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ABSTRACT

Examination of a trace of packets collected from the network is often the only method
available for diagnosing protocol performance problems in computer networks. This
thesis explores the use of packet traces to diagnose performance problems of the
transport protocol TCP. Unfortunately, manual examination of these traces can be
so tedious that e�ective analysis is not possible. The primary contribution of this
thesis is a graphical method for displaying the packet trace which greatly reduces the
tediousness of examining a packet trace.

The graphical method is demonstrated by the examination of some packet traces of
typical TCP connections. The performance of two di�erent implementations of TCP
sending data across a particular network path is compared. Traces many thousands of
packets long are used to demonstrate how e�ectively the graphical method simpli�es
examination of long complicated traces.

In the comparison of the two TCP implementations, the burstiness of the TCP trans-
mitter appeared to be related to the achieved throughput. A method of quantifying
this burstiness is presented and its possible relevance to understanding the perfor-
mance of TCP is discussed.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist



Acknowledgments

A reimplementation of the Sun nit socket in 4.3BSD Unix by Mark Rosenstein of
Project Athena was used in the packet trace collection system.

Van Jacobson identi�ed the appropriate two-dimensional space in which to plot.

My thesis advisor David Clark provided guidance, support, a stimulating environ-
ment, and the freedom to do my own thesis. Working with him and in his group has
been an enriching experience.

I have had many enjoyable discussions with many interesting people in LCS on a wide
range of topics. These distractions and mini-projects are an important part of my
education, and I thank everyone who has been a part of the stimulating environment
around me.

Andrew Heybey , my o�cemate for three years, has tolerated my randomness and
distracting behavior.

James Davin proofread the bulk of the thesis and pointed out many grammatical
errors and twisted sentences.

My dear friend Jennifer Gleason heard \No. I can't. I have to work on my thesis."
far too many times.

Many thanks to my parents, Ralph and Carol Shepard , and sister, Cynthia Shepard ,
for their support, love, and continued interest in me. I am very fortunate to have a
wonderful family.

This document was typeset with the LATEX Document Preparation System.



Contents

1 Introduction 7

1.1 Perspective : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7
1.2 TCP and Performance : : : : : : : : : : : : : : : : : : : : : : : : : : 8
1.3 Organization of this Thesis : : : : : : : : : : : : : : : : : : : : : : : : 10
1.4 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2 TCP Packet Trace Analysis 13

2.1 Packet Trace : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
2.2 Details of TCP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
2.3 Manual Packet Trace Analysis is Di�cult : : : : : : : : : : : : : : : : 18
2.4 Displaying the Trace Graphically : : : : : : : : : : : : : : : : : : : : 22

3 Observation of TCP 29

3.1 Typical TCP Connections : : : : : : : : : : : : : : : : : : : : : : : : 29
3.2 Two TCP Connections : : : : : : : : : : : : : : : : : : : : : : : : : : 36
3.3 Interesting Plots : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 43

4 Bursty Behavior of the TCP Transmitter 47

4.1 Burstiness of the TCP transmitter : : : : : : : : : : : : : : : : : : : : 49

5 Conclusions 57

5.1 State of the Art TCP : : : : : : : : : : : : : : : : : : : : : : : : : : : 57
5.2 Robust Systems Mask Faults : : : : : : : : : : : : : : : : : : : : : : : 59
5.3 Automating TCP Packet Trace Analysis : : : : : : : : : : : : : : : : 59

A Tools 62

A.1 Design Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62
A.2 4.3BSD Unix Based Packet Trace Collection : : : : : : : : : : : : : : 64
A.3 Packet Trace Collection System : : : : : : : : : : : : : : : : : : : : : 64
A.4 Use and Experience : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

5



This page intentionally left blank.

6



Chapter 1

Introduction

This thesis presents some new tools and methods of data presentation that enable

empirical analysis of a widely used transport protocol: the DARPA Internet's Trans-

mission Control Protocol (TCP). Diagnosis of TCP performance problems using this

method of presentation is faster than with previous tools (or more accurately, the

lack of tools) and will allow a much more comprehensive and detailed understanding

of an analyzed connection than was previously possible.

1.1 Perspective

An engineering cycle can be used to describe the evolution of a technology. The

typical cycle involves observing what currently exists, deciding what is wrong with it

or what improvements can be made, designing the improved version, and then testing

and deploying the new system. Wide area packet-switched networks for computer

communication such as the Arpanet and its successor, the DARPA Internet, have

existed for over 20 years, but have only been through about two engineering cycles.

These systems have long engineering cycles because of the scale of these systems and

the large amount of time required to deploy the necessary network interfaces and

software in a wide variety of computer systems.
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Because of current e�orts at standardization of the next generation of network in-

terfaces and communication protocols such as the ISO/OSI protocols and the CCITT

B-ISDN standards it is timely to take a close look at the operation of current networks

and protocols. This thesis contributes to the process of examining the performance

of existing protocols.

1.2 TCP and Performance

The widely used DARPA Internet Protocols (which are also known as the TCP/IP

protocol suite) were originally designed to allow various network technologies to be

interconnected into one large internet, the DARPA Internet. TCP is the principal

transport protocol in this suite.

TCP provides for an end-to-end reliable byte stream network connection over a

datagram network. A single TCP connection provides a pair of byte streams between

the two end points of the connection, one in each direction. A TCP connection is

identi�ed by the IP addresses and the port numbers at each end of the connection.

TCP modules, one at each end of a TCP connection, communicate with each other by

sending TCP segments between themselves. TCP segments are carried by IP (Internet

Protocol) packets through the packet-switched network. The TCP modules provide

the end-to-end reliable byte stream by arranging for the transmission, sequencing and

acknowledgment of bytes. They also provide automatic detection and recovery from

lost packets by using timers and retransmissions. TCP is fully described in [16], and

IP is fully described in [14].

Because TCP needed to work over a wide variety of networks and was expected to

provide a variety of types of service, the TCP protocol speci�cation leaves some of the

details to be decided by each implementor. Interoperability was the chief goal of the

TCP speci�cation. Performance issues such as window sizes, how quickly segments

should be sent, and whether to try to batch acknowledgments by dallying were left
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almost entirely to the designer of a particular implementation [5].

The performance of a TCP connection is the collection of behavior of the TCP

implementations involved in the connection that may a�ect data throughput, e�cient

use of bandwidth, timely recovery from lost packets, and interaction with other re-

sources in the network. Performance problems are the result of poor behavior of an

implementation on one or more of these points.

TCP has indeed achieved a high degree of interoperability. Today it is rare to

�nd two di�erent TCP implementations that are unable to connect and carry data

between them. However, it is not as rare to �nd TCP connections performing poorly.

Poor performance can be caused by a variety of problems. The assumptions made

by the implementor might not match the the network being used or the assumptions

made by the implementor of the other TCP. The network may even be failing in some

way to deliver enough of the packets to the remote TCP. When there is a problem

short of a total failure of the net to deliver packets, TCP will continue to interoperate

and the only usual indication that there is a problem will be reduced performance.

The only measures of performance typical computer network users have are how

quickly responses return from a remote element in the network (such as remote echoing

of typing) and the total time taken to transfer a some amount of data from one host

to another. These correspond roughly to the round trip time and the achieved total

throughput. These do give the user some means of observing performance, but only

the most sophisticated users of a large wide-area network or a large campus network

would likely know what performance to expect from the network.

TCP's robustness can e�ectively hide failures, even bugs, of the network and of

the TCP implementations themselves. Evidence presented in Chapter 3 will show

that this type of hidden failure does occur, perhaps somewhat frequently. Worse yet,

most all TCP implementations hide these failures silently. There are no red warning

lights that light up when TCP takes action to retransmit a packet or has to send

every packet two, three, or more times to get it through. Users probably would not

9



want to see repeatedly such warning message and few users would be able to take

action to correct the problem.

Thus there is a problem today in networks using the TCP/IP protocols. Bugs

manifest themselves as performance problems. Few users know what performance

can be expected of a network and therefore are unaware of the presence of bugs.

TCP's ability to continue to service a connection when things are going wrong allows

bugs to remain hidden. Detecting these bugs requires methods of observing and

determining the performance of TCP connections.

This thesis explores the examination of packet traces collected from a network to

determine in detail the performance of TCP connections.

1.3 Organization of this Thesis

In Chapter 2 a method of displaying the trace of a TCP connection graphically is used

to greatly reduce the time and e�ort required to understand in detail the activity of the

connection. This method of displaying the trace is the chief intellectual contribution

of this thesis. Many packet traces have been examined using this graphical tool,

and some of the more interesting packet traces will be presented in Chapter 3 to

demonstrate the usefulness of this tool and to highlight this tool's ability to allow

rapid discovery of interesting phenomena buried deep inside of packet traces. Chapter

4 addresses this tool's chief limitation: it still requires the human to examine and

view the packet trace as a sequence of events in time. Chapter 4 looks in detail

at the burstiness of the TCP transmitter and presents a second graphical method

which displays the burstiness of TCP transmissions. Chapter 5 concludes the thesis

with a few suggestions for network implementors, managers, and troubleshooters and

points to where future research in transport protocol transmission methods should

be directed.

An important part of a network analyst's assets is his or her box of tools. Appendix
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A details some of the tools constructed while carrying out the research for this thesis.

An important property of these tools were that the packet gathering ran continuously

throughout this project so that the capture for analysis of a particular packet trace

did not have to be premeditated. Also important was that these tools ran under

Unix. This allowed use of the standard Unix data manipulation utilities to rapidly

prototype utilities.

1.4 Related Work

Studies of Networks and Protocols

Related work includes studies to characterize the tra�c of operational networks and

systems built to collect data for such studies. In [10], Jain and Routhier developed a

model for tra�c on a token ring network using data collected by a monitoring system

built by Feldmeier [6]. More recently, Braden and DeSchon have developed a system

NNStat [3] for gathering statistics from the Internet for tra�c studies. All of these

studies have been concerned with studying tra�c in the network as a whole and do

not examine traces of individual connections in detail.

The performance of transport protocols has been studied in simulation. Hashem

[7] studied the e�ect of gateway policy on performance in a simulated network carrying

TCP connections using Jacobson's slow-start and other algorithms.

More closely related to this thesis are two projects which studied the performance

of transport protocols by collecting and examining data of actual protocol opera-

tions. Sanghi et. al. instrumented a particular TCP to collect a trace of its state [17].

