ST

This empty page was substituted for a
blank page in the original document.

Table of Contents

Table of Contents

2. Concepts for Distributed Programs

N

2.1. Guardians
2.2. Actions

. Environment

3.1. The Libraty
32 WNGMM images
3.3. Guardian Creation

3.4. The Catalog

. Notation
. Lexical Considerations

6.1. Type inclusion
6.2. The Sequential Buikt-in Types and Type-generators
6.2.1. Null
6.2.2. Bool
6.23.Im
6.2.4. Real
6.2.5. Char
6.2.6. String

Types
6.3. Atomic_Array, Atomic_Record, and Atomic_Variant
6.4. Guardian Types
6.5. Handler and Creator Types

-k ek wd

388

RLEBBSNBRBRVBBRIRRNN

6.6. Image

6.7. Mutex

6.8. Node

6.9. Other Type Specifications

7. Scopes, Declarations, and Equates

7.1. Scoping Units
7.1.1. Variables

7.1.2. Declarations
7.2. Equates and Constants
7.2.1. Abbreviations for Types

7.2.2. Constant Expressions

8. Assignment and Calls

8.1. Assignment
8.1.1. Simple Assignment

8.1.2. Muitipie Assignment
8.2. Local Calls

8.3. Handiler Calls

8.3.1. Semantics of Handler Calis
8.4. Creator Calis

8.4.1. Semantics of Creator Calls

9. Expressions

9.1. Literails
9.2. Variables
9.3. Paramelers

.94, Equated identifiers
'9.5. Equate Module References

9.6. Self
9.7. Procedure, Rerator, and Creator Names
9.8. Bind
9.9. Procedure Calls
9.10. Handier Calls
9.11. Creator Calis
9.12. Selection Operations
9.12.1. Element Selection
9.12.2. Component Selection
9.13. Constructors
9.13.1. Sequence Constructors

9.13.2. Array and Atomic Array Constructors
9.13.3. Structure, Record, and Atomic Record Constructors

9.14, Prefix and infix Operators
9.15. Cand and Cor

9.16. Precedence

9.17. Up and Down

10. Statements

10.1. Calls

10.2. Update Statements
10.2.1. Eloment Update
10.2.2. Component Update

10.3. Biock Statement

10.4. Fork Statement

e RS R e TR

Table of Contents

£82289 QAR RBRRRRI2C 2882882523 22222888 8 884URLE G R

= 825zYUIUCVIITLEEL SERLRRR R EREASEE L RESSSRE G IRIR L KERG

o~

v

15.5. Commuting Operations
15.6. Muiltiple Mutexes

Appendix |. Syntax

Appendix Ii. Builit-In Types and Type Generators

i.1. Null

I1.2. Nodes

iL.3. Booleans

11.4. iImegers

I.5. Reails

11.6. Characters

iL.7. Strings

iL.8. Sequences

IL.9. Arrays

11.10. Atomic Arrays

1l.11. Structs

11.12. Records

11.13. Atomic Records

li.14. Oneofs

il.18. Variants

i1.16. Atomic Variants

11.117. Procedures and iterators
i.18. Handlers and Creators
i.19. Anys

11.20. images
i1.21. Mutexes

Appendix lli. Rules and Guidelines for Using Argus

liL.1. Serlalizability and Actions

ill.2. Actions and Exceptions

111.3. Stable Variables

ii1.4. Transmission and Transmissibility
HL5. Mutex

11.6. User-Defined Atomic Objects

iil.7. Subordinate Where Clauses

Appendix IV. Changes from CLU

IV.1. Exception Handling
IV2. Type Any
IV.3. Buillt-In Types

IV.4. Type inclusion

IV.5. Where Clauses

IV.6. Uninitislized Variables
IV.7. Lexical Chlﬂﬂ“

IV.8. Input/Output Changes

Index

Table of Contents

102
104

107

List of Figures v

List of Figures
Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X 10
Figure 13-1: Spooler Guardian 91
Figure 14-1: Partial implementation of table. 95

Vi

List of Tables

List of Tabies

2

3. 3333 1

-i

This empty page was substituted for a
blank page in the original document.

Gulde to the Manual 1

Guide to the Manual
This document serves both as a reference manual and as an introduction fo Argus. Sections 1 through
3 present an overview of the language. These sections highlight the essential features of Argus.
Sections 4 through 15 and the appendices form the reference manual proper. These sections describe
each aspect of Argus in detail, and discuss the proper use of various features. Appendices | and Il
provide summaries of Argus’s syntax and data types. Appendix il summarizes some of the pragmatic
rules for using Argus.

Since Argus is based on the programming language CLU, the reader is expected to have some
familiarity with CLU. Those readers needing an introduction to CLU might read Liskov, B. and Guttag, J.,
Abstraction and Specification in Program Development (MIT Press, Cambridge, 1986). A shorter
overview of CLU appears in the article Liskov, B., et &/, "Abstraction Mechanisms in CLU" (Comm. ACM,
volume 20, number 8 (Aug. 1977), pages 564-576). Appendix IV summarizes the changes made to
Argus that are not upward compatible with CLU.

An overview and rationale for Argus is presented in Liskov, B. and Scheifler, R., "Guardians and
Actions: Linguistic Support for Robust, Distributed Programs” (ACM Transactions on Programiming
Languages and Systems, volume 5, number 3 (July 1983), pages 381-404).

The Preliminary Argus Reference Manual appeared as Programming Methodology Group Memo 39 in
October 1983. Since that time several new features have been added to the language; the most
significant of these are closures (see Section 9.8), a fork statement (see Section 10.4), equate modules
(see Section 12.4), and a more flexibie instantiation mechanism (see Section 12.6). An earlier version of
this document appeared as Programming Methodology Group Memo 54 in March 1987; this version is
essentially identical, except that the locking policy for the bulit-in type generator atomic_array has been
simplified.

We would greatly appreciate receiving comments on both the language and this manual. Comments
should be sent to: Professor Barbara Liskov, Laboratory for Computer Science, Massachusetits Institute
of Technology, 545 Technology Square, Cambridge, MA 02139.

The authors thank all the members of the Programming Methodology group at MIT for their help and
suggestions regarding the language and this manual, with special thanks going to Elliot Kolodner,
Deborah Hwang, Sharon Peri, and the authors of the CLU Reference Manual.

Guide to the Manual

Though her unhappy rival was hers 10 keep
Queen Juno aiso had a troubled mind:

What wouid Jove turn to next? Better, she thought,
To give the creature 10 Arestor's son,

The frightful Argus whose unnatural head
Shone with a hundred eyes, a perfect jailer
For man or beast: the hundred eyes took tums
At staring wide awake in pairs, and two

At falling off to sieep; no matter how or

Where he stood he gazed at lo; even when
His back was turned, he held hig prisoner

in sight and in his care.

— Ovid, The Metamorphoses, Book 1
Transiated by H. Gregory
The Viking Press, inc., New York, 1958

4 Overview

1.2. Assignment and Calls

The basic events in Argus are assignments and calis. The assignment statement x .= E, where x is a
variable and E is an expression, causes x to denote the object resulting from the evaluation of E. The
object is not copied.

A call involves passing argument objects from the cailer to the called routine and returning result
objects from the routine to the caller. For local calls, argument passing is defined in terms of assignment,
or call by sharing; for remote calls, call by value is used. In a local call, the formal arguments of a routine
are considered to be local variables of the routine and are initialized, by assignment, to the objects
resulting from the evaluation of the argument expressions. In a remote call (see Section 2.3), a copy of
the objects resulting from the evaluation of the argument expressions is made and transmiited to the
called handler or creator (see Section 2.4). These copies are then used to initialize the formal arguments
as before. Local objects are shared between the caller and a called procedure or Rerator, but local
objects are never shared between the caller and a called handier or creator.

1.3. Type Correctness

The declaration of a variable specifies the type of the objects which the variable may denote. In a legal
assignment statement, x = E, the type of the expression E must be incluged in the type of the variable x.
Type inclusion is essentially equality of types (see Section 12.6), except for routine types. (A routine type
with fewer exceptions is included in an otherwise identical routine type with more exceptions. See
Section 6.1 for details.)

Argus Is a type-safe language, in that it is not possible to treat an object of type T as if it were an object
of some other type S (the one exception is when T is a routine type and S inchudes 7). The type safety of
Argus, plus the restriction that only the code in a cluster may convert between the abstract type and the
concrete representation (see Section 12.3), ensure that the behavior of an object can be characterized
completely by the operations of its type.

1.4. Rules and Guidelines

Throughout this manual, and especially in the discussions of atomicity, there are pragmatic rules and
guidelines for the use of the language. Certain properties that the language would ke to guarantee, for
example that atomic actions are really atomic, are difficult or impossible for the language to guarantee
completely. As in any useful programming language, programmers have enough rope to hang
themselves. The rules and guidelines noted throughout the manual (and collected in Appendix 1lf) try to
make the responsibilities of the language and the programmer clear.

1.5 Program Structure 5

1.5. Program Structure

An Argus distributed application consists of one or more guardians, defined by guardian modules.
Guardian modules may in tum use all the other kinds of modules that Argus provides. Argus
programmers may aiso write single-machine programs with no stable state, using Argus as essentially a
"concurrent CLU." Such programs may be used to start up multi-guardian applications. Each module is a
separate textual unit, and is compiled independently of other modules. Compilation is discussed in
Section 3.

2 Concepts for Distributed Programs 7

2. Concepts for Distributed Programs

In this chapter we present an overview of the new concepts in Argus that support distributed programs.
In Section 2.1, we discuss guardians, the module used in Argus to distribute data. Next, in Section 2.2,
we present aftomic actions, which are used to cope with concurrency and fallure. In Section 2.3 we
describe remote calls, the inter-guardian communication mechanism. In Section 2.4 we discuss
transmissible types: types whose objects can be sent as arguments or resulls of remote calis. Finally, in
Section 2.4 we discuss orphans.

2.1. Guardians

Distributed applications are implemented in Argus by one or more modules called guardians. A
guardian abetraction is a kind of data abstraction, but it differs from the data abstractions supported by
clusters (as found in CLU). In general, data abstractions consist of a set of operations and a set of
objects. In a cluster the operations are considered to belong to the abstraction as a whole. However,
guardian instances are objects and their handlers are their operations. Guardian abstraction is similar to
the data abstractions in Simuta and Smalitalk-80; guardians are like class instances.

A node is a single physical location, which may have multipie processors. A guardian instance resides
at a single node, although a node may support several guardians. A guardian encapsulates and controls
access 10 one or more resources, such as data or devices. Access to the protected resource is provided
by a set of operations called handlers. Internally, a guardian consists of a collection of data objects and
processes that can be used to manipulate those objects. In general, there will be many processes
executing concurrently in a guardian: a new process is created 1o execute each handier call, processes
may be explicitly created, and there may be other processes that carry out background aclivity of the
guardian.

The data objects encapsulated by a guardian are local: they cannot be accessed directly by a process
in another guardian. In contrast, guardians are global objects: a single guardian may be shared among
processes at several different guardians. A process with a reference 10 a guardian can call the guardian's
handiers, and these handiers can access the data objects inside the guardian. Handler calls allow access
to a guardian’s local data, but the guardian controis how that data can be manipulated.

When a node fails, it crashes. A crash is a "clean” failure, as opposed to a "Byzantine” failure. A
guardian survives crashes of its node (with as high a probability as needed). A guardian’s state consists
of stable and volatile objects. When a guardian’s node crashes, all processes running inside the guardian
at the time of the crash are lost, along with the guardian’s volatile objects, but the guardian's stable
objects survive the crash. Upon recovery of the guardian's node, the guardian runs a special recovery
process to reconstruct its volatile objects from its stable objects. Since the volatile objects are lost in a
crash, they typically consist only of redundant data that is used o improve performance (for example, an
index into a database). The persistent state of an appiication shouki be kept in stable objects.

Guardians are impiemented by guardian definitions. These define:

8 Concepts for Distributed Programs

1. The creators. These are operations that can be called to create new guardian instances
that perform in accordance with the guardian definition.

2. The guardian’s stable and volatile state.
3. The guardian's handlers.

4. The background code. This is code that the guardian executes independent of any handier
calls, for example, 1o perform some periodic activity.

5. The recover code. This is code that is executed after a crash to restore the volatile objects.
Guardians and guardian definitions are discussed in Section 13.

2.2. Actions

The distributed data in an Argus application can be shared by concurrent processes. A process may
attempt to examine and transform some objects from their current states to new states, with any number
of intermediate state changes. Interactions among concurrent processes can leave data in an
inconsistent state. Failures (for exampie, node crashes) can occur during the execution of a process,
raising the additional possibility that data will be left in an inconsistent intermediate state. To suppornt
applications that need consistent data, Argus permits the programmer to make processes stomic.

We call an atomic process an action. Actions are atomic in that they are both serializable and
recoverable. By serializable, we mean that the overall effect of executing muRiple concurrent actions is
as if they had been executed in some sequential order, even though they actually execute concurrently.
By recoverable, we mean that the overall effect of an action is "ali-or-nothing:" either all changes made to
the data by the action happen, or none of these changes happen. An action that completes all its
changes successfully commits; otherwise it aborts, and objects that it modified are restored to their
previous states.

Before an action can commit, new states of all modified, stable objects must be written to stable
storage!: storage that survives media crashes with high probability. Argus uses a two-phase commit
protocol? to ensure that either all of the changes made by an action occur or none of them do. If a crash
occurs after an action modifies a stable object, but before the new state has been written to stable
storage, the action will be aborted.

2.2.1. Nested Actions

Actions in Argus can be nested: an action may be composed of several subactions. Subactions can be
used to limit the scope of failures and to introduce concurrency within an action.

An action may contain any number of subactions, some of which may be performed sequentially, some

Lampson, B. W., "Atomic Transactions®, in Distributed Systems—Architecture and implementation, Lecture Nowss in Computer
Science, volume 105, pages 246-285. Springer-Veriag, New York, 1981,

2Gray, J. N., "Notws on data bage operating systems”, in Operating Systems, An Advanced Course, Bayer, R., Graham, R. M.,
and Seegmufier, G. (editors), Lecture Notes in Computer Science, volume 60, pages 393-481. Springer-Veriag, New York, 1978,

2.2.1 Nested Actions 9

concurrently. This structure cannot be observed from outside the action; the overall action is still atomic.
Subactions appear as atomic actions with respect t0 other subactions of the same parent. Thus,
subactions can be executed concurrently.

Subactions can commit and abort independently, and a subaction can abort without forcing its parent
action to abort. However, the commit of a subaction is conditional: even if a subaction commits, aborting
its parent action will abort it.

The root of a tree of nested actions is called a topaction. Topactions have no parent; they cannot be
aborted once they have committed. Since the effects of a subaction can aways be undone by aborting
its parent, the two-phase commit protocol is used only when topactions attempt to commit.

In Argus, an action (e.g., a handier call) may return objects through either a normal retum or an
exception and then abort. The following rule should be followed to avoid violating serializability: a
subaction that aborts should not retum any information obtained from data shared with other concurrent
actions.

2.2.2. Atomic Objects and Atomic Types

Atomicity of actions is achieved via the data objects shared among those actions. Shared objects must
be implemented so that actions using them appear to be atomic. Objects that support atomicity are
referred to as atomic objects. Atomic objects provide the synchronization and recovery needed o ensure
that actions are atomic. An afomic type is a type whose objects are all atomic. Some objects do not need
to be atomic: for example, objects that are local to a single process. Since the synchronization and
recovery needed to ensure atomicity may be expensive, we do not require that all types be atomic. (For
example, Argus provides all the built-in mutabie types of CLU; these types are not atomic.) However, it is
important to remember that atomic actions must share only atomic objects.

Argus provides a number of built-in atomic types and type generators. The built-in scalar types (null,
node, bool, char, Int, real, and string) are atomic. Parameterized types can also be atomic. Typically,
an instance of a type generator will be atomic only ¥ any actual type parameters are aiso atomic. The
built-in immutable type generators (sequence, struct, and oneof) are atomic if their parameter types are
atomic. In addition, Argus provides three mutable atomic type generators: atomic__ amay,
atomic_record, and stomic_variant. The operations on these types are nearly identical to the normal
array, record, and variant types of CLU. Users may aiso define their own atomic types {see Section 15).

The implementation of the built-in mutable atomic type generators is based on a simple locking model.
There are two kinds of locks: read locks and write locks. When an action calis an operation on an atomic
object, the implementation acquires a lock on that object in the appropriate mode: it acquires a write lock
if it mutates the object, or a read lock if it only examines the object. The built-in types allow multiple
concurrent readers, but only a single writer. if necessary, an action is forced to walt until R can obtain the
appropriate lock. When a write lock on an object is first obtained by an action, the system makes a copy

10 Concepts for Distributed Programs

of the object's state in a new version, and the operations calied by the action work on this version3. if,
ultimately, the action commits, this version will be retained, and the oid version discarded. A subaction's
locks are given to its parent action when it commits. When a topaction commits, its locks are discarded
and its effects become visible to other actions. if the action aborts, the action’s locks and the new version
will be discarded, and the oid version retained (see Figure 2-1).

Figure 2-1: Locking and Version Management Rules for a Subaction S, on Object X

Acquiring a read lock:
All holders of write locks on X must be ancestors of S.

Acquiring a write lock:
All holders of read and write locks on X must be ancestors of S.
if this is the first time S has acquired a write lock on X,
push a copy of X on the top of its version stack.

Commit:
S's parent acquires S's lock on X.
if S holds a write lock on X, then S's version becomes S's parent’s version.

Abort:
S's lock and version (if any) are discarded.

More precisely, an action can obtain a read lock on an object if every action hokding a write lock on that
object is an ancestor of the requesting action. An action can obtain a write lock on an object if every
action holding a (read or write) lock on that object is an ancestor. When a subaction commits, its locks
are inherited by its parent and its new versions replace those of its parent; when a subaction aborts, its
locks and versions are discarded (see Figure 2-1). Because Argus guarantees that parent actions never
run concurrently with their children, these rules ensure that concurrent actions never hold write locks on
the same object simulaneously.

The ancestors of a subaction are itseff, its parent, its parent’s parent, and so on; a subaction is a
descendant of its ancestors. A subaction commits fo the fop ¥ R and ail s ancestors, including the
topaction, commit. A subaction is a commitied descendant of an ancestor action K the subaction and all
intervening ancestors have committed. When a topaction attempts to commit, the two-phase commit
protocol is used to ensure that the new versions of all objects modified by the action and all s committed
descendants are copied to stable storage. After the new versions have been recorded stably, the old
versions are thrown away.

User-defined atomic types can provide greater concumency than built-in atomic types‘. An

3Thie operational description (and others in this manual) is not meant to constrain implementors. However, this particular
description does reflect our current implementation.

‘Anexupphe-nbofwwhm. W. and Liskov, B., ‘knpleynomimdemﬁcDahTypos,'ACMTmm
Programming Languages and Systeme, volume 7, number 2 (April 1985), pages 244-269.

2.2.2 Atomic Objects and Atomic Types 1

implementation of a user-defined atomic type must address several issues. First, ¥ must provide proper
synchronization so that concurrent calls of its operations do not interfere with each other, and so that the
actions that call its operations are serialized. Second, it must provide recovery for actions using its
objects so that aborted actions have no effect. Finally, t must ensure that changes made 10 its objects by
actions that commit to the top are recorded properly on stable storage. The built-in atomic types and the
mutex type generator are useful in coping with these issues. User-defined atomic types are discussed
further in Section 15. ’

2.2.3. Nested Topactions

in addition to nesting subactions inside other actions, it is sometimes useful 10 start a new topaction
inside another action. Such a nested topaction, uniike a subaction, has no special privileges relative to its
"parent”; for exampie, it is not able to read an atomic object modified by its "parent”. Furthermore, the
commit of a nested topaction is not relative to its "parent”; its versions are written to stable storage, and
its locks are released, just as for normal topactions.

Nested topactions are useful for benevolent side effects that change the representation of an object
without affecting its abstract state. For example, in a naming system a name look-up may cause
information to be copied from one location to another, to speed up subsequent look-ups of that name.
Copying the data within a nested topaction that commits ensures that the changes remain in effect even if
the "parent” action aborts.

A nested topaction is used correctly if it is serializable before ks "parent”. This is true K either the
nested topaction performs a benevolent side effect, or i all communication between the nested topaction
and its parent is through atomic objects.

2.3. Remote Calls

An action running in one guardian can cause work 10 be performed at another guardian by calling a
handler provided by the latter guardian. An action can cause a new guardian to be created by calling a
creator. Handier and creator calls are remote calis. Remote calls are similar to local procedure calls; for

exampie, the calling process waits for the call to retum. Remote calls differ from local procedure calls in
several ways, however. ‘

First, the arguments and results of a remote call are passed by value (see below and aiso Section 14)
rather than by sharing. This ensures that the local objects of one guardian remain local to that guardian,
even if their values are used as arguments or results of remote calls 1o other guardians. The only objects
that are passed by sharing in remote calls are the giobal objects: guardians, handiers, creators, and
nodes.

Second, any remote call can raise the exceptions falure and unavaliable. (Unike CLU, not all local
calls can raise failure, see Appendix IV.) The occurrence of faliure means that the call is unilkely 10 ever
succeed, so there is no point in retrying the call in the future. Uinavadable, on the other hand, means that

!

12 Concepts for Distributed Programs

the call should succeed if retried in the future, but is uniikely to succeed if retried immediately. For
example, failure can arise because it is impossiblie to transmit the arguments or results of the call (see
Section 14); unavailable can arise if the guardian being called has crashed, or ¥ the network is
partitioned.

Third, a handier or creator can be called only from inside an action, and the call runs as a subaction of
the calling action. This ensures that a remote call succeeds al most ance: either a remote call completes
successfully and commits, or it aborts and all of its modifications are undone (provided, of course, that the
actions involved are truly atomic). Although the effect of a remote call coours at most once, the system
may need to attempt it several times; this is why remote calis are made within actions.

2.4. Transmissible Types

Arguments and results of remote calls are passed by value. This means that the argument and result
objects must be copied to produce distinct objects. Not all objects can be copied like this; those that can
are called transmissible objects, and their types are calied ranemigsible Hpes. Only transmissbile
objects may be used as arguments and results of a remote call. In addition, image objects (see Section
6.6) can contain only transmissible objects. Parameterized types may be transmissbie in some instances
and not in others; for example, instantiations of the built-in type generators are transmissible only If their
parameter types are transmissible. While guardians, creators, and handiers are always transmissible,
procedures and Herators are never transmissile.

Users can define new transmissible types. For each transmissible type 7 the external representation
type of T must be defined; this describes the format in which objects of type T are transmitted. Each
cluster that implements a trangmisgible type 7 must contain two procedures, encode and decode, 1o
translate objects of type T to and from their external representation. More information about defining
transmissible types can be found in Section 14.

2.5. Orphans

An orphan is an action that has had some ancestor "perish” or has had the pertinent results of some
relative action lost in a crash. Orphans can arise in Argus due to crashes and explick aborts. For
example, when a parenmt action is aborted, the active descendents & leaves behind become orphans.
Crashes also cause orphans: when a guardian crashes, all active actions with an ancestor at the crashed
guardian and all active actions with commitied descendanis that ran at the crashed guardian become
orphans5. However, having a descendent that is an orphan does not necessarily imply that the parent is
an orphan; as previously described, actions may commit or abort independently of their subactions.

Argus programmers can largely ignore orphans. Argus guarantees that orphans are aborted before

Swalker, E. F., "Orphan Detection in the Argus System", Massachusetts institute of Technology, Laboratory for Computer
Science, Technical Report MITALCS/TR-326, June 1964, .

2.5 Orphans ' 13

Mmmmmwmuamnmmamw

aweys chaar whas acions wn et W sash o
¥ an implemerisiion of Angus shoonas % do dasslinnk 4
types), R may only break daadinche by sheeling aoliensa

14

3 Environment 15

3. Environment
The Argus environment ensures complete static type checking of programs. It aiso supports separate
compilation and the independence of guardians.

3.1. The Library

Argus modules are compiled in the context of a library that gives meaning to external identifiers and
allows inter-module type checking. The Argus library contains type information about abstractions; for
each abstraction, the Hbrary contains a description unit, or DU, describing that absiraction and its
implementations. Each DU has a unique name and these names form the basis of type checking.

3.2. Independence of Guardian Images

The code run by a guardian comes from some guardian image. A guardian image contains ail the code
needed to carry out any local activity of the guardian; any procedure, iterator or cluster used by that
guardian will be in its guardian image. Any handier calis made by the guardian, however, are carried out
at the called guardian, which contains the code that performs the call. Thus a guardian is independent of
the implementations of the guardians it calis and the implementation of a guardian can be changed
without affecting the implementations of its clients.

3.3. Guardian Creation

When a guardian is created, it is necessary to select the guardian image that will supply the code run
by the new guardian. To this end, each guardian has an associated creation environment that specifies
the guardian images for other guardians it may create. The creation environment is a mapping from
guardian types to information that can be used to select a guantian image appropriate for each kind of
node. For greater flexibiiity, this infformation can be associated with particular creator objects.

3.4. The Catalog

Somehow, guardians must be able to find other guardians to call for services. A guardian usually has a
reference to any guardian & creates. Algo, if a guardian can call some other server guardian, & can learn
about the guardians that the server "knows", because guaniians can be passed in remote caills. In
addition, Argus provides a built-in subsystem known by all guardiangs. This subsystem is calied the
catalog. The catalog provides an atomic mapping from names to transmissible objects. For example,
when a new guardian is created, it can be catalogued under some well-known name, 8o that other
guardians can find it in the future. Since we are currently experimenting with various interfaces to the
catalog, we do not include an interface specification here.

16

4 Notatlon 17

4. Notation
We use an extended BNF grammar to define the syntax of Argus. The general form of a production is:
nonterminal .= altemative

| atternative
| atternative
The following extensions are used:
a, e a list of one or more a’'s separated by commas: "a" or "a, a" or "a, a, a" etc.
{a} a sequence of zero or more a's: " " or "a" or "a a" etc.
[a] an optional a: * " or "a".

Nonterminal symbois appear in normal face. Reserved words appear in bold face. All other terminal
symbols are non-aiphabetic, and appear in normal face.

Full productions are not always shown in the body of this manual; often alternatives are presented and
explained individually. Appendix | contains the compiete syntax.

18

5 Lexical Considerations 19

5. Lexical Considerations

A module is written as a sequence of tokens and separators. A foken is a sequence of "printing” ASCII
characters (vaiues 40 octal through 176 octal) representing a reserved word, an identifier, a literal, an
operator, or a punctuation symbol. A separator is a "blank" character (space, vertical tab, horizontal tab,
carriage return, newline, form feed) or a comment. Any number of separators may appear between
tokens.

5.1. Reserved Words
The foliowing character sequences are reserved word tokens:

Table 5-1: Reserved Words

abort olse leave : signails
action elseif mutex stable
any end nil string
array enter node struct
atomic_array equates null tag
atomic_record except oneof tagcase
atomic_variant oxit others tagtest
background false own tagwait
begin for pause terminate
bind foreach proc ~ then
bool fork process topaction
break guardian proctype transmit
cand handier real true
char handiertype record type
cluster handiles recover up
coenter has rep variant
continue i resignal when
cor image retum where
creator in retums while
creatortype int seize with

ovt is selt wiag
do ter sequence yield
down itertype signal yieids

Upper and lower case letters are not distinguished in reserved words. For example, ‘end’, 'END’, and
'eNd’ are all the same reserved word. Reserved words appear in bold face in this document.

5.2. ldentifiers
An identifier is a sequence of letters, digits, and underscores (_) that begins with a letter or underscore,
and that is not a reserved word. Upper and lower case letters are not distinguished in identifiers.

In the syntax there are two different nonterminals for identifiers. The nonterminal idn is used when the
identifier has scope (see Section 7.1); idng are used for variables, parameters, module names, and as
abbreviations for constants. The nonterminal name is used when the identifier is not subject to scope
rules; names are used for record and structure selectors, oneof and variant tags, operation names, and
exceptional condition names.

20 Lexical Considerations

5.3. Literals

There are literais for naming objects of the built-in types null, bool, Int, real, char, and string. Their
forms are described in Appendix I.

5.4. Operators and Punctuation Tokens
The following character sequences are used as operators and punctuation tokens.

Table 5-2: Operator and Punctuation Tokens

([. ~ . < ~< =

) | $ v | <= ~<= ~=
{ = " + >= ~>= &
} , @ / - > ~> |

5.5. Comments and Other Separators
A comment is a sequence of characters that begins with a percent sign (%), ends with a newline
character, and contains only printing ASCII characters (including blanks) and horizontal tabs in between.

For example:
Z = ali] + % a comment in an expression

bii]

A separator is a blank character (space, vertical tab, horizontal tab, carriage retumn, newline, form feed)
or a comment. Zero or more separators may appear between any two tokens, except that at least one
separator is required belween any two adjacent non-seli-terminating tokens: reserved words, identifiers,
integer literals, and real literals. This rule is necessary to avoid lexical ambiguities.

6 Types, Type Generators, and Type Specifications 21

6. Types, Type Generators, and Type Specifications

A type consists of a set of objects together with a set of operations used to manipulate the objects.
Types can be classified according to whether their objecis are mutable or immutable, and atomic or
non-atomic. An immutable object (e.g., an integer) has a value that never varies, while the value (state)
of a mutable object can vary over time. Objects of atomic types provide serializability and recovery for
accessing actions. Non-atomic types may provide synchronization by specifying that particular operations
are executed indivisibly on objects of the type. An operation is indivisible if no other process may affect or
observe intermediate states of the operation’s execution. indivigibility properties will be described for all
the built-in non-atomic types of Argus.

A type generator is a parameterized type definition, representing a {usually infinite} set of related types.
A particular type is obtained from a type generator by writing the generator name along with specific
values for the parameters; for every distinct set of legal values, a distinct type is oblained (see Section
12.6). For example, the array type generator has a single parameter that determines the element type;
array[int], array{real], and array{array{int]] are three dietinct types defined by the array type generator.
Types obtained from type generators are called parameterized types or instaniiations of the type
generator; others are calied simple types.

in Argus code, a type is specified by a symactic construct called a type_spec. The type specification
for a simple type is just the identifier (or reserved word) naming the type. For parameterized types, the
type specitication consists of the identifier (or reserved word) naming the type generator, together with the
actual parameter values.

To be used as arguments or resuits of handier and creator calls, or as image objects (see Section 6.6),
objects must be transmissible. Most of the built-in Argus typee are transmissible, that is, they have
transmissible objects. However, procedures and iterators are never tranemissible. For type generators,
transmissibility of a particular instantiation of the generator may depend upon transmissibillty of any type
parameters. A transmissibie type provides the pseudo-operation tranemit and two imtemal operations
encode and decode. Generally, encode and decode are hidden from clients of the type. They are called
implicitly during message transmission (see Section 14) and in creating and decomposing image objects
(see Section 6.6). Transmissibiiity is discussed further in Section 14.

Argus provides ali the built-in types of CLU as well as some new types and type generators. This
section gives an informal introduction to the buiit-in types and type generators provided by Argus. Many
details are not discussed here, but a complete definition of each type and type generator is given in
Appendix II.

6.1. Type Inciusion :
The notion of mmmmummmam mmwmwmm

6.2.1. Nuli

The 4pe null has exactly one imwrutabie obiect,

The two immutaie obiscts of type Seel, with Rerals &
bingry cperations squal (=), aniR). and (), e P e
m«mum S0e Section 13 Vo dolille.

6.23. Int

6.2.3 Int 23

The binary operations add (+), sub (-), mul (*), div (/), mod (//), power (**), max, and min are provided, as .
well as unary minus (-) and abs. There are binary comparison operations /t (<), /e (<=), equal (=),
ge (>=), and gt(>). There are two operations, from_fo and from_io_ by, for ierating over a range of
integers. See Section |1.4 for details.

6.2.4. Real

The type real models (a subset of) the mathematical real numbers. The exact subset is not part of the
language definition. Reals are immutable, atomic, and trangmissibie, although transmission of real
objects between heterogeneous machine architectures may not be exact. Real iterals are written as a
mantissa with an optional exponent. A mantissa is either a sequence of one or more decimal digits, or
two sequences (one of which may be empty) joined by a period. The mantissa must contain at least one
digit. An exponent is 'E’ or 'e’, optionally foliowsd by '+ or "', followed by one or more decimal digits. An
exponent is required if the mantissa does not contain a period. As is usual, mEx = n7"10*. Examples of
real literals are:

3.14 3.14E0 314e-2 .0314E+2 3. .14

As with integers, the operations add(+), sub(-), mul(*), div(/), mod (//), power(**), max, min,
minus (<), abes, I (<), le (<=), equal (=), ge (>=), and gt (>), are provided. It is important o note that there
is no form of implicit conversion between types. The 2r operation converts an integer to a real, r2/ rounds
a real to an integer, and trunc truncates a real to an integer. See Section I1.5 for details.

