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2 1 INTRODUCTION 

1 Introduction 

We introduce a new balanced search tree algorithm for distributed memory architectures. The search 

tree uses the B-link tree [1] as a base, and distributes ownership of the nodes among the processors that 

maintain the tree. We also replicate the non-leaf nodes, to improve parallelism. If we apply a read-one, 

write-all consistency maintenance rule [2], then reading a node becomes cheaper and writing to a node 

becomes more expensive as we increase the degree of replication. We observe that a node close to the 

root is often read, but rarely written to, but a node close to a leaf is rarely read, but is (relatively) often 

written to. Therefore, our ownership rule is that if a processor owns a leaf, it owns a copy of all nodes 

from the root to the leaf. The root is replicated at every node, so operations can be initiated in a fully 

parallel manner, while the often-modified nodes near the leaf are only moderately replicated, reducing 

the cost of their maintenance. Restructuring in a B-tree occurs on the path from the root to the leaf. 

A processor that restructures a node also has a local copy of the parent, so that restructuring decisions 

can be made locally, eliminating the need for centralized control and permitting further parallelism. 

If the keys of a distributed data structure are arbitrarily or statically allocated to the processors, 

then some processors might be required to store a disproportionate share of the keys. Such an imbalance 

might cause a processor to exhaust its storage space even though other processors can store many more 

keys. A distributed search structure needs to be able to perform data balancing in order to efficiently use 

the storage that is available in the system. We show how data balancing can be efficiently implemented 

using the flexible distributed B-link tree algorithms. 

1.1 Search Trees 

Search trees are widely used for fast implementations of dictionary abstract data types. A dictionary 

is a partial mapping from keys to data that supports three operations: insert, delete and search. For 

simplicity we will assume that the dictionary stores no data with the keys and so may be viewed as a 

set of keys. A number of useful computations can be implemented in terms of dictionary abstract data 

types, including symbol tables, priority queues and pattern matching systems. 

The B-tree was originally introduced by Bayer [3]. The B-tree algorithms for sequential applications 

were designed to minimize the response time for a single query and the sequential algorithm for a single 

search operation on a balanced B-tree has logarithmic complexity. The improvement in the response 

time that may be achieved by a parallel algorithm for a single search can at best be logarithmic in the 

number of processors used [4]. Therefore, for parallel systems a more important concern is increasing 

system throughput for a series of search, insertion and deletion operations executing in parallel. 

The large number of concurrent search tree algorithms presented in the literature (1, 5, 6, 7, 8, 9, 10, 
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11, 12, 13, 14, 15, 16, 17, 18] prevents a complete description of each in this paper. Instead, we discuss 

the common issues that are addressed by all of the algorithms. 

All concurrent search tree algorithms share the problem of managing contention. Concurrency control 

is required to ensure that two or more independent processes accessing a B-tree do not interfere with 

each other. A common approach is to associate a read/write lock with every node in the search tree [19]. 

This causes data contention as writers block incoming writers and readers, and readers block incoming 

writers. The contention is severe when it occurs at higher levels in the search tree, particularly at the 

root (often termed a root bottleneck [20, 21]). Similar problems are caused by resource contention. In a 

shared-memory architecture all of the processes trying to access the same tree node will access the same 

memory module on the machine. Similarly, for message-passing architectures, the processor on which a 

node resides will receive messages from every processor trying to access the node. Resource contention 

is again most serious for the higher levels in the search tree. Node replication [17] reduces contention 

but requires a coherence protocol to maintain consistency. We present two algorithms for managing 

replicated copies of tree nodes. 

Associated with the contention issue is the problem of process overtaking. This may occur when a 

process that holds a lock selects the next node it wishes to access, releases its lock and attempts to 

acquire a lock for the next node. A second process may acquire a lock on the next node between the 

original process releasing the old lock and acquiring the lock for the next node. The second process 

can then update the node in such a fashion as to cause the first process to lock the wrong node when 

it eventually acquires the lock. To prevent this kind of process overtaking many algorithms have their 

operations use lock coupling to block independent operations [11, 22]. An operation traverses the tree 

by obtaining the appropriate lock on the child before releasing the lock it holds on the parent. B-link 

trees [1, 12, 13] eliminate the need for lock coupling. If the wrong node is reached at any stage the 

operation is able to recover. This reduces the number of locks that must be held concurrently and 

increases throughput. We use the B-link tree as a base for the dB-tree. 

