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ABSTRACT

Statistical models are developed to calculate the conditional
probability of liquefaction as a function of earthquake load and soil
resistance parame ters. The models are based on the analysis of a catalog
(compiled in this study), which consists of 278 cases of liquefaction/
non-liquefaction occurrences. Binary logistic regression (logit
analysis) is the principal me thod used to derive the statistical models.
Non-parame tric kernel regression, as well as modifications of standard
logistic regression, are also used. Two types of models are obtained:
one uses the cyclic stress ratio (Seed and Idriss, 1871) as the
earthquake load parame ter; the other uses, as the load parameter, an
explicit function of magnitude and distance, similar to that proposed by
Davis and Berrill (1981). Both types of models use the corrected/
normalized SPT (Nq7)gg value as the indicator of liquefaction resistance.
Comparisons are made with other me thods ¢ ' liquefaction analysis.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

1.1.1 Liquefaction, Cyclic Mobility and Liquifailure

Liquefaction is the phenomenon whereby saturated cohesionless
soils (sands and silts) sﬁffer a significant loss of shearing resistance
as a result of dynamic cyclic loadings, such as those due to earthquake
shaking. In some severe situations, the saturated soil may lose all
shearing strength and become like a liquid ("quicksand") capable of flow
—- hence the terminology. Within the geotechnical engineering
profession, there are disagreements about the word "liquefaction", which
was originally used by Casagrande (1936, 1938) to describe a soil with an
"unstable” structure that collapses and flows under statically imposed
stresses. The origlnal definition was extended by Seed and his
co-workers in the 1960's to include the general loss of shear strength in
sands under dynamic loadings.

Castro (1969, 1975) has introduced the term "cyclic mobility" to
describe the less severe 1loss of shear strength in a soil with a "stable"
s tructure, when subjected to dynamic loading. Cyclic mobility would give
rise to the development of excessive strains in a soil, but complete
collapse and flow would not occur. "Liquefaction" and "cyclic mobility"
are considered by Castro and his co-workers to be inherently different
phenomena in terms of soil behavior mechanisms. Whitman (1985) has

suggested the term "liquifailure" to encompass both flow and non~-flow
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types of phenomena and the terms of "liquefaction” and "cyclic mobility"
for the more specific conditions.

Typically, earthquake-induced liquefaction or ncyclic mobility
occurs at a depth below the ground and results in some manifestation at
the ground surface in the form of landslides, surface cracking, ground
settlements, sand boils, distress to man-made structures or a combination
of these. However, it is possible for liquefaction to occur at some

depth without resulting in a surface manifestation (Ishihara, 1985).

1.1.2 A Definition

This thesis deals with the statistical analysis of case studies of
actual field observations of liquefaction or non-liquefaction at sites
subjected to significant earthquake shakings. Within the context of most
of the case studies, it is not always practical nor possible to
distinguish between true "liquefaction" and "cyclic mobility".
Furthermore, one must rely on the observations (or lack thereof) of
surface manifestations of liquefaction, and not conjecture about
whether or not "actual" liquefaction may have occurred at depth in cases
where no effects at the ground surface are seen.

Within this thesis, the use and definition of "l}jquefaction" is
taken to be the surface manifestation of any phenomenon associated with a
signficant loss of shearing resistance as a result of earthquake loadings
of deposits of saturated cohesionless soils. The term "liquefaction",
defined in this manner, is consistent with the term "liquifailure"

proposed by Whitman (1985).
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In later chapters, various statistical models are presented to
evaluate the probability of liquefaction. It is important to realize
that liquefaction is used here to mean that a surface manifestation
concurrently occurs. This affects the way in which the statistical
models are to be implemented in liquefaction risk analysis as well as the

interpretations of the practical significance of the results.

1.2 Motivation

1.2.1 Uncertainties in Conventional Analysis

Several deterministic methods have been proposed to evaluate
earthquake liguefaction potential. These me thods range from purely
empirical to highly analytical and require various degrees of laboratory
testing. The prevalent approach at the present time is to use a
semi-empirical chart such as that shown in Figure 1.1(a). The horizontal
axis represents the strength of the soil as measured by a normalized
standard penetration resistance Ny and the vertical axis reflects the
dynamic shear stress induced by an earthquake, normalized and modified by
several parameters. If a point corresponding to a possible future
earthquake at some site plots below the appropriate curve, it is
concluded that no liquefaction would occur. Although such charts are
empirical, they are founded upon a solid basis of theoretical study and
laboratory investigation.

The curves in Figure l.1(a) are based upon the study of data such
as that in Figure 1.1(b), where each point represents an actual
observation at a site where liquefaction did (solid dots) or did not

(open circles) occur. It is evident that there is no sharp demarcation
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between the two sets of observations and that several observations of
liquefaction actually plot below the recommended dividing curve. This
raises the question: How far should a point (representing a design
situation) fall below the recommended curve to indicate an adequate
margin of safety?

The problem is made more complicated by uncertainty on the actual
location of the points, which results in part from lack of data (e.g.,
peak ground accelerations at some sites have not been measured, but are
estimated from magnitude and epicentral distance), and in part from
imprecise measurements (e.g., of the standard penetration resistance).
There is also some disagreement about where to draw the line separating
liquefaction and non-liquefaction. Various investigators using different
sets of data, and relying to different degrees on laboratory results,
have proposed the various lines shown in Fig. 1.2. It should be noted
that there is even disagreement as to the basic shape of the line, i.e.

whether it should be concave upward or concave downward.

1.2.2 Probabilistic versus Deterministic Methods

Deterministic methods of analyzing soil liquefaction give a yes/no
answer as to whether liquefaction will or will not occur, or an answver in
the form of a factor of safety. In either case, some consideration of
probabilities must be made -~ either implicitly or explicitly -- to
answer questions such as: 1s the risk of liquefaction high enough to
justify a large monetary expenditure to improve the ground at a project
site, or should the investment already made at that site be abandoned?

The point here is that deterministic answers by themselves do not
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generally provide guidance in decisions where uncertainties in potential
failure must be weighed against potential cost.

In the context of civil engineering projects, including those
involving ligunefaction, the existence of risks needs to be recognized and
assessed. This point was emphasized recently by Whitman (1984) and
earlier by Casagrande {(1965). There are some significant advantages in
using probabilistic me thods to assess the potential for liquefaction.

The risk of liquefaction can be compared in equivalent terme to the other
risks to which a structure is exposed. Uncertainties in the different
inputs can be treated systematically, and those factors having the most
influence on the risk can be more readily identified. Thus,
probabilistic methods augment the decision process and enable a more

effective transfer of experience based on subjective decisions.

1.2.3 Limitations of Previous Studies

Several investigators have tried to quantify liquefaction risk
through the use of probability and statistics. Their efforts to date
have been somewhat unsuccessful due to the following:

1) For probabilistic approaches, there is a lack of universally

accepted physical model of liquefaction and 1limi ted
understanding of all the factors that contribute to the
phenomenon.

2) For statistical analyses, inappropriate procedures have been
applied in some instances. For example, use has been made of
discriminant analysis without recognizing that some of

the assumptions underlying this method are violated in the
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liquefaction case. In addition, uncertainty and bias in the
data have never been modeled oxr accounted for in the fitting
of statistical models.

A more detailed discussion of previous probabilistic and statistical

approaches to liquefaction analysis is presented in Chapter 2.

1.3 Objectives and Methods

The purpose of this thesis is twofold. The first is to use
appropriate statistical tools to extract information from available data
on occurrences and non-occurrences of liquefaction. An important result
of the analysis is the identificaticn of earthquake iocading and soil
resistance variables that are statistically "significant" or
"insignificant" in liquefaction analysis, thus providing insight into the
underlying physical mechanisms of liquefaction.

The second purpose of the thesis is to develop simple and
practical procedures for evaluating liquefaction risk. Charts similar to
Fig. 1.1 are developed, but with lines corresponding to various
liquefaction probability values. These procedures would be useful in
site-specific evaluations of liquefaction potential and also in
developing zoning maps of liquefaction hazard.

This thesis presents the use and development of a class of
statistical methods applied to the analysis of historical liquefaction
data. In contrast to previously used techniques, these methods

(a) are mathematically appropriate for the quantification of

liquefaction probability,

(b) allow one to compare alternative selections of earthquake
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intensity measures and soil resistance parameters, and

(c) can explicitly incorporate uncertainty and bias in the data.
One of these methods, known as logit analysis or logistic regression, has
been applied in other disciplines, notably biological assay, medicine,
econometrics, and transportation demand analysis.

Logit analysis is a particular form of a larger class of methods
known as dichotomous regression, where the response variable is "binary",
e.g., yes/no, success/faiiure, death/survival, or in the present case,
liquefaction/nc liquefaction. However, a limitation of logistic
regression is that a certain mathematical (parametric) form is assumed in
analysis. This is analogous to the assumption of a straight 1line
relationship between the two variables in a simple least-squares linear
regression. Nonparametric methods, which do not require such
assumptions, were developed as part of the research and also applied to

the liquefaction data.

1.4 Scope and Outline of the Thesis

Chapter 2 of this thesis presents a review of previous research
and applications of probability and statistics in liquefaction analysis.
The review is conducted within the framework of seismic risk analysis,
which is the natural end product of such probabilistic or statistical
studies.

Chapter 3 describes the catalog of liquefaction case studies which
was compiled for this research. The methodology of the data compilation
is outlined in detail to elucidate the problems encountered and judgments

made in the course of that compilation. The limitations of the data base
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are important details that must be considered in the interpretation of
any results obtainecd from analysis.

In Chapter 4, a éescription of the logistic regression me thod is
first presented, and statistical models of liquefaction occurrence are
then formulated. Problems of consistency with physical notions of soil
liquefaction behavior are considered.

Chapter 5 documents the development of various nonparame tric
estimators of liquefaction probability. The nonparame tric me thods were
used concurrently with logistic regression primarily to validate the
ma thema tical (parame tric) forms assumed in the logit models.

Chapter 6 considers various modifications of the basic logistic
regression model, to account for statistical measurement errors and
Liases in the data. The logistic model is reformulated so that different
weights can be assigned to different case study data, adding flexibility
to the regression procedure.

in Chapter 7, the statistical models developed in Chapter 4 are
considered for implementation in seismic risk analyses. Calculations are
presented which illustrate the differences in estimated risk that result
for various models developed in this study.

A summary of the thesis, the conclusions drawn from the research,

and suggestions for future work, are presented in Chapter 8.
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CHAPTER 2

REVIEW OF PREVIOUS RESEARCH

2.1 Introduction

Liquefaction of soils is a complex and multifaceted problem on
which a great deal of research has been done. The purpose of this
chapter is to review a reiatively small subset of that body of work
which specifically pertains to the use of probabilistic and statistical
methods in liquefaction analysis. The review is presented within the
framework of seismic risk analysis, since the application of most
probabilistic or statistical methods are ultimately intended for use
within such a framework. For more general reviews, reference should be
made to the papers by Yoshimi et al. (1977), Seed (1979) and Ishihara
(1985). However, probably the most comprehensive and current review is
the report recently published by the National Research Council (NRC,
1985), which resulted from a workshop on liquefaction held at M.I.T. in
March, 1985.

Section 2.2 presents an outline of the framework that is commonly
used in liquefaction risk assessment and Section 2.3 briefly describes
the uncertainties in the determination of earthquake occurrence and
intensity. These two sections are meant to provide the background
material to put the objectives of this study in perspective. Section 3.3
focuses on the calculation of conditional probability of liquefaction,
given the earthquake intensity and soil resistance parameters. In
subsequent chapters, where the meaning within the context is clear, the

term "conditional" is sometimes omitted.
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2.2 The Risk Analysis Framework

The possibility that liquefaction will occur at a given location or
project site is a risk that should be taken into account in project
planning and design. Probability and statistics provide a systematic way
of identifying and quantifying those risks which arise from the following
sources:

@ Uncertainty on the magnitude and location of earthquakes that
can potentially affect the site.
® Uncertainty on the acceleration and duration of ground motion
motion at the site, resulting from an earthquake of given
magnitude and location.
@ Uncertainty on the physical model of soil liquefaction (model
uncertainty).
® Uncertainty on the parameters that define such a physical model.
The general steps in earthquake risk analysis, as applied to the
problem of liquefaction, are indicated in Fig. 2.1. There are two
essential parts. One part deals with the probability that earthquakes of
various sizes will occur near the site of interest; this portion is
primarily the province of the seismologist. The second part deals with
the probability that liquefaction occurs, given certain earthquake
characteristics and soil conditions; this is primarily the concern of the
geotechnical engineer. The probabilities from these two parts must be
combined and summed or integrafed over all possible earthquakes to give
the probability of liquefaction.
To mathematically formalize the risk analysis procedure, the

following generalized notation is introduced:
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e let ¥ designate a set or "vector" of earthquake load parameters
(e.g. ¥ = (a,M), where 'a' is the peak site acceleration and M is
the earthquake magnitude).
® Iet Q designate a set or "vector" of liquefaction resistance
" parameters (e.g. Q = ((Ny)gg, FC), where (Njy)go is the
normalized/corrected SPT resistance and FC is the fines content
in percent.
e Let Y be an indlcétor of liquefaction such that ¥=1 if
liquefaction occurs and ¥Y=0 if it does not occur.
Assume furthermore that the occurrence of earthquakes can be modelled as
a stationary Poisson process (See Section 2.3.2). Then the probability
that liquefaction occurs at a specific site within a given time period
can be expressed as:

P(Y=1) = [{1 - exp[-AT[P(Y=1|Q,¥)g(¥)d¥]}g(Q)dQ (2.1a)
2 y

For the usual case of small values resulting from the product )\T times
the integral over ¥, P is well approximated by:

P(Y=1) =~ AT[ [ P(Y=1|Q,¥)-£(Q)-g(¥) dydQ (2.1b)
Q¥

In the equation above:
e P(Y=1]|Q,¥) is the conditional probability of liquefaction given
f and Y.
e g(¥) is the joint probability density function of the earthquake
load parameters.

e £(Q) is the joint probability density function of the soil

resistance parameters.
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® )\ is the overall rate of earthquake occurrence (e.g. earthquakes
per year) from all seismic sources within a given neighborhood
of the project site.

e T is the time period under consideration (e.g. project life in

years).
Egqn. 2.1 is derived based on modelling liquefaction as a "Poisson process
with random selection," i.e. liquefaction does not occur with every
generic earthquake, but only for randomly "selected" earthquakes. The
rate of liquefaction occurrence is thus a fraction of the earthquake
occurrence rate ). This fraction corresponds to the probability that a
generic earthquake will result in liquefaction and is represented by
integral over ¥ in Egn. 2.1(a). Details of the derivation may be found
in McGuire et al. (1978,1979). Egn. 2.1 can be easily adapted to account
for a multiplicity of source zones with different occurrence rates ) and
densities g(¥,; see Atkinson et al. (1984). The integrals in Eqn. 2.1 are
usually evaluated numerically and represent the generalized summation of
all the probabilities associated with each of the possible combinations
of earthquake magnitudes, locations, and site conditions. As a practical
matter, the integral over @ is usually not calculated, due in part to the
difficulty of quantifying f(Q).

The above general formulation for assessing the probability of
liquefaction at a site is adapted from the seismic hazard methodology
originally proposed by Cornell (1968). Methods of liquefaction risk
analysis have been proposed by McGuire et al. (1978, 1979), Yegian and
Whitman (1978), Haldar and Tang (1978), Yegian and Vitelli (1981a,
1981b), Chameau and Clough (1983), Atkinson et al. (1984), and

Kavazanjian et al. (1985). All of these methods have the above framework
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in common, but differ in the evaluation of the functions P(Y=1lﬂpi)' £(Q)
or g(¥) or in the integration algorithm.

It should be noted that the probability of liquefaction is always
evaluated in the context of a specified time interval. 1In a seismically
active region, the probability of liquefaction at a susceptible site
increases with the time of exposure (T) to the earthquake risk. Though
probabilities of liquefaction may in some instances be negligibly small,

zero risk is only theoretically possible fer T = 0.

2.3 Earthquake Load Parameters

The variability in the earthquake load parameters is generally
dealt with in the context of seismology and seismic nazard models, such
as those by Cornell (1968) and Der Kiureghian and Ang (1977). The
quantifications of earthquake hazard is a complex task and is described
briefly here in terms of how it interfaces with various aspects of

liquefaction risk analysis.

2.3.1 Seismic source zones

The first step in evaluating seismic hazard is in the definition
of regions where earthquakes originate. Seismic source zones can be
faults or regions that can be wrapped based on past seismicity. It is
usually assumed that earthquakes of any given magnitude have an equal
chance of occurring anywhere within each seismic zone. 1In the absence of
well defined earthquake mechanisms in many geographic regions or for the
sake of simplicity of analysis, it is sometimes assumed that the seismic
source zone is circular and centered at the project site, as shown in

Fig. 2.2. However, such simplistic procedures are becoming less common.
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In more sophisticated models or algorithms, where seismicity is
relatively well defined, severai irreqularly shaped seismic source zones

may be defined as shown in Fig. 2.3.

2.3.2 PRates of Seismic Activity

The rate of seismic activity in a source zone 1is usually
determined based on the analysis of historical seismicity. It is
customary to assume that the cccurrence of earthquakes is a stationary
Poisson process in time. "Stationary" implies that the rate of
earthquake occurrence (expected number of earthquakes )ier year) is
constant over time. "Poisson" implies that the occurrence of future
earthquakes is independent of earthquakes that have occurred in the past.
These two assumptions are generally not strictly valid. In the framework
of plate tectonics, after the release of strain in the earth's crust
during a large earthquake, a certain period of time is required to build
up enough strain to again cause another large earthquake rupture. Though
the assumption of a stationary Poisson model for earthquake occurrence is
frequently made in practice, recent advances in seismology and earthquake
prediction may offer better representations of earthquake occurrences
(Patwardan and Kulkarmi, 1980; Kiremedjian and Anagnos, 1984; Agnanos and
Kiremedjian, 1984; Schwartz and Coppersmith, 1984; Sykes and Nishenko,

1984).