6.2.5. Char

The type char provides the alphabet for text manipulation. Characters are immutable, atomic,
transmissible, and form an ordered set. Every implementation must provide at least 128, but no more
than 512, characters; the first 128 characters are the ASCli characters in their standard order.

Literals for the printing ASCII characters (octal 40 through octal 176), other than single quote (’). or
backslash (\), can be written as that character enclosed in singie quotes. Any character can be written by
enclosing one of the escape sequences listed in Table 6-1 in single quotes. The escape sequences may
be written using upper case letters, but note that escape sequences of the form \&"* are case sensitive. A
table of literals is given at the end of Appendix |. Exampies of character literals are:

\7 a’ " - " \B' 177

There are two operations, i2c and ¢2i, for converting between integers and characters: the smallest
character corresponds to zero, and the characters are numbered sequentially. Binary comparison
operations exist for characters based on this numerical ordering: X (<), lo (<=), equal (=), ge (>=), and
gt (>). For details, see Section I1.6.

~open umﬁﬁ“ : mm

24 Types, Type Qunseaters, and Type

\D
\u
\

\m
wt
\Ai

%

‘c

6.2.8. String
mw alsing s mu Mm Amaaa e o

mﬂdam*m
n U ¢
00 (o=}, and g1 5). For dutal, s08 Semn Y.

€.2.7. Any
"wdmﬂ'mm “”m".r

6.2.7 Any 25

the mutability and atomicity of an any object depend on the mutability and atomicity of the contained
object. Objects of type any are not transmissible.

The create operation is parameterized by a lype; create takes a single argument of that type and
returns an any object containing the argument. The force operation is also parameterized by a type; it
takes an any and extracts an object of that type, signaliing wrong_ fype ¥ the contained object’s type is
not included in the parameter type. The is_lype operation is parameterized by a type and checks whether
its argument contains an object whose type Is included in the parameter type. The detalied specification
is found in Section 11.19.

6.2.8. Sequence Types
Sequences are immutable and they are atomic or transmissible when instantiated with atomic or
transmissible type parameters. Although an individual sequence can have any length, the length and
members of a sequence are fixed when the sequence is created. The elements of a sequence are
indexed sequentially, starting from one. A sequence type specification has the form:
sequence [type_actual]
where a type_actualis a type_spec, possibly augmented with operation bindings (see Section 12.6).

The new operation retums an empty sequence. A sequence constructor has the form:

type_spec $ [[expression , ...]]
and can be used to create a sequence with the given elements.

Although a sequence, once created, cannot be changed, new sequences can be constructed from
existing ones by means of the addh, addl, remh, and remi operations. Other operations include feich,
replace, lop, bollom, size, the elements and indexes Rerators, and subseq. invocations of the fetch
operation can be written using a special form:

qfi] % fetch the element at indexiofq .

Two sequences with equal elements are equal. The equal (=) operation tests if two gsequences have
equal elements, using the equal operation of the element type. Simiar tests if two sequences have
similar elements, using the similar operation of the element type.

Al operations are indivisible except for fill_copy, equal, similar, copy, encode, and decode, which are
divisible at calls to the operations of the type parameter.

For the detailed specification, see Section 11.8.

6.2.9. Array Types
Arrays are one-dimensional, and mutable but not atomic. They are transmissible only if their type

parameter is transmissible. The number of elements in an array can vary dynamically. There is no notion
of an "uninitialized” element.

2 Types, Type Qunassiers, nd Type Specifoations

The state of nmmdammumuwmummu
slements. The siamants of an srvay um AR e mmum A of e
slomonts must be of he samms type; tis ype it APSalleE I , which has the
o ,

avay { type_actual |

Thmmumambcnﬂamm uwmmmm The coale
mm me
orrayfinti §5:1.2.3, 4

creakes an- integer amay with low bound 5, and four slements, whils

mmmmﬂ&mmmmmnmma
divisibie at calls 10 pemiions of -

§.2.10. Structure Typee . |
A siuchure uummcm*m bl An ingiartislion & slomic or

6.2.10 Structure Types 27

A structure is created using a structure constructor. For example, assuming that “info” has been
equated to a structure type:
info = structilast, first, middie: string, age: Im]
the following is a legal structure constructor:
info $ {last: "Scheifler”, first: "Robert”, age: 32, middie: "W.")
An expression must be given for each selector, but the order and grouping of selectors need not
resembie the corresponding type specification.

For each selector "sel", there is an operation get se/ to extract the named component, and an
operation replace_sel to create a new structure with the named component replaced with some other
object. Invocations of the get operations can be written using a special form:

st.age % get the "age’ component of st

As with sequences, two structures with equali components are in fact the same object. The equal (=)
operation tests if two structures have equal components, using the equal operations of the component
types. Similar tests if two structures have similar components, using the similar operations of the
component types.

All operations are indivigible except for equal, similar, copy, encode, and decode, which are divisibie at
calls to the operations of the type parameter.

For the detailed specification, see Section 1l.11.

- 6.2.11. Record Types
A record is a mutable collection of one or more named objects. Records are never atomic, and are
transmissible only i the parameter types are ali transmissible. A record type specification has the form:
record [field_spec , «..]
where (as for structures)

field_spec «:= name , ... : type_actual
Selectors must be unique within a specification, but the ordering and grouping of selectors is unimportant.

A record is created using a record constructor. For example:
professor $ {last: "Herfihy", first: "Maurice”, age: 32, middie: "P.")

For each selector "sel”, there is an operation gel_se/ to extract the named component, and an
operation set__se/ to replace the named component with some other object. invocations of these
operations can be written using a special form:

r.middie % get the ‘middie’ component of r
rage =33 % setthe ‘age’ component of r to 33 (by calling set_age)

As with arrays, every newly created record has an identity that is distinct from all other records; two
records can have the same components without being the same record object. The identity of records

28 Types, Type Generstors, and Type Specifications

can be distinguished with the equal (=) operation. The similar! operation tests if two records have equal
components, using the equal operations of the component types. Simiar tests if two records have similar
components, using the similar operations of the component types.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at
calls to operations of the type parameters.

For the detailed specification, see Section i.12.

6.2.12. Oneof Types
A oneof type is a tagged, discriminated union. A oneof is an immutable labeled object, to be thought of

as "one of" a set of atemnatives. The label is called the fag, and the object is called the value. A oneof
type specification has the form:

oneof | field_spec , ...]
where (as for structures)

field_spec ..= name , ... : type_actual
Tags must be unique within a specification, but the ordering and grouping of tags is unimportant. An
instantiation is atomic or transmissible i and only if all the type parameters are atomic or transmissible.

For each tag "t" of a oneof type, there is a make__t operation which takes an object of the type
associated with the tag, and retums the object (as a oneof) labeled with tag “t".

To determine the tag and value of a oneof object, one normally uses the tagcase statement (see
Section 10.14).

The equal (=) operation tests i two oneofs have the same tag, and ¥ so, tesis if the two value
components are equal, using the equa/ operation of the value type. Siméar tests if two oneofs have the
same tag, and if 5o, tests if the two valus components are similar, using the simiar operation of the value
type.

All operations are indivisible, except equal, similar, similar1, copy, encode, and decode, which are
divisibie at calis to operations of the type parameters.

For the detailed specification, see Section Ii.14.

6.2.13. Variant Types
A variant is a mutable oneof. Variants are never atomic and are transmissible if and only if their type
parameters are all transmissible. A variant type specification has the form:
variant [field_spec, ...]
where (as for oneofs)

field_spec .= name , ... : type_actual

6.2.13 Variant Types 29

The state of a variant is a pair consisting of a label called the tag and an object called the value. For each
tag "t" of a variant type, there is a make_t operation which takes an object of the type associated with the
tag, and retumns the object (as a variant) labeled with tag "t". in addition, there is a change_t operation,
which takes an existing variant and an object of the type associaied with "t", and changes the state of the
variant to be the pair consisting of the tag “t" and the given object. To determine the tag and value of a
variant object, one normally uses the tagcase statement (see Section 10.14).

Every newly created variant has an identity that is distinct from all other variants; two variants can have
the same state without being the same variant object. The identity of variants can be distinguished using
the equal (=) operation. The similart operation tests if two variants have the same tag, and i 80, tests if
the two value components are equal, using the equal operation of the value type. Simiar tests if two
variants have the same tag, and if so, tests if the two value components are similar, using the similar
operation of the value type.

All operations are indivisible, except similar, similar1, copy, encode, and decode, which are divisible at
calls to operations of the type parameters.

For the detailed specification, see Section 11.15.

6.2.14. Procedure and Iterator Types

Procedures and iterators are created by the Argus system or by the bind expression (see Section 9.8).
They are not transmissible. As the identity of a procedurs or Herator is immutable, they can be
considered to be atomic. However, their atomicity can be violated if a procedure or iterator has own data
and thus a mutable state. The immutability and atomicity of a procedure or iterator with own data
depends on that operation’s specified semantics.

The type specification for a procedure or iterator contains most of the information stated in a procedure
or iterator heading; a procedure type specifica

proctype ([type_spec, ...]) [retums] [signais]
and an iterator type specification has the form:

iertype ([type_spec , ...]) [yieds] [signais]
where

retums <= retums (type_spec, «a.)

yields <. = yleoids (type_spec , ...)

signals === signals (exception , ...)

exception ::=name [(type_spe
The first list of type specifications describes the number, types, and order of arguments. The returns or
ylekds clause gives the number, types, and order of the objects to be returmned or yieided. The signals
clause lists the exceptions raised by the procedure or Rerator; for each exception name, the number,
types, and order of the objects to be retumed is also given. AN names used in a signais clause must be
unique. The ordering of exceptions isnot’F:vdam.

30 Types, Type Generators, and Type Specifications

Procedure and iterator types have an equal(=) operation. Invocation is not an operation, but a
primitive in Argus. For the detailed specification of proctype and Rertype, see Section 11.17.

6.3. Atomic_Array, Atomic_Record, and Atomic_Variant

Having described the types that Argus inherited from CLU, we now describe the new types in Argus.
The mutable atomic type generators of Argus are atomic_airay, stomic_record, and atomic_variant.
Types obtained from these generators provide the same operations as the analogous types obtained from
array, record, and variant, but they differ in their synchronization and recovery properties. Conversion
operations are provided between each atomic type generator and its non-atomic partner (for exampie,
atomic_array[t}$aa2a converts from an atomic array to a (non-atomic) array).

An operation of an atomic type generator can be classified as a reader or writer depending on whether
it examines or modifies its principal argument, that is, the argument or result object of the operation’s
type. (For binary operations, such as ar__gets ar, the operation is classified with respect to each
argument.) Intuitively, a reader only examines (reads) the state of ks principal argument, while a writer
modifies (writes) its principal argument. Operations that create objects of an atomic type are classified as
readers. Reader/writer exclusion is achieved by locking: readers acquire a read lock while writers
acquire a write lock. The locking rules are discussed in Section 2.2.2.

If one or more of the type parameters is non-atomic, then the resulting type is not atomic because
modifications to component objects are not controlied. However, read/write locking stil occurs, as
described above. Thus, an atomic type generator instantiated with a non-atomic parameter incurs the
expense of atomic types without gaining any benefit; such an instantiation is uniikely to be a correct
solution to a problem. Atomic type generators yield transmissible types only ¥ the type parameters are all
transmissible.

Special operations are provided for each atomic type generator to test and manipulate the locks
associated with reader/writer exclusion. These operations are useful for implementing user-defined
atomic types (see Section 15). The tagtest and tagwalt statemenis (see Section 10.15) provide
additional structured support for atomic_variants. The operations can_read, can_wnrite, Test_and_read,
and test_and_write provide relatively unstructured access to lock information. For complete definitions of
these operations, see Sections .10, 11.13, and 11.16.

Assuming normal termination, the following operations acquire read locks on their principal arguments
or the objects that they create.

atomic_array: create, new, predict, fill, fill_copy, size, low, high, empty, top, botlom, feich, similar,
similar1, copy, copyl, elements, indexes, test__and__read, a2aa, aa2a, encode,
decode

atomic_record: create, get , similar, similar1, copy, copy1, test_and_read, ar_gets _ar (second
argument), r2ar, ar2r, encode, decode

atomic_variant: make_, is_, value_, av_gets_av (second argument), similar, similar1, copy, copy1,
lest_and_read, v2av, av2v, encode, decode

6.3 Atomic_Array, Atomic_Record, and Atomic_Variant 31

The operations similar and similar1 acquire read locks on both arguments. The operations copy and
copy1 acquire a read lock on the value retumed as well as their principal argument. Test_and_read is a
reader only if it retumns true; otherwise i is nelther a reader nor a writer.

Assuming normal fermination, the following operations acquire write locks on their principal arguments.
atomic_array: set_low, trim, store, addh, addl, remh, reml, test_and_write
atomic_record: sef_, ar_gets ar (first argument), test_and_wrile
atomic_variant: change_, av_geis _av (first argument), tes{_and_write

Test_and_write is a writer only if it returns true; otherwise it is nelther a reader nor a writer.

The equal, can_read, and can_write operations are neither readers nor writers.

When an operation of atomic__array terminates with an exception, ks principal argument is never
modified; however, the atomic_array operations listed above g8 wrikers always obtain a write lock before
the principal argument is examined, hence there are cases in which they will obtain a write lock and only
read, but not modify their principal argument. For example, atomic__arrayft}$irim is a writer when it
signals bounds. On the other hand, when an stomic_array operation raises a signal because of an
invalid argument, no locks are obtained. For exampie, when atomic_arrayt}$&rim signais negative_size,
it is neither a reader nor a writer since the array’s state is neither examined nor modi¥fied (only the integer
argument is examined).

For the detailed specification of atomic arrays, see Section 11.10; for atomic records, see Section 11.13;
and for atomic variants, see Section 11.16.

6.4. Guardian Types

Guardian types are user-defined types that are implemented by guardian definitions (see Section 13).
A guardian definition has a header of the form:

idn = guardian [parms] isidn, ... [handiesidn, ...] [where]

The creators are the operations named in the identifier list following Is; a creator is a special kind of
operation that can be called to create new guardians that behave in accordance with the guardian
definition. Each guardian optionally provides handiers that can be called to interact with i; the names of
these handlers are listed in the identifier list following handies. (See Section 13 for more details.)

A guardian definition named g defines a guardian interface type g. An object of the guardian interface
type provides an interface to a guardian that behaves in accordance with the guardian definition. An
interface object is created whenever a new guardian is created, and then the interface object can be used
to access the guardian’s handlers. Interface objects are transmissible, and after transmission they still
give access to the same guardian. In this manual a "guardian interface object” ie often called simply a
"guardian object".

The guardian type g for the guardian definition named g has the following operations.

32 Types, Type Generators, and Type Specifications

1. The creators listed in the Is list of the guardian definition.

2. For each handler name h listed in the handies list, an operation get h with type:
proctype (g) returns (ht), where htis the type of h.

3. Equal and similar, both of type: proctype (g, g) returns (boofl), which return true only i
both arguments are the same guardian object.

4. Copy, of type: proctype (g) retumns (g), which simply returns its argument.
5. transmit.
A creator may not be named equal, similar, copy, print, or get_h where h is the name of a handier.

Thus if x is a variable denoting a guardian interface object of type g, and h is a handier of g, then
g%get_h(x) will return this handier. As usual with get _ operations, this call can be abbreviated 10 x.h.
Note that the handiers themseives are not operations of the guardian interface type; thus g$h would be
illegal.

A guardian interface type is somewhat like a structure type. lts objects are constructed by the creators,
and decomposed by the get _operations. Guardian interface objects are immutabile and atomic.

6.5. Handler and Creator Types
Creators are operations of guardian types. Handier objects are created as a side-effect of guardian
creation. Unlike procedures and iterators, handiers and creators are transmissible.

The types of handiers and creators resembie the types of procedures:

handlertype ([type_spec, ...]) [retums] [signais]
mnvpo([w_w..-.l)[wml[wl

The argument, normal result, and exception resuk types must all be transmissible. The signa‘s list for a
handiertype or crestortype cannot include either fadure or unavaliable, as these signais are implicit in
the interface of all creators and handiers.

Handler and creator types provide equal/ and similar operations which return true ¥ and only ¥ both
arguments are the same object, and copy operations which simply retum their argument. For the detalied
specffication of handiertype and crestortype, see Section 11.18.

6.6. Image

The image type provides an escape from compiie-time type checking. The main difference between
Image and any is that image objects are transmissible. An image object can be thought of as a portion
of an undecoded message or as the information needed to recreate an object of some type. Image
objects are immutable and atomic.

The create operation is parameterized by a transmissible type; it takes a single argument of that type
and encodes it (using the encode operation of that type) into an image object. The force operation is aiso

6.6 Image 33

parameterized by a transmissible type; it takes an image object and decodes it (using the decode
operation of that type) to an object of that type, signaliing wrong_fype if the encoded object’s type is not
included in the parameter type. The is_type operation is parameterized by a type and checks whether its
argument is an encoded object of a type included in the parameter type. See Section 11.20 for the
detailed specification.

6.7. Mutex

Mutex objects are mutable containers for information. They are not alomic, but they provide
synchronization and control of writing to stable storage for their contained object. Mutex itself does not
provide operations for synchronizing the use of mutex objects. instead, mutual exclusion is achieved
using the selze statement (see Section 10.16), which allows a sequence of statements to be executed
while a process is in exclusive possession of the mutex object. Mutex objects are transmissible if the
contained object is transmissible.

The type generator mutex has a single parameter that is the type of the contained object. A mutex
type specification has the form:
mutex [type_actual]
Mutex types provide operations to create and decompose mutex objects, and to notify the system of
modifications 1o the mutex object or s contained object.

The create operation takes a single argument of the parameter type and creates a new mutex object
containing the argument object. The gei_value operation obiains the contained object from its mutex
argument, while set_va/ue modifies a mutex object by repiacing its contained object. As with records,
these operations can be called using special forms, for exampie:

m: mutex{int] := mutex{int}$create (0)
x: Int := m.value % extract the contained object
m.vakie := 33 % change the contained object

Set_value and get_value are indivisible.

Mutexes can be distinguished with the equal/ (=) operation. There are no operations that could cause
or detect sharing of the contained object by two mutexes. Such sharing is dangerous, since two
processes would not be synchronized with each other in thelr use of the contained object ¥ each
possessed a different mutex. In general, ¥ an object is contained in a mutex object, it should not be
contained in any other object, nor should it be referred to by a variable except when in a seize statement
that has possession of the containing mutex.

There are some mutex operations that seize the mutex object automatically. Copy seizes its single
argument object. Similar seizes its two argument objects; the first argument object is seized first and then
the second. In both cases possession is retained until the operations retum. Also, when a mutex object
is encoded (for a message or when making an image), the object is seized automaticalty. See Section
il.21 for the detailed specification of mutex.

34 ' Types, Type Generators, and Type Specifications

Mutexes are used primarily to provide process synchronization and mutual exclusion on shared data,
especially to implement user-defined atomic types. In such implementations, it is important to control
writing to stable storage. The mutex operation changed provides the necessary control. Changed
informs the system that the calling action requires that the argument object be copied to stable storage
before the commit of the action’s top-level parent (topaction). Any mutex is asynchronous: its contained
object is written to stable storage independently of objects that contain that mutex. See Section 15 for
further discussion of user-defined atomic objects.

6.8. Node
Objects of type node stand for physical nodes. The operation here takes no arguments and retums
the node object that denotes its caller's node. Equal, similar, and copy operations are also provided.

The main use of node objects is in guardian creation (see Section 13), where they are used to cause a
newly created guardian o reside at a particular node. Objects of type hode are immutabie, atomic, and
transmissible. For the detalled specification, see Section H.2.

6.9. Other Type Specifications
A type specification for a user-defined type has the form of a reference:
reference .=

| idn [actual_parm, ...]

| reterence $ name
where each actual_parm must be a compile-time computable constant (see Section 7.2) or a type_actual
(see Section 12.6). A reference must denote a data abstraction 10 be used as a type specification; this
symax is provided for referring fo a data abstraction that is named in an equate module (see Section
12.4). For type generators, actual parameters of the appropriate types and number must be supplied.
The order of parameters is always significant for user-defined types (see Section 12.5).

There are two special type specifications that are used when impiementing new abstractions: rep, and
cvt. These forms may only be used within a cluster; they are discussed fusther in Section 12.3.

Within an implementation of an abstraction, formal parameters deciared with type can be used as type
specifications. Finally, identifiers that have been equated to type specifications can aiso be used as type
specifications.

7 Scopes, Declarations, and Equates 35

7. Scopes, Declarations, and Equates

This section describes how to introduce and use constants and variables, and the scope of constant
and variable names. Scoping units are described first, followed by a discussion of variables, and finally
constants.

7.1. Scoping Units
Scoping units foliow the nesting structure of statements. Generally, a scoping unit is a body and an

associated "heading”™. The scoping units are as follows (see Appendix | for detalls of the syntax).
1. From the starn of a modiude to its end.

2. From a cluster, proc, iter, equates, guardisn, handier, or creator to the matching end.

3. From a for, do, begin, background, recover, emer, coentsr, or selze to the matching
end.

4. From a then or eise in an If statement to the end of the corresponding body.

5. From a tag, wtag, or others in a tagcase, tagwalt, or tagtest statement to the end of the
corresponding body.

6. From a when or others in an except statement to the end of the corresponding body.
7. From the start of a type_setto its end.
8. From an action or topaction to the end of the corresponding body.

The structure of scoping units is such that ¥ one scoping unit overlaps another scoping unit (textually),
then one is fully contained in the other. The contained scope is called a nested scope, and the containing
scope is called a surmounding scope.

New constant and variable names may be introduced in a scoping uné. Names for constants are
introduced by equates, which are syntactically restricted o appear grouped together at or near the
beginning of scoping units (except in type sets). For example, equates may appear at the beginning of a
body, but not after any statements in the body.

In contrast, declarations, which introduce new variables, are allowed wherever statements are allowed,

and hence may appear throughout a scoping unit. Equates and declarations are discussed in more detail
in the foliowing two sections.

In the syntax there are two distinct nonterminals for identifiers: idn and name. Any identifier itroduced
by an equate or declaration is an /on, as is the name of the module being defined, and any operations it
has. An idn names a specific type or object. The other kind of identifier is a name. A name is generally
used to refer to a piece of something, and is always used in context; for example, names are used as
record selectors. The scope rules apply only to ins.

The scope rules are simple:
1. An idn may not be redefined in its scope.

2. Any idn that is used as an extemnal reference in a module may not be used for any other
purpose in that module.

36 Scopes, Declarations, and Equates

Unlike other "block-structured™ languages, Argus prohibits the redefinition of an identifier in a nested
scope. An identifier used as an external reference names a module or constant; the reference is resolved
using the compilation enwironment.

7.1.1. Variables

Objects are the fundamental "things" in the Argus universe; variables are a mechanism for denoting
(i.e., naming) objects. A variable has three properties: its type, whether & is stable or not, and the object
that it currently denotes (i any). A variable is said to be uninitialized K R does not denote any object.
Attempts to use uninitialized variables are programming errors and (if not detected at compile-time) cause
the guardian to crash.

There are only three things that can be done with variables:

1. New variables can be introduced. Declarations perform this function, and are described
below.

2. An object may be assigned to a variable. After an assignment the variable denotes the
object assigned.

3. A variable may be used as an expression. The value of a variable is the object that the
variable denotes at the time the expression is evaluated.

7.1.2. Declarations
Declarations introduce new variables. The scope of a variable is from iis declaration 1o the end of the
smaliest scoping unit containing its declaration; hence, variables must be declared before they are used.

There are two sorts of declarations: those with initialization, and those without. Simple declarations
(those without initialization) take the form
decl .= idn, ... : type_spec
A simple declaration introduces a list of variables, all having the type given by the fype_spec. This type
determines the types of objects that can be assigned to the variable. The variables introduced in a simple
declaration initially denote no objects, i.e., they are uninitialized.

A declaration with initialization combines declarations and assignments into a single statement. A
declaration with initialization is entirely equivaient o one or more simple declarations followed by an
assignment statement. The two forms of declaration with inkiaiization are:

idn : type_spec = expression
and

decl,, «.., decl, := call [@ primary]
These are equivalent to (respectively):

idn : type_spec
idn = expression

and

7.1.2 Declarations 37

decl, ... decl, % declaring idn, ... idn,,

idn1, [(TTTH Uﬂm = Ca“ [@ mfy]
In the second form, the order of the idns in the assignment statement is the same as in the original
declaration with initialization. (The call must return m objects.)

7.2. Equates and Constants

An equate allows an identifier to be used as an abbreviation for a congtant, type set, or equate module
name that may have a lengthy textual representation. An equate also permits a mnemonic identifier to be
used in place of a frequently used constant, such as a humerical value. We use the term constant in a
very narrow sense here: constants, in addition to being immutable, must be computable at compile-time.
Constants are either types (built-in or user-defined), or objects that are the results of evaluating constant
expressions. (Constant expressions are defined below.)

The syntax of equates is:

equate .= idn = constant

| idn = type_set
| idn = reference

constant ..= type_spec
| expression

type_set :3= { idn | idn has oper_decl , ... { equate } }

reference .= idn
| idn [actual_pamm , ...]
| reterence $ name
References can be used to name equate modules.

An equated identifier may not be used on the left-hand side of an assighment statement.

The scope of an equated identifier is the smallest scoping unit surrounding the equate defining &; here
we mean the entire scoping unit, not just the portion after the equate. All the equates in a scoping unit
must appear grouped near the beginning of the scoping unit. The exact placement of equates depends
on the containing syntactic construct; usually equates appear at the beginnings of bodies.

Equates may be in any order within the a scoping unt. Forward references among equates in the
same scoping unit are atiowed, but cyclic dependencies are illegal. For example,

X=Yy
y=2
z=3

is a legal sequence of equates, but

38 Seopes, Decierations, and Equates

Xmy
y=z
ZmX

is not. Since equates introcduoe king, the scoping resivicions on iins apply (Le., the kins may not be
defined more than once).

7.2.1. Abbrevistions for Types , |
mmuwabmmmmumm

7.2.2. Constant Expressions
We define the mibsat of objeols et aquated identiiers may dentie by slaling which expressions are
constant expreasions.’ mmmum;mu s ounetant exprassion is an
expression that can be evelusted at complie-thne 10 prothuey- o8 Nl "‘*m*:mw This
includes: ’
1. Literals.

2. identifiers equsied to constants.

3. Formal paramelers.

4. Procedure, Rersior, and crealor names.

5. mm(mmmmnmwnmwm

&Wu mdﬁw'm*m“ﬂ
Mnmmmm y

The bullin inwruisble ypes are: e, e, Sunk. Dk SINe. SN
mmmwmmum

mwmnw&“%a”hmkmmm
dtmm

8 Assighment and Calis 39

8. Assignment and Calls
The two fundamental activities of Argus programs are calis and assignment of computed objects to
variables.

Argus programs should use mutual exclusion or atomic data to synchronize access to all shared
variables, because Argus supports concurrency and thus processes can interfere with each other during
assignments. For example,

i=1

j=2
is not equivalent to

i,j=1,2
in the presence of concurrent assignments to the same variables, because any interieaving of indivisible
events is possible in the presence of concurrency.

Argus is desighed to aliow complete compile-time type-checking. The type of each variable is known
by the compiler. Furthermore, the type of objects that could result from the evaluation of any expression
is known at compile time. Hence, every assignment can be checked at compile time to ensure that the
variable is only assigned objects of its declared type. An assignment v := E is legal only ¥ the type of Eis
included the type of v. The definition of type inclusion is given in Section 6.1.

8.1. Assignment
Assignment causes a variable to denote an object. Some assighments are implicitly performed as part
of the execution of various mechanisms of the language (in exception handiing, and the tagcase, tagtest,

and tagwalt statements). All assignments, whether implicit or explicit, are subject to the type inclusion
rule.

8.1.1. Simple Assignment
The simplest form of assignment statement is:
idn = expression

In this case the expression is evaluated, and then the resulting object is assigned to the variable named
by the idn in an indivisible event. Thus no other process may observe a "half-assigned" state of the
variable, but another process may observe various states during the expression evaluation and between
the evaluation of the expression and the assignment. The expression must return a single object (whose
type must be included in that of the variable).

8.1.2. Multiple Assignment
There are two forms of assignment statement that assign to more than one variable at once:

Hn) wne = expressbn y o
and

40 Assignment and Calls

idn , ... := call [@ primary]

The first form of multiple assignment is a generalization of simple assignment. The first variable is
assigned the first expression, the second varnable the second expression, and 8o on. The expressions
are all evaluated (from left to right) before any assignments are performed. The assignment of multiple
objects to multiple variables is an indivisible event, but evaluation of the expressions is divisible from the
actual assignment. The number of variables in the list must equal the number of expressions, no variable
may occur more than once, and the type of each variable must include the type of the corresponding
expression.

The second form of multiple assignment allows one to retain the objects resulting from a call returning
two or more objects. The first variable is assigned the first object, the second variable the second object,
and so on, but all the assignments are carried out indivisibly. The order of the objects is the same as in
the return statement executed in the called routine. The number of variables must equal the number of
objects returned, no variable may occur more than once, and the type of each variable must include the
corresponding return type of the calied procedure.

8.2. Local Calls
in this section we discuss procedure calls; iterator calls are discussed in Section 10.12. However,
argument passing is the same for both procedures and iterators.

Local calis take the form:
primary ([expression , ...])

The sequence of activities in performing a local call are as follows:
1. The primary is evaluated.

2. The expressions are evaluated, from left to right.

3. New variables are introduced corresponding to the formal arguments of the routine being
calied (i.e., a new environment is created for the called routine to execute in).

4. The objects resulting from evaluating the expressions (the actual arguments) are assigned
to the corresponding new variables (the formal arguments). The first formal is assigned the
first actual, the second formal the second actual, and so on. The type of each expression
must be included in the type of the corresponding formal argument.

5. Control is transferred to the routine at the start of its body.
A call is considered legal in exactly thoge situations where all the (implicit) assignments are legal.

A routine may assign an object to a formal argument variable; the effect is just as ¥ that object were
assigned to any other variabla. From the point of view of the called routine, the only difference between
its formal argument variables and its other local variables is that the formals are initialized by its cafler.

Procedures can terminate in two ways: they can terminate normally, returning zero or more objecis, or
they can terminate exceptionally, signalling an exceptional condition. When a procedure terminates

8.2 Local Calls 41

normally, any result objects become available 1o the caller, and can be assigned to variables or passed as
arguments to other routines. When a procedure terminates axceptionally, the flow of control will not go to
the point of return of the call, but rather wilt go to an exception handier (see Section 11).

8.3. Handler Calls

As explained in Section 2 and in Section 13, a handier is an operation that belongs to some guardian.
A handler call causes an activation of the calied handier to run at the handier's guardian; the activation is
performed at the called handler's guardian by a new subaction created solely for this purpose. Usually
the handler's guardian is not the same as the one in which the call occurs, and the calied handler's
guardian is likely to reside at a different node in the network than the calling guardian. However, i is legal
to call a handler that belongs to a guardian residing at the caller's node, or even to call a handler
belonging to the caller's guardian.

Although the form of a handler call looks like a procedure call:

primary ([expression, ...])
its meaning is very different. Among other things, a handier is called remotely, with the arguments and
results being transmitted by value in messages, and the call is run as a subaction of its calling action.
Below we present an overview of what happens when executing a handier call and then a detailed
description.

A handler call runs as a subaction of the calling action. We will refer to this subaction as the call action.
The first thing done by the cail action is the transmission of the arguments of the call. Transmission is
accomplished by encoding each argument object, using the encode operation of s type. The arguments
are decoded at the called guardian by a subaction of the call action called the activation action. Each
argument is decoded by using the decode operation of its type. The effect of transmigsion is that the
arguments are passed by value from the caller to the handier activation: new objects come into existence
at the handier's guardian that are copies of the argument objects. Object values are transmitted in such a
way as to preserve the intemal sharing structure of each argument object is preserved®, as well as any
sharing structure between the argument objects in a single call. See Section 14 for further discussion of
transmission.