1.2 Previous Work 

Wang and Weihl [17, 18] have proposed that parallel B-trees be stored using Multi-version Memory, 

a special cache coherence algorithm for linked data structures. Multi-version Memory permits only a 

single update to occur on a replicated node at any point in time (analogous to value logging [23, 24] 

in transaction systems). Our algorithm permits concurrent updates on replicated nodes (analogous to 

transition logging [23, 24]). 

Ellis [25] has proposed algorithms for a distributed hash table. The directories of the table are 

replicated among several sites, and the data buckets are distributed among several sites. The hash table 
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is a shallow search structure, so every update to the index structure must be distributed to every copy 

of the index. The distribution of updates can be limited in a distributed B-tree because it is a multilevel 

index structure. Also, the B-link tree is a very flexible data structure in which more sophisticated 

operations, such as range queries, can be easily implemented. 

Peleg [26, 27] has proposed several structures for implementing a distributed dictionary. The concern 

of these papers is the message complexity of access and data balancing. However, the issues of efficiency 

and concurrent access are not addressed. 

Colbrook et al. [28] have proposed a pipelined distributed B-tree, where each level of the tree is 

maintained by a different processor. The parallelism that can be obtained from this implementation is 

limited by the number of levels in the tree, and the distributed tree is not data-balanced. 

The contribution of this paper is to present an efficient and highly parallel distributed B-tree al

gorithm (the dB-tree) that permits concurrent updates on a replicated tree node. We show how our 

distributed B-tree can be used to efficiently implement a highly parallel, data balanced distributed dic

tionary (the dE-tree) with good locality for neighboring leaves in the tree. In Section 2 we describe the 

dB-tree. In Section 3 we show how the dE-tree can be built from the dB-tree. Finally, conclusions are 

drawn in Section 4. 

2 The dB-tree, a Concurrent Distributed B-tree 

As a base for our distributed B-tree, we use the concurrent B-link tree [1, 12, 13]. The B-link tree 

algorithms have been found to have the highest performance among all existing concurrent B-tree al

gorithms [20, 21, 29]. Restructuring operations on B-link trees are performed one node at a time, so 

that the algorithms can be easily translated to a distributed environment. In a B-link tree, every node 

contains a pointer to its right neighbor. In the concurrent B-link tree algorithm, each node also contains 

a field, highest, which is the highest valued key that can be stored in the subtree rooted at that node. 

The B-link tree algorithms use the additional information stored in the nodes to let an operation recover 

if it misnavigates in the tree due to out-of-date information. 

In the concurrent B-link tree algorithm described by Sagiv [12], insert operations place no more than 

one lock on the data structure at a time. Search operations start by placing an R (read) lock on the root 

and then searching the root to determine the next node to access. The search operation then unlocks 

the root and places a R lock on the next node. The search operation continues accessing the interior 

nodes in this manner until it reaches the leaf that could contain the leaf that it is searching for. If 

the operation reads a node and finds that the highest field is lower than the key it is searching for, it 

follows the right pointer of the node. When the search operation reaches the leaf that would contain the 
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key that it is searching for, it searches the leaf for the key and returns success or failure depending on 

whether the key is or is not in the leaf. 

An insert operation works in two phases: A search phase and a restructuring phase. The search 

phase on the insert operation uses the same algorithm as the search operation, except that it places 

W (exclusive write) locks on the leaf nodes. When the insert operation reaches the appropriate leaf, it 

inserts its key if the key is not already in the leaf. If the leaf is now too full, the insert operation must 

split the leaf and restructure the tree, as in the usual B-tree algorithm. The operations hold at most one 

lock at a time, so they must break the restructuring into disjoint pieces. So, when an insert operation 

finds that it must restructure the tree it performs a half-split operation (see figure 1). A half split 

operation consists of creating a new node (the sibling), transferring half of the node's keys to the sibling, 

and linking the sibling into the leaf list. In order to complete the split, the insert operation releases the 

lock on the node, locks the parent, and inserts a pointer to the sibling. If the parent becomes too full, 

the insert operation applies the same restructuring steps. Notice that for a period of time, there is no 

pointer in the parent to the sibling. Operations can still reach the sibling because of the right pointers 

and highest field. 