Arono� et. al. built an instrumented testbed where transport protocols can be devel-

oped and studied [1]. Both of these systems allow the conduct of experiments and the

collection of data for analysis but are not directly applicable to general monitoring of

operational networks.
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Improvements to TCP

Another category of related work includes studies to improve the understanding of

transport protocols by using collected data. Motivated by reports of poor performance

in the Internet, Jacobson and Karels developed a collection of algorithms, including

the slow-start algorithm, for improving the behavior of the TCP in 4.3BSD Berkeley

Unix [9]. The graphical method presented in Chapter 2 was inspired by time-sequence

plots created by Jacobson. Mankin and Thompson studied the performance of the

slow-start algorithm using data collected from a host and an Internet gateway [12].

Packet Trace Analysis

The most closely related work is that of Hitson [8]. Hitson recognized the di�culty

of packet trace analysis (as is shown in Chapter 2 of this thesis) and tackled the

di�culty using expert-system techniques. Hitson's goals are the same as goals of this

thesis, but the techniques are di�erent. Hitson uses automated analysis and encodes

the knowledge necessary to do the analysis. In this thesis the use of tools to enhance

the e�ectiveness of manual analysis is emphasized.
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Chapter 2

TCP Packet Trace Analysis

This chapter will examine the process of analyzing a packet trace to determine the

performance behavior of a Internet's transport layer protocol, TCP. Analysis of the

packet trace is often the only method of determining why a TCP connection is be-

having or performing oddly. This chapter will show that analysis of a TCP packet

trace is problematic because of its tediousness. This chapter will then show that a

novel transformation of the packet trace into a graphical form makes the analysis

much easier.

TCP (Transmission Control Protocol) is de�ned by RFC793. It is a protocol

which provides a bidirectional reliable byte stream on top of IP (Internet Protocol),

an unreliable datagram service. TCP is an appropriate protocol to analyze because

its use is common among workstations and timesharing computers at universities and

research laboratories.

2.1 Packet Trace

A common method of performance problem diagnosis of TCP connections is manual

examination of a trace of the relevant TCP packets collected from either a metered

implementation of TCP or from some sort of network monitoring device. The relevant
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�elds of the packets in the trace along with a timestamp are usually printed. By

examining such a trace, the skilled analyst can reconstruct much of the story behind

the trace and infer the reasons for the packets and the contents of their control �elds.

Often, insight into the cause of performance problems can be gained from constructing

this story.

This method leaves the human analyst to do all of the data reduction of the

analysis. The analyst must reconstruct the story from raw data. Hitson [8] discusses

the di�culties of leaving the human with the packet trace in this raw form and states

that it took human experts about 20 minutes to examine such traces in detail. My

early experience showed that when faced with a real performance problem, two experts

working together could easily spend an hour attempting to understand a section of a

TCP packet trace no more than a few dozen packets long.1

The problem is that when examining the packet trace, the human spends much

time trying to reconstruct the purpose of each packet and how each packet �ts in

with the packets near it in the trace. An example of this process would be identi-

fying the packet that carries the �rst acknowledgment covering the data carried in

some previous packet. Another example would be identifying which packets carry

retransmissions of data already sent by a previous packet. One of the harder things

to reconstruct from a line-by-line listing of the packet trace is the relative temporal

relationships between all the packets. This sort of manual analysis of packet traces

leaves for the human the tedious task of reconstructing these relationships between

the packets.

One approach to solving this problem would be to attempt to describe the process

the human expert uses precisely enough so that the expert's knowledge and methods

can be captured and used by some sort of automated analysis tool. This tool would

1But TCP packet traces thousands of packets long are typical for connections involving bulk
data transfer. It would be hard to claim after an hour that the few dozen packets examined were
representative of the entire connection without looking at the remaining packets. A thorough analysis
would take a long time.
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scan the packet trace, identifying and classifying common localized phenomena in the

trace, and could either annotate or produce a higher level description of the trace.

Carrying this approach further hopefully would lead to an expert system capable of

assisting non-experts in diagnosing and isolating performance problems of TCP.

The di�culty with this approach lies in the di�culty of describing how the human

expert performs the task. The performance of an expert-system used to perform this

task would depend on the coverage of the knowledge base. Experience examining

packet traces with the tools presented in this thesis suggests that this database would

never be complete.

The fundamental problem is that the packet trace is an unwieldy ocean of numbers

when it is presented in its raw form. The analyst, when confronted with this sea of

numbers, su�ers from information overload. This information overload motivates

others to reduce the amount of information presented to the user by means such as

statistical analysis and expert systems.

The approach presented here is to improve the form in which the data is presented

to the human analyst, without trying to embed knowledge about the analysis into

the tools. By improving the form in which the trace is presented to the analyst and

by providing the analyst with some tools to manipulate this form, the problem of

information overload can be dramatically reduced.

2.2 Details of TCP

An IP network provides a simple unreliable message (datagram) delivery service where

each packet is routed independently and the network maintains no important state

about the connections through it. An IP network makes no guarantee to deliver a

packet reliably. IP datagrams may be lost, reordered, corrupted, or even duplicated.

By using checksums, sequence numbers, acknowledgments, and windows, TCP pro-

vides a reliable byte stream with end-to-end ow control.
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A TCP connection provides a bidirectional connection where the acknowledgments

and window updates in one direction can be carried along with the data going the

other direction. The TCP modules at each end of the connection communicate by

using IP to send TCP segments to each other. A TCP segment consists of the IP and

TCP headers and some amount of carried data, possibly none.

The data bytes (or octets) in the stream going each direction are conceptually

numbered sequentially so that each octets has its own 32-bit sequence number. A

TCP header contains a 32-bit sequence number �eld. This �eld contains the sequence

number of the �rst data octet carried by the segment. If there is no data to be sent

in a segment, then the sequence number in the TCP header is set by the sender to

the sequence number of the �rst octet not yet sent. Packets with no data are sent

when control information needs to be conveyed to the other end of the connection

and there is no data to be sent.

The 32-bit acknowledgment �eld in the TCP header is used to indicate that all

octets up to but not including the byte whose sequence number is carried in the

acknowledgment �eld has been received and no longer needs to be retransmitted.

The 16-bit window �eld in the TCP header is used to indicate how many octets

beyond the acknowledged octet the receiver is prepared to accept. This is used to

implement a simple end-to-end window ow control on each direction of the data

connection.

These three �elds of the TCP header (the sequence and acknowledgment numbers

and the window) along with the number of data octets carried by the TCP segment2

are the most important elements from the packet for performance analysis. In addi-

tion to these �elds from the packet, a timestamp and some means to identify which

direction the packet was sent need to be included in the trace.

There are other �elds from the TCP and IP headers which are important but on

2The number of data octets carried in a TCP segment is not explicitly carried in a separate �eld
of the header but can be computed from other �elds of the TCP and IP headers.
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timestamp seq ack win length

--------- --- --- --- ------

0:59:59 HOST-A <---- 168 52 20 0 HOST-B

1:00:08 52 168 100 6 ---->

1:00:15 <---- 168 58 20 0

1:00:17 58 168 100 10 ---->

1:00:19 68 168 100 10 ---->

1:00:30 <---- 168 68 20 0

1:00:32 78 168 100 10 ---->

1:00:41 <---- 168 68 20 0

1:00:51 68 168 100 10 ---->

1:01:01 <---- 168 88 20 0

1:01:05 88 168 100 10 ---->

1:01:16 <---- 168 98 20 0

This is a synthetic trace constructed to demonstrate the basic operation of TCP.

HOST-A is sending some data to HOST-B and HOST-B is sending acknowl-

edgments and window updates back to HOST-A. The timestamps are relative

to HOST-A.

Figure 2.1: A simple TCP packet trace

most functioning TCP connections there are no surprises in these �elds and they do

not convey much information about the performance of the TCP connection.

In Figure 2.1 is shown a synthetic TCP packet trace. This trace was contrived

to demonstrate the basic operation of TCP. In this trace, data is only sent in one

direction, from HOST-A to HOST-B. This can be seen by observing that the sequence

number in the packets from HOST-B to HOST-A never change and that the acknowl-

edgment number in the packets from HOST-A to HOST-B never change. The second

line of the trace shows a packet seen at 1:00:08 which contains six bytes of data, all

of which are beyond the point acknowledged by the packet on the �rst line. Seven

seconds later, an acknowledgment is received acknowledging all of the data carried by

the packet on the second line. The packets seen at 1:00:17 and 1:00:19 each carry 10

new data bytes. The packet on the sixth line seen at 1:00:30 acknowledges the �rst
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of the 10 byte segments (sent in the packet shown on the fourth line), but does not

acknowledge the remaining ten bytes. However, since the window is extended by this

packet, the sender (HOST-A) can send 10 more bytes of data and in fact does so in

the packet sent at 1:00:32. At 1:00:41, another acknowledgment is received which does

not acknowledge any new data, and was probably sent by HOST-B when it received

the packet sent at 1:00:32 and had not received the packet sent at 1:00:19. (HOST-B

saw a gap in the data, and resent the acknowledgment.) At 1:00:51 HOST-A retrans-

mits the packet originally sent at 1:00:19 and a short while later, an acknowledgment

is received for all outstanding data. Host A continues by sending another 10 bytes of

data and HOST-B acknowledges this data with the last packet shown.

This trace demonstrates some of the basic features found in TCP packet traces.

The packet at 1:00:15 acknowledges the packet seen at 1:00:08. The packet seen at

1:00:41 is a duplicate acknowledgment because it acknowledges the same point in the

bytestream as the packet seen at 1:00:30. The packet at 1:00:51 is a retransmission

of the packet sent 1:00:19.

2.3 Manual Packet Trace Analysis is Di�cult

The �rst 100 packets of a packet trace captured and analyzed as an early part of

this research are shown in Figures 2.2 and 2.3. The packet trace is of a 4.3BSD Unix

�lesystem dump to a remote tape drive which was observed to be progressing very

slowly. The packet trace was collected using FTP Software's LANWatch program.

The trace was transferred to a Unix workstation where it was formatted and printed.

About an hour was spent manually analyzing this packet trace trying to under-

stand why this connection was performing poorly. This trace contains 1330 packets.