After the arguments have been transmitted, the activation action performs the handier body. When the
handier body terminates, by executing a retum, abort return, signal, or abort signai staterment, the
result objects are transmitted to the caller by encoding them at the handier's guardian, and committing or
aborting the activation action (as it specified). The call action then decodes the results at the caller's
guardian. Once the results have been transmitied to the Galler, the call action commits and execution
continues in the caller as indicated by the caller's code. (Note that the call action will commit even i the
activation action aborts.)

®This is only strictly true for the built-in types. A user-defined type might not preserve intemnal sharing structure.

42 Assignment and Calis

mmmmwnmcmmnmmmma

moend mwm

signale na_such wa hdﬂﬂw '
renult.

8.3.1 Semantics of Handler Calls 43

-

8.3.1. Semantics of Handler Calls
in this section we describe the semantics of a handier call in detall. A handler call causes activity at
both the calling guardian and at the called guardian. At the caliing guardian, the sequence of activities in

performing a handier call is as follows:
1. The primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. A subaction, which we will refer to as the cal action, is created for the remote call. All
subsequent activity on behalf of the call will be performed by the call action or one of its
descendants. For k to be poesibie 10 create the call aclion, the caller must already be
running as an action. Remote calis by non-actions are programming errors and cause the
calling guardian to cragh.

4. A call message is constructed. As part of constructing tis message, éncode operations

action will be aborted.

5. The call message is sent to the guardian of the calied handier, and the call action waits for
the compiletion of the call.

6. If the call message arrives at the node of the target guardian, and the target guardian does
Mexm,tmmwmnbmwmumoxmhmmm

"guardian does not exist” as iks exception resul.

7. i the system determines that it cannot communicate with the calied guardian, it aborts the
call action. The call action may be retriec several times (begirming at step 3) in atlempts to
communicate. ¥ repeated communication falkres are snoouniered, the system aboris the
call action and causes the call to terminate with the unavaliable sxception. The sysiem wilt
cause this kind of termination only when R Is extremely unilkely that retrying the call
immediately wili succeed.

8. Ordinarily, a call completes when a reply message containing the results is received. When
the reply message arrives at the caller, it is decoded using the decode operation for each
result object. if any decode terminates with a faviure exception, the call action is aborted,
and the call terminates with the same exception. Otherwise, the call action commits.

9. The call will terminate normally ¥ the result message indicates that the handier activation
r(ia;um”a:}j (instead of signalled); otherwise it terminates with whatever exception was
signalled.

At the called guardian, the following activities take place.

1. A subaction of the call action is created at the target guardian fo run the call. We will refer
to this subaction as the activation action. Al activity at the target guardian occurs on behalf
of the activation action or one of its descendants.

2. The call message is decomposed ino its constituent objects. As part of this process
decode operations are performed on each argument. ¥ any decode terminates with a
failure exception, then the activation action is aborted, and the call terminates with the same
exception.

3. The calied handier is calied within the activation action. This call is like a reguiar procedure
call. The objects obtained from decoding the message are the actual arguments, and they
are bound to the formais via implicit assignments.

4. If the handler terminates by executing an abort retum or an abort signal statement (see
Section 11.1), then all committed descendents of the activation action are aborted. Then
the reply message is constructed by encoding the resul objects, the activation action is

44 Assignment and Calls

aborted, and the reply message is sent to the caller. Otherwise, when the handier
terminates, the reply message is constructed by encoding the result objects, the activation
action commits, and the reply message is sent.to the caller. If one of the calls of encode
terminates with a fadure exception, then the activation action is aborted, and the call
terminates with the same exception.

When the Argus system terminates a call with the unavaidable exception, it is possible that the
activation action and/or some of its descendants are actually running. This could happen, for exampie, if
the network partitions. These running processes are called "orphans”. The Argus system makes sure
that orphans will be aborted before they can view inconsistent data (see Section 2.5).

8.4. Creator Calls

Creators are called to cause new guardians 1o come into exisience. As part of the call, the node at
which the newly created guardian will be located may be specified. ¥ the node is not specified, then the
new guardian is created at the same node as the caller of the creator. The form of a creator call is:

primary ([expression, ...]) [@ primary]
The primary following the at-sign (@) must be of type node.

A creator call causes two activities to take place. First, a new guardian is created at the indicated
node. Second, the creator is calied as a handier at the newly created guardian. This handler call has
basically the same semantics as the regular handier cali described above.

The Argus system may also cause a creator call to abort with the fallure or unavallable exceptions.
The reasons for such terminations are the same as those for handier calis, and the meanings are the
same: the failure exception means that the call should not be retried, while the unavallable exception
means that the call should not be retried immediately.

8.4.1. Semantics of Creator Calls

The activities carried out in executing a creator call are as follows.
1. The (first) primary is evaluated.

2. The argument expressions are evaluated from left to right.

3. The optional primary following the at-sign is evaiuated to obtain a node object. If this
primary is missing, the node at which the call is taking place is used.

4. A subaction, which we will refer t0 as the call action, is created. ANl subsequent activity
takes place within this subaction. As was the case for handier calls, creators can be called
only from within actions. Acroatorca!byamn-actionkaptomﬂvmmdcms
the calling guardian to crash.

5. A new guardian is created at the indicated node. The creator obtained in step 1 will indicate
the type of this guardian. The selection of a particular load image for this type will occur as
discussed in Section 3.3.

6. As was the case for handier calis, if the system cannot communicate with the indicated
node, the creator call will terminate with the unavaiable exception. If the system is unable

8.4.1 Semantics of Creator Calis 45

to determine what implementation to load, or if there is no implementation of the type that
can run on the indicated node, or i the manager of the node refuses to aliow the new
guardian to be created, the creator call will terminate with the faflure exception. In either
case the call action will be aborted.

7. A remote call is now performed to the creator. This call has the same semantics as
described for handier calis above in steps 4 through 9 of the activities at the calling node
and also steps 1 through 4 of activities at the called node. However, ¥ either the call action
or the activation action aborts, the newly created guardian will be destroyed.

For example, suppose we execute the creator call
x: G = G$create(3) @ n
where G is a guardian type, n denotes an object of type node, and create has header
create = creator (n: int) returns (G) signais (not_possible(string))
The system will select an implementation of G that is suitable for use at node n, and will then create a
guardian at node n running that implementation. Next creafe (3) is performed as a handier call at that
new guardian. I create retums, then the assignment to x will occur, causing x to refer to the new
guardian that create retumed; now we can call the handiers provided by G. The exceptions that can be
signalied by this call are not_possible, failure, and unavaliable. An example of a cail that handies all
these exceptions Is:
x: G .= G$create (3) @ n
except when not_possible (s: string): ...
when failure (8. string): ...

when unavailable (s: string): ...
end

Creators are described in more detail in Section 13.

46

9 Expressions 47

9. Expressions

An expression evaluates to an object in the Argus universe. This object is said to be the result or value
of the expression. Expressions are used to name the object to which they evaluate. The simplest forms
of expressions are literals, variables, parameters, equated identifiers, equate module references,
procedure, iterator, and creator names, and self. These forms directly name their result object. More
complex expressions are built up out of nested procedure calis. The result of such an expression is the
value returned by the outermost call.

9.1. Literals

Integer, real, character, string, boolean and null kterals are expressions. The type of a literal
expression is the type of the object named by the literal. For example, true is of type bool, “abc” is of
type string, etc. (see the end of Appendix | for details).

9.2. Variables

Variables are identifiers that denote objects of a given type. The type of a variable is the type given in
the declaration of that variable. An attempt to use an uninitialized variable as an expression is a
programming error and causes the guardian to crash.

9.3. Parameters

Parameters are identifiers that denote constants supplied when a parameterized module is instantiated
(see Section 12.5). The type of a parameter is the type given in the declaration of that parameter. Type
parameters cannot be used as expressions.

9.4. Equated Identifiers
Equated identifiers denote constants. The type of an equated identifier is the type of the constant

which it denotes. Iidentifiers equated to types, type__sets, and equate modules cannot be used as
expressions.

9.5. Equate Module References
Equate modules provide a named set of equates (see Section 12.4). To use a name defined in an
equate module as an expression, one writes:
reference $ name
where
reference .=
| idn[actual_parm, ...]
| reference $ name
The type of a reference is the type of the constant which & denotes. identifiers equated fo types,
type_sets, and equate modules cannot be used as expressions.

9.8 Bind 49

The evaiuation of a bind expression proceeds by first evaluating the entity and then evaluating, from
left to right, any bind__angs that are expressions. The entlly may evaluate to a procedure, iterator,
handier, or creator object. Suppose that the entity is a procedure or terator object. (Creator and handler
bindings are discussed below.) Then the result is formed by binding the argument objects to the
corresponding formals of the entity to form a closure; note that the procedure or terator is not called when
the bind expression is evaluated. When the closure is caled, the object denoted by the entity is passed
all the bound objects and any actual arguments supplied in the call, all in the corresponding argument
positions.

For example, suppose we have.
p = proc(x: T, y: Int, w: S) returns(R) signais(too_big)
Then
qQ=bindp(*,3+4,")
produces a procedure whoge type is proctype(7, S) retums() signais(too_big) and assigns tto q. A
call of q(a, b) is then equivalent to the call p(a, 7, b).

Bound routines will be stored in stable storage if they are accessible from a stable variable (see
Section 13.1). In this case the entity and the bind_args should denote atomic objacts.

There is only one instance of a routine’s own data for each parameterization; thus all the bindings of a
routine share ks own data, ¥ any (see Section 12.7). Each binding is generally a new object; thus the
relevant equal operation may treat syntactically identical bindings as distinct.

The semantics of binding a creator or handier are similar 1o binding a procedure or iterator; the
differences arise from argument transmigsion. Encoding of bound argument objects happens when the
bind expression is evaluated and sharing is only preserved among objects bound at the same time (see
Section 14). In more detall, the evakiation of a bind expression proceeds by first evaluating the entity
and then evaluating, from left to right, any bind_arps that are expressions. Then the argument objects
are encoded, from left to right, preserving sharing among these objects. The result is formed by binding
the encoded argument objects to the corresponding formais of the entity to form a closure. Note that the
entity is not called when the bind expression is evaluated.

When the closure is called, first any other arguments are evaluated and encoded (not sharing with the
bound objects) and then the call to the entity is initiated. Decoding of the arguments at the called
guardian is done in reverse of the order of encoding; that is, other arguments are decoded before bound
arguments and the most recently bound arguments are decoded first. Sharing is preserved on decoding
only among groups of bound arguments and among the other arguments, not between groups.
Thereatfter the call proceeds as normaily.

For example, if we execute

h1 = bind h(x, y, *)
h1(z)

50 Expressions

then sharing of objects between x and y will be preserved by trangsmission, but sharing will not be
preserved between xand zor yand z.

Closures can be used in equates, provided all the expressions are constants (see Section 7.2.2).
However, a handler cannot appear in an equate, since & is not a constant.

9.9. Procedure Calls
Procedure calls have the form:

primary ([expression , ...])
The primary is evaluated to obtain a procedure object, and then the expressions are evaluated left to right
to obtain the argument objects. The procedure is called with these arguments, and the object returned is
the result of the entire expression. For more discussion see Section 8.

Any procedure call p(E,, ... E,) must satisfy two constraints to be used as an expression: the type of p
must be of the form:
proctype (T,, ..., T,) returns (R) signais (...)
and the type of each expression E must be included in the corresponding type 7. The type of the entire
call expression is given by R.

9.10. Handler Calls
Handller calls have the form:

primary ([expression, ...])
The primary is evaluated 10 obtain a handler object, and then the expressions are evaluated left to right to
obtain the argument objects. The handier is then called with these arguments as discussed in Section
8.3. The following expressions are exampies of handier calls:

h(x)
info_guardwho_is_user("john", "doe")
dow_jones.info("XYZ Corporation”)

Any handler call iE,, ... E,) must satisfy the following constraints when used as an expression. The
type of h must be of the form:
handiertype (T,, ... T,) returns (R) signais (...)
and the type of each expression £ must be included in the corresponding type 7;. The type of the entire
call expression is given by R.

As explained in Section 8.3, the execution of a handler call stants by creating a subaction. Therefore
an attempt to call a handier from a process that is not running an action is a programming error and will

cause the calling guardian to crash. This crash occurs after afl of the component expressions have been
evaluated.

et g iR L SR o Dbl Al R R T T TR T s R et e

9.11 Creator Calls 51

9.11. Creator Calls
Creator calls have the form:

primary ([expression, ...]) [@ primary]
The first primary is evaluated to obtain a creator object, the argument expressions are evaluated left to
right to obtain the argument objects, and then the primary following the at-sign (@), I present, is
evaluated to obtain a node object. If the primary following the at-sign is omitted, then nodeS$here() is
used. The guardian is then created at that node, and the creator called, as discussed in Section 8.4. The
following are examples of creator calls:

mailer$create() @ n
spooler{devtype]$create()

A creator call ¢(E,,...,E,)@n must satisfy the following constraints when used as an expression. The
type of ¢ must be of the form:
creatortype (T,,....T,) retums (R) signais (...)
where each T; includes the type of the corresponding expression E. N must be of type node. The type
of the entire call expression is given by R.

As with handler calls, an attempt to call a creator from a process that is not running an action will cause
the calling guardian to crash after all component expressions have been evaluated.

9.12. Selection Operations

Selection operations provide access to the individual elements or components of a collection. Simple
notations are provided for calling the fefch operations of array-iike types, and the get operations of record-
like types. In addition, these "syntactic sugarings” for selection operations may be used for user-defined
types with the appropriate properties.

9.12.1. Element Selection
An element selaction expression has the form:
primary [expression]
This form is just syntactic sugar for a call of a fetch operation, and is computationally equivalent to:
T$tetch(primary, expression)
where T is the type of the primary. T must provide a procedure operation named fefch, which takes two
arguments whose types inckude the types of primary and axptmn,andwmchmaslmb result.

9.12.2. Component Selection
The component selection expression has the form:
primary . hame
This form is just syntactic sugar for a call of a get_name operation, and is computationally equivalent to:
T$get_name(primary)
where T is the type of primary. T must provide a procedure operation named gef _name, that takes one

52 Expressions

argument and returns a single resuit. Of course, the type of the procedure’s argument must include the
type of the primary.

9.13. Constructors
Constructors are expressions that enable users to create and initiaize sequences, arrays, atomic
arrays, structures, records, and atomic records. There are no constructors for user-defined types.

9.13.1. Sequence Constructors
A sequence constructor has the form:

type_spec $ [[expression , ...]]
The type_spec must name a sequence type: sequence{7]. This is the type of the constructed sequence.
The expressions are eévaluated to obtain the elements of the sequence. They correspond (left to right) to
the indexes 1, 2, 3, etc. For a sequence of type sequence|7], the type of each element expression in the
constructor must be included in T.

A sequence constructor is computationally equivalent t0 a sequence new operation, followed by a
number of sequence addh operations.

9.13.2. Array and Atomic Array Constructors
An array or atomic array constructor has the form:

type_spec $ [[expression :] [expression , ...] 1

The lype_spec must name an array or atomic array type: array[7] or atomic_array{7]. This is the type of
the constructed array. The optional expression preceding the colon (:) must evaluate 1o an integer, and
becomes the low bound of the constructed array or atomic array. |f this expression is omitted, the low
bound is 1. The optional list of expressions is evaluated 10 obtain the elements of the array. These
expressions cofrrespond (left to right) to the indexes low_bound, low_bound+1, low_bound+2, etc. For an
array or atomic array of type array{7] or atomic_array{7], the type of each element expression in the
constructor must be included in T. A constructor of the form array{7]${] has a low bound of 1 and no
elements.

An array constructor is computationally equivalent to a create operation, followed by a number of addh
Operations.

9.13.3. Structure, Record, and Atomic Record Constructors
A structure, record, or atomic record constructor has the form:
type_spec $ { field , u.. }
where
field .i= name , expression
Whenever a field has more than one name, it is equivalent o a sequence of fiekis, one for each name.
Thus, if A =record] a: Int, b: Int, c: Int], then the following two constructors are equivalent:

9.13.3 Structure, Record, and Atomic Record Constructors 53

R${a, b:p(), ¢:9}
R${a:p(), b:p{). c:9}

In the following we discuss only record constructors; structure and atomic record constructors are
similar. In a record constructor, the type specification must name a record type: record(S,.7,, ..., S,'T,].
This is the type of the constructed record. The component names in the field list must be exactly the
names S, ..., S,, although these names may appear in any order. The expressions are evakuated left to
right, and there is one evaluation per component name even ¥ several component names are grouped
with the same expression. The type of the expression for component S; must be included in 7, The
results of these evaluations form the components of a newly constructed record. This record is the value
of the entire constructor expression.

9.14. Prefix and Infix Operators

Argus allows prefix and infix notation to be used as a shorthand for the operations listed in Table 9-1.
The table shows the shorthand form and the computationally equivalent expanded form for each
operation. For each operation, the type T is the type of the first operand.

Table 9-1: Prefix and Infix Operators: shorthands and expansions

Shorthand form Expansion
expr, ** expr, T$power(expr,, expr,)
expr, // expr, TS$mod(expr,, 6xpr,)
expr, / expr, T$div(expr,, expr,)
expry * expr, TS$mul(expr,, expr,)
expr, || expr, TSooncat(expr,, expry)
expr, + expr, TSadd(expr,, expr,)
expry — expr, TSaub(expr,, 6xpr,)
expry < expr, T$k(expr,, oxpr,)
expr, <= 8xpr, T$le{expr,, expr,)
expry = éxpr, T$equak{expr,, &Xpr,)
6Xpry >= 8Xpry TSge{expr,, expr,)
expr, > expr, T$gt{expr,, expr,)
expr; ~< expr, ~ (expr, < 6xpry)
e;g, ~<--e expr, ~ Eexpr1 <= oxpr)z)
expr, ~= expf, ~ \OXpry = 8Xpr,
eXpry ~>w= eXpr, ~ (expry >= 8Xpr,)
expr, ~> expr, ~ (expr, > expr,)
expr, & expr, TSand(expr,, expr,)
expr, | expr, TSor{expry, expry)

- expr m.‘(:

~ expr TSM(OX:OM

Operator notation is used most heavily for the built-in types, but may be used for user-defined types as
well. When these operations are provided for user-defined types, they should be free of side-effects, and

54 Expressions

they should mean roughly the same thing as they do for the builk-in types. For example, the comparison
operations should only be used for types that have a natural partial or total order. Usually, the
comparison operations (1, le, equal, ge, gi) will be of type

proctype (T, T) returns (bool)
the other binary operations (e.g., add, sub) will be of type

proctype (T, T) returns (T) signais (...)
and the unary operations will be of type

proctype (T) retumns (T) signals (...

9.15. Cand and Cor
Two additional binary operators are provided. These are the conditional and operator, cand, and the

conditional or operator, cor. The result of evaluating:

expression, cand expression,
is the boolean and of expression, and expression,. However, i expression, is faise, expression, is
never evaluated. The result of evaluating:

expression, cor expression,
is the boolean or of expression, and expression,, but expression, is not evaluated unless expression, is
faise. For both cand and cor, expression, and expression, must have type bool.

Because of the conditional expression evaluation involved, uses of cand and cor are not equivalent to
any procedure call.

9.16. Precedence

When an expression is not fully parenthesized, the proper nesting of subexpressions might be
ambiguous. The following precedence rules are used to resoive such ambiguity. The precedence of
each infix operator is given in the table below. Higher precedence operations are performed first. Prefix
operators always have precedence over infix operators.

Table 9-2: Precedence for infix Operators

Precedence Operators

5 o

4 L /]

3 o=

2 <= = >® > ~< ~<m ~= ~>= ~>
1 & cand

o
g

9.16 Precedence 55

The order of evaluation for operators of the same precedence i left to right, except for **, which is right
to left.

9.17. Up and Down

There are no implicit type conversions in Argus. Two forms of expression exist for explicit conversions.
These are:

up (expression)
down (expression)

Up and down may be used only within the body of a cluster operation (see Section 12.3). Up changes
the type of the expression from the representation type of the cluster to the abstract type. Down converts
the type of the expression from the abstract type to the reprasentation type.

56

10. Statements
i this seclion, we discuss Mot of the stsiemenie of Ae, Suphasising the

10.1. Calls
A call sistement may be ueed 10 Gal & Pracackrs, handier, or oresior. For procedures and handiens its
form is the same as & call supssssion: A |
primary { [supression , ... J)
mmmncmxmm mmﬁmmmmu
inchuded in the type of S seny el Sagemand. . The-Jsoatwe or handier may or mey not
returm resulte; R tlovs fuluen SeRuRS, they a9 |

For crestor calis the syntax is slwillar, but one can optiea
1o be created: ’
peimary ([expression , ..]) { @ petmay]
The primary iolowing She ot () Sk Us of type Aad.

58 Statements

10.2. Update Statements

Two special statements are provided for updating components of record and array-like objects. In
addition they may be used with user-defined types with the appropriate properties. These statements
resembile assignments symactically, but are actually call statements.

10.2.1. Element Update
The element update statement has the form;
primary [expression,] := expression,
This form is merely syntactic sugar for a call of a store operation; it is equivalent to the call statement:
T$store(primary, expression,, expression,)
where T is the type of the primary. T must provide a procedure named sfore that takes three arguments
whose types include those of primary, expression,, and expression,, respectively.

10.2.2. Component Update
The component update statement has the form:

primary .« name = expression
This form is syntactic sugar for a call of a set_ operation whose name is formed by attaching set_ to the
name given. For exampie, if the name is 7, then the statement above is equivaient to the call statement:

T$set_f(primary, expression)
where T is the type of the primary. T must provide a procedure operation named set_f, where f is the
name given in the component update statement. This procedure must take two arguments whose types
include the types of primary and expression, respectively.

10.3. Block Statement
The block statement permits a sequence of statements to be grouped together into a single statement.
its form is:
begin body end
Since the syntax already permits bodies ingide control statements, the main use of the block statement is
to group statements together for use with the except statement (see Section 11).

10.4. Fork Statement
A fork statement creates an autonomous process. The fork statement has the form:
fork primary ([expression, ...])
where the primary is a procedure object whose type has no results or signals (see Section 12.1). The
type of each actual expression must be included in the type of the corresponding formal.

Execution of the fork statement starts by evaluating the primary and actual argument expressions from
left to right. Any exceptions raised by the evaluation of the primary or the expressions are raised by the
fork statement. If no exceptions are raised, then a new process is created and execution resumes after

10.4 Fork Statement : 59

the fork statement in the old process. The new process starts by calling the given procedure with the
argument objects. This new process terminates ¥ and when the procedure call does. However, if the
guardian crashes the process goes away (ke any other process).

Note that the new process does not run in an action, although the procedure cailed can start a
topaction if desirad. There is no mechanism for waiting for the termination of the new process. The
procedure calfied in a fork statement cannot retum any results or signal any exceptions.

10.5. Enter Statement
Sequential actions are created by means of the emter statement, which has two forms:

enter topaction body end
and

enter action body end
The topaction qualifier causes the body to execute as a new top-level action. The action qualifier
causes the body to execute as a subaction of the current action; an attempt to execute an enter action
statement in a process that is not executing an action Is a programming ervor and causes the guardian to
crash. When the body terminates, i does so either by committing or aborting. Normal compietion of the
body results in the action committing. Statements that transfer control out of the enter statment (exit,
leave, break, continue, return, signal, and resignal) normally commit the action unless are prefixed
with sbort (e.g., abort exit). Two-phase commit of a topaction may fail, in which case the enter
topaction statement raises an unavailable exception.

10.6. Coenter Statement
Concurrent actions and processes are created by means of the coenter statement:
coenter coarm { coarm } end
where

coarm ::= armiag [foreach dec!, ... In call]
body

armtag «.= action
| topaction
| process

Execution of the coenter starts by creating all of the coarm processes, sequentially, in textual order. A
foreach clause indicates that muitiple instances of the coarm will be created. The call in a foreach
clause must be an kerator call. At each yield of the Rerator, a new coarm process is created and the
objects yielded are assignhed to newly declared variables in that process. (This implick assignment must
be legal, see Section 8.1.) Each coarm process has separate, local instances of the variables declared in
the foreach clause.

60 Statements

The process executing the coenter is suspended until after the coemter is finished. Once all coarm
processes are created, they are started simuitaneously as concurrent siblings. Each coarm instance runs
in a separate process, and each coarm with an armiag of topaction or action executes within a new
top-level action or subaction, respectively. An attempt to execute a coemer with a process coarm when
in an action, or to execute a coenter with an action coarm when not in an action is an eror and will
cause the guardian to crash (see Table 10-1).

Tabie 10-1: Legality of coenter statements.

‘ process executing the coenter is:
armtag not in an action running an action
action not legal logai
topaction legal legal
process legal not legal

A simple example making use of foreach is:

coenter action foreach i: Int in Int$from_to (1, 5)
p ()
end

which creates five processes, each with a local variable /, having the value 1 in the first process, 2 in the
second process, and so on. Each process runs in a newly created subaction. This statement is legal
only if the process executing it is running an action.

A coarm may terminate without terminating the entire coenter (and sibling coarms) either by normal
completion of its body, or by executing a leave statement (see Section 10.7). The commit of a coarm
declared as a topaction may terminate in an unavailable exception if two-phase commit fails. Such an
exception can onty be handled outside the coenter statement, and thus will force termination of the entire
coenter (as explained below). '

A coarm may also terminate by transferring control outside the coenter statement. When such a
transfer of control occurs, the following steps take place.
1. Any containing statements are terminated divisibly, to the outermost level of the coarm, at
which point the coarm becomes the controliing coarm.

2. Once there is a controlling coarm, every other active coarm will be terminated (and abont if
declared as an action) as soon as it leaves all seize statements; the controlling coarm is
suspended until all other coarms terminate.

3. The controlling coarm then commits or aborts i deciared as an action; ¥ declared as a
topaction and the two-phase commit fails, an unavailable exception is raised by the coenter
statement.

4. Finally, the entire coenter terminates, and control flow continues outside the coenter
statement.

Divisible termination implies, for instance, that a nested topaction may commit while its parent action
aborts.

10.6 Coenter Statement 61

A simple example of early termination is reading from a replicated database, where any copy can
supply the necessary information:

coenter action foreach db: database in all_repiicas (...)
return(database$read (db))
end

When one of these coarms completes first, it tries to commit itse¥ and abort the others. The aborts take
place immediately (since there are no selze statements); it is not necessary for the handler calls to finish.
It is possible that some descendants of an aborted coarm may be running at remote sites when the coarm
aborts; the Argus system ensures that such orphans will be aborted before they can make their presence
known or detect that they are in fact orphans (see Section 2.5).

10.7. Leave Statement
The leave statement has the form:
[abort] leave
Executing a leave statement terminates the innermost enter statement or coenter coarm in which it
appears. If the process terminated is an action, then it commits uniess the abort qualifier is present, in
which case the action aborts. The abortt qualifier can only be used textually within an enter statement or
within an action or topaction coarm of a coenter statement.

Note that uniike the other control flow statements, leave does not affect concurrent siblings in a
coenter (see Section 10.6).

10.8. Return Statement
The form of the retum statement is:

[abort] retumn [(expression , ...)]
The return statemnent terminates execution of the containing routine. If the return statement occurs in an
fterator no results can be retumed. If the return statement is in & procedure, handier, or creator the type
of each expression must be included in the corresponding retum type of the routine. The expressions (if
any) are evaluated from left fo right, and the objects obtained become the results of the routine.

if no abort qualifier is present, then all containing actions (¥ any) terminated by this statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Note that unilike the
leave statement, return will abort concurrent silings if executed within a coarm of a coenter statement
(see Section 10.6). The abort qualifier can only be used textually within an enter statement, an action or
topaction coarm of a coenter statement, or the body of a handier or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,
but after all control flow and nested action termination. If encoding of any result object terminates in a
failure exception, then the activation action aborts and the handler or creator terminates with the same
exception.

62 Statements

10.9. Yield Statement
The form of a yleld statement is:
yleld [(expression , «..)]
The yleld statement may occur only in the body of an Rerator. The effect of a yleld statement is to
suspend execution of the iterator invocation, and return control to the calling for statement or foreach
clause. The values obtained by evaluating the expressions (left 1o right) are passed back to the caller.

The type of each expression must be included in the comesponding yield type of the iterator. Upon
resumption, execution of the iterator continues at the statement following the yleld statement.

A yleld statement cannot appear textually inside an enter, cosnter, or selze statement.

10.10. Conditional Statement
The form of the conditional statement is:
if expression then body

{ otselt expression then body }

[eise body]

end
The expressions must be of type bool. They are evaluated successively until one is found to be true.
The body corresponding 1o the first true expression is executed, and the execution of the i statement
then terminates. If there is an else clause and ¥ none of the expressions is true, then the body in the
eise clause is executed.

10.11. While Statement
The while statement has the form:
while expression do body end
its effect is to repeatedly execute the body as long as the expression remains true. The expression must
be of type bool. If the value of the expression is true, the body is executed, and then the entire while
statement is executed again. When the expression evaluates to false, execution of the while statement
terminates.

10.12. For Statement

An Rerator (see Section 12.2) can be called by a for statement. The Rerator produces a sequence of
items (where an item is a group of zero or more objects) one item at a time; the body of the for statement
is executed for each item in the sequence.

The for statement has the form:

for [decl , ...] In calt do body end
or

for [idn, ...] in call do body end

10.12 For Statement 63

The call must be an iterator call. The second form (with an /idn list) uses distinct, previously declared
variables to serve as the loop variables, while the first form (with a dec/ list) form introduces new
variables, local to the for statement, for this purpose. In either case, the type of each variable must
include the corresponding yield type of the called kerator (see Section 12.2) and the number of variables
must also match the yieid type.

Execution of the for statement begins by calling the iterator, which either yields an tem or terminates.
If it yields an item (by executing a yleld statement), its execution is temporarily suspended, the objects in
the item are assigned to the loop variables, and the body of the for statement is executed. The next
cycle of the loop is begun by resuming execution of the Rerator after the yleld statement which
suspended it. Whenever the iterator terminates, the entire for statement terminates.

10.13. Break and Continue Statements
The break statement has the form:
[abort] break
its effect is to terminate execution of the smallest for or while loop statement in which it appears.
Execution continues with the statement following that loop.

The continue statement has the form:
[abort] continue
its effect is to start the next cycle (if any) of the smallest for or while loop statement in which it appears.

Terminating a cycle of a loop may also terminate one or more containing actions. ¥ no abort qualifier
is present, then all these terminated actions (if any) are committed. if the abort qualifier is present, then
all of the terminated actions are aborted. Uniike leave, break and continue will abort concurrent sibling
actions when control flow leaves a containing coenter (see Section 10.8).

The abort qualifier can only be used textually within an enter statement or an action or topaction
coarm of a coenter statement.

10.14. Tagcase Statement

The tagcase statement can be used to decompose oneof and variant objects; atomic_variant objects
can be decomposed with the tagtest or tagwalt statements. The decomposition is indivisible for variant
objects; thus, use of the tagcase statement for variants is not equivalent to using a conditional statement
in combination with is_and value_ operations (see Section 11.15). '

The form of the tagcase statement is:
tagcase expression
tag_arm { tag_arm }
[others : body]
ond
where

64 Statements

tag_arm ::= tag name , ... [(idn: type_spec)] : body
The expression must evakiale 10 a oneof or varianmt object. The tag of this object is then matched
against the names on the fag_arms. When a match Is found, if a declaration (idn: type_spec) exists, the
value component of the object is assigned to the new local variable idn. The matching body is then
executed; idn is defined only in that body. If no match is found, the body in the others arm is executed.

In a syntactically correct tagcase statement, the following three constraints are satisfled.
1. The type of the expression must be some oheof or variant type, T.

2. The tags named in the tag_arms must be a subset of the tags of 7, and no tag may occur
more than once.

3. If all tags of T are present, there is no others arm; otherwise an others arm must be
present.
On any tag__arm containing a declaration (idn: type__spec), type__spec must include the type(s) of 7
corresponding to the tag or tags named in that tag arm.

10.15. Tagtest and Tagwait Statements

The tagtest and tagwait statements are provided for decomposing atomic_variant objects, permitting
the selection of a body based on the tag of the object to be made indivisibly with the testing or acquisition
of specified locks.