Initially parent 

A B C 

Half-split parent 

A C 

Complete the split 

- A C 

Figure 1: Half-split operation 

The B-link tree in a shared memory multiprocessor does not easily support the deletion of nodes. 
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Lehman and Yao (l] recommend that nodes are never deleted. Sagiv (12] describes garbage collection 

algorithms for underfull nodes. Lanin and Shasha (13], and Wang [17] describe an algorithm that leaves 

stubs in place of deleted nodes. We show how nodes can safely be removed from the tree due to the lack 

of shared memory. 

Our distributed B-tree algorithm builds on the concurrent B-link algorithms. An example dB-tree 

( distributed B-tree) is shown in figure 2. The leaves of the dB-tree are distributed among four processors. 

The interior nodes of the dB-tree are replicated among several processors. The rule for replicating the 

interior is that if a processor owns a leaf then it owns a copy of every node from the path from the root 

to the leaf, inclusive. Each processor on a level has links to both neighbors, not just the right neighbor. 

Keeping the nodes on a level in a double linked list simplifies replication control and the deletion of 

nodes (as will be discussed later), and also aids in downwards range queries. 

1 
L5 _

4 
L6 

.__ __ _. ._ __ ___. 

Figure 2: A dB-tree 

The nodes of the dB-tree are distributed among the processors, which do not share a common memory 

space. Instead of naming the nodes with address, we will name them with tags. Each node has a unique 

tag. These tags can be generated by requiring each processor to keep a count of the objects that it 

creates. When a processor creates a node, it names it with the counter concatenated with the processor 

id. A pointer in a dB-tree node is a node tag together with a list of the processors that own a copy 

of the node. In order to access a node, the processor translates the tag to a local address through a 

translation table ( organized as a hash table, for example). 

The dB-tree has three operations defined on it: search( v), insert( v ), and delete( v ). These operations 

have the usual semantics. An operation on the dB-tree performs suboperations on the tree nodes in 

order to perform its computation. The suboperations are performed atomically by a processor on the 

processor's local data. Each processor has a queue of pending suboperations that need to be performed on 
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its local nodes. A processor that helps to maintain the dB-tree accepts operations from other processors 

and performs the operation's suboperations. Conversely, a processor can send an operation to a different 

processor. 

A search operation that originates at one of the participating processors starts by performing a 

node-search suboperation on the locally stored copy of the root. A search operation that originates at a 

processor that does not help maintain the dB-tree must transmit its request to one of the participating 

processors. The node-search suboperation is completely local: the node can be read in parallel at every 

processor that owns a copy of the node, and a node-search at one processor does not block an update of 

the same node at another processor. The node-search suboperation determines the next node to access. 

A copy of the next node on the search path may be stored locally, in which case the local copy should 

be used, or all copies may be stored remotely, in which case the processor must send the operation to a 

processor that stores a copy of the node. 

As an example, if a search operation for a key stored in L3 originates in processor 3, then the 

operation reads processor 3's copy of the root and /1, then transmits a request to read L3 at processor 

4. If a processor has a choice of sites to send the search operation to, it can make a choice based any 

reasonable criteria, such as locality or estimated load. For example, if a search request for a key stored 

at L5 originates at processor 3, processor 3 chooses between processors 1, 2, and 4 to service the request 

to search node I2. When the search operation reaches the correct leaf, it returns a success message to 

the originating processor if the key is in the leaf, and a failure message otherwise. 

