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Abstract

A Geometric Approach to Failure Detection
and Identification in Linear Systems
by
Mohammad-Ali Massoumnia
Submitted to the Department of Aeronautics and Astronautics on
February 20, 1986 in partial fulfillment of the requirements for
the degree of Doctor of Science in Aeronautics and Astronautics

In this work, using concepts of (C,A)-invariant and unobservability
(complementary observability) subspaces, a geometric formulation of the failure
detection and identification filter problem is stated. Using these geometric
concepts, we shall show when it is possible to design a causal linear time-invariant
processor that can be used to detect and uniquely identify a component failure in a
linear time-invariant system, assuming: i) The components can fail simultaneously,
ii) The components can fail only one at a time.

In addition, a geometric formulation of Beard's failure detection filter problem
is stated. This new formulation completely clarifies the concepts of output
separability and mutual detectability introduced by Beard and also exploits the
dual relationship between a restricted version of the failure detection and
identification problem and the control decoupling problem.

Moreover, the frequency domain interpretation of the results is used to relate
the concepts of failure sensitive observers with the generalized parity relations
introduced by Chow. This interpretation unifies the various failure detection and
identification concepts and design procedures.
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Chapter 1

Introduction

In many applications high reliability control systems are necessary. For
example, in some space missions, a system with hundreds of components is required
to operate for a period of several years. Such systems must naturally employ
highly sophisticated fault tolerant control systems (FTCS) with redundant capacity
to perform a given task. The need for very high reliability has led to extensive
research into design of systems which can do their job using more than one

configuration of their components.

Currently there are two different approaches to the design of reliable systems.
In the first approach, the objective is to reduce the dependence of the system on
the operation of individual components and develop systems that remain
operational even in the presence of a failure without any corrective action being
undertaken. A few examples of this passive approach to FTCS are quadriplexed fly
by wire digital flight control systems and the mid-value select algorithm. The state
feedback controllers that are designed based on a Lyapunov equation (instead of
Ricatti equation) for which the closed-loop system remains stable even in the
presence of actuator failures (assuming the open-loop system is stable) [19], is

another example of such passive FTCS design methodology.

Instead of triplicating the expensive hardware components or sacrificing the
performance of the system under nominal operating conditions in order to gain
fault tolerant capability, one can first detect and identify the failed component

using additional information processing and next reconfigure the system to
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accommodate the failure. A block diagram of this active approach to the design of

FTCS is shown in Fig. 1-1.
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Figure 1-1: Block Diagram of an FTCS

Clearly, the failure detection and identification task can not be performed
perfectly, and there is a possibility of false identification. In addition, even if the
failed component is correctly identified, in some cases it is not at all obvious how to
reconfigure the system to accommodate the failure. Therefore, this approach
requires more complex information processing capabilities and has a few of its own
drawbacks, but with the increasing availability of low cost digital computers this

will be the preferred approach- especially if it can result in superior performance.
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An important part of an active FTCS is failure accommodation. In this work

it is assumed that the corrective actions for accommodating the failures are known
before hand. However, this might very well turn out to be a naive assumption
since, in complex systems with many components, it is almost impossible to
enumerate all possible failure combinations and the corrective measures for
accommodating them. The issue of reconfiguration or failure accmfnmodation in

closed-loop control systems is an interesting problem for future research, and in this

work we shall not concentrate on it.

The other integral part of an FTCS is failure detection and identification
(FDI). An FDI process essentially consists of two stages. The first stage is residual
generation, and the second stage involves using the residuals to make the
appropriate decisions. In this work we shall only concentrate on residual
generation, and the reader is referred to the extensive literature available for the

decision making phase of FDI (see [48] and [44] for a comprehensive survey).

1.1 Residual Generation

A residual is by definition a function of time which is nominally zero or close
to zero when no failure is present, but is distinguishably different from zero when a
component of the system fails. For example, the difference between the outputs of
two identical sensors measuring the same quantity is the simplest form of a
residual. A failure of either sensor corrupts the residual and this can be used to
detect a failure. The process of generating the residuals from relationships among

instantaneous outputs of sensors is usually called direct redundancy. Two examples

where direct redundancy was exploited are [14], [17].

It is also possible to generate the residuals using temporal redundancy, which
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is the process of exploiting the relationship among the histories of sensor outputs
and actuator inputs. This is usually done by using a hypothesised! model of the
dynamics of the system to relate sensor outputs and actuator inputs at different
instants of time. We refer the reader to [10] for an example of using temporal
redundancy in residual generation. To illustrate the concept, let us consider the

following simple first order discrete system.

z(t+1) = a z(¢t) -+ b u(t),

y(t) = c =(t). (1.1)

Here y(t) is the sensor output and u(t) is the actuator input. A simple computation

shows that if the system is functioning properly and no failure is present, then
y(t) —~ a y(t—1) — cb u(t—1) = 0. (1.2)

Relations like (1.2) are known in the literature as generalized parity relations

[5, 6, 29]. Often, a parity relation by itself is used to generate a residual r(f). In

our example, simply take
r(t) = y(t) — a y(t—1) — cb u(t-1). (1.3)

Assuming the actuator is perfect and no measurement noise is present, r(f) can be
used to detect any sensor failure. Chow and Lou have studied the generalized
parity relations in detail, and the interested reader is referred to [5, 29] for a
thorough treatment of this approach to residual generation. In Chapter 5, we shall
expose the fundamental relation between the generalized parity relations and

failure sensitive observers (FSO) which are the main theme of this work.

FSO are another class of processors which use temporal redundancy to

generate the residuals. To illustrate the concept of an FSO for the case of actuator
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failures, let us consider an observable linear time-invariant (LTI) system with two

actuator inputs:

2(t) = A 2(t) + B u(t) + Bym(t) + Bymy(t),

y(t) = C z(t). (1.4)

In (1.4), B, is the first column of the control effectiveness matrix B, and similarly,
B, is the second column of B. The term Bym;(t) characterizes a failure of the first
actuator, and Bymy(¢) characterizes a failure of the second actuator. The functions
m,(t) are assumed to be completely unknown. However, by definition, m(¢) =0
when no failure is present. Also for this example we assume that our sensors are

perfectly reliable.

Consider designing a full order observer with the following structure for the

system given in (1.4).
w(t) = (A+DC) w(t) — D y(t) + B u(t). (1.5)

Now use the estimated value of the state to generate a pseudo measurement
2(¢) := Cuft). If no failure is present, the difference z(¢) — y(¢) will die away if
the observer is stable. However, when an actuator fails, e.g., m(f) # 0, the
observer continues to predict the unfailed nominal behavior of the plant, but the
actual output y(¢) certainly contains the effect of the failure. Thus in the presence
of a failure, the innovation z(¢) — y(¢) will start to grow, and by putting a threshold
on the magnitude of the innovation we can detect the presence of a failure in the

system.

The more complicated problem is whether we can use the directional

properties of the innovation to identify the failed component. Beard [3] was the
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first to realize that through appropriate choice of the gain matrix it was possible to
confine the innovation caused by an actuator failure to a fixed direction in the
output space. He derived a set of sufficient conditions for the existence of a filter
such that the innovation is constrained to lie in independent subspaces for different
actuator failures. Shortly afterward, Jones [22] extended some of the results in
[3] and gave a complete procedure for modeling failures and designing a failure
detection and identification filter. Nevertheless, there are some fundamental
difficulties associated with the approach used by Beard and Jones. In Section 4.2,
we shall discuss some of these difficulties and shall rederive most of the results
reported in [3, 22] using our geometric approach. However, we do not intend by
any means to discredit the fundamental contribution of Beard and Jones to failure
detection and identification theory. Our work builds on their ideas, but the

mathematical tools we use are more general.

Let us continue our example so that we can illustrate how the directional
properties of the innovation can be used in identifying a failure. Define two

different linear transformations of the innovation, ry(¢) and ry(t), as follows:

ri(t) == Hy(2(t) — y(1)), (L.3)

ro(t) = Hy(2(t) — y(t)). (L.7)

If we can find matrices D, H,, and H, such that the failure of the first actuator
shows up in rj(¢) but has no effect on ry(t), and the failure of the second actuator
shows up in ry(t) but has no effect on r((¢), then the identification task is trivial.
One only needs to compare the magnitudes of r;(¢) and ry(¢) with some appropriate

thresholds to decide whether either or both of the actuators has failed.

Clearly, if the innovation growth is constrained to independent subspaces,

then H, and H, can simply be taken as the projection matrices onto these



-13-
independent subspaces. This is basically the approach taken by Beard and Jones.
‘However, a more natural approach is to find the matrices H; with the gain matrix

D as part of the design process.

To further illustrate the concept, let us define e(t) := w(t) — z(¢). Using
(1.5), (1.8), and (1.7), we have

e(t) = (A+DC) e(t) — B, m(t) — B, m,(t), (1.8)

r(t) = H\Ce(t), ro(t) = HC elt). (1.9)

From elementary system theory, for a nonzero my(t) not to affect r(¢), the
image of B, should be in the unobservable subspace of the system (H,C,A+DC).
This restriction guarantees that the transfer function from my(t) to ry(t) is zero.
Also for a nonzero m(t) to show up in r((¢), the image of B, should not intersect
the unobservable subspace of (H;C,A+DC). Similar arguments can be given for

the unobservable subspace of (H,C',.4+DC).

By proper choice of the matrices D, H;, and H, we can modify the
observability properties of the system relating the failure events to the residuals.
Clearly, the unobservable subspace of (H,C,A+DC) is simply the subspace spanned
by those eigenvectors of 4+DC' which are in the null space of H|C. Also, the
column vector B, should be a linear combination of those eigenvectors, since the
second actuator failure should not show up in the first residual. Therefore, our
problem is really to use the freedom in assigning the eigenvectors of A+DC (see

[31]) to satisfy the failure detection and identification requirements.

On the other hand, instead of looking for the matrices D, H}, and H,, we can
formulate the problem in terms of the existence of subspaces §; and S, that contain

the images of B, and B, respectively and that can be assigned as the unobservable
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subspaces of (H,C,A+DC) and (H,C,A+DC) respectively for some H;, H,, and D.

If such subspaces §; and §, exist and can be computed only from A, C, B,, and B.,,

then we can easily find H,, H,, and D from §; and S,, and hence solve the problem

in an indirect manner. This is the essence of the geometric approach that we shall

use in this work (see [50]). When this method is applicable, it converts a highly

complicated problem in H, H,, and D to a straightforward problem in §; and S,

A subspace like §; which can be assigned as the unobservable subspace of
(H,C,A+DC) by appropriate selection of the matrices H; and D is called an
unobservability subspace (complementary observability subspace [47]). -As should
be clear by now, these subspaces play a central role in the FDI problem, and the
entire subject of Chapter 2 is devoted to exploring the properties of these subspaces

and the related concepts.

1.2 Overview

Now let us say a few words about the organization of this thesis. In Chapter
2, the mathematical tools needed for solving the failure detection and identification
problem are reviewed. The first section recalls linear algebra and system theory
concepts. As is clear from the past section, characterizing the eigenspaces of an
observer plays an important role in the problem of failure detection and
identification. In Section 2.2, the concept of the (C,A)-invariant subspaces, which
is a powerful tool for modifying the eigenspaces of an observer, is reviewed. That
section also reviews the concept of invertibility and input observability of linear
time-invariant systems. In Section 2.3, we review the concept of unobservability
subspaces. These objects are extensions of the (C,A)-invariant subspaces, and they

play a central role in the solution of failure detection and identification problems.
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In Section 2.4, we introduce the concept of compatibility of a family of
(C,A)-invariant subspaces, which is used later on to reduce the order of the failure
detection and identification filter. Also, we extend the definition of output
separability given by Beard [3] and relate this concept to the compatibility of a

family of (C,A)-invariant subspaces.

In Chapter 3, we show how different component failures like actuator failures,
sensor failures, or changes in the characteristics of the plant can be modeled. We
continue with definition of the failure detection and identification filter problem
(FDIFP) in its most general form. In Section 3.2, the effect of sensor failure on the
innovation of a full order observer is analyzed. This leads to the introduction of the

new concepts of modified (C,J;A)-nvariant and (C,J;A) unnbservability subspaces.

Most of the contributions of this work are contained in Chapter 4. First, in
Section 4.1, the fundamental problem of residual generation (FPRG) is introduced
and solved. In this problem, only two failure events are present and it is desired to
design a residual generator that is sensitive to the failure of one of the actuators
but is not affected by the failure of the other actuator. Next, FPRG is extended
(EFPRG) to the case where multiple failure events are present, and it is required to
design a residual generator that detects and correctly identifies failure events in the
presence of multiple simultaneous failures. Using the solvability conditions of
EFPRG, the fundamental concept of a strongly identifiable family of failure events
is introduced. In Section 4.1.2, we consider the special case where the measurement
matrix is full column rank, i.e.,, the case of fully measurable state, and give a

minimal solution to EFPRG.

In Section 4.2, a new formulation of the Beard and Jones detection filter
problem (BJDFP) is given. Our formulation of BJDFP is somewhat different from

the formulation that Beard gave in his doctoral thesis [3], but there are enough
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similarities to justify the name. We show that BJDFP has a computationally
simple solution when the failure events are one-dimensional. Also, we derive the
interesting relation between the fixed spectrum of the detection filter and the

invariant zeros of an appropriate system.

