abt. We use the term constant In a
very narrow sense here: conatants, In addition to being Immutable, _,.. be computable at compite•tlme.

Constants are either types (built-In or user-defined), or objects that are the resulls of evaluating constant

expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate : :: idn • constant

I idn • type_set
I idn - reference

constant::: type_spec
I expression

type_set ::: { ldn I ldn has oper_decl, ... {equate}}

reference : :: idn
I ldn (actual _pann , ...]
I reference $ name

References can be used to name equate modules.

An equated identffler may not be used on the left-hand stde of an assignment statement.

The scope of an equated identifier Is the smallest sooplng unit surrounding the equate defining It; here

we mean the entire scoping unit, not just the portion after the 8(Jnlle. AH the equates in a scoping unit

must appear grouped near the beginning of the scoping unit. The exact placement of equates depends

on the containing syntactic construct; usuaNy equates appear at the beginnings of bodies.

Equates may be In any order within the a sooplng unit. Forward references among equates In the

same scoping unit are allowed, but cyclic dependencies are illegal. For ex8f11)18,

X•Y
Y=Z
z-3

Is a legal sequence of equates, but

! iJJMJ lJ®tttl,. JtQl!lJKHJt -~!\l!tlllllrllltll.JS u ;p b# .L l. l .&h J$Jtilltb4.ltt tSS!L $111224, UJJ LllLU:U]I !Ull!IJSl!JWMJUttQIX.MA JIJJ!l!.l!IUJUJM!llt!

38
is not. Since eq111111 lrilOduce idRI, lie--.,,,.•-._, CfA., .. tdlll ,_ not be

daflnal men than once).

1.2.1. Ablnvhdlana for r,...
Ide ... ,. -,tu ••r••• "1an 11-. .-., ••· ux• ••• ,..,,.

7.2.2. Conlillftl 8 I YIIIIIRI , ur••·•·:••--•.•1111a, r1r•w, ... 11, uu1m •
COi EIIT'41JfllJIIII•• t1:,rr bM• •1 Hlda ... ;r·eJ■lh .. ~- J][f ap L Jill I II Ill _.,..,.., -·-·-••n.:••i• 11111til11 ••-·--· ,..
lncludll:

1

2.ldll ._. ... to Ill.

3.fvmllllpum••···
4. Ploolcln, 11111 M. - --M111F,

5.81nd1,rur'U1(--••-..,. ,...,.,., ,, •-••
dGOl'IEI••·

8. llw>IIIIAI el tlllll .. lfl If ., It .. ,, •• Ill~ JIii. 9■111111• - t, 11111 •••111Ul:1•11i1Ul•t1
The bull..fn 11.-, ·•••• ... -= .. •-. - m11111f111:afs u, .,,,_
......... ,.,1S1tt ,--. ... •••r••·

-..__.....,, 111,n:,a •-••••-.•-•• • 1n1111M.--
tht.._.,lrmlll, .. nu••••••••• :1r1a. ••11rn•••J1•••1111, u1111a
wauldllgn■t• • • 1111 I •• ,.;., .. ' 1111•A•-··;

8 Assignment and calla 39

8. Assignment and Calls
The two fundamental activities of Argus programs are calls and assignment of computed obiects to

variables.

Argus programs should use mutual exclusion or atomic data to synchfonize aocess to an shared

variables, because Argus supports concurrency and trus pR)08sses can Interfere with each other during

assignments. For example,

i := 1
j == 2

is not equivalent to

i, j :- 1, 2

in the presence of concurrent assignments to the same variables, because any interteaving of Indivisible

events is possible in the presence of concurrency.

Argus is designed to aHow coff1)1ete compile-time type-checking. The type of each variable is known

by the compiler. Furthermore, the type of objects that could red from the evaluation of any expression

is known at compile time. Hence, every assignment can be checked at COff1)lle time to ensure that the

variable is only assigned objects of its declared type. An assignment v =• Eis legal only If the type of E is

included the type of V. The definition of type Inclusion is given in Section 6.1.

8.1. Assignment
Assignment causes a variable to denote an object. Some assignments are 1"1)1icltly performed as part

of the execution of various mechanisms of the language (In exception handling, and the tagcau, tagtest,

and tagwal statements). AH assignments, whether lmpliclt or expftclt, are subject to the type inclusion

rule.

8.1.1. Simple Assignment
The sin1>1est fonn of assignment statement is:

ldn =• expression

In this case the sxpression is evaluated, and then the resulting object is assigned to the variable named

by the idn In an indivisible event. Thus no other process may obaerVe a "half-assigned" state of the

variable, but another process may observe various states during the expression evaluation and between

the evaluation of the expreuion and the assignment. The expression must retum a single object (whose

type must be Included In that of the variable).

8.1.2. Multiple Assignment
There are two forms of assignment statement that assign to more than one variable at once:

idn , ... :• expression , ...

and

40 Assignment and ca11s

idn , ... :- caH [@ primary]

The first fonn of mu._. assignment Is a generalization of slq)l8 asstgnment. The first variable is

assigned the first expression, the second variable the second expt'8tlion, and so on. The expressions
are all evaluated (from left to right) before any aaslgnmenta are pe,fomlad. The uatgnment of mullple

objects to multiple variables is an indivlsl)je event, but evaluation of the expreuions ii divial:Jle from the

actual assignment. The oomber of variables in the list 111.1st equal the l'lffltNH' of expressions, no variable
may occur more than once, and the type of each variable must inckJde the type of the corresponding

expression.

The second fonn of multiple assignment allows one to retain the objects resulting from a call returning

two or more objects. The first variable is assigned the first object, the second variable the second object,

and so on, but all the assignments are carried out indivisl>ly. The order of the objects Is the same as in

the return statement executed in the called routine. The runber of variables must 8(J&8t the number of

objects returned, no variable may occur more than once, and the type of each variable must include the

corresponding return type of the called procedure.

8.2. Local Calls
In this section we discuss procedure calls; iterator calla are dlacul8ed in Section 10.12. However,

argument passing is the same for both procedures and Iterators.

Local calls take the form:

primary ([expression , ...])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3. New variables are Introduced corresponding to the formal arguments of the routine being
called (I.e., a new environment is created for the caled routine to execute in).

4. The objects resulttng from evaluating the exprt#llllonll (the actual a,guments) are assigned
to the corresponding new varlablN (the formal argumenll). The ffrlt formal is assigned the
first actual, the second formal the second actual, and 80 on. The type of each expression
must be lnckJded in the type of the correaponding formal argument.

5. Control is transferred to the routine at the start of its body.

A call is considered legal in exactly those situations where al the (in1>Heit) assignments are legal.

A routine may assign an ob;ect to a format argument variable; the effect ls jJ8t as If that object were

assigned to any other variable. From the point of view of the called routine, the only dlferenoe between

its formal argument variables and its other local variables Is that the formals are inltlallzed by its caller.

Procedures can tennlnate in two ways: they can terminate normally, returning zero or more objllds, or

they can terminate exceptlonally, signalling an exceptional condlion. When a procedure terminates

8.2 Local Cells 41

normaHy, any result objeda baoome avaffable to the caller, and can be aNigned to variables or passed as

arguments to other routines. When a procedure termlnalel excepllonafly, the flow of control wiN not go to
the point of return of the caH, but rather wll go to an excer,,tlon lwtdler (see Section 11).

8.3. Handler cans
As explained In Section 2 and In Section 13, a handler is an operation that belongs to some guardian.

A handler call causes an activation of the called handler to nm at the handler's guardian; the activation is

performed at the called handler's guardian by a new IUbaction created solely for this purpose. Usually

the handler's guardian is not the same as the one in which the cal occurs, and the called handler's
guardian is ll<ely to reside at a different node in the network than the oalHng guardian. However, I Is legal

to caH a handler that belongs to a guardian residing at lie Cllar"s node, or even to cal a handler

belonging to the caller's guardian.

Although the form of a handler call looks ll<e a procedure caH:

primary ([expression, ...])

its meaning is very different. Among other things, a handler is callad remotely, with the arguments and

results being tranlmilted by value In Pl8818g88, and the cal Is Nn u a Sllbactlon of 11s caling action.

Below we present an overview of what happens when exeaating a handler call and then a detailed

description.

A handler call runs as a subactlon of the calling action. We wll refer to this sc lbactlon u the call IICtion.

The first thing done by the caH action Is the ttanlfflil8ion of the ~ of the call. Tranamlsslon is

accomplished by encoding each argument objeet, ualng the operation of la type. The a,vuments
are decoded at the called guardian by a subaction of the call action called the .-. don IICl/on. Each

argument is decoded by using the d9COdtl operation of Is type. Thi effect of tnlnlmislion is that the

arguments are passed by value from the caler to the twder dwllllon: new objects come Ink> existence

at the handler's guardian that are copies of the argument ot,tecls. Object YUJeS are transmitted in such a

way as to preserve the inlemat sharing structure of each argument c,tJtect Is preaervJ, as wet as any

sharing structure between the argument objects In a single cal. See Secdon 14 for further dlacussion of
transmission.

After the arguments have been transmitted, the activation action performs the handler body. When the

handler body terminates, by executing a NIUm, llbOl1 ,_., .,._., or abort Signal ltateme,C, the

resutt objeda are transmitted to the caller by encoding them at the hinder's guardian, and convnlmng or

aborting the activation action (as it specified). The call action then decodls the reaulta at the caller's

guardjan. Once the resulls have been transmitted to the caller, the cal acHon commits and execution

continues In the caller as indicated by the caller's code. (Note that the cal action will commit even I the

activation action aborts.)

'This is only slriclly true for lhe built-in types. A uaer-defined type might not pnl88rV9 intamal sharing structure.

!-.)UJ.JI £Q,t!UJllN■Rtlt.:l!lrJU,.,n.J$JlliidL@JA .dUJQ!QtL IJU:ti. 2($JIJQ. lJJ!4!$)$.. ISPUJL!i2Jt®J .az;s.,&wg; ;._@Qi.:;;ze

The abcWfi dllC]J11111n w lfll••• • •••• 11$1 If •11J111t 111• •-.-In •••-- •

IWulrrGII. nw--·------·••···••11r,d11t.ull11 .. 11t
~ d the -- • l11n A la a •-S:ll! lllll~l,1 .• (''llfff'..:f,,JUII J1 .. •1• 1 •• II a PR9lffllllllll--.•~•••••• ... ···· · · · 111n••
.... ., ••PJ---•••1n11l
"' IL • .,_, I •• I I JJIIL •,111n.......,•u• .. • .. 111 .· ...

·.· .Jt
't, ••••.•••• ,,.

Thi ,.,.,, 1111•--....... , ··-;·-·----
...... _, , IHt I, .. •Irv. r .Ul II ,t i .:Ui)J.QI· ,. •.• , It~ I I ti .., --•

11111d: 111.., -•t1•11 · • w JP 11 .. •••••diill «11:Qll"f~lt:IJ t1IJ , • ..._

TIit Allgul .,. •• ,... .. •1111 u 1 • · · ·· ·. ··· ·· · · ·· C •· ill -.,•11111111,,..
1u1dlur R1••M1lllrw1u1.1.lll ■·- <1U11tu••--
11 I lllt1•11-- . ._ IJlllfllt: , . llfl- •:•--
n, ul•·• • • ~ 1 ,..,fllillli>1ti.:11: ' 1a ... • • '*"* Ut fl l ,.. • ... , . ' '" •• , •• ,.,.

--•••• .. ••••••111111tlJva·.· .-,u•••-oorr,'l•••••••••....,~
... 1J111m -• .._ H 18 trlf■P L

for l■llllr,IJ, N., A) ITU llf,111111:
... ,._ _ ,u • .,_11111•

---••••••lg.BJ::. 1111••· .. ' ... ·, ----~/as·• r•..,~••
llilll ~ tttltf , .. , ' , ;. , •. _ ... _

--..--•1111••·
.'1.U#lJll flli nt,tf , .

8.3.1 Semantics of Handler ca11s 43

8.3.1. Semantics of Handler Calls
In this section we describe the semantics of a handler call In detatl. A handler cal cauaes actiYity at

both the calling gu&ldian and at the called guaftlan. N. the calling guardian, the S8(Jlen08 of activities in

performing a handler call ii as follows:
1. The primary is evaluated.

2. The argument expn,sslons are evaluated from left to right.

3. A subactlon, which we will rater to as the call action, 18 CINled tor Iha remote call. All
~nt actMty on behalf of the cal will be pelfoflnld t,r ltl8 cal action or one of itS
descendaru. For I to be po•lble to create the CIII aaton, 118 caller RUil already be
running as an action. Remote caHs by non--actlonl are ~ emn and caul8 the
cafflng guardian to crash.

4. A cal message Is constructed. Aa part of 00l'lltNClfll .. fflll1181, MOOde operations
are petformad on the argument obj1• If -, flf Ill .,.-,... .m11..._ wflh a
failure exception, thin the remote cal wiR tennlnall wit\ ttle ... excepllon, and the call
action wiR be aborted.

5. The call message ii sent to the guan:llan of the caled handler, and the cal action waits for
the completion of the call.

6. If the can message arrives at the node of the target guardian, atld Ill target guardian does
not exist, then the cal action is aborted with the fallule exception having the atrlnG
"guardian does not exist" as Its exception reeul. ·

7. If the ayatem determlnea thlll I cannDI comnanlcate wlltl tM called-n, II abGfll the
cal action. The cal action may be retried ~ II 111P 3) in to
OOIMllnlcllle. I Np-■d t■lu• • ••u,.,.., .,_ IYll■m lboAI ._
cal action and OIIUHI .. cal to te,mll!III wlltl91e-on. The ayalem wil
C8ll8e thll kind of termination ~ when I II ~ unllkely that retrying the caH
Immediately wll succeed.

8. On:lnarlly, a call complelea when a reply mea•• containing the NtlUla II received. When
the reply message amvn at the caller, I II decoded Uling tlll d#ICOtM operation for each
resul obi■Ct- If any decode tennlnale1 wilh a ,,,,.,. ...,._., the cal acllon is lboftad,
and the call terminates with the same exception. Olherwlle, the cal action commits.

9. The call wHI terminate normally I the l'8IUI rneesage lrdicllll thlt the handler activation
returned (Instead of signalled); otherwise It termlnalea wlh whatever exception was
slgnalfed.

At the called guardian, the following activities take place.
1. A subaction of the call action Is created at the target guardian to run the calt. We will refer

to this subactlon as Ile activation at:llon. Al actlYtly at the ta,get guardian occurs on behalf
of the activation action or one of its deacendanls.

2. The call message Is dacon1)088d inlo Its conatlluent CJbtlds. M part of this J>10C8SS
dBcodtl operationl are performed on each argument. If My """°"" terminatel with a
fallunl exception, then the activation action ii aborted, and the call terminlt4ts with Ile same
exception.

3. The called handler Is called within 1he actlvalk>n action. Thie call ts ll<e a regular procedure
call. The objects obtained fRMTI deaoding the ffll881G8 n the actual arguments, and they
are bound to 1h8 formals via in1)llcl aalgrvneru.

4. H the handler terminates by executing an llbolt ,._ or an -.n slgftlll •ement (see
Section 11.1), then an oommiled deeclndlnll of the dWlllorl action are lborted. Then
the reply message is constructed by encoding Ile ,..,. abjlcta, the acllvalion action is

44 Aalgnment and Calls

aborted, and the reply m&888Qe is sent to the caller. Olherwile, when the hancler
terminates, the reply message Is constructed by encoding the red objacta, the activation
action commits, and the reply message Is 88ft ID the callar. If one cl the calll of encode
terminates with a fa/lute excaplion, than the acttvation adion ii aborted, and the can
terminates with the same exception.

When the Argus system terminates a call with the unavallllble exoeption, It is pos&l>le that the

activation action and/or some of its descendants are actually running. Thll Q;NAct happen, tor If

the netwol1< partitions. These running processes are called ·Olphanl•. Thi Alp system makes sure
that orphans wiff be aborted before they can view inconsistent data (He Section 2.5).

8.4. Creator Calls
Creators are caled to cause new guardians to come ink> exlstenee. Aa part of the caff, the node at

which the newly created guan:lian wil be located may be specified. If ._ nocll ii not specified, thin the

new guardian is created at the same node as the caller cl the creator. The torm cl a crealOr cal ii:

primary ((expression, ...)) [@ primary)

The primary following the at-sign(@) m.ilt be of type node.

A creator call caUNI two aclivlies to take place. First, a new QUMllafl ii created at the Indicated

node. Second, the creator is called U a handler at the~ CNllld guardian. This handler call has
basically the same semantics as the regular handler calf de8crl)ed above.

The Argus system may also cause a creator can to abort with the fal/un, or unavailable exceptions.

The reasons for such terminations are the same as those for handler calla, and the meanings are the

same: the failure exception means that the Cllf should not be relried. while the unavailable exception

means that the caH should not be retried immediately.

8.4.1. Semantics of Creator Cella
The actMties carried out In exea,ting a creator call are as follows.

1. The (first) primary Is evaluated.

2. The argument exprsssions are evaluated from left to right.

3. The optional primary foUowing the at-sign Is evaluated ID obtain a node object. If this
primary is missing, the node at which the cal Is taking place is used.

4. A subactlon, which we will refer to as the call acllon, ii created. Al aubsequent activity
takes place within this subactlon. As was the cue tor handler call, creators can be caN8d
only from within actions. A aeator can by a non-action is a ~ error and causes
the calling guardian to crash.

5. A new guardian Is created at the Indicated node. The creator obtained in llep 1 wiN Indicate
the type of thl8 guanlan. The selection of a particular load Image for this type will occur as
discussed In Section 3.3.

6. As was the case for handler calls, if the system cannot 00fflfflUfll£a1 wilh the indicated
node, the creator cal will terminate with the unavailable exceplton. If the system is unable

8.4.1 Semantics of Creator ca11a

to determine what lff1)1ementation to load, or if there ii no fl1)1ementation of the type that
can run on the Indicated node, or If the manager of the node ntfu•• to allow the new
guardfan to be created, the creator call wll terminate wlh the failure exception. In either
case the call action will be aborted.

7. A remote caH is now performed lo the aeator. Thia call hU the same semantics as
descrtbed for handler calls above In steps 4 through 9 of Ill actMtiea at the calling node
and also steps 1 through 4 of actlYliel at the Clllled node,..., I ellher the call action
or the activation action aborts, the newly created r,ua,dan wfl be deab'o)'ed.

For exaff1)1e, suppose we execute the creator call

x: G :• G$create(3) @ n

where G is a guardian type, n denotes an object of type node, and aeate has header

aeate • crutor (n: Int) relUl'ne (G) llgnala (not_poulble(llltng))

45

The system will select an ifT1)lementatio of G that ii suitable for use at node n, and wtl then create a
guardian at node n running that lmplemerutlon. Next a.a (3) ii performed as a handler call at that

new guardian. If asate returns, then the assignment to x wll oocur, causing x to refer to the new
guardian that aeate retumed; now we can call the twders p,oYlded by G. The exceptiona that can be

signalled by this call are not_possble, failure, and unav,,,,,,,,.. An example of a call that handles all
these exceptions is:

x: G :• GScreate (3) @ n
except when not_poasl>le (s: string): ...

when fatb'e (s: llrlng): ...
when unavalfable (s: string): ...
end

Creators are desaibed In more detaff In Section 13.

46

9 Expre881ons 47

9. Expressions
An expression evaluates to an object in the Argus universe. This object Is said to be the rnult or value

of the expression. Expressions are used to name the object to which they evaluate. The s1"1)1est fonns

of expressions are Hterals, variables, parameters, equated lderdlers, equate module references,

procedure, Iterator, and creator names, and Nlf. These forms directly name their result object. More

complex expressions are bull up out of nested p,ocedure calls. The result of such an expression is the

value returned by the outermost caH.

9.1. Literals
Integer, real, character, string, boolean and null literals are expressions. The type of a literal

expression Is the type of the object named by the Nteral. For example, true is of type bOol, "abc" is of

type string, etc. (see the end of Appendix I for details).

9.2. Variables
Variables are Identifiers that denote objeds of a given type. The type of a variable Is the type given in

the declaration of that variable. An attempt to use an unlnlttafized variable as an expression is a

programming error and causes the guardian to crash.

9.3. Parameters
Parameters are Identifiers that denote constants suppUecl when a parameterized module Is instantiated

(see Section 12.5). The type of a parameter is the type given In the declaration of that parameter. Type

parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated identifiers denote constants. The type of an equated fdentller Is the type of the constant

which It denotes. Identifiers equated to types, type_ sets, and equate modules cannot be used as

expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an

equate module • an expression, one writes:

reference $ name

where

reference : :: idn

I idn I actuat_parm 1
I reference $ name

The type of a rt1ffNfJIIC6 is the type of the constant which II denotes. Identifiers equated to types,
type_ sets, and equate modules cannot be used as expressions.

!WlllbltJi,_Jl,L!J¾U..tJJll@C!iUJ __ ... t@UJUJJZC42$142.!Xl4ll!iLl-#i!ilUlL.,t,W4lUCUJCAWJi#.tM4#X41
i ,,- .

I .
'· •

1111 1 1n 111u1 •·•• If • ••-...11,_ 11111011 •.i. •111R ·. ·. ,
•1tan•o -•IIII. ·1tWfJtlliflilflif11t1i1rJr-,':; ··

•, ,:;-- :,:;..-

-- •••••· ····_ .··. •111,. ··--., 1111 •-----= .

.,, ... , ...
_ [.. ·., ···•r•••_..,

- C,Jd,1111
•k .· .·· .. -1J - -

-•••• rn 111 l•••••1: • •12111•••111 rliJI L . · · ~ :;, ·1,ilt1u•11 •-•••-. . ,· . ..-·:-~,~, t - ·~r-·~ -:·' -, .. · ·-.
--·----~-" ,. ·,:. , .••. _· ..• , .·'

......
••u••--•• 1111•••••••1u1Rrr , "•·'' _ .. ::.·

I 111 .11,1.1• ..,

9.8 Bind 49

The evaluation of a bind expression proceeds by first evaluating the entity and then evaluating, from

left to right, any blnd_args that are expressions. The MIity may evaluate to a procedure, Iterator,

handler, or creator object. Suppose that the entity Is a procadure or ileralor object. (Creator and handler

bindings are discussed below.) Then the result Is formed by binding the argument objects to the

corresponding tonnals of the entity to fonn a closure; note that the p,ocedure or iterator is not called when

the bind expression is evall aated. When the closure is caled, lhe objlct denoted by the entity is passed

au the bound obieCtS and any actual arguments supplied In the cal, alt In the corresponding argument

positions.

For exa"1)1e, suppose we have:

P • proc(x: T, y: Int, w: S) returns(R) algnal8(too_btg)

Then

q :- bind p(*, 3 + 4, *)

produces a procedure whose type is proctype(T, S) NIUl'M(R) algnalS(too _ big) and assigns it to q. A

can of q(a. b) is then equivalent to the caH p(,a. 7, b).

Bound routines will be stored In stable storage if they are accnsl>le from a stable variable (see

Section 13.1). In this case the entity and the blnd_lltfJS should denote IIIOmic objecta.

There Is only one Instance of a routine's own data for each parameterization; thus an the bindings of a

routine share its own data, if any (see Section 12.7). Each binding is general)' a new objeot; thus the

relevant BqUBI operation may treat syntactically Identical bindings u distinct.

The semantics of binding a creator or handler are similar to binding a procedure or iterator; the

differences arise from argument transmlNion. Encoding of bound argument objects happens when the

bind expression is evaluated and sharing ts only preserved among obi8d8 bound at the same time (see

Section 14). In more detaH, the evaluation of a bind expresaton proceed8 by first evaluating the sntlty

and then evaluating, from left to rtghl, any blnd_lll'fJS that are expressions. Then the aigument objects

are encoded, from left to right, preserving sharing among these objects. The result is formed by binding

the encoded argument objects to the corraspondtng formals of the entity to form a closure. Note that the

entity is not called when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the

bound objects) and then the cau to the entity is Initiated. Decoding of the arguments at the called

guardian is done In reverse of the order of encoding; that ts, other argumern are decoded before bound

arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding

only among groups of bound arguments and among the other arguments, not between groups.
Thereafter the call proceeds as normally.

For exa"1)1e, if we execute

h1 :• bind h(x, y, *)
h1(z)

50 Expreulona

then sharing of objects between x and y wlH be preserved by transmllslon, but sharing will not be

preserved between x and z or y and z.

Closures can be used in equates, provided au the expressions are constants (see Section 7.2.2).

However, a handler cannot appear In an equate, since It Is not a constant.

9.9. Procedure cans
Procedure calls have the form:

primary ([expression , ...])

The primary Is evauated to obtain a procedure obl&Ct, and Ulen the expesaionl are evaluated left to right

to obtain the Mgl.lffl8ft objecl&. The procedure Is called wit\ tl'8l8 arguments, and the obiect returned Is

the result of the entire expression. For more diaaJ88ion see Section 8.

Any procedure call p(E1, ••• E,J roost satisfy two constrM1tS to be UNd • an expression: the type of p

must be of the form:

proctype (T1, ... , TrJ 1'81Uma (R) signals(...)

and the type of each expression i:j roost be lnckJded in the corresponding type 7j. The type of the entire

call expression Is given by R.

9.1 o. Handler cans
Handler calla have the form:

prlma,y ([expression, ...])

The primary Is evalualed to obtain a handler object, and then the expreaalon8 are evaluated left to right to

obtain the argument objects. The handler la then clllld wllh tt181e arguments as disall88d In Section

8.3. The following expressions are exaff1)188 of handler calla:
h(x)
lnlo _guard.who_ Is_ user(")ohn•, ·doe;
dow Jones.lnfo("XYZ Corporatlonj

Any handler can h(E 1, ••• E,,) roost satisfy the foflowlng constraints when used as an expression. The

type of h roost be of the form:

handl8ltype (T1, .•. Tn) retuma (R) algmla (...)

and the type of each expression q m.,st be lncu:led in the corresponding type 7j. The type of the entire

cal expression Is given by R.

As explained in Section 8.3, the execution of a handler cal at811s by creating a subactlon. Therefore

an attempt to can a handler from a Pft)C888 that Is not running an actton la a pn:,gramming error and wilt

cause the calling guan:fian to crash. This craah occurs a1ter al of the ~ expressions have been

evaluated.

e.11 Creator cans 51

9.11. Creator Calls
Creator calls have the form:

primary ([expression, ...)) [0 primary)

The first primary Is evalualed to obtain a cnJator oblecl, the argument expressions are evaluated left to

right to obtain the argument objeets, and then the pr/mllty follrMlng the at-lign (@), I p1988nt, Is

evaluated to obtakl a node object. If 1he prlm/lly folowtna ttlt ...,. ii omilted, then node$here() Is

used. The guardian 18 then created at that node, and the ere_,. called, as dllCUl8ed in Section 8.4. The

foffowtng are exaff1)1es of crealOr cals:

mailer$creale() 0 n
spooler{devtype)Screate()

A creator call c(E 1, ••• ,E,JOn m.ist satisfy the foHowlng conatraints when used as an expression. The

type Of C must be of the fonn:

creatonype (T1, ... ,T.,) l'tllUl1IS (R) llgnlla (...)

where each 7j includes the type of the corresponding expreuk>n fj. N must be of type node. The type
of the entire cal expression Is given by R.

As with handler calls, an atte"1)t to call a creator from a process that Is not ruming an action will cause

the calHng guardian to crash after al~ exp,8lliona have been evaluated.

9.12. Selection Operations
Selection operations pnwtde ICCNI to the lndMdual Nt'l'l8fU or con.,onenta of a c:olection. Simple

notations are provided for callng the ffllch operatlona of .,,.,... --. and the f1111operationl of recotd

ll<e types. In addition, these "syntactic suga,tngs• for Nlectton opendionl may be ueed for user-defined

types with the appropriate pR)pel'tles.

9.12.1. Element Selection
An element Nlaction expression has the form:

primary (expreaalon J
This form la jult ~ augar for a cal of a fflleh ope,atton, and 18 computationally equiYalent to:

T$fetch(prlmary, expreuk)n)

where T ii the type of the primary. T nut p,ovlde a proceduN operation named flltch, which takes two

arguments whose types include the types of primary and .,,,._.,,,, and which returns a single result.

9.12.2. Component Selection
The co"1)0n8nt selection expression has the form:

primary • name

This form Is just syntactic sugar tor a cau of a get_ nams operation, and is computationally equivalent to:

T$get_ name(prlmary)

where T is the type of primary. T rl'IJst provide a proceduN operation named {/(It_ name, that takes one

52 Expressions

argument and returns a single result. Of course, the type of the procedure's argument must tnckJde the

type of the primary.

9.13. Constructors
Constructors are expressions that enable users to create and lnlUalize sequences, arrays, atomic

arrays, structures, records, and atomic records. There are no constructors tor user-defined types.

9.13.1. Sequence Constructors
A sequence constNc:tor has the fonn:

type - spec $ [[expression I ■H])

The type_spec must name a sequence type: -.,.nce(7). Thia Is the type of the oonatrucled sequence.
The expressions are evaluated to obtain the 818ments of the sequence. They correspond (left to right) to
the indexes 1, 2, 3, etc. For a sequence of type -.,.nce(7], the type of each element expreulon In the

constructor rrust be Included In T.

A sequence constructor la 00ff1)Utationally equivalent to a ~ flllW operation, followed by a

number of sequence addh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type_ spec $ ([expression :) [expression , ...] J
The type_spec must name an array or atomic array type: array(7) or atomlc_array(7}. This is the type of

the constructed array. The optional expression precedlrV the colon(:) nwt evaluate to an Integer, and

becomes the low bound of the c:onatructed array or atomic anay. H thil expression Is omitted, the low

bound Is 1. The optional list of expressions Is evaluated to obtain the elements of the array. These

expressions correspond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an

array or atomic array of type array(7) or atomlc_array(7), the type of each element expression In the

constructor rrust be included In T. A constructor of the form ana,[7JIU has a low bound of 1 and no

elements.

An array constructor is computationally equivalent to a C781Jte operation, followed by a nunmer of addh

operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:

type_spec $ { fleld, ... }

where

field::: name, ... : expression
Whenever a fleld has more than one name, it is equivalent to a sequence of fields, one for each name.

Thus, if R • ~ a: Int, b: Int, c: Int J, then the following two constructors are equlYalent:

9.13.3 Structure, Record, and Atomic Record Conalructora

R${a, b: p(), c: 9}
R${a: p(), b: p(), c: 9}

53

In the following we discual only record conatrucl0t8; structure and atomic record oonstructors are

similar. In a record constructor, the type apeclflcallon nut rwne a record type: ~S1:T1, ... , Sn:T,J.

This is the type of the con&IIUCted record. The 00ff1JOl18l'II 1WR11 In bt field lilt nut be exactly the

names S1, ••• , s,,, although these names may appear In any Ofdar. The expressions are evaklated left to

right, and there is one evaluation per componenl name evan I llvetal co,,.,onent names are grouped

with the same expression. The type of the expression for ~ S; rrust be lnckJded In r,. The

results of these evaJuatlons form the components of a newly construdad record. This record is the value

of the entire constructor expression.

9.14. Prefix and Infix Operators
Argus allows prefix and Infix notation to be used as a shorthand for the operationa listed In Table 9-1.

The table shows the shorthand fonn and the ~ equivalenl expanded fonn for each

operation. For each operation, the type r Is the type of the filst operand.

Table 9-1: Prefix and Infix Operators: shottNnd8 and expansions

Shorthand form

expr 1 .. expr 2
expr 1 11 expr 2
expr 1 / expr 2
expr 1 • expr 2
expr 1 II expr 2
expr t + expr 2
expr 1 - expr 2
expr 1 < expr 2
expr t <• expr 2
expr 1 • axpr 2
expr, >• expr2
expr 1 > expr 2
expr1 ""< expr2
expr1 ~<• expr2
expr1 expr2
expr 1 "">- expr 2
expr t ""> expr 2
expr 1 & expr 2
expr1 I expr2

-expr
... expr

Expansion

TSpower(expr 1 • expr 2>
T$mod{expr 1• expr 2>
TSdlY(expr1, axpr2)
TSnu(expr1, expr2)
TSooncal(expr ,, expr2)
T$add(expr,. uprz>
T$1ub(expr 1• ••a>
T$11(expr t• expra)
T$1e(expr 1 • 8XP't>
~-· 1• exprf)
TSge(up,1, uprz)
T'Sgl(expr,, upr2)
... (expr1 < exprz)
... (expr 1 <• expr 2>
... (expr1 • expr2)
... (expr 1 >- expr z)
... (expr 1 > aprz)
T$and(expr,, ••a>
TSor{ex,r z>
T$mnul(excw)
TSnot(e.,

Operator notation is uSed most heavily for the bullt-in types, but may be used for user-defined types as

well. When these operations are provided for user-defined types, they Should be free of side-effects, and

54 Expreulons

they should mean roughly the same thing as they do for the built-in types. For ex8ff1)le, the ex>"1)8rison

operations should only be used for types that have a natural partial or total order. Usually, the

comparison operations (It, le, equal, ge, gr, wlN be of type

proctype (T, T) returns (bool)

the other binary operations (e.g., add, sub) wlli be of type

proctype (T, T) retuma (T) algnala (...)

and the unary operations will be of type

proctype (T) NIUffll (T) 81gnal8 (...)

9.15. Cand and Cor
Two additional binary operators are provided. These are the condltlonal and operator, cand, and the

conditional oroperalor, cor. The resun of evak.lating:

expression1 cand expresslon2
is the boolean and of expresslon1 and express~. However, If e,cpnt1Sion1 Is fal•. expre~ Is

never evaluated. The NSUI of evaluating:

expression1 core~

is the boolean or of expression1 and ~. but ex~ Is not evatuated unless expression1 is

fal•. For both cand and cor, expr9ssion1 and •~ f1'Ult have type bool.

Because of the conditional expression evaluation involved, uees of cand and cor are not eqwvalent to

any procedure call.

9.16. Precedence
When an expression is not fully parenthesized, the proper l'INling of subexpreuions might be

ambiguous. The folowtng pracedence rulN are used to reaolve 11.tCh ambiguity. The prececlence of

each Infix operator Is given in the table below. Higher pracedence operations are performed first. Prefix

operators always have precedence over Infix operators.