If an insert or delete operation does not cause restructuring, then it is executed in the same way as 

a search operation, except that the action on the leaf is to insert or delete a key. When restructuring is 

required, we can take advantage of the lack of shared memory - we know which processors have links to 

the nodes that we are restructuring. On the other hand, restructuring in the dB-tree is complicated by 

the need to keep all copies of a node consistent, and by the use of the doubly linked lists. 

2.1 dB-tree Half-splits and Half-merges 

The use of double links requires that splitting a node be carried out in three steps instead of two. The 

split procedure is shown in figure 3. When node B becomes too full, it splits into B and Sibling, each 

taking half of the keys that were stored in B. The Sibling node can be stored locally or transferred 

to a different processor. The next step is to make the leaf list consistent. Finally, a pointer to Sibling 

must be inserted into parent. The split procedure is carried out by performing suboperations on the 

nodes. First, a half-split suboperation is performed on node B. Next, a link-change suboperation is 

performed on node C. Finally, an insert suboperation is performed on parent. Note that there might 

be several copies of B, Sibling and parent. We will assume for now that modification suboperations are 
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performed on all copies of a node atomically. Also note that the parent might have been split or merged, 

so that several search suboperations might have to be performed before the insert suboperation can be 

performed. 

Make C point to sibling parent 

-- A C 

Make parent point to sibling 

A C 

Figure 3: A dB-tree half-split 

After a node is merged into another, or becomes empty, it must be removed from the tree. Figure 4 

shows the procedure for removing a merged node from the data structure. The first step in deleting a 

node is to mark it as deleted, so that operations that navigate to it can recover their path. If the keys 

in B were moved to A, then a marker in node B should be set to indicate that operations that read 

node B should read node A next. The neighbors of the deleted node must be made to point to each 

other. Next, the parent's pointer to the deleted node is removed. The processors that own the parent 

and the neighboring nodes must inform the deleted node's owner when they have changed or removed 

their pointers. Deleted nodes cannot be disposed of until it is determined that there are no remaining 

references to them in the system. 

When a processor splits or deletes a node, it must inform neighboring processors of the link changes. 

If two neighboring nodes are deleted at the same time, telling the deleted neighbor to change its link will 

not leave the tree in a correct state. Therefore, we require that a node restructure-lock the neighbors 
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Change list pointers 

A C -
Remove parent's pointer 

parent 

-A B d C -
Dispose of deleted node parent 

-A C -
Figure 4: A dB-tree half-merge 

who must change their pointers before they tell the neighbor to change the pointer. A node may be split 

or deleted only after all of the required restructure-locks have been obtained. Placing a restructure-lock 

on a node delays restructuring only; searches and non-restructuring inserts and deletes may continue to 

execute. Since delete operations must change both of their neighbor's nodes, there is the possibility of 

a deadlock. To break the deadlock, a request to change a left-link has priority over a request to change 

a right link. If a node requests a restructure-lock on its right neighbor and receives a restructure-lock 

request from the right neighbor, it delays the response to the request. If a node requests a restructure-lock 

from its left neighbor and receives a request from the left neighbor, the node grants the restructure-lock. 

This assumes that lock requests from neighboring processors preempt the operation of the processor. 

An example of the locking protocol is shown in figure 5. Node A decides to split and nodes B and 

C decide to delete at approximately the same time. Node A sends a lock request to its right neighbor 

(node B), and nodes B and C send lock requests to both neighbors. Only node A obtains all of the 

required locks, so node A splits, modifies the list, and passes the lock request to the new sibling A'. 

Node A' grants the lock request from node B, and so node B deletes, modifies the list, and passes the 

lock request from node C to node A'. Finally, node C obtains all of its locks so it may be deleted from 

the list. 
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Node A splits, nodes B and C merge. 
lock lock 

=C~~F.f, d!let:T-~-r-· d~ete 1. • 1 D I • 
........ _____ .. ., .................... .,,,. ...... ____ ..,,,. 

lock lock lock 

Node A has obtained all of its locks 

lock lock 

-~1 B 1. •1 C 1-•ro-l--~-lock delete lock delete~-

Node A splits, then node B obtains all of its locks. 
lock 

-~1 A' Joell• •1 8 1. •1 C I •·r-In----L.___J- delete lock delete~-

Node C obtains all of its locks 

-~1 A'lockl. •1 C 1-•~ ---L.___J- delete~-

Figure 5: Locking for Splits and Merges 

A processor does not need to explicitly restructure-lock the neighboring leaves, since the restructure

lock request is implicit in the request to change the link. A restructure-lock placed by a link-change 

request due to a split operation is released as soon as the link is changed. A restructure lock placed by 

a merge operation lasts until the deleted node is removed from the tree. This requirement ensures that 

a node may be safely deallocated when no tree links point to the node. 