In Section 4.3, we restrict the structure of the residual generator, and
introduce the restricted diagonal detection filter problem (RDDFP). The nice
feature of RDDFP is that when a solution to the problem exists, then the solution
is usually of a lower order than the solution to EFPRG. It turns out that RDDFP
is an exact dual of the restricted control decoupling problem which has been
studied extensively in the 1970's [49, 32, 34]. Next, we expose the relationship
between RDDFP and BJDFP.

In Section 4.4, the requirement of detecting and identifying simultaneous
failures is relaxed, and the triangular detection filter problem is formulated and
solved. This problem is an exact dual of the triangular decoupling control problem
introduced in [33]. Finally in Section 4.5, the necessary and sufficient conditions
for the existence of a solution to FDIFP are derived. Using the solvability
condition of FDIFP, the important system theoretic concept of an identifiable

family of failure events is introduced.

In Chapter 5, the frequency domain interpretation of the results in Chapter 4
is discussed. This interpretation is used to relate the strong identifiability of a
family of failure events with the left invertibility of an appropriate system, and
hence develop a simple procedure for solving EFPRG in the frequency domain.
Also the frequency domain ihterpretation is used to relate the closed-loop residual
generators of Chapter 4 with the residual generators which are designed based on
the generalized parity relations. This enables us to unify the residual generation

concepts.
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Finally in Chapter 6, we conclude our work with a summary and suggestions
for future research. We have also included some useful definitions and additional

results in the appendices at the end of the thesis.



Chapter 2

Mathematical Preliminaries

In this chapter, we review the geometric ideas relevant to our work. First our
notation and the preliminary linear algebra concepts are reviewed. The reader is
referred to [18], [16], and [50] for a more in-depth treatment of these subjects. Then
we go over the concept of a (C,A)-invariant subspace, which forms the backbone of
our approach to the failure detection and identification filter problem. Next, we
give a new interpretation of an unobservability subspace based on a measurement
mixing map. At the end of Section 2.3, we have included an example which
illustrates the concepts developed in Sections 2.2 and 2.3. Finally, in Section 2.4,
the issues related to the compatibility of a family of (C,A)-invariant subspaces are

addressed.

2.1 Notation and Background

Theorems, Lemmas, Propositions, and Definitions are all numbered together,

e.g., there will not be a Theorem 3 and also a Definition 3.

With &k a positive integer, k denotes the set {1,2,...,k}. Similarly
ko={0,1,...,k}, and k-1 = {1,2,... k—1}. If A is a finite set, |A| denotes the
number of its elements. The symbol := means equality by definition. We denote
the spectrum of A by o(A). The identity matrix is denoted by I The symbol &

denotes union with any common elements repeated. We say A is a symmetric set if

z € A with x complex implies z* € A, where * denotes the complex conjugate.
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Script letters X, Y, Z, ... denote real vector spaces with the elements z, y,

2,...; the zero space and zero vector are denoted by 0; the empty set is denoted by

@. The dimension of the vector space X is denoted by d(X). In this work we shall

be concerned only with finite dimensional spaces. If the vector spaces X and Y are
isomorphic (i.e., d(X) = d(Y)), we write X ~ V.

If §$ and T are two subspaces, then $C T means § is a subspace (not

necessarily proper) of T. If § and R are subspaces of X, then R + Sand RN § are

defined as follows:

R+S8S:={r+ts:r € R, s € S}, (2.1)
RNS:={z.:z € Randz € S§}. (2.2)
The family of all subspaces of X is partially ordered (see Appendix A) by

subspace inclusion (C) (ie., 1. SC S, 2. iff SCR and RC Tthen SC T, 3. if
S C R and R C S then §= R). Under the operations + and N, this family forms

a lattice (see Appendix A): namely § + R is the smallest subspace containing both
R and S, and SN R is the largest subspace contained in both R and S. The

concept of a lattice will be used later on when we deal with the compatibility issue.

Two subspaces $ and R are said to be independent if SN R = 0. A family of
k subspaces {W,, 1 € k} is independent if!

WiN(T; ., W) =0 i€k (2.3)

If {W;, i € k} is a family of independent subspaces, their sum will be written as

~ lUnlesa otherwise noted all sums and intersections are over k.



In general @ indicates that the subspaces being added are known or claimed to be

independent. Clearly if § and R are independent then d(S+R) = d(S) + d(R).

Let X, and X, be arbitrary linear spaces over the field of real numbers R.

The external direct sum of X, and X,, written X; @ X,, is the linear space of all

ordered pairs
{(z)z0) : ) € Xy, 29 € Ko},

under componentwise addition and scalar multiplication. Note that we are using
the same symbol for both external and internal direct sums; however, the
distinction will be clear from the context. Sometimes it is convenient to write

z) @ 7, instead of (zy,z,) for elements of X; D X,.

!
Let X and Y be linear spaces over the field of real numbers R; C: X — Y
denotes a linear transformation (or map) from X to Y. Let {z;, i € n} be a basis

for X and {y;, 1 € 1} be a basis for Y; then
Cri=cy+ - +ouyy 1€NM,

for uniquely determined elements ¢;; € R. The IXn array [c;;] is the matrix
representation of the map C. Both maps and their matrix representations are
denoted by capital italic letters A, B, C,.... We assume that the reader is
already familiar with matrix operations and concepts like rank, determinant, and

minors of a matrix.

Let C: X — Y be a map. The vector space X is called the domain of C, and

Y is the codomain. The kernel (or nullspace) of C'is the subspace
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KerC := {r:z € XandCz =0} C L (2.5)

The image of C'is the subspace
ImC := {y:y € Y&3r € L,y=Cr} C VY. (2.6)

We usually denote the image of an arbitrary map C by script C. Note that the
image and the codomain of a2 map are not necessarily the same because the map is
not necessarily onto.

If R C X, CR denotes the image of R under C and is defined by

i
CR ={y:y€e Y&3r € Ry=Cr} C V. (2.7)

If $C Y, C~1§ denotes the inverse image of S under C and is defined by

C1§:={z:r€ X&Cre S} CIL (2.8)

Note that C—! is the inverse image function of the map C, and as such it will be
regarded as a function from the set of all subspaces of Y to those of X. If

C:X — Yand R}, R, C X, it is simple to show

C(Ry+ Ry)=CR, + CR,, (2.9)
but in general

C(RyNRy) CCR,NCR, (2.10)
with equality if and only if

(Ry+ Ry)NKer C= R, NKer C+ RyN Ker C.

Dually if §;, S, C Y we have



C-l (31032)=C'1$100‘1$2, (2.11)
but

CL(8,+ S)) D C71§, + C18,.

p—
[©)
Pt
1)

N

Also if {R;, i € k} is a family of independent subspaces, then

CR,® -+ ®R)=CR, B --- ® CR, (2.13)
if and only if

Ry ® -+ @ R)INKerC=R; NKerC P --- P RNKerC. (2.14)

We say C'is epic if Im C' = Y (i.e., the matrix representation of C has full row
rank). If Cis epic then it has a right inverse C~" such that CC~"=1 We say C
is monic if Ker C'= 0 (i.e., matrix representation of C' has full column rank). If C

is monic then it has a left inverse C~! such that C—!IC' = I.

Let VC X, d(V) = k. Since V can be regarded as a k dimensional linear
vector space, a vector v € V can be described as an element of either Vor X. Let
{v;, i €k} be a basis for V, and {r; i € n} be a basis for X. Then each v; can be

represented as follows:

n .
U= iy Vi %o JEK

The nX k matrix [v;;] determines a unique map V: ¥ — X. We call this map the

insertion map of Vin X.

Let C: X — VY, and VC X be a subspace with insertion map V:V — X.
The restriction of C to V is the map (C:V):V — Y, and is given by
(C:V) := CV. Now suppose ImC'C WC Y. We can restrict the codomain of C'
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to W If W:W — VY is the insertion map of W in Y then the new map
(W:C): X — W with the restricted codomain is given by (W: C) := W-IC.

Let X be a linear vector space over the field of real numbers R. We denote

the set of all linear functionals z': XY — R by X'. This set of linear functionals

is turned into a linear vector space over R by the definitions

(2 + z)z = z)/z+2))7; /€X' zeX

(ezy)z := c(zy'z); z,/€ X', cER.
1 1 1

The vector space X' is called the dual space of X.

If {z, ..., z,} is a basis for X, the corresponding dual basis for X' is the
unique set {z}, ..., z,} C X' such that z/z;=§;; where §;; is the Kronecker
delta.

Let C: X — Y be a map. The dual map C':Y' — X' is defined as
follows. Fix yy' € Y’ and let £ € X vary. The scalar y/Cz is clearly a function of z
and a linear functional on X. Hence there exists ry' € X' such that zy'z = y('Cr.
Now let yo' to vary over Y'.  The correspondence zy'r = yy'Czr defines a
transformation between yy' and ry' which is defined to be the dual map C'!. By
choosing arbitrary bases for X and Y, and their duals X' and Y, it is easily shown
that if C'=[c;;] then C''=[c;]. Therefore, in matrix notation C'’ is just the
transpose of C. |

It $C X, then SL is the annihilator of S and is defined as follows:

SL = {z':2'S=0,z'€ X'} (2.15)

Clearly SL is a subspace of X'. Thus, 0L = X', X1 =0.

IfRC Xand S C X, then



(R+ 8L =RLNnSL, (2.16)

(RNSL=RL+SL, (2.17)
Also

R C Sifand only if RL D L. (2.18)

We now form the dual space (X') of X' Fix ry€ X, and define z in
Z = (X" by

2(y')=y'zy, y'€ X’ (2.19)

Note that z(a,y,'+aqy,) = a,2(y,")+as2(yy') for ¢y, as € R; hence 2 € Z is a linear
functional on X'. Also for every linear functional 2y € Z, there is a vector g€ X

such that
2oy ') = y 'z, (2.20)

for every y' € X'. Equations (2.19) and (2.20) provide a basis independent natural

isomorphisim Z ~ X, and from now on we identify (X'} as X. Thus, if R C X

then
(RL)L = R. (2.21)
LetC: X — Y, RC X,and S C VY; then
(Im C)L = Ker C, (2.22)
(Ker C)L =Im C", (2.23)
(CR)L = (C")-1RL, (2.24)

(C 1)L =cC'sd, (2.25)
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CR C Sif and only if R C C-15, (2.26)
C(C185)=SNImC, (2.27)
C-1(CR)=R +Ker C. (2.28)

Using the above identities, the subspaces R + S5, RN S, and A~!S can be
computed with the following matrix algorithms. Let R: R — X and §:§ — X
be the insertion maps. Let RL (SLl) be a maximal solution (i.e., a solution with

maximum rank) of RLR = 0 (S1S = 0); then

R+ S=Im|R, 5], (2.29)
RL .

RN S=Ker , (2.30)
SL

A~1R = Ker [RLA]. (2.31)

We shall use the following trivial facts throughout this thesis.

Proposition 1: Let B and (' be arbitrary nXm and n X! matrices
with entries in an arbitrary field F. Then the linear matrix equation

BX=c¢C (2.32)

has a solution for X if and only if ImnC C Im B. Thus, {2.32) has a
solution if Bis epic. Similarly,

XB=C (2.33)

has a solution for X if and only if Ker B C Ker C. Thus, (2.33) has a
solution if B is monic. (028)

Now we work out an example to familiarize ourselves with using matrices in
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representing subspaces. Let Ty =Im T and T, = Im T, where T and T, are

SIS

In our terminology T; and T, are the insertion maps of T; and T,. First we find the

SO
S = O
-0 O

annihilators of T; and T, (see (2.15)). Obviously these subspaces are the left

nullspaces of T; and Ts.

0 1
Tl =Im [o]c_:x', r_,l=lm[1]gr'.
1 0

Now we compute the T) N Ty using (2.30).

0 01 1
;N Ty = Ker =Im| -1 [.
1 10 0

Obviously Ty N T, C T, and in the given basis, T) N T, considered as a subspace of

T; has the representation {1 —1)’ because
1
-1 1

Keeping this in mind, we compute the inverse image of T, under T, using (2.31).

01

Tl‘l(T2)=Ker[[l10][10]]=Ker[l l]=Im[l].
-1
00

Note that T,~}(Tp) = T,~}(T; N T5) as should be .

Let SC X. We say vectors z,y € X are equivalent mod S if z—y € § (see
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Chapter 7 of [16]). Clearly equivalence mod § is a relation satisfying the reflexive,

symmetric, and transitive properties (see Appendix A). Each vector r € X has

associated with it an equivalence class w defined as follows:

w:= {y:y € X,y—z € §}. (2.34)

If we take two equivalent classes w; and w, and add the elements of w; with
arbitrary elements of w,, then all the sums belong to one and the same class, which
will be called the sum of the classes wy+w,. Similarly, if all the elements of the
class w are multiplied by a number a € R, then the products belong to one class
which will be denoted by a w. Hence, the set of all equivalence classes wy, w,, ...,
with the two operations addition and scalar multiplication as defined, form a linear
vector space, which is called the factor space X/S. It is simple to see that
d(X/S8) = d(X) — d(S). For r € X the element w € X/§is the coset of X mod §; w
is sometimes written z + S. The map P: X — X/§ such that w = Pz is called the

canonical projection of X on X/S. Obviously Ker P= $§ and P is epic.