10.15.1. Tagtest Statement
The form of the tagtest statement is:
tagtest expression
atag_arm { atag_arm }
[othm:body]
end
where ’
atag_arm :i= tag_kind name , ... [(idn: type_spec)] : body
tag_kind ..=
| wiag
The expression must evaluate to an atomic_ variant object. if a read lock couid be obtained on the
atomic_variant object by the current action, then the tag of the object is matched against the names on
the atag_amms; otherwise the others arm, if present, is executed. if a matching name is found, then the
tag_kind is considered.
o If the tag_kind is tag, a read lock is obtained on the object and the match is complete.

o lf the tag_kind is wtag and the current action can obtain a write lock on the object, then a
write lock is obtained and the match is complete.

When a complete match is found, ¥ a declaration (idn: type__spec) exists, the value component of the
object is assigned to the new local variable idn. The matching body is then executed; idn is defined only
in that body. The entire matching process, inchuding testing and acquisition of locks, is indivisible.

10.15.1 Tagtest Statement 65

If a complete match is not found, or the object was not readable by the action, then the others arm (if
any) is executed; i there is no others arm, the tagteet statement terminates. Iif no compiete match is
found, then no locks are acquired.

The tagtest statement will only obtain a lock if it is possible to do so without "waiting”. For example,
suppose that the internal state of the atomic_ variant indicates that some previous action acquired a
conflicting lock. This action may have since aborted, or may have committed up to an ancestor of the
action executing the tagtest, but determining such facts may require system-level communication to other
guardians. In this case the tagtest statement may give misleading information, because it may not
indicate a match. Apparent anomalies in testing locks may occur even K the action executing the tagtest
"knows" that the lock can be acquired, so that the use of tagtest to avoid deadlocks or long delays may
result in excessive aborts.

10.15.2. Tagwait Statement
The form of the tagwak statement is:
tagwalt expression

atag_am { atag_am }

end
Execution of the tagwalt statement proceeds as for the tagtest statement, but if no complete match is
found, or if the object is not readable by the current action, then the entire matching process is repeated
(after a system-controlled delay), until a complete match is found. Although there is no others am in a
tagwalt statement, all tag names do not have to be listed.

10.15.3. Common Constraints

Tagtest and tagwait statements may be executed only within an action. An attempt fo execute a
tagtest or tagwalt statement in a process that is not executing an action is an ermor and will cause the
guardian to crash afler evaluating the expression.

In a syntactically correct tagtest or tagwalt statement, the following three constraints are satisfied.
1. The type of the expression must be some atomic_variant type, T.

2. The tags named in the afag_arms must be a subset of the tags of T, and no tag may occur
more than once.

3. Finally, on any atag_arm containing a deciaration (idn: type_spec), type_spec must inciude
the type(s) specified as corresponding in T to the tag or tags named in the atag_arm.

A simple example of a tagtest statement is garbage collecting the elements of an aray that are in the
dequeued state:

e e ey e e i

the oulenmost seize tenminates.

it DR AN A S e e T A e S R R R e

10.18 Terminate Statement 67
10.18. Terminate Statement
The terminate statement may occur only within a guardian definktion (see Sect 13). The form of a
terminate statement is:
terminate

When executed within an action, its effect is o cause the eventual destruction of the guardian after the
enclosing action commits to the top. If a process attempls 1o execute terminate while not running an
action, a topaction is created to execute the terminate and immediatety cornmit.

Let A be the action that is executing the Wrminate. The effect of this statement ig the following:
1. Action A must walt until the action that crested the gusndian is commilied reiative 10 A. In
the case of a permanent guardian whose croation has aommiied 1o the top there will be no
wait, but for a recently created guarndian there may be a delay.
2. it muRiple processes are attempling to execute ferminale statements, at most one at at
time may proceed 10 the next step.

3. if A commits 10 the top, the guardian will be desiroyed at some tne after topaction commit.
if some ancestor of A aborts, however, the guardian will be ynaflected. The guardian is
also unaffected during the time between A execuling temningle and A commilting 1o the
top.

in order to avoid serialization problems, creation or destruction of a guardian must be synchronized
with use of that guardian via atomic objects such as the catalog (see Section 3.4).

68

11 Exception Handling and Exits 69

11. Exception Handling and Exits

A routine is designed to perform a certaln task. However, in some cases that task may be impossible
to perform. In such a case, instead of retumning normally (which would imply successful performance of
the intended task), the routine should notify its caller by signaling an exception, consisting of a descriptive
name and zero or more result objects.

The exception handling mechanism consists of two parts: signalling exceptions and handling
exceptions. Signalling is the way a routine notifies its caller of an exceptional condition; harniling is the
way the caller responds to such notification. A signalied exception always goes to the immediate caller,
and the exception must be handied in that caller. When a routine signais an exception, the current
activation of that routine terminates and the comresponding call {in the caller) is said to raise the exception.
When a call raises an exception, control immediately transfers to the closest applicable exception
handier. Exception handlers are attached to statements; when execution of the exception handler
completes, control passes 1o the statement following the one 10 which the exception handier is attached.
For brevity, exception handiers will be calied "handiers" in this chapter; these should not be confused with
the remote call handiers of guardians (see Section 13).

11.1. Signal Statement
An exception is signalled with a signal statement, which has the form:
[abort] signai name [(expression , ...)]
A signal statement may appear anywhere in the body of a routing. The execution of a signal statement
begins with evaluation of the expreesions (if any), from left 10 right, to produce a list of excepiion resuils.
The activation of the routine is then terminated. Execution continues in the caller as described in Section
11.2 below.

The exception name must be one of the exception names listed in the routine heading. I the
corresponding exception specification in the heading has the form:
name(Ty, see, T,,)
then there must be exactly n expressions in the signal statement, and the type of the /th expression must
be included in T;.

if no abort qualifier is present, then all containing actions (f any) terminated by this statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Unike the leave
statement, signal will terminate (abort) concurrent sblings i executed within a cosnter statement (see
Section 10.6). The abort qualifier can only be used texiually within an enter statement, an action or
topaction coarm of a coenter statement, or the body of a handier or creator.

Within a handler or creator, the result objects are encoded just before the activation action terminates,
but after termination of all controi flow and nested actions. If encoding of any result object terminates in a
failure exception, then the activation action aborts and the handier or creator terminates with the failure
exception.

70 Exception Handling and Exits

11.2. Except Statement

When a routine activation terminates by signalling an exception, the calied routine is said to raise that
exception. By attaching exception handiers to statements, the caller can specify the action to be taken
when an exception is raised by a call within a statement or by the statement itself.

A statement with handiers attached is called an except statement, and has the form:
statement except { when_handier }
[others_handier]
end
where
when_handler ::= when name , ... [(decl, ...)] : body
| when name , ... (*) : body

others_handler ::= others [(idn : string)] : body
Let S be the statement to which the handiers are attached, and let X be the entire except statement.
Each when__handler specifies one or more exception hames and a body. The body is executed i an
exception with one of those names is raised by a call in S. Each of the names listed in the
when__handlers must be distinct. The optional others__handier is used to handie all exceptions not
explicitly named in the when_handlers. The statement S can be any form of statement, and can even be
another except statement. As an example, consider the following except statement:

m.send_mall{user, my_message)
except when no_such_user: ... % body 1
when unavailable, failure (s: string): ... % body 2
when others (ename: string): ... % body 3
end

This statement handies exceptions arising from a remote call. If the call raises a no__such__user
exception, then "body 1" will be executed. If the call raises a failure or unavailable exception, then "body
2" will be executed. Any other exception will be handied by "body 3."

if, during the execution of S, some call in S raises an exception E, control transfers to the textually
closest handler for E that is attached to a statement containing the call. When execution of the handier
completes, control passes to the statement following the one to which the handler is attached. Thus i the
closest handler is attached to S, the statement following X is executed next. If execution of S completes
without raising an exception, the attached handiers are not executed.

An exception raised inside a handler is treated the same as any other exception: control passes to the
closest handler for that exception. Note that an exception raised in some handier attached to S cannot be
handied by any handier attached io S; the exception can be handied within the handier, or it can be
handied by some handler attached to a statement containing X. For example, in the following except
statement:

11.2 Except Statement (4l

times3_pilus1(a)
except when limits:
a=a+a
when overtiow: ... % body 2
end

any overfiow signal raised by the expression a + a will hot be handied in "body 2,” because this overflow
handler is not in an except statement attached to the assignment statement a =3 + a.

We now consider the forms of exception handlers in more detall. The form:
when name , ... [(dec!, ...)] : body
is used to handle exceptions with the given names when the exception results are of interest. The
optional declared variables, which are local to the handier, are assigned the exception results before the
body is executed. Every exception potentially handied by this form must have the same number of resulls
as there are declared variables, and the types of the variables must include the types of the results. The
form:

when name , ... (*) : body
handies all exceptions with the given names, regardiess of whether or not there are exception results; any
actual results are discarded. Using this form, exceptions with differing numbers and types of results can

be handied together.

The form:

others [(idn : string)] : body
is optional, and must appear last in a handler list. This form handies any exception not handied by other
handlers in the list. If a variable is declared, t must be of type string. The variable, which is local to the
handier, is assighed a lower case string represerting the actual exception name; any results are
discarded.

Note that number and type of exception results are ignored when matching exceptions to handiers;
only the names of exceptions are used. Thus the following is illegal, in that int$div signals zero_ divide
without any results (see Section 11.4), but the closest handier has a declared variable:

begin
y:ilt =0
x:int=3/y
except when zero_divide (z: Int): return end
end
except when zero_divide: return end

A call need not be surrounded by except statements that handie all potential exceptions. In many
cases the programmer can prove that a particular exception will not arise; for example, the call
Int$div(x, 7) will never signal zero_divide. However, if some call raises an exception for which there is no
handler, then the guardian crashes due to this error®.

%The implementation of the Argus should log unhandied exceplions in some fashion, 10 aid later debugging. During debugging,
an unhandied exception wouki be trapped by the debugger before the crash.

72 Exception Handling and Exits

11.3. Resignal Statement
A resignal statement is a syntactically abbreviated form of exception handling:

statement [abort] resignal name , ...
Each name listed must be distinct, and each must be one of the condition names listed in the routine
heading. The resignal statement acts like an except statement containing a handier for each condition
named, where each handler simply signals that exception with exaclly the same results. Thus, i the
resignal clause names an exception with a specification in the routine heading of the form:

name(T,, ees, Tp)
then eftectively there is a handler of the form:

when name (x,: T, ..., X,: T,): [abort] signat name(x, ..., x,)
which has an abort qualifier ¥ and only ¥ the resignal statement did. As for an expiicit handier of this
form, every exception potentially handied by this implick handler must have the same number of resuits
as declared in the exception specification, and the types of the results must be included in the types listed
in the exception specification.

If no abort qualifier is present, then all containing actions (if any) terminated by this statement are
committed. If the abort qualifier is present, then ali terminated actions are aborted. Uniike the leave
statement, resignal will abort concurrent siblings ¥ executed within a cosnter statement (see Section
10.6). The abort qualifier can only be used textually within an enter statement, an action or topaction
coarm of a cosnter statement, or the body of a handler or creator.

11.4. Exit Statement
An exit statement has the form:

[abort] exit name [(expression , ...)]
An exit statement is similar 10 a sighal statement except that where the signal siatement signals an
exception to the calling routine, the exit statement raises the exception directly in the current routine.
Thus an exit causes a transfer of control within a routing but does not terminate the routine. An
exception raised by an exit statement must be handied expliclly by a containing except statement with a
handier of the form:

when name , ... [(dec!, ...)] : body
As usual, the types of the expressions in the exit statemert must be included in the types of the variables
declared in the handier. The handier must be an expiicit one, i.e., exits 10 the implickt handiers of resignal
statements are illegal.

if no abort qualifier is present, then all containing actions (if any) terminated by the exit statement are
committed. If the abort qualifier is present, then all terminated actions are aborted. Uniike the leave
statement, exit will abort concurrent siblings when control flow leaves a containing coenter statement
(see Section 10.6). The abort qualifier can only be used textually within an enter statement or an action
or topaction coarm of a cognter statement.

11.4 Exit Statement 73

The exit statement and the signal statement mesh nicely to form a uniform mechanism. The signal
statement can be viewed simply as terminating a routine activation; an exit is then performed at the point
of invocation in the caller. (Because this exit is implick, it is not subject to the restrictions on exits listed
above.)

11.5. Exceptions and Actions

A new action is created by a handier call, creator call, enter statement, or action or topaction armof a
coenter statement. In addition, the recover code of a guardian runs as an action. When control flows
out of an action, that action is committed unless action is taken to prevent its committing. To abort an
action, it is necessary to quality control flow statements such as exRt, signal, resignal, and leave with the
keyword abort (see Section 10).

However, there is an additional complication. Not only will expiicit termination of actions by exit,
signal, and resignal statemenis commit actions, but also impiicit termination by flow of control out of an
action body when an exception raised within that body is handied outside the action's body. Thus, if an
exception which is raised by a call within an action is not to commit the action, then it is necessary to
catch the exception within the action. This is particularly important when dealing with topactions. A
common desire is to catch all "unexpected” exceptions, but still have the topaction abort. In this case, the
catch-all exception handier must be placed inside the topaction. However, an unavafable handler must
still be placed outside the topaction, since the two-phase commit may fall.

An action or topaction coarm of a coenter statement will not abort its concurrent siblings when it ends
in either normal completion of its body or by a leave statement. However, if control flows otherwise out of
the coemter statement from within one of the coarms, the entire coenter is terminated as described in
Section 10.6. Thus, a coenter statement should must be used carefully to ensure the proper behavior in
case of exceptions. There may be circumstances where a separate exception handler will have to be
used for each coarm to ensure the proper behavior, even when the exception handiing is identical for
each coarm.

11.6. Failure Exceptions

Argus responds to unhandied exceptions differently than CLU. In CLU, an unhandied exception in
some routine causes that routine to terminate with the failure exception. In Argus, however, an
unhandled exception causes the guardian that is running the routine to crash. Our motivation for this
change is that an unhandled exception is typically a symptom of a programming error that cannot be
handied by the calling routine. Furthermore, crashing the guardian limits the damage that the
programming error can cause.

Procedures and iterators in Argus no longer have an implicit failure exception associated with them.
Instead, such a routine may list fadure explicitly in its signals clause and fallure may have any number
(and type) of exception results. Failure should be used to indicate an unexpecied (and possibly

74 Exception Handling and Exits

catastrophic) failure of a lower-level abstraction, for exampie, when there is a fallure in a type parameter's
routines (for instance in simiiar or copy operations). Ancther example is when there is an unwanted side
effect, such as a bounds exception in arrayfij$e/omenis caused by a mutation of the armay argument.
Various operations of the built-in types signal fafre under such circumstances.

For handiers and creators, fadure is used 1o indicate that a remote call has failed; thus the exception
failure(string) is implick in the type of every handier and creator (see Section 13.5). When a remote call
terminates with the fa/lure exception, this means that not only has this call falled, but that the call is
uniikely to succeed ¥ repeated.

12 Modules 75

12. Modules
Besides guardian modules, Argus has procedure, iterator, cluster, and equate modules.
module ::= { equate } guardian

| { equate } procedure
| { equate } kerator
| { equate } cluster
| { equate } equates

Guardians are discussed in Section 13, the rest are described below.

12.1. Procedures

A procedure performs an action on zero or more arguments, and when i terminates it retums zero or
more results. A procedure implements a procedwral abstraction. a mapping from a set of argument
objecis to a set of result objects, with possible modiication of some of the argument objects. A procedure
may terminate in one of a number of conditions; one of theses is the normal condition, while others are
exceptional conditions. Differing numbers and types of results may be retumed in the different conditions.

The form of a procedure is:
idn = proc [parms] args [retumns] [signais] [where]
routine_body
end idn
where
args =([dect,...])
returns =.= returns (type_spec, ...)
signals «== signals (exception , ...)
exception 2= name [(type_spec , ...)]
routine_body ti={ equate }
{ own_var }
{ statement }

In this section we discuss non-parameterized procedures, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The heading of a procedure describes the way in which the procedure communicates with its caller.
The args clause specifies the number, order, and types of arguments required to call the procedure, while
the returns clause specifies the number, order, and types of results returned when the procedure

terminates normally (by executing a retum statement or reaching the end of its body). A missing retumns
clause indicates that no results are returned.

The signals clause names the exceptional conditions in which the procedure can terminate, and
specifies the number, order, and types of result objects returned in each condition. AN names of

76 Modules

exceptions in the signals clause must be distinct. The idn following the end of the procedure must be the
same as the idn naming the procedure.

A procedure is an object of some procedure type. For a non-parameterized procedure, this type is
derived from the procedure heading by removing the procedure name, rewriting the formal argument
declarations with one idn per decl, deleting the idns of all formal arguments, and finally, replacing proc by
proctype.

The call of a procedure causes the introduction of the formal variables, and the actual arguments are
assigned to these variables. Then the procedure body is executed. Execution terminates when a return
statement or a sighal siatement is executed, or when the textual end of the body is reached. If a
procedure that should return results reaches the textual end of the body, the guardian crashes due to this
error. At termination the result objects, if any, are passed back to the caller of the procedure.

12.2. lterators

An Rterator computes a sequence of iterns, one ilem at a time, where an item is a group of zero or more
objects. In the generation of such a sequence, the compuiation of each item of the sequence is usually
controlied by information about what previous tems have been produced. Such information and the way
it controls the production of tems is local to the Herator. The user of the Rerator is not concermned with
how the items are produced, but simply uses them (through a for staiement) as they are produced. Thus
the ierator abstracts from the detalis of how the production of the items is controlied; for this reason, we
consider an Rerator to implement a control abstraction. Herators are particularly useful as operations of
data abstractions that are collections of objecis (e.g., sets), since they may produce the objects in a
coliection without revealing how the collection is represented.

An iterator has the form:

idn = iter [parms] args [yields] [signais] [where]
routine_body
end idn
where

yields .= ylelds (type_spec , ...)
in this section we discuss non-parameterized iterators, in which the parmns and where clauses are

missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The form of an iterator is similar to the form of a procedure. There are only two differences:

1. An iterator has a yleids clause in its heading in place of the retums clause of a procedure.
The yieids clause specifies the number, order, and types of objecls yiekied each time the
tterator produces the next kem in the sequence. If zero objects are yiekied, then the yields
clause is omitted. The idn foliowing the end of the iterator must be the same as the idn
naming the ierator.

2. Within the iterator body, the ylekd statement is used to present the calier with the next item

12.2 Rterators 77

in the sequence. An Hterator terminates in the same manner as a procedure, but it may not
return any results.

An iterator is an object of some iterator type. For a non-parameterized Rerator, this type is derived from
the iterator heading by removing the iterator name, rewriting the formal argument declarations with one
idn per decl, deleting the idns of all formal arguments, and finally, replacing Rter by Rertype.

An iterator can be called only by a for statement or by a foreach clause in a coemter statement.

12.3. Clusters

A cluster is used to implement a new data type, distinct from any other built-in or user-defined data
type. A data type (or data abstraction) consists of a set of objects and a set of primitive operations. The
primitive operations provide the most basic ways of manipulating the objects; ulimately every
computation that can be performed on the objects must be expressed in terms of the primitive operations.
Thus the primitive operations define the lowest level of observabie object behavior'®,

The form of a cluster is:
idn = cluster [parms] Is opidn , ... [where]

cluster_body
end idn
where
opidn .=
| transmit

cluster_body ::= E equate };op = type_spec { equate }
routm;} routine }

routine =:= procedure
| terator
In this section we discuss non-parameterized clusters, in which the parms and where clauses are
missing. Parameterized modules are discussed in Section 12.5. Own variables are discussed in Section
12.7.

The primitive operations are named by the list of opidns following the reserved word Is. All of the
opidns in this list must be distinct. The idn following the end of the cluster must be the same as the idn
naming the cluster.

To define a new data type, it is necessary to choose a concrete representation tor the objects of the
type. The special equate:

1°Readers not familiar with the concept of data abstraction might read Liskov, B. and Guttag, J., Abstraction and Specification in
Program Deveiopment, MIT Press, Cambridge, 1086.

78 Modules

rep = type_spec
within the cluster body identifies the fype_spec as the concrete representation. Within the cluster, rep
may be used as an abbreviation for this fype_spec.

The identifier naming the cluster is available for use in the cluster body. Use of this identifier within the
cluster body permits the definition of recursive types.

in addition to giving the representation of objects, the cluster must impiement the primitive operations
of the type. One exception to this, however, is the transmit operation. The transmit operation is not
directly implemented by a cluster; instead, the cluster must implement two operations: encode and
decode (see Section 14 for details). The primitive operations may be either procedural or control
abstractions; they are implemented by procedures and iteralors, respectively. Any additional routines
implemented within the cluster are hidden: they are private 1o the cluster and may not be named directly
by users of the abstract type. All the routines must be named by distinct identifiers; the scope of these
identifiers is the entire cluster.

Outside the cluster, the type's objects may only be treated abetractly (i.e., manipulated by using the
primitive operations). To implement the operations, however, it is usually necessary to manipulate the
objects in terms of their concrete representation. It is also convenient sometimes 10 manipulate the
objects abstractly. Therefore, inside the cluster i is possible to view the type’s objects either abstractly or
in terms of their representation. The syntax is defined to specify unambiguously, for each variabie that
refers to one of the type's objects, which view is being taken. Thus, inside a cluster named T, a
declaration:

v:T
indicates that the object referred to by v is fo be treated abstractly, while a declaration:

w:rep
indicates that the object referred to by w is to be treated concretely. Two primitives, up and down, are
available for converting between these two poinis of view. The use of Up permits a type rep object to be
viewed abstractly, while down permits an abstract object fo be viewed concretely. For example, given
the declarations above, the foliowing two assignments are legal:

v = Up{W)
w .= down(v)

Only routines inside a cluster may use up and down. Note that up and down are used merely to inform
the compiler that the object is going to be viewed abstractly or concretely, respectively.

A common piace where the view of an object changes is at the interface to one of the type’s
operations: the user, of course, views the object abstractly, while inside the operation, the object is
viewed concretely. To facilitate this usage, a special type specification, ¢vt, is provided. The use of cvt
is restricted to the args, retums, yields and signals clauses of routines inside a cluster, and may be used
at the top level only (e.g., array{cvt] is illegal). When used inside the args clause, it means that the view
of the argument object changes from abstract to concrete when i is assigned to the formal argument
variable. When cvt is used in the retuns, yields, or signals clause, it means the view of the result object

12.3 Clusters 79

changes from concrete to abstract as it is retumed (or yiekded) to the caller. Thus cvt means abstract
outside, concrete inside: when constructing the type of a routine, cvt is equivalent to the abstract type,
but when type-checking the body of a routine, cvt is equivalent to the representation type. The type of
each routine is derived from its heading in the usual manner, except that each occurrence of cvt is
replaced by the abstract type. The cvt form does not introduce any new ability over what is provided by
up and down. It is merely a shorthand for a common case.

Inside the cluster, it is not necessary to use the compound form (lype_specSop__name) for naming
locally defined routines. Furthermore, the compound form cannot be used for calling hidden routines.

12.4. Equate Modules

AnequateMﬂeprovidesaoomerﬁerﬂwaytodefmaasetofequatastorlaterusebyother
modchiles.

The form of an equate mocdkile is:

idn = equates [parms [where]]
equate { equate }
end idn
The usual scope rules apply. The idn following the end of the equate module must be the same as the
idn naming the equate moduie.

In this section we discuss non-parameterized equate modules. Parameterized modules are discussed
in Section 12.5.

An equate module defines a set of equates, that is, t defines a set of named constants. The set of
equates is also a constant, although i is not an object. Thus the name of an equate module can be used
in an equate, but an equate module cannot be assigned 10 a variable. The equates defined by an equate
module £ may be referenced using the same syntax as for naming the operations of a cluster. For
example, an object or type named n in equate module E can be referred to as E$n. if equate modules
contain equates that give names to other equate modules, compound names can be used. For example:

AlInt}BC$name
where A, B, and C are equate modules is legal.

As always, equates to type specifications do not define new types but merely abbreviations for types.
For example, in the following:
my_types = equates

ai = array(int]
float = real

end my_types
the types my_types$ai and arrayint] are equivalent.

80 Modules

12.5. Parameterized Modules

Procedures, Rerators, clusters, guardians (see Section 13), and equate modules may all be
parameterized. Parameterization permits a set of related abstractions to be defined by a single module.
In each module heading there is an optional parms clause and an optional where clause (see Appendix 1).
The presence of the parms clause indicates that the module is parameterized; the where clause declares
the types of any operation parameters that are expected to accompany the formal type parameters.

The form of the parms clause is:

[parm, «ua]
where

parm .= idn, ... :type_spec

Iidn,...:typo

Each parm declares some number of formal parameters. Only the following types of parameters can be
declared in a parms clause: I, real, bool, char, string, null, and type. The declaration of operation
parameters associated with type parameters is done in the where clause, as discussed below. The actual
values for parameters are requived to be constanis that can be computed at compile-time. This

requirement ensures that all types are known at compile-time, and permits complete compile-time type-
checking.

in a parameterized module, the scope rules permit the parameters to be used throughout the module.

Type parameters can be used freely as type specilications, and all other parameters (including the
operations parameters specified in the where clause) can be used freely as expressions.

A parameterized module implements a set of related sbstractions. A program must instantiate a
parameterized module before it can be used; that is, it must provide actual, constant values for the
parameters (see Section 12.6). The result of an instantiation is a procedure, iterator, type, guardian, or
equate module that may be used just like a non-parameterized module of the same kind. Each distinct
list of actual parameters produces a distinct procedure, iterator, type, guardian, or equate module (see
Section 12.6 for details).

The meaning of a parameterized module is given by binding the actual parameters to the formal
parameter names and deleting the parms clause and the where clause. That ig, in an an instantiation of a
parameterized moduie, each formal parameter name denotes the corresponding actual parameter. The
resulting module is a regular (non-parameterized) module. In the case of a cluster some of the operations
may have additional parameters; further bindings take place when these operations are instantiated.

In the case of a type parameter, one can also declare what operation parameters must accompany the
type by using a where clause. The where clause also specifies the type of each required operation
parameter. The where clause constrains the parameterized module as well: the only operations of the
type parameter that can be used are those listed in the where clause.

12.5 Parameterized Modules 81

The form of the where clause is:

where .2= where restriction , ...
restriction «.= idn has oper_decl , ...
| idn in type_set
oper_decl ..= name, ... : type_spec
transmit
type_set 23= { idn | idn has oper_decl , ... { equate }}
idn
| reference $ name

There are two forms of restrictions. In both forms, the initial idn must be a type parameter. The has
form lists the set of required operation parameters directly, by means of oper_decls. The type_spec in
each oper_dec! must be a proctype, itertype, or crestortype (see Appendix). The in form requires that
the actual type be a member of a type_set, a set of types with the required operations. The two identifiers
in the type_set must match, and the notation is read like set notation; for exampie,

{t|thasf: ...}
means "the set of all types ¢ such that thas 7...". The scope of the identifier is the type_set.

The In form is useful because an abbreviation can be given for a type_set via an equate. If it is helpful
to introduce some abbreviations in defining the lype_set, these are given in the optional equates within
the type_set. The scope of these equates is the entire type_set.

A routine in a parameterized cluster may have a where clause in its heading, and can place further
constraints on the cluster parameters. For example, any type is permissile for the array element type,
but the array similar operation requires that the element type have a similar operation. This means that
array[7] exists for any type 7, but that array] 7}$similar exists only when an actual operation parameter is
provided for T$similar (see Section 12.6). Note that a routine need not include in ks where clause any of
the restrictions included in the cluster where clause.

12.6. Instantiations
To instantiate a parameterized module, constants or type specifications are provided as actual
parameters:
actual_parm .= constant
| type_actual

type_actual ::= type_spec [with { opbinding , ... }]

opbinding 2:= name , ... : primary
If the parameter is a type, the module’s where clause may require that some routines be passed as
parameters. These routines can be passed impilicitly by omitting the with clause; the routine selected as a
default will be the operation of the type that has the same name as that used in the where clause.

82 Modules

Routines may also be passed explicitly by using the with clause, overriding the default. In this case, the
actual routine parameter need not have the same name as is required in the where clause, and need not
even be one of the type's primitive operations.

The syntactic sugar that allows default routines to be selected implicitly works as follows. If a generator
requires an operation named op from a type parameter, and i the comeaponding fype_actual, TS with {
... }, has no expilickt binding for op, then Argus adds an opbinding of ap to TSSop. (it will be an emor if
TS$op is not defined.) Thus one only has 10 provide an explick opbinding if the delfaul is unsatisfactory.

For example, suppose a procedure generator named sort has the following heading:
sort = procit: typej(a: arrayjt]) where t has gt: proctype(i.t) returns(bool)
and consider the three instantiations:

sort{int with {gt: Int$gt}]
sortint]
sort{int with {it: int$it}]

The first two instantiations are equivalent; in the first the routine Int$gt is passed expiicitly, while in the
second it is passed implicitly as the default. In the third instantiation, however, Int$/t is passed in place of
the default. All three instantiations result in a routine of type:

proctype (array{int))
and so each could be called by passing i an array{int] as an argument. However a call of the third
ingtantiation will sort its array argument in the opposite order from a call of either the first or second
instantiation.

Within an instantiation of a parameterized module, an operation of a type parameter named $op
denotes the actual routine parameter bound to op in the instantiation of that module. For example,
suppose we make the call:

sort{int with {gt: Int$k}] (my_ints)
where my _ints is an array of integers. If, in the body of sort, there is a recursive call:

sort{t with {gt: t$gt}] (a, i,)
then t denotes the type Int, and $gt denotes the routine Int$#, so that the recursive sort happens in the
correct order.

A cluster generator may include routines with where clauses that place additional requirements on the
cluster's type parameters. Aconmnoxamlebtorequhacmyoporﬁononlywkhhttmchsters
copymplemmaﬁon

= clusteiit: type] is ..., copy
where t has equal: proctype(t,t) returns(bool)
rep = array(t]

cOpy = Proc(s: cvt) returns(cvt) where t has copy: proctype(l) returns(t)
il

The intent of these subordinate where clauses is to allow more operations 10 be defined K the actual type
parameter has the additional required operations, but not 1o make the additional operations an absokite

12.6 Instantiations 83

requirement for obtaining an instance of the type generator. For example, with the above definition of set,
sefany] would be defined, but sef{anyl$copy would not be defined because any does not have a copy
operation. We shall call the routine parameters required by subordinate where clauses optional
parameters.

Like regular required parameters, optional parameters can be provided when the cluster as a whole is
instantiated and can be provided explicitly or by default. For any optional parameter op that is not
provided expiicitly by the type_actual, TS with { ... }, we add an opbinding of op to TSSop I TS$op exists;
otherwise the opbinding is not added. The resulting cluster contains just those operations for which
opbindings exist for all the required routine parameters. For example, as mentioned above, set{any]
would not have a copy operation because any$copy does not exist and therefore the needed opbinding is
not present. On the other hand, setfint] does have a copy operation because Int$copy does exist.
Finally, sefany with {copy: foo}], where 100 is a procedure that takes an any as an argument and retums
an any as a result, would have a copy operation.

For an instantiation to be legal it must type check. Type checking is done after the symactic sugars are
applied. The types of constant parameters must be included in the declared type, type actuais must be
types, and the types of the actual routine parameters must be included in the proctypes, itertypes, or
creatortypes declared in the appropriate where clauses. Of course, the number of parameters declared
must match the number of actuals passed and with each type actual parameter there must be an
opbinding for each required routine parameter. i the generator is a cluster, then opbindings must be
provided for all operations required in the cluster's where clause; opbindings can (but need not) be
provided for optional parameters. Extra actual routine parameters are legal.

Because the meaning of an instantiation may depend on the actual routine parameters, type equality
makes instances with different actual routine parameters distinct types. For example, consider the set
type generator again; the instance

seff array{int] with {equal: array[int}$equal}]
is not equal o

sef{ array{int] with {equal: array{int]$similar}]
Intuitively these instances should be unequal because the two equa/ procedures define different
equivalence classes and therefore the abstract behaviors of the two instances are different. However,
optional parameters do not effect type equality. For example,

set{array{int] with {copy: int$copy}]
and

set{array{int] with {copy: my_copy}]
are equal types. This is intuitively justified because in each case set objects behave the same way even
though different sets are produced when sets are copied in the two cases.