Precedence

5

4

3

2

1

0

Table 9-2: Precedence for Infix Operalors

Operators

••

• I II

+ - II

& cand

cor

9.16 Precedence 55

The order of evaluation for operators of the same precedence is left to right, except for **, which is right

to left.

9.17. Up and Down
There are no implicit type conversions in Argus. Two forms of expression exist for explicit conversions.

These are:

up (expression)
doWn (expression)

Up and down may be used only within the body of a duster operation (see Section 12.3). Up changes

the type of the expression from the representation type of the clutter to the abstract type. Down converts

the type of the expression from the abstract type to the represet1atk>n type.

56

ntM~l■IJllk$14iJ!!J &CtlfJ#4lllP•llf PUU!!U k lid.AU ,Xt,Jii JILJJUi~.ti¥1J1i!LJtJtJL0) UJJJ&£J!QL SUMX.#LS:HQtMMRZ t; ..

10111111111,ra 17

10.8111■---
ln NI lllll!ll, • .111 • U fllf __ ,...,,, I .1$1111 I-Ila inll■IIIR Gf ~

.. --..._. •• ••- 1■ 1111• ••rlliHi#i]lllU •-~• •--•- 111 • 1 11,,,,,...._,1,. • u•••••r1•1m:111tn11t1r••:•1111 j,..,,,..,.,,
tht compllll .,._ G.f lbll■ , •.

AIDmlc allw n•••11 If •••••• It .. Ulllf 11•;• ••••l•.., all1t11. •••nnc•
of •• ,lliiL!Ulf.lllfl:;,-11t111t..,,. .. , -·
..,_,,11, ... 1n1 ••••••n•• · · · ·· ,,, .. >. ,. ·• •••1111•••-
_, 1111111111••·- , ' ,.

••••• .. •••-••1M111111· tllt. · ••• •••m•••--•
Secdonl).

A .-r -•••• Cllll •J1111I a.-.« •1•1a. fa•,-11-. - 11111•• ,_.. --a
._ a,11 1.m:11J1iZur

...,::a(-•})
Nole-•••-• IPDl ■I •111■ 11111 ... 81.111·7 .. t.a,U,.1,.I~ A: rt. Nit ••dlll 111•1h• 11 ,u,, .. ·~•:,.,
....... , ,11 --•••r• :.
10.1.CIIIII
A-•••••·,_, lae --•-• 11111111111-. '1102P 1, er ll I IIY. For,-CtlfltMI --·• II

,.. ,,11u11n:
..,clu•,u,ru .-l>

1-PJ•· .. •••••••••••111l1r..., --•---- •• .. ,,.,, llltllll u111,11,,1,_,. .• ;,i1r1unr1••··-·---
--fllull; , •• •1.•• IPLU 11 If . ··. .

For , ••• ,,11•---·----·;r
··-·••= ,,,.....,,, -1>1•--,J
_,...,. II

TIie •. lltl IU, •••Ur Ull'tll .• I ltlJlllrla•••·U.U. ... «

58 Statements

10.2. Update Statements
Two special statements are provided tor updating components of record and array-ll<e objects. In

addition they may be used with user-defined types with the appropriate properties. These statements

resemble assignments syntactically, but are actually can statements.

10.2.1. Element Update
The element update statement has the fonn:

primary (expression1] :- expression2

This form is merely syntactic sugar for a can of a store operation; It Is equiYalent to the caU statement:

T$store(prlmary I expression1 I expressio"2)
where Tis the type of the primary. T rnust provide a procedure named store that takes three arguments

whose types include those of primary, expresslon1, and Bxpresslon2- respectively.

10.2.2. Component Update
The coq,onent update statement has the form:

primary • name :• expression
This form Is syntactic sugar for a call of a seL operation whose name Is tormed by attaching set_ to the

name given. For exaq,18, If the name Is f, then the atatement aboYe Is equivalent to the cal statement:

T$set_f(primary, expression)

where T is the type of the primary. T must provide a procedure operation named S8t_f, where f is the

name given in the component update statement. This procedure must take two argumeru whose types

include the types of primary and expression, respectively.

10.3. Block Statement
The block statement permits a sequence of statements to be grouped together into a single statement.

Its fonn Is:

begin body end

Since the syntax already permits bodies inside control statements, the main use of the block statement is

to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the fonn:

fork primary ([expression, ...])

where the primary Is a procedure object whose type has no results or signals (see Section 12.1). The

type of each actual exprnsion must be Included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from

left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the

fork statement. H no exceptions are raised, then a new process is created and execution resumes after

10.4 Fork Statemem 59

the fork statement in the old process. The new process starta by calting the given procedure with the

argument objects. This new process terminates I and when the Pft)08dure calf does. However, if the

guardian crashes the process goes Nay (lb any other process).

Note that the new process does not run In an action, although the procedunt called can start a

topactlon if desired. There Is no mechanism for waiting for the termination of the new process. The

procedure called In a fork atatement cannot retum any N8Uh or 8ignll any exceptions.

10.5. Enter Statement
Sequential actionl 819 cretHd by means of the - Slatemant, which has two forms:

enter topaCtlOn bOdy end

and

enter action bOdy end

The topactlon quaJifler cauw the body to execute as a new top.level action. The action quallfter

causes the body to execute u a IUbacliOn of the cunent IICllon; an •"'1l to uecule an emer action
statement in a process that la not executing an action la a prognlffllllif'I enor and ca,aes the guardian to

crash. When the bOdy tarminatea, It does so ellher by commltllng or aborting. Normal completion of the

body results in the action comnltdng. Statements that tnlnlfet c:onlNI out of the enter atatment (exit,

leave, break, continue, NIUm, 8"1111, and Nllgl'IIII) normally C01mll Ill action unle11 are prefixed
wllh llbOrt (e.g., llbOlt ult). Two-phue comnll of a tapadloll may faB, in which case the enter
topaCtlOn statement raises an unavailable exception.

10.6. Coenter Statement
Concurrent actions and proceun are created by means of the coenter ataternent:

coenter coann { coarm } end

where

ooarm : := armtag [lorNcll decl , ... In can]
body

armag ::: action

I topactlOn

I procesa

Execution of the coenlel' starts by creating al of the coarm procNW, sequentially, In teXlual order. A

toreach clause indicates that rraJltipte ilstancel of the ooarm wil be created. The caH In a IOreach

clause must be an lleralor call. At each yield of the tleralor, a new ooarm process la created and the
obieCtS yielded are assigned to newly dlcfared vat1ables In 1h11 pn,oaa. (This lmpllcl Ullgnment mJst

be legal, see Section 6.1.) Each coarrn pn)C8S8 has separate, local inatancea of the variables declared in

the fOnNICh clause.

60 Statements

The process executing the coenter is suspended untlf after the eoenter is finished. Once all coarm

processes are created, they are started siltllltaneously as COl'1CUIT8ft ltiings. Each coarm instance runs
in a separate process, and each coarm with an armtao of topactlOn or IICtlon executes within a new
top-level action or subadlon, respectively. An attempt to execute a coenler with a PlaCNI coarm when

in an action, or to execute a coenaer with an action coarm when not in an action is an effOr and will

cause the guardian to crash (see Table 10-1).

Table 10-1: Legallly of coenler statemenla.

process executing the coenlel' ii:
armtag

action
topactlon
process

not In an action running an action

not legal
legal
legal

A sirt1)1e example making use of for8llch Is:
coenter action foruch I: Int In lnt$from_to (1, 5)

p (i)
end

legal
legal
not legal

which creates five processes, each with a local variable/, having the value 1 in the first process, 2 in the

second process, and so on. Each process runs in a newly created IUbaction. This statement is legal

only if the process exeaJting It is running an action.

A cx,arm may tenninate without tenninating the entire coenter (and d>ling coarms) either by normal

oompletion of Its body, or by exeaJtlng a leave statement (see Seclion 10.7). The commit of a coarm

declared as a topaction may terminate in an unavallatH exception If two-phase commit falls. Such an
exception can only be handled outside the coenler st~. and thus wll torce lennination of the entJre

coenter (as explained below).

A coarm may also terminate by transferring control outside the coenter statement. When such a

transfer of contR>I occurs, the 1oliowing steps take place.
1. Any containing statementa are tenninaled cllYlaibly, to the outennost level of the cx,arm, at

which point the coarm becomes the controlllng coarm.

2. Once there Is a controlling coarm, every other active coann will be terminated (and abort if
declared as an action) as soon as It leaves all..._ statements; the controllfng coarm is
suspended until al other coarms terminate.

3. The controlling coarm then commits or aborts I declared • an action; if declaNd n a
topaction and the two-phase commit falls, an unav.,,_,. excepdon ii raised by the coenter
statement.

4. AnaHy, the entire coenter terminates, and control flow cx,ntinues outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action

aborts.

10.6 Coenter Statement 61

A sl"1)1e axa111>le of earty tennination is reading trom a replicated database. where any copy can

supply the necessary Information:

coenter action foreach db: database In an replicas (...)
return(database$read (db)) -
end

When one of these coarms 00111>1etes first, It tries to commit ltlel and abort the others. The aborts take

place Immediately (since there are no ..._ statements); I Is not ---••'Y for the handler cans to finish.

It Is possible that some descendants of an aborted coarm may be running at remote sites when the coarm

aborts; the Argus system 81'11Ures that such orphanl will be aborted before they can make their presence

known or detect that they are In fact orphanl (IH Section 2.5).

10.7. Leave Statement
The leave statement has the form:

[abon) leave

Executing a leave statement tenninates the Innermost, llllement or coentw coarm in which it

appears. If the process terminated Is an action, then ii commll8 unle• the lbort quallffer Is present, in
which case the action aborts. The abort qualifier can only be used textually wtthin an entw statement or

within an action or topaCtlon coarm of a coenter statement.

Note that unlb the other conlrol flow statements, leave does not affect concurrent sl>lings In a

coenter (see Section 10.6).

10.8. Retum Statement
The form of the ral\m statement Is:

[abort) return [(expression , ...)]

The 1'81Um atatement termlnlltea execution of the contaJnlng routine. If the l'8IUm statement occurs In an

iterator no l'NUlta can be l'9tul'Md. If the l'IIIUffl,,...,. ii 1ft a pn:aclunt, hander, or cnator the type

of each expression must be ~ In the correeponcllng reun type of the routine. The expressions (if

any) are evaluated from left to right, and the objects obtained become lie resuls of the rouMne.

H no abort qualifier is present, then aJI containing acuo,,. (I any) terminated by thil stalement are

committed. If the abort qualifier Is present, then all tenninated aaiGnl are aborted. Note ttlll unlike the

leave statement, return wil abort concurrent sl>llngs If exea.ited wllhln a coarm of a coenter statement

(see Section 10.6). The abort quallfler can onty be used textually wllNn an enter statement, an action or

topactlon ooarm of a coenter statement, or the body of a handler or creator.

Within a handler or creator, the resul objects are encoded just before the activation action terminates,

but after all control flow and nested action termination. If encoding Of any result obied tftlrNNdes in a

failure exception, then the activation action aborts and the handler or creator terminates with the same

exception.

62

10.9. Yield Statement
The form of a yield statement is:

yield [(expression , ...)]

Statements

The ylelc:t statement may occur only In the body of an Iterator. The effect of a ylelcl statement is to
suspend execution of the lerator invocation, and return control to the callng for ataNmant or foreach

clause. The VUJel oblained by evaluating the npNNCM (left to rtght) .. puNCI back to the caler.

The type of each expression nut be included in the comtapondlng yteld 1)1)8 of the Iterator. Upon

resumption, execution of the iterator continues at the statement fallowing the yleld statement.

A yield statement cannot appear textualy inside an enter, coenter, or..._ statement.

10.1 o. Conditional Statement
The form of the conditional stalement Is:

If expression then body

{ el88lf expre•lon then body }
(e1Nbody)
end

The ""P'flSS/OnS must be of type bool. They are evaluated aucceuivefy until one is found to be true.
The body corresponding to the firat true exprwaton ia executed. and tt'8 exec:utlon of 118 N atatement

then terminates. ff there is an.._ clause and I none of the -,:,,1•'0.tll la tnle, then the body in the

8188 clause Is executed.

10.11. While Statement
The whlle statement has the form:

while expression do body end

Its effect is to repeatedly execute the body as long as the expression remains true. The express/On m.ist

be of type bool. If the vatua of the expresalon Is true, the bady ia executed, and then the erCira while
statement is executed again. When the expression evaluates to falae, exaanfon of the wlllle statement

terminates.

10.12. For Statement
An lerator (see Section 12.2) can be called by a far statement. The iterator produces a sequence of

itlltnS (where an Item is a group of zero or more ot)Jectl) one lem al a time; the body of the for atatement
is executed for each Item In the sequence.

The tor statement has the form:

for [c1ec1] In can do body end

or

for [idn] In can do body end

10.12 For Statement 63

The caH must be an iterator can. The second form (with an kJn list) uses distinct, previously declared

variables to serve as the loop variables, while the first form (with a dflcl list) tonn introdl,lces new
variables, local to the tor statement, for this purpose. In either case, the type of each variable must

include the corresponding yield type of the called Iterator (see Section 12.2) and the nurmer of variables

must also match the yield type.

Execution of the tor statement begins by calling the Iterator, which efther yields an Item or terminates.

If It yields an Item (by executing a yleld statement), Its execuUon ii tefl1)orartly suspended, the objects in

the item are assigned to the loop variables, and the body of the tor ltalement la executed. The next

cycle of the loop is begun by resuming execution of thl lleralDf after the yield ataaement which

suspended It. Whenever the iterator terminates, the entn tor statement terminates.

10.13. Break and Continue Statements
The break statement has the form:

[abort) bnNlk
Its effect is to terminate execution of the smallest for or while loop statement in which It appears.

Execution contlrues with the statement following that loop.

The continue statement has the form:

[aboft) continue

Its effect Is to start the next cycle (If any) of the smallest tor or while loop statement in whiCh • appears.

Terminating a cycle of a loop may also terminate one or more coruintng actions. If no abort qualfier

is present, then au thase terminated actions (If any) .,. commlled. If the abort qualifier Is preNnt, then

all of the terminated actiOns are aborted. Unll<e INve, bNlk and continue wilt abort concumtnt sl>llng

actions when control flow leaves a containing coenter (see Section 10.6).

The abon qualifier can only be used textually within an,. statement or an action or topactlon

ooarm of a coenter statement.

10.14. Tagcase Statement
The tagcue statement can be used to decompose oneof and vartant objects; IIIOllllc_ variant objects

can be decomposed with the tagtest or tagwall statements. The ~Ion is indMatie for variant

objects; thus, use of the tagcue statement for variants is not equivalent to using a conditional statement

in combination with Is_ and valw _ operations (see Section 11.15).

The form of the tagcau statement is:

tagcaae expression

tag_arm { tag_arm }
[others : body]

end

where

64 Statements

tag_arm : :: tag name ((ldn: type_spec)) : body

The sxpn,sslon must evaluate to a OMOI or vartanl object. The tag of this object Is then matched

against the names on the tag_arms. When a match Is found, if a declaration (kin: type_sp,q exists, the

value component of the object 18 assigned to the new local variable ldn. The matching body Is then

executed; kin is defined only in that body. If no match Is found, the body In the Olhlre arm Is executed.

In a syntactically COff'ect tagcaee statement, the following three conatrai'lts are satisfied.
1. The type of the exprtlSllion mJSt be some OMOf or vartant type, T.

2. The tags named in the tag_anns ITIJst be a subset of the tags of T, and no tag may occur
more than once.

3. If an tags of Tare present, there is no othenl ann; otherwiae an others arm must be
present.

On any tag_arm containing a declaration (ldn: typs_spsq, typs_,pec must include the type(s) of T

corresponding to the tag or tags named in that tag_ ann.

10.15. Tagtest and Tagwait Statements
The tagt88I and tagwall statements are provided for~ alOlnlc_ variant objeda, permitting

the selection of a body baaed on the tag of the object to be made lndMsl>ly wlh the testing or acc:psttlon

of specHled locks.

10.15.1. Tagtest Statement
The form of the tagtNt statement Is:

tagtest expression

where

atag_ arm { atag_ arm }
[others : body]

end

atag_arm ::: tag_klnd name, ... [(ldn: type_spec) J : body

tag_ kind : :: tag

I wtaa
The expression must evaluate to an IIIOmlc_varlant obleet- If a read lock could be obtained on the

atomic_ variant object by the current action, then the tag of the object is matched against the names on
the ataQ_a,ms; otherwile the ot.,.. arm, If presenl, Is exeooted. If a ffllltdllnQ name ii found, then the

tag_ kind Is oonsldered.
• If the tag_kindis tag, a read lock Is obtained on the object and the match Is complete.

• If the tag_klnd Is wtag and the current action can obtain a wrle lock on the obied, then a
wrle lock Is obtained and the match Is complete.

When a colll)lete match is found, If a declaration (ttn: typs_speq exists, the value C0"1)0nent of the

object is assigned to the new local variable kin. The matching body Is then ex8Qlted; /dn is defined only

in that body. The entire matching process, inckJdlng testing and a<:quldion of locks, Is indivl&l>le.

10.15.1 Tagtest Statement 65

If a complete match is not found, or the object was not readable by the action, then the othera arm (if

any) is exeQJted; If there is no otherS arm, the lagl8lt statement terminates. If no complete match is

found, then no locks are acqlHred.

The tagtNt statement will only obtain a lock if it Is possible to do so without "waiting•. For example,

suppose that the internal state of the atomic_ vartant lndlcllM that soma previous action acquired a

conflicting lock. This action may have since aborted, or may have commlted up to an ancestor of the

action executing the taglNt, but determining such facts may require system-level communiCatlon to other

guardians. In this case the taQte11 statement may give rnilleadlng information, because It may not

Indicate a match. Apparent anomalies In testing locks may oc:cur even I the action exacuUng the tagtest

"knows· that the lock can be acquired, so that the use of tagtell to avoid deadlocks or long delays may

result in excessive aborts.

10.15.2. Tagwalt Statement
The form of the tagwall statement is:

tagwall expression
atag_ann { atag_arm}
and

Execution of the tagwatt statement proceeds as for the tagl9llt statement, but if no complete match Is

found, or If the object ii not readable by the ci,rrent action, then the entire matching pnx:111 is repeated

(after a system-controlled delay), untl a complete match II found. Allhough there ii no ...,. arm In a

tagwalt statement, all tag names do not have to be listed.

10.15.3. Common Constraints
Tagtat and tagwall statements may be exeQJted only wlhln an action. An atteff1)t to exeade a

tagtHt or taQWlllt atat8f1181W In a process that is not executing an action is an error and will cause the

guardian to crash after evaluating the exprHlllon.

In a syntactically correct tagtNt or tagWIIII statement, the following ttvee constraints are satisfied.
1. The type of the express/On m.,st be some atomic_ vartanl type, T.

2. The tags named In the atag_arms must be a subset of the tags of T, and no tag may occur
more than once.

3. Finally, on any atag_srm containing a declaration (ldn: tn,e_spec), typs_llPIIC must lndude
the type(s) specified as corresponding In Tto the tag or tags named In the atag_arm.

A si~e example of a tagteat statement is garbage collecting the elements of an array that are In the

dequeuBd state:

:11•1 . , ult , utt:;iL.w1u.,••··.,J•atasm1u 1s 111, .. : l:1'3iL x ... tLtJk, uuuuae, t1LQMC1ua¥ :;,uuJJ ;w .u;,;Jaw ;;.;;;vutwJLJ
I"•·' . .,.

~.-::-.:r.:::::.·· .. ,
·-··· - • 1 ••••• •• ••1 • a • ;'
111d

I· 10.1&.lela-ll■IRI ,., ,
......... , _.,... ·. . .· ..•. Ii

....... :11 MI f . ,......_ : . . . __ .,_ 11 •--•
t . . ···••1• "

... IINllll- • I . - • ,
1111 Hid ,_ ,.........

.,.....,., ... , , ~--,······•--.. · •·•·
• - •• .. ••·•• •• • 11u11 •u•·1Jttlf~ ,.,t.__ i, .•. · ;..;.,,

...........
.

H.IIPb, AHlld Gflll 1•1J •int latn••) IJl;J.ifnllQlllltlJ,, A .. U.llli'•J
••1111 • • • • , ,,. ...,, •.• , •• 1• .11 •••:11111111ru••11111 u,, , u • ...

' ~ - . . < . . . -. - . -~ ' '\"·• ·,·.

tt.17.PMll■ M•ll■IIII
...... , 111111:

"lllllllllll Jll11 2 ■M-------- . · ·· ·
... IPPCIIMI•--- 11 ll : ... ··•·. --■11■ flra 11••m••111,.....,.,..,.

I n1•1d en ;, 11a,11ftJJHllllkJl]U:1 •• W Ole ••11
JIIIHlllfef\. IIOltlldlll1J•1• Htl\•t•l .•• -·· -,...,, ••· n1•11~--....,••11•u•.-.,n 1111, ... •11111.r,,,,, -

10.18 Terminate Statement 67

10.18. Terminate Statement
The tannlnale statement may occur only within a guanlan dlftnlion (see Sect 13). The form of a

terminate statement Is:
terminate

When executed within an action, 118 &fleet ii IO cauee ._ evenlUll dllttucllon of the guanlan after the

enclosing action conwnlla to the top. If a pn:J08II .IIH!ptl lo ••--_ while not Nming an
action, a topacllon ii created to execute the t1nn111• and ••-.t1•"1 cornml.

Let A be the action that la executing the ttrmlnlll. The lltlCt of Iii 8'at8mlnl II lie tolowtng:
1.AcdonAlftlllwatluntltlleldlot1McnllldlltJU•IMII 111nldl1dr1l .. ll>A. In

the caee of. pemtll , ... ti Jllldlt be no
wal, but tor a ,.;11"11; Cllllllal .. IIIA ... 1111r be•--·

2. If ~ pn,c:111• n 11111.pllng to exealle -•• 1111,rnaru, at moat one at at
time may proceed to .. next 118p.

3. If A comml8 ID the lap, ht.,.... wil be dlMJld •-- _, llplction Clfflfflit.
If some ancNIOr of A---....._, .., •--.... u1•u1111t. n. .,.111n 11
allo unahctad GM1110 .. llffll ..._.. A •Ulilll la 1• • and A---• to the
top.

In older to avoid Nrializalion p,dalaml, CIMllon or di 111u11on of a guMlan must be aynch,onized

with uae of that QUMtlan WI IIIDmlc obiada ll.ldl M ltW o•III c-e 8NIIDn 3.4).

68

11 Exception Handling and Exits 69

11. Exception Handling and Exits
A routine is designed to perform a certain task. However, in some cases that task may be impossible

to perform. In such a case, Instead of retumlng normally (which would ln1)ly suocessful performance of

the intended task), the routine should notify Its caller by signalllng an exception, consisting of a descriptive

name and zero or more resul objects.

The exception handling mechanism consists of two parts: signalling exceptions and handling

exceptions. Signalling is the way a routine notifies its caller of an exceptlonaf condition; handling Is the

way the caller responds to such notification. A signaled exception always goes to the lnwnediate caller,

and the exceptJon ITIJ8t be handled In that caller. When a souttne signals an exception, the current

activation of that routine terminates and the comtaponding cal (In ttle Gller') ii said to ralH the exception.

When a call r.._. an exception, comol lmmedlately tranafefs to the ctoseat appllcabte exception

handler. Exceplion handler& are attached to statements; when execution of the exception handler

completes, control passes to the statement fotlowlng ht one to which the excepllon hancler Is attached.

For brevity, exception handlers will be called "handlers• In this chapter; 111188 should not be confused with

the remote cal handlers of gu8l'dians (see Section 13).

11.1. Signal Statement
An exception Is signaled with a llgnal statement, which has the fonn:

[abol1] atonal name [(expression , ...)]

A 81gnal statement may appear anywhere In the body of a rouline. The execution of a 8lgnal atatement
begins with evaluation of the expreuions (If any), fn,m left to right. to pt9dl,ce a list of (ll(()ffJlkJlt lWUlts.

The activation of the routine ii then termtnated. Exeulon conunues 1n the caller u Glelataed 1n Section

11.2 below.

The exception name must be one of the exception names listed In the routine heading. If the

corresponding exception specfflcation In the heading has the toffll:

name(T1, ... , Tn)

then there must be exactly n expressions in the algnal statement, and the type of the Ith expression must

be Included In 7j.

If no abon qualifier Is present, then all containing actions (I any) terminated by this statement are
committed. If the abort quaHHer is present, then an terminated actioftl are aborted. Unlike the leave
statement, algnal wil terminate (abort) concurrent IMrlgs If UNUtld wltliFl a e11..- statement (see

Section 10.6). The abort qualifier can only be uaed textuallr wlhln an .,..., statement, an action or
topactlon coarm of a coenter statement, or the body of a hancler or eteater.

Within a handler or creator, the result objects are enooded juet before the actMation action terminates,

but after termination of al control flow and neated adiona. If encoding of any mull object terminates in a

failure exception, then the activation action aborts and the harder or aeator terminates with the failure

exception.

70 Exception Handling and Exits

11.2. Except Statement
When a routine activation terminates by slgnalling an exception, the cal1ed routine is said t9 .raiss that

exception. By attaching exception handlers to stat.,,.._, the caler can apeclfy the action to be taken

when an exception is raised by a cal wlhin a statement or by the atatefflllnt bel.

A statBrnentwlth handlers attached Is called an except statement, and has the tonn:

statement except { when_handler}
[others_ handler]
end

where

when_handler ::: when name, ... [(decl, ...)] : body

I when name, ... (*):body

others_handler ::: athera [(lcSn: string)]: body

Let S be the stakimfmt to which the handlers are attached, and let X be the entire except statement.

Each when _handler specifies one or more exception names and a body. The body Is executed if an

exception with one of those names Is raised by a cal In S. Each of the names listed in the

when_handlers roost be distinct. The optional ollWs_handlflr is used to handle al exceptions not

explicitly named In the when_ handlers. The statement Scan be MV form of ltal8ment, and can even be

another except statement. As an example, consider the following...,. statement:

m.send_maH(user, my_rnessage)
except when no _such_user: ... % body 1

when unavailable, failure (s: 8111ng): ... % body 2
When Olh8ra (ename: etrtng): ... % body 3
encl

This statement handles exceptions arisilg from a remote call. If the call raises a no_such_lJS8f

exception, then "body 1 • wlll be executed. If the call rai8e8 a fallunl or unavallable exception, then "body

~ wiH be executed. Any other exception will be handled by "body 3.•

If, during the exea.ttion of S, some call In S raises an exception E, control transfers to the texaually

closest handler for E that Is attached to a statement containing the cal. When execution of the handler

completes, control passes to the statement followlng the one to which the handler Is attachad. TM I the

ciosest handler Is attached to S, the statement following Xis executed next. If execution of S completes

without raising an exception, the attached handlers are not executed.

An exception raised lnlkte a handler Is treated the same • any other exceptk>n: contn>J passes to the

closest handler for that exception. Note that an exception raised In some handler attached to S camot be

handled by any handler attached to S; the exception can be handled wtlhln the handler, or • can be

handled by some handler attached to a statement containing X For exaf11)1e, in the folowlng except

statement:

11.2 Except Statement

times3 _plus 1 (a)
except when limits:

a:-a+a
when overflow: ... % body 2
end

71

any overflow signal raised by the expression a + a will not be handled in "body 2, • because this overflow

handler Is not in an except statement attached to the U8ignment llatement a :- a + a.

We now consider the forms of exception handlers in more detail. The torm:

when name , ... [(decl , ...)] : body

Is used to handle exceptions with the given names when the eXC8fJtiOn results are of interest. The

optional declared variables, which are local to the hancler, are aaigned the exception rnultl before the

body Is executed. Every exception potenlialy handled by this form muat have the same runber of results

as there are declared variables, and the types of the variablea must lnckJde the types of the results. The

form:

when name , ... (•) : body

handles all exceptions with the given names, regardless of whether or not there are exception results; any
actual results are discarded. Using this form, exceptions with differing num:>ers and types of results can

be handled together.

The form:

others [(ldn : atrtna) J : body

Is optional, and must appear last in a handler Ust. This form handles any exception not handled by other

handlers in the list. If a variable Is declared, It must be of type airing. The variable, which Is local to the

handler, Is assigned a lower case string ~Ing the actual excepllon name; 8lfl/ resutls are
discarded.

Note that number and type of exception reBUlts are ignor.ct when matching exceptions to handlers;

only the names of exceptions are used. Thus the folowing ii lllagal, in that lnt$dlvsignals zero_dlvide

without any resuHs (see Section 11.4), but the closest handler has a declared variable:
begin

y: Int :-o
x: Int:- 3/y

except when zero_ divide (z: Int): return end
end

except when zero_divide: return end

A call need not be surrounded by except statements that hancle all potential exceptions. In many

cases the programmer can prove that a particular exception wtN not arise; tor •~. the call
lnt$dw(x, 7) will never signal zero_divide. However, If some cal raises an exception for which there Is no

handler, then the guardian crashes due to this error&.

9-n,e implementation of lie Argus ahould log unhanded eXC8f)4ic:N in aome faahion, lo aid i..r debuggwig. During debugging,
an unhandled ell08plion would be trapped by fl8 debugger befont the aash.

72 Exception Handling and Exits

11.3. Resignal Statement
A l'Nlgnal statement Is a syntactically abbreviated form of exception handffng:

statement [abOrt) l'Nlgnal name , ...

Each name listed must be distinct, and each must be one of the condllion names H8ted in the routine

heading. The l'Hlgnal statamert acts like an ucept staemant COf1afning a handler for each condition
named, where each harder si"1)ly signal8 that exception with, Ille ume l'flUls. Ttl.lS, I the

resignal clause names an exception wlh a speclicalion In the IOUlkl8 tleadlng of the form:

name(T1, ... , T,J

then effectively there is a handler of the form:

when name (x1: T1, ... , xn: T,J: (llbolt) algnal name(x1, ... , x.J
which has an abort qualifier I and only I the,. ••ment did. M for an explloil handier of this

form, every excepllon potenUally ~ by this impllcl handler must have the same fU'nber of results
as declared In the exception specificatJon, and the types of 118 reatll fflU8t be lnck,cjed In the types listed

in the exception specification.

H no abort quallfler is present, then au coruinlng actions (If any) terminated by this statement are

comnitted. H the abort qua1iHer is present, then all terminlted 8Gtion8 are aborted. UA11ke the INVe
statement, will abort concurrert sl>lngt I execulect wlNn a OCllllllr IIIIIIFMN (188 Section

10.6). The abOrt qu•ler can only be UNd textualy wllHn an..., stallffllft, an ICllon or topllC1lon

coarm of a coenter statement, or the body of a handler or creator.

11.4. Exit Statement
An ult statement has the form:

[abort] •xii name [(expreasion , ...)]

An Ult statement Is almllar to a llgftlll statement except that ...,. the ...,.. atatement slgnllls an

exception to the calllng routine, the UII atatement ,_,.. ht exctpllon dlrecd,- In the current aouttne.
Thus an ult cauw a tranlfer of contn>f wlhin a routine but doN not terminate ttl8 routine. An

exception raised by an ult statement must be handled expllclly by a~ uctipl ltalemll1 wlh a
handler of the form:

when name, ... [(decl, ...)] :body

As usual, the types of the expressions In the Ult statement must be included In the types of the vanabAes

declared In the handler. The handler must be an explicit one, I.e., axis to the impllcll handlers of realgnal

statements are Hlegal.

If no abort qualifier Is present, then an containing actions (If any) terminated by the ul statement are

committed. H the lbOrt qualtfier is present, then au t8fffln81ed acUons are aborted. ~• the leave

statement, exit will abort concurrent slJHngs when contft>I flow leaves a OOdalning --- s&lllment

(see Section 10.6). The abort qualifier can only be used textually wlhln an - llatement or an acllOn

or topaetlon coarm of a coenter statement.

11.4 Extt Statement 73

The uh statement and the algnal statement mesh nicely to fonn a uniform mechanism. The signal

statement can be viewed s~y as terminalilag a routine activation; an ext is then performed at the point

of invocation in the caller. (Because this exit is impliclt, It is not lllblect to 1he restrictions on exits listed

above.)

11.5. Exceptions and Actions
A new actlon Is created by a handler cal, creator can, 8l'lllr statement, or actlOn or topaetlon ann ot a

coenter statement. In addition, the recov• code of a guardian runs as an action. When COIWl'OI flows

out of an action, that action ii commlted unles8 action la taken to prwent Is commiltlng. To abort an
action, It is necessary to qually control flow statements IUCh as al, IJIONII, l'NIQMI, and....,. with the

keyword abort (see Section 10).

However, there Is an additional compllcation. Not only wil e,cplicit termination of actions by extt,

signal, and l'Nlgnal statements commit actlonl, but 11110 lnplclt termination by flow of control out of an

action body when an acepllon raised within that ~ la handled OUlllde the action's body. Thus, If an

exception which la raised by a cal within an acdon II not to commit the action, then It II necessary to

catch the exception within the action. Thia Is parttcufarly lff1X)l1ant When dealing with topactlons. A

common desire is to catch al "unexpected" exceptions, but stll have the topaction abort. In this case, the

catch-all exception handler RIJ8t be placed Inside the topaction. However, an unavallabltl handJer rrust

stil be placed outside the topactlon, since the two-phase oommll may tal.

An action or topactlon ooarm of a ~ statement wilt not abort Its oonc:urrent sibUngs when ii ends

In either normal COJ11)1etlon of Its body or by a INve statement. However, I control flows othelwise out of

the coenter statement from within one of the coarms, the entire coenter la termlnalad as delcrtbed In

Section 10.6. Thus, a coenter statement should RIJ8t be used caretuUy to ensure the proper behavior in

case of exceptions. There may be ~ where a aeparate exception handler wtl have to be

used for each coarm to ensure the proper behavior, even when the exception handling Is Identical for

eachcoarm.

11.6. Failure Exceptions
Argus responds to unhandled exceptions dlferentty than CLU. In CLU, an unhandled exception in

some routine causes that routine to terminate wlh the failure exception. In Argus, however, an
unhandled exception causes the guardian that Is running the routine 10 crash. Our motiYaic>n for this

change is that an unhandled exception is typically a symptom of a programming enor that cannot be

handled by the caHlng routine. Furthermore, crashing the guardian llmits the damage that the

programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception associated wfth them.