Let A: X — X. Asubspace SC Xis A-invariant if ASC §. Let SC X be
A-invariant and P: X — X/S be the canonical projection. There exists a unique
map (A: X/S): X/S — X/S such that (A: X/S)P=PA. A:X/S is the map
induced by A on the factor space X/S. Let S:S§ — X be the insertion map.
There exists a unique map (A:S5): § — § such that AS=S(A:§). A:Sis the
restriction of A to § with the restricted codomain § (i.e., short for §:(A: §)). Let
R be any subspace such that XY= @ R, and let {r, i €k} be a basis for R.
Choosing a basis {5, j €1} for S, we see that in the basis {sy, ... ,r;} for X the

matrix representation of the map A has the following form

.o



A A
A= [l 3]. (2.35)

0 A,

A; and A, are the matrix representations of the maps A:S and A: X/S

respectively. The block-diagonal structure of A in this new basis clearly shows that
o(A)=0(A: S)Wa(A: X/S). (2.36)

If $and Tare both A-invariant subspaces and S C T, we write A: T/S for the

operator induced by the restriction of A to Ton the factor space T/S.

Themaps A: X — XL, B:U - X,and C: X — Y (dX)=n, dY)=1,

d(U) =m ) will be fixed throughout and are associated with the system
T:z(t)=Az(t) + Bu(t), y(t)=C z(t) (2.37)

We refer to (2.37) as the "system (C,A,B)” or "system ¥ ” interchangeably.

We write 8 = Im B and
<A|B> := B+ AB+---+ A" !B (2.38)

for the infimal A-invariant subspace containing B, i.e., the controllable subspace of

the pair (A,B). We write K = Ker C and

<K|A> = KNA~IKN---nA—rHIK (2.39)

for the supremal A-invariant subspace contained in K, i.e., the unobservable
subspace of the pair (C,A).
|
Consider the system X given in (2.37). Let S C X be A-invariant, § C Ker C,
and P: X — X/§ be the canonical projection. The symbol £': X/S denotes the
factor system defined by the triple (Cp,Ag,By) with Ay := A: X/S, By := PB,
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and C; the unique solution of CyP = C which exists because § = Ker P C KerC'
(see Proposition 1). Therefore, if S is the unobservable subspace of the system X,
then X': X/§ is the system with the unobservable subspace factored out, and thus

is observable.
Proposition 2: Let S C X be A-invariant. Let S: S — X be the
insertion map, and (C,A) be observable. Then (C,Ap) is observable where
Cp = (C:§) (ie,, Cug=CS) and A; := (A:§) (i.e., Ay is the unique
solution of AS = SA,).
Proof: Because (C,A) is observable,

0=KerCNKerCAN --- NKerCA"1,

Taking the inverse image under S of both sides and remembering that S is
monic and S~! (Ker C) == Ker CS, then

S~10 =0=KerCSNKer CASN - -- NKer CA"1S,
Substituting for C'S and AS, we have

0= Ker CunKer Cy4gN - -+ NKer CpAy~L.

»

Thus (Cy,Ay) is observable. &

2.2 (C,A)-invariant Subspaces

As we noted in Chapter 1, the essence of the geometric approach is to look
for subspaces that solve our design problem. In the failure detection and
identification problem, our goal is to design an observer. Hence, characterizing the

invariant subspaces of A+DC (i.e., the eigenspaces of the closed loop filter) is



-30-
fundamental to our synthesis problem. With this motivation, the concept of a

(C,A)-invariant subspace is introduced.

Lefinition 3: Let A: X — X and C: X — Y. We say a
subspace W C X is (C,A)-invariant if there exists an output injection map
D:Y — X such that [2, 50, 47|

(A+DCYWC W. (2.40)

b2y

The class of D for which (2.40) holds will be denoted by D(W). Given any
(C,A)-invariant subspace, it is simple to characterize the elements of D(W). Let
W: W — X be the insertion map and P be a maximal solution (i.e., a solution of
maximum rank) of AW =0. Then it is immediate from (2.40) that D € D(W) if

and only if D is a solution of A
PA+DC)W = 0. (2.41)

Given a subspace W, it will be fruitful if we can tell whether it is
(C,A)-invariant or not without computing a D € D(W). The following lemma

provides an answer to this problem, and so is of fundamental importance.
Lemma 4: A subspace Wis (C,A)-invariant if and only if
A(WNKerC)C W (2.42)

Proof: (if) Let wy, . .. ,wpwe,y, . .. "Wy be a basis for W such that
wy, ..., w, spans WNKerC. From (2.42) Aw;=s;(i € k) for some
8; €EW. Also (A+DC)w;=3s; (i€k) for arbitrary D because
w; € KerC (i€k). Now, denote Aw;=z; (k< jy<p) for some
z; € X. Let D be a solution of
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DClwgyy, - - - yw)| = =[zyys - - . 27y (2.43)
which exists because Clwy,, ... ,'wp] is monic. With this D, clearly
(A+DC)w; = 8; (i €p) for some s; € W, and (A+DC) W C W follows
immediately.

(only if) Let W be (C,A)-invariant. Let {w, ¢ € k} be a basis for
WN Ker C. By hypothesis, (A+DC) W C W, thus (A+DC)w; € W. But
Cw; = 0; therefore, Aw; € W, and we have A(WN Ker C) C W. X

It is clear from (2.43) that any Dg such that DyCw;= —z;+ y; (k < j < p), for
any y; € W, is also a member of D(W). Thus, if D € D(W) theh a sufficient
condition for Dy € D(W) is

(D—Dy) CW C W. (2.44)

This condition is also necessary as is obvious from (2.40). Let P: X — X/W be
the canonical projection. Clearly, (2.44) implies that if D € D(W) and PD = PD,
then Dy € D(W). Moreover, if Cis epic and W+ Ker C = I, then it follows from
(2.44) that for all D, Dy € D(W), PD = PD,,.

From the definition of a (C,A)-invariant subspace, it is obvious that W is
(C,A)-invariant if and only if W is (C,A+DyC)-invariant for any arbitrary map Dy,
Also, ary A-invariant subspace is automatically (C,A)-invariant (simply choose

D=0).

Consider the system given in (2.37) with B=0. We can state the concept of
a (C,A)-invariant subspace in terms of designing an observer that estimates a
certain linear transformation of the states. This concept is due to Willems [47] and

is formalized in the following proposition.

Proposition 56: A subspace Wis (C,A)-invariant if and only if there
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exist matrices £ and F such that w(0) = Pz(0) yields w(t) = Pz(t) for
t > 0 where

w(t) = Fu(t) + E y(¢), (2.45)
and P: X — X/Wis the canonical projection of W. !
Proof: (if) Let W be (C,A)-invariant, then by definition there exists
a D such that (A+DC)WC W. Let P: X — X/W be the canonical
projection of W and w(t) := Pz(t). Let us define F and E as follows:
F := A+DC: X/W and E := —PD. (2.46)

Then

w(t) = Pz(t) = PA z(t)
= PA z(t) + PDC z(t) — PD y(t) = FP z(t) — PD y(t)
= Fu(t) + E y(t).
(only if) Let z(t) € Ker C; then obviously y({) = 0 and
w(t) = Fuw(t) = Pz(t) = PA x(¢).
Moreover, if z(t) € WN Ker C, then w(t) =10, and the above relation
implies PAz(t)=0. But this implies that Aux(¢)€ W. Hence

A(WNKerC)C W, and using Lemma 4, it follows that W is
(C,A)-invariant. ®

The philosophy behind the interpretation of Proposition 5 is to give special

attention to those outputs w(t) = Pr(t) which, with Ker P= W, may be

reconstructed exactly from y(¢) [47].

Assume contrary to the assumption we made previously that B 3 0. Then a
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simple computation shows that the result of Proposition 5 still holds if we add the
term PB u(t) to the right hand side of (2.45). Now if the subspace W is such that
Im B C W, then obviously PB=0. In other words, the observer given in (2.45)
does not need to have any knowledge of the input to the system, u(t), in order to
perfectly estimate Pz(t), e.g., even if the actuator fails and its behavior is unknown,
the observer is still capable of perfectly estimating Pr(¢) given the initial conditions

are perfectly known.

For completeness, we go over the concept of an (A,B)-invariant subspace and
exploit the duality that exists between an (A,B)-invariant and a (C,A)-invariant
subspace. We say a subspace VC X is (A, B)invariant if there exists a state
feed-back map F: X — U such that (A+BF)V C V[50, 45]. Obviously,
(A,B)-invariant subspaces will be useful when we try to use state feedback to
modify the characteristics of the plant. It is simple to show [50, Lem. 4.2] that V is

(A,B)-invariant if and only if
AVC V+ImB. (2.47)

Similarly, it is immediate from the definition that Vis (A,B)-invariant if and only if
it is (A+BF,B)-invariant for any arbitrary map F,. Also any A-invariant subspace

is automatically (A,B)-invariant (simply choose F = 0).

Theorem 8: Let WC X. W is (C,A)-invariant if and only if WL is
(A',C")-invariant. '

Proof: (if) By hypothesis W is (C,.A)-invariant; thus

(A+DC)WC W

W C (A+DC)~1W (by (2.26))
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WL D (A'+C'D )WL  (by (2.25)).

Therefore, WL is (A',C ')-invariant.

(only if) By hypothesis wl is (A',C')-invariant. Therefore, using
(2.47) we have

AWl cwl +imc’
AW D WNKer C (by (2.21), (2.22), and (2.24))
AWNKerC)C W (by(2.26)). ®
Now we continue with exploring the properties of a family of (C,A)-invariant
subspaces. Let L C X. We denote the class of (C,A)-invariant subspaces

containing L by W(L). Using this notation, the class of all (C,A)-invariant

subspaces of X can be written as W(0).

Lemma 7: The class of subspaces WL) is closed under
intersection.

Proof: Let W, € W(L) and W, € W(L). Then obviously
L C Wy, W,; hence, L C W; N W,. Moreover, from (2.42)

AW,NKerC) C W,
A(W,;NKerC)C W,
AW NKer C)NA(W;NKer C)C Wi N W,
AW NW,;NKerC)C Wy N W, (by(2.10)).

Thus W, N W, € WL). ®

Unfortunately, the family of all (C,A)-invariant subspaces of X is not closed under

subspace addition (e.g., the sum of two (C,A)-invariant subspaces is not necessarily



-35-

(C,A)-invariant); thus this family is not a sublattice of all subspaces of X.

Because W(L) is closed under intersection, it follows immediately that it

contains an infimal element W* := inf W(L) [47]. By an infimal element of a
family we mean a member of the family that is contained in all other members of

the family.

Now let L C X. We denote the family of (A,B)-invariant subspaces
contained in L by WL). It is simple to show that V(L) is closed under addition

[50]; therefore, it contains a supremal element V* := sup WL). By a supremal

element of a family we mean a member of the family that contains all other

members of the family.

These extremal subspaces have interesting system theoretic interpretations.
Consider the system X, and let W* := inf W(B). A choice of output injection map
D € D(W*) amounts to rendering the system minimally controllable from the input
u (i.e., the subspace <A+DC|B> will be as small as possible). This interpretation
of W* will be useful in FDI as we shall see in Section 4.2. Systems for which

W* = X are called perfectly controllable, since the controllability of such systems

cannot be altered by output injection.

Another interesting property of W* is that
W C <A|B>. (2.48)

Note that <A|B> is A-invariant and also B C <A|B>. Hence, <A|B> is
naturally (C,A)-invariant, and we have <A|B> € W(B). Using the delinition of
W*, (2.48) follows immediately.

Dually, let V* := sup YKer C). A choice of state feedback F € F{V*)

amounts to rendering the system maximally unobservable from the measurement y
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(i.e., the subspace <Ker C|A+BF> will be as large as possible). Systems for which

V* = 0 are called perfectly observable [23], since the observability of such systems

can not be altered by state feedback.

The dual of (2.48) is also true. Namely
<Ker C|A> C V*. (2.49)

The derivation is dual to the one given for (2.48).

The extremal subspaces W* and V* are also useful in checking the right and
left invertibility (cf. (38]) of a given system. Because the concept of left invertiblity
will be used later on in formulating the failure detection and identific4tion problem,

it is helpful to formally state it in here.

Definition 8: Consider the system X, and assume z(0) =0. We
say L'is left invertible if y(¢) = 0 for ¢ > 0 implies that u(¢) =0 for ¢t > 0.
Q

Clearly, this definition is equivalent to requiring that the transfer matrix
C(sI-A)~1B has a left inverse (i.e., the columns of the transfer matrix are linearly

independent over the field of rational functions).

Now we state the result which relates the invertibility of a given system to

the extremal subspaces W* and V*.

Proposition 9: Consider the system (C,A,B). Let
W* ;= inf WIm B) and V* := sup YKer C). For the moment let
[ < m. Then the system (C',.4,B) is right invertible if and only if Cis epic
and

KerC+ W= 1. (2.50)
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Now let ! > m. Then the system (C,A,B) is left invertible if and only if B
is monic and

ImBN V*=0. (2.51)
D

i
We refer the reader to (34] (also see Exc. 4.4 of [50]) for a complete derivation of

the above proposition. Using Proposition 9, it follows immediately that every
perfectly controllable system with C epic is right invertible. Dually, every perfectly
observable system with B monic is left invertible. A perfectly observable and
perfectly controllable system with C epic and B monic is called irreducible [8].