It was not possible to examine in detail each packet and its relationship to the pack-

ets around it in only and hour, but it was possible to reach a few conclusions after

examining in detail a few di�erent parts of the trace. Often the machine with the
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Timestamp Source addr port Dest addr port seq ack win len

------------ ----------- ---- ----------- ---- ---------- ---------- ----- ----

12:06:12.306 18.26.0.115 1023 18.26.0.92 514 2382364546 0455093405 4096 126

12:06:12.309 18.26.0.92 514 18.26.0.115 1023 0455093405 2382364672 0 0

12:06:12.312 18.26.0.92 514 18.26.0.115 1023 0455093405 2382364672 0 0

12:06:12.424 18.26.0.115 1023 18.26.0.92 514 2382354306 0455093405 4096 1024

12:06:13.041 18.26.0.92 514 18.26.0.115 1023 0455093405 2382351234 13438 0

12:06:14.230 18.26.0.115 1023 18.26.0.92 514 2382353282 0455093405 4096 1024

12:06:17.312 18.26.0.115 1023 18.26.0.92 514 2382364672 0455093405 4096 1

12:06:17.315 18.26.0.92 514 18.26.0.115 1023 0455093405 2382364673 65535 0

12:06:17.318 18.26.0.92 514 18.26.0.115 1023 0455093405 2382364673 65535 0

12:06:17.320 18.26.0.115 1023 18.26.0.92 514 2382364673 0455093405 4096 1024

12:06:17.324 18.26.0.92 514 18.26.0.115 1023 0455093405 2382365697 64511 0

12:06:17.327 18.26.0.92 514 18.26.0.115 1023 0455093405 2382365697 64511 0

12:06:17.329 18.26.0.115 1023 18.26.0.92 514 2382365697 0455093405 4096 1024

12:06:17.332 18.26.0.115 1023 18.26.0.92 514 2382366721 0455093405 4096 1024

12:06:17.334 18.26.0.92 514 18.26.0.115 1023 0455093405 2382366721 63487 0

12:06:17.366 18.26.0.115 1023 18.26.0.92 514 2382368769 0455093405 4096 1024

12:06:17.369 18.26.0.115 1023 18.26.0.92 514 2382369793 0455093405 4096 1024

12:06:17.370 18.26.0.92 514 18.26.0.115 1023 0455093405 2382368769 61439 0

12:06:17.373 18.26.0.115 1023 18.26.0.92 514 2382370817 0455093405 4096 897

12:06:17.378 18.26.0.92 514 18.26.0.115 1023 0455093405 2382369793 0 0

12:06:17.392 18.26.0.92 514 18.26.0.115 1023 0455093405 2382369793 60415 0

12:06:17.397 18.26.0.115 1023 18.26.0.92 514 2382369793 0455093405 4096 1024

12:06:17.401 18.26.0.92 514 18.26.0.115 1023 0455093405 2382370817 59391 0

12:06:17.404 18.26.0.92 514 18.26.0.115 1023 0455093405 2382370817 59391 0

12:06:17.407 18.26.0.115 1023 18.26.0.92 514 2382370817 0455093405 4096 897

12:06:17.412 18.26.0.92 514 18.26.0.115 1023 0455093405 2382371714 58494 0

12:06:17.417 18.26.0.92 514 18.26.0.115 1023 0455093405 2382371714 58494 0

12:06:17.500 18.26.0.92 514 18.26.0.115 1023 0455093405 2382371714 58494 7

12:06:17.511 18.26.0.115 1023 18.26.0.92 514 2382371714 0455093412 4096 7

12:06:17.514 18.26.0.92 514 18.26.0.115 1023 0455093412 2382371721 58487 0

12:06:17.516 18.26.0.92 514 18.26.0.115 1023 0455093412 2382371721 58487 0

12:06:17.519 18.26.0.92 514 18.26.0.115 1023 0455093412 2382371721 58487 0

12:06:17.521 18.26.0.92 514 18.26.0.115 1023 0455093412 2382371721 58487 0

12:06:17.523 18.26.0.92 514 18.26.0.115 1023 0455093412 2382371721 58487 0

12:06:18.157 18.26.0.92 514 18.26.0.115 1023 0455093412 2382404489 25719 7

12:06:18.168 18.26.0.115 1023 18.26.0.92 514 2382404489 0455093419 4096 7

12:06:18.171 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.175 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.177 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.180 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.182 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.185 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.187 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.189 18.26.0.92 514 18.26.0.115 1023 0455093419 2382404496 25712 0

12:06:18.202 18.26.0.115 1023 18.26.0.92 514 2382404496 0455093419 4096 1024

12:06:18.204 18.26.0.115 1023 18.26.0.92 514 2382405520 0455093419 4096 1024

12:06:18.207 18.26.0.115 1023 18.26.0.92 514 2382406544 0455093419 4096 1024

12:06:18.209 18.26.0.115 1023 18.26.0.92 514 2382407568 0455093419 4096 1024

12:06:18.212 18.26.0.115 1023 18.26.0.92 514 2382408592 0455093419 4096 1024

12:06:18.214 18.26.0.115 1023 18.26.0.92 514 2382409616 0455093419 4096 1024

This is from a real packet trace collected from a monitor on the network. The

�rst 50 packets are shown here. The next 50 are shown in Figure 2.3.

Figure 2.2: A real TCP packet trace

19



Timestamp Source addr port Dest addr port seq ack win len

------------ ----------- ---- ----------- ---- ---------- ---------- ----- ----

12:06:18.216 18.26.0.92 514 18.26.0.115 1023 0455093419 2382407568 22640 0

12:06:18.220 18.26.0.115 1023 18.26.0.92 514 2382411664 0455093419 4096 1024

12:06:18.223 18.26.0.115 1023 18.26.0.92 514 2382412688 0455093419 4096 1024

12:06:18.225 18.26.0.115 1023 18.26.0.92 514 2382413712 0455093419 4096 1024

12:06:18.229 18.26.0.115 1023 18.26.0.92 514 2382414736 0455093419 4096 1024

12:06:18.231 18.26.0.115 1023 18.26.0.92 514 2382415760 0455093419 4096 1024

12:06:18.233 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.237 18.26.0.115 1023 18.26.0.92 514 2382417808 0455093419 4096 1024

12:06:18.239 18.26.0.115 1023 18.26.0.92 514 2382418832 0455093419 4096 1024

12:06:18.242 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.246 18.26.0.115 1023 18.26.0.92 514 2382420880 0455093419 4096 1024

12:06:18.249 18.26.0.115 1023 18.26.0.92 514 2382421904 0455093419 4096 1024

12:06:18.252 18.26.0.115 1023 18.26.0.92 514 2382422928 0455093419 4096 1024

12:06:18.255 18.26.0.115 1023 18.26.0.92 514 2382423952 0455093419 4096 1024

12:06:18.257 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.261 18.26.0.115 1023 18.26.0.92 514 2382426000 0455093419 4096 1024

12:06:18.264 18.26.0.115 1023 18.26.0.92 514 2382427024 0455093419 4096 1024

12:06:18.266 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.270 18.26.0.115 1023 18.26.0.92 514 2382429072 0455093419 4096 1024

12:06:18.273 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.276 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.279 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.282 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.285 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.288 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.291 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.294 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 0 0

12:06:18.296 18.26.0.92 514 18.26.0.115 1023 0455093419 2382408592 21616 0

12:06:18.301 18.26.0.115 1023 18.26.0.92 514 2382408592 0455093419 4096 1024

12:06:18.305 18.26.0.92 514 18.26.0.115 1023 0455093419 2382409616 20592 0

12:06:18.308 18.26.0.92 514 18.26.0.115 1023 0455093419 2382409616 20592 0

12:06:18.310 18.26.0.115 1023 18.26.0.92 514 2382409616 0455093419 4096 1024

12:06:18.313 18.26.0.115 1023 18.26.0.92 514 2382410640 0455093419 4096 1024

12:06:18.315 18.26.0.92 514 18.26.0.115 1023 0455093419 2382410640 19568 0

12:06:18.318 18.26.0.92 514 18.26.0.115 1023 0455093412 2382375817 54391 0

12:06:18.321 18.26.0.115 1023 18.26.0.92 514 2382381961 0455093412 4096 1024

12:06:18.326 18.26.0.92 514 18.26.0.115 1023 0455093419 2382412688 17520 0

12:06:18.328 18.26.0.115 1023 18.26.0.92 514 2382415760 0455093419 4096 1024

12:06:18.334 18.26.0.115 1023 18.26.0.92 514 2382417808 0455093419 4096 1024

12:06:18.336 18.26.0.115 1023 18.26.0.92 514 2382418832 0455093419 4096 1024

12:06:18.339 18.26.0.115 1023 18.26.0.92 514 2382419856 0455093419 4096 1024

12:06:18.341 18.26.0.115 1023 18.26.0.92 514 2382420880 0455093419 4096 1024

12:06:18.343 18.26.0.92 514 18.26.0.115 1023 0455093419 2382413712 0 0

12:06:18.351 18.26.0.92 514 18.26.0.115 1023 0455093412 2382380937 0 0

12:06:18.354 18.26.0.92 514 18.26.0.115 1023 0455093412 2382380937 0 0

12:06:18.366 18.26.0.92 514 18.26.0.115 1023 0455093419 2382413712 0 0

12:06:18.368 18.26.0.115 1023 18.26.0.92 514 2382427024 0455093419 4096 1024

12:06:18.370 18.26.0.115 1023 18.26.0.92 514 2382428048 0455093419 4096 1024

12:06:18.370 18.26.0.115 1023 18.26.0.92 514 2382397321 0455093412 4096 1024

12:06:18.373 18.26.0.115 1023 18.26.0.92 514 2382429072 0455093419 4096 1024

This is the continuation of the trace shown in Figure 2.2.

Figure 2.3: More of a real TCP packet trace
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tape drive was o�ering a window of zero. Furthermore, the machine with the tape

drive was often taking back previously o�ered window.

For example, at 12:06:17.370, the end of the window (determined by adding

together the acknowledgment number and the window �eld of the packet) was at

2382368769 + 61439 = 2382430208, but eight milliseconds later the window �eld of

the packet is zero, and the acknowledgment number is only at 2382369793 which is

60415 bytes short of the previously o�ered end of window.

These observations led to the conclusion that the machine that was receiving the

data to be dumped was not behaving ideally and that the problem seemed to lie in

the TCP implementation of that host.