2.2 Integrating Concurrency Control with Replica Coherency 

In the above discussion, we have assumed that modifications to nodes occur atomically. We can achieve 

the atomic updates by requiring that modifying suboperations lock every copy of the modified node before 

performing the update and block all reads and updates on the node, by using one of the well-known 

algorithms for managing replicated data [2, 30]. However, we can maintain our replicated nodes with far 

less synchronization and overhead. First, observe that it is not necessary to distribute the contents of 

the node on every modification, it is only necessary to distribute the modification itself. Second, the tree 

is never left in an incorrect state, so that search suboperations do not need to be blocked. Third, many 

of the modifying suboperations commute. Several authors have studied the issue of concurrency control 

on abstract data types when some operations may commute [31, 32, 33, 34, 35], but in the context of a 

transaction processing system. Our algorithms are similar to those described by Ellis [25] to maintain 

the replicated directories of the distributed hash tables in so that it is not always necessary that all 
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suboperations are performed in the same order at all nodes. For example, insert suboperations may be 

performed out-of order. In the example shown in figure 6, nodes A and B have split, and pointers to 

the new nodes (A' and B') need to be inserted in the pointers to the parents. During the time from 

when a sibling is created to when a pointer to the sibling is inserted into the parent, the sibling can 

still be reached by the search, insert, and delete suboperations by the right and left pointers. So, if two 

inserts to the parent node are pending, it does not matter which is performed first, so that they can be 

performed in a different order in different copies of the parent node. 

Nodes A and B half-split 
........................................................................................ ,. 

2 copies of parent 

A' inserted into copy l, B' inserted into copy 2 

······... 2 copies of parent 

-
Figure 6: Lazy inserts 

Not all suboperations on a node can be performed in an arbitrary order. Consider, as one example, 

two copies of a node that is full. There are two suboperations that are pending on the node, an insert 

and a delete. Suppose that the insert is performed before the delete at the first copy, and the delete 

is performed before the insert at the second copy. The first copy will decide to split the node, and 

the second copy will not. The problem is not that inserts and deletes must be ordered, rather the 

problem arises because the split suboperation creates a new object. The creation and deletion of nodes 

are synchronization points. At the synchronization points the copies of the object must come to an 

agreement on the order of suboperations on the nodes. 

We can categorize suboperations on nodes as being either synchronizing or lazy according to whether 

they do or do not require synchronization when they are performed. Table 1 lists the possible sub

operations on the nodes and whether they are synchronizing or lazy. Performing an insert is a lazy 
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suboperation, while performing a delete can be considered either lazy or synchronizing. While deletes 

can commute among themselves and among insert suboperations, 1 the owners of a deleted node must 

be notified of the edge deletion, and the deletion of the edge should not be arbitrarily delayed. We 

call the delete suboperation lazy/synchronizing to indicate that while the node updates do not need 

to be synchronized, some process needs to be informed when all updates have been performed. The 

link-change suboperations are also lazy /synchronizing. Split and merge suboperations require synchro

nization, because they create and destroy objects. A boundary change suboperation occurs when a leaf 

node transfers some of its keys to a neighboring leaf and is a lazy /sychronizing suboperation. 