2.3.3 Seismic Source Mechanisms

There are two major seismic risk models in use, which differ in
the modelling of the nature of the seismic source. The Cornell (1968)

model assumes that the energy released during any earthquake is initially
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concentrated at a point and propagates outward from that point. 1In
contrast, the model by Der Kiureghian and Ang (1977) assumes linear
sources (faults) and that the energy released is not concentric about a
point, but rather propagates outward from a finite length of fault
rupture. Thus, the largest contribution to earthquake intensity at a site
may not be related to the location of the initial fault rupture, but
rather to the slip that occurred closest to that site. The Der
Kiureghian and Ang (1977) model is applicable to seismic regions such as
California, where the strike-slip faults causing earthquakes are well
defined and have been mapped extensively. By contrast, in regions where
the sources and perhaps even the nature of seismic activity is not well

defined, the Cornell (1968) model is probably more appropriate.

2.3.4 Local versus Global Intensity Measures

Most liquefaction risk analyses describe the intensity of
earthquake shaking at the site in terms of peak acceleration and
duration. This characterization (sometimes called the A&D approach) is
represented by the methods proposed by McGuire et al. (1978, 1979),
Haldar and Tang (1979), Chameau and Clough (1983), Atkinson et al. (1984)
and Kavazanjian et al. (1985). Acceleration is usually obtained from an
attentuation law, and duration (usually stated in terms of number of
equivalent load cycles) is given as a function of magnitude. However,
there is uncertainty in the relation between duration and magnitude and
in the attenuation of acceleration with distance. Formal treatment of
uncertainty in attentuation was introduced by Cernell (1971) and is
commonly incorporated into earthquake hazard analyses. For example,

Atkinson et al. (1984) consider a log-normal dispersion of acceleration
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around the median value from an attenuation relationship.

An alternative approach, using "global" parameters such as
magnituie (M) and distance (R), sometimes called the M&R approach, is
represerited by the methods of Yegian and Whitman (1978), Yegian ard
vitelli (1981a, 1981b) and Youd and Perkins (1978). The M&R me thods are
more direct and arguably easier to use within a risk analysis framework,
especially for applications such as large-scale mapping of liquefaction
potential. Specifically, these methods eliminate the need for the
intermediate step of applying an attenuation law with its attendant
considerations of uncertainty. Furthermore, the appropriate choice of an
attenuation law from amcng the many available requires considerable
judgement. However, use of M&R methods requires that the probability of
liquefaction be related directly to magnitude and distance, which tends
to obscure local site effects that may influence the occurremnce of
liquefaction. This will be mcre clearly shown by the results presented

in subsequent chapters.

2.4 Conditional Liquefaction Probability

2.4.1. Types of Formulations

The conditional liqueraction probability P(Y=1|Q,¥) is the
probability that a site liquefies, given a specified intensity of
earthquake shaking and soil deposit parameters at the gite. Some
liquefaction risk procedures, such as those presented by McGuire et al.
(1978, 1979), Youd and Perkins (1978) Davis and Berrill (1982), and
Atkinson et al. (1974) do not account for any uncertainty in the

prediction of liquefaction if the load and resistance vectors Q and Y are



29
given. That is, the conditional probability function P(Y=1|ﬂmi) is
assumed to take on values of one or zero (liquefaction or no
liquefaction), which represents a purely deterministic formulaticn. All
the uncertainty in their liquefaction risk assessments arises from
uncertainty of future earthquake occurrence and on the local soil
properties.

Actually there is uncertainty in any method used to de termine
whether or not liquefaction will occur given Y and Q. All analyses,
whether they are represented by a simple graph or embodied in the form of
a complex computer program, involve some theoretical model for the
physical behavior of a site. Model uncertainty arises as a result of
simplifications or assumptions made in formlating the model, and even if
all the input parameters were known precisely, there would still be some
uncertainty about the model prediction of liquefaction behavior. An
example is the original semi-empirical liquefaction model proposed by
Seed, Arango,and Chan (1975) which is represented by a plot of the cyclic
stress ratio CSR (1/0o') versus the corrected SPT resistance Nj (i.e. the
same format as Fig. 1.1). In that model, no provisions were made for
duration effects of earthquakes, the differences in methods of obtaining
Ny, or the effects of fines content. The neglect of these factors was the
source of uncertainties in the the original model. Even though these
factors have since been incorporated into later versions of the model,
some model errors still remain. Examples of possibly significant
variables not taken into account include the frequency content of strong
motion shaking, and specifié drainage conditions in a soil profile. In

additicn, there are uncertainties in the inputs to any model. For
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example, it is well known that the measurement of N; is inexact and is
subject to considerable statistical error.

Approaches which have been used to obtain the conditional
probability of liquefaction in other than yes/no terms can be categorized

as probabilistic or statistical:

® Probabilistic methods involve the use of behavioral models for

liquefaction at the site, estimating the inherent uncertainties
in the parameters of the model, and then propagating these
uncertainties through the model.

® Statistical methods generally deal with the extraction of

information from data; in the case of the liquefaction problem,

"data" usually refers to field observations of instances of

liquefaction or non-liquefaction.
The following sections describe in more detail the application of
deterministic rules, probabilistic methods, and statistical methods that
have been used to calculate the conditional probability of.liquefaction.
It should be noted that deterministic rules for predicting liquefaction
are sometimes derived using statistical methods. 1In these cases,
statistics is used merely as a data analysis tool and not as a means of

constructing non-deterministic models.

2.4.2 Deterministic Rules

An example of the use of a deterministic rule is in the risk
analysis procedure of Atkinson, Finn, and Charlwood (1984). Basically,
these authors use a version of the det:rministic liquefaction model
originally formulated by Seed and Idriss (1971) and later modified in

various ways, e.g. see Seed, Idriss, and Arango (1983). In the procedure
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of Atkinson et al (1984), the deterministic rule can be written as
follows:
1 if CSR > CSRcrit
P(Y=1|CSR, M, Ny) = | (2.2)
0 otherwise
in which CSR is the cyclic stress ratio (also frequently denoted as r/;;
or 1/65' ), M is the earthquake magnitude, and Ny is the corrected SPT

resistance. The cyclic stress ratio CSR is calculated by the formula

CSR = 0.65:;ai (2.3)

all.a
< <
n

where a is the peak ground acceleration, g is the gravitational
acceleration, oy and‘;; are the total and effective overburden stresses,
and rg is a depth reduction factor. [See Chapter 3, Sec. 3.3.2 for more
details regarding the Seed-Idriss method.] The quantity CSRoyrit is a
function of M and Ny and is defined by boundary lines which, for any
given M, separate liquefaction and non-liquefaction events in the CSR
versus Nq plane; see Fig. 2.4.

The Seed-Idriss analysis, which involves the calculation of CSR, is
an example of an A&D liquefaction model. The cyclic stress ratic is
directly related to acceleration, and although the magnitude M is
involved in the analysis, it actually enters as a measure of earthguake
duration. An example of a deterministic rule involving M&R model in a
liquefaction risk procedure is the method proposed by Youd and Perkins
(L978). 1In their formulation, the conditional liquefaction probability

is:
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1 1f Rgp < Repjt
P(Y=1|M,Rgp) = | (2.4)
0 otherwise
Rgp is the epicentral distance and enters in this simplistic formulation
as an equivalent resistance parame ter. Note that this model does not
take into account the soil resistance at the site of interest. Rqorjt is a
function of magnitude and corresponds to a boundary line separating

liquefaction and non-liquefaction in a plot of M versus Rgp, as shown in

Fig. 2.6.

2.4.3 Probabilistic Models

Haldar and Tang (1979) have used a first order second moment
(FOSM) me thod applied to the Seed and Idriss (1971) procedure to obtain
the conditional probability of liquefaction. Basically, this involved
estima ting the uncertainty on the parame ters of the Seed-Idriss model
(i.e. a, ov,';v and rg in Eqn. 2.3) and propagating these uncertainties
through the model. A more sophisticated FOSM model has been presented by
Fardis and Veneziano (1982) incorporating the effects of pore pressure
diffusion, soil stiffness reduction, and variation of soil properties
within a stratum. In both models, the assumption of normality or
log-normality of load and resistance parameters is used in estimating the
condi tional probability of liquefaction.

Probabilistic analyses based on pore pressure generation models
have been presented by Chameau and Clough (1983). The accumulation of
pore pressure is calculated using a nonlinear formulation, based either
on laboratory data or on a basic constitutive physical model. They find

the conditional probability P(Y=1|g,!) as the probability that the pore
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pressure ratio r, equals 1, which in turn is calculated assuming random
arrivals of shear stress (or equivalent acceleration) peaks between
positive zero crossings of the earthquake record. Chameau and Clough
(1983) suggest that the distribution of the shear stress peaks can be
modelled as beta, gamma, Rayleigh or exponentially distributed. The
number of positive zero crossings is related to duration and spectral
content and may also be considered random, as is done in the application
of Chameau and Clough's mefhod by Kavazajian et al (1985).

Earlier, Donovan (1971) proposed a similar model, assuming the
variation of peak amplitudes of earthquake shaking to be distributed as a
Rayleigh probability function. 1In his method, the effects (damage) due
to the various peak accelerations in an earthquake record are calculated
based on a total stress model of cyclic loading behavior, and are summed
or integrated with a weighting function proportional to the frequency of
occurrence of the various peaks (Miner's Linear Damage Criteria).
However, the method produces a deterministic criteria for liquefaction
and not a conditional liquefaction probability.

There are two major drawbacks to probabilistic methods. First, as
indicated by the various examples, there is a fairly diverse range of
models that have been used in application, and there is no easy way to
compare the actual performance of these models. Rather, comparisons have
to be made in terms of the features incorporated in each of the models.
Secondly, the application of probabilistic methods necessitates the
assumption and specification of the probability distributions of the
inputs to the m.del. Whether they are second moment parameters (means

and standard deviations) or the entire probability distribution, the
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specification is not a trivial task and requires some Jjudgement.

2.4.4. Statistical Analyses

The predominant problem that has been addressed in the context of
statistical methods is that of how to draw the "best" boundary separating
liquefaction and non-liquefaction behavior, e.g. on a diagram such as

Fig. 2.6. This is known in statistics as a problem of classification or

discrimination. This problem has been treated by Christian and Swiger

(1975) using empirical data on site liquefaction behavior and a
statistical method known as linear discriminant analysis (e.g., see
Johnson and Wichern, 1982). Applications of discriminant analysis for
studying liquefaction have also been reported by Tanimoto and Noda
(1976), Tanimoto (1977), Xie (1979), Wang et al. (1980), Davis and
Berrill (1981, 1982, 1985) and Gu and Wang (1984).

Discriminant analysis is based on the assumption that there are
distinct statistical populations, i.e. of liquefied and non-liquefied
sites, from which random samples have been cbtained. From these samples,
a criterion is developed to classify future observations as belonging to
one of those populations. The rule for classification derived by

Christian and Swiger (1975) can be stated as:

e Classify as liquefaction if Dp 5_KA°°31°69

e Classify as non-liquefaction if Dy > ka0.31069

where D, is the relative density of the soil and A is a modified site
acceleration. This rnle can be plotted as a series of discriminant lines
in the A versus Dy plane, as shown in Fig. 2.6. The factor K is a

function which depends on the probability of misclassifying a data point
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as non-liquefaction when in actuality it is a liquefaction point. This
probability is denoted as P in Fig. 2.6, and expresses the confidence
level or degree of conservatism with which one can make design decisions
based on the associated dividing line. The probability P in Fig. 2.6 is
not the conditional liquefaction probability P(Y-llgmi). The result of
discriminant analysis is essentially the same as a deterministic rule
(see Section 2.4.2). To apply the Christian and Swiger (1975) result in
the context of evaluating iiquefaction probability using Eqn. 2.1, one
would have to interpret the rule as:

1 if Dr < KA0.31069

P(Y=1|p_,A) = | (2.5)
xa 0+ 31069

0 if Dr >

A problem with employing discriminant procedures in the analysis of
liquefaction is that the data do not represent random samples from
liquefied and non-liquefied sites; see Easterling and Heller (1976).
Underlying assumptions of normality of the data are a feature of most
discriminant analysis methods, and these assumptions are also obviously
not satisfied. Nonparametric methods of discriminant analysis have been
developed (Hand, 1981, 1982) which do not require a normality assumption,
but these methods have not been applied to the liquefaction problem.
Furthermore, it is meaningless to a certain extent to talk of
"populations" of liquefied sites and non-liquefied sites with well-
defined distributions of explanatory variables. For example, the
probability distributions of acceleration and Ny for liquefied sites will

typically be different in different regions of the world, and the meaning
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of "population" is thus not clear.

The results of discriminant analysis are also highly sensitive to
the distribution of the data. A one-dimensional schematic to illustrate
this is shown in Fig. 2.7. Suppose one has an "original" data set from
which a discriminant criterion is determined as shown in Fig. 2.7(a) by
the intersection of the tails of normal distributions fitted to the two
sets of liquefaction and non-liquefaction data. [This method of
obtaining a discriminant criterion is not used in practice, but is
presented as a simple illustration.] Then, suppose that additional
informa tion on liquefied sites is acquired due to a series of high
intensity earthquakes as shown in Fig. 2.7(b). With this additional
data, a new discriminant criterion would be obtained, even though no
changes in the data base have occurred in the central region of the plot
in Fig. 2.7. This illustrates the sensitivity of the discriminant
criterion to extremal data, which contribute essentially little
"informa tion" near the critical region in the analysis.

Yegian and Whitman (1978) presented a different classification
me thod (developed by Yegian, 1976) which they termed the "least squares
of the misclassified points". 1In essence, this method finds the line
which best separates liquefaction from non-liquefaction points based on
minimizing the sum of the squared distances between the misclassified
points and the boundaxy line. Note that an advantage of this procedure
over discriminant analysis is that it is not sensitive to extremal data
points. Atkinson et al. (1984) have used this method in part of thelr
analyses, although their algorithm also accommodates the use of the more

conservative lower bound curves from Seed (1979).
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The problem with classification methods is that the discriminant
criteria still gives a deterministic yes/no type answer to whether
liquefaction will or will not occur at a site rather than a continuous
conditional probability P(Y=1l2,g) that varies smoothly between 0 and 1.
Yegian (1976) and Yegian and Vitelli (1981a,1981b) obtain a conditional
liquefaction probability by assuming the inverse of the factor of safety
(denoted LPI) obtained using the classification criterion to be
log-normally distributed. The mean and standard deviation of 1n(LPI) are
then calculated from an analysis of the errors of the inputs, treating

LPI essentially as a deterministic criterion.
2.5 Commentary

This study is primarily concerned with the estimation of the
conditional probability of liquefaction P(Y=1|Ql1). Me thods are used
which avoid many of the problems of probabalistic and statistical
approaches that have been previously employed. Instead of treating the
statistical analysis of liquefaction data as a problem of classification,
the estimate of P(Y=1|gﬂg) is obtained through regression using an
indicator Y of liquefaction as a binary (zero,/one) response variable. A
more detailed comparison of classification versus binary regression is

presented in Chapter 4.
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BASIC PROCEDURE FOR A SINGLE EARTHQUAKE

PROBABILITY THAT CONDITIONAL PROBABILITY
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PERIOD OF TIME

l
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Fig. 2.1 Schematiic of the steps in a probabilistic liquefaction risk
analysis.
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Fig. 2.2 Circular seismic source zone centered at project s’ite for
liquefaction risk analysis. From McGuire et al. (1978%).
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Fig. 2.3 Complex set of irregularly shaped seismic zones (labeled LAB,
BOU, etc.) for liquefaction risk analysis. From Atkinson,
Finn and Charlwood (1984).
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Fig. 2.7 Schematic of sensitivity of discriminant analysis to changes in
data base.
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CHAPTER 3

LIQUEFACTION DATA CATALOG

3.1 Introduction

This chapter describes the main features of the data base compiled
for the statistical analysis of field liquefaction behavior. The data
catalog is presented in Appendix A and consists of a total of 278 case
studies, with 114 cases representing sites that liquefied during
earthquakes and 164 cases representing sites which did not. The catalog
was compiled from the synthesis of eight previously published "source
catalogs" of similar format, and enhanced by individually re-examining
many of the case studies. Several recently published case studies were
also incorpora ted.

The synthesized catalog contains data that were available tc the
writer as of the end of October, 1984, which represents the closing date
of this compilation. Attempts were made to obtain additional data by
various means, including correspondence with other researchers, but many
did not or could not respond by the closing date.

The format of the compiled catalog has been influenced by its
intended use in logistic regression, which will be described in Chapter
4. For example, one feature of the catalog is the utilization of binary
variables, i.e. variables that take on values of 0 or 1 to indicate
different categories of data. An example is a variable which equals 0 if
the soil is a clean sand and equals 1 if the sand is silty or contains a

significant amount of fines.
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It is realized that no tabulation of liquefaction case studies can
be completely exhaustive or free of error. Also, there are undoubtedly
biases introduced by any compiler of such catalogs, and future
researchers mav wish to re-examine the case studies and to correct or
eliminate certain data. Thus, the catalcg is formatted so that it may be
easily revised or expanded to accommodate new data. Commentaries are
provided in Appendix A for selected case studies, in order to illuminate
the uncertainties and judgements that had to be made for particular cases
during the compilation of the data. A more general discussion of the

problems that have been encountered during compilation is presented here.