This packet trace is interesting because it was the �rst real problematic connection

traced and analyzed as part of this project and served to motivate the development

of some better way of presenting the trace for analysis. It is not an unusually long

packet trace. Many other collected traces of TCP connections were longer, some as

much as twice as long as this one. However, a trace of this length is very cumbersome

to analyze manually. This trace demonstrated the need for some means of dealing

with the large amount of information presented in a packet trace.

Doing the analysis of this trace demonstrated that such analysis can be useful even

if it is cumbersome and tedious. Useful information was found in the trace and some

conclusions were reached about what might be the cause of the poor performance of

the system using the TCP connection.

One of the most di�cult parts of manual analysis of TCP packet traces arises

from the need to understand how packets relate to each other in time and in sequence

or acknowledgment numbers. Extracting these relationships from the trace probably

took most of the time spent analyzing this trace.
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timestamp seq ack win length

--------- --- --- --- ------

0:59:59 HOST-A <---- 52 20 HOST-B

1:00:08 52 6 ---->

1:00:15 <---- 58 20

1:00:17 58 10 ---->

1:00:19 68 10 ---->

1:00:30 <---- 68 20

1:00:32 78 10 ---->

1:00:41 <---- 68 20

1:00:51 68 10 ---->

1:01:01 <---- 88 20

1:01:05 88 10 ---->

1:01:16 <---- 98 20

This is the same as Figure 2.1 but with the �elds which were relevant only to

the data sent from HOST-B to HOST-A removed.

Figure 2.4: Trace information for half of the duplex TCP connection

2.4 Displaying the Trace Graphically

This section will show how to present the packet trace in a graphical format so

that these relationships will be evident as simple spatial relationships. The method of

displaying the trace presented in this section increases the rate at which TCP packet

traces can be analyzed by humans by a factor of 100 to 1000.3

The key idea to this graphical form is to display the packet trace as a time-sequence

plot where the horizontal axis is indexed by time and the vertical axis is indexed by

sequence number. In [9], Jacobson �rst applied this idea to TCP connections when

he used it to show the progress of a TCP connection by plotting the sequence number

�eld of packets versus the time each packet was sent. The graphical method used to

display packets in this thesis expands on this idea and displays all of the information

3An hour's worth of manual analysis may take anywhere from 5 to 30 seconds when using the
tools presented here. Someone experienced at viewing the plots can often grasp what transpired at
�rst glance, much more quickly than the story could be expressed verbally.
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This time-sequence plot shows the six packets sent from HOST-A to HOST-B in
Figure 2.4. The horizontal axis is time (in hours, minutes and seconds) and the
vertical axis is the TCP sequence number.

Figure 2.5: A time-sequence plot

contained in a packet trace of the sort shown in the previous section graphically so

that the analyst need not refer back to a printed packet trace for any information.

The packet trace in Figure 2.1 will be used to illustrate the use of a time-sequence

plot to display a packet trace. A TCP connection provides a byte stream service

in each direction. A single time-sequence plot displays information about the data

ow of a single direction only. To show exactly what data is transferred to the plot,

Figure 2.4 contains a copy of trace shown in Figure 2.1 but including only the �elds of

the connection relevant to understanding the process of carrying data from HOST-A

to HOST-B. The relevant �elds are the sequence and data-length �elds of packets

sent by HOST-A (the sender of the data) and information from the acknowledgment

and window �elds of the packets sent by HOST-B (the receiver of the data).
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This time-sequence plot shows the ack lines and window lines. The axis are the same
as in Figure 2.5.

Figure 2.6: Time-sequence space plot of information in returning packets

The packets sent by the sender are plotted by placing a vertical line segment in

time-sequence space starting at the sequence number contained in the sequence �eld

of the packet and extending upwards for the length of the packet. To make these

segments easier to recognize and to make it possible to see zero-length segments, an

arrow is a�xed to each end of the line segment. Zero length segments appear only as

two arrows facing each other, which looks like letter X since the heads of the arrow

are placed in the same location. Figure 2.5 contains a time-sequence plot with just

this information shown. Notice that the six vertical line segments correspond to the

six packets sent from HOST-A to HOST-B in the packet trace. The location relative

to the horizontal access corresponds to the timestamp on the packet in the trace.

Notice that all three relevant numbers from the trace (the timestamp, the sequence
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This is the detailed time-sequence plot for the data sent from HOST-A to HOST-B
of the trace shown in Figure 2.1. The horizontal axis is time (in hours, minutes and
seconds) and the vertical axis is the TCP sequence number.

Figure 2.7: The complete time-sequence plot

number, and the length) could be recovered from this diagram.

In Figure 2.6 the packets sent by the receiver are plotted by extracting the acknowl-

edgment and window �elds, computing an end-of-window number by adding these two

�elds together, and plotting points at the location of the (time-of-packet, acknowl-

edgment) and (time-of-packet, end-of-window) in time-sequence space. The space

between these points can be thought of as the window and to make this clearer, over-

and-up stair steps are plotted from the each of the points plotted by the previous

inbound packet to the corresponding new point. The stair-step produced by plotting

the acknowledgment �elds is called the ack line and the region on the plot between

the ack line and the line at the end of the window (the window line) can be thought

of as the window. In order to make visible inbound packets which contain the same

25

I 

I I 



acknowledgment or window numbers as the previous packet, down tick marks are

placed on the ack line and up tick marks window lines. An example of this occurs at

1:00:41.

When the plots of both receiver-sent and sender-sent packets are combined, the

result is the complete time-sequence plot. This result is shown in Figure 2.7. Notice

how the packets sent by the sender naturally lie in the window and how easy it is to tell

when the �rst acknowledgment which covers a packet sent by the sender is received.

All of the time and sequence number relationships are easily extracted visually from

this plot without the need to examine the original trace or handle numbers.

Timestamps are Relative

Messages take time to travel through the network. Because of this, traces of a given

trace collected from di�erent points in the network would have di�erent timing rela-

tionships. Most often the analyst is interested in understanding the retransmission

strategies of the sender of data so packet traces are usually taken relative to the sender

of data, often directly from an instrumented TCP module running in the sender.

The packet traces collected for this project were taken from the Ethernet, inde-

pendent of either end of the connection. The timestamps in the packet traces do not

necessarily match the timing at either end of the TCP connection. Understanding

this can be important when analyzing a packet trace of a connection between two

hosts. There are four main con�gurations. One is when both end points of the TCP

connection are on the same ethernet as the monitor. In this case, the round trip time

between the two hosts is very short and timestamps are best thought of as being

relative to a midpoint between the two machines. A second con�guration is when the

monitor is located on the same ethernet as the sender of data and the recipient of

the data is located at a distance in the network. In this case, the timestamps on the

packets captured by the monitor can be thought of as being the same as the sender

sees. These �rst two cases were the con�guration for almost all traces examined as
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part of this research. Since much of the complexity in TCP is deciding when to

transmit, these two con�gurations are probably the most useful because the analyst's

view will be the same as that of the transmitter. A third con�guration is where the

sender of data is distant in the network and the monitor is near the recipient. In this

case the packets are seen e�ectively when the receiver sees them. This can produce

strange results. An example of this is shown in Figure 3.15. The �nal con�guration

would be where the monitor is on a transit network and is not near either of the end

points of the connection.

If traces collected away from the sender are to be analyzed, it needs to be under-

stood that the observed timing of packets is partly a result of the network as well as

the host that sent them. This applies as well to analyzing the acknowledgments and

window updates when the traces are collected away from the receiver.

Time-Sequence Plots Preserve Information Content

Time-sequence plots of TCP packet traces have a nice information preserving prop-

erty. They preserve the information content of the original trace. Figure 2.7 contains

all of the information in Figure 2.4. This is key to eliminating the need for the hu-

man analyst to examine the printed trace or any other presentation of data about the

trace.

There are other �elds in the TCP packet which might be of interest to the analyst.

The �elds not included in the packet traces and time-sequence plots in this chapter

which might be of interest are the the six TCP ag bits (URG, ACK, PSH, RST, SYN,

and FIN), the urgent pointer, and the options. Also, the checksum �eld was ignored

and could not have been veri�ed without the entire TCP segment. The entire TCP

segment was not usually available because the system used to capture the packets

only saved the headers. The SYN and FIN bits do occupy sequence number space,

and are included in the computation of the length �elds of the packets shown, but no

explicit indication of these bits was included.
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The information in these other �elds has not seemed necessary for diagnosing

performance problems. No e�ort has been made to include this information in the

traces or diagrams in this thesis. If it were necessary to include this information for

general debugging of the TCP protocol, it should be possible to annotate the time-

sequence plot with this information. For example, text could be placed directly on

the diagram in the appropriate places to indicate the settings of the ag bits when

they do not have the usual values.
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Chapter 3

Observation of TCP

By presenting a collection of examples, this chapter will demonstrate that the graph-

ical method presented in the previous chapter enables the analysis of TCP packet

traces.

Over a hundred TCP connections collected from an operational Ethernet in LCS

were examined in detail using time-sequence plots. Only a few will be presented here.

In the �rst part of this chapter, time-sequence plots which represent the most typical

TCP connections will be presented. Second, the performance of two TCP connections

carrying bulk data are examined in detail. Then at the end of this chapter, some of

the most interesting TCP connections observed using time-sequence plots will be

presented.

3.1 Typical TCP Connections

Figures 3.1 through 3.6 are examples time-sequence plots of typical TCP connections

collected from the operational network. Each is shown here to demonstrate the oper-

ation of some of the most common uses of TCP connections: the transfer of computer

mail, remote terminal connection, and bulk data transfer.

Figures 3.1 and 3.2 show the behavior of both halves of a TCP connection trans-
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1246853000

1246852000

1246851000

1246850000

1246849000

1246848000

 09:05:48  09:05:47  09:05:46  09:05:45 

18.26.0.36(1992)-->18.30.0.197(25)

This is a time-sequence plot of a TCP connection to an SMTP port. This plot

shows how the data was sent to the SMTP server. The entire connection from

SYN to FIN is shown here. Figure 3.2 shows the other half of this connection.

Figure 3.1: SMTP TCP connection

ferring a computer mail message using the SMTP protocol. The SMTP protocol is

described in [15]. The SMTP protocol �rst exchanges some short messages identifying

the hosts involved and the intended recipients of the message. After these have been

sent, veri�ed, and acknowledge by the SMTP server the message is transferred to the

SMTP server. Once the entire message has been received and safely stored by the

SMTP server, it sends a reply acknowledging that the message has been successfully

transferred.