Note that an irreducible system is square and invertible.

Now we state the definition of input observability (cf. [38]).

Definition 10: We say the system (C,A,B) is input observable if B
is monic and

<Ker C|JA> N B=0.

®
We can give a more intuitive interpretation of an input observable system.
Consider commanding the system (C,A,B) with a step input of strength u,, and
observing the system output y(¢). This system is input observable if and only if we
can uniquely determine u; from observing the output y(¢) for ¢ > 0 [38]. Also it is
simple to show that the system L' is input observable if and only if there does not
exist a nonzero mX1 constant vector [ such that C(s[—-A)~1Bl =0; i.., the

columns of the transfer matrix are linearly independent over R.

The concept of input observability is closely related to the concept of left

invertibility. As a matter of fact every left invertible system is input observable.
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This simple fact follows immediately from Proposition 9, (2.49), and Definition 10,
but the converse is not necessarily true. For example, the following system is input

observable but not left invertible.

0 3 4 1-3 010
A= |1 2 3|,B=|0 1 | C= :
025 00 00 1

Note that the transfer matrix of this system is simply

1 (8—5) (s—3)(s—5)

3_7,2 7 )
8°—=Ta%+a+ 9 2(s—3)

G(s) =

which is not left invertible since the columns of G(s) are linearly dependent over
the field of rational functions. However, there does not exist any nonzero constant

vector [ for wheih G(s) [ = 0, so the system is input observable.

However, if the system is single-input and multi-output, then input

observability implies left invertibility.

Lemma 11: Consider the system (C,A,B) with B monic and
d(B) = 1. The system (C,A,B) is left invertible if and only if it is input
observable.

Proof: From the remark preceeding the lemma, we need only to
prove the sufficiency. Assume (C,A,B) is input observable but not left
invertible. Let V* be as defined in Proposition 9. Because d(B) = 1, using
(2.51) and the assumption of non invertibility we have BC V*. From
(2.47), we know AV* C V*+ B or equivalently AV* C V*.  But
<Ker C|A> is the largest A-invariant subspace in Ker C. Therefore,
BC V* C <Ker ClA>. Obviously, this contradicts the assumption of
input observability. @
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Now we give a finite recursive algorithm for computing the infimal element of

the family W(L).

Theorem 12: ((C,A)-invariant subspace algorithm) Let L € X and
W* .= inf WL). Then W* =lim W¥ where W satisfies the following
recursion [50]

CAISA Wl = [ +A(WENKer C), WO=o. (2.52)

)

We can simply implement CAISA in terms of matrices. Let Im L= L and

Pk be a maximal solution of PW¥k=0. With WO =0 solve the following

equations recursively.

Pk
Tk=0 and Wkl =L ATH. (2.53)
C

Stop when Rank W¥+! — Rank W¥; then W* =Im W ¥. Obviously the algorithm

should converge for k£ < n.

A similar algorithm for computing V* is given in Chapter 4 of [50]. Van
Dooren [43] has recently published a reliable algorithm for computing V*. His
algorithm is quite elegant and can be dualized for computing W*. We also refer the

reader to [27] for another reliable algorithm for computing V*.

The following pole placement result will be useful when it is desired to design
observers that play the twin roles of being detection filters and full state

estimators.

Proposition 13: Let (C,A) be observable, W € W0) with
dW)=m, and P: X — X/W the canonical projection. If Dy € D(W)
and A is an arbitrary symmetric set of m complex numbers, there exists a



D:Y — Xsuch that

PD = PD, (2.54)

0(A+DC) = o(A+DC : X/W) ¥ A. (2.55)

Proof: Let W:W — X be the insertion map and write
Ag = (A+DyC: W). Clearly WA; = (A+DyC)W and C: W= CW . Using
Proposition 2, observability of (C,A) implies that (CW,A,) is observable.
Therefore, there exists a D;:Y — W such that o(Ay+D,CW)=A.
Define D= Dy+ WD, . Then PD = PD, because PW =0 ; therefore,
D € D(W). Also (A+DC: W)= (A+DyC: W) + D,CW = Ay + D,CW,
thus

0(A+DC) = o(Ay + D,CW) & 6(A+DC : X/W)
=AW a(A+DC: X/W). X
In Proposition 13, we did not mention whether it is possible to assign the spectrum

of A+DC : X/W arbitrarily. It turns out that in general this is not possible, and

this will be the topic of the next section.

2.3 Unobservability Subspaces

In Proposition 5, we gave an alternative interpretation of a (C,A)-invariant
subspace in terms of designing an observer which estimates a linear transformation
of the states. However, in that discussion we said nothing about the error
dynamics of the observer. Let W be (C,A)-invariant, and P: X — X/W be the
canonical projection. Consider the cbserver given in (2.45), and define the error

vector e(t) := w(t) — Pz(t). It follows immediately that e(t) satisfies

e(t) = w(t) = Pz(t) = Fu(t) + E y(t) — PA z(t)
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= F w(t) — AA+DC) z(t) = F (w(t) — P z(¢))

= Fe(t). (2.56)

If, contrary to the assumption in Proposition 5, e(0) 54 0, then the error dynamics
become relevant, and they are characterized by the spectrum of F as given in
(2.56). Therefore, the case that o(F) can be assigned arbitrarily is of special
interest. Unfortunately, if W is only (C,A)-invariant, it is not always true that the
spectrum of F can be assigned arbitrarily. Based on these ideas, we introduce the

concept of an unobservability subspace.

Definition 14: We say a subspace SC X is a (CA)
unobservability subspace (u.0.s.) if

§ = <Ker HC|A+DC> (2.57)

!

for some output injection map D: Y — X and measurement mixing map

H:Y — Y. oy

Later on, we shall derive the relation between the pole assignability of F and the

definition of a u.o.s.

It is clear from the definition that a u.0.s. is (A+DC)-invariant; thus it is a
(C,A)-invariant subspace, and D(S) 7% #. (Recall that D(S) denotes the class of all
maps D: Y — X such that (A+DC) S C S.) We use the notation S(L) for the
class of u.o.s. containing L. Using this notation, the class of all unobservability

subspaces of X can be written as §(0).

Dually, we say a subspace R is a controllability subspace if

R = <A+BF|lm BG> for some state feedback map F: ¥ — U and some input

mixing map G : U — U (see Chapter 5 of [50, 45]). Applying the duality relations
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(2.23) and (2.17) to (2.57), we conclude immediately that

SL=<A'+C'D'|ImC'H">,

and S1L is a controllability subspace of the dual system.

Now we try to eliminate the appearance of H in (2.57). The following

proposition is the dual of the Propsitions 5.2 and 5.3 of [50).

Proposition 16: Let SC X. Then § € $(0) if and only if there
exists a map D: Y — X such that \

S = <Ker C + S|A+DC>. (2.58)
Moreover, if § € §(0), then (2.58) holds for every map D € D($). (0%

Using the above proposition, if we are given a u.o.s. S, then a measurement mixing

map H can be computed from § by solving the equation Ker HC = Ker C + §.

It is clear that S defined in (2.57) is the unobservable subspace of the pair
(HC\,A+DC); therefore, if this subspace is factored out according to the procedure
given in Section 2.1, then the resulting factor system is observable, and its
spectrum is arbitrarily assignable. This fundamental property is stated in the

following theorem.

Theorem 16: Let § be a u.os. with d(S)=+k. For every
symmetric set 4 of n—k complex numbers, there exists amap D: Y — I
such that

o(A+DC : X/5) = A. (2.59)

Proof: Because § is a u.o.s., there exist Dy and H such that
§ = <Ker HC|A+DyC>. Note that D, can be computed from (2.41),
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and H can be computed from Proposition 15. Let P: X — X/$ be the
canonical projection, and consider the factor system defined by (CoAp)
where Ay := (A+DyC': X/S§), and Cj is the solution of CyP = HC (e.g.,
Co = HCP~"). Clearly (Cy,Ag) is observable; therefore there exists a D,
such that o{Ay+D,C;j) = A for an arbitrary symmetric set 4. Let

D= Dy + P~"D,H. (2.60)

From (2.60), (D—-Dg)CS=0, and using (2.44), we have D € D(S).
Clearly, this D satisfies all the requirements. @

The reader should note that we can use any technique we please to find the
map D). For example, one possible choice is to design a (steady state) Kalman
filter for the observable system (Cj,Ag) and set D, equal to the steady state

Kalman gain.

The converse of the above theorem is also true, and its proof is the dual of

the one given in Theorem 5.2 of [50]. Here we just state the result.

Theorem 17: Let $ C X be a subspace with d(§) = k. Suppose
that for every symmetric set A of n—k complex numbers there exists a
map D: Y — X such that (4+DC) S C S and o(A+DC': X/§) = A, then
Sisau.os. ©

Using the last two theorems, it is clear that the spectrum of F given in (2.56) is

arbitrarily assignable if and only if W is an unobservability subspace.

As with W(L), the family of u.0s.'s §(L) is closed under intersection;
therefore, it contains an infimal element S$* := inf S(L)[47]. We give two
different algorithms for computing $*. Both algorithms require a precomputation
of W* which requires the use of CAISA. The first algorithm, like the CAISA, is a

recursive procedure. The second method is not a recursive procedure but requires a
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computation of the map D.

Theorem 18: (Unobservability Subspace Algorithm) Let L C I,
W* := inf W(L), and $* := inf §(L). Then, $* =lim §¥ where S¥
satisfies the following recursive relation [50].

UOSA Sk+l = Wk 4 (A-1SF)NKerC, $0=1. (2.61)
®

It follows immediately from the above theorem that
Ker C + W* = Ker C + $*. (2.62)

Now we restate UOSA in terms of a matrix algorithm. Let Im W* = W*. Let P*
be a maximal solution of P¥Sk = 0. With $0= I solve the following equations

recursively:

Pka
Tk=0 Sk =[W* T4,
C

Stop when Rank S*¥+! = Rank S*; then Im S¥ = §*. Note that the algorithm

converges for k < n.

A similar algorithm for computing R* is given in Chapter 5 of [50]. Also an
stable implementation of this algorithm is given in [43] (see also [27]). The dual of

this reliable algorithm can be used to compute S$*.

The second method of computing §* is as follows.
Theorem 19: Let L C X, and $* := inf §(L). Then

$* = <Ker C + W*|A+DC>
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for W* := inf (L) and D € D(W*) |50, Dual of Thm 5.5]. ®

The reader should note that the above algorithm is of mostly theoretical value, and
in actual practice other more numerically reliable algorithms should be used (see

[43] and [27]).

As an immediate corollary of Theorem 19, we have the following important

result:
D(W*) C D($¥). (2.63)

Stated in words, (2.63) implies that every map D which makes W* (A+DC)-

invariant also renders $* (A+DC)-invariant.

As we stated previously, if V is an arbitrary (C,A)-invariant subspace, the
spectrum of A+DC: X/V is not usually arbitrarily assignable. The following

proposition will help us to identify the fixed eigenvalues.

Proposition 20: Let V be (C,A)-invariant, $* = inf §(V), and
D € D(V). Then

o(A+DC: X/V) =0, W0

where
o = o(A+DC: X/§¥%)

is freely assignable by a choice of D € D(V), but
o, = o(A+DC': §*/V)

is fixed [50, Dual of Thm. 5.7]. Moreover, if V= inf W(Im B), then o,
corresponds to the set of invariant zeros (see Appendix B) of the system




(C,A,B) [9, 15]. ®

For completeness, a brief review of the concepts of invariant and transmission zeros

of a multivariable system is given in Appendix B.

Most of the results in this section are stated without any proof. Our main
goal is to apply these results to our problem instead of re-deriving them. However,

the interested reader can dualize the proofs given in Chapter 5 of [50].

Now we give a numerical example to illustrate some of the concepts that we
have reviewed in the past two sections. Consider the system (C,A,B) with
0 0
0,B= [0}, C= [0 L 0]
0 1
Using CAISA and UOSA, we can compute W* := inf WB) and $* := inf $(B).

Carrying out the calculation, W* = Im W and $* = Im S where

0 01
W= |0},S= {0 0
1 10

Now we want to characterize the elements of D(S*). Let D = [d,, do, d3]". Using
(2.41), D € D(W*) should satisfy

1 00][2-144 0]f0
0 10J{o d offo0|=0

-1 dyp 0 1

Clearly any D satisfies the above relation. Also remember that D(W*) C D(S§*);
therefore, any D = [d,, d,, d3] ' also belongs to D(§*).

Let P: X — X/W* be the canonical projection and = = [z}, 24, z53]". By
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Proposition 5, we should be able to design an observer which reconstructs Pr =
[z1, z9] . Note that because B C W*, the observer does not need to know the input
u(¢) in order to successfully estimate Pr, assuming the initial condition is perfectly
known. In a failure detection context, this means that the observer can estimate

Pr even if the actuator fails and its behavior is unknown. Let D € D(W*) and

Ag = A+DC; then F = Ay : X/W* is simply

10 0][ 2 -144
F= [0 10| 0
-1

d
d3

(== = B«
O O

Moreover a simple computation shows that
E=-PD=-[dd,]"

Evidently, one of the eigenvalues of F is fixed in the right half plane and cannot be
moved. Therefore, if the initial observation error is not zero, then we cannot

reconstruct Pr. However, we show that this is not the case for a u.o.s.