Thus we have the following type equality rule, which defines when two fype_specs denote equal types
(after syntactic sugars are applied). A similar notion is aiso needed for routine equality. A formal type

84 Modules

identifier is equal only to itself for type checking purposes. Otherwise, two type names denote equal
types if they denote the same Description Unit (DU).!! Similarly, Argus compares the names of routine
formals or the DUs of routines, or checks that they are the same operation in equal types. To decide the
equality of two type generator instantiations:

TIr:(11 with {op,: act,, ... op,,: act,}, ..., t, with {..}]

a

Tt with {op,: act,’, ... opp,-act,], ..., t, with {...}]
Argus first checks whether:

1. Tand T denote the same DU, and whether

2. they have the same number of type_actuals, and t, is equal to t,’, etc.
Second, any optional parameter opbindings in either instantiation are deleted. Afier this step, Argus
checks that for each corresponding fype_actual there is the same number of opbindings and that each
corresponding opbinding is the same. (That is, the comesponding actual routines are equal.) The order
of the actual routine parameters does not matter, since Argus matches opbindings by operation names.
(The definition of routine equallty for instantiations of routine generators is similar.) This definition, for
example, telis us that

sof] array{int] with {equal: arrayfintj$equal}]
is different from

set{ array[int] with {equal: array[int]$similar}] ,
(assuming set requires an equal operation from its type parameter). It aiso tells us that:

seff int with {equal: foo, copy: bar}]
and

seff Int with {equal: foo, copy: xerox}]

are equal (assuming copy is required only by the sef{int]$copy operation).

This type equality rule allows programmers to control what requirements affect type equality by
choosing whether to put them on a cluster or on each operation. A requirement on the cluster should be
used whenever the actuals make some difference in the abstraction. For example, in the set cluster, the
type parameter's equa/ operation should be required by the cluster as a whole, since using differant
equality tests for a set’s objects causes the set’s behavior to change.

One can require that a type parameter, say f, be transmissible by stating the requirement:
t has transmit
This requirement is ragarded as a formal parameter declaration for a special "transmit actual®, but Argus
does not provide syntax for passing it explicitly. The “transmit actual” is passed implicitly just when the
actual type parameter is transmissible and the generator requires it.

11This is name equality uniess the type environment has synonyms for types.

12.7 Own Variables 85

12.7. Own Variables

Occasionally it is desirable to have a module that retains information internally between calis. Without
such an ability, the information would either have to be reconstructed at every call, which can be
expensive (and may even be impossible i the information depends on previous callg), or the information
would have to be passed in through arguments, which is undesirable because the information is then
subject to uncontrolled modification in other modules (but see also the binding mechanism described in
Section 9.8).

Procedures, iterators, handlers, creators, and clusters may all retain information through the use of
own variables. An own variable is similar 10 a normal variable, except that it exists for the e of the
program or guardian, rather than being bound 1o the life of any particular routine activation. Syntactically,
own variable declarations must appear immediately after the equates in a routine or cluster body; they
cannot appear in bodies nested within statements. Declarations of own variables have the form:

own_var ..= own decl
| own idn : type_spec = expression
| own decl , ... = call [@ primary]
Note that initialization is optional.

The own variables of a module are created when a guardian begins execution or recovers from a
crash, and they aways start out uninitialized. The own variables of a routine (including cluster
operations) are initialized in textual order as part of the first call of an operation of that routine (or the first
such call after a crash), before any statements in the body of the routine are executed. Cluster own
variables are initiaiized in textual order as part of the first call of the first cluster operation fo be called
(even if the operation does not use the own variables). Cluster own variables are initialized before any
operation own variables are initialized. Argus insures that only one process can execute a cluster's or a
routine’s own variable inltializations.

Aside trom the placement of their declarations, the time of their initialization, and their etime, own
variables act just iike normai variables and can be used in all the same places. As with normal variables,
an attempt to use an uninitialized own variabie (if not detected at compile-time) will cause the guardian to
crash.

Declarations of own variables in different modules always refer 10 distinct own variables, and distinct
guardians never share own variables. Furthermore, own variable declarations within a parameterized
module produce distinct own variables for each distinct instantistion of the module. For a given
instantiation of a parameterized cluster, all instantiations of the type's operations share the same set of
cluster own variables, but distinct instantiations of parameterized operations have distinct routine own
variables.

Declarations of own variables cannot be enclosed by an except statement, so care must be exercised
when writing initialization expressions. If an exception ie raised by an inltialization expression, it will be

86 Modules

treated as an exception raised, but not handled, in the body of the routine whose call caused the
initialization to be attempted. Thus, the guardian will crash due to this error.

mmmu:wmwm‘ an

mtm}tu.w{m,m}{ml
{ oquame }
{ stote_ cleci }
ond idn
K where
operstion s Orealor

—

cache: array[int] := array{intl$new ()
then the atomic__array object denoted by buffer would survive a guardian crash, but the array object
denoted by cache would not. See Section 13.3 for more details of crash recovery. Volatile variables can
be assigned wherever an assignment statement is legal. However, siable variabies may only be
assigned by an initialization when declared or in the body of a creator. The inktializations of both stable
and volatile variables are executed within an action, as described below. However, the stable variables
are not reinitialized upon crash recovery, whereas volatile variables are reinitiaiized upon crash recovery.

stable buffer: atomic_array{int] = atomic_atray{int}$new ()

Stable variables should denote resilient objects (see Section 15.2), because only resilient data objects
(reachable from the stable variables) are written to stable storage when a fopaction commits. (This can
be ensured by having stabie variables only denote objects of an atomic type or objects protected by
mutex.) Non-resillent objects stored in stable variables are only written to stable storage once, when the
guardian is created. Furthermore, the stable variables should usually denote atomic objects, because the
stable variables are potentially shared by all the actions in a guardian.

13.2. Creators

A guardian definition must provide one or more creators. The names of these creators must be listed
in the guardian header (intemal creators are not aliowed); each such name must comespond 1o a single
creator definition appearing in the body of the guardian definition.

A creator definition has the same form as a procedure definition, except that creators cannot be
parameterized, and the reserved word creator is used in place of proc:

idn = creator ([args]) [retums] [signas]
routine_body

end idn
The initial idn names the creator and must agree with the final idn. The types of all arguments and ail
results (normal and exceptional) must be transmissible.

A creator is an object of some creator type. This type is derived from the creator heading by removing
the creator name, rewriting the formal argument declarations with one idn per dec/, deleting the idns of all
formal arguments, deleting any fallure or unavallable signals, and finally, replacing crestor by
creatortype. The signals failure(string) and unavailable{string) are implicit in every creator type (since
they can arise from any creator call). However, if these signals are raised expiicitly by a creator, they
must be listed in the signals clause with string resuit types.

The semantics of a creator call are explained in Section 8.4. Typically, the body of a creator will
initialize some stable and volatile variables. It can also retum the name of the guardian being created
using the expression self. Since the creator (and the state initialization) runs as an action, the creator
terminates by committing or aborting. If it aborts, the guardian is destroyed. If it commits, the guardian
begins to accept handler calls, and runs the background code, i any (see below). If an ancestor of the
creator aborts, the guardian is destroyed. If the creator and all ks ancestors commit, the guardian
becomes permanent, and will survive subsequent crashes.

13.2 Creators 89

13.3. Crash Recovery

Once a guardian becomes permanent, it will be recreated automatically after a crash with its stable
variables initialized to the same state they were in at the last topaction commit before the crash. The
volatile variables are then initialized (in declaration order) by a topaction. To aid in this reinitialization, the
guardian definition can provide a recover section:

recover body end

to be run, as part of this topaction, after the initializations attached to the volatile variable declarations are
performed. The recover section commits when control reaches the end of the body, or when a return
statement is executed. The recover section may abort by executing an abort return statement or as a
result of an unhandied exception. The guardian crashes if the recover section aborts.

13.4. Background Tasks
Tasks that must be performed periodically, independent of handler calls, can be defined by a
background section:.
background body end
The system creates a process 0 run this body as soon as creation or recovery commits successfully.
The body of the background section does not run as an action; typically it will perform a sequence of
topactions.

it the background process finishes executing its body (either by reaching the end of the block or by
returning), the process terminates, but the guardian continues 10 execute incoming handier calls.

13.5. Handlers and Other Routines
Typically, the principal purpose of a guardian is to execute incoming handler calls. A guardian accepts
handler calls as soon as creation or recovery commits.

The guardian header lists the names of the externally available handlers. Each handier listed must be
defined by a handier definition. Additional handier definitions may aiso be given, but these handlers can
be named only within the guardian to which they belong.

A handier definition has the same form as a procedure definition, except that handiers cannot be
parameterized, and the reserved word handier is used in place of proc:
idn = handier ([args]) [retums] [signais]
routine_body
end idn
The initial idn names the handier and must agree with the final idn. The types of all arguments and all
results (normal and exceptional) must be transmissible.

A handier is an object of some handier type. This type is derived from the handier heading by
removing the handler name, rewriting the formal argument declarations with one idn per dec/, deleting the

idne of st formel angaments, dalpling

m m -.-b ~

nwnmu;m&»

13.7 An Example 91

consumption. The spooler provides an operation for adding (object, consumer) pairs, and for destroying
the guardian.

Figure 13-1: Spooler Guardian

spooler = guardian [t: type] Is create handies enq, finish
where t has transmit

utype = handiertype (1)
entry = structiobject: t, consumer: utype]
queue = semiqueuefentry]

stable state: queue = queue$create()

background
while true do
enter topaction
0: entry = queue$deqg(state)
e.consumer(e.object)
except when unavailable (*): abort leave snd
ond except when fallure, unavaiiable (*): end
ond
end

create = creator () retumns (spoolert])

return{seif)
ond create

eng = handier (item: t, user: utype)
queueSenq(state, entry${object: tem, consumer: user})
end enq

finish = handler ()

terminate
end finish

end spooler

The spooler guardian is parameterized by the type of object to be siored. The eng handler takes an
object of this type, and a handier for sending the object to the consumer, and adds this information to the
stable state of the spooler. This state is an object of the semiqueue abstract data type'2. Each entry in
the semiqueue Is a structure containing a stored object and Rs corresponding congsumer handler. The
background code of the guardian runs an infinite loop that starts a topaction, removes an entry from the
queue, and sends the object using the associated handier.

Note that an unavailable exception arising from thigs handier call is caught ingide the topaction, so that
an expilicit abort can be performed. If the exception were caught outside the topaction, it would cause the

250e W. Weihl and B. Liskov, “implementation of Resdient, Atomic Data Types", in ACM Transactions on Programming
Languages and Systems, volume 7, number 2, (April 1985), pages 244-260.

92 Guardians

topaction to commit, and the entry would be removed without being consumed. Note also that failure is
caught outside the topaction, since if an encode were to fall, or ¥ the guardian did not exist, the
background process might aimlessly loop forever, because it would not be able to remove that entry.

A more extended exampie of a distributed system appears in the paper Liskov, B. and Scheifier, R.,
"Guardians and Actions: Linguistic Support for Robust, Distributed Programs,”~ ACM Transactions on
Programming Languages and Systems, volume 5, number 3, (July 1983), pages 381-404.

14 Tranemissibiiity 3

‘14, Transmissibliity

A typs is 88id ©© be Swwsmisaliie ¥ & defines & Sumgulk apasstion that allows the values of ks cbjects
1o be sent in messsges or sterad In bmnge-chjects: Clble SISV SEIINRIS 45e may be Used 2s
arguments 10 haadier calls or SmeRse calls. mm S 0w feenam

ts dofined for the
Argus built-in types and for user-defieed ypee.

14.1. mrm

mmanmmmﬁm*mmnmn*
component typus does.

~ The tranemi operation mmmmmammm mm

iskov, B. ot CLU Aeference Manval, Laskurs Notes in Competsr Subans, wolieng 114, (Spcinger-Viering, Now Yark, 1981).

94 Transmissibllity

14.3. Transmit for Abstract Types

The type implemented by a cluster is trangsmissible if the reserved word transmit appears in the Is-list
at the head of the cluster. Unlike the other operations provided by a type, the transmit operation cannot
be called directly by users, and in fact is not implemented directly in the cluster. Instead, transmit is
implemented indirectly in the following way. Each transmisgibie type is given a canonical representation,
called its external representation type. The external representation type of an abstract type T is any
convenient trangsmissible type X7. This type can be another sbstract type if desired; there is no
requirement that XT be a buill-in type. Intuitively, the meaning of the extemnal reprasentation is that
values of type XT will be used in messages 10 represent values of type 7. The choice of extemal
representation type is made for the abstract type as a whole and must be used in every implementation of
that type. (There are currently no provisions for changing the extemal representation of a type once it
has been established in the library.)

Each implementation of the abstract type T must provide two operations to map between values of the

abstract type and values of the external representation type. There i an operation

encode = proc (a: T) returns (XT) [signals (failure(string))]
to map from T values to X7 values (for sending messages) and an operation

decode = proc (x: XT) retums (T) [signals (tailure(string))]
to map from XT values to 7 values (for receiving messages). The transmit operation for T is defined by
the following identity:

T$transmit (x) = T$decode (XT$transmbit (T$encode(x)))
Intuitively, the correctness requirement for encode and decode is that they preserve the abstract 7 values:
encode maps a value of type T into the XT value that represents &, while decode petforms the reverse
mapping'4.

Encode and decode are called implicitly by the Argus system during handier and creator calls. f
encode and decode do not appear in the cluster’s is-list, then they will be accessibie to the Argus system,
but may not be named directly by users of the type. A faikure exception raised by one of these operations
will be caught by the Argus system and resignalied to the caller (see Section 8.3).

An abstract type's encode and decode operations should not cause any side effects. This is because
the number of calls to encode or decode is unpredictable, since arguments or resuits may be encoded
and decoded several times as the system tries to establish communication. In addition, verifying the
correctness of tranemission is easier i encode and decode are simply transformations fo and from the
extemnal representation.

When defining a parameterized module (see Section 12.5), it may be necessary to require a type
parameter to be transmigsible. A special type restriction:

YHeriihy, M. and Liskov, B., "A Value Transmission Mathod for Abstract Data Types®, ACM Transactions on Programming
Languages and Systems, volume 4, number 4, (Oct. 1982), pages 527-551.

14.3 Transmit for Abstract Types 95

has transmit
is provided for this purpose. To permit instantiation only with transmissible type parameters, this
restriction shouid appear in the where clause of the ciuster. Altematively, by placing identical where
clauses in the headings of encode and decode procedures, one can ensure that an instantiation of the
cluster is transmissible only # the type parameters are transmissible (see Section 12.5).

As an example, Figure 14-1 shows part of a cluster defining a key-item table that stores pairs of values,
where one value (the key) is used to retrieve the other (the item). The key-tem tabie type has operations
for creating empty tables, ingerting pairs, retrieving the tem paired with a given key, deleting pairs, and
iterating through all key-item pairs. The table is represented by a sorted binary tree, and ks extemal
represemation Is an array of key-item pairs. The table type is transmissible only ¥ both type parameters
are transmissible.

Figure 14-1: Partial implementation of table.

table = cluster [key, item: type] Is create, insert, lookup, alipairs, deigte, transmit, ...
where key has R: proctype (key, key) retums (bool),
equal: proctype (key, key) relums (bool)

pair = recordk: key, i: tem]

nod = record{k: key, I: tem, left, right: table[key, item]]
rep = variantjempty: null, some: nod]

xrep = array[pair} % the external representation type

% The internal representation is a sorted binary tree. All pairs in the table
% to the left (right) of a node have keys less than (greater than) the key in
% that node.

% ... other operations omitted

encode = proc (t: 1ablefkey, item]) returns (xrep)
where key has tranemit, tem has tranemit
Xr: xrep = xrep$new() % create an emptly amay
% use alipairs to extract the pairs from the tree
for p: pair in alipais{t) do
% Add the pair 1o the high end of the array.
xrep$addh{xr, p)
end

return(xr)
end encode

decode = proc (xtbil: xrep) returns (tablefkey, item])
where key has tranamit, tem has tranemit
t: table{key, tem] := create() % create empty table
for p: pair In xrep$elements(xr) do
% xrep$elements yields all elements of array xr
insert(t, p.key, p.tem) % emnter pair in table
end

return(t)
end decode
end table

96 Transmissiblility

14.4. Sharing

When an object of structured built-in type is encoded and decoded, sharing among the object’s
components is preserved. For exampile, let a be an array[7] object such that afi] and ajj] refer to a single
object of type T. If a2 is an array{7] object created by transmitting a, then a2/i] and a2fj] also name a
single object of type T.

All sharing is preserved among all components of multipie objects of built-in type when those objects
are encoded together. Thus, sharing is preserved for objects that are arguments of the same rernote call
or are results of the same remote call, uniess the arguments are encoded at different times (see the
discussion of the bind expression in Section 9.8). For exampie, let a and b be array{7] objects such that
afi] and bfj] refer to a single object of type T. if a2 and b2 are arays created by sending & and b as
arguments in a single handier call, then a2fi] and b2{f] aiso refer to a single object.

Whether an abstract type's tranamit operation preserves sharing is part of that type’s specification, but
sharing should usually be preserved for abstract types. in the key-tem table implementation of Figure
14-1, there are two types of sharing that should be preserved: sharing of keys and kems among muttiple
tables sent in a single message, and sharing of tems bound to the same key in a single table. The
key-item table example shows how to impiement an abstract type whose tranemission pregerves shasing
by choosing an external representation type whose transmit operation preserves sharing.

Care must be taken when the references among objects to be transmitted are cyclic, as in a circular
list. Decoding such objects can result in a fallure exception unless encode and decode are implemented
in one of two ways:

1. the internal and external representation types are identical and encode and decode return
their argument object without modifying it or accessing its components, or

2. the external representation object must be free of cycles.

15 Atomic Types 97

15. Atomic Types

In Argus, atomicity is enforced by the objects shared among actions, rather than by the individual
actions themselves. Types whose objecis ensure atomicity of the actions sharing them are called atomic
types; objects of atomic types are calied atomic objects. In this chapter we define what it means for a
type to be atomic and describe the mechanisme provided by Argus to support the implementation of
atomic types.

Atomicity consists of two properties: serializability and recoverability. An atomic type’s objects must
synchronize actions to ensure that the actions are serializable. An atomic type’s objects must also
recover from actions that abort to ensure that actions appear t0 execute either completely or not at all.

In addition, an atomic type must be resilient. the type must be irpplememad so that its objects can be
saved on stable storage. This ensures that the effects of an action that commits to the top (that is, an
action that commits, as do ak of its ancestors) will survive crashes.

This chapter provides definitions of the mechanisms used for user-defined types in Argus. For
example implementations, see Weihi, W. and Liskov, B., "implementation of Resilient, Alomic Data
Types,” ACM Transactions on Programming Languages and Systems, volume 7, number 2 (April 1985),
pages 244-269.

The remainder of this chapter is organized as follows. In Section 15.1 and Section 15.2, we present
the details of the mechanisms. Section 15.1 focuses on synchronization and recovery of actions, while
Section 15.2 deals primarily with resilience. In Section 15.3, we discuss some guidelines to keep in mind
when using the mechanisms described in Section 15.1 and Section 15.2. In Sections 15.4 and 15.5, we
define more precisely what it means for a type to be atomic. Finally, in 15.6, we discuss some details that
are important for user-defined atomic types that are implemented using multiple mutexes.

15.1. Action Synchronization and Recovery
In this section we describe the mechanisms provided by Argus 10 support synchronization and recovery

of actions. These mechanisms are designed specifically to support implementations of atomic types that
allow highly concurrent access to objects.

Like a non-atomic type, an atomic type is implemented by a cluster that defines a representation for the
objects of the type, and an impiementation for each operation of the type in terms of that representation.
However, the impiementation of an atomic type must solve some probiems that do not occur for ordinary
types, namely: synchronizing concurrent actions, making visible to other actions the effects of committed
actions, hiding the effects of aborted actions, and providing resiience against crashes.

An implementation of a user-defined atomic type must be abie to find out about the commits and aborts
of actions. In Argus, impiementations use objects of bult-in atomic types for this purpese. The
representation of a user-defined atomic type is typically a combination of atomic and non-atomic objects;

15.2 Resllience 99

changed = proc (m: mutex{T))
is provided for notifying the system that an existing mutex object should be written to stable storage.
Calling this operation will cause the object to be written to stable storage (assuming it is accessible) by
the time the action that executed the changed operation commils to the top. Sometime after the action
calls changed, and before s top-level ancestor commits, the system will copy the mutex object to stable
storage. Changed must be called from a process running an action.

Mutex objects also define how much information must be written to stable storage. Copying a mutex
object involves copying the contained object. By choosing the proper granulanity of mutex objects the
user can control how much data must be written to stable storage at a time. For example, a large data
base can be broken into partitions that are written to stable storage independently by dividing it among
several mutex objects. Such a division can be used to limit the amount of data written to stable storage
by calling changed only for those partitions actually modified by a commiiting action.

In copying a mutex object, the system will copy all objects reachable from it, excluding other mutex or
built-in atomic objects. A contained mutex or built-in atomic object will be copied only if neceseary; that is,
only if itis: ‘

e a mutex object for which (a descendant of) the complating action called the changed
operation,

« a built-in atomic object that was modified by the action, or

* a newly accessible object for which no stable copy exists.
Furthermore, the component is copied independently of the containing mutex object; they may be copied
in either order (or simuitaneously), subject to the constraint that the system cannot copy a mutex object
without first gaining possession of i.

Finally, mutex objects can be used to ensure that infformation is in a consistent state when i is written
to stable storage. The system will gain possession of a mutex object before writing it to stable storage.
By making all modifications to mutex objects inside selze statements, the user's code can prevent the
system from copying a mutex object when it is in an inconsistent state.

Some details of the effect of changed are important for atomic types that are implemented as muitiple
mutexes. These details are presented in Section 15.6. '

15.3. Guidelines

This section discusses some Quidelines to be foliowed when implementing atomic types. There are
additional guidelines to follow when multiple mutexes are used to implement an atomic type; those
guidelines are discussed in Section 15.6.

An important concept for describing the resilience of user-defined atomic types is synchrony. An object
is synchronous i it Is not possible to observe that any portion of the object is copied 1o stable storage at a
different time from any other portion. For exampie, an object of type arrayimutexiint]] wouild not be

100 Atomic Types

synchronous, because elements of the array can be copied at different times. A type is synchronous if all
of its objects are synchronous. wnetheratypeissynclwmusormtikanlnmﬂatﬂpropenyofﬂs
behavior and should be stated in its specification. The built-in atomic types are synchronous; user-
defined types must aiso be synchronous ¥ they are to be atomic.

To ensure the resilience and serializabiiily of a user-defined atomic type independently of how it is
used, the form of the rep for an atomic type shouid be one of the following possibilities.
1. The rep is itself atomic. Note that mutex is nof an atomic type.

2. The rep is mutex{f] where ¢ is a synchwonous type. For exampile, f couki be atomic, or it
could be the representation of an atomic type, if the operations on the this fictitious atomic
type are coded in-line 8o that the entire type behaves atomically.

3. The rep is an atomic collection of mutex types containing synchwonous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are intialized. That is, mutation may be used o create
the initial state of such an object, but once this has been done the object must never be
modified.

When using mutex objects, there are a few rules o remember. First, changed must be called after the
last modification (on behalf of some action) to the contained object. This is true because the Argus
system is free to copy the mutex to stable storage as soon as changed has been called.

In addition, changed should be called even if the object is not accessible from the stabie variables of a
guardian. in part this rule is just an exampie of separation of concerms: the implementation of the atomic
type shouid be done independently of any assumptions about how the cbject will be used. Therefore the
type shouid be implemented as if its objects were accessible from the stable variables of some guardian.
However, in addition, i this rule is not followed, i is possible that stable storage will not be updated
properly. This situation can occur if an object was accessile, then becomes inaccessible, and later
becomes accessible again. The system guarantees that no problems arise ¥ changed is always called
after the last modification to the object.

Mutex objects shouid not share data with one another, uniess the shared data is atomic or mutex.
One reason for this rule is that in copying mutex objects to stable storage Argus does not preserve this
kind of sharing.

A final point about mutex objects is that it is unwise to do any activity that is likely to take a long time
inside a selze statement. For example, a handier call shoukd not be done from inside a seize statement ¥
possible. Also, it is unwise to wait for a lock inside a seize uniess the programmer can be certain that the
lock is available or will be soon. Otherwise, a deadiock may occur. An exampie of where walting for a
lock in a nested selze statement is safe ie where all processes seize the two mutex objects in the same
order.

15.4 A Prescription for Atomicity 101

15.4. A Prescription for Atomicity

In this section, we discuss how to decide how much concurrency is possible in implementing an atomic
type. In writing specifications for atomic types, we have found & heipful to pin down the behavior of the
operations, initially assuming no concurrency and no fallures, and 10 deal with concurrency and failures
later. In other words, we imagine that the objects will exist in an environment in which all actions are
executed sequentially, and in which actions never abort.

Athough a sequential specification of this sort does not say anything explick about permissible
concurrency, ik does impose limits on how much concurrency can be provided. mplementations can
differ in how much concurrency is provided, but no impiementation can exceed these limits. Therefore, it
is important to understand what the limits are.

This section and the foliowing section together provide a precise definition of permigsible concurrency
for an atomic type. This definition is based on two facts about Argus and the way it supporis
implementations of atomic type. First, in implementing an atomic type, it is only necessary 1o be
concemed about active actions. Once an action has committed to the top, i is not possible for it to be
aborted later, and its changes to atomic objects become visbie to other actions. So, for example, an
implementation of an atomic type needs to prevent one action from observing the modifications of other
actions that are still active, but t does not have 10 prevent an action from observing modifications by
actions that have already committed. Second, the only method avaiisble to an atomic type for controlling
the activities of actions is to delay actions while they are executing operations of the type. An atomic type
cannot prevent an action from calling an operation, akthough &k can prevent that call from proceeding.
Also, an atomic type cannot prevent an action that previously finished a call of an operation from
completing either by committing or by aborting.

Given the sequential specification of the operations of a type, these facts lead to two constraints on the
concurrency permitted among actions using the type. While an implementation can allow no more
concurrency than permitted by these constrainis, some implementations, iikke that for the built-in type
generator atomic__ airay (see Section 11.10), may allow less concurrency than permitted by their
sequential specifications and our concurrency constraims.

The first constraint is that

e an action can observe the effects of other actions only if those actions committed relative to
the first action.

This constraint implies that the results returned by operations executed Dy one action can reflect changes
made by operations executed by other actions only ¥ those actions committed relative to the first action.
For example, in an atomic array a, if one action performs a siore(a, 3, 7), a second (unrelated) action can
receive the answer "7" from a call of feich(a, 3) only ¥ the first action committed 10 the top. If the first
action is still active, the second action must be delayed until the first action completes. This first
constraint supports recoverability since it ensures that effects of aborted actions cannot be observed by
other actions. It also supports serializability, since it prevents concurrent actions from observing one
another's changes.

102 Atomic Types

However, more is needed for serializability. Thus, we have our second constraint:

 operations executed by one action cannot invalidate the resuits of operations executed by a
concurrent action.

For example, suppose an action A executes the size operation on an atomic array object, receiving n as
the result. Now suppose another action B is permitted 1o execute addh. The addh operation will increase
the size of the array to n + 1, invalidating the results of the size operation executed by A. Since A
observed the state of the array before B executed addh, A must precede B in any sequential execution of
the actions (since sequential executions must be consistent with the sequential specifications of the
objects). Now suppose that B commits. By assumption, A cannot be prevented from seeing the effects of
B. if Aobserves any effect of B, i will have to follow B in any sequential execution. Since A cannot both
precede and follow B in a sequential execution, serializabiiity would be violated. Thus, once A executes
size, an action that calls addh must be delayed until A completes.

15.5. Commuting Operations

To state our requirements more precigely, consider a simple situation involving two concuirent actions
each executing a single operation on a shared atomic object X. (The actions may be executing
operations on other shared objects also, but in Argus each object must individually ensure the atomicity of
the actions using it, so we focus on the operations involving a single object.) A faily simple condition that
guarantees serializability is the following. Suppose X is an object of type 7. X has a current state
dstermined by the operations performed by previously committed actions. Suppose O, and O, are two
executions of operations on X in its current state. (O, and O, might be executions of the same operation
or different operations.) If O, has been executed by an action A and A has not yet commiited or aborted,
O, can be performed by a concutrent action B only ¥ O, and O, commute: given the current state of X
the effect (as described by the sequential specification of T) of performing O, on X followed by O, is the
same as performing O, on X followed by O,. It is important to realize that when we say "effect” we
include both the results returned and any modifications to the state of X.

The intuitive explanation of why the above condition works is as follows. Suppose O, and O, are
performed by concurrent actions A and Bat X. Iif O, and O, commute, then the order in which A and B
are serialized globally does not matter at X. If Ais serialized betore B, then the local effect at Xis as i O,
were performed before O, while if B is serialized before A, the local effect is as f O, were performed
before O,. But these two effects are the same since O, and O, commute.

The common method of dividing operations into readers and writers and using read/write locking works
because it aliows operations to be executed by concument actions only when the operations commute.
More concurrency ig possible with our commutativity condition than with readers/writers because the
meaning of the individual operations and the arguments of the calis can be considered. For example,
calis of the atomic array operation addh always commute with calis of add¥, yet both these operations are
writers. As another example, store(X, i, 6,) and store(X, j, e,) commute if i+ j.

We require only that O, and O, commute when they are executed starting in the current state.

15.5 Commuting Operations 103

Consider a bank account object, with operations to deposit a sum of money, to withdraw a sum of money
(with the possible result that it signals insufficlent funds ¥ the current balance is less than the sum
requested), and to examine the current balance. Two withdraw operations, say for amounts m and n, do
not commute when the current balance is the maximum of m and n: elther operation when executed in
this state will succeed in withdrawing the requested sum, but the other operation must signal insufficient
funds i executed in the resulting state. They do commute whenever the current balance is at least the
sum of m and n. Thus i one action has executed a withdraw operation, our condition aliows a second
action to execute another withdraw operation while the first action is still active as long as there are
sufficient funds to satisfy both withdrawal requests.

Our condition must be extended to cover two additional cases. First, there may be more than two
concurrent actions at a time. Suppose A,...A, are concurrent actions, each performing a single
operation execution O,,...,0,, respectively, on X. (As before, the concurrent actions may be sharing
other objects as well.) Since A,,...,A, are permitted 10 be concurrent at X, there is no local control over
the order in which they may appear to occur. Therefore, all possible orders must have the same effect at
X. This is true provided that all permutations of O,,...,0, have the same effect when executed in the
current state, where effect includes both results obtained and modifications to X.

The second extension acknowledges that actions can perform sequences of operation executions.
Consider concuirent actions A,,...,A, each performing a sequence S,....5,, respactively, of operation
executions. This is permissible ¥ all sequences S;,,...,S,, oblained by concatenating the sequences
S,...S, in some order, produce the same effect. For example, suppose action A executed addh
followed by remh on an array. This sequence of operations has no net effect on the array. It is then
permissible to allow a concurrent action B to execute size on the same amay, provided the answer
returned is the size of the array before A executed addh or after it executed remh.

Note that in requiring certain sequences of operations 10 have the same effact, we are congidering the
effect of the operations as described by the specification of the type. Thus we are concermed with the
abstract state of X, and not with the concrete state of Its storage representation. Therefore, we may allow
two operations (or sequences of operations) that do commute in terms of their effect on the abstract state
of X to be performed by concurrent actions, even though they do not commute in terms of their effect on
the representation of X. This distinction between an abstraction and s implementation is crucial in
achieving reasonable performance.

It is important to realize that the constraints that are imposed by atomicity based on the sequential
specification of a type are only an upper bound on the concumrency that an implementation may provide.
A specification may contain additional constraints that further constrain implementations; these
constraints may be essential for showing that actions using the type do not deadiock, or for showing other
kinds of termination properties. For example, the specification of the built-in atomic types expiicily
describes the locking rules used by their implementations; users of these types are guaranteed that the
built-in atomic types will not permit more concurrency than aliowed by these rules (for ingtance, actions
writing different components of an array, or different fiekis of a record, cannot do 8o concurrently).

However, the represpntation invasigst of the & s sl ol
Flest nate unmammtw oA A . B0 ppOee 4

Yaee Weill, W. and Liskev, 8., “wplenmetution of Neslent, Al Dam Tygme.” mwmm
Langimges and Sysmmis, valisme 7, nuniber § (Agell- 1008, puipee 204-200.

15.6 Multiple Mutexes 105

1. Before that crash, B also committed to the top. In this case the data read back from siable
storage is, in fact, consistent, since it must reflect 8's changes to both the first and second
semiqueues.

2. B aborted or had not yet committed before the crash. In either case, B aborts. Therefore,
the changes made to the first semiqueue by B will be hidden by the semiqueue
implementation: at the abstract level, the two semiqueues do have the same state.