Figure 3.1 is a time-sequence plot of the sender to SMTP server side of the connec-

tion. The large data packet soon after 09:05:47 is the transfer of the actual body of the

message. The much smaller packets before and after are the SMTP commands being
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 09:05:48  09:05:47  09:05:46  09:05:45 

18.30.0.197(25)-->18.26.0.36(1992)

This is a time-sequence plot of the other half of the SMTP TCP connection

shown in Figure 3.1.

Figure 3.2: Other half of SMTP TCP connection

exchanged. Figure 3.2 is a time-sequence plot of the other half of the same SMTP

connection. Only short server responses are sent on this half of the connection.

The body of the message transferred was apparently less than 1000 bytes in length

and �t into a single data packet. Longer messages would be broken into multiple

packets. The transfer of an extremely long message might begin to look like one of

the bulk data transfer connections presented later in this chapter.

The next two �gures, Figure 3.3 and Figure 3.4, are both examples of interactive

tra�c. Figure 3.3 is a plot of a TELNET connection, and Figure 3.4 is a plot of

an X11 window system connection. Both plots are of the side of the connection
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1226260000

1226255000

1226250000

1226245000

1226240000
 15:00:00  14:55:00  14:50:00  14:45:00  14:40:00 

18.26.0.96(23)-->128.195.0.38(1073)

This is a time-sequence plot of the host-to-user half of a typical TELNET con-

nection from a user on a distant host. Over twenty minutes of the connection is

shown here. Most of the TCP data segments are short and probably correspond

to remote echoes of typed characters. At this scale, these short segments are

all blurred together on the ack line. Occasionally larger bursts of tra�c can be

seen. These are probably output from a program.

Figure 3.3: Telnet connection

returning output to the user.1 Idle periods, periods of typing where the packets are

very short and somewhat frequent, and short bursts of output where larger packets

are sent can be seen in both of these �gures. Alternating between these three modes

is characteristic of interactive tra�c.

The four TCP connections presented thus far are typical of most TCP connections

1In the case of TELNET, this is from the server to the client, but in the case of the X11 window
system this is from the client to the server since the data owing to the X11 window system server
contains the output to be displayed to the user.
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1568375000

1568370000

1568365000

1568360000

1568355000

1568350000

 14:01:30  14:01:00  14:00:30 

18.26.0.115(1189)-->18.26.0.81(6000)

This shows the client to server (program to user) half of an X11 window system

connection. This appears very similar to the trace of a telnet connection shown

in Figure 3.3 which suggests that this X11 client was some sort of interactive

program.

Figure 3.4: X11 window system connection

which are not used for bulk data transfer. They all share a few characteristics: they

consist mostly of small packets, retransmissions are very rare, and the TCP window is

rarely �lled. No performance problems are evident in these TCP connections. Since

the performance demands on TCP are low on these connections, it is not surprising

that no performance problems are evident.

TCP connections carrying bulk data are not as common, but are much more

interesting to observe. The next two �gures are examples of TCP connections carrying

bulk data.

Figure 3.5 shows the behavior of a part of a TCP connection carrying data for a
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736100000

736090000

736080000

736070000

736060000

736050000

736040000

 12:05:38 37.800037.600037.4000

18.26.0.59(544)-->18.26.0.115(1021)

This time-sequence plot shows the behavior of a bulk data transfer to a host

on the same local area network.

Figure 3.5: Local bulk data transfer

�le transfer program to another host on the same local area network (an Ethernet).

Each of the packets is roughly 1000 bytes and over 60 packets can be seen in less

than 0.6 second. This accounts for less than 10% of the capacity of an Ethernet,

so the performance of the Ethernet does not appear to limit throughput. There

were no retransmissions in this portion of the connection, though there were a few

times when the transmitter apparently could not send because the TCP window was

full. Almost all returning packets updated both the acknowledgment and the end of

window, though a few returning packets which only updated one or the other can be

seen. It appears that the progress of this connection is usually limited by the ability

of the transmitter to send the packets, though sometimes it is held up by the receiver
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 23:47:15  23:47:10  23:47:05  23:47:00  23:46:55 

18.26.0.59(1139)-->128.46.131.21(9)

This plot shows the behavior of a TCP connection carrying bulk data to a

distant host.

Figure 3.6: Bulk data transfer to a distant host

not keeping the window open.

Figure 3.6 is an example of a TCP connection carrying bulk data to a distant host

across a slower long-haul network. Here the window is often �lled completely, and the

progress of the connection is limited by the end-to-end ow control implemented by

the TCP window mechanism. Retransmissions of presumably lost packets can also

be seen in this connection. Prior to both retransmissions, duplicate acknowledgments

can be seen. These were probably sent when packets beyond the missing packet were

received.

In Figures 3.1 through 3.4, the throughputs of these TCP connections were limited

by the applications using the connections. The TCP connection shown in Figure 3.5
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was limited by the host's ability to send the packets quickly on the Ethernet and

occasionally by the receiving host's ability to keep the window open. The connection

shown in Figure 3.6 is fundamentally di�erent because the performance of the network

plays a signi�cant role in determining the performance of the connection.

3.2 Two TCP Connections

Long distance networks often use lower bandwidth trunks, have longer delays, and

are shared among more users than local area networks. They are more heavily used

(in proportion to capacity) than local area networks. The longer delay and congestion

(which causes packets to be either dropped or delayed even further) caused by heavy

use can cause the performance of a TCP connection to be sensitive to the algorithms

used to control the transmission of data.

Several revisions have been made to the Berkeley Unix TCP retransmission strat-

egy. The 4.2BSD TCP would retransmit all segments held when the retransmit

expired. This burst of retransmissions on each expiration of the retransmit timer was

undesirable for a few reasons. If only the �rst unacknowledged segment is missing,

this would lead to many unnecessary retransmissions. If the other host is currently

unreachable, then sending more than one segment on each expiration of the retrans-

mit timer is pointless and only contributes to congestion. In the 4.3BSD TCP, this

algorithm was improved to send only the �rst unacknowledged segment when the

retransmit timer expired. Once an acknowledgment is received which covers previ-

ously unacknowledged data, any segments on the retransmit queue which have not

yet been acknowledged are retransmitted [11]. Further improvements to the 4.3BSD

TCP retransmission algorithm, including the slow-start algorithm, were later made by

Jacobson and Karels [11]. In the slow-start algorithm, further acknowledgments after

the retransmission of an initial single segment are used to clock out an exponentially

growing number of segments in each round trip time interval.
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 11:30:00  11:20:00  11:10:00  11:00:00 

18.26.0.59(1028)-->128.46.131.21(9)

This is a time-sequence plot of an entire TCP connection which transferred

1,024,000 bytes, and lasted over 40 minutes.

Figure 3.7:

Packet traces of two di�erent TCP connections will be used here to demonstrate

how the behavior of the TCP transmitter can seriously a�ect performance over long

paths in the network. Both connections were the result of running the same test

program on two di�erent machines at MIT with essentially identical hardware con-

�guration. One machine, at IP address 18.26.0.59, was running Ultrix 2.2 (whose

TCP is probably based on the standard 4.3 BSD TCP) and the other, at IP address

18.26.0.115, was running 4.3 BSD Unix with Jacobson's TCP improvements which

are described in [9]. The test program opens a TCP connection to a remote sink port

and calls write() on the socket with a 1,024,000 byte bu�er. Both connections were
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 11:10:00  11:00:00  10:50:00  10:40:00 

18.26.0.115(3079)-->128.46.133.21(9)

This is a time-sequence plot of a TCP connection from an improved TCP

implementation transferring the same amount of data across the same network

as the connection shown in Figure 3.7. The scale is the same as the scale in

Figure 3.7 so the overall performance can be easily compared.

Figure 3.8:

to the sink port on the same remote host, a machine at Purdue University.2

The traces were collected from the Ethernet at MIT which is directly connected

to the two source machines. The timing in the packet traces are essentially the same

as seen by the sender of the data.

Figure 3.7 and Figure 3.8 are time-sequence plots of traces of the entire connec-

tions. The scale in Figure 3.8 matches the scale in Figure 3.7. Not much detail can

2Unfortunately, the hostname did not resolve to identical IP addresses on the two machines so
di�erent IP addresses for the same target machine were used. The routes used for both connections
left MIT via a connection to the ARPANET. The routes used by the two connections are believed
to be essentially identical.
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 11:16:00  11:15:30  11:15:00  11:14:30  11:14:00 

18.26.0.59(1028)-->128.46.131.21(9)

This is a enlarged view of a portion of the trace shown in Figure 3.7. (Examining

a further enlarged view in Figure 3.11 before this �gure might aid in deciphering

the details of this �gure.)

Figure 3.9:

be seen at this scale, but the overall performance (from the users perspective) of the

improved TCP is obviously much better since it transferred the same amount of data

in about one fourth the time.

Figure 3.9 and Figure 3.10 are enlarged views of the same two connections.

Poor performance is evident in Figure 3.9. The TCP is sending most segments

of data twice. There are pauses of about 10 seconds between each salvo which are

probably caused by waiting for the retransmit timer. About one window's worth

of data is successfully acknowledged on each salvo, but a segment near the end of

the initial window is lost every time, requiring the retransmission. When the �rst

retransmit occurs, only one packet is sent, but once it is acknowledged, another salvo
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 10:38:10  10:38:00  10:37:50  10:37:40  10:37:30  10:37:20  10:37:10 

18.26.0.115(3079)-->128.46.133.21(9)

This is a enlarged view of a portion of the trace shown in Figure 3.8. (Examining

a further enlarged view in Figure 3.12 before this �gure might aid in deciphering

the details of this �gure.)

Figure 3.10:

is launched. This is probably the algorithm used in the 4.3BSD Unix [11] where once

a retransmit timer has gone o�, the TCP refrains from dumping the entire retransmit

queue until it receives an acknowledgment covering previously unacknowledged data.

This behavior is remarkably periodic, suggesting that there is some process which

causes the network always to drop a packet which is usually at about the same place

in the salvo. This, and the success of the other TCP connection, suggests that this

TCP implementation is the cause of its own troubles.