Consider the u.o.s. §* defined and computed at the begining of the example.
Let P: X — X/S§* be the canonical projection. Then obviously Pr = Io, and we
should be able to asymptotically reconstruct z, even if the initial conditions are not
properly chosen. Also to reconstruct z,, the observer does not need to know the

input u(¢). Let F= Aj,: X/S*, then

2 -1+d, 0 ][0
F= [0 1 0]]0 d of]1|[=4d
‘1 d; of|o

Clearly, the spectrum of F is arbitrarily assignable, and E = —PD = —d,. The

filter which reconstructs z, is simply
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() = dywit) — dyy(t).

Now we want to find the invariant zeros of the system (C,A,B). Let

D € D(W*) and Ay = A+DC; then Ay : S* is simply

Let us denote the insertion map of W* in $* by W,. Then obviously Wy=[10],
and the canonical projection P: §* — $§*/W* is simply P=[01]. Thus,
Ay : S*/W=1[0 1]]|0 -1 0]|=2
0 2 1

Note that the transfer matrix of the system (C,A,B) is 0, but the system has an

invariant zero at s = 2 which is identical to Ay : §*/W* as we expected.

2.4 Compatibility of a Family of (C,A)-invariant Subspaces

Assume {W,, i € k} is a family of (C,A)-invariant subspaces. It is clear from
the definition that each W; can be made invariant by appropriate output injection,
i.e., there exist D; such that (A+D,C) W; C W, (i € k). It will be rewarding to see
what additional constraints {W;, i € k} should satisfy in order to be assignable as
the invariant subspaces of just a single observer. In other words, we ask under
what conditions does there exist a map D such that (A+DC) W, C W, (i€k) ie.,
under what conditions is n:.;l D(W;) # 0. To formalize this idea, we introduce

the concept of compatibility.

Definition 21: We say a family of (C,A)-invariant subspaces
{W,, i € k} is compatible if there exists a map D: Y — X such that
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(A+DCYW,; C W;, i€k (2.64)
@
We can state the compatibility property in terms of the solvability of a set of

linear equations. The following result is an immediate consequence of (2.41).

Lemma 22: Let {W,{€k} be a family of (C,A)invariant
subspaces, W;: W; — X (i €k) be the insertion maps, and P; be the
maximal solutions of P,W; = 0; then the family {W,, i € k} is compatible
if and only if the set of linear equations

has a solution for D. (6%9)

Now we introduce a property of a family of subspaces that will be used to

address the compatibility issue. To simplify the notation, we define

W= 5, W (2.66)
W,- = OJ#‘WJ (2.67)
Definition 23: Let {W,, ¢ € k} be a family of subspaces of X. We

say {W;, i€k} is a codependent family of subspaces of X if the
annihilators of the family are independent, i.e.,

k
Yi=1 w’,.l. n (Zj,é i wj'l') =0,
or equivalently ”L; (W, + W,-) =X. ®

Lemma 24: A family of codependent (C,A)-invariant subspaces
{W,, i € k} is compatible.

Proof: Let D; € D(W,) (i€k). Let P;:X — r/w,i be the
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canonical projection. Because the family {W,, i € k} is codependent (row
spaces of P; are independent), P defined below is epic.

Py
P .= M
P

Therefore, using Proposition 1, there exists a D, such that P.D; = P;D,
(7 € k). Thus Dy € r )f.;lQ( W;) and consequently {W, i€k} is
compatible. ®

The following proposition shows how the codependence of a family of u.o.s.

will result in a filter with all of its eigenvalues arbitrarily assignable.

Proposition 25: Let (C,A) be observable, and {S;, i €k} be a
family of codependent unobservability subspaces. Let A; (i € ky) be a
family of symmetric sets with |A;] = n—d(S;), i € k, and |4y] = d(N §,).
Then there exists a

D € n*_.D(s))
such that

o(A+DC: X/S;) = A;

o(A+DC) = w_ 4,

Proof: Because §; is a u.o.s., there exists a D;: Y — X such that

o

U(A+D"CI I/S,) = A".

Let P;: X — X/S; be the canonical projection. Because {S;, i €k} is
codependent, from Lemma 24 we know there exists a D such that

P.'DO=P"D", 1€k,
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thus Dy € Nf_ D(S;). Let S := Nf_ §;=Ker P. Clearly Dy € D($)
and

o(A+DyC: X/S) =w*_ A;.

Also by Proposition 13, there exists a D: Y — X such that PD = PD,
and o(A+DC': §) = A, thus

0(A+DC) = Ay 0(A+DC : X/ )

= W?=0A,‘. &

In order to provide a more general sufficient condition for compatibility, we
need to introduce the concept of the dual radical of a family of subspaces. The
concept of the radical of a family was first introduced in [50]; here, we shall dualize
these original results and later on apply them to our problem. Assume {W,, i € k}

is a family of subspaces. Associate with this family a subspace defined as follows:
. k .
W= (w,-)° = ﬂ'.:l(w,- + w‘) (2.68)

We shall call W the dual radical of the family {W,, i € k}. Usihg the above
definition, a family {W, ¢ € k} is codependent if and only if (W;)°= X -- see
Definition 23. Qualitatively, we can think of W as a measure of codependence of a
family of subspaces. Also, another important property of W is that it can be used
in constructing a family of codependent subspaces from a given non-codependent
family of subspaces. We now state a few simple facts about the dual radical of a

family of subspaces. The dual of these results are given in Chapter 10 of [50]:

W=yt W, (2.69)
=(W;n Wy (2.70)



-59-

The most important property of the dual radical is the one given in (2.70).

Relation (2.70) implies that W.N W, considered as subspaces of W, are

codependent subspaces of W . Moreover, W is the largest subspace with this

interesting property.

Now assume {W,, ¢ € k} is a family of compatible (C,A)-invariant subspaces,

and let D € N5_ D(W,). Then
(A+DC) W;C W, i€k

Using (2.9), it follows immediately that
(A+DC) (T c g W E e Wi

for any 2Ck. Hence the sum of any members of the family {W, i €k} is
|

(C,A)-invariant. As a matter of fact, all elements of the enveloping lattice of

{W,, i €k} is (C,A)-invariant®. By the enveloping lattice of a family {W,, i € k},
we mean the smallest set of subspaces that contains {W,, i € k} and is closed under

addition and intersection.

Moreover, from the definition of dual radical it follows that D € Q(W ), i.e.,
the dual radical is (C,A)-invariant. Also, with a little more work we can show that

D € N_ D(WNW). Stated formally
k k i ‘
Ni_ W) € nf_, DwnW). (2.71)

Unfortunately, the (C,A)-invariance of the dual radical of a family does not

necessarily imply compatibility. However, in the next lemma we show that if W is

)
“Recall that the family of (C,A)invariant subspaces is closed under intersection.
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(C\A)-invariant, then the right hand side of (2.71) is non-empty. Therefore, if the
family {W,, i € k} is such that the relation given in (2.71) holds with equality, then
the (C,A)- invariance of the dual radical of the family is a necessary and sufficient

condition for compatibility of {W;, i € k}.

Lemma 26: Let {W, i€k} be (C A)invariant. If W is
(C,A)-invariant, then the family

W.wnw, ..., WnW

is compatible.
Proof: Let W: W — X. From (2.27)
WW-Y{W;NKerC)) =W N W,NKer C.

Let Dy € D(W), Ay := A+D,C, A, := (Ag: W), and C, = CW.
Clearly W; N W is (C,A)-invariant; thus

Ay(W,nW NKerC)C W, W
AW (WY W,nKerC) | C W, W
WA, [(W-W)NnKer CW) C W;n W

A W) N Ker CW] CW-LW,n W) = W-1w,

Therefore, W=1W, is (C|,A;)-invariant. From (2.70), we have that the
family of subspaces W-!W, (i € k) are codependent subspaces of W.
Hence, by Lemma 24, we know there exists a D| such that

(A;+D,Cy) (W-1W,) C (W-1W). (2.72)

Now we want to show that D = Dy + WD, is the map we are looking for.
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Operate both sides of (2.72) by W

W(A;+D,C)) (w-lw,-) - W(W“lw,-)
(AQW+WD,CW) (W-1W,) C W;n W
(Ag+WD(O) (W;n W) C W;n W

(A+DC) (W,N W) C W, W

Also (A+DC)W C AOW +ImW=W, and the conclusion follows
immediately. &

As should be clear by now, answering the compatibility question in its most
general form is quite complicated, but we have given useful results that work for
important special cases. However, if the family of subspaces that we are
considering has only two elements, then we can completely resolve the
compatibility issue. The proof of the following simple result, which is an immediate

corollary of Lemma 26, is left to the reader.

Lemma 27: Let W, and W, be two (C'A)-invariant subspaces.
Then W, and W, are compatible if and only if W, + W, is (C,A)-invariant.
©

Now we introduce the concept of an output separable family of subspaces.

Definition 28: We say a family of subspaces {W;, i€k} is C
output separable if CW,; N (ZJ.# ; ij) =0, i €k, i.e., if the images of W,
(¢ € k) under C are independent. (3]

When it is clear from the context, we shall refer to a C' output separable family as

simply an output separable family and delete the C'

The following lemma shows the relation between output separability and
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compatibility.

Lemma 29: A family of C output separable (C,A)-invariant
subspaces {W;, { € k} is compatible.

Proof: Let v be subspaces such that W = v @D W;NKer C Let
w (c el ) be a basls for W such that w (i € pJ) spans v Then Aw = y.
for some y € X. Lee D be a solution of

1
—[yl,...,y’l’l,...,yk,...,y:]=DC[wl,...,w’l’l,...,wk,...,w:k]

which exists because output separability implies that

Clwt, . .. ,w'l’l, wH

X k"'

is monic. Also because W are (C,A)-invariant, (A+DC)wJ—- AwJ—- ut
(p < i < lJ) for some u E W; Thus (A+DC')w -—u for i€l ]Ek
» and (A+DC) W C w (i € k). &

Now we derive another important property of a family of output separable

(C,A)-invariant subspaces.

Lemma 30: Let (C,A) be observable. A family of C output
separable (C,A)-invariant subspaces {W,, i € k} is independent.

Proof: By hypothesis CW; N (Zj# ; CW) =0 (i €k); therefore
C(W,NnW)=0, i€k o (2.73)
Also it is shown in Lemma 29 that {W,, i € k} is compatible; therefore W,

is (C,A)-invariant. Let us assume that {W,, ¢ € k} is not independent;
then for some i € k,

W,.nw,-=’r;£ 0.
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From (2.73) TC Ker C; therefore

(KerCNW)N(W;NKerC)=T. (2.74)

Operating on (2.74) by A on both sides and remembering that
A (W;NKer C) C W, because W, is (C,A)-invariant (and similarly for W,-),
then

W,NW; 2 AT (by(2.10)

Note that AT ## 0 because TC Ker C and (C,A) is observable. If
A TC Ker C, repeat the process and for some m < n—1, CA" T # 0
because otherwise the observability is violated. Thus W, W; D A™ T for
some m such that CA™ T 3£ 0 which contradicts (2.73). &®



Chapter 3

Failure Modeling and Problem
Formulation

In Chapter 1, we briefly reviewed the problem of failure detection and
identification in linear time-invariant dynamic systems. In this chapter we
formulate the problem in its most general form. We also show how to model the
effect of failure of different components like sensors and actuators. A good
reference for failure modeling with some actual examples is Chapter 4 of [22]. Also,
in order to gain a better understanding of the effect of sensor failures on a failure
detection filter, the concepts of modified (C,J/;A)-invariant subspaces and modified
(C,J;A) unobservability subspaces will be introduced. These concepts are

somewhat related to the dual of the output nulling invariant and controllability

subspaces of Anderson [1] (see also [35] and Exc. 4.6 & 5.9 of [50]); and they are

natural extensions of the results presented in Chapter 2.

3.1 Problem Formulation and Failure Representation

Assume our nominal linear time invariant (LTI) system can be described by

the triple (C,A,B)

z(t) = A z(t) + B u(t),

y(t) = C z(t). (3.1)

Here z(¢) € X, u(t) € U, and y(¢) € Y. The dimensions of X, U, and Y are n, m, and
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[ respectively. Our observables are the nominal input u(¢) to the plant and the

measurement y(t).

Now assume that some unknown disturbances affect the behavior of the
plant. These disturbances can either be sensor failures or disturbances at the
output, which directly corrupt the measurement y(t), or they can be actuator
failures and external input disturbances which will show up in y(t) after their
effects are integrated through the dynamics of the system. The most general form
of disturbances that can affect the output of the system shown in (3.1) can be

represented as follows:

2(t)=Aa(t) + Bu(t) + T Lims)

)= Cz(t) + 1 Jinfd) (3.2)

Here m(t) € M; (d(M,) = k,) and n{t) € N; (d(N;) = q,) are unknown functions of
time and can be arbitrary. However, when no failure or disturbance is present,
m,(t) and n,(t) are all, by definition, equal to zero. We refer to the functions mg(t)

and nt) as failure modes.