3.2 Previous Catalogs

In 1971, Seed and Idriss published a set of data on 35 sites that
did or did not liquefy during earthquakes, including for each site, the
values of a few soil parameters, earthquake magnitude and ground motion
characteristics. In the same year, Whitman (1971) published a smaller
catalog of 13 case studies, some of which were an independent evaluation
of the Seed and Idriss cases. A more comprehensive catalog was
subsequently published by Seed, Arango, and Chan (1975), which expanded
the Seed and Idriss (1971) catalog to 38 cases, and included more
parame ters for each case study. Additional catalogs have been compiled
by Yegian (1976), Yegian and Vitelli (198la), Xie (1979), Davis and
Berrill (198l1), Tokimatsu and Yoshimi (1983), and Seed et al. (1984).

Table 3.1 sunmarizes the "source catalogs"” that were used for the
synthesis of the data base used in this study. Other catalogs exist in

the literature, but they are either of a format that was not useful for
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the present compilation, or their data are a subset of one of the "source
catalogs". From Table 3.1, it can be seen that the characteristics of
previously published catalogs have considerable variation. The Seed,
Idriss, and Arango (1975) data base, while comparatively limited in the
total number of case studies, provides the most comprehensive description
of earthquake load parameters. The somewhat larger catalog of Davis and
Berrill (198l) provides only sparse details on earthquake and site soil
parame ters. The Tokimatsu énd Yoshimi (1983) catalcg and, to a lesser
extent, the Yegian and Vitelli (198l) catalog provide the largest amount
of soil data.

A major difference in the philosophy of earthquake characterization
may be seen in comparing the catalogs of Yegian (1976), Yegian and
Vitelli (198la), and Davis and Berrill (1981) with other data sets. This
difference is in the choice of global earthquake-intensity measures (e.qg.
magnitude M and distance R) versus local measures (e.g. peak site
acceleration and duration of shaking). Both types of data are used in
this study.

The data catalogs of Table 3.1 contain biases and are imperfect to
various extents. The main sources of deficiency are:

©® Non-uniform Quality of the Data. Some of the data reported in

the catalogs are from earthquakes that occurred more than a
century ago. Clearly, these older data should be regarded as
less reliable than information from recent events. Another cause
of potentially poor quality data is the lack of earthquake
recording networks in some geographic regions.

® Lack of Statistical Independence Between Case Studies. 1In the
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Yegian (1976), Yegian and Vitelli (1981) and Tokimatsu and
Yoshimi (1983) catalogs, there are instances of two or more case
studies obtained using data at different depths from the same
boring. Also, many cases are obtained from several borings at
the same site. The physical proximity of the data raises the
question of independence between the cases. It is also a common
practice to use the same boring data as a series of successive
case studies in different earthquakes. For example, Seed et al.
(1975) use the same soil data in different case studies for the
1802, 1877 and the 1964 earthquakes in the Niigata region. Some
correlation between these case studies is more than likely.

Non-Proportional Sampling of Licquefaction Versus Non-Ligquefaction

Sites. In general, liquefaction sites tend to be studied in more
detail and are more extensively reported than non-liquefaction
sites. Hence, the proportion of liquefied to non-liquefied sites
tends to be higher in the catalogs than in reality. This source
of bias, from reported relative frequency, affects the estimation
of liquefaction probability.

Measurement Errors. Errors of this type are present, for

example, in the estimation of earthquake magnitude, epicentral
distance, and the SPT N-value.

Difficulties of Site Characterization. In most of the

liquefaction catalogs, sites are characterized by only a single
SPT N-value. How this value is selected to be representative of
a boring profile or even of the entire site is not always clear

nor consistent.
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Y Lack.gg Differentiation Be tween SPT Data Obtained Before and

Af ter Earthquake Occurrence. Although changes in density and SPT

resistance are purported to occur as a result of earthquake
shaking (e.g. Koizumi, 1966), these changes are often ignored.
The implicit assumption usually made is that post-earthquake
values of SPT resistance adequately represent the site before the
earthquake occurred.

e lack of Differentiation Be tween N-values obtained using Various

SPT Methods. With the exception of the Tokimatsu and Yoshimi

(1983) and Seed et al. (1984), the various source catalogs do not
differentiate between the "standard" rope and pulley method and
the "free fall" methods of performing the SPT. Tokimatsu and
Yoshimi also indicate that a difference exists between the
results of the SPT using Japanese and non-~Japanese drilling
methods. Seed et al. (1984) have provided corrections to account
for these factors, and their methodology has been incorporated in
the synthesized catalog.

Attempts were made to compensate for some of the above sources of
deficiency, though it was not possible to remove all the imperfections.
An important feature of the synthesized catalog is that the sources of
deficiency are noted and recorded in the form of numerical codes.
Analyses of the potential effects of these imperfections on the
estimates of ligquefaction probability are presented in subsequent
chapters. However, the problems of site characterization and statistical
independence have affected the compilation of the data to a greater

extent, and are discussed in Section 3.4, along with some other problems
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specific to data compilation.

3.3 Synthesized Catalog Description

Appendix A of this thesis presents the catalog of liquefaction

case studies in six tables:

Table A.l Case Identification and Qualitative Attributes
Table A.2 - Edited/Enhanced Data
Table A.3 - Previously Published Catalog Identification Codes
Table A.4 -~ Data from Previously Published Catalogs
Table A.5 - Case Source Reference Guide
Table A.6 - Magnitude Scales for Tabulated Earthquakes
Also included in Appendix A is a bibliography of "source references",
where most of the original data and boring logs for the case studies can
be found. Not all of the source references were available to the writer
at the time tnis compilation was completed. Commentaries on selected
case studies are presented to indicate specific difficulties,
assump tions, or judgements that had to be faced in compiling the data.
Table A.l1 identifies each case study with a code that associates it
with an earthquake and the particular site of the case study. Whether
liquefaction occurred or not is indicated by a binary (zero/one)
variable. In addition, there are binary codes that reflect the
qualitative aspects of the data presented in Table A.2, including
descriptions of:
e Whether the case study is located in one of the three dominant
geographic regions (Japan, California, or China) which make up
the bulk of the case study data.

® Whether the reported epicentral distance is based on
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instrumental data or on the location of maximum reported
intensity.

e Whether the local site acceleration was obtained from
attentuation relationships/intensity data, or from a strong
motion recorder at or near the site.

e Whether the N-value was obtained from the SPT performed using the
rope-and-pulley or a free-fall method, from correlations with
static cone penetration data or by other means.

® The me thod used to choose a representative SPT N-value that
characterizes the soil profile at the site (see Section 3.3.4).

® Whether the case involved a slope stability or embankment failure
problem. (Level ground or level ground areas with building
foundations is the default category.)

® Whether artesian conditions may have existed at the site. (There
are only 2 cases where this occurred.)

® Whether the boring data were obtained before or after the
ear thquake.

Table A.1 also includes codes which indicate the case studies that may be
correlated with each other by virtue of being located at the same site or
being based on the same boring data.

Table A.2, Edited/Enhanced Data, presents the quantitative variables
associated with each case study. All of the variables which have been
reported in the source catalogs, except for relative density and
hypocentral distance, are reported in Table A.2. Relative density is not
listed, because in-situ estimates of this quantity are usually based on

the interpretation of SPT resistance. The hypocentral distance can
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theoretically be calcul ated given the focal depth of the earthquake and
the epicentral distance. Binary codes for soil description based on
visual classification are tabulated in Table A.2. These are particul arly
useful in cases where grain size analyses have not been reported, and
allows the discrimination between cases, for example, of sites where the
soil is visually classified as a silty sand versus a clean sand. In
addition to the binary liquefaction indicator, Table A.2 includes a code
for the classification of the severity of liquefaction proposed by
Tokimatsu and Yoshimi (1983). These codes are not used in this study but
are included for possible use in future research. Also, it should be
noted that there are "missing data" codes to indicate data that are not
reported for certain case studies, e.g. fines content data is not
available for every case.

Tables A.l1 and A.2 are the main products of the synthesis and
compilation of data from the source catalogs and contain the data
analyzed in this study. Tables A.3 and A.4 (which represent an
intermediate stage in the compilation of Tables A.l and A.2) are included
for documentation purposes only. Table A.4 presents the data in each
case study, as given in the original source catalogs, except that in some
cases, the modified SPT resistance N; has been changed to reflect
standardization using the overburden correction factor proposed by Liao
and Whitman (1986) (see Sec. 3.4.3). If the data in more than one source
catalog ace the same, only one set of case data is reported in Table A.4
to avoid repetition. For each case study there are codes in Table A.3
that des:ribe the source catalogs in which they were included. Table A.5
is a listing of the source references associated with each case study.

Table R.6 documents the magnitude scales used for the earthquakes
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tabulated in the catalog (see Section 3.4.1). More detailed descriptions

of the various data codes and the data are presented in Appendix A.

3.4 Problems and Details of Catalog Synthesis

3.4.1 Earthquake Magnitude and Distance Measures

Earthquake magnitude measurements can vary by several tenths of a
anit, depending on the particular location of the earthquake recording
station and the type of recofding instrument used. Also, a variety of
magnitude scales, including the Richter or local magnitude M, body wave
magnitude mp and the surface wave magnitude Mg, have been tabulated in
the source liquefaction catalogs. As originally defined, the Richter
magnitude M, which seismologists currently refer to as the local
magnitude My, was measured using the maximum amplitude wave (P, S, or
surface wave) recorded by a standard instrument (Wood-Anderson torsion
seismograph) which has a specified natural period (0.8 sec),
magnification (2800) and damping factor (0.8), corrected to represent a
measurement at a standard distance (100 km) from the earthquake
epicenter. The local magnitude Mj, was intended for use in sourthern
California only, being dependent on the attenuation characteristics of
that region. In current practice, Mj is evaluated with a variety of
seismic recorders in different parts of the world with adjustments for
instrument response and regional attentuation characteristics. More
details regarding magnitude determination may be found in Bolt (1978) or
Aki and Richards (1980).

It has been recognized by seismologists that the local magnitude

scale tends to "saturate" for earthquakes with My > 6.5 or 7.0, i.e. My
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is actually bounded from above and tends to under-represent the actual
size and energy release of large earthquakes. This is due to the
combination of the frequency response of seismic instruments and the
magnitude~-dependent frequency content of the elastic radiation from
earthquake sources. Thus in some cases, the magnitude reported for
larger earthquakes tend to be the surface wave magnitude Mg, which only
"saturates" at a somewhat higher magnitude (Mg > 7.5 or 8.0). Recently,
Hanks and Kanamori (1979) have proposed a moment magnitude scale M,
which does not have problems with saturation. This scale is based on the
concept of the "seismic moment", a quantity with units of force times
length, which is considered to be more accurate in characterizing
earthquake size. However, the measurement of the seismic moment may have
as much variation as other size measures. In numerical terms, M,
M;, and Mg are comparable for magnitudes less than 6.5 to 7.0.

Two additional magnitude scales have been used in the documentation
of liquefaction case studies in Japan: the Kawasumi and the Japan
Me teorological Agency (JMA) magnitude scales (see Kuribayashi and
Tatsucka, 1975). Estimates of earthquake sizes based on the JMA scale
are comparable to those given on the Richter scale, but the Kawasumi
magnitude (which is based on an intensity scale) appears to assign
slightly larger ratings of earthquake size. The Kawasumi magnitude is
usually reported only for historical (pre-instrumental) earthquakes in
Japan.

The liquefaction data catalog in Appendix A tabulates the Richter or
local magnitude of the earthquake, whenever possible. The rationale is

that the local magnitude Mj, is believed to have the most relevance to
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engineering applications because it is determined based on recorded
seismic waves having the frequency range of greatest engineering interest
(Kanamori and Jennings, 1978; Idriss, 1978). In many cases the local
magnitude Mj;, has not been measured. or is not available, and in some
instances there is even no documentation in the source ceferences
regarding which magnitude scale is used. 1In these latter cases, the only
resort is to use the reported magnitude of unknown scale in the
compilation. Of the 40 earthquakes reported in Tables A.1 and A.2, 17
are measured on the Richter (M;) scale, 13 on the JMA scale, 4 on the Mg
scale, 3 on the Kawasumi scale, and 3 on an unspecified scale. [See Table
A.6 for details.] Due to the various sources of inaccuracy described
above, the magnitude reported in the liquefaction catalog should be
viewed as only an indicator of earthquake size, and not an exact
measurement.

The location of earthquake hypocenters or epicenters and focal
depths are determined from arrival times of seismic waves at various
recording stations, and are also subject to large variations. For
example, in the fairly recent 1979 Montenegro earthquake, the
determinations of the epicenter by two different organizatiors were about
10 km apart (EERI, 1980). Determinations of focal'depths and hypocenters
tend to have even greater variation.

Another distance measure incorporated in the synthesized
catalog is the "distance to energy release" or DER. Where possible
DER is defined as the closest distance to the surface fault ‘rupture, In
cases where no surface manifestation of the fault rupture i3 evident, it

is defined as the clcsest distance to the surface projectisn of the "zone
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of energy release", which is sometimes determined from the spatial
distribution of earthquake aftershocks. However, if neither of the above
measures were available, DER was assumed to be equal to the epicentral
distance.

In addition to the inaccuracies of magnitude and distance measures,
it should be recognized that earthquakes are often accompanied by
foreshocks and aftershocks. In the subsequent inspection by
reconnaissance teams, it may not always be easy to discern whether the
main shock is solely responsible for the observed liquefaction or other
darage. In the synthesized catalog of Appendix A, only the main shock is
usually tabulated, but it is conceivable that the build-up of pore water
pressures leading to liquefaction could be caused by the cumulative
effects of the complex sequence c¢f shock events that accompany &n

earthquake.

3.4.2 Acceleration and Cyclic Stress Ratio

An important quantity considered in liquefaction analysis is the

cyclic stress ratio CSR defined originally by Seed and Idriss (1971) as:

CSR = o.ssg (3.1)

all a
<
H

where
a = the peak ground surface acceleration
g = the gravitational acceleration (9.8l m/sec?)
oy = the vertical stress at the depth under consideration

oy = the effective vertical stress at the depth under consideration

rq = a reduction factor that accounts for the soil flexibility as a
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fun ion of depth.
In a more recent paper, Seed et al. (1984) have implicitly defined a

magnitude normalized CSR as:

CSRN = 0.

o
v

o r
v d

_6 _r (3.2)
v M

Q|

where ry is the magnitude normalization factor. The intent of this
normalization is to accouni for the effects of duration of shaking which
is correlated to the earthquaké¢ magnitude M. In accordance witl Seed et
al. (1584), ry is defined so that CSRN corresponds to CSR for a M = 7.5
earthquake.

The depth reduction factor rg was derived empirically by Seed and
Idriss (1971) based on response analyses of a variety of soil profiles.
while the magnitude normalization factor ry is based largely on
laboratory studies and an empirical correlation between earthquake
magnitude and duration of shaking (see Seed et al., 1984). Though there
is statistical variability associated with ryq and ry, their variances are
negligibly small when compared with the variance of the peak acceleration
obtained from an attenuation law or from a nearby measurement. Use of
average values of rg (as a function of depth) and ry (as a function of
magnitude) is recommended in practice, and they are normally given in
chart or tabular form (e.g. see Seed and Idriss, 1971 and Seed et al,
1984). For ease of calculation, the following formulas were fitted to
the recommended average functions:

1.0 - 0.00765 =z z < 9.15m (30 ftj

rg = { (3.3)
1.174 - 0.0276 z z > 9.1i5m (30 ft)
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where z is the depth in meters;
ry = 0.032 M2 - 0.631 M + 3.934 (3.4)
where M is the earthquake magnitude.

The primary Variable affecting the value of CSR or CSRN is the peak
ground acceleration 'a‘', which can be obtained in several ways. In 127
out of 278 catalog entries, the peak acceleration is obtained from
measurement at a "nearby" station. The term "nearby" is used loosely
here and can mean a strong motion recorder located several kilometers
away. In a few cases, a strong motion recorder is actually close enough
to be considered "on site", which is also a loosely-defined term
indicating that the acceleration measurement is considered to be very
accurate in representing the ground motion at the site. However, it is
rave to have an accelerometer actually on site. Other methods of
estimating acceleration include performing a site response analysis with
the input from a ground motion record some distance away, scaled to
reflect inferred bedrock motions at the site of interest. In many cases,
accelerations are calculated from earthquake attentuation relationships
and/or correlations to an intensity damage scale (e.g., Modified Mercalli
scale).

In the synthesized catalog presented in Appendix A, the site
accelerations tabulated are usually those reported in the source
catalogs. However, in many of the historical cases of liquefaction/non-
liguefaction from California and Japan where the acceleration was not
reported, or where the reported acceleration was suspect, accelerations
were estimated from one of two attentuation relationships. For cases in

California, the Joyner and Boore (198l1) equation was used:
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logjpgla/g) = -1.02 - 0.249M - 1og r - 0.00255 r (3.5a)

or

a _ (0.0955)100'24'QM

r.100.00225r

(3.5b)

Q|

where M is the moment magnitude, and r = (a2 + 7.32)1/2, in which d is
defined as the closest distance (in kilometers) to surface projection of
the fault rupture. For Japanese earthquakes, the relationship used is
that due to Kawashima et al. (1984) for soft alluvium or reclaimed

ground:

a 0.4109 10°-262°M
= = 1508 (3.6)
(REP + 30)

Q

where M is the Japanese Meteorological Association (JMA) magnitude and
Rgp is the epicentral distance in kilometers. 1In calculations to
estimate accelerations for the synthesized catalog, the tabulated

magnitude was used in place of the moment or JMA magnitude.

3.4.3 Correction/Normalization Factors for SPT

There are two corrections or normalizations that need to be made to
the N-value obtained directly from the standard penetration test (SPT).
The first is to account for the effect of overburden pressure, and the
‘second is to account for the effects of using different sampling
equipment and/or practices in pe'rforming the SPT. The SPT resistance

corrected for overburden is denoted as Ny and is calculated as:
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N1 = CNoN (3.7)

where Cy is the overburden correction/normalization factor. The
additional normalization factor to account for sampling equipment and
practices is denoted as Cp and the additional correction made is

calculated as:
(N1)60 = CE0N1 = CEQCNQN (3.8)

The reason for denoting the normalized value as (Ng)go is discussed
below.