Creating a new copy of a node requires synchronization, because the new copy must be informed of all 

changes to the node. The neighboring nodes need to have the distribution lists on their edges updated, 

which can be accomplished by a variant of the link-change suboperation. Deleting a copy of a node can 

be lazy, if the following method is used. When an suboperation on a node arrives at a processor, the 

processor looks up the node's tag. If the processor finds the tag, it performs the suboperation. If the 

processor cannot find the tag, it sends the operation back to the requesting processor. When a processor 

receives a returned request, it notes that the returning processor no longer stores a copy of the node. 

insert lazy 
delete lazy /synchronizing 

boundary change lazy /synchronizing 
split synchronizing 

merge synchronizing 
link change lazy /synchronizing 

join replication synchronizing 
leave replication lazy 

Table 1: Suboperation commutivity. 

2.3 Replication Concurrency Control Algorithms 

We present two algorithms for managing the replicated copies of a node. Both use the idea of a birth 

processor, the processor which is responsible for managing the replication of the object. 

The first algorithm [17] is simply to send all modifying suboperations on a node to the birth processor, 

and the birth processor decides on a serial order in which the operations are to be performed. If the 

operation is lazy, the birth processor performs it locally, then relays the operation to all copies of the 

node. If the operation is synchronizing, the birth processor requires an acknowledgment of the operation, 

1 The insert and delete of the same object can commute if the delete is remembered and kills the insert 
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and delays further operations until all responses are received. If the parent level requires restructuring, 

the birth processor searches for the parent, then sends the modifying suboperation to the parent's birth 

processor. 

The second algorithm is to allow non-birth processors to perform lazy operations locally and relay 

the operation to the other copies, but to send the synchronizing operations to the birth processor. When 

the birth processor receives a synchronizing operation, it locks all copies of the node. When a non-birth 

processor receives a lock from the birth processor, it delays all further operations on the node. When the 

birth processor receives all responses to the lock from all nodes, it will (if we assume network message 

ordering) have received all operations on the node, and can make a decision about which synchronizing 

operations need to be performed. For example, if an insert and a delete are performed on different copies 

of a full node, then the insert will trigger a request for a split, a synchronizing operation. The birth 

processor will lock all nodes and perform all lazy operations relayed from remote nodes as they arrive. 

After all lock responses are received, the birth processor will see that no action needs to be taken, and 

will release the locks. Note that in this algorithm, a node may continue to receive insert suboperations 

after it is too full. The node must temporarily store the overflow keys in overflow buckets until the birth 

processor performs the split. 

When a new node is created (i.e, a node is split), a birth processor needs to be designated for the 

new node. The birth processor should be the processor that will own a copy of the new node, and which 

is the birth processor for the fewest nodes among all those who will own a copy of the new node. If the 

birth processor gives up its copy of the node, it must elect a new birth processor, and distribute the 

decision to all owners on the node (a synchronizing operation). 

2.4 Parent Pointers 

Requiring every node to contain a pointer to its parent simplifies the task of finding parents and splitting 

the root [28, 17]. Parent pointers can be maintained in the following manner: When a node splits, some 

of the node's children are transferred to the new sibling. When a processor receives the split suboperation 

from the birth processor, it splits the node locally, then makes all locally managed children of the new 

sibling point to the new sibling. Since owning the child implies owning the parent, every existing child 

of the new sibling will be made to point to the sibling. If we use merge-at-empty on the interior nodes, 

merging a node does not affect any children. 
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3 Distributing the Data : The dE-tree 

A simple implementation of a distributed dictionary is to statically divide the key range among the 

processors and direct operations to the processor that manages the operation's key. The problem with 

the simple approach is that the processors will not be data-balanced. Even if each insert is equally likely 

to be directed to each processor, the processor with the most keys will hold considerably more keys than 

the average [36]. Data-balancing is necessary in order to distribute the request load, prevent processors 

from being required to devote a disproportionate share of their memory resources to the dictionary, and 

prevent out-of-storage errors when storage is available on other processors. 

Ellis' algorithm [25] performs data-balancing whenever a processor runs out of storage. Peleg [26, 27] 

has studied the issue of data-balancing in distributed dictionaries from a complexity point of view, 

requiring that no processor store more than O(M / N) keys, where M is the number of keys and N is the 

number of processors. In practice, this definition is simultaneously too strong and too weak, because it 

ignores constants and node capacities. 