In the closer view of the operation of the improved TCP in Figure 3.10 the basic

behavior of the combined slow-start and congestion-avoidance algorithm [9] is evi-

dent. Whenever a packet needs to be retransmitted, the improved TCP refrains from
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 11:14:55  11:14:50  11:14:45  11:14:40  11:14:35 

18.26.0.59(1028)-->128.46.131.21(9)

This is an enlarged view of a portion of the trace shown in Figure 3.9.

Figure 3.11:

sending bursts of packets. Instead, it sends just one packet, and allows one more

outstanding packet per round-trip time depending on whether it is in the slow-start

or congestion-avoidance phase. The upward curl at the start of each episode is char-

acteristic of the combined slow-start and congestion-avoidance algorithms used in the

improved TCP. (These episode boundaries can even be seen as bumps in Figure 3.8.)

The overall performance di�erence between these two connections can also be seen

at this scale if the di�erence in scale between the two di�erent time-sequence plots is

noted.

Figure 3.11 and Figure 3.12 are even closer views from the previous two �gures. At

this level of detail, packet by packet analysis (as was done for Figure 2.1) is possible,

yet these two plots each contain about a factor of eight more information than the
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 10:37:40  10:37:35  10:37:30  10:37:25 

18.26.0.115(3079)-->128.46.133.21(9)

This is an enlarged view of a portion of the trace shown in Figure 3.10.

Figure 3.12:

trace in Figure 2.1.

At this scale, the bursts of segments in Figure 3.11 still appear as if all the packets

were sent at once.3 Also apparent here is that some of the segments sent near the

end of the window are not as long as the rest of the packets. This is surprising since

the test program wrote the entire bu�er all at once and the TCP should include

some mechanism of silly-window-syndrome4 (SWS) avoidance, although no SWS is

apparent. When the sender has refrained from sending completely to the end of the

window, zero length packets are sent in response to the duplicate acknowledgments.5

3On a much closer view not included here they appear about 2ms apart.
4The silly-window-syndrome is described in [4].
5It is hard to distinguish zero length packets from very short packets at this scale, but those are

indeed zero length.
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The detailed behavior of the slow-start and congestion avoidance algorithms can

be seen in Figure 3.12. There are three slow-start episodes which get beyond the �rst

packet and one which appears as only a single packet. Six packets in Figure 3.12 are

retransmissions. Two appear to be caused by retransmit timers going o�, two appear

to be sent in response to an acknowledgment, and two appear to be caused by the

fast-retransmit algorithm6.

The analysis of these two packet traces points to a serious performance problem

in the unimproved TCP. The behavior of this TCP transmitter (its burstiness and its

haste in retransmitting all of its retransmit queue) seriously a�ected throughput and

e�cient use of the network.

3.3 Interesting Plots

Figure 3.13 is a time sequence plot of a TCP using Jacobson's slow-start algorithm

sending to a host which implemented a 200 millisecond dally timer.7 A dally timer

is a feature which can be implemented in a TCP receiver to delay the transmission

of a segment to acknowledge received data when more data is likely to arrive soon,

or when a segment containing data is likely to be returned soon. The receiving TCP

must eventually time-out and return a segment acknowledging the data even if no

further data is received, hence a dally timer is set. When the dally timer expires, a

segment is sent covering all unacknowledged data.

An alert user had complained that a �le transfer from a machine whose TCP

had been updated to use the slow-start and congestion avoidance algorithms per-

formed poorly compared to the previous performance under the older TCP which did

not incorporate the slow-start and congestion avoidance algorithms. Examination of a

6The fast-retransmit algorithm is described in [9].
7It is currently recommended that a TCP send at least one acknowledgment for every two data-

carrying segments received[2]. This TCP would always wait the full 200 milliseconds and send just
one acknowledgment regardless of how many packets arrived.
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18.26.0.253(1034)-->10.2.0.6(20)

This plot shows what can happen when a TCP using the slow-start algorithm

is sending to a TCP which implements a dally timer.

Figure 3.13:

packet trace using time-sequence plots revealed an interesting interaction between the

algorithms used in the newer TCP and the dally timer on the receive TCP. Since the

newer TCP uses the spacing of the returning acknowledgments to clock out segments

carrying data, the dally timer e�ectively winds up controlling the transmitter. Also,

since the opening of the congestion window (a window kept internally by the trans-

mitter in the newer TCP) is controlled by the reception of new acknowledgments and

since the dally timer reduces the number of distinct new acknowledgments received,

the congestion window was opened much more slowly than intended. Furthermore,

the newer TCP uses an improved round trip time (RTT) estimator which models the

variance in RTT as well as the RTT itself. Since the apparent RTT was dominated

by the dally timer and since the variance in apparent round trip time was very low,
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 15:57:15  15:57:10  15:57:05  15:57:00 

18.26.0.253(1034)-->10.2.0.6(20)

A closer view of a section of Figure 3.13.

Figure 3.14:

often an acknowledgment which was only very slightly later than usual would not

arrive in time to prevent the expiration of a retransmit timer and the consequential

retransmission and reset of the congestion window used in the slow start algorithm.

An example of this can be seen in Figure 3.14 slightly after 15:57:10.

Figure 3.15 is an example of a time-sequence plot of a trace collected near the

receiver of a bulk transfer of data. The window line has been omitted in this plot. This

plot contains examples of out of order segments and the arrival of duplicate segments

which had been previously acknowledged. Previously acknowledged segments appear

below the ack line.
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 13:30:50  13:30:40  13:30:30  13:30:20  13:30:10 

128.197.2.1(1020)-->18.26.0.176(514)

This is a time-sequence plot of a trace collected near the receiver with the

window line omitted. Out of order packets and duplicate packets can be seen.

This demonstrates the relativity of time in a data communication network.

Figure 3.15:
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Chapter 4

Bursty Behavior of the TCP

Transmitter

Chapter 3 has demonstrated the e�ectiveness of the graphical tool presented in Chap-

ter 2. This chapter discusses the limits of this tool, and gives an example of a more

specialized tool which was used to further explore and quantify the bursty behavior

of the TCP transmitter.

The problem of analyzing a TCP packet trace has not been completely solved by

the time-sequence plot. An expert who understands TCP and the network is still

required to interpret the time-sequence plot and infer what is happening. Even when

an expert analyst is available, a detailed analysis of a time-sequence plot still requires

the analyst to view the TCP connection as a progression of events in time. This can

be too burdensome if one is trying to examine many packet traces.

For example, imagine the manager of a large network faced with the problem

of determining if the TCP connections using the network are performing well. The

manager might understandably want to know if the resources in the network network

are being wasted. The manager would need to perform a survey of TCP connections

and somehow screen for those TCP connections which are behaving poorly. Once the

poorly performing connections have been identi�ed, the cause of the poor performance
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would need to be determined so that appropriate steps could be taken to �x the

problem.

One task is to survey a large number of connections to determine how well they

are performing. Another task is to diagnose the connections which are found to be

performing poorly to isolate and diagnose the problems. Time-sequence plots can be

e�ectively used to tackle the second task, but not the �rst.

A single ethernet might carry 500,000 TCP packets in a single hour. It could

theoretically carry 10,000,000 or more in a single hour. A survey for poorly performing

TCP connections would ideally look at each of these half million packets. The expert

human analyst might be able to analyze 100 packets in an hour manually, and 10,000

packets in an hour by using Time-Sequence plots. (After zooming in to an appropriate

scale, the human expert would then walk through the entire trace.) This means that

only 2% of the TCP packets on the net could be screened in real time. (Or the

analyst could spend more than a week quickly scanning the Time-Sequence plots of

TCP packets collected in just one hour.) The manager of a network would not be

able routinely to screen a large number of connections for performance problems with

time-sequence plots even if the manager was an expert network analyst.

Time-sequence plots are not very useful for large-scale screening because they

present all of the data to the user in an unreduced form. Yet, without an understand-

ing of what problems or syndromes to look for it is hard to say what reduction to

perform on the data. This motivates exploring how a poorly performing connection

might be mechanically identi�ed and how one might screen for such connections.

Towards this goal of �nding a screening tool some e�ort was made at �nding a

way to draw a picture or plot which characterized the behavior of a TCP connection

in a way which would allow faster recognition of problem behavior. The behavior

of a long-lived connection is certainly shown in its Time-Sequence plot, but because

the Time-Sequence plot of the whole connection does not't show su�cient detail, the

analyst needs to zoom in and walk along the trace in time. Figure 3.11 and Figure 3.12
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are a good example of this.

No tableau of a TCP packet trace has been found yet which conveys enough

information about the behavior of the connection su�cient to upstage the use of time-

sequence plots for performance problem debugging. However, experience looking at

time-sequence plots can hopefully lead to some insight towards �nding a good method

for screening.

One simple observation is that a hypothetical plot or picture for rapidly character-

izing the behavior of a TCP connection will not be able to have real time on one of its

axes. Having real time on one axis would require the analyst to carry out the exami-

nation serially. This has motivated the exploration of some other graphical methods

such as histograms and scatter plots. Interestingly, when the use of other plots was

explored, the time-sequence plot had to be examined to understand what was really

happening. No other plot was found to be as satisfying as the time-sequence plot.

The rest of this chapter will present one graphical method for looking at the

burstiness of the TCP transmitter, the most interesting of the graphical methods

tried, and discuss how this burstiness might have a�ected the performance of the two

TCP connections presented in chapter 3.

4.1 Burstiness of the TCP transmitter

A major part of the TCP protocol left unspeci�ed by [16] is when a TCP should

transmit or retransmit a segment carrying data. The choice of method is left to the

implementor. TCP is speci�ed so that interoperation is possible for almost any choice.

This choice was left to the implementor to allow TCP to be used as the transport

protocol for a wide range of network and computer performance. A simple method

is to always send data as soon as it is ready, and retransmit all unacknowledged data

when a retransmit timer goes o�. This is roughly the approach used in 4.2 BSD

TCP implementation. This choice unfortunately can lead to congestion problems
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18.26.0.59(1028)-->128.46.131.21(9) irt dist

This is the distribution of the instantaneous rate of each byte sent in the packet

trace plotted in Figure 3.7. The vertical axis is the number of bytes sent and

the horizontal axis is bytes per second.

Figure 4.1:

in the network. Improvements made to this method in 4.3 BSD [11], and later by

Jacobson [9], all attempted to reduce congestion by holding back transmissions and

retransmissions, e�ectively reducing the rates at which packets were sent.