Several correction factors for overburden have been published in the
literature, and a review of these is presented by Liao and Whitman

(1986), who propose a simple mathematical form for Cy as:

(o, in TSF or kg /cm?) (3.9)

@}
z
[}
fh|
<

For all practical purposes, this correction factor is equivalent to that
proposed by Seed (1979) which is given in chart form. The above equation
simply makes the estimation of Cy more convenient and was used in this
s tudy .

The values of the correction factor Cp are based on the

recommendations of Seed et al. (1984), and are calculated as:

ER
Cg = %o ° Ssap * Rrop * CLin (3.10)

In the above equation, ER is the energy ratio defined as the percent of

the theoretical free-fall energy transmitted to the rods from the SPT
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hammer. ER has been found to vary depending on the type of hammer used
(e.g. "free fall® versus rope and pulley) and on the standards of
practice in different parts of the world. The denominatur of 60 reflects
the recommendation by Seed et al. that SPT data be normalized to an
equivalent ER = 60%. Cgyap is a correction for the different standards of
drilling practice in Japan (i.e. the frequency of hammer drop (blows per
minute) and the diameter of the bore hole). Cgrop corrects for the
effects of short rod lengths when performing the SPT at shallow depths.
CyIiN is a correction to account for the practice of leaving out the
inside liners from the barrel of the SPT sampler, as is done frequently
in the U.S. Values of these various correction factors are shown in
Table 3.2.

The value of Cg for each case study is tabulated in the liquefaction
data catalog in Appendix A. The corrections presented in Table 3.2 are
average values, but in specific cases, where the values of ER have
actually been measured, these were used instead. In cases where there is
uncertainty regarding which type of hammer was used, an average of the
possible ER values was employed in calculating Cg, which follows the
procedure of Seed et al. (1984).

It should also be noted that there may be disagreement regarding the
standard ER value to use in normalization. For example, Kovacs et al.
(1984) have proposed that a standard ER = 55% be used instead of ER = 60%
as recommended by Seed et al. (1984). For the analyses in this study,
the actual standard ER is not considered to be important and would not
affect the results (except that the (Nq)gg values wculd all have to be

mul tiplied by a censtant to adjust them for a different standard ER).
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What is important is that a correction has been attempted so as to make

the different types of SPT measurements comparable.

3.4.4 Site Characterization and Data Independence

In the context of liquefaction analysis, site characterization
refers to the problem of determining a representative SPT resistance and
depth at which ligquefaction is likely to occur. In case studies where
liquefaction has occurred, it may be possible to identify the depth of
liquefaction from comparison of the soil ejected from sand boils with
samples obtained at depth in borings. However, such data are not always
available, and in the cases of non-liquefaction, an estimation of the
critical depth where liguefaction would most likely occur (given a
stronger earthquake) can require a considerable degree of judgement.

The related problem of statistical independence of data can be posed
as the question: What constitutes a case study data point? Consider the
example project site shown in Figure 3.1, which has been reported by
Jaime et al. (1981), where liquefaction occurred in a localized zone
during the 1979 Guerrero, Mexico Earthquake. 1In analyzing the situation
that occurred, one could treat the boring data in one of three ways:

® Method (1): Consider the borings in the liquefied zone as a
single group and the bcrings in the non-liquefied zone as

another group, resulting in a total of two "case studies”.

@ Method (2): Consider each individual boring as a '"case

study", resulting for this situation in a total of 34 cases.

® Method (3): Consider each depth in every boring where an SPT
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N-value is obtained in sand as a separate '"case study",
resulting in a total number of data points on the order of

hundreds, depending on the frequency of sampling with depth.

Each of the above three methods has been used in compiling previous
catalogs. However, even within any given source catalog, no one me thod
has been consistently used, with the result that the catalogs are a
hodgepodge in terms of site characterization.

In a situation such as that presented in Fig. 3.1, use of any of the
three methods of defining a case study introduces different degrees of
correlation along the data. There are two ways to deal with correlation:

(a) Account for correlation in analysis (see Chapter 6 for an

example of a procedure to do this), or

(b) Use statistical techniques that assume independence, and

eliminate dependent data.
Assuming independence makes analysis easier, and it is the usual
assumption in most regression techniques.

Method (1) for defining a case study is preferable if data
independence is desired. Since there are two groups of boring locations
in Fig. 3.1 that can be distinguished in terms of their different
responses to an earthquake, it is reasonable to assume that the soil
properties in the two areas are not correlated. However, this approach
presents us with the practical problem of site characterization.
Certainly we wish to obtain a characteristic Ny value for each case
study, but how? If an average value is desired, over what depths should

we obtain an average? Should we characterize the site by the average N,
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value at a given depth from the several borings, or the average of the Nj
values from all depths in each boring? Further complexities can be
envisioned as shown in Figure 3.2, where both the depth and the thickness
of the liquefiable sand layer is variable across a site. What, in this
case, would be'a representative depth at which liquefaction would occur,
and how would a characteristic Ny value be obtained?

Method (3), in which every obtained SPT N-value is considered as a
"case study", completely eliminates the site characterization problem.
In this approach, there is no need to obtain an average or representative
Nj-value, since every Nj-value is a data point. In this approach there
is an obvious lack of data independence due to the physical proximity of
the N-value measurements. In addition, the numerical models of
liquefaction point to the view that liquefaction is a propagation
phenomenon, in which the excess pore pressures causing liquefaction can
initiate within a localized zone, and then propagate by diffusion to
other portions of a soil stratum, causing them to liquefy (Seed, Martin
and Lysmer, 1976). Considering this view the approach of using each
measured N-value as a data point would require a statistical method of
analysis that accounts for correlation.

Given the problems of site characterization associated with Method
(1) and the lack of statistical data independence inherent in Method (3),
the most practical approach is thought to be that of Method (2) where
individual borings are used as the natural unit to define a "case study".
Using this intermediate approach would introduce a degree of correlation
among some data points, but it also allows the develomment of a simple

and consistent method of obtaining a representative Njy-value.
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Consider the problem of site characterization exemplified by the
hypothetical boring log shown in Figure 3.3. 1In this profile, there
exists a liquefiable layer of soil, but it is not clear whether part or
all of the layer would liquefy during a given earthquake. In particular,
there seems to be a sub-layer between 5m to 10m depth that is potentially
more liquefiable due to its comparatively lower N3 values.

Simple averages of N; over various ranges of depths in the
liquefiable soil layer for fhe hypothetical boring profile are shown in
Figure 3.3(b). The range of average Ny values varies from (NI)avg = 6,
if we only use the minimum Ny value, to (N1)ayg = 13, if we average over
the entire depth of potentiaily liquefiable soil. Thus, the
representative N; value may be highly dependent on one's judgement of the
appropriate depths of possible liquefaction occurrence. To remove this
element of judgement as a potential source of inconsistencies, the
minimum N; value is used in this study as the characteristic of a boring
profile. The obvious criticism of using this procedure is that the lowest
value may actually be a testing error. In such a case, judgement should
be used to identify it as such and thus exclude the data point from use
in analysis.

It should be noted that the use of the minimum Ny value is
consistent with the concept of liquefaction occurring at a critical
depth, as first developed by Seed and Idriss (1971). This is because the
critical depth of liquefaction, except in very homogeneous soils, is
virtually controlled by the variation of Ny with depth. Though their
me thodology was not explicitly stated nor consistently followed, a close

examination of the Seed et al. (1975, 1984) catalogs shows that choosing
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the minimum N; value in each boring or soil profile is in most cases

equivalent to their result.

3.4.5 Problems with Yegian and Vitelli Catalog

The Yegian and Vitelli (198la) catalog of liquefaction cases has
made significant use of the approach of obtaining several case study data
points from the several N-values obtained in a single boring, i.e.,
Method (3) described in Section 3.4.4. Their reason for using this
approach was based on the concept of evaluating a "point" liquefaction
potential, rather than a liquefaction potential representative of the
entire soil profile (Yegian, 1984). In some instances, their catalog
even goes as far as inferring the depths at which liquefaction did or did
not occur in a profile, based on a comparison of paired borings performed
before and after an earthquake. If the soil density increased from a
looser to a denser state at a given depth (based on N-values), they
concluded that this indicated "point" liquefaction at that depth. On the
other hand, if the soil became looser or remained at the same density af-
ter the earthquake, they designated this as a non-liquefaction data point.

There are several difficulties with the above features of the Yegian
and Vitelli (198la) catalog:

1) 1If a single observation of a surface manifestation of
liquefaction is associated with numerous SPT N-values at various
depths, this is not the same as observing liquefaction at
several boring locations. The difference between these two
types of observations is not recognized in the Yegian and
Vitelli catalog.

2) It is dubious whether one can determine at which depths (in a
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boring profile) liquefaction did or did not occur, based on
changes in SPT resistance alone.

3) The distance between the before/after pair of earthquake borings
are frequently not known, and it is not always clear whether
they are a proper match.

4) It is likely that in some cases, the rationale for the boring
performed before the earthquake was the construction of
buildings or other facilities nearby. This brings up the
question of how construction activities may have affected the
SPT resistances in the post-earthquake boring.

Items (3) and (4) above are also of concern for catalogs other than

that of Yegian and Vitelli (198la). However, it is only in the Yegian and
Vitelli catalog that these problems are amplified because of their

approach to obtaining data.

3.4.6 Conflicts Between Source Catalogs

In compiling the synthesized catalog, there were several instances
where conflicting data were reported for the same case by different
source catalogs. Some of the conflicts originated from problems in site
characterization, which were discussed earlier in this section. Also,
different catalogs may have used the same set of borings, but it was
some times impossible to identify the correspondence between the case
study in one source catalog with that in another. The resolution of such
conflicts was accomplished by re-examining the data from the source
references to check the judgements and/or calculations of the catalogers.
However, in cases where a clear resolution was not possible, the writer

deferred judgement to the cataloger who was considered to be more
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knowledgeable of the case study, e.g. if the case study was located in

Japan, the Tokimatsu and Yoshimi (1983) catalog data took precedence.

3.5 A Profile of the Data

Tables 3.3 and 3.4 and Figures 3.4 through 3.15 are presented as a
summary of the liquefaction data catalog. The resulting profile is
intended to give a preliminary overview cf the data. Important aspects
of the data base which affect the results and conclusions derived from
them are discussed in subsequent chapters. As shown by the histograms in
Ficures 3.5 through 3.15, liquefaction occurrences are generally
associated with higher measures of earthquake shaking intensity (e.g.
CSRN or magnitude) and lower values of soil resistance (e.g. (Nj)go)-

In anticipation of a significant result of statistical analyses
presented in Chapter 4, a set of histograms is shown in Figures 3.15 and
3.17 for a quantity not tabulated in the data catalog, but which can be
easily calculated from the data. These are the modified versions of an
earthquake load parameter given by Davis and Berrill (198l1), which are

denoted as Agp and Agy in this study and defined as:

1.5M
10
A = — - (3.11)
EP R2 (ov)I 5
EP
and

where M is the Richter magnitude, ;} is the effective vertical stress (in

kg/cmz), Rpp is the epicentral distance and Ryy is the hypocentral



69

distance (both in kilometers). The histograms of Fig. 3.16 and 3.17 show

normalized version of Agp and Ayy defined as
AEp = AEp/Ao (3.13)
Ay = Auy/Ao (3.14)

where Ay is calculated for M = 7.5, Rgp or Fyy = 100 km, and ;; = 1.0
kg/cmz.

Figures 3.18 and 3.19 show plots of CSRN versus (Nj)go and Agp or
Agy versus (Nj)gg, also in anticipation of subsequent results. In these
figures, the liquefaction data points are plotted as crosses (+) and the
non-liguefaction data as open circles (»), which will also be the
convention kept for future plots. These plots present a view of the data
without any of the lines of equal probability of liquefaction that will
be superimposed in subsequent chapters. If the data in Figures 3.18 and
3.19 are compared with similar plots by Seed et al. (1984) or Davis and
Be.rill (1981), one would note that there is a greater mixing of the
liquefacticn and non-liquefaction data than there is for these previously
published catalogs. It is believ:d that this greater degree of
mixing is the result of a more oljective evaluation of boring data than

that of Seed et al. (1984) and Davis and Berrill (1981).

3.6 Commentary

This chapter has described th. procedures used in the compilation of
a catalog of liquefaction occirrences and non-occurrences during
earthqguakes. A major goal was to try to make the data collection

procedures as consistent and cbjective as possible. The data catalog is
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also flexible enough to accommodate future data and possible changes in
interpretation of individual case studies.

Considering the various problems encountered in compilation, it is
clear that there are potentially several sources of uncertainty in the
data. From the determination of earthquake magnitude to the choice of a
representative SPT resistance almost all the data include a degree of
Judgement about the relevant facts of a case study. Virtually none of
the data represents a truly objective or "scientific" measurement.
However, despite the imperfections, the data represent at this time the
best we have in terms of actual empirical links between the various
factors that can be measured and observations of field liquefaction
(Peck, 1979). Subjecting the data to statistical analyses presented in
the following chapters is an attempt to make the best out of an

admi ttedly suboptimal situation.
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Table 3.2

Summary of Factors for Calculating Cg

(After Seed et al., 1984)

Estima ted Correction
Country Hammer Type Hammer Release Rod Factor for
Energy ER 60% Rod
(%) Energy
JAPAN Donut Free-Fall 78 78/60 = 1.30
Donut Rope & Pulley
with special
throw release 67 67/60 = 1.12
UsaAa Sa fety Rope & Pulley 60 60/60 = 1,00
Donut Rope & Pulley 45 45/60 = 0.75
ARGENTINA Donut Rope & Pulley 45 45/60 = 0.75
CHINA Donut Free-~Fall 60 60/60 = 1.00
Donut Rope & Pulley 50 50/60 = 0.83

Additional Factors:

Caap

CroD

Crin= 1.1 to 1.2 if inside diameter of SPT is not constant,

0.9 for Japanese data, (Nj)gg < 20.

0.75 for depths of SPT less than 2.0 m {10 ft).

i.e no liners should be used for loose sands and 1.2 should be for

dense sands.

Fer conditions other than specified above, use Cjyap, Crop, or CyinN equal

to 1.0.
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Table 3.3

Profile and Inventory of the Data Catalog

ITEM/CATEGORIES

Site Pexrformance
Liquefaction . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o s o o
No liquefaction . . . .+ ¢« ¢ ¢ ¢« ¢ o« o o« &

Geographic Location
Japan e o s o o s e e e o e e o o s s o
California. « « ¢« ¢ ¢ ¢ o ¢ o o o o o o &
China « « « ¢« o« « o o e o o o o s o o o o
Other ¢« ¢« o« o« ¢ o o o o o o o o o s o o o

Epicentral Distance

Based on Instrumental Epicenter . . . . .
Based on Location of Maximum Intensity. .

Distance to Energy Release
Assumed same as Epicentral Distance . . .
Estima ted Independently of Epicentral . .

Distance

Acceleration Estima te

Strong Motion Recorder "On" Site e e = e

Strong Motion Recorder " .arby" . . . . .

Site Response Analysis P... ‘ormed e e o

Based on At*ennation Relationships in. . .
Section
Based on Other Attenuation/Intensity Data.

N-Value Measurement

SPT - Rope and Pulley . « « « o s o o o o
SPT - Free Fall Hammer . . « ¢ « o o o o
SPT - Method Unknown . « « « « « o o o o
Estimated From Static Cone . « ¢ « « « .
Based on Other than SPT or Static Cone .

No. of Cases

LIQ.

51 .
28 .
15 .
20 .

70.
44.

64.
50.

. 5.
.49 Ll

.15 .

.41 L]

32 .
38 .
38 .

15 .

NO

LIO.

. . 69 .

. <94 .

. 106 .

. . 18 .
. .11
. . 46 .

. ~ 43 .
. « 41 .
.« « 69 .,

. 11

TOTAL

114
164

120
100
20
38

1€4
114

170
108

24
127
16
61

58.

75
79
107

16
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Table 3.3 (Continued)
No. of Cases
No
ITEM/CATEGORIES LIO. LIO. TOTAL
Me thod of Obtaining Re2presentative N-Value
Critical or Minimum N¢y~Value . . . . . . . 55. . . .96 . . . 151
Layer Average (One Boring) . . . . . . « « 4. . . ¢ 2 . . . 6
Site Average (Many Borings) . . . . . . . . 13. . .26 . . . 45
Me thod Unknow or Arbitrary . . . . . . . . 36. . .40 . . . 76
Level Ground
Slopes, Dams, Dikes, Embankments . . . . « « 7« ¢« « .3 . . . 10
Level Ground (Includes Cases with Building
Foundations Nearby) . . . . . . . . . . .107. . . 161 . . . 268
Ground Water Conditions
Ar tesian Conditions Noted . . . . « « « « « 2. . « . 0. . . 2
Ar tesian Conditions Not Noted . . . . . . 112, . . .64 . . . 276
Time Boring Performed
Be fore Eaerthquake . . . « ¢« ¢ ¢ ¢ &« o & « 12. . . 27 . . . 39
After EAr thquake e s o s s s e o o o o o 83. ., ..94. . .177
Unknown . . . . . e o o o o o o s s o & 19, . . .43 . . . 62
Soil Gradation
Very Fine Sands (Dgg € 0.25). . . . . . . . 45. . . .49 . . . 94
Not Very Fine Sands (Dgg » 0.25). . . . . . 69. . . 115 . . . 184
Clean Sands! (< 12% Fines) . . . . . . . . 68. . . 114 . . . 182
Silty Sands! (> 124 Fines). « « « « « ¢ « « 46. . . .50 . . . 96
Non-Gravely Sands (< 10% Gravel). . . . . .106. . . 160 . . . 266
Gravely Sands (» 10 Gravel). « « « « « « « 8. . . 4 . . . 12
Uniform Sands (UC € 6). « ¢« « o o o o o« o« » 95 . . 147 . . . 242
Well—Graded Sands (UC > 6). - . . . . . . . 19 . - 17 . - . 36
No te:
1. Where fines content data are not available, it is assumed that

the sand can be classified as "clean", unless otherwise
indicated by verbal descriptions or classifications.
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Table 3.4

Summary of Missing Data Items
in the Liquefaction Catalog

Data Item

No. of Cases where Item is
Available Missing

Earthquake Focal Depth . .

e e e a4 e e e e e 22B . . 4 . . . . 50

Duration of Earthquake Shaking . . . . . . . 101 . . . . . . . 177

Fines Content . . . . . .
Clay Content! . . . . . .
Gravel Content? . . . . .
Dgg Size c s e e e e e e
Uniformity Coefficient . .