Instead, such a routine may 1st failure explicitly in Its signals clause and failure may have any number

(and type) of exception results. Failure should be used to indicate an unexpected (and possibly

74 Exception Handling and Exits

catastrophic) f ailura of a lower-level abltractJon, tor example, when there ta a lallure in a type parameter"s

routines (for instance In slmllaror oopyoperallonl). Anottw --- ta WMn ltllf'e II an UfWtlflted lktl
effect, such as a bounds exception In ..-a,fl)I....,. CIUNd by a ,..lion of 118 array -,;iument.

Various operations of the built-In typea ligna lalu8 &.lld8f' IIICh cin::llmllancel.

For handlers and creatora, fallurtl Is ul8d to indicate 1111 a ,.... OIi hll fallld; ttu the uoepUon

failur,(lllrlng) la ~ In the type of.,.,.,.....,. i:,r (... INllon 13.5). WNn a remole call

termnates with the failure exception, this muns that not only haa tNa cal fallld, but that the call Is

unlkely to succeed I 111f)Hted.

12 Modules

12. Modules
Besides guaroian modules, Argus has procedure, Iterator, cluster, and equate modules.

module::: {equate} guardian

I { equate } procedure
I { equate } 1tetator
I { equate } c1uater
I { equate } equates

Guardians are disaJssed in Section 13, the rest are described below.

12.1. Procedures

75

A procedure perfonns an action on zero or more arourmmts, and when It terminates it returns zero or

more results. A procedure implements a procedural abstractiOlr. a mapping from a set of argument

objects to a set of result objects, with possl:>le modification of aome of the argument objects. A procedure

may terminate In one of a nurrt>er of condlllons; one of theae is the notma/ condition, while others are

exceptional conditions. Differing nunt>ers and types of ntaults may be returned In the different conditions.

The fonn of a procedure Is:

idn • proc [pa,ms] args [ntturns] [signals] [where]

routine - body
and icln

where

args
returns
signals

exception
routine_ body

::: ([decl, ...])

: :: naturna (type _spec , ...)

: : = •onats (exceptfon ' ...)
::: name ((type_spec , ...))
:::{ 8(JJate}

{ own_var}
{ statement }

In this section we discuss non-parameterized procedures, In which the parms and where clauses are

missing. Parameterized modules are dlscu8sed In Section 12.5. Own variables are discussed In Section
12.7.

The heading of a procedure describes the way In which the procedure COfMl.lnicates with its caller.

The args clause apeclies the nunt>er, order, and types of a,gumeres required to call the procedure, while

the returns clause specffles the number, order, and types of resuJts returned when the procedure

tenntnates normally (by ex8Qlting a NIUm statement or reaching the end of its body). A miUing returns

clause Indicates that no resuls are returned.

The signals clause names the exceptional conditions In which the procedure can terminate, and

specifies the number, order, and types of result objects returned In each condition. Alt names of

76 Modules

exceptions in the signals clause must be distinct. The idn folk>wing the end of the procedure rrust be the

same as the kJn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is

derived from the procedure heading by removing the procedure name, rewl1ting the formal argument

declarations with one icJn per dBcl, deleting the klnll of aH fonnat argumenls, and flnaly, replacing proc by

proctype.

The call of a procedure causes the Introduction of the formal variables, and the actual arguments are

assigned to these variables. Then the procedure body Is executed. Exea.tdon terminates when a NIIUrn

statement or a 8lglllll ~ is executed, or when the textual end of the body is reached. If a

procedure that should return ntlUls reaches the textual end of the body, 1he guan:tlan crashes due to this

error. Al. termination the result objects, if any, are passed back to the caller of the procedure.

12.2. Iterators
An Iterator COJl1)Utes a sequence of Items, one item at a time, where an item is a group of za,o or more

objects. In the generation of such a sequence, the COfT1)Utation of each lem of the sequence is usuaHy

controlled by information about what previou& llema have been praducec:I. Such Information and the way
it controls the production of ltema is local to the Iterator. The user of the Iterator is not concerned wlh

how the items are produced, but li"1)ly uses them (through a for ltalement) as they are produced. Thus

the Iterator abstracla tn,rn the c:letala of how the p,oducdon of the llems ii COl'tlft)lled; for this reatOn, we

consider an Iterator to Implement a conbOI abltractlon. llenllors .,. parti0ularty uaetul • operations of

data abstractions that are collacllonB of objects (e.g., sets), aince they may p«>duce the objects in a

coflec:llon without revealing how the colledlon Is rapresenled.

An iterator has the form:

idn • lier [panns] args [yields] (signals] [where]

routine - body
end ldn

where

yields::= yields (type_spec' ...)

In this section we dilcuss non-parameterized Iterators, in which the ,-ms and _,.,.. claules are

missing. Parameterized modules are dlecuued in Section 12.5. Own variables are dlacuaed In Section

12.7.

The form of an iterator Is similar to the form of a procedure. There are only two dlferences:
1. An iterator hu a yields Clau8e In Ila heading In place of the,__ ... of a p,ocedufe.

The ylfllds claule apecliN the rllJIMer, onler, and typae of .,..)'111Nd each time the
iterator produces the next Item In the sequence. If zem objNtl •)'hlldld, then the ~
clause is omitted. The kin following the end of the lerator rruat be the same as the lt1n
naming the Iterator.

2. Within the iterator body, the yleld statement Is used to present the caller with the next item

12.2 Iterators

in the sequence. An Iterator terminates in the same manner as a procedure, but it may not
return any results.

n

An Iterator is an object of some Iterator type. For a non-parameterized aerator, thiS type is derived from

the Iterator heading by removing the Iterator name, rewrtting the formal a,gument declarations with one
idn per dee/, ctetettng the /tins of al format a,guments,. and finally, ,wplacing .., by ltertype.

An Iterator can be called only by a for statement or by a lorWII clause in a c:oenler statement.

12.3. Clusters
A cluster is used to implement a new data type, di8tinct fn,m any other built-in or user-defined data

type. A data type (or data abstraction) conlilts of a NI of obfect8 and a Nt of prtmllve operallons. The

primitive operatlonS provide the most bale ways of mMlpulaltng the oblldS; ultmatety every

computation that can be performed on the objects rNllt be expretNd In tem1S of the primitive operations.

Thus the primitive operations define the lowest level of ob8ervable object behavfor10•

The form of a cluster is:

kin • cluater [parms] 18 opidn , ... [where]

cluster_ body
end ldn

where

opidn : :: ldn

I tran11111t

cluster_body ::: {equate} rap• type_spec { 9CJJate}
{ own_var}
routine { routine }

routine : :: procedure

I iterator
In this section we discuss non-parameterized clusters, in which the parms and whsrs clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section

12.7.

The primitive operations are named by the list of opldns following the reserved word 18. All of the

opidns In this list must be distinct. The idn following the end of the cmter rrust be the same as the kin

naming the cluster.

To define a new data type, It is necessary to choose a concrt118 reprtJS#HJtalion tor the objectS of the

type. The special equate:

1°Readera not familis will the concept of data abslraclion might 198d Uskov, B. and Gulag, J., AbllnlCtio,7 and Speciflclltion in
Program DtNe#opmtlnt, MIT Presa, Cambridge, 1986.

78 Modules

rap - type - spec
within the cluster body identifies the typs_spec as the concrete representation. Within the cluster, rep

may be used as an abbreviation tor this type_ spec.

The Identifier naming the ctuater II available for use In the cluster body. Use of this identifier wlhln the

cluster body pennits the definition of recursive types.

In addition to giving the representation of ot,fects, the cluster must tn,,lemant the primitive operations

of the type. One exception to this, however, is the tranlffllt operation. The transmit operation Is not

directly implemented by a cluster; Instead, the cluster ffll8t ~ two operations: """"'1#1 and

decode (see Section 14 for details). The primliYe opendions may bl eilher procem,raJ or conllOI

abstractions; they are lmplemerud by procadurel and tleralors, respecttvety. Any addllional routines

implemented within the ckJ8ter are hidden: they are private to the duller and may not bl named directly

by US8fS of the abstract type. All the routines rrust be named by dl8Unct ldendfiers; the scope of these

identifiers is the entire cluster.

Outside the cluster, the type's obieCtS may only be treated abatractly (I.e., manipulated by using the

primitive operations). To Implement the operations, however, I la usually necessary to ~te the

objects In terms of their concnae rept'8181'11a1i. It Is also convenilJt tomatimes 10 manipulate the

objects abstractly. Therefore, inlidl the cluster I Is poaatie to w,w the type's Obi8Ctl either lbltractly or

in terms of their representation. The syntax la daftned to specify unamblguou8fy, tor each vanable that

refers to one of the type's objects, which view Is being taken. TM, Inside a clusler named T, a

declaration:

v:T

indicates that the object referred to by v Is to be treated abstractly, while a d8claration:
w:rap

indicates that the object referred to by w Is to be treated concretefy. Two prtmltiYes, up and dawn, are

available for converting betwNn ttlne two_. of view. The UN of u, pa,mla a ty,e NP objed to be

viewed abstractly, while -- penntll -~ abltlac:t obied to be Yilwed DOflCNtet)'. For given
the declarationa above, the lollowtng two,...,., ... legal:

V :•up{W)
w :- clOWn(v)

Only IOUtinea lnaide a duster may use up and dOWn. Note that up and Clown are used merely to infGlm

the compiler that the obfect Is going to be vtewed ab8tractty or~. ~-

A common place where the view of an obtect chanQN is at the ---. to one of the type's

operations: the user, of course, views the object abltraclly, while lnli:le the operation, the object is

viewed concretely. To facilitate thil usage, a epecial type apeclk:allon, _., Is provided. The UH of cvt

Is restricted to the IIT(JS, returns, ylelds and ""1M/S clauael of routtnes Ni:le a cutler, and may be used

at the top level only (e.g., arraY(cvt) is Illegal). When UNd lnaide the .,,. clauN, It means that the view

of the argument object changes from abstract to concrete when I ii assigned to the tormal argument

variable. When cvt is used in the returns, y/Blds, or .,,,,.. ctause, It means the view of the resull object

12.3 Clusters 79

changes from concrete to abstrad as It Is returned (or yielded) to the caller. Thus cvt means abstract

outside, concrete Inside: when constructing the type of a IOUtine, cvt Is equivalent to the abstract type,

but when type-checking the body of a routine, cvt Is equivalent to the representation type. The type of

each routine Is derived from its heading in the usual manner, excepl that each occurrence of cvt is

replaced by the abstract type. The cvt form does not introduce any new ablllly over what Is provided by

up and down. It Is merely a shorthand for a common case.

Inside the cluster, it Is not necessary to use the compound form (type_spe4op_name) for naming

locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules
An equate module provtdes a convenient way 10 define a a set of equates for later use by other

modules.

The form of an equate module Is:

idn • equal• [panns [where J)
equate { equate }

encl ldn

The usual scope rules apply. The idn following the end of the equate module lft.l8t be the same as the

idn naming the equate module.

In this sealon we dtscuss non-parameterized 8(JJ8te modules. Parameterized modules are dilcussed

in Section 12.5.

An equate module defines a set of equates, that Is, It defines a set of named conataru. The set of

equates Is alsO a conatant, afthough It Is not an obied- Thul the IWIII of an 8(Jlllle module oan be used
in an equate, but an equate module cannot be wlQMd to a Yllrllbll. The equates ddMd by IA 9CfJ8l8
module E may be referenced U8ing the same IYN8X • tor naming the operations of a duller. For
example, an object or type named n In equate module E can be rwfetred to as E$n. If equate modules

contain equates that give names 10 other equate modules, compound names can be used. For exafl1)1e:
A(lnt)8C$name

where A, B, and Care equate modules Is legal.

As always, equates to type specifications do not define new types but merely abbreviations for types.
For example, In the follOwing:

my_ types - equat88
ai • array(lnt]
float- real
end my_ types

the types my_typss$al and array(lnt) are equivalent.

80 Modules

12.5. Parameterized Modules
Procedures, iterators, clusters, guardians (see Section 13), and equate modules may al be

parameterized. Parameterization permits a set of related abltraction8 to be defined by a single rnockM.

In each module heading there Is an optional pamw clauae and an opUonll ...,. clause (see Appendix I).

The presence of the psrms clause indicates that the module II pararnelellHd; the wtwe clause declares

the types of any operation parameters that are expaded to accompany the tonnal type parameters.

The form of the parms clause is:

[parm, ... J
where

parm ::: idn, ... : type_spec
lictn, ... :type

Each parm declares some runber of 1orma1 parameters. Only the tolowtng types of parameters can be

decfared In a parms clause: Int, twal, bool, char, atrtng, null, and type. The declaratiOn of operation

parameters associated with type parameters is done In the where claa, • dilcllll8d bek>w. The actual

values for parameters are recpred to be oonstanll that ctan be computed at comple·tlme. This

requirement ensures that aH types are known at ~. and peffllll COff1)lete con1)fle-drne type.

checking.

tn a parameterized module, the acope rules permit the parameters to be UMd throughout the module.

Type parameters can be uted freely • type speclflcationl, and al other parameters (lncklding the

operations parameters specffled In the whsre clause) can be uted freely • pP19181ons.

A parameterized module implements a set of refatad abltractlons. A program must lntiltanliJlte a

parameterized module before I can be used; that Is, It rTlJ8t provide aclUat, constart values for the

parameters (see Section 12.6). The result of an instantiation Is a procedure, llerator, type, guardan, or

equate module that may be used just Ike a non-parameterized module of the same kind. Each distinct

Ust of actual parameters produces a distinct procedure, iterator, type, gwm:llan, or equate module (see

Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal

parameter names and deleting the parms clause and the wlWt9 clauae. That ii, in an an instantialion of a
parameterized module, each formal parameter name denotes the corretpGnding actual parameter. The

resuttlng module is a regular (non-parameterized) module. In the case of a ckiater eome of the operations

may have additional parameters; further bindings take place when these operalione are Instantiated.

In the case of a type parameter, one can atso declaf9 what operation parameters must aocompany the

type by using a where clause. The whtlre clause also specifles the type of each recJJired operation

parameter. The where clause constrains the parameterized moclJle as wel: the only operations of the

type parameter that can be used are those listed in the whtwe clause.

12.5 Parameterized Modulea

The form of the wh8re clause Is:

where : :: where restriction , ...

restriction : :: kin haa aper _decl , ...

I km 1n1ype_set
oper_decl ::: name, ... : type_spec

I tranamN
type_set ::: { kin I km haa oper_decl, ... {~ate}}

I ldn
I reference $ name

81

There are two forms of restrictions. In both forms, the initial kin muat be a type parameter. The has

form Nsts the set of required operation parameters directly, by means of opllf _ dfldll. The l)JHI _ sp« in

each oper_ d«:I mJst be a proctype, ltertype, or cre•Drtype (He Appendx I). The In form requires that

the actual type be a rnerrt>er of a type_SBI, a set of typea with the NqUlred operalionl. The two Identifiers

in the type_set ITll8t match, and the notation ii read like set notation; for example,

{t It hat: ... }
means ihe set of aH types t such that t ha f ... ". The scope of the Identifier Is the type_ set.

The In form Is useful because an abbreviation can be given for a type_ set via an equate. If I Is he_,,u,

to introduce some abbreYtatlona in defining the typfl _NI, theae are given In the optlonaf ~ within

the type_set. The ICOP8 of these equates Is the entire type_a.t.

A routine in a parameterized ctuater may have a .,.,. dal,ae In Its heading, and can place further

constraints on the cluster parameters. For exaff1)18, any type II permiul:lle for the a,ray element type,

but the array slrnlar operation requires that the element type have a almllar operation. Thll means that

array(7) exists for any type T, but that lfflly(7]$slmlar exists only when an adUal operation parameter is

provided for T$sknllar (SN Section 12.6). Note that a routine need not include In h where clause any of

the restrictions Included In the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual

parameters:

actual_parm : :: constant

I type_actual

type_actual ::: type_spec [With { opbindlng, ... }]

opbinding : := name , ... : primary

If the parameter is a type, the module's where clause may require that some routines be passed as

parameters. These routines can be passed lmplicilly by omitting the wlhclause; the routine selected as a

default wHI be the operation of the type that has the same name as that used in the where clause.

82 ModulN

Routines may also be passed expliclly by using the with clauae, overrlclng the default. In this case, the

actual routine parameter need not have the same name as is requlnld In the where clause, and need not

even be one of the type's primitive operations.

The syntactic sugar that allows default routines to be aetecled lmpllclly WOfka as tollowa. H a generator

requires an operation named op fft>m a type panlfflller, and I the QOffll~ type_llDIUIII, TS wllll {

... }, has no explicit binding tor op, then Argue lltdl an opblndlttg of • • TSlop. (It wlU be an enor I

TS$op Is not defined.) Thus one only has to provide an expllcll opblndlttg I the defa&JI II unsatisfactory.

For exafl1)1e, suppose a procedure generator named sort has the follalWtng heading:

sort • proc(t: type](a: array(tD whll'e t ._ gt: proctype(t,t) NIUrlll(bc,ol)

and consider the three instantiations:

sort[lnt Wldl {gt: lnt$gt}]
sort[lnt]
sort[lnt with {It: lnl$lt} J

The first two instantiations are equivalent; in the first the routine lnl$Qt Is passed explicitly, while in the

second it is passed Implicitly as the default. In the third in8tanliat1on, however, Int$# is passed In place of

the default. An three instantlatlOnB result In a routine of type:

proctype (array(lntl)

and so each could be called by passing It an array(lnt) • an 8f1LN118111. However a caR of the third

instantiation wUI sort Its array argument In the oppolile order fflN!t'I a call of ellher the first or second

instantiation.

Within an Instantiation of a parameterized mocllte, an operation of a type parameter named &Sop
denotes the actual R>Utlne parameter bound to op In the ln8tantlation of that mocllle. For example,

suppose we make the cal:

sort[lnt wllh {gt: lnlSlt}) (my_ints)

where my_ lnts is an array of Integers. If, in the body of sort, there is a recuraive call:

sort[t with {gt: 1$gl}] {a, i, j)

then t denotes the type Int, and l$gt denotes the routine Int$#, so that the recursive sort happens In the

correct oroer.

A cklster generator may lncklde routines with WMre cl■aaes that place addlional requirements on the

cluster's type parameters. A convnon example Is to require a a,py opendlon only within the cklster's

copy if11)1ementation.

set • clusler(t: type) la ... , copy
..... t ... equal: proctype(t,t) 1'8tUmS(bool)

rap • affllY(t)
...
copy • proc(s: cvt) retuma(cvt),. t hM copy: proctype(t) NIWtle(t)

nllum{NP$c0py(s))
end copy

The Intent of these subordinate where clauses is to allow more operaUonl lo be defined I the actual type

parameter has the addllonal required operationl, but not to make the llddllo.,al operattons an llblolute

12.6 Instantiations 83

requirement for obtaining an instance of the type generalor. For exaff1)1e, with the above definition of set,
se4any) would be defined, but SB(any)Sa,py would not be defined because any does not have a copy
operation. We shall call the routine parameters required by subol'dlnate whtlre clauses optional

parameters.

Like regular required parameters, optional parameters can be provtded when the ckJster aa a whole is

instantiated and can be provided explicitly or by default. For -, ~ parameter op that is not

provided explicitly by the typs_actual, TS with { ... }, we add an opblndlng of op to TS$op I T.9Sop exists;

otherwise the opb/ndlng is not added. The resulting c"8ter COl'Cainl just those operations for which

opblndlngs exist for an the required routine parameters. For ex.,., as mentioned above, set(anyJ

would not have a cx,pyoper■Jon becauN anyScopy does not uilt and therefore the needed opblndlng Is

not present. On the other hand, aet(lnl) does haw a copy operation bec•IN lnt$a>py does exist.

FlnaHy, se(any with {copy. fool), where foo Is a procecln that takes an any as an argumert and returns

an any as a result, would have a copy operation.

For an Instantiation to be legal It nut type check. Type checking la done after the syructlc sugars are

applied. The types of constant parameters must be included in the declared type, type actuall rBllt be

types, and the typea of the actual routine parametera flllll be ln£luded in the proetypes, lertypes, or

creatortypes declared in the appropriate whMe clauses. Of COUIH, the runber of parameters declared

roost match the number of actuals passed and wlh each type _,., parameter thent mJSt be an

opblncling for each required routine parameter. If the genenlOr ii a Cluller, then opblndlnos m.tSt be

provided for all operations required in the duster's where clauN; opblndlngs can (but need not) be

provided for optional parameters. Extra actual routine paramaten ant Illegal.

Because the meaning of an instantiation may depend on the aclUal routine parameters, type equality

makes instances with different actual routine parameters diltinct types. For example, consider the set
type generator again; the Instance

set[array(lnt] with {equal: anay(lnt)SequaQ J
is not equal 1o

se1(array(lnt) with {equal: array(lnt)$slmllar)]

Intuitively these Instances should be unequal because the two equal procedures define different

equivalence classes and therefore the abstract behaviors of the two instances are different. However,
optional parameters do not affect type equality. For example,

se1(array(lnt] with {copy: lnt$copy} J
and

set[arraY(lnt] wlh {copy: rny_copy} J
are equal types. This is intuitively justlled because in each case set objects behave the same way even

though different sets are prociJced when sets are copied in the two C818S.

Thus we have the following type equality rufe, which defines when two type_sp«:S denote equal types

(after syntactic sugars are applied). A similar notion is also needed tor routine equality. A fonnal type

84 ModulM

identffler is equal only to ltsel for type checking purposes. OthetWIH. two type names denote equal

types If they denote the same ~ion Unit (DU).11 Simllafty. Argus COff1)8t'88 the names of IOUline

formals or the DUs of routines, or checks that they are the same operation In equal types. To decide the

equality of two type generator Instantiations:

T[t1 with {op1: act1, ... opm: actnJ, ... , tn with{ ... }]
and
T'[t1' With {op1: act1 ', ... opm: act.,, 1 , ... , tn' with{ ... }]

Argus first checks whether:
1. Tand r denote the same DU, and whether

2. they have the same nunt>er of type_acluals, and t1 is equal to t1 ', etc.
Second, any optional parameter opblndlngs In either instantiation are deleted. After this step, Argus

checks that for each corresponding type_actual there is the same number of opblndlngs and that each

corresponding opblndlng is the same. (That ia, the correapondlng actual n:,utines are equal.) The order

of the actual routine parameters does not matter, since Argus matches opblndlngs by operation names.

(The definition of routine equality for Instantiations of routine generatorB ta similar.) This definlion, for

example, tells us that

set(array(lnt] with {equal: 81T8Y(lnt]$ecJJal} J
is different from

set(array(lnt) With {equal: array(lnt)$slmilar1 J ,
(assuming sst requtrea an equal operation from its type parameter). It allo tels us that:

set(Int with {equal: foo, copy: bar)]

and

set(Int with {equal: too, copy: xerox} J
are equal (assuming copy is required only by the se(lnt)Sa)pyoperatlon).

This type equality rule allows prograrrmers to control what requirements affect type equality by

choosing whether to put them on a cluster or on each operation. A NqUlrement on the cluater should be

used whenever the actuaJs make some difference in the abltractlon. For example, In the set cluster, the

type parameter's equal operation should be requintd by the duster as a whole, since using different

equality tests for a set's objects causes the set's behavior to change.

One can require that a type parameter, say t, be transrnlsll>le by stating the requirement:

t has tranamlt

This requirement ia regarded as a formal parameter declaration for a special iransm1t actuar, but Argus

does not provide syntax for passing It expldlly. The "lranlmlt actual" ii pueed '"1>lleltly just when the

actual type parameter is transmis8ible and the generator requires It.

11Tois is name equality unleu lhe type environment haa synonyms for types.

12.7 OWn varlablea

12. 7. Own Variables
Occasionally It is desirable to have a module that retains information Internally between calls. Without

such an abiffly, the infonnation would elher have to be r800IIIINCted at every call, which can be

expensive (and may even be lmpoasl>le if the information dependl on previous calla}, or the information

would have to be passed in through argumet'B, which is undesirable becauae the lnlormdon ii then

subject to uncontrolled modification in other nm.des (but see allo the binding mechanism dNcrl>ad in

Section 9.8).

Procedures, iterators, handlers, creators, and cluater8 may al rlllain lnlormation through the use of

own variables. An own variable Is similar to a normal variable, except that It eDltS tor the •• of the

program or guardian, rather than being bound to the .. of an, ,...._, IOUlifle adivation. Syntadlcalfy,

own variable deClarations muat appear lnvnedlately after the equallS In a routine or cluster body; they

cannot appear In bodies nested within statemenlS. Declaratlons of own vartables have the form:

own_var ::: own decl

I own idn : type _spec =• expression

I own decl , ... =• call (O primary]

Note that lnitlaltzatton Is optional.

The own variables of a module are aeatecl when a guardian begins execution or reoowrs 1rom a
crash, and they always start out uninitialized. The awn varllblN of a routine (Including Cluster

operations) are initialized In textual onier as part of the first cal of an operallon of that routine (or the first

such can after a crash), betont any atatementa in 118 body of lie fOUlirl8 are executed. CUiier own

variables are lniUallzecl In textual order as part of lhl ftnlt cal of ._ 1lrlt clulller operation to be called

(even I the operaUon does not UN the own variables). Cl.titer own variablel are lnlialized before any

operation own variablea .,. lnlllaflzed. A,gus inlLlfH that ofttt/ one Pft)CIII can execute a ca,ster's or a

routine's own varlabte lnltlalzatlons.

Aside 1rom the placement of their declarations, the time of their iniUallzation, and their lletime, own

variables act jult ll<e nonnat varilblN and can be UNd in al lie ... places. Aa with normal variables,
an attempt to use an unlnltlallzecl own vattable (I not dltecled at con.,ae time) wll cw the guarclan to

crash.

Declarations of own variables In different modules alwaye Nfer to dltinct own variables, and dtsUr1ct

guardians never share own variables. Furthemlot'e, own vadlbll d9clllrllltona wlhin a parameterized

module produce diltlnct own variables tor each diltlncl NtanlllllOII of the mocUe. For a given
instantiation of a parameterized cluster, al lns&anllatloM of the type's operattona share the same set of

cluster own variables, but distinct Instantiations of paramete,tzed operatlonl have distinct routine own
variables.

Declarations of own variables cannot be enclosed by an except ltalemeN, so care must be exefCised

when writing Initialization expressions. If an exception is railed by an fnftiallzation expression, I will be

86 Modules

treated as an exception raised, but not handled, in the body of the routine whose call caused the

initialization to be attempted. Thus, the guardian will crash due to this error.

M4Lt¥!1¥Xi.M tkJI I .J .. ,_11,1411 ... JUC)UXUSIJ&JQUUiJLULZ# 1#- ... L)Jl. li#ii J$ 1¥ .$2324HM-. 24;u;;;;z;;;;;;p;:ut@;;;;

.,

1llit-.n11.,.., ••·••--• • .. ••~,.•---•1• .,,., -•
...... -- - ••• ' ell II .. •: 11811 IIL ' ' • 11 • 111!1 -
"'~•••• ... , • ••• I Jilli n 11■1u,11W•··•• -. ••• ■11$1 .. • -rn-.. Cltll lil!IHO.. -- --•'Ill ·• •a11tn 1n----. •., , 111, ul 11u ..,: · _- _- __ , : . , _ _ .-_-_ _ _ _ ___ __ ·••11 r :ai • ,11 •n. ant
,__,..... If Ilk • Jf 1(l111i.i t111llllll".'l!II ·--

The ey,IIIICllcllrm GI ■ll LI tl.llt d1a ···•-•a:
.... , II 1-1•-♦ -l••···--•1--1 <••· . (llllll,L.dld)

I····-·---• , .. ._ ••••••,I
IPllillbt) ••••'1 llllldllln}

opp:Jllan ::. ar,_,
I 11.1111,,
I

llNtinlll■ ' _· .· ,., ' ,~--....
.. ._...,.., 111r111•11111• • ___ -_ ·- ~.

1
r'111111 ;-· -- -···· .. ,......

........... , ••.• 111>•--•· ' . ,_., ----- ... ,.,,-•• •-•.....-..•••--•-•11n'· ---•-,1.,., • .,
dl1Nd11JA1lll--·• ,_ 1111 "

The,.....11.-a1 .. 11a lilllllllM 11••--·
13.1. Tilt 01111 '.

1111 ----••1•• II L Ill Jill I t •. I 1 c;b....... 1.lllfl : ISi nut: ... _ 1_,_
II/ O:t11::-•-•t.11n J•; ■,11utu
l(YL ••• '

llle -.e., ••1• an N ••--•1· Iii ,l111Ul.n, .• _iJll.dl 111• Ml -- ·,a,t■I••
...... M 11•1 ii I ll1Jlkl1ililllflfll Iltll titl•

·, . ,- . ' -- .- - .. -<·:_:':',

88

stable buffer: atomlc_array[lnt) :• atomlc_lffllYPnl)$new ()
cache: arrar[lntJ =• anay(lntJ$new ()

Guardians

then the atomic_array object denoted by buffer would survive a guardian crash, but the array ot>;ect
denoted by cache would not. See Section 13.3 for more delals of crash recovery. Volatile variables can

be assigned wherever an assignment statement is legal. However, able variables may only be

assigned by an Initialization when declared or In the body of a creator. The lnltializationl of both stable

and volatile variables are exea.ated within an action, as deacrl>ed below. However, the stable variables

are not reinitialized upon crash recovery, whereas volatile variables are reinlllalized upon crash recovery.

Stable variables should denote resilient objects (see Section 15.2), because only resHient data objects

(reachable from the s&able variat:Ns) are written to stable storage when a topaction CIOfflffllts. (Thil can

be ensured by having stable variables only denote objects of an atomic type or objeds protected by

mutex.) Non-reslltn objects stored In stable variables are only Wfttten to stable storaQe once, when the

guardian is created. Furthennore, the stable variables shoutd usually denote alomic obied&, because the

stable variables are potentially shared by all the actions In a guardian.

13.2. Creators
A guardian definllon must p,ovtde one or more creators. The names of theN creators must be listed

in the guardian header (Internal a.ato,s are not allowed); HCh suc:tl name fflJst coneapond to a single

creator definition appearing In the body of the guardian definition.

A creator definition has the same form u a procedure definition. except that creators cannot be

parameterized, and the reserved word CNlllOr la used In place of pn,,c:

idn •creator<[a,gs]> [returns] [signals]
routine - body
end ldn

The initial idn names the creator and must agree with the final lcJn. The types of al arguments and all

results (normal and exceptional) must be transmissible.

A creator is an ot)Ject of some creator type. This type Is derived from the creator heading by removing

the creator name, rewriting the fonnal argument declarations with one kin per dee/, deleting the lc1nl of aH

formal atgUments, deleting any failure or unavallabl#I signals, and finally, replacing CINIOI' by

creatonype. The signals failure(atrtng) and unava/lable(11rtng) are lmpficl in every creator type (since

they can arise from any creator cal). However, If these stgnats are raised explicitly by a creator, they

must be listed in the signals clause with atrtng result types.

The semantics of a creator call are explained in Sectiem 8.4. Typically, the body of a creator will

initialize some stable and volatile variables. It can also retum the name of the guanlan being created

using the expression Nlf. Since the creator (and the state lnltlallzation) runs as an action, the creator
tenninates by committing or aborting. If It aborts, the guatdian Is destroyed. If It commits, the guardian

begins to accept handler calls, and runs the background code, If any (Ne below). If an ancestor of the

creator aborts, the guardian is destroyed. If the creator and all Its ancestors commit, the guardian

becomes permanent, and will survive subsequent crashes.

13.2 Creators 89

13.3. Crash Recovery
Once a guardian beeomes permanent, It will be reaeated automatically after a crash with its stable

variables initialized to the same state they were In • the last topactton commit before the crash. The

volatile variables are then lnlllalized (in declaration order) by a topaction. To aid In thtS reinitialization, the

guardian definition can provide a f'8COV8r SBCtlon:

recover body end

to be run, as part of this topaction, after the Initializations attached to the volatile variable declarations are

performed. The recover section commits when conlrOf reaches the enc:t of the body, or when a return

statement is exeaJted. The recover section may abort by 8K8CUlnr, an abort rellLlm statement or as a

result of an unhandled exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
TaskS that must be performed periodically, independent of handler caHs, can be defined by a

background sectlorr.

background body end

The system creates a p,ocess to run this body as 10011 as creation or recove,y convnls successfully.

The body of the background section does not run as an actton; typlcalty I wlll per1orm a sequence of

topactiona.

lf the background proceu tinlahea executing II body(...., by reaching the end of the block or by

returning), the process tenninates, but the gualdlan ccnnaes to uecu&e tncomlng handler cans.

13.5. Handlers and Other Routines
Typically, the principal purpose of a guardian Is to execute Incoming handler calls. A guardian accepts

handler calls as soon as creation or recovery commits.

The guan::Uan header lists the names of the extemally available handlers. Each handler listed must be

defined by a handler deflnltJon. Additional handler deflnfflonl may alto be given, but these handlers can
be named only within the guan:tian to which they belong.

A handler definition has the same form as a procedure definition, except that handlers cannot be

parameterized, and the reserved word handler ls used in place of pn,c:

ldn • handler <[args]> [returns J [signals]

routine - body
end idn

The Initial idn names the handler and 111.Jst agree with the final idn. The types of all arguments and all

results (nonnal and exceptt0nal) must be transmissible.

A handler is an object of some handler type. This type Is derived from the handler heading by

removing the handler name, rewriting the fonnal argument daclaraliDna wlh one kJn per dee/, deteting the

1$ii!ILiid$UktJ it &JG!Wl&,(J tu J&i!QlW!!LJJJ:SMJSLUU!EittJ#!UlQ@Sl&$1$2U$.Lllii##XZM4MiiJ,JM J L' ' 4 ;

IO

............... ••1•····••1J•.
)I, ·•11UIII· 1111 Ill! .• lli(tllllfl·-t••·•·-·••1• . , ,, ,

_, _,,..,. •••• U.&ell•tll ---•
•Pl Ild ·A-'. ,.,.,1 ••••• •--n11t'1. ·

A • I ii I Ill I I

•••c•-•
tU.Gtu1•••1■1- •••··· · ·. ·. .·

A.J MI .Ill.-:· .. _ ... ·· ,,,1••-·
••:••··-

0..,-..11 _11 Pl Oil
...... 11. IH lfll • --•11•1• 1111.1.•••i-
rn •• ••1•1r•-o•

... ,,.
••11••••J.:lnl!r p.,, ...