Our dB-tree provides us with the flexibility to perform data balancing among the processors, for the 

leaves of the tree can be distributed among the processors in an arbitrary fashion. If a processor splits 

a node, it can assign the newly created node to the processor that owns the fewest leaves. 

Data balancing using the above mechanism is expensive, because every restructuring requires com

munication among the processors, and causes the internal nodes to be widely replicated. One way to 

reduce the communication costs is to try to have neighboring leaves stored in the same processor. We 

define an extent to be a maximal length sequence of neighboring leaves that are owned by the same 

processor. When a processor decides that it owns too many leaves, it first looks at the processors who 

own neighboring extents. If the neighbor will accept the leaves, the processor transfers some of its leaves 

to the neighbor. If no neighboring processor is lightly loaded, the heavily loaded processor searches for 

a lightly loaded processor and creates a new extent. 

Figure 7 shows a four processor dB-tree that is data balanced using the extents. Notice that the 

extents have the characteristics of a leaf in the dB-tree: they have an upper and lower range, are doubly 

linked, accept the dictionary operations, and are occasionally split or merged. We can transform the 

extent-balanced dB-tree into the dE-iree: the distributed extent tree. Each processor manages a number 

of extents. The keys stored in the extent are kept in some convenient data structure. Each extent is 

linked with its neighboring extent. The extents are managed as the leaves in a dB-tree. When a processor 

decides that it is too heavily loaded, it first looks at the neighboring extents to take some of its keys. If 

all neighboring processors are heavily loaded, a new extent is created for a lightly loaded processor. The 

processor that manages the new extent can chosen according to a number of heuristics that examine 

factors such as data load, processor capacity, communication locality, and degree of replication. The 
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creation and deletion of extents, and the shifting of keys between extents in the dE-tree correspond to 

splitting and merging leaves in the dB-tree. 

extent balanced dB-tree 

dE-tree 

Figure 7: The dE-tree 

3.0.1 Propagating Load Information 

Information about the load on processors must be distributed throughout the system so that informed 

decisions for creating and placing new extents can be made. The design of a load propagation mechanism 

must address the tradeoff between propagating information quickly to all processors, which can require 

significant communication bandwidth to distribute the load information, and propagating information 

either too slowly or to too few processors, which can result in load imbalance and processors sitting idle 

because the system is slow to react to changes in the load on individual processors. 

In addition, many load-balancing techniques become unstable in large systems. Instability can arise 

because information is propagated too slowly, so that many processors may think another is lightly 

loaded long after it becomes heavily loaded and continue to create tasks there. It can also arise because 

decisions to create new extents are made quickly when the load on another processor changes, so that 

many new extents are moved to a processor that suddenly becomes lightly loaded. To avoid these 

problems, information must be propagated reasonably rapidly through the system, but the number of 

processors that will react quickly to a change in load on a particular processor must be limited. 
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Suitable load propagation mechanisms include probing [37], gradient methods [38], processor pair

ing [39, 40], drafting algorithms [41) and bidding algorithms [42). The ultradiffusive algorithms of Lumer 

and Huberman [43], which uses a hierarchical control structure, are particularly well suited when the 

number of processors is large. 

4 Conclusions 

We present a distributed dictionary based on the B-link tree, the dB-tree. The interior nodes of the tree 

are replicated in order to allow many processors to read the same node and thus increase parallelism. 

The degree of replication decreases as one descends from the root, in order to control the cost of main

taining replica coherency. Update operations on the interior nodes never block operations in their search 

phases and can proceed concurrently on the same replicated node in some cases, further increasing the 

parallelism of the tree. We describe two efficient algorithms for maintaining coherent replicas. 

We use the flexible dB-tree to construct an efficient data-balanced dictionary, the dE-tree. The dE

tree assigns key ranges to processors, and a processor may maintain several key ranges. We use the 

dB-tree to allow the key ranges to be created, deleted, or modified without centralized control. 

We plan to implement and experimentally analyze the dB-tree and the dE-tree, investigate data and 

load balancing strategies, and investigate methods for supporting transaction concurrency control and 

recovery. 
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