The point of the above exampile is that ¥ the objects being wrilten to stable storage are atomic, then the
fact that they are written incrementally causes no problems.

On the other hand, when an atomic type is implemented with a representation consisting of several
mutex objocts, the programmer must be aware that these objecis are wrilten {0 stable siorage
incrementally, and care must be taken 10 ensure that the representation invariant is still preserved and
that information is not lost in spite of incremental writing. if the implementation of a type requires that one
mutex object (call it M7) be written to stable storage before another (call it M2), then the write of M7 must
be contained in an action that commiits to the top before the action that writes M2 is run.

106 Syntax

We use an extended BNF grammer o mu The genaml form of a produciion is
nonterminal = slemative

| ahemative
The following extensions are used:
B ~ 8, a list of 0ne Or MAre 25 SAPArAReT by CRINEL: “W° ¥ "%, 8°Or s, &, &, #C.
- {a} 2 50GUONDS Of 2050 OF MOMR 85: * "0 "8 or " 4", olo.
[a] an optionsl & "" or °s". B

potr In Gald fnce. AS olher lesmingl

"y
(X3
H

4

i

cluster 3= idn « chester{ pamne J i opien [oteee }
reutire § moutine }
ond idn

108

operation

routine

procedure

iterator

creator

handler

routine_body

parms

parm

args
decl
returns
yields
signals

exception

creator
handier
routine

procechre
iterator

idn = proc [parms] args [retums] [signais] [where]
routine_body
end idn

idn = ter [parms] args [yields] [signaie] [where]
routine_body
end idn

idn = creator args [retums] [signais]
routine_body
end idn

idn = handier args [retums] [signais]
routine_body
ond iin

{ equate }

{ own_var }
{ statement }
[parm, .aa]

idn , «.. : type
idn , ... : type_spec

([decl, ...])

idn , «us : type_spec
returns (type_spec, ...)
ylelds (type_spec , ...)
gignals (exception , ...)

name [(type_spec, «..)]

Syntax

I Syntax

opidn

where

restriction

type_set

oper_decl

constant

state_decl!

equate

own_var

idn
transmit

where restriction , ...

idn has oper_decl , ...
idn in type_set

{ idn | idn has oper_decl , ... { equate } }
idn
reference $ name

name, ... : type_spec
transmit

expression
type_spec

[stabie] dec!
[stabie] idn : type_spec := expression
IMIM,--- = Call

idn = constant
idn = type_set
idn = reference

own dec!
Own idn : type_spec = expression
own decl , ... := call [@ primary]

109

110

statement

enter_stmt

decl

idn : type_spec := expression
decl , un. = call [@ primary]
idN , +ee = call [@ primary]
idn , .. = @Xpression , ...
primary . name = expression
primary [expression] := expression
call [@ primary]

fork call

selze expression do body end
pause

terminate

enter_stmt

coenter coarm { coarm } end
[abort] 1eave

while expression do body end
for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwait_stmt

[abort] return [(expression , ...)]

yield [(expression, ...)]

[abort] signal name [(expression , ...)]
[abort] exit name [(expression, ...)]

[abort | break
[abort] continue
begin body end

statement [abort] resignal name , ...
statement except { when_handier }
[others_nandier }

end

enter topaction body end
enter action body end

Syntax

I Syntax

coarm

armtag

for_stmt

if_stmt

tagcase_stmt

tagtest_stmt

tagwait_stmt

tag_arm
atag_arm

tag_kind

when_handier

others_handiler

body

for [dec!, ...] in call do body end
tor [idn , ...] in call do body end

If expression then body
{ oiseif expression then body }
[eiee body]
end

tagcase expression
tag_arm { tag_arm }
[others : body]
end

tagtest expression
atag_arm { atag_arm }
[others : body]
ond

tagwalt expression

atag_arm { atag_arm }
end

tag name , ... [(idn :type_spec)] : body

tag__kindname.....[(idn:twe_spoc)] : body

tag
wtag

when name , ... [(dect, ...)] : body
when name , ... (*) : body

others [(idn : type_spec)] : body

{ equate }
{ statement }

111

112

type_spec

field_spec

reference

actual_parm

type_actual

opbinding

FEEEL

string
any
image

rep
cwvt

sequencs [type_actual |

array [type_actual |

atomic_amay [type_actual]

struct [field_spec , ...]

record [field_spec , ...]
atomic_record | field_spec , ...]

oneof [field_spec , u.]

variant [field_spec , ».. |

atomic_vartant | field_spec , ...

proctype ([type_spec, ...]) [retums] [signais]
hertype ([type_spec, ...]) [yieids] [signais]
creatortype ([type_spec, ...]) [retums] [signais]
handiertype ([type_spec, ...]) [retums] [signais]
mutex [type_actual |

reference

name, ... : type_actual
idn
idn [actual_parm, ...]

reference $ name

constant
type_actual

type_spec [with { where opbinding , ... } }

<= Name, ... : primary

Syntax

| Syntax

expression

primary

call

d

call @ primary

(expression)

~ expression

— expression

expression ** expression
expression // expression
expression / expression
expression * expression
expression || expression
OXpression + @xpression
expression — expression
oexpression < expression
expression <= expression
expression = expression
expression >= expression
axpression > expression
expression ~< expression
exXpression ~<= expression
expression ~= expression
expression ~>= expression
expression ~> expression
expression & expression

expression cand expression

expression | expression
expression cor expression

entity

primary . name
primary [expression]

primary ([expression , ...])

% 6 (precedence)
% 6
5
4
4
4

RRRARRRRRRARAABAARRARAL AR

w ww

N NN DM PNMNDNMNNMDMDDNODN

113

114 Syntax

entity «:= il
| true
| talse

| int_literal

| real _fiteral

| char_literal

| string_literal

| self

| reference

| entity . name

| entity [expression]

| bind entity ([bind_arg, ...])

| type_spec $ { field , .. }

| type_spec$ [[expression :] [expression, ...]

| type_spec$ name [[actual_parm, ...]]

| up (expression)

| down (expression)

field «:= name, expression

bind_arg =t
| expression

1 Syntax 115

Comment: a sequence of characters that begins with a percent sign (%), ends with a newiine
character, and contains only printing ASCHi characters and horizontal tabs in between.

Separator. a blank character (space, vertical tab, horizontal tab, camiage return, newline, form feed) or
a comment. Zero or more separsiors may appear between any two tokens, except that at least one
separator is required between any two adjacent non-self-terminating tokens: reserved words, identifiers,
integer literals, and real literals.

Reserved word: one of the identifiers appearing in bold face in the syntax. Upper and lower case
letters are not distinguished in reserved words.

Name, idn: a sequence of letters, digits, and underscores that begins with a letter or underscore, and
that is not a reserved word. Upper and lower case letters are not distinguished in names and idns.

int_literal: a sequence of one or more decimal digits (0-9) or a backsiash (\) followed by any number of
octal digits (0-7) or a backslash and a sharp sign (W) followed by any number of hexadecimal digits (0-9,
A-F in upper or lower case).

Real_literal: a mantissa with an (optional) exponent. A mantissa is either a sequence of one or more
decimal digits, or two sequences (one of which may be empty) joined by a period. The mantissa must
contain at least one digit. An exponent is 'E’ or 'e’, optionally followed by '+’ or *-', followed by one or
more decimal digits. An exponent is required if the mantissa does not contain a period.

Char__literal. a characier representation other than single quote, enclosed in single quotes. A
character representation is either a printing ASCH character (octal value 40 through 176) other than
backslash, or an escape sequence consisting of a backsiash (\) folowed one to three printing characters
as shown in Table 6-1 or Table |-1 below.

String_literal: a sequence of zero or more character representations other than double quote, enclosed
in double quotes.

Table I-1 shows most of the character literals supported by Argus, except for the higher numbered octal
escape sequences. For each character, the corresponding octal literal, hexadecimal literal, and normal
literal(s) are shown. Upper or lower case lefters may be used in escape sequences of the form \W'*, \A*,
\", b, &, \n, \v, \p, and \r. Note that an implementation need not support 256 characters, in which case
only a subset of the literals listed will be legal.

116

Table I-1: Character Escape Sequences

Syntax

000" 'WO0' @'
001" W01’ VA’
002" W02’ \AB'
003" W0’ WC’
004" K04’ VD'
\005' W05’ \\E'
006" "#06' \\F°
007 W07’ \G'

010’ "#08' \AH' \b’

011 WHO9* M '\

"012' "WOA' \WF \n’
1013’ WOB' VK W’
"014’ WOC WL’ \p'
"015' WOD' WM' '\

016’ "#OE' "N’
017" \KOF \AO’

020" "#10" \AP'
021" W11 WY
\022' #12' \\R'
023’ 'W#13' \A§’
024’ '\W#14' W\ T
025’ W15’ \WU'
026’ W16’ W'
027 \#17' W'

030’ W18 \AX’
031’ W19 WY
\032' WI1A' WZ'
033 W1B' W'
034’ WG W'
035’ WD’ W
036’ WHE' W'
037 W1F AA

041" W2t T
042’ W22’ ™ A
043" W23 ¥
044" W24 '§'
045’ W25' "%’
046’ 'W28' ‘&’
047" 27" "

050" W2e' ('
"051" "W2g'*y
w’ WA’ "
053" W2B' s’
054’ "W2C’ ",
057" W2F !

\100' 40" '@’
101" W41 A
102 W42 B
1103 43’ 'C’
104 \B44' D’
1106’ M5’ 'E’
106’ 446" 'F
107 4T G

110 \48' 'H'
1149
112 WA’ '
113’ V4B’ K’
14 W4C 'L
A\115' WD 'MW
\116' W4E''N'
N7 \4F 'O’

120’ 'WS0' P’
21" s °Q
\122' s2' 'R’
123 'WS3''S’
\124' W54’ T
\125' \#65' ‘U’
\126' W56’ 'V’
\127 ST W

130" WS8' X'
131’ 59" Y'
\132 \5A' 7
133 WSB' T
134’ W5C' W
\135' WSD' T
"\136' W5E’ '~
M37 EF

140’ \W60' ™
141" W61 'Y’
1142 W62 b’
143 \#63' 'c’
\144 \#64’ 'd'
145’ \#65’ ‘¢’
146 "\#66' '
\147 K67 'g’

\150’' \#68’ 'h’
\151° \#69’ i’
\162' \#8A' '}
153" "#6B' k'
\154’' "w6C’ 'F
156" "#6D’ 'm'
156’ "\#6E" 'n’
157 "#6F o’

A\200" \#80' \I@’
201" \#81' \IA’
202" \9e2’ \IB’
203 W83’ \IC’
\204' \#84' \ID’
205" 185’ \IE’
208" \#86’ \IF'
207" \#87 \\G'

210" W' \IH’
211 \wes' \i

212 "WBA’ W’

213" "WeB’ \IK'
214’ \#8C’ "W’
215’ \w8D' \iM’
216’ "W8E’ "\IN'
217 \#OF \IO’

\220' W90 P’
221" Wor’ QY
222’ WeR' R
\223' 83 \IS'
\224' 94’ \IT
\225' Wes' W'
\226' 96" IV’
227 \I9T AW

\230° W98’ \IX'
231" 99’ \IY’
232 WA \Z'
\233' WoB' '
\234' WeC' W
\235' W9D" \['
236" WOE' "\
\237" WOF |’

N\240° HAO' &’
\241° \#A1’ "\&F
N\242' "\WA2' &~
243’ \BAZ' "\a¥
\244' \BAL NS’
245’ A5’ \&%’
246’ \#AB’ \&&’
247 "\RAT "8

"\250' WAB' "&(
261’ \BAG' &)
252" \HAA' \&*
253" \WAB' \&+’
254’ \KAC' "8’
"\255' \BAD’ &~
256" WAE' 8.
257 \#AF "8/

300" "WC0' \&@’
301" \#C1’ &N’
302 'WC2' "&b’
303" "#C3' \&C’
304" "#C4' 8D’
\305' "WC5' "&E’
308" 'WCe' "\&F
\307 "WC7 &G’

\310' "'WC8' "\&H’
311’ "WCY "\&F

\312 "WCA' "\&J’
313 CB' &K'
314 "WCC L’
315" WCD’ BM’
316’ "WCE' 8N’
317 "#CF 8O’

\320° "WDO' &P’
321" WD1' "\&Q’
\322 "WD2' SR’
\323 "WD3I' &S’
\324' WD4' T
\325 "$D§' WU’
326 'WD8' &V
\327 "WD7' "aw'

330’ "WD8' &X'
331" WDY' BY’
332 "WDA' \&Z
333" "WDB' "4/
334 "¥DC’ "aY
\335' "WOD' \&J'
338" "WDE’ "8+
\337 HDF "8

\340° "FEO' &
\341' \SE1' \Ba'
\34Z WHE2' "Bb’
343 WES' \&c'
\344 IE4" \&d’
\345' WES' 8o’
\348' "WES' "\&F
34T KET "8g'

N350° "#ES’ "\&h'
351" \#E9" &I’
\352 "WEA' &
\353' 'WEB’ 8K’
"\354' 'WEC' &I
355 "WED' "am'
356 "WEE' \&n’
357 "WEF "\&o'

| Syntax

060" 3¢’ ‘0’
081’ Wa1' 'Y’
002 T 'Y
Ve oy Y
004’ W4 S
B]
008 WIS %’
08T 937 T

070 Ay
71 e Y
072 WA !
073 e Y
7L WL ‘<
NS W
N WIE >’
7T N

00 Y g
e Y Y
\eT WIT T
e W Y
IO e Y
Ve W
Wr e Y
\1ST T W

M W
NI Y
MY WA Y
WITYwT
NI WIC T
MW WO T
MW e -
NMTT WP e

W‘WW'

www
wmw

118 Built-in Types and Type Generators

Il Built-in Types and Type Generators 119

Appendix i
Built-in Types and Type Generators
The following sections specify the built-in types and the types produced by the built-in type generators
of Argus. For each type and for each instance of each type generator, the objects of the type are
characterized, and all of the operations of the type are defined. (An implementation may provide
additional operations on the built in types, as long as these are operations that could be implemented in
terms of those described in this section.)

All the built-in types (except for any) are transmissibie. Al instances of the built-in type generators
(except for proctype and Rertype) are transmissible if all their type parameters are transmissibie.
Transmission of the buik-in types preserves value equality, except for objects of type real. However, in a
homogeneous environment, reais can be iransmitted without approximations. In a homogeneous
environment, the only possible encode or decode fallures are exceeding the representation limits of an
Image, mutating the size of an array or atomic__array while it is being encoded or decoded, and
improper decoding of cyclic objects (see Section 14.4).

All operations are indivisible except at calis to subsidiary operations (such as Int$similar within
array{int]$similar), at yields, and while waiting for locks.

The specifications given below are informal and are adapted from the book Abstraction and
Specification in Program Deveiopment (Liskov, B. and Guttag, J., MIT Press, 1986). A specification starts
out by giving a list of the operations and declarations of any formal parameters for the type. This is
followed by an overview, which gives an introduction to the type and ¥ necessary defines a way of
describing the type’s objects and their values. Foliowing this the individual operations are described. For
each operation there is a heading and a statement of the operation's effects. In the heading, the return
values may be given names. The effects section describes the normal and exceptional behavior of the
operation. The effects given are abetract, that is they are described using the vocabulary (or model)
defined in the overview section. For example, objects of type it are described using mathematical
integers. Thus arithmetic expressions and comparisons used in defining Int operations are to be
computed over the domain of mathematical integers.

An operation that (abstractly) mutates one of its arguments lists the arguments that it mutates in the
clause following the word modifies. An operation is not allowed 10 mutate any objects, except for those
listed in the modifies clause. (For the built-in mutable atomic type generators, modiification only refers 10
the sequential state; it does not refer to changes in the locking information kept for each object.) When
an argument, say a, is mutated, it is often necessary o describe its stale at the starnt of the call as well as
its final state at the end of the call. WQmunm%m:smaﬂusmtomnaIth
notation &, for its state at the end of the call.

Some operations of the built in type generators are only defined i the type generator is passed
appropriate actual routine parameters (see Section 12.6). For example, the copy operation of the array

120 Bulit-In Types and Type Generators

type generator, is only defined if there is an actual parameter passed (explicitly or impilicitly) for the type
parameter's copy operation. Thus array{int]$copy is defined but arrayjany)$copy is not defined. These
requirements are stated in a requires clause that precedes the description of the operation's effect. The
type of the expected routine is also described; remember that the actual operation parameter can have
fewer signals (see Section 6.1 and Section 12.6).

By convention, the order in which exceptions are listed in the operation type is the order in which the
various conditions are checked.

Operations with the same semantics (for example, nuli$equa/ and nuli$simiar) or that can be
described in the same way (for exampie, int$add and Int$sub) are grouped together to save space.

in defining the built-in types, we do not depend on users satisfying any constraints beyond those that
can be type-checked. This decision leads to more complicated spacifications. For example, the behavior
of the elements iterator for arrays is defined even when the loop modifies the array.

I1.1. Null
null = data type Is copy, equal, similar, transmit

Overview

The type null has exactly one, immutable, atomic object, represented by the literal nil. Nil is
generally used as a place holder in type definitions using oneofs or variants.

Operations

equal = proc (n1, n2: null) returns (bool)
similar = proc (n1, n2: mull) returns (bool)
effects Retums true.

copy = proc (n: null) retums (null)
transmit = proc (n: null) returns (null)
effects Returns nil.

I1.2. Nodes
node = data type Is here, copy, equal, similar, transmit
Overview

Objects of type node are immutable and atomic, and stand for physical nodes. Implementations
should provide some mechanism for translating a node “address” into a node object and vice
versa. {However, these do not have to be operations of type node.)

Operations

here = proc () retums (node)
effects Retums the node object for the caller's node.

equal = proc (n1, n2: node) retums (bool)
similar = proc (n1, n2: node) retums (bool)
effects Returns true if and only if n1 and n2 are the same node.

H.2 Nodes 121

copy = prac (n: Rous) MRS (ande)
mmmmmm

i.3. Booleans
bool = date typeis and, or, not, equel, similar, copy, EReME
Overview

The wo immutable, atomic objects of type bool, with liemis Wus and false, represent logical truth

The language sise proviies the cparaiors SRR ans Saw for conditionsl evalusiion of bodlean
oxpressions, see Section §.15. ‘

w
and = proc (b1, b2: beet) retume (heeh
Mmmuﬁwmmmmm

or = pros (1, b2: hael): el
“WQMQ’&WMW

10 by < 0. Thisusstorie

fom_to - Res Gheen, ;W) e
e bertiisi o fom_to_by(tem, ®, 1).

max = Proc (x, y: It} FeRmne et
ofiocts ¥ x 2 y, than ralame x, GRenVIs RIS .

m‘““'““u
offecte ¥ X‘n”m’.m ’

mMWiﬂyuu aame integer; e

copy = Proc 1. Int) sekuras (Int)
efifecis Returms x.

I1.4 Integers 123

transmit = proc (x: int) retums (y: int) signels{failure(string))
offects Retums y such that x = y or signals fallure ¥ x cannot be represented in the
implementation on the receiving end.

I.5. Reals

real = data type Is add, sub, minus, mul, div, power, abs, max, min, exponent, mantissa, i2r, r2i,
trunc, parse, unparse, i, le, ge, gt, equal, similar, copy, transmit

Overview

The type real models a subset of the mathematical numbers. i is used for approximate or floating
point arithmetic. Reals are immutable and atomic, and are written as a mantissa with an optional
exponent. See Appendix | for the format of real iterals.

Each implementation represents a subeet of the real numbers in:
D = {~real_max, —real_min} U {0} U {real_min, real_max}
where
0 < real_min < 1 < real_max
Numbers in D are approximated by the implementation with a precision of p decimal digits such

that:
vre D Approx(r) € Real
Vr e Real Approx{r) = r
Vre D - {0} | (Approx(r) — r)ir} < 101P
vrse D r < 8 = Approx(r) s Approx(s)
vre D Approx(—r) = —Approx(r)

We define Max_width and Exp_width to be the smaliest integers such that every nonzero element
of resl can be represented in "standard” form (exactly one dight, not zero, before the decimal
point) with no more than Max_ width digits of mantissa and no more than Exp_ width digits of
exponent.

Real operations signal an exception if the resuk of a computation lies outside of D; overfiow
occurs if the magnitude exceeds real_max, and underflow occurs if the magnitude is less than
real_min.

Operations

add = proc (x, y: real) retums (real) signais (overfiow, underfiow)
effects Computes the sum z of x and y; signals overflow or underflow i z is outside of D, as
explained earlier. Otherwise retume an approximation such that:
(xy 20 v x,y < 0) = add(x, y)-Appmx‘x+y)
add(x, y) = (1 +&)(x +Y) le| <« 10'P
M(x, 0)-X
add(x, y) = add(y, x)
x < x' = add{x, y) < add(x’, y)
sub = proc (x, y: real) retums (real) signais (overfiow, underfiow)
effects Computes x — y; the result is identical to add(x, —).

minus = proc (x: real) returns (real)
effects Returnsg —x.

mul = proc (x, y: real) retums (real) signals (overfiow, underfiow)
effects Returns approx(xy); sighals overflow or underfiow if x+y is outside of D.

div = proc (x, y: real) returns (real) signals (zero_divide, overflow, underfiow)
effects If y = 0, signals zero_ divide. Otherwise retumns approx(xy); signals overflow or
underfiow it x/y is outside of D.

124

Builit-in Types and Type Generators

power = proc (x, y: real) returns (resl)
sighals (zero_divide, compiex_result, overfiow, underfiow)
offects If x = 0 and y < 0, sighals zero_ “divide. M x < 0 and y is nonintegral, signals
complex_result. Otherwise returns an approximation 1o ¥, good 10 p significant digits;
signals overflow or underfiow i ¥ is outside of D.

abs = proc (x: resl) retums (reel)
offects Returns the abeokite value of x.

max = proc (x, y: real) retums (real)
effects I x 2 y, then retume x, otherwise returns y.

min = proc (x, y: real) returns (reaf)
effects If x < y, then retums x, otherwise retume y.

exponent = proc (x: real) returns (int) signels (undefined)
effects if x = 0, signals undefined. Otherwise retums the exponent that would be used in
representing x as a iteral in standard form, that is, returms
max ({i | abs{x) 2 10f})

mantissa = proc (x: real) retums (resl)
effects Returns the mantissa of x when represented in standard form, that is, retums
approx(x/10°), where @ = exponent(x). it x= 0.0, retumns 0.0.

i2r = proc (i: int) retumns (real) signals (overflow)
effects Returns approx()); sighais overfiow i /is not in D.

r2i = proc (x: real) returns (Inf) signals (overfiow)]
efiects Rounds x {0 the nearest integer and toward zero in case of a tie. Signals overfiow if

the result lies outside the represented range of integers.

trunc = proc (x: real) retumas (int) signals (overfiow)
effects Truncates x towand zero; signais overflow i the result would be outside the

represented range of integers.

parse-proc(s MM(M)WM format, overfiow, undertiow)
Retums apprax(2), where z is the vaiue represented by the string s (see Appendix I).
Smmanﬂummwnmmmnormﬂgn
otherwise signais bad_format. Signais underfliow or overflow X 2 is not in D.

unparse = proc (x: resl) returns (string)
oﬁ?RetumaMMIunhﬂutMuwu(xnax. The general form of the literal

[-] 1 fel.t_feia [¢+ x_fiekdt]
Leading zeros in /_field and tralling zeros in f_field are suppressed. I x is integral and
within the range of represenied integers, then 7_field and the exponent are not present. If
X can be represented by a mantissa of no more than Max_wich digits and no exponent
(that Is, -1 < exponenfargl) < Max__widih), then the exponent is not present.
mmmnmwmwﬁm wicth digits of exponent.

nnl)m(bool)
mmsemﬂnummmﬁngmam.

equal = proc (x, y: real) returns (bool)
similar = proc (x, y: real) retums (bool)
effects Returns true ¥ x and y are the same number; retume talee otherwise.

i s gl o110t i o e

Macmmm ouding ¥ ¢ s an ASCH

126 Buiit-in Types and Type Generators

I.7. Strings

string = data type Is c2s, concat, append, substr, rest, size, empty, fetch, chars, indexs, indexc,
82ac, ac2s, $2sc, sc2s, R, le, ge, gt, equal, similar, copy, transmit

Overview

Type string is used for representing text. A string is an immutable and atomic tuple of zero or
more characters. The characters of a siring are indexed sequentially starting from one. Strings
are lexicographically ordered based on the ordering for characters.

usedwmmstrhgllm No string can have a size
implementation may restrict string lengths t0 a value less than in{
operation wouki be a string containing more than the
operation signails #mits.

Operations

c2s = proc (c: char) retums (string)
eftects Retums a string containing ¢ as iis only character.

concat = proc (st, 82: m)mnc(rmlng)alﬂmh (limits)
effects Returns the concatenation of 87 and 82. That e, {4=s7[/] for / an index of 87 and
f{size(s1)+A=82)) for / an index of s2. Signale Amis ¥ r wouid be too large for the
impiementation.

append = proc (s: string, c: char) returns (r: string) signals (limits) _
effects Returns a new string having the characters of s in order followed by c. That is,
nsize(s)+1] = c. Signals limits ¥ the new siring wouid be 100 large for the implementation.

substr = proc (s: string, at: int, cnt: int) returns (string) signals (bounds, negative_size)
effects If cnt < 0, signais negative_ size. M at < 1 or at > size(s)+1, signais bounds.

Otherwise retums a string having the characters s{af, s{at+1], ... in that order; the new
string contains min(cnt, size-at+1) characters. For exampie,

substr (“abcdef”, 2, 3) = "bed”

substr ("abcdef", 2, 7) = "bedef”

substr ("abcdef*, 7, 1) = ™
Note that i min(cnt, size-at+1) = 0, substr retums the empty string.

rest = proc (s: string, i: int) returns (r: string) signals (bounds)
effects Signais bounds if i < 0 or / > sixe(s) + 1; otherwise retumns a string whose first
character is s, whose second is s[i+7], ..., and whose size(/th character is 8{size(s)].

Note that if / = size(s)+1, rest returns the empty string.

size = proc (s: string) retums (int)
effects Returns the number of characters in s.

empty = proc (s: string) returns (bool)
effects Returns true if s is empty (contains no characters); otherwise retumns false.

fetch = proc (s: string, i: int) returns (char) signais (bounds)
effects Signals bounds if i < 0 or i > size(s); otherwise returns the th character of s.

chars = Rer (s: string) ylelds (Char)
effects Yields, in order, each character of s (i.e., s{1], 8{2}, ...).

1.7 Strings 127

indexs = proc (s1, s2: string) returns (int)
offects If 57 occurs as a substring in 82, retums the least index at which s1 occurs. Returns
0 if s1 does not occur in 82, and 1 ¥ 81 is the emply siring. For example,
indexs("abc", "abchbe”) = 1
indexs("bc”, "abche™) = 2
indexs(™, "abode”) = 1
indexs("bcb”, "abcde”) = 0

indexc = proc (c: char, s: string) retumns (int)
effects if ¢ occurs in s, retums the least index at which ¢ occurs; returns 0 ¥ ¢ does not
occurins.

s2ac = proc (s: string) retums (arrayjchar])
effects Stores the characters of s as elements of a new array of characters, a. The low
bound of the array is 1, the size is size(s), and the Ah element of the amay is the &h
character of g, for 1 < i< gize(s).

ac2s = proc (a: arrayjchar]) returmnes (string)
effects This is the inverse of s2ac. The result is a string with characters in the same order
as in a. That is, the th character of the string is the (i+array{chari$/ow(a)-1)th element
of a

s2sC = proc (s: string) retums (sequence{char])
effects Transforms a string into a sequence of characters. The size of the sequence is
size(s). The th elememnt of the sequence is the Ah character of s, for 1 </ < size(s).

sc2s = proc (s: sequence{char]) returns (string)
offects This is the inverse of 22sc. The resuk is a string with characters in the same order
as in 8. That is, the th character of the string is the ih element of s.

it = proc (81, 82: string) returns (bool)
le = proc (s1, s2: string) retums (bool)
Qe = proc (s1, 62: string) returns (bool)
gt = proc (81, s2: string) retums (bool)
effects These are the usual lexicographic ordering relations on strings, based on the
ordering of characters. For example,
"abc" < "aca"
lmﬂ<NMI
equal = proc (s1, s2: string) returns (bool)

similar = proc (s1, 82: string) retumns (bool)
offects Retums true ¥ s7 and 82 are the same string; otherwise returns false.

Copy = proc (s1: string) returns (string)
offects Returns s7.

transmit = proc (s1: string) returns (string) signals (failure(string))
effects Returns s71. Signals faliure only if 81 is not representable on the receiving end.

128 Buiit-in Types and Type Generators

I1.8. Sequences

sequence = data type [t type] is new, e2s, fill, fill_copy, replace, addh, addl, remh, reml, concat,
subseq, size, empty, feich, bottom, top, elements, indexes, a2s, s2a,
equal, similar, copy, transmit

Overview

Sequences represent immutable tuples of objects of type £. The elements of the sequence can be
indexed sequentially from 1 up to the size of the sequence. Alhough a sequence is immutable,
the elements of the sequence can be mutable objects. The state of such mutable elements may
change; thus, a sequence object is atomic only if ks elements are also atomic.

Sequences can be created by calling sequence operations and by means of the sequence
constructor, see Section 6.2.8.

Any operation cail that attempts to access a sequence with an index that is not within the defined
range terminates with the bounds exception. The size of a sequence can be no larger than the
largest positive int (int_max), but an implementation may restrict sequences {o a smailer upper
bound. An attempt to construct a sequence which is 100 large results in a ¥imifs exception.

Operations

new = Proc () returng (seguencait])
effects Returns the empty sequence.

e2s = proc (elem: t) returns (sequence{t])
effects Retums a one-element sequence having elem as its only element.

fill = proc (cnt: int, elem: t) returmns (ssquence{i]) signails (negative_size, limits)
effects If cnt < 0, signals negative_size. If ont is larger than the maximum sequence size
supported by the implementation, signals Amits. Otherwise retums a sequence having
cnt elements each of which is elem.

fill_copy = proc (cnt: int, elem: t) returns (sequence(t])
signals (negative_size, imits, fallure(string))

requires t has copy: proctype (1) retums (1) signels (fallure(string)

effects If cnt < 0, signais negative__size. i cnt is bigger than the maximum size of
sequences that the implementation supports, signals #mits. Otherwise retums a new
sequence having cnt elements each of which is a copy of a#em, as made by f$copy. Note
that fcopy is called ont times. Any fallure signal raised by fScopy is immediately
resignalled. This operation does not originate any falure signais by itself.

replace = proc (s: sequence(t], i: int, elem: t) returns (sequenceft]) signals (bounds)
effects if i < 1 or i > high(s), signais bounds. Otherwise retums a sequence with the same
elements as s, except that efem is in the Ah position. For example,

replace(sequence{int]${2,5], 1, 6) = sequencefint]${6, 5]

addh = proc (s: sequenceit], elem: t) returns (r: sequenceft]) signals (limits)
offects Retums a sequence with the same elements as s followed by one additional
element, elem. That is, Ail=d{i] for / an index of 8, and Asize(s)+1]=elem. i the resulting
sequence would be larger than the implementation supports, sighals ¥mits.

add! = proc (s: sequenceft], elem: t) returns (r: sequenceft]) signals (limits).
effects Retums a sequence having elem as the first element followed by the elements of s
in order. That is, [1]=alem and Aj=g{/-1] for i = 2, ..., size(r). ¥ the resulting sequence

would be larger than the implementation supports, signals Amits.

remh = proc (s: sequenceit]) returns (r: wnm(bounds)
effects if s is empty, signals bounds. Otherwise retums a sequence having all elements of s
in order, except the last one. That is, size{r)=size(s)-1 and =S fori= 1, ..., size(s)-1.

ot AR st TR T UL

130 Built-in Types and Type Generators

copy = proc (s: sequencsft]) returns (sequencefi]) signals (failure{string))
requires { has copy: proctype (t) returns (1) sighals (fallure(string))
effects Retuns a sequence having as elements copies of the elements of s. The effect is
equivalent to that of the following procedure body:
Gt = sequence(t]
y: gt = gt$new()
for e: t In gt$elements(s) do
{M = qt$addh(y, t$copy(e)) resignal faikire

retum (y)

transmrthmp':o::‘(:as sequence(t]) retumns (sequence(t]) signais (fallure(string))
effects Retums a sequence having as elements transmilied copies of the elements of s in
the same order. Sharing among elements is preserved. Signais tallure ¥ this cannot be
represented on the receiving end and also resignais any fallures from fStransmit.