. • ;Ill ll'lllltM'L •

' 711 ··---. rm:1: •• · · 1,111,t.

-·····' ,
..

•1••·
. I Ill

• •• ..,. 1111 ~ ••' 1111111•11u, 11.11 ti rn1•111·11I111.J111tt
•••••• a•••r,iiitr •• _ ·· -· _.• · · ·· · · ,u.u IJll1••-·,····111. 'NIMIINII!

. -• ••ewm11j · • 1'•~•-•• Alk ·,_ . "'·
..... • • •••• ,,i· • a tf 1111r••·

.....
~p., tlJIIJ; •.•. IJtll. _.·

. -~,_·ill;•· 111.1 IRJf11

1111 , •• ,~; :. •• , •. 11111lll1"'1,ll 111l(lll.JJI I. :
Wl•l tlill t41■u-, .. J;.II IBMlti!!llfilJRIU~· ...

MIUI II
.-a(v,.) ---............ , [

• •• u•u

11.7_.AIIIII_ 111 , ... ; , ;

att inn•-•..._.._ •---11,1111.
...... 11114 ·••:• ,•.····_·•·

. '. .. 14ZJIOIIL -<~ ,I ltill _,

13.7 An Example 91

consumption. The spooler provides an operation for adding (object, consumer) pairs, and tor destroying

the guardian.

Flgl.ft 13-1 : Spooler Guarolan

spooler • guardian (t: type) la create handlN enq, finish
wherethMtranamll

utype - handlertype (t)
entry • atruct(obieet: t, consumer: utype)
queue • semiqueue(entry)

stable state: queue :• queue$create()

background
whlle true do

entartopactlon
e: entry:• queue$deq(state)
e.oonsumer(e.obleet)

except wllln unavailable (•): abort ..,. end
end failure, unavallble r):

end
end

create • CNlltor () IWIUma (spooler(tD
return(Nlf)
end create

enq • handler (Item: t, user: utype)
queue$enq(state, enlry$(object: Item, consumer: user})
endenq

finish - handler ()
tennlnate
end finish

end spooler

The spooler guardian is parameterized by the type Of object to be stored. The enq handler takes an

object of this type, and a handler tor sending the oblect to the c:or-..mer, and adds thi8 information to the

stable state of the spooler. Thia state is an object of the ..,,,._. lbllrad data type 12. Each entry in

the semlqueue Is a structure containing a stored object and II oorreapondlng consumer handler. The

background code of the guardian runs an lnflnle loop that ltll1I a topaction, removes an entry from the

queue, and sends the object using the associaled handler.

Note that an unavailablB exception arising from this handler can la caught Inside the topaction, so that

an explicit abort can be perfonned. H the exoeplfon were caughl oullide the topac:tion, It would cause the

12see W. Weihl and B. Liskov, "lmpemenllltlon of Realient, Alomic Dalll Tw,es", in ACM T,..,...,. on ~
~ands,,..,,., volume 7, nwnber 2, (April 1986), pagee 244-218.

92

topaction to commit, and the entry would be removed without being consumed. Note also that failure is

caught outside the topaction, since If an encode were to fall, or II the gualdlan did not exist, the

background process might aimlessly loop forever, because it would not be able to remove that entry.

A more extended example of a dlstrtbuted system appears In the paper Llskov, B. and Scheifler, R.,

"Guardians and Actions: Linguistic Support for Robust, Dlatrtbuled Programs," ACM Transacllons on

Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.

UilJQJJL t#L 4J ffl.l!Ntfllld fll■1' Mltilh&Ull U & HILJk .C !!JJ.U:UUU#¥#4UUSL!J#!MlU GJUUJU# Uk .x; - 4% sq:;, 2:. sm

14. Tren•l111i■lf
A lf tl•Rw-tlll,1111 lli. A

tobeN11tln•••r1rn .,....,LI. an ••1111h.••• ... : •••-•--•--•
......-•11111111111• 11•11- • ui.tl ·•-••ta•ltd_, ..
A,gtabt.ltl-in_.1nc1awu11r•u•--

14.1. TIIIIT,..IIIII0,1r11B1n
T,._1 IHllltt ll e '1 ·•· _, lllll II•----,·--a .. 1Pt111■ 1 •m of ._ A••••••••••~.• i · · - · ·· 41:r1ullllt1t,11M1 ,. .. , ,1u. ··- ,.,.,t11•. ·. ,.,,,;.,,.-;-.·.;c~'-:•'J•··· . .c'.-

wllldtll tt••- •.•• , t•■tJR ... llllldllt• · ;1••·····'''·-.... , ..
.......... st--·_·· i_ -- •• ,,

11111■ :alarll'lll a1•• IL ----• 1,.·: _, ·•---·-
............... 1111 a 11 • L • blflf' --■ •

14.2. "-l■l11t1■ •--•-·11
Thi •••.1•1•••••l1 •L rrt••·• 4•a•uo11lth.•••1■ un1, ••••••·

•••· •• •/•11tdl1 ,, •atlllr11" : ,_.,.:.~.~. ,:,;;;;,;,•-~:..;,,;,,/_);',:; .·· ' . -.-· .._ •• •·••
•··•• - lllll-1' 1.fJJJUlf ____ . -------·

nw....,_..,.11>111 111(11...._. __ ._ J Oil JIJIHUt ...t.··• .. • ... ·:••••· ••-•• ,1,1•1••·• .. --.c •n ■ .. 1,.,"._
o1 • ••• sm• •••11••• 11u11•■-F(: ·• •••·--• ••:o •••••••t-•• ran ••••r• . •• -·, •. •••

•· All Ill .. ,.
111&11•11 lllllrt_.lllatlllll•••---•-11ra.._.,,, l 1t11l1Aef ..

COlllll•-----
Tba • 1 • •• anrn,., •t1t. fl') 1111111 •--·•,_,/.._ .. •1no,1,n , •• ,

...... 11u•n,. H _....: . .

94 Tranamlalblllty

14.3. Transmit for Abstract Types
The type implemented by a cluster is transmissl>le If the reserved WOl'd tranamlt appears in the la-list

at the head of the cluster. Unlke the other operations provided by a type, the traMmlt operation camot

be called directly by users, and In fact la not implemlNld dlrectly in the camter. lnltead, tranemtt Is

implemented indiredty in the following way. Each transmlaal:>4e type la given a canontcal representation,

called its external fflfJl'NM1lalJo t)pe. The external ~ type of an absttlct type T is any
conventent transmilal>le type XT. Thia type can be another abltract type If desired; there is no
requirement that XT be a bu•-tn type. lntultivety, the meaning of lie utemal repreeentation la that

values of type XT will be used in masaages to reprasett vaklel of type T. The choice of extemal

representation type is made for the abstract type aa a whole and nm tM UNd in evety ~ of

that type. (There are cummtty no provisions for changing the external representation of a type once It

has been established in the 11:>rary .)

Each i"l)lementatlon of the abstract type T must provide two operations to map between values of the

abstract type and values of the external representation type. There Is an operation

encode• proc (a: T) returns (XT) [algnala (fallure(atrtng))]

to map from Tvalues to XTvalues (for sending messages) and an operation

decode • proc (x: XT) retuma (T) [slgnala (fallure(atrlng))]

to map from XT values to T values (for receMng messagea). The trananft operation for Tis defined by

the following Identity:

T$tranamtt (x) • T$decode (XT$transmlt (TSencode(x)))

Intuitively, the correctness requirement for encode and decode is thll they preserve the abltract Tva,es:

encode maps a value of type T Into the XT value that represents I, while dflOOde pet"fom1s the reverse
mappmg14_

Encode and dfJCOCIB are called impllcltly by the Argus system during handler and creator calls. ff

encode and dscode do not appear In the cluster's ls-list, then they wtl be ICCH8ible to the Argus system.

but may not be named directly by users of the type. A fdlre excaptlon railed by one of these operations

will be caught by the A,gus system and resignalled to the caller (see Seotlon 8.3).

An abstract type's encode and decode operations should not cause any side effects. This is because

the number of calls to encocle or dflcode is unpredictable, since a,gumenta or resuls may be encoded

and decoded several times as the system tries to establilh COfflfl'Ulicati. In addition. ve,tfying the

oorreclness of trwmia8ion is easier I MJCOdtJ and dllOOdtl are lilq)ly tranafomlatlons to and fn:,m the

external representation.

When defining a parameterized module (see SectlOn 12.5), it may be necessary to require a type

parameter to be transmissl>le. A special type restrletion:

1"Hertihy, M. and Liskov, 8., "A Value Transmlsaion Method for Abanct Oala Types•, ACM T,.,.,,r:titi,M on ,,,_,,.,,,,,.,,
,....,._ands,.,.,., volume 4, number"· (Oct 1982), pagN 527-551.

14.3 Transmit for Abstract Types 95

haa transmit

is provided for this purpose. To permit instantiation only wilh transmissble type parameters, this

restriction should appear In the where clause of the cluster. Allemattvely, by placing Identical Where

clauses In the headings of encode and decode procedures, one can eran that an instantiation of the

cluster is transmissible only If the type parameters are transmtsal>le (see Section 12.5).

As an example, Figure 14-1 shows part of a ctusterdeflning a l<e~ table that stores pairs of values,

where one value (the key) Is used to retrieve the other (the ltetn}. The key-lem \able type hal operations

for creating empty tables, lnseftlng pairs, nttrleving the Item paired with a given key, deleting pairs, and

Iterating through al key-Item pairs. The table Is ~ by a sorl8d bklary tree, and its extemal
representation Is an array of key-Item pairs. The table type Is transmlssl>le only If both type parameters

are transmissible.

Figure 14-1: Partial Implementation of table.

table - cluater [key, Item: type) ta create, Insert, lookup, .,_., delete, transmit, ...
where key._,: plUClp {key, key),_,,.. (boot),

equal: proctype (key, key) ..,.,. {boot)

pair- record(k: key, i: lem)
nod• NCOl'd(k: key, I: lem, left, right: table{key, llem)]
rep • vartant(eff1)1y: null, soma: nod)
xrep • arm,[pakl % the external rapntNntatlon type

% The internal representatk>n Is a aorted binary trH. All pairs in the table
% to the left (right) of a node have keys INI than (greater tlwl) the key in
%that node.

% ... other operations omitted

encode• proc (t: table(key, Item]) r8IUma (xrep)
....,. key._ tranMIII, lem haa tnlnaftlt

xr: xrep :- xreplnew{) % create an llf'1IY array
% use alpail to extrad the pan fft>m the trN
for p: pair In allpan(t) do

% Add the pair to the high and of the array.
xntp$addh(xr,p)
end

return(xr)
end encode

decode• proc (xtbl: xrep) returns (table(key, item])
Where key haetranamll, Item._...,....

t: table(key, item) :- create() "CNate empty table
for p: pair In xrapSalementl(xr) do

% xrepSelements yields all elements of array xr
lnsert(t, p.key, p.item) % enler pair in table
end

return(t)
enddeoode

endtable

96 TranamlNlblllty

14.4. Sharing
When an object of structured built-in type is encoded and decoded, sharing among the object's

components is preserved. For exaq:,18, let a be an array(7) object such that 11{1} and afJJ refer to a single

object of type T. H a2 Is an array(7) object created by transmlling a, then a2[IJ and a2/JJ also name a

single object of type T.

All sharing is preserved among an components of rrullple objects of built-In type when those obiedS
are encoded together. Thus, sharing is preserved tor obtacts that are ...,ments of the ume remote call

or are results of the same remote cal, unleaa the argumenl8 .,. encodld at dlflef8nt times (see the

discussion of the bind expression in Section 9.8). For exaff1)1e, let • and b be am1,C7] objects such that

a[i] and b{jJ refer to a single object of type T. If 112 and "2 are anya created by sending • and b as

arguments in a single handler cal, then a2{1] and b2(JJ also refer to a single object.

Whether an abstract type's trlnlmll operation preserves sharing is part of that type's specificatlofl. but

sharing should usually be preserved for abstract types. In the key-lem table ~ion of FIQUFS

14-1, there are two types of sharing that ahould be preserved: sharing of keys and l9ffl8 among ~
tables sent in a single message, and sharing of ltema bOuncl to the ume key In a single table. The

key-item table ex~ shows how to irnplemerj an abstract type whoN tranamlssiOn preaerves sharing

by choosing an extemal representation type whose tranaml operation preaerves sharing.

Care must be taken when the refentnces among objects to be tranamlted are cyclic, as in a circular

list. Decoding such objects can result In a failure excepdon unle8a fll1CtJ8 and d«:odB are ~ad
In one of two ways:

1. the internal and external representation types are identical and MCOde and d«:ode return
their argument object wilhout modJfylng It or ICCell1ng lta c:orr.-,nerca, or

2. the external representation object must be free of cycles.

15 Atomic Types 97

15. Atomic Types
In Argus, atomicity is entorced by the objects shared among actions, rather than by the individual

actions themselves. Types whose objects enaure atomlcly of the acUona 8harlng them are caled atomic

typss; objects of atomic types are caUecl atomic Ob}llds. In thil chapter we define what It means for a
type to be atomic and descrl>e the mechanism& provided by Argus to support the implementatiOn of

atomic types.

Atomicity consists of two properties: serializabillty and recoverability. An atomic type's objects rrust

synchronize actions to ensure that the actions are sertallzable. An atomie type's objeets must also

recover from actiOns that abort to ensure that actions appear to execute either completely or not at alt

In addition, an atomic type rrust be resiliflnt the type must be ~mented so that its objectS can be

saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an

action that commits, as do al of its ancestors) wll survive crashes.

This chapter provides definitiOns of the mechanisms used for ueer-dlfinld types In Argus. For

example implementations, see Weihl, W. and Liakov, B., •,,.,_ion of Resliert, Atomic Data

Types," ACM Transactions on Programming Laf'l(JUll(Jlla anti 8yatBms, volume 7, number 2 (April 1985),

pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present

the details of the mechanisms. SectiOn 15.1 focusea on synchronization and recovery of actions, while

Section 15.2 deals prlmarlly wlh resilence. In Sealon 15.3, we dllcl111 aome gui:telnes to keep in mind

when using the mechanisms detcrtJ8d in Section 15.1 and Section 15.2. In Sedk>nl 15.4 and 15.5, we

define more precisely what it means for a type to be atomic. Finally, In 15.6, we dlacusa some details that

are important for user-defined atomic types that are ~menled using mul~ rnutexes.

15.1. Action Synchronization and ----~very
In this section we descrl>e the mechlnllma provided.,.. Algt.18 to aupport synchR>nization and recov.ry

of actions. These mechanisms are designed spec:tRcally to auppo,t i~ of alomic types that

allow highly concurrent 80C888 to objects.

Like a non-atomic type, an atomic type Is ~ by a ckl8ter that def111e1 a representation for the

ot>;ects of the type, and an iff1)1ementatlon for each operation of the type In terms of that repNMfllatlon.

However, the implementation of an atomic type rruat solve aome problems that do not occur tor o«Jinary

types, namely: synchronizing concurrent actions, making Wll,le to other actions the effects Of committed

actions, hiding the effects of aborted actions, and providing resllence agaillSt crashes.

An implementatiOn of a user-defined atonic type ITIJ8t be able to find out about the commits and aborts

of actions. In Argus, if'11)1ernentatna 1118 objecl8 Of bull-In atumlc types for this purpese. The

representatiOn of a user-defined atomic type is typlcafly a combination of atomic and non-atomic objects;

[iJtlPll!Jt(JlLU . Ut ·- iCLJI . " Jdll& Lid j J[UJQ .• lll#SJJiL,,.Ji)WttMAUI J#L#4li4AJikll$,j$J tt.L$S U;t.X\14!%!

I

•
--••1•• .. •• ••1tJ!S.li*il·•···· ,.• ' ' . ..,
.... , ••• 11,11:•1111nn1m•.•-·; . ';,. c~: : . -·-·
--•·• hll•q; lifllllltt :JCllllm:••11;/ftr, .. ,......... .

•••••••••· ·.•1 .. , ■ 11111n:·••·111 w1, •·
•--••••·• .. ••• .. 111rt.#
•Ill_, 114, Pflll <11171 •· ·.··. ••

11le ~ -----· llfll •: JI n ,I. •·■ .■,. -■
........ PbJ 11~ •·1■1711.••••l

,. A -·· --4.lllli!llllll#i LIi ..
t ,,... ti ,111111 .. ··••--•·•·••1111. . '

11, .11,., ',' ,, •. ,,,

..... ti •••

1.7 " . <. ' •

•••• •·•·1•1••·•11:lil~
••···.1.111 ,n .. •••••11. ·••·· ·-------·
•• :d•• ••·• 1111.•1 ·

11&■1••--

mr■•••-·
1111. •

flt. ztPllisn ta _, •••· ---
11 .?laff e '',·.···,,, .•. ''
,- 1111w•1111w1

lllltt.1111 , •• 11plf ae, •- Flr--- .. ••••········LIU.· .. an,. ,

.........
•,•• · ... "'-•:••······
·•·•••• ·•·1(1111,.111

·· tulilll•-

•

·••··-i ' ' Jl,lll (l •
'·"• ··.,. . '

' .• ,.
•

-·---••

15.2 Reslllence 99

changed • proc (m: mulex(T])

is provided for notifying the system that an existing nlJtex object should be wrlUen to stable storage.
caning this operation wilt cause the object to be wrlllerl to_,.-. (assuming It Is ._..l>le) by

the time the action thal execued the chanQed operation oomnlla to the top. Sometime after the action

calls changed, and before Its top-levet ancestor oommlta, the system wit copy the nuex object to stable

storage. Changed roost be called from a pn:,cess running an action.

Mutex objects also define how fflJCh Information roost be written to stable storage. Copying a fflJtex

object involves copying the contained object. By choo8lng the plQp8I' graoolarty of mu&ax objects the

user can contn:>J how rooch data roost be wrtlten to stable 110rage al a time. For exa111)11, a large data

base can be broken tnlD partitions that are written to stable SIOrage lndependendy by dMdtng I among

several mutex objects. Such a division can be used to Hmlt the amount of data wrllten to stable storage
by caUing changed only for those partitions actually modlied by a oomrnilting action.

In copying a mutex object, the system wHI copy au objects reachable from it, excluding other mutex or

built-in atomic objects. A contained mutex or built-In atomic object wit be copied only If necesaary; that is,

only if it is:
• a mutex object for which (a descendant of) the completing action called the changed

operation,

• a built-in atomic object that was modified by the action, or

• a newly acceulble obj9ct for which no IUlble copy exlata.

Furthermore, the component II copied independenUy of the CCNUin1nQ mutex object; they may be copied

In either on:fer (or slmultaneoualy), subject to the constraint that the system cannot copy a mutex object

without first gaining possession of It.

Finally, mutex objects can be used to ensure that information la In a consistent state when I is written

to stable storage. The system wilt gain pot88lslon of a lftJtex object before WIiing It to lhlble storage.
By making al modifications to mutex obfedS inside statements, the user's code can prevent the

system from copying a rrutex Oblect when It is In an lnconalstent state.

Some details of the effect of changed are Important for atomic types that are implemented as multiple

mutexes. These details are presented in Section 15.6.

15.3. Guidelines
This section di8curm some guidelines to be followed when implementlng atomic types. There are

additional guidelines to follow when mullple m.atexes are used to lff1)lement an atomic type; those

guidelines are discussed In Section 15.6.

An Important concepl for desctting the rasilience of user-defined atomic types II~- An object

is synchronous If It Is not possl>le to oblerve that any portion of the object II copild to llatlle IIOrage at a

dlfferant time from any other portion. For exa,._, an object of type ll'l'Q(mulml(lnt)J woukf not be

100 Atomic Types

synchronous, because elements of the array can be copied at different times: A type is synchronous If all

of its objects are synchronous. Whether a type Is synctifOnous or not ii an iff1)ot1ant property of Its

behavior and should be stated In Its specification. The buill·ln atomic types are synchronous; user•

defined types must also be synchronous If they are to be atomic.

To ensure the reslUence and serlallzabillly of a user-defined atomic. type Independently of how it is

used, the fonn of the rep for an atomic type should be one of the follDwfng poul,lltes.
1. The rep is Itself atomic. Note that 111111n ii not an atomic type.

2. The rep Is rnutex(~ where t Is a synchronous type. For .,.... t could be atomic, or It
could be the t'8p'988N8lion of an atomic type, I the operlliDM on the this flcllUoul atomic
type are coded In-line so that the entire type behave8 atomicaly.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rap is a mutable collection of synchronous types, and objllctl of the representation
type are never modified after they are lnlllalized. That Is, mulllll8n ffll1 be Ul8d to create
the Initial state of such an object, but once this has been done the abject nlJlt never be
modified.

When using mutex objects, there are a few rutes to remember. First, d1anO«/ roost be called after the

last modification (on behalf of some action) to the contained object. This Is true becau8e the Argus

system Is free to copy the mutex to stable storage as soon as dltlfJ(/«l hal been called.

In addition, changsd should be called even I the object Is not accesatie from the stable vartables of a

guardian. In part this rule Is just an ex.,. of ..,.UO,, of concenw: lhe ~ of the atomic

type should be done Independently of any ~ about how the objlCt w11 be used. Therefore the

type should be 1111)1enWted as If Ila obieCta were acceSll:Jla from the ltable varilbles of some guardian.

However, In addition, I this rule Is not followed, I Is poall)le that stable alorage wil not be updated

properly. This situation can occur I an object was accesatie, then becomes lnaccessl:>le, and later

becomes accessible again. The system guarantees that no problems arise I chang«/ is always called

after the last modification to the object.

Mutex objects should not share data with one another, unless the shared data is atomic or mutex.

One reason for this rule is that in copying mutex objects to stable storage Argus does not preHfV8 this

kind of sharing.

A final point about mutex objects is that It is unwise to do any actlvly that is likely to take a long time

inside a Nlze statement. For example, a handler call should not be d0ne from k1lide a ..._ statement I
possible. Also, It is unwise to wait for a lock Inside a _,_ unle• the pn:igrammer can be certain that the

lock Is available or wiN be soon. Otherwise, a deadlock may occur. An exaq,18 of whent waiting for a

lock in a nested Nlze statement II sate II where at pR)C8t888 seize the two nuex obieCl8 In the same

order.

15.4 A Prescription for Atomicity 101

15.4. A Prescription for Atomicity
In this section, we discuss how to decide how mJCh concurrency ii poa1lble in ~Ing an atomic

type. In writing apeclfications for atomic type■, we have found I, to pin down the behavior of the

operations, initially assuming no concurrency and no fallurea, and to deal wlh concurrency and failures

later. In other words, we Imagine that the objecl8 wilt exist In an enYk0nment In which aN actions are

executed sequentially, and in which actions never abort.

Although a sequential specification of thi8 sort does not say ~ expllcl about pemlilslble

concurrency, It does Impose llmlt1 on how nu:h COflCUf'NMICV can IN ~-~ can
differ In how l1IJCh conaJrrency Is provided, but no implementalon can exCNd theN limlla. Thenlfore, it

Is important to understand what the limits are.

This section and the following section together provide a precise definition of permlsalble concurrency

for an atomic type. This definition la bued on two facll about Argus anct the way It supports

implementations of atomic type. First, in ~ an IIIOmic type, It ts only neceaury to be

concerned about active actions. Once an IICllon has committed lo ._ top, I ii net poul)le tor it to be

aborted later, and 118 changel to atomic objects become YIIIN to other adionl. So, for example, an

implementation of an atomic type needs to prevert one ICllon m:,m oblervlng the modtftcalloAI of other

actions that are still active, but I doel not have to preyent an ICtiDn from oblerYing modllcations by

actions that have already committed. Second, the only melhod avail._ to an llOmlc type for oonm:,lllna

the activities of actions la to delay actions white they are exflCUlinl operations ol the type. An atomic type

cannot prevent an adJon fn:,m calling an operation, alt,ough I CM Pl'Wlfll that cal flom proceeding.

AISo, an atomic type cannot prevent an action that preyiou8ly flniltled a cal of an opendlon from

completing either by commiHlng or by abor11ng.

Given the sequential specification of the operations of a type, thale facta lead to two oonstrainla on the

concurrency permitted among actions using the type. 'Mlle an ~ can allow no more

concurrency than perrnllted by the8e conaaralnls, some ~. Ike that for the bull-in type

generator atomlc_array (&ee Section 11.10), may allow lea concurrency than permlltect by their

sequential specifications and our concurrency COlllllalnts.

The first constraint la that
• an action can observe the effects of other actions only I those acttons convnilted relatfve to

the first action.

This constraint Implies that the results returned by operaions exemed by one action can reftect changes

made by operations ex&QJted by other actions only I h>le aclonl commll«I NlallYe to the first action.
For example, In an atomic array a, I one action pe,fonftl a stonll(a, 3, 7), a IICOftd (unNlated) action can

receive the answer "T from a call of fe&11(a, 3) onty I lhe tnt a&tton commlted to 1he lap. If the first

action is stll active, the saoond action nust be delayed untl 1he flrlt actiOn C0111)1etes. This first

constraint supports recoverability since I eneures that "'8cts ol abolted actforll cannot be oourveet by

other actions. It also supports serlalizabllly, since I prevenll concunnl actkN fn>m oblerYing one

another's changes.

102 Atomic Types

However, more is needed for serializablUty. Thus, we have our second constraint:
• operations exea.rted by one action cannot invalidate the results of operations executed by a

concurrent action.

For exafr1)1e, suppose an action A executes the size operation on an atomic array object, receiving n as

the result. Now suppose another acllon 8 is permitted to execute add,. The addh operation wll increa&e

the size of the array to n + 1, Invalidating the results of the sin operalion executed by A Since A

observed the state of the array before 8 executed addh, A must pnade 8 In any sequenlal exea.dlon of

the actions (since sequential exeaJtlo,. muat be COt'lliltent wlh the,.ial apeclficationl of the

objects). Now suppose that B commits. By __.Ion, A cannot I» prevented fft)m tNtng the .nects of

8. If A observes any effect of B, I wtl have to follow Bin arr, euculon. Since A cannol both

precede and follow B In a sequenllal execution, 88f1altzabll, woulcU>e Yiallled. Th.ls, once A aec:utes

Size, an action that calls addh muat be delayed until A cornpletea.

15.5. Commuting Operations
To state our requirements more precisely, consider a simple siluatlon Involving two conaurent actions

each executing a single operation on a shared atomic object X. (The actions may be executing

operations on other shared objectS also, but in Argus each object muat lndlvktlally enaure the atomicity of

the actions using it, so we tocus on the operations involving a alngle object.) A falrty .,.. condlion that

guarantees seriallzabillty Is the following. Suppose X is an object of type T. X has a current state

determined by the operations performed by prevfoualy comrnllted actions. Suppose 0 1 and 02 are two

executions of operations on Xln Its current state. (01 and 02 might be aecutlonl of the same operation

or different operations.) If 0 1 has been executed by an action A Md A has not yet commllted or aborted,

02 can be pertormad by a concurrenl action 8 ~ If O 1 and 0 2 GOmfflUte: given the current lta1e of X,

the effect (as descrt>ed by the 18CJJ811tial apeciftCatlon of 7) of pertomllng 0 1 on X followed by 02 Is the

same as performing 02 on X folowed by 0 1• It Is .,.,,.ant to realize that when we say ·ettect· we

incute both the resub returned and any modllcations to the state of X.

The Intuitive explanation of why the above concllion works Is 18 folows. Suppose 0 1 and 02 are
performed by concurrent actions A and Bat X If o, and o,CC>flfflde, then the order In which A and B

are serialized globally does not matter at X. If A is serialized before S.1hen the local effect at Xis aa If 0 1

were performed before 0a, while If 8 is serialized before A, the local affect Is 18 if 0 2 were performed

before o,. But these two effects are the same since 0 1 and 02 comn,te.

The common method of dividing operations Into readers and writers and using readlwf1le locking works

because it allows operations to be executed by~ actions only when the operations COffl1111te.

More concurrency is posd)le wlh our cormadatiYlty condition than wlf1 raaderllwrtters becauN the

meaning of the Individual operations and the argumeru of the calla can be considered. For example,

calls of the atomic array operation addh always conmute wlh calll of add, yet bath the8e operatiOnl are
writers. As anotherexa"1)le, store(X, /, e1) and store(X,J, •J conm.,te If/¢/.

We require only that 0 1 and 02 comrrute when they ant executed starting in the current atate.

15.5 Commuting Operations 103

Consider a bank account object, with operations to deposit a aum of money, to wlhdraw a sum of money

(with the possl>le result that it signals IMullldMt fln:f8 I the Qlffltf\t balance II 1888 than the sum
requested), and to exam&ne the current balance. Two withdraw operations, say tor amounlS m and n, do

not comnute when the cumtnt balance is the maxim.Im of m and n: elher operation when executed in

this state wlll succeed In wilhdrawing the requested sum, but 118 other operation l1IJSt signal /nflulfic/ent

funds II executed In the resulting state. They do comnue whaMY« the current blllan0e ii at least the

sum of m and n. Thus I one action has executed a withdraW aperadon, our conclllon allows a second

action to execute another withdraw operation while the titlt actton is still active as long u there are

sufficient funds to satisfy both withdrawal n,quests.

Our condition must be extended to cover two additionm cases. First, there may be more than two

concurrent actions at a time. Suppose A 1, ... ,An are concurrent action&, each pertormtng a single

operation execution O1, ... ,o,,. respectMtly, on X. (As before, ltl8 concurrent acdons may be sharing

other objects as well.) Since A 1,An are permitted to be concumN1t at X. there la no local conlfOI over

the order In which they may appear to occur. Therelore, al po111M Oldlr'I RIJlt have the aame effect at

X This Is true provided that al pemuatlonl of O ,. ... ,On have the same effect when executed in the

current state, where effect includes both results obtained and modllcaliona to X.

The second extension ac:knowledges that actlonl can pertorm NqUenCeS of operation exeoutions.

Consider concurrent adlona A 1, ... ,A,, each petformlng a NCi11,W s,. ... ,S,,. reepec:tlYely, of operation

executions. This is permlld>le If all NqUenCeS S11, ... ,s.,, C'blalnld by concatenating lhe sequences
S1, ... ,s,,. in some order, produce the same effect. For ..,.., 1UppoN action A executed addh

followed by remh on an array. This sequence of operatlonl has no net elect on the array. It Is then

pennissible to allow a concurrent action B to execute size on the same array, provided the answer

returned is the size of the array before A executed addh or after it 8X8QJted remh.

Note that in requiring certain sequences of operallonl to have the same effect, we are considering the

effect of the operations as delcribed by the spacification of the type. Thus we are concerned with the

abstract state of X, and not with the concrete atate Of 18 storage representation. Therefore, we may allow

two operations (or sequences of operations) that do commute in terma of their effect on the abstract state

of X to be performed by concurrent actions, even though they do not comrrute In terms of their effect on

the representation of X. This distinction between an abstraction and Its Implementation Is crucial in

achieving reasonable performance.

It is important to realize that the constraints that are ~ by atomicity based on the sequential

specification of a type are onfy an upper bound on the conamency that an iq>lementation may provide.
A specification may contain additional constrak1ts that ful1her C0l'1ltrain Implementations; these

constraints may be essential for showing that actions using the type do not deadlock. or for showing other

kinds of termination properties. For exa111)1e, the specfflcadon of the bulll-in atomic types explicitly

describes the locking rules used by their iq>lemenlatlons; ...-. of these types are guanlf1eed that the

built-in atomic types wil not perml more ooncurrency than abt1ed by these rules (for lnltance, actions

writing different components of an array, or different fields of a reco,d, cannot do so ooncummtty).

!WIIIJA OL LXX. itL. 1t: t ! ti)£. m t;&WJSJ)lll [QQl$£JL OUlJliiJJUC&UlLiJLJJ.AUJli®. ,,4Lfa! SJQUJA)I IX Ji#U ... Jt u , az)M

1CN ,,,..
1U.lll.1llflll 1fa1t1■11
._" 11.1 • 1LfN&d • •u ar•n llf ll · ~ . · .· · . ·. · · , - ••••II• •

... ' ••• llt'alnJII I ,,,.ur fl•------- ... , .. , ... -----·----;··· •• ... -.1111111 ,.,.,, asr••r•••·• 11:t:.:
- •••• , f 11111· . -•••1 • ... ,.,.,1.11tr lllllllJillifJll[llil' .·
.-011, 11 ·• ••• 1nm11 11111• nilt;·•

• - 1131111 -

-.... --n••··--··· .. > <-···· ·.····· •· . - . t1111ta••ur:
... II ••11111 ••· .. .,........ .. __ ... -.Tte11.••-- .. ·, .. ' ·..
............. : ,u-. i
••••uo, ••• 1tlll -r•t •·••-.,. ••.111••-•11••- .. · >·••1••·..,·
-llll14JlllbU --

·••1nw11
.··. 1 ,.,., ..

I
•a.11111•1

ra11wts , ,.... .. ;: ... ·· . ·• · .. · . . A ,.,, ,....... . ' . --
.......... 1 •• · ··:1•••1.·l!r 11

.. u ... , nut1n111
Mllldll• • • • • I Zit tJqlJill ... · f ■(L Ill
••••• • • u 11 •·••i1w11111 .. ■I:r11· ... ·· 1•·•111 ■
1u. drats•-•- . . , __ . J t Q] Ir
.............. 1Uif(leti11il ·. 111nrS11fJr. ;........ .·

............ urtr••·••·••··,-' ·' · ... ·· .. ·.·.. ;-lffPRI··•-·--

9 ,:1.1 I g ,.. ··---··•IM-1& llil••· ·."·•- .,,, ,,...,.,11111•---..
--••· w-■-• 111•t 1u:1Jt11U:1•4llll•••1 ••••· . *''SI•
'lltattll•• ... ,...,, 1[11 & Ill .. ·•·• , , •• If
••--· ._ ..,,,,11 1111,a 11111••-•••• • .. ,lllf:?.Jl[ltrll:··• 11111.:1•• 111 •••111;.