All Gradation Attributes .

e s o & e e e e s 159 . . . . L. . . 119

e e e e e e e e e 137 ¢ . . . . . . 141

. . . » . . Ll - . 164 L . . . . L] Ll 114

« e e e e e e o . 165 . . .. . . . 113

e e e e s e e o s 124 . . .. . . . 154

e o o e e s e o o 113 . . . . . . . 165

Notes:

1. Of the 137 cases where
have clay content = 0.

2, Of the 164 cases where

clay content data are available, 97 cases
Only 40 cases have non-zero clay content.

gravel content data are available, 129

cases have gravel content = 0. Only 35 cases have non-zero gravel

content.
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o BORING LOCATIONS

PROJECT

J

—

NON- LIQUFIED
ZONE

BOUNDARY OF ///%i- o« o
LIQUEFIABLE A/
SAND / e e
Z

\

o

LIQUEFIED
ZONE

‘“--‘~‘\=r—

/"1//////,.

SCALE - M

o 200 400

Fig. 3.1
After Jaime et al. (1981).

Example project site for determination of case study data.
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CHAPTER 4

BINARY LOGIT ANALYSIS - METHOD AND RESULTS

4.1 Introduction

Logit analysis or logistic regression is a very powerful and
flexible tool for analyzing liquefaction data. Essentially, the
objective of logit analysis is to obtain an expression for the

conditional probability of liquefaction P as:

exp(80+ lel + 82x2+ ees + Bmxm)
P = 1 + exp(B8.+ B X, + B.xX + B8 x ) (4.1a)
PIBeT ByXy T Bo¥Xpeee ¥ Bp¥p

or equivalently:

P=1/[1 + exp {—(80+ lez + Bzxz + ...+ emxm)}] (4.1b)

In the above equation, the xy's (k=1,2,...m) are various "explanatory
variables" such as cyclic stress ratio and corrected SPT resistance.
Each combination of various explanatory variables is referred to here
as a "model". The Bk's (k=0,1,...m) are regression coefficients to be
obtained by fitting Equation 4.1 to data.

It is emphasized that l1ogit analysis is a method of regression,
but in contrast to standard regression analyses, the response variable
Y is "dichotomous" or "biﬁary“, e.g. Y=1 if liquefaction occurs and Y=0
if it does not. In formalized notation, the technique works by

obtaining the expectation that Y=1, given xq, x3 ... xp, i.e.:
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P = P(Y=1|x1 Xpeeex 1) = E[Y=1|):1,x reeex ] (4.2)

2 2

where E denotes expectation

In Section 4.2, the basis of locit analysis is presented showing
the reason for its appropriateness ir the analysis of liquefaction
data. The maximum likelihcod method for estimating the B coefficients
is briefly outlined in Section 4.3 along with other aspects of
implementation of logit regression. Subseguent sections of this
chapter discuss the analyses of the data, focusing primarily on the
question of what is the "hest" set of explanatory variables xx to be

included in Equaation 4.l.

4.2 Logit Analysis: Methodology

4.2.1 Basic Concept

Logit analysis or logistic regression has its origins in
biological assay (Berkson, 1944). It was preceded in its development
by another procedure called probit analysis, a competing me thod which
is also frequently used. "Probit" was a term coined by Bliss (1934a,
1934b) as a contraction for "probabili:y unit" and "logit" was
similarly baptized by Berkson (1944) aii a contraction for "logistic
unit". "Logistic" refers to the probabhility function emp) oyed in the
analysis, and which was originally used as a mathematical model in
studies of popul ation growth (Verhulst, 1845; Pearl and Reed, 1920).
More contemporary references on logistic regression include those by
Cox (1970), McFadden (1974), Dobson (1¢83) and Ben-Akiva and Lerman

(1985). The term "logit analysis" is commonly used by workers in
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transportation and consumer demand modelling, whereas "logist.
regression" is preferred by statisticians. Both terms are used
interchangeably in this thesis.

The original ap-lication of probit and logit analysis in
biological assay is that of estimating dose-response curves, and can be
best explained by an example. Suppose we are interested in evaluating
the effectiveness of a chenical to be used &s an insecticide. To do
this, a large number of insects are taken and divided randomly into
several batches with approximately the same number of insects in each
batch, e.g. 1000 insects divided into 5 groups of 200. Then each of
the batches is administered a different dosage of the insecticide, and
the responses of each insect -- death or survival -- is noted. 1In each
batch, a certain percentage of the insects are killed, and this
percentage increases with the log of the dosage, e.g. as shown in Fig.
4.1(a).

At any given dosage, all the insects do not have the same response
because of natural variations in their individual immunities. This
unmeasured, or perhaps, unmeasurable immunity gives rise to the
uncertainty about the response of any indiviaual insect. Thus there
a. ' two components to any individual response: that which is
"expl ained" by the dosage administered, znd that which is unexplained
and considered random.

The fraction killed, p, can be transformed to logistic units or

logits using the following formul a:

; = P
logit(p) = 1n(1_p) (4.3)

Another common name for the above transform is the log-odds ratio, i.e.
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the logarithm of the chance or odds of death to survivial. Notice that
as p ranges from 0 to 1, the logits of p ranges from -« to +w. If the
logit values of p are plotted against the log dosage, the data points
tend to fall on a relativelv straight line, as shown in Fig. 4.1(b). A

similar plot can be obtained using probits of p defined as:
probit(p) = ¢~1(p) (4.4)

where ¢~1 denotes the inverse standard normal cumulative distribution
function. [In some applications, the probit transform is defined with
an additive constant of 5 units, i.e. probit(p) = ¢'1(p) + 5, e.g. see
Finney (1971).]

In either case, whether one uses probits or logits, a straight
line can then be fitted to the data. For logit analysis, the equation

is of the form:
logit(P) = Bg + B1x (4.5a)

ox

1n(%) = 30 + 81x (4.5b)

where x, in this example, is the log of the insecticide dosage and Bg
and 81 are the intercept and slope coefficients to be determined from
the data. A change in notation from lower case 'p' to capital 'P' is
effected to distinguish between the measured fractions p from P fitted
to the data. The line represented by Eqn. 4.5 can be roughly fitted by
eye, as was originally done by Bliss (1934a, 1934b) or by methods of

least squares regression or maximum likelihood. The quantity P can be
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interpreted as an estimate of the conditional probability of death for
any individual insect, given the log dosage x of the pesticide. If
Equation 4.5 is solved for P, one obtains:

exp(e0 + B,x)

P=T7 exp(B, + B,%)

(4.6)

1
B exp{-(8, + 8,%))

The above equation is of the form of a logistic cumulative distribution

function.

4.2.2 Generalizations of the Basic Concept

There are three generalizations of logit regression as just
described that greatly enhance its usefulness and flexibility. The
first is the consideration of more than one explanatory variable x that
influences the outcome or the response. For example, in addition to
the dosage of insecticide administered, the size of the insects might
also be a determinant of the outcome, and we could divide the insects
into various sizes groups within each dosage batch. 1In terms of the

mathema tics involved, the equation to be fitted would now become:

logit(P) = Bg + Bixq + B2X2 (4.7)

where xq is the log dosage and x; is the insect size. Further
generalization to m variables is straightforward with equations of the

type:

logit(P) = Bg + Byx1 + B2X2 + ... + BpXp (4.8)
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or, as often written in vector notation:

logit(p) = ETQ (4.9)
where - - . 4
Bo X1
81 X2
g = |82 x = |x3
LBm. .me

The second generalization involves the nature of the explanatory
variables xp. 1In logit analysis, there is no reason why one should
restrict the xy's to be continuous variables. 1In particular, some of
the variables x)y can themselves be binary. For example, in liquefaction
analysis, the jth expl anatory variable might be defined as follows:
(4.10;

{ 1 if the soil is silty sand
X5 =
J

0 if the soil is clean sand

Expl anatory variables of this type are often called "indicator"
variables, and they allow the consideration of qualitative attributes
that are otherwise difficult to quantify, e.g. male/female, Democrat/
Republican, or Japanese/non-Japanese earthquakes.,

The third generalization involves the use of individual response
data rather than grouped data. 1In the bio-assay example, the response
of a group of insects, assumed to be homogeneous and administered the

same "stimulus", was considered in the analysis. 1In most applications,
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groups «f homogeneous individuals are not available, and it is very
difficul t to obtain repetitions of the same "stimulus". This is
certain'y the case with the liquefaction data, where the "individuals"
(sites) are heterogeneous and the "stimulus" (earthquake intensity) is
not a viiriable that can be adjusted or controlled.

Th2 coefficients B can be estimated directly from the individual
respons2s and stimuli, without having to form groups of homogeneous
individuaals. The responsé Y of each individual is considered as a
Bernoulli random variable with possible values ¥Y=0 or Y=l. Such a
scheme is easily incorporated into a maximum likelihood algorithm for
estimating the B coefficients, the details of which are presented in
Section 4.3.

So far, logit analysis has been discussed primarily in the context
of a biological assay problem. However, analogs to the death/survival
response of insects can easily be drawn to other situations. Relieved
of the restrictions to the number and type (continuous/dichotomous) of
the expl anatory variables, and of having to form groups of homogeneous
individuals or cases, a wide range of applications is possible.
Examples of the use of logit regression in other disciplines are
summarized in Table 4.1.

Within gectechnical engineering, the application of logit analysis
has been reported in a paper by Veneziano and Liao (1984), which
contains some of the preliminary results of the research on
liquefaction presented in this thesis. At M,I.T., logit analysis has
also been utilized in studies on slope stability (Carpenter, 1984),
piping of soil particles (Honjo, 1985), and the use of neutron counts

for the detection of rock joints (Einstein et al., 1985).
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Most of the applications of logit analysis discussed in this
section involve a binary response. BAn example of a problem involving a
mul tinomial or polytymous response is the choice of transportation mode
when several modes (auto, bus, train, etc.) are available; see Table
4.1. Techniques to deal with three or more forms of the response
within the framework of logit or probit reqgression can be found in
numerous references, including Walker and Duncan (1967), Theil (1969),
McFadden (1974), Daganzo (1979), and Ben-Akiva and Lerman (1985).

Liquefaction response could also be formulated in other than
binary terms, e.g. following Tokimatsu and Yoshimi (1983) who suggest
four classes of liquefaction behavior: no liquefaction, marginal
liquefaction, moderate liquefaction, and severe liquefaction. Though
the use of a polytomous response variable is an additional refinement,
it also introduces more complex issues regarding the specification of
the explanatory variables in modelling. For this reason, the study
presented here is limited to the analysis of liquefaction as a binary

response.

4.2.3. Logit versus Probit Analysis

As already noted, both the logit and probit transforms (Equations
4.3 and 4.4) are functions that "map" or convert values between zero
and one into values between negative infinity (-«) and positive
infinity (+»). There are other functions which can similarly be used
to perform this mapping (see Cox, 1970, McFadden, 1976a, and Dobson,
1983), though they are generally less tractable or less theoretically
justifiable for the analysis of categorical data. 1In the univariate

case, the transforms basically convert symmetrical S-shaped curves into



104
straight lines, as illustrated previously in Fig. 1l.1.

A comparison of the logistic function (used in logit analysis) and
the normal or Gaussian cumulative distribution (used in probit
analysis) is shown in Fig. 4.2. In this figure, both curves have been
normalized to have zero mean and unit variance. It is evident that the
functions are practically equivalent particularly in the central
portions. Other properties of the logistic distribution can be found
in Johnson and Kotz (1970).

The major argument for using logit analysis has always been the
ease of computation and implementation. Note that the cumulative
logistic distribution function has an explicit algebraic expression,
whereas the normal cumulative function does not. Given also that the
practical results are essentially the same, logit rather than probit

was chosen as the method of analysis in this study.

4.2.4 logistic Regression Versus Discriminant Bnalysis

In Chapter 2, the limitations of discriminant analysis in
application to liquefaction risk assessement were discussed. This
section presents a more detailed comparison of logit regression and
discriminant analysis.

Logit analysis is a method of binary regression or curve fitting,
whereas discriminant analysis is a method of classification. The two
me thods are related, in the sense that the results of logit regression
can be used for classification, and the results of classification can
be used (sometimes) to produce binary regressions. Both me thods have
appropriate uses, but in different settings and for different problems.

To clarify the situations for which binary regression and
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discriminant analysis are each appropriate, consider the following set
of examples (from McFadden,1976b):

e Example 1. (Causal Model): Seeds are planted, and
observations are made on seed age, soil acidity, temperature,
and time allowed for germination. Response: dermination/no
germination.

e Example 2. (Conjoint Model): Eggs are candled and
observations are made on the translucency of the eqg.

Response: good 2gg (high yolk)/ bad egg (spread yolk).
McFadden (1976b) refers to the situation in Example 1 as a "causal
model", i.e. the various factors observed are determinants of whether a
seed germinates or not. Also important is the fact that it is not
meaningful to speak c¢f two seed populations, "germinators" and "non-
germinators”, that possess clearly defined distributions of control
variables, i.e. seed age, soil acidity, etc. On the other hand, in
Example 2, there are clearly two popul ations, "good eggs" and “"bad
eggs", which exist, but no causal relationships between translucency
and whether an egg is "good" or "bad". Translucency and egg quality
may be correlated, but they can be viewed as jointly determined by
unobserved variables, and hence the nomenclature, "conjoint model”.

Situations involving conjoint models are the proper candidates for

discriminant analysis or more general classification techniques where
the objective is to classify individuals or objects into one of two (or
more) natural popul ations, e.g. good eggs/bad eggs, male/female,
species 1/species 2. Problems involving causal models are more

appropriately treated through binary regression. Liquefaction is
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certainly typified by a causal model, where the intensity of ear thquake
shaking and the soil strength are independent variables that lead to
the occurrence or non-occurrence of liquefaction. To analyze
liquefaction data using classification methods is clearly incorrect.

The use of logit regression rather than discriminant analysis also
overcomes a common objection by several researchers to the use of
statistical methods to analyze liquefaction data. 1In trying to draw a
boundary line separating liquefaction and ncon-liquafaction behavior,
such as that shown in Fig. 1.1, it is argued that data points close to
the line should be given more "weight". Data points far away from the
line are considered to contain less information because they are not at
critical locations that would control the position of the line.
Physically, this notion corresponds to the fact that in many cases
where a very severe earthquake shaking was experienced, the cyclic
shear stresses at the site may have exceeded the soil liquefaction
resistance many times over.

The above concern does present a problem within the framework of
discriminant analysis, where two populations, "liquefiable sites"” and
"non-liquefiable" sites have to be assumed, and the underlying
probability density functions of observed attributes are estimated
based on the data. If there are "extremal" data points such as those
where the liquefaction resistance was greatly exceeded, these data
points would severely affect the estimates of the density functions and
hence the location of the discriminant line. 1In the context of

classification, the method of "least squares of misclassified points",
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used by Yegian and Whitman (1978) was an attempt to address this
problem. In logit analysis, the existence of "extremal" data points
does not present a problem at all. 1In a sense, logit regression
automatically gives more "weight" to those data points near the central
portion (P = 0.5) of the logistic curve. Thus "extremal" data points
affect the logit analysis to only a limited extent.

The preceding discussion of logit versus discriminant analysis has
been on a methodological level. On a practical level, discriminant
analysis simply does not produce the desired result of the conditional
probability of liquefaction. Rather, it produces a decision rule to
clascify data into two groups, as illustrated by several examples in
Chapter 2. Logistic regression, on the other hand, does produce the

desired conditional probability.

4.3 Logit Analysis - Implementation

4.3.1 Maximum Likelihood Concepts

As stated previously, the objective of logit analysis is to use

data observations to fit an equation of the form:

P =1/[1 + exp{~(Bg + B1Xq + B2X2 + eee + Bpxp)}] (4.11a)

or equivalently

logit(P) = Bg + B1Xq + BoXo + e + BpXp (4.11b)

where the x) represent various explanatory variables and the By are
regression coefficients to be obtained from analysis. Methods to

obtain the By include a least-squares formulation which was originally
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proposed by Berkson (1944). However the dominant trend is currently in
favor of a maximum likelihood approach, in large part due to some
desirable statistical properties of maximum likelihood estima tes.
These include:
@ Consistency: As the number of data n becomes very large, the
estima tes ¢f the coefficients By become unbiased and approach
the correct values.

e Asymptotic Normality: As n becomes lerge, the estimates of the

Bx become normally distributed.

e Asymptotic Efficiency: As n becomes large, the maximuin

likelihcod estimator of By becomes efficient, i.e. it becomes
the estima tor with the minimum variarce.
The last two properties are especially relevant in developing
goodness-of-fit statistics for the logit models.