11.9. Arrays

array = data type [t: type] Is create, new, predict, fill, fill_copy, addh, addl, remh, remi,
set_low, trim, store, fetch, bottom, top, empty, size, low, high, elements, indexes,
equal, similar, similar1, copy, copy1, transmit

Overview

Arrays are mutable objects that represent tuples of elements of type ¢ that can grow and shrink
dynamically. Each array’s state consists of this tupie of elements and a low bound (or index). The
elements are indexed sequentially, starting from the low bound. Each array aiso has an identity
as an object.

Arrays can be created by calling array operations create, new, i, W_copy, and predict. They can
also be created by means of the array constructor, which specifies the array low bound, and an
arbitrary number of initial elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the array. For
array a, size(a) is the number of elements in a, which is zero if a is empty. These are related by
the equation: high(a) = low(a) + size(a) - 1.

For any index / between the low and high bound of an array, there is a defined element, a{]. The
bounds exception is raised when an attempt is made to access an element outside the defined
range. Any array must have a low bound, a high bound, and a size which are all legal integers.
An implementation may restrict these to some smaller range of inlegers. A call that would lead to
an array whose low or high bound or size is outside the defined range terminates with a imits
exception.

Operations
create = proc (ib: int) retums (arrayit]) signais (limits)

effects Returns a new, empty array with low bound /b. Limits occurs if the resulting array
would not be supported by the implementation.

new = proc () returns (arrayft])
effects Returns a new, emply array with low bound 1. Equivalent to create(1).

132 Bulit-in Types and Type Generators

store = proc (a: arrayft], i: int, elem: t) signals (bounds)
modifies a.
effects if / < low(a) or i > high({a), signals bounds; otherwise makes elem the element of a
with index /.

fetch = proc (a: arrayft], i: int) returns (1) signals (bounds)
offects If / < low(a) or / > high{a), signals bounds; otherwigse retums the element of a with
index /.

bottom = proc (a: arrayit]) returns (1) signais (bounds)
offects If ais empty, signals bounds; otherwise retums ajiow(a)].

top = proc (a: amrayft]) returns (t) signals (bounds)
effects if ais empty, signais bounds; otherwise retumns g high(a)].

empty:pm(a amy[t])nlums(bool)
Returns true i a contains no elements; otherwise returns false.

size = proc (a: arrayft]) returns (int)
sffects Retums a count of the number of elements of a.

low = proc (a: array{t]) retums (int)
effects Returns the low bound of a.

high = proc (a: arrayft]) retums (int)
effects Retums the high bound of a.

elements = Rer (a: arrayft]) yleids (t) signals (fallure(string))
effects Yields the elements of a, exactly once for each index, from the low bound to the high
bound (l.e., DOHOM o), -1 10P(Reyg))- The elements are feiched one at a time, using
the indexes that were legal at the start of the call. ¥, during the Reration, a is modified so
that fetching at a previously legal index signais bounds, then the erator signale failre
with the string "bounds”. The Rerator is divisible at ylelds.

indexes = iter (a: arrayit]) yieids (int)
omctsYleldstheMesdafromthelowboundofa”tothehighboundof . Note
that indexes is unaffected by any modifications done by the loop body. It is divisible at
yields.

equal = proc (a1, a2: arrayit]) retumns (bool)
effects Returns true ¥ a1 and a2 refer to the same array object; otherwise returns faise.

similar = proc (a1, a2: array{t]) returns (bool) signale (fallure(string))
requires t has similar: proctype (t, t) returns (bool) signais (fallure(string))
effects Returns true if a7 and a2 have the same low and high bounds and ¥ their elements
are pairwise similar as determined by Ssimifar. This eflect of this operation is equivaient
gﬂmgmmmm(exmmmmmmnwmamm
at = array{t]
if at$low(a1) ~= at$iow(a2) cor at$size(al) ~= at$size(a2)
then retum (false)
end

for i: int In at$indexes(al) do
it ~t$simitar(at[l], a2[i]) then return (faise) end
resignal failure
except when bounds: signal fallure("bounds”) end
ond
retum (true)

1.9 Arrays 133

similar1 = proc (at, a2: arrayft]) returns (bool) signais (fallure{siring))
requires ¢ has equal: proctype (t, t) retums (bool) signais (failure(string))
offects Retumns true if a7 and a2 have the same low and high bounds and i their elements
are pairwige equal as determined by Sequal. This operation works the same way as
similar, except that $equal is used instead of Seimiar.

copy = proc (a: array(t]) returns (b: array{l]) signeis (fallure{string))
requires ¢ has copy: proctype (1) returns (1) signais (fallure(string))
ofiects Retums a new array b with the same low and high bounds as a and such that each
slement B[} containg Scopy(aff). The effect of this operation is equivalent to the

fomm(wmnnmmammm

= array{liSoopyi(a)
iot it |m ln arrayfti$indexes(a) do
Wam)

o excopt mn bounds: signal fallure("bounds”) end
return (b)

copy1 = proc (a: array[t]) retums (b: arrayit])
effects Retumns a new array b with the same low and high bounds as a and such that each
element D[4 contains the same element as a(4.

transmit = proc (a: arrayft]) returns (b: arrayit]) signals (failure(string))
requires { has transmit
effects Returns a new amray b with the same low and high bounds as a and such that each
element b containg a transmitted copy of 4. Sharing among the elements of a is
preserved in b. Signals fallure I b cannot be represented on the receiving end or if
fetanganebmommaboﬂMdawmaMMQMnandmszany
failure sighals raised by ftransmi.

1.10. Atomic Arrays

atomic_array = data type [t: type] is create, new, predict, fill, fill_copy, addh, addi, remh, remi,
set_low, trim, store, fetch, bottom, fop, empty, size, low, high, elements, indexes,
aa2a, a2aa, equal, similar, similart, copy, copy1, tranemit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview
Atomic__arrays are mutable atomic objects that represent tuples of elements of type that can
grow and shrink dynamically. Each atomic__array's (sequential) state consists of this tuple of

elements and a low bound (or index). Theehmoﬁsanmmmtny starting from the
low bound. Each atomic_array also has an identity as an object.

Atomic_ arrays can be created by calling atomic_array operations create, new, fill, fil_copy, and
predict. They can aiso be created by means of the atomic_array constructor, which specifies the
array low bound, and an arbitrary number of initial elements, see Section 6.2.9.

Operations low, high, and size return the current low and high bounds and size of the
atomic_array. For an atomic_armay a, size(a) is the number of elements in a, which is zero if ais

empty. These are related by the equation: high(a) = low(a) + size{a) - 1.

134

e T AR B A A T R Rt T, i R T A T R e T

may .
thatwou!dloadtoanm _array whose low or high bound or size is outside the defined range
temnateswithallmhaxuptbn #imits exception.

Atomic__arrays use read/write locking to achieve atomiclly. The locking rules are described in
Section 2.2.2. it is an ervor if a process that is not in an action attempts 10 test or obtain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt to test or obtain a lock is the equal operation.

Operations

create = proc (bb: int) returns (a:atomic mym) signais (Hmits)
offects Returmns a new, emply atomic__array a with low bound b. Limits occurs & the
madbd(m mywouldnotboambdbymoiml«mmﬁon The caller obtains
are ona

new = proc () returns (stomic_arrayft))
effects Equivalent to create(1).

predict = proc (ib, cnt: Int)ntumo(a stomic ammm

-,

limits)

because of the predicted high or low bound)
fill = proc (ib, cnt: int, elem: t) retums (stomic_arrayfl)) signels (negative_size, m)
effects f cnt < 0, signaie negative_size. Returns a new stomic_arrsy with low bound b and

size cnt, and with elern as each element; I this new stemic mmmmw
by the implementation, signals #mits. The caller obtains a read lock on the resul.

fHl_copy = Proc (Ib, cnt: int, elem:) retumns (stomic_t

addh = proc (a: stomic_arrayft], elem: t) signals (fimits)
modifies a.
offects Otxtains a write lock on a. if extending & on the high end would cause the high
bound or size of a to be outside the range supporied by the implementation, then signals
iimits. Otherwise extends & by 1 in the high direction, and stores elem as the new
element. Thatis, &,.,Jhigh(a,,,)+1] = elem.

R

1110 Atomic Arrays 135

addl = proc (a: stomic_arrayjt], elem: 1) signals (limits)
modifies a.
effects Obtains a write lock on a. If extending a on the low end would causes the low bound
or size of a to be outside the range supporied by the implementation, then signals im/ts.
Otherwise extends a by 1 in the low disection, and stores sfem as the new element. That
18, Bpogd IOW(B,0g)-1] = GlOm.

remh = proc (a: atomic_arrayft]) returns (i) signais {bounds)
modifies a.

effects Obtains a write lock on a. if a is empty, signals bounds. Otherwise shrinks a by
removing ks high element, and retums the removed slement. That is, high(a,,,,) =
high(a,,y) - 1.
reml = proc (a: atomic_arrayft]) retums (t) signals (bounde)
modifies 2.

offects Obtains a write lock on a. if a is emply, signals bounds. Otherwiss siwinks a by
removing s low element, and retums the removed element. Thdb.lw(n,.')-

lw.)+1
set_low = proc (a: atomic_arrayft], b: int) signals (limits)
modifies a.

offects Obtains a write lock on a. i the new low {or high) bound would not bo:mmdby
the implementation, then signals imits. Otherwise, modifies the low and high bounds of
& the new low bound of 2 is D and the new high bound is Aph(a,,) =
highpee)+ oW 11).

trim = proc (a: atomic_arrayft], b, cnt: int) signais (negative_size, bounds)
modifies a.

offacts if ont < 0, signais negative_size and does not obiain any locks. Otherwise obtains a
write lock on 2. H b < low(a) of Ib> high(a)+1, signals bounds. Otherwise, modifies a by
removing all elements with index < & or grester Than or agual 1o beont, the new low
bound is . For sxample, ¥ 2 = stomic_smeyfinilif1.2.3.4.5], then:

ma.z.ammmmmmaa)
trim(a, 4, 3) resuts in & having value stomslc_areyfinti$i4: 4, 5]

store = proc (a: atomic_arrayfl], i: int, elem: 1) signale (bounds)
modifies a.

offects Oblaine a write lock on a. ¥ / < low(a) or / > higiXa), signals bounds; otherwise
makes elem the element of a with index /.

fetch = proc (a: atomic_sirayft], i: Int) retums (1) signals (bounds)
offects If / < low(a) or i> highls), signeis bounds; ciherwise retums the element of a with
index i. Aways oblaing a reac lock on a.

mm-pm(ammmmmh(m
ungﬁabmm » otherwise relume aflow(a)]. Aways obtaine a read
on a.

top = proc (a: atomic_arrayft]) retumns (t) signals (bounds)
mwnum.mm~mmm (8)]. Aways oblains a read
on a.

emptly = proc (a: atomic_srray(t]) returns (bool)
offects Retums true ¥ & contains no elements, retumns fales otherwise. in either case
obtains a read lock on &

size = proc (a: stomic_arrayft]) returne (int)
Mﬂm;mﬂdmm«oﬁmugmamadbwma

136

Buiit-in Types and Type Generators

low = proc (a: atomic_arrayit]) returns (int)
effects Retumns the low bound of a, obtains a read lock on a

high = proc (a: atomic_array{t]) returns (int)
effects Retumns the high bound of a, obtains a read lock on a.

elements = Rer (a: atomic llny[myhldt(t)mamm)
effects Obtains a read lock on & and yields the elements of a, each exactly once for each

index, from the low bound to the high bound (l.e., bolon(a,,), ... top(a,,,)). The
elements are fetched one at a time, mmmm\nnmamomam
call. N, during the iteration, a is modified so that felching at a previously legal index
signals bounds, then the iterator signals faiiure with the string "bounds”. The Rterator is
divisible at yieids.

indexes = iter (a: atomic_array{t]) yields (int)
effects Obtains a read lock on a, then yields the indexes of & from the low bound of &, to
the high bound of a,,,. Note that indexes is unaffected by any modifications done by the
loop body. It is divisible at yields.

aa2a = proc (aa: stomic_amrayft]) returmns (arrayft])
effects Obtains a read lock on aa and retums an array a with the same (sequential) state.

a2aa = proc (arrayft]) returns (aa: atomic_arayft])
effects Retums an atomic_array aa with the same state as a. Obtains a read lock on aa.

equal = proc (a1, a2: stomic_armrayft]) returns (bool)
effects Returns true i a7 and a2 refer to the same atomic_ array object; otherwige retums
false. No locks are obtained.

similar = proc (at, a2: atomic_arrayit]) retums (bool) sighais (tallure(etring))
requires f has similar: proctype (1, t) returns (bool) signale {fallure(string))
effects Returns true K a7 and a2 have the same low and high bounds and ¥ their elements
are pairwise similar as determined by Beimiar. See the description of the similar
operation of array for an equivalent body of code. This operation is divisible at calls to
t$similar. Read locks are obtained on a7 and a2, in that order.

similar! = proc (at, a2: atomic_arrayft]) returns (bool) signeis (fallure(string))
requires t has equal: proctype (i, t) relumns (bool) signals (failure{string))
effects Returns trus i a7 and a2 have the same low and high bounds and I their elements
are pairwise equal as determined by Sequal. This operation works the same way as
mnd mﬂmmnmmum.mmmMonm
and a2, in order

Copy = proc (a: stomic mmwm(b stomic mnm(#ai;\):re(whg))

3

thmoachmmuqoomﬁn‘wp)ﬁ Sﬂhw“?‘hﬂm”ymd
array for an equivalent body of code. menmacﬂswm and
obtains read locks on a and b.

copy1 = proc (a: atomic_arrayft]) returns (b: atomic_i
effects Retumns a new stomic mbmmmmwmmsamm
thr:gachdmqumwnsmm:siq Read locks are obtained on a
a

110 Atomic Arrays 137

transmit = proc (a: atomic_arrayit]) returns (b: atomic_array{t]) signals (failure(string))
requires t has transmit
effects Retumns a new array b with the same low and high bounds as a and such that each
element 4[] contains a transmitted copy of aff. Read locks are obtained on a and b.
Sharing among the elements of a is preserved in b. Signale failure ¥ b cannot be
represented on the receiving end or f fetching an element at a legal index of &,,, causes
a bounds exception and resignals any falure signais raised by fStransmhi.

test_and_read = proc (aa: stomic_array{t]) returns (bool)
effects Tries to obtain a read lock on aa. i the lock is obtained, returns true; otherwise no
lock is obtained and the operation returns false. The operation does not "walt™ for a lock.
Even ¥ the executing action “knows" that a lock couid be obtained, false may be
returned. Even ¥ false is returned, a subsequent attempt 1o obtain a read lock might
succeed without waiting.

test_and_write = proc (aa: stomic_array{t]) returns (boofl)
effects Tries to obtain a write lock on aa. if the lock is obtained, returmns true; otherwise no
lock is obtained and the operation returne false. The operation does not "walt™ for a lock.
Even ¥ the executing action "knows" that a lock could be obtained, false may be
retumed. Even if falee is relumed, a subsequent attempt to obtain a write lock might
succeed without waiting.

can_read = proc (aa: atomic_arrayft]) retumns (bool)

effects Retumns true if a read lock could be obtained on aa without waiting, otherwise
returns falee. No lock is actually obtained. Even ¥ the executing action "knows” that a
lock couid be obtained, falee may be retumed. Since some concurrent action may obtain
or release a lock on an atomic_array at any e, the information returned is unreliable:
even K true is retumed, a subsequent attempt 10 obtain the lock may require waking; and
wmmhm,awmmMawmmmw
wit

can_write = proc (aa: stomic_array(t]) returns (bool)

effects Retumns true if a write lock couki be obtained on aa without waiting, otherwise
retums faise. No lock is actually obtained. Even i the executing action "knows" that a
lock could be obtained, false may be returned. Since some concument action may obtain
or release a lock on an alomic_array at any time, the information retumned is unreliable:
even if true is retumed, a subsequent attempt 10 obtain the lock may require waiting; and
oven ¥ false is returned, a subsequent attempt to oblain a write lock migit succeed
without walting.

read_lock = proc (aa: atomic_arrayft])
effects Obtains a read lock on aa.

write_lock = proc (aa: atomic_arrayit])
effects Obtains a write lock on aa.

Il.11 Structs 139

similar = proc (s1, s2: st) returns (bool) signals (fallure(string))
requires each {; has similar: proctype (i, t) returns (booi) signais (failure(string))
effects Retumns true f 87 and s2 contain similar objects for each component as determined
by the t$similar operations. Any failure signal is immediately resignalied. This operation
does not itself originate any fajiure signal. The comparigon is done in lexicographic order
of the selectors; if any comparison retume false, falee is retumed immediately.

copy = proc (s: st) retumns (st) signale (fallure(string))
requires each {, has copy: proctype () returns (1) signais (fallure(string))
effects Retums a struct contalning a copy of each component of s; copies are obtained by
calling the tScopy operations. Any fakuwre signal is immediately resignalled. This
operation does not itsel originate any fadwe signal. Copying is done in lexicographic
order of the selectors.

transmit = proc (s: st) retums (st) signals (failure(string))
requires each {; has trahsmit
offects Retums a struct containing a transmitied copy of each component of . Sharing is
preserved among the components of s. Any faiure sighal from (Stransmit is
immediately resignalled. This operation does not itself originate any fafiure signal.

I.12. Records

record = datatype [n,:t,, .., n:t]isr_gets r,r_gets s, set_n,, .., set_n, get n,, .., get n,
equal,similar, similar1, copy, copy1, tranemit

Overview

A record is a mutable collection of one or more named objects. The names are called selectors,
and the objects are called components. Different components may have different types. A record
also has an identity as an object.

An instantiation of record has the form:

record [field_spec , «..]
where

field_spec ..= name, ... : type_actual
(see Appendix I). Sobctonmﬂbou:ﬁ:nw&ﬂnmmmﬁon(mcaphﬁzabn),bmme
ordering and grouping of selectors is unimportamt. For example, the following name the same
type:

recordflast, first, middie: string, age: int]
recordflast: string, age: int, first, middie: string]

A record is created using a record constructor, see Section 8.2.11.

For purposes of the certain operations, the the names of the seleciors are ordered
lexicographically. Lexicographic ordering of the selectors is the alphabetic ordering of the selector
names written in lower case (based on the ASCIl ordering of characters).

In the following definitions of record operations, let 1t = recordn,:t,, ..., n.:t].
Operations

r_gets_r = proc (r1, r2: nt)
modifies r1.
effects Sets each component of r1 to be the corresponding component of r2.

140

r 8= proc(r:nt, s: o)
"”m

M&nanmmmmmummmmun
Sels ench component of 710 be- the CENNIRIN ols

setn,-pm(r:n,o.t,)
anymnmmmbn,mc. There is a set_
operaiion for saoh sslecior.

,_n.-pmctmemw
offects Retrns the component of 7 whose selecior is 7, There is & get_ operation for sach
selacior.

equal = proc (1, r2: nt) retums (ool
MMM!#“Q:.MMM“MMM

oopy1 -m?‘ﬂmm
Mammmmdruhm

11.12 Records 141

II.13. Atomic Records

atomic_record = data type [n, :t,, ..., n.: L] is ar_gets ar, set_n,, ..., sel_n,, get n,, .. get_n,,
ar2r, r2ar, equal,similar, simiiart, oopy, copy1, tranemit,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

An atomic_record is a mutable atomic coliection of one or more named objects. The names are
called selectors, and the objects are calied components. Different components may have different
types. An atomic_record aiso has an identity &8 an object.

An instantiation of atomic_record has the form:
atomic_record | field_spec, ...]
where
ield_spec ..= name, ... : type
(seeAppendixl) mmmuﬁuuunmwmmm).wm
ordering and grouping of selectors is unimportant. For exampie, the following name the same
type:

atomic_record{last, first, middie: string, age: int]
atomic_recordflast: string, age: i, first, middie: string]

An atomic_record is created using a atomic_record constructor, see Section 6.2.11.

For purposes of the certain operations, the the names of the selectors are ordered
lexicographically. Lexicographic ordering of the seleciors is the aiphabetic ordering of the selector
names written in lower case (based on the ASCIl ordering of characters).

Atomic__records use read/write locking to achieve atomicity. The locking rules are described in
Section 2.2.2. it is an error if a process that is not in an action attempts to test or obtain a lock;
when this happens the guardian running the process will crash. As defined below, the only
operation that (in the normal case) does not attempt 10 test or obtain a lock is the equal operation.

in the following, let art = atomic_recordin,:t,, ..., n: 4J.
Operations
ar_gets_ar = proc (r1, r2: art)
modifies r1.

effects Obtains a write lock on 77 and a read lock on 72, then sets each component of r1 to
be the corresponding component of r2.

get_n; = proc (r: art) retums (t)
effects Obtains a read lock on r and retums the component of r whose selector is n. There
is a get_ operation for each selector.

set_n, = proc (r: art, e: t)
modifies r.
effects Obtains a write lock on r and modifies r by making the component whose selector is
n;be e. There is a set_ operation for each selector.

arer = proc (ar: art) returns (r: art)
effects Obtains a read lock on ar and retums a record r with the same state.

r2ar = proc (r: art) returns (ar; art)
effects returns an atomic_record ar with the same state as 7. Obtains a read lock on ar.

142

Bulit-in Types and Type Generators

equal = proc (r1, r2: arn) returns (bool)
effects Returns true if 77 and r2 are the very same atomic_record object; otherwise returns
false. No locks are obtained.

similar = proc (r1, r2: art) retums (bool) signals (failure(string))
requires each {; has similar: proctype (1, t) returns (bool) signais (failure(string))
effects Obtains a read lock on r1, then a read lock on r2; then compares corresponding
components from r1 and r2 using the (Seimilar operations. Any faiure signal is
immediately resignalied. This operation does not itself originate any falure signal. The
is done in lexicographic order of the seleciors; i any comparison retums
false, faige is returned immediately. If al comparisons retum true, retums true.

similar1 = proc (r1, r2: art) returmns (bool) signais (falkire(string))
requires each 1, has equal: proctype (i, t,) retums (bool) signais (fallure(string))
effects This operation is the same as similar, except that ($Sequa/ is used instead of
t$similar.

copy = proc (r: art) returns (res: art) signhels (failure(string))

requires each 1, has copy: proctype (1) returns (1) signais (fallure(string))

effects Obtaing a read lock on r, then retumns a new alomic_ record rés obtained by
penanmgcopyunmtmmmmmamamwwm
component of 7. mmmwmmmm Any faliure signal
is immediately resignalied. This operation does not ilself originate any falire signal.
Copying is done in lexicographic order of the seleciors. A read lock is aiso obtained on
the new atomic_record res.

copy1 = proc (r: art) returmns (res: art)
effects Obtains a read lock on 7, then retums a new alomic__record res containing the
componems of r as s components. A read lock is also obtained on the new
atomic_record res.

transmit = proc (ar: art) retumns (art) signals (faillure(string))
requires each ! has transmit :
effocts Returns a new atomic_record containing a transmitted copy of each component of
ar. Sharing Is preserved among the components of ar. A read lock is obtained on ar and
the new atomic__array. Any falure signal from (Stranemi is immediately resignatied.
This operation does not itself originate any faiure signal.

test_and_read = proc (ar: art) returns (boof)
effects Tries to obtain a read lock on ar. i the lock is obtained, retums true; otherwise no
lock is obtained and the operation retums faise. The operation does not "wait” for a lock.
Even if the executing action "knows™ that a lock could be obiasined, false may be
retumed. Even i false is returned, a subsequent attempt to obtain a read lock might
succeed without waiting.

test_and_write = proc (ar: art) returns (bool)
effects Tries to obtain a write lock on ar. If the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums faise. The operation does not “wait” for a lock.
Even i the executing action "knows" that a lock covuid be obtained, false may be
retumed. Even if fales is retumed, a subsequent attempt to obtain a write lock might
succeed without waiting.

I.13 Atomic Records 143

can_read = proc (ar: &) ebame ek
Mﬂmm&awmnmncmmmm

read_lock = proo (ar: ant)

offonts Obiaing & resd lock on ar.
write_jock = proe (ar: ant)
MM&“M&»\&
il.14. Oneofs
M.“m‘ w% *ﬁ PR .. h_“i'm-m =~ m,_, l'“"w“&l
mm‘iﬂ M“'m o d

‘_»uumcuwwa |

ﬂmmmm
(see Appendix §. mﬂummm-mmmmm
ordering and grouping of e s uninpeitd.

AMBW&*M&MMW & oneol is stomic only # aii of
the types of s date panle are shomic.

hWMﬁﬂtm:twm. L %3 % 8
Operations

make_n, = Proc (e: {) rewans (o)
MMsmmmm@m*a There is & make_ wmm

is_n, = proc (0. ot) returns (boot)
Mmmmiuquohgﬁnm s S0iee. There is an is_ operstion for
oath .

144 Bulit-in Types and Type Generators

value_n; = proc (0: ot) retums (t) signais (wrong_tag)
effects if the tag of 0 is n, retums the value of 0; otherwise signals wrong_tag. There is a
value_ operation for each selector.

02v = proc (o: ot) retums (vt)
effects Here vt is a variant type with the same selectors and types as ot Returns a new
variant object with the same tag and value as 0.

v20 = proc (v: vt) returns (ot)
effects Here vt is a variant type with the same selectors and types as of. Returns a oneof
object with the same tag and value as v.

equal = proc (01, 02: of) retums (bool) signais (faillure(string))
requires each {; has equal: proctype (t, {) returns (bool) signais (failure(string))
effects Retums true ¥ o7 and 02 have the same tag and equal values as delermnined by the
equal operation of their data part's type. Any falwe signal is immediately resignalied.
This operation does not kseif originate any faiire signal. This operation is divisible at the
call of t$equal.

similar = proc (01, 02: ot) returns (bool) signals (failure(string))
requires each 1, has similar: proctype (i,) returns (bool) signais (failure(string))
offects Retumns true it 07 and o2 have the same tag and similar values as determined by
the similar operation of their vaiue's type. Any /alkre signai is immediately resignalied.
This operation does not itself originate any 7aiure signel. This operation is divisible at the
call of t$similar.

copy = proc (0: ot) returns (ot) signals (fallure(string))
requires each {; has copy: proctype () retums (t) signale (failure(string))
effects Retums a oneof object with the same tag as 0 and containing as a value a copy of
o's value; the copy is made using the copy operation of the vakie's type. Any faiure
signal is immediately resignalied. This operation does not Rself originate any fafiur
signal. This operation is divisibie at the call of t$copy.

transmit = proc (o: ot) returns (ot) signais (fallure(string))
requires each {; has transmit
effects Retumns a oneof object with the same tag as o and contalning as a value a
transmitted copy of o's value. Any faiure signal is immediately resignalied. This
operation does not itself originate any faiure signal.

I.15. Variants

variant = data type [n,:t,, ..., i 1,] I8 make_n,, ..., make_n,, change_n,, ..., change_n,,
is_n,, ..., is_ny, value_n,, ..., value_n,, v_gets v,v_gets o,
equal, similar, similart, copy, copy1, transmit

Overview

A variant is a mutable, tagged, discriminated union. His state is a oneof, that is, a labeled object,
to be thought of as "one of" a set of aternatives. The label is called the fag part, and the object is
called the value (or data part). A variant aiso has an identity as an object.

An instantiation of variant has the form:
variant [field_spec , ...]
where
field_spec ..= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.

I.15 Variants 145

Although there are variant operations for decomposing variant objects, they are usually
decomposed via the tagcase statement, which is discussed in Section 10.14.

In the following let vt = variant{n,:t,, ..., n:t,].

Operations

make_n; = proc (e: t,) returns (vt)
effects Retumns a new variant object with tag n; and value 6. There is a make_ operation for
each selector.

change_n; = proc (v: vt, e: t))
modifies v.

mMmehavetagn,aradvame. There is a change__ operation for each
selector.

is_n, = proc (v: vi) retums (bool)
effects Returns true if the tag of v is n; otherwise retums false. There is an is_ operation
for each selector.

value_n; = proc (v: vt) retums (t) signals (wrong_tag)
effects If the tag of v is n, retums the value of v; otherwise signais wrong_tag. There is a
vaiue_ operation for each selector.

v_gets_v = proc (v1, v2: vt)
modifies v71.
offects Modifies v7 to contain the same tag and value as v2.

v_gets 0 = proc (v: vt, o: ot)
modifies v.
effects Here of is the oneof type with the same selectors and types as vi. Modifies v to
contain the same tag and value as 0.

equal = proc (v1, v2: vt) retumns (bool)
effects Returns true ¥ v7 and v2 are the same variant object.

similar = proc (v1, v2: vt) returns (bool) signais (fallure(siring))
requires each !, has similar: proctype (t,) returas fbool) sighals (fallure(string))
effects Returns trus ¥ v7 and v2 have the same tag and sitnilar values as determined by the
similar operation of their value’s type. Any fafre signal is immediately resignalled. This
g'ponﬁondoumtwwm»yhmm This operation is divisible at the call
t$similar

similart = proc (v1, v2: vt) returns (bool) signais (fallure(string))
requires each {; has equal: proctype (i,) retume (bool) sighais (fallure(string))
effects Same as similar, except that {Sequalis used Instead of I$simiar.

copy = proc (v: vt) retumns (vt) signals (fallure(string))
requires each 1, has copy: proctype (1) retums () sighals (failure(string))
effects Returns a variant object with the same tag as v and containing as a value a copy of
v's value; the copy is made using the copy operation of the value's type. Any fajlure
signal is immediately resignalied. This operation does not iself originate any failure
signal. This operation is divisible at the call of {$copy.

copy1 = proc (v: vt) retums (vt)
effects Retumns a new variant object with the same tag as v and containing v's value as its
value.

146

Bulit-in Types and Type Generators

transmit = proc (v: vt) returns (vt) signais (failure(string))
requires each 1, has transmit
offects Retums a variant object with the same tag as v and containing as a value a

transmitted copy of vs value. Any falre signal is immediately resignalled. This
operation does not itse¥f originate any failre signal.

1.16. Atomic Variants
atomic_variant - data type [n,: t,, ..., n,: 4] Is make_n,, ..., make_n,, change_n,, ..., change_n,,

av_gets_av,is_n,, ..., is_n,, value_n,, ..., value_n,, avav, vaav,
equal, similar, similart, copy, copy1, transmi,
test_and_read, test_and_write, can_read, can_write, read_lock, write_lock

Overview

An atomic_variant is a mutable, atomic, tagged, discriminated union. hmt:emof,thuis.
labeled object, to be thouglit of as "one of” a set of alematives. The label is called the tag part,
and the object is called the value (or data part). An alomic_variant also has an identity as an
object.

An instantiation of atomic_variant has the form:

atomic_variant [field_spec, ...]
where

tield_spec .= name, ... : type_actual
(see Appendix I). Tags must be unique within an instantiation (ignoring capitalization), but the
ordering and grouping of tags is unimportant.
Although there are atomic_ variant operations for decomposing atomic_ variant objects, they are
g:(gllydocosnpommmmﬂmm«mm which are discussed in

ion 10.1

In the following, let avt = atomic_varientin,:t,, ..., n: 4].

Operations

make_n, = proc (e: t) returns (av: avt)
effects Returns a new atomic_variant object av with tag n; and value 6. Obtains a read lock
on av. There is 8 make_ operation for each selector.

change_n, = proc (v: avt, e: ;)
modifies v.
effects Obtains a write lock on v, then modifies v 10 have tag n; and value e. There is a
change_ operation for each selector.

av_gets_av = proc (v1, v2: avt)
modifies v7

effects Obtains a read lock on v2 and then a write lock on v7, then modifies v7 to comtain
the same tag and value as v2.

is_n; = proc (v: avt) returns (bool)
effects Obtains a read lock on v, then retums true if the tag of v is n; otherwise retumns
false. There is an is_ operation for each selector.

value_n; = proc (v: avt) returns (t,) signals (wrong_tag)
effects Obtains a read lock on v. Then, ¥ the tag of v is 1, retums the value of v; otherwise
signals wrong_tag. There is a value_ operation for each selector.