.._,,..,, 11u .. .-.• .. ••• .. •••111111J]tillbt •t11111•1n,.._•• ..._ NM·-••• O■Ut" · .•· '• ..

._ WIN. w. •&Ma.a.. ,a,1rn ■••• 2 JI n •-. -..---.•.., ... an•• Ao111 ••
..... ·• _,. dll 1.1J11Mia7, t 1llll,. ... - -

15.6 Multlple Mutexes

1. Before that crash, s also committed to the top. tn this case the data read back from stable
storage is, in fact, consistent, since it must reflect Bs changes to both the first and s«xJnd
semlqueues.

2. s aborted or had not yet commilted before the crash. In either cue, 8 abolts. Therelore,
the changes made to the first semiqueue by 8 wll be hidden by the semiqueue
Implementation: at the abstract level, the two aemlqueues do have the same state.

105

The point Of the above ex&nl)le is that If the objects being wrlten to stable storage are atomic, then the

fact that they are written lncrernentaHy causes no problems.

On the other hand, when an atomic type is Implemented wtlh a representation consisting of several

mutex objects, the programmer must be aware that thele objlcls are wrilen to stable storage

incrementally, and care rra,st be taken to ensure that the~ Invariant Is atl preserved and

that information is not lost In spite Of lncremeral wrlUng. If the ~ of a type requires that one

mutex object (call it M1) be written to atable storage before another (call I 112), then the wrlle of M1 roost

be contained in an action that oormits to the top before the action that writes M2 is run.

106 Syntax

,(l[kkJI. U.:XA#iJ$1M!HMUU . .. ,.11$_l!l!II\ILU4Jk.,i! .. JJ##U4U,UXMti42J!JJJttSJ .. tt!JlfRUJU .J!JlSCUQl.tllt)lLL&ki#kt!@J]i$Jl .. IL

ISyntax

WeUManextendldBNFIW••dlllnt••••. 'lla11sa1Q111'11MG1a111•L1C1r·1
nortermlMI ::a

I
I
I

...... ,.
lllrrulve

The follDwlng ...,..,. • Ulld:

a'··•
(a}

a11tatw•-•·••••••11t•11111111a ._..-...-.-..-..-.• _. -~ .. ._.,
[a) M IJIMIIIC_..

Nonllmwlll ,~ AHIP11'1111 u1• 11n•··----·
....,._ ,., .• 11a11111

.......

::. f ••··•·· .. 11:~:~
I <•••r.:;:-1 (111 , .. , ...

::a *••• •tnl••• •1--JI . .. , ... (. --
.... 1 a ,,,...1 -trun•••.-Jl...,.J

(.. 11 I_.)

1
............ .
II IS.i)l·l-11[JIJ

.JJI 1ht•••11:t11 ., •• ,
•• 1ts■n1l_..)•--•--I--I

11111•1 •.•.··.. • ltllllij. It f~il l• J ,, ,·, , , --

108 Syntax

operation ··- creator ··-
handler
routine

routine ··- procedure ··-
Iterator

procedure ··- idn • proc [parms] args [returns] [signals] [where] ■■-

routine_ body

end kin

iterator ··- idn - lier [parms] args [yields] [signals] [where] ■■-

routine - body
end ldn

creator ··- idn - Cl'NIOr a,gs [returns] [signals] ■■-

routine - body
end ldn

handler ··- ldn • handler args [retums] [signals] ··-
routine - body
end ldn

routine body ··- {equate} ··-
{ own_var}
{ statement }

parms ··- [parm' ...] ··-
parm ··- idn :type ··-

idn , ••• : type _spec

args ··- ([decl, ...]) ··-
decl ··- idn , ... : type_ spec ··-
returns ··- returns (type_spec, •••) ··-
yields ··- yleldS (type - spec) ··-
signals ··- algnals (exception , ...) ··-
exception ··- name [(type_spec)] ··-

I Syntax 109

opidn ··- ldn ··-
tranamlt

where ··- where restriction , ... ··-
restriction ··- ldn ha oper_decl ··-

idn In type - set

type_set ··- (idn I k:tn ha oper _ decl , ... { equate } } ··-
ldn

reference $ name

oper decl ··- name , ... : type _spec ··-
tranamlt

constant ··- expression ··-
type_spec

state_decl ··- [8111b1e]decl ··-
[....) lcln : type_spec :- expression
(alabll)decl, ... :-cal

equate ··- ldn - constant ··-
idn•type_set

ldn - reterence

own_var ··- own deCI ··-
own idn : type_ spec :• expression
own deCI , ... :• caH (@ primary]

110

statement

enter_stmt

idn : type_ spec :- expression
decl I ■■■ :- cal [0 primary]
idn I ■■■ :- cal (0 primary]
idn , ••• :- expression , •••

primary • name =• expression
primary I expression l :- expression
call (@ primary]
fork call

seize expression do body end
pause
tenntnate
enter_stmt

coentw coann { coann } end
[abort] leave
whlle expression do body end
for_stmt
if_stmt

tagcase_stmt
tagtest_ stmt
tagwalt_stn

[abort) NtUrn [(expression , ...))
yield [(expression ' ...)]

[abort] lllgnal name [(expression , ...)]
[abort] uN name [(expression , ...)]
[abort] break
[abort] continua

begin body 111d

statement (abOrt] IMIQnal name , ...
statement except { when_handler }

[others_handler]

end

: :: enter topactlon body end
enter actlOn body and

Syntax

I Syntax

coarm

armtag

for_stmt

if_stmt

: == armtag [foreach decl ' ... In call] body

::: action

topaCtton

procen

: :: for [decl , ...] In call dO body end
for [ldn , ...] In call dO body end

: :: u expression then body

{,, expression then body }

(... body)

end

tagcase _stmt : :: tagc:111 expression

tag_ ann { tag_ ann }
[OI,_. : body]

end

tagtest_stmt ::: tagtNt expresalon
atag_a,m { atag_arm }

(--- : body]
end

tagwait_stmt ::: tagwalt expresalon
atag_ arm { atag_ arm }
end

tag_arm ::: tag name, ... ((idn: type_spec)]: body

atag_ arm : :: tag_ kind name , ... [(idn : type_ spec)] : body

tag_ kind : :: tag

wtag

when_handler ::: when name, ... [(decl, ... >]: body

when name , ... (*) : body

others_handler ::: others [(ldn: type_spec)]: body

body : :: { equate }

{ statement }

111

112

type_spec

field_spec

reference

actual_parm

type_actual

opblnding

::: null

node

bool
Int
raal

char

string
any

Image
rep
cvt
sequence [type_ actual 1
array [type_actual J
atomlc_array [type_actual]

atl\lCt [field_spec I•■- J
raconl [fleld_spec I •·• J
atomic_ record [field _spec J
oneof [field_spec I • ■- J
variant [field _spec I •·• 1
atomic_ variant [field_ spec , ... 1
proctype ([type _spec I ■H J) [returns] [signals J
ltertype ([type_spec I ...] ~ [yields] [signals l
CIWIIID,type ([type_lS)eC. -~-)) I returns) [signals J
hanclleltype ((type_apec , ~ .. J) (nttums) (signals)
mulU (type_aetual J
reference

: :: name , ... : type_ actual

::: idn
kin [actual_parm , ... 1
refentnce $ name

: :: constant

type _actual

: :: type_ spec [wtth { where opbtnding , ••• })

: :: name , ... : primary

Syntax

-, .. _.~,-,., ' ;·L.~;,, '~-:

I Syntax 113

expression ··- primary ··-
call @ primary

(expression)
.. expression %6 (precedence)

- expression %6
expression •• expression % 5
expression // expression % 4
expression / expression % 4
expression • expression % 4

expression II expression % 3
expression + expression % 3
expreaslon - expression % 3
expression < expression % 2

expression <• expression % 2

expression• expreaslon % 2

expression >• expression % 2
expression > expression % 2
expression --< expression % 2

expreuion --<• expression % 2
expreaslon ... expression % 2

expression "'>• expre8lion % 2
expreaslon .. > expression % 2
expression & elCJ)Atlllon % 1
expreaslon cancl expreaslon % 1

expreulon f exp,uaion % 0
expression cor expression % 0

primary ··- entity ■■-

call

primary • name
primary [expression J

can ··- primary ([expression , ... J) ··-

114 Syntax

entity ··- nil ··-
true

false

int literal

real literal

char literal

string_literal

self

reference

entity • name

entity [expression]

bind entity ([bind_arg, •••])

type_spec $ { field , ••• }

type_spec $ [[expression:] [expression, •••]]

type_ spec$ name [[actual_parm , •••]]

up (expression)

down (expression)

field ··- name , ••• : expression ··-
bind_arg ··- * ··-

expression

I Syntax 115

Comment a sequence of characters that begins with a percent sign (%), ends with a newline

character, and contains only printing ASCII characters and horizotUf 1abs In between.

SeparalDr. a blank character (space, vertical tab, horizontal tab, carriage return, newline, form feed) or

a comment. Ze,o or mont aepanllors may appear between any two tokens, except that at least one

separator is required between any two adjaoent non-self-temtinatlng tokens: reserved words, identifiers,

integer literals, and real literals.

Reserved word: one of the Identifiers appearing In bold face In the syntax. Upper and lower case

letters are not distinguished in reserved words.

Name, kin: a sequence of letters, digits, and underscores that begins with a letter or underscore, and

that is not a reserved word. Upper and IOwer case letters are not distinguished In names and ktns.

lnt_literat. a sequence of one or more decimal digits (0-9) or a backsla8h (\) followed by any number of

octal digits (0-7) or a backslash and a sharp sign(\#) folowed by any nutmer of hexadecimat digits (0-9,

A-F in upper or lower case).

Real_literal: a mantissa with an (optional) exponent. A ~ Is either a sequence of one or more

decimal digits, or two sequences (one of which may be eff1)ty) joined by a period. The mantissa rft.lst

contain at least one digit. An exponent Is 'E' or 'e', opUonaly 1olowed by '+' or • -·, followed by one or

more decimal digits. An exponent Is required If the mantfssa does not contain a period.

Char_tlterat. a character representation other than single quote, enclosed in single quotes. A

character representation Is elher a prtn1tng ASCH character (oelal value "40 through 176) other than

backslash, or an escape sequence conaisting of a baclatlh (\) followed one to three printing characlers

as shown in Table 6-1 or Table 1-1 below.

String_ litsrat. a sequence of zero or more character represerutionl other than double quote, enclosed

in double quotes.

Table 1-1 shows most of the character literals supported by Argus, except for the higher numbered octa!

escape sequences. For each character, the COf1'88pOf1ding octat lleral, hexadecimal Hteral, and normal

literal(s) are shown. Upper or lower case letters may be used In eacape sequences of the torm vr•, \"*,
,r. \b, \t, \n, \v, ',p, and v. Note that an Implementation need not support 256 characters, in which case

only a subset of the lllerals lated wll be legal.

116 Syntax

Table 1-1: Character Escape Sequences

'\000' '\#00' '\"@' '\ 100' '\#40' '@' '\200' '\HO' '\IO' '\300' '\#CO' '\&@'
'\001' '\#01' V·A' '\101' '\#41' 'A' '\201' '\181' '\IA' '\301' '\IC1' '\&A'
'\002' '\#02' \119' '\ 102' '\#42' '8' '\202' "82' '\IB' '\302' '\#C2' '\&8'
'\003' '\#03' '\"0' '\ 103' '\#43' 'O' '\203' '\#83' '\IC' '\303' '\#C3' '\&O'
'\004' '\#04' '\"0' '\ 104' '\144' 'D' '\204' '\184' '\ID' '\304' '\l.04' '\&0'
'\005' '\#05' '\"E' '\ 105' '\#45' 'E' '\205' '\185' '\IE' '306' '\.#CS' '\IE'
'\006' '\#06' '\"P '\106' '\#46' 'P '\206' '\186' '\IF' '\308' '\#08' '\IP
'\007' '\#07' '\"G' '\107' '\#47' 'G' '\207' 'Vl8T '\IG' '\307' 'VIC7' '\&G'

'\01 O' '\#08' '\"H' '\b' '\ 110' '\#48' 'H' '\210' '\188' '\IH' '\310' '\tC8' '\&H'
'\011' '\#09' '\111' '\t' '\ 111 ' '\#49"1' '\211' '\NI' '\H' '\311' "'°9' '\&I'
'\012' '\#OA' '\IIJ' '\n' '\ 112' '\#4A"J' '\212' '\IIA' '\U' '\312' 'VICA' '\IJ
'\013''\#0B''\11K''\v' '\ 113' '\MB' 'I(' '\213' '\#88' '\IK' '\313' 'VICB' '\&K'
'\014' '\#OC' '\11L' '\p' '\ 114' '\#40' 'L' '\214' '\MC' '\IL' '\314' '\tOO' '\IL'
'\O 15' '\#00' '\11M' '\r' '\ 115' '\#40' 'M' '\215' '\180' '\IM' '\315' 9'ICO' '\&M'
'\016' '\#OE' '\11N' '\ 118' '\#4E' 'N' '\218' '\#IE' '\IN' '\318' '\ICE' '\&N'
'\017' '\#OP '\"()' '\11r '\MP ·o· '\217' '\NP '\IC)' '\317''\tCF''\lO'

'\020' '\#10' '\11P' '\120' '\#50' 'P' '\220' '\#90' '\IP' '\320' '\#DO' '\IP'
'\021' '\#11' '\IIQ' '\121· '\#51' ·a· '\221' '\#91' '\IQ' '\321' '\#01' '\IQ'
'\022' '\#12' '\11R' '\ 122' '\#52' 'R' '\222' '\#912' '\IR' '\322' '\t02' '\&R'
'\023' '\#13' '\11S' '\123' '\153' 'S' '\223' '\193' '\IS' '\323' '\103' '\IS'
'\024' '\#14' '\111' '\124' '\164' 'T' '\224' '\IT' '\324' '\,#04' '\&l'
'\025' '\#15' '\11U' '\125' '\#55' ·u· '\225' '\#95' '\IU' '\325' '\tO&' '\&U'
'\026' '\#16' '\11V' '\ 126' '\#56' 'V' '\226' '\#96' '\IV' '\328' "«>6' '\IV'
'\027' '\#17' '\11W '\127' '\157' W '\227' \#97' '\IW' '\327' '\107' '\&W

'\030' '\#18' '\11X' '\ 130' '\#58' 'X' '\230' '\198' '\IX' '\330' "'°8' '\&X'
'\031' '\#19' '\11Y' '\ 131' '\#59' 'Y' '\231' '\#99' '\IV' '\331' '\109' '\& Y'
'\032' '\#1 A' '\11'1: '\ 132' Ft.JISA' ''Z '\232' '\#IA' '\IZ' '\332' '\IOA' "\l'Z:
'\033' '\#18' '\"{' '\ 133' '\#58' l' '\233' '\#98' '\f '\333' '\IDB' '\&('
'\034' '\#10' '\11\' '\134' '\#60' '\\' '\234' '\19C' '\I\' '\334' '\#DC''\&\'
'\035' '\#1 o· '\11)' '\135' '\#50' 1' '\235' '\#90' '\Q' '\335' '\#DD' '\&]'
'\038' '\#1 E' '\1111 ' '\ 138' '\ISE' '11 ' '\236' "9E' '\I"' '\338' "\#OE' '\&"'
""37' '\#1 P '\II I '\137' '\ISP I I '\237' '\l9F' '\I_' '\337' '\#OF''\&_.

'\040' '\#20' I t '\140' '\16()' '" '\240' 'VIAD' '\& ' '\340' 'VIEO' '\&"
'\041' '\#21' 'I' '\141' '\#61' 'a' '\241' 'VIA1' '\&r '\341' '\#E1' '\la'
'\042' '\#22' ... '\ .. '\142' '\#62' 'b' '\242' 'VINZ '\& • '\342' '\tE2' '\lb'
'\043' '\#23' '#' '\143' '\183' 'c' '\243' 'IJ#A3' '\&#' '\343' \#£3' '\&c'
'\044' '\#24' '$' '\144' '\164' 'd' '\244' '\JIM' '\&$' '\3M' \#£4' '\Id'
'\045' '\#25' ''%' '\145' '\al65' ••• '\245' '\#AS' '\&%' '\345' 'VIES' '\le'
'\046' \#26' '&' '\ 146' '\#66' 'f' '\246' 'VIM''\&&' '\348' '\IE8' '\&f
'\04 7' '11127 '\" '\147 '\#67' 'g' '\247' '\#A7' '\&" '\347' \#£7' '\&g'

'\050' '\#28' '(' '\150''\168''h' '\250' 'VIM' '\&(' '\350' '\IE&' '\&h'
'\051' '\#29' ')' '\ 151' '\#69' 'i' '\251' 'VIA9' '\&)' '\351' '\IE9' '\&I'
'\052' "2A' .• , '\152' '\#6A' 'j' '\252' 'VIM''\&*' '\352' '\#EA' '\&j'
'\053' '\#28' '+' '\ 153' '\168' 'k' '\253' 'VIAS' '\&+' '\353' 'VIEB' '\lk'
'\054' '\#20' ',' '\154' '\#60' 'I' '\254' 'IJ#AC' '\&,' '\364' 'VIEC' '\&I'
'\055' '\#20' I•' '\ 155' '\#60' 'm' '\255' 'VIAD' '\&-' '\3li' '\IED' '\Im'
'\056' '\#2E' I• I '\ 156' '\#6E' 'n' '\256' 'VIM:.' '\&.' '\356' '\#EE' '\In'
'\057' '1112P 'f '\ 157' '\#6F' 'o' '\257' "V#AP '\&f '\357' '\#EP '\&o'

tJWLJXX _!!XL .. s ss•U1m1u11: .. eiuus m;;rntL 1. .. zx .. a12t 2:;xuaa;g:;a2@@1L"u. ;;: :1i .. ;µM :a:.1;:yua:M•,;;;.:;+qz; __ u,;(

\OIO'WIG''O'
·•·W1·'1" ~ ~ ...,....,..,,...,.,..,.
...,,,.__. ...
'\071'Vlt'T
'Vrtr ""'" •,:
"Yln'\1118''-:
W/1--,;r'"' "01I"...,. . .,
"077''\tlF'T

'\1W "V
\Mt'VW'ft ,.,,.,.., ,,.., ,..,,...,. ,.,.,v , . ..,...,
\1rW7'W

\1Jl'VWY
'\17'rVlll'Y
'1WWII~ ,.,.,.
'\tV,_,T ,...,,_,T ,.,
'\17r 'V/llr""'

117

118 Built-in Types and Type Generators

II Bultt-ln Types and Type Generators 119

Appendix II
Bullt-ln Types and Type Generators

The following sections specify the built-in types and the type, poalC8d by the built-in type generators

of Argus. For each type and for each Instance of each type generator, the objects of the type are

characterized, and al of the operations of the type are deflnad. (An implemertation may provide
additional operations on the built In types, as long as these are operations that could be Implemented in

terms of those described in this section.)

All the built-in types (except for any) are transmissl:>le. Al instances of the built-in type generators

(except for proetype and llertype) are transmlssl:Jle If all their type parameters are transmissible.

Transmission of the built-In types preserves value 8(Jlallly, except for objects of type real. However, In a

homogeneous environment, reals can be transmitted without app,oxlmatlons. In a homogeneous

environment, the only possible encode or decode falures are exceeding the representation Hmlts of an

Image, mutating the size of an anay or atomlc_llTIY whle I Is betng encoded or decoded, and

improper decoding of cyclic objects (see Section 14.4).

AU operations are indivisible except at caHs to subsidiary operations (such as lnt$simllar within

array(lnt)$simllal), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the bOok Abstraction and

Specification in Program Oew,lopmenf (Uakov, B. and Guttag, J., MIT Press, 1986). A specification starts

out by giving a list of the operatlonl and declaralion8 of any formal parametn for the type. This is

followed by an overvlaw, which gives an introduction 10 the type and If neceaaa,y deftnea a way of

describing the type's obi8Ct& and their values. Following 1h11 the tncMm.181 operations are dHCrlbed. For

each operation there Is a heading and a statement of the operation's etfeds. In the heading, the return

values may be given names. The .,.... l8Ction delcll>el the noffll8I and exoeptional behavior of the

operation. The effects given are abstract, that Is they are deacrlMNt ueing the \IOC8bulary (or model)

defined in the overview section. For example, objedl of type lnl n datcrl>ad LINlQ mathematical

integers. Tt.Js arithmetic expressionl and ~ uNd in detlNng lnl operattens are to be

computed over the domain of mathematical lrtegers.

An operation that (abstractly) nutates one of its arguments lilta the a,gumente that It nullles in the

clause following the WOid mocllflN. An operation Is not &lowed ID nulle any objecll, ucept tc,r thole

listed in the mocltlM clauae. (For the built-in fflltlble atomic type generators, fllGdlcation eAty referl to
the sequential stale; I c:loe8 not refer to changes In the locking lnfotnlllffoll kept tor eadl object.) When

an argument, say a, la nuatad, it la often neceuary to delcrlle la ltlll at the .._ of ttw cal• well as

its final state at the end of the cal. We UN the notatton a,,. for ~• ltale at the start of the eal and the

notation 8s,o.t for Its state at the end of the cal.

Some operations of the bull in type generators are only defined I the type genera,r la passed

appropriate actual routine parameters (see Sedion 12.6). For example, the copy operation et the array

120 Buut-ln Types and Type Generators

type generator, Is only defined if there Is an actual parameter passed (explicitly or implicitly) for the type

parameter's copy operation. Thus array[lnl)$oopy Is defined but ana,(any]$copy Is not defined. These

requirements are stated in a requlrN clause that precedes the delatpttort of the operation's effect. The

type of the expected routine Is also described; remember that the actual operation parameter can have

fewer signals (see Section 6.1 and Section 12.6).

By convention, the order In which exceptions are listed In the operation type Is the on:ler in which the

various conditions are checked.

Operations with the same semantics (for example, null$equal and null$slmllBI) or that can be

described in the same way (for exafl1)1e, lnl$add and ~ are grouped IOgether to save apace.

In defining the built-in types, we do not depend on usens satisfying any constraints beyond thoee that

can be type-checked. This deciskM1 leads to more col'f1)llcated speclicallons. For example, the behavior

of the elements Iterator for arrays Is defined even when the loop modlte& the array.

11.1. Null
nun • data type Is copy, equal, similar, transmn

Overview

The type null has exactly one, immJtable, atomic object, represented by the llleral nll. NH is
generally used as a place hokter in type definitions using oneofa or variants.

Operations

equal • proc (n1, n2: null) naturns (bool)
similar • proc (n1 , n2: null) natums (bool)

effects Returns true.

copy • proc (n: null) l9IUln8 (null)
transmtt • proc (n: nul) returns (null)

effacta Returns nll.

11.2. Nodes
node• data type Is here, copy, equal, similar, transmn

Overview

Objects of type node are imrrutable and atomic, and stand for physical nodes. lmplemerutions
should provide some mechanism for translating a node •address· into a node object and vice
versa. (However, these do not have to be operations of type noc:11.)

Operations

here • proc () Nturns (node)
effecta Returns the node object for the caller's node.

equal-proc(n1,n2:node)return9(bool)
similar • proc (n1, n2: node) Nlurna (bool)

effecta Returns true If and only If n1 and n2 are the same node.

:·111a111112JK;Ct1J.tt1. 1t1 . .-rut1• 1.:,.U¥UtJ#UlttJU:t£.J.MIEJ1 42XQSULI. ! ... Ill i. U[JJ)ii# MU a.@# tt.M@«z;.;;w :m;:awM,•
3

!.tiiM

H.2NodN

copy (n: 1 ... , -·-4····----••1•·•■1111 ,. JI.

11.3.loollW

121

,--.11 ... ~-.................... -, taglc:altruth
YMl9a.

l1le ••••• .. ,- 11141 ., 1(11 •• ... ••• •••••,.,.. If 1111111n
............ IMF .. 11. ·

Operllllone

and• (t,1.lll: 111••-........................ _.._..,.
or-.-..-.a••--·••w•t..... [.......
- -.... :~r-.:r:rff \. .•.•. · .. ,. '• ••.r•• . ···-·••211:
=~:n11:,=. .. •••n,.,.:a

0btlall of - - , •••.••
i™l.llRJ ...

........ lt\t'
cfl - ·.·
_..11a11h

0p, , .. ----........ •••

"111t1u,12 ... ■1u• .,,¢!.,.IU,.t.miPMt1nm.,-•11J 11111•••211Lu1u2 ax ... tt e .. LJtJttxxsBcu. ,1u) z.wpo;;a.uA .;;q:;.,.&Jt;.A:¥1\!U

122

fflnJl•PN0<-:1111)-•- ·-·······. ···- r 1111•• el..; ·•·tt I Ill would le 1111
dlY•,...<x,r.••1-:a., 11& .. •m•u ltat -= :». !18 r:!'i ••u~tfi=:a::i:iu·~:.=·=:
mod• PIOOtx. r: IIO ••••tr.lltt flSU•11__....... ••• :J

••• •n•. . • .. · ... · .. •,-• JI ur Zllflllillll lll•H,"•••a. ,. - , •, ,1,••·"· ~ ,
......... 4 - .. · • .

power•111111CCX.r:11t11b•IUlll!l,i.itAi!- LJIJJIIM]IA,.111,•M : .. _ ''!'!H!.· .· .· u:,, ••. .,_. •_i.·t .. ·_ •. ··.•. c ·. ·.1.1111 ,..,, ... ,
---•------·-•nrn11111n~:._,.,.,1,■ 1 a

IIJII • ,_.(I:_ I 11 mtM◄1~ Jll .lilll :t
•1111 •i••lllfNIN ..,.., • .,.. •••u•-..aW11111111 •••'•• 111

fR>m_to ~-----····-··-... ,_...,,, ' , •.. ·-·;··.,, ...
flvm_ , .. ,1111' 11 · ,t_,_ .. _...,..,. .. ,,_
max.,..(Jc,y:••••••• .

1■•11111'111,_ ll e:~•-••-•Jt
m1n---.r:••·· ·-...... ~,.--1 ·----,~ .,... ······-·-· -···-· .·· 111111

lnllMII.

..........
. ,{: ... ··, , .. luHJIF
:iiliiif'• ildli9'a .. tit' r111■11t

unparN ex=•,._, .,n. ••••• Pfl••• ---•u■p1■1.••1•1••••· lllll!llJIJ ,-.. . •. • •· ... 11111111 a.,,. 11111• _,-ct:" I 11• 1-•·1 ffFllJI .. IAf~i1•1,
l•PIIICtx.r.••••--..... gl•--cx.r:••·•-•11•
....... iJC,. r♦ tllt~_ .. , . . •• .. ·•c· ""··· ·
..... ... (X,,:-•1•1•••1 I
-----~,:-•11111 , ••••

1•111:A.IU ••···••:,•--·•·••:• N'kU

cop,-.... ~---........ ,, • .r.

11.4 Integers 123

transmit • proc (x: Int) IIIIUme (y: Int) alg1'11111(faill.we(alftnG))
effecta Retuma y such that x - y or slgnal& fllllure If x cannot be represented In the

implementation on the receiving end.

11.5. Reals
real. data type 18 add, sub, minus, rrul, div, power, abs, max, min, exponent, mantissa, 12r, r21,

trunc, parse, unparse, It, le, ge, gt, equal, similar, copy, tnlnamlt

Overview

The type real models a subset of the mathematical numbera. It is used for approximate or floating
point arithmetic. Reals are lmmJtable and atomic, and are written as a mantissa wlh an optional
exponent. See Appendix I for the format of real llterala.

Each lnl>lementatlon represents a subHt of the real runbets In:
D • {-real_max,-real_min} U {0} U {real_mln, real_max}

where
o < real min < 1 < real max

Numbers In D are approximated by the implementation with a precision of p decimal digits such
that:

Vr e D Approx(r) e Real
Vr e Real Approx(r) • r
Vr e D- {0} I (Approx(r)- r)lt1 < 101-P
Vr,s e D r s s ==t Approx(r) s Approx(s)
Vr E D Approx(-r) • -Approx(r)

We define Max _width and Exp_ wldlh to be the 8fflalllll integerl such that every nonzero elemenl
of ,_. can be represented in "standard" form (exaclly one digl. not zero, before the decimal
point) with no more than Max_ width digits of manti8aa and no more than Exp_ wldlh digits of
exponent.

Real operations signal an exception If the resul of a COff1)U1atlon Hes OUISide of D; overflow
occurs if the magnitude exceeds real_ max, and underflow occurs If the magnitude Is less than
real_mln.

Operations

add• proc (x, y: ,...) retuma (,...) algnale (overflow, underflow)
effecta Computes the sum zof x and y; signals e>WJrllDw or underflow it z Is outside of D, as

explained earlier. 0lherwu retume an~ 8UCh that:
(x,y 2: 0 v x,y s 0) =-t add(x, y) • Applo~x + y)
add(X, y) • (1 + E)(X + y) 1£1 < 10 -p
add(x, 0) • X
add(x, y) • add(y, x)
x s x' ::::> add(x, y) s add(x', y)

sub• proc (X, y: l'NI) NIUffl8 (l'\MI) algnall (fflNflow, underflow)
effecta Comput91 X - Y, the reaul II Identical to ~X, -)").

minus • proc (x: real} raturna (l'NI)
effects Returns -x.

mul • proc (x, y: real) ratume (NIii) algnala (overflow, undetflow)
effects Returns ~._.n; signals ovenlowor underlfowlf ._.yls outside of D.

div• proc (x, y: reel) returns (NIii) 91g..,. (zero divide, OYefflow, underflow)
effects "y • 0, signals zero_dlvlde. Olherwtle retums approx(x/y); signals overflow or

underflow If x/y Is outside of 0.

124 Bullt-ln Types and Type Generators

power - proc (x, y: ,_) N&ume (,_.,
...... (DR>_dlvtde, oomplex_reeult, 0VefflcM, undefflow)

effKt8 If X • 0 and Y < 0, tlgnals ZllfO_dNJdtl. If X < 0 and y is nonirHgral, sJgnals
complex_lNUlt. atwwlN Nluml an IPPft)Ull8llon IO 1', good to p llgnllcant digits;
signals overlJowor und9rllow I 1' ii oul8lde of D.

abs• proc (x: l'NI),,_ (l'NI)
effecta Retuml the ablolute Valle of X.

max • proc (x, y: l'NI) ,..,_ (NIii}
effects If X :.i? y, then retum8 X, otherwise returns y.

min - proc (x, y: l'NI) Nluma (...,}
effects If XS y, then returns X, otherwiH retuffll y.

exponent • proc (x: ...,),. (Int) ..,,,.. (undeftned)
effects If x • 0, signafl undetlnad. OlhltLUII retLn1 U. -,onent that would be U1l8d In

repreaenllng x • a lterlll In ltandn foml, ttlllt la. fRlffll
max ((11 aba(x) :.i? 1d})

mantissa• proc (x: ...,) NIUmS (l'INII)
8ffecta Returns the rnanllua of X when repreaerud in standard form, that is, returns

a,:pD~x/10-,, where 8 • apo,Mnt(~. If X • 0.0, retuma 0.0.

i2r • proc (i: Int) retums (NIii) Ilg_.. (overflow)
effects Returns ~~; atgnale overflow I I ii not In D.

r2i - proc (x: l'NI) retuma (1111) (overflow)
effects Rounds x to the nearest inleger and towa«t ze,o In case of a tie. Signals ovMllow if

the result lies 01daidl the rapresented range of integers.

trunc • proc (x: ,_) Nkna (lnQ algnlll ('IMlflow)
effects Truncat• x towM:J zero; lignala OWf1law • the result would be outside the

represented range of lnlegers.

parse• proc (s: strirQ IIIIWIII (111111) llgnal1 (bad_....,,...._., underflow}
eHecta Re""'8 ~Z) zil Ill_... ,..IIIIIIIIIIIJIII t&rtng •{Ne AppendiK I}.

s nua repre1ent a real or lnleger ..,.. wlll • 1111M1 lllllng pll.ll or mirlls sign;
otherwtae slgnala l»d_amat. Signals ~-OAilr:,wl Zil not In 0.

unparse - proc (x: NIii) NIUm8 (ltring)
effKt8 Reluma area, Hleral such that ptllN(~~) • x. The general form of the tleraf

is:
[-] l_flflld.l lHMt(e± x_fekt)

Leading zeros In 1_ ""1 and tralling zeR>S in t_flflld are suppressed. If x Is integral and
within the range of AIPl'llnlN kHgera. lllt'I f_fJl!ltland .. uponenl .. ta preNAI. If
x can be NPrHlnled bJ • nw llasa <JI no ,,.. ttwt 11M _. cllgitl and no -,onent
(that 18, If -1 s ~-vi) < ,,,_ Mlllflt, ,- ie,. 18 not present.
Otherwise the lleral 18 tn ltandard form, wiii Exp_wltMl clglll of exponent.

It • proc (x, y: real} ,..... (llool)
le • proc (x, y: l'NI) NIUme (boot)
ge.proc(x,y:1'1111)--(NOI)
gt• proc {x, y: Nat),._ (bool)

elleela These are the llandald ordering relations.

equal• proc (x, y: l'NI) ,.... (bool)
similar• proc (x, y: NIii) relUffla (bool)

eff8cta Returns tnle Ix and y are the same IUTlber; Ntuml fllllle otherwiH.

:a;auazx;ae1.J;;1.,• a., .. u1, .. 1.&J:a if!J2)Jth#l■2214 &J t_JQ&UJUGJL!CUQ!.QJ .. UJUlbt42:at ULXIX u.c . . z .. JM fa;t2.
949

JC

......... 121

CGPr•,-cx••-•-
on111t A•••-:. , ;
>&Ills A llu• 111 = 1fila'. ·- ,.,,. .•.. . . •" ..