In maximum likelihood estimation, we assume a mathematical form
{Eqn. 4.11) for the probability of occurrence of liquefaction, and then
we ask: What combinatica of Bk's will give the maximum probability or
likelihood of observing the actual pattern of liquefaction and
non-liquefaction cases in the catalog? Solving this problem produces

the maximum likelihood estimates of the By coefficients.

4.3.2 Likelihood Function

To ma thematically formulate the likelihood function and the
algorithm for finding the parame ters that maximize the likelihood, the
following modifications of Eqn. 4.11 are introduced. The probability
of liquefaction for the ith observation (or case study) 1is denoted Py

with observed response i=1,...n, where n is the total number of
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observations. Also, we need to distingquish between the observed
expl anatory variables xy for each observation, and so we write xjj
which denotes the kth expl anatory variable for the ith cobservation

(i=1'.oon)o Thlls,

Pi = 1/[1 + exp{-(Bo + B1Xj1 + «+o + BkXik + ++» +BnXim)}] (4.12)

is the probability of liquefaction for the ith case and (1-Pj) is the
corresponding probability of non-liquefaction. One can consider the
response Y; to be basically a Bernoulli random variable with
probability Pj of the occurrence of Yj = 1.

The likelihood or probability &j of observing either Y=1 or Y=0

for the ith case is simply:

Yi ‘l--Yi
L., =P, (1-pP,) (4.13)
i i i

Note that since Y{ = O or Y; =1, &4 = Pj in the case of liquefaction,
and £; = (1-Pj) for non-liquefaction. If there are n independent
observations, then the joint probability of occurrence of all

observations is:

m
£ = 11° 12 . '.3 ses £ =1 21 (4.14a)
i=
or
m Y, 1-Y
i i
£ =11 P (1-p.) (4.14b)
i=1 i i

This is the likelihood function that we seek to maximize with respect
to the parameters By.

In practice, what is commonly done is to maximize the log of the
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likelihood function rather than the likelihood function itself. This
does not affect the values of the 8 estimates, since the logarithmic
function is a monotonic one-to-one transformation. Hence we denote L

as the log-likelihood function and write:

n Yi I-Yi
L=1n(g) =1ln[ T P (1-P.) ] (4.15a)
i i
i=1
or
m
L =i§l [Yi 1n Pi + (1 - Yi) ln (1 - Pi)] (4.15b)

Maximization entails taking the partial derivatives of L with respect
to Bx(k =1, ... m) and setting them to zero. Alsc, we are interested
in the 2nd derivatives of L as part of the Newton-Raphson algorithm of
optimizing the log-likelihood and for deriving goodness-of-fit
statistics. The first and second derivatives of L are easy to obtain

and are given below:

n
oL
— = I x, (Y, - P,) (k =0, 1, ... m) (4.16)
BBk i=1 ik i i
azL n
= £ - X, X (1L - P, )P (3, k =0, 2, ... m) (4.17)
aajaek i=1 ij ik i i

Note that xj5 = 1 for all i, and is associated with the intercept
coefficient term Bp. In matrix notation, we can write the sets of

these derivatives as:



and

111

[ 3L
3B
-g;‘— = .O (4.18)
k .
3L
asm
3 L 32L
382 2838
221 0 1°®n
—_— : = H
Ik 82L 321,
aB 3x e o o 2
L n’o 38y |

The ma trix of 2nd order partial derivatives (Eqn. 4.19) is some times
referred to as the Hessian matrix, and denoted H.

Likelihocod Maximiza tion and Computer Codes

4.3.3.
To obtain the maximum likelihood estimates of By (where 3L/3Bkx = O,

for all k), an iterative solution based on the Newton-Raphson formula

is used. At the rth step, one calculates:
-1
(4.20)

2

9 L oL

B} ., =81} - [————] {&-}
k‘r+1 k'r aejoaek r aek r

At the zero-th step, {8k} is usually initialized by setting Bx = 0 for

all k. Convergence is achieved usually within 5 to 10 {iterations.

Me thods other than the Newton-Raphson algorithm can ke used to
These me thods are of ten

obtain the maximum likelihood solution.
implemented for problems where explicit clcsed-form expressions for the
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derivatives of the log-likelihood functions are difficult to obtain; one
example is the general multinomial probit model (Daganzo, 1979). For
the binary logit model, the Newton-Raphson algorithm is computationally
efficient and is easy to implement.

There are several logit regression programs that are generally
available, usually as part of a larger package of statistical programs.
QUAIL was used initially in the preliminary studies of liquefaction data
presented by Veneziano and Liao (1984). However, the input and command
s truc tire required for QUAIL was far too complex and cumbersome for the
application to simple binary logistic regression. [QUAIL is intended
primarily for use with multinomial response data.] 1In addition, part of
the research required modifications of the standard logit regression
procedure (see Chapter 6) and it was deemed preferable to write a new
computer code than to change a pre-existing one. A FORTRAN listing of
the logit regression program written for this study is given in Appendix

B.

4.3.4 Goodness-of-Fit Statistics

Goodness-of-fit statistics for logit regression are useful for two
purposes: 1) to decide whether a proposed model is statistically
significant and 2) to compare various competing models in trying to
decide which is "best". By the term "model", we mean the particular
combination of explanatory variables (e.g. cyclic stress ratio and SPT
resistance) that constitute the xx's in the logistic formula (Eqn.
4.11). The term "goodness of fit statistics" is used here to mean a
variety of statistics in model fitting and paxrame ter estima tion, though

not all are goodness-of-fit statistics in the strict sense of the term.
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Several statistics are available and are briefly reviewed here. Of
these, the modified likelihood ratio index (denoted by MLRI orizz) was
found to be the most useful in the analysis of liquefaction data.

Percent Correctly Predicted (PCP): A response for the ith data

point is said to be correctly predicted if Y; = 1 and P§j » 0.5; or if Yj
= 0 and P{ < 0.5. Pj is evaluated using Eqn. 4.11 with the values of By
which maximize likelihood function. The PP statistic has an intuitive
meaning but has been shown by Horowitz (1982) to be neither a very
discriminating nor a particul arly useful statistic in model comparison.
This is because PCP depends only on the 0.5 probability value and not on
the entire logistic probability function.

T-Statistics for the B Parameters: Let ﬁk denote the maximum-

likelihood estimate of By and ak denote the standard deviation estimate

of ék. Then the null hypothesis that 8y = 0 can be tested by comparing:

(4.21)

with the (1-a/2) fractile of the Student's t distribution with n-(m+l)
degrees of freedom, where n is the total number of observations (of
liquefaction and non-liquefaction) and m is the number of expl anatory
variables. For large n-(m+l), the T-statistic can be assumed to be
approximately normal, which yields the result that the null hypothesis
is significant at the a level (2-sided test) for T > ¢ 1-a/2 (e.g. for a
= 0.05, T » 1.95). This implies that for B-coefficients with values of T
greater than or equal to about 2.0, these parameters are statistically

significant at the 0.05 level.
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The standard deviations 6k are obtained from the diagonal elements
of 7§f1, where H is the Hessian matrix (Eqn. 4.19) evaluated at the
maximum likelihood By parameters. This result is a consequence of the
Cramer-Rao inequality (see Theil, 1971).

Likelihood Ratio Statistics LRy and LR.: One can define several

likelihood ratio statistics. The ones presented here are used to test
the significance of the maximum likelihood model against two "naive"
models (null hypotheses). LRy is used to test the maximum likelihood
model against the model where all the coefficients By = 0, i.e. against
P = 0.5 for all observations. The statistic LR is used to test the
fitted model against the null hypothesis that the probability of Y=1
(Liquefaction) is simply equal to P,, the observed fraction of

liquefaction cases. The two statistics are defined as:

r, = -2 1n [-2C0 | o 5 (neo) - nidN) (4.22)
| 2By

wr_=-21n [ 211 5 (n(e) - L(F)) (4.23)
2(3)

where L(f) is the log likelihood evaluated using the fitted parameters
ﬁk; L(0) is the log likelihood evaluated assuming By = 0; L(c) is the
log likelihood evaluted assuming a single constant parameter c =
1n[P./(1-Pc)]).

The statistics LRy, and LR, are both asymptotically X2 distributed
with respectively (m+l) and m degrees of freedom, where m is the
number of expl anatory variahles. Simple formulas can be derived for

and L(c) and are given below (for binary logit):

L(0) = -n 1n(2) (4.24)
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= 1 —_——— = - >
L(c) in n11n n, + n21n n,-n 1ln n (4.25)

where nq is the number of cases for which Y = 1; ny is the number of
cases for which Y = 0; and n = n, + n] is the total number of
observations.

The hypotheses which are tested using LR, and LR, are that the
maximum likelihood “its are no better than the respective naive models.
The models are significant at level a against the "naive hypotheses" if
LR‘:l >

or LR >x2
c a

’

2
Xa,m+l n (where the symbol Xa, v denotes the (l-a)

fractile of the 2 distribution with v degrees of freedom. 1In this
study, the significant level used was a = 0.05.

Modified Likelihood Ratio Index (MLRI or'gz): This statistic was

proposed by Horowitz (1982) and is defined for binary logit as:

—2 L(B) - (m+1)/2 (4.26)
L(0)

where L(B) denotes the log-likelihood function evaluated using the
maximum likelihood values of Bx. L(0) denotes the log-likelihood
function assuming Bx = 0 (for all k); and m is the number of

expl anatory variables (Note: m+1 is the number of 8 coefficients or
"parame ters", i.e. m variables plus the intercept B5). The MLRI or';2
statistic is based on the "unmodified” likelihood ratio index (LRI or
p2) defined in a similar way (McFadden, 1974), but without the term

(m+1) /2, which represents a correction to account for the number of
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parame ters in the model.

The modified likelihood ratio index was devised to compare
"non-nested" models, i.e. models such that one model cannot be obtained
from the other by eliminating one or mcre explanatory variables.

"Nes ted" models can be compared using varicus likelihood ratio
statistics (see Sec. 4.3.5). The values of _p2 vary theoretically

be tween 0 and 1, with higher values indicating better fit to the data.
This is analogous to the correlation coefficient R2 in linear regression,
but whereas "good" fits in linear regression correspond to values of R2
of at least 0.8, a good logistic regression fit corresponds to much
lower values of _52. Within the applications of transportation and
consumer demand analysis, values of ;2 on the order of 0.3 to 0.4 are
considered to "excellent" (Hensher and Johnson, 1981; Lerman, 1983).

Horowitz (1983) has studied the significance that can be attributed
to a difference in ;2 be tween 2 models. Let ;i and -p-; denote the
modified likelihood ratio indices for a 2 non-nested models A and B, and

-2 2
suppose that Pa > o The probability that B is actually the correct

B
model (even though it has a larger ;2) can be estimated by the upper

bound resul t:

25 492) > sl-{2n(ap2) «1n(2)}?) (4.27)

—2
Prip, - rp

where A_p2 is an arbitrary value (and can be set to the calculated
difference in ;2), and ¢ denotes the the standard normal cumulative
distribution function.

Based on Horowitz's result, the upper bound values of A_pz be tween
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two models is plotted in Fig. 4.3. For a signficance level a = 0.05 and
200 observations, &;2 is less than 0.01. This means that for 200
observations, if 2 models are being compared and one of them has a'zz
greater by 0.01, the model with the higher;2 is superior at a
significance level of 0.05. This illustrates that_p-2 is an excellent

and discriminating statistic for comparing different models.

4.3.5 Stepwise Logistic Regression

In logit analysis, one is often faced with a large number cf
possible models, i.e. of possible combinations of explanatory
variables. From the various candidate models, we would like to select
one or a few that are optimal in some sense. To check all the possible
combina tions of explanatory variatles is a tedious task, but the search
can be antomated to a certain degree by a stepwise regression
procedure, e.g. as described in Anderson (1982) and Feinberg (1980).

The "s tepwise" portion of the logistic regression program used in
this study was coded by Honjo (1985), and his implementation is
described below. A set of candidate variables is hypothesized, and an
initial model (i.e. an initial subset of variables) is chosen. The
significance level q of the desired final model must also be specified.
The program then tries to build up (forward steps) or to pare down
(backward steps) the model to obtain a statistically optimum model with
only a few explanatory variables. At each step, the procedure either
adds the most statistically signficant variable not already included in
the "current" model, and/or deletes the least significant variable from
the "current" model.

The following likelihood ratio criteria is used to determine
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whe ther a variable is statistically significant or insignificant:

.

lm m+ 1

LR = -2 1n(2“‘”> - 2L - L ) (4.28)
In Eqn. 4.28, % and L respectively denote the likelihood and
log-likelihood functions and the subscripts m and m+l denote the number
of explanatory variables in the two "nested" models under consideration.
LR is X2 distributed with one degree of freedom. If LR > xi.1, then the
candidate variable is added in a forward step or exempted from deletion
in a backward step.

The choice of the significance level o is somewhat arbitrary, and is
based on judgment. In this study, after some initial trials, an o = 0.05
waes selected because, at this level, the stepwise rgression procedure
yielded results that were considered to be consistent with physical
considerations.

Two important points are mentioned here with respect to the
interpretation of the results of stepwise analysis. First, the
optimiza tion procedure is local, not global, mea ing that convergence
may be to a locally optimum model. Good practice is therefore to
okbtain several trial results by working with different initial subsets
of variables. Second, the optimization procedure may yield models that
are statistically significant, and yet contain terms that are not
relevant from a physical viewpoint. Thus, the results of statistical
analysis may need to be further scrutinized and possibly corrected

based on physical understanding of the liquefaction phenomenon.
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4.4 logistic Models of Liquefaction Behavior

4.4.1 Model Formulation and Interpretation

Al though the present approach to liquefaction risk is statistical,
it is desirable that the form of the model (fitted to the data) agree,
at least qualitatively, with the current physical understanding of the
phenomenon. 1In particular, it may happen that a variable which does
not have an evident physical interpretation is found to be
statistically significant. In formulating and interpreting logistic
liquefaction models, consideration was given to the following issues:

1) Statistical significance.

2) Accuracy of estimation (i.e. are there enough data to reliably

identify the structure of the model and to evaluate the
resul ts?)

3) Physical interpretation.

4) Biases due to particular features of the data.

The first two issues are easy to address through hypothesis
testing and the calculation of statistics of the type presented in
Section 4.3.4. Issues (3) and (4) are somewhat more complicated and
require a physical understanding of the liquefaction phenomenon.
Judgement is necessary to select physically significant models from

among those found to be statistically significant.

4.4.2 Base Local and Global Mcdels

A goal of the research was to concurrently develop two types of
statistical models of liquefaction tehavior -~ one based on "local" and

the other based on "global" earthquake intensity measures. As
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discussed previously in Chapter 2, one may distinguish between
liquefaction models that use the local site intensity measures (e.gq.
peak acceleration and duration) and models that use a global source
characterization (e.g. magnitude and epicentral distance). These are
some times also referred to respectively as A&D and M&R models (Yegian
and Whitman, 1978). The physical models selected to form the basis of
these two types of the logistic models are referred to as the
Seed-Idriss and the Davis-Berrill "base models". The use of the
terminology "base model" is meant to distinguish it from the actual
physical model. Also, the "base models" are fairly simple, but they
will form the basis of more complex models to be discussed
subsequently. In instances where the context is clear, the term "base"
will some times be omitted for the sake of brevity.

The selected base local (A&D) model corresponds to the me thod of
liquefaction analysis originally proposed by Seed and Idriss (1971).
Recent refinements of their me thod include an earthquake magni tude
normalization factor for the cyclic stress ratio and a normalization of
SPT resistance to a standard hammer energy (Seed, et al., 1984). The
Seed-1driss model is semi-~empirical, being based in part on analytical
results, and in part on empirical measurements. The Seed-Idriss model
was chosen as a base model because it is the me thod of liquefaction
analysis most often used in practice, particularly in the United

States.

The selected base global (M&R) model incorporates an earthquake load

parame ter originally proposed by Davis and Berrill (1981,1982). This

model is also semi-empirical and is formulated on the basis of energy
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dissipation considerations. 1In contrast to the Seed-Idriss model,
therz were no a priori reasons, such as prevalent usage by the
profession, to warrant its selection as the base M&R model. Rather,
the Davis-Berrill model was chosen from among several candidate M&R
models largely because of its superior goodness-of-fit to the data.
The details of this selection process are documented in Section 4.4.4.

Both the Seed-Idriss and the Davis-Berrill models reduce the
liquefaction criterion to the comparison of two variables, one
representing earthquake load and the other a measure of the soil
liquefaction resistance. In both models, the resistance functions are
the SPT N-value, normalized or corrected for an overburden pressure of
1 kg/cm? (which is approximately equal to 1 TSF or 100 kPa). The
corrected N-value is denoted by Ny, and the Ny value adjusted to
reflect a standard 60% hammer energy efficiency is denoted (Nq)gqg, as
per Seed et al. (1984). [See Chapter 3 for details.])

The load variable in the Seed-Idriss model is the normalized

cyclic stress ratio, CSRN defined as:

a 0v rd
v M=7.5 9 v m

where a is peak surface acceleration, g is the acceleration constant

Oy and';§ are respectively the total and effective overburden stresses,
rq is a depth reduction factor and rp is a normalization. factor to
convert the cyclic stress ratio (CSR) for an arbitrary magnitude M to CSR
for an equivalent M = 7.5 earthquake (see Seed et al., 1984, or Chapter

3). CSRN is a dimensionless cuantity and arbitrary units can be used for
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a, gy and gy.