In order to model the effect of the j-th actuator failure, simply set L,= B;
where Bj is the j-th column of the control effectiveness matrix B. Note that, if the
actuator does not respond to the input and is dead, then obviously my(t) = —u (8
where u;(¢) is the j-th element of the input vector u(¢). If the actuator has a bias
b, then my(t)=1>. If the actuator saturates at one of its end points, then
my(¢) = b~u;(¢). Clearly, because we do not constrain my(t) to any special
function class, a wide variety of actuator failure modes fits this representation.

From now on we shall refer to the maps L;: M; — X as actuator failure

signatures. Also if the actuator fails in such a complicated way that its output

does not affect the system through the Bj anymore, (3.2) can still be used to model
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its effect. Note that here the L; can be matrices, and are not constrained to just

being vectors.

We can also model a change in the dynamics of the plant, i.e., a change in the
A matrix, by choosing L; appropriately. (In this case my(t) will be a linear
combination of the states of the system z(t).) Thus, as far as failure modeling is
concerned, a change in the dynamics of the system can be modeled as an actuator

failure. Therefore, the generic notion of actuator failure will be used to refer to any

failure event that can be modeled by choosing L, appropriately.

Similarly, if we want to model the failure of the j-th sensor, then we simply
set J; = e;; where e;; is the j-th column of an !X/ identity matrix. Note that if the
sensor fails dead, i.e., zero output, then ny(t) = —cj'z(t) where cj' is the j-th row of
the measurement matrix, C. As should be clear by now, this representation can be
used to model a wide variety of sensor failure modes. Moreover, as in the case of
actuator failures, J; can be matrices, and they are not constrained to be vectors.

From now on we shall refer to the maps J;: N; — Y as sensor failure signatures.

Without loss of generality, we assume that the failure signatures are monic.
Note that because m,(t) (and similarly n(t)) is arbitrary, if the map L; is not monic
then obviously there exists a monic map G; which has the same image as L; and
Lim(t) = Gd(t) for some other arbitrary function d{t). For our purpose, G, can

be used to model this failure.

Clearly, the major attribute that distinguishes our approach to failure
modeling from the majority of the approaches reported in the literature is that we
do not assume any a priori mode of component failure, i.e., m(t) and ny(¢) in (3.2)
can be arbitrary. However, it is assumed that the failure can be represented by

choosing an appropriate L; or J;. Also once in a while we shall make the
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assumption that the failure modes are generic in a sense that will be specified when
the need arises. As is clear from (3.2), our mathematical model is general enough so
that it may prove useful in other contexts besides failure detection and

identification theory.

To simplify the notation, let us define n(t), m(t), L, and J as follows:

alt) = [ny(t), ..., (0], (3.3)
m(t) == [m/(t), ..., mo), (3.4)
Li=I(L, ..., L) (3.5)
Ji=[Jy, ..., J) (3.6)

Then (3.2) can be rewritten as follows:

z(t) = A z(t) + Bu(t) + L m(¢),

y(t) = C z(t) + J n(t), (3.7)
where n(t)EN := NP - - DN, and m(t)eEM := M| D - - P M. The
above model will be used from time to time in our developments instead of (3.2).

We also point out that any sensor failure can be modeled as a pseudo

actuator failure through appropriate state augmentation. This follows from the

assumption that n,(¢) is an arbitrary function o time. Hence without loss of
generality it can be assumed that the unknown function n(¢) is the output of some
linear time-invariant system L; with impulse response h(¢,7) and some arbitrary
input 8,(¢). The only restriction on X; is that it should be right invertible so that

for any n,(t) there exists a s (t) such that

n(t) = f:) h(t,7) s{7r)dr, ¢t > 0.

- o
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For the case where nt) are simply scalars, without loss of generality we can

assume
;l,(t) =a; n,{t) + Si(t)

for some scalar a; and some unknown function s¢). If the dynamics of the systems
generating the sensor failure modes are added to the dynamics of the system, the
sensor failures can be represented as actuator failures. To see this assume that
s,(t) = fx,-(t) which is a simple choice of a right invertible system (an integrator),

and rewrite (3.7) as follows:

z (t) A 0][ =z ] B L o][ me
n (t) 0 0 ][ n() | 0 0 I |] s(¢)
yy=[C J][=t] (3.9)
| n(t) |

Clearly in this formulation no sensor failure signature is present. Hence, in all of

our developments in Chapter 4, we shall use the model

z(f)=Az(t) + Bu(t) + ©F_ Limt),

y(t) = C z(1), (3.10)

and assume that the maps A, L;, and C have already been appropriately modified
so that the sensor failures are properly represented as pseudo actuator failures. In
Section 3.2 we shall illustrate some of the difficulties associated with handling the
sensor failures directly, and state why it is useful to model sensor failures as
actuator failures by state augmentation. One caveat to be aware bf is that the
augmented model may not be observable even if (C,A) was observable. However,

by properly choosing the augmented dynamics so that they do not coincide with
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the spectrum of A, it is always possible to get an observable augmented model if

(C,A) is observable.

Now that we know how the effect of different component failures can be
modeled, the most general form of the problem that we are trying to solve is

defined. Considering the system in (3.10), we define the failure detection and

identification filter problem (FDIFP) as the problem of designing a dynamic

residual generator, X, that takes our observables, u(¢) and y(t), as inputs and

generates a set of residuals r(¢) (i € p) with the following properties:

1. When no failure is present, the residuals r(t) (i € p) are identically
equal to zero. Hence, the net transmission from the input of the
system u(¢) to the residuals r,(¢) (i € p) should be zero.

2. When the j-th component fails (i.e., mj(t) 7 0), the residuals ri{t) for

i €12; should be nonzero, and the other residuals r(¢), s € p—flj all

should be identically equal to zero. Here the family of coding sets
2, Cp (i€k) are such that we can uniquely identify the failed
component by knowing whether the r,(t) are zero or not.

We say more about the coding sets (2; later in this section and also in Section 4.5.
A block diagram of an FDIF is given in Figure 3-1. Note that in the general

problem, there is no constraint on the number p of the residuals.

If we can generate a set of residuals with the above properties, then the
identification task is trivial. One only needs to compare the maggitudes of the
residuals against some appropriate thresholds to decide which ones correspond to
responses to actual failures, and then by referring to the table of the coding sets

one can identify the failure, if a failure is present.

One important design consideration is how to choose the coding sets £2;. The
simplest choice is just to let 2, = {i} (i € k), or equivalently, to let only one of the

residuals be nonzero for any one failure. In addition, this coding scheme enables us
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Figure 3-1: Block Diagram of an FDIF

to detect and correctly identify simultaneous failures. This is because
n;, # Uje a2 for any ACk, i  A. In Sections 4.4 and 4.5, we shall go over more
complicated coding schemes. The reader should note that with some coding
schemes it is not possible to detec’ and identify the presence of simultaneous
failures. As a matter of fact, for some coding sets, simultaneous failures can lead to
identification of the wrong component as failed. However, no matter what coding
sets are used, there are families of components for which a failure off a component
within the family can not be uniquely identified. This fundamental limitation will

be discussed in Section 4.5.

Now, consider the most general form of a realizable LTI processor that takes

y(¢) and u(¢) as inputs and generates a set of residuals r,(t) (i € p) as outputs,
w(t) = Fuw(t) — E y(t) + G u(t), (3.11)
ri{t) = M; w(t) - H; y(t) + K; u(t), i€Ep, (3.12)

r(t) = [rl'(t): RN rp'(t)]" (3.13)
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Here rt) € R; and r{t) € R := R, D --- D R, Also the minus signs in £

and H; are just chosen for convenience in what follows.

Now we can restate FDIFP as the problem of finding F, E, G, M;, K;, and H;
in (3.11), (3.12), and (3.13) such that the transfer matrix that relates m{t) to ri(t)
has certain nice properties that enable us to compare the residuals rt) with zero

and decide whether m,(¢) are zero or not.

In order to make the problem more tractable and be able to derive the
solvability conditions, we need to make a few more assumptions. In Chapter 4,
based on different practical considerations, we formulate and solve several
restricted versions of FDIFP. Several of the practical issues that we consider are
ease of implementation, order of the processor (i.e., a nension of the F matrix),
sensitivity to the variation of system parameters, and availabilif‘y of reliable

numerical design algorithms.

By ease of implementation, we mean the special structure of the F matrix
which simplifies the actual computation, e.g., a processor which is a collection of
several decoupled subprocessors is superior to a lower order processor which does

not have this decoupled property.

Also the sensitivity of the residual generator is quite important because the
hypothesised model of the system (i.e., the model given in (3.10)) is usually not well

known. Considering this, a robust residual generator should not rely heavily on the

model of the dynamics of the system. However, in this work it is deemed more
appropriate to address other fundamental problems, and hence the main

concentration is not on the sensitivity issue.

With respect to numerically reliable design algorithms we point out that

unfortunately the design procedures used in the geometric control theory, though
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constructive, usually cannot readily be translated into numerically reliable
algorithms. However, in Section 4.2 we shall outline the steps one should take for

reliably implementing the solution to a restricted version of FDIFP.

Before proceeding with the soluion of various FDI problems, we illustrate

some of the difficulties associated with the case of sensor failures.

3.2 Sensor Failures
i

In Chapter 1, we illustrated the effect of actuator failures on the behavior of
an observer. Then those properties were used in formulating a failure detection
and identification problem in which the failure of two distinct actuators could be
identified. In this section, we consider a similar problem involving sensor failures
which are inherently difficult to handle. The difficulty arises from the fact that in
this case some columns of the observer gain matrix are the failure signatures;

hence, the problem requires special treatment.

Consider the system

z(t) = A z(t) + Bu(t),

y(t) = Cz(t) + Jy ny(t) + Jy no(t), (3.14)
with n,f) € N; being arbitrary unknowns. In the terminology of Section 3.1,
J;: N; — Y are the sensor failure signatures. When no failure is present,

nt) = 0. Consider designing a full order observer for the system given in (3.14),

with the following form:

w(t) = (A+DC) w(t) — D y(t) + B u(t),

r{t) = H (C uw(t) — y(t)). (3.15)
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Here the residual vector, r(f), is a linear transformation of the innovation
Cu(t) — y(t). Let us define the error e(t) := w(t) — z(t). Using (3.14) and (3.15),

the equation for the error vector e(t) is simply:

® o

é(t) = (A+DC) e(t) — DJ, n,(t) — DJ, no(t),

r(t) = HC e(t) — HJ, n(t) — HJ; ny(t). (3.16)

Now we ask under what conditions an arbitrary n,(¢) will have no affect on the
residual r(¢), while any nonzero n,(t) shows up in r{¢). From (3.16), it is obvious
that for ny(f) not to affect r(¢), we should have HJ, = 0, and Im DJ, should be in
the unobservable subspace of (HC,A+DC). This is equivalent to the statement
that the transfer matrix from n,(s) to r(s) should be zero. Of course, the
complication arises from the fact that the map D is unknown, but it should satisfy
the constraint Im DJ, C §= <Ker HC|A+DC>3. With this motivation, the

following concept is introduced.

Definition 1: A subspace, §, is a modified (C',J;A) unobservability

subspace (m.u.o.s.) if there exist a D: Y — X and an H: Y — VY such
that

1. § = <Ker HC|A+DC>
2.ImDJC§

3. HI=0.

It will shortly be shown how these m.u.o.s. can be computed. Also their other

3For the moment we do not concern ourselves with the condition under which a monzero ny(t)
will show up in r(t)
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interesting properties will be discussed as well.

As the reader may expect, it should be possible to extend the concept of a
(C,A)-invariant subspace (which was introduced in connection with actuator
failures) to the case of sensor failures. The following definition is an extension of

the result given in Proposition 5 of Section 2.2.
Definition 2: Consider the system

z(t) = A =(t),

y(t) = C z(t) + J n(¢), (3.17)

with n(¢) unknown. We say a subspace W is a modified (C,J;A)-invariant
subspace (m.c.a.i.s.) if there exist matrices £ and F such that
w(0) = Pz(0) yields w(t) = Px(¢) for ¢ > 0 where

w(t) = Fu(t) + E y(¢), (3.18)
and P: X — X/Wis the canonical projection of W. 53

The philosophy behind this definition is to give special attention to those outputs
w(t) = Pz(t) that, with Ker P= W, may be reconstructed exactly from y(t) even in

the presence of an arbitrary unknown n(¢).

For n(¢) not to affect the dynamies of w(¢) in (3.18), we should have EJ = 0.

This leads us to the following result.

Proposition 3: A subspace W is a modified (C,J;A)-invariant
subspace if and only if there exists a map D: Y — X such that

1. (A+DC)WC W

2. ImDJC W. ®
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It is possible to define a m.c.a.i.s. as in Proposition 3, and then derive the result
given in Definition 2 from it. However, it seems that Definition 2 is more
illuminating. Using the result of Proposition 3 and Definition 2, it follows
immediately that any m.u.o.s. is a m.c.a.i.s. Also, a simple computation shows that
the matrices £ and F mentioned in Definition 2 are the same as the ones given in
(2.46). Note that Im DJ C W implies PDJ =0, and the condition EJ =10 is

satisfied.

It is also possible to give an interpretation of a m.u.0.s. in terms of the
existence of an observer as is done in Definition 2. The only discrepancy arises
from the fact that for a m.u.o.s. the spectrum of F should be assignable to an
arbitrary symmetric set; hence, the assumption that the observer is perfectly

initialized can be omitted.