11.16 Atomic Varlants 147

av2v = proc (av: avt) returns (v: vt)
effects Here vt is a variant type with the same selectors and types as avt. Obtains a read
lock on av and retums a variant v with the same state.

v2av = proc (v: vt) returns (av: avt)
offects Here vt is a variant type with the same selectors and types as avt. Retums an
atomic_variant av with the same state as v. Obtains a read lock on av.

equal = proc (v1, v2: avi) returns (bool)
effects Returns true if v7 and v2 are the same atomic__variant object. No locks are
obtained.

similar = proc (v1, v2: avt) retums (bool) signeais (failure(string))
requires each f; has similar: proctype (1, t) returns (boel) signals (fallure(string))
moum»adbeluonvimdvz,hm and then compares the objects; retums
true if v1 and v2 have the same tag and similar values as determined by the similar
operation of their type. Any failure signal is immediately resignalied. This operation does
not itself originate any faifure signal. This operation is divisbie at the call of 1$similar.

similart = proc (v1, v2: avt) returmns (bool) signais (faliure{string))
requires each 1; has equal: proctype (i, t) returns (bool) sighals (failure(string))
effects Same as similar, except that {$equalis used instead of t$similar.

copy = proc (v: avt) retums (avt) signale (falilure{string))
requires each {; has copy: proctype (1) returns (t) signais (failure(string))
mwmammmumm-vm _variant object with the same tag as
v and containing as a value a copy of Vs vaiue; the copy is made using the copy
operation of the value's type. Any falire signal is immediately resignalied. This
operation does not itsekf originate any falure signal. This operation is divigible at the call
of tScopy. A read lock is obtained on the result.

copy1 = proc (v: avt) returns (avt)
effects Obtains a read lock on v, then returns a new atomic_variant object with the same tag
as vand containing v's value as ks value. A read lock is obtained on the result.

transmit = proc (v: avt) returns (avt) signals (tallure(string))
requires each f, has tranamit
effects Returns an atomic_variant object with the same tag as v and containing as a value a
transmitted copy of Vs value. Obtains a read lock on v. Any faiure signal is immediately
resignalied. This operation does not itself originate any faflure signal.

test_and_read = proc (av: avt) returns (bool)
effects Tries to obtain a read lock on av. Hf the lock is obtained, retumns true; otherwise no
lock is obtained and the operation retums false. The operation does not “walt™ for a lock.
Even ¥ the executing action "knows” that a lock could be obtained, fales may be
retumed. Even if false is retumed, a subsequent attempt to obtain a read lock might
succeed without waiting.

test_and_write = proc (av: avt) retums (bool)
effects Tries to obtain a write lock on av. If the lock is obtained, retums true; otherwise no
lock is obtained and the operation retums false. The operation does not “walt” for a lock.
Even i the executing action “knows" that a lock could be obtained, falee may be
retummed. Even if false is retumed, a subsequent sttempt to oblain a write lock might
succeed without waiting.

148

Buiit-in Types and Type Generators

mmmnamwaomemwm,m
retums faise. No lock is actually obtained. Even ¥ the executing action “knows” that a
lock couid be obtained, falee may be retumed. Since some conourrent action may obtain
or releass a lock on an stomic_variant at any time, the information retumaed is unreliable:
even i true is retumed, a subsaquent attempt 10 obtain the ook may require walling; and
mmnm a subsequent atlempt 10 obtain a read lock might succeed

can_write = proc (av: avt) returns (bool)
offects Retumns trus ¥ a write look could be obtained on av without waiting, otherwise
returns falee. No lock is actually obtained. Even ¥ the executing action “knows" that a
lock couid be obtained, falee may be retumned. Since some concurvent action may oblain
or reiease a lock on an stomic_variant at any tims, the inlermation retumed is unveliable:
even ¥ true is relumed, a subsequent allempt 1 cbiain the ook may require walling; and
even i falee is retumed, a subsequent altermpt 10 obtain a write lock might sucosed

read_lock = proc (av: avt)
effects Obtains a read lock on av.

write_lock = proc (av: avt)
effects Obtains a write lock on av.

i1.17. Procedures and Rerators

proctype = data type Is equal, similar, copy
ltertype ~ data type is equal, similar, copy

Overview

Procedures and kerators are objecis created by the Argus system. The type specification for a
procecuire or Rerator contains most of the information stated in a procedure or Rerator heading; a
procedure type specification has the form:

proctype ([type_spec, ...]) [rotums] [signais]
and an Rerator type specification has the form:

Rertype ([type_spec, ...]) [yieids] [signais]
where

retums ::= retums (type_spec , ...)

yiekis «:= Yyields (type_spec, ...)

signals ««= signale (exception , ...)

exception ii= name [(type_spec,...)]

(see Appendix). The first Nt of type specifications describes the number, types, and order of
arguments. The relums or yieide clause | he number, types, anxi order of the objects 10 be
retumed or ylekied. The signals clause lisis the exaeptions saised by the procedure or Reralior; for
each exception name, the number, types, and order of the shijecs 1 e retumed are aleo given.
All names used in a signale clause Must be unique. The Srieding of exoaptions is not important.
For example, both of the following type specifications aame 1he pracedurs type for stringSaibstr:

proctype (string, int, int) retums (siving) signeis (bounds, negelive_size)
proctype (string, int, int) retums (string) signais (negative_size, bounds)

I.17 Procedures and lterators 149

Pmcoduaandhemob}edsmmhdbyconpmmumdbymwm
see Section 9.8). Procedure and ierator types are not transmissible and are considered to be
immutable and atomic in normal use. However, some uses of own data (see Section 12.7) in
procedures and iterators can violate this assumption.
In the following operation descriptions, ¢ stands for a proctype or tertype.

Operations

equal = proc (x, y: t} returns (bool)
similar = proc (x, y: t) returns (bool)
offects These operations retum true if and only # x and y are the same implementation of
the same abstraction, with the same parameters (see Section 12.6).

copy = proc (x: t) returns (t)
effects Returns x.

I.18. Handlers and Creators

handiertype = data type Is equal, similar, copy, transmit
creatortype = data type Is equal, similar, copy, transmit

Overview

Handlers and creators are created by the Argus system. The type specification for a handier or
creator contains most of the information stated in a handler or creator heading; a handler type
specification has the form:

handiertype ([type_spec, ...]) [retums] [signais]
and a creator type specification has the form:

creatortype ([type_spec, ...]) [retumns] [signais]

where
retums == returns (type_spec, «..)
signals ««= signale (exception , ...)

exception :i= name [(type_spec, «u)]

(see Appendix I). The first list of type specifications describes the number, types, and order of
arguments. The returns clause gives the number, types, and order of the objects 10 be returned.
The signais clause lists the exceptions raised by the handier or crestor; for each exception name,
the number, types, and order of the objects to be retumed are aiso given. All names used in a
signals ciguse must be unique; none can be unavaiable or faliure, which have a pre-defined
meaning for remote calis (see Section 8.3). The ordering of exceptions is not important.

Creators are created by compiling modules, and handiers are created as a side-effect of guardian
creation. Handlers and creators are transmissible and are congidered to be immutabile and atomic
in normal use. Certain uses of own data in handiers can violate this assumption.

In the following operation descriptions, ¢ stands for a handiertype or creatortype.
Operations

equal = proc (x, y: t) returns (bool)
similar = proc (x, y: t) returns (bool)
effects These operations retum true i and only if x and y are the same object (see Section
12.6 for an exact definition for the case of creators in guardian generators).

L e AR A e i T e Tl LT T R

150 Built-in Types and Type Generators

copy = proc (x: t) retumns (t)
transmit = proc (x: t) returns (t)
effects Retumns x.

1.19. Anys
any = data type Is create, force, is_type
Overview

An object of type any contains a type 7 and an object of type 7. Anys are immutable and are not
transmissible. Anys are atomic only i thelr cortained object is stomic.

Operations

create = proc[T: type] (contents: T) returns (any)
effects Returns an any object containing contents and the type T.

ioroe-proe[T tvPOI (thing: any) returns (T) signals (wrong_type)
If thing contains an object of a type Included in type 7, then that object is retumned;

otherwisommlypcbdorﬂed
is_type = Pde type] (thing: mv)rdumt(bool)
effects if thing contaings an object of a type included in type T, then true is retumed;
otherwise, falee is retumed.

il.20. Images
image = data type Is create, force, is_type, copy, transmit
Overview

An object of type image is the value of an arbitrary transmissible type. See Section 14 for more
details. Images are immuiable, atomic, and transmissile.

Operations

create = proc{T: type] (contents: T) returns (image) signals (fallurestring)
requires T has tranemit
offects Returmns an image object obtained from confents via the encode operation of T.

Resignais any fallure signal raised by T's encode operation.

force = proc{T: type] (thing: image) returns (T) signais (wrong_type, fallure(string))
requires T has transmit

effects if thing encodes an object of a type inciuded in type 7, then that object is extracted
using the decode operation of T and retumed. Otherwise wrong__ fype is signalied.
Resignals any faiiure signal raised by T's decode operation.

is_type = proc{T: type] (thing: image) returns (bool)
requires T has tranemit

effects if thing encodes an object of a type inciuded in type T, then true is retumed;
otherwise, false is returned.

copy = proc (thing: image) returns (image)
transmit = proc (thing: image) returns (Image)
effects Returns thing.

.21 Mutexes 151

iI.21. Mutexes
mutex = data typeit: type] is create, set_value, get_value, changed, equal, similar, copy, transmit
Overview

A mutex is a mutable container for an object of type 1. A mutex aiso has an identity as an object.

An object of type mutexft] provides muilual exclusion for process synchronization, and allows
explicit control over how information contained in the mutex is written to stable storage (see
Section 15.1).

The selze statement is used in order to gain possession of a mutex. See section 6.7.

Although mutex objects are mutable, sharing among mutex objects is usually wrong, because the
contained object should only be accessible through the mutex. Hence there is no copy?
operation, since this would introduce sharing, and there is8 no simiar! operation to check for
sharing (see Section 6.7).

Operations

create = proc (thing: t) retums (mutex(t])
effects Returmns a new mutex object containing thing.

set_value = proc (container: mutexft], contents: t)
modifies container.
effects Modifies container by replacing its contained object with contents.

get_value = proc (container: mutex{t]) retums (t)
effects Retums the object contained in container.

changed = proc (comainer: mutext])

' effects informs the Argus sysiem that the calling action requires the contents of container to
be copied to stable storage by the time the action commits, provided container is
accessible from a stable variable. it is a programming emor ¥ a process that is not
running an action calis this operations, and i this is done the guardian wili crash.

equal = proc (m1, m2: mutex{{]) returns (bool)
effects Returns true if and only ¥ m7 and m2 are the same object.

similar = proc (m1, m2: mutexit]) retums (bool) signais (fallure{string))
requires t has similar: proctype(t, t) W (tallure(string))
offects Seizes m1, then seizes m2, and calls 10 determine ks result; any failure

sgmnal is immediately resignalted. Posgsession of both mutexes is retained until $similar
terminates.

copy = proc (m1: mutexit]) returns (m2: mutex(t)) signels (failure(string))
requires t has copy: proctype(t) returns(t) signeis (fallure(string))
effects Seizes m7, then calis Scopy 10 make a copy which &t piaces in the new mutex object
m2. A::yﬁlmsbnaikimedi&elymmm. Possession of m1? ig retained until

transmit = proc (m1: mutex(t]) retums (mutexit]) signais (failure(string))
requires t has tranemit
effects Seizes m1, and retums a new muiex containing a transmitted copy of the contained
object. Any fallure signal is immediately resignalied. Possession of m1 is retained until
Stransmit terminates.

152 Rules and Guidelines for Using Argus

1l Rules and Guidelines for Using Argus 153

Appendix Ili
Rules and Guidelines for Using Argus
This appendix collects the rules and guidelines that should be followed when programming in Argus.
Following these rules makes selze statements meaninglul, actions atomic, and so on. In some rare
cases there may be valid reasons for violating these guidelines, but doing so greatly increases the
difficulty of building, debugging, and running the resulting system.

All of the rules listed in this appendix are based on information appearing elsewhere in the manual.
Each rule is followed by a brief rationale, including a reference to the section of the manual from which it
is drawn.

lil.1. Serializability and Actions
¢ Actions should share only atomic objects.

Rationale: Actions that share nhon-atomic data are not necessarily serializable. [Section 2.2.2]

» A subaction that aborts should not retum any information obtained from data shared with other
concurrent actions.

Rationale: Returning such data may violate serializablity. [Section 2.2.1]

» A nested topaction shouild be serializable before its parent. Thig is true if either

1. the nested topaction performs a benevolent side effect (a change to the state of the
representation that does not affect the abstract state), or

2. all communication between the nested topaction and its parent is through atomic objects.
Rationale: Other uses may violate serializability. [Section 2.2.3]

» The creation or destruction of a guardian must be synchronized with the use of that guardian via
atomic objects such as the catalog.

Rationale: Otherwise serializability may be violated. [Section 10.18]

ll.2. Actions and Exceptions

o If an exception raised by a call should not commit an action, the exception must be handied within
that action.

Rationale: Iif an exception raised within an action body is handied outside the action, the implicit flow of
control outside of the action will commit the action. [Section 11.5)

154 Rules and Guidelines for Using Argus

{i1.3. Stable Variables
« Stable variables should denote resilient data objects.

Rationale: Onily data objects that are (reachable from the siable variables and) resilient are written to
stable storage when a topaction commits. (This can be ensured by having stable variables only denote
objects of an atomic type or objects protected by mutex.) Non-resilient objects stored in stable variables
are only written to stable storage when the guardian is created. [Section 13.1]

« If a bound procedure or iRerator will be accessible from a stable variable,
1. the procedure or iterator being bound must be atomic and

2. only atomic objects shouid be bound as arguments.

Rationale: The bound procedure or iterator may be stored in stable storage, and non-atomic data is
only written to stable storage once. [Section 9.8]

I11.4. Transmission and Transmissibility
¢ An abstract type’s encode and decode operations should not cause side effects.

Rationale: The number of calis to an encode or decode operation is unpredictable, since arguments or
results may be encoded and decoded several times as the sysiem tries to establish communication. In
addition, verifying the correctness of transmission is easier f encode and decode are simply
transformations to and from the external representation. [Saction 14.3]

« If the naming relation among objects to be transmitted is cyciic (e.g., a circular list) then encode and
decode must be implemented in one of two ways:

1. The intemal and external representation types must be identical, and encode and decode
retumn their argument without modifying or accessing i, or

2. The external representation object must be acyclic.
Rationale: A circular external representation may cause decode to fail. [Section 14.4]

« Objects that share other objects should be bound into a handler or creator in the same bind
expression.

Rationale: Sharing is only preserved among objects bound at the same time. [Section 9.8]
11.5. Mutex
» Mutual exclusion or atomic data should be used to synchronize access to all shared objects.

Rationale: In the presence of concurrency, any interleaving of indivisble events is possible. Without

synchronization mechanisms, this concurrency will be visible to programs, significantly complicating
coding and testing. [Section 8]

.5 Mutex 155

« All modifications to mutex objects should be made inside seize statements.

Rationale: The system will gain possession of a mutex object before writing i to stable storage; thus,
seizing a mutex in order to modify it will prevent the system from copying a mutex object when it is in an
inconsistent state. This also prevents other processes from seeing inconsistert data [Section 15.2 and
Section 15.1]

o Nested seizes should be avoided when pause is used, and pause must be avoided when nested
seizes are used.

Rationale: A pause in a nested seize does not actually release possession of the mutex object.
[Section 10.17]

o |f an object is referred to by a mutex object, k should not be referred to by any other object, nor
should it be denoted by a variable except when in possession of the containing mutex.

Rationale: If an object contained in a mutex can be reached by a method other than seizing the mutex,
the mutual exclusion property of the mutex is undermined. [Section 6.7]

o No activity that is likely to take a long time should be performed while in a selze statement. In
particular, programs should not make handier calls or walt for locks on atomic objects while in possession
of a mutex.

Rationale: Waiting for a lock while in a mutex is likely to cause a deadiock with other actions or
between the action holding the mutex and the Argus system. [Section 15.3]

o Mutex objects should not share data with one another, uniess the shared data is atomic or mutex.

Rationale: Sharing of non-atomic objects between mutex objects is not preserved when the mutexes
are written to stable storage. [Section 15.3]

o Mutex{fi$changed must be called after the last modification (on behalf of some action) to the
contained object of a mutex.

Rationale: The Argus system is free to copy the mutex to stabie storage as soon as mutex{$changed
has been called. Changes after the last ca¥l to mutex{f$changed but before topaction commit may not
be written to stable storage. [Section 15.3]

o Mutex{f$changed should be called even if the mutex object changed is not accessible from the
stable variables.

Rationale: In a scenario where the object was accessible, becomes inacoessible, then becomes
accessible again, it is possible that stable storage would not be updated properly this rule were not
followed. The system guarantees that no problems with updating stable storage will arige if
mutex{fi$changed is always calied after the last modification to the object. [Section 15.3]

156 Rules and Guidelines for Using Argus

¢ An atomic type implemented with a representation consisting of several mutex objects should use
separate topactions to ensure that the mutexes are written to stable storage in an order that preserves
the correctness of the representation.

Rationale: Mutexes are writen to stable storage incrementally. Sometimes, subtie timing problems
can be caused by incremental writing if this rule is not followed. [Section 15.3]

111.6. User-Defined Atomic Objects

* If an atomic object X of type T provides operations O, and O,, and action A has executed O, but not
yet committed, then operation O, can be performed by a concutrent action B only if O, and O, commute:
given the current state of X, the effect (as described by the sequential specification of T) of performing
O,, then O, is the same as performing O,, then O,. "Effect” includes both results retumed and the
(abstract) state modified.

Rationale: There are two concurrency constraints for user-defined atomic objects:

1. An action can observe the effects of other actions only i those actions committed relative to
the first action.

2.0peratiomexocmadbyoheactioncamotimalldaiomerasunsofopomﬂonsexmwby
a concurrent action.

Two operations (or sequences of operations) that commute in their effect on the abstract state of X may
be permitted to run concurrently, even if they do not commute in their effect on the representation of X.
This distinction between an abstraction and its implementation is crucial in achieving reasonable
performance. [Section 15.4]

» If a user-defined atomic object is accessible from the stable variables of some guardian, it should be
written to stable storage whenever an action that modifies it commits to the top.

Rationale: A user-defined atomic type that is not written to stable storage on topaction commit will not
be resilient. [Section 15.2]

» The form of the rep for a user-defined atomic type shouid be one of the following possibilities.
1. The rep is itself atomic. Note that mutex is not an atomic type.
2. The rep is mutex{f] where ¢ is a synchronous type. For example, ¢ could be atomic, or it

could be the representation of an atomic type, if the operations on the this fictitious atomic
type are coded in-line 80 that the entire type behaves atomically.

3. The rep is an atomic collection of mutex types containing synchronous types.

4. The rep is a mutable collection of synchronous types, and objects of the representation
type are never modified after they are inltialized. That is, muaation may be used to create
the initial state of such an object, but once this has been done the object must never be
modified.

Rationale: In any other case it will be impossible to guarantee the resilience or serializability of the
type’s objects independently of how they are used. [Section 15.3]

Il.7 Subordinate Where Clauses 157

l.7. Subordinate Where Clauses

¢ A where clause requirement on a cluster as a whole should be used whenever the actual parameters
make some difference in the abstraction. For example, in a set cluster, the type parameter's equa/
operation must be required by the cluster as a whole, in order to preserve type safety and the
representation invariant.

Rationale: Argus assumes that requirements that are not placed on the cluster as a whole do not
affect the semantics of the abstraction or the representation. [Section 12.6]

158 Changes from CLU

R Y B

IV Changes from CLU 159

Appendix IV
Changes from CLU
This appendix lists the changes made o Argus that are not upward compatible with CLU, that is, those
which are not merely additions to CLU and that would cause a CLU program fo be itlegal or to run
differently.

IV.1. Exception Handling

Unlike CLU, which propagated unhandied exceptions (by tuming them into fallure exceptions) and gave
the failure exception special status, unhandied exceptions in Argus are considered errors and aways
cause a crash of the guardian, and fallure is not given special status. All exceptions signalled in a
procedure, iterator, handler, or creator must be declared in the routine’s header, and there are no implicit
resighals of failure exceptions. See Section 11.6 for details.

IV.2. Type Any

The type any is now a type like any other type, with parameterized routines force, create, and is_type.
Thus the CLU manual’s notion of "type inclusion” is no longer necessary (but there is a new notion of type
inclusion in Argus, see Section 6.1). The any$force routine only signals "wrong_type" if the any object’s
underlying type is not included in the type parameter given, but the type of the result of any$force is its
type parameter. The any$is_type routine retums falee if the any object’s underlying type is not included
in the type parameter given. The CLU reserved word “force" was eliminated from Argus, and the creation
of an any object is never implicit in an assignment in Argus.

IV.3. Built-in Types
Several changes to the interfaces of the built-in types were necessitated by the changes to exception

handling. Specifically, the following changes were made to the built-in types.

1. The string operations concat, append, s2ac, ac2s, s2sc, and sc2s, can now all signal imits.
A string iiteral that would be too large to represent will not be compiled.

2. The sequence operations /i, fil_copy, addh, add¥, and concat can now afl signal limits. A
sequence constructor that wouid be too large to represent will not be compiled.

3. The array (and atomic_array) operations create, predict, set_low, fifl, fill_copy, adch, and
addl can now all sighal imits. An array construcior that cannot be legally represented will
either not be compiled (if this can be detected at compiie ime) or will signal limits.

4. The copy operations of the structured built-in type generators, and the fi#_copy operations
of sequence and array (and atomic__array), aflow the copy operations of their type
parameters to have a falure(string) exception. They will resignal such a /aitwre exception.
(Note that the type inclusion rule allows a type parameter to be used even if its copy
operation does not have exceptions.)

5. The similar operations of the built-in structured type generators aliow the similar operations
of their type parameters to have a failure(string) exception. They will resignal such a failure
exception.

6. The equal operations of the type generators sequence, struct, and oneof, and the similart

160 Changes from CLU

operations of the type generators amay, record, and varlamt (and their atomic
counterparts), allow the equa/ operation of their type parameters to have a faiure(string)
exception. They will resignal such a faiure exception.

7. The elements iterator and the similar and similar! procedures of the type generator array

(and atomic_array) will raise a faffure(string) exception i the arrey argument is mutated in
such a way as 1o cause a bounds exception when an element is feiched.

IV.4. Type Inclusion
Type inclusion (the new notion, see Section 6.1) is used in ak contexts, including the decis of except
and tagcase statements, where CLU had previously required type equality.

IV.5. Where Clauses

CLU had syntax in the where clause (specifically the production for op__name) that aliowed one to
require an instantiation of a type parameter's generator. This little used feature has been superseded by
the mechanism described in Section 12.6.

IV.6. Uninitialized Variables
An uninitialized variable reference error is defined to cause a crash of the guardian, rather than raising
a failure exception, which could conceivably be caught.

IV.7. Lexical Changes .
Several new reserved words were added. In addition, the semicolon (;) was banished from the syntax.

IV.8. Input/Output Changes

The input/output data types (file_name, stream, andistmam)andthobrarypmcodwesduabodm
appendix il of the CLU manual are not furnished by the Argus system. Our cuirent implementation of
Argus provides a keyboard cluster for input and a pstream cluster for output. In addition, most of the
built-in types currently have print operations defined, for pretty-printing objects onto pstreams. These I/O
mechanisms, however, are still experimental, and so are not documented in this reference manual.

Activation action 41, 43
Actusal argument 40
Actual parameter 80, 81
Ancestor 10
Any 22,24, 32, 150
versus CLU 159
versus image 32
Argument
actual 40
Versus parametor 80
Array 25,52, 130
constructor 26
Assignment 4, 39, 40
and concurrency 39
implicit 39
multiple 30
simple 39
siatement 39
type checking for 30
Awmic 3,897

L

action 8

built-in alomic types 9, 30, 133, 141, 146

object 9

L T AR STAL S EERE P P

ii
;
:

|
?;

P

8

Ype
versus CLU 159

action 41

by sharing 4, 40
byvalue 4, 12, 41,93

Comment 20, 115

Call 4,40, 41, 44,50, 51, 57

161

162

sequence 25, 52
struct 27
structure 52
Continue 63
Controlling coarm 60
Cor 54
Crash 8,85, 8
and own variables 85
recover code 8
recovery 89
Creator 7, 11, 32, 44, 48, 88, 149
bound 49
equality of bound creators 49
typo 149
Creator call 44
as expression 51
as staoment 57
semantics of 44
Creatortype 32, 149
Critical section 13, 66
Cvt 78

Data abstraction 7, 77
Datatype 77
Deadiock 13
Declaration 36, 57, 78

a8 statement 57

simple 38

with initialization 36
Decode 12, 21,41, 43,49,04
Description unit 15, 84
Divisible

fermination 60
Divisible termination 60
Down 55,78
DU

See also description unit

Effects 119

Else 62

Elseif 62

Encode 12, 21,41, 43, 44,49, 61,94
with bind 49

Erdor 56

Entity 48

Equate 37,79

Equate module 34, 79

reise 70
result 89
unhandled 73
versus CLU 73, 159
Exit 72
Expression 47
conditional 54
forms of 47
Extemal representation type 12, 94

Index

Failure 11,42, 43 44,73
of communications in a remote call 43
versus CLU 73, 150
See also crash

False 22,121

Fetch §1

Floating point
See also real

For 82

Foroe
Ses also any

Foreach 58

Fork 58

Formal
argumant 40, 78
parameter 80

Generator 21, 80
instiantiation 81

Got 8t

Giobal object 3, 7

Guardian 8,7, 15,31, 41,44, 87
background code 89
crash 73
crealion 15, 44, 88
definition 87

guardian image 15
inrface 31

Guidelines 153

Handler 7, 32, 80, 140
bound 49
call 41
oquality of bound handlers 49
ype 1490
See also exception
Hancliortyps 32, 140
Hidden routine 78, 80

Identifler 19
oquated 47
Ses also idn, name
ldn 36, 118
versus name 35
If 82
imags 12, 21, 32, 93, 150
vorsus any 32

e cheching of 83
int 22 121

Index

Iterator 48, 62, 76, 148
bound 48
equality of bound iterators 49
type 148

Itortype 148

Keyboard 160
Leave 61

Lexicographic order 126, 138, 130, 141

Library 15
Literal 20, 47
char 115
int 115
real 115
sting 115
Local 3
call 40,50
object 7
Locking 9, 10, 13, 30
deadlock 13
for bulit-in atomic types 9
table of locking rules 10
Loop 62

Modifies 119
Module 5, 75,87
instantiation of 80, 81
parameterized 80
Mutable 3, 21
versus atomic 22
Mutex 11, 33, 98, 151

as value of expression 47
atomic 3, 21,97
concrete 78

global 3,7

immutable 3, 21

indivisibility 21, 119

Post 119

Pragmatics
Pre 119
Precedonce 54
Principal argument 30
Print 180
Private reutine 78
Procedure 48, 75, 148
bound 48
closure 48
equality of bound procedures 49
typo 148
Process 8, 50
See also action
Prootyps 148
Pstroem 180
Punctuation oken 20

Qualifier
short 50, 61,680
action, fopaction 50

Raise 70

Read lock 9

Reader 30

Real 23,123

Record 52, 130
oonstructor 27

Recover code 8, 80

Recoversble 8,97, 08

Recovery 8, 89,97

Reler 3

Peforence 34, 47
Remole call 11, 41, 44, 50, 51, 89

153

163

164

Tranamissible 3, 12, 21,903
object 12

Transmit 21, 41,78, 84,03
acksal 84

Two-phase commit 8, 59, 60, 73
Type 3.4, 15, 21,30, 77, 81

index

Index 165

Unavailable 11, 42, 43, 44, 59, 60
Unhandled exception 73
versus CLU 159
Uninitialized variable 36
versus CLU 160
Up 55,78
Update statement 58

Value 47
Variable 3, 36, 47
own variable 85
stable 3, 97
uninitialized 36
versus object 3
Variant 63, 144
Version
of an atomic object 9
Volatile
object 7
state 8,87
variable 87

Where clause 80, 160
subordinate 82

While 62

Write lock 9

Writer 30

Yield 62

Tius blank page was inserted to preserve pagination.

Report # _Lcs5-Tee Y00

Each of the following should be tdentlfied by a checkmark
Originating Department:

[Artificial Intellegence Laboratory (Al)
X Laboratory for Computer Science (LCS)

Document Type:

‘ﬁJechniml Repot MR) [0 Technical Memo (TM)
O Other:

. Dpate: 1/ l&/ﬂ'(,?

Document Information Number of pages: |3 5(i€!-jmaces)

Not {o include DOD forms, printer intstructions, etc... original pages only.

Originals are: intended to be printed as :
TX Single-sided or [J Single-sided or
O Double-sided \ﬁ(Double'-sided
Print type:

[0 Typewriter (O oftsetPress [] LaserPrint

(] inkdet Printer ‘ﬁ\ummn [0 other:

jg Check each if included with document:
DOD Form (J_) 0 Funding Agent Form [0 coverPage
O spine O Printers Notes O Photo negatives
U oOther:
Page Data:

Vi oo
Blank Pagesey pegs rumses: A-G}W;\ (,j I, ¥ 6) ng gg’/m No PARgES Pollowing T:Tix face

Photographs/Tonal Material .;...; sumber);

A

Other (o dscriptonsage rumbes _
Description : Page Number:
> \] - N £h 8Lk,
= V7 1 - 14S
(12¢- 1$1) Smnqims.,m&(_ljme)
Scanmng Agent Signoff:

Date Received: %I%I‘Té Date Scanned: _Y199/%¢

Scanning Agent Signature: W‘ l’\/ J CmLJ

Date Retumed: _5 /& /%6

Rev 9/64 DSACS Document Control Form cstrform.ved

P

g

REPORT DOCUMENTATION PAGE

X T SECURITY CLASSIFICATION
Unclassified

15, RESTRICTIVE MARKINGS

23, SECURITY CLASSIFICATION AUTHORITY e

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

Approved for public release; distribution
~is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TR-400

3. MONITORING ORGANIZATION REPORT NUMBER(S)
NC0014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION
MIT Laboratory for Computer
Science

6b. OFFICE SYMBOL
(if applicable)

Ta. NAME OF MONITORING ORGANIZATION
Office of Waval Research/Department of Navy

6c. ADDRESS (City, State, and ZIP Code)

545 Technology Square
Cambridge, MA 02139

7b. ADDRESS (City, State, and ZIP Code)
Information Systems Program
Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

DARPA/DOD

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
-+ 1400 Wilson Blvd.

Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS
PROUECT
NO.

TASK
NO.

WORK UNIT

PROGRAM
ELEMENT NO. ACCESSION NO.

1. TITLE (Include Security Classification)
Argus Reference Manual

12. PERSONAL AUTHOR(S) Liskov, Barbara; Day, Mark; Herllhy, Maurice; Jonnson, Paul; Leavens, T Cary |

(editor); Scheifler,

Robert; and Weihl, William

13b. TIME COVERED

13a. TYPE OF REPORT 14. DATE OF REPORT (Year, Month, Day)
Technical FROM TO 1987 November

15. PAGE COUNT
165

R — s
16. SUPPLEMENTARY NOTATION i

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Distributed systems, fault-tolerance, nested transactionmns,

concurrency, concurrency control, locking, persistent

_atomic obbjects, remote (cont})

19. ABSTRACT (Continue on reverse if necessary and identify by block number) 1

Argus is an experimental language/system designed to support the comstruction and
execution of distributed programs. Argus is intended to support only a subset of the
applications that could benefit from being implemented by a distributed program. Two
properties distinguish these applications: they make use of on-line data that must remain
consistent in spite of concurrency and hardware failures, and they provide services under
real-time constraints that are not severe. Examples of such applications are office
automation systems and banking systems.

Argus is based on CLU. It is largely an extension of CLU, but there are number of

differences, Like CLU, Argus provides procedures for procedural abstraction, iterators
|

for control abstraction, and clusters for data abstraction.

guardians that encapsulate and control access to one or more resources.

In addition, Argus provides
Argus also

provides equate modules as a convenient way to refer to constants.

As in CLU, modules

may be parameterized, so that a single module can define a class of related abstractions.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
Gl uncLasSIFIEDAUNUMITED [SAME AS RPT.

21, ABSTRACT SECURITY CLASSIFICATION

CJ oTic usens

‘] 22a. NAME OF RESPONSIBLE INDIVIDUAL

236, 1 Area Code) | 22¢. OFFICE SYMBOL

(61 1
83 APR edition may be used untit exhausted.
All other editions are obsolete.

udy Little, Publications Coordinator
DD FORM 1473, 8a MAR

—SECURITY CLASSIFICATION OF THIS PAGE
’ MAS Gevwament Prinsing Offies: 1905-307-087
Unclassified

18. procedure call, orphans, exception handling.