The load function A for the Davis-Berrill model is defined as:

5M
3/2

101'

(4.30)
Rz(o )
v

A =
where M is the earthquake magnitude, R is a distance measured from the
source to the site, and';v is the effective overburden stress. Note that
A in Eqn. 4.30 is actuaily the inverse of the function used by Davis and
Berrill (1982), and that A is not dimensionless. Therefore, the
nunerical value of A depends on the units of R and‘;v, which are taken
here to be kilome ters and kg/cm2 respectively. In some cases, it is
convenient to operate on a dimensionless quantity )\ which is defined as:

A = AAg (4.31)

where Ag is A evaluated for M = 7.5, R = 100 km and;v = 1 kg/cmz.
The base logistic regression models that correspond to the physical
models are for Seed-Idriss:
logit(P) = By + B1 1ln(CSRN) + B2(N{)eo (4.32a)
or

P = 1/[1 + exp{-(Bo + B1 1n(CSRN) + B3(Nq)go)}] (4.32b)

and for Davis-Berrill:
logit(P) = B, + B1 1n A + B2(Ny)go (4.33a)
or
P=1/[1 + exp{-(Bo + Bq 1nA + B2(Ny)gp)}] (4.33b)

Reasons for these particular functions and for the choice of the
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Davis-Berrill model over o ther M&R candidate models are discussed in the

following sect’ons.

4.4.3 Justification of the Parame tric Form

The logit regression models described in this chapter are all of the
"linear" type because in thg logit scale, the regression equation (Egn.
4.3 or 4.11b) is linear with respect to the explanatory variables xy.
The base logit models for the Seed-Idriss and Davis-Berrill formulations

are both of the form:

logit(P) = B, + Bixq + B2X2 (4.34)

where x; = 1n(CSRN) or x; = 1n A and xp = (Nj)gp. Notice that
although logit(P) is linear in x; and xj, the xy term is actually a
non-linear function of explanatory load variable CSRN or A. However, the
model is still a linear logistic equation. In the proposed formulaticn,
CSRN and A\ are essentially transformed by the natural log function to a
different scale.

The question naturally arises as to which functions of the physical
variables should be used in the model. In practice, the choice is of ten
made by trial and error guided by considerations of both physical meaning
and statistical significance. In Table 4.2 and Fig. 4.4, the
goodness-of-fit statistics and implications of varioun functional forms
considered in formulating the Seed-Idriss based model are compared. In
particular, it is clear from Fig. 4.4 that the uae of different
functional forms for x), may have important consequences on liquefaction
risk predictions. For example, if one defines x; = CSRN and x3 = (Ny)gp,

then the model gives constant probability of liquefaction along rarallel
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straight lines on the CSRN vs (N;)go plane as shown in Fig. 4.4(a).
Oother definitions of x; and x5 yield contour lines of P with different
shapes. The contour lines, in particular the 0.5 contour lines, can be
compared to classification lines derived from discriminant analysis.

Based on generally accepted notions of the physical mechanism of
liquefaction, the results shown in Fig. 4.4(a) and 4.4(b) are clearly
inappropriate. More reasonable models are those represented in Figures
4.4(c) and 4.4(d). In particular, the model of Fig. 4.4(c) corresponds
to Eqn. 4.32 and is considered to be the most appropriate. The

associated equiprobability lines have the equations of the form:

CSRN = b'exp{c-(N1)60} (4.35)

-shere b and c are constants that depend on the probability of
liquefaction. 1In the case of the model shown in Fig. 4.4(4d), the contour

lines have equations of the type:

CSRN = b‘[(N1)60]c {4.36)
and are obtained by fitting the logistic model:
logit(P) = By + B4 1n(CSRN) + len[(N1)60] (4.37)

The difference between Eqns. 4.32 and Eqn. 4.37 is in the defintions of
X, as either (Ny)go or 1nl[(Ny)gol: these equations will be referred to in
the discussion that folliows as the (Nj)gp and 1n[(Nq)gpl models,
respectively.

The (Nj)gg model (Fig. 4.4(c)) produces a concave upward shape for

the equiprobability lines, whereas the 1n[(Nq)go) model (Fig. 4.4(d))
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gives rise to a concave downward shape. That the curvature of the
contour lines is a contentious issue was illustratasd earlier in Chapter 1
(Fig. 1.2). Though a concave upward shape is the generally aucepted
notion, there are several exceptions. For example, Tokimatsu and Yoshimi
(1981) have noted that the me thod proposed by Iwasaki, Tatsuoka, et al.
(1978) implies a concave downward curvature. The result obtained by
Yegian and Vvitelli (198la, 1981b) also has the same implication.

Another difference be tween the two models is that the
equi-probability contour lines pass through the origin in the
1n[ (Ny)gp] model whereas they have a positive CSRN-axis intercept in
the (Nj)gp model. This convergence of the contour lines in the
In[ (Ny)go) model is a natural constraint imposed by the model, and this
constraint naturally leads to the concave downward curvature. The
exponent ¢ in Egqn. 4.36, which de termines the curvature of the contour
lines equals the ratio B83/81 of the logit coefficients in Eqn. 4.27.

The ratio found from fitting to the data is smaller than 1.0, resulting
in the concave downward curvature. If the data allowed, the exponent
could have well been greater than 1.0 and concave upward contours would
have been the result.

Consider the schematic shown in Fig. 4.5 for the case of a
polynomial curve-fittinyg problem. In Fig. 4.5(a), the data points and a
first order polynomial (straight line) is shown to fit the data fairly
well, but with a positive y-axis intercept. If the same data are then
fitted to a higher order polynomial (or a power function) constrained to
go through the origin as shown in Fig. 4.5(b), a concave downward line

results. In this schematic, it is clear that the concave downward
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curvature of the polynomial is an artifact of the constraint that the
polynomial line pass through the origin. It is conjectured that this
same sort of artifact affects the 1n[(Ny)gg] logit model, and also
possibly the resul ts obtained by others showing a concave curvature of
lines separating liquefaction and non-liquefaction in the CSRN-N; space.

The prediction of the proposed (Nj)gg model (Fig. 4.4(c)) is that a
threshold value of CSRN is required to cause liquefaction even at very
low values of soil strength. The non-zero CSRN, axis intercept of the
equiprobability lines presents somewhat of a dilemma. On the one hand,
there are several precedents that support such a phenomenon: Seed et al.
(1984) indicate separating lines trending toward a non-zero intercept --
at least for silty soils. Bierswale and Stokoe (1984) has shown
liquefaction criteria on a plot of acceleration versus soil shear wave
velocity in which the separating lines trend towards a threshold
acceleration; the M&R model proposed by Yegian and Whitman (1978) also
implies a similar intercept. On the other hand, it could be argued that
the contour lines should go through the origin. Physical intuition leads
us to envision that at (Ny)gp = 0, i.e. almost zero soil strength, there
woul d be a correspondingly small cyclic shear stress ratio CSRN required
to cause liquefaction.

There are three possible expl anations for the appearance of a trend
toward a non-zero CSRN intercept of separating or equiprobability lines.
The first is that there might actually be a change from concave upward to
downward curvature which could insure that the linres would pass through
the origin. 1In this case, models fitted for higher soil resistance data

shoul d not be extrapolated back to very low resistances. The second
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possibility is that the intercept is indeed non-zero as explained by the
threshold strain concept proposed by Dobry et al. (1982). According to
these authors, there is a critical level of cyclic strain of about 10~2%
or 0.0001, below which no excess pore water pressure buildup is possible,
thus rendering liquefaction nearly Zmpossible. Their calculations
indicate that even for sites with soils of very low strength, a threshold
acceleration level of about 0.05q is required to cause liquefaction. The
third possible expl anation of the non-zero CSRN intercept is based on the
way the SPT is performed and the meaning of a N-value equal to zero, as
discussed below.

In performing the test, the borehole is advanced to the desired
depth, the SPT sampler is lowered into the hole, and the combined
weight of the drilling rods and the 140 1b SPT hammer (seated on the
anvil) is statically brought to bear on the soil at the tip of the
sampler. Then the hammer is repeatedly raised a standard height of 30
inches and dropped until the sampler has advanced 18 inches into the
soil. The number of hammer blows required to drive the sampler the
last 12 inches is recorded as N, with the blows attributed to the first
6 inches noted as "seating" blows. To obtain an N-value of 1, the
sampler has to be first "seated" 6 inches, and then one drop of the
hammer should advance the sampler another 12 inches. To obtain N =
1/2, the hammer drop would have to advance the sampler by 24 inches, or
one could drop the hammer from only 1/2 its standard height to advance
it 12 inches. To get close to a measurement of N = 0, one would have to
drop a hammer from an extrmely small height, create an impact, and

advance the sampler exactly 12 inches.
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The point is that even a value of N » 0 does not indicate that the
soil being tested has zero strength. Ra ther, the soil must at least be
able to withstand the static weight of the rods and the hammer, and the
sampler has to be "seated" into the soil, before N can be measured. It is
emphasized that the notation WOR (Weight of Rods) or WOH (Weight of
Hammer) of ten used on boring logs to indicate that the soil cculd nct
even withstand the static weight of the rods and/or the hammer is a
better indication of zero soil strength, but this does not correspond to
N = O.

In the opinion of the writer, the threshold strain concept combined
with the fact that N = 0 does not mean zero soil s trength, give
convincing arguments in favor of a non-zero CSRN intercept for the
equiprobability lines. It is also reassuring to see from Table 4.2 that
the MLRI or;2 goodness-of-fit indicator also favors the use of xq =
1n(CSRN) and x5 = (Nj)gp as explanatory variables.

The equi-probability contours shown in Fig. 4.4 have been obtained
by fitting the model to all the 278 cases from the catalog without
distinction be tween silty sands and clean sands. At present, the type of
sand is considered to be a factor with important effects on liquefaction
resistance (Seed et al., 1984). The above-noted difference in the
curva ture of the equi-probability lines obtained from ditfferent models
were also noted when the data were divided into clean sand and sitly sand
subsets. This is shown in Fig. 4.6. A sand is congidered "clean" if it
has fines content FC < 12%, and "silty" if FC > lé%. The justification
for this classification criterion is given in Section 4.8.1.

A similar series of candidate functional forms were also fitted to
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the Davis-Berrill model (i.e., considering xy = 1lnp and either xp =
(Ny)go or x3 = 1n[(Ny)ggl). The physical implications of the shapes of
the equi-probability were less compelling in indicating which model was
preferable, because it is less clear from physical reasoning what shapes
these curves should have. On a statistical basis, the MLRI statistic
indicates that the base model proposed in Eqn. 4.33 be the one that fits
the data best. Using x5 = (Ny)go in both the Davis-Berrill and

Seed-Idriss base models also makes the two formulations consistent.

4.4.4 Davis-Berill versus Other M&R Models

This section documents the reasons behind choosing the Davis-Berrill
formulation as the base M&R model used in this study. Several candidate
models were considered, including those proposed by Yegian and Whitman
(1978) and Yegian and Vitelli (198la, 1981b) shown in Table 4.4. A more
general M&R model based almost entirely on the data (i.e. with minimal
physical considerations) was also considered.

The most general M&R logit model used in the analysis can be

represented by the regression equation:

logit(P) = B, + biM = bylnR + bjlng, -~ b41n;v + 32(N1)60 (4.38)

where the b.'s are positive coefficient and R is a suitably defined
measure of distance between the earthquake source and the site of
interest, e.g. epicentral or hypocentral distance. This equation can be

rewritten as:

logit(P) = By + 1In ¥ + B2(Ny)go (4.39)
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where

(4.40)

Therefore, Eqn 4.38 is a generalization of the proposed Davis-Berrill
base model (Eqn. 4.33) and ¥ (in Egn. 4.40) is a generalized form of the
parameter A in that model as well as any of those shown in Table 4.4.
The power coefficient b3 for the total stress oy, was indicated by
analysis to be statistically insignificant and to be justifiably set
equal to zero. There is also an implied coefficient 84 = 1 in Eaqn. 4.39
for the 1n ¥ term, which however does not diminish the generality of the
model.

The essential difference between using the generalized model and of
the other M&R models in Table 4.4 is that the b-ccefficients (in Eqn.
4.38 or Eqn. 4.40) are fixed in the latter cases. In the generalized
model, the b-coefficients are to be estimated from the data in the same
way as the B-coefficients. Thus, it is naturally expected that any model
with pre-assigned b-coefficients can be no better than the generalized
model.

The resul ts firom fitting various logit regiession models of the
global M&R type are shown in Table 4.5. The model showing the best
statistical fit is the generalized model with R defined as the
hypocentral distance (R = Rygy). The modified Davis-Berrill model with
R = Ryy also has comparably good statistics, whereas the Yegian and
Whitman (1978) and Yegian and Vitelli (198lb) models produce poorer fits

to the data. The logit regression results are presented in Table 4.6 for
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comparison in a slightly different format, where generalized load
function ¥ is written for each of the same models as in Table 4.5.
Comparing the power coefficients in each of the equations leads tc the
conclusions that the Davis-Berrill and the generalized models are in good
agreement, whereas the power coefficients of the Yegian-Whitman and
Yegian-Vitelli models, are markedly different (particularly in the
coefficient that accounts for earthquake magni tude).

Numerous other candidate load functions were tried, primarily
involving variations in the definition of the distance measure R. These
models were found to be statistically suboptimal and the results are not
reported here. One particular set of models with R defined as the
distance to energy release (DER) is worth mentioning because it is a
recurrent issue in 1iquefac£ion analysis using M&R models (Youd, 1977;
Davis and Berrill, 1982). 1In all cases where the distance to energy
release (DER) was used in place of epicentral distance Rgp or hypocentral
distance Ryy, the DER formulation was found to fit the data relatively
poorly, with the MLRI statisic lower by 0.1 or more, when compared with
either the Rgp or Ryy models.

Recent studies (Joyner and Boore, 1981; Campbell, 1981) indicate
that the DER measure is an appropriate choice in the fitting of
attentuation relationships to strong motion data. It is therefore
surprising that DER formulations do not perform as well as Rgp and Ryy
formulations. It is conjectured that this is due to inaccuracies in
de termining DER particularly in regions where surface expressions of the
fault rupture are not evident. Future studies using more accurate

evaluations of DER may yield a different conclusion. However, at present
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there is no indication that DER is a good choice as a distance measure in
M&R liquefaction models.

Another point of interest is the comparison of the M&R models and the
Seed-Idriss (A&D) model. The MLRI statistic for the Seed-Idriss model
fitted to the same data subset as that used for the results in Table 4.5
was 0.5013 compared to 0.4677 for the generalized M&R model with R=Ryy.
This difference indicates the Seed-Idriss model is significantly better
than the statistically "bést“ M&R model when local accelerations can be
estimated accurately. However, this is not a justification for using the
Seed-Idriss model in risk analysis, especially if peak site acceleration
has to be determined from an attentuation relationship. Uncertainties in
the attenuation relationship will invariably affect estimates of local
accelerations, and M&R models may perform better in such cases.

The reasons for choosing the Davis-Berrill model as the basis for
more complex formulations in logit analysis are:

1) ‘The Davis-Berrill Model (whether one uses the epicentral

or the hypocentral formulation) fits the data as well
as a more elaborate M&R model.

2) The Davis-Berrill Model is based on a plausible {(though
approximate) physical model of liquefaction behavior and thus
provides a physical interpretation of the resulés of logit
analysis.

Study of both the hypocentral and epicentral models are pursued further
in later sections of this thesis. The hypocentral (Modified)
pavis-Berrill model is a simple extension and and actually fits the data

somewhat better than the model based on the earthquake load parameter
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originally proposed by Davis and Berrill (1981, 1982). However, it may
not be directly applicable for liquefaction risk analyses in regions
where seismicity is poorly understood so as to make estimates of
earthquake focal depths highly uncertain. In such cases, use of a model
using the original Davis-Berrill load parameter which relies on an
epicentral distance measure would be more appropriate.

Contour plots of probability of liquefaction are shown in Fig. 4.7
for the epicentral and hypocentral (Modified) Davis-Berrill models. 1In
this figure, the contours are straight lines because of the logarithmic
scale chosen for the load parameters Agp and Ayy. The expression for
describing the probability of liquefaction for the epicentral

pavis-Berrill model is:

logit(P) = -12.922 + 0.87213 1n(Agp) - 0.21056 (Ni)go  (4.41)

which is based on a regression using all 278 case study data. The
corresponding equation for the Modified Davis-Berrill model (based on

228 cases with available focal depth data) is reported in Table 4.5.

4.5 Sensitivity of the Results to the Data Sets

A limitation of the liquefaction catalog discussed in Chapter 3 is
that not all the case studies provide a complete set of data. For
example, of the 278 total cases, only 159 have an indication of the
soil fines content (FC) and even fewer (113) have a complete set of all
the soil gradation characteristics compiled for this study. Thus, in
extending the base Seed-Idriss model to include the effects of fines

content (FC), the subset of 159 data which has reported fines content
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has been employed. On the other hand, if one wanted a model
incorporating the effect of all gradation characteristics, only 113
case studies would be available.

In comparing the results obtained using different models based on
different subsets of data, the question arises as to whether the results
are consistent. If one partitions the data to create subsets in a way
that is not biased, then the resul ts obtained from the various subsets
shoul d be comparable. This issue is similar to a concern regarding
different conclusions that might be derived by different investigators
who have each compiled their own liquefaction data catalogs.

Fig. 4.8 shows a comparison of the logit regression coefficients
Bx obtained for the Seed-Idriss model using various subsets of the
data. A regression model fitted to a recent data catalog compiled by
Seed et al. (1984) is also shown. Reasonably narrow ranges of
estimates of the By are indicated and are comparable to the one
s tandard deviation error bars shown for the individual estimates. The
lines of equal probability of liquefaction in the CSRN-(Nj)gqg plane
that corresponding to the different coefficient estimates are shown in
Fig. 4.9. In this figure the contours are seen to be fairly similar
regardless of the data set or subset that was used in the analysis. A
superimposed comparison of the 0.1, 0.5, and 0.9 equi-probability
contours for each of the data sets/subsets is also shown in Fig. 4.10.