Now it is shown how these m.c.a.i.s. and m.u.o.s. can be computed. Consider
rewriting the system given in (3.17) such that n(t) is the input to the system and
y(¢) is the the output of the system. This simply corresponds to rewriting (3.17) as

follows:
z¢(t) = Acze(t) + Len (¢),
y(t) = Cez¥(t), (3.19)

where z¢(t) = z(t) P n(t) € X¢ := X P N. It is helpful to visualize the maps in

(3.19) in terms of their matrix representations:

A0 0
Af = Le=| | ce=(c, 0. (3.20)
0 0 I

Let z € X, and define the embedding map @ : X — X¢ as follows:



Qz=(?). (3.21)
Let VC X¥¢ then
Q W={z:z € I&[;) € V}. (3.22)

Less precisely, we can write Q~!Vas VN .

Now we shall prove the interesting fact that the intersection with X of the

ordinary (C°A°)-invariant subspaces of X¢ which contain ImLE =0 N are

m.c.a.i.s.

Proposition 4: Let W be (C¢A¢)-invariant and 0 6H N C W. Then
QW is a m.c.a.is. Conversely, if S is a m.c.a.is., then S N is a
(C* A®)-invariant subspace.

Proof: Let S := Q~1W, obviously W= S N. Because W is a
(C*,A)-invariant subspace, there exists a map D€: Y — X¢such that

(Ae+DeCOYW C W. (3.23)

Let us partition D¢ as D¢ = [D', D,'| where the row dimensions of D and
A are equal. Let s € §; then

(A+D°C*) (s @ 0) = (A+DC) s B D,Cs
€ W=S5 & N (by(323)

Thus, (A+DC) S C S. Let n € N; then

(A%+D°C) (0 P n) = DJn @ D,Jn

EW=S @ N (by(3.23)

Hence, DJn € § for arbitrary n € N, or equivalently DJC §; and using
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Proposition 3, it follows that S is a m.c.a.i.s.

Conversely, because § is a m.c.a.is., there exists a D: Y — X such
that (A+DC)SC Sand InDJ C §. Let D¢: Y — X¢ be any extension
of D, ie., D°=[D', D)/’ with D, arbitrary, and define W := SP N.
Then a simple computation shows that

(A+DeC) WC W,
thus, Wis (C¢ A¢)-invariant. )

From the proof of Proposition 4, it is clear that the zero matrix in the lower right
corner of A® defined in (3.20) can be replaced with any matrix of appropriate
dimensions. Also the identity matrix in L¢ can be replaced with any nonsingular
matrix. Note that it follows from Proposition 4 that the computation of the
modified subspaces introduced in this section amounts to extending the state space
and is really equivalent to the heuristic argument we used in Section 3.1 for
modeling the sensor failures as pseudo actuator failures with appropriate state

augmentation.

We can derive a similar result for a m.u.o.s. Here we shall only state the final

result; the proof is similar to the one given before.

Proposition 5: Let § be a (C?A®) unobservability subspace and
0P NC S. Then @~ 1S is a m.u.os. Conversely, if Wis a m.u.o.s., then
WD Nis a (CCA°) unobservability subspace. ®

Propositions 4 and 5 are quite useful in computing the m.c.a.i.s. and m.u.o.s.
Also these results and the results of Chapter 2 can be used to derive some of the

useful properties of these modified subspaces.

For example, let us show that the families of m.c.a.i.s. and m.u.o.s. are closed



71-
under intersection. Let W, and W, be two (C¢A®)-invariant subspaces containing
Im L and let us denote their intersection by W;. Using Lemma 7 of Section 2.2,

Wy is (C¢,A%)- invariant. Also we know
(@~1W) N(Q™1Wy) = Q=W

From Proposition 4, @~1W; are m.c.a.is.; hence, the family of m.c.a.i.s. is closed
under intersection, and it should contain an infimal element. A similar argument
shows that the family of m.u.o.s. is closed under intersection and it too contains an
infimal element. Also all of the results in Chapter 2, which deal with pole

placement techniques, can be used equally as well with m.u.0.s. and m.c.a.i.s.

Now a simple example is worked out to illustrate some of the concepts we
developed in this section. Consider a second order system with two sensors

represented as in (3.2) with

1 0 1 0 1 1 0
A= ,C = B = , = Iy =

0 2 01 1 0 1

Referring to our intuition, we can design two different observers each using only
one of the sensors to generate two separate innovations. Then a threshold on the
magnitude of these innovations can be used to identify each sensor failure. Let us

instead use the concepts of this section to design a residual generator.

Let W, denote the smallest modified (C,J/;A)-invariant subspace. From
Proposition 4, W, = Q~!W where W is the smallest (C¢A¢)-invariant subspace
containing Im L€ with L¢ = [0, 0, 1] and C® = [C, J,]. A simple computation shows
that W=1Im L¢; hence, W; = Q~!W=10. Also D¢ =[d,;] (i € 3, j € 2) belongs to
D(W) if djg=4dgy=0. Let D be the upper 2X2 partition of D¢, A simple
computation shows DJ, = 0 and (A+DC) W, C W,. Using Proposition 3, it follows
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immediately that W, = 0 is a modified (C,J5;A)-invariant subspace; and obviously
it is infimal.

Similarly, let S, denote the smallest (C,J5;A) unobservability subspace. From
Proposition 5, §; = Q1S where $ is the smallest (C¢ A¢) unobservability subspace
containing Im L¢ with L = [0, 0, 1}’ and C* = [C, J,]. A simple computation shows
that

S=1Im

O = O
-0 O

hence, §; =Q~1S=1Im [0, 1}’. Note that §, is simply the unobservable subspace

of the first semsor. Also D®=|[d;;] ({ €3, j€2) belongs to D(S) if dyp=0.
Moreover, from the definition of an unobservability subspace, there exists an H,
such that §= <Ker H;C*A%+DC¢>. A simple computation shows that
H, =[1,0]. Let D be the upper 2X2 partition of D¢. A simple computation shows
DJy =0, dgo}', HJy =0, and S; = <Ker H;C|A+DC>. Using Definition 1, it
follows immediately that S, is a (C,J,;4) unobservability subspace. This subspace

is also infimal. Moreover by choosing d,; properly, we can arbitrarily assign the

spectrum of o(A+DC': X/$,).

Now we can use §; to design a residual generator such that its output, r1(t),
is not affected by the failure of the second sensor. Note that H;J, = 1, hence the
failure of the first sensor will show up in r(¢). Let y(t) = [y,(t), yo(t)]. Carrying

out the computations it follows that the residual generator has the form

wy(£) = (—1+dy;) wy(t) = dy; vy(8) + u(?)

r1(€) = wy(¢) — yy(¢),

.o
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where d;; can be used to arbitrarily assign the spectrum of the observer. Note that

this residual generator is simply an observer for that part of the state space which

is observable from the first sensor. Clearly, the residual r1(t) is not affected by the

failure of the second sensor; hence, a nonzero r(¢) implies that the first sensor has

failed.

A similar procedure can be used to design a second residual which is affected
by the failure of the second sensor but not by the failure of the first sensor. Note
that the residuals r(f) and ry(¢) are all we need to completely detect and identify
the failure in each or both of the sensors. This approach to the failure detection
and identification problem will be discussed in detail in Chapter 4; here we only

used this example to illustrate some of the concepts we introduced in this chapter.

It is interesting that the solution to this example is the same as the intuitive
solution we proposed. Each individual observer simply uses one of the two sensors
to generate the residual vector. Thus the failure of any sensor only corrupts the
residual of the filter that is using the failed sensor. Moreover, because each sensor

can only observe part of the state space, the unobservable subspace of each sensor

can be factored out so that the order of each individual observer is reduced.

In fact, the above concept can be generalized to any LTI system. To show

this, consider a system with [ sensors and assume that the actuators are perfectly

reliable. Now consider the problem of designing / residuals such that the failure of
the i-th sensor only affects the i-th residual. Note that in here we are assuming
that the failure signatures J; are simply the column vectors of an IX! identity

matrix. A simple computation shows that the infimal modified (C,[;A)

unobservability subspace, where [ is the I X[ identity matrix with the i-th column
4

deleted, is simply the unobservable subspace of the i-th sensor. Clearly we can use

these infimal subspaces to design [ separate residual generators L, each only
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sensitive to the failure of the i-th sensor. This amounts to designing an observer
for that part of the state space which is observable from the i-th sensor and then
using the innovation of these filters as our residuals. Contrary to the difficult
statement of the failure detection and identification problem for sensor failures, the
solution of the problem is quite simple and intuitive. However, the reader should
be aware of the assumptions that these results are based on: namely, the failure
signatures J; should be the columns of the identity matrix, and the actuators are
assumed to be perfectly reliable. Note that the problem we addressed here is a
special case of the extension of the fundamental problem of residual generation

which we shall solve in Section 4.1.1.

The approach outlined above for detecting and identifying sensor failures is in
fact identical to the one proposed by Clark [7]. Note that the sum of the orders of
these ! observers can be prohibitively large. However, by hypothesising that only
one sensor failure is present at a time, the number of the observers can be

substantially reduced (see (7]).

The reader should note that the Clark’s approach applies only to the case of
sensor failures that can be modeled by choosing the matrices J; as columns of the
identity matrix, but the concepts outlined in this section are much more general,
and they can be used to treat both sensor and actuator failures simultaneously.
Nevertheless, for specific cases, our general approach can be specialized to the one

proposed in (7).

. o
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Chapter 4

Failure Detection and Identification
Problems

In Chapter 3, the function of a failure detection and identification filter was
explained in detail. Also it was shown how the effect of different component
failures can be modeled. Hence, the reader should have a clear understanding of
the problem that we are trying to solve. In this chapter, we shall formulate and

solve various FDI problems, each emphasising different practical considerations.

All of the major contributions of this thesis are included in this chapter. We
start with simple detection filters and gradually extend them to the most general
cases. Numerical examples are used throughout this chapter to familiarize the
reader with the actual design procedure. In all of the developments, without loss of
generality (see Section 3.1), it is assumed that the system can be described by the

model given in (3.10).

o

4.1 The Fundamental Problem in Residual Generation

In this section, a restricted version of FDIFP is introduced and solved. First,
we assume that only two failure events are present, and it is desired to design a
residual generator which is sensitive to the failure of the first actuator but is
insensitive to the failure of the second actuator. This restricted version of FDIFP

will be called the fundamental problem in residual generation (FPRG). Later on,

FPRG wili be extended to more general cases.
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Consider the model given ir (3.10) with £ = 2,

z(t) = A z(t) + Bu(t) + L; my(t) + Ly mo(t),

y(t) = C z(¢). (4.1)
The dimensions of the maps shown in (4.1) are the same as the ones given in (3.1)
and (3.2). The term L; m,(¢) represents the faulty behavior of the actuator that we
are trying to monitor, i.e., a nonzero m(t) should show up in the output of the
residual generator r(t). Similarly, L, my(t) represents the faulty behavior of the

other actuator which should not affect r(¢). As usual, our observables are the

measurement y({) € Y and the known actuation signal u(t) € U.

As in Chapter 3, consider a residual generator of the form

w(t) = Fw(t) — E y(t) + G u(t),

r(t) = Mw(t) — H y(t) + K u(t). (4.2)

!
Note that this is the most general form of a realizable LTI processor which takes
the observables y(¢) and u(t) as inputs and generates a residual r{¢).

Let us rewrite (4.1) and (4.2) as follows:

z(t) A o]J=y] [B L][un] [L

. = + + 7"1([))

w(t) -ECF Jlwt)y] L@ o |[mt)] |0

)= [-HC M| [zt ]+ K 0] [uyl (4.3)
| w(t) | _m.z(t)j

Define the extended spaces X® := X @ Wand Us=U D M, Let (r,w)€E Lt

and (u, my) € Ue. Equation (4.3) can be rewritten as follows:

2(t) = Aze(t) + Be uf(t) + Lem,(1),
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r(t) = Heze(t) + Keut(t). (4.4)

The maps A¢, L¢, B¢, H¢, and K¢ in (4.4) have obvious correspondence with the

matrices shown in equation (4.3).

Consider the systems given in (4.3) and (4.4). Temporarily, we define FPRG
as the problem of finding F, E, G, M, H, and K such that the following transfer

matrix relationships hold:

ué = (u, mp) —»r =0, (4.5)

m; + r left-invertible. (4.6)
|
The relation (4.5) indicates that my(¢) and u(¢) should not affect the output of the

residual generator, r{t). Also, (4.6) states that if r(¢t) = 0, then m,(¢) must be zero,
i.e., i the first actuator fails, then its effect should show up in the residual vector
r(t), or equivalently the mapping from m(t) to r(¢) should be one to one. A brief

review of the concept of left invertibility is given in Definition 8 of Section 2.2.

When the condition in (4.5) is satisfied and the first actuator is functioning
properly, all signals r(t) obtainable by varying the initial conditions z(0) and w(0)
are exactly those outputs obtainable by varying the initial condition e(0) of
e = Fye, r = Mj e, for some observable pair (My,Fg). We call the spectrum of F

the dynamic of the residual generator. Naturally, in FPRG in addition to the

conditions in (4.5) and (4.8), the dynamic of the residual generator should be stable.
Because when no failure is present, the residual caused by the initial condition

mismatch should die away.