Examination of time-sequence plots of the two TCP connections shown in Fig-

ures 3.7 through 3.12 motivated a closer look at the behavior of the two TCP trans-

mission algorithms involved. The most striking di�erence in the behavior of the two

TCP transmitters was that the TCP which was performing better was not sending

the packets in large bursts. Large bursts were sent by the unimproved TCP, and

packets from these bursts were apparently dropped by the network. This motivated

an attempt to quantify the burstiness of a TCP transmitter as seen in a packet trace.
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This is the distribution of the instantaneous rate of each byte sent in the packet

trace plotted in Figure 3.8.

Figure 4.2:

To quantify the burstiness, determine the rate at which each byte was sent and

then examine the distribution of these rates. Let the instantaneous rate of a packet

be the number of bytes carried in the packet divided by the amount of time since the

previous packet was sent. Let the instantaneous rate of a transmitted data byte be the

instantaneous rate of the packet containing it. Once each packet and byte is labeled

in this fashion, a distribution of the number of bytes sent over the instantaneous rate

of those bytes can be produced.

Figure 4.1 and Figure 4.2 are histograms of the instantaneous rate of each byte sent

on the two connections. The throughput actually achieved by the two connections

was roughly 500 bytes per second and 2,000 bytes per second respectively. Both
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This is the integration of the histogram shown in Figure 4.1. The horizontal

axis is in bytes per second, and the vertical axis is in total accumulated bytes.

Figure 4.3:

distributions have large clumps near zero, which represent the bytes in packets sent

after a pause, and some bunches at rates a factor of 100 or more faster than the actual

throughputs, which represent the bytes in packets sent very soon after the proceeding

packet.

A more useful representation of this data is to plot the integration of the histogram.

Figure 4.3 and Figure 4.4 are the integrations of the respective histograms shown in

Figure 4.1 and Figure 4.2. Now it is very clear how many bytes were sent at each

rate.

The ultimate height reached by the line in one of the integrated histograms is

the total number of bytes transmitted, including retransmissions. The initial height
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This is the integration of the histogram shown in Figure 4.2.

Figure 4.4:

reached by the line soon after zero indicates the number of bytes sent at a slow rate.

Rises in this line occur at the rates at which many packets were sent.

Recall that each connection carried 1,024,000 bytes of user data. The improved

TCP transmitted, including retransmissions, only slightly more data than was sent

by the user while the unimproved TCP sent nearly twice as much. In Figure 4.4 it

is clear that 700,000 bytes (which is about 70% of the total bytes to be transferred)

were sent at a slow rate, while in �gure 4.3, only about 500,000 bytes were sent at a

slow rate.

The integrated histogram of burstiness shows that the improved TCP's behav-

ior was less bursty than the unimproved TCP. This suggests that this measure of

burstiness might be used as one measure of the quality or performance of a TCP
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 10:35:30  10:35:28  10:35:26  10:35:24  10:35:22  10:35:20 

18.26.0.115(3079)-->128.46.133.21(9)

This is an enlarged view of the beginning of the trace shown in Figure 3.8. Ex-

amples of packets sent together as the congestion window opens and as acknowl-

edgments are received which cover more than one previously unacknowledged

segment can be seen here.

Figure 4.5:

transmitter.

It is not surprising to �nd that the unimproved TCP sent so many packets at high

rates. Recall that in Figure 3.9 and Figure 3.11 that a large fraction of the packets

were sent back to back. It is also not surprising that the improved TCP sent fewer

packets at high bursty rates.

The improved TCP tries to use the incoming acknowledgments to determine when

to send more data. The rationale for this is that the spacing in time of the returning

acknowledgments should correspond to the spacing in time of the transmitted packets

exiting the bottleneck [9]. So why is there any burstiness at all in the improved TCP?
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 10:38:14  10:38:12  10:38:10  10:38:08  10:38:06  10:38:04  10:38:02 

18.26.0.115(3079)-->128.46.133.21(9)

This is an enlarged view of a portion of the trace shown in Figure 3.8. After

10:38:05 a retransmit timer expired and a single packet was retransmitted.

Moments later, an acknowledgment was received which just covered the data

just sent. This processed continued and let to a burst of 10 packets.

Figure 4.6:

Further examination of the time sequence plot shown in Figures 3.8, 3.10, and 3.121

led to three observed sources of burstiness in the improved TCP transmitter. The

�rst source is when the TCP opens the congestion window allowing more than one

packet to be sent in response to an ack for a single packet. The second source is when

an acknowledgment is returned which acknowledges more than one unacknowledged

packet. A few examples of both of these cases can be found in Figure 4.5.

The third source found in the trace is more surprising. In Figure 4.6 is an example

of an incident which is similar to seven other incidents found in the trace. In these

1including detail not visible in these �gures
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incidents, quite a few packets were sent close together in response to a retransmit

timer going o� moments before some delayed acknowledgments returned bunched

together. As each of the acknowledgments from the bunch were processed, more

packets were transmitted. This led to a burst of ten packets. Further examination

of what follows indicates that the last of the ten packets in the burst was dropped

somewhere in the network.2 The consequence of this large burst is similar to those of

the large bursts seen in the unimproved TCP. A packet near the end of the burst is

dropped and will need to be retransmitted again later.

A rough accounting of the packets sent in a bursty manner in this trace is 160

packets as part of the normal slow-start algorithm, 30 packets as part of a scenario

described in the previous paragraph. The total number of packets sent was around

2000 and from Figure 4.4 30% of the packets were sent in a bursty manner, so 410

packets were sent in a bursty manner due to an acknowledgment which covers more

than one unacknowledged packet.

Is burstiness harmful? In the improved TCP 30% of the packets were sent at a

high rate, but only 1.5% were involved in scenarios where the burstiness was asso-

ciated with any packet loss. In the incidents where packet loss did occur, a large

burst of around 10 packets occurred. The bursts caused by bunched or batched ac-

knowledgments are usually only 2 to 4 packets long. Burstiness does not appear to

be harmful if the bursts are short. Long bursts of 10 or more packets did seem to

have a high chance of being associated with a lost packet in the two traces examined.

2After the burst of 10 packets, some duplicate acknowledgments arrive. After the third duplicate
ack, the a segment is resent. About one half second later an acknowledgment is received covering this
segment. Later two more acknowledgments trickle in, each of which releases a packet. Then three
duplicate acknowledgments are received, and a packet is sent. Only two of these three duplicate
acknowledgments could be in response to the two packets just released. The �rst of the duplicate
acknowledgments arrived too soon to be in response to either of them. Therefore the �rst duplicate
acknowledgment must be in response to the previously retransmitted packet.
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Chapter 5

Conclusions

The time-sequence plot has been shown to be a valuable tool for the network ana-

lyst. The large reduction of time needed to make a detailed examination of a packet

trace should enable a more critical look at the performance of existing and future

implementations of transport protocols such as TCP. The ability to display in a com-

prehensible form the detailed behavior of a TCP implementation has opened a new

window into understanding of transport protocol operation.

The high level problem addressed by this thesis is the existence of bugs which are

hidden by the robustness of TCP and are manifest only as performance problems.

There are two steps in tackling this problem. The �rst is �nding and identifying the

bugs. The second is getting them �xed. Recent related work has shown that some

de�nite improvements can be made to TCP transmitter, so the performance problems

of TCP in existing networks can probably be ameliorated by incorporation of these

improvements into the hosts.

5.1 State of the Art TCP

Currently Jacobson's slow-start and congestion avoidance algorithms [9] are being

widely accepted as the correct methods of controlling when a TCP transmitter sends
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a packet. A look at the detailed behavior of a TCP using Jacobson's algorithms and

a brief comparison with the behavior of an earlier TCP presented in this thesis does

show that the slow-start and congestion avoidance algorithms seem to perform well.

Even though TCP implementors are given license to choose a wide variety of

transmission strategies, they should be aware and make good use of the algorithms

which have been developed and studied previously. Historically much of the wisdom

needed to implement the TCP/IP protocol suite well was not available formally from

a single source but was passed around among implementors as folklore. The Host-

Requirements RFC [2] will help ensure that implementors are more aware of this

wisdom.

What further improvements to TCP can be made? The problematic behavior

of an up-to-date TCP shown in Figure 4.6 might be improved by adding selective

acknowledgments, rate-controlled transmission, or both. Adding selective acknowl-

edgments would require an extension to the TCP protocol and would only work when

connected to another TCP which has implemented the extension. A rate controlled

transmitter could be added independently.

One way to view Jacobson's algorithm is that it sets a rate to send at during one

round trip. It is not really a rate, but rather the amount that can be sent in one

round trip time, which has the same dimensionality as rate. Jacobson's TCP does

not directly send at this rate but rather uses the incoming acknowledgments to clock

out the packets. If the acknowledgments are arriving in bursts, then the transmitted

packets will be sent in bursts. Since this TCP has already estimated the round trip

time and determined how many packets to send in the time of one round trip, a simple

improvement might be to pass these two parameters onto a rate-based transmitter to

smooth out the bursts.

Use of a rate-based transmitter would have to be studied carefully to be sure

that it would not lead to congestion. One possible way of assuring that a rate-based

transmitter does not cause further trouble might be to only release packets to the rate
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based transmitter which would have been released by the current slow-start algorithm.

Both algorithms could be run in parallel and each packet would need to be released

by both algorithms before it could be sent.

5.2 Robust Systems Mask Faults

The trace of the 4.3 BSD TCP shows just how wrong things underneath the surface

can be when protocols are designed to be robust. The 4.3 BSD TCP implementation

which produced the troublesome packet trace shown in Figure 3.9 was a widely used

TCP implementation in the Internet just a few years ago and is probably still in use

on many hosts. It is probably common for this TCP to behave just as poorly as

shown in the diagrams in Chapter 3, yet few users are aware that this behavior is so

common. Though some may notice that the network seems to be slow and congested

at times, few probably have any idea that one-half or more of the bandwidth is being

lost to a poor retransmission strategy.

The continued existence of this behavior in a widely used system points out the

need for e�ective monitoring of complex systems, particularly when the system com-

pensates automatically for problems. Automatic error recovery is a good method for

making systems robust, but when it hides underlying problems from those responsible

for tending to them, either warning lights need to be added to the systems or the

managers of the systems need e�ective monitoring tools and need to know how to use

them e�ectively.