U.Cll1raa11ra
cllll'•Ma-~lallc.cll. - .. ,11 11 I
ONl\.11111

OplllllJIO

11111llf_,

.... .,, 1 •
. llllJl • tt!I LI ll'ld
.• 11111 ,

• ·-::~ :..-::r,1::r-1IIHI-.,, , • .__..,, x ,... ·----c21 tp: \ ..
RilOIII fflll • • ,_,r ·••u-............... oil - ASCII

........... ,0•••11111
-·":iii ,__ ..• ..,

., _____ _
I

aw• ••••= •·• • 11 ·· ,,__, , __
tr■na• ,.., r IQllll ...

•••• 1'111iJ ••~ •1• tr tllL l1 ll■..,,.111 fl OR

126 Bullt-ln Types and Type Generators

II. 7. Strings
string • data type la c2S, concat, append, substr, rest, size, empty, feldl, chars, lndexs, indexc,

s2ac, ac2s, s2se, sc2s, It, le, ge, gt, equal, similar, copy, tranemll

Overview

Type string is used for representing text. A string is an imnlllable and atomic lupfe of zero or
more characters. The characlers of a string are Indexed uquenllally starting from one. Strings
are lexicographically ordered based on the order'a1g tor charactera.

A string literal Is written • a sequence of zero or more ctunder representations enclosed in
double quotes. See Appendix I for a delcripllon of ltlt olwacltt' __. sequences that can be
used within string •era11. No string can have a size, than lnl_max; however, an
implementation may Nlltlct string lengths to a vatue lell Ula tw_fflM. N the l'NUI of a ltring
operation would be a strtng containfng more than the ffllKfmum fl.lfflber of characters, the
operation signals llrnlls.

Operatlona

c2s • proc (c: char) rellna (ab'tng)
ettecla Returns a string conlalnlng CH Ila only character.

concat. proc (s1, 12: .,..) (r: 8lflng) ...,. .. (llmls)
effecla Retums the concatenation of st and d. Thal II, l(t-•114 tor/ an Index of st and

t(sln{s1)+4-&tlJ tor I an Index of s2. Stgnal8 ,,,. I , would be too large tor the
Implementation.

append • proc (a: atr1ng, c: char) ralUm8 (r: atrtng) 9lgnala (limls)
effects Returns a new string having the charaders of • In order followed by c. That is,

t(slzs(s)+ 1 J - c. Signals llmllB • the new string would be too la,ge for the Implementation.

substr - proc (s: atr1ng, at: Int, cnt: Int) NIUrrl8 (alflng) algnala (bounds, negative size)
affecta If cnt < o, ligrNIII Mgdve_s/ze. I at< 1 or at> IIN(s,+1, _... """""8-

0lherwise retums a string having the charactens s("4. a(a1+1J, ... In that order; the new
string contains mln(cnt, slze-at+1) characters. For ex.,.,

substr (•abcdef", 2, 3) • "bod"
substr (•abcdef", 2, 7) • "bcxSer
substr (•abcdef", 7, 1). -

Note that If mln.cnt, slz&-at+1) -o, .,_,,.returns the empty string.

rest • proc (s: atr1ng, I: lnl) relUma (r: etrtng) ...,... (bounds)
effecla Signals bounds If / < o or / > sln(s) + 1; otlWwlN ratums a llrtng whose first

character Is s(IJ, whose second Is s(/+1), ... ,and...., Blzl(t)th character is s(size(s)J.
Note that If /. slnl(s)+ 1, rest returns the empty string.

size • proc (s: atrlng) returns (Int)
effecla Returns the runber of characters In s.

empty• proc (s: atrtng) Nluma (bool)
effecla Returns tNe If sis empty (contains no characters); othet'wiae returns fal•.

fetch - proc (s: atrlng, I: Int) retuma (Char) llgnata (bounds)
effect• Signals bounds if i < 0 or I> slze(S,; otherwise returns the th character of s.

chars • lter (s: atltng) ylelda (char)
affecta Yields, In order, each character of s (I.e., s(1), 8(2], ...).

11.7 Strings 127

lndexs • proc (s1, s2: atltng) retuma (Int)
effecta If s1 occura • a subetring in s2, retume the least index at which s1 occurs. Returns

O If s1 does not occur In 112, and 1 I s1 ll the empty string. For exan,>le,
lndexs("abc", "abcbe1 • 1
lndexl("bc", •abcbcj • 2
lndexs(-, •abode, -1
lndexs("bcb", •abcde1 • O

lndexc- proc (c: clW, s: atrtng) NIUffla (lnl)
effects If c occurs In s, relum8 the least Index at which c occurs; returns O If c does not

occur ins.

s2ac • proc (s: atrtng) l'8IUIM (anay{char)) ·
effects Stores the ctwac.tlHa of • • elements CIC a new array of chanlcterl, a. The low

bound of the array ll 1, the size la alze(8), and ... Ah elameR of the array is the lh
character of s, tor 1 s is slze(8).

ac2s - proc (a: array(charJ) Nturna (atrtng)
effecta Thie ii the h'werle of ll2ac. The f8IUlt Is a llring with c:haracters in the same order

as In a. That is, the th character of the siring la the (l+array(charJSlow(a)-1)th element
of a.

s2sc - proc (s: atrtng) returns (SlqUll'IC8[CharJ)
effects Transforms a string Ink> a sequence of c:haracters. The size of the sequence Is

slzB(S). The lh element of the sequence Is the Ah character of s, tor 1 s ; s slzB(s).

SC2s - proc (s: SlqUll'IC8[cmr)) returne (atrlng)
effects This is the invW of dac. The rtlUII ii a airing wilh characters In the same order

as in s. That Is, the lh chanlcter of the string ll 1he Ah element of s.

It • proc (11, s2: airing) (bool)
le • proc (81, 82: alltng) (bool)
ge - proc (111 82:) NIUml (bool)
gt • proc (81, 82: lb'IIIO) (bOOI)

effecla Thau are the uaual lexicographic ordering relatiOns on strings, based on the
ordering or c:haracters. For example,

"abc" < "aca•
·abc· < "abca·

equal-proc (s1, s2: airing) llllurna (bool)
similar • proc (s1, 82: ltllng) NIUml (bool)

effects Returns tnae I s1 and 112 are the same string; otherwise returns talM.

copy• proc (81: atrlng) relUma (atrtng)
eflecla Returns S1.

transmit • proc (s1: atrtng) Ntuma (atttng) ...,... (falunt(lllflng))
effects Returns s1. Signals failure only If s1 Is not repreaelUble on the receiving end.

128 Bullt-ln Types and Type Generators

11.8. Sequences
sequence-data type [t: type) la new, e2s, fll, fll_copy, replace, addh, addl, remh, reml, concat,

subseq, size, eq,Cy, falch, bottom, top, elemel'U, indexes, a2s, s2a,
equal, similar, copy, 11'81'1111111

Overview

SecpJences represent lmn'lllable tuples of objects of type t. The elements of the sequence can be
indexed sequentially ffOm 1 up to the size of the S9(JJ81'1C8. Alhough a sequence Is IIMuable,
the elementS of the sequence can be nuable ObfeC)II. The lb1lle of IUCh nl.ltable elements may
change; thus, a sequence oblect Is atomic only if la elemeru ant alllo alOmlc.

Sequences can be created by calling sequence operations and by means of the sequence
constructor, see Section 6.2.8.

Any operation calf that attempts to access a sequence wilh an Index that Is not within the defined
range terminates with the boln:J8 exception. The lfze of a aequence can be no ta,ger than the
largest poellYe 1111 (mt_mu), but an lmplementallon ma, fNlttct-- to a smaller upper
bound. An atten1JI to conallUct a sequence which Is too .,.. ANIUII In a lmlls exoeptlon.

Operations

new - proc () returne (....-,ce(t))
effeCta Retums the empty sequence.

e2s • proc (elem: t) NIUml (aequenc:e[t))
effeCta Returns a one element sequence having elent • tta only elemert.

fiN • proc (cnt: Int, elem: t) ..,,. (.......-(t)) 11p111 (neglllWe_llze, Umlta)
ettecta If cnt < O, slgnala negatlve_slze. If art Is lafger ttwl tt'8 muimJm sequence size

supported by the iqJlemetutlon, ...,.... ,,,._ Olherwfle reluml a sequence having
cnt elemel'U each of which Is .,,,_

flll_copy • proc (cnt: Int, elem: t) Ntumll (llqUIIICl(t))
Slgnala (negative_size, llmb, falufe(llf1n0))

requllN t hu copy: PftlClype (t) ---(t) (tdn(lltl'lng)
effect• H cnt < 0, tigrl8la negllllwl_lia. N ant Is bigger thin the maximum size of

sequences that the lrq>lementation suppo,11, ..,.11 llmlts. Otherwise retums a new
sequence having cnt elements uch of which is a copy of tlltlm, ae made by 1$copy. Note
that ~Y is caled cnt times. Any fllllure 8lgnal railed by l$oopy Is lrnmedlately
resignalled. This operation does not originate any lallure signals by Itself.

replace • proc (s: aequence[t), I: Int, elem: t) retuma (llqUIIICl(t)) Slgnale (bounds)
effecte If ; < 1 or I> h~II). signaf8 bounda. Otherwise relUml a sequence with the same

elements as •• except that elem ii In the Ah potlion. For ..ample,
replace(NqUellCl(lntJ$[2,5), 1, 8) .. ~. 5)

addh • proc (s: aequence(t), elem: t) (r: Nqllela(tl} lllgnall (lmits)
effecte Returns a sequence wllh the same elements u • tolDwed by one addlionat

element, elem. That is, 1(1)-s(Q for; an Index of s. and ,(alze(.IJ+1)-4Nm. If the ruulling
sequence would be larger than the ~ion suppo,ta, signals lmlls.

addl - proc (s: NqUIIICl(t), elem: t) ...,. (r: 11qU1nClflD llgnlle (llmlts).
effeCta Returns a aequence having Mn u 1tll flnlt elamlnl folawad by the elemenll of •

In order. That II, 1(1)-elem and lfM#-1) for I• 2, ... , lllzfl(r). I the resulting sequence
would be larger than the inplemenladon auppo,ts, signals llmlts.

remh • proc (s: NqUellCl(t]) l1IIUm8 (r: NCII....PD llgnlll (bounds)
effecte If s is e1111tY, aignals bounds. Other.llila retuma a sequence having aH elements of s

In order, except the last one. That is, slzll(r)-slze(s)-1 and 44◄4 for 1. 1, ... , slze(s)-1.

l!l!tU:Jt;SUSiMHUIH w,M.,.•• ••u . 11. 11 Iii!'. zt l!JL a JblLJ!tlUIUt lllll!l!l!U .. ff.: MZ2i4R■A .JJZMMJ l-,·~· $11, dl!lttd z ii t Jt ££ tt < a;• M4J M u w · .. J¥&ttM ?J '

IL8~ 129

... ·.. -.1 11.ICat-" .

............ of , ,.
aaoq-..,_ If a::=.~- ·· · · . · u d

cn:_:;:,•,-.Ji i''l'.,•":.r,:•· .. 'C'..::":
,.._,,,.-,11Lllfl lllllll!ll ... __ •• ,i_ l-11111111 tft1)• ,

....... (s:11,:1111,.,. -
····" 11--·w 11 •••••••

8fflPIY •--Cl::•:•:!:&■ :lllbtT/111
111 Ml hrYIIA~l'I: Ii f .l,flt 1111. I lli -- Ill-• .. .

.... -.::~:!T!!J!'l~:ra■tl'II&,, ..
baloffl • ... (C ,.,u............ 4N top.......... . . •• ,

••••• n •• ·. -· _ · -. · ·· •u, 1,41 .
........... 11[(••

en • .,.. ... 11111 _ . ,.-.. .,, • .. .).

-:;,,: : . .:11~•~•:,~J,
•-.-:a.at •~=·::r- ·-1; I al:■1814• DJ; :1r:r .•• ,, •·••-----•In&
....... ,111,111111■ •. 1•••1• .•.•. ••11••·--•-.... 1-....... ···-II ----•-•
equat ~... ,, •.. ,., •.

111:te. 8 , ..

-••·•···•-'

130 Bullt-ln TypN and Type Generatora

copy• proc (s: aquence(tD ..,. (.........,D -••• (fallure(Slrlng))
raqu1,_ t has copy: PftlClype (t) WM (t) _,... (fallure(llrlng))
effecla Returns a sequence haw,g • elementa coplN of the elements of s. The effect Is

equivalent to that of the totlowing ~ body:
qt•aquence(t)
y: qt :- ql$new()
tor e: t In ql$elements(s) do

y : .. ql$addh(y, t$copy(e)),.. failure
end

return (y)

transmit - proc (s: NqUenCl(t]) retume (NqU8IICl[t]) ...,,_ {fallure(alrlng))
requlnNlthaslWI
etfecta Returns a sequence having as elemenla tnlnlffllltld coplet of the elements of s In

the same omer. Stwing among elements is prN8Mld. Slgrlldl tallure I ttlil cannot be
represented on the receiving end and allo ntelgnala lfff tailulel from ..,......

11.9. Arrays
array. data type [t: type] la create, new, predict, fll, fiH_oopy, addh, addl, remh, reml,

Overview

set_low, trtm, store, faleh, bottom, top, en,,ty, size, low, high, elements, indexes,
equal, similar, slmilar1, copy, copy1, tranemlt

Arrays are lllltable objects that represent tuples of elemenla of type t that can grfNI and shrink
dynamically. Each array's state conai8tl of thla tuple of elemlcu and a low bound (or index). The
elements are Indexed sequentially, starting from the low bound. Each array also has an identity
as an object.

Arrays can be created by calling array operations Ct'Nte, new, 1111, ffl_ copy, and ptfldlct. They can
also be created by means of the array CORltNCIOr, wNch specllea the array low bound, and an
arbitrary nurrmer of lnitlm elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the array. For
array a, sizB(a) Is the runber of elements In a, which Is ze,o If a la empty. These are rebded by
the equation: hlg~a) - low(a) + size(a) - 1.

For any index /between the low and high bound of an array, there Is a defined element, a(4. The
bounds exception is raised when an attempt is made to 100888 an elemeft outside the defined
range. Any array must have a low bound, a high bound, and a .,_ which are al legal Integers.
An Implementation may restrict theee to some smaller range of lnlegers. A can that would lead to
an array whose low or high bound or size is outside the defined range tenninates wllh a llmlts
exception.

Operations

create • proc (lb: Int) '9IUml (array(t]) algnala (limits)
effecta Returns a new, empty array with low bound /b. Limits occurs If the resulting array

would not be supported by the lmplemenlation.

new = proc () returns (array(tD
ettecta Returns a new, empty array with low bound 1. Equivalent to create(1).

wan.,":. :101. .uuus¼41111azs;uJJH 11uu11s.asaoau11;:: ;_ tAJZJJJ#UIU@&tL!M LL!SttJi#i4,tiLt ... um tAcu:a.xsuv t4 ..

I.I~

............ "· --

... ..., •••r•••• , ... •· ••.• , ...
·••21• IAIH(H·I ••

remtt ta:•1•Jlll.lt·1:IIIU•r•MJ•J111111•• •••u• . ···"•--. •11:za .·
,... • . • a■ ·niir 111 •··1:r► .·.. . . : .. ,... ' ' ·. '

... ,.. ·11·1· ,a1iL
,. •••- dllltlridtlV • ·.

•-•• .. ••n.,.••11I•· ·••.·· ...
• ... ·•·· .. ' . . ·-•

131

...............
. . ·. ·••••

(ftOI

' ,
' .·'

. ·. ,

., ,
♦ 1" .

............. ---1!1•1••...

132

store - proc (a: array(t), i: Int, elem: t) algnale (bounds)
modlflN a.

Built-In Typu and Type Generators

effeCts If I< bw(a) or;> h~a). signals bounds; otherwise makes elem the element of a
with Index /.

fetch • proc (a: array(t], I: Int),... (t) atgMla (bounds)
effectS H I< low(a) or I > ~a). slgnall bount/8; otharwile returns the element of a with

index i.

bottom • proc (a: array(t)) Ntuma (t),. (bounds)
effKta If a Is empty, signals bounds; otherwlae returns a(low(a)).

top ... proc (a: affllY[tD (t) ...,... (bounds)
effects If a is lf11llY, &tgnala bounds; otherwise returns ~~a)].

empty• proc (a: array(t)) MIUma (beol)
effec'la Retum8 uue ff a cortalns no elemenla; otherwlle re1uml talae.

size - proc (a: array(tD,. (Int)
ettecta Relums a counl of the number of elements of a.

low - proc (a: array[t]) NIUm8 (Int)
ettecta Returns the tow bound of a.

high • proc (a: array(t]) N1111M (Int)
ettecta Returns the high bound of a.

elements•..,. (a: arra,(t]) ylalde (t) algnala (faluN(81rtng))
effKta Yields the elemenla of a, eaaly once tor Ndl Index, trom the tow bound to the high

bound (I.e., bolmn(~ , IOp(a,,.)). Thi elemenls.,. fetched one at a time, UM1Q
the lndexea ttlllt were legal at the start of the call. I, ... ttle lleratlon, a II rnedlNed IO
that fetching at a previously legal Index ligla bculdl. then the lerator lignall failure
with the string "bounds•. The lerator II dtvlll>le at ylelde.

indexes• lier (a: llffllYltD ylelda (Int)
•Hecta Yields the Indexes of a from the tow bound of a,.. to the high bound of a..- Note

that lndexa Is unaffected by any modfflcations done by the loop body. It is dtvlsl>le at
yields.

equal • proc (a1, 82: array(t)) nttums (boOI)
eflecl8 Returns true I a1 and a2 refer to the same array object; otherwise returns false.

similar • proc (a1, 82: array(tD Ntuma (boot) 11Q11111a (falluN(lllrlng))
requll'N that similar: pn,ctype (t, t) (1IOol), ... (failure(all'lng))
eflecl8 Returns true If a1 and 112 have the NIM tow and hlgtl bounda and If their elements

are pahwise aimlar as determined by ..,,,.,_ Thie elect of 1h11 operation Is equivalent
to the following procedure body (except that this operation Is only divtaible at calls to
t$simllafJ:

at - array(tJ
H at$1ow(a1) ... at$1ow(a2) cor at$size(a1) ... at$size(a2)

then Ntum (fal•)
end

for I: Int In at$kldexes(a1) do
If --t$aimltar(a1 [IJ, a2{l)) then Ntum (talae) encl

l'Nlglllll fllure
except wtlen bounds: algnal falure(9bounds·) end

end
r8IUm (tNe)

11.9 Arrays 133

similar1 - proc (a1, a2: ana,ftD (NOi) 111gr1■1■ (falunt(llltng))
requlrN t hu equal: praclype (t, t) ...,,. (bool) , (faim(atrtng))
ettecta Returns true if a1 and a2 have ht aame law and high bounds and if lheir elements

are pakwlN equal aa determnld by •eqc• Thia operation wol'ks the same way as
similar, except that ,stlqUlli ii used lnltt■cl at...,__

copy • proc (a: anaw(tD ,_,. (b: llffllVltD IIQll■le (fabe(llrtng))
requlrN thas copy: praclype (t) (t) (falue(atrtng))
etlects Retume a new array b wlh lhe low and higtl bounda u • and IUCh that each

element 1114 COl1alrll ~1(4). The elect of tNI operation ii equlvaktnt to the
following body (except.,.. la only at call to~:

b: ~ :- ••a,ftJScop,1(8)
tor i: Int In _,.,,}SlndexN(a) do

b(q :- tScopy(a(i))
....... ,allure
•XCIPI when bounda: alOnll fallure("bounds•) end

end
return (b)

copy1 • proc (a: array(tD returns (b: array(t])
effects Returns a new array b with the same low and hJgh bounds u a and such that each

element t(4 contains the same elalNn aa a(4.
transmit• proc (a: array[tJ) ratuma (b: arrayt:t)) algnala (fallure(atl1ng))

Nquk'N t has tranlffllt
effecta Retuml a new array b wtth the same low and high bounds u a and such that each

element t(4 coralnl a tranamlned copy of 41(4- a.,tng among the eterneru of a Is
preserved In b. SIQnall fallure I I) cannot be NPflllnlld on .. f8C8ivtng end or if
fetching an element at a legal Index of a,.. CIUIII a bounds exception and reslgnafs any
fallur8 signals raised by

11.1 o. Atomic Arrays
atomlc_array • clllta type (t: type) 18 create, new, predict, ffll, fll_COP'I, addh, addl, ntmh, reml,

set_low, trim, atont, fetch, bottom, top, -.,ty, lize, low, high, elements, indexes,
aa2a, a2aa, equal, sknlar, slmllar1, copy, 00PJ1, -••
test_and_read, test_and_wrlte, can_,.ad, can_wrtte, read_loc::k, wrtte_lock

overview

Atomic_ arrays are mutable atomic objects that represent tuples of elements of type t that can
grow and shrink dynamically. Each atomic_array'S (HI\IUl.-a) lllle ccnilts of 1h11 tuple of
elements and a low bound (or index). The elamera are lndeud sequet'Ctlfty, stal'ting from the
low bound. Each atomic_ array also has an ldenlly • an object.

Atomic_ arrays can be cnated by calling atomic array operations aeate, new, f#I, fl#_ copy, and
predict. They can also be created by means of iie atomic_ array consttUctor, which specifies the
array low bound, and an arbltfary ruTlber of inlJal elements, see Sedion 6.2.9.

Operations low, high, and size lftlffl the a.wrent low and high bounds and size of the
atomic_array. For an atomlc_array a, slzB(a) Is the number of 8'ement8 in a. which Is zero if a is
en,,ty. These are related by the equation: ~a) - bll(a) + slzB(a) - 1.

134 Bult-In Typea and Type Generators

For any index ; between the low and hllh bound et ., ___ lft'llY, there ii a ddned element,
a(4. The bocn/8 exception ii ralNd wtNtft an -- ii ffllldl to aac1u an ellmllt GUllide the
defined range. Arr, atomlc_array fflUlt 11w--. and ... which .. aN
legal integerl. An lmpllmatllltion may Nltltct to - 111111,r of Integers. A call
that would lead to an .,__array whole low or high bound ot • II OUllide the defined range
terminates with a llmilll exception. llmlts exception.

Atorric_arrays use readlwrlte loddng to achieve alomlclly. The locking rules are descrl>ed in
Section 2.2.2. It Is an enor If a proceaa that II not In an aGlion 111""'8 lo teat or obtain a lock;
when this happens the guardian I\IMlng the Pft)CIII wll cratl. Aa dlRned below, the only
operation that (In the normal cue) does not attempC to teat oroblllrl a lock la the equal operation.

Operations

create • proc (I>: Int) NtUme (a:atamlc ~tJ) llgllllls (llmll)
eff8cta Retuma a new, 8f11JlY _._...., • wllh low bound "· Limits oocurs if the

resuling atornc_array would not be auppor1ec1 by Ill tmplementation. The caler obtains
a read lock on a.

new • proc () NlUffl8 (IIIOffllc_array(tJ)
eff8cta Equivalent to crute(1).

predict • proc (lb, cnt: Int),_ (a: IIIOllllc_llftlY(tl) ll9n1l1 (llmla)
effect• Retums a new, ~ atomk::_array • wltt low bound "· The caller obtalnl a read

lock on a. Thia II eu■ntlalt)' 118 ... •••lit, -- 1h11 the abeolutl value of cnt
Is a prediction of haw many -,. or .,.. .,. 11'8\f to be pelfGmlld OR WI new
atomie_array. I ont > o, lllldlfl-a~......__. .. upected. These
operalona may execute falter ttlarl I the IIOmlc ,,,,., had __. p,aducad by calt,g
asa.. Lim#s OCCUfl I the NIUlllng llofflic in, would not be IIIPP()Ftfd by the
implementation becaule of Its lnilial low bouiia' (not bec:ailN of b predict«t size or
because of the predcted high or low bound).

fiU • proc (lb, cnl: Int, elem: t) ,.._ (llaMlc_lllTIIJN) 1111111 (f11111N9_alze, lmill)
eftecta If mt< 0, ..-neollw_lJla. Altuffll •-_._.,._.._ ballllit l>ancl

size onl, and wlltl --• IICh .mett; ltllll ... ___ lfflf wauldMII Ill aupporled
by the lmplemantatlon, liQrM """'· The oalter ollllN a read IDd< on the reeult.

fHl_copy. proc (I>, cnt: 1111, elem: t) {alGllllc_■fllf(IJ)
•••• (negative_lize, llmlla, failln(llttng))

requllN lhu cop/:,..,.. (t) (t) -•■t■ ~))
eftecta The elect II .. • .__ tllat .,.,,, ii oepied l!lft If a,t < 0, IQflals

negative_... ~ retuml • 111W ..., wlll -, • .., .. mt ... wlh
each ...,._nt a copy of..,,,,•~-..,_ Tiil Cllll'tlllllna a,..,...
the result. Any failure 8fgnal railed bf .., 11 1111)7 fHfanll1d. Thia QPINIIDn
doe8 not originate any ,_,,. lignall by llel. If l,e 111W __, amot bl ,.....,._ by
the~ sigr1811/lm#s.

acldh • proc (a: lllOmlc_ana,(t), elem: t) slgnalll (lmlta)
modfflNa.
effecla Obtains a wrfle lock on a. If extending a on the high end would cause the high

bound or lize of• to be outside ttle range auppe,llld.-, .. ~. then lignafl
//mlls. 0therwtae extends • ~ 1 In Ill high dlNclloft. and -- .,_,, u the new
element. That ii, ~hi'J(a,,.)+11. elem.

11.10 Atomic Arrays

addl • proc (a: IIGIRIC_ana,(t}. elem: t) 11111111 (lmils)
modllN .1.

135

..._ 0blainl a WIii iock on a. If extending••• IOw end would C8111N tl'tl low bound
or m of a to be outlidl the,... •IPPlud llr-. ••men1■•ffl. 1hln.,.... Im/ts.
0lherwile txlllldl aby 1 lnthe lol.r clN Dttan. 1111 elem• lie new.,_.._ That
la, 8,aJIIM(a,..)-1) • """"·

remh • pn,c (a; atclnlc_arra,ttD ...,_ (t) (baundl)
111:DIIIII ,t.
.,.... Oblall• a wrle lock on a. If a II ernpey, •• bot.llds. 0lherwlN shnnkl a by

removing II high 11aman1, and relUml ht......., 1111118N. That II, high(-,_) -
high(a,..)-1.

reml • p,oc (a: IIOIIIIC_llffllY(Q),. (t) •• (boUnde)
m_..11.1.
effeCta Obtalnl a wrle look on a. If a II empty. -- &lo&lldl. OIMlwlll •J.nkl a by

nN1'IOVlng .. low and AUnl ,. Thal la, law(-,_) -
low(-..>+ 1.

set_low • proc (a: lilOllllc_lffllY(tJ, I>: Int) lllflala (lmlla)
modllNa.
..,_ Oblalrll a wrill lock on a. If 1111119W law tor lllgt$ bound would not be auppo,tfld by
the~. then,._ °"8Mtll, ••11 .. IDw lRdflllltllounds of
a; the new low bound of a II IJ and ttll ,... hlgtl bound II "i't(a,...) •
~y+l>-lowCa,,.)-

trim • proc (a: alOllllc_arra,(tl. I>, en: Int} 11gn• (.....,._ .. , bounc:11)
madltlN a.
eftecta Jf cnt< o, lignall fNl(Jdve_,_..., dDM ftllobllttl-, locka. Olher1••• GbtalS a

wtlelockona. lflJ<Ql(a)or6>,_._1,dlfl••• Olwwlee.me•11aby
removinO WIil Index< • ., ... , ... Of to ftlW low
bound ii IJ. For tu .. I a• 11Hall.,..l!v11IJII .t.U.4.11, 111ft: .

... z. 2) ,,,._ : 2, 31
trim(a, 4, 3) ANIUII In a ttaw11 W11111> ••11•_..,Jill)t(-4: 4, 5J

store • P1UC (a: IIOllllc_arnlftl). I: Int, elem: t) ■1111111 .fboUndl)
modllll&
efll- Obtalrll a wrlll look on a. I I < iM(a) OI I> ltrlgll(a), signall bounds; othelWlse

makes ..,,, the element of a wlh fndlx /.

fetch • proc (a: IIGMlc_llfllll(IJ. I: Int) -- (t) et,ouncll)
elllcta If / < bil(a) or I> flWICa), •-- lloullll; ...,.. retuma lie of a with

Index/. Alw8VI--. a read toclkon a.
bottom -proc (a: lllolnlc_--,(1)) (I) 1111&111 (baundl)

...._ If a ii ..,_, str,M IJoundl; Gllwwill Mtuml ll(low(a)J. M#aya obta6nl a read
loakona.

top• P10C (a: ldOllllc_--,PD NJIUffll (t) -■11 (boulldl)
..... If a la._, lignall bounds;---.,._. t(~. Always~ a read

lockon a.

empty• proc (a: IIG■lc_--,(1)) (Nol)
enecta Aeluml 111111 I a contalnl no elemtnls, AIIUml llllle ollerwlae. In either case

obl8inl a read lad(on a.

size - proc (a: ••_ana»N) -- (Int)
...._ Returns a count of lhl num.,er of elaffllftll of a. oblairll a read lock on •·

136 Built-In Types and Type Generators

low= proc (a: atomlc_amiy[tD ...,. (Int)
effects Returns the low bound of a, obtains a read lock on a

high• proc (a: atomlc_anay(ID N1UrM (Int)
effects Retuma the high bound of a, obtains a read lock on a.

elements • .., (a: atomlc_arni,ft:D ylelda (t) alglllla (talunl(lll'tlll))
effectl Oblalna a read lock on • and yieldl "' 1l1fflllllll of a, each exactly once for each

Index, fR>m the low bound to U. high boLN (Le •• lllatmC-..,.>, ... , ,ap(a,._)). The
elemanl8 are felchld one at a lime, Ullftg 1111_ 1111..,. legal at U..,. of the
call. If, during 1he llerlllion, a II moclfled 10 1h11 felclJng II a prevtouely legal Index
signals bounds, then the lerator slgnat8 faJlun# wlh lie llltng "bounds•. The lerator Is
divisible at yields.

indexes• lter (a: atomlc_arra,[tJ) ylelde (Int)
effectl Otulns a read lock on a, thin yieldl 1118 Index• of • fftMII I'll tow bound of a,.. to

the high bound Of ~- NM that indfMN II unafllcted .. "'1 fflOdlicalionl done by the
loop body. It la dlYiil>le at yields.

aa2a • proc: (aa: atomlc_llffllY(t)) NlltlM (lffllY(tD
ettecta Obtains a read lock on aa and retums an array a wlh the same (sequential) state.

a2aa - proc (arra,CtJ) retume (aa: a1a1111c_--,PD
effects Returns an atomic_..., aa with the same Slate as a. Otuins a read lock on aa.

equal - proc (a1, a2: atomlc_arra,lt)) (l:lool)
effects Returns we I a1 and a2 nder to the ume atornlc_anay object; otherwise retums

falN. No loclka are oblatned.

similar• proc (a1, 82: atomic_~) ,..,,.. (boot) 11tn111 (falure(8b'lng))
raqulrN t has sJmllar: ProctvPt (t, t) NIIA'M (NOi) 111n111 (tllu9(atrlng))
effects Returns true I a1 and .a have .. Nffll low and hlOh bound■ and I their 8'ements

are pairwiae llmlar u cletermlNd by ..,__ lee lh8 ~ of the llmJlar
operation of ..., for an equivalent bOdJ of ODCII. Thia operalion ii clvlll)le at calla to
£Ssim#lar. Read loc:kl are obtained on a1 and a2, in ttlll Older.

slmilar1 • proc (a1, a2: IIIOlnlc _arrav(tD (bNI) •11•11 (talunt(llrlng))
raqulrN t has 1C1,.181: ProctvPt (t, t) --...., (falue(alltng})
effects Returns true I a1 Md a2 ha,e tit ... tow and lliglt talndl n I their -.ments

are pat,wtae ..,. aa by • ..,,.. Thll op10'lldon works the same way as
slmllar, except that •equal II Ul8d inlllld of React loc:ka are oblainad on a1
and a2, in that otder.

copy • proc (a: atomlc_lll'l'IIY(t)) Nllllffll {b: atomlc_lffllYltD llpll1 (falure(atrlng))

raqullw 'has copy:,,..,.. (1) (t) -··· (faMln(alltng))
etrecta Retuma a new.,_ ~ b wllh tbe l8ffll m n lllgh bounds as• and such

that each element t44 ~ ~a(4). See._ de•IMI of the CDPJ< opa,atton of
array for an ~•rt body of code. Thill operallon ii clwial)la at calll to !Sa,py, and
obtains read locks on a and b.

copy1 • proc (a: alOmle_anay(t)) (b: IIIOffllc_--,(t))
effects Retuml a new IIDmlc_array b wlh tt,e tow and high bounds a a and IUCh

that each elemffl t44 conlalnB the ume el8'118nt • a(4. Read locks are obtained on a
andb.