For practical reasons, the requirement of left invertibility given in (4.6) can be
relaxed and replaced by the condition of input observability (see Definition 10 of

Section 2.2). We note that even if the system relating m,(¢) to r(¢) is not left
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invertible but is input observable, it will be extremely unlikely that an arbitrary
nonzero m(¢) will hide itself in the null space of the mapping from m,(¢) to r(f) so
that the failure can not be detected. (See Section 2.2 for an example of an input
observable but not left invertible system.) Hence, if we replace (4.6) with the
condition of input observability, then almost all failure modes will show up in the
residual r(#). Also in identifying the failure, only the magnitude of r‘t) and not its
functional behavior is used. Therefore, the ideal requirement of left invertibility is

really an overkill for the failure detection and identification purposes.

It may be argued that we can even relax the condition of input observability
and require only that the transfer from m(s) to r(s) should he nonzero. However,
then it is not necessarily possible to reconstruct m,(¢) from r(t), but the input
observability implies that if the failure mode m(¢) has some rather mild properties,

then it is still possible to reconstruct m (¢) from r(¢).

In addition, if we are dealing with a single-input multi-output system, i.e., the
transfer function is simply a column vector, then input observability automatically
implies left invertibility (see Lemma 11 of Section 2.2). In the context of the FDI
problem, the transfer matrix T(s) relating m;(s) to r(s) is usually a column vector
(or an scalar), since the failure signature L, is usually a column vector. Therefore,
in the FDI problem typically the input observability of T\s) is equivalent to its left
invertibility.

Based on these arguments, we restate FPRG as follows. Consider the system
given in (4.3) and (4.4). FPRG is the problem of finding F, E, G, M, H, and K such
that:

ué = (u, my) —r =0, (4.7)

m, — r input observable, (4.8)
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and the dynamic of the residual generator is stable.

We need a few preliminary results for deriving the solvability condition of
FPRG. Let X¢ be as defined previously in this section, and define the embedding
map @ : I — X°as in (3.21) (see also (3.22)). It is relatively simple to relate the
unobservability subspaces of the two systems in (4.4) and (4.1). The following

fundamental result is crucial to the solvability condition of FPRG.

Proposition 1: Let S¢ be the unobservable subspace of (H¢ A¢);
then Q~18¢is a (C,A) unobservability subspace (46, 41, 40}. ®

Less precisely, @Q—15° can be written as S¢N X. With this result at our disposal,

the solvability condition of FPRG is immediate.
Theorem 2: FPRG has a solution if and only if
*NLy=0, (4.9)

where $* =inf §(L,). Also if (4.9) holds, then the dynamic of the
residual generator can be assigned to an arbitrary symmetric set A.

Proof: (only if) Consider the systems given in (4.4) and (4.3). For
(4.7) to hold, we should have K¢ = 0, and

<AB¢> C §¢ := <Ker He|A>. (4.10)
Equation (4.10) implies 8¢ C S¢ hence,

Q-18eC § := Q-1se.
By Proposition 1, S is a (C,A) u.o.s. Also @~18¢ D L,. Therefore,

S € S(L,). (4.11)
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For (4.8) to hold, we should have L® monic and L®N §¢=0; thus we
should have L; monic and

Q-l([_e N S‘) = Q—ch n Q—lse

=LlﬂS=0. (4.12)

Obviously (4.11) and (4.12) hold only if (4.9) is true.

(if) Using Theorem 16 of Section 2.3, let D, € D(§%),
P: X — X/S* be the canonical projection, and Ay := (A+DyC : X/S*).
Let H be a solution of Ker HC = $* + Ker C and M be the unique
solution of MP= HC. By construction, the pair (M,Ag) is observable,
hence there exists a D; such that o(F) = A where F := Ay+D;M and A
is an arbitrary symmetric set. Let D = Dy+P~"DH, E = PD, G = PB,
and K = 0. Define e(t) := w(t) — Pz(t). Then

¢ =w— Pz = Fw— Ey+ Gu — PAz — PBu — PLym; — PLym,
= Fw -~ PDCr — PAx — PLim,

= Fe bt Plel
(Note that PL, == 0, since L, C §*.) Also
r= Mw— Hy = Mw — HCx = Mw — MPr = Me.

Thus, the system relating m,(¢) to r(t) is (M,F,—PL,). (Hence the transfer
matrix -T(s) relating m(s) to r(s) is=M{s/—F)~1PL;.) Obviously, the
requirement in (4.7) is satisfied. Moreover, $* N L, =0 and L, monic
imply that PL, is monic. Also, (M,F) is observable; hence from the
definition of input observability it follows that the system relating m(t)
to r(¢) is input observable and (4.8) is satisfied. &

Note that the major step in the design of the filter is to place the image of the

second failure signature in the unobservable subspace of the residual, r(t), and then
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use the procedure given in Section 2.1 to factor out the unobservable subspace so
that the order of the filter is reduced. Also, the necessary condition simply states
that the image of the first failure signature should not intersect the unobservabie
subspace of the residual generator, so that a failure of the first actuator shows up

in the residual r(¢).

Moreover, the failure signature L; is only used to check the solvability
condition, and the actual construction of the filter is independent of L;. Hence the
filter given in Theorem 2 can be used to identify any actuator failure with
signature L, if $* N L3 = 0. Also the failure of any other actuator with signature

L, such that L, C §* will not show up in r{t).

We can state an interesting interpretation of the solution to FPRG.
Referring to Theorem 2, the dynamic of the residual generator can be rewritten as

follows:

() = Ag w{t) — PDoy(t) + G u(t) + Dyr(t),

r(t) = Mu(t) — H y(t). (4.13)

Note that by choosing Dy, and H appropriately, we change the observability
property of (HC,A+DyC) in such a way that the second actuator failure becomes
unobservable from the residual. Next, by injecting the residual r{¢) back to the
filter, we modify the spectrum of the residual generator as we wish. Clearly, the

residual generator given in (4.13), can be thought of as an observer for the

hypothetical system

z(t) = Ag 2(t) + (),
yn(t) = M 2(¢), (4.14)
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where u(t) := ABu(t)—Dyy(t)) is the hypothetical input, and y,(¢) := H y(t) is
the hypothetical measurement. This interpretation of the residual generator can be
used effectively in computing an appropriate gain D, that minimizes the effect of

measurement and process noise on the residual r{t).

To illustrate this point, consider the original system model given in (4.1) and
assume that an additive white noise v,(t) with covariance Elv(t)v,'(7)] = R, §(t—7)
is entering the system as an input. Also assume that the measurement y(¢) is
corrupted by an additive white noise v,(¢) with covariance Elvs(t)vy/(7)] = Ry 6(t—7)
and uncorrelated with the input noise vj(t). Now if we incorporate the effect of v,

and v, on the hypothetical system of (4.14), we get

2(8) = Ag 2(2) + u4(t) + vy(t),

yp(t) = M z(t) + vy(t), (4.15)
where v3(t) := Pv(t)—Dyv,(¢)) and vy(t) := Huvy(t). Note that v; and v, are now

correlated. A simple computation shows that the intensity Rz, of the noise driving

the system in (4.15) is

Ua(t) ( Us’(t), U4l(t) ] PRIP’+PDoRQDo'P' —PD()RQH'
R34 = E = 4.16)
04“) —HR-:_;’Do’P' HRQH'

With the objective of whitening the residual r{¢), simply design a steady state

Kalman filter for the system given in (4.15) with the noise statistics as in (4.18).

Then use this steady state Kalman gain for the matrix D, of (4.13).

Note that in order to compute the gain matrix D; as the solution of an

optimal estimation problem, we need the covariance matrices R, and R, which

most probably are difficult to determine. However, a non stochastic approach is to
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choose D, so that the transfer matrix T[s) = M{sI—A,—D,M)~!PL, has certain

nice properties. For example, it is not difficult to see that increasing the

bandwidth of T(s), which is desirable for fast response, can translate into low
steady state gain which can lead to difficulty in distinguishing the response duae to
a failure from that due to background noise. Therefore, the gain matrix D; can be

used to find a compromise between different conflicting desirable properties.

Another important observation is that the sensitivity of the solutioﬁ strongly
depends on the choice of the matrices Dy and H. Note that these two matrices are
the only parameters used in fixing the unobservable subspace of (HC,A+D,C).
Therefore, an important practical consideration is to choose Dy and H such that
the unobservable subspace of (HC,A+D,C) is made relatively insensitive to changes

in the system matrices A and C.

It is clear that the order of the residual generator given in Theorem 2 is
n—d(S*), and this order is in general conservative. This is because there may be a
u.0.s., S, which satisfies (4.9), and contains $*. Clearly, using this § the order of
the residual generator can be further reduced. Unfortunately, there is no
systematic way of constructing such non-infimal unobservability subspaces.
However, for the case of monic C, the minimal solution is obvious, and this special

case is discussed in Section 4.1.2.

Also, it follows immediately from (4.9), that the independence of L; and L, is
a necessary condition for the existence of a solution to FPRG . This is intuitively
obvious, because if the failure signatures are not independent, then there exist
failure modes such that Lym,(¢) = Lom,(t), and there is no way to distinguish

between these two failure events by observing the output of the system.

The reader who is familiar with the disturbance decoupled estimation
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problem (DDEP) [46, 4] can readily recognize the relationship betweez DDEP and
FPRG. However, these two problems have subtle differences which completely
distinguish them from each other. In DDEP, the state that is to be estimated is
given as part of the problem statement. In FPRG, we have to find that part of the

state space that can be estimated even in the presence of unknown input muy(¢).

Now the issue of generic solvability is discussed. Genericity is a qualitative

measure that can be used to decide whether it is almost certain that a problem is
solvable if all the elements of the matrices modeling the problem are chosen
arbitrarily. If a matrix equation is violated only for very special choices of entries
of the matrix (more specifically, for choices corresponding to algebraic varieties in
the parameter space), then the equation is said to be generically satisfied. We refer
the reader to [50] for a thorough discussion of this subject, and here only list a few

important results that one should know about genericity.

Let A, C, and L be arbitrary matrices with dimensions nXn, {Xn, and nXm

with m < n; then

- The generic rank of L is m.

- Let W* := inf WL). Then generically

{L, ifm<lI
L ifm>I

- Let $* := inf §(L). Then generically

s*

{L, ifm<l
L ifm>1



Note that the set of points on which the above generic conditions do not hold has a
Lebesgue measure of zero. However, in some actual problems the generic

conditions may not hold.

Now the above facts are used to state the generic solvability of FPRG.

Proposition 3: Let us assume that A, C, Ly, and L, are arbitrary
matrices with the respective dimensions nXn, IXn, nXky, and nXk,.
Then FPRG generically has a solution if and only if

ky+ky <n, (4.17)

ko < L. (4.18)

Proof: (only if) As we mentioned previously, the independence of L,
and L, is a necessary condition for the existence of a solution; hence,
(4.17) follows immediately. Also, if I < k,, then generically $* = X, and
obviously (4.9) can not hold; thus (4.18) is necessary.

(if) If (4.17) holds then L, and L, are generically independent. Also
if { > ko, then S§* defined in Theorem 2 is generically equal to L,.
Therefore, (4.18) is generically satisfied and FPRG has a solution. X

Note that if the $* defined in Theorem 2 is used to design a residual generator,

then the generic order of the processor is n—k,.

Now we solve a simple example to illustrate the design procedure. Consider

the system given in (4.1) with

0 3 4 1 -3 010
A - 1 2 3 ’ Ll = '.5 y L2 —_ l ’ C = )
0 2 5 ) 0 0 0 1

and B = [, L,]. Now assume we want to design a residual that is sensitive to the

!
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failure of the first actuator, and is insensitive to the failure of the second actuator.

First, let us compute $* defined in Theorem 2. Using UOSA,

§* =

O~ W
OO

Clearly L; N $* = 0; therefore, FPRG is solvable. Now we want to use the
procedure given in Theorem 16 of Section 2.3 and Theorem 2 here to find the F

matrix with arbitrarily assignable spectrum. First we characterize the elements of

D($*). Let Dy = [d;;] (i € 3,j € 2); then Dy € D(S*) if and only if

0 3+d,, 4+d), |[-3 1
[0 0 1] |1 2+d, 3+dy, || 1 0 [=0.
0 2+d,, 5+d;, 00
This equality implies d3; = —2, and all other d;; are arbitrary. Let us choose Dy as
follows:
0 o
D0= 0 0l
2 0

Define Ag = (A+DyC : X/S*). A simple computation shows that

-

Also we know Ker HC = §* + Ker C.  Substituting for C and ‘S* we have
H =0, 1]. Moreover, Cy := HCP""; hence Co=1. Let us choose‘Dl such that

(v

Ay=1[0 0 1]

O = O
(=3 &
W o

o(Ag+D,Cy) = {—5}. To place the pole at s = —5, we should choose D| = ~10,
and thus D = Dy+P-"D,H is simply
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00
D=]0 0
-2 -10
By Theorem 2, we have M = HCP~"=C,, E= PD = [-2, —10], and G = PB

= [.5, 0]; thus the residual generator has the following form:

w(t) = =5 w(t) — [~2, —10] y(¢) + [.5, 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>