5.3 Automating TCP Packet Trace Analysis

The time-sequence plot enables detailed examination of the packet trace by a human,

but does not automate the process itself. Automating the routine examination of TCP

packet traces will require specifying much of our current knowledge about how this
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is done by human experts. The time-sequence plot will enable better understanding

of the process of packet trace analysis and provides a good form for representing

traces for the purposes of communicating ideas about examination of traces. As more

experience is gained examining TCP time-sequence plots, the task of codifying the

process of analysis should be made easier.

A screening tool capable of passing �rst judgment on the performance of a TCP

connection as shown in a trace would be a good �rst step at aiding the analyst. By

using a screening tool to identify particular traces for further analysis, it might be

possible to carry out a large-scale audit of the performance of the TCP connections

carried across a network. In order to be used in a large-scale study, it would not

be possible to spend a large amount of time on each trace so the tool would have

to use fairly simple algorithms to scan the traces. Exactly how this screening tool

would work is not clear now, but experience looking at time-sequence plots of many

connections suggests that it would not be too di�cult.

One observation after looking time-sequence plots of many random connections

from the Ethernet being monitored is that most of the connections are quite boring.

Most TCP connections are between hosts on the same ethernet and are operating

in one of two modes: keyboard typing and echo or bulk data transfer. By boring I

mean that there are few surprises found when looking at these connections. Bulk data

transfers across a single ethernet either run in lock step mode limited by the window

o�ered by the receiver or do manage to stream somewhat.1 Connections providing

remote login service typically carry little data and exchange one packet per keystroke.

Timeouts and retransmissions are rare on both of these types of connections. This

observation that most all of the TCP connections are boring suggests that instead of

trying to �lter for connections with performance problems, it might be easier to �lter

out the boring connections and study what remains.

A initial de�nition for a boring TCP packet trace might be one in which all seg-

1Both of these behaviors can be seen in Figure 3.5.
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ments are acknowledged before the next segment is sent, the transmitter is never

limited by the window, and no segments are retransmitted. Another possible de�ni-

tion might be simply that no retransmission occurred. Whatever the de�nition, the

�lter should probably be con�gurable and somewhat extensible to allow the analyst to

�lter out common occurrences peculiar to the particular net being monitored. Learn-

ing and quantifying common behaviors on a particular net would probably become

part of the analysis process. The �ltering tool might count the events it has been

con�gured to recognize as an aid to this quanti�cation.
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Appendix A

Tools

Before packet traces can be examined and analyzed, they must be captured, and if

any of the analysis is not going to be performed in real time, the trace must be stored

for later retrieval. This appendix will discuss the some of the reasoning behind the

design of the packet capture and storage system and will describe briey how it was

constructed and how it is used to provide traces to the analysis programs.

A.1 Design Issues

Early in this project, FTP Software's LANWatch was used to capture packet traces

o� of the net. It is a program which runs on an IBM-PC with an ethernet interface

and displays packets as they arrive and optionally logs packets to a �le on the disk.

LANWatch includes the ability to �lter on a per-packet basis and allows separate

�lters for displaying and logging.

There were a few problems with using this system to capture packet traces for

analysis. The �rst is that the speed of the PC was not fast enough to capture and

log all packets (or even all TCP packets) on the net without missing an unacceptable

number of packets. This required that the user know in advance what packets might

be of interest. Another problem with this system was that while the PC was collecting
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packets, it could not do anything else. This means that packets could not be captured

while the trace was either being examined or moved o� of the PC onto another

machine.

Experience with using the IBM-PC and LANWatch-based system for capturing

packets led to the following design goals:

1. The system should be able to gather essentially all the packets on an ethernet.

2. The system should allow the trace of packets to be collected and accessed (for

analysis) simultaneously.

3. The system should be designed so that it can be left gathering packets contin-

uously at all times.

The �rst goal is essential to allow later analysis of the packet traces. In particular,

if the system is to be usable for general purpose network debugging, it would be

unreasonable to expect the user to know in advance which packets would be needed

for later examination. If some packets are omitted from the trace because of the

system's inability to gather packets at a high rate, then a burden will be placed on

the subsequent analysis. The second goal is implied by the third goal unless the traces

are never examined. The third goal was driven by the desire to not miss anything

on the ethernet. By collecting all packets, the decision about which packets to look

at can be deferred. The ability to go back and look at individual packets minutes

to hours after something unexplained or strange is observed on the network is very

useful.

A more general goal of this research was to not limit the analysis to experiments,

but to also examine some packet traces of real day-to-day TCP connections. It would

be di�cult to collect traces of real TCP connections if the system did not't collect

all of the packets, though one could use a system which watched for TCP packets,

or TCP packets which indicate that they are the initial packet of a connection, and

then �ltered for the rest of the packets associated with the same connection. Without
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carefully designing the selection process, this might have undesirably skewed which

connections were likely to be selected for gathering.

A.2 4.3BSD Unix Based Packet Trace Collection

A system for gathering and storing packet traces meeting the goals outlined above was

integrated into a 4.3BSD Unix system running on a MicroVAX-III. This system has

many advantages over the previous IBM-PC based system. An important advantage

is that under Unix's multi-processing, a background task can be set running to gather

and store the packet traces in the �le system. This neatly meets the second and third

goals outlined above. Most of the advantages are related to the richer environment

the standard Unix utilities provide. For example, the standard Unix �lters such as

grep and awk, provide a good �rst cut at a tool box for tools to �lter and manipulate

the traces. By using these tools, the time spent on developing the infrastructure

can be reduced. Another advantage is that sources for the entire Unix system were

available for study and modi�cation. This allowed the necessary changes for packet

collection and bu�ering to be easily incorporated into the Unix kernel.

A.3 Packet Trace Collection System

The packet trace collection system consists of three parts. The �rst is support added

to the kernel to collect the packets. The second is a program running in a user-mode

process which reads the packets out of the kernel and saves them into �les. The third

is a library used by programs to access the traces from the �les.

The �rst part, the part in the kernel, was modeled after the nit socket which is

a standard part of Sun's Unix operating system. A new implementation of Sun's

nit socket originally written at Project Athena was adapted to packet trace collection

and integrated into the standard 4.3BSD Unix based workstation software. It includes
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hooks into the Unix device driver of the network interface being used. Upon receipt of

each packet, the device driver's interrupt routine calls a routine nit input() which

copies onto a queue a small structure (containing a timestamp and length information)

and the �rst 50 bytes of the packet and schedules a lower priority handler. The lower

priority handler moves the packet o� of the queue and onto a socket which has been

opened by the user-mode program.

The user-mode program reads out of the socket in 10 kilobyte chunks and writes

the data out to 1/2 megabyte �les. When each �le reaches 1/2 megabyte, it is closed

and a new �le is opened. The user-mode program also monitors the amount of free

space left in the �lesystem. Whenever the �lesystem gets too full, it deletes the oldest

packet-trace �le. By always deleting the oldest data, the largest amount of recent

data can always be made available for analysis.

The library for accessing the packet traces hides the fact that the traces are kept

in multiple �les. It provides primitives for �nding the �rst packet after a given

time and for moving to the next packet and to the previous packet. In its current

implementation, it reads entire �les into bu�ers. The interface to the library hides

this so that on an operating system which allows mapping of �les, the �les could be

directly mapped into the address space of the analysis program without changing the

analysis part of the program.

The system runs on a MicroVAX-III computer running 4.3BSD Unix with about

370 megabytes of disk space available for packet traces. Depending on the network

load, about one half of the CPU time is free while the packet trace collector is running

and can be used by analysis programs or other programs. The packet trace collector

is run at an extreme high priority so that other use of the machine does not interfere

with the collection of packet traces. The remaining CPU time on the machine has

even been used by other people doing work unrelated to packet trace collection and

analysis with no noticeable e�ect on the packet trace collection.

A simple utility print is provided for printing out a portion of the trace. It takes

65

-



two arguments on the command line. The �rst is a time in the form hh:mm:ss and

indicates at what point to start scanning the trace. (The time is assumed to be

from the proceeding 24 hours.) The second is the number of seconds of the trace

to scan. It formats and outputs all the packet headers which occurred in the period

speci�ed. This utility alone has proven to be very useful. It provides an after-the-

fact netwatch-like capability integrated into a Unix environment. By using this print

program with the standard Unix tools such as grep and awk many useful tools can be

rapidly prototyped.

Other more specialized programs were developed using the library to list TCP

connections, count packets on each connection, �lter for a given TCP connection,

and to generate a time-sequence plot of a given TCP connection. Each of these

programs are only a page or two long. Most of the functionality needed by these

programs is available in libraries.

The time on the workstation was kept accurate (to within about ten milliseconds)

by ntpd. Ntpd is a system program that uses the Network Time Protocol described in

[13]. The kernel was modi�ed to keep time using some external microsecond resolution

clocks on the MicroVAX-III so that the packets could be timestamped to microsecond

resolution when the interrupt is received from the Ethernet interface. Because this

timestamp is taken after the packet has been relieved it is more closely related to the

end of the packet on the Ethernet instead of the beginning (which di�ers by at most

1.2 milliseconds for a maximum length ethernet packet). There is also some unknown

amount of jitter caused by the time taken to DMA the ethernet packet across the bus

and for the interrupt to be serviced.

A.4 Use and Experience

The packet collection system has been in continuous operation for over nine months.

At any time, the previous 8 to 16 hours of packet trace are available for analysis.
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An important feature of this system is that a packet trace can be examined after an

unanticipated failure or anomaly. If the system required that traces be anticipated,

then only experiments are possible and we would never get a candid look at the

network. Even in situations where the desire for a trace could be anticipated (e.g.

before performing an experiment), not having to target the packet trace collection

system in advance is a great convenience.

Keeping just the last disk full and always deleting the oldest traces makes good

sense. If anything else were kept, then it would reduce the amount of recent data

that could be kept.

The system for capturing packets was integrated into the kernel of the Unix system

running on a workstation. The 4.3BSD Unix kernel provided an important substrate

in which to integrate the packet trace collection system. The system for handling

interrupts, scheduling network level processing, and handling the disk for logging did

not have to be built from scratch. The socket code in 4.3BSD Unix provided the

primitives for bu�ering and communicating with a user mode-process.

The system works surprisingly well given that no special purpose hardware was

used. Special purpose hardware would have been useful to obtain more accurate

timing information and for monitoring low-level phenomena on the Ethernet. For

example, collisions on the Ethernet and packets with bad CRC's are never seen by

the monitoring software.
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