11.1 o Atomic Arrays 137

transmit • proc (a: atomic IIITIIY(t)) NIUmS (b: atomic anay(tJ) algnala (failure(atrlng))
requll'N t has trananl -
affects Returns a new anay b with the same low and high bounds as a and such that each

element 1(4 corulnl a transmitted copy of alt. Read locks 8f8 obtained on a and b.
Sharing among the elemelu of a .. prel8Md in b. Slgl\8II failure I b cannot be
represented on the recaMng end or I fetching an elemert at a legal index of a,.. causes
a bounds exception and resignats any fa/lunJ 1iQn111 raised by

test_and_react-proc (aa: IIIOmlc_llffllY(tD (bool)
affects Tries to obtain a read lock on aa. If the lock ii cb&alned, ratuma true; othefWi8e no

lock Is obtained and the op8flltion Nturnl ..._, Tltl OJl8flllion dDes not -war for a lock.
Even I 1he executing aclon "knows• that a .- could be ___,, ..._ may be
returned. Even I ,.._ ii returned, a 8Ubee(JJet1 alt8ff1'I to obtain a read lock might
succeed without waiting.

test_and_write • proc (aa: IIIOffllC_anaytt)) Ntuma (boot}
effects Tries to obtain a wrle look on aa. It the lock ii otuinad, retums true; othefwile no

lock Is obtained and the operation reuna ,.._, TIie ope,alion does not "W8I" tor a lock.
Even I 1he executing aclon "knows• 1h11 a IDdt could be obealnld, ..._ may be
returned. Even I 1111N ii lftlffl8d, a subeequenl attempt to obtain a wrle lock might
succeed without waling.

can_read • proc (aa: atomle_llfflly(t)) NIUffll (boOI)
effeCls Retums true If a read lock could be obtained on aa wlhout wailing, ethetWise

returns fllllll. No lock is actualy obtained. Even I the executing action ,.._., that a
lock could be oblalned, ... may be relUmld. Since 101'118 concurrent adloft may obtain
or releale a lock on an alQmlc_array at "'I IRl8,.,. lnlom:A1l1r; rlfumld ii unrallble:
even I true ii relumed, a tubaequent...,. to__, lie lod< ma,,..,.. welinl; and
even I fltlN is returned, a alblequenl .._ to oMaln a read lock fflilhl succeed
without waiting.

can_write • proc (aa: IIIOmle_array(t)) NIUme (boot)
affects Returns true I a write lock could be obtained on aa without waiting, otherwise

returns flllN. No lock ii dJ8ly obtained. Even I the executing action "knows• that a
lock could be olltulld, may be returned. Since - COflCUlNf1C action may obtain
or releale a lock on an alDmic _ _,., at lllflJ lime, Ill inroRllatlon ,...,_ ii unntlable:
even I true ii Ntumed, a aubeeql• allfffll lo elllllalR lie lock~,.._ wailtf'II; and
even I falee ii retumed, a tublecpar1 llllenipt to oblailt a write lock might succeed
without waiting.

read_lock • proc (aa: alollllc_array(tD
effects Obtains a read lock on aa.

wrlte_tock • proc (aa: lllomlc_array(t))
effects Obtains a write lock on aa.

11g; J JlL .•&hi. t. a szaemz;41su J JUL _Ji Ji.! LLl L!Lbtd#JQttU§JJ.,¥4#4,~ IJIU:kttiii!il44#421Jili. I¢$ K(l!U~

.... ,... 11111•

1.11 .. ■•-
-· .. tt.:tt, J\! .. ~-'. . ·.··.· ... ~---

...... IL:, .. 11.J JI · ·
.... ,11

A ... ---- .,ll II J.lltjt:. .
:.•1.,11-•=:111111,■r: .> ---

• •1111 • 111114' --= ·····•--•it.•f

.......
In

••:urn••
. 1111 I t•IIAW~

"'-'\::;lllf&1·;,Mttf'jJ:c:j:;; .• --.., ui • •• ••ra,. - .-. , -- --- - n , -• , <•:f'.'!'.'.'\'~;·· - - - .

•••••••

11.11 Structs 139

similar • proc (s1, s2: st) NIUma (IN,ol) (falHe(llflnG))
requtree each ~has slmltar: practype (~. tt>,.... (Nol) llgnala (failure(alrlnG))
effects Returns true tf st and S2 co,_.. limllat' ~ tor each OOf1'10t18Al • determined

by the ~ operations. Arf'/ fallure algnal II ffl"MClately resignalled. This operation
does not itsel originate any lallure signal. The ~ ii done In lexicographic order
of the selectors; I any comparison retume ,.._, flllle ii returned Immediately.

copy - proc (s: st) '9IUlna (st) llgnlll (falkn(Mrlng))
requlrN each t, has copy: practype <tt> (tt> (failure(ltrlng))
effects Returns a stft.ld containing a copy of each 00fq)Ofllnt of s; copies are obtained by

calling the t,a,py operations. ArP/ Win signal ii lnlfflldltely resignalled. This
operation does not lt8el originate any falure signm. Copying is done In lexicographic
order of the selectors.

tranamN - proc (s: st) ratuma (at) algllllla (1ailure(ltrlng))
raqulrN each t1has tranlffllt
effects Returns a stNC:t containing a trwmlHed COPr of each component of •· Sharing is

preserved among the componenll of s. Mt ,..... signal from ~It is
immediately resignalled. Thia operation does not originate ,,,, fllllutw slgnaf.

11.12. Records
record• data type (n1: t1, ... , I'\= ttJ la r_gats_r, r_gats_s, sat_n1, ... , set_'\, get_n1, •.• , get_'\,

equal,slrnllar, limHar1' copy, copy1'

Overview

A NCOl'd ii a mutable collection of one or mont IWMd objNta. The namN are calld ~
and the objects are called oomponenls. DNferenl componanl8 may have different types. A record
also has an Identity as an object.

An Instantiation of record has the form:
racord [fleld_spec , ...]

where
field spec : :: name, ... : type actual

(see Appencifx I). Selectors fftJ8t be wikJ,e wlhin an instantiation (Ignoring capltaization), but the
ordering and grouping of selectors Is unlrr1)0ftant. For exaq,le, the following name the same
type:

record(last, first, middle: atrlng, age: Int]
racord[last: atrlng, age: Int, first, middle: string)

A record is created using a record constructor, see Section 8.2.11.

For purposes of the certain operations, the ttll rws of the 11l1elofs .. o«terec:t
lexlcographically. Lexicographic ordert.,g of the NleCIDrl ii tt'8 alphabaUc Oldarlr,g of the selector
names wrtlten In lower case (based on the ASCII ordering of charlctera).

In the following definitions of record operations, let rt - ~n1: t1, ... , f\: ~).
Operations

r_gets_r • proc (r1, r2: rt)
modltlea ,1.
effeCla Sets each oo~nt of r1 to be the corresponding oo"1)0nent of r2.

: u tu•ua il(J MO J!!QllL I lll .II MUJI.IIU .• 1,r;14111n 4 it g;µ,4;44111•an;::.1,41,aLJ!2$l£2.il!L!L!LJZOi?ZJZJE!. $. 5 .Sit·.• ;q;pqua ;;J.4Ji)#Zo .1 · }!4\h '"'

140

r_gats_a. ,...(r: d, a: II) ··••-r.

.... ,... ... ,.. ,.
aa11111flllll•••-----••m• .. • _...11. s...-.... -.,,•••••••11111111,1111111c••1f•

aet_"t • ,._ (r. It, e: ft) ..•.. ,. aa,.,,,. • .,,,.., .. ,,,.,. .. n.r.•••-
•• j_

get_" (r.11J 111111•{\) •• "•ta• Ill &tlfbMN al, u11• •"t 1'tlllll II a,-_ openll1n for each,_
8CJMll•PNO(r1,r2:lt) __ ,._., _
limlllr•--•·fl:· .·. , ~ .. ,

······••111111111••·-· --';·--··---..... --··· similar1•-(f't • ,ii at••••n
copy• 1111N tr.tin · · .

,1,1d■l--
111• ,111

nn1e::•••r
GPI 11!•---··· · . · .. '·

capy1 -..-(f:iitt ••--

, •• JI

• •• J ··-•1t••· ..,

llh1J"8 ...

-- ····"• llQlflal ..
. t":•IIIIJIIIIN&

··••Au •••-•11r,111111tt1r•IIC111111N
11··:,::u.~=·~::IP. II r , • .,, , , -~ ,

1111ml lll\ MIIII llll- ·

11.12 Records 141

11.13. Atomic Records
atomlc_record • data type [n1 : t1, ... , '\: ttJ ■ ar....r,eta_ar, let_n1, ... , Nt_f\, get_n1, ... , oet_f\,

ar2r, r2ar, equal,limiiar, llmllar1, ~. ~1
test_and_read, test_and_wrtte, can_read, can_wrile, read_lock, wrtte_lock

overvtew

An atomlc_record Is a rruable atomic collecllon of one or more named objects. The names are
called SBleclors, and the objects a,e called c:onp,nenl8. Dlfetenl components may have dlferent
types. An atonic _ recoro alao has an ldenllty as an otJieCt.

An Instantiation of IIIOmlc _ reconl has the form:
atomlc_record [fleld_spec, ... J

where
tield_apec : :: name, ... : type ~

(see Appendix I). Selectors nut be.,......,.• 1n1 .. llllian tiln&MUIIJ aaplallaten), but the
oroertng and grouping of l8lectors le unimportant. For exan,,18, the followtnQ name the same
type:

atomic - record[IUt, flnlt, middle: """'· age: lnlJ
atomlc_record[last: atrtng, age: Int. firlt, middle: lllrlng]

An atomic_record is created using a atomic_record constructor, see Section 6.2.11.

For purposes of the certain operations, the the l'Wft88 of the selectors are oRiered
lexicographically. Lexicogrlphic ordering of tl'l8 11l101Dra Is the alphabetic oldering of the sefedor
names written In tower case (baaed on the ASCH ofttering of characters).

Atomic_ records uae read/write locking to ac:hNMt atomlcly. The locking rules are described in
Section 2.2.2. It is an em,r I a l)R)C888 that Is not In an action attefl1>t8 to test or obtain a lock;
when this happens the gua,dan running the pR>CIII wil c:nah. All defined below, the only
operation that (In the normal case) does not altenipl to lNt • oblaln a lock is the equal operation.

In the following, let art• atomlc_NCOrd(n1: t1, ..• , '\: tJ.
OperatlOna

ar_gets_ar • proc (r1, r2: art)
modlflee rt.
effect8 Obtains a write lock on rt and a read lock on r2, then sets each OOl11>()f18flt of rt to

be the oorresponding component of r2.

get_"i • pn,c (r: arl) l9IUffll (It)
effect8 Obtains a read lock on , and returns the 00"1)C)nant of r whose setector is n, There

is a get_ operation for each seleclOr.

set_ni • proc (r: art, e: \)
modlflNr.
effeCls ~ a write lock on , and modifies , by making the component whose selector is

n1be •· There Is a BBi_ operation for each seleclor.

ar2r • proc (ar: art) NIUrM (r: art)
effeCla Oblalns a read lock on ar and retums a record ,with the same state.

r2ar • proc (r: art) Nklffl8 (ar: art)
effecls returns an atomic_reoord arwtth the same state aa ,. Obtains a read lock on a,.

142 Bullt-ln Types and Type Generators

equal - proc (r1, r2: art) natuma (bool)
ettecta Returns tNe if ,1 and r2 are the very same atomic_reoord object; othelWise returns

falN. No locks are obtained.

similar - proc (r1' r2: art) natume (bool) (faHure(atrtng))
requlrea each t; has similar: practype <'-~ (...,) _,... (failure(atrlng))
effecta Obtan a read lock on r1, then a read lock on 12'. ""' ~ correaponding

components from ,1 and r2 uelng the t~ oplflllDnl. Any tllllure aigrl8(is
immediately resignalled. Thia opetadon does not llNlf odgiNde Int fallule llgnal. The
comparison is done In lexicographic order of ; • ..,, comparilon returns
falN, falal ls returned lmmedlately. If al~ A11Um tnle, returns true.

simllar1 • proc (r1, r2: art) ~ (boot) 91g,_ (falln(....,.))
requtrea each ~ has equat: ptQCtype (\, ft) -- (NOi) 111gn111 (failure(atrtng))
ettecta This operation is the same • almllar, except 1111 ~ is Ul8d inltead of

'~-
copy• proc (r: art) retuma (res: art) algnala (faflure(atrtng))

require■ each t1has copy: p,octJpe (ti)--~ (fallure(lbtng))
ettecta Obtalna a read lock on ,, then ...,. a naw IIOffllc_record ,. obtained by

pe,forming copy1(,, and then replacing eactl ~--wlh a copy of the corresponding
component of ,. Copies are oblained by callngtlie ..,,......,_._ Ant ,.,,_ lignal

is Immediately resignallld. Thie operation does not """""
Copying la done In lexicographic order of 118 MlaclOfs. A read lock 18 ateo obtained on
the new atomic_ record ,._

copy1 • proc (r: art) NIUl'M (res: art)
ettecta Obtains a read lock on ,, then retuma a new IIIOmlc record ,_ conalninO the

components of , as h components. A read lock ta alllo obtained on the new
atomlc_record fN.

transmit - proc (ar: art) Nluma (art) IIQtlllla (falltra(ltflna))
Nqulrea each ,, has tnlMllllt
effecta Returns a new tllDl'ric_record ~ a traAlmllted copy of each component of

ar. Sharing ii pr888Mld among fie components of •· A read lock Is otJ&ained on • and
the new atonic_array. Any failure signal tn,m --•--- ta immediately Naignaled.
This operation does not Itself originate any failure algnal.

test_and_read • proc (ar: art) natum■ (bool)
effects Trtes to obtain a read lock on ar. If the lock is obtained, returns true; othatwiN no

lock is obtatnec:t and the operation ratuma ,..__ The operation does not 'Wal" for a lock.
Even If the exeaJting action "knows• that a lock _. be oblalned, 1111111 fMY be
returned. Even If falN Is re1umed, a subsequent attempt to obtain a read lock migl1
succeed without waiting.

test_and_write • proc (ar: art) retuma (boot)
effects Trtes to obtain a wrte lock on ar. If the lock ii oblainld, retuma tNe; otherwf8e no

lock Is obtatnec:t and the operation retums falN. The opM'llllon does not "'Wd" for a lock.
Even If the exea,tlng action "lcnowa. that a lock could be Gbtalnld, ,.._ may be
returned. Even If fale8 Is returned, a subNcpMlt ..__ to obtain a write lock might
succeed without waiting.

11.13 Atomic Reoorda 143

can_read.,..(lr.lll)Na.m1_.
et11•• •• 11• -······ · . nbUhll · ewdl,_ , • --- , -

oauld N lflllt,1, · .. _ or
Flhlft •--;- lllfll , . :11-11■'1: w•---• ilia . :··.·.·•·l·SMd --•-·••nil•. . ·.•·

can_W11e•..-••••1n1(11111111> , ,..... _
... . --····1•··· =====· CNII• 11•111 ... fll&.•1&•·••-~
W:I WI ·••11111•

nNlld_lDf:k•,,..(lr.lllt ····°'···----·· _
··- 011111 •

IL 14. Oneota

.
or

IUIIHI, ,_
Ullltd

oneo1-,:, f"5:=..· 11 , ·-• , _.,. _ _., _f\.
OVlrVII■

A Oflld Ila tea01. _ ... 41,. . . •·· It& ... "•.__.a
.. ., , MIi_, •• &~ ... · -.·.•····---· .
Antn•• liMluaaf....,_

..,..i;:yu.-1
--=---.-=~ <w••Pl11- ---••111-..,, • .. •••11.•111

Oldlrtfll ••~-- •• ·-·-· ,.... ._. • ..., ,,11•••- •: :n:1:,l-i.! .. I*•. • •·· :1•• •·.., ... _. villn .. 111 I •11tM ... ,....tr 11111 .. ■u,,■li~-14

A oneef II , Jig 1111 -r u1•1 t • , ••• tPII ., ■1111111 •• a -- fl ---I II Of
lnlw folotlllll, ·•· •••• ,s, ,:\f.

Qpll

make_,.,• P1DC (ec: ft) • 11 ... M _,,, ____ _ •. ,
JIit-.

11_,,..,..co:oe,111111111_,
..... A• IM-·--• OJI ftt- •111•-■ ,__ ii Me_ IP!l"lllln lor

--•lfllllL

144 Built-In Typea and Type Generators

value_'1j • Pf'OC (o: ot) nllUme (tt> ...,_ (wrong_tag)
effecta If the tag of o is n,. returns the value of o: otherwise signals wrong_tag. There Is a

value_ operation for each selector.

o2v - proc (o: ot) returns (vt)
effecta Here vt Is a variant type with the same seleGtors and types as ot. Returns a new

variant object with the same tag and value as o.
v2o • proc (v: vt) retuma (ot)

effecta Here vt Is a variant type wlh the ume setectora and types as ot. Returns a oneof
object with the same tag and value as v.

equal • proc (o1, 02: ot) (bOol) (falkn(llltllg))
requlrea each t, has equal: proctype (\, \),.... (NOi) (fd.n(ltrlng))
effecta Returns.,..• 01 anct oa hMt-. -,.. va1uM • •-•tmlMd b¥ the

equal operation of their dlla pa,t'I type. M/ IIIMI ll illlm11 .. •1•r 111 .. llcl.
This operation does not IINlf ortglnate llnf ,..,,_ TNe opellllon ii dlvlllJle at the
call of ,,equal.

simHar • proc (o1, o2: ot) ...,_ (bool) __.. (falute(atrtng))
NqUlrN each t, has llmilar: proctvpe (\, tt> (IINI) (failure(lll'lng))
lffecla Retuml 11119 If 01 and o2 have the l8ffll - and limllar Yafuel M detefmined by

the sinilllr operation of thetr value's type. Any ,.... II Immediately reslgnaled.
This operation does not itself originate any failure signal. This operation Is dMllble at the
can of t~lar.

copy - proc (o: ot) l'8tUml (ot) algnata (falure(8lrlng))
requll'N each ,, has copy: proctype (\) retwna (ft> (failure(atrlnl))
effects Returns a oneof object wlh the same tag as o and CON8inlng as a vaJue a copy of

<is value; the copy la made Uling the copy operation of the value's type. Any flllJure
signal Is lrnmedlately reaignalled. Thill ..,.._. dDN not ltaelf ortglnate any fa/lure
signal. This operation la dlvlsl>le at the call of ~-

transmit• proc (o: ot) retume (ot) •tallllla (fallure(8tl'tng))
requires each t; has tf'81'1811111
lffecla Returns a oneof objed with the same tag as o and containing as a value a

transmitted copy of <is vabe. Afr/ fllllure signal la Immediately reslgnaled. This
operation does not itself originate any fa/lure signal

11.15. Variants
variant• data type [n1: t1, ... , I\: ttJ 18 make_n1, ... , make_'\, change_n1, ... , change_nk,

is_n1, ... , is_l\, value_n1, ... , value_'\, v_JIIJta_v, v_gets_o,
equal, simHar, slmilar1, copy, copy1 , tranemN

Overview

A variant Is a mutable, tagged, discriminated union. Its state is a oneof, that Is, a labeled object,
to be thought of as ·one at- a set of altematwes. The label Is calld 118 IIIQ part, and the object ii
called the vall.NI (or data part). A variant al8o has an iclenlly as an obfect.

An instantiation of variant has the form:
variant [field_ spec , ...)

where
field_spec ::: name, ... : type_actual

(see Appendix I). Tags l1IJ8t be unique within an instantiation (Ignoring capitalzation), but the
ordering and grouping of tags Is unimportant.

11.15 Variants 145

Although there are variant operations for ~ variant objects, they are usually
decomposed via the tagcaae statement, which la dllCll888d In Section 10.14.

In the following let vt • varlant(n1 : t1, ... , F\: 1-J.
Operations

make_"• proc (e: ti) returne (vt)
effects Re1uml a new varlln obieCt wittl tag n1 and vHMt s. There Is a make_ operation for

each selector.

change_" • proc (v: vt, e: \)
rnodlflN v.
effeCt8 Modifies v to have tag n1 and value e. There is a changB_ operation for each

selector.

is_n1 • proc (v: vt) rwtume (boOI)
effeCt8 Returns true If the tag of v Is n~ otherwise returns falN. There Is an is_ operation

for each Nlector.

value_" • proc (v: vt) returns (ti) slgnala (wrong_tag)
ettacts If the tag of v is n; retuma the value of v, otherwise signals wrong_tag. There is a

value_ operation for each selector.

v_gets_v • proc (v1, v2: vt)
moclltlN vf.
effeCt8 Modifies v1 to contain the same tag and Yak.Mt • v2.

v_gets_o • proc (v: vt, o: ot)
modNIN V.
effeCt8 Here ot Is the oneof type with 1he same sel8ctorB and types as vt. Modifies v to

contain 1he same tag and value as o.
equal • proc (v1, v2: vt) Nlln8 (boot)

eflecls Retuma true I vf and v2 are the same variant oblect-
slmllar • proc (v1, v2: vt) ...,. (boOI) slgnal8 (faue(lll'tn1))

...... uch ~ has lilnltar:....,.. Cit,~ ,_., (fallufe(...,.))
eltlCla Retuml true I vf - wl ... Ill ---.,. _,.. M dlllnninad by the

similar operation ot 1helr vaue·a tp. MY ,..,. 11 ...,.. .. ,., ,111t11t111i:1. This
operation does not onglNlle any ,.,,.. Thie operation. clvilt,le at the caH
oft~.

similar1 • proc (v1, v2: vt) NIUml (boOI) algnlla (falkn(tltftllg))
requ1,.. each ,, has equal: practype Ctt, \) (bOol) (failure(8111ng))
effecta Same as aimllar, except that ~la UNd lnltlad Of t~mllar.

copy • proc (v: vt) NtUme (vt) ...,... (failure(atrlng))
raqulnNa eac11 ~ has copy: pn,ct,Pe <-.> --N 111•1■ (falure{1tttng))
effects Returns a va,tant obi8CI wlh the llffll Ill • v and ODrllaining as a Yliue a copy of

V'I vakJe; the copy is made ualng the ct/11'1.,.,..._ of 1t1I value's type. Any fa/lure
signal Is lmmediatety reeignaled. Thta openllfoil\ d0ea not Itself originate any failure
signal. Thia operation is dMll>le at the call of ~-

copy1 • proc (v: vt) NIUm8 (vt)
effec.t8 Returns a new variant object with the same tag as v and COJCainlng V's value as Its

value.

146

transmit • proc (v: vt) returne (vt) •IGnata (f ailure(8trlng))
requlnla each t1 has tranamlt

Bullt-ln TypN and Type Generators

eff8Cl8 Returns a variant object with the same tag • v and containing as a value a
transmitted copy of ~s wwe. Aff/ flllltn signal ii Immediately resignalled. This
operation does not belf originate any fallure algnal.

11.16. Atomic Variants
atomlc_varlant • data type (n1: t1, ···• I\= \118 make_n1, ... , make_f\, change_n1, ••• , change_'\,

av_gets_av, ls_n1, ... , is_'\, vakle_n1, ... , vlbt_l\, IN2v, v2av,
equal, similar, slmHar1, copy, copy1, ,,.,...,
test_and_read, test_and_write, can_read, can_wrtte, read_lock, wrlle_lock

Overview

An atomic_varlant is a mutable, atomic, tagged, dilCriminaled liN'llln. lls ltllte II a oneof, that II, a
labeled object, to be thougtt of u "One of' a at of d1rnaa.1. llle label Is called the taQ part,
and the obi8Ct Is called the vlllw (or data part). An alOmic_variant alao has an iderdy as an
obiecl

An instantiation of atomic_ variant has the form:
atomle_vartant (field_spec t ■■■ J

where
field spec::: name, ••• : type_actual

(see Appendix I). Tags fTIJ8t be unique wlhin an Instantiation (Ignoring capitalization), but the
ordering and grouping of tags Is unimportant.

Although there are atomlc_variant operatiDna for decompoulg atomic_variant objects, they are
usually decomposed via the tagtNt statement or ~ atalement, which are dl&aJssed in
Section 10.15.

In the following, let avt • atomle_varlant[n1: t1, ... , '\: t,J.

Operation•

make_ni • proc (e: ti) MIUme (av: avt)
etfecla Returns a new atomic_ variant object av with tag n1 and value e. Obtains a read lock

on av. There is a make_ operation for each Nlector.

change_ni • proc (v: avt, e: \)
modltlN v.
effacts aulns a write lock on v, then modlles v 1o have tag n1 and valle e. There Is a

change_ operation for each selector.

av _gets_ av • proc (v1, v2: avt)
mocHftN V1.
eff8Cl8 Obtains a read lock on v2 and then a write lock on v1, then modifies v1 1o contain

the same tag and vak.le as v2.

is_rlj - proc (v: avt) Ntuma (bool)
effects Obtains a read lock on v, then retums true I the tag of v Is n~ othefwise returns

falN. There Is an is_ operation for each selector.

value_11i • proc (v: avt) ratume (ft) lllgnale (wrong_tag)
effects Obtains a read lock on v. Then, I the tag of v la n" returns the value of v; otherwise

signals wrong_tag. There is a value_ operation for each selector.

11.1 & Atomic variants 147

av2v • proc (av: avt) retuma (v: vt)
effects Here vt Is a variant type wilh the same 11l1ctora and types as avt. Obtains a read

lock on av and returns a variant vwlth the same state.

v2av • proc (v: vt) ,..,_ (av: avt)
effects Here vt Is a variant type wlh the same Nlldors and types • avt. Returns an

atomic_ variant avwlh the same Slate • v. Obtains a read lock on av.

equal • proc (v1, v2: avt) relUma (bool)
eflecls Returns tnle I v1 and v2 are the same atomic_varianl object. No locks are

obtained.

similar• proc (v1, v2: avt) ,_..,,. (boOI) (falure(tlltnl))
raqulnls each t; has similar: pn,ctype (~. tt> (IINI).....,. (fal.tre(1trtn1))
effecta Obtainl read lodc8 on v1 and va, In Olller, .., 1111'1 _,..... the objects; returns

true If v1 and v2 have the same tag and -- as dllemlinld br the lllmllar
operation of their type. Ant fltHute lignal II lmm1rl•Ifi Thll oplflllton does
not Itself originate any fallurfl signal. Thia operation la dlYl8IJle at the caN of t~.

simllar1 • proc (v1, v2: avt) Ntuma (bool) ...,,... (fallUra(....))
raqulnls each t; has equal: pn,ctype {\, 1t), (fallure(ltrtng))
effecta Same as similar, except that ~ la UNd lnltead of t~mllar.

copy • proc (v: avt) NIUffla (avt) llgllall (fallunl(....,)
requires NCh t1haa copy: pnactype Cit) (It) (faln(lll1ng))
effecta Oblalnl a read lock on v, then ,..,,. ., IIOmlc_ vartant obied with the same tag as

v and cor1alntng as a value a copy of lla value; the copy ii made Uling the copy
operation of the value's type. Jtny fallurfl lignal II lmmldllltely resignalled. This
operation does not bel originate any fallurfl aignal. Thia operation is dMalM at the call
of ,,a,py. A read lock 18 obtained on the,..

copy1 • proc (v: avt) retums (avt)
effects Obtains a read lock on v, then returns a new atomic_variant object wtth the same tag

as v and containing v's value as Its value. A read lock Is obtained on the resul.

transmit• proc (v: avt) NIUrnll (avt) elgftlla (failure(ltflna))
raqulnls each t, has tranamlt
effects Returns an atomic_ variant object wllh the ume tag as v and containing as a value a

transmill8d copy of "'' vaue. Q)taltw a read lock on v. Ant failure s1gna1 1& Immediately
resignalled. Thia operation does not o,tginate any failure Signal.

test_and_read • proc (av: avt) relUml (boOI)
effects Tries to otJlaln a read lock on av. If the lock Is obtained, nttums true; otherwise no

lock is obtained and the operation reluffll The operation doel not wr tor a lock.
Even If the executing action "knows. that a lock could t,e o11t11ned, ... may be
returned. Even I flllN Is returned, a alblequeftl atlempt to obtain a read lock mighl
succeed without waling.

test_and_wrtte-proc (av: avt) relUma (bool)
effects Tries to obtain a wrle lock on av. ff the lock ii obtained, retuma true; othefwtae no

lock Is obtained and the operation retuml The operation ... not "War tor. lock.
Even I the exea.ttlng acdon "knowa. that a lock could be oblained, flllN may be
returned. Even If ,.. i8 returned, a IUblequent to obtain a wrte lock might
succeed without waling.

148 Bull-In Types and Type Generalor8

can_ read• proc (av: avt) (bOol)
8ffec1s Aeluml UU. I a l'Nd tock could be a&:IIIIIMd 0A IN willout waiting, olwwiN

retuml flllle. No lock II lml8" oblllnld. Even I tht •n•CIUIIIW ac1to1'1 "knows• ttlllt a
lock oouldbe olJlllinld. 1111e mar bl Nllumld. .__.....,...,,. mav obeul
or relHII a lock on an ... _..._.•-,-. .. -.11111n ,..,,.. II unrelrtte:
even I 11119 II MUfflld, a•• .. •• ••1•••--lletoak •.: "'"" wrlfng; and
even I flllle II retumed, a ■....- 111 • tr:> a ,_, lock fflfGl'1t IUC089d
wlhout wab'lg.

can_ write • pn,c (av: 1M) (Nol)
.,,_. Aeums ... I a Wftte tock cauld be obllllnld on ,w wltl0Ut waiting, ...,..

retume No lodl r •·alJ ol3SlfnN. e.n I llt ..u1ng .._ "kncMl8 l'llt a
lockcauldl»ot:Jlllnld. mayberelumld. ___,...., m■,lllllaln

orf'll1•1aloClkonan.,.. _ _...._,,, 111M1an,.,11'1t11•w111l1bte:
evenltnaell....,_,111•11.-1•11111 _,
even If fllle II l9lumld, , ••-•• ••r• • a_.. leek mlQN IUCONd
wlhout walling.

read_lock • proc (av: avt)
.,._.. Cbalnl a INd lock on av.

write_ lock • PNC (av: avt)
eflecla 0blains a wrle lock on av.

11.17. ProcedurN and Iterators
proctype ---.,... copy
ttertype,.. ,..,,capy

Overview

Procedures anCII lleratonl are objlct8 cnated by ttle Alp ay••m. TIii l)IP8 ~ tor a
procedunt or l8rator corDll1I ,.. of the inklmtlJll11111..., In a,..... or..._ hNdlng; a
procea,19 to,m:

proctype ([type_apec' ...)) [returns) [....)
and an Iterator type apec:llcatton haa 119 tDrm:

...,.,. ([type_spec' ...)) [ytefdl J [--J
where

returns ::: Ntuma (type_apec, ...)

yields ::: ,.... (type_spec I -■■)

signals ::: ...,... (exception , ...)

exception ::: t'WM [(type_apec, ...)]

(see Appendic I). The flrlt lat of type Ill._. d11r:1lll11 .. IUllber, typN. _,_.., of ~- Tht,...,..,....,. ,..., lo ..
ratumedor,111r11c1. 1111 ,. • ..,.. n u1tin1_..._,.,,..H•••....,;for
each exoeplOn ..,., tt11nu•n, _....,., ... •11J••••-•--•a11t..,_
Al nam81 UNdaa 111■ 111 1111 ••n•• ·-··• ■- •·••nt. For..,..,balhor•••-•••• .. •• ,.., •• _...,..,,.

proctype (ltl'tllg, - 11111) fl- (Ill .. •·•• (llltll- •1,1IJ1_11ze)
pn,ctype(............................... _ ... ,IJCu'tdl)

11.17 Procedur• and Iterators 149

Procedure and Iterator objecta are created by compllng nmJIN (and by the bind upression,
see Section 9.8). Procecln and lleralor types are not nnem1111,1e and are COfllidered to be
immutable and atomic In nonnaf UN. However. eome UNI of own data (see Section 12. 7) In
procedures and iterators can violate this usumption.

In the following operation descriptions, t stands for a proctype or lertype.

Operations

equal - proc (x, y: t) returns (bool)
similar • proc (x, y: t) relUmS (bool)

effacts These operations return tn,e if and only I x and y are the same i"l)lementation of
the same abstraction, with the same parameters (see Section 12.6).

copy• proc (x: t) returns (t)
effects Returns X.

11.18. Handlers and Creators
handlertype - ... type .. equal, limllar, copy, t,.......
creatortype • ctata type le equal, similar, copy,.,......

Overview

Handlers and aeators are created by the A9J8 system. The type specJHcatton for a handler or
creator contains moat of the information stated In a handler or creator heading; a handler type
specification has the torm:

handlertype ([type_ spec , ...]) [returns] (signals]

and a creator type specification has the form:

Cl'8IIIOrlype ([type_spec , ...]) [returns] [signals]

where

returns ::: returns (type_spec, ...)

signals ::: slgnale (exception, ...)

exception ::: name [(type_spec , ...)]

(see Appendix I). The first 11st of type speclicaUonl clNcrbN the number, types, and order of
argumanta. The NIUma clule number, types, 8ftd Older' of the ... 1G be returned.
The alslnallclw Ila lhe ___,. ralNdbylhehWllr0tCNt11LW; IGtNCh ~ name,
the number, typel, and order of the obilda to be NtUIMd Ma IIIIO QHM. Al ,_,_ UNd in a
Slgnala ctauae RI.Ill be unlcJ,e; none can be UfflMllbe,«f or fd.ft, which have a pre-defined
meaning for ,emote calls (see Section 8.3). The on:ta,tng of excepUons Is not in,,o,tant.

Creators are created by ~ modules, and handlers are created as a side-effect of guardian
creation. Handlers and creators are transmisst,le and are COl'llid8red to be inVnutable and atomic
in normal use. Certain uses of own data In handlers can violate this 88Sllff1)tlon.

In the following operation descriptions, t stands for a handlertype or aeatortype.

Operations

equal - proc (X, y: t) ntturns (bool)
similar • proc (x, y: t) relUmS (bool)

effects These operations return true if and only I x and y are the same object (see Section
12.6 for an exact definition for the case of creators In guardian generators).

150

copy • proc (x: t),. (t)
tranaml - proc (x: t) l'8IUm8 (t)

effects Returns x.

au11t-1n TYPN and Type Generlltol"II

11.19. Anya
any• data type Is create, force, is_type

Overview

An object of type any contains a type T and an object of type T. M't8 are lmnUable and are not
transmlssl>le. Anys are atomic only If their contained Obi8Ct Is atomic.

Operations

create - proc[T: type) (contents: T) ratuma (any)
effects Returns an any object containing contsnts and the type T.

force • proc(T: type) (thing: any) returns (T) slgnala (wrong_type)
effects ff thing 00Ralr1I an object of a type lncUded In type T, then that object Is returned;

otherwise M'DnO_tn» Is elgr.alad.

is_type - proc(T: type) (thing: any),.. (bool)
effects If thing contains an object of a type Included In type T, then true is returned;

otherwise, is returned.

11.20. Images
Image - data type Is create, force, ls_type, copy, transmit

Overview

An object of type Image Is the value of an arbitrary transmlSsl>le type. See Section 14 for more
detaHs. Images ant immulable, atomic, and transmilllJle.

Operations

create • proc[T: type) (contents: T) l'8IUml (llnage) _,.... (fab9atrlng)
requllM T ,_ tranMIII
eflect8 Returns an Image object obtained from contMts Yia the encods operation of T.