Figures 4.8 through 4.10 show results of the Seed-Idriss base model
fitted to the data sets without the consideration of the fines content of

the soil. 1In Fiqures 4.11 through 4.14, similar results are shown for
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comparable data partitions, but with the data further divided into
subsets of clean sands with fines content FC < 12% and silty sands with
FC > 12%. The rationale for such a dichotomy into clean and silty
sands is discussed in Section 4.§.1. Using the Davis-Berrill base
model, similarly small ranges of 8x and contour lines were also found
when the model was fitted to various data sets.

Uncertainty on the location of the equi-probability lines can be
couched in the more formal context of deriving confidence intervals.
There is an exact solution for the case of analysis involving one
explanatory variable (Brand et al, 1973), and an approximate solution for
more than one explanatory variable has been proposed by Hauck (1983).
Honjo (1984) investigated the use of Hauck's method to obtain confidence
bands, but found it to be inaccurate, except possibly for probabilt ty
values near 0.5. Thus at present, there are no reliable methods for
obtaining confidence bands for general multivariate binary logit.
Alternative ways of obtaining confidence bands for logit analysis would be
to use statistical procedures such as "jackknife" and "bootstrap" me thods
(see Efron, 1982, or Efron and Gong, 1983). The idea behind these me thods
is to create artificial data sets by resampling from the original data,
refit the model to each data set and characterize uncertainty of the
parame ters (in our case the logit coefficients) or the basisg of their
variability from set to set. The procedure described earlier in comparing
logit regression results obtained from different data sets is similar in
concept though not in execution. It should also be noted that bootstrap
and jackknife me thods usually involve a considerable compu ta tional

effort.
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In summary, the results presented in this section give an idea of the
variability of liquefaction probability estimates that one obtained by
using various data sets. Based on the results and considering the
accuracy needed for making engineering decisions, it appears that the

variation is not too large.

4.6 FExtensions of the Base Logit Models

The Seed-Idriss and Davis-Berrill base models provide rather good
fits to the data. However, there are also several additional explanatory
variables that one might wish to consider. Examples of such variables are
soil gradation characteristics, the method of estimating accelecations at
a site, and the time when the boring was performed (before or after the
earthquake). To account for these factors while preserving the essential
structure of the Seed-Idriss and David-Berrill models the following

generalized model is used:
logit(P) = Bo + B1x5 + Boxs (4.42a)

where x;, would be either 1n(CSRN) or 1ln(A) and x3 = (Ny)gp as before.

However, the coefficients B,, By and B, are now defined as:

Bo = Boo + Boiuy + Bgouz + «.. + BopUp (4.42b)
81 = 310 + 81101 + B12U2 4+ eee + B1pup (4.42c)
Ba = Boo + Baquy + Booup + <. + Bopup (4.42d)

where uj, up «.. up are the additional expl anatory variables.
Consider a model with only one "primary" explanatory variable x; and

one "secondary" explanatory variable uq, where x1 is continuous but uq is
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binary and can take on values of 0 or 1. The simplified version of

Eqn. 4.42 is in this case:

logit(P)

Bo + B1x1 (4.43a)

or

logit(P) (800 + 801111) + (B1o + B111y )xq (4.43b)

If uy = 0, then we obtain the model

logit(P) = Boo + B10%X1 (4.44)

on the other hand, if uqy = 1, then

logit(p) = (Boo +Bo1) + (810 + 811))(1 (4.45)

Thus, the terms Bgju; and Bqquq may be thought of as changes in Bg and B4
resul ting from a change of uy = 0 to uy = 1.

In Eqn. 4.33, it is conceivable to have either Bp¢ or Bq¢ equal to
zero. If Bgy = 0, then the variable uy does not affect the intercept
coefficient B, whereas, in the case where 811 = O, then u; does not
affect the slope coefficient B1. It should be noted that if both 8¢ and
B11 are non-zero, the logit model will yield the same result as when the
two popul ations (one with uy = 0 and the other with uy = 1) are analyzed
separately. Thus, incorporating the indicator variable uy in both the 8,
and B4 coefficients is equivalent to partitioning of the data according to
uq.

The effects of individual changes of By and B4 in a single
expl anatory variable logit model are schematically illustrated in Fig.
4.15. A change in the intercept coefficient By results in a simple

translation of the logistic regression curve (Fig. 4.15(a)) whereas a
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change in B4, produces a change of slope of the curve (Fig. 4.15(b)). Fiqg.
4.15(c) shows the effects of changes in both Bp and B84. In two dimensions
(i.e. two explanatory variables xq and x3), analogous changes in B8g, B1.
and B, may be envisioned as shifting or rotating the equi-probability
contour lines or increasing the separation between them.

In terms of computer implementation of Egn. 4.42, the basic logit
regression procedures can be used directly with a simple redefinition of
expl anatory variables. Uéinq the one variable case as an example, Eqn.

4.43 can be rewritten as

logit(P) = Bgg + Bi1o¥1 *+ Boiuy + Bq1qu1xX, (4.46)
= [ [ ] . Iyt 1!
By *Byxy By By
where the xi = x1, xi = u1, and xa = u1x1. The terms 86, 8;, Bé, amd Bé

woul d be the corresponding logit coefficients obtained with these
redefined variables.

From the preceding discussion, it is seen that the generalized model
presented in Egqn. 4.42 is a reasonable way of incorporating the effects of
"gecondary" variables in the base logit models. The model is simple to
implement and to interpret. More complex models involving cross product
terms of the secondary variables such as uj.up, ug.uz, etc. are
conceivable but were not used because of limitations of the data and the

increased complexity of interpretation.

4.7 Significant and Insignificant Secondary Variables

Several secondary variables were considered for possible
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incorporation into the Seed-Idriss and pavis-Berrill base models using the
format of Eqn. 4.42. The significance and physical implications of those
variables are discussed in subsequent sections. The purpose of the
present section is to describe the search/selection procedure used to
identify those variables that are statistically significant and those that
are not.

The term "statistically significant" is used here as a shor thand
terminology for the formal statement that the null hypothesis (that a
certain variable or model is unimportant) is insignificant at the a = 0.05
level and can be rejected. The signficance level a = 0.05 was chosen
after some initial trials with other a-levels. The results with a = 0.05
appeared to be compatible with what was expected in terms of physical
behavior of liquefaction, whereas lower a-levels were found to exclude
some important variables as being insignificant. Of course, the fact that
a variable is statistically significant does not necessarily imply that
the same variable is physically meaningful. For example, statistical
significance can arise because of biases in the data. Thus, the results of
statistical analyses should always be tempered with engineering judgment.

Most of the candidate secondary variables considered in the analysis
are binary. Approximately 30 of these were considered in "groups" that
were indicators of:

e The source catalog of each case study.

® Geographic location (Japan, california, China, other).

e Whether the epicentral distance was obtained from instrumental

data or estimated from intensity isoseismals.

o Whether the distance to energy release is estimated independently
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of the epicentral distance.

® How peak site acceleration was obtained.

e The method of performing the SPT.

® How a representative SPT N-value for the case study was obtained.

® Whether a boring was performed before or after the earthquake.
Details of how the above "groups" of variables (and others) have been
structured may be found in Appendix A or Chapter 3.

The elimination of statistically insignificer: secondary variables
was done in two stages. 1In the first stage, each of the variables
belonging to the same "group" were considered and stepwise logistic
regressicn (Sec. 4.3.5) was used to ferret out insignificant variables
within the "group". The second stage of the elimination process then used
those variables not eliminated during the first stage in another run of
the stepwise regression procedure. It was found that this procedure
helped to assure physically sensible resul ts. The specific outcomes of
this two-stage elimination process are descri»ed ir. Section 4.9.

As mentioned previously in Section 4.3.5, the stepwisze logistic
regression procedure is a method that results in iocal rather than a
global optimization of the combination of expl anatrory variables.

In érder to verify that the resul ts were at least close to the global
optimum, several runs of the stepwise regression algorithm were made using
different initial models. Numerous checks of individual logit regression
models were also performed. It should be noted that even globally optimum
models are not necessarily consistent with physical considerations.

A general overview of the resul ts of search/selection procedure for

secondary expl anatory variables is shown in Table 4.7 for the Seed-Idriss
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and Davis-Berrill base models. Four categories of significance are used
in this table to classify the variables. The categories are actually
defined as a comtination of statistical significance combined with a
judgmental consideration of physical interpretation.

It is interesting that the statistical significance of the secondary
variables is often different for the Seed-Idriss and Davis-Berrill
models. Particularly surprising is the fact that fines content (FC),
gravel context {GC) and the median grain size (Dgg) appear to be
important for the Seed-Idriss model, but these factors are statistically
insignificant for the Davis-Berrill model. Several conjectures can be
made as to why this is so, although it is difficult to reach definitive
conclusions, given the current state-of-knowledge of the liquefaction
phenomenon and the limitations of the data base.

One conjecture is that the Davis-Berrill model is an inherently
"ornder” model of liquefactior behavior than the Seed-Idriss model. If
one accepts that the characterization of earthquake intensity (in terms
of peak acceleration) for an A&D model has more diagnostic power than an
M&R characterization, then this conjecture is a logical conclusion. The
arqument then follows that grain size effects are too subtle to be
distinquished by the Davis-Berrill model (and M&R models in general)
though they are significant to the more "refined" Seed-Idriss model; A
confirmation of this argument is illustrated in Chapter 7. Another
possibility is that A&D models are more subject to prejudices in the
assessment of the facts of a case study. Judgement is often required to
obtain a value of peak acceleration. 1If a range of possible
accelerations can be inferred, one could be inclined to think that a

relatively high acceleration occurred at the site in analyzing a case
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study after the fact of liquefaction. On the other hand, at a site where
liquefaction did not occur, there would be more of a prejudice towards
thinking that the acceleration was relatively low. The evaluation of
magnitudes and distances are less subject to interpretation, and thus may
partially account for the differences in M&R and A&D models.

Similar arguments could also be made to explain why other secondary
variables seem to influence one model and not the other. The time of the
boring (before or after the earthquake) is another variable that is
perplexing. For this particular variable, firm conclusions cannot be
reached due to the relatively small number (39) of borings which are
known with certainty to have been performed prior to ear thquake
occurrence. The possible influence of the sparcity of data on the
resul ts for specific secondary variables is also noted in Table 4.7.

The necessity for caution in the interpretation of the results of
stepwise logistic regression is further illustrated by the secondary
variables that indicate SPT procedure and the me thod of obtaining site
accelerations. It is not clear why the SPT me thod indicators should be
relevant, since differences among the various methods of pexrforming the
SPT are accounted for in the data catalog using a normalized Nj-value
(i.e. (Ny)go) as proposed by Seed et al. (1984). Additional data is also
needed to investigate the effects of those variables included in the last
category in Table 4.7. These are variables that, on a purely physical
basis, should have some effect on probability of liquefaction. For
example, non-level ground cundi tions should be important in many
situations. The documentation of additional case studies focussing on the

variables indicated in the last significance category of Table 4.7 would
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yield useful resul ts.

4.8 Effects of Gradation Variables

The search/selection procedure for statistically significant
variables has indicated that three grain-size characteristics are
important for liquefaction prediction: fines content (FC), gravel
content (GC), and median grain size (Dgg). 1In this section, we first
consider models that incorporate each of these factors, one at a time,
and then models that simul taneously consider two or all three of them.
The resul ts presented in this section pertain only to the Seed-Idriss
base model. As noted in Section 4.7, the Davis-Berrill model was found

to be insensitive to gradation effects.

4.8.1 Fines Content

The effect of fines content (FC) is best modelled by a binary

indicator variable denoted as FCI (Fines Content In.'lcator) where

{ 0 if FC < 12%
1 if FC > 12%
The logit equation using this variabie is written as:
logit(P) = Bo + 611n(CSRN) + B2(N1)60 (4.48)
where
Bo = Boo + Bo1°FCI (4.49a)
Ba = B2p + B2¢°FCI (4.49c)

Reasons for this functional form are given below.
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In the initial stages of model formulation, it seemed desirable to
develop a model with the effect of fines content treated as a binary
variable, even though fines content is actually a continuous variable. A
precedent for doing this was a similar classification of sails as fine
silty sands and coarser clean sands as proposed by Seed et al. (1983)
based on the median grain size Dgg. Also, the iiquefaction data catalog
contained only 159 case studies (of the total 278) where the fines
content was actually meashred. For the remaining 119 cases, a rough
classification into clean and silty sands could usually be made based on
the descriptions of the soils presented in the source references. Thus a
binary fines content indicator allows the use of a larger data set.

One problem in the definition of a fines content indicator is that
of choosing the "critical" value of the fines content that separates
"clean" from "silty" sands. This is equivalent to the problem of
determining the FC value at which the fines significantly affect the
liquefaction behavior of the soil. Seed et al. (1984) suggest a critical
FC value as low as 5%, whereas laboratory studies (Kaufman, 198l; Sherif
et al, 1983) indicate critical FC values as high as 10% to 30% depending
on the interpretation of the results.

Fig. 4.16 shows the modified likelihood ratio index MLRI or B? for
a series of logit regression fits to the 159 case study cata with
measured FC values. The models differ in the critical value of fines
content chosen to partition the cases into clean and silty sands.
Conclusions that can be drawn from Fig. 4.16 are:

1) The use of a binary indicator variable to create a partitioning

of the d:ta irto clean and silty sand leads to significant
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improvement over the base Seed-Idriss model.

2) A critical FC value chosen anywhere from 4% to 12% fines can be
used. (See range of high p2 in Fig. 4.16.)

3) The maximum value of MLRI occurs for a critical value of 12%
fines content, though the':2 value (0.4320) does not clearly
indicate a statistical advantage over a choice of other FC
critical values in the range between 4% and 12%.

Similar conclusions are reached when using the Seed et al. (1984)
data catalog with 124 cases, as shown in Fig. 4.17. 1In this case, the
maximum MLRI occurs for a critical value of FC between 7% and 9%. The
values of MLRI are exactly the same within this range of critical FC
values because the catalog contains no data with fines content between 7%
and 9%. However, a marked local maximum in the MLRI occurs for this
catalog also at 12% fines content.

Based on the above observations, it was thus decided to choose FU =
12% as the critical value for partitioning the case studies into clean
and silty sand subsets. This value has the additional appeal in that it
is also the value that divides soil classifications of SM from SP-SM (or
SW-SM) within the Unified Soil Classification System.

Using the 159 data subset with measured fines content values,
attemp ts were made to model the effects of fines content as a continuous
variable. The use of a binary indicator variable is analogous to that of
a step function with respect to fines content. Below a critical value of
FC = 12%, the effects of fines are zero, and above FC = 12%, the full
effect occurs. Thus the value of 1 for the variable FCI in Egn. 4.47 or

4.49 may be thought of as a normalized change in liquefaction resistance.
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Fig. 4.18 shows various attempts at using smoother function steps to
replace FCI. However, as indicated by the values of;2 associated with
the various functions, no significant improvement is obtained with any of
the continuous-variable models over the binary-varieble formulation.

There are two important conclusions that can be drawn from these
results. The first is that modelling the effect of fines content as a
binary indicator variable is just as good as modelling it as a continuous
variable. The binary variable is also simpler and has the advantage of
allowing the use of a larger data set in regresion. Secondly, if there is
a "continuous" effect of fines content, the increases in liquefaction
resistance due to fines content are already at a maximum once FC exceeds
about 12% to 15%. A soil with a certain Ny-value and FC = 30% would have
no more additional resistance to liquefaction than a soil with the same
Nq-value but with FC = 15%.

The above conclusions appear to contradict the results presented by
Tok ima tsu and Yoshimi (1983) and Seed et al. (1984). The conclusions are
clearly in disagreement with the laboratory results of Kaufman (1981) and
Sherif et al. (1983). However, a possible explanation of the apparent
contradictions is offered: The SPT is a very crude field test. Unlike
refined and controlled laboratory tests, the SPT is fairly insensitive to
the fines content of the soil. The SPT may be able to distinguish
roughly be tween clean sands and silty sands, but it cannot distinguish
be tween a sand, for instance, that has 15% fines and a sand with 30%
fines. Thus, variations in the fines content may actually influence the
liquefaction resistance of a soil, but this influence is not reflected by

and cannot be predicted from the SPT N-value.
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The logit equation fitted to 278 case studies (182 cases of clean
sand, and 96 cases of silty sand) is reported in Table 4.8. The
implications of introducing a fines content indicator (FCI) in the
Seed-Idriss base model are shown in Figures 4.19 and 4.20. Note that the
form of Eqn. 4.49 makes the use of FCI equivalent to fitting the logit
equation separately to the two data sets (clean sands and silty sands) as
was done in Sec. 4.3 (Table 4.3). The equi-probability contour lines in
Fig. 4.19(b) are more dispersed than those in Fig. 4.19(a), reflecting
greater uncertainty in the predictive value of the Seed-Idriss model for
silty sands. This is probably due to the larger diversity of soils
included in the silty sand class.

Fig. 4.20 shows a comparison of the 0.1, 0.5, and 0.9 equi-
probability contour lines for the two types of sands. The P = 0.5
contour line of the silty sands is higher than the corresponding line for
clean sands, indicating in general that the effect of higher fines
content (FC > 12%) is to increase the liquefaction resistance. Thus for
silty sands and clean sands with the same Njq-value, the use of the P =
0.5 contour line in a design situation would indicate a higher CSRN value
required to liquefy the silty sand. However, if we wished to design for
a relatively low (more conservative) conditional probability of
liquefaction, say P = 0.1, the results indicate a lower value of CSRN
required to liquefy the silty sand. Thus, it would be incorrect to make
the general statement, that given the same Nj-value, a silty sand has a
lower probability of liguefaction than a clean sand. The reason why such
a statement is not always correct is that greater uncertainty exists in

predicting the liquefaction behavior of silty sands compared to that of
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clean sands. It should also be noted that the assessment of low values

of P represent mainly extrapolation, and these should be considered less

reliable.

4.8.2 Gravel Content

The effects of gravel content (GC) on the Seed-I<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>