Reslgnals any fllllunllignal railed by rs MtDOdeape,ation.

force • prac:(T: type) (thing: --, (T) atgllllla (wrong_type, fallure(atrtng)) 19qu1,_r._..,_.
effects If thing encodes an object of a type lncbted In type T, then that object is extracted

using the d«XJdtl operation of T and retumed. Oltwir:1118 wrong_typtJ Is signaled.
RestgnaJs any failure 8ignal ralNd by r, dtlt'Jodtl aperatlon.

is_type-proc(T: type] (1tling: Image) l'8IUml (bool) ,..._T,_...._..
effects If thing encodes an object of a type Included In type T, then true is returned;

othetwtae, ii returned.

copy - proc (thing: Image) (lnlllge)
tranemlt - proc (thing:) NIUl'III (llrtage)

effects Returns thing.

11.21 Mutexes 151

11.21. Mutexea
mutex- data type(t: type) la create, set_value, get_value, changed, equal, similar, copy, transmit

Overview

A mutex is a mutable container for an object of type t. A ITIJlex also has an Identity as an object.

An object of type IIIUIU(t) provides mulJal uctuslon tor plOC8l8 synctwonlzatlon, and allows
explicit control over how Information contained In the nuex Is written to stable storage (see
Section15.1).

The NIZe statement is used In order to gain posseaalon of a mutex. See section 6. 7.

Although rrutex objects are mutabia, sharing among nuex objects is usualy wrong, because the
contained object should only be IICCHIIJle hough ttl9 nlJlex. Hence there II no copy1
operation, 8ince this would lrCn:,cu:e lhaftnQ. and ...,_ II no lllmllar1 operation to check for
sharing (see Section 6.7).

OpenltlOM

create - proc (thing: t) NIUma (rnutu[t))
effecta Returns a MW lft.HX obied conlainlng thing.

set_ value • proc (corulner: IIIUIIX(tJ, contenls: t)
IIIOdlflN cont.,.,.
effect8 Modifies amtalnM by replacing Its contaJned obfect with contems.

get_value • Pf'OC (container: mut8[t}) NIUma (t)
effect8 Returns the object conlalned In oonllllnflr.

changed • proc (container: ll'IUIH(t))
efleCl8 lnforml the A,g&,a l}'ltem that the calling MIion requires the contents of containsrto

be copied to stable storage by the time 118 ldon con111118, plOYlded oonllliner is
accessllle from a stable variable. I II a ,_.,..11111ng em,, I a pn,ceu that Is not
running an action calls this operationa, and ff ttlil II dDtl8 the guardian wll crash.

equal • proc (m1, m2: IIIUla(t]) ratuma (bOol)
effect8 Returns true if and only if m1 and m2 are the same object.

similar • proc (m1, m2: mutex(tD relWM (bool) ...- (falln(Mt'lng})
19qulres t has similar: pn,ctype(t, t), (falure(8btnG))
effects Seizes m1, then selzea m2. and calla ••mfarto dltermlnl II result; any fallurB

signal is immediately reslgnaled. ~seallon of both n.atexea is retained until 1$sirri/ar
terminates.

copy • proc (m1: mutex[t)) Ntuma (m2: mutex(tJ) 8lgllllle (failwe(llrlng))
requlrea t has copy: pn,ctype(t) NIIUIM(t) (failuN(ltllng))
effecla Seizea m1, then calls ,scopyto make a OOPV wNctl I places in the new nuex object

m2. Any failure signal is invnediately resignaled. Possession of m1 is Attained until
l$copy termlnales.

tranamlt - proc (m1 : IIIUlex[tD ratums (mulex[t)) ...,... (failure(atrtng))
requ1,- t has tranamll
effecla Seizes m1, and returns a new nutex conlalnlng a transmitted copy of the contained

object. Any fllilunl signal is Immediately reaignalled. Possession of m 1 is retained until
1$tranlfflll terrnklatea.

152 Rules and Guidelines for Using Argus

Ill Rules and Guldellnes for Using Argus 153

Ap~dlx Ill
Rules and Guldellnn for Using Argus

This appendix colledl the rules and guldelnel that lhould be tolowed when programming in Argus.

Following these rules makes Nlze statements meaningful, actions atomle, and so on. In some rare

cases there may be valid reasons for violating these guidelines, but doing so greatly Increases the

difficulty of building, debugging, and running the resulting system.

All of the rules listed in this appendix are based on Information appearing elsewhere in the manual.

Each rule is followed by a brief rationale, including a reference to the section of the manual from which it

is drawn.

111.1. Serlallzability and Actions
• Actions should share only atomic objects.

Rationale: Actions that share non-atomic data are not necessarily serlallzable. [Section 2.2.2)

• A subaclion that aborts should not retum any tnlormation olllained from data shared with other

concurrent actions.

Rationale: Returning such data may violate serializabllty. (Section 2.2.1)

• A nested topactlon should be serlalizable before ltS parent. Thia ii true If either
1. the nested topactlon pet'fonns a benevotent side effect (a change to the state of the

representation that does not affect the abltlact state), or

2. all communication between the nested topactton and h parent ts through atomic objects.

Rationale: Other uses may violate sertalizabllly. [Section 2.2.3)

• The creation or destruction of a guardian rrust be synchronized with the use of that guardian via

atomic objects such as the catalog.

Rationale:Otherwise serializability may be violated. [Section 10.18)

111.2. Actions and Exceptions
• H an exception raised ~ a cal should not comml an action, the exception rruat be handled within

that action.

Rational6: If an exception raised within an action body is handled outside the action, the tmplicit flow of

control outside of the action will commit the action. (Section 11.5)

154 Ru ... and GuldeHIIN for U.lng Argua

111.3. Stable Variables
• Stable variables should denote resilient data objects.

Rationals: Only data objects that are (reachable from the stable variables and) resilient are written to

stable storage when a topaction commh. (This can be enatNd by hawing ltable variables only denote

objects of an atomic type or obieds protected by IIIUleX.) Non-l'9llllalt objeds stored in stable variables

are only written to stable storage when the guardian Is created. (Section 13.1)

• H a bound procedure or lerator will be acceaetie from a stable variable,
1. the procedure or iterator being bound l'l'Lllt be atomic and

2. only atomic objects should be bound as argumenta.

Rationa/8: The bound procedure or Iterator may be stored in stable storage, and non-atomic data Is

only written to stable storage once. [Section 9.8)

111.4. Transmission and Tranamlaslblllty
• An abstract type's encode and deeode operations should not cause side effects.

Rationa/8: The number of cans to an enoodfl or decod'1 operaUon Is ~. since arguments or

results may be encoded and decoded several times • the tystem tnll to eatablah COfflR1Uflk:ati. In

addition, verifying the correctne88 of tranemluion II, If MCt:N» and d«:odfl are simply

transformations to and from the external ,..._reation. (Saallon 14.3)

• H the naming relatlon among objecta to be tranamltled Is cycllc (e.g., a ciraJlar list) then 6flCOCHI and

decode must be implem8nt8d in one of two ways:
1. The lntemal and external ,......,., types must be ldenttcal, and encode and decode

return their argument wlhout modifying or acceuing I, or

2. The external representation obfect must be acycUc.

Rationals: A ciraJlar external representation may cause decode to fail. [Section 14.41

• Objects that share other obieets should be bound Into a handler or creator in the same bind

expression.

Rationale: Sharing Is only preserved among obieets bound at the same time. [Section 9.8)

111.5. Mutex
• Mutual exclusion or atomic data shouJd be used to synchronize access to an shared objects.

Rationale: In the presence of concurrency, any Interleaving of lndMltie events ia possible. Without

synchronization mechanisms, this concurrency will be Yisl>le to p,ograms, significantly complicating

coding and testing. [Section 8)

111.5 Mutex 155

• AH modifications to mutex objects should be made inside ...,.. statements.

Rationale: The system witl gain possession of a fft.llex object betore writing It to 81able 9'0rage; thus,

seizing a nuex In oroer to modly It wll prevent the syatem nm copying a nuex object when It is In an

Inconsistent state. This allo prevents other proce1N1 fl'Om 8Nlng lnconllltent data [Section 15.2 and

Section 15.1)

• Nested seizes should be avoided when pauae Is used, and ,.,.. must be avoided when nested

seizes are used.

Rationale: A pauaa in a nested seize does not actually release possession of the rrutex object.

[Section 10.17]

• If an object is referred to by a mutex object, It lhouJd not be referred to by any other object, nor

shOuld It be denoted by a variable except when In poeaeuion of the containing mutex.

Rationale: If an object contained In a nuex can be reached by a method other than seizing the nuex,

the mutual exclusion property of the rrutex is undermined. [Section 6. 7]

• No activity that is ll<ely to take a long time should be pelformed while in a Nlza statement. In

particular, programs should not make handler call or wait for loclca on lll0mlc objectS whle In possession

of a mutex.

Rationale: Waiting tor a lock while In a lftJtex is lkely to cause a deadlock wtth other actions or

between the action holding the rrutex and the Argus system. [Section 15.3)

• Mutex objects should not share data with one another, unteea the shared data Is atomic or rnulex.

Rationale: Sharing of non-atomic objects between mutex objects Is not preserved when the rrutexes

are written to stable storage. (Section 15.3)

• Mutex[t)$changed rrust be called after the last modification (on behalf of some action) to the
contained object of a mutex.

Rationale: The Argus system Is tree to copy the mutex to stable storage as soon as IIIUl8X[4$Chlln08d

has been called. Changes after the last cal to mulex(~ but before topaction commit may not
be written to stable storage. (Section 15.3)

• Mulex[4$ChanOfJd should be called even If the mutex object changed Is not aocessble fff>ffl the

stable variables.

Rationale: In a scenario where the object was accessible, becomes lnaccelllble, then becomes

accessible again, It Is poaslJle that stable storage would not be updated prope,ty If th6s rule were not
followed. The system guarantees that no problems wfth updlltil~ stable ltorlg8 wll arise If

mutex(t)$dlangectls at.vays called after the last modllcatton to the objlct. (Section 15.3)

156 Rules and GuldaHnes tor Using Argus

• An atomic type implemented with a representation conaisllng of several rrutex obiedS should use

separate topactions to ensure that the rootexes are written to stable storage In an o«ser that preserves
the correctness of the representation.

Rationale: Mutexes are written to stable storage Incrementally. Sonwtlmes, subtle timing problems

can be caused by Incremental writing If this rule is not folowed. (Section 15.3]

111.6. User-Defined Atomic Objects
• If an atomic object X of type Tp,ovldes operations 0 1 and ~. and action A has executed 0 1 but not

yet committed, then operation ~ can be performed by a ooncurrenl action 8 only if 01 and ~ CX>IJ'Jll'IUte:

given the current state of X, the effect (as described by the sequenllal ~ Gf 7) of perto,ming

0 1, then ~ is the same as performing 0 2, then 0 1. •Effect" lndlldes both resula returned and the

(abstract) state modified.

Rationale: There are two concurrency constrains for uaer-deflned atomic obieda:
1. An action can obserVe the effects of other action8 only I thoN actions conmitted relative to

the first action.

2. Operations executed by one action cannot invalidate the results of operations ex&alted by
a concurrn action.

Two operations {or sequences of operation&) that cornrrue In their effect on the abstract state of X may
be permitted to run concurrentty, even I they do not COlfflllle In their effect on the representation of x
This dtstinction between an abstraction and Its Implementation la CfUCial In achleYlng reasonable

performance. (Section 15.4)

• H a user-defined atomic object is accesal>le from the stable variables of some guafdtan, it should be

written to stable storage whenever an action that modifies It commll8 to the top.

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit wHI not
be resilient. [Section 15.2)

• The form of the Np for a user-defined atomic type should be one of the following poul>illties.
1. The rap is Itself atonic. Note that mutu is not an atomic type.

2. The rap Is muteX(4 where t Is a synchn)nous type. For exan,,18, t COUid be atomic, or It
could be the represerution of an atomic type, • the ope,aUona on the this ficdtious atomic
type are COded In-line ao that the entire type behaYel a&omlcaly.

3. The Np Is an atomic oollectton of nuex types oontainng synchronouS types.

4. The rap is a rootable colectlon of synchronouS types, and ob;lda of the representation
type are never modified after they are lnlilllzed. That Is, ffUlltlon may be UNCt lo crNl8
the initial state of such an object, but once this has been done the obied ffllSt never be
modified.

Rationale: In any other case it wHI be Impossible to guarantee the rNlllence or serlalizabillty of the

type's objects Independently of how they are used. [Section 15.3)

111.7 Subordinate Where Clau111 157

111.7. Subordinate Where Cl8UNS
• A 'Where clause requirement on a cluster as a whole should be used whenever the actual parameters

make some difference in the abltraetlon. For example, In a Nt cluster, the type parameter's equal
operation l'1'IJSt be required by the clutlter as a whole, In order to preserve type safety and the

representation Invariant.

Rationals: Argus a11Umes that requirements that are not plloec::I on the cluster as a whole do not

affect the semantics of the abstraction or the rapreserutton. (Section 12.6)

158 Changes from CLU

IV Changes from CLU

Appendix IV
Changes from CLU

159

This appendix lists the changes made to Argus that .,. not upwa,d compatible with CLU, that Is, those

which are not merely additions to CLU and that would cause a CLU program to be lltegal or to run

differently.

IV .1. Exception Handling
Unlike CLU, which propagated unhandlecl exceptions (by turning them into failure exceptions) and gave

the failure exception special status, unhandlecl exceptions in Argus are considered errors and always

cause a crash of the guarolan, and failure Is not given speciaj llatus. All exceptions signaled in a

procedure, Iterator, handler, or creator rrust be declared in the routine's hetlder, and there are no implicit

resignals of failure exceptions. See Section 11.6 for details.

IV .2. Type Any
The type any II now a type lite any other type, with parameterized routfnes fo#w, aeate, and is_type.

Thus the CLU manual's notion of "type inclullon" is no longer l'llCHl&ry (but there Is a new notion of type

inclusion in Argus, IN Section 6.1). The any$folC8 routine only signals "Wftmg_type• if the any ot>;ect's

underlying type is not Included in the type parameter given, but the type of the resul of any$force is its

type parameter. The any$is_type routine returns.._ I the any obfect's underlying type Is not lncludBd

in the type parameter given. The CLU reserved won:t "force" was aliminated from Argus, and the creation

of an any object is never implicit in an assignment in Argus.

IV .3. Built-In Types
Several changes to the interfaces of the built-in types went necessitated by the changes to exception

handling. Specltically, the following changes were made to the bull~ types.
1. The atrlng operations ooncat, append, s2ac, Ids, s2ac. and ds, can now al signal llrnlts.

A string •era1 that would be too large to r&pl98M wll not be complled.

2. The aequence operations•• fll_oopy, addh, add, and concatcan now all signal limits. A
sequence constructor that would be too large to repntNnl wll not be compled.

3. The array (and atomlc_array) operations create, pr«llct. •t_low, fil, flll_oopy, addh, and
add/ can now all signal limllll. An array oonetn.tetor ttlll camot be legally rapraeerud wil
either not be compled (If this can be dlt8cled at con.,11 time) or wll aignal llmlts.

4. The copy operations of the structured bull-kl type generators, and the llll_copyoperatk>nl
of NqUenCe and .., (and alOmlc_.,,.,,, allow the copy operations of their type
parameters to have a fallure(alrlng) exception. They will ,..... IUCh a fllilure exceplion.
(Note that the type Inclusion rule allows a type parameter to be used even If its copy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators allow the similar operations
of their type parameters to have a fallure(atrtng) exception. They wil resignal such a failure
exception.

6. The equal operations of the type generators eequence, stnlet, and oneof, and the simllart

160 Changes from CLU

operations of the type generators array, NCORt, and variant (and their atomic
counterparts), allow the .,_ opetdon of their type parameters to have a fallunl(atltng)
exception. They wil resignal such a failure exception.

7. The elemflnts Iterator and the similar and almllllr1 p,ocemns of the type generator array
(and atomlc_sray) wll rai8e a fallur8(11btng) exceptlorl If ttle llffllY argument is nuated In
such a way as to cause a bounds exceplon when an element II fetctled.

IV.4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) Is used In al contexts, lncludlng the dBCls of except

and tagcaae statements, where CLU had previously recpred type~-

IV .5. Where Clauses
CLU had syntax in the whare clause (specifically the production for op_ name) that affowed one to

require an instantiation of a type parameter's generator. This llltle uaed feature has been superseded by

the mechanism descrl>ed in Section 12.6.

IV.6. Uninitialized Variables
An uninitialized variable refeNnce error Is defined to ca,ae a crash of the guardian, rather than raising

a fa/lure exception, which could concelvably be caugte.

IV. 7. Lexlcal Changes
Several new reserved words were added. In addition, the semicolon(;) was banished from the syntax.

IV .8. Input/Output Changes
The Input/output data types (flle_name, stream, and lstream) and the ll>rary procedures dnctlJed in

appendix Ill of the CLU manual are not furnished by the Algus syetem. Our current irnplemen&atJon of

Argus provides a ksyt,oan:J cluster for Input and a pstream ckl8ler for output. In addition, most of the

built-in types currently have print operations defined, tor praay~ ot,tacts onto pstreams. These VO

mechanisms, however, are still experimental, and ao are not documenled In this reference manual.

Index

Index
" 24
$ 47,"8, 79
% 20,115
& 53
• 23
(1 71
- 53,55
+,-,etc. 53
. 27,58
... 17
II 53

:==;~•J }. [] 17

<,>,etc. 53
= 53
@ 44,51,57
a 26, 58
\ 23
I 53
11 53
- 53

Abort 8, 10, 60, 11, 18, 72, 88, 97
and UC8pliori hllncllng 73
of a l'8fflOllt cal 8Cllior, 41
of a IIINIClioft 9
qualllier 51, 81, 18, 72

Action 8, 58, 88, 97
aborton W Nia •llltlmenls 60
IICllvallan IIClfarl 41, 43
anceatora 10
and elC08pCion handling 73
call 8Cllon 41
coenw11a11mam 58
ctNclcd:13
...... 10
dlvial,le llrmindon of 60
enllratlll■nNttlt 59
nea1lld 8
nealldtapactio,t 11,60
orphM 12,81
parantof 9
ailbacllofl8
l9rminalon 60, 89
topacllorl9
See also atomic

Adwalionaction 41,43
Adlal argument 40
Actual paameser 80, 81
Anoed,r 10
Arr, 22, 24, 32, UiO

verautCLU 159
versus image 32

Argut"Mnt
actual 40
veraut parameter 80

Arrtl'f 25, 52, 130
canstNcm- 26

A88lgnment 4,39,40
and conamency 39
implicit 39
mt.Hple 39
simple 39 .-..,-.it 39
type checking for 39

Aunic 3, 8, 97

acllon 8
built-in atomic lypN 9, 30, 133, 141, 146
obj9ct9
type t,97

Alamic arrar 30, 52, 133
Mami(NOOld 30, 52, 141
Momic _ variant 30, 84, 148

~ 8,89
Bind •

......... 50
and NUlne equality 49

.. 51
BloCik..,....36
BNF 17,107
~ 57
8ool 22. 54, 121
Blw83
Buill-ffl

allmlctypea 9,30
type 22,119

BuilMn-... cLU 159

Cal 4, «>. 41, 44, 50, 51, 57
MIion 41
..,.,.. 4,«>
i,y-. 4, 12, 41, 93
~ 44,51 ..,,,,100 50,.,
leCIII 40
,,, 43 ,........,
,.,... 11, 41, 44, 50, 51, 89
....... ..,...44
....... ofMmCJetoall 43
........... 57

Cal IIOlion 41, 43, 44
CaftdM
C...,.. 15
Cl\a,- 23,125

...,.. 115,23
Clolu,941
CW 3. 11, 21, 24, 73, 158 bull-In--.., from 22

rll■-awtn:im 159
ciu.....11
Coaml •

..... lg 80
Coenllr58

toNach ... 59
Comnlalt 20,115
Commil 8, 10, •• 60, 89, ... 97

wfUC11Pl:Mhwlir'f 73
CW I11:f-■ DIAdlint 10
......... ..,,, 41
ofa~e
IO ... IClp 10 ... ,._commit p,otacx,I 8, 60 ~•.as.•.•

C0t•at •.47,11
eon.uc.r 52

anair 21,52 ,_.tor...,...,_wea 52
l9CClftf 27,52

161

162

sequence 25, 52
struct 27
slrUc:lura 52

Continue 63
Conlroling coarm 60
Cor 54
Crash 8, 85, 89

and own vaiables 85
recowr code 8
l'8ClOY9l'Y 89

Creator 7, 11, 32, 44, 48, 88, 149
bound 49
equality of bound creal0r5 49
type 149

Creator cal 44
as expnllaion 51
••taaament 57
semanlic:a of 44

Crealortyp8 32, 149
Critical l8dion 13, 66
CV1 78

Data abatraction 7, n
Datatype n
Deaclock 13
Declaration 36, 57, 78

• statement 57
simple 36
with inlllallzation 36

Decode 12, 21, 41, 43, 49, 94
Desaiption unit 15, 84
Divillble

IBnninallon 60
Dlvialble llnnina1ion 60
Down 55, 78
DU

See also c:taec::riptlon unit

Effects 119
Else 62
Elaeif 62
Encode 12. 21, 41, 43, 44, 49, 61, 94

wilhbsld 49
Enter 58
Entity 48
E~ 37,79
E..- moGale 34, 79

1'9te1911e9 47
Equaled idenfler 47
Example

key-ilem table 95
replicalad data base 60
spooler guardian 90

Except 70
Exoeption 41, 69

action lermination 73
hMCler70
handing 70
name 69
raiae 70
reault 69
unhanded 73
versus CLU 73, 159

Exit 72
ExpnlSSion 47

condtional 54
forms of 47

External reprasentation type 12, 94

Failunt 11,42,43,44,73
of CIOmllMli 1111111'1 in a l8fflOII call 43
venM CLU 73, 159
Seeallo crah

F .. 22,121
Fetdl 51
Floalfntpeint

Seealle 18111
For 62
Foroe

Seeallo My
Foreach 59
Fork 58
Formal

....... 40,71
,,....., 80

0.Mllllm 21,80
......... ,1

Gee 11
Glabllt olljact 3, 7
Guanlln 5, 7, 15,31,41,44,87

........... code 89
craah 73
CfNIIM 11, 44, 81
........ 17
gialllas Image 15
1.-..s1
.,.._ IO

~90 ,_,,.
.......... 90
.......... 7
..... 7
-..,,.,Y IO
llmlilllllan 87, 90
typeof 31
vaaua.,■...,;i.-taoe 31

GuidllnNtU

HMCler 7,32,89,141
bound 49
call 41
...., of bound handlers 49
type 148
.... --,Ion

H,,. .,141
Hidden,___ 71, IO

ldenlller 19
...... 47
S..allo ictn, name

ldn 35,115
wrauaname 35

If 82
Image 12, 21, 32, 93, 150

.,....,.,, 32
Seeallo image

lmmullbllt 3, 21
lnclviaMII)' •
lndhil._ 21
I~1to

WISlaCLU 160
1..-,. 11 ,,........
lnalltllllllirm 11, 160

i,,edleclirtgof 13
Int 22, 121

Index

Index

,.....,,. 48, 62, 76, 148
bound 48
equality of bound illnd0r8 49
type 148

ltertype 148

Keybosd 160

Leave 61
Lexicographic order 126, 138, 139, 141
Library 15
Literal 20, 47

char 115
int 115
real 115
string 115

local 3
cal 40, 50
object 7

Looking 9, 10, 13, 30
deadock 13
for bulll-ln lllomic types 9
table of locking rules 10

Loop 62

Mocilles 119
Module 5, 75, 87

inatanlallon of 80, 81
paamel9rized 80

Mutable 3, 21
vemalllomic 22

Mutltx 11, 33, 91,151
changed operation 99
guidalna99
multiple 104
sharing 100

Name 35, 115
ven,ua idn 36

Neallld action 8
Nesllld l0pacliot, 11, 60
Nil 22, 120
Node 34, 44, 120

of guadan creation 44
Null 22,120

Object 3, 21, n, 78
abmlct 78
a value of expeuion 47
alDmic 3, 21, 97
ooncreta 78
global 3, 7
immutable 3, 21
implametitalioriofn
local 3, 7
mutable 3, 21
non-alOmic 21
'8tarences 3
repreeen111tion n
sharing 3, 96, 100
s&able 3, 7
1rWllffllld)le 3, 12, 21, 93
lnlnBmiuion of cydlc objectB 96
V8ISla variable 3
volalile 7

Oneof 63, 143
Opbindlng 81
Operation n

1

indvillbllly 21,119
0peramr 20

binary 53
inlx 53
pnlNClllnc& 54
,..... 53
unmy 53
~ paranwlar 82, 84
0rpMn 12, 44, 11
OM,,iew 119 awn-.•·•
Ownvlriltllltl5

---MCOV91'y 85

r , ,1,10
.... 81
...... 12
W.,.....nl 80

P••• .. ••Ma IO p...........,.,,. 21,81
1.- Illian of 81

P■-11 p--.
Poat 111
"""111 II 153
Pnt n•
Pn111ll11 :=e 54
Pflndpal argument 30
Print 1IO
P,.,_NUIM 71
PIQClldunt 48, 75, 148

bound 48
..... 48
equally of bound~ 49
t,pe 148

PrOCNa8,!8
S..allo action

,,.,,. 148
,,....... 180
Puncaallonloken 20

0ulllel' ,1.•
aollon,tapaclia1 59

Raile 70
ANdloak t
RNdlr30
FINI 23, 123
AaoDld 52,139

OGnlllUCll)r'27
Fleoowt'GOclel,88
Al•■•-- 8,97,98
ANowry 8, 11, 17
,..... 3
....... 14,47
Almallcal 11, 41, 44, 50, 51, 81 --of 43 ~dMabeeeeumple 60
Allpwldonn

OOIICNlt 71
.-ma! 12,94
~ apendion 81
Als.-vedWORt 19, 115
R11IIIIIIII 72
R•■lsnoa 97, 98

a.. also NICOV8fllble
Rsu1cllan 80,81

163

164

Result 47
RelUm 61
Routine 75, 76, 90

equafity 83
See allo llarallDr, procedure

RPC
See allo ntmotlt call

Rules 153

Scope 36, 78
rules 35
unit 36

Seize 66,98
Selection

of component 51
of element 51

Self 48, 88
Sepa'alor 19,20, 115
Seql»noe 25, 52, 128

C0nllllUCtOr 25
Serialluble 8, 9, 67, 97
Set operalion 58
Sharing 3

and mulex 103
and lranamilaion 96

Signal 89
See allo exception

Spooler guardian 90
Stable

object 3, 7
81al8 8, 87
81Drage8,97
8101'11ge and oloeW8II 49
810rage l'WCCMN'y 89
variable 3, 87
See allo NNlifletlCII

Staten,em 57
abort braak 83
abort oon1inue 63
abortlNve 81
abortPNfix 59
abort,.... 72
abort return 81
abort signal 69
aaaigrvnent 39
block 58
braak 83
coenter 59
component update 58
cancltional 82
continue 63
control 57
element update 58 .,,.., .
excapt 70
extt 72
for 82
k>rk 58
if 62
ilenation 62
leave 81
pause 86
resignal 72
reun 11
seize 86
signal 89
tagcue83
tagtest 64

lag#llil65
llmlinlla 87
updaa58
whle 82
yield 12

SIDreo,enilG,n 51
$Wing M,121

....... Neaf)e&
$wet 21,12,138

COAIIMfllr 27
9.-uclUl'e

S..alllO-.ct Sa...,... 1,10,41,50
~ 39, 97
Synchn)nouall
Synlu 107

Table example, nnanliesion of ts
T...-63
T.-i 84
Tagwalt 65
Terminata 87
TarmlnatiDn

._,.. ... 89
ofa....,, 87,90
of• 40

Theft 12
Tolan 11, 115
Topaolaft 9,50

neetld 11 1,..,., 3, 12, 21, 93
olljlct 12 1.....- 21,41, 78,14,93
.... 14
1Dr,-111rizedmoclJIN 94

True 22,111
T~ eDMmlt I, 59, 80, 73
Type 3, 4, 16, 21, 39, n, 81

_,., 81
IIIDmic 9, 97
bull-In 22, 119
built-4ft--\'PN 9
COINIC/IIIW 4
edlmll ltalion 12,94
"" 21,80,81
gladan 31
impM-.111mnof n
lndullarl4,22
ofaa.tDr 32, 149
ofa...,._ 31
of a,.., 32,149
of•--- 148
ofap,ec1dln 148
,,.,.. ... 34,11
paraMllrillld 9, 21, 80
88Mly4 -.. 12, 21,93
........... M,12.n -----12 ~

Type dwcNng 11, 38, 13
of an inllll llatmn 13

TypeNlulion 4,22
YelWUICLU 1eo

Type_apec 21

Index

Index

Unavailable 11, 42, 43, 44, 59, 60
Unhandlecf exception 73

versus CLU 159
Uninitialized variable 36

versus CLU 160
Up 55, 78
Update statement 58

Value 47
Variable 3, 36, 47

own variable 85
stable 3, 97
uninitialized 36
versus object 3

Variant 63, 144
Version

of an atomic object 9
Volatile

object 7
state 8, 87
variable 87

Where clause 80, 160
subordinate 82

While 62
Write lock 9
Writer 30

Yield 62

165

This blank page was inserted to presenie pagination.

Report# Lc.::,-1"@.., l(oo

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

~ Technical Report (TR)

□ Other:

0 Technical Memo (TM)

Document Information Number of pages: fJS:0~1~,m"<iE"SJ

- Nat to Include 000 flmll. prlnllr int:ltr'UCtiona, etc ... cqlrl1II paoea ony.

Originals are:

~ Single-sided or

D Double-sided

Print type:
0 Typewriter

Intended to be printed as :

D Single-sided or

~ Double-sided

□ l.MerPriN

0 Ink.let Printer □ Olhw:. ______ _

Check each if included with document:

~D Form (~) D Funding Agent Form

D Spine O Printers Notes

D CoverPage

D Photo negatives

D Other: -----------
Page Data:

v;; ~ · '"T"'"'T'),.., fACi
BlankPageS(llr,........,:., \lj \~ IZ i6 r, (;<3 AN)f'A~f:'S l-'oi.Low,iJG'" 1111.J',, t"

I<))) J) .> I f.ffii2'i,c

Photographs/Tonal Material,.,,.......,: _______ _

Other<--... .-..,,......,:
Description : Page Number:

::r:,Q)t,6-(nu?! (1 - rm Y.N \t-pu;: fb'if", ¼tzv~;C'!) 0 LNJ~

, - Y ,~;, u.N;& {xLAN\i:., I , f k5

Scanning Agent Signoff:

Date Received: _f_r 3' / 1 (, Date Scanned: _j_/ ~ / J..G..

Scanning Agent Signature: __ ~........_ '_"""'Y\/.....,._.,.,_1 ..:::i~'-""'"'~~-
1

Date Returned:) / "- , ,, ---
Rav 1111M DSILCS ~ ConllOI Foml calrbm.llld

~~:,:,, :;!'';~··,~'- "/.:, . •t;) J• •• ,'7''

Nif t6&\fim,N OF 'THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REl"OKT SECURITY CLASSIFICATION tb_ s

Ut;iclassified
2a. SECURITY CLASSIFICATION AUTHORITY • r _,-._,;_... '.l•'\I ., . -· •~<'-••'"" T \1' nw; ·""

,, . ,.
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5,.., __. ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-400 N00014-83-K-0125

6-. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYM80l 7a. NAM£ OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If .,,,..,.,

Office of Naval Research/Department of Navy
Science

6c. ADDRESS (City, State, •nd ZIP Code) 7b. ADDRESS (at,, State, Md ZIP Codt)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

la. NAME OF FUNDING I SPONSORING 8b. OFFICE SYM80l 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If .,,,..,.,

DARPA/DOD
8c. ADDRESS (City, St•te, •nd ZIP Code) 10. SOURCE OF FUNOING NUMBERS

1400 Wilson Blvd. PROGAAM PIQJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

l 1. TITLE (lnclc.KI. Security Cl•uific•tion)

Arsus Reference Manual

12. PERSONAL AUTHOR(S) Liskov, Barbara; Day, Mark; Herlihy, Maurice; Jonnson, Yau.L; Leavens, 1.:ra1.y

{AAi~n~)~ Scheifler. Robert: and Weihl. William
13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (YNr,Month,O.y) 115. PAGE COUNT

Technical FROM TO 1987 November 165
16. SUPPLEMENTARY NOTATION

17. COSA Tl CODES 18. SUBJECT TERMS (Continw on,..,.,_ if nece.,.,,, •nd identify by block tN1mber)
FIELD GROUP SUB-GROUP Distribnted systems, fault-tolerance, nested transactions,

concurrency, concurrency control, locking, persistent
Cl~n~aoA_ abst-~Jarot- Aat-a :t:un.u,_ .at.omiccbbiectlj •.. r8lll0te (cont

19. ABSTRACT (Continw on reve,- if necessary •nd antify by blodc numNr)

Argus is an experimBntal language/system designed to support the construction and
execution of distributed programs. Argus is intended to support only a subset of the

Two applications that could benefit from being implemented by a distributed program.
properties distinguish these applications: they make use of on-line data that must remain
consistent in spite of concurrency and hardware failures, and they provide services under
real-time constraints that are not severe. Examples of such applications are office
automation systems and banking systems.

It is largely an extension of CLY, but there are number of Argus is based on CLU.
differences. Like CLU, Argus provides procedures for procedural abstraction, iterators
for control abstraction, and clusters for data abstraction. In addition, Argus provides
guardians that encapsulate and control access to one or more resources. Argus also

As in CLU, modules provides equate modules as a convenient way to refer to constants.
so that a single module can define a class of related abstractions. may be parameterized,

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. □ DTIC USfRS s.ifi•d

✓

22a. NAM£ OF RESPONSIBLE INDIVIDUAL Za:,.A1Ncoc1it, 22c. OFFICE SYMBOL
Judv Little. Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR adrtion m.y be UMd untit~. SECURITY CLASStFICA TION OF THIS PAGE
All other editions are ot.ot.te.

... •• , __ tMltllle----,,eo

Unclassified

)

18. procedure call, orphans, exception handling.

